Sample records for mutant pisum sativum

  1. Seed coat import and unloading in pisum. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grusak, M.A.; Minchin, P.E.H.

    1987-08-01

    Experiments were undertaken with empty, attached ovules of Pisum sativum to observe the effects of osmotic solution changes on seed coat import and unloading into the apoplast. Through the use of /sup 11/CO/sub 2/ pulse labelling along with collimated monitoring of plant sections, the authors were able to continuously and simultaneously measure total pod import, import into a single ovule, and washout from the ovule into a flow-through bathing solution. The authors results indicated that changes in bathing solution sucrose concentration had no immediate effect on tracer washout in Pisum, but did affect ovule import. Lowering the sucrose concentration decreasedmore » import and raising the concentration increased import. Furthermore, these import changes were only gradually reflected in the seed coat washout profile, suggesting a buffering capability of the non-phloem seed coat tissues. Additional results have also led them to propose that the terminal site of seed coat unloading in Pisum is the plasmalemma of an non-phloem seed coat cell type, that unloading from this site occurs via a passive membrane transport process, and that solutes move symplastically to this compartment from the phloem.« less

  2. Pea, Pisum sativum, and Its Anticancer Activity

    PubMed Central

    Rungruangmaitree, Runchana; Jiraungkoorskul, Wannee

    2017-01-01

    Pisum sativum (Family: Fabaceae), as known as green pea or garden pea, has long been important in diet due to its content of fiber, protein, starch, trace elements, and many phytochemical substances. It has been shown to possess antibacterial, antidiabetic, antifungal, anti-inflammatory, antihypercholesterolemia, and antioxidant activities and also shown anticancer property. Its nonnutritive biologically active components include alkaloids, flavonoids, glycosides, isoflavones, phenols, phytosterols, phytic acid, protease inhibitors, saponins, and tannins. This plant is rich in apigenin, hydroxybenzoic, hydroxycinnamic, luteolin, and quercetin, all of which have been reported to contribute to its remedial properties including anticarcinogenesis property. Based on established literature on the anticancer property of P. sativum and possible mode of action, this review article has focused to demonstrate that P. sativum could be further explored for the development of anticancer treatment. PMID:28503053

  3. Early nodule senescence is activated in symbiotic mutants of pea (Pisum sativum L.) forming ineffective nodules blocked at different nodule developmental stages.

    PubMed

    Serova, Tatiana A; Tsyganova, Anna V; Tsyganov, Viktor E

    2018-04-03

    Plant symbiotic mutants are useful tool to uncover the molecular-genetic mechanisms of nodule senescence. The pea (Pisum sativum L.) mutants SGEFix - -1 (sym40), SGEFix - -3 (sym26), and SGEFix - -7 (sym27) display an early nodule senescence phenotype, whereas the mutant SGEFix - -2 (sym33) does not show premature degradation of symbiotic structures, but its nodules show an enhanced immune response. The nodules of these mutants were compared with each other and with those of the wild-type SGE line using seven marker genes that are known to be activated during nodule senescence. In wild-type SGE nodules, transcript levels of all of the senescence-associated genes were highest at 6 weeks after inoculation (WAI). The senescence-associated genes showed higher transcript abundance in mutant nodules than in wild-type nodules at 2 WAI and attained maximum levels in the mutant nodules at 4 WAI. Immunolocalization analyses showed that the ethylene precursor 1-aminocyclopropane-1-carboxylate accumulated earlier in the mutant nodules than in wild-type nodules. Together, these results showed that nodule senescence was activated in ineffective nodules blocked at different developmental stages in pea lines that harbor mutations in four symbiotic genes.

  4. A chemically induced new pea (Pisum sativum) mutant SGECdt with increased tolerance to, and accumulation of, cadmium.

    PubMed

    Tsyganov, Viktor E; Belimov, Andrei A; Borisov, Alexey Y; Safronova, Vera I; Georgi, Manfred; Dietz, Karl-Josef; Tikhonovich, Igor A

    2007-02-01

    To date, there are no crop mutants described in the literature that display both Cd accumulation and tolerance. In the present study a unique pea (Pisum sativum) mutant SGECd(t) with increased Cd tolerance and accumulation was isolated and characterized. Ethylmethane sulfonate mutagenesis of the pea line SGE was used to obtain the mutant. Screening for Cd-tolerant seedlings in the M2 generation was performed using hydroponics in the presence of 6 microm CdCl2. Hybridological analysis was used to identify the inheritance of the mutant phenotype. Several physiological and biochemical characteristics of SGECd(t) were studied in hydroponic experiments in the presence of 3 microm CdCl2, and elemental analysis was conducted. The mutant SGECd(t) was characterized as having a monogenic inheritance and a recessive phenotype. It showed increased Cd concentrations in roots and shoots but no obvious morphological defects, demonstrating its capability to cope well with increased Cd levels in its tissues. The enhanced Cd accumulation in the mutant was accompanied by maintenance of homeostasis of shoot Ca, Mg, Zn and Mn contents, and root Ca and Mg contents. Through the application of La(+3) and the exclusion of Ca from the nutrient solution, maintenance of nutrient homeostasis in Cd-stressed SGECd(t) was shown to contribute to the increased Cd tolerance. Control plants of the mutant (i.e. no Cd treatment) had elevated concentrations of glutathione (GSH) in the roots. Through measurements of chitinase and guaiacol-dependent peroxidase activities, as well as proline and non-protein thiol (NPT) levels, it was shown that there were lower levels of Cd stress both in roots and shoots of SGECd(t). Accumulation of phytochelatins [(PCcalculated) = (NPT)-(GSH)] could be excluded as a cause of the increased Cd tolerance in the mutant. The SGECd(t) mutant represents a novel and unique model to study adaptation of plants to toxic heavy metal concentrations.

  5. On the shock response of pisum sativum and lepidium sativum

    NASA Astrophysics Data System (ADS)

    Leighs, James Allen; Hazell, Paul; Appleby-Thomas, Gareth James

    2012-03-01

    The high strain-rate response of biological and organic structures is of interest to numerous fields ranging from the food industry to astrobiology. Consequently, knowledge of the damage mechanisms within, and the viability of shocked organic material are of significant importance. In this study, a single-stage gasgun has been employed to subject samples of Pisum sativum (common pea) and Lepidium sativum (curled cress) to planar shock loading. Impact pressures of up to ~11.5 GPa and ~0.5 GPa for pea and cress seed samples respectively have been reached. The development of the experimental approach is discussed and presented alongside results from modelled gauge traces showing the sample loading history. Viability of the shock-loaded pea and cress seeds was investigated via attempts at germination, which were unsuccessful with pea seeds but successful in all tests performed on cress seeds. This work suggests that organic structures could survive shockwaves that may be encountered during asteroid collisions.

  6. Domestication of Pea (Pisum sativum L.): The Case of the Abyssinian Pea

    PubMed Central

    Weeden, Norman F.

    2018-01-01

    Phylogenetic relationships of the Abyssinian pea (Pisum sativum ssp. abyssinicum) to other subspecies and species in the genus were investigated to test between different hypotheses regarding its origin and domestication. An extensive sample of the Pisum sativum ssp. sativum germplasm was investigated, including groups a-1, a-2, b, c, and d as identified by Kwon et al. (2012). A broad sample of P. fulvum but relatively few P. s. ssp. elatius accessions were analyzed. Partial sequences of 18 genes were compared and these results combined with comparisons of additional genes done by others and available in the literature. In total, 54 genes or gene fragment sequences were involved in the study. The observed affinities between alleles in P. ssp. sativum, P. s. ssp. abyssinicum, P. s. ssp. elatius, and P. fulvum clearly demonstrated a close relationship among the three P. sativum subspecies and rejected the hypothesis that the Abyssinian pea was formed by hybridization between one of the P. sativum subspecies and P. fulvum. If hybridization were involved in the generation of the Abyssinian pea, it must have been between P. s. ssp. sativum and P. s. ssp. elatius, although the Abyssinian pea possesses a considerable number of highly unique alleles, implying that the actual P. s. ssp. elatius germplasm involved in such a hybridization has yet to be tested or that the hybridization occurred much longer ago than the postulated 4000 years bp. Analysis of the P. s. ssp. abyssinicum alleles in genomic regions thought to contain genes critical for domestication indicated that the indehiscent pod trait was independently developed in the Abyssinian pea, whereas the loss of seed dormancy was either derived from P. s. ssp. sativum or at least partially developed before the P. s. ssp. abyssinicum lineage diverged from that leading to P. s. ssp. sativum. PMID:29720994

  7. Physicochemical traits of Dekoko (Pisum sativum var. abyssinicum) seeds.

    PubMed

    Yemane, Asgedom; Skjelvåg, Arne O

    2003-01-01

    Dekoko (Pisum sativum var. abyssinicum) has high appreciation for its taste and obtains a premium price in local markets compared to Ater (Pisum sativum var. sativum). However, data on the physicochemical traits of Dekoko seeds were lacking. This paper reports on the physicochemical features of Dekoko and compares the results with that of Ater. Seed weight and seed volume were 36 and 30%, respectively, higher in Ater, while water absorption, percent seed swelling, and percent husk were higher in Dekoko. Cooking time was shorter for Dekoko than Ater seeds. Decortication reduced cooking time on average by 39 and 45 min in Dekoko and Ater, respectively. Cotyledon flour of Dekoko contained 251 g crude protein, 19 g fat, 31.7 g total sugars, 370 g starch, and 130 g neutral detergent fiber per kilogram DM. These traits were significantly higher in Dekoko than in Ater, except for starch, which was higher in the latter. Arginine, asparagine, and glutamine occurred in larger proportions, and collectively contributed about 39% to the total amino acids in both varieties. Lysine contributed about 7%, while sulfur containing amino acids constituted about 3.0 and 2.3% of the total amino acids in Dekoko and Ater, respectively. Ca and Mg were higher in Ater, while P was higher in Dekoko. Based on the observations it was concluded that Dekoko is a suitable supplementary protein source for a cereal-based diet.

  8. Genetic Diversity of Chinese and Global Pea (Pisum sativum L.) Collections.

    USDA-ARS?s Scientific Manuscript database

    Pea (Pisum sativum L.) is an important food and feed legume grown across many temperate regions of the world, especially from Asia to Europe and North America. The goal of this study was to use 30 informative pea microsatellite markers to compare genetic diversity in a global core from the USDA and ...

  9. Impact of dyeing industry effluent on germination and growth of pea (Pisum sativum).

    PubMed

    Malaviya, Piyush; Hali, Rajesh; Sharma, Neeru

    2012-11-01

    Dye industry effluent was analyzed for physico-chemical characteristics and its impact on germination and growth behaviour of Pea (Pisum sativum). The 100% effluent showed high pH (10.3) and TDS (1088 mg l(-1)). The germination parameters included percent germination, delay index, speed of germination, peak value and germination period while growth parameters comprised of root and shoot length, root and shootweight, root-shoot ratio and number of stipules. The study showed the maximum values of positive germination parameters viz. speed of germination (7.85), peak value (3.28), germination index (123.87) and all growth parameters at 20% effluent concentration while the values of negative germination parameters viz. delay index (-0.14) and percent inhibition (-8.34) were found to be minimum at 20% effluent concentration. The study demonstrated that at lower concentrations the dyeing industry effluent caused a positive impact on germination and growth of Pisum sativum.

  10. Biosynthesis of the phytoalexin pisatin. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preisig, C.L.; Bell, J.N.; Matthews, D.E.

    1990-11-01

    NADPH-dependent reduction of 2{prime},7-dihydroxy-4{prime},5{prime}-methylenedioxyisoflavone to the isoflavanone sophorol, a proposed intermediate step in pisatin biosynthesis, was detected in extracts of Pisum sativum. This isoflavone reductase activity was inducible by treatment of pea seedlings with CuCl{sub 2}. The timing of induction coincided with that of the 6a-hydroxymaackiain 3-O-methyltransferase, which catalyzes the terminal biosynthetic step. Neither enzyme was light inducible. Further NADPH-dependent metabolism of sophorol by extracts of CuCl{sub 2}-treated seedlings was also observed; three products were radiolabeled when ({sup 3}H)sophorol was the substrate, one of which is tentatively identified as maackiain.

  11. Pea (Pisum sativum) Seed Production as an Assay for Reproductive Effects Due to Herbicides.

    EPA Science Inventory

    Even though herbicide drift can affect plant reproduction, current plant testing protocols emphasize effects on vegetative growth. In this study, we determined whether a short–growing season plant can indicate potential effects of herbicides on seed production. Pea (Pisum sativum...

  12. Isolation and characterization of novel EST-derived genic markers in Pisum sativum (Fabaceae)1

    PubMed Central

    Jain, Shalu; McPhee, Kevin E.

    2013-01-01

    • Premise of the study: Novel markers were developed for pea (Pisum sativum) from pea expressed sequence tags (ESTs) having significant homology to Medicago truncatula gene sequences to investigate genetic diversity, linkage mapping, and cross-species transferability. • Methods and Results: Seventy-seven EST-derived genic markers were developed through comparative mapping between M. truncatula and P. sativum in which 75 markers produced PCR products and 33 were polymorphic among 16 pea genotypes. • Conclusions: The novel markers described here will be useful for future genetic studies of P. sativum; their amplification in lentil (Lens culinaris) demonstrates their potential for use in closely related species. PMID:25202494

  13. Immunolocalization of pectic polysaccharides during abscission in pea seeds (Pisum sativum L.) and in abscission less def pea mutant seeds.

    PubMed

    Lee, YeonKyeong; Ayeh, Kwadwo Owusu; Ambrose, Mike; Hvoslef-Eide, Anne Kathrine

    2016-08-31

    In pea seeds (Pisum sativum L.), the presence of the Def locus determines abscission event between its funicle and the seed coat. Cell wall remodeling is a necessary condition for abscission of pea seed. The changes in cell wall components in wild type (WT) pea seed with Def loci showing seed abscission and in abscission less def mutant peas were studied to identify the factors determining abscission and non-abscission event. Changes in pectic polysaccharides components were investigated in WT and def mutant pea seeds using immunolabeling techniques. Pectic monoclonal antibodies (1 → 4)-β-D-galactan (LM5), (1 → 5)-α-L-arabinan(LM6), partially de-methyl esterified homogalacturonan (HG) (JIM5) and methyl esterified HG (JIM7) were used for this study. Prior to abscission zone (AZ) development, galactan and arabinan reduced in the predestined AZ of the pea seed and disappeared during the abscission process. The AZ cells had partially de-methyl esterified HG while other areas had highly methyl esterified HG. A strong JIM5 labeling in the def mutant may be related to cell wall rigidity in the mature def mutants. In addition, the appearance of pectic epitopes in two F3 populations resulting from cross between WT and def mutant parents was studied. As a result, we identified that homozygous dominant lines (Def/Def) showing abscission and homozygous recessive lines (def/def) showing non-abscission had similar immunolabeling pattern to their parents. However, the heterogeneous lines (Def/def) showed various immunolabeling pattern and the segregation pattern of the Def locus. Through the study of the complexity and variability of pectins in plant cell walls as well as understanding the segregation patterns of the Def locus using immunolabeling techniques, we conclude that cell wall remodeling occurs in the abscission process and de-methyl esterification may play a role in the non-abscission event in def mutant. Overall, this study contributes new insights into

  14. Identification of the 64 kilodalton chloroplast stromal phosphoprotein as phosphoglucomutase. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvucci, M.E.; Drake, R.R.; Broadbent, K.P.

    1990-05-01

    Phosphorylation of the 64 kilodalton stromal phosphoprotein by incubation of pea (Pisum sativum) chloroplast extracts with ({gamma}-{sup 32}P)ATP decreased in the presence of Glc-6-P and Glc-1,6-P{sub 2}, but was stimulated by glucose. Two-dimensional gel electrophoresis following incubation of intact chloroplasts and stromal extracts with ({gamma}-{sup 32}P)ATP, or incubation of stromal extracts and partially purified phosphoglucomutase (EC 2.7.5.1) with ({sup 32}P)Glc-1-P showed that the identical 64 kilodalton polypeptide was labeled. A 62 kilodalton polypeptide was phosphorylated by incubation of tobacco (Nicotiana sylvestris) stromal extracts with either ({gamma}-{sup 32}P)ATP or ({sup 32}P)Glc-1-P. In contrast, an analogous polypeptide was not phosphorylated in extractsmore » from a tobacco mutant deficient in plastid phosphoglucomutase activity. The results indicate that the 64 (or 62) kilodalton chloroplast stromal phosphoprotein is phosphoglucomutase.« less

  15. Characterization and structural analysis of wild type and a non-abscission mutant at the development funiculus (Def) locus in Pisum sativum L.

    PubMed

    Ayeh, Kwadwo Owusu; Lee, YeonKyeong; Ambrose, Mike J; Hvoslef-Eide, Anne Kathrine

    2009-06-23

    In pea seeds (Pisum sativum L.), the Def locus defines an abscission event where the seed separates from the funicle through the intervening hilum region at maturity. A spontaneous mutation at this locus results in the seed failing to abscise from the funicle as occurs in wild type peas. In this work, structural differences between wild type peas that developed a distinct abscission zone (AZ) between the funicle and the seed coat and non-abscission def mutant were characterized. A clear abscission event was observed in wild type pea seeds that were associated with a distinct double palisade layers at the junction between the seed coat and funicle. Generally, mature seeds fully developed an AZ, which was not present in young wild type seeds. The AZ was formed exactly below the counter palisade layer. In contrast, the palisade layers at the junction of the seed coat and funicle were completely absent in the def mutant pea seeds and the cells in this region were seen to be extensions of surrounding parenchymatous cells. The Def wild type developed a distinct AZ associated with palisade layer and counterpalisade layer at the junction of the seed coat and funicle while the def mutant pea seed showed non-abscission and an absence of the double palisade layers in the same region. We conclude that the presence of the double palisade layer in the hilum of the wild type pea seeds plays an important structural role in AZ formation by delimiting the specific region between the seed coat and the funicle and may play a structural role in the AZ formation and subsequent detachment of the seed from the funicle.

  16. An antifungal protein from the pea Pisum sativum var. arvense Poir.

    PubMed

    Wang, H X; Ng, T B

    2006-07-01

    An antifungal protein with a molecular mass of 11 kDa and a lysine-rich N-terminal sequence was isolated from the seeds of the pea Pisum sativum var. arvense Poir. The antifungal protein was unadsorbed on DEAE-cellulose but adsorbed on Affi-gel blue gel and CM-cellulose. It exerted antifungal activity against Physalospora piricola with an IC50 of 0.62 microM, and also antifungal activity against Fusarium oxysporum and Mycosphaerella arachidicola. It inhibited human immunodeficiency virus type 1 reverse transcriptase with an IC50 of 4.7 microM.

  17. Products of dark CO sub 2 fixation in pea root nodules support bacteroid metabolism. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosendahl, L.; Pedersen, W.B.; Vance, C.P.

    1990-05-01

    Products of the nodule cytosol in vivo dark ({sup 14}C)CO{sub 2} fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv Bodil) nodules. The distribution of the metabolites of the dark CO{sub 2} fixation products was compared in effective (fix{sup +}) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix{sup {minus}}) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The {sup 14}C incorporation from ({sup 14}C)CO{sub 2} was about threefold greater in themore » wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the {sup 14}C label in the cytosol was found in organic acids in both symbioses. The results indicate a central role for nodule cytosol dark CO{sub 2} fixation in the supply of the bacteroids with dicarboxylic acids.« less

  18. Comparative analysis of the tubulin cytoskeleton organization in nodules of Medicago truncatula and Pisum sativum: bacterial release and bacteroid positioning correlate with characteristic microtubule rearrangements.

    PubMed

    Kitaeva, Anna B; Demchenko, Kirill N; Tikhonovich, Igor A; Timmers, Antonius C J; Tsyganov, Viktor E

    2016-04-01

    In this study we analyzed and compared the organization of the tubulin cytoskeleton in nodules of Medicago truncatula and Pisum sativum. We combined antibody labeling and green fluorescent protein tagging with laser confocal microscopy to observe microtubules (MTs) in nodules of both wild-type (WT) plants and symbiotic plant mutants blocked at different steps of nodule development. The 3D MT organization of each histological nodule zone in both M. truncatula and P. sativum is correlated to specific developmental processes. Endoplasmic MTs appear to support infection thread growth, infection droplet formation and bacterial release into the host cytoplasm in nodules of both species. No differences in the organization of the MT cytoskeleton between WT and bacterial release mutants were apparent, suggesting both that the phenotype is not linked to a defect in MT organization and that the growth of hypertrophied infection threads is supported by MTs. Strikingly, bacterial release coincides with a change in the organization of cortical MTs from parallel arrays into an irregular, crisscross arrangement. After release, the organization of endoplasmic MTs is linked to the distribution of symbiosomes. The 3D MT organization of each nodule histological zone in M. truncatula and P. sativum was analyzed and linked to specific developmental processes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. SGRL can regulate chlorophyll metabolism and contributes to normal plant growth and development in Pisum sativum L.

    PubMed

    Bell, Andrew; Moreau, Carol; Chinoy, Catherine; Spanner, Rebecca; Dalmais, Marion; Le Signor, Christine; Bendahmane, Abdel; Klenell, Markus; Domoney, Claire

    2015-12-01

    Among a set of genes in pea (Pisum sativum L.) that were induced under drought-stress growth conditions, one encoded a protein with significant similarity to a regulator of chlorophyll catabolism, SGR. This gene, SGRL, is distinct from SGR in genomic location, encoded carboxy-terminal motif, and expression through plant and seed development. Divergence of the two encoded proteins is associated with a loss of similarity in intron/exon gene structure. Transient expression of SGRL in leaves of Nicotiana benthamiana promoted the degradation of chlorophyll, in a manner that was distinct from that shown by SGR. Removal of a predicted transmembrane domain from SGRL reduced its activity in transient expression assays, although variants with and without this domain reduced SGR-induced chlorophyll degradation, indicating that the effects of the two proteins are not additive. The combined data suggest that the function of SGRL during growth and development is in chlorophyll re-cycling, and its mode of action is distinct from that of SGR. Studies of pea sgrL mutants revealed that plants had significantly lower stature and yield, a likely consequence of reduced photosynthetic efficiencies in mutant compared with control plants under conditions of high light intensity.

  20. Callose deposition during gravitropism of Zea mays and Pisum sativum and its inhibition by 2-deoxy-D-glucose

    NASA Technical Reports Server (NTRS)

    Jaffe, M. J.; Leopold, A. C.

    1984-01-01

    In etiolated corn (Zea mays L.) and etiolated pea (Pisum sativum L.) seedlings, a gravitropic stimulation induces the deposition of callose. In the corn coleoptiles this occurs within 5 min of gravity stimulation, and prior to the beginning of curvature. Both gravitropic curvature and callose deposition reach their maxima by 12 h. Within the first 2 h more callose is deposited on the upper (concave) side, but after 2-3 h, this deposition pattern is reversed. An inhibitor of protein glycosylation, 2-deoxy-D-glucose (DDG), inhibits callose production and considerably retards gravitropic bending in both species of plants. Mannose can relieve the inhibition of gravitropic bending by DDG. The pea mutant "Ageotropum", which does not respond to gravity when etiolated, also fails to produce callose in response to a gravitic stimulus. These correlations indicate that callose deposition may be a biochemical component of gravitropism in plant shoots.

  1. Analysis of the state of posttranslational calmodulin methylation in developing pea plants. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Sukheung; Roberts, D.M.

    1990-07-01

    A specific calmodulin-N-methyltransferase was used in a radiometric assay to analyze the degree of methylation of lysine-115 in pea (Pisum sativum) plants. Calmodulin was isolated from dissected segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by incubation with the calmodulin methyltransferase in the presence of ({sup 3}H)methyl-S-adenosylmethionine. By this approach, the presence of unmethylated calmodulins were demonstrated in pea tissues, and the levels of methylation varied depending on the developmental state of the tissue tested. Calmodulin methylation levels were lower in apical root segments of both etiolated andmore » green plants, and in the young lateral roots compared with the mature, differentiated root tissues. The incorporation of methyl groups into these calmodulin samples appears to be specific for position 115 since site-directed mutants of calmodulin with substitutions at this position competitively inhibited methyl group incorporation. The present findings, combined with previous data showing differences in the ability of methylated and unmethylated calmodulins to activate pea NAD kinase raise the possibility that posttranslational methylation of calmodulin could be another mechanism for regulating calmodulin activity.« less

  2. High-quality permanent draft genome sequence of Rhizobium leguminosarum bv. viciae strain GB30; an effective microsymbiont of Pisum sativum growing in Poland

    DOE PAGES

    Mazur, Andrzej; De Meyer, Sofie E.; Tian, Rui; ...

    2015-07-16

    We report that Rhizobium leguminosarum bv. viciae GB30 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Pisum sativum. GB30 was isolated in Poland from a nodule recovered from the roots of Pisum sativum growing at Janow. GB30 is also an effective microsymbiont of the annual forage legumes vetch and pea. Here we describe the features of R. leguminosarum bv. viciae strain GB30, together with sequence and annotation. The 7,468,464 bp high-quality permanent draft genome is arranged in 78 scaffolds of 78 contigs containing 7,227 protein-coding genes and 75more » RNA-only encoding genes, and is part of the GEBA-RNB project proposal.« less

  3. High-quality permanent draft genome sequence of Rhizobium leguminosarum bv. viciae strain GB30; an effective microsymbiont of Pisum sativum growing in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, Andrzej; De Meyer, Sofie E.; Tian, Rui

    We report that Rhizobium leguminosarum bv. viciae GB30 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Pisum sativum. GB30 was isolated in Poland from a nodule recovered from the roots of Pisum sativum growing at Janow. GB30 is also an effective microsymbiont of the annual forage legumes vetch and pea. Here we describe the features of R. leguminosarum bv. viciae strain GB30, together with sequence and annotation. The 7,468,464 bp high-quality permanent draft genome is arranged in 78 scaffolds of 78 contigs containing 7,227 protein-coding genes and 75more » RNA-only encoding genes, and is part of the GEBA-RNB project proposal.« less

  4. Phosphatidylinositol(4,5)bisphosphate and phosphatidylinositol(4)phosphate in plant tissues. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvine, R.F.; Letcher, A.J.; Lander, D.J.

    1989-03-01

    Pea (Pisum sativum) leaf discs or swimming suspensions of Chlamydomonas eugametos were radiolabeled with ({sup 3}H)myo-inositol or ({sup 32}P)Pi and the lipids were extracted, deacylated, and their glycerol moieties removed. The resulting inositol trisphosphate and bisphosphate fractions were examined by periodate degradation, reduction and dephosphorylation, or by incubation with human red cell membranes. Their likely structures were identified as D-myo-inositol(1,4,5)trisphosphate and D-myo-inositol(1,4,)-bisphosphate. It is concluded that plants contain phosphatidylinositol(4)phosphate and phosphatidylinositol(4,5)bisphosphate; no other polyphosphoinositides were detected.

  5. The tropic response of plant roots to oxygen: oxytropism in Pisum sativum L

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Musgrave, M. E.

    1998-01-01

    Plant roots are known to orient growth through the soil by gravitropism, hydrotropism, and thigmotropism. Recent observations of plant roots that developed in a microgravity environment in space suggested that plant roots may also orient their growth toward oxygen (oxytropism). Using garden pea (Pisum sativum L. cv. Weibul's Apollo) and an agravitropic mutant (cv. Ageotropum), root oxytropism was studied in the controlled environment of a microrhizotron. A series of channels in the microrhizotron allowed establishment of an oxygen gradient of 0.8 mmol mol-1 mm-1. Curvature of seedling roots was determined prior to freezing the roots for subsequent spectrophotometric determinations of alcohol dehydrogenase activity. Oxytropic curvature was observed all along the gradient in both cultivars of pea. The normal gravitropic cultivar showed a maximal curvature of 45 degrees after 48 h, while the agravitropic mutant curved to 90 degrees. In each cultivar, the amount of curvature declined as the oxygen concentration decreased, and was linearly related to the root elongation rate. Since oxytropic curvature occurred in roots exposed to oxygen concentrations that were not low enough to induce the hypoxically responsive protein alcohol dehydrogenase, we suspect that the oxygen sensor associated with oxytropism does not control the induction of hypoxic metabolism. Our results indicate that oxygen can play a critical role in determining root orientation as well as impacting root metabolic status. Oxytropism allows roots to avoid oxygen-deprived soil strata and may also be the basis of an auto-avoidance mechanism, decreasing the competition between roots for water and nutrients as well as oxygen.

  6. Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the open field during winter in Qingdao.

    USDA-ARS?s Scientific Manuscript database

    As a cool season crop, pea (Pisum sativum L.) can tolerate frost at the vegetative stage but has yield loss when freezing stress occurs at reproductive stage. Cold tolerance improvement of pea varieties is important for the stable yield and the expansion of winter pea planting area. Under the natura...

  7. Extraction, purification, kinetic and thermodynamic properties of urease from germinating Pisum Sativum L. seeds

    PubMed Central

    2014-01-01

    Background Urease, one of the highly efficient known enzymes, catalyzes the hydrolysis of urea into ammonia and carbon dioxide. The present study aimed to extract urease from pea seeds (Pisum Sativum L). The enzyme was then purified in three consequence steps: acetone precipitation, DEAE-cellulose ion-exchange chromatography, and gel filtration chromatography (Sephacryl S-200 column). Results The purification fold was 12.85 with a yield of 40%. The molecular weight of the isolated urease was estimated by chromatography to be 269,000 Daltons. Maximum urease activity (190 U/g) was achieved at the optimum conditions of 40°C and pH of 7.5 after 5 min of incubation. The kinetic parameters, K m and V max , were estimated by Lineweaver-Burk fits and found to be 500 mM and 333.3 U/g, respectively. The thermodynamic constants of activation, ΔH, E a , and ΔS, were determined using Arrhenius plot and found to be 21.20 kJ/mol, 23.7 kJ/mol, and 1.18 kJ/mol/K, respectively. Conclusions Urease was purified from germinating Pisum Sativum L. seeds. The purification fold, yield, and molecular weight were determined. The effects of pH, concentration of enzyme, temperature, concentration of substrate, and storage period on urease activity were examined. This may provide an insight on the various aspects of the property of the enzyme. The significance of extracting urease from different sources could play a good role in understanding the metabolism of urea in plants. PMID:25065975

  8. Development and validation of breeder-friendly KASPar markers for er1, a powdery mildew resistance gene in pea (Pisum sativum L.)

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew of pea is caused by Erysiphe pisi DC and is a serious threat to pea (Pisum sativum L.) production throughout much of the world. Development and utilization of genetic resistance to powdery mildew is considered an effective and sustainable strategy to manage this disease. One gene, er1...

  9. Fucosylation of xyloglucan: localization of the transferase in dictyosomes of pea stem cells. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camirand, A.; Brummell, D.; MacLachlan, G.

    1987-07-01

    Microsomal membranes from elongating regions of etiolated Pisum sativum stems were separated by rate-zonal centrifugation on Renografin gradients. The transfer of labeled fucose and xylose from GDP-(/sup 14/C) fucose and UDP-(/sup 14/C)xylose to xyloglucan occurred mainly in dictyosome-enriched fractions. No transferase activity was detected in secretory vesicle fractions. Pulse-chase experiments using pea stem slices incubated with (/sup 3/H)fucose suggest that xyloglucan chains are fucosylated and their structure completed within the dictyosomes, before being transported to the cell wall by secretory vesicles.

  10. Feed-back regulation of gibberellin biosynthesis and gene expression in Pisum sativum L.

    PubMed

    Martin, D N; Proebsting, W M; Parks, T D; Dougherty, W G; Lange, T; Lewis, M J; Gaskin, P; Hedden, P

    1996-01-01

    Treatment of tall and dwarf (3 beta-hydroxylase impaired) genotypes of pea (Pisum sativum L.) with the synthetic, highly active gibberellin (GA), 2,2-dimethyl GA4, reduced the shoot contents of C19-GAs, including GA1, and increased the concentration of the C20-GA, GA19. In shoots of the slender (la crys) mutant, the content of C19-GAs was lower and GA19 content was higher than in those of the tall line. Metabolism of GA19 and GA20 in leaves of a severe (na) GA-deficient dwarf mutant was reduced by GA treatment. The results suggest feed-back regulation of the 20-oxidation and 3 beta-hydroxylation reactions. Feed-back regulation of GA 20-oxidation was studied further using a cloned GA 20-oxidase cDNA from pea. The cDNA, Ps074, was isolated using polymerase chain reaction with degenerate oligonucleotide primers based on pumpkin and Arabidopsis 20-oxidase sequences. After expression of this cDNA clone in Escherichia coli, the product oxidized GA12 to GA15, GA24 and the C19-GA, GA9, which was the major product. The 13-hydroxylated substrate GA53 was similarly oxidized, but less effectively than GA12, giving mainly GA44 with low yields of GA19 and GA20. Ps074 hybridized to polyadenylated RNA from expanding shoots of pea. Amounts of this transcript were less in the slender genotype than in the tall line and were reduced in GA-deficient genotypes by treatment with GA3, suggesting that there is feed-back regulation of GA 20-oxidase gene expression.

  11. Identification of lesion and nodal resistance in pea (Pisum sativum L.) to Sclerotinia sclerotiorum using genome-wide association studies and RNA-Seq

    USDA-ARS?s Scientific Manuscript database

    Nodal resistance in plants is a phenomenon where a fungal infection is prevented from passing through a node and the infection is limited to an internode region. Nodal resistance has been observed in some pathosystems such as the pea (Pisum sativum L.)-white mold (WM) (Sclerotinia sclerotiorum (Lib....

  12. Further characterization of ribosome binding to thylakoid membranes. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurewitz, J.; Jagendorf, A.T.

    1987-05-01

    Previous work indicated more polysomes bound to pea (Pisum sativum cv Progress No. 9) thylakoids in light than in the dark, in vivo. With isolated intact chloroplasts incubated in darkness, addition of MgATP had no effect but 24 to 74% more RNA was thylakoid-bound at pH 8.3 than at pH 7. Thus, the major effect of light on ribosome-binding in vivo may be due to higher stroma pH. In isolated pea chloroplasts, initiation inhibitors (pactamycin and kanamycin) decreased the extent of RNA binding, and elongation inhibitors (lincomycin and streptomycin) increased it. Thus, cycling of ribosomes is controlled by translation, initiation,more » and termination. Bound RNA accounted for 19 to 24% of the total chloroplast RNA and the incorporation of (/sup 3/H)leucine into thylakoids was proportional to the amount of this bound RNA. These data support the concept that stroma ribosomes are recruited into thylakoid polysomes, which are active in synthesizing thylakoid proteins.« less

  13. Protein methylation in pea chloroplasts. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemi, K.J.; Adler, J.; Selman, B.R.

    1990-07-01

    The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with ({sup 3}H-methyl)-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. Onemore » methylinkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile ({sup 3}H)methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the ({sup 3}H)methyl group.« less

  14. Characterization of pea (Pisum sativum) seed protein fractions.

    PubMed

    Rubio, Luis A; Pérez, Alicia; Ruiz, Raquel; Guzmán, M Ángeles; Aranda-Olmedo, Isabel; Clemente, Alfonso

    2014-01-30

    Legume seed proteins have to be chemically characterized in order to properly link their nutritional effects with their chemical structure. Vicilin and albumin fractions devoid of cross-contamination, as assessed by mass peptide fingerprinting analysis, were obtained from defatted pea (Pisum sativum cv. Bilbo) meal. The extracted protein fractions contained 56.7-67.7 g non-starch polysaccharides kg⁻¹. The vicilin fraction was higher than legumins in arginine, isoleucine, leucine, phenylalanine and lysine. The most abundant amino acids in the albumin fraction were aspartic acid, glutamic acid, lysine and arginine, and the amounts of methionine were more than double than those in legumins and vicilins. The pea albumin fraction showed a clear enrichment of protease inhibitory activity when compared with the seed meal. In vitro digestibility values for pea proteins were 0.63 ±  0.04, 0.88 ±  0.04 and 0.41 ±  0.23 for legumins, vicilins and albumins respectively. Vicilin and albumin fractions devoid of cross-contamination with other proteins were obtained from pea seed meal. The vicilin fraction also contained low amounts of soluble non-starch polysaccharides and was enriched in isoleucine, leucine, phenylalanine and lysine. In vitro digestibility values for pea proteins were similar or even numerically higher than those for control proteins. © 2013 Society of Chemical Industry.

  15. Crystallization and preliminary X-ray analysis of eukaryotic initiation factor 4E from Pisum sativum

    PubMed Central

    Ashby, Jamie A.; Stevenson, Clare E. M.; Maule, Andrew J.; Lawson, David M.

    2009-01-01

    Crystals of an N-terminally truncated 20 kDa fragment of Pisum sativum eIF4E (ΔN-eIF4E) were grown by vapour diffusion. X-ray data were recorded to a resolution of 2.2 Å from a single crystal in-house. Indexing was consistent with primitive monoclinic symmetry and solvent-content estimations suggested that between four and nine copies of the eIF4E fragment were possible per crystallographic asymmetric unit. eIF4E is an essential component of the eukaryotic translation machinery and recent studies have shown that point mutations of plant eIF4Es can confer resistance to potyvirus infection. PMID:19652353

  16. Isolation of pisumin, a novel antifungal protein from legumes of the sugar snap pea Pisum sativum var macrocarpon.

    PubMed

    Ye, X Y; Ng, T B

    2003-02-01

    An antifungal protein with a novel N-terminal sequence GVGAAYGCFG and a molecular mass of 31 kDa was isolated from the legumes of the sugar snap pea Pisum sativum var. macrocarpon. The protein, designated pisumin, exhibited antifungal activity against Coprinus comatus and Pleurotus ostreatus and much weaker activity against Fusarium oxysporum and Rhizoctonia solani. Pisumin inhibited cell-free translation in a rabbit reticulocyte lysate system with an IC(50) of 6 microM. Pisumin was similar to other leguminous antifungal proteins in that it was adsorbed on Affi-gel blue gel and CM-Sepharose.

  17. Subcellular distribution of serine acetyltransferase from Pisum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform.

    PubMed

    Ruffet, M L; Lebrun, M; Droux, M; Douce, R

    1995-01-15

    The intracellular compartmentation of serine acetyltransferase, a key enzyme in the L-cysteine biosynthesis pathway, has been investigated in pea (Pisum sativum) leaves, by isolation of organelles and fractionation of protoplasts. Enzyme activity was mainly located in mitochondria (approximately 76% of total cellular activity). Significant activity was also identified in both the cytosol (14% of total activity) and chloroplasts (10% of total activity). Three enzyme forms were separated by anion-exchange chromatography, and each form was found to be specific for a given intracellular compartment. To obtain cDNA encoding the isoforms, functional complementation experiments were performed using an Arabidopsis thaliana expression library and an Escherichia coli mutant devoid of serine acetyltransferase activity. This strategy allowed isolation of three distinct cDNAs encoding serine acetyltransferase isoforms, as confirmed by enzyme activity measurements, genomic hybridizations, and nucleotide sequencing. The cDNA and related gene for one of the three isoforms have been characterized. The predicted amino acid sequence shows that it encodes a polypeptide of M(r) 34,330 exhibiting 41% amino acid identity with the E. coli serine acetyltransferase. Since none of the general features of transit peptides could be observed in the N-terminal region of this isoform, we assume that it is a cytosolic form.

  18. Development of an indirect enzyme linked immunoassay for abscisic acid. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, G.S.; Elder, P.A.; McWha, J.A.

    1987-09-01

    AN INDIRECT METHOD OF ENZYME-LINKED-IMMUNOSORBENT-ASSAY (ELISA) IS REPORTED FOR ABSCISIC ACID (ABA), UTILIZING A THYROGLOBULIN-ABA CONJUGATE FOR COATING WELLS. THE ASSAY CAN USE COMMERCIALLY AVAILABLE MONOCLONAL ANTIBODIES, IS SENSITIVE TO AS LITTLE AS 20 PICOGRAMS ABA PER WELL, AND IS MUCH MORE CONSERVATIVE OF ANTIBODY THAN DIRECT METHODS. THE MOST DILUTE ABA STANDARDS DID NOT RETAIN THEIR ANTIGENICITY DURING STORAGE, SO ABA STANDARD SETS WERE DILUTED IMMEDIATELY PRIOR TO USE. THE INDIRECT ELISA WAS USED SUCCESSFULLY TO ESTIMATE ABA CONCENTRATIONS IN DEVELOPING COTYLEDONS OF PISUM SATIVUM L., AFTER ONLY LITTLE PRELIMINARY PURIFICATION. IT WAS VALIDATED FOR THIS TISSUE THROUGH THEmore » USE OF GAS CHROMATOGRAPHY-ELECTRON CAPTURE DETECTION (GC-EC), AND CAPILLARY GC-SELECTED ION MONITORING (GC-MS-SIM) USING LABELLED ABA AS AN INTERNAL STANDARD. FULL SPECTRUM GC-MASS SPECTROMETRY WAS ALSO USED TO VERIFY THAT ABA WAS PRESENT IN A SAMPLE ASSAYED QUANTITATIVELY BY BOTH ELISA AND GC-MS-SIM.« less

  19. Genetic control of floral zygomorphy in pea (Pisum sativum L.).

    PubMed

    Wang, Zheng; Luo, Yonghai; Li, Xin; Wang, Liping; Xu, Shilei; Yang, Jun; Weng, Lin; Sato, Shusei; Tabata, Satoshi; Ambrose, Mike; Rameau, Catherine; Feng, Xianzhong; Hu, Xiaohe; Luo, Da

    2008-07-29

    Floral zygomorphy (flowers with bilateral symmetry) has multiple origins and typically manifests two kinds of asymmetries, dorsoventral (DV) and organ internal (IN) asymmetries in floral and organ planes, respectively, revealing the underlying key regulators in plant genomes that generate and superimpose various mechanisms to build up complexity and different floral forms during plant development. In this study, we investigate the loci affecting these asymmetries during the development of floral zygomorphy in pea (Pisum sativum L.). Two genes, LOBED STANDARD 1 (LST1) and KEELED WINGS (K), were cloned that encode TCP transcription factors and have divergent functions to constitute the DV asymmetry. A previously undescribed regulator, SYMMETRIC PETALS 1 (SYP1), has been isolated as controlling IN asymmetry. Genetic analysis demonstrates that DV and IN asymmetries could be controlled independently by the two kinds of regulators in pea, and their interactions help to specify the type of zygomorphy. Based on the genetic analysis in pea, we suggest that variation in both the functions and interactions of these regulators could give rise to the wide spectrum of floral symmetries among legume species and other flowering plants.

  20. Kinetic features of gravicurvature of pea (Pisum sativum) and cress (Lepidium sativum) roots

    NASA Astrophysics Data System (ADS)

    Polishchuk, O. V.

    The upper sides of roots oriented horizontally grow more rapidly than the lower sides, causing the root ultimately to grow downward; this phenomenon is known as positive gravitropism. This ability is based on implicit mechanism which is being extensively investigated. Elaborate analysis of kinetic features of gravicurvature may complement the investigation. Pea and cress roots have positive gravitropism as roots of majority of higher plants. Mainly we investigated dependence of gravicurvature angle on time of gravistimulation. Two-day-old seedlings of cress (Lepidium sativum L. cv. P896) and four-day-old pea ones (Pisum sativum L. cv. Damir-2) were placed on 1% agar medium in Petri dishes and turned on angle of gravistimulation. Then they were photographed at the same position each hour of gravistimulation. Photographs were analyzed with the help of Image Tool software program. Both pea and cress roots showed two phases of gravitropic response during gravistimulation for 6 hours when the initial angle of gravistimulation was 135 degrees. Two peaks of the rate of bending were observed. In cress roots, the first peak was much lower and the distance between the two peaks was greater than in pea roots. Curves of gravitropic bending of cress roots grown in agar had one or two inflections while in the case of roots grown on filter paper curves had no inflections. These data are in agreement with the effect of the external medium on the gravitropic curvature of rice roots reported by Staves et al. (1997). Our results may reflect the fact that at least two systems that contribute to gravicurvature may exist in roots. These systems may be ligand-receptor complexes that may be formed with different kinetics in two different regions of the root. The most probable ligand is auxin and the regions appear to be central elongation zone (CEZ) and distal elongation zone (DEZ), that were reported to be centers of tropic bending in roots. Thus, dependence of rate of root bending on

  1. Microbial symbionts affect Pisum sativum proteome and metabolome under Didymella pinodes infection.

    PubMed

    Desalegn, G; Turetschek, R; Kaul, H-P; Wienkoop, S

    2016-06-30

    The long cultivation of field pea led to an enormous diversity which, however, seems to hold just little resistance against the ascochyta blight disease complex. The potential of below ground microbial symbiosis to prime the immune system of Pisum for an upcoming pathogen attack has hitherto received little attention. This study investigates the effect of beneficial microbes on the leaf proteome and metabolome as well as phenotype characteristics of plants in various symbiont interactions (mycorrhiza, rhizobia, co-inoculation, non-symbiotic) after infestation by Didymella pinodes. In healthy plants, mycorrhiza and rhizobia induced changes in RNA metabolism and protein synthesis. Furthermore, metal handling and ROS dampening was affected in all mycorrhiza treatments. The co-inoculation caused the synthesis of stress related proteins with concomitant adjustment of proteins involved in lipid biosynthesis. The plant's disease infection response included hormonal adjustment, ROS scavenging as well as synthesis of proteins related to secondary metabolism. The regulation of the TCA, amino acid and secondary metabolism including the pisatin pathway, was most pronounced in rhizobia associated plants which had the lowest infection rate and the slowest disease progression. A most comprehensive study of the Pisum sativum proteome and metabolome infection response to Didymella pinodes is provided. Several distinct patterns of microbial symbioses on the plant metabolism are presented for the first time. Upon D. pinodes infection, rhizobial symbiosis revealed induced systemic resistance e.g. by an enhanced level of proteins involved in pisatin biosynthesis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Purification, crystallization and preliminary crystallographic study of a recombinant plant aminoaldehyde dehydrogenase from Pisum sativum

    PubMed Central

    Tylichová, Martina; Briozzo, Pierre; Kopečný, David; Ferrero, Julien; Moréra, Solange; Joly, Nathalie; Snégaroff, Jacques; Šebela, Marek

    2008-01-01

    Aminoaldehydes are products of polyamine degradation and are known to be reactive metabolites that are toxic to living cells at high concentrations. These compounds are catabolized by aminoaldehyde dehydrogenases, which are enzymes that contain a nicotinamide adenine dinucleotide coenzyme. Amino­aldehyde dehydrogenase from Pisum sativum was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop method. A complete data set was collected to 2.8 Å resolution at 100 K. Crystals belong to the monoclinic space group P21, with unit-cell parameters a = 86.4, b = 216.6, c = 205.4 Å, β = 98.1°. Molecular replacement was performed and led to the identification of six dimers per asymmetric unit. PMID:18259056

  3. On the shock response of Pisum Sativum (a.k.a the Common Pea)

    NASA Astrophysics Data System (ADS)

    Leighs, James; Hazell, Paul; Appleby-Thomas, Gareth

    2011-06-01

    The high strain-rate response of biological and organic structures is of interest to numerous fields ranging from the food industry (dynamic pasteurisation) to astrobiology (e.g. the theory of panspermia, which suggests that planets could be `seeded' with life `piggy-backing' of interplanetary bodies). Consequently, knowledge of the damage mechanisms and viability of shocked organic material is of paramount importance. In this study a single-stage gas-gun has been employed to subject samples of Pisum Sativum (the Common Pea) to semi-planar shock loading, corresponding to impact pressures of up to c.3 GPa. The experimental approach adopted is discussed along with results from Manganin gauges embedded in the target capsule which show the loading history. Further, the viability of the shock-loaded peas was investigated via attempts at germination. Finally, microscopic examination of the impacted specimens allowed a qualitative assessment of damage mechanisms to be made.

  4. Physical basis for altered stem elongation rates in internode length mutants of Pisum

    NASA Technical Reports Server (NTRS)

    Behringer, F. J.; Cosgrove, D. J.; Reid, J. B.; Davies, P. J.

    1990-01-01

    Biophysical parameters related to gibberellin (GA)-dependent stem elongation were examined in dark-grown stem-length genotypes of Pisum sativum L. The rate of internode expansion in these genotypes is altered due to recessive mutations which affect either the endogenous levels of, or response to, GA. The GA deficient dwarf L181 (ls), two GA insensitive semierectoides dwarfs NGB5865 and NGB5862 (lka and lkb, respectively) and the slender' line L197 (la crys), which is tall regardless of GA content, were compared to the wild-type tall cultivar, Torsdag. Osmotic pressure, estimated by vapor pressure osmometry, and turgor pressure, measured directly with a pressure probe, did not correlate with the differences in growth rate among the genotypes. Mechanical wall properties of frozen-thawed tissue were measured using a constant force assay. GA deficiency resulted in increased wall stiffness judged both on the basis of plastic compliance and plastic extensibility normalized for equal stem circumference. Plastic compliance was not reduced in the GA insensitive dwarfs, though lka reduced circumference-normalized plasticity. In contrast, in vivo wall relaxation, determined by the pressure-block technique, differed among genotypes in a manner which did correlate with extension rates. The wall yield threshold was 1 bar or less in the tall lines, but ranged from 3 to 6 bars in the dwarf genotypes. The results with the ls mutant indicate that GA enhances stem elongation by both decreasing the wall yield threshold and increasing the wall yield coefficient. In the GA-insensitive mutants, lka and lkb, the wall yield threshold is substantially elevated. Plants possessing lka may also possess a reduced wall yield coefficient.

  5. Genetic diversity studies in pea (Pisum sativum L.) using simple sequence repeat markers.

    PubMed

    Kumari, P; Basal, N; Singh, A K; Rai, V P; Srivastava, C P; Singh, P K

    2013-03-13

    The genetic diversity among 28 pea (Pisum sativum L.) genotypes was analyzed using 32 simple sequence repeat markers. A total of 44 polymorphic bands, with an average of 2.1 bands per primer, were obtained. The polymorphism information content ranged from 0.657 to 0.309 with an average of 0.493. The variation in genetic diversity among these cultivars ranged from 0.11 to 0.73. Cluster analysis based on Jaccard's similarity coefficient using the unweighted pair-group method with arithmetic mean (UPGMA) revealed 2 distinct clusters, I and II, comprising 6 and 22 genotypes, respectively. Cluster II was further differentiated into 2 subclusters, IIA and IIB, with 12 and 10 genotypes, respectively. Principal component (PC) analysis revealed results similar to those of UPGMA. The first, second, and third PCs contributed 21.6, 16.1, and 14.0% of the variation, respectively; cumulative variation of the first 3 PCs was 51.7%.

  6. NADH induces the generation of superoxide radicals in leaf peroxisomes. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Rio, L.A.; Sandalio, L.M.; Palma, J.M.

    1989-03-01

    In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O{sub 2}{sup {minus}}) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O{sub 2}{sup {minus}} radicals. In the soluble fractions of peroxisomes, no generation of O{sub 2}{sup {minus}} radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive againstmore » xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes suggests that O{sub 2}{sup {minus}} generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related roles for peroxisomes in cellular metabolism.« less

  7. The Conformational Stability and Biophysical Properties of the Eukaryotic Thioredoxins of Pisum Sativum Are Not Family-Conserved

    PubMed Central

    Aguado-Llera, David; Martínez-Gómez, Ana Isabel; Prieto, Jesús; Marenchino, Marco; Traverso, José Angel; Gómez, Javier; Chueca, Ana; Neira, José L.

    2011-01-01

    Thioredoxins (TRXs) are ubiquitous proteins involved in redox processes. About forty genes encode TRX or TRX-related proteins in plants, grouped in different families according to their subcellular localization. For instance, the h-type TRXs are located in cytoplasm or mitochondria, whereas f-type TRXs have a plastidial origin, although both types of proteins have an eukaryotic origin as opposed to other TRXs. Herein, we study the conformational and the biophysical features of TRXh1, TRXh2 and TRXf from Pisum sativum. The modelled structures of the three proteins show the well-known TRX fold. While sharing similar pH-denaturations features, the chemical and thermal stabilities are different, being PsTRXh1 (Pisum sativum thioredoxin h1) the most stable isoform; moreover, the three proteins follow a three-state denaturation model, during the chemical-denaturations. These differences in the thermal- and chemical-denaturations result from changes, in a broad sense, of the several ASAs (accessible surface areas) of the proteins. Thus, although a strong relationship can be found between the primary amino acid sequence and the structure among TRXs, that between the residue sequence and the conformational stability and biophysical properties is not. We discuss how these differences in the biophysical properties of TRXs determine their unique functions in pea, and we show how residues involved in the biophysical features described (pH-titrations, dimerizations and chemical-denaturations) belong to regions involved in interaction with other proteins. Our results suggest that the sequence demands of protein-protein function are relatively rigid, with different protein-binding pockets (some in common) for each of the three proteins, but the demands of structure and conformational stability per se (as long as there is a maintained core), are less so. PMID:21364950

  8. Pre-fractionation strategies to resolve pea (Pisum sativum) sub-proteomes

    PubMed Central

    Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana; Kukavica, Biljana M.; Lüthje, Sabine

    2015-01-01

    Legumes are important crop plants and pea (Pisum sativum L.) has been investigated as a model with respect to several physiological aspects. The sequencing of the pea genome has not been completed. Therefore, proteomic approaches are currently limited. Nevertheless, the increasing numbers of available EST-databases as well as the high homology of the pea and medicago genome (Medicago truncatula Gaertner) allow the successful identification of proteins. Due to the un-sequenced pea genome, pre-fractionation approaches have been used in pea proteomic surveys in the past. Aside from a number of selective proteome studies on crude extracts and the chloroplast, few studies have targeted other components such as the pea secretome, an important sub-proteome of interest due to its role in abiotic and biotic stress processes. The secretome itself can be further divided into different sub-proteomes (plasma membrane, apoplast, cell wall proteins). Cell fractionation in combination with different gel-electrophoresis, chromatography methods and protein identification by mass spectrometry are important partners to gain insight into pea sub-proteomes, post-translational modifications and protein functions. Overall, pea proteomics needs to link numerous existing physiological and biochemical data to gain further insight into adaptation processes, which play important roles in field applications. Future developments and directions in pea proteomics are discussed. PMID:26539198

  9. A polygalacturonase localized in the Golgi apparatus in Pisum sativum.

    PubMed

    Ohashi, Takao; Jinno, Jun; Inoue, Yoshiyuki; Ito, Shoko; Fujiyama, Kazuhito; Ishimizu, Takeshi

    2017-09-01

    Pectin is a plant cell wall constituent that is mainly composed of polygalacturonic acid (PGA), a linear α1,4-d-galacturonic acid (GalUA) backbone. Polygalacturonase (PG) hydrolyzes the α1,4-linkages in PGA. Nearly all plant PGs identified thus far are secreted as soluble proteins. Here we describe the microsomal PG activity in pea (Pisum sativum) epicotyls and present biochemical evidence that it was localized to the Golgi apparatus, where pectins are biosynthesized. The microsomal PG was purified, and it was enzymatically characterized. The purified enzyme showed maximum activity towards pyridylaminated oligogalacturonic acids with six degrees of polymerization (PA-GalUA6), with a Km value of 11 μM for PA-GalUA6. The substrate preference of the enzyme was complementary to that of PGA synthase. The main PG activity in microsomes was detected in the Golgi fraction by sucrose density gradient ultracentrifugation. The activity of the microsomal PG was lower in rapidly growing epicotyls, in contrast to the high expression of PGA synthase. The role of this PG in the regulation of pectin biosynthesis or plant growth is discussed. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  10. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum).

    PubMed

    Pandey, Nalini; Singh, Gaurav Kumar

    2012-03-01

    Pea plants (Pisum sativum cv. Swati) exposed to different concentration of cadmium (50,100, 200 microM Cd) under controlled glass house conditions were quantified for different physiological parameters and antioxidative enzymes. In pea plants, Cd produced a significant inhibition of growth and induced chlorosis, marginal yellowing and necrosis in young leaves, the effect being most pronounced at 200 microM Cd supply. An alteration in the activated oxygen metabolism of pea plants were also detected as evidenced by an increase in concentration of H2O2 and TBARS along with decrease in the chlorophyll and carotenoid concentration in leaves. Cadmium toxicity induced an increase in non-protein thiol, ascorbate, proline and cysteine concentration. A significant increment in the activity of SOD, APX and GR, and a decrease in CAT was observed as a result of Cd treatment. The enhanced activity of SOD and inhibition of CAT and POD produces a high build up of H2O2 which appears to be the main cause of oxidative stress due to Cd toxicity in pea plants.

  11. Purification and characterization of ornithine transcarbamylase from pea (Pisum sativum L.)

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Richardson, D. P.

    1991-01-01

    Pea (Pisum sativum) ornithine transcarbamylase (OTC) was purified to homogeneity from leaf homogenates in a single-step procedure, using delta-N-(phosphonacetyl)-L-ornithine-Sepharose 6B affinity chromatography. The 1581-fold purified OTC enzyme exhibited a specific activity of 139 micromoles citrulline per minute per milligram of protein at 37 degrees C, pH 8.5. Pea OTC represents approximately 0.05% of the total soluble protein in the leaf. The molecular weight of the native enzyme was approximately 108,200, as estimated by Sephacryl S-200 gel filtration chromatography. The purified protein ran as a single molecular weight band of 36,500 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results suggest that the pea OTC is a trimer of identical subunits. The overall amino acid composition of pea OTC is similar to that found in other eukaryotic and prokaryotic OTCs, but the number of arginine residues is approximately twofold higher. The increased number of arginine residues probably accounts for the observed isoelectric point of 7.6 for the pea enzyme, which is considerably more basic than isoelectric point values that have been reported for other OTCs.

  12. Biological changes of green pea (Pisum sativum L.) by selenium enrichment.

    PubMed

    Garousi, Farzaneh; Kovács, Béla; Domokos-Szabolcsy, Éva; Veres, Szilvia

    2017-03-01

    Supplement of common fertilizers with selenium (Se) for crop production will be an effective way to produce selenium-rich food and feed. The value of green pea seeds and forages as alternative protein source can be improved by using agronomic biofortification. Therefore, biological changes of green pea (Pisum sativum L.) and influences of inorganic forms of Se (sodium selenite and sodium selenate) at different concentrations on the accumulation of magnesium (Mg) and phosphorus (P) were investigated in greenhouse experiment. 3 mg kg -1 of selenite had positive effects to enhance photosynthetic attributes and decrease lipid peroxidation significantly. At the same time, Se accumulation increased in all parts of plant by increasing Se supply. Moreover, Mg and P accumulations were significantly increased at 3 mg kg -1 selenite and 1 mg kg -1 selenate treatments, respectively. By contrast higher selenite concentrations (≥30 mg kg -1 ) exerted toxic effects on plants. Relative chlorophyll content, actual photochemical efficiency of PSII (Ф PSII ) and Mg accumulation showed significant decrease while membrane lipid peroxidation increased. Thus, the present findings prove Se biofortification has positive effects on biological traits of green pea to provide it as a proper functional product.

  13. High-Throughput Development of SSR Markers from Pea (Pisum sativum L.) Based on Next Generation Sequencing of a Purified Chinese Commercial Variety

    PubMed Central

    Zhang, Xiaoyan; Hu, Jinguo; Bao, Shiying; Hao, Junjie; Li, Ling; He, Yuhua; Jiang, Junye; Wang, Fang; Tian, Shufang; Zong, Xuxiao

    2015-01-01

    Pea (Pisum sativum L.) is an important food legume globally, and is the plant species that J.G. Mendel used to lay the foundation of modern genetics. However, genomics resources of pea are limited comparing to other crop species. Application of marker assisted selection (MAS) in pea breeding has lagged behind many other crops. Development of a large number of novel and reliable SSR (simple sequence repeat) or microsatellite markers will help both basic and applied genomics research of this crop. The Illumina HiSeq 2500 System was used to uncover 8,899 putative SSR containing sequences, and 3,275 non-redundant primers were designed to amplify these SSRs. Among the 1,644 SSRs that were randomly selected for primer validation, 841 yielded reliable amplifications of detectable polymorphisms among 24 genotypes of cultivated pea (Pisum sativum L.) and wild relatives (P. fulvum Sm.) originated from diverse geographical locations. The dataset indicated that the allele number per locus ranged from 2 to 10, and that the polymorphism information content (PIC) ranged from 0.08 to 0.82 with an average of 0.38. These 1,644 novel SSR markers were also tested for polymorphism between genotypes G0003973 and G0005527. Finally, 33 polymorphic SSR markers were anchored on the genetic linkage map of G0003973 × G0005527 F2 population. PMID:26440522

  14. [Activity of agglutinin inhibitor of the kujavian pea (Pisum sativum L.) in mothers' blood and umbilical cord blood considering the course of pregnancy and delivery].

    PubMed

    Lange-Konior, K

    1999-01-01

    The aim of the paper was to evaluate the activity of inhibitor of the phytoagglutinin Pisum sativum (IfPs) in sera of mothers' and umbilical blood of their newborns in confrontation with the course of pregnancy and delivery. The investigations involved 152 tests of sera collected from women delivering at Department of Obstetrics and Perinatology in the Institute of Gynecology and Obstetrics PMU in Szczecin in the years 1992-1993, as well as 156 samples of sera stemming from their newborn infants and were taken from the umbilical cord vessels. The method of investigations being used in the paper was the reaction of inhibiting the phytohemagglutination, wherein the inhibiting action of sera in bearing women and of sera in umbilical blood exerted on agglutinating one was assessed in relation to human erythrocytes of the group 0 with Pisum sativum lectin properties. The accepted titer of inhibitor of the agglutinin Pisum sativum (IfPs) was expressed as the highest dilution of serum, at which complete inhibition of phytohemagglutination was still preserved. The performed investigations have disclosed statistically significant differences between the activity of IfPs occurring in sera of the mothers and the inhibiting factor in umbilical blood sera of the newborns (Tab. 1). No effect of the duration of pregnancy and the course of pregnancy on the IfPs activity in sera of mothers was disclosed. The absence of inhibitor of Pisum sativum lectin in umbilical blood sera was essentially frequently recorded in premature termination of pregnancy between 31-37 weeks of its duration as well as in sera of newborns born by cesarean section and newborns with birth mass being equal or lower than 2500 g in comparison to sera of full term newborns born by forces of nature (Tab. 2, 3, 5). The birth status of newborns according to Apgar scale did not have any influence of IfPs activity in their sera, however, IfPs activity in sera of umbilical blood was statistically significantly more

  15. Cloning, overexpression, purification and preliminary crystallographic studies of a mitochondrial type II peroxiredoxin from Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barranco-Medina, Sergio; López-Jaramillo, Francisco Javier, E-mail: fjljara@ugr.es; Bernier-Villamor, Laura

    2006-07-01

    The isolation, purification, crystallization and molecular-replacement solution of mitochondrial type II peroxiredoxin from P. sativum is reported. A cDNA encoding an open reading frame of 199 amino acids corresponding to a type II peroxiredoxin from Pisum sativum with its transit peptide was isolated by RT-PCR. The 171-amino-acid mature protein (estimated molecular weight 18.6 kDa) was cloned into the pET3d vector and overexpressed in Escherichia coli. The recombinant protein was purified and crystallized by the hanging-drop vapour-diffusion technique. A full data set (98.2% completeness) was collected using a rotating-anode generator to a resolution of 2.8 Å from a single crystal flash-cooledmore » at 100 K. X-ray data revealed that the protein crystallizes in space group P1, with unit-cell parameters a = 61.88, b = 66.40, c = 77.23 Å, α = 102.90, β = 104.40, γ = 99.07°, and molecular replacement using a theoretical model predicted from the primary structure as a search model confirmed the presence of six molecules in the unit cell as expected from the Matthews coefficient. Refinement of the structure is in progress.« less

  16. Cell Wall Pectin and its Methyl-esterification in Transition Zone Determine Al Resistance in Cultivars of Pea (Pisum sativum)

    PubMed Central

    Li, Xuewen; Li, Yalin; Qu, Mei; Xiao, Hongdong; Feng, Yingming; Liu, Jiayou; Wu, Lishu; Yu, Min

    2016-01-01

    The initial response of plants to aluminum (Al) is the inhibition of root elongation, while the transition zone is the most Al sensitive zone in the root apex, which may sense the presence of Al and regulate the responses of root to Al toxicity. In the present study, the effect of Al treatment (30 μM, 24 h) on root growth, Al accumulation, and properties of cell wall of two pea (Pisum sativum L.) cultivars, cv Onward (Al-resistant) and cv Sima (Al-sensitive), were studied to disclose whether the response of root transition zone to Al toxicity determines Al resistance in pea cultivars. The lower relative root elongation (RRE) and higher Al content were founded in cv Sima compared with cv Onward, which were related to Al-induced the increase of pectin in root segments of both cultivars. The increase of pectin is more prominent in Al-sensitive cultivar than in Al-resistant cultivar. Aluminum toxicity also induced the increase of pectin methylesterases (PME), which is 2.2 times in root transition zone in Al-sensitive cv Sima to that of Al resistant cv Onward, thus led to higher demethylesterified pectin content in root transition zone of Al-sensitive cv Sima. The higher demethylesterified pectin content in root transition zone resulted in more Al accumulation in the cell wall and cytosol in Al-sensitive cv Sima. Our results provide evidence that the increase of pectin content and PME activity under Al toxicity cooperates to determine Al sensitivity in root transition zone that confers Al resistance in cultivars of pea (Pisum sativum). PMID:26870060

  17. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development.

    PubMed

    Fourquin, Chloé; Primo, Amparo; Martínez-Fernández, Irene; Huet-Trujillo, Estefanía; Ferrándiz, Cristina

    2014-11-01

    CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived. This study aimed to expand research on CRC functional conservation to the legume family in order to better understand the evolutionary history of CRC orthologues in angiosperms. CRC orthologues from Pisum sativum and Medicago truncatula were identified. RNA in situ hybridization experiments determined the corresponding expression patterns throughout flower development. The phenotypic effects of reduced CRC activity were investigated in P. sativum using virus-induced gene silencing. CRC orthologues from P. sativum and M. truncatula showed similar expression patterns, mainly restricted to carpels and nectaries. However, these expression patterns differed from those of other core eudicots, most importantly in a lack of abaxial expression in the carpel and in atypical expression associated with the medial vein of the ovary. CRC downregulation in pea caused defects in carpel fusion and style/stigma development, both typically associated with CRC function in eudicots, but also affected vascular development in the carpel. The data support the conserved roles of CRC orthologues in carpel fusion, style/stigma development and nectary development. In addition, an intriguing new aspect of CRC function in legumes was the unexpected role in vascular development, which could be shared by other species from widely diverged clades within the angiosperms, suggesting that this role could be ancestral rather than derived, as so far generally accepted. © The Author 2014. Published by

  18. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development

    PubMed Central

    Fourquin, Chloé; Primo, Amparo; Martínez-Fernández, Irene; Huet-Trujillo, Estefanía; Ferrándiz, Cristina

    2014-01-01

    Background and Aims CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived. This study aimed to expand research on CRC functional conservation to the legume family in order to better understand the evolutionary history of CRC orthologues in angiosperms. Methods CRC orthologues from Pisum sativum and Medicago truncatula were identified. RNA in situ hybridization experiments determined the corresponding expression patterns throughout flower development. The phenotypic effects of reduced CRC activity were investigated in P. sativum using virus-induced gene silencing. Key Results CRC orthologues from P. sativum and M. truncatula showed similar expression patterns, mainly restricted to carpels and nectaries. However, these expression patterns differed from those of other core eudicots, most importantly in a lack of abaxial expression in the carpel and in atypical expression associated with the medial vein of the ovary. CRC downregulation in pea caused defects in carpel fusion and style/stigma development, both typically associated with CRC function in eudicots, but also affected vascular development in the carpel. Conclusions The data support the conserved roles of CRC orthologues in carpel fusion, style/stigma development and nectary development. In addition, an intriguing new aspect of CRC function in legumes was the unexpected role in vascular development, which could be shared by other species from widely diverged clades within the angiosperms, suggesting that this role could be ancestral rather than derived, as so far

  19. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.).

    PubMed

    Fichtner, Franziska; Barbier, Francois F; Feil, Regina; Watanabe, Mutsumi; Annunziata, Maria Grazia; Chabikwa, Tinashe G; Höfgen, Rainer; Stitt, Mark; Beveridge, Christine A; Lunn, John E

    2017-11-01

    Trehalose 6-phosphate (Tre6P) is a signal of sucrose availability in plants, and has been implicated in the regulation of shoot branching by the abnormal branching phenotypes of Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) mutants with altered Tre6P metabolism. Decapitation of garden pea (Pisum sativum) plants has been proposed to release the dormancy of axillary buds lower down the stem due to changes in sucrose supply, and we hypothesized that this response is mediated by Tre6P. Decapitation led to a rapid and sustained rise in Tre6P levels in axillary buds, coinciding with the onset of bud outgrowth. This response was suppressed by simultaneous defoliation that restricts the supply of sucrose to axillary buds in decapitated plants. Decapitation also led to a rise in amino acid levels in buds, but a fall in phosphoenolpyruvate and 2-oxoglutarate. Supplying sucrose to stem node explants in vitro triggered a concentration-dependent increase in the Tre6P content of the buds that was highly correlated with their rate of outgrowth. These data show that changes in bud Tre6P levels are correlated with initiation of bud outgrowth following decapitation, suggesting that Tre6P is involved in the release of bud dormancy by sucrose. Tre6P might also be linked to a reconfiguration of carbon and nitrogen metabolism to support the subsequent growth of the bud into a new shoot. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  20. Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization.

    PubMed

    Serova, Tatiana A; Tikhonovich, Igor A; Tsyganov, Viktor E

    2017-05-01

    A delay in the senescence of symbiotic nodules could prolong active nitrogen fixation, resulting in improved crop yield and a reduced need for chemical fertilizers. The molecular genetic mechanisms underlying nodule senescence have not been extensively studied with a view to breeding varieties with delayed nodule senescence. In such studies, plant mutants with the phenotype of premature degradation of symbiotic structures are useful models to elucidate the genetic basis of nodule senescence. Using a dataset from transcriptome analysis of Medicago truncatula Gaertn. nodules and previous studies on pea (Pisum sativum L.) nodules, we developed a set of molecular markers based on genes that are known to be activated during nodule senescence. These genes encode cysteine proteases, a thiol protease, a bZIP transcription factor, enzymes involved in the biosynthesis of ethylene (ACS2 for ACC synthase and ACO1 for ACC oxidase) and ABA (AO3 for aldehyde oxidase), and an enzyme involved in catabolism of gibberellins (GA 2-oxidase). We analyzed the transcript levels of these genes in the nodules of two pea wild-types (cv. Sparkle and line Sprint-2) and two mutant lines, one showing premature nodule senescence (E135F (sym13)) and one showing no morphological signs of symbiotic structure degradation (Sprint-2Fix - (sym31)). Real-time PCR analyses revealed that all of the selected genes showed increased transcript levels during nodule aging in all phenotypes. Remarkably, at 4 weeks after inoculation (WAI), the transcript levels of all analyzed genes were significantly higher in the early senescent nodules of the mutant line E135F (sym13) and in nodules of the mutant Sprint-2Fix - (sym31) than in the active nitrogen-fixing nodules of wild-types. In contrast, the transcript levels of the same genes of both wild-types were significantly increased only at 6 WAI. We evaluated the expression of selected markers in the different histological nodule zones of pea cv. Sparkle and its

  1. Internode length in Pisum. Gene na may block gibberellin synthesis between ent-7. cap alpha. -hydroxykaurenoic acid and biggerellin A/sub 12/-aldehyde. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, T.J.; Reid, J.B.

    1987-04-01

    The elongation response of the gibberellin (GA) deficient genotypes na, ls, and lh of peas (Pisum sativum L.) to a range of GA-precursors was examined. Plants possessing gene na did not respond to precursors in the GA biosynthetic pathway prior to GA/sub 12/-aldehyde. In contrast, plants possessing lh and ls responded as well as wild-type plants (dwarfed with AMO-1618) to these compounds. The results suggest that GA biosynthesis is blocked prior to ent-kaurene in the lh and ls mutants and between ent-7..cap alpha..-hydroxykaurenoic acid and GA/sub 12/-aldehyde in the na mutant. Feeds of ent(/sup 3/H)kaurenoic acid and (/sup 2/H)GA/sub 12/-aldehydemore » to a range of genotypes supported the above conclusions. The na line WL1766 was shown by gas chromatography-mass spectrometry (GC-MS) to metabolize(/sup 2/H)GA/sub 12/-aldehyde to a number of (/sup 2/H)C/sub 19/-GAs including GA/sub 1/. However, there was no indication in na genotypes for the metabolism of ent-(/sup 3/H)kaurenoic acid to these GAs. In contrast, the expanding shoot tissue of all Na genotypes examined metabolized ent-(/sup 3/H)kaurenoic acid to radioactive compounds that co-chromatographed with GA/sub 1/, GA/sub 8/, GA/sub 20/, and GA/sub 29/. However, insufficient material was present for unequivocal identification of the metabolites. The radioactive profiles from HPLC of extracts of the node treated with ent-(/sup 3/H)kaurenoic acid were similar for both Na and na plants and contained ent-16..cap alpha..,17-dihydroxykaurenoic acid and ent-6..cap alpha..,7..cap alpha..,16..beta..,17-tetrahydroxykaurenoic acid (both characterized by GC-MS), suggesting that the metabolites arose from side branches of the main GA-biosynthetic pathway. Thus, both Na and na plants appear capable of ent-7..cap alpha..-hydroxylation.« less

  2. Micromonospora ureilytica sp. nov., Micromonospora noduli sp. nov. and Micromonospora vinacea sp. nov., isolated from Pisum sativum nodules.

    PubMed

    Carro, Lorena; Riesco, Raúl; Spröer, Cathrin; Trujillo, Martha E

    2016-09-01

    A diversity study on the presence of strains representing the genus Micromonospora in Pisum sativum nodules collected from Cañizal (Spain) has provided evidence of the high number of isolates that might represent novel species. In the present work, we have characterized three of these isolates: GUI23T, GUI43T and GUI63T. Phenotypic and genotypic analyses confirmed that all strains represent novel species of the genus Micromonospora with the following proposed names: Micromonospora ureilytica sp. nov., type strain GUI23T (=CECT 9022T=DSM 101692T), Micromonospora noduli sp. nov., type strain GUI43T (=CECT 9020T=DSM 101694T), and Micromonospora vinacea sp. nov., type strain GUI63T (=CECT 9019T=DSM 101695T).

  3. Review of the health benefits of peas (Pisum sativum L.).

    PubMed

    Dahl, Wendy J; Foster, Lauren M; Tyler, Robert T

    2012-08-01

    Pulses, including peas, have long been important components of the human diet due to their content of starch, protein and other nutrients. More recently, the health benefits other than nutrition associated with pulse consumption have attracted much interest. The focus of the present review paper is the demonstrated and potential health benefits associated with the consumption of peas, Pisum sativum L., specifically green and yellow cotyledon dry peas, also known as smooth peas or field peas. These health benefits derive mainly from the concentration and properties of starch, protein, fibre, vitamins, minerals and phytochemicals in peas. Fibre from the seed coat and the cell walls of the cotyledon contributes to gastrointestinal function and health, and reduces the digestibility of starch in peas. The intermediate amylose content of pea starch also contributes to its lower glycaemic index and reduced starch digestibility. Pea protein, when hydrolysed, may yield peptides with bioactivities, including angiotensin I-converting enzyme inhibitor activity and antioxidant activity. The vitamin and mineral contents of peas may play important roles in the prevention of deficiency-related diseases, specifically those related to deficiencies of Se or folate. Peas contain a variety of phytochemicals once thought of only as antinutritive factors. These include polyphenolics, in coloured seed coat types in particular, which may have antioxidant and anticarcinogenic activity, saponins which may exhibit hypocholesterolaemic and anticarcinogenic activity, and galactose oligosaccharides which may exert beneficial prebiotic effects in the large intestine.

  4. Isoenzymes of superoxide dismutase in nodules of Phaseolus vulgaris L. , Pisum sativum L. , and Vigna unguiculata (L. ) Walp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becana, M.; Paris, F.J.; Sandalio, L.M.

    1989-08-01

    The activity and isozymic composition of superoxide dismutase were determined in nodules of Phaseolus vulgaris L., Pisum sativum L., and Vigna unguiculata (L.) Walp. A Mn-SOD was present in Rhizobium and two in Bradyrhizobium and bacteroids. Nodule mitochondria from all three legume species had a single Mn-SOD with similar relative mobility, whereas the cytosol contained several CuZn-SODs: two in Phaseolus and Pisum, and four in Vigna. In the cytoplasm of V. unguiculata nodules, a Fe-containing SOD was also present, with an electrophoretic mobility between those of CuZn- and Mn-SODs, and an estimated molecular weight of 57,000. Total SOD activity ofmore » the soluble fraction of host cells, expressed on a nodule fresh weight basis, exceeded markedly that of bacteroids. Likewise, specific SOD activities of free-living bacteria were superior or equal to those of their symbiotic forms. Soluble extracts of bacteria and bacteroids did not show peroxidase activity, but the nodule cell cytoplasm contained diverse peroxidase isozymes which were readily distinguishable from leghemoglobin components by electrophoresis. Data indicated that peroxidases and leghemoglobins did not significantly interfere with SOD localization on gels. Treatment with chloroform-ethanol scarcely affected the isozymic pattern of SODs and peroxidases, and had limited success in the removal of leghemoglobin.« less

  5. Nucleotide sequence of a complementary DNA encoding pea cytosolic copper/zinc superoxide dismutase. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.A.; Zilinskas, B.A.

    1991-08-01

    The authors now report the nucleotide sequence of the cytosolic Cu/Zn SOD cloned from a {lambda}gt11 cDNA library constructed from mRNA extracted from leaves of 7- to 10-d pea seedlings (Pisum sativum L.). The clone was isolated using a 22-base synthetic oligonucleotide complementary to the amino acid sequence CGIIGLQG. This sequence, found at the protein's carboxy terminus, is highly conserved among plant cytosolic Cu/Zn SODs but not chloroplastic Cu/Zn SODs. The 738-base pair sequence contains an open reading frame specifying 152 codons and a predicted M{sub r} of 18,024 D. The deduced amino acid sequence is highly homologous (79-82% identity)more » with the sequences of other known plant cytosolic Cu/Zn SODs but less highly conserved (63-65%) when compared with several chloroplastic Cu/Zn SODs including pea (10).« less

  6. Primary and Secondary Abscission in Pisum sativum and Euphorbia pulcherrima—How Do They Compare and How Do They Differ?

    PubMed Central

    Hvoslef-Eide, Anne K.; Munster, Cristel M.; Mathiesen, Cecilie A.; Ayeh, Kwadwo O.; Melby, Tone I.; Rasolomanana, Paoly; Lee, YeonKyeong

    2016-01-01

    Abscission is a highly regulated and coordinated developmental process in plants. It is important to understand the processes leading up to the event, in order to better control abscission in crop plants. This has the potential to reduce yield losses in the field and increase the ornamental value of flowers and potted plants. A reliable method of abscission induction in poinsettia (Euphorbia pulcherrima) flowers has been established to study the process in a comprehensive manner. By correctly decapitating buds of the third order, abscission can be induced in 1 week. AFLP differential display (DD) was used to search for genes regulating abscission. Through validation using qRT-PCR, more information of the genes involved during induced secondary abscission have been obtained. A study using two pea (Pisum sativum) mutants in the def (Developmental funiculus) gene, which was compared with wild type peas (tall and dwarf in both cases) was performed. The def mutant results in a deformed, abscission-less zone instead of normal primary abscission at the funiculus. RNA in situ hybridization studies using gene sequences from the poinsettia differential display, resulted in six genes differentially expressed for abscission specific genes in both poinsettia and pea. Two of these genes are associated with gene up- or down-regulation during the first 2 days after decapitation in poinsettia. Present and previous results in poinsettia (biochemically and gene expressions), enables a more detailed division of the secondary abscission phases in poinsettia than what has previously been described from primary abscission in Arabidopsis. This study compares the inducible secondary abscission in poinsettia and the non-abscising mutants/wild types in pea demonstrating primary abscission zones. The results may have wide implications on the understanding of abscission, since pea and poinsettia have been separated for 94–98 million years in evolution, hence any genes or processes in common

  7. Conserved thioredoxin fold is present in Pisum sativum L. sieve element occlusion-1 protein

    PubMed Central

    Umate, Pavan; Tuteja, Renu

    2010-01-01

    Homology-based three-dimensional model for Pisum sativum sieve element occlusion 1 (Ps.SEO1) (forisomes) protein was constructed. A stretch of amino acids (residues 320 to 456) which is well conserved in all known members of forisomes proteins was used to model the 3D structure of Ps.SEO1. The structural prediction was done using Protein Homology/analogY Recognition Engine (PHYRE) web server. Based on studies of local sequence alignment, the thioredoxin-fold containing protein [Structural Classification of Proteins (SCOP) code d1o73a_], a member of the glutathione peroxidase family was selected as a template for modeling the spatial structure of Ps.SEO1. Selection was based on comparison of primary sequence, higher match quality and alignment accuracy. Motif 1 (EVF) is conserved in Ps.SEO1, Vicia faba (Vf.For1) and Medicago truncatula (MT.SEO3); motif 2 (KKED) is well conserved across all forisomes proteins and motif 3 (IGYIGNP) is conserved in Ps.SEO1 and Vf.For1. PMID:20404566

  8. The Pisum Genus: Getting out of Pea Soup!

    USDA-ARS?s Scientific Manuscript database

    Pea (Pisum sativum L.) has long been a model for plant genetics and is a widely grown pulse crop producing protein-rich seeds in a sustainable manner. However, many questions remain open about (sub)species relationships in the Pisumgenus. The ongoing pea genome sequencing project and the recent geno...

  9. Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes.

    PubMed

    Barac, Miroljub; Cabrilo, Slavica; Pesic, Mirjana; Stanojevic, Sladjana; Zilic, Sladjana; Macej, Ognjen; Ristic, Nikola

    2010-01-01

    Extractability, extractable protein compositions, technological-functional properties of pea (Pisum sativum) proteins from six genotypes grown in Serbia were investigated. Also, the relationship between these characteristics was presented. Investigated genotypes showed significant differences in storage protein content, composition and extractability. The ratio of vicilin:legumin concentrations, as well as the ratio of vicilin + convicilin: Legumin concentrations were positively correlated with extractability. Our data suggest that the higher level of vicilin and/or a lower level of legumin have a positive influence on protein extractability. The emulsion activity index (EAI) was strongly and positively correlated with the solubility, while no significant correlation was found between emulsion stability (ESI) and solubility, nor between foaming properties and solubility. No association was evident between ESI and EAI. A moderate positive correlation between emulsion stability and foam capacity was observed. Proteins from the investigated genotypes expressed significantly different emulsifying properties and foam capacity at different pH values, whereas low foam stability was detected. It appears that genotype has considerable influence on content, composition and technological-functional properties of pea bean proteins. This fact can be very useful for food scientists in efforts to improve the quality of peas and pea protein products.

  10. Characterization of PsMPK2, the first C1 subgroup MAP kinase from pea (Pisum sativum L.).

    PubMed

    Ortiz-Masia, Dolores; Perez-Amador, Miguel A; Carbonell, Pablo; Aniento, Fernando; Carbonell, Juan; Marcote, Maria J

    2008-05-01

    Mitogen-activated protein kinase (MAPK) cascades play a key role in plant growth and development as well as in biotic and abiotic stress responses. They are classified according to their sequence homology into four major groups (A-D). A large amount of information about MAPKs in groups A and B is available but few data of the C group have been reported. In this study, a C1 subgroup MAP kinase cDNA, PsMPK2, was isolated from Pisum sativum. PsMPK2 is expressed in vegetative (root and leaf) and reproductive (stamen, pistil and fruit) organs. Expression of PsMPK2 in Arabidopsis thaliana shows that mechanical injury and other stress signals as abscisic acid, jasmonic acid and hydrogen peroxide increase its kinase activity, extending previous results indicating that C1 subgroup MAPKs may be involved in the response to stress.

  11. Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis.

    PubMed

    Carro, Lorena; Spröer, Cathrin; Alonso, Pilar; Trujillo, Martha E

    2012-03-01

    It was recently reported that Micromonospora inhabits the intracellular tissues of nitrogen fixing nodules of the wild legume Lupinus angustifolius. To determine if Micromonospora populations are also present in nitrogen fixing nodules of cultivated legumes such as Pisum sativum, we carried out the isolation of this actinobacterium from P. sativum plants collected in two man-managed fields in the region of Castilla and León (Spain). In this work, we describe the isolation of 93 Micromonospora strains recovered from nitrogen fixing nodules and the rhizosphere of P. sativum. The genomic diversity of the strains was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). Forty-six isolates and 34 reference strains were further analyzed using a multilocus sequence analysis scheme developed to address the phylogeny of the genus Micromonospora and to evaluate the species distribution in the two studied habitats. The MLSA results were evaluated by DNA-DNA hybridization to determine their usefulness for the delineation of Micromonospora at the species level. In most cases, DDH values below 70% were obtained with strains that shared a sequence similarity of 98.5% or less. Thus, MLSA studies clearly supported the established taxonomy of the genus Micromonospora and indicated that genomic species could be delineated as groups of strains that share > 98.5% sequence similarity based on the 5 genes selected. The species diversity of the strains isolated from both the rhizosphere and nodules was very high and in many cases the new strains could not be related to any of the currently described species. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. Differential changes in size distribution of xyloglucan in the cell walls of gravitropically responding Pisum sativum epicotyls

    NASA Technical Reports Server (NTRS)

    Talbott, L. D.; Pickard, B. G.

    1994-01-01

    Growth-related change in the size distribution of hemicellulosic wall polymers during the gravitropic curvature response of intact pea (Pisum sativum L. cv Alaska) epicotyls was examined by gel-filtration chromatography. The gravitropic response was characterized by the appearance of curvature 20 to 30 min after horizontal placement, with 35 degrees of curvature attained by 80 min. Correlated with the onset of curvature, on the upper side of the epicotyl, there was a conspicuous transient increase in the abundance of relatively large hemicellulosic xyloglucan polymers, similar to increases previously found under conditions where diminished wall extensibility was expected. On the lower side there was a moderate, slower, and longer-term increase in abundance of small xyloglucan, similar to changes previously found in connection with auxin-stimulated growth responses. Both shifts occurred primarily in the epidermis. They appear to represent two coordinated physiological mechanisms contributing to differential growth.

  13. Cloning and characterization of a 2-Cys peroxiredoxin from Pisum sativum.

    PubMed

    Bernier-Villamor, Laura; Navarro, Eusebio; Sevilla, Francisca; Lázaro, Juan-José

    2004-10-01

    A cDNA sequence coding for a pea (Pisum sativum L.) 2-Cys peroxiredoxin (2-Cys Prx) has been cloned. The deduced amino acid sequence showed a high sequence homology to the 2-Cys Prx enzymes of Phaseolus vulgaris (86%), Arabidopsis thaliana (75%), and Spinacia oleracea (75%), and contained a chloroplast target sequence at its N-terminus. The mature enzyme, without the transit peptide, has a molecular mass of 22 kDa as well as two cysteine residues (Cys-53 and Cys-175) which are well conserved among proteins of this group. The protein was expressed in a heterologous system using the expression vector pET3d, and was purified to homogeneity by three sequential chromatographic steps. The enzyme exhibits peroxidase activity on hydrogen peroxide (H(2)O(2)) and t-butyl hydroperoxide (TBHP) with DTT as reducing agent. Although both pea Trxs f and m reduce oxidized 2-Cys Prx, Trx m is more efficient. The precise conditions for oligomerization of 2-Cys Prx through extensive gel filtration studies are also reported. The transition dimer-decamer produced in vitro between pH 7.5 and 8.0 and the influence of DTT suggest that a great change in the enzyme quaternary structure of 2-Cys Prx may take place in the chloroplast during the dark-light transition. In addition, the cyclophilin-dependent reduction of chloroplast 2-Cys Prx is shown.

  14. Stimulation of nodulation in field peas (Pisum sativum) by low concentrations of ammonium in hydroponic culture

    NASA Technical Reports Server (NTRS)

    Waterer, J. G.; Vessey, J. K.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1992-01-01

    Although the inhibitory effects of high concentrations of mineral N (> 1.0 mM) on nodule development and function have often been studied, the effects of low, static concentrations of NH4+ (< 1.0 mM) on nodulation are unknown. In the present experiments we examine the effects of static concentrations of NH4+ at 0, 0.1 and 0.5 mM in flowing, hydroponic culture on nodule establishment and nitrogenase activity in field peas [Pisum sativum L. cv. Express (Svalof AB)] for the initial 28 days after planting (DAP). Peas grown in the presence of low concentrations of NH4+ had significantly greater nodule numbers (up to 4-fold) than plants grown without NH4+. Nodule dry weight per plant was significantly higher at 14, 21 and 28 DAP in plants grown in the presence of NH4+, but individual nodule mass was lower than in plants grown without NH4+. The nodulation pattern of the plants supplied with NH4+ was similar to that often reported for supernodulating mutants, however the plants did not express other growth habits associated with supernodulation. Estimates of N2 fixation indicate that the plus-NH4+ peas fixed as much or more N2 than the plants supplied with minus-NH4+ nutrient solution. There were no significant differences in nodule numbers, nodule mass or NH4+ uptake between the plants grown at the two concentrations of NH4+. Nodulation appeared to autoregulate by 14 DAP in the minus-NH4+ treatment. Plant growth and N accumulation in the minus-NH4+ plants lagged behind those of the plus-NH4+ treatments prior to N2 fixation becoming well established in the final week of the experiment. The plus-NH4+ treatments appeared not to elicit autoregulation and plants continued to initiate nodules throughout the experiment.

  15. Purification and Characterization of a Lectin from Green Split Peas (Pisum sativum).

    PubMed

    Ng, Tzi Bun; Chan, Yau Sang; Ng, Charlene Cheuk Wing; Wong, Jack Ho

    2015-11-01

    Lectins have captured the attention of a large number of researchers on account of their various exploitable activities, including antitumor, immunomodulatory, antifungal, as well as HIV reverse transcriptase inhibitory activities. A mannose/glucose-specific lectin was isolated from green split peas (a variety of Pisum sativum) and characterized. The purification step involved anion-exchange chromatography on a DEAE-cellulose column, cation-exchange chromatography on an SP-Sepharose column, and gel filtration by fast protein liquid chromatography (FPLC) on Superdex 200. The purified lectin had a native molecular mass of around 50 kDa as determined by size exclusion chromatography. It appeared as a heterotetramer, composed of two distinct polypeptide bands with a molecular mass of 6 and 19 kDa, respectively, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The N-terminal sequence of green split pea lectin shows some degree of homology compared to lectins from other legume species. Its hemagglutinating activity was inhibited by glucose, mannose, and sucrose, and attenuated at pH values higher than 12 or lower than 3. Hemagglutinating activity was preserved at temperatures lower than 80 °C. The lectin did not show antifungal activity toward fungi including Fusarium oxysporum, Botrytis cinerea, and Mycosphaerella arachidicola. Green split pea lectin showed a mitogenic effect toward murine splenocytes and could inhibit the activity of HIV-1 reverse transcriptase.

  16. PsPMEP, a pollen-specific pectin methylesterase of pea (Pisum sativum L.).

    PubMed

    Gómez, María Dolores; Renau-Morata, Begoña; Roque, Edelín; Polaina, Julio; Beltrán, José Pío; Cañas, Luis A

    2013-09-01

    Pectin methylesterases (PMEs) are a family of enzymes involved in plant reproductive processes such as pollen development and pollen tube growth. We have isolated and characterized PsPMEP, a pea (Pisum sativum L.) pollen-specific gene that encodes a protein with homology to PMEs. Sequence analysis showed that PsPMEP belongs to group 2 PMEs, which are characterized by the presence of a processable amino-terminal PME inhibitor domain followed by the catalytic PME domain. Moreover, PsPMEP contains several motifs highly conserved among PMEs with the essential amino acid residues involved in enzyme substrate binding and catalysis. Northern blot and in situ hybridization analyses showed that PsPMEP is expressed in pollen grains from 4 days before anthesis till anther dehiscence and in pollinated carpels. In the PsPMEP promoter region, we have identified several conserved cis-regulatory elements that have been associated with gene pollen-specific expression. Expression analysis of PsPMEP promoter fused to the uidA reporter gene in Arabidopsis thaliana plants showed a similar expression pattern when compared with pea, indicating that this promoter is also functional in a non-leguminous plant. GUS expression was detected in mature pollen grains, during pollen germination, during pollen tube elongation along the transmitting tract, and when the pollen tube reaches the embryo sac in the ovule.

  17. Rapid wall relaxation in elongating tissues. [Glycine max (L. ); Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyssek, R.; Maruyama, S.; Boyer, J.S.

    1988-01-01

    Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max (L.) Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, the authors investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. The authors found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached tomore » the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species.« less

  18. Physiology of Movements in the Stems of Seedling Pisum sativum L. cv Alaska 1

    PubMed Central

    Britz, Steven J.; Galston, Arthur W.

    1983-01-01

    Phototropic response in etiolated pea (Pisum sativum L. cv Alaska) seedlings is poor. However, the curvature induced by unilateral blue light can be hastened and increased in magnitude by a previously administered red light pulse followed by several hours of darkness. Phytochrome is involved in the red light effect. Phototropic response was almost completely inhibited by removal of the apical bud and hook, but it was restored if exogenous indole-3-acetic acid was applied apically to the cut stump. Therefore, the stem contains both the phototropic photoreceptor and response mechanism. Perception of gravity and gravitropic response were also localized in the stem, but gravitropism was scarcely inhibited by decapitation. It was also observed that the kinetics and curvature pattern of gravitropism differed greatly from those of phototropism. Like phototropism, stem nutation required auxin and was promoted by red light. Unlike phototropism, photoenhanced nutational curvature required the apical hook and was propagated as a wave down the stem. Naphthylphthalamic acid inhibited, in order of decreasing effect, nutation, phototropism/gravitropism, and growth. Phototropism, gravitropism, and nutation appear to represent distinct forms of stem movement with fundamental differences in the mechanisms of curvature development. Images Fig. 3 PMID:16662824

  19. Transfer cell wall ingrowths and vein loading characteristics in pea leaf discs. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wimmers, L.E.; Turgeon, R.

    1987-04-01

    Transfer cell wall ingrowths are thought to increase transport capacity by increasing plasmalemma surface area. Leaf minor vein phloem transfer cells presumably enhance phloem loading. In Pisum sativum cv. Little marvel grown under different light regimes (150 to 1000 ..mu..mol photons m/sup -2/ sec/sup -1/) there is a positive correlation between light intensity and wall ingrowth area in phloem transfer cells. The extent of ingrowth and correlation to light intensity is greatest in minor veins, decreasing as vein size increases. Vein loading was assayed by floating abraded leaf discs on /sup 14/C-sucrose (10 mM). There is a positive correlation betweenmore » uptake and transfer cell wall area, although the latter increased more than the former. The difference in uptake is stable throughout the photoperiod, and is also stable in mature leaves for at least four days after plants are transfered to a different light intensity. Sucrose uptake is biphasic. The saturable component of uptake is sensitive to light intensity, the Km for sucrose is negatively correlated to light intensity, while V/sub max/remains unchanged.« less

  20. Auxin effects on in vitro and in vivo protein phosphorylation in pea. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, S.R.; Ray, P.M.

    1987-04-01

    Terminal 8mm sections from the third internode of dark grown 7 day old Pisum sativum cv Alaska seedlings were separated into membrane and soluble fractions. SDS gradient PAGE identified approximately 50 in vivo phosphorylated proteins and proved superior to 2-D SDS PAGE in terms of resolution and repeatability. Addition of indoleacetic acid (IAA), fusicoccin, or 2,4 dichlorophenoxyacetic acid to membranes resulted in no detectable change in the number or phosphorylation level of the labeled proteins during in vitro phosphorylation in the presence of submicromolar concentrations of calcium. Similar results were obtained with soluble proteins. In the absence of calcium, themore » level of in vitro protein phosphorylation was much less, but not auxin effects could be identified. Furthermore, treatment of the sections with IAA in vivo followed by cell fractionation and in vitro phosphorylation failed to identify auxin responsive proteins. Lastly, when sections were labeled with /sup 32/P inorganic phosphate in the presence of 17 uM IAA, no auxin specific changes were found in the level of phosphorylation or in the number of phosphorylated proteins. Auxin effects on phosphorylation are thus slight or below their detection limit.« less

  1. Profile and Functional Properties of Seed Proteins from Six Pea (Pisum sativum) Genotypes

    PubMed Central

    Barac, Miroljub; Cabrilo, Slavica; Pesic, Mirjana; Stanojevic, Sladjana; Zilic, Sladjana; Macej, Ognjen; Ristic, Nikola

    2010-01-01

    Extractability, extractable protein compositions, technological-functional properties of pea (Pisum sativum) proteins from six genotypes grown in Serbia were investigated. Also, the relationship between these characteristics was presented. Investigated genotypes showed significant differences in storage protein content, composition and extractability. The ratio of vicilin:legumin concentrations, as well as the ratio of vicilin + convicilin: Legumin concentrations were positively correlated with extractability. Our data suggest that the higher level of vicilin and/or a lower level of legumin have a positive influence on protein extractability. The emulsion activity index (EAI) was strongly and positively correlated with the solubility, while no significant correlation was found between emulsion stability (ESI) and solubility, nor between foaming properties and solubility. No association was evident between ESI and EAI. A moderate positive correlation between emulsion stability and foam capacity was observed. Proteins from the investigated genotypes expressed significantly different emulsifying properties and foam capacity at different pH values, whereas low foam stability was detected. It appears that genotype has considerable influence on content, composition and technological-functional properties of pea bean proteins. This fact can be very useful for food scientists in efforts to improve the quality of peas and pea protein products. PMID:21614186

  2. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development.

    PubMed Central

    Lobreaux, S; Briat, J F

    1991-01-01

    Iron concentration and ferritin distribution have been determined in different organs of pea (Pisum sativum) during development under conditions of continuous iron supply from hydroponic cultures. No ferritin was detected in total protein extracts from roots or leaves. However, a transient iron accumulation in the roots, which corresponds to an increase in iron uptake, was observed when young fruits started to develop. Ferritin was detectable in total protein extracts of flowers and pods, and it accumulated in seeds. In seeds, the same relative amount of ferritin was detected in cotyledons and in the embryo axis. In cotyledons, ferritin and iron concentration decrease progressively during the first week of germination. Ferritin in the embryo axis was processed, and disappeared, during germination, within the first 4 days of radicle and epicotyl growth. This degradation of ferritin in vivo was marked by a shortening of a 28 kDa subunit, giving 26.5 and 25 kDa polypeptides, reminiscent of the radical damage occurring in pea seed ferritin during iron exchange in vitro [Laulhere, Laboure & Briat (1989) J. Biol. Chem. 264, 3629-3635]. Developmental control of iron concentration and ferritin distribution in different organs of pea is discussed. Images Fig. 4. Fig. 6. Fig. 7. PMID:2006922

  3. Cloning, overexpression, purification and preliminary crystallographic studies of a mitochondrial type II peroxiredoxin from Pisum sativum.

    PubMed

    Barranco-Medina, Sergio; López-Jaramillo, Francisco Javier; Bernier-Villamor, Laura; Sevilla, Francisca; Lázaro, Juan José

    2006-07-01

    A cDNA encoding an open reading frame of 199 amino acids corresponding to a type II peroxiredoxin from Pisum sativum with its transit peptide was isolated by RT-PCR. The 171-amino-acid mature protein (estimated molecular weight 18.6 kDa) was cloned into the pET3d vector and overexpressed in Escherichia coli. The recombinant protein was purified and crystallized by the hanging-drop vapour-diffusion technique. A full data set (98.2% completeness) was collected using a rotating-anode generator to a resolution of 2.8 angstroms from a single crystal flash-cooled at 100 K. X-ray data revealed that the protein crystallizes in space group P1, with unit-cell parameters a = 61.88, b = 66.40, c = 77.23 angstroms, alpha = 102.90, beta = 104.40, gamma = 99.07 degrees, and molecular replacement using a theoretical model predicted from the primary structure as a search model confirmed the presence of six molecules in the unit cell as expected from the Matthews coefficient. Refinement of the structure is in progress.

  4. Different patterns of vein loading of exogenous ( sup 14 C)sucrose in leaves of pisum sativum and coleus blumei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turgeon, R.; Wimmers, L.E.

    1988-05-01

    Vein loading of exogenous ({sup 14}C)sucrose was studied using short uptake and wash periods to distinguish between direct loading into veins and loading via mesophyll tissue. Mature leaf tissue of Pisum sativum L. cv Little Marvel, or Coleus blumei Benth. cv Candidum, was abraded and leaf discs were floated on ({sup 14}C)sucrose solution for 1 or 2 minutes. Discs were then washed for 1 to 30 min either at room temperature or in the cold and were frozen, lyophilized, and autoradiographed. In P. sativum, veins were clearly labeled after 1 minute uptake and 1 minute wash periods. Autoradiographic images didmore » not change appreciably with longer times of uptake or wash. Vein loading was inhibited by p-chloromercuribenzenesulfonic acid. These results indicate that uptake of exogenous sucrose occurs directly into the veins in this species. When C. blumei leaf discs were floated on ({sup 14}C)sucrose for 2 minutes and washed in the cold, the mesophyll was labeled but little, if any, minor vein loading occurred. When discs were labeled for 2 minutes and washed at room temperature, label was transferred from the mesophyll to the veins within minutes. These results indicate that there may be different patterns of phloem loading of photosynthetically derived sucrose in these two species.« less

  5. Micromonospora halotolerans sp. nov., isolated from the rhizosphere of a Pisum sativum plant.

    PubMed

    Carro, Lorena; Pukall, Rüdiger; Spröer, Cathrin; Kroppenstedt, Reiner M; Trujillo, Martha E

    2013-06-01

    A filamentous actinomycete strain designated CR18(T) was isolated on humic acid agar from the rhizosphere of a Pisum sativum plant collected in Spain. This isolate was observed to grow optimally at 28 °C, pH 7.0 and in the presence of 5 % NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence indicated a close relationship with the type strains of Micromonospora chersina and Micromonospora endolithica. A further analysis based on a concatenated DNA sequence stretch of 4,523 bp that included partial sequences of the atpD, gyrB, recA, rpoB and 16S rRNA genes clearly differentiated the new strain from recognized Micromonospora species compared. DNA-DNA hybridization studies further supported the taxonomic position of strain CR18(T) as a novel genomic species. Chemotaxonomic analyses which included whole cell sugars, polar lipids, fatty acid profiles and menaquinone composition confirmed the affiliation of the new strain to the genus Micromonospora and also highlighted differences at the species level. These studies were finally complemented with an array of physiological tests to help differentiate between the new strain and its phylogenetic neighbours. Consequently, strain CR18(T) (= CECT 7890(T) = DSM 45598(T)) is proposed as the type strain of a novel species, Micromonospora halotolerans sp. nov.

  6. Control of storage-protein synthesis during seed development in pea (Pisum sativum L.).

    PubMed Central

    Gatehouse, J A; Evans, I M; Bown, D; Croy, R R; Boulter, D

    1982-01-01

    The tissue-specific syntheses of seed storage proteins in the cotyledons of developing pea (Pisum sativum L.) seeds have been demonstrated by estimates of their qualitative and quantitative accumulation by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and rocket immunoelectrophoresis respectively. Vicilin-fraction proteins initially accumulated faster than legumin, but whereas legumin was accumulated throughout development, different components of the vicilin fraction had their predominant periods of synthesis at different stages of development. The translation products in vitro of polysomes isolated from cotyledons at different stages of development reflected the synthesis in vivo of storage-protein polypeptides at corresponding times. The levels of storage-protein mRNA species during development were estimated by 'Northern' hybridization using cloned complementary-DNA probes. This technique showed that the levels of legumin and vicilin (47000-Mr precursors) mRNA species increased and decreased in agreement with estimated rates of synthesis of the respective polypeptides. The relative amounts of these messages, estimated by kinetic hybridization were also consistent. Legumin mRNA was present in leaf poly(A)+ RNA at less than one-thousandth of the level in cotyledon poly(A)+ (polyadenylated) RNA, demonstrating tissue-specific expression. Evidence is presented that storage-protein mRNA species are relatively long-lived, and it is suggested that storage-protein synthesis is regulated primarily at the transcriptional level. Images Fig. 2. Fig. 3. PMID:6897609

  7. The effect of propionic acid and valeric acid on the cell cycle in root meristems of Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tramontano, W.A.; Yang, Shauyu; Delillo, A.R.

    1990-01-01

    Propionic acid and valeric acid at 1mM reduced the mitotic index of root meristem cells of Pisum sativum to < 1% after 12 hr in aerated White's medium. This effect varied with different acid concentrations. After a 12 hr exposure to either acid, seedlings transferred to fresh medium without either acid, resumed their normal mitotic index after 12 hr, with a burst of mitosis 8 hr post-transfer. Exposure of root meristem cells to either acid also inhibited ({sup 3}H)-TdR incorporation. Neither acid significantly altered the distribution of meristematic cells in G1 and G2 after 12 hr. The incorporation of ({supmore » 3}H) - uridine was also unaltered by the addition of either acid. This information suggests that propionic acid and valeric acid, limit progression through the cell cycle by inhibiting DNA synthesis and arresting cells in G1 and G2. These results were consistent with previous data which utilized butyric acid.« less

  8. Long-term iron deficiency: Tracing changes in the proteome of different pea (Pisum sativum L.) cultivars.

    PubMed

    Meisrimler, Claudia-Nicole; Wienkoop, Stefanie; Lyon, David; Geilfus, Christoph-Martin; Lüthje, Sabine

    2016-05-17

    Iron deficiency (-Fe) is one of the major problems in crop production. Dicots, like pea (Pisum sativum L.), are Strategy I plants, which induce a group of specific enzymes such as Fe(III)-chelate reductase (FRO), Fe responsive transporter (IRT) and H(+)-ATPase (HA) at the root plasma membrane under -Fe. Different species and cultivars have been shown to react diversely to -Fe. Furthermore, different kinds of experimental set-ups for -Fe have to be distinguished: i) short-term vs. long-term, ii) constant vs. acute alteration and iii) buffered vs. unbuffered systems. The presented work compares the effects of constant long-term -Fe in an unbuffered system on roots of four different pea cultivars in a timely manner (12, 19 and 25days). To differentiate the effects of -Fe and plant development, control plants (+Fe) were analyzed in comparison to -Fe plants. Besides physiological measurements, an integrative study was conducted using a comprehensive proteome analysis. Proteins, related to stress adaptation (e.g. HSP), reactive oxygen species related proteins and proteins of the mitochondrial electron transport were identified to be changed in their abundance. Regulations and possible functions of identified proteins are discussed. Pea (Pisum sativum L.) belongs to the legume family (Fabaceae) and is an important crop plant due to high Fe, starch and protein contents. According to FAOSTAT data (September 2015), world production of the garden pea quadrupled from 1970 to 2012. Since the initial studies by Gregor Mendel, the garden pea became the most-characterized legume and has been used in numerous investigations in plant biochemistry and physiology, but is not well represented in the "omics"-related fields. A major limitation in pea production is the Fe availability from soils. Adaption mechanisms to Fe deficiency vary between species, and even cultivars have been shown to react diversely. A label-free proteomic approach, in combination with physiological measurements

  9. Estimation of pea (Pisum sativum L.) microsatellite mutation rate based on pedigree and single-seed descent analyses.

    PubMed

    Cieslarová, Jaroslava; Hanáček, Pavel; Fialová, Eva; Hýbl, Miroslav; Smýkal, Petr

    2011-11-01

    Microsatellites, or simple sequence repeats (SSRs) are widespread class of repetitive DNA sequences, used in population genetics, genetic diversity and mapping studies. In spite of the SSR utility, the genetic and evolutionary mechanisms are not fully understood. We have investigated three microsatellite loci with different position in the pea (Pisum sativum L.) genome, the A9 locus residing in LTR region of abundant retrotransposon, AD270 as intergenic and AF016458 located in 5'untranslated region of expressed gene. Comparative analysis of a 35 pair samples from seven pea varieties propagated by single-seed descent for ten generations, revealed single 4 bp mutation in 10th generation sample at AD270 locus corresponding to stepwise increase in one additional ATCT repeat unit. The estimated mutation rate was 4.76 × 10(-3) per locus per generation, with a 95% confidence interval of 1.2 × 10(-4) to 2.7 × 10(-2). The comparison of cv. Bohatýr accessions retrieved from different collections, showed intra-, inter-accession variation and differences in flanking and repeat sequences. Fragment size and sequence alternations were also found in long term in vitro organogenic culture, established at 1983, indicative of somatic mutation process. The evidence of homoplasy was detected across of unrelated pea genotypes, which adversaly affects the reliability of diversity estimates not only for diverse germplasm but also highly bred material. The findings of this study have important implications for Pisum phylogeny studies, variety identification and registration process in pea breeding where mutation rate influences the genetic diversity and the effective population size estimates.

  10. Influence of s-Triazines on Some Enzymes of Carbohydrates and Nitrogen Metabolism in Leaves of Pea (Pisum sativum L.) and Sweet Corn (Zea mays L.)

    PubMed Central

    Wu, M. T.; Singh, B.; Salunkhe, D. K.

    1971-01-01

    Foliar applications of 2 milligrams per liter of 2-chloro-4,6-bis (ethylamino)-s-triazine, 2-methylmercapto-4-ethylamino-6-isobutylamino-s-triazine, and 2-methoxy-4-isopropylamino-6-butylamino-s-triazine caused increases in the activities of starch phosphorylase, pyruvate kinase, cytochrome oxidase, and glutamate dehydrogenase 5, 10, and 15 days after treatment in the leaves of 3-week-old seedlings of pea (Pisum sativum L.) and sweet corn (Zea mays L.). The results indicate that sublethal concentrations of s-triazine compounds affect the physiological and biochemical events in plants which favor more utilization of carbohydrates for nitrate reduction and synthesis of amino acids and proteins. PMID:16657830

  11. Immunolocalization of dually phosphorylated MAPKs in dividing root meristem cells of Vicia faba, Pisum sativum, Lupinus luteus and Lycopersicon esculentum.

    PubMed

    Winnicki, Konrad; Żabka, Aneta; Bernasińska, Joanna; Matczak, Karolina; Maszewski, Janusz

    2015-06-01

    In plants, phosphorylated MAPKs display constitutive nuclear localization; however, not all studied plant species show co-localization of activated MAPKs to mitotic microtubules. The mitogen-activated protein kinase (MAPK) signaling pathway is involved not only in the cellular response to biotic and abiotic stress but also in the regulation of cell cycle and plant development. The role of MAPKs in the formation of a mitotic spindle has been widely studied and the MAPK signaling pathway was found to be indispensable for the unperturbed course of cell division. Here we show cellular localization of activated MAPKs (dually phosphorylated at their TXY motifs) in both interphase and mitotic root meristem cells of Lupinus luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization of activated MAPKs has been found in all species. Co-localization of these kinases to mitotic microtubules was most evident in L. esculentum, while only about 50% of mitotic cells in the root meristems of P. sativum and V. faba displayed activated MAPKs localized to microtubules during mitosis. Unexpectedly, no evident immunofluorescence signals at spindle microtubules and phragmoplast were noted in L. luteus. Considering immunocytochemical analyses and studies on the impact of FR180204 (an inhibitor of animal ERK1/2) on mitotic cells, we hypothesize that MAPKs may not play prominent role in the regulation of microtubule dynamics in all plant species.

  12. Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum.

    PubMed

    Puli, Mallikarjuna Rao; Rajsheel, Pidakala; Aswani, Vetcha; Agurla, Srinivas; Kuchitsu, Kazuyuki; Raghavendra, Agepati S

    2016-10-01

    Phyto-S1P and S1P induced stomatal closure in epidermis of pea ( Pisum sativum ) by raising the levels of NO and pH in guard cells. Phosphosphingolipids, such as phytosphingosine-1-phosphate (phyto-S1P) and sphingosine-1-phosphate (S1P), are important signaling components during drought stress. The biosynthesis of phyto-S1P or S1P is mediated by sphingosine kinases (SPHKs). Although phyto-S1P and S1P are known to be signaling components in higher plants, their ability to induce stomatal closure has been ambiguous. We evaluated in detail the effects of phyto-S1P, S1P and SPHK inhibitors on signaling events leading to stomatal closure in the epidermis of Pisum sativum. Phyto-S1P or S1P induced stomatal closure, along with a marked rise in nitric oxide (NO) and cytoplasmic pH of guard cells, as in case of ABA. Two SPHK inhibitors, DL-threo dihydrosphingosine and N',N'-dimethylsphingosine, restricted ABA-induced stomatal closure and prevented the increase of NO or pH by ABA. Modulators of NO or pH impaired both stomatal closure and increase in NO or pH by phyto-S1P/S1P. The stomatal closure by phyto-S1P/S1P was mediated by phospholipase D and phosphatidic acid (PA). When present, PA elevated the levels of pH, but not NO of guard cells. Our results demonstrate that stomatal closure induced by phyto-S1P and S1P depends on rise in pH as well as NO of guard cells. A scheme of signaling events initiated by phyto-S1P/S1P, and converging to cause stomatal closure, is proposed.

  13. Pea Marker Database (PMD) - A new online database combining known pea (Pisum sativum L.) gene-based markers.

    PubMed

    Kulaeva, Olga A; Zhernakov, Aleksandr I; Afonin, Alexey M; Boikov, Sergei S; Sulima, Anton S; Tikhonovich, Igor A; Zhukov, Vladimir A

    2017-01-01

    Pea (Pisum sativum L.) is the oldest model object of plant genetics and one of the most agriculturally important legumes in the world. Since the pea genome has not been sequenced yet, identification of genes responsible for mutant phenotypes or desirable agricultural traits is usually performed via genetic mapping followed by candidate gene search. Such mapping is best carried out using gene-based molecular markers, as it opens the possibility for exploiting genome synteny between pea and its close relative Medicago truncatula Gaertn., possessing sequenced and annotated genome. In the last 5 years, a large number of pea gene-based molecular markers have been designed and mapped owing to the rapid evolution of "next-generation sequencing" technologies. However, the access to the complete set of markers designed worldwide is limited because the data are not uniformed and therefore hard to use. The Pea Marker Database was designed to combine the information about pea markers in a form of user-friendly and practical online tool. Version 1 (PMD1) comprises information about 2484 genic markers, including their locations in linkage groups, the sequences of corresponding pea transcripts and the names of related genes in M. truncatula. Version 2 (PMD2) is an updated version comprising 15944 pea markers in the same format with several advanced features. To test the performance of the PMD, fine mapping of pea symbiotic genes Sym13 and Sym27 in linkage groups VII and V, respectively, was carried out. The results of mapping allowed us to propose the Sen1 gene (a homologue of SEN1 gene of Lotus japonicus (Regel) K. Larsen) as the best candidate gene for Sym13, and to narrow the list of possible candidate genes for Sym27 to ten, thus proving PMD to be useful for pea gene mapping and cloning. All information contained in PMD1 and PMD2 is available at www.peamarker.arriam.ru.

  14. Molecular characterization of a distinct monopartite begomovirus associated with betasatellites and alphasatellites infecting Pisum sativum in Nepal.

    PubMed

    Shahid, M S; Pudashini, B J; Khatri-Chhetri, G B; Briddon, R W; Natsuaki, K T

    2017-04-01

    Pea (Pisum sativum) plants exhibiting leaf distortion, yellowing, stunted growth and reduction in leaf size from Rampur, Nepal were shown to be infected by a begomovirus in association with betasatellites and alphasatellites. The begomovirus associated with the disease showed only low levels of nucleotide sequence identity (<91%) to previously characterized begomoviruses. This finding indicates that the pea samples were infected with an as yet undescribed begomovirus for which the name Pea leaf distortion virus (PLDV) is proposed. Two species of betasatellite were identified in association with PLDV. One group of sequences had high (>78%) nucleotide sequence identity to isolates of Ludwigia leaf distortion betasatellite (LuLDB), and the second group had less than 78% to all other betasatellite sequences. This showed PLDV to be associated with either LuLDB or a previously undescribed betasatellite for which the name Pea leaf distortion betasatellite is proposed. Two types of alphasatellites were identified in the PLDV-infected pea plants. The first type showed high levels of sequence identity to Ageratum yellow vein alphasatellite, and the second type showed high levels of identity to isolates of Sida yellow vein China alphasatellite. These are the first begomovirus, betasatellites and alphasatellites isolated from pea.

  15. Distribution and Properties of a Potassium-dependent Asparaginase Isolated from Developing Seeds of Pisum sativum and Other Plants 1

    PubMed Central

    Sodek, Ladaslav; Lea, Peter J.; Miflin, Benjamin J.

    1980-01-01

    Asparaginase (EC 3.5.1.1) was isolated from the developing seed of Pisum sativum. The enzyme is dependent upon the presence of K+ for activity, although Na+ and Rb+ may substitute to a lesser extent. Maximum activity was obtained at K+ concentrations above 20 millimolar. Potassium ions protected the enzyme against heat denaturation. The enzyme has a molecular weight of 68,300. Asparaginase activity developed initially in the testa, with maximum activity (3.6 micromoles per hour per seed) being present 13 days after flowering. Maximum activity (1.2 micromoles per hour per seed) did not develop in the cotyledon until 21 days after flowering. Glutamine synthetase and glutamate dehydrogenase were also present in the testae and cotyledons but maximum activity developed later than that of asparaginase. Potassium-dependent asparaginase activity was also detected in the developing seeds of Vicia faba, Phaseolus multiflorus, Zea mays, Hordeum vulgare, and two Lupinus varieties. No stimulation of activity was detected with the enzyme isolated from Lupinus polyphyllus, which has previously been shown to contain a K+-independent enzyme. PMID:16661136

  16. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds.

    PubMed

    Ferraro, Kiva; Jin, Alena L; Nguyen, Trinh-Don; Reinecke, Dennis M; Ozga, Jocelyn A; Ro, Dae-Kyun

    2014-09-16

    Proanthocyanidins (PAs) accumulate in the seeds, fruits and leaves of various plant species including the seed coats of pea (Pisum sativum), an important food crop. PAs have been implicated in human health, but molecular and biochemical characterization of pea PA biosynthesis has not been established to date, and detailed pea PA chemical composition has not been extensively studied. PAs were localized to the ground parenchyma and epidermal cells of pea seed coats. Chemical analyses of PAs from seeds of three pea cultivars demonstrated cultivar variation in PA composition. 'Courier' and 'Solido' PAs were primarily prodelphinidin-types, whereas the PAs from 'LAN3017' were mainly the procyanidin-type. The mean degree of polymerization of 'LAN3017' PAs was also higher than those from 'Courier' and 'Solido'. Next-generation sequencing of 'Courier' seed coat cDNA produced a seed coat-specific transcriptome. Three cDNAs encoding anthocyanidin reductase (PsANR), leucoanthocyanidin reductase (PsLAR), and dihydroflavonol reductase (PsDFR) were isolated. PsANR and PsLAR transcripts were most abundant earlier in seed coat development. This was followed by maximum PA accumulation in the seed coat. Recombinant PsANR enzyme efficiently synthesized all three cis-flavan-3-ols (gallocatechin, catechin, and afzalechin) with satisfactory kinetic properties. The synthesis rate of trans-flavan-3-ol by co-incubation of PsLAR and PsDFR was comparable to cis-flavan-3-ol synthesis rate by PsANR. Despite the competent PsLAR activity in vitro, expression of PsLAR driven by the Arabidopsis ANR promoter in wild-type and anr knock-out Arabidopsis backgrounds did not result in PA synthesis. Significant variation in seed coat PA composition was found within the pea cultivars, making pea an ideal system to explore PA biosynthesis. PsANR and PsLAR transcript profiles, PA localization, and PA accumulation patterns suggest that a pool of PA subunits are produced in specific seed coat cells early in

  17. Phytotoxicity of glyphosate in the germination of Pisum sativum and its effect on germinated seedlings

    PubMed Central

    2017-01-01

    The present study evaluated the effects of glyphosate on Pisum sativum germination as well as its effect on the physiology and biochemistry of germinated seedlings. Different physico-chemical biomarkers, viz., chlorophyll, root and shoot length, total protein and soluble sugar, along with sodium and potassium concentration, were investigated in germinated seedlings at different glyphosate concentrations. This study reports the influence of different concentrations of glyphosate on pea seeds and seedlings. Physicochemical biomarkers were significantly changed by glyphosate exposure after 15 days. The germination of seedlings under control conditions (0 mg/L) was 100% after 3 days of treatment but at 3 and 4 mg/L glyphosate, germination was reduced to 55 and 40%, respectively. Physiological parameters like root and shoot length decreased monotonically with increasing glyphosate concentration, at 14 days of observation. Average root and shoot length (n=30 in three replicates) were reduced to 14.7 and 17.6%, respectively, at 4 mg/L glyphosate. Leaf chlorophyll content also decreased, with a similar trend to root and shoot length, but the protein content initially decreased and then increased with an increase in glyphosate concentration to 3 mg/L. The study suggests that glyphosate reduces the soluble sugar content significantly, by 21.6% (v/v). But internal sodium and potassium tissue concentrations were significantly altered by glyphosate exposure with increasing concentrations of glyphosate. Biochemical and physiological analysis also supports the inhibitory effect of glyphosate on seed germination and biochemical effects on seedlings. PMID:28728354

  18. Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42.

    PubMed

    Ivanova, Kira A; Tsyganova, Anna V; Brewin, Nicholas J; Tikhonovich, Igor A; Tsyganov, Viktor E

    2015-11-01

    Rhizobia are able to establish a beneficial interaction with legumes by forming a new organ, called the symbiotic root nodule, which is a unique ecological niche for rhizobial nitrogen fixation. Rhizobial infection has many similarities with pathogenic infection and induction of defence responses accompanies both interactions, but defence responses are induced to a lesser extent during rhizobial infection. However, strong defence responses may result from incompatible interactions between legumes and rhizobia due to a mutation in either macro- or microsymbiont. The aim of this research was to analyse different plant defence reactions in response to Rhizobium infection for several pea (Pisum sativum) mutants that result in ineffective symbiosis. Pea mutants were examined by histochemical and immunocytochemical analyses, light, fluorescence and transmission electron microscopy and quantitative real-time PCR gene expression analysis. It was observed that mutations in pea symbiotic genes sym33 (PsIPD3/PsCYCLOPS encoding a transcriptional factor) and sym40 (PsEFD encoding a putative negative regulator of the cytokinin response) led to suberin depositions in ineffective nodules, and in the sym42 there were callose depositions in infection thread (IT) and host cell walls. The increase in deposition of unesterified pectin in IT walls was observed for mutants in the sym33 and sym42; for mutant in the sym42, unesterified pectin was also found around degrading bacteroids. In mutants in the genes sym33 and sym40, an increase in the expression level of a gene encoding peroxidase was observed. In the genes sym40 and sym42, an increase in the expression levels of genes encoding a marker of hypersensitive reaction and PR10 protein was demonstrated. Thus, a range of plant defence responses like suberisation, callose and unesterified pectin deposition as well as activation of defence genes can be triggered by different pea single mutations that cause perception of an otherwise

  19. Polysaccharide fraction from higher plants which strongly interacts with the cytosolic phosphorylase isozyme. I. Isolation and characterization. [Spinacia oleracea L. ; Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Steup, M.

    1990-11-01

    From leaves of Spinacia oleracea L. or from Pisum sativum L. and from cotyledons of germinating pea seeds a high molecular weight polysaccharide fraction was isolated. The apparent size of the fraction, as determined by gel filtration, was similar to that of dextran blue. Following acid hydrolysis the monomer content of the polysaccharide preparation was studied using high pressure liquid and thin layer chromatography. Glucose, galactose, arabinose, and ribose were the main monosaccharide compounds. The native polysaccharide preparation interacted strongly with the cytosolic isozyme of phosphorylase (EC 2.4.1.1). Interaction with the plastidic phosphorylase isozyme(s) was by far weaker. Interaction withmore » the cytosolic isozyme was demonstrated by affinity electrophoresis, kinetic measurements, and by {sup 14}C-labeling experiments in which the glucosyl transfer from ({sup 14}C)glucose 1-phosphate to the polysaccharide preparation was monitored.« less

  20. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.

    PubMed

    Bogdanov, Ivan V; Shenkarev, Zakhar O; Finkina, Ekaterina I; Melnikova, Daria N; Rumynskiy, Eugene I; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2016-04-30

    Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps

  1. Micromonospora cremea sp. nov. and Micromonospora zamorensis sp. nov., isolated from the rhizosphere of Pisum sativum.

    PubMed

    Carro, Lorena; Pukall, Rüdiger; Spröer, Cathrin; Kroppenstedt, Reiner M; Trujillo, Martha E

    2012-12-01

    Three actinobacterial strains, CR30(T), CR36 and CR38(T), were isolated from rhizosphere soil of Pisum sativum plants collected in Spain. The strains were filamentous, Gram-stain-positive and produced single spores. Phylogenetic, chemotaxonomic and morphological analyses confirmed that the three strains belonged to the genus Micromonospora. 16S rRNA gene sequence analysis of strains CR30(T) and CR36 showed a close relationship to Micromonospora coriariae NAR01(T) (99.3% similarity) while strain CR38(T) had a similarity of 99.0% with Micromonospora saelicesensis Lupac 09(T). In addition, gyrB gene phylogeny clearly differentiated the novel isolates from recognized Micromonospora species. DNA-DNA hybridization, BOX-PCR and ARDRA profiles confirmed that these strains represent novel genomic species. The cell-wall peptidoglycan of strains CR30(T) and CR38(T) contained meso-diaminopimelic acid. Both strains had MK-10(H(4)) as the main menaquinone and a phospholipid type II pattern. An array of physiological tests also differentiated the isolates from their closest neighbours. Considering all the data obtained, it is proposed that strains CR30(T) and CR36 represent a novel species under the name Micromonospora cremea sp. nov. (type strain CR30(T) = CECT 7891(T) = DSM 45599(T)), whereas CR38(T) represents a second novel species, for which the name Micromonospora zamorensis sp. nov. is proposed, with CR38(T) ( = CECT 7892(T) = DSM 45600(T)) as the type strain.

  2. Pretreatment of Cr(VI)-amended soil with chromate-reducing rhizobacteria decreases plant toxicity and increases the yield of Pisum sativum.

    PubMed

    Soni, Sumit K; Singh, Rakshapal; Singh, Mangal; Awasthi, Ashutosh; Wasnik, Kundan; Kalra, Alok

    2014-05-01

    Pot culture experiments were performed under controlled greenhouse conditions to investigate whether four Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) were able to decrease Cr toxicity to Pisum sativum plants in artificially Cr(VI)-contaminated soil. The effect of pretreatment of soil with chromate-reducing bacteria on plant growth, chromate uptake, bioaccumulation, nodulation, and population of Rhizobium was found to be directly influenced by the time interval between bacterial treatment and seed sowing. Pretreatment of soil with SUCR140 (Microbacterium sp.) 15 days before sowing (T+15) showed a maximum increase in growth and biomass in terms of root length (93 %), plant height (94 %), dry root biomass (99 %), and dry shoot biomass (99 %). Coinoculation of Rhizobium with SUCR140 further improved the aforementioned parameter. Compared with the control, coinoculation of SUCR140+R showed a 117, 116, 136, and 128 % increase, respectively, in root length, plant height, dry root biomass, and dry shoot biomass. The bioavailability of Cr(VI) decreased significantly in soil (61 %) and in uptake (36 %) in SUCR140-treated plants; the effects of Rhizobium, however, either alone or in the presence of SUCR140, were not significant. The populations of Rhizobium (126 %) in soil and nodulation (146 %) in P. sativum improved in the presence of SUCR140 resulting in greater nitrogen (54 %) concentration in the plants. This study shows the usefulness of efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through decreased Cr toxicity and improved symbiotic relationship of the plants with Rhizobium. Further decrease in the translocation of Cr(VI) through improved nodulation by Rhizobium in the presence of efficient Cr-reducing bacterial strains could also decrease the accumulation of Cr in shoots.

  3. Molecular cloning of isoflavone reductase from pea (Pisum sativum L.): evidence for a 3R-isoflavanone intermediate in (+)-pisatin biosynthesis.

    PubMed

    Paiva, N L; Sun, Y; Dixon, R A; VanEtten, H D; Hrazdina, G

    1994-08-01

    Isoflavone reductase (IFR) reduces achiral isoflavones to chiral isoflavanones during the biosynthesis of chiral pterocarpan phytoalexins. A cDNA clone for IFR from pea (Pisum sativum) was isolated using the polymerase chain reaction and expressed in Escherichia coli. Analysis of circular dichroism (CD) spectra of the reduction product sophorol obtained using the recombinant enzyme indicated that the isoflavanone possessed the 3R stereochemistry, in contrast to previous reports indicating a 3S-isoflavanone as the product of the pea IFR. Analysis of CD spectra of sophorol produced using enzyme extracts of CuCl2-treated pea seedlings confirmed the 3R stereochemistry. Thus, the stereochemistry of the isoflavanone intermediate in (+)-pisatin biosynthesis in pea is the same as that in (-)-medicarpin biosynthesis in alfalfa, although the final pterocarpans have the opposite stereochemistry. At the amino acid level the pea IFR cDNA was 91.8 and 85.2% identical to the IFRs from alfalfa and chickpea, respectively. IFR appears to be encoded by a single gene in pea. Its transcripts are highly induced in CuCl2-treated seedlings, consistent with the appearance of IFR enzyme activity and pisatin accumulation.

  4. Interspecific variation in SO/sub 2/ flux: leaf surface versus internal flux, and components of leaf conductance. [Pisum sativum L. , Lycopersicon esculentum Mill. Flacca, Geranium carolinianum L. , Diplacus aurantiacus (Curtis) Jeps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszyk, D.M.; Tingey, D.T.

    The objective of this study was to clarify the relationships among stomatal, residual, and epidermal conductances in determining the flux of SO/sub 2/ air pollution to leaves. Variations in leaf SO/sub 2/ and H/sub 2/O vapor fluxes were determined using four plant species: Pisum sativum L. (garden pea), Lycopersicon esculentum Mill. flacca (mutant of tomato), Geranium carolinianum L. (wild geranium), and Diplacus aurantiacus (Curtis) Jeps. (a native California shrub). Fluxes were measured using the mass-balance approach during exposure to 4.56 micromoles per cubic meter (0.11 microliters per liter) SO/sub 2/ for 2 hours in a controlled environmental chamber. Flux throughmore » adaxial and abaxial leaf surfaces with closed stomata ranged from 1.9 to 9.4 nanomoles per square meter per second for SO/sub 2/, and 0.3 to 1.3 millimoles per square meter per second for H/sub 2/O vapor. Flux of SO/sub 2/ into leaves through stomata ranged from approx.0 to 8.5 (dark) and 3.8 to 16.0 (light) millimoles per square meter per second. Flux of H/sub 2/O vapor from leaves through stomata ranged from approx.0 to 0.6 (dark) to 0.4 to 0.9 (light) millimole per square meter per second. Lycopersicon had internal flux rates for both SO/sub 2/ and H/sub 2/O vapor over twice as high as for the other species. Stomatal conductance based on H/sub 2/O vapor flux averaged from 0.07 to 0.13 mole per square meter per second among the four species. Internal conductance of SO/sub 2/ as calculated from SO/sub 2/ flux was from 0.04 mole per square meter per second lower to 0.06 mole per square meter per second higher than stomatal conductance. For Pisum, Geranium, and Diplacus stomatal conductance was the same or slightly higher than internal conductance, indicating that, in general, SO/sub 2/ flux could be predicted from stomatal conductance for H/sub 2/O vapor.« less

  5. Non-host disease resistance response in pea (Pisum sativum) pods: Biochemical function of DRR206 and phytoalexin pathway localization.

    PubMed

    Seneviratne, Herana Kamal; Dalisay, Doralyn S; Kim, Kye-Won; Moinuddin, Syed G A; Yang, Hong; Hartshorn, Christopher M; Davin, Laurence B; Lewis, Norman G

    2015-05-01

    Continually exposed to potential pathogens, vascular plants have evolved intricate defense mechanisms to recognize encroaching threats and defend themselves. They do so by inducing a set of defense responses that can help defeat and/or limit effects of invading pathogens, of which the non-host disease resistance response is the most common. In this regard, pea (Pisum sativum) pod tissue, when exposed to Fusarium solani f. sp. phaseoli spores, undergoes an inducible transcriptional activation of pathogenesis-related genes, and also produces (+)-pisatin, its major phytoalexin. One of the inducible pathogenesis-related genes is Disease Resistance Response-206 (DRR206), whose role in vivo was unknown. DRR206 is, however, related to the dirigent protein (DP) family. In this study, its biochemical function was investigated in planta, with the metabolite associated with its gene induction being pinoresinol monoglucoside. Interestingly, both pinoresinol monoglucoside and (+)-pisatin were co-localized in pea pod endocarp epidermal cells, as demonstrated using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging. In addition, endocarp epidermal cells are also the site for both chalcone synthase and DRR206 gene expression. Taken together, these data indicate that both (+)-pisatin and pinoresinol monoglucoside function in the overall phytoalexin responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Expression of PsGRP1, a novel glycine rich protein gene of Pisum sativum, is induced in developing fruit and seed and by ABA in pistil and root.

    PubMed

    Urbez, Cristina; Cercós, Manuel; Perez-Amador, Miguel A; Carbonell, Juan

    2006-05-01

    A novel glycine-rich protein gene, PsGRP1, has been identified in Pisum sativum L. Accumulation of PsGRP1 transcripts was observed in reproductive organs and vegetative tissues. They were localized in endocarp sclerenchyma during fruit development in cells that will lignify. PsGRP1 expression was also detected in senescent pistils and developing seeds and induced by ABA treatment in presenescent pistils. A raise in the expression was also observed in roots after treatment with ABA or mannitol but not under cold stress. A mannitol treatment induced a rise in ABA levels and fluridone treatment counteracted the mannitol induction of PsGRP1 expression. The results suggest a possible role for PsGRP1 in differentiation of the endocarp sclerenchyma and during seed development, pistil senescence and osmotic stress under ABA control.

  7. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen

    PubMed Central

    Cárcamo, Héctor A.; Herle, Carolyn E.; Lupwayi, Newton Z.

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  8. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil.

    PubMed

    Mukherjee, Arnab; Peralta-Videa, Jose R; Bandyopadhyay, Susmita; Rico, Cyren M; Zhao, Lijuan; Gardea-Torresdey, Jorge L

    2014-01-01

    The toxicological effects of zinc oxide nanoparticles (ZnO NPs) in plants are still largely unknown. In the present study, green pea (Pisum sativum L.) plants were treated with 0, 125, 250, and 500 mg kg(-1) of either ZnO NPs or bulk ZnO in organic matter enriched soil. Corresponding toxicological effects were measured on the basis of plant growth, chlorophyll production, Zn bioaccumulation, H2O2 generation, stress enzyme activity, and lipid peroxidation using different cellular, molecular, and biochemical approaches. Compared to control, all ZnO NP concentrations significantly increased (p ≤ 0.05) root elongation but no effects were observed in the stem. Whereas all bulk ZnO treatments significantly increased both root and stem length. After 25 days, chlorophyll in leaves decreased, compared to control, by ~61%, 67%, and 77% in plants treated with 125, 250, and 500 mg kg(-1) ZnO NPs, respectively. Similar results were found in bulk ZnO treated plants. At all ZnO NP concentrations CAT was significantly reduced in leaves (p ≤ 0.05), while APOX was reduced in both roots and leaves. In the case of bulk ZnO, APOX activity was down-regulated in the root and leaf and CAT was unaffected. At 500 mg kg(-1) treatment, the H2O2 in leaves increased by 61% with a twofold lipid peroxidation, which would be a predictive biomarker of nanotoxicity. This study could be pioneering in evaluating the phytotoxicity of ZnO NPs to green peas and can serve as a good indicator for measuring the effects on ZnO NPs in plants grown in organic matter enriched soil.

  9. Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread

    PubMed Central

    Lavecchia, Anna; Gramaglia, Valerio; Gobbetti, Marco

    2015-01-01

    In order to identify antifungal compounds from natural sources to be used as ingredients in the bakery industry, water/salt-soluble extracts (WSE) from different legume flour hydrolysates obtained by the use of a fungal protease were assayed against Penicillium roqueforti DPPMAF1. The agar diffusion assays allowed the selection of the pea (Pisum sativum) hydrolysate as the most active. As shown by the hyphal radial growth rate, the WSE had inhibitory activity towards several fungi isolated from bakeries. The MIC of the WSE was 9.0 mg/ml. Fungal inhibition was slightly affected by heating and variations in pH. The antifungal activity was attributed to three native proteins (pea defensins 1 and 2 and a nonspecific lipid transfer protein [nsLTP]) and a mixture of peptides released during hydrolysis. The three proteins have been reported previously as components of the defense system of the plant. Five peptides were purified from WSE and were identified as sequences encrypted in leginsulin A, vicilin, provicilin, and the nsLTP. To confirm antifungal activity, the peptides were chemically synthesized and tested. Freeze-dried WSE were used as ingredients in leavened baked goods. In particular, breads made by the addition of 1.6% (wt/wt) of the extract and fermented by baker's yeast or sourdough were characterized for their main chemical, structural, and sensory features, packed in polyethylene bags, stored at room temperature, and compared to controls prepared without pea hydrolysate. Artificially inoculated slices of a bread containing the WSE did not show contamination by fungi until at least 21 days of storage and behaved like the bread prepared with calcium propionate (0.3%, wt/wt). PMID:25862230

  10. [Pea (Pisum sativum) genes, participating in symbiosis with nitrogen-fixing bacteria. III. Study of the structure of the ENOD12 early nodulin gene for various types of peas using the polymerase chain reaction (PCR)].

    PubMed

    Kozik, A V; Matvienko, M A; Men', A E; Zalenskiĭ, A O; Tikhonovich, I A

    1992-01-01

    We have determined the length of early noduline gene ENOD12 in various varieties and lines of pea (Pisum sativum) using the polymerase chain reaction (PCR). It was demonstrated that promoter regions of ENOD12A and ENOD12B genes in line 2150 (Afghanistan) are longer than these in variety "Feltham first". The disparity is 14 bp. When studying these genes in 7 different lines and varieties of pea it was found that ENOD12A gene is more variable in size than the ENOD12B gene. We showed the possibility to analyze the heritage of ENOD12 gene's alleles by using the PCR method.

  11. Characterization of a rapid, blue light-mediated change in detectable phosphorylation of a plasma membrane protein from etiolated pea (Pisum sativum L. ) seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Short, T.W.; Briggs, W.R.

    1990-01-01

    When crude microsomal membranes from apical stem segments of etiolated Pisum sativum L. cv Alaska are mixed in vitro with {gamma}-({sup 32}P)ATP, a phosphorylated band of apparent molecular mass 120 kilodaltons can be detected on autoradiographs of sodium dodecyl sulfate electrophoresis gels. If the stem sections are exposed to blue light immediately prior to membrane isolation, this band is not evident. Comparisons of the kinetics, tissue distribution, and dark recovery of the phosphorylation response with those published for blue light mediated phototropism or rapid growth inhibition indicate that the phosphorylation could be linked to one or both of the reactionsmore » described. However, the fluence-response relationships for the change in detectable phosphorylation match quite closely those reported for phototropism but not those for growth inhibition. Blue light has also been found to regulate the capacity for in vitro phosphorylation of a second protein. It has an apparent molecular mass of 84 kilodaltons and is localized primarily in basal stem sections.« less

  12. Efficient production of human acidic fibroblast growth factor in pea (Pisum sativum L.) plants by agroinfection of germinated seeds

    PubMed Central

    2011-01-01

    Background For efficient and large scale production of recombinant proteins in plants transient expression by agroinfection has a number of advantages over stable transformation. Simple manipulation, rapid analysis and high expression efficiency are possible. In pea, Pisum sativum, a Virus Induced Gene Silencing System using the pea early browning virus has been converted into an efficient agroinfection system by converting the two RNA genomes of the virus into binary expression vectors for Agrobacterium transformation. Results By vacuum infiltration (0.08 Mpa, 1 min) of germinating pea seeds with 2-3 cm roots with Agrobacteria carrying the binary vectors, expression of the gene for Green Fluorescent Protein as marker and the gene for the human acidic fibroblast growth factor (aFGF) was obtained in 80% of the infiltrated developing seedlings. Maximal production of the recombinant proteins was achieved 12-15 days after infiltration. Conclusions Compared to the leaf injection method vacuum infiltration of germinated seeds is highly efficient allowing large scale production of plants transiently expressing recombinant proteins. The production cycle of plants for harvesting the recombinant protein was shortened from 30 days for leaf injection to 15 days by applying vacuum infiltration. The synthesized aFGF was purified by heparin-affinity chromatography and its mitogenic activity on NIH 3T3 cells confirmed to be similar to a commercial product. PMID:21548923

  13. [Research progress on the cloning of Mendel's gene in pea (Pisum sativum L.) and its application in genetics teaching].

    PubMed

    He, Feng-Hua; Zhu, Bi-Yan; Gao, Feng; Li, Shao-Shan; Li, Niang-Hui

    2013-07-01

    One hundred and fifty years ago, Gregor Mendel investigated the segregation of seven traits in pea (Pisum sativum) and established the law of segregation and the law of independent assortment in genetics. After the two laws of genetics were rediscovered in 1900, the seven traits have been extensively investigated in the fields of plant physiology and biochemistry as well as in the cell and molecular levels. Recently, with the development of molecular technology in genetics, four genes for seed shape (R), stem length (Le), cotyledon colour (I), and flower colour (A) have been cloned and sequenced; and another three genes for immature pod colour (Gp), fasciation (Fa) and pod form (V) have been located in the linkage groups, respectively. The identification and cloning of the four Mendel's genes will help deeply understand the basic concept of gene in many respects: like the diversity of gene function, the different origins for gene mutation in molecular level, and the molecular nature of a dominant gene or a recessive gene. In teaching of genetics, the introduction of most recent research advancements of cloning of Mendel's genes to the students and the interpretation of the Mendel's laws in molecular level will help students promote their learning interests in genetics and help students grasp the whole content from classical genetics to molecular genetics and the developmental direction of this subject.

  14. Aqueous pathways dominate permeation of solutes across Pisum sativum seed coats and mediate solute transport via diffusion and bulk flow of water.

    PubMed

    Niemann, Sylvia; Burghardt, Markus; Popp, Christian; Riederer, Markus

    2013-05-01

    The permeability of seed coats to solutes either of biological or anthropogenic origin plays a major role in germination, seedling growth and seed treatment by pesticides. An experimental set-up was designed for investigating the mechanisms of seed coat permeation, which allows steady-state experiments with isolated seed coats of Pisum sativum. Permeances were measured for a set of organic model compounds with different physicochemical properties and sizes. The results show that narrow aqueous pathways dominate the diffusion of solutes across pea seed coats, as indicated by a correlation of permeances with the molecular sizes of the compounds instead of their lipophilicity. Further indicators for an aqueous pathway are small size selectivity and a small effect of temperature on permeation. The application of an osmotic water potential gradient across isolated seed coats leads to an increase in solute transfer, indicating that the aqueous pathways form a water-filled continuum across the seed coat allowing the bulk flow of water. Thus, the uptake of organic solutes across pea testae has two components: (1) by diffusion and (2) by bulk water inflow, which, however, is relevant only during imbibition. © 2012 Blackwell Publishing Ltd.

  15. Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread.

    PubMed

    Rizzello, Carlo Giuseppe; Lavecchia, Anna; Gramaglia, Valerio; Gobbetti, Marco

    2015-06-15

    In order to identify antifungal compounds from natural sources to be used as ingredients in the bakery industry, water/salt-soluble extracts (WSE) from different legume flour hydrolysates obtained by the use of a fungal protease were assayed against Penicillium roqueforti DPPMAF1. The agar diffusion assays allowed the selection of the pea (Pisum sativum) hydrolysate as the most active. As shown by the hyphal radial growth rate, the WSE had inhibitory activity towards several fungi isolated from bakeries. The MIC of the WSE was 9.0 mg/ml. Fungal inhibition was slightly affected by heating and variations in pH. The antifungal activity was attributed to three native proteins (pea defensins 1 and 2 and a nonspecific lipid transfer protein [nsLTP]) and a mixture of peptides released during hydrolysis. The three proteins have been reported previously as components of the defense system of the plant. Five peptides were purified from WSE and were identified as sequences encrypted in leginsulin A, vicilin, provicilin, and the nsLTP. To confirm antifungal activity, the peptides were chemically synthesized and tested. Freeze-dried WSE were used as ingredients in leavened baked goods. In particular, breads made by the addition of 1.6% (wt/wt) of the extract and fermented by baker's yeast or sourdough were characterized for their main chemical, structural, and sensory features, packed in polyethylene bags, stored at room temperature, and compared to controls prepared without pea hydrolysate. Artificially inoculated slices of a bread containing the WSE did not show contamination by fungi until at least 21 days of storage and behaved like the bread prepared with calcium propionate (0.3%, wt/wt). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Virus-induced plasma membrane aquaporin PsPIP2;1 silencing inhibits plant water transport of Pisum sativum.

    PubMed

    Song, Juanjuan; Ye, Guoliang; Qian, Zhengjiang; Ye, Qing

    2016-12-01

    Aquaporins (AQPs) are known to facilitate water transport across cell membranes, but the role of a single AQP in regulating plant water transport, particularly in plants other than Arabidopsis remains largely unexplored. In the present study, a virus-induced gene silencing (VIGS) technique was employed to suppress the expression of a specific plasma membrane aquaporin PsPIP2;1 of Pea plants (Pisum sativum), and subsequent effects of the gene suppression on root hydraulic conductivity (Lp r ), leaf hydraulic conductivity (K leaf ), root cell hydraulic conductivity (Lp rc ), and leaf cell hydraulic conductivity (Lp lc ) were investigated, using hydroponically grown Pea plants. Compared with control plants, VIGS-PsPIP2;1 plants displayed a significant suppression of PsPIP2;1 in both roots and leaves, while the expression of other four PIP isoforms (PsPIP1;1, PsPIP1;2, PsPIP2;2, and PsPIP2;3) that were simultaneously monitored were not altered. As a consequence, significant declines in water transport of VIGS-PsPIP2;1 plants were observed at both organ and cell levels, i.e., as compared to control plants, Lp r and K leaf were reduced by 29 %, and Lp rc and Lp lc were reduced by 20 and 29 %, respectively. Our results demonstrate that PsPIP2;1 alone contributes substantially to root and leaf water transport in Pea plants, and highlight VIGS a useful tool for investigating the role of a single AQP in regulating plant water transport.

  17. Discriminant Analysis of Defective and Non-Defective Field Pea (Pisum sativum L.) into Broad Market Grades Based on Digital Image Features.

    PubMed

    McDonald, Linda S; Panozzo, Joseph F; Salisbury, Phillip A; Ford, Rebecca

    2016-01-01

    Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective.

  18. Acclimatization of Pisum sativum L., grown in soil contaminated with veterinary antibiotics, an attribute of dose hormetic response of root metabolites.

    PubMed

    Tasho, R P; Shin, W T; Cho, J Y

    2018-09-01

    Plant-veterinary antibiotic interaction has been widely studied, however, to the best of our knowledge acclimatization studies with regard to changes in plant root metabolites has not been reported so far. The purpose of this study was to examine the changes in the metabolome of pea roots under antibiotic stress and their role in acclimatization. Pisum sativum L. was grown in soil contaminated with three commonly used veterinary antibiotics - kanamycin (KA), sulfamethazine (SA), and tetracycline (TC). In response to antibiotic stress, plants accumulated different types of low molecular weight compounds that provided protection from stress by contributing to ROS detoxification, protection of membrane integrity, efficient signaling, cell wall function, and cellular osmotic adjustment (glucose, galactose, myo-inositol, stigmasterol, octadecadienoic acid, l-proline). The concentration of amino acid, sugar, and triglyceride metabolites in KA and TC samples showed a dose-dependent biphasic (hormesis) fluctuation. This was mirrored in the metabolite abundance as well as the physiological attributes (mycorrhizal colonization, GST function, nutrient assimilation), which helped in the acclimatization without the loss of normal plant function. SA, on the other hand, had progressive toxic effects with increasing concentration. PCA revealed the differences to be due to SA treatments and in sterol and terpenoid metabolites. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Discriminant Analysis of Defective and Non-Defective Field Pea (Pisum sativum L.) into Broad Market Grades Based on Digital Image Features

    PubMed Central

    McDonald, Linda S.; Panozzo, Joseph F.; Salisbury, Phillip A.; Ford, Rebecca

    2016-01-01

    Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective. PMID:27176469

  20. Biogenic synthesis of Fe3O4 magnetic nanoparticles using Pisum sativum peels extract and its effect on magnetic and Methyl orange dye degradation studies

    NASA Astrophysics Data System (ADS)

    Prasad, Cheera; Yuvaraja, Gutha; Venkateswarlu, Ponneri

    2017-02-01

    We have been developed facile and ecofriendly method for the synthesis of Fe3O4 magnetic nanoparticles (MNPs) using an aqueous extract of Pisum sativum peels (PS) is used as reducing and capping agent. The as synthesized PS-Fe3O4 MNPs are characterized by diverse techniques such as FTIR, powder XRD, TEM, BET and Raman spectroscopy measurements. The results show that the obtained Fe3O4 nanoparticles exhibits high specific surface area (∼17.6 m2/g) and agglomerated spherical in shape with the size range of 20-30 nm. The magnetic properties of PS-Fe3O4 MNPs sample clearly exhibits ferromagnetic nature with a saturation magnetization of 64.2 emu/g. Further, the catalytic properties of PS-Fe3O4 MNPs for degradation of Methyl orange (MO) dye in aqueous solution have been investigated by UV-visible spectroscopy. The results show that PS-Fe3O4 MNPs is an efficient catalyst for degradation of Methyl orange dye than previously reported ones.

  1. Boron Supply Enhances Aluminum Tolerance in Root Border Cells of Pea (Pisum sativum) by Interacting with Cell Wall Pectins

    PubMed Central

    Fang, Jing; Tao, Lin; Shen, Ren Fang; Li, Ya Lin; Xiao, Hong Dong; Feng, Ying Ming; Wen, Hai Xiang; Guan, Jia Hua; Wu, Li Shu; He, Yong Ming; Goldbach, Heiner E.; Yu, Min

    2017-01-01

    Aluminum (Al) toxicity is the primary factor limiting crop growth in acidic soils. Boron (B) alleviates Al toxicity in plants, which is mainly considered to be due to the formation of Rhamnogalacturonan II-B (RGII-B) complexes, which helps to stabilize the cytoskeleton. It is unclear yet whether this is due to the increasing of net negative charges and/or further mechanisms. Kinetics of Al accumulation and adsorption were investigated using entire cells, cell wall and pectin of root border cells (RBCs) of pea (Pisum sativum), to reveal the mechanism of B in interacting with alkali-soluble and chelator-soluble pectin for an increased Al tolerance in RBCs. The results show that B could rescue RBCs from Al-induced cell death by accumulating more Al in the cell wall, predominately in alkali-soluble pectin. Boron also promotes Al3+ adsorption and inhibits Al3+ desorption from alkali-soluble pectin. Thus, more Al3+ is immobilized within the alkali-soluble pectin fraction and less in the chelator-soluble pectin, rendering Al3+ less mobile. Boron induces an increase of RG-II (KDO,2-keto-3-deoxyoctonic acid) content for forming more borate-RGII complexes, and the decrease of pectin methyl-esterification, thus creates more negative charges to immobilize Al3+ in cell wall pectin. The study provides evidence that abundant B supply enhances the immobilization of Al in alkali-soluble pectin, thus most likely reducing the entry of Al3+ into the symplast from the surroundings. PMID:28533794

  2. Molecular dynamics simulations of pea (Pisum sativum) lectin structure with octyl glucoside detergents: the ligand interactions and dynamics.

    PubMed

    Konidala, Praveen; Niemeyer, Bernd

    2007-07-01

    The mitogenic pea (Pisum sativum) lectin is a legume protein of non-immunoglobulin nature capable of specific recognition of glucose derivatives without altering its structure. Molecular dynamics simulations were performed in a realistic environment to investigate the structure and interaction properties of pea lectin with various concentrations of n-octyl-beta-d-glucopyranoside (OG) detergent monomers distributed inside explicit solvent cell. In addition, the diffusion coefficients of the ligands (OG, Ca2+, Mn2+, and Cl-) and the water molecules were also reported. The structural flexibility of the lectin was conserved in all simulations. The self-assembly of OG monomers into a small micelle at the hydrophobic site of the lectin was noticed in the simulation with 20 OG monomers. The interaction energy analysis concludes that the lectin was appropriately termed an adaptive structure. One or rarely two binding sites were observed at an instant in each simulation that were electrostatically favoured for the OG to interact with the surface amino acid residues. Enhanced binding of OG to the pea lectin was quantified in the system containing only Ca2+ divalent ions. Interestingly, no binding was observed in the simulation without divalent ions. Furthermore, the lectin-ligand complex was stabilized by multiple hydrogen bonds and at least one water bridge. Finally, the work was also in accordance with the published work elsewhere that the simulations performed with different initial conditions and using higher nonbonded cutoffs for the van der Waals and electrostatic interactions provide more accurate information and clues than the single large simulation of the biomolecular system of interest.

  3. Metabolism of inositol(1,4,5)trisphosphate by a soluble enzyme fraction from pea (Pisum sativum) roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drobak, B.K.; Watkins, P.A.C.; Roberts, K.

    1991-02-01

    Metabolism of the putative messenger molecule D-myo-inositol(1,4,5)trisphosphate (Ins(1,4,5)P{sub 3}) in plant cells has been studied using a soluble fraction from pea (pisum sativum) roots as enzyme source and (5-{sup 32}P)Ins(1,4,5)P{sub 3} and (2-{sup 3}H)Ins(1,4,5)P{sub 3} as tracers. Ins(1,4,5)P{sub 3} was rapidly converted into both lower and higher inositol phosphates. The major dephosphorylation product was inositol (4,5) bisphosphate (Ins(4,5)P{sub 2}) whereas inositol(1,4)bisphosphate (Ins(1,4)P{sub 2}) was only present in very small quantities throughout a 15 minute incubation period. In addition to these compounds, small amounts of nine other metabolites were produced including inositol and inositol(1,4,5,X)P{sub 4}. Dephosphorylation of Ins(1,4,5)P{sub 3} to Ins(4,5)P{submore » 2} was dependent on Ins(1,4,5)P{sub 3} concentration and was partially inhibited by the phosphohydrolase inhibitors 2,3-diphosphoglycerate, glucose 6-phosphate, and p-nitrophenylphosphate. Conversion of Ins(1,4,5)P{sub 3} to Ins(4,5)P{sub 2} and Ins(1,4,5,X)P{sub 4} was inhibited by 55 micromolar Ca{sup 2+}. This study demonstrates that enzymes are present in plant tissues which are capable of rapidly converting Ins(1,4,5)P{sub 3} and that pathways of inositol phosphate metabolism exist which may prove to be unique to the plant kingdom.« less

  4. Copper oxide nanoparticles and bulk copper oxide, combined with indole-3-acetic acid, alter aluminum, boron, and iron in Pisum sativum seeds.

    PubMed

    Ochoa, Loren; Zuverza-Mena, Nubia; Medina-Velo, Illya A; Flores-Margez, Juan Pedro; Peralta-Videa, José R; Gardea-Torresdey, Jorge L

    2018-09-01

    The interaction of CuO nanoparticles (nCuO), a potential nanopesticide, with the growth hormone indole-3-acetic acid (IAA) is not well understood. This study aimed to evaluate the nutritional components in seeds of green pea (Pisum sativum) cultivated in soil amended with nCuO at 50 or 100mgkg -1 , with/without IAA at 10 or 100μM. Similar treatments including bulk CuO (bCuO) and CuCl 2 were set as controls. Bulk CuO at 50mgkg -1 reduced seed yield (52%), compared with control. Bulk CuO at 50mgkg -1 and nCuO at 100mgkg -1 , plus IAA at 100μM, increased iron in seeds (41 and 42%, respectively), while nCuO at 50mgkg -1 , plus IAA at 100μM reduced boron (80%, respect to control and 63%, respect to IAA at 100μM). IAA, at 10μM increased seed protein (33%), compared with control (p≤0.05). At both concentrations IAA increased sugar in seeds (20%). Overall, nCuO, plus IAA at 10μM, does not affect the production or nutritional quality of green pea seeds. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Quantification of Pea enation mosaic virus 1 and 2 during infection of Pisum sativum by one step real-time RT-PCR.

    PubMed

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen

    2017-02-01

    Pea enation mosaic virus 1 (PEMV1) and Pea enation mosaic virus 2 (PEMV2) are two viruses in an obligate symbiosis that cause pea enation mosaic disease mainly in plants in the Fabaceae family. This virus system is a valuable model to investigate plant virus replication, movement and vector transmission. Thus, here we describe growth conditions, virus detection methods, and virus accumulation behavior. To measure the accumulation and movement of PEMV1 and PEMV2 in plants during the course of infection, we developed a quantitative real-time one-step reverse transcription PCR procedure using the SYBR-green ® technology. Viral primers were designed that anneal to conserved but distinct regions in the RNA-dependent RNA polymerase gene of each virus. Moreover, the normalization of viral accumulation was performed to correct for sample-to-sample variation by designing primers to two different Pisum sativum housekeeping genes: actin and β-tubulin. Transcript levels for these housekeeping genes did not change significantly in response to PEMV infection. Conditions were established for maximum PCR efficiency for each gene, and quantification using QuBit ® technology. Both viruses reached maximum accumulation around 21days post-inoculation of pea plants. These results provide valuable tools and knowledge to allow reproducible studies of this emerging model virus system virus complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Xyloglucan oligosaccharides promote growth and activate cellulase: Evidence for a role of cellulase in cell expansion. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDougall, G.J.; Fry, S.C.

    1990-07-01

    Oligosaccharides produced by the action of fungal cellulase on xyloglucans promoted the elongation of etiolated pea (Pisum sativum L.) stem segments in a straight-growth bioassay designed for the determination of auxins. The oligosaccharides were most active at about 1 micromolar. We tested the relative growth-promoting activities of four HPLC-purified oligosaccharides which shared a common glucose{sub 4} {center dot} xylose{sub 3} (XG7) core. The substituted oligosaccharides XG8 (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose) and XG9n (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose{sub 2}) were more effective than XG7 itself and XG9 (glucose{sub 4} {center dot} xylose{submore » 3} {center dot} galactose {center dot} fucose). The same oligosaccharides also promoted the degradation, assayed viscometrically, of xyloglucan by an acidic cellulase from bean (Phaseolus vulgaris L.) leaves. The oligosaccharides were highly active at 10{sup {minus}4} molar, causing up to a fourfold increase in activity, but the effect was still detectable at 1 micromolar. Those oligosaccharides (XG8 and XG9n) which best promoted growth, stimulated cellulase activity to the greatest extent. The oligosaccharides did not stimulate the action of the cellulase in an assay based on the conversion of ({sup 3}H)xyloglucan to ethanol-soluble fragments. This suggests that the oligosaccharides enhanced the midchain hydrolysis of xyloglucan molecules (which would rapidly reduce the viscosity of the solution), at the expense of cleavage near the termini (which would yield ethanol-soluble products).« less

  7. Expression of the le Mutation in Young Ovaries of Pisum sativum and Its Effect on Fruit Development.

    PubMed Central

    Santes, C. M.; Hedden, P.; Sponsel, V. M.; Reid, J. B.; Garcia-Martinez, J. L.

    1993-01-01

    The effect of the le mutation on the growth and gibberellin (GA) content of developing fruits was investigated using the near-isogenic lines of Pisum sativum L. 205+ (LeLe) and 205- (lele). Although stem elongation is known to be reduced in 205- plants by approximately 65%, the growth of pods and seeds was unaffected by the le mutation. GA1, GA3, and GA20 stimulated parthenocarpic development of unpollinated ovaries on both 205+ and 205- plants. GA20 was less active on 205- ovaries than on 205+, whereas GA1 had similar, high activity in both lines. The activity of GA3 was even higher than that of GA1 in both lines. Decapitation of 205+ plants induced parthenocarpic development of unpollinated ovaries, but this treatment was much less effective on 205- plants. The contents of GA1 and GA8 in entire ovaries 6 d after anthesis, as well as in the pod and fertilized ovules, were substantially lower in 205- than in 205+ plants, whereas the reverse was true for the levels of GA20 and GA29. These results suggest that 3[beta]-hydroxylation of GA20 to GA1 is reduced in ovaries as well as in vegetative tissues. Thus, the le mutation appears to be expressed in young reproductive organs of the 205- line, even though it does not affect the fruit phenotype. Because the content of GA3 in the ovary was similar in the two lines, one explanation for the normal fruit size in the 205- line is that GA3 is the native regulator of pod growth. Alternatively, sufficient GA1 may still be produced in 205- fruits to maintain normal pod growth. PMID:12231727

  8. Proteomic analysis of albumin and globulin fractions of pea (Pisum sativum L.) seeds.

    PubMed

    Dziuba, Jerzy; Szerszunowicz, Iwona; Nałęcz, Dorota; Dziuba, Marta

    2014-01-01

    Proteomic analysis is emerging as a highly useful tool in food research, including studies of food allergies. Two-dimensional gel electrophoresis involving isoelectric focusing and sodium dodecyl sulfate polyacrylamide gel electrophoresis is the most effective method of separating hundreds or even thousands of proteins. In this study, albumin and globulin tractions of pea seeds cv. Ramrod were subjected to proteomic analysis. Selected potentially alergenic proteins were identified based on their molecular weights and isoelectric points. Pea seeds (Pisum sativum L.) cv. Ramrod harvested over a period of two years (Plant Breeding Station in Piaski-Szelejewo) were used in the experiment. The isolated albumins, globulins and legumin and vicilin fractions of globulins were separated by two-dimensional gel electrophoresis. Proteomic images were analysed in the ImageMaster 2D Platinum program with the use of algorithms from the Melanie application. The relative content, isoelectric points and molecular weights were computed for all identified proteins. Electrophoregrams were analysed by matching spot positions from three independent replications. The proteomes of albumins, globulins and legumin and vicilin fractions of globulins produced up to several hundred spots (proteins). Spots most characteristic of a given fraction were identified by computer analysis and spot matching. The albumin proteome accumulated spots of relatively high intensity over a broad range of pi values of ~4.2-8.1 in 3 molecular weight (MW) ranges: I - high molecular-weight albumins with MW of ~50-110 kDa, II - average molecular-weight albumins with MW of ~20-35 kDa, and III - low molecular-weight albumins with MW of ~13-17 kDa. 2D gel electrophoregrams revealed the presence of 81 characteristic spots, including 24 characteristic of legumin and 14 - of vicilin. Two-dimensional gel electrophoresis proved to be a useful tool for identifying pea proteins. Patterns of spots with similar isoelectric

  9. Nuclear-Cytoplasmic Conflict in Pea (Pisum sativum L.) Is Associated with Nuclear and Plastidic Candidate Genes Encoding Acetyl-CoA Carboxylase Subunits

    PubMed Central

    Bogdanova, Vera S.; Zaytseva, Olga O.; Mglinets, Anatoliy V.; Shatskaya, Natalia V.; Kosterin, Oleg E.; Vasiliev, Gennadiy V.

    2015-01-01

    In crosses of wild and cultivated peas (Pisum sativum L.), nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plastid conflict were searched in the reconstructed plastid genomes. In the annotated Medicago truncatula genome, nuclear candidate genes were searched in the portion syntenic to the pea chromosome region known to harbor a locus involved in the conflict. In the plastid genomes, a substantial variability of the accD locus represented by nucleotide substitutions and indels was found to correspond to the pattern of cross-compatibility among the accessions analyzed. Amino acid substitutions in the polypeptides encoded by the alleles of a nuclear locus, designated as Bccp3, with a complementary function to accD, fitted the compatibility pattern. The accD locus in the plastid genome encoding beta subunit of the carboxyltransferase of acetyl-coA carboxylase and the nuclear locus Bccp3 encoding biotin carboxyl carrier protein of the same multi-subunit enzyme were nominated as candidate genes for main contribution to nuclear-cytoplasmic incompatibility in peas. Existence of another nuclear locus involved in the accD-mediated conflict is hypothesized. PMID:25789472

  10. Increasing the rate of drying reduces metabolic imbalance, lipid peroxidation and critical water content in radicles of garden pea (Pisum sativum L.).

    PubMed

    Ntuli, Tobias M; Pammenter, Norman W; Berjak, Patricia

    2013-01-01

    Orthodox seeds become desiccation-sensitive as they undergo germination. As a result, germinating seeds serve as a model to study desiccation sensitivity in plant tissues. The effects of the rate of drying on the viability, respiratory metabolism and free radical processes were thus studied during dehydration and wet storage of radicles of Pisum sativum. For both drying regimes desiccation could be described by exponential and inverse modified functions. Viability, as assessed by germination capacity and tetrazolium staining, remained at 100% during rapid (< 24 h) desiccation. However, it declined sharply at c. 0.26 g g¹ dm following slow (c. 5 days) drying. Increasing the rate of dehydration thus lowered the critical water content for survival. Rapid desiccation was also associated with higher activities and levels of malate dehydrogenase and the oxidized form of nicotinamide adenine dinucleotide. It was also accompanied by lower hydroperoxide levels and membrane damage. In addition, the activitiy of glutathione reductase was greater during rapid drying. Ageing may have contributed to increased damage during slow dehydration, since viability declined even in wet storage after two weeks. The results presented are consistent with rapid desiccation reducing the accumulation of damage resulting from desiccation-induced aqueous-based deleterious reactions. In addition, they show that radicles are a useful model to study desiccation sensitivity in plant tissues.

  11. Genetic Changes Accompanying the Domestication of Pisum sativum: Is there a Common Genetic Basis to the ‘Domestication Syndrome’ for Legumes?

    PubMed Central

    Weeden, Norman F.

    2007-01-01

    Background and Aims The changes that occur during the domestication of crops such as maize and common bean appear to be controlled by relatively few genes. This study investigates the genetic basis of domestication in pea (Pisum sativum) and compares the genes involved with those determined to be important in common bean domestication. Methods Quantitative trait loci and classical genetic analysis are used to investigate and identify the genes modified at three stages of the domestication process. Five recombinant inbred populations involving crosses between different lines representing different stages are examined. Key Results A minimum of 15 known genes, in addition to a relatively few major quantitative trait loci, are identified as being critical to the domestication process. These genes control traits such as pod dehiscence, seed dormancy, seed size and other seed quality characters, stem height, root mass, and harvest index. Several of the genes have pleiotropic effects that in species possessing a more rudimentary genetic characterization might have been interpreted as clusters of genes. Very little evidence for gene clustering was found in pea. When compared with common bean, pea has used a different set of genes to produce the same or similar phenotypic changes. Conclusions Similar to results for common bean, relatively few genes appear to have been modified during the domestication of pea. However, the genes involved are different, and there does not appear to be a common genetic basis to ‘domestication syndrome’ in the Fabaceae. PMID:17660515

  12. Systemic Induction of the Defensin and Phytoalexin Pisatin Pathways in Pea (Pisum sativum) against Aphanomyces euteiches by Acetylated and Nonacetylated Oligogalacturonides.

    PubMed

    Selim, Sameh; Sanssené, Jean; Rossard, Stéphanie; Courtois, Josiane

    2017-06-19

    Oligogalacturonides (OGs) are known for their powerful ability to stimulate the plant immune system but little is known about their mode of action in pea ( Pisum sativum ). In the present study, we investigated the elicitor activity of two fractions of OGs, with polymerization degrees (DPs) of 2-25, in pea against Aphanomyces euteiches . One fraction was nonacetylated (OGs - Ac) whereas the second one was 30% acetylated (OGs + Ac). OGs were applied by injecting the upper two rachises of the plants at three- and/or four-weeks-old. Five-week-old roots were inoculated with 10⁵ zoospores of A. euteiches . The root infection level was determined at 7, 10 and 14 days after inoculation using the quantitative real-time polymerase chain reaction (qPCR). Results showed significant root infection reductions namely 58, 45 and 48% in the plants treated with 80 µg OGs + Ac and 59, 56 and 65% with 200 µg of OGs - Ac. Gene expression results showed the upregulation of genes involved in the antifungal defensins, lignans and the phytoalexin pisatin pathways and a priming effect in the basal defense, SA and ROS gene markers as a response to OGs. The reduction of the efficient dose in OGs + Ac is suggesting that acetylation is necessary for some specific responses. Our work provides the first evidence for the potential of OGs in the defense induction in pea against Aphanomyces root rot.

  13. Symbiotic N2 fixation activity in relation to C economy of Pisum sativum L. as a function of plant phenology.

    PubMed

    Voisin, A S; Salon, C; Jeudy, C; Warembourg, F R

    2003-12-01

    The relationships between symbiotic nitrogen fixation (SNF) activity and C fluxes were investigated in pea plants (Pisum sativum L. cv. Baccara) using simultaneous 13C and 15N labelling. Analysis of the dynamics of labelled CO2 efflux from the nodulated roots allowed the different components associated with SNF activity to be calculated, together with root and nodule synthetic and maintenance processes. The carbon costs for the synthesis of roots and nodules were similar and decreased with time. Carbon lost by turnover, associated with maintenance processes, decreased with time for nodules while it increased in the roots. Nodule turnover remained higher than root turnover until flowering. The effect of the N source on SNF was investigated using plants supplied with nitrate or plants only fixing N2. SNF per unit nodule biomass (nodule specific activity) was linearly related to the amount of carbon allocated to the nodulated roots regardless of the N source, with regression slopes decreasing across the growth cycle. These regression slopes permitted potential values of SNF specific activity to be defined. SNF activity decreased as the plants aged, presumably because of the combined effects of both increasing C costs of SNF (from 4.0 to 6.7 g C g-1 N) and the limitation of C supply to the nodules. SNF activity competed for C against synthesis and maintenance processes within the nodulated roots. Synthesis was the main limiting factor of SNF, but its importance decreased as the plant aged. At seed-filling, SNF was probably more limited by nodule age than by C supply to the nodulated roots.

  14. The major nucleoside triphosphatase in pea (Pisum sativum L.) nuclei and in rat liver nuclei share common epitopes also present in nuclear lamins

    NASA Technical Reports Server (NTRS)

    Tong, C. G.; Dauwalder, M.; Clawson, G. A.; Hatem, C. L.; Roux, S. J.

    1993-01-01

    The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis.

  15. Biological safety assessment of mutant variant of Allium sativum leaf agglutinin (mASAL), a novel antifungal protein for future transgenic application.

    PubMed

    Ghosh, Prithwi; Roy, Amit; Chakraborty, Joydeep; Das, Sampa

    2013-12-04

    Genetic engineering has established itself to be an important tool for crop improvement. Despite the success, there is always a risk of food allergy induced by alien gene products. The present study assessed the biosafety of mutant Allium sativum leaf agglutinin (mASAL), a potent antifungal protein generated by site directed mutagenesis of Allium sativum leaf agglutinin (ASAL). mASAL was cloned in pET28a+ and expressed in E. coli, and the safety assessment was carried out according to the FAO/WHO guideline (2001). Bioinformatics analysis, pepsin digestion, and thermal stability assay showed the protein to be nonallergenic. Targeted sera screening revealed no significant IgE affinity of mASAL. Furthermore, mASAL sensitized Balb/c mice showed normal histopathology of lung and gut tissue. All results indicated the least possibility of mASAL being an allergen. Thus, mASAL appears to be a promising antifungal candidate protein suitable for agronomical biotechnology.

  16. Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions

    PubMed Central

    Morton, Roger L.; Schroeder, Hart E.; Bateman, Kaye S.; Chrispeels, Maarten J.; Armstrong, Eric; Higgins, Thomas J. V.

    2000-01-01

    Two α-amylase inhibitors, called αAI-1 and αAI-2, that share 78% amino acid sequence identity and have a differential specificity toward mammalian and insect α-amylases are present in different accessions of the common bean (Phaseolus vulgaris). Using greenhouse-grown transgenic peas (Pisum sativum), we have shown previously that expression of αAI-1 in pea seeds can provide complete protection against the pea weevil (Bruchus pisorum). Here, we report that αAI-1 also protects peas from the weevil under field conditions. The high degree of protection is explained by our finding that αAI-1 inhibits pea bruchid α-amylase by 80% over a broad pH range (pH 4.5–6.5). αAI-2, on the other hand, is a much less effective inhibitor of pea bruchid α-amylase, inhibiting the enzyme by only 40%, and only in the pH 4.0–4.5 range. Nevertheless, this inhibitor was still partially effective in protecting field-grown transgenic peas against pea weevils. The primary effect of αAI-2 appeared to be a delay in the maturation of the larvae. This contrasts with the effect of αAI-1, which results in larval mortality at the first or second instar. These results are discussed in relationship to the use of amylase inhibitors with different specificities to bring about protection of crops from their insect pests or to decrease insect pest populations below the economic injury level. PMID:10759552

  17. Das Lektin aus der Erbse Pisum sativum : Bindungsstudien, Monomer-Dimer-Gleichgewicht und Rückfaltung aus Fragmenten

    NASA Astrophysics Data System (ADS)

    Küster, Frank

    2002-11-01

    Das Lektin aus Pisum sativum, der Gartenerbse, ist Teil der Familie der Leguminosenlektine. Diese Proteine haben untereinander eine hohe Sequenzhomologie, und die Struktur ihrer Monomere, ein all-ß-Motiv, ist hoch konserviert. Dagegen gibt es innerhalb der Familie eine große Vielfalt an unterschiedlichen Quartärstrukturen, die Gegenstand kristallographischer und theoretischer Arbeiten waren. Das Erbsenlektin ist ein dimeres Leguminosenlektin mit einer Besonderheit in seiner Struktur: Nach der Faltung in der Zelle wird aus einem Loop eine kurze Aminosäuresequenz herausgeschnitten, so dass sich in jeder Untereinheit zwei unabhängige Polypeptidketten befinden. Beide Ketten sind aber stark miteinander verschränkt und bilden eine gemeinsame strukturelle Domäne. Wie alle Lektine bindet Erbsenlektin komplexe Oligosaccharide, doch sind seine physiologische Rolle und der natürliche Ligand unbekannt. In dieser Arbeit wurden Versuche zur Entwicklung eines Funktionstests für Erbsenlektin durchgeführt und seine Faltung, Stabilität und Monomer-Dimer-Gleichgewicht charakterisiert. Um die spezifische Rolle der Prozessierung für Stabilität und Faltung zu untersuchen, wurde ein unprozessiertes Konstrukt in E. coli exprimiert und mit der prozessierten Form verglichen. Beide Proteine zeigen die gleiche kinetische Stabilität gegenüber chemischer Denaturierung. Sie denaturieren extrem langsam, weil nur die isolierten Untereinheiten entfalten können und das Monomer-Dimer-Gleichgewicht bei mittleren Konzentrationen an Denaturierungsmittel auf der Seite der Dimere liegt. Durch die extrem langsame Entfaltung zeigen beide Proteine eine apparente Hysterese im Gleichgewichtsübergang, und es ist nicht möglich, die thermodynamische Stabilität zu bestimmen. Die Stabilität und die Geschwindigkeit der Assoziation und Dissoziation in die prozessierten bzw. nichtprozessierten Untereinheiten sind für beide Proteine gleich. Darüber hinaus konnte gezeigt werden, dass auch unter

  18. Ion Relations of Symplastic and Apoplastic Space in Leaves from Spinacia oleracea L. and Pisum sativum L. under Salinity 1

    PubMed Central

    Speer, Michael; Kaiser, Werner M.

    1991-01-01

    Salt tolerant spinach (Spinacia oleracea) and salt sensitive pea (Pisum sativum) plants were exposed to mild salinity under identical growth conditions. In order to compare the ability of the two species for extra- and intracellular solute compartmentation in leaves, various solutes were determined in intercellular washing fluids and in aqueously isolated intact chloroplasts. In pea plants exposed to 100 millimolar NaCl for 14 days, apoplastic salt concentrations in leaflets increased continuously with time up to 204 (Cl−) and 87 millimolar (Na+), whereas the two ions reached a steady concentration of only 13 and 7 millimolar, respectively, in spinach leaves. In isolated intact chloroplasts from both species, sodium concentrations were not much different, but chloride concentrations were significantly higher in pea than in spinach. Together with data from whole leaf extracts, these measurements permitted an estimation of apoplastic, cytoplasmic, and vacuolar solute concentrations. Sodium and chloride concentration gradients across the tonoplast were rather similar in both species, but spinach was able to maintain much steeper sodium gradients across the plasmamembrane compared with peas. Between day 12 and day 17, concentrations of other inorganic ions in the pea leaf apoplast increased abruptly, indicating the onset of cell disintegration. It is concluded that the differential salt sensitivity of pea and spinach cannot be traced back to a single plant performance. Major differences appear to be the inability of pea to control salt accumulation in the shoot, to maintain steep ion gradients across the leaf cell plasmalemma, and to synthesize compatible solutes. Perhaps less important is a lower selectivity of pea for K+/Na+ and NO3−/Cl− uptake by roots. PMID:16668541

  19. Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum.

    PubMed

    Rodriguez, Eleazar; Azevedo, Raquel; Fernandes, Pedro; Santos, Conceição

    2011-07-18

    Chromium(VI) is recognized as the most toxic valency of Cr, but its genotoxicity and cytostaticity in plants is still poorly studied. In order to analyze Cr(VI) cyto- and gentotoxicity, Pisum sativum L. plants were grown in soil and watered with solutions with different concentrations of Cr up to 2000 mg/L. After 28 days of exposure, leaves showed no significant variations in either cell cycle dynamics or ploidy level. As for DNA damage, flow cytometric (FCM) histograms showed significant differences in full peak coefficient of variation (FPCV) values, suggesting clastogenicity. This is paralleled by the Comet assay results, showing an increase in DNA damage for 1000 and 2000 mg/L. In roots, exposure to 2000 mg/L resulted in cell cycle arrest at the G(2)/M checkpoint. It was also verified that under the same conditions 40% of the individuals analyzed suffered polyploidization having both 2C and 4C levels. DNA damage analysis by the Comet assay and FCM revealed dose-dependent increases in DNA damage and FPCV. Through this, we have unequivocally demonstrated for the first time in plants that Cr exposure can result in DNA damage, cell cycle arrest, and polyploidization. Moreover, we critically compare the validity of the Comet assay and FCM in evaluating cytogenetic toxicity tests in plants and demonstrate that the data provided by both techniques complement each other and present high correlation levels. In conclusion, the data presented provides new insight on Cr effects in plants in general and supports the use of the parameters tested in this study as reliable endpoints for this metal toxicity in plants. © 2011 American Chemical Society

  20. Evaluation of the effects of polymeric chitosan/tripolyphosphate and solid lipid nanoparticles on germination of Zea mays, Brassica rapa and Pisum sativum.

    PubMed

    Nakasato, Daniele Y; Pereira, Anderson E S; Oliveira, Jhones L; Oliveira, Halley C; Fraceto, Leonardo F

    2017-08-01

    Although the potential toxicity of many metallic and carbon nanoparticles to plants has been reported, few studies have evaluated the phytotoxic effects of polymeric and solid lipid nanoparticles. The present work described the preparation and characterization of chitosan/tripolyphosphate (CS/TPP) nanoparticles and solid lipid nanoparticles (SLN) and evaluated the effects of different concentrations of these nanoparticles on germination of Zea mays, Brassica rapa, and Pisum sativum. CS/TPP nanoparticles presented an average size of 233.6±12.1nm, polydispersity index (PDI) of 0.30±0.02, and zeta potential of +21.4±1.7mV. SLN showed an average size of 323.25±41.4nm, PDI of 0.23±0.103, and zeta potential of -13.25±3.2mV. Nanotracking analysis enabled determination of concentrations of 1.33×10 10 (CS/TPP) and 3.64×10 12 (SLN) nanoparticles per mL. At high concentrations, CS/TPP nanoparticles caused complete inhibition of germination, and thus negatively affected the initial growth of all tested species. Differently, SLN presented no phytotoxic effects. The different size and composition and the opposite charges of SLN and CS/TPP nanoparticles could be associated with the differential phytotoxicity of these nanomaterials. The present study reports the phytotoxic potential of polymeric CS/TPP nanoparticles towards plants, indicating that further investigation is needed on the effects of such formulations intended for future use in agricultural systems, in order to avoid damage to the environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L.) Landraces

    PubMed Central

    Sun, Suli; Fu, Haining; Wang, Zhongyi; Duan, Canxing; Zong, Xuxiao; Zhu, Zhendong

    2016-01-01

    Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L.) landraces resistant to E. pisi, and to characterize the resistance gene(s) at the er1 locus in the resistant landraces, and to develop functional marker(s) specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%), 4 (1.24%) and 17 (5.28%) landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C) at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders. PMID:26809053

  2. Aluminum exclusion from root zone and maintenance of nutrient uptake are principal mechanisms of Al tolerance in Pisum sativum L.

    PubMed

    Kichigina, Natalia E; Puhalsky, Jan V; Shaposhnikov, Aleksander I; Azarova, Tatiana S; Makarova, Natalia M; Loskutov, Svyatoslav I; Safronova, Vera I; Tikhonovich, Igor A; Vishnyakova, Margarita A; Semenova, Elena V; Kosareva, Irina A; Belimov, Andrey A

    2017-10-01

    Our study aimed to evaluate intraspecific variability of pea ( Pisum sativum L.) in Al tolerance and to reveal mechanisms underlying genotypic differences in this trait. At the first stage, 106 pea genotypes were screened for Al tolerance using root re-elongation assay based on staining with eriochrome cyanine R. The root re-elongation zone varied from 0.5 mm to 14 mm and relationships between Al tolerance and provenance or phenotypic traits of genotypes were found. Tolerance index (TI), calculated as a biomass ratio of Al-treated and non-treated contrasting genotypes grown in hydroponics for 10 days, varied from 30% to 92% for roots and from 38% to 90% for shoots. TI did not correlate with root or shoot Al content, but correlated positively with increasing pH and negatively with residual Al concentration in nutrient solution in the end of experiments. Root exudation of organic acid anions (mostly acetate, citrate, lactate, pyroglutamate, pyruvate and succinate) significantly increased in several Al-treated genotypes, but did not correlate with TI. Al-treatment decreased Ca, Co, Cu, K, Mg, Mn, Mo, Ni, S and Zn contents in roots and/or shoots, whereas contents of several elements (P, B, Fe and Mo in roots and B and Fe in shoots) increased, suggesting that Al toxicity induced substantial disturbances in uptake and translocation of nutrients. Nutritional disturbances were more pronounced in Al sensitive genotypes. In conclusion, pea has a high intraspecific variability in Al tolerance and this trait is associated with provenance and phenotypic properties of plants. Transformation of Al to unavailable (insoluble) forms in the root zone and the ability to maintain nutrient uptake are considered to be important mechanisms of Al tolerance in this plant species.

  3. Growth performance and carcass characteristics of guinea fowl broilers fed micronized-dehulled pea (Pisum sativum L.) as a substitute for soybean meal.

    PubMed

    Laudadio, V; Nahashon, S N; Tufarelli, V

    2012-11-01

    This study was conducted to evaluate the effect of substitution of soybean meal (SBM) with dehulled-micronized peas (Pisum sativum) in diets of guinea fowl broilers on their growth performance, carcass yields, and fatty acid composition of meat. One hundred forty 1-d-old guinea fowl keets were randomly assigned to 2 dietary treatments, which were fed from hatch to 12 wk. The birds were fed 2 wheat middling-based diets comprising a control diet, which contained SBM (78 g/kg) and a test diet containing dehulled-micronized peas (180 g/kg) as the main protein source. The substitution of SBM with peas had no adverse effect on growth performance, dressing percentage, or breast and thigh muscle relative weights of the guinea broilers. However, a reduction of abdominal fat content (P < 0.05) was observed in birds fed the pea diet compared with the control. Breast and thigh meat of birds fed the pea diet had higher lightness scores (P < 0.05) and water-holding capacity (P < 0.01) than the control. Meat from guinea fowls fed the pea diet had less cholesterol (P < 0.01) and lipids (P < 0.05), and higher concentrations of phospholipids (P < 0.05). Feeding peas increased polyunsaturated fatty acid concentration in breast and thigh muscles, and decreased the saturated fatty acid concentration. Feeding the pea diet also lowered the n-6/n-3 polyunsaturated fatty acid ratio of the guinea broiler muscles. Our results suggest that replacing the conventional SBM as the protein source with dehulled-micronized pea meal in diets of guinea fowls broilers can improve carcass quality and favorable lipid profile without adversely affecting growth performance traits.

  4. Studies on the Control of Ascochyta Blight in Field Peas (Pisum sativum L.) Caused by Ascochyta pinodes in Zhejiang Province, China

    PubMed Central

    Liu, Na; Xu, Shengchun; Yao, Xiefeng; Zhang, Guwen; Mao, Weihua; Hu, Qizan; Feng, Zhijuan; Gong, Yaming

    2016-01-01

    Ascochyta blight, an infection caused by a complex of Ascochyta pinodes, Ascochyta pinodella, Ascochyta pisi, and/or Phoma koolunga, is a destructive disease in many field peas (Pisum sativum L.)-growing regions, and it causes significant losses in grain yield. To understand the composition of fungi associated with this disease in Zhejiang Province, China, a total of 65 single-pycnidiospore fungal isolates were obtained from diseased pea samples collected from 5 locations in this region. These isolates were identified as Ascochyta pinodes by molecular techniques and their morphological and physiological characteristics. The mycelia of ZJ-1 could penetrate pea leaves across the stomas, and formed specific penetration structures and directly pierced leaves. The resistance level of 23 available pea cultivars was tested against their representative isolate A. pinodes ZJ-1 using the excised leaf-assay technique. The ZJ-1 mycelia could penetrate the leaves of all tested cultivars, and they developed typical symptoms, which suggested that all tested cultivars were susceptible to the fungus. Chemical fungicides and biological control agents were screened for management of this disease, and their efficacies were further determined. Most of the tested fungicides (11 out of 14) showed high activity toward ZJ-1 with EC50 < 5 μg/mL. Moreover, fungicides, including tebuconazole, boscalid, iprodione, carbendazim, and fludioxonil, displayed more than 80% disease control efficacy under the recorded conditions. Three biocontrol strains of Bacillus sp. and one of Pantoea agglomerans were isolated from pea-related niches and significantly reduced the severity of disease under greenhouse and field conditions. To our knowledge, this is the first study on ascochyta blight in field peas, and results presented here will be useful for controlling the disease in this area. PMID:27148177

  5. PA1b, an insecticidal protein extracted from pea seeds (Pisum sativum): 1H-2-D NMR study and molecular modeling.

    PubMed

    Jouvensal, Laurence; Quillien, Laurence; Ferrasson, Eric; Rahbé, Yvan; Guéguen, Jacques; Vovelle, Françoise

    2003-10-21

    PA1b (pea albumin 1, subunit b) is a 37-amino acid cysteine-rich plant defense protein isolated from pea seeds (Pisum sativum). It induces short-term mortality in several pests, among which the cereal weevils Sitophilus sp. (Sitophilus oryzae, Sitophilus granarius, and Sitophilus zeamais) that are a major nuisance for stored cereals, all over the world. As such, PA1b is the first genuine protein phytotoxin specifically toxic to insects, which makes it a promising tool for seed weevil damage control. We have determined the 3-D solution structure of PA1b, using 2-D homonuclear proton NMR methods and molecular modeling. The primary sequence of the protein does not share similarities with other known toxins. It includes six cysteines forming three disulfide bridges. However, because of PA1b resistance to protease cleavage, conventional methods failed to establish the connectivity pattern. Our first attempts to assign the disulfide network from NOE data alone remained unsuccessful due to the tight packing of the cysteine residues within the core of the molecule. Yet, the use of ambiguous disulfide restraints within ARIA allowed us to establish that PA1b belongs to the inhibitor cystine-knot family. It exhibits the structural features that are characteristic of the knottin fold, namely, a triple-stranded antiparallel beta-sheet with a long flexible loop connecting the first to the second strand and a series of turns. A comparison of the structural properties of PA1b with that of structurally related proteins adopting a knottin fold and exhibiting a diverse range of biological activities shows that the electrostatic and lipophilic potentials at the surface of PA1b are very close to those found for the spider toxin ACTX-Hi:OB4219, thereby suggesting activity on ion channels.

  6. Amino acid fingerprint in the rhizosphere of Pisum sativum in response to water stress

    NASA Astrophysics Data System (ADS)

    Bobille, Hélène; Fustec, Joëlle; Robins, Richard J.; Cukier, Caroline; Limami, Anis M.

    2017-04-01

    In cropping systems, legumes release substantial amounts of nitrogen (N) into the soil, via rhizodeposition, and constitute a sustainable source of N, instead of synthetic N fertilisers (Fustec et al. 2010). More frequent or/and intense droughts and floodings, due to climate change and intensification of agriculture, may affect N rhizodeposition (Preece & Peñuelas 2016). However, the effects of water stress on this process are poorly documented. A part of N derived from root exudates, mainly in amino acids (AAs) form, is suspected shape and regulate rhizosphere microbial community, thus playing a potential role in maintaining plant health in case of abiotic stress (Moe 2013). We hypothesized that root AA exudation could change significantly, according to water availability, and would help to understand N metabolism changes in plant-rhizosphere interactions. Because studying exudation from plant grown in unsterilized soil is challenging (Oburger et al. 2013), we have measured the rhizosphere AA fingerprint (RAAF), as the result of interactions between AA exudation and rhizospheric environment. In addition, plants were stem-labeled (cotton-wick) with 15N-urea for 72 h to provide direct evidence of a link between root AA and exudation in the soil. The RAAF was measured in Pisum sativum rhizosphere, under either a water deficit or a water excess for 72 h. Water deficit decreases biomass accumulation in shoots but not in roots. Then, water deficit had no significant effect on total AAs released into the rhizosphere but, it significantly modified the composition of RAAF, with a preferential increase of proline, alanine and glutamate and a rise in isotopic enrichment of AAs derived from oxaloacetate in tricarboxylic acidic cycle (asparagine, aspartate, threonine and isoleucine). These results support the idea that, under the early stages of water deficit, recently assimilated N is rapidly translocated to the roots, and part of it is exudated in AAs. Most of the exudated

  7. Identification of Phenolic Compounds from Seed Coats of Differently Colored European Varieties of Pea (Pisum sativum L.) and Characterization of Their Antioxidant and In Vitro Anticancer Activities.

    PubMed

    Stanisavljević, Nemanja S; Ilić, Marija D; Matić, Ivana Z; Jovanović, Živko S; Čupić, Tihomir; Dabić, Dragana Č; Natić, Maja M; Tešić, Živoslav Lj

    2016-01-01

    To date little has been done on identification of major phenolic compounds responsible for anticancer and antioxidant properties of pea (Pisum sativum L.) seed coat extracts. In the present study, phenolic profile of the seed coat extracts from 10 differently colored European varieties has been determined using ultrahigh-performance liquid chromatography-linear trap quadrupole orbitrap mass spectrometer technique. Extracts of dark colored varieties with high total phenolic content (up to 46.56 mg GAE/g) exhibited strong antioxidant activities (measured by 2,2-diphenyl-1-picrylhydrazyl or DPPH assay, and ferric ion reducing and ferrous ion chelating capacity assays) which could be attributed to presence of gallic acid, epigallocatechin, naringenin, and apigenin. The aqueous extracts of dark colored varieties exert concentration-dependent cytotoxic effects on all tested malignant cell lines (human colon adenocarcinoma LS174, human breast carcinoma MDA-MB-453, human lung carcinoma A594, and myelogenous leukemia K562). Correlation analysis revealed that intensities of cytotoxic activity of the extracts strongly correlated with contents of epigallocatechin and luteolin. Cell cycle analysis on LS174 cells in the presence of caspase-3 inhibitor points out that extracts may activate other cell death modalities besides caspase-3-dependent apoptosis. The study provides evidence that seed coat extracts of dark colored pea varieties might be used as potential cancer-chemopreventive and complementary agents in cancer therapy.

  8. Photosynthesis light-independent reactions are sensitive biomarkers to monitor lead phytotoxicity in a Pb-tolerant Pisum sativum cultivar.

    PubMed

    Rodriguez, Eleazar; da Conceição Santos, Maria; Azevedo, Raquel; Correia, Carlos; Moutinho-Pereira, José; Ferreira de Oliveira, José Miguel Pimenta; Dias, Maria Celeste

    2015-01-01

    Lead (Pb) environmental contamination remains prevalent. Pisum sativum L. plants have been used in ecotoxicological studies, but some cultivars showed to tolerate and accumulate some levels of Pb, opening new perspectives to their use in phytoremediation approaches. However, the putative use of pea plants in phytoremediation requires reliable toxicity endpoints. Here, we evaluated the sensitivity of a large number of photosynthesis-related biomarkers in Pb-exposed pea plants. Plants (cv. "Corne de Bélier") were exposed to Pb concentrations up to 1,000 mg kg(-1) soil during 28 days. The photosynthetic potential biomarkers that were analyzed included pigments, chlorophyll (Chl) a fluorescence, gas exchange, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) activity, and carbohydrates. Flow cytometry (FCM) was also used to assess the morpho-functional status of chloroplasts. Finally, Pb-induced nutrient disorders were also evaluated. Net CO2 assimilation rate (A) and RuBisCO activity decreased strongly in Pb-exposed plants. Plant dry mass (DM) accumulation, however, was only reduced in the higher Pb concentrations tested (500 and 1,000 mg kg(-1) soil). Pigment contents increased solely in plants exposed to the largest Pb concentration, and in addition, the parameters related to the light-dependent reactions of photosynthesis, Fv/Fm and ΦPSII, were not affected by Pb exposure. In contrast to this, carbohydrates showed an overall tendency to increase in Pb-exposed plants. The morphological status of chloroplasts was affected by Pb exposure, with a general trend of volume decrease and granularity increase. These results point the endpoints related to the light-independent reactions of photosynthesis as more sensitive predictors of Pb-toxicity than the light-dependent reactions ones. Among the endpoints related to the light-independent photosynthesis reactions, RuBisCO activity and A were found to be the most sensitive. We discuss here the advantages of using

  9. Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum.

    PubMed

    Butterly, Clayton R; Armstrong, Roger; Chen, Deli; Tang, Caixian

    2016-01-01

    Additional carbohydrate supply resulting from enhanced photosynthesis under predicted future elevated CO2 is likely to increase symbiotic nitrogen (N) fixation in legumes. This study examined the interactive effects of atmospheric CO2 and nitrate (NO3(-)) concentration on the growth, nodulation and N fixation of field pea (Pisum sativum) in a semi-arid cropping system. Field pea was grown for 15 weeks in a Vertosol containing 5, 25, 50 or 90 mg NO3(-)-N kg(-1) under either ambient CO2 (aCO2; 390 ppm) or elevated CO2 (eCO2; 550 ppm) using free-air CO2 enrichment (SoilFACE). Under aCO2, field pea biomass was significantly lower at 5 mg NO3(-)-N kg(-1) than at 90 mg NO3(-)-N kg(-1) soil. However, increasing the soil N level significantly reduced nodulation of lateral roots but not the primary root, and nodules were significantly smaller, with 85% less nodule mass in the 90 NO3(-)-N kg(-1) than in the 5 mg NO3(-)-N kg(-1) treatment, highlighting the inhibitory effects of NO3(-). Field pea grown under eCO2 had greater biomass (approx. 30%) than those grown under aCO2, and was not affected by N level. Overall, the inhibitory effects of NO3(-) on nodulation and nodule mass appeared to be reduced under eCO2 compared with aCO2, although the effects of CO2 on root growth were not significant. Elevated CO2 alleviated the inhibitory effect of soil NO3(-) on nodulation and N2 fixation and is likely to lead to greater total N content of field pea growing under future elevated CO2 environments. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Changes in the protein patterns in pea (Pisum sativum L.) roots under the influence of long- and short-term chilling stress and post-stress recovery.

    PubMed

    Badowiec, Anna; Swigonska, Sylwia; Weidner, Stanisław

    2013-10-01

    Amongst many factors restricting geographical distribution of plants and crop productivity, low temperature is one of the most important. To gain better understanding of the molecular response of germinating pea (Pisum sativum L.) to low temperature, we investigated the influence of long and short chilling stress as well as post-stress recovery on the alterations in the root proteomes. The impact of long stress was examined on the pea seeds germinating in the continuous chilling conditions of 10 °C for 8 days (LS). To examine the impact of short stress, pea seeds germinating for 72 h in the optimal temperature of 20 °C were subjected to 24-h chilling (SS). Additionally, both stress treatments were followed by 24 h of recovery in the optimal conditions (accordingly LSR and SR). Using the 2D gel electrophoresis and MALDI-TOF MS protein identification, it was revealed, that most of the proteins undergoing regulation under the applied conditions were implicated in metabolism, protection against stress, cell cycle regulation, cell structure maintenance and hormone synthesis, which altogether may influence root growth and development in the early stages of plant life. The obtained results have shown that most of detected alterations in the proteome patterns of pea roots are dependent on stress duration. However, there are some analogical response pathways which are triggered regardless of stress length. The functions of proteins which accumulation has been changed by chilling stress and post-stress recovery are discussed here in relation to their impact on pea roots development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV).

    PubMed

    Cerna, Hana; Černý, Martin; Habánová, Hana; Šafářová, Dana; Abushamsiya, Kifah; Navrátil, Milan; Brzobohatý, Břetislav

    2017-02-05

    Pea seed-borne mosaic virus (PSbMV) significantly reduces yields in a broad spectra of legumes. The eukaryotic translation initiation factor has been shown to confer resistance to this pathogen, thus implying that translation and proteome dynamics play a role in resistance. This study presents the results of a proteome-wide analysis of Pisum sativum L. response to PSbMV infection. LC-MS profiling of two contrasting pea cultivars, resistant (B99) and susceptible (Raman) to PSbMV infection, detected >2300 proteins, 116 of which responded to PSbMV ten and/or twenty days post-inoculation. These differentially abundant proteins are involved in number of processes that have previously been reported in the plant-pathogen response, including protein and amino acid metabolism, stress signaling, redox homeostasis, carbohydrate metabolism, and lipid metabolism. We complemented our proteome-wide analysis work with targeted analyses of free amino acids and selected small molecules, fatty acid profiling, and enzyme activity assays. Data from these additional experiments support our findings and validate the biological relevance of the observed proteome changes. We found surprising similarities in the resistant and susceptible cultivars, which implies that a seemingly unaffected plant, with no detectable levels of PSbMV, actively suppresses viral replication. Plant resistance to PSbMV is connected to translation initiation factors, yet the processes involved are still poorly understood at the proteome level. To the best of our knowledge, this is the first survey of the global proteomic response to PSbMV in plants. The combination of label-free LC-MS profiling and two contrasting cultivars (resistant and susceptible) provided highly sensitive snapshots of protein abundance in response to PSbMV infection. PSbMV is a member of the largest family of plant viruses and our results are in accordance with previously characterized potyvirus-responsive proteomes. Hence, the results of this

  12. Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.).

    PubMed

    Ma, Yu; Coyne, Clarice J; Grusak, Michael A; Mazourek, Michael; Cheng, Peng; Main, Dorrie; McGee, Rebecca J

    2017-02-13

    Marker-assisted breeding is now routinely used in major crops to facilitate more efficient cultivar improvement. This has been significantly enabled by the use of next-generation sequencing technology to identify loci and markers associated with traits of interest. While rich in a range of nutritional components, such as protein, mineral nutrients, carbohydrates and several vitamins, pea (Pisum sativum L.), one of the oldest domesticated crops in the world, remains behind many other crops in the availability of genomic and genetic resources. To further improve mineral nutrient levels in pea seeds requires the development of genome-wide tools. The objectives of this research were to develop these tools by: identifying genome-wide single nucleotide polymorphisms (SNPs) using genotyping by sequencing (GBS); constructing a high-density linkage map and comparative maps with other legumes, and identifying quantitative trait loci (QTL) for levels of boron, calcium, iron, potassium, magnesium, manganese, molybdenum, phosphorous, sulfur, and zinc in the seed, as well as for seed weight. In this study, 1609 high quality SNPs were found to be polymorphic between 'Kiflica' and 'Aragorn', two parents of an F 6 -derived recombinant inbred line (RIL) population. Mapping 1683 markers including 75 previously published markers and 1608 SNPs developed from the present study generated a linkage map of size 1310.1 cM. Comparative mapping with other legumes demonstrated that the highest level of synteny was observed between pea and the genome of Medicago truncatula. QTL analysis of the RIL population across two locations revealed at least one QTL for each of the mineral nutrient traits. In total, 46 seed mineral concentration QTLs, 37 seed mineral content QTLs, and 6 seed weight QTLs were discovered. The QTLs explained from 2.4% to 43.3% of the phenotypic variance. The genome-wide SNPs and the genetic linkage map developed in this study permitted QTL identification for pea seed mineral

  13. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

    PubMed Central

    Macas, Jiří; Neumann, Pavel; Navrátilová, Alice

    2007-01-01

    Background Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum). Results Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. Conclusion We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35–48% of the genome. These data provide a starting point for

  14. SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.)

    PubMed Central

    2013-01-01

    Background Field pea (Pisum sativum L.) is a self-pollinating, diploid, cool-season food legume. Crop production is constrained by multiple biotic and abiotic stress factors, including salinity, that cause reduced growth and yield. Recent advances in genomics have permitted the development of low-cost high-throughput genotyping systems, allowing the construction of saturated genetic linkage maps for identification of quantitative trait loci (QTLs) associated with traits of interest. Genetic markers in close linkage with the relevant genomic regions may then be implemented in varietal improvement programs. Results In this study, single nucleotide polymorphism (SNP) markers associated with expressed sequence tags (ESTs) were developed and used to generate comprehensive linkage maps for field pea. From a set of 36,188 variant nucleotide positions detected through in silico analysis, 768 were selected for genotyping of a recombinant inbred line (RIL) population. A total of 705 SNPs (91.7%) successfully detected segregating polymorphisms. In addition to SNPs, genomic and EST-derived simple sequence repeats (SSRs) were assigned to the genetic map in order to obtain an evenly distributed genome-wide coverage. Sequences associated with the mapped molecular markers were used for comparative genomic analysis with other legume species. Higher levels of conserved synteny were observed with the genomes of Medicago truncatula Gaertn. and chickpea (Cicer arietinum L.) than with soybean (Glycine max [L.] Merr.), Lotus japonicus L. and pigeon pea (Cajanus cajan [L.] Millsp.). Parents and RIL progeny were screened at the seedling growth stage for responses to salinity stress, imposed by addition of NaCl in the watering solution at a concentration of 18 dS m-1. Salinity-induced symptoms showed normal distribution, and the severity of the symptoms increased over time. QTLs for salinity tolerance were identified on linkage groups Ps III and VII, with flanking SNP markers suitable for

  15. SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.).

    PubMed

    Leonforte, Antonio; Sudheesh, Shimna; Cogan, Noel O I; Salisbury, Philip A; Nicolas, Marc E; Materne, Michael; Forster, John W; Kaur, Sukhjiwan

    2013-10-17

    Field pea (Pisum sativum L.) is a self-pollinating, diploid, cool-season food legume. Crop production is constrained by multiple biotic and abiotic stress factors, including salinity, that cause reduced growth and yield. Recent advances in genomics have permitted the development of low-cost high-throughput genotyping systems, allowing the construction of saturated genetic linkage maps for identification of quantitative trait loci (QTLs) associated with traits of interest. Genetic markers in close linkage with the relevant genomic regions may then be implemented in varietal improvement programs. In this study, single nucleotide polymorphism (SNP) markers associated with expressed sequence tags (ESTs) were developed and used to generate comprehensive linkage maps for field pea. From a set of 36,188 variant nucleotide positions detected through in silico analysis, 768 were selected for genotyping of a recombinant inbred line (RIL) population. A total of 705 SNPs (91.7%) successfully detected segregating polymorphisms. In addition to SNPs, genomic and EST-derived simple sequence repeats (SSRs) were assigned to the genetic map in order to obtain an evenly distributed genome-wide coverage. Sequences associated with the mapped molecular markers were used for comparative genomic analysis with other legume species. Higher levels of conserved synteny were observed with the genomes of Medicago truncatula Gaertn. and chickpea (Cicer arietinum L.) than with soybean (Glycine max [L.] Merr.), Lotus japonicus L. and pigeon pea (Cajanus cajan [L.] Millsp.). Parents and RIL progeny were screened at the seedling growth stage for responses to salinity stress, imposed by addition of NaCl in the watering solution at a concentration of 18 dS m-1. Salinity-induced symptoms showed normal distribution, and the severity of the symptoms increased over time. QTLs for salinity tolerance were identified on linkage groups Ps III and VII, with flanking SNP markers suitable for selection of

  16. Photosynthetic carbon metabolism in leaflets, stipules and tendrils of Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cote, R.; Grodzinski, B.

    1990-05-01

    Gas exchange and photosynthetic carbon metabolism have been investigated for each of the dominant parts of the pea leaf (P. sativum) in a normal and a semi-leafless phenotype (cv. Improved Laxton's Progress, and cv. Curly, respectively). On a fresh weight basis, net photosynthesis of leaflets and stipules have similar rates, while in tendrils the rte is 40% lower. However, on a surface area basis, tendrils are only 5-10% less efficient photosynthetically when the area is corrected by a factor {pi}/2. Transpiration rates are similar for leaflets and stipules, but double for tendrils even though stomatal frequency on tendrils is reducedmore » by 50%. Dark respiration is higher in tendrils than leaflets and stipules. Gas exchange is comparable in both cultivars. The early {sup 14}C-labelled products of stipules, leaflets and tendrils are similar in both phenotypes, however the tendrils clearly partition about 2-3 times more of the newly fixed {sup 14}CO{sub 2} into the amino acid fraction. These data will be discussed in relation to the anatomy and function of pea tendrils.« less

  17. The Effects of Bean Leafroll Virus on Life History Traits and Host Selection Behavior of Specialized Pea Aphid (Acyrthosiphon pisum, Hemiptera: Aphididae) Genotypes.

    PubMed

    Davis, T S; Wu, Y; Eigenbrode, S D

    2017-02-01

    Intraspecific specialization by insect herbivores on different host plant species contributes to the formation of genetically distinct "host races," but the effects of plant virus infection on interactions between specialized herbivores and their host plants have barely been investigated. Using three genetically and phenotypically divergent pea aphid clones (Acyrthosiphon pisum L.) adapted to either pea (Pisum sativum L.) or alfalfa (Medicago sativa L.), we tested how infection of these hosts by an insect-borne phytovirus (Bean leafroll virus; BLRV) affects aphid performance and preference. Four important findings emerged: 1) mean aphid survival rate and intrinsic rate of population growth (Rm) were increased by 15% and 14%, respectively, for aphids feeding on plants infected with BLRV; 2) 34% of variance in survival rate was attributable to clone × host plant interactions; 3) a three-way aphid clone × host plant species × virus treatment significantly affected intrinsic rates of population growth; and 4) each clone exhibited a preference for either pea or alfalfa when choosing between noninfected host plants, but for two of the three clones tested these preferences were modestly reduced when selecting among virus-infected host plants. Our studies show that colonizing BLRV-infected hosts increased A. pisum survival and rates of population growth, confirming that the virus benefits A. pisum. BLRV transmission affected aphid discrimination of host plant species in a genotype-specific fashion, and we detected three unique "virus-association phenotypes," with potential consequences for patterns of host plant use by aphid populations and crop virus epidemiology. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector.

    PubMed

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen

    2016-11-18

    Understanding the molecular mechanisms involved in plant virus-vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus , Luteoviridae ) and Pea enation mosaic virus 2 (PEMV2, Umbravirus , Tombusviridae ) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum , and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum . Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits.

  19. Role of Pea Enation Mosaic Virus Coat Protein in the Host Plant and Aphid Vector

    PubMed Central

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C.; Miller, W. Allen

    2016-01-01

    Understanding the molecular mechanisms involved in plant virus–vector interactions is essential for the development of effective control measures for aphid-vectored epidemic plant diseases. The coat proteins (CP) are the main component of the viral capsids, and they are implicated in practically every stage of the viral infection cycle. Pea enation mosaic virus 1 (PEMV1, Enamovirus, Luteoviridae) and Pea enation mosaic virus 2 (PEMV2, Umbravirus, Tombusviridae) are two RNA viruses in an obligate symbiosis causing the pea enation mosaic disease. Sixteen mutant viruses were generated with mutations in different domains of the CP to evaluate the role of specific amino acids in viral replication, virion assembly, long-distance movement in Pisum sativum, and aphid transmission. Twelve mutant viruses were unable to assemble but were able to replicate in inoculated leaves, move long-distance, and express the CP in newly infected leaves. Four mutant viruses produced virions, but three were not transmissible by the pea aphid, Acyrthosiphon pisum. Three-dimensional modeling of the PEMV CP, combined with biological assays for virion assembly and aphid transmission, allowed for a model of the assembly of PEMV coat protein subunits. PMID:27869713

  20. Inheritance of quantitative traits in crosses between two Pisum sativum subspecies with particular reference to their breeding value.

    PubMed

    Kosev, V; Pachev, I; Angelova, S; Mikić, A

    2012-01-01

    The experimental study was conducted during the period of 2008-2010 at the experimental field of the Institute of Forage Crops in Pleven. The hybridization scheme included direct and back crosses covering four varieties of forage pea (Pisum sativum L.), namely two spring ones, Usatii 90 and Kamerton from Ukraine, and a winter one from Bulgaria, Pleven 10. There was analyzed the inheritance of quantitative traits such as plant height, height to first pod, pod number per plant, seed number per plant, seed number per pod, seed weight per plant and number of fertile nodes per plant of parental components (P1 and P2) and both first (F1) and second (F2) hybrid generations. The cross Usatii 90 x Pleven 10 showed the highest real heterosis effect for plant height (8.26%), pods per plant (158.79%), seeds per plant (272.16%), seeds per pod (42.09%), seed weight per plant (432.43%) and number of fertile nodes per plant (117.14%). The cross Pleven 10 x Usatii 90 had the highest real heterosis effect height to first pod (11.06%). In F2 plants, the strongest depression for plant height (5.88%), seeds per plant (57.88%), seeds per pod (55.93%) and seed weight per plant (55.99%) was in the cross Usatii 90 x Pleven 10, for height to first pod (1.47%) in the cross Kamerton x Pleven 10 and for number of fertile nodes per plant (15.91%) in the cross Pleven 10 x Usatii 90. The highest positive degree of transgression for number of fertile nodes per plant (165.64%) and seed weight per plant (162.10%) was in the cross Pleven 10 x Kamerton and for pod number per plant (102.54%) and seeds per plant (99.13%) in Kamerton x Pleven 10. The stability of the characters was determined. Low variability in F1 and F2 was found in plant height (3.97-6.85%). Variability of number seeds per plant in F1 was highest (11.86-33.23%). For all other traits, the variability varied from average to high. A lower narrow-sense heritability coefficient was observed for plant height, height to first pod, pods per

  1. Integrated effect of microbial antagonist, organic amendment and fungicide in controlling seedling mortality (Rhizoctonia solani) and improving yield in pea (Pisum sativum L.).

    PubMed

    Akhter, Wasira; Bhuiyan, Mohamed Khurshed Alam; Sultana, Farjana; Hossain, Mohamed Motaher

    2015-01-01

    The study evaluated the comparative performance of a few microbial antagonists, organic amendments and fungicides and their integration for the management of seedling mortality (Rhizoctonia solani Kühn) and yield improvement in pea (Pisum sativum L.). Before setting the experiment in field microplots, a series of in vitro and in vivo experiments were conducted to select a virulent isolate of R. solani, an effective antagonistic isolate of Trichoderma harzianum, a fungitoxic organic amendment and an appropriate fungicide. A greenhouse pathogenicity test compared differences in seedling mortality in pea inoculated by four isolates of R. solani and identified the isolate RS10 as the most virulent one. Among the 20 isolates screened in dual culture assay on PDA, T. harzianum isolate T-3 was found to show the highest (77.22%) inhibition of the radial growth of R. solani. A complete inhibition (100.00%) of colony growth of R. solani was observed when fungicide Bavistin 50 WP and Provax-200 at the rate of 100 and 250 ppm, respectively, were used, while Provax-200 was found to be highly compatible with T. harzianum. Mustard oilcake gave maximum inhibition (60.28%) of the radial growth of R. solani at all ratios, followed by sesame oilcake and tea waste. Integration of soil treatment with T. harzianum isolate T-3 and mustard oilcake and seed treatment with Provax-200 appeared to be significantly superior in reducing seedling mortality and improving seed yield in pea in comparison to any single or dual application of them in the experimental field. The research results will help growers develop integrated disease management strategies for the control of Rhizoctonia disease in pea. The research results show the need for an integrating selective microbial antagonist, organic amendment and fungicide to achieve appropriate management of seedling mortality (R. solani) and increase of seed yield in pea. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All

  2. Osmotic adjustment and the growth response of seven vegetable crops following water-deficit stress. [Phaseolus vulgaris L. ; Beta vulgaris L. ; Abelmoschus esculentus; Pisum sativum L. ; Capsicum annuum L. ; Spinacia oleracea L. ; Lycopersicon esculentum Mill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wullschleger, S.D.; Oosterhuis, D.M.

    Growth-chamber studies were conducted to examine the ability of seven vegetable crops- Blue Lake beam (Phaseolus vulgaris L.) Detroit Dark Red beet (Beta vulgaris L.) Burgundy okra (Abelmoschus esculentus) (Moench), Little Marvel pea (Pisum sativum L), California Wonder bell pepper (Capsicum annuum L), New Zealand spinach (Spinacia oleracea L), and Beefsteak tomato (Lycopersicon esculentum Mill.) - to adjust osmotically in response to water-deficit stress. Water stress was imposed by withholding water for 3 days, and the adjustment of leaf and root osmotic potentials upon relief of the stress and rehydration were monitored with thermocouple psychrometers. Despite similar reductions in leafmore » water potential and stomatal conductance among the species studied reductions in lead water potential an stomatal conductance among the species, crop-specific differences were observed in leak and root osmotic adjustment. Leaf osmotic adjustment was observed for bean, pepper, and tomato following water-deficit stress. Root osmotic adjustment was significant in bean, okra, pea and tomato. Furthermore, differences in leaf and root osmotic adjustment were also observed among five tomato cultivars. Leaf osmotic adjustment was not associated with the maintenance of leaf growth following water-deficit stress, since leaf expansion of water-stressed bean and pepper, two species capable of osmotic adjustment, was similar to that of spinach, which exhibited no leaf osmotic adjustment.« less

  3. Eliminating anti-nutritional plant food proteins: the case of seed protease inhibitors in pea.

    PubMed

    Clemente, Alfonso; Arques, Maria C; Dalmais, Marion; Le Signor, Christine; Chinoy, Catherine; Olias, Raquel; Rayner, Tracey; Isaac, Peter G; Lawson, David M; Bendahmane, Abdelhafid; Domoney, Claire

    2015-01-01

    Several classes of seed proteins limit the utilisation of plant proteins in human and farm animal diets, while plant foods have much to offer to the sustainable intensification of food/feed production and to human health. Reduction or removal of these proteins could greatly enhance seed protein quality and various strategies have been used to try to achieve this with limited success. We investigated whether seed protease inhibitor mutations could be exploited to enhance seed quality, availing of induced mutant and natural Pisum germplasm collections to identify mutants, whilst acquiring an understanding of the impact of mutations on activity. A mutant (TILLING) resource developed in Pisum sativum L. (pea) and a large germplasm collection representing Pisum diversity were investigated as sources of mutations that reduce or abolish the activity of the major protease inhibitor (Bowman-Birk) class of seed protein. Of three missense mutations, predicted to affect activity of the mature trypsin / chymotrypsin inhibitor TI1 protein, a C77Y substitution in the mature mutant inhibitor abolished inhibitor activity, consistent with an absolute requirement for the disulphide bond C77-C92 for function in the native inhibitor. Two further classes of mutation (S85F, E109K) resulted in less dramatic changes to isoform or overall inhibitory activity. The alternative strategy to reduce anti-nutrients, by targeted screening of Pisum germplasm, successfully identified a single accession (Pisum elatius) as a double null mutant for the two closely linked genes encoding the TI1 and TI2 seed protease inhibitors. The P. elatius mutant has extremely low seed protease inhibitory activity and introgression of the mutation into cultivated germplasm has been achieved. The study provides new insights into structure-function relationships for protease inhibitors which impact on pea seed quality. The induced and natural germplasm variants identified provide immediate potential for either halving

  4. Characterization of a Rapid, Blue Light-Mediated Change in Detectable Phosphorylation of a Plasma Membrane Protein from Etiolated Pea (Pisum sativum L.) Seedlings.

    PubMed

    Short, T W; Briggs, W R

    1990-01-01

    When crude microsomal membranes from apical stem segments of etiolated Pisum sativum L. cv Alaska are mixed in vitro with gamma-[(32)P]ATP, a phosphorylated band of apparent molecular mass 120 kilodaltons can be detected on autoradiographs of sodium dodecyl sulfate electrophoresis gels. If the stem sections are exposed to blue light immediately prior to membrane isolation, this band is not evident. The response is observed most strongly in membranes from the growing region of the stem, but no 120 kilodalton radiolabeled band is detected in membranes from the developing buds. Fluence-response curves for the reaction show that the system responds to blue light above about 0.3 micromole per square meter, and the visible phosphorylation completely disappears above 200 micromoles per square meter. Reciprocity is valid for the system, because varying illumination time or fluence rate give similar results. If the stem segments are left in the dark following a saturating blue irradiation, the radio-labeled band begins to return after about 10 minutes and is as intense as that from the dark controls within 45 to 60 minutes. A protein that comigrates with the phosphorylated protein on polyacrylamide gels is also undetectable after saturating blue light irradiations. The fluence range in which the protein band disappears is the same as that for the disappearance of the phosphorylation band. Its dark recovery kinetics and tissue distribution also parallel those for the phosphorylation. In vitro irradiation of the isolated membranes also results in a phosphorylation change at that molecular mass, but in the opposite direction. Comparisons of the kinetics, tissue distribution, and dark recovery of the phosphorylation response with those published for blue light-mediated phototropism or rapid growth inhibition indicate that the phosphorylation could be linked to one or both of those reactions. However, the fluence-response relationships for the change in detectable

  5. Transcriptome of Dickeya dadantii infecting Acyrthosiphon pisum reveals a strong defense against antimicrobial peptides.

    PubMed

    Costechareyre, Denis; Chich, Jean-François; Strub, Jean-Marc; Rahbé, Yvan; Condemine, Guy

    2013-01-01

    The plant pathogenic bacterium Dickeya dadantii has recently been shown to be able to kill the aphid Acyrthosiphon pisum. While the factors required to cause plant disease are now well characterized, those required for insect pathogeny remain mostly unknown. To identify these factors, we analyzed the transcriptome of the bacteria isolated from infected aphids. More than 150 genes were upregulated and 300 downregulated more than 5-fold at 3 days post infection. No homologue to known toxin genes could be identified in the upregulated genes. The upregulated genes reflect the response of the bacteria to the conditions encountered inside aphids. While only a few genes involved in the response to oxidative stress were induced, a strong defense against antimicrobial peptides (AMP) was induced. Expression of a great number of efflux proteins and transporters was increased. Besides the genes involved in LPS modification by addition of 4-aminoarabinose (the arnBCADTEF operon) and phosphoethanolamine (pmrC, eptB) usually induced in Gram negative bacteria in response to AMPs, dltBAC and pbpG genes, which confer Gram positive bacteria resistance to AMPs by adding alanine to teichoic acids, were also induced. Both types of modification confer D. dadantii resistance to the AMP polymyxin. A. pisum harbors symbiotic bacteria and it is thought that it has a very limited immune system to maintain these populations and do not synthesize AMPs. The arnB mutant was less pathogenic to A. pisum, which suggests that, in contrast to what has been supposed, aphids do synthesize AMP.

  6. Molecular basis of processing-induced changes in protein structure in relation to intestinal digestion in yellow and green type pea (Pisum sativum L.): A molecular spectroscopic analysis.

    PubMed

    Yu, Gloria Qingyu; Warkentin, Tom; Niu, Zhiyuan; Khan, Nazir A; Yu, Peiqiang

    2015-12-05

    The objectives of this study were (1) to quantify the protein inherent molecular structural features of green cotyledon (CDC Striker) and yellow cotyledon (CDC Meadow) pea (Pisum sativum L.) seeds using molecular spectroscopic technique (FT/IR-ATR); (2) measure the denaturation of protein molecular makeup in the two types of pea during dry roasting (120°C for 60 min), autoclaving (120°C for 60 min) or microwaving (for 5 min); and (3) correlate the heat-induced changes in protein molecular makeup to the corresponding changes in protein digestibility determined using modified three-step in vitro procedure. Compared with yellow-type, the green-type peas had higher (P<0.05) ratios of amide I to II peak height (1.698 vs. 1.805) and area (1.843 vs. 2.017). A significant correlation was observed between the amide I and II peak height (r=0.48) and peak area (r=-0.42) ratio with protein content. Compared with yellow-type, the green-type peas had lower (P<0.05) α-helix:β-sheet ratio (1.015 vs. 0.926), indicating varietal difference in protein secondary structure makeup. All processing applications increased α-helix:β-sheet ratio, with the largest (P<0.05) increase being observed with roasting and microwaving. The heat-induced changes in α-helix:β-sheet ratio was strongly correlated to intestinal digestibility of protein within the green (r=-0. 86) and yellow (r=0.81) pea-types. However, across the pea types the correlation was not significant. Principal component and hierarchical cluster analyses on the entire spectral data from the amide region (ca. 1727-1480 cm(-1)) were able to visualize and discriminate the structural difference between pea varieties and processing treatments. This study shows that the molecular spectroscopy can be used as a rapid tool to screen the protein value of raw and heat-treated peas. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Characterization by enzyme-linked immunosorbent assay of monoclonal antibodies to pisum and Avena phytochrome.

    PubMed

    Cordonnier, M M; Greppin, H; Pratt, L H

    1984-01-01

    Nine monoclonal antibodies to pea (Pisum sativum L.) and 16 to oat (Avena sativa L.) phytochrome are characterized by enzyme-linked immunosorbent assay against phytochrome from six different sources: pea, zucchini (Cucurbita pepo L.), lettuce (Lactuca sativa L.), oat, rye (Secale cereale L.), and barley (Hordeum vulgare L.). All antibodies were raised against phytochrome with a monomer size near 120,000 daltons. Nevertheless, none of them discriminated qualitatively between 118/114-kilodalton oat phytochrome and a photoreversible, 60-kilodalton proteolytic degradation product derived from it. In addition, none of the 23 antibodies tested discriminated substantially between phytochrome-red-absorbing form and phytochrome-far red-absorbing form. Two antibodies to pea and six to oat phytochrome also bound strongly to phytochrome from the other species, even though these two plants are evolutionarily widely divergent. Of these eight antibodies, two bound significantly to all of the six phytochrome preparations tested, indicating that these two may recognize highly conserved regions of the chromoprotein. Since the molecular function of phytochrome is unknown, these two antibodies may serve as unique probes for regions of this pigment that are important to its mode of action.

  8. Pea (Pisum sativum L.)

    USDA-ARS?s Scientific Manuscript database

    Pea belongs to the Leguminosae plant family, the third largest flowering plant family with 800 genera and over 18,000 species. Tribe Fabeae is considered one of the youngest groups in the legumes and Bayesian molecular clock and ancestral range analysis suggest a crown age of 23 – 16 Mya, in the mi...

  9. The impact of newly produced protein and dietary fiber rich fractions of yellow pea (Pisum sativum L.) on the structure and mechanical properties of pasta-like sheets.

    PubMed

    Muneer, Faraz; Johansson, Eva; Hedenqvist, Mikael S; Plivelic, Tomás S; Markedal, Keld Ejdrup; Petersen, Iben Lykke; Sørensen, Jens Christian; Kuktaite, Ramune

    2018-04-01

    Two fractions from pea (Pisum sativum L.), protein isolate (PPI) and dietary fiber (PF), were newly produced by extraction-fractionation method and characterized in terms of particle size distribution and structural morphology using SEM. The newly produced PPI and PF fractions were processed into pasta-like sheets with varying protein to fiber ratios (100/0, 90/10, 80/20, 70/30 and 50/50, respectively) using high temperature compression molding. We studied protein polymerization, molecular structure and protein-fiber interactions, as well as mechanical performance and cooking characteristics of processed PPI-PF blends. Bi-modal particle size distribution and chemical composition of the PPI and PF fractions influenced significantly the physicochemical properties of the pasta-like sheets. Polymerization was most pronounced for the 100 PPI, 90/10 and 80/20 PPI-PF samples as studied by SE-HPLC, and polymerization decreased with addition of the PF fraction. The mechanical properties, as strength and extensibility, were likewise the highest for the 100 PPI and 90/10 PPI-PF blends, while the E-modulus was similar for all the studied blends (around 38 MPa). The extensibility decreased with the increasing amount of PF in the blend. The highest amounts of β-sheets were found in the pasta-like sheets with high amounts of PPI (100, 90 and 80%), by FT-IR. An increase in PF fraction in the blend, resulted into the high amounts of unordered structures as observed by FT-IR, as well as in an increase in the molecular scattering distances observed by SAXS. The water uptake increased and cooking loss decreased with increased proportions of the PF fraction, and the consistency of 10 min cooked pasta-like sheets were alike al dente texture. The new knowledge obtained in this study on the use of extraction-fractionation method to produce novel PPI and PF fractions for developing innovative high nutritious food can be of a great importance. The obtained knowledge on the pea protein

  10. ( sup 14 C)-Sucrose uptake by guard cell protoplasts of pisum sativum, argenteum mutant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrig, K.; Raschke, K.

    1991-05-01

    Guard cells rely on import for their supply with reduced carbon. The authors tested by silicone oil centrifugation the ability of guard cell protoplasts to accumulated ({sup 14}C)-sucrose. Uptake rates were corrected after measurement of {sup 14}C-sorbitol and {sup 3}H{sub 2}O spaces. Sucrose uptake followed biphasic kinetics, with a high-affinity component below 1 mM external sucrose (apparent K{sub m} 0.8 mM at 25C) and a low-affinity nonsaturable component above. Uptake depended on pH (optimum at pH 5.0). Variations in the concentrations of external KCl, CCCP, and valinomycin indicated that about one-half of the sucrose uptake rate could be related tomore » an electrochemical gradient across the plasmalemma. Total uptake rates measured at 5 mM external sucrose seem to be sufficient to replenish emptied plastids with starch within a few hours.« less

  11. Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea1[C][W][OA

    PubMed Central

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B.; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-01-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation. PMID:22323776

  12. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    PubMed

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-04-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.

  13. Strigolactones Stimulate Internode Elongation Independently of Gibberellins1[C][W

    PubMed Central

    de Saint Germain, Alexandre; Ligerot, Yasmine; Dun, Elizabeth A.; Pillot, Jean-Paul; Ross, John J.; Beveridge, Christine A.; Rameau, Catherine

    2013-01-01

    Strigolactone (SL) mutants in diverse species show reduced stature in addition to their extensive branching. Here, we show that this dwarfism in pea (Pisum sativum) is not attributable to the strong branching of the mutants. The continuous supply of the synthetic SL GR24 via the root system using hydroponics can restore internode length of the SL-deficient rms1 mutant but not of the SL-response rms4 mutant, indicating that SLs stimulate internode elongation via RMS4. Cytological analysis of internode epidermal cells indicates that SLs control cell number but not cell length, suggesting that SL may affect stem elongation by stimulating cell division. Consequently, SLs can repress (in axillary buds) or promote (in the stem) cell division in a tissue-dependent manner. Because gibberellins (GAs) increase internode length by affecting both cell division and cell length, we tested if SLs stimulate internode elongation by affecting GA metabolism or signaling. Genetic analyses using SL-deficient and GA-deficient or DELLA-deficient double mutants, together with molecular and physiological approaches, suggest that SLs act independently from GAs to stimulate internode elongation. PMID:23943865

  14. Antiplatelet activity of Allium ursinum and Allium sativum.

    PubMed

    Hiyasat, Bahi; Sabha, Dina; Grotzinger, Kristina; Kempfert, Joerg; Rauwald, Johann-Wilhelm; Mohr, Friedrich-Wilhelm; Dhein, Stefan

    2009-01-01

    Garlic (Allium sativum) has a well-established reputation as a protective agent against cardiovascular disease, while nearly nothing is known about its cousin Allium ursinum. The aim of this study was to evaluate the antiaggregatory mechanism of garlic and to compare the effects of A. ursinum and A. sativum. In a prospective study, extracts were prepared from A. sativum powder made from fresh A. sativum bulbs and fresh A. ursinum leaves by maceration. The extracts were characterized by thin layer chromatography. Their in vitro effects on human platelet aggregation were examined by light transmission aggregometry after induction by adenosine diphosphate (ADP), collagen, A23187, epinephrine and arachidonic acid (ARA) in platelets from healthy volunteers. A. ursinum and A. sativum exert similar antiaggregatory effects: they inhibit platelet aggregation induced via the ADP pathway and to a lesser extent aggregation induced by epinephrine, whereas ARA-, collagen- and A23187-induced aggregation was not affected. It became clear that the alcoholic extract of A. ursinum is the potent form, while the aqueous extract exerted an unspecific activity. The effects were strictly dose related. A. ursinum and A. sativum extracts exhibited similar potencies. Both A. ursinum and A. sativum exert antiaggregatory effects. Garlic extracts are acting by inhibition of the ADP pathway; their mechanisms of action are comparable to that of the clinically used drug clopidogrel. The pharmacologically active component of the extracts appears to be lipophilic rather than hydrophilic, but the precise chemical substance is still unknown. This is the first report on the antiplatelet activity of A. ursinum. Copyright 2009 S. Karger AG, Basel.

  15. Biosynthesis of the Halogenated Auxin, 4-Chloroindole-3-Acetic Acid1[W][OA

    PubMed Central

    Tivendale, Nathan D.; Davidson, Sandra E.; Davies, Noel W.; Smith, Jason A.; Dalmais, Marion; Bendahmane, Abdelhafid I.; Quittenden, Laura J.; Sutton, Lily; Bala, Raj K.; Le Signor, Christine; Thompson, Richard; Horne, James; Reid, James B.; Ross, John J.

    2012-01-01

    Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea. PMID:22573801

  16. MOVEMENT OF MERCURY-203 IN PLANTS

    EPA Science Inventory

    Seeds of Pisum sativum, varieties Little Marvel and Alaska, were planted in soils contaminated with radioactive ionic mercury, methylmercury or phenylmercury compounds. After saturation, stems, leaves, and pods were harvested and analyzed by gamma spectroscopy. Utilizing a least ...

  17. Pharmacological screening of Coriandrum sativum Linn. for hepatoprotective activity

    PubMed Central

    Pandey, A.; Bigoniya, P.; Raj, V.; Patel, K. K.

    2011-01-01

    Objective: Coriandrum sativum (Linn.), a glabrous, aromatic, herbaceous annual plant, is well known for its use in jaundice. Essential oil, flavonoids, fatty acids, and sterols have been isolated from different parts of C. sativum. The plant has a very effective antioxidant profile showing 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, lipoxygenase inhibition, phospholipid peroxidation inhibition, iron chelating activity, hydroxyl radical scavenging activity, superoxide dismutation, glutathione reduction and antilipid peroxidation due to its high total phenolic content with the presence of constituents like pyrogallol, caffeic acid, glycitin, etc. Materials and Methods: This study was aimed at investigating the hepatoprotective activity of C. sativum against carbon tetrachloride (CCl4), with estimation of serum serum glutamyl oxaloacetic acid transaminase (SGOT), serum glutamyl pyruvate transaminase (SGPT), alkaine phosphatase (ALP) and bilirubin, and with liver histopathology. Results: Ethanolic extract was found to be rich in alkaloids, phenolic compounds and flavonoids, and high performance liquid chromatography (HPLC) fingerprinting showed the presence of iso-quercetin and quercetin. C. sativum signifies hepatoprotection by reducing the liver weight, activities of SGOT, SGPT, and ALP, and direct bilirubin of CCl4 intoxicated animals. Administration of C. sativum extract at 300 mg/kg dose resulted in disappearance of fatty deposit, ballooning degeneration and necrosis, indicating antihepatotoxic activity. Conclusion: The results of this study have led to the conclusion that ethanolic extract of C. sativum possesses hepatoprotective activity which may be due to the antioxidant potential of phenolic compounds. PMID:21966166

  18. ETHYLMERCURY: FORMATION IN PLANT TISSUES AND RELATION TO METHYLMERCURY FORMATION

    EPA Science Inventory

    Seedlings of the common dwarf garden pea, Pisum sativum, cv. Little Marvel, exposed to elemental mercury vapor formed both methylmercury and ethylmercury in all parts of the plant. Concentrations of both organomercury compounds fluctuated considerably over a 48-hour exposure peri...

  19. Ersiphe trifolii-a newly recognized powdery mildew pathogen of pea.

    USDA-ARS?s Scientific Manuscript database

    Population diversity of powdery mildews infecting pea (Pisum sativum) in the US Pacific Northwest was investigated in order to assess inconsistent resistance performances of pea genotypes in different environments. Phylogenetic analyses based on ITS sequences, in combination with assessment of morph...

  20. Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera)

    PubMed Central

    Sabater-Muñoz, Beatriz; Legeai, Fabrice; Rispe, Claude; Bonhomme, Joël; Dearden, Peter; Dossat, Carole; Duclert, Aymeric; Gauthier, Jean-Pierre; Ducray, Danièle Giblot; Hunter, Wayne; Dang, Phat; Kambhampati, Srini; Martinez-Torres, David; Cortes, Teresa; Moya, Andrès; Nakabachi, Atsushi; Philippe, Cathy; Prunier-Leterme, Nathalie; Rahbé, Yvan; Simon, Jean-Christophe; Stern, David L; Wincker, Patrick; Tagu, Denis

    2006-01-01

    Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect. PMID:16542494

  1. Spiroplasma Symbiont of the Pea Aphid, Acyrthosiphon pisum (Insecta: Homoptera)

    PubMed Central

    Fukatsu, Takema; Tsuchida, Tsutomu; Nikoh, Naruo; Koga, Ryuichi

    2001-01-01

    From a laboratory strain of the pea aphid, Acyrthosiphon pisum, we discovered a previously unknown facultative endosymbiotic bacterium. Molecular phylogenetic analysis based on 16S ribosomal DNA revealed that the bacterium is a member of the genus Spiroplasma. The Spiroplasma organism showed stable vertical transmission through successive generations of the host. Injection of hemolymph from infected insects into uninfected insects established a stable infection in the recipients. The Spiroplasma symbiont exhibited negative effects on growth, reproduction, and longevity of the host, particularly in older adults. Of 58 clonal strains of A. pisum established from natural populations in central Japan, 4 strains possessed the Spiroplasma organism. PMID:11229923

  2. Coriander (Coriandrum sativum): A promising functional food toward the well-being.

    PubMed

    Prachayasittikul, Veda; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2018-03-01

    Coriandrum sativum (C. sativum) or coriander is one of the most popularly used spices in culinary worldwide, and its medicinal values has been recognized since ancient time. C. sativum contains bioactive phytochemicals that are accounted for a wide range of biological activities including antioxidant, anticancer, neuroprotective, anxiolytic, anticonvulsant, analgesic, migraine-relieving, hypolipidemic, hypoglycemic, hypotensive, antimicrobial, and antiinflammatory activities. The major compound, linalool, abundantly found in seeds is remarked for its abilities to modulate many key pathogenesis pathways of diseases. Apart from the modulating effects, the potent antioxidant property of the C. sativum provides a key mechanism behind its protective effects against neurodegenerative diseases, cancer, and metabolic syndrome. This review shed light on comprehensive aspects regarding the therapeutic values of the C. sativum, which indicate its significance of being a promising functional food for promoting the well-being in the era of aging and lifestyle-related diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A community resource for exploring and utilizing genetic diversity in the USDA Pea Single Plant Plus Collection

    USDA-ARS?s Scientific Manuscript database

    Globally, pea (Pisum sativum L.) is an important temperate legume crop for food, feed, and fodder, and many breeding programs exist to develop cultivars adapted to these end uses. In order to conserve genetic diversity useful to researchers, large pea collections have been constructed by numerous na...

  4. Diazotroph community structure and abundance in wheat-fallow and wheat-pea crop rotations

    USDA-ARS?s Scientific Manuscript database

    Biological input of nitrogen (N) from the atmosphere either through free-living diazotrophs or legume-associated rhizobia can help alleviate fertilizer use in agricultural systems. In this study, we investigated the effect of N fertilizer and winter pea (Pisum sativum L.) crop on the diversity and a...

  5. Multiple, Distinct Isoforms of Sucrose Synthase in Pea1

    PubMed Central

    Barratt, D.H. Paul; Barber, Lorraine; Kruger, Nicholas J.; Smith, Alison M.; Wang, Trevor L.; Martin, Cathie

    2001-01-01

    Genes encoding three isoforms of sucrose synthase (Sus1, Sus2, and Sus3) have been cloned from pea (Pisum sativum). The genes have distinct patterns of expression in different organs of the plant, and during organ development. Studies of the isoforms expressed as recombinant proteins in Escherichia coli show that they differ in kinetic properties. Although not of great magnitude, the differences in properties are consistent with some differentiation of physiological function between the isoforms. Evidence for differentiation of function in vivo comes from the phenotypes of rug4 mutants of pea, which carry mutations in the gene encoding Sus1. One mutant line (rug4-c) lacks detectable Sus1 protein in both the soluble and membrane-associated fractions of the embryo, and Sus activity in the embryo is reduced by 95%. The starch content of the embryo is reduced by 30%, but the cellulose content is unaffected. The results imply that different isoforms of Sus may channel carbon from sucrose towards different metabolic fates within the cell. PMID:11598239

  6. Accumulation of Phosphorus-Containing Compounds in Developing Seeds of Low-Phytate Pea (Pisum sativum L.) Mutants

    PubMed Central

    Shunmugam, Arun S.K.; Bock, Cheryl; Arganosa, Gene C.; Georges, Fawzy; Gray, Gordon R.; Warkentin, Thomas D.

    2014-01-01

    Low phytic acid (lpa) crops are low in phytic acid and high in inorganic phosphorus (Pi). In this study, two lpa pea genotypes, 1-150-81, 1-2347-144, and their progenitor CDC Bronco were grown in field trials for two years. The lpa genotypes were lower in IP6 and higher in Pi when compared to CDC Bronco. The total P concentration was similar in lpa genotypes and CDC Bronco throughout the seed development. The action of myo-inositol phosphate synthase (MIPS) (EC 5.5.1.4) is the first and rate-limiting step in the phytic acid biosynthesis pathway. Aiming at understanding the genetic basis of the lpa mutation in the pea, a 1530 bp open reading frame of MIPS was amplified from CDC Bronco and the lpa genotypes. Sequencing results showed no difference in coding sequence in MIPS between CDC Bronco and lpa genotypes. Transcription levels of MIPS were relatively lower at 49 days after flowering (DAF) than at 14 DAF for CDC Bronco and lpa lines. This study elucidated the rate and accumulation of phosphorus compounds in lpa genotypes. The data also demonstrated that mutation in MIPS was not responsible for the lpa trait in these pea lines. PMID:27135314

  7. Inhibition of strigolactones promotes adventitious root formation

    PubMed Central

    Beveridge, Christine A.; Geelen, Danny

    2012-01-01

    Roots that form from non-root tissues (adventitious roots) are crucial for cutting propagation in the forestry and horticulture industries. Strigolactone has been demonstrated to be an important regulator of these roots in both Arabidopsis and pea using strigolactone deficient mutants and exogenous hormone applications. Strigolactones are produced from a carotenoid precursor which can be blocked using the widely available but broad terpenoid biosynthesis blocker, fluridone. We demonstrate here that fluridone can be used to promote adventitious rooting in the model species Pisum sativum (pea). In addition, in the garden species Plumbago auriculata and Jasminium polyanthum fluridone was equally as successful at promoting roots as a commercial rooting compound containing NAA and IBA. Our findings demonstrate that inhibition of strigolactone signaling has the potential to be used to improve adventitious rooting in commercially relevant species. PMID:22580687

  8. Ethylene Rapidly Up-Regulates the Activities of Both Monomeric GTP-Binding Proteins and Protein Kinase(s) in Epicotyls of Pea1

    PubMed Central

    Moshkov, Igor E.; Novikova, Galina V.; Mur, Luis A.J.; Smith, Aileen R.; Hall, Michael A.

    2003-01-01

    It is demonstrated that, in etiolated pea (Pisum sativum) epicotyls, ethylene affects the activation of both monomeric GTP-binding proteins (monomeric G-proteins) and protein kinases. For monomeric G-proteins, the effect may be a rapid (2 min) and bimodal up-regulation, a transiently unimodal activation, or a transient down-regulation. Pretreatment with 1-methylcyclopropene abolishes the response to ethylene overall. Immunoprecipitation studies indicate that some of the monomeric G-proteins affected may be of the Rab class. Protein kinase activity is rapidly up-regulated by ethylene, the effect is inhibited by 1-methylcyclopropene, and the activation is bimodal. Immunoprecipitation indicates that the kinase(s) are of the MAP kinase ERK1 group. It is proposed that the data support the hypothesis that a transduction chain exists that is separate and antagonistic to that currently revealed by studies on Arabidopsis mutants. PMID:12692330

  9. Modulation of the multidrug efflux pump EmrD-3 from Vibrio cholerae by Allium sativum extract and the bioactive agent allyl sulfide plus synergistic enhancement of antimicrobial susceptibility by A. sativum extract.

    PubMed

    Bruns, Merissa M; Kakarla, Prathusha; Floyd, Jared T; Mukherjee, Mun Mun; Ponce, Robert C; Garcia, John A; Ranaweera, Indrika; Sanford, Leslie M; Hernandez, Alberto J; Willmon, T Mark; Tolson, Grace L; Varela, Manuel F

    2017-10-01

    The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.

  10. Coriandrum sativum Suppresses Aβ42-Induced ROS Increases, Glial Cell Proliferation, and ERK Activation.

    PubMed

    Liu, Quan Feng; Jeong, Haemin; Lee, Jang Ho; Hong, Yoon Ki; Oh, Youngje; Kim, Young-Mi; Suh, Yoon Seok; Bang, Semin; Yun, Hye Sup; Lee, Kyungho; Cho, Sung Man; Lee, Sung Bae; Jeon, Songhee; Chin, Young-Won; Koo, Byung-Soo; Cho, Kyoung Sang

    2016-01-01

    Alzheimer's disease (AD), the most common neurodegenerative disease, has a complex and widespread pathology that is characterized by the accumulation of amyloid [Formula: see text]-peptide (A[Formula: see text]) in the brain and various cellular abnormalities, including increased oxidative damage, an amplified inflammatory response, and altered mitogen-activated protein kinase signaling. Based on the complex etiology of AD, traditional medicinal plants with multiple effective components are alternative treatments for patients with AD. In the present study, we investigated the neuroprotective effects of an ethanol extract of Coriandrum sativum (C. sativum) leaves on A[Formula: see text] cytotoxicity and examined the molecular mechanisms underlying the beneficial effects. Although recent studies have shown the benefits of the inhalation of C. sativum oil in an animal model of AD, the detailed molecular mechanisms by which C. sativum exerts its neuroprotective effects are unclear. Here, we found that treatment with C. sativum extract increased the survival of both A[Formula: see text]-treated mammalian cells and [Formula: see text]42-expressing flies. Moreover, C. sativum extract intake suppressed [Formula: see text]-induced cell death in the larval imaginal disc and brain without affecting A[Formula: see text]42 expression and accumulation. Interestingly, the increases in reactive oxygen species levels and glial cell number in AD model flies were reduced by C. sativum extract intake. Additionally, C. sativum extract inhibited the epidermal growth factor receptor- and A[Formula: see text]-induced phosphorylation of extracellular signal-regulated kinase (ERK). The constitutively active form of ERK abolished the protective function of C. sativum extract against the [Formula: see text]-induced eye defect phenotype in Drosophila. Taken together, these results suggest that C. sativum leaves have antioxidant, anti-inflammatory, and ERK signaling inhibitory properties that

  11. Deciphering the mode of action of a mutant Allium sativum Leaf Agglutinin (mASAL), a potent antifungal protein on Rhizoctonia solani.

    PubMed

    Ghosh, Prithwi; Roy, Amit; Hess, Daniel; Ghosh, Anupama; Das, Sampa

    2015-10-26

    Mutant Allium sativum leaf agglutinin (mASAL) is a potent, biosafe, antifungal protein that exhibits fungicidal activity against different phytopathogenic fungi, including Rhizoctonia solani. The effect of mASAL on the morphology of R.solani was monitored primarily by scanning electron and light microscopic techniques. Besides different fluorescent probes were used for monitoring various intracellular changes associated with mASAL treatment like change in mitochondrial membrane potential (MMP), intracellular accumulation of reactive oxygen species (ROS) and induction of programmed cell death (PCD). In addition ligand blot followed by LC-MS/MS analyses were performed to detect the putative interactors of mASAL. Knowledge on the mode of function for any new protein is a prerequisite for its biotechnological application. Detailed morphological analysis of mASAL treated R. solani hyphae using different microscopic techniques revealed a detrimental effect of mASAL on both the cell wall and the plasma membrane. Moreover, exposure to mASAL caused the loss of mitochondrial membrane potential (MMP) and the subsequent intracellular accumulation of reactive oxygen species (ROS) in the target organism. In conjunction with this observation, evidence of the induction of programmed cell death (PCD) was also noted in the mASAL treated R. solani hyphae. Furthermore, we investigated its interacting partners from R. solani. Using ligand blots followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses, we identified different binding partners including Actin, HSP70, ATPase and 14-3-3 protein. Taken together, the present study provides insight into the probable mode of action of the antifungal protein, mASAL on R. solani which could be exploited in future biotechnological applications.

  12. A review on the effects of Allium sativum (Garlic) in metabolic syndrome.

    PubMed

    Hosseini, A; Hosseinzadeh, H

    2015-11-01

    The metabolic syndrome is a common problem world-wide and includes abdominal obesity, hypertension, dyslipidemia, and hyperglycemia disorders. It leads to insulin resistance and the development of diabetes mellitus or cardiovascular disease. Allium sativum (garlic) has been documented to exhibit anti-diabetic, hypotensive, and hypolipidemic properties. This suggests a potential role of A. sativum in the management of metabolic syndrome; however, more studies should be conducted to evaluate its effectiveness. In this review, we discussed the most relevant articles to find out the role of A. sativum in different components of metabolic syndrome and cardiovascular disease risk factors. Because human reports are rare, further studies are required to establish the clinical value of A. sativum in metabolic syndrome.

  13. Can leguminous cover crops partially replace nitrogen fertilization in Mississippi delta cotton production

    USDA-ARS?s Scientific Manuscript database

    Petroleum prices impacts cotton (Gossypium hirsutum L.) N fertilization cost. A 3-year field study was conducted on a Dundee silt loam to assess the interactions of leguminous cover crops [none, Austrian winter field pea (Pisum sativum L.) or hairy vetch (Vicia villosa Roth] and N fertilization rate...

  14. 21 CFR 155.170 - Canned peas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the pea plant of the species Pisum sativum L. but excluding the subspecies macrocarpum. Only sweet... any combination of two or more of the dry or liquid forms of sugar, invert sugar sirup, dextrose... characteristics. Where the peas are of sweet green wrinkled varieties or hybrids having similar characteristics...

  15. 21 CFR 155.170 - Canned peas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the pea plant of the species Pisum sativum L. but excluding the subspecies macrocarpum. Only sweet... any combination of two or more of the dry or liquid forms of sugar, invert sugar sirup, dextrose... characteristics. Where the peas are of sweet green wrinkled varieties or hybrids having similar characteristics...

  16. 21 CFR 155.170 - Canned peas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the pea plant of the species Pisum sativum L. but excluding the subspecies macrocarpum. Only sweet... any combination of two or more of the dry or liquid forms of sugar, invert sugar sirup, dextrose... characteristics. Where the peas are of sweet green wrinkled varieties or hybrids having similar characteristics...

  17. Cannibalism in the pea aphid, Acyrthosiphon pisum.

    PubMed

    Cooper, Lucy C; Desjonqueres, Camille; Leather, Simon R

    2014-12-01

    Previous observations of cannibalism have been made in the aphid Acyrthosiphon pisum (L.): this article seeks to quantify factors contributing to such behaviors. We observed and quantified the responses of a number of clones and life stages to varying levels of starvation, in the form of increasingly desiccated Vica faba L. plants (receiving 50, 25, or 10 mL every second day) or a complete absence of host plant. We found that, while the longest incidences of cannibalism are carried out by juveniles (F = 3.45, P = 0.019, df = 3) and targeted at adults, the starvation treatments had the most significant effect on the prevalence of cannibalism in mature A. pisum (F = 2.24, P = 0.025, df = 9). Furthermore, there was no difference between the prevalence or duration of cannibalistic activities within and between different clones (P ≥ 0.05 in all cases), though juveniles were more likely to target unrelated aphids (V = 6 112, P = 0.011), and spent more time feeding on aphids from the same culture (V = 6 062, P = 0.018). © 2013 Institute of Zoology, Chinese Academy of Sciences.

  18. Potential alternative hosts for a powdery mildew on pea

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew of pea (Pisum sativum) is an important disease in the field and in the greenhouse. The most widely documented powdery mildew on pea is Erysiphe pisi, but E. trifolii and E. baeumleri have also been reported. From greenhouse-grown peas, we obtained powdery mildew samples with rDNA ITS ...

  19. 7 CFR 319.56-45 - Shelled garden peas from Kenya.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United States from Kenya only under the following conditions and in accordance with all other applicable...

  20. 7 CFR 319.56-45 - Shelled garden peas from Kenya.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319.56-45 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United...

  1. 7 CFR 319.56-45 - Shelled garden peas from Kenya.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319.56-45 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United...

  2. 7 CFR 319.56-45 - Shelled garden peas from Kenya.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319.56-45 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United...

  3. 7 CFR 319.56-45 - Shelled garden peas from Kenya.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Shelled garden peas from Kenya. 319.56-45 Section 319.56-45 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH... Shelled garden peas from Kenya. Garden peas (Pisum sativum) may be imported into the continental United...

  4. A diversified no-till crop rotation reduces nitrous oxide emissions, increases soybean yields, and promotes soil C accrual

    USDA-ARS?s Scientific Manuscript database

    We evaluated the impact of crop rotational diversity on greenhouse gas (GHG) emissions, global warming potential (GWP), and crop yields. Under no-till, rain-fed conditions, a two-yr (corn (Zea mays L.)-soybean (Glycine max (L.) Merr.)) rotation and a four-yr (corn-field peas (Pisum sativum L.)-winte...

  5. KASP assays for powdery mildew resistance breeding in pea

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew of pea, caused by Erysiphe pisi DC, is a serious production constraint to pea (Pisum sativum L.) production in the U.S. and elsewhere. Utilization of genetic resistance to powdery mildew using er1 has been an effective strategy to manage this disease. This gene, er1, conferring powde...

  6. Pea (Pisum sp.) genetic resources, its analysis and exploration

    USDA-ARS?s Scientific Manuscript database

    Pea is important temperate region pulse, with feed, fodder and vegetable uses. Originated and domesticated in Middle East and Mediterranean, it formed important dietary components of early civilizations. Although Pisum is a small genus with two or three species, it is very diverse and structured, r...

  7. Potential alternative hosts for the pea powdery mildew pathogen Erysiphe trifolii

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew of pea (Pisum sativum) is an important disease in the field and in the greenhouse. The most widely documented powdery mildew pathogen on pea is Erysiphe pisi, but E. baeumleri and E. trifolii have also been reported. We recently showed that E. trifolii is frequently found on pea in th...

  8. 31 CFR Appendix B to Part 560 - Bulk Agricultural Commodities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... 1005.00 Corn (Maize). 0713.31 Dried Beans including Vigna mungo (L.), Hepper, and Vigna radiata (L.) Wilczek. 0713.32 Small red (adzuki) beans. 0713.33 Kidney beans, including white pea beans. 0713.39 Beans, other. 0713.50 Broad beans and horse beans. 0713.10 Dried Peas (Pisum sativum). 0713.20 Chickpeas...

  9. 31 CFR Appendix A to Part 538 - Bulk Agricultural Commodities

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) 0713.31 Dried Beans including Vigna mungo (L.), Hepper, and Vigna radiata (L.) Wilczek 0713.32 Small red (adzuki) beans 0713.33 Kidney beans, including white pea beans 0713.39 Beans, other 0713.50 Broad beans and horse beans 0713.10 Dried Peas (Pisum sativum) 0713.20 Chickpeas (garbanzos) 0713.40 Lentils...

  10. 31 CFR Appendix B to Part 560 - Bulk Agricultural Commodities

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (Maize) 0713.31 Dried Beans including Vigna mungo (L.), Hepper, and Vigna radiata (L.) Wilczek 0713.32 Small red (adzuki) beans 0713.33 Kidney beans, including white pea beans 0713.39 Beans, other 0713.50 Broad beans and horse beans 0713.10 Dried Peas (Pisum sativum) 0713.20 Chickpeas (garbanzos) 0713.40...

  11. 31 CFR Appendix B to Part 560 - Bulk Agricultural Commodities

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Beans including Vigna mungo (L.), Hepper, and Vigna radiata (L.) Wilczek 0713.32 Small red (adzuki) beans 0713.33 Kidney beans, including white pea beans 0713.39 Beans, other 0713.50 Broad beans and horse beans 0713.10 Dried Peas (Pisum sativum) 0713.20 Chickpeas (garbanzos) 0713.40 Lentils 0713.90 Dried...

  12. 31 CFR Appendix A to Part 538 - Bulk Agricultural Commodities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) 0713.31 Dried Beans including Vigna mungo (L.), Hepper, and Vigna radiata (L.) Wilczek 0713.32 Small red (adzuki) beans 0713.33 Kidney beans, including white pea beans 0713.39 Beans, other 0713.50 Broad beans and horse beans 0713.10 Dried Peas (Pisum sativum) 0713.20 Chickpeas (garbanzos) 0713.40 Lentils...

  13. 31 CFR Appendix A to Part 538 - Bulk Agricultural Commodities

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) 0713.31 Dried Beans including Vigna mungo (L.), Hepper, and Vigna radiata (L.) Wilczek 0713.32 Small red (adzuki) beans 0713.33 Kidney beans, including white pea beans 0713.39 Beans, other 0713.50 Broad beans and horse beans 0713.10 Dried Peas (Pisum sativum) 0713.20 Chickpeas (garbanzos) 0713.40 Lentils...

  14. 31 CFR Appendix B to Part 560 - Bulk Agricultural Commodities

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... 1005.00 Corn (Maize). 0713.31 Dried Beans including Vigna mungo (L.), Hepper, and Vigna radiata (L.) Wilczek. 0713.32 Small red (adzuki) beans. 0713.33 Kidney beans, including white pea beans. 0713.39 Beans, other. 0713.50 Broad beans and horse beans. 0713.10 Dried Peas (Pisum sativum). 0713.20 Chickpeas...

  15. 31 CFR Appendix A to Part 538 - Bulk Agricultural Commodities

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Beans including Vigna mungo (L.), Hepper, and Vigna radiata (L.) Wilczek 0713.32 Small red (adzuki) beans 0713.33 Kidney beans, including white pea beans 0713.39 Beans, other 0713.50 Broad beans and horse beans 0713.10 Dried Peas (Pisum sativum) 0713.20 Chickpeas (garbanzos) 0713.40 Lentils 0713.90 Dried...

  16. 31 CFR Appendix A to Part 538 - Bulk Agricultural Commodities

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Beans including Vigna mungo (L.), Hepper, and Vigna radiata (L.) Wilczek 0713.32 Small red (adzuki) beans 0713.33 Kidney beans, including white pea beans 0713.39 Beans, other 0713.50 Broad beans and horse beans 0713.10 Dried Peas (Pisum sativum) 0713.20 Chickpeas (garbanzos) 0713.40 Lentils 0713.90 Dried...

  17. 31 CFR Appendix B to Part 560 - Bulk Agricultural Commodities

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Beans including Vigna mungo (L.), Hepper, and Vigna radiata (L.) Wilczek 0713.32 Small red (adzuki) beans 0713.33 Kidney beans, including white pea beans 0713.39 Beans, other 0713.50 Broad beans and horse beans 0713.10 Dried Peas (Pisum sativum) 0713.20 Chickpeas (garbanzos) 0713.40 Lentils 0713.90 Dried...

  18. Light regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway.

    PubMed

    Weller, James L; Hecht, Valérie; Vander Schoor, Jacqueline K; Davidson, Sandra E; Ross, John J

    2009-03-01

    Light regulation of gibberellin (GA) biosynthesis occurs in several species, but the signaling pathway through which this occurs has not been clearly established. We have isolated a new pea (Pisum sativum) mutant, long1, with a light-dependent elongated phenotype that is particularly pronounced in the epicotyl and first internode. The long1 mutation impairs signaling from phytochrome and cryptochrome photoreceptors and interacts genetically with a mutation in LIP1, the pea ortholog of Arabidopsis thaliana COP1. Mutant long1 seedlings show a dramatic impairment in the light regulation of active GA levels and the expression of several GA biosynthetic genes, most notably the GA catabolism gene GA2ox2. The long1 mutant carries a nonsense mutation in a gene orthologous to the ASTRAY gene from Lotus japonicus, a divergent ortholog of the Arabidopsis bZIP transcription factor gene HY5. Our results show that LONG1 has a central role in mediating the effects of light on GA biosynthesis in pea and demonstrate the importance of this regulation for appropriate photomorphogenic development. By contrast, LONG1 has no effect on GA responsiveness, implying that interactions between LONG1 and GA signaling are not a significant component of the molecular framework for light-GA interactions in pea.

  19. The Analgesic Effects of Different Extracts of Aerial Parts of Coriandrum Sativum in Mice

    PubMed Central

    Fatemeh Kazempor, Seyedeh; Vafadar langehbiz, Shabnam; Hosseini, Mahmoud; Naser Shafei, Mohammad; Ghorbani, Ahmad; Pourganji, Masoomeh

    2015-01-01

    Regarding the effects of Coriandrum sativum (C. sativum) on central nervous system, in the present study analgesic properties of different extracts of C. sativum aerial partswere investigated. The mice were treated by saline, morphine, three doses (20, 100 and 500 mg/kg) of aqueous, ethanolic, choloroformic extracts of C. sativum and one dose (100 mg/kg) of aqueous, two doses of ethanolic (100 and 500 mg/kg) and one dose of choloroformic (20 mg/kg) extracts of C. sativum pretreated by naloxone. Recording of the hot plate test was performed 10 min before injection of the drugs as a base and it was consequently repeated every 10 minutes after the extracts injection. The maximal percent effect (MPE) in the groups treated by three doses of aqueous, ethanolic and chloroformic extracts were significantly higher than saline group which were comparable to the effect of morphine. The effects of most effective doses of extracts were reversed by naloxone. The results of present study showed analgesic effect of aqueous, ethanolic and chloroformic extracts of C. sativum extract. These effects of the extracts may be mediated by opioid system. However, more investigations are needed to elucidate the exact responsible mechanism(s) and the effective compound(s).

  20. Anti-anxiety activity of Coriandrum sativum assessed using different experimental anxiety models

    PubMed Central

    Mahendra, Poonam; Bisht, Shradha

    2011-01-01

    Interest in alternative medicine and plant-derived medications that affect the “mind” is growing. The aim of present study was to explore the anti-anxiety activity of hydroalcoholic extract of Coriandrum sativum (Linn.) using different animal models (elevated plus maze, open field test, light and dark test and social interaction test) of anxiety in mice. Diazepam (0.5 mg/kg) was used as the standard and dose of hydroalcoholic extract of C. sativum fruit (50, 100 and 200 mg/kg) was selected as per OECD guidelines. Results suggested that extract of C. sativum at 100 and 200 mg/kg dose produced anti-anxiety effects almost similar to diazepam, and at 50 mg/kg dose did not produce anti-anxiety activity on any of the paradigm used. Further studies are needed to identify the anxiolytic mechanism(s) and the phytoconstituents responsible for the observed central effects of the hydroalcoholic extract of C. sativum. PMID:22022003

  1. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum.

    PubMed

    Meriga, Balaji; Mopuri, Ramgopal; MuraliKrishna, T

    2012-05-01

    To evaluate the insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum (A. sativum). Dried bulbs of A. sativum were extracted with different solvents and evaluated for insecticidal, antimicrobial and antioxidant activities. Aqueous and methanol extracts showed highest insecticidal activity (mortality rate of 81% and 64% respectively) against the larvae of Spodoptera litura (S. litura) at a concentration of 1 000 ppm. With regard to antimicrobial activity, aqueous extract exhibited antibacterial activity against gram positive (Bacillus subtilis, Staphylococcus aureu,) and gram negative (Escherichia coli and Klebsiella pneumonia) strains and antifungal activity against Candida albicans. While methanol extract showed antimicrobial activity against all the tested micro organisms except two (Staphylococcus aureus and Candida albicans), the extracts of hexane, chloroform and ethyl acetate did not show any anti microbial activity. Minimum inhibitory concentration of aqueous and methanol extracts against tested bacterial and fungal strains was 100-150 μg/mL. Antioxidant activity of the bulb extracts was evaluated in terms of inhibition of free radicals by 2, 2'-diphenly-1-picrylhydrazyl. Aqueous and methanol extracts exhibited strong antioxidant activity (80%-90% of the standard). Antioxidant and antimicrobial activity of A. sativum against the tested organisms therefore, provides scientific basis for its utilization in traditional and folk medicine. Also, our results demonstrated the insecticidal efficacy of A. sativum against S. litura, a polyphagous insect. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  2. Allium Sativum Methanolic Extract (garlic) Improve Therapeutic Efficacy of Albendazole Against Hydatid Cyst: In Vivo Study.

    PubMed

    Haji Mohammadi, K H; Heidarpour, M; Borji, H

    2018-04-25

    After gas chromatography and mass spectrometry of prepared methanolic extract of Allium sativum, 40 laboratory BALB/c mice were infected intraperitoneally by injection of 1,500 viable protoscoleces. Five months after infection, the infected mice were allocated into four treatment groups, including 1- Albendazole (100 mg/kg); 2- Allium sativum methanolic extract (10 mL/L); 3- A. sativum methanolic extract (10 mL/L) + Albendazole (50 mg /kg); and 4- untreated control group. After 30 days of daily treatment, total number and weight of cysts and size of the largest cyst as well as blood serum bilirubin and liver enzymes were compared between the mice of different groups. The total number and weight of cysts and size of the largest cyst were significantly lower in treated groups A. sativum 10 mL/L + Albendazole 50 and Albendazole 100 in comparison to those of the control group (p < 0.05). The activity of alanine aminotransferase (ALT) enzyme and bilirubin concentration were significantly lower in the mice treated with A. sativum 10 mL/L and A. sativum 10 mL/L + Albendazole 50, when compared to the control group. In addition, bilirubin concentration revealed significant decrease in A. sativum 10 mL/L and A. sativum 10 mL/L + Albendazole 50 groups, when compared to the Albendazole group. In conclusion, administration of A. sativum 10 mL/L improved the anti-hydatidosis activity of Albendazole 50 mg /kg, due to parasitological effects similar to Albendazole 100 mg /kg but less hepatotoxic effects.

  3. The GIST Model for Selection and Modification of Scientific Research for the College Teaching Laboratory Based on Root Competition Investigations

    ERIC Educational Resources Information Center

    Elliott, Shannon Snyder

    2007-01-01

    The purpose of this study is to first develop an 8-week college teaching module based on root competition literature. The split-root technique is adapted for the teaching laboratory, and the Sugar Ann English pea (Pisum sativum var. Sugar Ann English) is selected as the species of interest prior to designing experiments, either original or…

  4. A century of genetics

    Treesearch

    Daniel J. Fairbanks

    2001-01-01

    In 1866, Gregor Mendel published his experiments on heredity in the garden pea (Pisum sativum). The fundamental principles of inheritance derived from his work apply to nearly all eukaryotic species and are now known as Mendelian principles. Since 1900, Mendel has been recognized as the founder of genetics. In 1900, three botanists, Carl Correns, Hugo De Vries, and...

  5. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.

    PubMed

    Foo, Eloise; McAdam, Erin L; Weller, James L; Reid, James B

    2016-04-01

    The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules innaandlkplants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. In vitro and in vivo anthelmintic activity of crude extracts of Coriandrum sativum against Haemonchus contortus.

    PubMed

    Eguale, T; Tilahun, G; Debella, A; Feleke, A; Makonnen, E

    2007-04-04

    In vitro anthelmintic activities of crude aqueous and hydro-alcoholic extracts of the seeds of Coriandrum sativum (Apiaceae) were investigated on the egg and adult nematode parasite Haemonchus contortus. The aqueous extract of Coriandrum sativum was also investigated for in vivo anthelmintic activity in sheep infected with Haemonchus contortus. Both extract types of Coriandrum sativum inhibited hatching of eggs completely at a concentration less than 0.5 mg/ml. ED(50) of aqueous extract of Coriandrum sativum was 0.12 mg/ml while that of hydro-alcoholic extract was 0.18 mg/ml. There was no statistically significant difference between aqueous and hydro-alcoholic extracts (p>0.05). The hydro-alcoholic extract showed better in vitro activity against adult parasites than the aqueous one. For the in vivo study, 24 sheep artificially infected with Haemonchus contortus were randomly divided into four groups of six animals each. The first two groups were treated with crude aqueous extract of Coriandrum sativum at 0.45 and 0.9 g/kg dose levels, the third group with albendazole at 3.8 mg/kg and the last group was left untreated. Efficacy was tested by faecal egg count reduction (FECR) and total worm count reduction (TWCR). On day 2 post treatment, significant FECR was detected in groups treated with higher dose of Coriandrum sativum (p<0.05) and albendazole (p<0.001). On days 7 and 14 post treatment, significant FECR was not detected for both doses of Coriandrum sativum (p>0.05). Significant (p<0.05) TWCR was detected only for higher dose of Coriandrum sativum compared to the untreated group. Reduction in male worms was higher than female worms. Treatment with both doses of Coriandrum sativum did not help the animals improve or maintain their PCV while those treated with albendazole showed significant increase in PCV (p<0.05).

  7. EARLY FLOWERING3 Redundancy Fine-Tunes Photoperiod Sensitivity1[OPEN

    PubMed Central

    Rubenach, Andrew J.S.; Vander Schoor, Jacqueline K.; Aubert, Gregoire; Burstin, Judith

    2017-01-01

    Three pea (Pisum sativum) loci controlling photoperiod sensitivity, HIGH RESPONSE (HR), DIE NEUTRALIS (DNE), and STERILE NODES (SN), have recently been shown to correspond to orthologs of Arabidopsis (Arabidopsis thaliana) circadian clock genes EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO, respectively. A fourth pea locus, PHOTOPERIOD (PPD), also contributes to the photoperiod response in a similar manner to SN and DNE, and recessive ppd mutants on a spring-flowering hr mutant background show early, photoperiod-insensitive flowering. However, the molecular identity of PPD has so far remained elusive. Here, we show that the PPD locus also has a role in maintenance of diurnal and circadian gene expression rhythms and identify PPD as an ELF3 co-ortholog, termed ELF3b. Genetic interactions between pea ELF3 genes suggest that loss of PPD function does not affect flowering time in the presence of functional HR, whereas PPD can compensate only partially for the lack of HR. These results provide an illustration of how gene duplication and divergence can generate potential for the emergence of more subtle variations in phenotype that may be adaptively significant. PMID:28202598

  8. Chemopreventive role of Coriandrum sativum against gentamicin-induced renal histopathological damage in rats.

    PubMed

    Lakhera, Abhijeet; Ganeshpurkar, Aditya; Bansal, Divya; Dubey, Nazneen

    2015-06-01

    Drug induced nephrotoxicity is one of the most common causes of renal failure. Gentamicin belongs to aminoglycosides, which elicit nephrotoxic potential. Natural antioxidants from plants demonstrate a number of biotherapeutic activities. Coriander is an important medicinal plant known for its hepatoprotective, diuretic, carminative, digestive and antihelminthic potential. This study was designed to investigate whether the extract of Coriandrum sativum ameliorates the nephrotoxicity induced by gentamicin in rats. Dried coriander powder was coarsely grinded and subjected to defatting by petroleum ether and further with ethyl acetate. The extract was filtered and subjected to phytochemical and phytoanalytical studies. Acute toxicity in Wistar rats was determined by the OECD Guideline (423). Animals were divided into four groups. The first group served as positive control, while the second group was toxic control (gentamicin treated). The third and fourth group were treated with the extract (200 and 400 mg/kg gentamicin). After 8 days, the animals were sacrificed and biochemical and histopathological studies were carried out. Phytochemical screening of the extract demonstrated Coriandrum sativum to be rich in flavonoids, polyphenolics and alkaloids. Results of acute toxicity suggested the use of 200 mg/kg and 400 mg/kg for Coriandrum sativum in the study. Coriandrum sativum extract at the dose of 400 mg/kg significantly (p<0.01) decreased creatinine levels in the animals, along with a decrease in serum urea and blood urea nitrogen. Treatment with Coriandrum sativum extract ameliorated renal histological lesions. It is concluded that Coriandrum sativum is a potential source of nephroprotective phytochemical activity, with flavonoids and polyphenols as the major components.

  9. Chemopreventive role of Coriandrum sativum against gentamicin-induced renal histopathological damage in rats

    PubMed Central

    Lakhera, Abhijeet; Bansal, Divya; Dubey, Nazneen

    2015-01-01

    Drug induced nephrotoxicity is one of the most common causes of renal failure. Gentamicin belongs to aminoglycosides, which elicit nephrotoxic potential. Natural antioxidants from plants demonstrate a number of biotherapeutic activities. Coriander is an important medicinal plant known for its hepatoprotective, diuretic, carminative, digestive and antihelminthic potential. This study was designed to investigate whether the extract of Coriandrum sativum ameliorates the nephrotoxicity induced by gentamicin in rats. Dried coriander powder was coarsely grinded and subjected to defatting by petroleum ether and further with ethyl acetate. The extract was filtered and subjected to phytochemical and phytoanalytical studies. Acute toxicity in Wistar rats was determined by the OECD Guideline (423). Animals were divided into four groups. The first group served as positive control, while the second group was toxic control (gentamicin treated). The third and fourth group were treated with the extract (200 and 400 mg/kg gentamicin). After 8 days, the animals were sacrificed and biochemical and histopathological studies were carried out. Phytochemical screening of the extract demonstrated Coriandrum sativum to be rich in flavonoids, polyphenolics and alkaloids. Results of acute toxicity suggested the use of 200 mg/kg and 400 mg/kg for Coriandrum sativum in the study. Coriandrum sativum extract at the dose of 400 mg/kg significantly (p<0.01) decreased creatinine levels in the animals, along with a decrease in serum urea and blood urea nitrogen. Treatment with Coriandrum sativum extract ameliorated renal histological lesions. It is concluded that Coriandrum sativum is a potential source of nephroprotective phytochemical activity, with flavonoids and polyphenols as the major components. PMID:27486367

  10. Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide.

    PubMed

    Cheng, Hao; Huang, Gangliang

    2018-07-15

    Extraction and antioxidant activity of polysaccharide from Allium sativum were investigated. The crude polysaccharide was obtained by the hot-water extraction method. The molecular weight of polysaccharide deproteinized with CaCl 2 was 7.35×10 3 . It indicated that polysaccharide from Allium sativum consisted of three monosaccharides, namely fructose, glucose, and galactose by HPLC. The polysaccharide had the β-glycosidic bond. Moreover, it was proved that the polysaccharide had the potential scavenging ability to superoxide anions and hydroxyl radicals. So, it should be a potential antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Inhibition of Photophosphorylation by Kaempferol 1

    PubMed Central

    Arntzen, Charles J.; Falkenthal, Scott V.; Bobick, Sandra

    1974-01-01

    Kaempferol, a naturally occurring flavonol, inhibited coupled electron transport and both cyclic and noncyclic photophosphorylation in isolated pea (Pisum sativum) chloroplasts. Over a concentration range which gave marked inhibition of ATP synthesis, there was no effect on basal or uncoupled electron flow or light-induced proton accumulation by isolated thylakoids. It is suggested that kaempferol acts as an energy transfer inhibitor. PMID:16658695

  12. The essential oil of Allium sativum as an alternative agent against Candida isolated from dental prostheses.

    PubMed

    Mendoza-Juache, Alejandro; Aranda-Romo, Saray; Bermeo-Escalona, Josué R; Gómez-Hernández, Araceli; Pozos-Guillén, Amaury; Sánchez-Vargas, Luis Octavio

    The colonization of the surfaces of dental prostheses by Candida albicans is associated with the development of denture stomatitis. In this context, the use of fluconazole has been proposed, but its disadvantage is microbial resistance. Meanwhile, the oil of Allium sativum has shown an effect in controlling biofilm formation by C. albicans. The objective of this study was to determine the antifungal activities of the essential oil of A. sativum and fluconazole against clinical isolates of Candida species obtained from rigid, acrylic-based partial or total dentures and to compare these agents' effects on both biofilm and planktonic cells. A total of 48 clinical isolates obtained from the acrylic surface of partial or complete dentures were examined, and the following species were identified: C. albicans, Candida glabrata, Candida tropicalis, and Candida krusei. For each isolate, the antifungal activities of the essential oil of A. sativum and fluconazole against both biofilm and planktonic cells were evaluated using the Clinical & Laboratory Standards Institute (CLSI) M27-A3 method. The isolates were also evaluated by semiquantitative XTT reduction. All planktonic Candida isolates were susceptible to the essential oil of A. sativum, whereas 4.2% were resistant to fluconazole. Regarding susceptibilities in biofilms, 43.8% of biofilms were resistant to A. sativum oil, and 91.7% were resistant to fluconazole. All planktonic cells of the different Candida species tested are susceptible to <1mg/ml A. sativum oil, and the majority are susceptible to fluconazole. Susceptibility decreases in biofilm cells, with increased resistance to fluconazole compared with A. sativum oil. The essential oil of A. sativum is thus active against clinical isolates of Candida species obtained from dentures, with effects on both biofilm and planktonic cells in vitro. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry.

    PubMed

    Carolan, James C; Fitzroy, Carol I J; Ashton, Peter D; Douglas, Angela E; Wilkinson, Thomas L

    2009-05-01

    Nine proteins secreted in the saliva of the pea aphid Acyrthosiphon pisum were identified by a proteomics approach using GE-LC-MS/MS and LC-MS/MS, with reference to EST and genomic sequence data for A. pisum. Four proteins were identified by their sequences: a homolog of angiotensin-converting enzyme (an M2 metalloprotease), an M1 zinc-dependant metalloprotease, a glucose-methanol-choline (GMC)-oxidoreductase and a homolog to regucalcin (also known as senescence marker protein 30). The other five proteins are not homologous to any previously described sequence and included an abundant salivary protein (represented by ACYPI009881), with a predicted length of 1161 amino acids and high serine, tyrosine and cysteine content. A. pisum feeds on plant phloem sap and the metalloproteases and regucalcin (a putative calcium-binding protein) are predicted determinants of sustained feeding, by inactivation of plant protein defences and inhibition of calcium-mediated occlusion of phloem sieve elements, respectively. The amino acid composition of ACYPI009881 suggests a role in the aphid salivary sheath that protects the aphid mouthparts from plant defences, and the oxidoreductase may promote gelling of the sheath protein or mediate oxidative detoxification of plant allelochemicals. Further salivary proteins are expected to be identified as more sensitive MS technologies are developed.

  14. The Dynamics of the Defense Strategy of Pea Induced by Exogenous Nitric Oxide in Response to Aphid Infestation.

    PubMed

    Woźniak, Agnieszka; Formela, Magda; Bilman, Piotr; Grześkiewicz, Katarzyna; Bednarski, Waldemar; Marczak, Łukasz; Narożna, Dorota; Dancewicz, Katarzyna; Mai, Van Chung; Borowiak-Sobkowiak, Beata; Floryszak-Wieczorek, Jolanta; Gabryś, Beata; Morkunas, Iwona

    2017-02-05

    The aim of this study was to investigate the effect of exogenous nitric oxide (NO), i.e., S -nitrosoglutathione (GSNO) and sodium nitroprusside (SNP), on the metabolic status of Pisum sativum L. cv. Cysterski leaves infested by Acyrthosiphon pisum Harris, population demographic parameters and A. pisum feeding activity. A reduction in the level of semiquinone radicals in pea seedling leaves pretreated with exogenous NO occurred 24 h after A. pisum infestation, which was earlier than in non-pretreated leaves. A decrease in the level of O₂ •- was observed in leaves pretreated with GSNO and infested by aphids at 48 and 72 h post-infestation (hpi). Directly after the pretreatment with GSNO, an increase in the level of metal ions was recorded. NO considerably induced the relative mRNA levels for phenylalanine ammonia-lyase in 24-h leaves pretreated with NO donors, both non-infested and infested. NO stimulated the accumulation of pisatin in leaves until 24 h. The Electrical Penetration Graph revealed a reduction in the feeding activity of the pea aphid on leaves pretreated with NO. The present study showed that foliar application of NO donors induced sequentially defense reactions of pea against A. pisum and had a deterrent effect on aphid feeding and limited the population growth rate.

  15. The Dynamics of the Defense Strategy of Pea Induced by Exogenous Nitric Oxide in Response to Aphid Infestation

    PubMed Central

    Woźniak, Agnieszka; Formela, Magda; Bilman, Piotr; Grześkiewicz, Katarzyna; Bednarski, Waldemar; Marczak, Łukasz; Narożna, Dorota; Dancewicz, Katarzyna; Mai, Van Chung; Borowiak-Sobkowiak, Beata; Floryszak-Wieczorek, Jolanta; Gabryś, Beata; Morkunas, Iwona

    2017-01-01

    The aim of this study was to investigate the effect of exogenous nitric oxide (NO), i.e., S-nitrosoglutathione (GSNO) and sodium nitroprusside (SNP), on the metabolic status of Pisum sativum L. cv. Cysterski leaves infested by Acyrthosiphon pisum Harris, population demographic parameters and A. pisum feeding activity. A reduction in the level of semiquinone radicals in pea seedling leaves pretreated with exogenous NO occurred 24 h after A. pisum infestation, which was earlier than in non-pretreated leaves. A decrease in the level of O2•− was observed in leaves pretreated with GSNO and infested by aphids at 48 and 72 h post-infestation (hpi). Directly after the pretreatment with GSNO, an increase in the level of metal ions was recorded. NO considerably induced the relative mRNA levels for phenylalanine ammonia-lyase in 24-h leaves pretreated with NO donors, both non-infested and infested. NO stimulated the accumulation of pisatin in leaves until 24 h. The Electrical Penetration Graph revealed a reduction in the feeding activity of the pea aphid on leaves pretreated with NO. The present study showed that foliar application of NO donors induced sequentially defense reactions of pea against A. pisum and had a deterrent effect on aphid feeding and limited the population growth rate. PMID:28165429

  16. Antileishmanial activity of a mixture of Tridax procumbens and Allium sativum in mice

    PubMed Central

    Gamboa-Leon, Rubi; Vera-Ku, Marina; Peraza-Sanchez, Sergio R.; Ku-Chulim, Carlos; Horta-Baas, Aurelio; Rosado-Vallado, Miguel

    2014-01-01

    We tested a mixture of Tridax procumbens, known for its direct action against Leishmania mexicana, and Allium sativum, known for its immunomodulatory effect, as an alternative to treat cutaneous leishmaniasis. Acute oral toxicity was tested with the Up-and-Down Procedure (UDP) using a group of healthy mice administered with either T. procumbens or A. sativum extracts and compared with a control group. Liver injury and other parameters of toxicity were determined in mice at day 14. The in vivo assay was performed with mice infected with L. mexicana promastigotes and treated with either a mixture of T. procumbens and A. sativum or each extract separately. The thickness of the mice’s footpads was measured weekly. After the 12-week period of infection, blood samples were obtained by cardiac puncture to determine the total IgG, IgG1 and IgG2a immunoglobulins by a noncommercial indirect ELISA. We showed that the mixture of T. procumbens and A. sativum extracts was better at controlling L. mexicana infection while not being toxic when tested in the acute oral toxicity assay in mice. An increase in the ratio of IgG2a/IgG1 indicated a tendency to raise a Th1-type immune response in mice treated with the mixture. The mixture of T. procumbens and A. sativum extracts is a promising natural treatment for cutaneous leishmaniasis and its healing effects make it a good candidate for a possible new phytomedicine. PMID:24717526

  17. Transcriptional profiling of the pea shoot apical meristem reveals processes underlying its function and maintenance

    PubMed Central

    Wong, Chui E; Bhalla, Prem L; Ottenhof, Harald; Singh, Mohan B

    2008-01-01

    Background Despite the importance of the shoot apical meristem (SAM) in plant development and organ formation, our understanding of the molecular mechanisms controlling its function is limited. Genomic tools have the potential to unravel the molecular mysteries of the SAM, and legume systems are increasingly being used in plant-development studies owing to their unique characteristics such as nitrogen fixation, secondary metabolism, and pod development. Garden pea (Pisum sativum) is a well-established classic model species for genetics studies that has been used since the Mendel era. In addition, the availability of a plethora of developmental mutants makes pea an ideal crop legume for genomics studies. This study aims to utilise genomics tools in isolating genes that play potential roles in the regulation of SAM activity. Results In order to identify genes that are differentially expressed in the SAM, we generated 2735 ESTs from three cDNA libraries derived from freshly micro-dissected SAMs from 10-day-old garden peas (Pisum sativum cv Torsdag). Custom-designed oligonucleotide arrays were used to compare the transcriptional profiles of pea SAMs and non-meristematic tissues. A total of 184 and 175 transcripts were significantly up- or down-regulated in the pea SAM, respectively. As expected, close to 61% of the transcripts down-regulated in the SAM were found in the public database, whereas sequences from the same source only comprised 12% of the genes that were expressed at higher levels in the SAM. This highlights the under-representation of transcripts from the meristematic tissues in the current public pea protein database, and demonstrates the utility of our SAM EST collection as an essential genetic resource for revealing further information on the regulation of this developmental process. In addition to unknowns, many of the up-regulated transcripts are known to encode products associated with cell division and proliferation, epigenetic regulation, auxin

  18. Two new aliphatic lactones from the fruits of Coriandrum sativum L.

    PubMed Central

    2012-01-01

    Background The present paper describes the isolation and characterization of two new aliphatic δ-lactones along with three glycerides and n-nonadecanyl cetoleate from the fruits of Coriandrum sativum L. (Apiaceae). The structures of all the isolated phytoconstituents have been established on the basis of spectral data analysis and chemical reactions. Results Phytochemical investigation of the methanolic extract of C. sativum L. (Apiaceae) fruits resulted in the isolation of two new aliphatic δ-lactones characterized as 2α-n-heptatriacont-(Z)-3-en-1,5-olide (1) (coriander lactone) and 2α-n-tetracont-(Z,Z)-3,26-dien-18α-ol-1,5-olide (2) (hydroxy coriander lactone) together with glyceryl-1,2-dioctadec-9,12-dienoate-3-octadec-9-enoate (3); glyceryl-1,2,3-trioctadecanoate (4); n-nonadecanyl-n-docos-11-enoate (5) and oleiyl glucoside (6). Conclusions Phytochemical investigation of the methanolic extract of C. sativum gave coriander lactone and hydroxy coriander lactone as the new phytoconstituents. PMID:22800677

  19. Efficacy of soluble glycoprotein fraction from Allium sativum purified by size exclusion chromatography on murine Schistosomiasis mansoni.

    PubMed

    Aly, Ibrahim; Taher, Eman E; El-Sayed, Hoda; Mohammed, Faten A; ELnain, Gehan; Hamad, Rabab S; Bayoumy, Elsayed M

    2017-06-01

    In this work, the efficiency of crude MeOH extracts and soluble glycoprotein fraction of Allium sativum purified by size-exclusion chromatography (SEC) on parasitological, histopathological and some biochemical parameters in Schistosoma mansoni infected mice were investigated. Animals were infected by tail immersion with 100 cercariae/each mouse and divided into five groups in addition to the normal control. The results revealed a significant decrease in mean worm burden in all treated mice especially in the group treated with soluble glycoprotein fraction of A. sativum as compared to infected non-treated control with the disappearance of female worms. Administration of the studied extracts revealed remarkable amelioration in the levels of all the measured parameters in S. mansoni infected mice. In addition, treatment of mice with crude A. sativum MeOH extract and soluble glycoprotein fraction of A. sativum decreased significantly the activities of studied enzymes as compared to the infected untreated group. The highest degrees of enhancement in pathological changes was observed in the treated one with soluble glycoprotein fraction of A. sativum compared to the infected group represented by small sized, late fibro-cellular granuloma, the decrease in cellular constituents and degenerative changes in eggs. In conclusion, A. sativum treatment had effective schistosomicidal activities, through reduction of worm burden and tissue eggs, especially when it was given in purified glycoprotein fraction. Moreover, the soluble glycoprotein fraction of A. sativum largely modulates both the size and the number of granulomas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Antileishmanial activity of a mixture of Tridax procumbens and Allium sativum in mice.

    PubMed

    Gamboa-Leon, Rubi; Vera-Ku, Marina; Peraza-Sanchez, Sergio R; Ku-Chulim, Carlos; Horta-Baas, Aurelio; Rosado-Vallado, Miguel

    2014-01-01

    We tested a mixture of Tridax procumbens, known for its direct action against Leishmania mexicana, and Allium sativum, known for its immunomodulatory effect, as an alternative to treat cutaneous leishmaniasis. Acute oral toxicity was tested with the Up-and-Down Procedure (UDP) using a group of healthy mice administered with either T. procumbens or A. sativum extracts and compared with a control group. Liver injury and other parameters of toxicity were determined in mice at day 14. The in vivo assay was performed with mice infected with L. mexicana promastigotes and treated with either a mixture of T. procumbens and A. sativum or each extract separately. The thickness of the mice's footpads was measured weekly. After the 12-week period of infection, blood samples were obtained by cardiac puncture to determine the total IgG, IgG1 and IgG2a immunoglobulins by a noncommercial indirect ELISA. We showed that the mixture of T. procumbens and A. sativum extracts was better at controlling L. mexicana infection while not being toxic when tested in the acute oral toxicity assay in mice. An increase in the ratio of IgG2a/IgG1 indicated a tendency to raise a Th1-type immune response in mice treated with the mixture. The mixture of T. procumbens and A. sativum extracts is a promising natural treatment for cutaneous leishmaniasis and its healing effects make it a good candidate for a possible new phytomedicine. © R. Gamboa-Leon et al., published by EDP Sciences, 2014.

  1. In vitro effectiveness of garlic (Allium sativum) extract on scolices of hydatid cyst.

    PubMed

    Moazeni, Mohammad; Nazer, Ali

    2010-11-01

    Surgery is still the main treatment for hydatid disease. Recurrence of the infection is one of the end points of surgery in treating the hydatid cyst which results from the dissemination of protoscolices-rich fluid. Installation of a scolicidal agent into the cyst is the most commonly employed measure to prevent recurrence. Many scolicidal agents have been used for inactivation of the cyst's content, but most of them are not safe due to their undesired side effects. In the present study, the scolicidal effect of methanolic extract of Allium sativum is investigated. Protoscolices were aseptically collected from sheep livers containing hydatid cysts. Two concentrations (25 and 50 mg ml(-1)) of garlic extract were used for 10, 20, 30, 40, 50, and 60 min. Viability of protoscolices was confirmed by 0.1% eosin staining. Allium sativum extract at the concentration of 25 mg ml(-1) killed 87.9, 95.6, 96.8, 98.7, 99.6, and 100% of protoscolices following 10, 20, 30, 40, 50, and 60 min of application, respectively. Moreover, the scolicidal activity of Allium sativum extract at the concentration of 50 mg ml(-1) was 100% after 10 min of application. Methanolic extract of Allium sativum had a high scolicidal activity in vitro and thus might be used as a scolicidal agent in the surgical treatment of the hydatid cyst. However, further investigation on the in vivo efficacy of Allium sativum extract and its possible side effects is proposed.

  2. The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting.

    PubMed

    Urquhart, Shelley; Foo, Eloise; Reid, James B

    2015-03-01

    The recently discovered group of plant hormones, the strigolactones, have been implicated in regulating photomorphogenesis. We examined this extensively in our strigolactone synthesis and response mutants and could find no evidence to support a major role for strigolactone signaling in classic seedling photomorphogenesis (e.g. elongation and leaf expansion) in pea (Pisum sativum), consistent with two recent independent reports in Arabidopsis. However, we did find a novel effect of strigolactones on adventitious rooting in darkness. Strigolactone-deficient mutants, Psccd8 and Psccd7, produced significantly fewer adventitious roots than comparable wild-type seedlings when grown in the dark, but not when grown in the light. This observation in dark-grown plants did not appear to be due to indirect effects of other factors (e.g. humidity) as the constitutively de-etiolated mutant, lip1, also displayed reduced rooting in the dark. This role for strigolactones did not involve the MAX2 F-Box strigolactone response pathway as Psmax2 f-box mutants did not show a reduction in adventitious rooting in the dark compared with wild-type plants. The auxin-deficient mutant bushy also reduced adventitious rooting in the dark, as did decapitation of wild-type plants. Rooting was restored by the application of indole-3-acetic acid (IAA) to decapitated plants, suggesting a role for auxin in the rooting response. However, auxin measurements showed no accumulation of IAA in the epicotyls of wild-type plants compared with the strigolactone synthesis mutant Psccd8, suggesting that changes in the gross auxin level in the epicotyl are not mediating this response to strigolactone deficiency. © 2014 Scandinavian Plant Physiology Society.

  3. Allium sativum L.: the anti-immature leech (Limnatis nilotica) activity compared to Niclosomide.

    PubMed

    Bahmani, Mahmoud; Abbasi, Javad; Mohsenzadegan, Ava; Sadeghian, Sirous; Ahangaran, Majid Gholami

    2013-03-01

    This study was carried out to determine the effects of methanolic extracts of Allium sativum L. on Limnatis nilotica compared with Niclosomide. In this experimental study in September 2010, a number of leeches (70 in total) from the southern area of Ilam province were prepared, and the effects of methanolic extract of A. sativum L. with Niclosomide as the control drug were compared and distilled water was evaluated as the placebo group which investigated L. nilotica using anti-leech assay. The average time of paralysis and death of L. nilotica for Niclosomide (1,250 mg/kg) and the methanol extract of A. sativum L. (600 μg/ml) were 6.22 ± 2.94 and 68.44 ± 28.39 min, respectively. Distilled water and garlic tablets at a dose of 400 mg were determined as the inert group. In this research, the attraction time of the leeches' death among different treatments is significant. In this study, it was determined that Niclosomide, with an intensity of 4+, and methanolic extracts of A. sativum L., with an intensity of 3+, have a good anti-leech effect and can be shown to be effective in cases of leech biting, while distilled water was negative.

  4. Action of Coriandrum sativum L. Essential Oil upon Oral Candida albicans Biofilm Formation.

    PubMed

    Furletti, V F; Teixeira, I P; Obando-Pereda, G; Mardegan, R C; Sartoratto, A; Figueira, G M; Duarte, R M T; Rehder, V L G; Duarte, M C T; Höfling, J F

    2011-01-01

    The efficacy of extracts and essential oils from Allium tuberosum, Coriandrum sativum, Cymbopogon martini, Cymbopogon winterianus, and Santolina chamaecyparissus was evaluated against Candida spp. isolates from the oral cavity of patients with periodontal disease. The most active oil was fractionated and tested against C. albicans biofilm formation. The oils were obtained by water-distillation and the extracts were prepared with macerated dried plant material. The Minimal Inhibitory Concentration-MIC was determined by the microdilution method. Chemical characterization of oil constituents was performed using Gas Chromatography and Mass Spectrometry (GC-MS). C. sativum activity oil upon cell and biofilm morphology was evaluated by Scanning Electron Microscopy (SEM). The best activities against planktonic Candida spp. were observed for the essential oil and the grouped F(8-10) fractions from C. sativum. The crude oil also affected the biofilm formation in C. albicans causing a decrease in the biofilm growth. Chemical analysis of the F(8-10) fractions detected as major active compounds, 2-hexen-1-ol, 3-hexen-1-ol and cyclodecane. Standards of these compounds tested grouped provided a stronger activity than the oil suggesting a synergistic action from the major oil constituents. The activity of C. sativum oil demonstrates its potential for a new natural antifungal formulation.

  5. Antioxidative response of Lepidium sativum L. during assisted phytoremediation of Hg contaminated soil.

    PubMed

    Smolinska, Beata; Szczodrowska, Agnieszka

    2017-09-25

    In this study, Lepidium sativum L. was used in repeated phytoextraction processes to remove Hg from contaminated soil, assisted by combined use of compost and iodide (KI). L. sativum L. is sensitive to changes in environmental conditions and has been used in environmental tests. Its short vegetation period and ability to accumulate heavy metals make it suitable for use in repeated phytoextraction. The antioxidant enzymatic system of the plant (catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and glutathione S-transferase (GST)) was analysed, to understand the effects of increasing Hg accumulation and translocation. Phytoextraction was repeated six times to decrease Hg contamination in soil, and the efficiency of each step was assessed. The results indicate that L. sativum L. is able to take up and accumulate Hg from contaminated soil. A corresponding increase in enzymatic antioxidants shows that the plant defence system is activated in response to Hg stress. Using compost and KI increases total Hg accumulation and translocation to the above-ground parts of L. sativum L. Repeating the process decreases Hg contamination in pot experiments in all variants of the process. The combined use of compost and KI during repeated phytoextraction increases the efficiency of Hg removal from contaminated soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.)

    PubMed Central

    Hradilová, Iveta; Trněný, Oldřich; Válková, Markéta; Cechová, Monika; Janská, Anna; Prokešová, Lenka; Aamir, Khan; Krezdorn, Nicolas; Rotter, Björn; Winter, Peter; Varshney, Rajeev K.; Soukup, Aleš; Bednář, Petr; Hanáček, Pavel; Smýkal, Petr

    2017-01-01

    The origin of the agriculture was one of the turning points in human history, and a central part of this was the evolution of new plant forms, domesticated crops. Seed dispersal and germination are two key traits which have been selected to facilitate cultivation and harvesting of crops. The objective of this study was to analyze anatomical structure of seed coat and pod, identify metabolic compounds associated with water-impermeable seed coat and differentially expressed genes involved in pea seed dormancy and pod dehiscence. Comparative anatomical, metabolomics, and transcriptomic analyses were carried out on wild dormant, dehiscent Pisum elatius (JI64, VIR320) and cultivated, indehiscent Pisum sativum non-dormant (JI92, Cameor) and recombinant inbred lines (RILs). Considerable differences were found in texture of testa surface, length of macrosclereids, and seed coat thickness. Histochemical and biochemical analyses indicated genotype related variation in composition and heterogeneity of seed coat cell walls within macrosclereids. Liquid chromatography–electrospray ionization/mass spectrometry and Laser desorption/ionization–mass spectrometry of separated seed coats revealed significantly higher contents of proanthocyanidins (dimer and trimer of gallocatechin), quercetin, and myricetin rhamnosides and hydroxylated fatty acids in dormant compared to non-dormant genotypes. Bulk Segregant Analysis coupled to high throughput RNA sequencing resulted in identification of 770 and 148 differentially expressed genes between dormant and non-dormant seeds or dehiscent and indehiscent pods, respectively. The expression of 14 selected dormancy-related genes was studied by qRT-PCR. Of these, expression pattern of four genes: porin (MACE-S082), peroxisomal membrane PEX14-like protein (MACE-S108), 4-coumarate CoA ligase (MACE-S131), and UDP-glucosyl transferase (MACE-S139) was in agreement in all four genotypes with Massive analysis of cDNA Ends (MACE) data. In case of pod

  7. The Chemical Compositions of the Volatile Oils of Garlic (Allium sativum) and Wild Garlic (Allium vineale)

    PubMed Central

    Satyal, Prabodh; Craft, Jonathan D.; Dosoky, Noura S.; Setzer, William N.

    2017-01-01

    Garlic, Allium sativum, is broadly used around the world for its numerous culinary and medicinal uses. Wild garlic, Allium vineale, has been used as a substitute for garlic, both in food as well as in herbal medicine. The present study investigated the chemical compositions of A. sativum and A. vineale essential oils. The essential oils from the bulbs of A. sativum, cultivated in Spain, were obtained by three different methods: laboratory hydrodistillation, industrial hydrodistillation, and industrial steam distillation. The essential oils of wild-growing A. vineale from north Alabama were obtained by hydrodistillation. The resulting essential oils were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Both A. sativum and A. vineale oils were dominated by allyl polysulfides. There were minor quantitative differences between the A. sativum oils owing to the distillation methods employed, as well as differences from previously reported garlic oils from other geographical locations. Allium vineale oil showed a qualitative similarity to Allium ursinum essential oil. The compositions of garlic and wild garlic are consistent with their use as flavoring agents in foods as well as their uses as herbal medicines. However, quantitative differences are likely to affect the flavor and bioactivity profiles of these Allium species. PMID:28783070

  8. The Chemical Compositions of the Volatile Oils of Garlic (Allium sativum) and Wild Garlic (Allium vineale).

    PubMed

    Satyal, Prabodh; Craft, Jonathan D; Dosoky, Noura S; Setzer, William N

    2017-08-05

    Garlic, Allium sativum , is broadly used around the world for its numerous culinary and medicinal uses. Wild garlic, Allium vineale , has been used as a substitute for garlic, both in food as well as in herbal medicine. The present study investigated the chemical compositions of A. sativum and A. vineale essential oils. The essential oils from the bulbs of A. sativum , cultivated in Spain, were obtained by three different methods: laboratory hydrodistillation, industrial hydrodistillation, and industrial steam distillation. The essential oils of wild-growing A. vineale from north Alabama were obtained by hydrodistillation. The resulting essential oils were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Both A. sativum and A. vineale oils were dominated by allyl polysulfides. There were minor quantitative differences between the A. sativum oils owing to the distillation methods employed, as well as differences from previously reported garlic oils from other geographical locations. Allium vineale oil showed a qualitative similarity to Allium ursinum essential oil. The compositions of garlic and wild garlic are consistent with their use as flavoring agents in foods as well as their uses as herbal medicines. However, quantitative differences are likely to affect the flavor and bioactivity profiles of these Allium species.

  9. Inhibitory effects of Enteromorpha linza polysaccharide on micronucleus of Allium sativum root cells.

    PubMed

    Zhang, Zhongshan; Wang, Xiaomei; Li, Jingfen; Liu, Chongbin; Zhang, Quanbin

    2016-06-01

    In this study, the antimutagenic function of the polysaccharide from Enteromorpha linza with the micronucleus test of Allium sativum root cells induced by sulfur dioxide and ultraviolet was studied. The concentration-effect relation of the two inducers was firstly evaluated. The results showed that an increase of genotoxicity damage was demonstrated and micronuclei frequency induced by sulfur dioxide and ultraviolet displayed dose dependent increases. All the doses of polysaccharide did affect the micronuclei frequency formation compared with the negative control. And also, the significant increase in inhibition rate of micronuclei frequency was observed with the increase of the dose of polysaccharide. It was showed maximum inhibition of micronuclei frequency cells (71.74% and 66.70%) at a concentration of 200g/mL in three experiments. The low molecular weight polysaccharide showed higher inhibition rate than raw polysaccharide at the higher concentration (50g/mL) in the absence of sulfur dioxide and ultraviolet. It was confirmed to be a good mutant inhibitor. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration.

    PubMed

    Tang, Esther L H; Rajarajeswaran, Jayakumar; Fung, Shin Yee; Kanthimathi, M S

    2013-12-09

    Coriandrum sativum is a popular culinary and medicinal herb of the Apiaceae family. Health promoting properties of this herb have been reported in pharmacognostical, phytochemical and pharmacological studies. However, studies on C. sativum have always focused on the aerial parts of the herb and scientific investigation on the root is limited. The aim of this research was to investigate the antioxidant and anticancer activities of C. sativum root, leaf and stem, including its effect on cancer cell migration, and its protection against DNA damage, with special focus on the roots. Powdered roots, leaves and stems of C. sativum were extracted through sequential extraction using hexane, dichloromethane, ethyl acetate, methanol and water. Total phenolic content, FRAP and DPPH radical scavenging activities were measured. Anti-proliferative activitiy on the breast cancer cell line, MCF-7, was assayed using the MTT assay. Activities of the antioxidant enzymes, catalase, superoxide dismutase, glutathione peroxidase, and of the caspases-3, -8 and -9 were assayed on treatment with the extract. Cell cycle progression was analysed using flow cytometry. The scratch motility assay was used to assess inhibition of MCF-7 cell migration. DNA damage in 3 T3-L1 fibroblasts was evaluated by the comet assay. The components in the extract were identified by HPLC and GC-MS. The ethyl acetate extract of C. sativum roots showed the highest antiproliferative activity on MCF-7 cells (IC50 = 200.0 ± 2.6 μg/mL) and had the highest phenolic content, FRAP and DPPH scavenging activities among the extracts. C. sativum root inhibited DNA damage and prevented MCF-7 cell migration induced by H2O2, suggesting its potential in cancer prevention and inhibition of metastasis. The extract exhibited anticancer activity in MCF-7 cells by affecting antioxidant enzymes possibly leading to H2O2 accumulation, cell cycle arrest at the G2/M phase and apoptotic cell death by the death receptor and

  11. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration

    PubMed Central

    2013-01-01

    Background Coriandrum sativum is a popular culinary and medicinal herb of the Apiaceae family. Health promoting properties of this herb have been reported in pharmacognostical, phytochemical and pharmacological studies. However, studies on C. sativum have always focused on the aerial parts of the herb and scientific investigation on the root is limited. The aim of this research was to investigate the antioxidant and anticancer activities of C. sativum root, leaf and stem, including its effect on cancer cell migration, and its protection against DNA damage, with special focus on the roots. Methods Powdered roots, leaves and stems of C. sativum were extracted through sequential extraction using hexane, dichloromethane, ethyl acetate, methanol and water. Total phenolic content, FRAP and DPPH radical scavenging activities were measured. Anti-proliferative activitiy on the breast cancer cell line, MCF-7, was assayed using the MTT assay. Activities of the antioxidant enzymes, catalase, superoxide dismutase, glutathione peroxidase, and of the caspases-3, -8 and -9 were assayed on treatment with the extract. Cell cycle progression was analysed using flow cytometry. The scratch motility assay was used to assess inhibition of MCF-7 cell migration. DNA damage in 3 T3-L1 fibroblasts was evaluated by the comet assay. The components in the extract were identified by HPLC and GC-MS. Results The ethyl acetate extract of C. sativum roots showed the highest antiproliferative activity on MCF-7 cells (IC50 = 200.0 ± 2.6 μg/mL) and had the highest phenolic content, FRAP and DPPH scavenging activities among the extracts. C. sativum root inhibited DNA damage and prevented MCF-7 cell migration induced by H2O2, suggesting its potential in cancer prevention and inhibition of metastasis. The extract exhibited anticancer activity in MCF-7 cells by affecting antioxidant enzymes possibly leading to H2O2 accumulation, cell cycle arrest at the G2/M phase and apoptotic cell death by

  12. Naegleria fowleri glycoconjugates with residues of α-D-mannose are involved in adherence of trophozoites to mouse nasal mucosa.

    PubMed

    Carrasco-Yepez, Maricela; Campos-Rodriguez, Rafael; Godinez-Victoria, Marycarmen; Rodriguez-Monroy, Marco Aurelio; Jarillo-Luna, Adriana; Bonilla-Lemus, Patricia; De Oca, Arturo Contis-Montes; Rojas-Hernandez, Saul

    2013-10-01

    We analyzed the possible role of glycoconjugates containing α-D-mannose and α-D-glucose residues in adherence of trophozoites to mouse nasal epithelium. Trophozoites incubated with 20 μg of one of three different lectins which preferentially recognized these residues were inoculated intranasally in Balb/c mice. Mouse survival was 40% with Pisum sativum and Canavalia ensiformis and 20% with Galanthus nivalis amebic pretreatment, compared with 0% survival for control animals administered trophozoites without pretreatment. Possibly some of the glycoproteins found in Naegleria fowleri represent an adherence factor. Differences in the saccharide sequences of the Naegleria species, even on the same glycoconjugate structure, could explain the different results corresponding to the distinct pretreatments (C. ensiformis, G. nivalis, and P. sativum). We found a higher expression of glycoconjugates recognized by P. sativum in Naegleria lovaniensis than N. fowleri, probably due to the higher number of oligosaccharides containing an α-1,6-linked fucose moiety expressed on the former species.

  13. The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching.

    PubMed

    Braun, Nils; de Saint Germain, Alexandre; Pillot, Jean-Paul; Boutet-Mercey, Stéphanie; Dalmais, Marion; Antoniadi, Ioanna; Li, Xin; Maia-Grondard, Alessandra; Le Signor, Christine; Bouteiller, Nathalie; Luo, Da; Bendahmane, Abdelhafid; Turnbull, Colin; Rameau, Catherine

    2012-01-01

    The function of PsBRC1, the pea (Pisum sativum) homolog of the maize (Zea mays) TEOSINTE BRANCHED1 and the Arabidopsis (Arabidopsis thaliana) BRANCHED1 (AtBRC1) genes, was investigated. The pea Psbrc1 mutant displays an increased shoot-branching phenotype, is able to synthesize strigolactone (SL), and does not respond to SL application. The level of pleiotropy of the SL-deficient ramosus1 (rms1) mutant is higher than in the Psbrc1 mutant, rms1 exhibiting a relatively dwarf phenotype and more extensive branching at upper nodes. The PsBRC1 gene is mostly expressed in the axillary bud and is transcriptionally up-regulated by direct application of the synthetic SL GR24 and down-regulated by the cytokinin (CK) 6-benzylaminopurine. The results suggest that PsBRC1 may have a role in integrating SL and CK signals and that SLs act directly within the bud to regulate its outgrowth. However, the Psbrc1 mutant responds to 6-benzylaminopurine application and decapitation by increasing axillary bud length, implicating a PsBRC1-independent component of the CK response in sustained bud growth. In contrast to other SL-related mutants, the Psbrc1 mutation does not cause a decrease in the CK zeatin riboside in the xylem sap or a strong increase in RMS1 transcript levels, suggesting that the RMS2-dependent feedback is not activated in this mutant. Surprisingly, the double rms1 Psbrc1 mutant displays a strong increase in numbers of branches at cotyledonary nodes, whereas branching at upper nodes is not significantly higher than the branching in rms1. This phenotype indicates a localized regulation of branching at these nodes specific to pea.

  14. Mutant Peas as Probes in the Understanding of Growth and Gravitropism

    NASA Technical Reports Server (NTRS)

    Jaffe, M. J.; Takashi, H.

    1985-01-01

    One mutant of Pism sativum CREEP grows normally up to the first internode stage, and then begins to grow plagiotropically. The upper internodes bend slowly downward according to a programmed sequence which follows circumnutation of the previous internode and opening of the previous leaves, but preceeds expansion of the previous leaves. The bending is partially inhibited by excission of the opposing stipules. The second mutant, AGEOTROPUM is gravitropically incompetant when grown etiolated, in the dark. When etiolated plants are illuminated with white light, the stems become gravitropically competant, but the roots do not. If the plants are grown in the light in particulate medium, some secondary roots, growing randomly, emerge into the air, and turn and grow downward toward moist soil. When etiolated AGEOTROPUM plants are illuminated, the shoots then become able to respond to gravity in a normal, negatively orthogravitropic manner. The response is to red light and is reversed by far red light. The mutation may involve one or more of the following: (1) release of sequestered calcium for redistribution; (2) radial transport of released calcium; or (3) net calcium flux in the upward direction.

  15. Escherichia coli K-12 pathogenicity in the pea aphid, Acyrthosiphon pisum, reveals reduced antibacterial defense in aphids.

    PubMed

    Altincicek, Boran; Ter Braak, Bas; Laughton, Alice M; Udekwu, Klas I; Gerardo, Nicole M

    2011-10-01

    To better understand the molecular basis underlying aphid immune tolerance to beneficial bacteria and immune defense to pathogenic bacteria, we characterized how the pea aphid Acyrthosiphon pisum responds to Escherichia coli K-12 infections. E. coli bacteria, usually cleared in the hemolymph of other insect species, were capable of growing exponentially and killing aphids within a few days. Red fluorescence protein expressing E. coli K-12 laboratory strain multiplied in the aphid hemolymph as well as in the digestive tract, resulting in death of infected aphids. Selected gene deletion mutants of the E. coli K-12 predicted to have reduced virulence during systemic infections showed no difference in either replication or killing rate when compared to the wild type E. coli strain. Of note, however, the XL1-Blue E. coli K-12 strain exhibited a significant lag phase before multiplying and killing aphids. This bacterial strain has recently been shown to be more sensitive to oxidative stress than other E. coli K-12 strains, revealing a potential role for reactive oxygen species-mediated defenses in the otherwise reduced aphid immune system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Hydrotropism in pea roots in a porous-tube water delivery system

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Brown, C. S.; Dreschel, T. W.; Scott, T. K.; Knott, W. M. (Principal Investigator)

    1992-01-01

    Orientation of root growth on earth and under microgravity conditions can possibly be controlled by hydrotropism--growth toward a moisture source in the absence of or reduced gravitropism. A porous-tube water delivery system being used for plant growth studies is appropriate for testing this hypothesis since roots can be grown aeroponically in this system. When the roots of the agravitropic mutant pea ageotropum (Pisum sativum L.) were placed vertically in air of 91% relative humidity and 2 to 3 mm from the water-saturated porous tube placed horizontally, the roots responded hydrotropically and grew in a continuous arch along the circular surface of the tube. By contrast, normal gravitropic roots of Alaska' pea initially showed a slight transient curvature toward the tube and then resumed vertical downward growth due to gravitropism. Thus, in microgravity, normal gravitropic roots could respond to a moisture gradient as strongly as the agravitropic roots used in this study. Hydrotropism should be considered a significant factor responsible for orientation of root growth in microgravity.

  17. Evaluation of the membrane lipid selectivity of the pea defensin Psd1.

    PubMed

    Gonçalves, Sónia; Teixeira, Alexandre; Abade, João; de Medeiros, Luciano Neves; Kurtenbach, Eleonora; Santos, Nuno C

    2012-05-01

    Psd1, a 46 amino acid residues defensin isolated from the pea Pisum sativum seeds, exhibits anti-fungal activity by a poorly understood mechanism of action. In this work, the interaction of Psd1 with biomembrane model systems of different lipid compositions was assessed by fluorescence spectroscopy. Partition studies showed a marked lipid selectivity of this antimicrobial peptide (AMP) toward lipid membranes containing ergosterol (the main sterol in fungal membranes) or specific glycosphingolipid components, with partition coefficients (K(p)) reaching uncommonly high values of 10(6). By the opposite, Psd1 does not partition to cholesterol-enriched lipid bilayers, such as mammalian cell membranes. The Psd1 mutants His36Lys and Gly12Glu present a membrane affinity loss relative to the wild type. Fluorescence quenching data obtained using acrylamide and membrane probes further clarify the mechanism of action of this peptide at the molecular level, pointing out the potential therapeutic use of Psd1 as a natural antimycotic agent. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Pea chloroplast DnaJ-J8 and Toc12 are encoded by the same gene and localized in the stroma.

    PubMed

    Chiu, Chi-Chou; Chen, Lih-Jen; Li, Hsou-min

    2010-11-01

    Toc12 is a novel J domain-containing protein identified in pea (Pisum sativum) chloroplasts. It was shown to be an integral outer membrane protein localizing in the intermembrane space of the chloroplast envelope. Furthermore, Toc12 was shown to associate with an intermembrane space Hsp70, suggesting that Toc12 is important for protein translocation across the chloroplast envelope. Toc12 shares a high degree of sequence similarity with Arabidopsis (Arabidopsis thaliana) DnaJ-J8, which has been suggested to be a soluble protein of the chloroplast stroma. Here, we isolated genes encoding DnaJ-J8 from pea and found that Toc12 is a truncated clone of one of the pea DnaJ-J8s. Protein import analyses indicate that Toc12 and DnaJ-J8s possess a cleavable transit peptide and are localized in the stroma. Arabidopsis mutants with T-DNA insertions in the DnaJ-J8 gene show no defect in chloroplast protein import. Implications of these results in the energetics and mechanisms of chloroplast protein import are discussed.

  19. Conserved genetic determinant of motor organ identity in Medicago truncatula and related legumes

    PubMed Central

    Chen, Jianghua; Moreau, Carol; Liu, Yu; Kawaguchi, Masayoshi; Hofer, Julie; Ellis, Noel; Chen, Rujin

    2012-01-01

    Plants exhibit various kinds of movements that have fascinated scientists and the public for centuries. Physiological studies in plants with the so-called motor organ or pulvinus suggest that cells at opposite sides of the pulvinus mediate leaf or leaflet movements by swelling and shrinking. How motor organ identity is determined is unknown. Using a genetic approach, we isolated a mutant designated elongated petiolule1 (elp1) from Medicago truncatula that fails to fold its leaflets in the dark due to loss of motor organs. Map-based cloning indicated that ELP1 encodes a putative plant-specific LOB domain transcription factor. RNA in situ analysis revealed that ELP1 is expressed in primordial cells that give rise to the motor organ. Ectopic expression of ELP1 resulted in dwarf plants with petioles and rachises reduced in length, and the epidermal cells gained characteristics of motor organ epidermal cells. By identifying ELP1 orthologs from other legume species, namely pea (Pisum sativum) and Lotus japonicus, we show that this motor organ identity is regulated by a conserved molecular mechanism. PMID:22689967

  20. The synthesis of acetylcholine by plants.

    PubMed Central

    Smallman, B N; Maneckjee, A

    1981-01-01

    Choline acetyltransferase was demonstrated in nettles (Urtica dioica), peas (Pisum sativum), spinach (Spinacia oleracea), sunflower (Helianthus annuus) and blue--green algae by using a Sepharose--CoASH affinity column. The column effected a 1500-fold purification of the enzyme from nettle homogenates and was required for demonstrating activity in the other higher plants. Demonstration of the enzyme in blue-green algae suggests that acetylcholine was a biochemical necessity in the earliest photosynthetic organisms. PMID:6796060

  1. The synthesis of acetylcholine by plants.

    PubMed

    Smallman, B N; Maneckjee, A

    1981-01-15

    Choline acetyltransferase was demonstrated in nettles (Urtica dioica), peas (Pisum sativum), spinach (Spinacia oleracea), sunflower (Helianthus annuus) and blue--green algae by using a Sepharose--CoASH affinity column. The column effected a 1500-fold purification of the enzyme from nettle homogenates and was required for demonstrating activity in the other higher plants. Demonstration of the enzyme in blue-green algae suggests that acetylcholine was a biochemical necessity in the earliest photosynthetic organisms.

  2. The Effects of Allium sativum Extracts on Biofilm Formation and Activities of Six Pathogenic Bacteria.

    PubMed

    Mohsenipour, Zeinab; Hassanshahian, Mehdi

    2015-08-01

    Garlic is considered a rich source of many compounds, which shows antimicrobial effects. The ability of microorganisms to adhere to both biotic and abiotic surfaces and to form biofilm is responsible for a number of diseases of chronic nature, demonstrating extremely high resistance to antibiotics. Bacterial biofilms are complex communities of sessile microorganisms, embedded in an extracellular matrix and irreversibly attached to various surfaces. The present study evaluated the antimicrobial activity of Allium sativum extract against the biofilms of six pathogenic bacteria and their free-living forms. The clinical isolates in this study had not been studied in any other studies, especially in regard to biofilm disruption and inhibition of biofilm cell metabolic activity. Antimicrobial activities of A. sativum L. extracts (methanol and ethanol extracts) against planktonic forms of bacteria were determined using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values were evaluated by a macrobroth dilution technique. The anti-biofilm effects were assessed by microtiter plate method. The results showed that the A. sativum L. extract discs did not have any zone of inhibition for the tested bacteria. However, The MIC values of A. sativum L. extracts (0.078 - 2.5 mg/mL) confirmed the high ability of these extracts for inhibition of planktonic bacteria. A. sativum L. extracts were efficient to inhibit biofilm structures and the concentration of each extract had a direct relation with the inhibitory effect. Finally, it can be suggested that the extracts of this plant be applied as antimicrobial agents against these pathogens, particularly in biofilm forms.

  3. Total phenolic levels in diverse garlics (Allium sativum L.)

    USDA-ARS?s Scientific Manuscript database

    Garlic (Allium sativum L.) is a specialty crop that is highly responsive to growth environment with respect to bulb size and coloration. Ten genetically diverse garlic cultivars were grown at twelve locations for two consecutive years. Soil characteristics and bulb phenotypic characters including ...

  4. Effect of Allium sativum and fish collagen on the proteolytic and angiotensin-I converting enzyme-inhibitory activities in cheese and yogurt.

    PubMed

    Shori, A B; Baba, A S; Keow, J N

    2012-12-15

    There is an increasing demand of functional foods in developed countries. Yogurt plays an important role in the management of blood pressure. Several bioactive peptides isolated from Allium sativum or fish collagen have shown antihypertensive activity. Thus, in the present study the effects of A. sativum and/or Fish Collagen (FC) on proteolysis and ACE inhibitory activity in yogurt (0, 7 and 14 day) and cheese (0, 14 and 28 day) were investigated. Proteolytic activities were the highest on day 7 of refrigerated storage in A. sativum-FC-yogurt (337.0 +/- 5.3 microg g(-1)) followed by FC-yogurt (275.3 +/- 2.0 microg g(-1)), A. sativum-yogurt (245.8 +/- 4.2 microg g(-1)) and plain-yogurt (40.4 +/- 1.2 microg g(-1)). On the other hand, proteolytic activities in cheese ripening were the highest (p < 0.05) on day 14 of storage for plain and A. sativum-cheeses (411.4 +/- 4.3 and 528.7 +/- 1.6 microg g(-1), respectively). However, the presence of FC increased the proteolysis to the highest level on day 28 of storage for FC- and A. sativum-FC cheeses (641.2 +/- 0.1 and 1128.4 +/- 4.5 microg g(-1), respectively). In addition, plain- and A. sativum-yogurts with or without FC showed maximal inhibition of ACE on day 7 of storage. Fresh plain- and A. sativum-cheeses showed ACE inhibition (72.3 +/- 7.8 and 50.4 +/- 1.6 % respectively), the presence of FC in both type of cheeses reduced the ACE inhibition to 62.9 +/- 0.8 and 44.5 +/- 5.0%, respectively. However, refrigerated storage increased ACE inhibition in cheeses (p < 0.05 on day 28) in the presence of FC more than in the absence. In conclusion, the presence of FC in A. sativum-yogurt or cheese enhanced the proteolytic activity. Thus, it has potential in the development of an effective dietary strategy for hypertension associated cardiovascular diseases.

  5. Preventive effect of Coriandrum sativum on neuronal damages in pentylentetrazole-induced seizure in rats

    PubMed Central

    Pourzaki, Mojtaba; Homayoun, Mansour; Sadeghi, Saeed; Seghatoleslam, Masoumeh; Hosseini, Mahmoud; Ebrahimzadeh Bideskan, Alireza

    2017-01-01

    Objective: Coriandrum sativum (C. sativum) as a medicinal plant has been pointed to have analgesic, hypnotic and anti-oxidant effects. In the current study, a possible preventive effect of the hydro-alcoholic extract of the plant on neuronal damages was examined in pentylenetetrazole (PTZ) rat model of seizure. Materials and Methods: Forty male rats were divided into five main groups and treated by (1) saline, (2) PTZ: 100 mg/kg PTZ (i.p) and (3-5) 50, 100 and 200 mg/kg of hydro-alcoholic extract of C. sativum during seven consecutive days before PTZ injection. After electrocorticography (ECoG), the brains were removed to use for histological examination. Results: All doses of the extract reduced duration, frequency and amplitude of the burst discharges while prolonged the latency of the seizure attacks (p<0.05, p<0.01, and p<0.001). Administration of all 3 doses of the extract significantly prevented from production of dark neurons (p<0.01, and p<0.001) and apoptotic cells (p<0.05, p<0.01, and p<0.001) in different areas of the hippocampus compared to PTZ group. Conclusion: The results of this study allow us to conclude that C. sativum, because of its antioxidant properties, prevents from neuronal damages in PTZ rat model of seizure. PMID:28348967

  6. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats.

    PubMed

    Anaeigoudari, Akbar; Hosseini, Mahmoud; Karami, Reza; Vafaee, Farzaneh; Mohammadpour, Toktam; Ghorbani, Ahmad; Sadeghnia, Hamid Reza

    2016-01-01

    In the present work, the effects of different fractions of Coriandrum sativum (C. sativum), on pentylenetetrazole (PTZ)-induced seizures and brain tissues oxidative damage were investigated in rats. The rats were divided into the following groups: (1) vehicle, (2) PTZ (90 mg/kg), (3) water fraction (WF) of C. sativum (25 and 100 mg/kg), (4) n-butanol fraction (NBF) of C. sativum (25 and 100 mg/kg), and (5) ethyl acetate fraction (EAF) of C. sativum (25 and 100 mg/kg). The first generalized tonic-clonic seizures (GTCS) latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (p<0.01). In contrast to WF, the EAF and NBF were not effective in increasing the first minimal clonic seizure (MCS) latency. Malondialdehyde (MDA) levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of control animals (p<0.001). Pretreatment with WF, NBF, or EAF resulted in a significant reduction in the MDA levels of hippocampi (p<0.01 - p<0.001). Following PTZ administration, a significant reduction in total thiol groups was observed in the brain tissues (p<0.05). Pretreatment with WF and NBF significantly elevated thiol concentrations in cortical and hippocampal tissues, respectively (p<0.05). The present study showed that different fractions of C. sativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects.

  7. Conversion of Isatin to Isatate as Related to Growth Promotion in Avena Coleoptile and Pisum Stem Sections 1

    PubMed Central

    Chen, H.-R.; Galston, A. W.; Milstone, L.

    1966-01-01

    Isatin, (indole 2,3-dione), which promotes elongation of Pisum stem sections at concentrations exceeding 0.1 mm, promotes elongation of Avena coleoptile sections only at higher concentrations, exceeding 1 mm. Aged isatin solutions are more active than fresh solutions, due to the slow, spontaneous conversion to isatate (o-aminophenylglyoxylate). A concentration of 0.1 mm aged isatin is as active in Avena coleoptile sections as in peas. Isatate has been independently synthesized and its auxin activity in both Avena coleoptile and Pisum stem sections confirmed. The synthetic isatate is more effective than isatin in both systems. This suggests that the auxin activity of isatin is due to its conversion to isatate. PMID:16656429

  8. The Effects of Allium sativum Extracts on Biofilm Formation and Activities of Six Pathogenic Bacteria

    PubMed Central

    Mohsenipour, Zeinab; Hassanshahian, Mehdi

    2015-01-01

    Background: Garlic is considered a rich source of many compounds, which shows antimicrobial effects. The ability of microorganisms to adhere to both biotic and abiotic surfaces and to form biofilm is responsible for a number of diseases of chronic nature, demonstrating extremely high resistance to antibiotics. Bacterial biofilms are complex communities of sessile microorganisms, embedded in an extracellular matrix and irreversibly attached to various surfaces. Objectives: The present study evaluated the antimicrobial activity of Allium sativum extract against the biofilms of six pathogenic bacteria and their free-living forms. The clinical isolates in this study had not been studied in any other studies, especially in regard to biofilm disruption and inhibition of biofilm cell metabolic activity. Materials and Methods: Antimicrobial activities of A. sativum L. extracts (methanol and ethanol extracts) against planktonic forms of bacteria were determined using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values were evaluated by a macrobroth dilution technique. The anti-biofilm effects were assessed by microtiter plate method. Results: The results showed that the A. sativum L. extract discs did not have any zone of inhibition for the tested bacteria. However, The MIC values of A. sativum L. extracts (0.078 - 2.5 mg/mL) confirmed the high ability of these extracts for inhibition of planktonic bacteria. A. sativum L. extracts were efficient to inhibit biofilm structures and the concentration of each extract had a direct relation with the inhibitory effect. Conclusions: Finally, it can be suggested that the extracts of this plant be applied as antimicrobial agents against these pathogens, particularly in biofilm forms. PMID:26464762

  9. Assessment of the potential of Allium sativum oil as a new medicament for non-vital pulpotomy of primary teeth

    PubMed Central

    Mohammad, Shukry Gamal; Baroudi, Kusai

    2015-01-01

    Objective: The objective of this study was to compare the clinical and radiographic effects of Allium sativum oil and formocresol in nonvital pulpotomy in primary teeth. Materials and Methods: Twenty children ranging in age from 4 to 8 years were included in the study. In every one of those children, pulpotomy was indicated for the primary molars. Pulpotomy procedure was performed and the radicular pulp tissue of one molar was capped with A. sativum oil in a cotton pellet while the other molar was capped with formocresol. The teeth were evaluated clinically and radiographically before and after 6 months using standard clinical and radiographic criteria. Statistically, these results revealed significant difference between the radiographic findings of nonvital pulpotomy in primary molars with the two medicaments. Statistical analysis was performed using independent t-test and paired t-test at the significance level of α = 0.05. Results: A. sativum oil has potent antibacterial properties that enable it to combat intracanal microbes in the infected pulp of primary molars. Better results were obtained when A. sativum oil was used. Conclusion: A. sativum oil had more powerful effects than formocresol on the infected pulp of primary nonvital molars. PMID:26312232

  10. Assessment of the potential of Allium sativum oil as a new medicament for non-vital pulpotomy of primary teeth.

    PubMed

    Mohammad, Shukry Gamal; Baroudi, Kusai

    2015-01-01

    The objective of this study was to compare the clinical and radiographic effects of Allium sativum oil and formocresol in nonvital pulpotomy in primary teeth. Twenty children ranging in age from 4 to 8 years were included in the study. In every one of those children, pulpotomy was indicated for the primary molars. Pulpotomy procedure was performed and the radicular pulp tissue of one molar was capped with A. sativum oil in a cotton pellet while the other molar was capped with formocresol. The teeth were evaluated clinically and radiographically before and after 6 months using standard clinical and radiographic criteria. Statistically, these results revealed significant difference between the radiographic findings of nonvital pulpotomy in primary molars with the two medicaments. Statistical analysis was performed using independent t-test and paired t-test at the significance level of α = 0.05. A. sativum oil has potent antibacterial properties that enable it to combat intracanal microbes in the infected pulp of primary molars. Better results were obtained when A. sativum oil was used. A. sativum oil had more powerful effects than formocresol on the infected pulp of primary nonvital molars.

  11. De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing.

    PubMed

    Sun, Xiudong; Zhou, Shumei; Meng, Fanlu; Liu, Shiqi

    2012-10-01

    Garlic is widely used as a spice throughout the world for the culinary value of its flavor and aroma, which are created by the chemical transformation of a series of organic sulfur compounds. To analyze the transcriptome of Allium sativum and discover the genes involved in sulfur metabolism, cDNAs derived from the total RNA of Allium sativum buds were analyzed by Illumina sequencing. Approximately 26.67 million 90 bp paired-end clean reads were achieved in two libraries. A total of 127,933 unigenes were generated by de novo assembly and were compared with the sequences in public databases. Of these, 45,286 unigenes had significant hits to the sequences in the Nr database, 29,514 showed significant similarity to known proteins in the Swiss-Prot database and, 20,706 and 21,952 unigenes had significant similarity to existing sequences in the KEGG and COG databases, respectively. Moreover, genes involved in organic sulfur biosynthesis were identified. These unigenes data will provide the foundation for research on gene expression, genomics and functional genomics in Allium sativum. Key message The obtained unigenes will provide the foundation for research on functional genomics in Allium sativum and its closely related species, and fill the gap of the existing plant EST database.

  12. Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba.

    PubMed

    Unyayar, Serpil; Celik, Ayla; Cekiç, F Ozlem; Gözel, Aysin

    2006-01-01

    Cadmium (Cd) is one of the most toxic environmental pollutants affecting cytogenetically the various organisms. The cytogenetic damage in root tip cells exposed to cadmium nitrate (CdNO3) solutions at four different concentrations (1, 10, 100 and 200 microM) was evaluated with biological tests based on micronucleus (MN) assay in two plant species, Allium sativum and Vicia faba. Additionally to the cytogenetic analysis, lipid peroxidation analyses were performed in both A.sativum and V.faba roots. Cd enhanced the MN frequency in both A.sativum and V.faba root tip cells, but no dose-dependent. Induction of MN is not depending on CdNO3 concentrations. Besides, high concentrations of Cd decreased the mitotic index and caused the delay in mitosis stages in both plants, mainly in V.faba. On the other hand, lipid peroxidation was significantly enhanced with external Cd in V.faba. The results clearly indicate that high concentrations of cadmium induce the lipid peroxidation resulting in oxidative stress that may contribute to the genotoxicity and cytotoxicity of Cd ions.

  13. Mechanisms of Hormone Action

    PubMed Central

    Abeles, F. B.; Ruth, J. M.; Forrence, L. E.; Leather, G. R.

    1972-01-01

    We observed no exchange between deuterated ethylene (C2D4) and the hydrogen of pea seedlings (Pisum sativum L. cv. Alaska). This suggests that bonding forces in which exchange could readily occur are not important in the physiological action of ethylene. Deuterated ethylene was just as effective as normal ethylene in inhibiting the growth of pea root sections. These results indicate that splitting carbon to hydrogen bonds did not occur during ethylene action. PMID:16658026

  14. Dickeya dadantii, a Plant Pathogenic Bacterium Producing Cyt-Like Entomotoxins, Causes Septicemia in the Pea Aphid Acyrthosiphon pisum

    PubMed Central

    Condemine, Guy; Rahbé, Yvan

    2012-01-01

    Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 108 cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria. PMID:22292023

  15. Dickeya dadantii, a plant pathogenic bacterium producing Cyt-like entomotoxins, causes septicemia in the pea aphid Acyrthosiphon pisum.

    PubMed

    Costechareyre, Denis; Balmand, Séverine; Condemine, Guy; Rahbé, Yvan

    2012-01-01

    Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 10(8) cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria.

  16. In vitro and in vivo Nematocidal Activity of Allium sativum and Tagetes erecta Extracts Against Haemonchus contortus.

    PubMed

    Palacio- Landín, Josefina; Mendoza-de Gives, Pedro; Salinas-Sánchez, David Osvaldo; López-Arellano, María Eugenia; Liébano-Hernández, Enrique; Hernández-Velázquez, Victor Manuel; Valladares-Cisneros, María Guadalupe

    2015-12-01

    In the Mexican ethno-medicine, a number of plants have shown a successful anthelmintic activity. This fact could be crucial to identify possible green anti-parasitic strategies against nematodes affecting animal production. This research evaluated the in vitro and in vivo nematocidal effects of two single and combined plant extracts: bulbs of Allium sativum (n-hexane) and flowers of Tagetes erecta (acetone). The in vivo assay evaluated the administration of extracts either individually or combined against Haemonchus contortus in experimentally infected gerbils. The in vitro larvicidal activity percentage (LAP) of A. sativum and T. erecta extracts against H. contortus (L3) was determined by means of individual and combined usage of the extracts. Similarly, the extracts were evaluated in terms of reduction in the parasitic population in gerbils infected with H. contortus by individual and combined usage. The LAP at 40 mg/mL was 68% with A. sativum and 36.6% with T. erecta. The combination caused 83.3% mortality of parasites. The oral administration of A. sativum and T. erecta extracts at 40 mg/mL, caused 68.7% and 53.9% reduction of the parasitic burden, respectively. Meanwhile, the combined effect of both extracts shown 87.5% reduction. This study showed evidence about the effect of A. sativum and T. erecta plant extracts by means of individual and combined usage against H. contortus in in vitro and in vivo bioassays in artificially H. contortus-infected gerbils as a model.

  17. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats

    PubMed Central

    Anaeigoudari, Akbar; Hosseini, Mahmoud; Karami, Reza; Vafaee, Farzaneh; Mohammadpour, Toktam; Ghorbani, Ahmad; Sadeghnia, Hamid Reza

    2016-01-01

    Objective: In the present work, the effects of different fractions of Coriandrum sativum (C. sativum), on pentylenetetrazole (PTZ)-induced seizures and brain tissues oxidative damage were investigated in rats. Materials and Methods: The rats were divided into the following groups: (1) vehicle, (2) PTZ (90 mg/kg), (3) water fraction (WF) of C. sativum (25 and 100 mg/kg), (4) n-butanol fraction (NBF) of C. sativum (25 and 100 mg/kg), and (5) ethyl acetate fraction (EAF) of C. sativum (25 and 100 mg/kg). Results: The first generalized tonic-clonic seizures (GTCS) latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (p<0.01). In contrast to WF, the EAF and NBF were not effective in increasing the first minimal clonic seizure (MCS) latency. Malondialdehyde (MDA) levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of control animals (p<0.001). Pretreatment with WF, NBF, or EAF resulted in a significant reduction in the MDA levels of hippocampi (p<0.01 - p<0.001). Following PTZ administration, a significant reduction in total thiol groups was observed in the brain tissues (p<0.05). Pretreatment with WF and NBF significantly elevated thiol concentrations in cortical and hippocampal tissues, respectively (p<0.05). Conclusion: The present study showed that different fractions of C. sativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects. PMID:27222836

  18. Protective Effects of Quercetin against Dimethoate-Induced Cytotoxicity and Genotoxicity in Allium sativum Test

    PubMed Central

    Ahmad, Waseem; Shaikh, Sibhghatulla; Nazam, Nazia; Lone, Mohammad Iqbal

    2014-01-01

    The present investigation was directed to study the possible protective activity of quercetin—a natural antioxidant against dimethoate-induced cyto- and genotoxicity in meristematic cells of Allium sativum. So far there is no report on the biological properties of quercetin in plant test systems. Chromosome breaks, multipolar anaphase, stick chromosome, and mitotic activity were undertaken in the current study as markers of cyto- and genotoxicity. Untreated control, quercetin controls (@ 5, 10 and 20 μg/mL for 3 h), and dimethoate exposed groups (@ 100 and 200 μg/mL for 3 h) were maintained. For protection against cytogenotoxicity, the root tip cells treated with dimethoate at 100 and 200 μg/mL for 3 h and quercetin treatment at 5, 10, and 20 μg/mL for 16 h, prior to dimethoate treatment, were undertaken. Quercetin was found to be neither cytotoxic nor genotoxic in Allium sativum control at these doses. A significant increase (P < 0.05) in chromosomal aberrations was noted in dimethoate treated Allium. Pretreatment of Allium sativum with quercetin significantly (P < 0.05) reduced dimethoate-induced genotoxicity and cytotoxicity in meristematic cells, and these effects were dose dependent. In conclusion, quercetin has a protective role in the abatement of dimethoate-induced cyto- and genotoxicity in the meristematic cells of Allium sativum that resides, at least in part, on its antioxidant effects. PMID:27379342

  19. Protective Effects of Quercetin against Dimethoate-Induced Cytotoxicity and Genotoxicity in Allium sativum Test.

    PubMed

    Ahmad, Waseem; Shaikh, Sibhghatulla; Nazam, Nazia; Lone, Mohammad Iqbal

    2014-01-01

    The present investigation was directed to study the possible protective activity of quercetin-a natural antioxidant against dimethoate-induced cyto- and genotoxicity in meristematic cells of Allium sativum. So far there is no report on the biological properties of quercetin in plant test systems. Chromosome breaks, multipolar anaphase, stick chromosome, and mitotic activity were undertaken in the current study as markers of cyto- and genotoxicity. Untreated control, quercetin controls (@ 5, 10 and 20 μg/mL for 3 h), and dimethoate exposed groups (@ 100 and 200 μg/mL for 3 h) were maintained. For protection against cytogenotoxicity, the root tip cells treated with dimethoate at 100 and 200 μg/mL for 3 h and quercetin treatment at 5, 10, and 20 μg/mL for 16 h, prior to dimethoate treatment, were undertaken. Quercetin was found to be neither cytotoxic nor genotoxic in Allium sativum control at these doses. A significant increase (P < 0.05) in chromosomal aberrations was noted in dimethoate treated Allium. Pretreatment of Allium sativum with quercetin significantly (P < 0.05) reduced dimethoate-induced genotoxicity and cytotoxicity in meristematic cells, and these effects were dose dependent. In conclusion, quercetin has a protective role in the abatement of dimethoate-induced cyto- and genotoxicity in the meristematic cells of Allium sativum that resides, at least in part, on its antioxidant effects.

  20. In vitro and in vivo anthelmintic activity of seed extract of Coriandrum sativum compared to Niclosamid against Hymenolepis nana infection.

    PubMed

    Hosseinzadeh, Samaneh; Ghalesefidi, Maryam Jamshidian; Azami, Mehdi; Mohaghegh, Mohammad Ali; Hejazi, Seyed Hossein; Ghomashlooyan, Mohsen

    2016-12-01

    Phytotherapy can be an alternative for the control of gastrointestinal parasites in human and animals. Coriander ( Coriandrum sativum L.) is a medicinal plant which grown as a spice crop all over the world. The seeds of this plant have been used to treat parasitic disease, indigestion, diabetes, rheumatism and pain in the joints. This study was carried out to compare the efficacy of Niclosamid and alcoholic seed extract of C. sativum on Hymenolepis nana infection, in vivo and vitro. For in vivo study, Balb/c mice were used, to compare the efficacy of 50 mg/kg body weight (B.W) of Niclosamid with different doses of alcoholic extracts of C. sativum (250, 500, and 750 mg/kg B.W). It was found that the efficacy of Niclosamid had reached 100 % after 11 days post treatment, while the efficacy of 500 and 750 mg/kg B.W of C. sativum reached to 100 % after 15 days after treatment. For in vitro study, special nutrient broth media was used. It was found that the addition of 1000 mg/ml of Niclosamid had paralyzed and killed worms within 5 min, while C. sativum killed them within 30 min. Our results showed that extract of C. sativum has good effect against H. nana and could be use in traditional medicine for treatment of parasitic disease.

  1. A High-Density Integrated DArTseq SNP-Based Genetic Map of Pisum fulvum and Identification of QTLs Controlling Rust Resistance

    PubMed Central

    Barilli, Eleonora; Cobos, María J.; Carrillo, Estefanía; Kilian, Andrzej; Carling, Jason; Rubiales, Diego

    2018-01-01

    Pisum fulvum, a wild relative of pea is an important source of allelic diversity to improve the genetic resistance of cultivated species against fungal diseases of economic importance like the pea rust caused by Uromyces pisi. To unravel the genetic control underlying resistance to this fungal disease, a recombinant inbred line (RIL) population was generated from a cross between two P. fulvum accessions, IFPI3260 and IFPI3251, and genotyped using Diversity Arrays Technology. A total of 9,569 high-quality DArT-Seq and 8,514 SNPs markers were generated. Finally, a total of 12,058 markers were assembled into seven linkage groups, equivalent to the number of haploid chromosomes of P. fulvum and P. sativum. The newly constructed integrated genetic linkage map of P. fulvum covered an accumulated distance of 1,877.45 cM, an average density of 1.19 markers cM−1 and an average distance between adjacent markers of 1.85 cM. The composite interval mapping revealed three QTLs distributed over two linkage groups that were associated with the percentage of rust disease severity (DS%). QTLs UpDSII and UpDSIV were located in the LGs II and IV respectively and were consistently identified both in adult plants over 3 years at the field (Córdoba, Spain) and in seedling plants under controlled conditions. Whenever they were detected, their contribution to the total phenotypic variance varied between 19.8 and 29.2. A third QTL (UpDSIV.2) was also located in the LGIVand was environmentally specific as was only detected for DS % in seedlings under controlled conditions. It accounted more than 14% of the phenotypic variation studied. Taking together the data obtained in the study, it could be concluded that the expression of resistance to fungal diseases in P. fulvum originates from the resistant parent IFPI3260. PMID:29497430

  2. Histological Evaluation of Allium sativum Oil as a New Medicament for Pulp Treatment of Permanent Teeth.

    PubMed

    Mohammad, Shukry Gamal; Raheel, Syed Ahmed; Baroudi, Kusai

    2015-02-01

    The objective of this study was to evaluate the histo pathology effects of two medicaments Allium sativum oil and formocresol on the remaining pulp tissue of the permanent teething children. A total of 18 premolars were included in this study. Two sound premolars were extracted and subjected to histological examination to show the normal pulp tissue. Pulpo tomy procedure was performed in the rest of the remaining 16 premolars; half of them using Allium sativum oil and the rest of the tested premolars were medicated using formocresol and all were sealed with suitable restoration. Then, premolars extracted at variable intervals (48 hours, 2 weeks, 1 month, 2 months), stained using hemotoxylin and eosin etain (H&E) and prepared for histopathology examination. Histological evaluation seemed far more promising for Allium sativum oil than formocresol. Histological evaluation revealed that teeth treated with Allium sativa oil showed infammatory changes that had been resolved in the end of the study. On the contrary, the severe chronic infammation of pulp tissue accompanied with formocresol eventually produced pulp necrosis with or without fibrosis. In addition, pulp calcification was evidenced in certain cases. Allium sativum oil is a biocompatible material that is compatible with vital human pulp tissue. It offers a good healing potential, leaving the remaining pulp tissue healthy and functioning.

  3. Stomatal VPD Response: There Is More to the Story Than ABA.

    PubMed

    Merilo, Ebe; Yarmolinsky, Dmitry; Jalakas, Pirko; Parik, Helen; Tulva, Ingmar; Rasulov, Bakhtier; Kilk, Kalle; Kollist, Hannes

    2018-01-01

    Guard cells shrink and close stomatal pores when air humidity decreases (i.e. when the difference between the vapor pressures of leaf and atmosphere [VPD] increases). The role of abscisic acid (ABA) in VPD-induced stomatal closure has been studied using ABA-related mutants that respond to VPD in some studies and not in others. The importance of ABA biosynthesis in guard cells versus vasculature for whole-plant stomatal regulation is unclear as well. Here, we show that Arabidopsis ( Arabidopsis thaliana ) lines carrying mutations in different steps of ABA biosynthesis as well as pea ( Pisum sativum ) wilty and tomato ( Solanum lycopersicum ) flacca ABA-deficient mutants had higher stomatal conductance compared with wild-type plants. To characterize the role of ABA production in different cells, we generated transgenic plants where ABA biosynthesis was rescued in guard cells or phloem companion cells of an ABA-deficient mutant. In both cases, the whole-plant stomatal conductance, stunted growth phenotype, and leaf ABA level were restored to wild-type values, pointing to the redundancy of ABA sources and to the effectiveness of leaf ABA transport. All ABA-deficient lines closed their stomata rapidly and extensively in response to high VPD, whereas plants with mutated protein kinase OST1 showed stunted VPD-induced responses. Another strongly ABA-insensitive mutant, defective in the six ABA PYR/RCAR receptors, responded to changes in VPD in both directions strongly and symmetrically, indicating that its VPD-induced closure could be passive hydraulic. We discuss that both the VPD-induced passive hydraulic stomatal closure and the stomatal VPD regulation of ABA-deficient mutants may be conditional on the initial pretreatment stomatal conductance. © 2018 American Society of Plant Biologists. All Rights Reserved.

  4. Anticancer activity of Petroselinum sativum seed extracts on MCF-7 human breast cancer cells.

    PubMed

    Farshori, Nida Nayyar; Al-Sheddi, Ebtesam Saad; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2013-01-01

    Pharmacological and preventive properties of Petroselinum sativum seed extracts are well known, but the anticancer activity of alcoholic extracts and oil of Petroselinum sativum seeds on human breast cancer cells have not been explored so far. Therefore, the present study was designed to investigate the cytotoxic activities of these extracts against MCF-7 cells. Cells were exposed to 10 to 1000 μg/ml of alcoholic seed extract (PSA) and seed oil (PSO) of Petroselinum sativum for 24 h. Post-treatment, percent cell viability was studied by 3-(4, 5-dimethylthiazol-2yl)-2, 5-biphenyl tetrazolium bromide (MTT) and neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed that PSA and PSO significantly reduced cell viability, and altered the cellular morphology of MCF-7 cells in a concentration dependent manner. Concentrations of 50 μg/ml and above of PSA and 100 μg/ml and above of PSO were found to be cytotoxic in MCF-7 cells. Cell viability at 50, 100, 250, 500 and 1000 μg/ml of PSA was recorded as 81%, 57%, 33%, 8% and 5%, respectively, whereas at 100, 250, 500, and 1000 μg/ml of PSO values were 90%, 78%, 62%, and 8%, respectively by MTT assay. MCF-7 cells exposed to 250, 500 and 1000 μg/ml of PSA and PSO lost their typical morphology and appeared smaller in size. The data revealed that the treatment with PSA and PSO of Petroselinum sativum induced cell death in MCF-7 cells.

  5. Pea aphid infestation induces changes in flavonoids, antioxidative defence, soluble sugars and sugar transporter expression in leaves of pea seedlings.

    PubMed

    Morkunas, Iwona; Woźniak, Agnieszka; Formela, Magda; Mai, Van Chung; Marczak, Łukasz; Narożna, Dorota; Borowiak-Sobkowiak, Beata; Kühn, Christina; Grimm, Bernhard

    2016-07-01

    The perception of aphid infestation induces highly coordinated and sequential defensive reactions in plants at the cellular and molecular levels. The aim of the study was to explore kinetics of induced antioxidative defence responses in leaf cells of Pisum sativum L.cv. Cysterski upon infestation of the pea aphid Acyrthosiphon pisum at varying population sizes, including accumulation of flavonoids, changes of carbon metabolism, and expression of nuclear genes involved in sugar transport. Within the first 96 h, after A. pisum infestation, flavonoid accumulation and increased peroxidase activity were observed in leaves. The level of pisatin increased after 48 h of infestation and reached a maximum at 96 h. At this time point, a higher concentration of flavonols was observed in the infested tissue than in the control. Additionally, strong post-infestation accumulation of chalcone synthase (CHS) and isoflavone synthase (IFS) transcription products was also found. The levels of sucrose and fructose in 24-h leaves infested by 10, 20, and 30 aphids were significantly lower than in the control. Moreover, in leaves infested by 30 aphids, the reduced sucrose level observed up to 48 h was accompanied by a considerable increase in the expression level of the PsSUT1 gene encoding the sucrose transporter. In conclusion, A. pisum infestation on pea leads to stimulation of metabolic pathways associated with defence.

  6. Micromonospora luteifusca sp. nov. isolated from cultivated Pisum sativum.

    PubMed

    Carro, Lorena; Riesco, Raúl; Spröer, Cathrin; Trujillo, Martha E

    2016-06-01

    Three novel actinobacterial strains, GUI2(T), GUI42 and CR21 isolated from nodular tissues and the rhizosphere of a sweet pea plant collected in Cañizal, Spain were identified according to their 16S rRNA gene sequences as new members of the genus Micromonospora. The closest phylogenetic members were found to be Micromonospora saelicesensis (99.2%) "Micromonospora zeae" (99.1%), "Micromonospora jinlongensis" (99%), Micromonospora lupini (98.9%) and Micromonospora zamorensis (98.8%). To resolve their full taxonomic position, four additional genes (atpD, gyrB, recA, rpoB) were partially sequenced and compared to available Micromonospora type strain sequences. DNA-DNA hybridization, BOX-PCR and ARDRA profiles confirmed that these strains represent a novel genomic species. All strains contained meso-diaminopimelic and hydroxy-diaminopimelic acids in their cell wall. Their fatty acid profiles comprised iso-C15:0, iso-C16:0 and anteiso-C15:0 as major components. The polar lipids diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol were found in the type strain GUI2(T) which also contained MK-10(H4) as the major menaquinone. Physiological and biochemical characteristics also differentiated the new isolates. Based on the integration of the above studies, strains GUI2(T), GUI42 and CR21 represent a novel Micromonospora species and we propose the name Micromonospora luteifusca sp. nov. The type strain is GUI2(T) (=CECT 8846(T); =DSM 100204(T)). Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. CELL POPULATION KINETICS OF EXCISED ROOTS OF PISUM SATIVUM

    PubMed Central

    Van't Hof, Jack

    1965-01-01

    The cell population kinetics of excised, cultured pea roots was studied with the use of tritiated thymidine and colchicine to determine (1) the influence of excision, (2) the influence of sucrose concentration, (3) the average mitotic cycle duration, and (4) the duration of mitosis and the G 1, S, and G 2 periods of interphase.1 The results indicate that the process of excision causes a drop in the frequency of mitotic figures when performed either at the beginning of the culture period or after 100 hours in culture. This initial decrease in frequency of cell division is independent of sucrose concentration, but the subsequent rise in frequency of division, after 12 hours in culture, is dependent upon sucrose concentration. Two per cent sucrose maintains the shortest mitotic cycle duration. The use of colchicine indicated an average cycle duration of 20 hours, whereas the use of tritiated thymidine produced an average cycle duration of 17 hours. PMID:5857253

  8. The Influence of Lead on Generation of Signalling Molecules and Accumulation of Flavonoids in Pea Seedlings in Response to Pea Aphid Infestation.

    PubMed

    Woźniak, Agnieszka; Drzewiecka, Kinga; Kęsy, Jacek; Marczak, Łukasz; Narożna, Dorota; Grobela, Marcin; Motała, Rafał; Bocianowski, Jan; Morkunas, Iwona

    2017-08-24

    The aim of this study was to investigate the effect of an abiotic factor, i.e., lead at various concentrations (low causing a hormesis effect and causing high toxicity effects), on the generation of signalling molecules in pea ( Pisum sativum L. cv. Cysterski) seedlings and then during infestation by the pea aphid ( Acyrthosiphon pisum Harris). The second objective was to verify whether the presence of lead in pea seedling organs and induction of signalling pathways dependent on the concentration of this metal trigger defense responses to A. pisum . Therefore, the profile of flavonoids and expression levels of genes encoding enzymes of the flavonoid biosynthesis pathway (phenylalanine ammonialyase and chalcone synthase) were determined. A significant accumulation of total salicylic acid (TSA) and abscisic acid (ABA) was recorded in the roots and leaves of pea seedlings growing on lead-supplemented medium and next during infestation by aphids. Increased generation of these phytohormones strongly enhanced the biosynthesis of flavonoids, including a phytoalexin, pisatin. This research provides insights into the cross-talk between the abiotic (lead) and biotic factor (aphid infestation) on the level of the generation of signalling molecules and their role in the induction of flavonoid biosynthesis.

  9. Coriandrum sativum: evaluation of its anxiolytic effect in the elevated plus-maze.

    PubMed

    Emamghoreishi, Masoumeh; Khasaki, Mohammad; Aazam, Maryam Fath

    2005-01-15

    The clinical applications of benzodiazepines as anxiolytics are limited by their unwanted side effects. Therefore, the development of new pharmacological agents is well justified. Among medicinal plants, Coriandrum sativum L. has been recommended for relief of anxiety and insomnia in Iranian folk medicine. Nevertheless, no pharmacological studies have thus far evaluated its effects on central nervous system. Therefore, the aim of this study was to examine if the aqueous extract of Coriandrum sativum seed has anxiolytic effect in mice. Additionally, its effect on spontaneous activity and neuromuscular coordination were evaluated. The anxiolytic effect of aqueous extract (10, 25, 50, 100 mg/kg, i.p.) was examined in male albino mice using elevated plus-maze as an animal model of anxiety. The effects of the extract on spontaneous activity and neuromuscular coordination were assessed using Animex Activity Meter and rotarod, respectively. In the elevated plus-maze, aqueous extract at 100 mg/kg showed an anxiolytic effect by increasing the time spent on open arms and the percentage of open arm entries, compared to control group. Aqueous extract at 50, 100 and 500 mg/kg significantly reduced spontaneous activity and neuromuscular coordination, compared to control group. These results suggest that the aqueous extract of Coriandrum sativum seed has anxiolytic effect and may have potential sedative and muscle relaxant effects.

  10. The Secondary Endosymbiotic Bacterium of the Pea Aphid Acyrthosiphon pisum (Insecta: Homoptera)

    PubMed Central

    Fukatsu, Takema; Nikoh, Naruo; Kawai, Rena; Koga, Ryuichi

    2000-01-01

    The secondary intracellular symbiotic bacterium (S-symbiont) of the pea aphid Acyrthosiphon pisum was investigated to determine its prevalence among strains, its phylogenetic position, its localization in the host insect, its ultrastructure, and the cytology of the endosymbiotic system. A total of 14 aphid strains were examined, and the S-symbiont was detected in 4 Japanese strains by diagnostic PCR. Two types of eubacterial 16S ribosomal DNA sequences were identified in disymbiotic strains; one of these types was obtained from the primary symbiont Buchnera sp., and the other was obtained from the S-symbiont. In situ hybridization and electron microscopy revealed that the S-symbiont was localized not only in the sheath cells but also in a novel type of cells, the secondary mycetocytes (S-mycetocytes), which have not been found previously in A. pisum. The size and shape of the S-symbiont cells were different when we compared the symbionts in the sheath cells and the symbionts in the S-mycetocytes, indicating that the S-symbiont is pleomorphic under different endosymbiotic conditions. Light microscopy, electron microscopy, and diagnostic PCR revealed unequivocally that the hemocoel is also a normal location for the S-symbiont. Occasional disordered localization of S-symbionts was also observed in adult aphids, suggesting that there has been imperfect host-symbiont coadaptation over the short history of coevolution of these organisms. PMID:10877764

  11. Precision assessment of some supervised and unsupervised algorithms for genotype discrimination in the genus Pisum using SSR molecular data.

    PubMed

    Nasiri, Jaber; Naghavi, Mohammad Reza; Kayvanjoo, Amir Hossein; Nasiri, Mojtaba; Ebrahimi, Mansour

    2015-03-07

    For the first time, prediction accuracies of some supervised and unsupervised algorithms were evaluated in an SSR-based DNA fingerprinting study of a pea collection containing 20 cultivars and 57 wild samples. In general, according to the 10 attribute weighting models, the SSR alleles of PEAPHTAP-2 and PSBLOX13.2-1 were the two most important attributes to generate discrimination among eight different species and subspecies of genus Pisum. In addition, K-Medoids unsupervised clustering run on Chi squared dataset exhibited the best prediction accuracy (83.12%), while the lowest accuracy (25.97%) gained as K-Means model ran on FCdb database. Irrespective of some fluctuations, the overall accuracies of tree induction models were significantly high for many algorithms, and the attributes PSBLOX13.2-3 and PEAPHTAP could successfully detach Pisum fulvum accessions and cultivars from the others when two selected decision trees were taken into account. Meanwhile, the other used supervised algorithms exhibited overall reliable accuracies, even though in some rare cases, they gave us low amounts of accuracies. Our results, altogether, demonstrate promising applications of both supervised and unsupervised algorithms to provide suitable data mining tools regarding accurate fingerprinting of different species and subspecies of genus Pisum, as a fundamental priority task in breeding programs of the crop. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Photosynthetic pigments and peroxidase activity of Lepidium sativum L. during assisted Hg phytoextraction.

    PubMed

    Smolinska, Beata; Leszczynska, Joanna

    2017-05-01

    The study was conducted to evaluate metabolic answer of Lepidium sativum L. on Hg, compost, and citric acid during assisted phytoextraction. The chlorophyll a and b contents, total carotenoids, and activity of peroxidase were determined in plants exposed to Hg and soil amendments. Hg accumulation in plant shoots was also investigated. The pot experiments were provided in soil artificially contaminated by Hg and/or supplemented with compost and citric acid. Hg concentration in plant shoots and soil substrates was determined by cold vapor atomic absorption spectroscopy (CV-AAS) method after acid mineralization. The plant photosynthetic pigments and peroxidase activity were measured by standard spectrophotometric methods. The study shows that L. sativum L. accumulated Hg in its aerial tissues. An increase in Hg accumulation was noticed when soil was supplemented with compost and citric acid. Increasing Hg concentration in plant shoots was correlated with enhanced activation of peroxidase activity and changes in total carotenoid concentration. Combined use of compost and citric acid also decreased the chlorophyll a and b contents in plant leaves. Presented study reveals that L. sativum L. is capable of tolerating Hg and its use during phytoextraction assisted by combined use of compost and citric acid lead to decreasing soil contamination by Hg.

  13. Heat shock protein 83 plays pleiotropic roles in embryogenesis, longevity, and fecundity of the pea aphid Acyrthosiphon pisum.

    PubMed

    Will, Torsten; Schmidtberg, Henrike; Skaljac, Marisa; Vilcinskas, Andreas

    2017-01-01

    Heat shock protein 83 (HSP83) is homologous to the chaperone HSP90. It has pleiotropic functions in Drosophila melanogaster, including the control of longevity and fecundity, and facilitates morphological evolution by buffering cryptic deleterious mutations in wild populations. In the pea aphid Acyrthosiphon pisum, HSP83 expression is moderately induced by bacterial infection but upregulated more strongly in response to heat stress and fungal infection. Stress-inducible heat shock proteins are of considerable evolutionary and ecological importance because they are known to buffer environmental variation and to influence fitness under non-optimal conditions. To investigate the functions of HSP83 in viviparous aphids, we used RNA interference to attenuate its expression and studied the impact on complex parameters. The RNA interference (RNAi)-mediated depletion of HSP83 expression in A. pisum reduced both longevity and fecundity, suggesting this chaperone has an evolutionarily conserved function in insects. Surprisingly, HSP83 depletion reduced the number of viviparous offspring while simultaneously increasing the number of premature nymphs developing in the ovaries, suggesting an unexpected role in aphid embryogenesis and eclosion. The present study indicates that reduced HSP83 expression in A. pisum reveals both functional similarities and differences compared with its reported roles in holometabolous insects. Its impact on aphid lifespan, fecundity, and embryogenesis suggests a function that determines their fitness. This could be achieved by targeting different client proteins, recruiting distinct co-chaperones or transposon activation.

  14. Pea VEGETATIVE2 Is an FD Homolog That Is Essential for Flowering and Compound Inflorescence Development

    PubMed Central

    Sussmilch, Frances C.; Berbel, Ana; Hecht, Valérie; Vander Schoor, Jacqueline K.; Ferrándiz, Cristina; Madueño, Francisco; Weller, James L.

    2015-01-01

    As knowledge of the gene networks regulating inflorescence development in Arabidopsis thaliana improves, the current challenge is to characterize this system in different groups of crop species with different inflorescence architecture. Pea (Pisum sativum) has served as a model for development of the compound raceme, characteristic of many legume species, and in this study, we characterize the pea VEGETATIVE2 (VEG2) locus, showing that it is critical for regulation of flowering and inflorescence development and identifying it as a homolog of the bZIP transcription factor FD. Through detailed phenotypic characterizations of veg2 mutants, expression analyses, and the use of protein-protein interaction assays, we find that VEG2 has important roles during each stage of development of the pea compound inflorescence. Our results suggest that VEG2 acts in conjunction with multiple FLOWERING LOCUS T (FT) proteins to regulate expression of downstream target genes, including TERMINAL FLOWER1, LEAFY, and MADS box homologs, and to facilitate cross-regulation within the FT gene family. These findings further extend our understanding of the mechanisms underlying compound inflorescence development in pea and may have wider implications for future manipulation of inflorescence architecture in related legume crop species. PMID:25804541

  15. Protective effect of Allium sativum (garlic) aqueous extract against lead-induced oxidative stress in the rat brain, liver, and kidney.

    PubMed

    Manoj Kumar, V; Henley, A K; Nelson, C J; Indumati, O; Prabhakara Rao, Y; Rajanna, S; Rajanna, B

    2017-01-01

    The present investigation was undertaken to evaluate the ameliorative activity of Allium sativum against lead-induced oxidative stress in the brain, liver, and kidney of male rats. Four groups of male Wistar strain rats (100-120 g) were taken: group 1 received 1000 mg/L sodium acetate and group 2 was given 1000 mg/L lead acetate through drinking water for 2 weeks. Group 3 and 4 were treated with 250 mg/kg body weight/day of A. sativum and 500 mg/kg body weight/day of A. sativum, respectively, by oral intubation for a period of 2 weeks along with lead acetate. The rats were sacrificed after treatment and the brain, liver, and kidney were isolated on ice. In the brain, four important regions namely the hippocampus, cerebellum, cerebral cortex, and brain stem were separated and used for the present investigation. Blood was also drawn by cardiac puncture and preserved in heparinized vials at 4 °C for estimation of delta-aminolevulinic acid dehydratase (ALAD) activity. The results showed a significant (p < 0.05) increase in reactive oxygen species (ROS), lipid peroxidation products (LPP), total protein carbonyl content (TPCC), and lead in the selected brain regions, liver, and kidney of lead-exposed group compared with their respective controls. Blood delta-ALAD activity showed a significant (p < 0.05) decrease in the lead-exposed rats. However, the concomitant administration of A. sativum resulted in tissue-specific recovery of oxidative stress parameters namely ROS, LPP, and TPCC. A. sativum treatment also restored the blood delta-ALAD activity back to control. Overall, our results indicate that A. sativum administration could be an effective antioxidant treatment strategy for lead-induced oxidative insult.

  16. Evaluation of the Susceptibility of the Pea Aphid, Acyrthosiphon pisum, to a Selection of Novel Biorational Insecticides using an Artificial Diet

    PubMed Central

    Sadeghi, Amin; Van Damme, Els J.M.; Smagghe, Guy

    2009-01-01

    An improved technique was developed to assay the toxicity of insecticides against aphids using an artificial diet. The susceptibility of the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphidoidea) was determined for a selection of novel biorational insecticides, each representing a novel mode of action. Flonicamid, a novel systemic insecticide with selective activity as feeding blocker against sucking insects, showed high toxicity against first-instar A. pisum nymphs with an LC50 of 20.4 μg/ml after 24 h, and of 0.24 µg/ml after 72 h. The toxicity was compared with another feeding blocker, pymetrozine, and the neonicotinoid, imidacloprid. In addition, four insect growth regulators were tested. The chitin synthesis inhibitor flufenoxuron, the juvenile hormone analogue pyriproxyfen, and the azadirachtin compound Neem Azal-T/S showed strong effects and reduced the aphid population by 50% after 3 days of treatment at a concentration of 7–9 µg/ml. The ecdysone agonist tested, halofenozide, was less potent. In conclusion, the improved aphid feeding apparatus can be useful as a miniature screening device for insecticides against different aphid pests. The present study demonstrated rapid and strong toxicity of flonicamid, and other biorational insecticides towards A. pisum. PMID:20053120

  17. Clinical and Radiographic Evaluation of Allium sativum Oil as a New Medicament for Vital Pulp Treatment of Primary Teeth.

    PubMed

    Mohammad, Shukry Gamal; Raheel, Syed Ahmed; Baroudi, Kusai

    2014-01-01

    The objective of this study was to compare between the clinical and radiographic effects of Allium sativum oil and those of formocresol in vital pulpotomy in primary teeth. A total of 20 children age ranged from 4 to 8 years were included in the study. In every one of those children, the primary molars indicated for pulpotomy. Pulpotomy procedure was performed, and the radicular pulp tissue of one molar capped with A. sativum oil in a cotton pellet, whereas the other molar capped with formocresol, the teeth evaluated clinically and radiographically before and after 6 months, using standard clinical and radiographical criteria. Statistically, these results revealed no significant difference between the radiographic findings of vital pulpotomy in primary molars with the two medicaments was found. A. sativum oil offers a good healing potential, leaving the remaining pulp tissue healthy and functioning. Vital pulpotomy with allium sativa oil was given raise 90% success rate while that with formocresol was 85%. A. sativum oil is a biocompatible material that is compatible with vital human pulp tissue. It offers a good healing potential, leaving the remaining pulp tissue healthy and functioning.

  18. Histopathological, oxidative damage, biochemical, and genotoxicity alterations in hepatic rats exposed to deltamethrin: modulatory effects of garlic (Allium sativum).

    PubMed

    Ncir, Marwa; Ben Salah, Ghada; Kamoun, Hassen; Makni Ayadi, Fatma; Khabir, Abdelmajid; El Feki, Abdelfattah; Saoudi, Mongi

    2016-06-01

    Deltamethrin is a pesticide widely used as a synthetic pyrethroid. The aim of this study was undertaken to investigate the effects of deltamethrin to induce oxidative stress and changes in biochemical parameters, hepatotoxicity and genotoxicity in female rats following a short-term (30 days) oral exposure and attenuation of these effects by Allium sativum extract. Indeed, Allium sativum is known to be a good antioxidant food resource which helps destroy free radical particles. Our results showed that deltamethrin treatment caused an increase in liver enzyme activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH); and hepatic lipid peroxidation (LPO) level. However, it induced a decrease in activities of hepatic catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (p < 0.01). Allium sativum extract normalized significantly (p < 0.01) the mentioned parameters in deltamethrin-treated rats. For genotoxic evaluation, deltamethrin treatment showed a significant increase in frequencies of micronucleus in bone-marrow cells. Micronucleus formation is an indicator of chromosomal damage which has been increasingly used to detect the genotoxic potential of environmental pests. The present study showed that Allium sativum diminished the adverse effects induced by this synthetic pyrethroid insecticide.

  19. Clinical and Radiographic Evaluation of Allium sativum Oil as a New Medicament for Vital Pulp Treatment of Primary Teeth

    PubMed Central

    Mohammad, Shukry Gamal; Raheel, Syed Ahmed; Baroudi, Kusai

    2014-01-01

    Background: The objective of this study was to compare between the clinical and radiographic effects of Allium sativum oil and those of formocresol in vital pulpotomy in primary teeth. Materials and Methods: A total of 20 children age ranged from 4 to 8 years were included in the study. In every one of those children, the primary molars indicated for pulpotomy. Pulpotomy procedure was performed, and the radicular pulp tissue of one molar capped with A. sativum oil in a cotton pellet, whereas the other molar capped with formocresol, the teeth evaluated clinically and radiographically before and after 6 months, using standard clinical and radiographical criteria. Statistically, these results revealed no significant difference between the radiographic findings of vital pulpotomy in primary molars with the two medicaments was found. Results: A. sativum oil offers a good healing potential, leaving the remaining pulp tissue healthy and functioning. Vital pulpotomy with allium sativa oil was given raise 90% success rate while that with formocresol was 85%. Conclusion: A. sativum oil is a biocompatible material that is compatible with vital human pulp tissue. It offers a good healing potential, leaving the remaining pulp tissue healthy and functioning. PMID:25628480

  20. Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae).

    PubMed

    Benelli, Giovanni; Flamini, Guido; Fiore, Giulia; Cioni, Pier Luigi; Conti, Barbara

    2013-03-01

    The essential oils of many Apiaceae species have been already studied for their insecticidal and repellent properties against insect pests. In this research, the essential oil (EO) extracted from the fruits of Coriandrum sativum L. (Apiaceae) was evaluated for the first time for its larvicidal and repellent activities against the most invasive mosquito worldwide, Aedes albopictus Skuse (Diptera: Culicidae). The chemical composition of C. sativum EO was investigated by gas chromatography with electron impact mass spectrometry analysis. Coriander EO was mainly composed by monoterpene hydrocarbons and oxygenated monoterpenes, with linalool (83.6 %) as the major constituent. C. sativum EO exerted toxic activity against A. albopictus larvae: LC(50) was 421 ppm, while LC(90) was 531.7 ppm. Repellence trials highlighted that C. sativum EO was a good repellent against A. albopictus, also at lower dosages: RD(50) was 0.0001565 μL/cm(2) of skin, while RD(90) was 0.002004 μL/cm(2). At the highest dosage (0.2 μL/cm(2) of skin), the protection time achieved with C. sativum essential oil was higher than 60 min. This study adds knowledge about the chemical composition of C. sativum EO as well as to the larvicidal and repellent activity exerted by this EO against A. albopictus. On this basis, we believe that our findings could be useful for the development of new and safer products against the Asian tiger mosquito.

  1. Effects of Coriandrum sativum Syrup on Migraine: A Randomized, Triple-Blind, Placebo-Controlled Trial

    PubMed Central

    Delavar Kasmaei, Hosein; Ghorbanifar, Zahra; Zayeri, Farid; Minaei, Bagher; Kamali, Seyed Hamid; Rezaeizadeh, Hossein; Amin, Gholamreza; Ghobadi, Ali; Mirzaei, Zohreh

    2016-01-01

    Background: Migraine is one of the most common and debilitating neurological problems. Although numerous preventive drugs are used to treat migraine, their complications are unavoidable. Application of herbal medicine, especially well-known medicinal plants, to treatment of chronic diseases, like migraine, could be effective. Coriandrum sativum L. (C. sativum) fruit is one of the most commonly prescribed herbs in Persian medicine, which has been used to treat headache. Objectives: This study was designed to evaluate the effects of C. sativum syrup on duration, severity and frequency of migraine. Patients and Methods: A total of 68 migraineurs, who had the eligibility criteria, according to international headache society diagnostic criteria, were randomly assigned to intervention group (n = 34) or control group (n = 34). In addition to 500 mg of sodium valproate per day, in intervention group, they received 15 mL of Coriander fruit syrup and 15 mL of placebo syrup, in control group, three times a day, during a month. The subjects were followed for clinical efficacy at weeks 1, 2, 3 and 4. The number of migraine attacks per week, as well as the duration and severity of attacks, were evaluated. Results: Of 68 patients randomized, 66 were included in analysis. The generalized estimating equations analysis showed that the Coriander fruit syrup decreased duration, severity and frequency of migraine, in the intervention group (P < 0.001). To be more precise, the mean migraine duration, severity and frequency, in the intervention group, were 5.7 hours, 3.65 units and about 50% less than control group, respectively. Conclusions: Results of this study showed that C. sativum fruit is efficient in reduction of the duration and frequency of migraine attacks and in diminishing pain degree. PMID:26889386

  2. Biological Properties and Characterization of ASL50 Protein from Aged Allium sativum Bulbs.

    PubMed

    Kumar, Suresh; Jitendra, Kumar; Singh, Kusum; Kapoor, Vaishali; Sinha, Mou; Xess, Immaculata; Das, Satya N; Sharma, Sujata; Singh, Tej P; Dey, Sharmistha

    2015-08-01

    Allium sativum is well known for its medicinal properties. The A. sativum lectin 50 (ASL50, 50 kDa) was isolated from aged A. sativum bulbs and purified by gel filtration chromatography on Sephacryl S-200 column. Agar well diffusion assay were used to evaluate the antimicrobial activity of ASL50 against Candida species and bacteria then minimal inhibitory concentration (MIC) was determined. The lipid A binding to ASL50 was determined by surface plasmon resonance (SPR) technology with varying concentrations. Electron microscopic studies were done to see the mode of action of ASL50 on microbes. It exerted antimicrobial activity against clinical Candida isolates with a MIC of 10-40 μg/ml and clinical Pseudomonas aeruginosa isolates with a MIC of 10-80 μg/ml. The electron microscopic study illustrates that it disrupts the cell membrane of the bacteria and cell wall of fungi. It exhibited antiproliferative activity on oral carcinoma KB cells with an IC50 of 36 μg/ml after treatment for 48 h and induces the apoptosis of cancer cells by inducing 2.5-fold higher caspase enzyme activity than untreated cells. However, it has no cytotoxic effects towards HEK 293 cells as well as human erythrocytes even at higher concentration of ASL50. Biological properties of ASL50 may have its therapeutic significance in aiding infection and cancer treatments.

  3. Characterization of two brassinosteroid C-6 oxidase genes in pea.

    PubMed

    Jager, Corinne E; Symons, Gregory M; Nomura, Takahito; Yamada, Yumiko; Smith, Jennifer J; Yamaguchi, Shinjiro; Kamiya, Yuji; Weller, James L; Yokota, Takao; Reid, James B

    2007-04-01

    C-6 oxidation genes play a key role in the regulation of biologically active brassinosteroid (BR) levels in the plant. They control BR activation, which involves the C-6 oxidation of 6-deoxocastasterone (6-DeoxoCS) to castasterone (CS) and in some cases the further conversion of CS to brassinolide (BL). C-6 oxidation is controlled by the CYP85A family of cytochrome P450s, and to date, two CYP85As have been isolated in tomato (Solanum lycopersicum), two in Arabidopsis (Arabidopsis thaliana), one in rice (Oryza sativa), and one in grape (Vitis vinifera). We have now isolated two CYP85As (CYP85A1 and CYP85A6) from pea (Pisum sativum). However, unlike Arabidopsis and tomato, which both contain one BR C-6 oxidase that converts 6-DeoxoCS to CS and one BR C-6 Baeyer-Villiger oxidase that converts 6-DeoxoCS right through to BL, the two BR C-6 oxidases in pea both act principally to convert 6-DeoxoCS to CS. The isolation of these two BR C-6 oxidation genes in pea highlights the species-specific differences associated with C-6 oxidation. In addition, we have isolated a novel BR-deficient mutant, lke, which blocks the function of one of these two BR C-6 oxidases (CYP85A6). The lke mutant exhibits a phenotype intermediate between wild-type plants and previously characterized pea BR mutants (lk, lka, and lkb) and contains reduced levels of CS and increased levels of 6-DeoxoCS. To date, lke is the only mutant identified in pea that blocks the latter steps of BR biosynthesis and it will therefore provide an excellent tool to further examine the regulation of BR biosynthesis and the relative biological activities of CS and BL in pea.

  4. Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase.

    PubMed

    Ma, Xianyue; Cline, Kenneth

    2013-03-01

    Twin arginine translocation (Tat) systems of thylakoid and bacterial membranes transport folded proteins using the proton gradient as the sole energy source. Tat substrates have hydrophobic signal peptides with an essential twin arginine (RR) recognition motif. The multispanning cpTatC plays a central role in Tat operation: It binds the signal peptide, directs translocase assembly, and may facilitate translocation. An in vitro assay with pea (Pisum sativum) chloroplasts was developed to conduct mutagenesis and analysis of cpTatC functions. Ala scanning mutagenesis identified mutants defective in substrate binding and receptor complex assembly. Mutations in the N terminus (S1) and first stromal loop (S2) caused specific defects in signal peptide recognition. Cys matching between substrate and imported cpTatC confirmed that S1 and S2 directly and specifically bind the RR proximal region of the signal peptide. Mutations in four lumen-proximal regions of cpTatC were defective in receptor complex assembly. Copurification and Cys matching analyses suggest that several of the lumen proximal regions may be important for cpTatC-cpTatC interactions. Surprisingly, RR binding domains of adjacent cpTatCs directed strong cpTatC-cpTatC cross-linking. This suggests clustering of binding sites on the multivalent receptor complex and explains the ability of Tat to transport cross-linked multimers. Transport of substrate proteins cross-linked to the signal peptide binding site tentatively identified mutants impaired in the translocation step.

  5. Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea.

    PubMed

    Triques, Karine; Sturbois, Bénédicte; Gallais, Stéphane; Dalmais, Marion; Chauvin, Stéphanie; Clepet, Christian; Aubourg, Sébastien; Rameau, Catherine; Caboche, Michel; Bendahmane, Abdelhafid

    2007-09-01

    Scanning DNA sequences for mutations and polymorphisms has become one of the most challenging, often expensive and time-consuming obstacles in many molecular genetic applications, including reverse genetic and clinical diagnostic applications. Enzymatic mutation detection methods are based on the cleavage of heteroduplex DNA at the mismatch sites. These methods are often limited by the availability of a mismatch-specific endonuclease, their sensitivity in detecting one allele in a pool of DNA and their costs. Here, we present detailed biochemical analysis of five Arabidopsis putative mismatch-specific endonucleases. One of them, ENDO1, is presented as the first endonuclease that recognizes and cleaves all types of mismatches with high efficiency. We report on a very simple protocol for the expression and purification of ENDO1. The ENDO1 system could be exploited in a wide range of mutation diagnostic tools. In particular, we report the use of ENDO1 for discovery of point mutations in the gibberellin 3beta-hydrolase gene of Pisum sativum. Twenty-one independent mutants were isolated, five of these were characterized and two new mutations affecting internodes length were identified. To further evaluate the quality of the mutant population we screened for mutations in four other genes and identified 5-21 new alleles per target. Based on the frequency of the obtained alleles we concluded that the pea population described here would be suitable for use in a large reverse-genetics project.

  6. Molecular requirements for the insecticidal activity of the plant peptide pea albumin 1 subunit b (PA1b).

    PubMed

    Da Silva, Pedro; Rahioui, Isabelle; Laugier, Christian; Jouvensal, Laurence; Meudal, Hervé; Chouabe, Christophe; Delmas, Agnès F; Gressent, Frédéric

    2010-10-22

    PA1b (pea albumin 1, subunit b) is a small and compact 37-amino acid protein, isolated from pea seeds (Pisum sativum), that adopts a cystine knot fold. It acts as a potent insecticidal agent against major pests in stored crops and vegetables, making it a promising bioinsecticide. Here, we investigate the influence of individual residues on the structure and bioactivity of PA1b. A collection of 13 PA1b mutants was successfully chemically synthesized in which the residues involved in the definition of PA1b amphiphilic and electrostatic characteristics were individually replaced with an alanine. The three-dimensional structure of PA1b was outstandingly tolerant of modifications. Remarkably, receptor binding and insecticidal activities were both dependent on common well defined clusters of residues located on one single face of the toxin, with Phe-10, Arg-21, Ile-23, and Leu-27 being key residues of the binding interaction. The inactivity of the mutants is clearly due to a change in the nature of the side chain rather than to a side effect, such as misfolding or degradation of the peptide, in the insect digestive tract. We have shown that a hydrophobic patch is the putative site of the interaction of PA1b with its binding site. Overall, the mutagenesis data provide major insights into the functional elements responsible for PA1b entomotoxic properties and give some clues toward a better understanding of the PA1b mode of action.

  7. ABI5 Is a Regulator of Seed Maturation and Longevity in Legumes

    PubMed Central

    Zinsmeister, Julia; Lalanne, David; Terrasson, Emmanuel; Chatelain, Emilie; Vandecasteele, Céline; Vu, Benoit Ly; Gutbrod, Katharina; Dörmann, Peter; Bendahmane, Abdelhafid

    2016-01-01

    The preservation of our genetic resources and production of high-quality seeds depends on their ability to remain viable and vigorous during storage. In a quantitative trait locus analysis on seed longevity in Medicago truncatula, we identified the bZIP transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5). Characterization of Mt-abi5 insertion mutant seeds revealed that both the acquisition of longevity and dormancy were severely impaired. Using transcriptomes of developing Mt-abi5 seeds, we created a gene coexpression network and revealed ABI5 as a regulator of gene modules with functions related to raffinose family oligosaccharide (RFO) metabolism, late embryogenesis abundant (LEA) proteins, and photosynthesis-associated nuclear genes (PhANGs). Lower RFO contents in Mt-abi5 seeds were linked to the regulation of SEED IMBIBITION PROTEIN1. Proteomic analysis confirmed that a set of LEA polypeptides was reduced in mature Mt-abi5 seeds, whereas the absence of repression of PhANG in mature Mt-abi5 seeds was accompanied by chlorophyll and carotenoid retention. This resulted in a stress response in Mt-abi5 seeds, evident from an increase in α-tocopherol and upregulation of genes related to programmed cell death and protein folding. Characterization of abi5 mutants in a second legume species, pea (Pisum sativum), confirmed a role for ABI5 in the regulation of longevity, seed degreening, and RFO accumulation, identifying ABI5 as a prominent regulator of late seed maturation in legumes. PMID:27956585

  8. Biological activities of Allium sativum and Zingiber officinale extracts on clinically important bacterial pathogens, their phytochemical and FT-IR spectroscopic analysis.

    PubMed

    Awan, Uzma Azeem; Ali, Shaukat; Shahnawaz, Amna Mir; Shafique, Irsa; Zafar, Atiya; Khan, Muhammad Abdul Rauf; Ghous, Tahseen; Saleem, Azhar; Andleeb, Saiqa

    2017-05-01

    The spread of bacterial infectious diseases is a major public threat. Herbs and spices have offered an excellent, important and useful source of antimicrobial agents against many pathological infections. In the current study, the antimicrobial potency of fresh, naturally and commercial dried Allium sativum and Zingiber officinale extracts had been investigated against seven local clinical bacterial isolates such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus pyogenes, Staphylococcus epidermidis, and Serratia marcesnces by the agar disc diffusion method. All tested pathogens except P. aeruginosa and E. coli were most susceptible to ethanolic and methanolic extracts of A. sativum. Similarly, chloroform and diethyl ether extracts of Z. officinale showed a greater zone of inhibition of tested pathogens except for P. aeruginosa and E. coli. We found that all extracts of A. sativum and Z. officinale have a strong antibacterial effect compared to recommended standard antibiotics through activity index. All results were evaluated statistically and a significant difference was recorded at P< 0.05. Antioxidant activity of extracts showed that 10 out of 13 extracts have high scavenging potential. Thin layer chromatography profiling of all extracts of A. sativum and Z. officinale proposed the presence of various phytochemicals such as tannins, phenols, alkaloids, steroids and saponins. Retention factor of diverse phytochemicals provides a valuable clue regarding their polarity and the selection of solvents for separation of phytochemicals. Significant inhibition of S. aureus was also observed through TLC-Bioautography. FT-IR Spectrometry was also performed to characterize both natural and commercial extracts of A. sativum and Z. officinale to evaluate bioactive compounds. These findings provide new insights to use A. sativum and Z. officinale as potential plant sources for controlling pathogenic bacteria and potentially

  9. Functional Conservation of PISTILLATA Activity in a Pea Homolog Lacking the PI Motif1

    PubMed Central

    Berbel, Ana; Navarro, Cristina; Ferrándiz, Cristina; Cañas, Luis Antonio; Beltrán, José-Pío; Madueño, Francisco

    2005-01-01

    Current understanding of floral development is mainly based on what we know from Arabidopsis (Arabidopsis thaliana) and Antirrhinum majus. However, we can learn more by comparing developmental mechanisms that may explain morphological differences between species. A good example comes from the analysis of genes controlling flower development in pea (Pisum sativum), a plant with more complex leaves and inflorescences than Arabidopsis and Antirrhinum, and a different floral ontogeny. The analysis of UNIFOLIATA (UNI) and STAMINA PISTILLOIDA (STP), the pea orthologs of LEAFY and UNUSUAL FLORAL ORGANS, has revealed a common link in the regulation of flower and leaf development not apparent in Arabidopsis. While the Arabidopsis genes mainly behave as key regulators of flower development, where they control the expression of B-function genes, UNI and STP also contribute to the development of the pea compound leaf. Here, we describe the characterization of P. sativum PISTILLATA (PsPI), a pea MADS-box gene homologous to B-function genes like PI and GLOBOSA (GLO), from Arabidopsis and Antirrhinum, respectively. PsPI encodes for an atypical PI-type polypeptide that lacks the highly conserved C-terminal PI motif. Nevertheless, constitutive expression of PsPI in tobacco (Nicotiana tabacum) and Arabidopsis shows that it can specifically replace the function of PI, being able to complement the strong pi-1 mutant. Accordingly, PsPI expression in pea flowers, which is dependent on STP, is identical to PI and GLO. Interestingly, PsPI is also transiently expressed in young leaves, suggesting a role of PsPI in pea leaf development, a possibility that fits with the established role of UNI and STP in the control of this process. PMID:16113230

  10. Abscisic Acid Stimulates Elongation of Excised Pea Root Tips

    PubMed Central

    Gaither, Douglas H.; Lutz, Donald H.; Forrence, Leonard E.

    1975-01-01

    Excised Pisum sativum L. root tips were incubated in a pH 5.2 sucrose medium containing abscisic acid. Elongation growth was inhibited by 100 μm abscisic acid. However, decreasing the abscisic acid concentration caused stimulation of elongation, the maximum response (25% to 30%) occurring at 1 μm abscisic acid. Prior to two hours, stimulation of elongation by 1 μm abscisic acid was not detectable. Increased elongation did not occur in abscisic acid-treated root tips of Lens culinaris L., Phaseolus vulgaris L., or Zea mays L. PMID:16659198

  11. In vitro effects of Coriandrum sativum, Tagetes minuta, Alpinia zerumbet and Lantana camara essential oils on Haemonchus contortus.

    PubMed

    Macedo, Iara Tersia Freitas; de Oliveira, Lorena Mayana Beserra; Camurça-Vasconcelos, Ana Lourdes Fernandes; Ribeiro, Wesley Lyeverton Correia; dos Santos, Jessica Maria Leite; de Morais, Selene Maia; de Paula, Haroldo Cesar Beserra; Bevilaqua, Claudia Maria Leal

    2013-01-01

    Phytotherapy can be an alternative for the control of gastrointestinal parasites of small ruminants. This study evaluated the efficacy of Alpinia zerumbet, Coriandrum sativum, Tagetes minuta and Lantana camara essential oils by two in vitro assays on Haemonchus contortus, an egg hatch test (EHT) and larval development test (LDT). No effect was observed for L. camara in the EHT. A. zerumbet, C. sativum and T. minuta essential oils exhibited a dose-dependent effect in the EHT, inhibiting 81.2, 99 and 98.1% of H. contortus larvae hatching, respectively, at a concentration of 2.5 mg mL-1. The effective concentration to inhibit 50% (EC50) of egg hatching was 0.94, 0.63 and 0.53 mg mL-1 for A. zerumbet, C. sativum and T. minuta essential oils, respectively. In LDT, L. camara, A. zerumbet, C. sativum and T. minuta at concentration of 10 mg mL-1 inhibited 54.9, 94.2, 97.8 and 99.5% of H. contortus larval development, presenting EC50 values of 6.32, 3.88, 2.89 and 1.67 mg mL-1, respectively. Based on the promising results presented in this in vitro model, it may be possible use of these essential oils to control gastrointestinal nematodes. However, their anthelmintic activity should be confirmed in vivo.

  12. Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants.

    PubMed

    García, María J; Romera, Francisco J; Stacey, Minviluz G; Stacey, Gary; Villar, Eduardo; Alcántara, Esteban; Pérez-Vicente, Rafael

    2013-01-01

    Previous research showed that auxin, ethylene, and nitric oxide (NO) can activate the expression of iron (Fe)-acquisition genes in the roots of Strategy I plants grown with low levels of Fe, but not in plants grown with high levels of Fe. However, it is still an open question as to how Fe acts as an inhibitor and which pool of Fe (e.g., root, phloem, etc.) in the plant acts as the key regulator for gene expression control. To further clarify this, we studied the effect of the foliar application of Fe on the expression of Fe-acquisition genes in several Strategy I plants, including wild-type cultivars of Arabidopsis [Arabidopsis thaliana (L.) Heynh], pea [Pisum sativum L.], tomato [Solanum lycopersicon Mill.], and cucumber [Cucumis sativus L.], as well as mutants showing constitutive expression of Fe-acquisition genes when grown under Fe-sufficient conditions [Arabidopsis opt3-2 and frd3-3, pea dgl and brz, and tomato chln (chloronerva)]. The results showed that the foliar application of Fe blocked the expression of Fe-acquisition genes in the wild-type cultivars and in the frd3-3, brz, and chln mutants, but not in the opt3-2 and dgl mutants, probably affected in the transport of a Fe-related repressive signal in the phloem. Moreover, the addition of either ACC (ethylene precursor) or GSNO (NO donor) to Fe-deficient plants up-regulated the expression of Fe-acquisition genes, but this effect did not occur in Fe-deficient plants sprayed with foliar Fe, again suggesting the existence of a Fe-related repressive signal moving from leaves to roots.

  13. The b Gene of Pea Encodes a Defective Flavonoid 3′,5′-Hydroxylase, and Confers Pink Flower Color1[W][OA

    PubMed Central

    Moreau, Carol; Ambrose, Mike J.; Turner, Lynda; Hill, Lionel; Ellis, T.H. Noel; Hofer, Julie M.I.

    2012-01-01

    The inheritance of flower color in pea (Pisum sativum) has been studied for more than a century, but many of the genes corresponding to these classical loci remain unidentified. Anthocyanins are the main flower pigments in pea. These are generated via the flavonoid biosynthetic pathway, which has been studied in detail and is well conserved among higher plants. A previous proposal that the Clariroseus (B) gene of pea controls hydroxylation at the 5′ position of the B ring of flavonoid precursors of the anthocyanins suggested to us that the gene encoding flavonoid 3′,5′-hydroxylase (F3′5′H), the enzyme that hydroxylates the 5′ position of the B ring, was a good candidate for B. In order to test this hypothesis, we examined mutants generated by fast neutron bombardment. We found allelic pink-flowered b mutant lines that carried a variety of lesions in an F3′5′H gene, including complete gene deletions. The b mutants lacked glycosylated delphinidin and petunidin, the major pigments present in the progenitor purple-flowered wild-type pea. These results, combined with the finding that the F3′5′H gene cosegregates with b in a genetic mapping population, strongly support our hypothesis that the B gene of pea corresponds to a F3′5′H gene. The molecular characterization of genes involved in pigmentation in pea provides valuable anchor markers for comparative legume genomics and will help to identify differences in anthocyanin biosynthesis that lead to variation in pigmentation among legume species. PMID:22492867

  14. Isolation of mtpim Proves Tnt1 a Useful Reverse Genetics Tool in Medicago truncatula and Uncovers New Aspects of AP1-Like Functions in Legumes1

    PubMed Central

    Benlloch, Reyes; d'Erfurth, Isabelle; Ferrandiz, Cristina; Cosson, Viviane; Beltrán, José Pío; Cañas, Luis Antonio; Kondorosi, Adam; Madueño, Francisco; Ratet, Pascal

    2006-01-01

    Comparative studies help shed light on how the huge diversity in plant forms found in nature has been produced. We use legume species to study developmental differences in inflorescence architecture and flower ontogeny with classical models such as Arabidopsis thaliana or Antirrhinum majus. Whereas genetic control of these processes has been analyzed mostly in pea (Pisum sativum), Medicago truncatula is emerging as a promising alternative system for these studies due to the availability of a range of genetic tools. To assess the use of the retrotransposon Tnt1 for reverse genetics in M. truncatula, we screened a small Tnt1-mutagenized population using degenerate primers for MADS-box genes, known controllers of plant development. We describe here the characterization of mtpim, a new mutant caused by the insertion of Tnt1 in a homolog to the PROLIFERATING INFLORESCENCE MERISTEM (PIM)/APETALA1 (AP1)/SQUAMOSA genes. mtpim shows flower-to-inflorescence conversion and altered flowers with sepals transformed into leaves, indicating that MtPIM controls floral meristem identity and flower development. Although more extreme, this phenotype resembles the pea pim mutants, supporting the idea that M. truncatula could be used to complement analysis of reproductive development already initiated in pea. In fact, our study reveals aspects not shown by analysis of pea mutants: that the mutation in the AP1 homolog interferes with the specification of floral organs from common primordia and causes conversion of sepals into leaves, in addition to true conversion of flowers into inflorescences. The isolation of mtpim represents a proof of concept demonstrating that Tnt1 populations can be efficiently used in reverse genetics screenings in M. truncatula. PMID:16963524

  15. Heterologous Complementation Reveals a Specialized Activity for BacA in the Medicago-Sinorhizobium meliloti Symbiosis.

    PubMed

    diCenzo, George C; Zamani, Maryam; Ludwig, Hannah N; Finan, Turlough M

    2017-04-01

    The bacterium Sinorhizobium meliloti Rm2011 forms N 2 -fixing root nodules on alfalfa and other leguminous plants. The pSymB chromid contains a 110-kb region (the ETR region) showing high synteny to a chromosomally located region in Sinorhizobium fredii NGR234 and related rhizobia. We recently introduced the ETR region from S. fredii NGR234 into the S. meliloti chromosome. Here, we report that, unexpectedly, the S. fredii NGR234 ETR region did not complement deletion of the S. meliloti ETR region in symbiosis with Medicago sativa. This phenotype was due to the bacA gene of NGR234 not being functionally interchangeable with the S. meliloti bacA gene during M. sativa symbiosis. Further analysis revealed that, whereas bacA genes from S. fredii or Rhizobium leguminosarum bv. viciae 3841 failed to complement the Fix - phenotype of a S. meliloti bacA mutant with M. sativa, they allowed for further developmental progression prior to a loss of viability. In contrast, with Melilotus alba, bacA from S. fredii and R. leguminosarum supported N 2 fixation by a S. meliloti bacA mutant. Additionally, the S. meliloti bacA gene can support N 2 fixation of a R. leguminosarum bacA mutant during symbiosis with Pisum sativum. A phylogeny of BacA proteins illustrated that S. meliloti BacA has rapidly diverged from most rhizobia and has converged toward the sequence of pathogenic genera Brucella and Escherichia. These data suggest that the S. meliloti BacA has evolved toward a specific interaction with Medicago and highlights the limitations of using a single model system for the study of complex biological topics.

  16. Antifeedant activity and high mortality in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae) induced by biostable insect kinin analogs

    USDA-ARS?s Scientific Manuscript database

    The insect kinins are multifunctional neuropeptides found in a variety of arthropod species, including the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae). A series of biostable insect kinin analogs based on the shared C-terminal pentapeptide core region were fed in solutions of artificial diet t...

  17. Effects of hydroalcoholic extract of Coriandrum sativum on oxidative damage in pentylenetetrazole-induced seizures in rats

    PubMed Central

    Karami, Reza; Hosseini, Mahmoud; Mohammadpour, Toktam; Ghorbani, Ahmad; Sadeghnia, Hamid Reza; Rakhshandeh, Hassan; Vafaee, Farzaneh; Esmaeilizadeh, Mahdi

    2015-01-01

    Background: An important role for oxidative stress, as a consequence of epileptic seizures, has been suggested. Coriandrum sativum has been shown that have antioxidant effects. Central nervous system depressant effects of C. sativum have also been reported. In this study, the effects of hydroalcoholic extract of aerial parts of the plants on brain tissues oxidative damages following seizures induced by pentylenetetrazole (PTZ) was investigated in rats. Methods: The rats were divided into five groups and treated: (1) Control (saline), (2) PTZ (90 mg/kg, i.p.), (3-5) three doses (100, 500 and 1000 mg/kg of C. sativum extract (CSE) before PTZ. Latencies to the first minimal clonic seizures (MCS) and the first generalized tonic-clonic seizures (GTCS) were recorded. The cortical and hippocampal tissues were then removed for biochemical measurements. Results: The extract significantly increased the MCS and GTCS latencies (P < 0.01, P < 0.001) following PTZ-induced seizures. The malondialdehyde (MDA) levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of the control animals (P < 0.001). Pretreatment with the extract prevented elevation of the MDA levels (P < 0.010–P < 0.001). Following PTZ administration, a significant reduction in total thiol groups was observed in both cortical and hippocampal tissues (P < 0.050). Pre-treatment with the 500 mg/kg of the extract caused a significant prevention of decreased in total thiol concentration in the cortical tissues (P < 0.010). Conclusion: The present study showed that the hydroalcoholic extract of the aerial parts of C. sativum possess significant antioxidant and anticonvulsant activities. PMID:26056549

  18. Antioxidant and schistosomicidal effect of Allium sativum and Allium cepa against Schistosoma mansoni different stages.

    PubMed

    Mantawy, M M; Aly, H F; Zayed, N; Fahmy, Z H

    2012-07-01

    The schistosomicidal properties of garlic (Allium sativum) and onion (Allium cepa) powder were tested in vitro against Schistosoma mansoni miracidia, schistosomula, cercaria and adult worms. Results indicate their strong biocidal effects against all stages of the parasite and also show scavenging inhibitory effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO). In the present work, the in vivo effects of A. sativum and A. cepa on lipid peroxide and some antioxidant enzymes; thioredoxin reductase (TrxR), sorbitol dehydrogenase (SDH), superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) (as they have a crucial role in host protection against invading parasite) were also studied. The data demonstrate that, there was a significant inhibition in SOD, CAT, GR, TrxR and SDH in infected liver while, significant elevation was detected in lipid peroxide as compared to the normal control. The current resultS clearly revealed that, the used both edible plants enhance the host antioxidant system indicated by lowering in lipid peroxide and stimulation of SOD, CAT, GR, TrxR and SDH enzyme levels. Enhancement of such enzymes using A. sativum and A. cepa could in turn render the parasite vulnerable to damage by the host and may play a role in the antischistosomal potency of the used food ingredients.

  19. Bacteriological evaluation of Allium sativum oil as a new medicament for pulpotomy of primary teeth.

    PubMed

    Mohammad, Shukry Gamal; Baroudi, Kusai

    2015-01-01

    To compare the effects of Allium sativum oil and formocresol on the pulp tissue of the pulpotomized teeth. Twenty children were selected for this study. All children had a pair of non-vital primary molars. A sterile paper point was dipped in the root canals prior to the mortal pulpotomy. These paper points were collected in transfer media and immediately transported to the microbiological lab to be investigated microbiologically (for Streptococcus mutans and Lactobacillus acidophilus). Then the procedure of mortal pulpotomy was performed. After 2 weeks, the cotton pellets were removed and sterile paper points were dipped in the root canals for microbiological examination. Then comparison between the count of bacteria before and after treatment was conducted. Statistical analysis was performed using independent t-test and paired t-test at the significance level of α = 0.05. After application of both medicaments, there was a marked decrease in S. mutans and L. acidophilus counts. The difference between the mean of log values of the count before and after the application was highly significant for both medicaments (P < 0.05); however, better results were obtained when A. sativum oil was used. A. sativum oil had more powerful antimicrobial effects than formocresol on the bacteria of the infected root canals.

  20. Coriandrum sativum and Lavandula angustifolia Essential Oils: Chemical Composition and Activity on Central Nervous System.

    PubMed

    Caputo, Lucia; Souza, Lucéia Fátima; Alloisio, Susanna; Cornara, Laura; De Feo, Vincenzo

    2016-11-30

    The aims of this study are to determine the chemical composition of Lavandula angustifolia Mill. and Coriandrum sativum L. essential oils, to evaluate their cytotoxic effects in SH-SY5Y human neuroblastoma cells, to investigate whether an alteration of adenylate cyclase 1 (ADCY1) and of extracellular signal-regulated kinase (ERK) expression can take part in the molecular mechanisms of the essential oils, and to study their possible neuronal electrophysiological effects. The essential oils were obtained by hydrodistillation, and studied by GC and GC-MS. In the oils from L. angustifolia and C. sativum , linalool was the main component (33.1% and 67.8%, respectively). SH-SY5Y cells were incubated with different concentrations of essential oils and of linalool. Cell viability and effects on ADCY1 and ERK expression were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT and Western blotting, respectively. Variation in cellular electrophysiology was studied in primary cultures of rat cortical neurons with a multi-electrode array (MEA)-based approach. The essential oils and linalool revealed different cytotoxic activities. Linalool inhibited ADCY1 and ERK expression. Neuronal networks subjected to L. angustifolia and C. sativum essential oils showed a concentration-dependent inhibition of spontaneous electrical activity.

  1. Coriandrum sativum and Lavandula angustifolia Essential Oils: Chemical Composition and Activity on Central Nervous System

    PubMed Central

    Caputo, Lucia; Souza, Lucéia Fátima; Alloisio, Susanna; Cornara, Laura; De Feo, Vincenzo

    2016-01-01

    The aims of this study are to determine the chemical composition of Lavandula angustifolia Mill. and Coriandrum sativum L. essential oils, to evaluate their cytotoxic effects in SH-SY5Y human neuroblastoma cells, to investigate whether an alteration of adenylate cyclase 1 (ADCY1) and of extracellular signal-regulated kinase (ERK) expression can take part in the molecular mechanisms of the essential oils, and to study their possible neuronal electrophysiological effects. The essential oils were obtained by hydrodistillation, and studied by GC and GC-MS. In the oils from L. angustifolia and C. sativum, linalool was the main component (33.1% and 67.8%, respectively). SH-SY5Y cells were incubated with different concentrations of essential oils and of linalool. Cell viability and effects on ADCY1 and ERK expression were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT and Western blotting, respectively. Variation in cellular electrophysiology was studied in primary cultures of rat cortical neurons with a multi-electrode array (MEA)-based approach. The essential oils and linalool revealed different cytotoxic activities. Linalool inhibited ADCY1 and ERK expression. Neuronal networks subjected to L. angustifolia and C. sativum essential oils showed a concentration-dependent inhibition of spontaneous electrical activity. PMID:27916876

  2. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum, and Dentol Drop with chlorhexidine on Streptococcus mutans.

    PubMed

    Moradian, Hamid; Bazargani, Abdollah; Rafiee, Azade; Nazarialam, Ali

    2013-09-01

    Dental caries is still remained as a major health problem. This problem has created a new interest to search for new antimicrobial agents from various sources including medicinal plants. Since limited data is available so far regarding the antibacterial effect of Coriandrum sativum seed and Dentol Drop against Streptococcus mutans, this study aims to assess this activity. This experimental study was conducted in Shiraz University of Medical Sciences. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum seed and Dentol drop with chlorhexidine against Streptococcus mutans was evaluated using disk diffusion and broth microdilution assays. Positive and negative controls were considered. The data was statistically analyzed by applying Kruskal-Wallis and Tukey post-hoc test to compare the groups using SPSS software (version 17). Dentol drop showed a remarkable antibacterial activity, in comparison with chlorhexidine, against S. mutans in the disk diffusion (p value = 0.005), and broth microdilution assays (p value = 0.0001). Based on the results of this study, Coriandrum sativum seed did not posses any antibacterial property. Coriandrum sativum seed showed no anti-Streptococcus mutans activity. Dentol drop exhibited a remarkable antibacterial activity against S. mutans when tested in vitro. Dentol drop can be further studied as a preventive measure for dental caries.

  3. Whole shoot mineral partitioning and accumulation in pea (Pisum sativum)

    USDA-ARS?s Scientific Manuscript database

    Several grain legumes are staple food crops that are important sources of minerals for humans; unfortunately, our knowledge is incomplete with respect to the mechanisms of translocation of these minerals to the vegetative tissues and loading into seeds. Understanding the mechanism and partitioning o...

  4. Sulphur fertilization influences the sulphur species composition in Allium sativum: sulphomics using HPLC-ICPMS/MS-ESI-MS/MS.

    PubMed

    Raab, Andrea; Ronzan, Marilena; Feldmann, Joerg

    2017-10-18

    Garlic (A. sativum) contains a large number of small sulphur (S)-containing metabolites, which are important for its taste and smell and vary with A. sativum variety and growth conditions. This study was designed to investigate the influence of different sulphur-fertilization regimes on low molecular weight S-species by attempting the first sulphur mass balance in A. sativum roots and bulbs using HPLC-ICPMS/MS-ESI-MS/MS. Species unspecific quantification of acid soluble S-containing metabolites was achieved using HPLC-ICP-MS/MS. For identification of the compounds, high resolution ESI-MS (Orbitrap LTQ and q-TOF) was used. The plants contained up to 54 separated sulphur-containing compounds, which constitute about 80% of the total sulphur present in A. sativum. The roots and bulbs of A. sativum contained the same compounds, but not necessarily the same amounts and proportions. The S-containing metabolites in the roots reacted more sensitively to manipulations of sulphur fertilization than those compounds in the bulbs. In addition to known compounds (e.g. γ-glutamyl-S-1-propenylcysteine) we were able to identify and partially quantify 31 compounds. Three as yet undescribed S-containing compounds were also identified and quantified for the first time. Putative structures were assigned to the oxidised forms of S-1-propenylmercaptoglutathione, S-2-propenylmercaptoglutathione, S-allyl/propenyl-containing PC-2 and 2-amino-3-[(2-carboxypropyl)sulfanyl]propanoic acid. The parallel use of ICP-MS/MS as a sulphur-specific detector and ESI-MS as a molecular detector simplifies the identification and quantification of sulphur containing metabolites without species specific standards. This non-target analysis approach enables a mass balance approach and identifies the occurrence of the so far unidentified organosulphur compounds. The experiments showed that the sulphur-fertilization regime does not influence sulphur-speciation, but the concentration of some S

  5. Evaluation of acute toxicity of essential oil of garlic (Allium sativum) and its selected major constituent compounds against overwintering Cacopsylla chinensis (Hemiptera: Psyllidae).

    PubMed

    Zhao, Na Na; Zhang, Hang; Zhang, Xue Chang; Luan, Xiao Bing; Zhou, Cheng; Liu, Qi Zhi; Shi, Wang Peng; Liu, Zhi Long

    2013-06-01

    In our screening program for insecticidal activity of the essential oils/extracts derived from some Chinese medicinal herbs and spices, garlic (Allium sativum L.) essential oil was found to possess strong insecticidal activity against overwintering adults of Cacopsylla chinensis Yang et Li (Hemiptera: Psyllidae). The commercial essential oil of A. sativum was analyzed by gas chromatography-mass spectrometry. Sixteen compounds, accounting for 97.44% of the total oil, were identified, and the main components of the essential oil of A. sativum were diallyl trisulfide (50.43%), diallyl disulfide (25.30%), diallyl sulfide (6.25%), diallyl tetrasulfide (4.03%), 1,2-dithiolane (3.12%), allyl methyl disulfide (3.07%), 1,3-dithiane (2.12%), and allyl methyl trisulfide (2.08%). The essential oil of A. sativum possessed contact toxicity against overwintering C. chinensis, with an LC50 value of 1.42 microg per adult. The two main constituent compounds, diallyl trisulfide and diallyl disulfide, exhibited strong acute toxicity against the overwintering C. chinensis, with LC50 values of 0.64 and 11.04 /g per adult, respectively.

  6. Biostable multi-Aib analogs of tachykinin-related peptides demonstrate potent oral aphicidal activity in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae)

    USDA-ARS?s Scientific Manuscript database

    The tachykinin-related peptides (TRPs) are multifunctional neuropeptides found in a variety of arthropod species, including the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae). Two novel biostable TRP analogs containing multiple, sterically-hindered Aib residues were synthesized and found to exhi...

  7. Bacteriological evaluation of Allium sativum oil as a new medicament for pulpotomy of primary teeth

    PubMed Central

    Mohammad, Shukry Gamal; Baroudi, Kusai

    2015-01-01

    Objective: To compare the effects of Allium sativum oil and formocresol on the pulp tissue of the pulpotomized teeth. Materials and Methods: Twenty children were selected for this study. All children had a pair of non-vital primary molars. A sterile paper point was dipped in the root canals prior to the mortal pulpotomy. These paper points were collected in transfer media and immediately transported to the microbiological lab to be investigated microbiologically (for Streptococcus mutans and Lactobacillus acidophilus). Then the procedure of mortal pulpotomy was performed. After 2 weeks, the cotton pellets were removed and sterile paper points were dipped in the root canals for microbiological examination. Then comparison between the count of bacteria before and after treatment was conducted. Statistical analysis was performed using independent t-test and paired t-test at the significance level of α = 0.05. Results: After application of both medicaments, there was a marked decrease in S. mutans and L. acidophilus counts. The difference between the mean of log values of the count before and after the application was highly significant for both medicaments (P < 0.05); however, better results were obtained when A. sativum oil was used. Conclusion: A. sativum oil had more powerful antimicrobial effects than formocresol on the bacteria of the infected root canals. PMID:25992338

  8. Hypnotic effect of Coriandrum sativum, Ziziphus jujuba, Lavandula angustifolia and Melissa officinalis extracts in mice

    PubMed Central

    Hajhashemi, Valiollah; Safaei, Azadeh

    2015-01-01

    The aim of the present study was to evaluate hypnotic effect of Coriandrum sativum, Ziziphus jujuba, Lavandula angustifolia and Melissa officinalis hydroalcoholic extracts in mice to select the most effective ones for a combination formula. Three doses of the extracts (250, 500 and 1000 mg/kg of C. sativum and Z. jujuba and 200, 400 and 800 mg/kg of L. angustifolia and M. officinalis) were orally administered to male Swiss mice (20-25 g) and one hour later pentobarbital (50 mg/kg, i.p.) was injected to induce sleep. Onset of sleep and its duration were measured and compared. Control animals and reference group received vehicle (10 ml/kg, p.o.) and diazepam (3 mg/kg, i.p.), respectively. C. sativum and Z. jujuba failed to change sleep parameters. L. angustifolia at doses of 200, 400 and 800 mg/kg shortened sleep onset by 7.6%, 50% and 51.5% and prolonged sleep duration by 9.9%, 43.1% and 80.2%, respectively. Compared with control group the same doses of M. officinalis also decreased sleep onset by 24.7%, 27.5% and 51.2% and prolonged sleep duration by 37.9%, 68.7% and 131.7% respectively. Combinations of L. angustifolia and M. officinalis extracts showed additive effect and it is suggested that a preparation containing both extracts may be useful for insomnia. PMID:26779267

  9. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum, and Dentol Drop with chlorhexidine on Streptococcus mutans

    PubMed Central

    Moradian, Hamid; Bazargani, Abdollah; Rafiee, Azade; Nazarialam, Ali

    2013-01-01

    Background and objectives Dental caries is still remained as a major health problem. This problem has created a new interest to search for new antimicrobial agents from various sources including medicinal plants. Since limited data is available so far regarding the antibacterial effect of Coriandrum sativum seed and Dentol Drop against Streptococcus mutans, this study aims to assess this activity. Materials and Methods This experimental study was conducted in Shiraz University of Medical Sciences. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum seed and Dentol drop with chlorhexidine against Streptococcus mutans was evaluated using disk diffusion and broth microdilution assays. Positive and negative controls were considered. The data was statistically analyzed by applying Kruskal-Wallis and Tukey post-hoc test to compare the groups using SPSS software (version 17). Results Dentol drop showed a remarkable antibacterial activity, in comparison with chlorhexidine, against S. mutans in the disk diffusion (p value = 0.005), and broth microdilution assays (p value = 0.0001). Based on the results of this study, Coriandrum sativum seed did not posses any antibacterial property. Conclusion Coriandrum sativum seed showed no anti-Streptococcus mutans activity. Dentol drop exhibited a remarkable antibacterial activity against S. mutans when tested in vitro. Dentol drop can be further studied as a preventive measure for dental caries. PMID:24475330

  10. Pea Chaperones under Centrifugation

    NASA Astrophysics Data System (ADS)

    Talalaiev, Oleksandr

    2008-06-01

    Etiolated Pisum sativum seedlings were subjected to altered g-forces by centrifugation (3-14g). By using semiquantitative RT-PCR, we studied transcripts of pea genes coding for chaperones that are representatives of small heat shock proteins (sHsps) family. Four members from the different classes of sHsps: cytosolic Hsp17.7 and Hsp18.1 (class I and class II accordingly), chloroplast Hsp21 (class III) and endoplasmic reticulum Hsp22.7 (class IV) were investigated. We conclude that exposure to 3, 7, 10 and 14g for 1h did not affect the level of sHsp transcripts.

  11. Pea VEGETATIVE2 Is an FD Homolog That Is Essential for Flowering and Compound Inflorescence Development.

    PubMed

    Sussmilch, Frances C; Berbel, Ana; Hecht, Valérie; Vander Schoor, Jacqueline K; Ferrándiz, Cristina; Madueño, Francisco; Weller, James L

    2015-04-01

    As knowledge of the gene networks regulating inflorescence development in Arabidopsis thaliana improves, the current challenge is to characterize this system in different groups of crop species with different inflorescence architecture. Pea (Pisum sativum) has served as a model for development of the compound raceme, characteristic of many legume species, and in this study, we characterize the pea VEGETATIVE2 (VEG2) locus, showing that it is critical for regulation of flowering and inflorescence development and identifying it as a homolog of the bZIP transcription factor FD. Through detailed phenotypic characterizations of veg2 mutants, expression analyses, and the use of protein-protein interaction assays, we find that VEG2 has important roles during each stage of development of the pea compound inflorescence. Our results suggest that VEG2 acts in conjunction with multiple FLOWERING LOCUS T (FT) proteins to regulate expression of downstream target genes, including TERMINAL FLOWER1, LEAFY, and MADS box homologs, and to facilitate cross-regulation within the FT gene family. These findings further extend our understanding of the mechanisms underlying compound inflorescence development in pea and may have wider implications for future manipulation of inflorescence architecture in related legume crop species. © 2015 American Society of Plant Biologists. All rights reserved.

  12. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling.

    PubMed

    Belimov, Andrey A; Dodd, Ian C; Hontzeas, Nikos; Theobald, Julian C; Safronova, Vera I; Davies, William J

    2009-01-01

    Decreased soil water availability can stimulate production of the plant hormone ethylene and inhibit plant growth. Strategies aimed at decreasing stress ethylene evolution might attenuate its negative effects. An environmentally benign (nonchemical) method of modifying crop ethylene relations - soil inoculation with a natural root-associated bacterium Variovorax paradoxus 5C-2 (containing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase that degrades the ethylene precursor ACC), was assessed with pea (Pisum sativum) plants grown in drying soil. Inoculation with V. paradoxus 5C-2, but not with a transposome mutant with massively decreased ACC deaminase activity, improved growth, yield and water-use efficiency of droughted peas. Systemic effects of V. paradoxus 5C-2 included an amplified soil drying-induced increase of xylem abscisic acid (ABA) concentration, but an attenuated soil drying-induced increase of xylem ACC concentration. A local bacterial effect was increased nodulation by symbiotic nitrogen-fixing bacteria, which prevented a drought-induced decrease in nodulation and seed nitrogen content. Successfully deploying a single bacterial gene in the rhizosphere increased yield and nutritive value of plants grown in drying soil, via both local and systemic hormone signalling. Such bacteria may provide an easily realized, economic means of sustaining crop yields and using irrigation water more efficiently in dryland agriculture.

  13. Speed breeding is a powerful tool to accelerate crop research and breeding.

    PubMed

    Watson, Amy; Ghosh, Sreya; Williams, Matthew J; Cuddy, William S; Simmonds, James; Rey, María-Dolores; Asyraf Md Hatta, M; Hinchliffe, Alison; Steed, Andrew; Reynolds, Daniel; Adamski, Nikolai M; Breakspear, Andy; Korolev, Andrey; Rayner, Tracey; Dixon, Laura E; Riaz, Adnan; Martin, William; Ryan, Merrill; Edwards, David; Batley, Jacqueline; Raman, Harsh; Carter, Jeremy; Rogers, Christian; Domoney, Claire; Moore, Graham; Harwood, Wendy; Nicholson, Paul; Dieters, Mark J; DeLacy, Ian H; Zhou, Ji; Uauy, Cristobal; Boden, Scott A; Park, Robert F; Wulff, Brande B H; Hickey, Lee T

    2018-01-01

    The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.

  14. New cyclic sulfides extracted from Allium sativum: garlicnins P, J2, and Q.

    PubMed

    Nohara, Toshihiro; Ono, Masateru; Nishioka, Naho; Masuda, Fuka; Fujiwara, Yukio; Ikeda, Tsuyoshi; Nakano, Daisuke; Kinjo, Junei

    2018-01-01

    Two atypical cyclic-type sulfides, garlicnin P (1) and garlicnin J 2 (2), and one thiabicyclic-type sulfide, garlicnin Q (3), were isolated from the acetone extracts of garlic, Allium sativum, bulbs cultivated in the Kumamoto city area, and their structures characterized. Their production pathways are also discussed.

  15. Atypical Cyclic Sulfides, Garlicnins G, I, and J, Extracted from Allium sativum.

    PubMed

    Ono, Masateru; Fujiwara, Yukio; Ikeda, Tsuyoshi; Pan, Cheng; El-Aasr, Mona; Lee, Jong-Hyun; Nakano, Daisuke; Kinjo, Junei; Nohara, Toshihiro

    2017-01-01

    Newly characterized, atypical sulfides, garlicnins G (1), I (2), and J (3), were isolated from the acetone extracts of garlic bulbs, Allium sativum. Their production pathways are regarded as different from those of cyclic sulfoxides, 3,4-dimethyltetrahydrothiophene-S-oxide derivatives such as onionins A 1 -A 3 , garlicnins B 1 -B 4 and C 1 -C 3 .

  16. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L.

    PubMed

    Jiang, Wusheng; Liu, Donghua

    2010-03-02

    Electron microscopy (EM) techniques enable identification of the main accumulations of lead (Pb) in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10(-5) to 10(-3) M) of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10(-3) to 10(-4) M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER) with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification and tolerance under Pb stress. Vacuoles are

  17. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L

    PubMed Central

    2010-01-01

    Background Electron microscopy (EM) techniques enable identification of the main accumulations of lead (Pb) in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10-5 to 10-3 M) of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10-3 to 10-4 M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. Results After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER) with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. Conclusions Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification and tolerance under Pb

  18. Garden cress (Lepidium sativum Linn.) seed oil as a potential feedstock for biodiesel production.

    PubMed

    Nehdi, Imededdine Arbi; Sbihi, Hassen; Tan, Chin Ping; Al-Resayes, Saud Ibrahim

    2012-12-01

    Lepidium sativum L. (garden cress) is a fast growing annual herb, native to Egypt and west Asia but widely cultivated in temperate climates throughout the world. L. sativum seed oil (LSO) extracted from plants grown in Tunisia was analyzed to determine whether it has potential as a raw material for biodiesel production. The oil content of the seeds was 26.77%, mainly composed of polyunsaturated (42.23%) and monounsaturated (39.62%) fatty acids. Methyl esters (LSOMEs) were prepared by base-catalyzed transesterification with a conversion rate of 96.8%. The kinematic viscosity (1.92 mm(2)/s), cetane number (49.23), gross heat value (40.45), and other fuel properties were within the limits for biodiesel specified by the ASTM (American Standard for Testing and Materials). This study showed that LSOMEs have the potential to supplement petroleum-based diesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Anti-granuloma activity of Coriandrum sativum in experimental models

    PubMed Central

    Nair, Vinod; Singh, Surender; Gupta, Yogendra Kumar

    2013-01-01

    Background: Coriandrum sativum has been used in the traditional systems of medicine for management of arthritis and other inflammatory disorders. Objectives: In this study, we have evaluated the anti-inflammatory and anti-granuloma activities of Coriandrum sativum hydroalcoholic extract (CSHE) in experimental models. Materials and Methods: The anti-inflammatory activity of CSHE was evaluated using carrageenan-induced paw edema model and the anti-granuloma activity of CSHE was evaluated using the subcutaneous cotton pellet implantation-induced granuloma formation and stimulation of peritoneal macrophages with complete Freund's adjuvant. Serum tumor necrosis factor-α (TNF-α), IL-6, IL-1 β levels, and peritoneal macrophage expression of TNF-R1 were evaluated as markers of global inflammation. Results: CSHE at the highest dose tested (32 mg/kg) produced a significant reduction (P < 0.05) in paw edema after carrageenan administration. CSHE treatment also reduced dry granuloma weight in all treated animals. Serum IL-6 and IL-1 β levels were significantly (P < 0.05) lower in the CSHE (32 mg/kg)-treated group as compared to control. Although there was an increase in serum TNF-α level in the CSHE-treated group as compared to control, TNF-R1 expression on peritoneal macrophages was found to be reduced. Conclusion: Thus, the result of this study demonstrates the anti-inflammatory and anti-granuloma activities of CSHE in experimental models, and validates its traditional use for the management of arthritis and other inflammatory disorders. PMID:23741156

  20. Monitoring the efficacy of mutated Allium sativum leaf lectin in transgenic rice against Rhizoctonia solani.

    PubMed

    Ghosh, Prithwi; Sen, Senjuti; Chakraborty, Joydeep; Das, Sampa

    2016-03-01

    Rice sheath blight, caused by Rhizoctonia solani is one of the most devastating diseases of rice. It is associated with significant reduction in rice productivity worldwide. A mutant variant of mannose binding Allium sativum leaf agglutinin (mASAL) was previously reported to exhibit strong antifungal activity against R. solani. In this study, the mASAL gene has been evaluated for its in planta antifungal activity in rice plants. mASAL was cloned into pCAMBIA1301 binary vector under the control of CaMV35S promoter. It was expressed in an elite indica rice cv. IR64 by employing Agrobacterium tumefaciens-mediated transformation. Molecular analyses of transgenic plants confirmed the presence and stable integration of mASAL gene. Immunohistofluorescence analysis of various tissue sections of plant parts clearly indicated the constitutive expression of mASAL. The segregation pattern of mASAL transgene was observed in T1 progenies in a 3:1 Mendelian ratio. The expression of mASAL was confirmed in T0 and T1 plants through western blot analysis followed by ELISA. In planta bioassay of transgenic lines against R. solani exhibited an average of 55 % reduction in sheath blight percentage disease index (PDI). The present study opens up the possibility of engineering rice plants with the antifungal gene mASAL, conferring resistance to sheath blight.

  1. Role of a respiratory burst oxidase of Lepidium sativum (cress) seedlings in root development and auxin signalling

    PubMed Central

    Müller, Kerstin; Linkies, Ada; Kermode, Allison R.

    2012-01-01

    Reactive oxygen species are increasingly perceived as players in plant development and plant hormone signalling pathways. One of these species, superoxide, is produced in the apoplast by respiratory burst oxidase homologues (rbohs), a family of proteins that is conserved throughout the plant kingdom. Because of the availability of mutants, the focus of research into plant rbohs has been on Arabidopsis thaliana, mainly on AtrbohD and AtrbohF. This study investigates: (i) a different member of the Atrboh family, AtrbohB, and (ii) several rbohs from the close relative of A. thaliana, Lepidium sativum (‘cress’). Five cress rbohs (Lesarbohs) were sequenced and it was found that their expression patterns were similar to their Arabidopsis orthologues throughout the life cycle. Cress plants in which LesarbohB expression was knocked down showed a strong seedling root phenotype that resembles phenotypes associated with defective auxin-related genes. These transgenic plants further displayed altered expression of auxin marker genes including those encoding the auxin responsive proteins 14 and 5 (IAA14 and IAA5), and LBD16 (LATERAL ORGAN BOUNDARIES DOMAIN16), an auxin-responsive protein implicated in lateral root initiation. It is speculated that ROS produced by rbohs play a role in root development via auxin signalling. PMID:23095998

  2. First Report of Garlic Rust Caused by Puccinia allii on Allium sativum in Minnesota

    USDA-ARS?s Scientific Manuscript database

    In July 2010, Allium sativum, cultivar German Extra Hardy Porcelain plants showing foliar symptoms typical of rust infection were brought to the Plant Disease Clinic at the University of Minnesota by a commercial grower from Fillmore county Minnesota. Infected leaves showed circular to oblong lesio...

  3. Coriander (Coriandrum sativum L.) and its bioactive constituents.

    PubMed

    Laribi, Bochra; Kouki, Karima; M'Hamdi, Mahmoud; Bettaieb, Taoufik

    2015-06-01

    Coriander (Coriandrum sativum L.), a member of the Apiaceae family, is among most widely used medicinal plant, possessing nutritional as well as medicinal properties. Thus, the aim of this updated review is to highlight the importance of coriander as a potential source of bioactive constituents and to summarize their biological activities as well as their different applications from data obtained in recent literature, with critical analysis on the gaps and potential for future investigations. A literature review was carried out by searching on the electronic databases including PubMed, Scopus, ScienceDirect, and Google Scholar for studies focusing on the biological and pharmacological activities of coriander seed and herb bioactive constituents. All recent English-language articles published between 2000 and 2014 were searched using the terms 'C. sativum', 'medicinal plant', 'bioactive constituents', and 'biological activities'. Subsequently, coriander seed and herb essential oils have been actively investigated for their chemical composition and biological activities including antimicrobial, antioxidant, hypoglycemic, hypolipidemic, anxiolytic, analgesic, anti-inflammatory, anti-convulsant and anti-cancer activities, among others. Although coriander has been reported to possess a wide range of traditional medicinal uses, no report is available in its effectiveness use in reactive airway diseases such as asthma and bronchiolitis. In brief, the information presented herein will be helpful to create more interest towards this medicinal species by defining novel pharmacological and clinical applications and hence, may be useful in developing new drug formulations in the future or by employing coriander bioactive constituents in combination with conventional drugs to enhance the treatment of diseases such as Alzheimer and cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Antibacterial activity of Phyllantus emblica, Coriandrum sativum, Culinaris medic, Lawsonia alba and Cucumis sativus.

    PubMed

    Khan, Dawood Ali; Hassan, Fouzia; Ullah, Hanif; Karim, Sabiha; Baseer, Abdul; Abid, Mobasher Ali; Ubaidi, Muhammad; Khan, Shujaat Ali; Murtaza, Ghulam

    2013-01-01

    Present study deals with the demonstration of the antibacterial activity of very common medicinal plants of Pakistani origin i.e., Phyllantus emblica, Coriandrum sativum, Culinaris medic, Lawsonia alba and Cucumis sativus. The extracts were prepared in crude form by the use of hydro-alcoholic solution and were screened for antibacterial activity against various bacterial species by disk diffusion method. Assay was performed using clinical isolates of B. cereus, S. aureus, P. aeruginosa and E. coli. Crude extract of Phyllantus emblica fruit exhibited strong activity against standard cultures of all studied bacteria. Lawsonia alba showed good activity against standard cultures of all the used microorganisms. Coriandrum sativum was effective only against Bacillus cereus, while Cucumis sativus and Culinaris medic showed poor activity against Pseudomonas aeruginosa only. Hence, Phyllantus emblica exhibited strong antibacterial activity against a wide range of bacteria it means that Phyllantus emblica extract contains some compounds which have broad spectrum of bactericidal activity.

  5. Protective effects of Allium sativum against defects of hypercholesterolemia on pregnant rats and their offspring.

    PubMed

    El-Sayyad, Hassan I; Abou-El-Naga, Amoura M; Gadallah, Abdelalim A; Bakr, Iman H

    2010-06-10

    Sixty fertile female and male albino rats of Wistar strain (I male/ 3 females) were used in the present study. The females were divided into four groups of ten rats each. Group 1 received water and standard feeds for thirty-four days. Group 2 was fed with a cholesterol-containing diet (1%) for two weeks prior to onset of gestation and maintained administration till parturition, produce atherosclerosis (34 days). Group 3 received intragastric administration of 100mg homogenate of garlic (Allium sativum)/kg body weight for three weeks prior to onset of gestation as well as throughout the gestation period. Group 4 intragastrically administered garlic for one week of group B and maintained with combined garlic-treatment for the mentioned period. At parturition, the pregnant were sacrificed and serum total cholesterol (TCL), triglycerides (TG), HDL, LDL and creatine kinase activity (CK) were determined. The total numbers of offspring were recorded and examined morphological for congenital abnormalities. Biopsies of heart and dorsal aorta of both pregnant and their offspring (1 day-age) were processed for investigation at light and transmission electron microscopy. The skeleton of the newborn of different experimental groups were stained with alizarin red s and mor-phometric assessment of mandibular and appendicular bone length. The study revealed that the myocardium of atherosclerotic mother exhibited leuhkocytic inflammatory cell infiltration associated with necrosis, eosinophilia of myocardiai fibers, and edema of blood vessels. Ultrastructural studies revealed swelling of mitochondria, disruption of cristae in the myocardiai muscle fibers. The dorsal aorta possessed accumulation of extra-cellular lipid in intima lining of endothelium. The collagenous fibrils in the tunica adventitia became fragile and loosely separated from each other. Numerous foamy lipid loaden cells were detected within the tunica intima causing deterioration of the elastic fibers, resulting in

  6. Protective effects of Allium sativum against defects of hypercholesterolemia on pregnant rats and their offspring

    PubMed Central

    El-Sayyad, Hassan I; Abou-El-Naga, Amoura M; Gadallah, Abdelalim A; Bakr, Iman H

    2010-01-01

    Sixty fertile female and male albino rats of Wistar strain (I male/ 3 females) were used in the present study. The females were divided into four groups of ten rats each. Group 1 received water and standard feeds for thirty-four days. Group 2 was fed with a cholesterol-containing diet (1%) for two weeks prior to onset of gestation and maintained administration till parturition, produce atherosclerosis (34 days). Group 3 received intragastric administration of 100mg homogenate of garlic (Allium sativum)/kg body weight for three weeks prior to onset of gestation as well as throughout the gestation period. Group 4 intragastrically administered garlic for one week of group B and maintained with combined garlic-treatment for the mentioned period. At parturition, the pregnant were sacrificed and serum total cholesterol (TCL), triglycerides (TG), HDL, LDL and creatine kinase activity (CK) were determined. The total numbers of offspring were recorded and examined morphological for congenital abnormalities. Biopsies of heart and dorsal aorta of both pregnant and their offspring (1 day-age) were processed for investigation at light and transmission electron microscopy. The skeleton of the newborn of different experimental groups were stained with alizarin red s and mor-phometric assessment of mandibular and appendicular bone length. The study revealed that the myocardium of atherosclerotic mother exhibited leuhkocytic inflammatory cell infiltration associated with necrosis, eosinophilia of myocardiai fibers, and edema of blood vessels. Ultrastructural studies revealed swelling of mitochondria, disruption of cristae in the myocardiai muscle fibers. The dorsal aorta possessed accumulation of extra-cellular lipid in intima lining of endothelium. The collagenous fibrils in the tunica adventitia became fragile and loosely separated from each other. Numerous foamy lipid loaden cells were detected within the tunica intima causing deterioration of the elastic fibers, resulting in

  7. Protein changes in Lepidium sativum L. exposed to Hg during soil phytoremediation.

    PubMed

    Smolinska, Beata; Szczodrowska, Agnieszka; Leszczynska, Joanna

    2017-08-03

    Some investigations have been carried out in this study to find the best technique of soil reclamation in mercurypolluted soil. In this study, we examined Lepidium sativum L. as a plant useful for Hg phytoextraction. The simultaneous application of compost and thiosulfate was explored as a possible method of enhancing the process of phytoextraction. The results of the investigations of plant protein changes during assisted Hg phytoextraction were also provided. The results of the study show that combined use of compost and thiosulfate significantly increased both the total Hg accumulation and its translocation to aerial plant tissues. Plant protein analysis showed that L. sativum L. has the ability to respond to environmental stress condition by the activation of additional proteins. The additional proteins, like homocysteine methyltransferase, ribulose bisphosphate carboxylases (long and short chains), 14-3-3-like protein, and biosynthesis-related 40S ribosomal protein S15, were activated in plant shoots only in experiments carried out in Hg-polluted soil. There were no protein changes observed in plants exposed to compost and thiosulfate. It suggests that the combined use of compost and thiosulfate decreased Hg toxicity.

  8. New cyclic sulfides, garlicnins I2, M, N, and O, from Allium sativum.

    PubMed

    Nohara, Toshihiro; Ono, Masateru; Nishioka, Naho; Masuda, Fuka; Fujiwara, Yukio; Ikeda, Tsuyoshi; Nakano, Daisuke; Kinjo, Junei

    2018-01-01

    One atypical thiolane-type sulfide, garlicnin I 2 (1), two 3,4-dimethylthiolane-type sulfides, garlicnins M (2) and N (3), and one thiabicyclic-type sulfide, garlicnin O (4), were isolated from the acetone extracts of Chinese garlic bulbs, Allium sativum and their structures were characterized. Hypothetical pathways for the production of the respective sulfides were discussed.

  9. Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb).

    PubMed

    Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P

    2018-06-01

    There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reckmann, U.; Scheibe, R.; Raschke, K.

    We investigated whether the reductive pentose phosphate path in guard cells of Pisum sativum had the capacity to contribute significantly to the production of osmotica during stomatal opening in the light. Amounts of ribulose 1,5-bisphophate carboxylase/oxygenase (Rubisco) were determined by the ({sup 14}C) carboxyarabinitol bisphosphate assay. A guard cell contained about 1.2 and a mesophyll cell about 324 picograms of the enzyme; the ratio was 1:270. The specific activities of Rubisco in guard cells and in mesophyll cells were equal; there was no indication of a specific inhibitor of Rubisco in guard cells. Rubisco activity was 115 femtomol per guard-cellmore » protoplast and hour. This value was different from zero with a probability of 0.99. After exposure of guard-cell protoplasts to {sup 14}CO{sub 2} for 2 seconds in the light, about one-half of the radioactivity was in phosphorylated compounds and <10% in malate. Guard cells in epidermal strips produced a different labelling pattern; in the light, <10% of the label was in phosphorylated compounds and about 60% in malate. The rate of solute accumulation in intact guard cells was estimated to have been 900 femto-osmol per cell and hour. If Rubisco operated at full capacity in guard cells, and hexoses were produced as osmotica, solutes could be supplied at a rate of 19femto-osmol per cell and hour, which would constitute 2% of the estimated requirement. The capacity of guard-cell Rubisco to meet the solute requirement for stomatal opening in leaves of Pisum sativum is insignificant.« less

  11. Effects of phytoestrogen extracts isolated from rye, green and yellow pea seeds on hormone production and proliferation of trophoblast tumor cells Jeg3.

    PubMed

    Matscheski, A; Richter, D-U; Hartmann, A-M; Effmert, U; Jeschke, U; Kupka, M S; Abarzua, S; Briese, V; Ruth, W; Kragl, U; Piechulla, B

    2006-01-01

    Phytoestrogens are a diverse group of non-steroidal plant compounds. Because they have chemical structures similar to estrogens they are able to bind on estrogen receptors in humans. In this study, we tested the effects of crude phytoestrogen extracts from rye (Secale cereale), green pea (Pisum sativum) and yellow pea seeds (Pisum sativum cv.) on cell proliferation and the production of progesterone in trophoblast tumor cells of the cell line Jeg3. Isoflavone extracts from green and yellow pea seeds and lignan extracts from rye seeds were obtained, using different extraction methods. Isolated extracts were incubated in different concentrations with trophoblast tumor cells. Untreated cells were used as controls. At designated times, aliquots were removed and tested for estradiol and progesterone production. In addition, we tested the effects of the phytoestrogen extracts on cell proliferation. Cell proliferation is significantly inhibited by potential phytoestrogens isolated from rye, green and yellow pea seeds in trophoblast tumor cells of the cell line Jeg3. We found a correlation between the effects of proliferation and production of estradiol in isoflavone extracts from green and yellow pea seeds in Jeg3 cells. In addition, higher concentrations of isoflavones isolated from green pea seeds and lignans from rye showed also a inhibition of progesterone production whereas higher concentrations of rye lignans elevated estradiol production in Jeg3 cells. A useful indicator test system for potential phytoestrogens could be established. Based on the obtained results it is proposed that green and yellow pea seeds contain measurable concentrations of isoflavones and rye seeds contain lignans which can be isolated and used for special human diet programs. Copyright 2006 S. Karger AG, Basel.

  12. Induction of "pore" formation in plant cell membranes by toluene.

    PubMed

    Lerner, H R; Ben-Bassat, D; Reinhold, L; Poljakoff-Mayber, A

    1978-02-01

    Treatment with aqueous toluene-ethanol has been shown to induce "pore" formation in plant cell membranes. The evidence is as follows: [List: see text]While the principal experimental material was roots of Atriplex nummularia Lindl., the fact that similar results were also observed with leaves of Pisum sativum L. and with the alga Chlorella pyrenoidosa Chik. suggests that the phenomenon is general.Although the phenomenon of pore induction is qualitatively similar to that in microorganisms, the pores induced appear to be smaller. It is proposed that induced leakage could be the basis for the development of simple and rapid methods for plant biochemical studies.

  13. Induction of “Pore” Formation in Plant Cell Membranes by Toluene 1

    PubMed Central

    Lerner, Henri R.; Ben-Bassat, David; Reinhold, Leonora; Poljakoff-Mayber, Alexandra

    1978-01-01

    Treatment with aqueous toluene-ethanol has been shown to induce “pore” formation in plant cell membranes. The evidence is as follows: [List: see text] While the principal experimental material was roots of Atriplex nummularia Lindl., the fact that similar results were also observed with leaves of Pisum sativum L. and with the alga Chlorella pyrenoidosa Chik. suggests that the phenomenon is general. Although the phenomenon of pore induction is qualitatively similar to that in microorganisms, the pores induced appear to be smaller. It is proposed that induced leakage could be the basis for the development of simple and rapid methods for plant biochemical studies. PMID:16660262

  14. Isolation and Structural Studies of Mitochondria from Pea Roots.

    PubMed

    Vishwakarma, Abhaypratap; Gupta, Kapuganti Jagadis

    2017-01-01

    For structural and respiratory studies, isolation of intact and active mitochondria is essential. Here, we describe an isolation method which gave good yield and intact mitochondria from 2-week-old pea (Pisum sativum) roots grown hydroponically under standard growth conditions. We used Percoll gradient centrifugation for this isolation procedure. The yield of purified mitochondria was 50 μg/g FW. Isolated mitochondria maintained their structure which was observed by using MitoTracker green in confocal microscope and scanning electron microscopy (SEM). Intact mitochondria are clearly visible in SCM images. Taken together this isolation method can be used for physiological and microscopic studies on mitochondria.

  15. Isolation and characterization of N-feruloyltyramine as the P-selectin expression suppressor from garlic (Allium sativum)

    USDA-ARS?s Scientific Manuscript database

    Because garlic (Allium sativum) is believed to have positive health effects on cardiovascular disease, the screening of isolated fractions from a garlic extract against cardiovascular disease related-processes should help identify active compounds. Both P-selectin expression suppressing activity ag...

  16. Allium sativum Compared to Cilostazol as an Inhibitor of Myointimal Hyperplasia.

    PubMed

    Lima, Paulo Roberto da Silva; Bandeira, Francisco Chavier Vieira; Rolim, Janio Cipriano; Nogueira, Manuel Ricardo Sena; Pordeus, Mizael Armando Abrantes; de Oliveira, Andressa Feitosa Bezerra; Pitta, Guilherme Benjamin Brandão

    2016-01-01

    Intimal hyperplasia is associated with graft failure and vascular sutures in the first year after surgery and in postangioplasty restenosis. Allium sativum (common garlic) lowers cholesterol and has antioxidant effects; it also has antiplatelet and antitumor properties and, therefore, has great potential to reduce or inhibit intimal hyperplasia of the arteries. Our objective is to determine if the garlic has an efficacy to inhibit myointimal hyperplasia compared to cilostazol. Female New Zealand rabbits were divided into the following groups (n=10 each) according to treatment: group A, garlic, 800 µg×kg-1×day-1, orally; group C, cilostazol, 50 mg.day-1, orally; group PS, 10 ml of 0.9% physiological saline solution, orally. Our primary is the difference of the mean of myointimal hyperplasia. Statistical analysis was performed by using ANOVA and Tukey tests, as well as the Chi-square test. We calculated the 95% confidence interval for each point estimate, and the P value was set as < 0.05. Group PS had a mean hyperplasia rate of 35.74% (95% CI, 31.76-39.71%); group C, 16.21% (95% CI, 13.36-19.05%); and group A, 21.12% (95% CI, 17.26-25.01%); P < 0.0001. We conclude that Allium sativum had the same efficacy in inhibiting myointimal hyperplasia when compared to the positive control, cilostazol.

  17. Assessment of in vitro and in vivo anthelminthic potential of extracts of Allium sativum bulb against naturally occurring ovine gastrointestinal nematodiosis.

    PubMed

    Kanojiya, Dharmendra; Shanker, Daya; Sudan, Vikrant; Jaiswal, Amit Kumar; Parashar, Rahul

    2015-01-01

    The rapid development of anthelminthic resistance has limited the success of traditional control programmes, thereby forcing researchers to search for ethno-veterinary alternatives. The objective is to assess the anthelminthic potential of various extracts of the bulb of Allium sativum in naturally infected sheep. In vitro anthelminthic activities of crude aqueous and methanolic extracts of the bulb of A. sativum were investigated against the egg (500 eggs/ml) and larvae of naturally infected sheep. The aqueous extract of A. sativum was also investigated for in vivo anthelminthic activity in three groups (n = 15 each) of naturally infected Chokla sheep with a negative control group receiving no treatment, a positive control group was given a single oral dose of albendazole at 7.5 mg/kg bodyweight, and a group administered a single oral dose of an aqueous extract at 5 g/animal. Data were analysed using the general linear model. Aqueous extract showed better efficacy in egg hatch assay and larval development test. However, in larval paralysis test, reverse trend was seen as methanolic extract was more potent than the aqueous counterpart. A significant amount of 57% faecal egg count reduction was observed in in vivo trail using the aqueous extract on day 21 post-treatment, although in initial stages it showed 30% and 83% effectiveness on days 7 and 14 post-treatment, respectively. No deleterious ill effect was found in any of the haematological and biochemical parameters. Bulb of A. sativum possesses good anthelminthic efficacy and further research is thereby warranted before recommending it for nematode control programme in ovines.

  18. Branching in Pea (Action of Genes Rms3 and Rms4).

    PubMed Central

    Beveridge, C. A.; Ross, J. J.; Murfet, I. C.

    1996-01-01

    The nonallelic ramosus mutations rms3-2 and rms4 of pea (Pisum sativum L.) cause extensive release of vegetative axillary buds and lateral growth in comparison with wild-type (cv Torsdag) plants, in which axillary buds are not normally released under the conditions utilized. Grafting studies showed that the expression of the rms4 mutation in the shoot is independent of the genotype of the root-stock. In contrast, the length of the branches at certain nodes of rms3-2 plants was reduced by grafting to wild-type stocks, indicating that the wild-type Rms3 gene may control the level of a mobile substance produced in the root. This substance also appears to be produced in the shoot because Rms3 shoots did not branch when grafted to mutant rms3-2 rootstocks. However, the end product of the Rms3 gene appears to differ from that of the Rms2 gene (C.A. Beveridge, J.J. Ross, and I.C. Murfet [1994] Plant Physiol 104: 953-959) because reciprocal grafts between rms3-2 and rms2 seedlings produced mature shoots with apical dominance similar to that of rms3-2 and rms2 shoots grafted to wild-type stocks. Indole-3-acetic acid levels were not reduced in apical or nodal portions of rms4 plants and were actually elevated (up to 2-fold) in rms3-2 plants. It is suggested that further studies with these branching mutants may enable significant progress in understanding the normal control of apical dominance and the related communication between the root and shoot. PMID:12226224

  19. Changes in growth, leaf anatomy and pigment concentrations in pea under modulated UV-B field treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, T.A.; Howells, B.W.; Ruhland, C.T.

    1995-06-01

    In growth-chamber and greenhouse studies, garden pea is typically quite sensitive to enhanced UV-B radiation (280-320 nm). We assessed whether growth of pea was reduced under more ecologically relevant UV-B enhancements by employing modulated field lampbanks simulating 0, 16 or 24% ozone depletion. We also examined if these UV-B treatments altered leaf anatomy and concentrations of chlorophyll and UV-B-absorbing compounds, and whether this was dependent on leaf age. We used Pisum sativum mutant Argenteum which has an easily detachable epidermis that allowed us to compare concentrations in epidermal and mesophyll tissues. There were no significant UV-B effects on whole-plant growth.more » Of the 15 leaf-level parameters we examined, UV-B had a strong effect on only two parameters: the ratio of UV-B-absorbing compounds to chlorophyll (which increased with UV-B dose), and stomatal density of the adaxial surface (which decreased with UV-B dose). Chlorophyll concentrations tended to decrease, while the proportion of UV-B-absorbing compounds in the adaxial epidermis tended to increase with UV-B dose (p = 0.11 for both). In contrast to UV-B effects, we found strong leaf-age effects on nearly all parameters except the ratio of UV-B-absorbing compounds to chlorophyll, which remained relatively constant with leaf age.« less

  20. Zea mays assays of chemical/radiation genotoxicity for the study of environmental mutagens.

    PubMed

    Grant, William F; Owens, Elizabeth T

    2006-09-01

    From a literature survey, 86 chemicals are tabulated that have been evaluated in 121 assays for their clastogenic effects in Zea mays. Eighty-one of the 86 chemicals are reported as giving a positive reaction (i.e. causing chromosome aberrations). Of these, 36 are reported positive with a dose response. In addition, 32 assays have been recorded for 7 types of radiation, all of which reacted positively. The results of 126 assays with 63 chemicals and 12 types of radiation tested for the inductions of gene mutations are tabulated, as well as 63 chemicals and/or radiation in combined treatments. Three studies reported positive results for mutations on Zea mays seed sent on space flights. The Zea mays (2n=20) assay is a very good plant bioassay for assessing chromosome damage both in mitosis and meiosis and for somatic mutations induced by chemicals and radiations. The carcinogenicity and Salmonella assays correlate in all cases. The maize bioassay has been shown to be as sensitive and as specific an assay as other plant genotoxicity assays, such as Hordeum vulgare, Vicia faba, Crepis capillaris, Pisum sativum, Lycopersicon esculentum and Allium cepa and should be considered in further studies in assessing clastogenicity. Tests using Zea mays can be made for a spectrum of mutant phenotypes of which many are identifiable in young seedlings.

  1. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod.

    PubMed

    Hecht, Valérie; Laurie, Rebecca E; Vander Schoor, Jacqueline K; Ridge, Stephen; Knowles, Claire L; Liew, Lim Chee; Sussmilch, Frances C; Murfet, Ian C; Macknight, Richard C; Weller, James L

    2011-01-01

    Garden pea (Pisum sativum) was prominent in early studies investigating the genetic control of flowering and the role of mobile flowering signals. In view of recent evidence that genes in the FLOWERING LOCUS T (FT) family play an important role in generating mobile flowering signals, we isolated the FT gene family in pea and examined the regulation and function of its members. Comparison with Medicago truncatula and soybean (Glycine max) provides evidence of three ancient subclades (FTa, FTb, and FTc) likely to be common to most crop and model legumes. Pea FT genes show distinctly different expression patterns with respect to developmental timing, tissue specificity, and response to photoperiod and differ in their activity in transgenic Arabidopsis thaliana, suggesting they may have different functions. We show that the pea FTa1 gene corresponds to the GIGAS locus, which is essential for flowering under long-day conditions and promotes flowering under short-day conditions but is not required for photoperiod responsiveness. Grafting, expression, and double mutant analyses show that GIGAS/FTa1 regulates a mobile flowering stimulus but also provide clear evidence for a second mobile flowering stimulus that is correlated with expression of FTb2 in leaf tissue. These results suggest that induction of flowering by photoperiod in pea results from interactions among several members of a diversified FT family.

  2. Effects of steam distillation on extraction, composition, and functional properties of coriander (Coriandrum sativum L.) proteins

    USDA-ARS?s Scientific Manuscript database

    Coriander (Coriandrum sativum L.) is a summer annual plant commonly used as fresh green herb, spice, or for its essential oil. A newly-developed process combined steam distillation and mechanical pressing to recover the essential oil and edible oil, respectively, from dehulled coriander seeds. The c...

  3. Centromeres Off the Hook: Massive Changes in Centromere Size and Structure Following Duplication of CenH3 Gene in Fabeae Species

    PubMed Central

    Neumann, Pavel; Pavlíková, Zuzana; Koblížková, Andrea; Fuková, Iva; Jedličková, Veronika; Novák, Petr; Macas, Jiří

    2015-01-01

    In most eukaryotes, centromere is determined by the presence of the centromere-specific histone variant CenH3. Two types of chromosome morphology are generally recognized with respect to centromere organization. Monocentric chromosomes possess a single CenH3-containing domain in primary constriction, whereas holocentric chromosomes lack the primary constriction and display dispersed distribution of CenH3. Recently, metapolycentric chromosomes have been reported in Pisum sativum, representing an intermediate type of centromere organization characterized by multiple CenH3-containing domains distributed across large parts of chromosomes that still form a single constriction. In this work, we show that this type of centromere is also found in other Pisum and closely related Lathyrus species, whereas Vicia and Lens genera, which belong to the same legume tribe Fabeae, possess only monocentric chromosomes. We observed extensive variability in the size of primary constriction and the arrangement of CenH3 domains both between and within individual Pisum and Lathyrus species, with no obvious correlation to genome or chromosome size. Search for CenH3 gene sequences revealed two paralogous variants, CenH3-1 and CenH3-2, which originated from a duplication event in the common ancestor of Fabeae species. The CenH3-1 gene was subsequently lost or silenced in the lineage leading to Vicia and Lens, whereas both genes are retained in Pisum and Lathyrus. Both of these genes appear to have evolved under purifying selection and produce functional CenH3 proteins which are fully colocalized. The findings described here provide the first evidence for a highly dynamic centromere structure within a group of closely related species, challenging previous concepts of centromere evolution. PMID:25771197

  4. Centromeres Off the Hook: Massive Changes in Centromere Size and Structure Following Duplication of CenH3 Gene in Fabeae Species.

    PubMed

    Neumann, Pavel; Pavlíková, Zuzana; Koblížková, Andrea; Fuková, Iva; Jedličková, Veronika; Novák, Petr; Macas, Jiří

    2015-07-01

    In most eukaryotes, centromere is determined by the presence of the centromere-specific histone variant CenH3. Two types of chromosome morphology are generally recognized with respect to centromere organization. Monocentric chromosomes possess a single CenH3-containing domain in primary constriction, whereas holocentric chromosomes lack the primary constriction and display dispersed distribution of CenH3. Recently, metapolycentric chromosomes have been reported in Pisum sativum, representing an intermediate type of centromere organization characterized by multiple CenH3-containing domains distributed across large parts of chromosomes that still form a single constriction. In this work, we show that this type of centromere is also found in other Pisum and closely related Lathyrus species, whereas Vicia and Lens genera, which belong to the same legume tribe Fabeae, possess only monocentric chromosomes. We observed extensive variability in the size of primary constriction and the arrangement of CenH3 domains both between and within individual Pisum and Lathyrus species, with no obvious correlation to genome or chromosome size. Search for CenH3 gene sequences revealed two paralogous variants, CenH3-1 and CenH3-2, which originated from a duplication event in the common ancestor of Fabeae species. The CenH3-1 gene was subsequently lost or silenced in the lineage leading to Vicia and Lens, whereas both genes are retained in Pisum and Lathyrus. Both of these genes appear to have evolved under purifying selection and produce functional CenH3 proteins which are fully colocalized. The findings described here provide the first evidence for a highly dynamic centromere structure within a group of closely related species, challenging previous concepts of centromere evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Phytochemical Profiles and Antimicrobial Activities of Allium cepa Red cv. and A. sativum Subjected to Different Drying Methods: A Comparative MS-Based Metabolomics.

    PubMed

    Farag, Mohamed A; Ali, Sara E; Hodaya, Rashad H; El-Seedi, Hesham R; Sultani, Haider N; Laub, Annegret; Eissa, Tarek F; Abou-Zaid, Fouad O F; Wessjohann, Ludger A

    2017-05-08

    Plants of the Allium genus produce sulphur compounds that give them a characteristic (alliaceous) flavour and mediate for their medicinal use. In this study, the chemical composition and antimicrobial properties of Allium cepa red cv. and A. sativum in the context of three different drying processes were assessed using metabolomics. Bulbs were dried using either microwave, air drying, or freeze drying and further subjected to chemical analysis of their composition of volatile and non-volatile metabolites. Volatiles were collected using solid phase micro-extraction (SPME) coupled to gas chromatography-mass spectrometry (GC/MS) with 42 identified volatiles including 30 sulphur compounds, four nitriles, three aromatics, and three esters. Profiling of the polar non-volatile metabolites via ultra-performance liquid chromatography coupled to high resolution MS (UPLC/MS) annotated 51 metabolites including dipeptides, flavonoids, phenolic acids, and fatty acids. Major peaks in GC/MS or UPLC/MS contributing to the discrimination between A. sativum and A. cepa red cv. were assigned to sulphur compounds and flavonoids. Whereas sulphur conjugates amounted to the major forms in A. sativum , flavonoids predominated in the chemical composition of A. cepa red cv. With regard to drying impact on Allium metabolites, notable and clear separations among specimens were revealed using principal component analysis (PCA). The PCA scores plot of the UPLC/MS dataset showed closer metabolite composition of microwave dried specimens to freeze dried ones, and distant from air dried bulbs, observed in both A. cepa and A. sativum . Compared to GC/MS, the UPLC/MS derived PCA model was more consistent and better in assessing the impact of drying on Allium metabolism. A phthalate derivative was found exclusively in a commercial garlic preparation via GC/MS, of yet unknown origin. The freeze dried samples of both Allium species exhibited stronger antimicrobial activities compared to dried specimens

  6. Allium sativum Compared to Cilostazol as an Inhibitor of Myointimal Hyperplasia

    PubMed Central

    Lima, Paulo Roberto da Silva; Bandeira, Francisco Chavier Vieira; Rolim, Janio Cipriano; Nogueira, Manuel Ricardo Sena; Pordeus, Mizael Armando Abrantes; de Oliveira, Andressa Feitosa Bezerra; Pitta, Guilherme Benjamin Brandão

    2016-01-01

    Objective Intimal hyperplasia is associated with graft failure and vascular sutures in the first year after surgery and in postangioplasty restenosis. Allium sativum (common garlic) lowers cholesterol and has antioxidant effects; it also has antiplatelet and antitumor properties and, therefore, has great potential to reduce or inhibit intimal hyperplasia of the arteries. Our objective is to determine if the garlic has an efficacy to inhibit myointimal hyperplasia compared to cilostazol. Methods Female New Zealand rabbits were divided into the following groups (n=10 each) according to treatment: group A, garlic, 800 µg×kg-1×day-1, orally; group C, cilostazol, 50 mg.day-1, orally; group PS, 10 ml of 0.9% physiological saline solution, orally. Our primary is the difference of the mean of myointimal hyperplasia. Statistical analysis was performed by using ANOVA and Tukey tests, as well as the Chi-square test. We calculated the 95% confidence interval for each point estimate, and the P value was set as < 0.05. Results Group PS had a mean hyperplasia rate of 35.74% (95% CI, 31.76–39.71%); group C, 16.21% (95% CI, 13.36–19.05%); and group A, 21.12% (95% CI, 17.26–25.01%); P<0.0001. Conclusion We conclude that Allium sativum had the same efficacy in inhibiting myointimal hyperplasia when compared to the positive control, cilostazol. PMID:27849301

  7. The effect of hydroalcoholic extract of Coriandrum sativum on rat appetite

    PubMed Central

    Nematy, Mohsen; Kamgar, Maryam; Mohajeri, Seyed Mohammad Reza; Tabatabaei Zadeh, Seyed Amir; Jomezadeh, Mohammad Reza; Akbarieh Hasani, Omid; Kamali, Najmeh; Vojouhi, Shohreh; Baghban, Sara; Aghaei, Azita; Soukhtanloo, Mohammad; Hosseini, Mahmoud; Gholamnezhad, Zahra; Rakhshandeh, Hassan; Norouzy, Abdolreza; Esmaily, Habibollah; Ghayour-Mobarhan, Majid; Patterson, Michael

    2013-01-01

    Objective: Losing weight in consequence of appetite loss can be a sign of a serious underlying condition. Currently, the most widely prescribed medication for anorexia is cyproheptadine hydrochloride. However, the clinical use of cyproheptadine hydrochloride is limited by its side effects. In Iranian traditional medicine, Coriandrum sativum stimulates the appetite. Therefore, the effect of Coriandrum sativum (coriander) hydroalcoholic extract was investigated on food intake in rats. Material and Methods: Thirty male Wistar rats were randomly divided into five groups. Two control groups were used, one group received 0.5 ml water per day (vehicle group), and another group did not receive anything (control group). The other 3 groups were daily treated by 50, 100 or 150 mg/kg of coriander for 7 days, respectively. The daily amount of the food eaten by each rat was measured for 10 days. The amount of energy intake of each rat was also calculated for 7 days during the intervention. The difference in energy intake was calculated and compared between groups. Result: There was no significant change in energy intake between control and vehicle groups. The change in energy intake after treatment by 100 and 150 mg/kg of the extract was significantly higher than other groups (p=0.030 and p=0.007) Conclusion: This study indicated that coriander had positive effects on appetite of rats. Future studies are needed to evaluate the mechanisms of the effects of this plant on appetite. PMID:25050262

  8. Evaluation of bioactivity of linalool-rich essential oils from Ocimum basilucum and Coriandrum sativum varieties.

    PubMed

    Duman, Ahmet D; Telci, Isa; Dayisoylu, Kenan S; Digrak, Metin; Demirtas, Ibrahim; Alma, Mehmet H

    2010-06-01

    Essential oils from Ocimum basilicum L. and Coriandrum sativum L. varieties originating from Turkey were investigated for their antimicrobial properties. The antimicrobial effects of the oil varieties were evaluated by the disc diffusion and minimum inhibitory concentration (MIC) methods against eight bacteria and three fungi. The compositions of the essential oils were analyzed and identified by GC and GC-MS. O. basilicum, C. sativum var. macrocarpum and var. microcarpum oils revealed the presence of linalool (54.4%), eugenol (9.6%), methyl eugenol (7.6%); linalool (78.8%), gamma-terpinene (6.0%), nerol acetate (3.5%); and linalool (90.6%), and nerol acetate (3.3%) as the major components, respectively. The oils exhibited antibacterial activity ranging from 1.25 to 10 microL disc(-1) against the test organisms with inhibition zones of 9.5-39.0 mm and minimal inhibitory concentrations values in the range 0.5- > or =1 microL/L. Linalool, eugenol, and methyl eugenol at 1.25 microL disc(-1) had antimicrobial effects on all microorganisms, giving inhibition zones ranging from 7 to 19 mm.

  9. Oviposition Preference of Pea Weevil, Bruchus pisorum L. Among Host and Non-host Plants and its Implication for Pest Management

    PubMed Central

    Mendesil, Esayas; Rämert, Birgitta; Marttila, Salla; Hillbur, Ylva; Anderson, Peter

    2016-01-01

    The pea weevil, Bruchus pisorum L. is a major insect pest of field pea, Pisum sativum L. worldwide and current control practices mainly depend on the use of chemical insecticides that can cause adverse effects on environment and human health. Insecticides are also unaffordable by many small-scale farmers in developing countries, which highlights the need for investigating plant resistance traits and to develop alternative pest management strategies. The aim of this study was to determine oviposition preference of pea weevil among P. sativum genotypes with different level of resistance (Adet, 32410-1 and 235899-1) and the non-host leguminous plants wild pea (Pisum fulvum Sibth. et Sm.) and grass pea (Lathyrus sativus L.), in no-choice and dual-choice tests. Pod thickness and micromorphological traits of the pods were also examined. In the no-choice tests significantly more eggs were laid on the susceptible genotype Adet than on the other genotypes. Very few eggs were laid on P. fulvum and L. sativus. In the dual-choice experiments Adet was preferred by the females for oviposition. Furthermore, combinations of Adet with either 235899-1 or non-host plants significantly reduced the total number of eggs laid by the weevil in the dual-choice tests. Female pea weevils were also found to discriminate between host and non-host plants during oviposition. The neoplasm (Np) formation on 235899-1 pods was negatively correlated with oviposition by pea weevil. Pod wall thickness and trichomes might have influenced oviposition preference of the weevils. These results on oviposition behavior of the weevils can be used in developing alternative pest management strategies such as trap cropping using highly attractive genotype and intercropping with the non-host plants. PMID:26779220

  10. The in vitro effect of Ferula asafoetida and Allium sativum extracts on Strongylus spp.

    PubMed

    Tavassoli, Mousa; Jalilzadeh-Amin, Ghader; Fard, Vahid R. Besharati; Esfandiarpour, Rahim

    2018-01-01

    The high incidence of equine gastrointestinal worms and their increased resistance against anthelmintics has encouraged research into the effectiveness of rational phytotherapy. This study investigates the in vitro anti-parasitic effects of extracts of Ferula asafoetida and Allium sativum, two native plants that are widespread in Iran on Strongylus spp. larvae. Faecal samples were collected from horses, examined by routine parasitology methods and positive samples were used for future examination. After incubation, the third-stage larvae were harvested by the Baermann technique. A hydroalcoholic extract from the plants was used for the antiparasitic study, while tap water was used for controls. Trials for each concentration and control group were performed in three replicates. The results showed that that during the first day of exposure, the hydroalcoholic extract of F. asafoetida at concentration of 10, 50 and 100 mg/ml killed over the 90% of the larvae, and A. sativum extract at concentration of 50 and 100 mg/ml killed over the 95% of larvae (p<0.05). The results obtained from the bioassay showed that two plant extracts have a larvicidal effect on the Strongylus spp. larval stages compared with the control group.

  11. Influences of pea morphology and interacting factors on pea aphid (Homoptera: Aphididae) reproduction.

    PubMed

    Buchman, N; Cuddington, K

    2009-08-01

    It has been claimed that plant architecture can alter aphid reproductive rates, but the mechanism driving this effect has not been identified. We studied interactions between plant architecture, aphid density, environmental conditions, and nutrient availability on the reproduction of pea aphids [Acyrthosiphon pisum (Harris)] using four near-isogenic peas (Pisum sativum L.) that differ in morphology. Manipulations of aphid density (1, 5, and 10 adults per plant) allowed us to examine any effects of plant morphology on crowding and consequently reproduction. Pea morphology per se did not alter pea aphid crowding, as measured by mean nearest neighbor distance, and there was no effect on reproduction. In addition, reproduction increased with increasing adult density, indicating positive density dependence. In a separate experiment, peas were fertilized to determine whether differences between nutrient availability of the four different morphologies might drive any observed differences in aphid reproduction. Although plant nitrogen content was altered by fertilization treatments, this did not have an impact on aphid reproduction. Greenhouse experiments, however, suggested that pea morphology can interact with environmental conditions to reduce aphid reproduction under some conditions. We conclude that plant morphology only influences aphid reproduction when environmental conditions are less than optimal.

  12. Plant Chemiluminescence

    PubMed Central

    Abeles, Fred B.; Leather, Gerald R.; Forrence, Leonard E.

    1978-01-01

    Light production by plants was confirmed by measuring chemiluminescence from root and stem tissue of peas (Pisum sativum), beans (Phaseolus vulgaris), and corn (Zea mays) in a modified scintillation spectrophotometer. Chemiluminescence was inhibited by treating pea roots with boiling ethanol or by placing them in a N2 gas phase. Chemiluminescence was increased by an O2 gas phase or by the addition of luminol. NaN3 and NaCN blocked both in vitro and in vivo chemiluminescence. It is postulated that the source of light is the hydrogen peroxide-peroxidase enzyme system. It is known that this system is responsible for chemiluminescence in leukocytes and it seems likely that a similar system occurs in plants. PMID:16660587

  13. [Allelopathic effects of extracts from fibrous roots of Coptis chinensis on two leguminous species].

    PubMed

    Li, Qian; Wu, Ye-Kuan; Yuan, Ling; Huang, Jian-Guo

    2013-03-01

    An experiment was carried out to study the allelopathic effects of Coptis chinensis fibrous root extracts (CRE) on the germination and seedling growth of Vicia faba and Pisum sativum in order to alleviate the allelopathic effects and increase land productivity. The seeds of both garden pea (P. sativum) and broad been (V. faba) were germinated in CRE solution of various concentrations, the germination rate, seedling growth and related physiological indexes were measured. The result indicated that there were no significant effects of CRE in low concentrations on seed germination, including both the rate and index, and seed vitality and membrane permeability. With the increment of CRE concentrations, however, the high seed membrane permeability and germination inhibition were observed. For example, the germination rates were reduced by 23.4% (P. sativum) and 9.5% (V. faba), respectively, in CRE solution with 800 mg . L-1. Simultaneously, soluble sugars and the free amino acids in the seeds were lower than those in the control (without CRE) after soaking seeds in CRE solutions. In addition, the seedling growth and nitrate reductase activity were stimulated by CRE at low concentrations in contrast to high concentrations which behaved otherwise and inhibited the nutrient utilization in endosperm. Therefore, the large amount of allelochemicals released from the roots and remains of C. chinensis in soils could inhibit the seed germination and seedling growth of legumes, which may lead to decrease even fail crop yields after growing this medical plant.

  14. Tubulin cytoskeleton during microsporogenesis in the male-sterile genotype of Allium sativum and fertile Allium ampeloprasum L.

    PubMed

    Tchórzewska, Dorota; Deryło, Kamil; Błaszczyk, Lidia; Winiarczyk, Krystyna

    2015-12-01

    Microsporogenesis in garlic. The male-sterile Allium sativum (garlic) reproduces exclusively in the vegetative mode, and anthropogenic factors seem to be the cause of the loss of sexual reproduction capability. There are many different hypotheses concerning the causes of male sterility in A.sativum; however, the mechanisms underlying this phenomenon have not been comprehensively elucidated.Numerous attempts have been undertaken to understand the causes of male sterility, but the tubulin cytoskeleton in meiotically dividing cells during microsporogenesis has never been investigated in this species. Using sterile A.sativum genotype L13 and its fertile close relative A. ampeloprasum (leek), we have analysed the distribution of the tubulin cytoskeleton during microsporogenesis. We observed that during karyokinesis and cytokinesis, in both meiotic divisions I and II, the microtubular cytoskeleton in garlic L13 formed configurations that resembled tubulin arrangement typical of monocots. However, the tubulin cytoskeleton in garlic was distinctly poorer (composed of a few MT filaments) compared with that found in meiotically dividing cells in A. ampeloprasum. These differences did not affect the course of karyogenesis, chondriokinesis, and cytokinesis, which contributed to completion of microsporogenesis, but there was no further development of the male gametophyte. At the very beginning of the successive stage of development of fertile pollen grains, i.e. gametogenesis, there were disorders involving the absence of a normal cortical cytoskeleton and dramatically progressive degeneration of the cytoplasm in garlic. Therefore,we suggest that, due to disturbances in cortical cytoskeleton formation at the very beginning of gametogenesis, the intracellular transport governed by the cytoskeleton might be perturbed, leading to microspore decay in the male-sterile garlic genotype.

  15. Sharing mutants and experimental information prepublication using FgMutantDB

    USDA-ARS?s Scientific Manuscript database

    There has been no central location for storing generated mutants of Fusarium graminearum or for data associated with these mutants. Instead researchers relied on several independent, non-integrated databases. FgMutantDB was designed as a simple spreadsheet that is accessible globally on the web th...

  16. Functional Properties of Pea (Pisum sativum, L.) Protein Isolates Modified with Chymosin

    PubMed Central

    Barać, Miroljub; Čabrilo, Slavica; Pešić, Mirjana; Stanojević, Slađana; Pavlićević, Milica; Maćej, Ognjen; Ristić, Nikola

    2011-01-01

    In this paper, the effects of limited hydrolysis on functional properties, as well as on protein composition of laboratory-prepared pea protein isolates, were investigated. Pea protein isolates were hydrolyzed for either 15, 30 and 60 min with recombined chymosin (Maxiren). The effect of enzymatic action on solubility, emulsifying and foaming properties at different pH values (3.0; 5.0; 7.0 and 8.0) was monitored. Chymosin can be a very useful agent for improvement of functional properties of isolates. Action of this enzyme caused a low degree of hydrolysis (3.9–4.7%), but improved significantly functional properties of pea protein isolates (PPI), especially at lower pH values (3.0–5.0). At these pH values all hydrolysates had better solubility, emulsifying activity and foaming stability, while longer-treated samples (60 min) formed more stable emulsions at higher pH values (7.0, 8.0) than initial isolates. Also, regardless of pH value, all hydrolysates showed improved foaming ability. A moderate positive correlation between solubility and emulsifying activity index (EAI) (0.74) and negative correlation between solubility and foam stability (−0.60) as well as between foam stability (FS) and EAI (−0.77) were observed. Detected enhancement in functional properties was a result of partial hydrolysis of insoluble protein complexes. PMID:22272078

  17. Coriandrum sativum mediated synthesis of silver nanoparticles and evaluation of their biological characteristics

    NASA Astrophysics Data System (ADS)

    Senthilkumar, N.; Aravindhan, V.; Ruckmani, K.; Vetha Potheher, I.

    2018-05-01

    Silver (Ag) nanoparticles (NPs) were prepared by percolated green synthesis method using Coriandrum sativum leaf, root, seed and stem extracts and reported its antibacterial activity. The synthesized Ag NPs were confirmed by UV–visible Spectroscopy, Powder x-ray Diffraction (PXRD), Fourier Transform Infra Red (FT-IR) Spectroscopy analyzes. The Maximum absorbance observed around 400–450 nm reveal the characteristic absorbance of Ag NPs. The Dynamic Light Scattering (DLS) analysis shows the stability of synthesized NPs with average size varying from 35 to 53 nm and also zeta potential stability varying from ‑20 to ‑30 mV. The cubic structure, crystalline nature and purity of the material was confirmed by powder x-ray diffraction studies. FT-IR spectrum shows the presence of various functional groups in the resultant material. The Field Emission Scanning Electron Microscopy (FESEM) image shows the surface morphology of the synthesized NPs and the Energy Dispersive x-ray Analysis (EDAX) confirms the presence of silver metal ions. The Coriandrum sativum aqueous extract exhibited excellent antimicrobial activity against Klebsiella pneumoniae (Gram -ve) bacteria. Numerous studies have been made previously in our field of study but optimization has not been carried out by both extract (different parts like leaf, root, seed and stem) and without addition of any external source such as chemicals, heat etc.

  18. Combined Metabolomic and Genetic Approaches Reveal a Link between the Polyamine Pathway and Albumin 2 in Developing Pea Seeds1[W][OA

    PubMed Central

    Vigeolas, Helene; Chinoy, Catherine; Zuther, Ellen; Blessington, Bernard; Geigenberger, Peter; Domoney, Claire

    2008-01-01

    Several legume seed proteins that are potentially allergenic, poorly digested by farm animals, and/or have undesirable functional properties, have been described. One of these is the albumin protein in pea (Pisum sativum) called PA2. A naturally occurring mutant line that lacks PA2 has been exploited in studies to determine the biological function of this nonstorage protein in seed development. The mutant, which has a small seed, a tall plant phenotype, and lacks most of the PA2-encoding genes, has been crossed with a standard cultivar, ‘Birte,’ which contains PA2 to give rise to a recombinant inbred (RI) population. An F3 line carrying the mutation and having a short plant phenotype has been used to generate backcross (BC) lines with ‘Birte.’ Despite having a lower albumin content, seeds from the mutant parent and RI lines lacking PA2 have an equivalent or higher seed nitrogen content. Metabolite profiling of seeds revealed major differences in amino acid composition and polyamine content in the two parent lines. This was investigated further in BC lines, where the effects of differences in seed size and plant height between the two parents were eliminated. Here, differences in polyamine synthesis were maintained as was a difference in total seed protein between the BC line lacking PA2 and ‘Birte.’ Analysis of enzyme activities in the pathways of polyamine synthesis revealed that the differences in spermidine content were attributable to changes in the overall activities of spermidine synthase and arginine decarboxylase. Although the genes encoding spermidine synthase and PA2 both localized to the pea linkage group I, the two loci were shown not to be closely linked and to have recombined in the BC lines. A distinct locus on linkage group III contains a gene that is related to PA2 but expressed predominantly in flowers. The results provide evidence for a role of PA2 in regulating polyamine metabolism, which has important functions in development

  19. Chemical Composition and Behavioral Effects of Five Plant Essential Oils on the Green Pea Aphid Acyrthosiphon pisum (Harris) (Homoptera: Aphididae).

    PubMed

    Kasmi, Abir; Hammami, Majdi; Raoelison, Emmanuel G; Abderrabba, Manef; Bouajila, Jalloul; Ducamp, Christine

    2017-05-01

    Essential oils (EOs) from Schinus molle, Helichrysum gymnocephalum, Cedrelopsis grevei and Melaleuca viridiflora, four aromatic and medicinal plants, are commonly used in folk medicine. EOs were characterized by gas chromatography/mass spectrometry (GC/MS) and quantified by gas chromatography-flame ionization detection (GC-FID); then evaluated for their behavioral effects on adults of the green pea aphid Acyrthosiphon pisum (Harris) using a Perspex four-armed olfactometer in order to test the compatibility of their use as phytoinsecticides to control this insect pest. Our results showed that the EOs from the leaves of S. molle, M. viridiflora and C. grevei did not change aphids' behavior. However, S. molle fruits EO seemed to be attractive while H. gymnocephalum leaves EO exhibited repellency towards aphids at a dose of 10 μl. The major compounds in S. molle fruits EO were 6-epi-shyobunol (16.22%) and d-limonene (15.35%). While, in H. gymnocephalum leaves EO, 1,8-cineole was the main compound (47.4%). The difference in aphids' responses to these two EOs could be attributed to the differences in their compositions. Our findings suggest that these two EOs have potential applications for the integrated pest management of A. pisum (Harris). © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  20. Micropropagation and cryopreservation of garlic (Allium sativum L.).

    PubMed

    Keller, E R Joachim; Senula, Angelika

    2013-01-01

    Garlic (Allium sativum L.) is a very important medicinal and spice plant. It is conventionally propagated by daughter bulbs ("cloves") and bulbils from the flower head. Micropropagation is used for speeding up the vegetative propagation mainly using the advantage to produce higher numbers of healthy plants free of viruses, which have higher yield than infected material. Using primary explants from bulbs and/or bulbils (shoot tips) or unripe inflorescence bases, in vitro cultures are initiated on MS-based media containing auxins, e.g., naphthalene acetic acid, and cytokinins, e.g., 6-γ-γ-(dimethylallylaminopurine) (2iP). Rooting is accompanying leaf formation. It does not need special culture phases. The main micropropagation methods rely on growth of already formed meristems. Long-term storage of micropropagated material, cryopreservation, is well-developed to maintain germplasm. The main method is vitrification using the cryoprotectant mixture PVS3.

  1. Immunological and biochemical evidence for nuclear localization of annexin in peas

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Dauwalder, M.; Roux, S. J.

    1998-01-01

    Immunofluorescent localization of annexins using an anti-pea annexin polyclonal antibody (anti-p35) in pea (Pisum sativum) leaf and stem epidermal peels showed staining of the nuclei and the cell periphery. Nuclear staining was also seen in cell teases prepared from pea plumules. The amount of nuclear stain was reduced both by fixation time and by dehydration and organic solvent treatment. Observation with confocal microscopy demonstrated that the anti-p35 stain was diffusely distributed throughout the nuclear structure. Immunoblots of purified nuclei, nuclear envelope matrix, nucleolar, and chromatin fractions showed a cross-reactive protein band of 35 kDa. These data are the first to show annexins localized in plant cell nuclei where they may play a role in nuclear function.

  2. Changes in the topography of cellular components in pea root statocytes exposed to high gradient magnetic fields

    NASA Astrophysics Data System (ADS)

    Belyavskaya, Ninel A.; Polishchuk, Olexandr V.; Kondrachuk, Alexander V.

    2005-08-01

    High-gradient magnetic field (HGMF) is one of methods, by which gravitropism in plants is studied. The aim of our study was elucidation of HGMF effects on topography of cellular components in root statocytes of 4- day Pisum sativum L. seedlings in comparison to gravistimulation. Under gravistimulation during 5, 30 and 60 min seedlings were rotated 45o; magnetostimulation was carried out along gap between two NdFeB magnets (0.7 T). Morphometric measurements were made from images of whole statocytes, for upper, middle and lower thirds of cells, and proximal and distal halves of cells. Morphometric analysis revealed that HGMF resulted in the redistribution of all cellular components in statocytes. The correlation in the amyloplast distribution between gravistimulation and magnetostimulation was established.

  3. Coupling of solute transport and cell expansion in pea stems

    NASA Technical Reports Server (NTRS)

    Schmalstig, J. G.; Cosgrove, D. J.

    1990-01-01

    As cells expand and are displaced through the elongation zone of the epicotyl of etiolated pea (Pisum sativum L. var Alaska) seedlings, there is little net dilution of the cell sap, implying a coordination between cell expansion and solute uptake from the phloem. Using [14C] sucrose as a phloem tracer (applied to the hypogeous cotyledons), the pattern of label accumulation along the stem closely matched the growth rate pattern: high accumulation in the growing zone, little accumulation in nongrowing regions. Several results suggest that a major portion of phloem contents enters elongating cells through the symplast. We propose that the coordination between phloem transport and cell expansion is accomplished via regulatory pathways affecting both plasmodesmata conductivity and cell expansion.

  4. Effect of home freezing and Italian style of cooking on antioxidant activity of edible vegetables.

    PubMed

    Danesi, F; Bordoni, A

    2008-08-01

    In this study, we analyzed the modifications of antioxidant activity consequent to 3 typical home cooking practices (steaming, boiling, and microwave cooking) in fresh and home frozen vegetables. Six different vegetable species were examined: carrots (Daucus carota L.), zucchini (Cucurbita pepo L.), tomatoes (Solanumn lycopersicum L.), green beans (Phaseolus vulgaris L.), peas (Pisum sativum L.), and yellow peppers (Capsicum annuum L.). All vegetables were conventional products and were analyzed in season to minimize differences due to agricultural practice and storage. Cooking and freezing are generally regarded as destructive to antioxidants, and this has fostered a belief among many consumers that raw vegetables are nutritionally superior to their frozen and/or cooked forms. In the current study, we provide evidence that this is not always the case.

  5. Mutation detection using ENDO1: application to disease diagnostics in humans and TILLING and Eco-TILLING in plants.

    PubMed

    Triques, Karine; Piednoir, Elodie; Dalmais, Marion; Schmidt, Julien; Le Signor, Christine; Sharkey, Mark; Caboche, Michel; Sturbois, Bénédicte; Bendahmane, Abdelhafid

    2008-04-23

    Most enzymatic mutation detection methods are based on the cleavage of heteroduplex DNA by a mismatch-specific endonuclease at mismatch sites and the analysis of the digestion product on a DNA sequencer. Important limitations of these methods are the availability of a mismatch-specific endonuclease, their sensitivity in detecting one allele in pool of DNA, the cost of the analysis and the ease by which the technique could be implemented in a standard molecular biology laboratory. The co-agroinfiltration of ENDO1 and p19 constructs into N. benthamiana leaves allowed high level of transient expression of a mismatch-specific and sensitive endonuclease, ENDO1 from Arabidopsis thaliana. We demonstrate the broad range of uses of the produced enzyme in detection of mutations. In human, we report the diagnosis of the G1691A mutation in Leiden factor-V gene associated with venous thrombosis and the fingerprinting of HIV-1 quasispecies in patients subjected to antiretroviral treatments. In plants, we report the use of ENDO1 system for detection of mutant alleles of Retinoblastoma-related gene by TILLING in Pisum sativum and discovery of natural sequence variations by Eco-TILLING in Arabidopsis thaliana. We introduce a cost-effective tool based on a simplified purification protocol of a mismatch-specific and sensitive endonuclease, ENDO1. Especially, we report the successful applications of ENDO1 in mutation diagnostics in humans, fingerprinting of complex population of viruses, and in TILLING and Eco-TILLING in plants.

  6. The Pea Photoperiod Response Gene STERILE NODES Is an Ortholog of LUX ARRHYTHMO1[W][OPEN

    PubMed Central

    Liew, Lim Chee; Hecht, Valérie; Sussmilch, Frances C.; Weller, James L.

    2014-01-01

    The STERILE NODES (SN) locus in pea (Pisum sativum) was one of the first photoperiod response genes to be described and provided early evidence for the genetic control of long-distance signaling in flowering-time regulation. Lines homozygous for recessive sn mutations are early flowering and photoperiod insensitive, with an increased ability to promote flowering across a graft union in short-day conditions. Here, we show that SN controls developmental regulation of genes in the FT family and rhythmic regulation of genes related to circadian clock function. Using a positional and functional candidate approach, we identify SN as the pea ortholog of LUX ARRHYTHMO, a GARP transcription factor from Arabidopsis (Arabidopsis thaliana) with an important role in circadian clock function. In addition to induced mutants, sequence analysis demonstrates the presence of at least three other independent, naturally occurring loss-of-function mutations among known sn cultivars. Examination of genetic and regulatory interactions between SN and two other circadian clock genes, HIGH RESPONSE TO PHOTOPERIOD (HR) and DIE NEUTRALIS (DNE), suggests a complex relationship in which HR regulates expression of SN and the role of DNE and HR in control of flowering is dependent on SN. These results extend previous work to show that pea orthologs of all three Arabidopsis evening complex genes regulate clock function and photoperiod-responsive flowering and suggest that the function of these genes may be widely conserved. PMID:24706549

  7. Antileishmanial and Immunomodulatory Activity of Allium sativum (Garlic)

    PubMed Central

    Foroutan-Rad, Masoud; Tappeh, Khosrow Hazrati; Khademvatan, Shahram

    2015-01-01

    Leishmaniasis is caused by an obligate intracellular protozoa belonging to Leishmania genus. The current drugs for treatment of leishmaniasis possess many disadvantages; therefore, researchers are continuously looking for the more effective and safer drugs. The aim of this study is to review the effectiveness, toxicities, and possible mechanisms of pharmaceutical actions of different garlic extracts and organosulfur compounds isolated from garlic against Leishmania spp. in a variety of in vitro, in vivo and clinical trials reports. All relevant databases were searched using the terms “Allium sativum,” “Garlic,” “Allicin,” “Ajoene,” “Leishmania,” “in vitro,” “in vivo,” and “clinical trial,” alone or in combination from 5 English databases (Web of Science, PubMed, Science Direct, Scopus, Google Scholar) and 3 Persian databases (Scientific Information Database, Iran Medex, and Magiran) from 1990 to 2014. In summary, garlic with immunomodulatory effects and apoptosis induction contributes to the treatment of leishmaniasis. PMID:26721553

  8. Assessment of phytoremediation ability of Coriander sativum for soil and water co-contaminated with lead and arsenic: a small-scale study.

    PubMed

    Gaur, Nisha; Kukreja, Aayush; Yadav, Mahavir; Tiwari, Archana

    2017-07-01

    A study was conducted to access the phytoremediation potential of Coriandrum sativum for lead (Pb) and Arsenic (As). Metal tolerance index and pot experiment were conducted. Viable seeds were spread on filter paper and planted in soil placed in pots. The amount of Pb and As in control and in tailing soil was 0.27, 0.141, 1.77, and 0.35 ppm. The study was carried out in triplicates for a period of 4 weeks under natural conditions. The physico-chemical properties of soil were determined using the standard methods. Germination of seeds of Coriander sativum was inhibited more rigorously in filter paper as compared to soil medium. Shoot height and root length were significantly reduced in filter paper medium under Pb and As stress. These were inhibited by 33 and 40%, respectively, from the first to fourth weeks. Seedling growth was less affected in soil medium while greatly reduced in filter paper medium. Soil sustained almost equal stress in the fourth week as compared to the third week in filter paper medium. Shoot height was enormously affected by Pb and As compared to root length in filter paper medium, whereas slight inhibition of growth was observed in soil medium. Coriander sativum grown in pots was effective in removing Pb and As from control and tailing soils in comparison with seeds grown on filter paper. On this basis, it could be used in restoring soil polluted with Pb and As.

  9. Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination

    PubMed Central

    Voegele, Antje; Linkies, Ada; Müller, Kerstin; Leubner-Metzger, Gerhard

    2011-01-01

    Germination of endospermic seeds is partly regulated by the micropylar endosperm, which acts as constraint to radicle protrusion. Gibberellin (GA) signalling pathways control coat-dormancy release, endosperm weakening, and organ expansion during seed germination. Three GIBBERELLIN INSENSITIVE DWARF1 (GID1) GA receptors are known in Arabidopsis thaliana: GID1a, GID1b, and GID1c. Molecular phylogenetic analysis of angiosperm GID1s reveals that they cluster into two eudicot (GID1ac, GID1b) groups and one monocot group. Eudicots have at least one gene from each of the two groups, indicating that the different GID1 receptors fulfil distinct roles during plant development. A comparative Brassicaceae approach was used, in which gid1 mutant and whole-seed transcript analyses in Arabidopsis were combined with seed-tissue-specific analyses of its close relative Lepidium sativum (garden cress), for which three GID1 orthologues were cloned. GA signalling via the GID1ac receptors is required for Arabidopsis seed germination, GID1b cannot compensate for the impaired germination of the gid1agid1c mutant. Transcript expression patterns differed temporarily, spatially, and hormonally, with GID1b being distinct from GID1ac in both species. Endosperm weakening is mediated, at least in part, through GA-induced genes encoding cell-wall-modifying proteins. A suppression subtraction hybridization (SSH) cDNA library enriched for sequences that are highly expressed during early germination in the micropylar endosperm contained expansins and xyloglucan endo-transglycosylases/hydrolases (XTHs). Their transcript expression patterns in both species strongly suggest that they are regulated by distinct GID1-mediated GA signalling pathways. The GID1ac and GID1b pathways seem to fulfil distinct regulatory roles during Brassicaceae seed germination and seem to control their downstream targets distinctly. PMID:21778177

  10. Performances of survival, feeding behavior, and gene expression in aphids reveal their different fitness to host alteration

    PubMed Central

    Lu, Hong; Yang, Pengcheng; Xu, Yongyu; Luo, Lan; Zhu, Junjie; Cui, Na; Kang, Le; Cui, Feng

    2016-01-01

    Insect populations feeding on different plant species are under selection pressure to adapt to these differences. A study integrating elements of the ecology, behavior, and gene expression of aphids on different host plants has not yet been well-explored. The present study explores the relationship between host fitness and survival, feeding behavior, and salivary gland gene expression of a pea (Pisum sativum) host race of Acyrthosiphon pisum feeding on a common host Vicia faba and on three genetically-related hosts (Vicia villosa, Medicago truncatula, and Medicago sativa). Life table data indicated that aphids on non-favored hosts exhibited small size, low reproduction rate, slow population increase and individual development, and long lifespan. Electrical penetration graph results showed that the aphids spent significantly less time in passive ingestion of phloem sap on all non-preferred host plants before acclimation. After a period of acclimation on M. truncatula and V. villosa, pea host race individuals showed improved feeding behavior. No individuals of the pea host race completed its life history on M. sativa. Interestingly, the number of host-specific differentially-expressed salivary gland genes was negatively correlated with the fitness of aphids on this host plant. This study provided important cues in host plant specialization in aphids. PMID:26758247

  11. Mechanosensing and signaltransduction in tendrils

    NASA Astrophysics Data System (ADS)

    Engelberth, Jürgen

    2003-10-01

    The perception of thigmic stimuli is a widespread phenomenon among plants with decisive meaning for the ability to survive. Beside a general sensitivity for mechanical stimuli many plants have evolved specialized organs with highly developed mechanisms to perceive and transduce the applied forces. Tendrils of Bryonia dioica and Pisum sativum have been chosen to study the effects of mechanical stimulation on plant physiology. Both types of tendrils, although exhibiting different morphology, respond to such a stimulus with a rapid coiling response to the dorsal side of the organ within minutes. The actual perception of the stimulus is most likely coupled to the cytoskeleton serving as the mediator between the physical stimulus and the biochemical response. Drugs affecting the status of the cytoskeleton were used to get more insights into this specific process. The results indicate that microtubuli (MT) play the most important role in the perception of thigmic stimuli in tendrils. Colchicine-mediated disruption of MT lead to total inhibition of the response to the thigmic stimulus in tendrils of Pisum and to a reduced response in Bryonia. Alamethicin, an ionophore that can mimic action potentials in membranes, was able to bypass this inhibition suggesting a direct involvement of MT in depolarization of the membranes. Auxin, however, which is also supposed to be involved in the regulation of the coiling response, failed to bypass colchicine-dependent inhibition. Vinblastine, another microtubule depolimerizing agent, did induce tendril coiling in Pisum without further stimulation. Application of taxol and other MT-stabilizing drugs as well as disruption of the actin network did not affect the coiling response of tendrils. In Pisum indole-3-acetic acid (IAA) is induced after mechanical stimulation during the coiling response, but not jasmonic acid. A further consequence of mechanical stimulation is the induction of an oxidative burst and an increase in soluble sugar. A

  12. Clinical effectiveness of garlic (Allium sativum).

    PubMed

    Pittler, Max H; Ernst, Edzard

    2007-11-01

    The objective of this review is to update and assess the clinical evidence based on rigorous trials of the effectiveness of garlic (A. sativum). Systematic searches were carried out in Medline, Embase, Amed, the Cochrane Database of Systematic Reviews, Natural Standard, and the Natural Medicines Comprehensive Database (search date December 2006). Our own files, the bibliographies of relevant papers and the contents pages of all issues of the review journal FACT were searched for further studies. No language restrictions were imposed. To be included, trials were required to state that they were randomized and double blind. Systematic reviews and meta-analyses of garlic were included if based on the results of randomized, double-blind trials. The literature searches identified six relevant systematic reviews and meta-analysis and double-blind randomized trials (RCT) that were published subsequently. These relate to cancer, common cold, hypercholesterolemia, hypertension, peripheral arterial disease and pre-eclampsia. The evidence based on rigorous clinical trials of garlic is not convincing. For hypercholesterolemia, the reported effects are small and may therefore not be of clinical relevance. For reducing blood pressure, few studies are available and the reported effects are too small to be clinically meaningful. For all other conditions not enough data are available for clinical recommendations.

  13. Characterization of callase (β-1,3-D-glucanase) activity during microsporogenesis in the sterile anthers of Allium sativum L. and the fertile anthers of A. atropurpureum.

    PubMed

    Winiarczyk, Krystyna; Jaroszuk-Ściseł, Jolanta; Kupisz, Kamila

    2012-06-01

    We examined callase activity in anthers of sterile Allium sativum (garlic) and fertile Allium atropurpureum. In A. sativum, a species that produces sterile pollen and propagates only vegetatively, callase was extracted from the thick walls of A. sativum microspore tetrads exhibited maximum activity at pH 4.8, and the corresponding in vivo values ranged from 4.5 to 5.0. Once microspores were released, in vitro callase activity peaked at three distinct pH values, reflecting the presence of three callase isoforms. One isoform, which was previously identified in the tetrad stage, displayed maximum activity at pH 4.8, and the remaining two isoforms, which were novel, were most active at pH 6.0 and 7.3. The corresponding in vivo values ranged from pH 4.75 to 6.0. In contrast, in A. atropurpureum, a sexually propagating species, three callase isoforms, active at pH 4.8-5.2, 6.1, and 7.3, were identified in samples of microsporangia that had released their microspores. The corresponding in vivo value for this plant was 5.9. The callose wall persists around A. sativum meiotic cells, whereas only one callase isoform, with an optimum activity of pH 4.8, is active in the acidic environment of the microsporangium. However, this isoform is degraded when the pH rises to 6.0 and two other callase isoforms, maximally active at pH 6.0 and 7.3, appear. Thus, factors that alter the pH of the microsporangium may indirectly affect the male gametophyte development by modulating the activity of callase and thereby regulating the degradation of the callose wall.

  14. Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone A

    PubMed Central

    2012-01-01

    Myrigalone A (MyA) is a rare flavonoid in fruit leachates of Myrica gale, a deciduous shrub adapted to flood-prone habitats. As a putative allelochemical it inhibits seed germination and seedling growth. Using Lepidium sativum as a model target species, experiments were conducted to investigate how environmental cues modulate MyA’s interference with key processes of seed germination. Time course analyses of L. sativum testa and endosperm rupture under different light conditions and water potentials were combined with quantifying testa permeability, endosperm weakening, tissue-specific gibberellin (GA) and abscisic acid (ABA) contents, as well as embryo growth and apoplastic superoxide production important for cell expansion growth. Lepidium sativum testa permeability and early water uptake by imbibition is enhanced by MyA. During late germination, MyA inhibits endosperm weakening and embryo growth, both processes required for endosperm rupture. Inhibition of embryo cell expansion by MyA depends on environmental cues, which is evident from the light-modulated severity of the MyA-mediated inhibition of apoplastic superoxide accumulation. Several important key weakening and growth processes during early and late germination are targets for MyA. These effects are modulated by light conditions and ambient water potential. It is speculated that MyA is a soil seed bank-destroying allelochemical that secures the persistence of M. gale in its flood-prone environment. PMID:22821938

  15. Genome Sequence of the Pea Aphid Acyrthosiphon pisum

    PubMed Central

    2010-01-01

    Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems. PMID:20186266

  16. Genetic diversity and trait genomic prediction in a pea diversity panel.

    PubMed

    Burstin, Judith; Salloignon, Pauline; Chabert-Martinello, Marianne; Magnin-Robert, Jean-Bernard; Siol, Mathieu; Jacquin, Françoise; Chauveau, Aurélie; Pont, Caroline; Aubert, Grégoire; Delaitre, Catherine; Truntzer, Caroline; Duc, Gérard

    2015-02-21

    Pea (Pisum sativum L.), a major pulse crop grown for its protein-rich seeds, is an important component of agroecological cropping systems in diverse regions of the world. New breeding challenges imposed by global climate change and new regulations urge pea breeders to undertake more efficient methods of selection and better take advantage of the large genetic diversity present in the Pisum sativum genepool. Diversity studies conducted so far in pea used Simple Sequence Repeat (SSR) and Retrotransposon Based Insertion Polymorphism (RBIP) markers. Recently, SNP marker panels have been developed that will be useful for genetic diversity assessment and marker-assisted selection. A collection of diverse pea accessions, including landraces and cultivars of garden, field or fodder peas as well as wild peas was characterised at the molecular level using newly developed SNP markers, as well as SSR markers and RBIP markers. The three types of markers were used to describe the structure of the collection and revealed different pictures of the genetic diversity among the collection. SSR showed the fastest rate of evolution and RBIP the slowest rate of evolution, pointing to their contrasted mode of evolution. SNP markers were then used to predict phenotypes -the date of flowering (BegFlo), the number of seeds per plant (Nseed) and thousand seed weight (TSW)- that were recorded for the collection. Different statistical methods were tested including the LASSO (Least Absolute Shrinkage ans Selection Operator), PLS (Partial Least Squares), SPLS (Sparse Partial Least Squares), Bayes A, Bayes B and GBLUP (Genomic Best Linear Unbiased Prediction) methods and the structure of the collection was taken into account in the prediction. Despite a limited number of 331 markers used for prediction, TSW was reliably predicted. The development of marker assisted selection has not reached its full potential in pea until now. This paper shows that the high-throughput SNP arrays that are being

  17. Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon.

    PubMed

    Rahman, Mohammad Farhadur; Ghosal, Anubrata; Alam, Mohammad Firoz; Kabir, Ahmad Humayan

    2017-01-01

    Cadmium (Cd) is an important phytotoxic element causing health hazards. This work investigates whether and how silicon (Si) influences the alleviation of Cd toxicity in field peas at biochemical and molecular level. The addition of Si in Cd-stressed plants noticeably increased growth and development as well as total protein and membrane stability of Cd-stressed plants, suggesting that Si does have critical roles in Cd detoxification in peas. Furthermore, Si supplementation in Cd-stressed plants showed simultaneous significant increase and decrease of Cd and Fe in roots and shoots, respectively, compared with Cd-stressed plants. At molecular level, GSH1 (phytochelatin precursor) and MT A (metallothionein) transcripts predominantly expressed in roots and strongly induced due to Si supplementation in Cd-stressed plants compared with Cd-free conditions, suggesting that these chelating agents may bind to Cd leading to vacuolar sequestration in roots. Furthermore, pea Fe transporter (RIT1) showed downregulation in shoots when plants were treated with Si along with Cd compared with Cd-treated conditions. It is consistent with the physiological observations and supports the conclusion that alleviation of Cd toxicity in pea plants might be associated with Cd sequestration in roots and reduced Cd translocation in shoots through the regulation of Fe transport. Furthermore, increased CAT, POD, SOD and GR activity along with elevated S-metabolites (cysteine, methionine, glutathione) implies the active involvement of ROS scavenging and plays, at least in part, to the Si-mediated alleviation of Cd toxicity in pea. The study provides first mechanistic evidence on the beneficial effect of Si on Cd toxicity in pea plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Nutritional evaluation of low-phytate peas (Pisum sativum L.) for young broiler chicks.

    PubMed

    Thacker, Philip; Deep, Aman; Petri, Daniel; Warkentin, Thomas

    2013-02-01

    This experiment determined the effects of including normal and low-phytate peas in diets fed to young broiler chickens on performance, phosphorus availability and bone strength. A total of 180, day-old, male broilers (Ross-308 line) were assigned to six treatments. The control was based on corn and soybean meal while two additional corn-based diets were formulated containing 30% of either normal or low-phytate pea providing 0.45% available phosphorus. For each of these three diets, a similar diet was formulated by reducing the amount of dicalcium phosphate to produce a diet with 0.3% available phosphorus. The total tract apparent availability (TTAA) of phosphorus was higher (p = 0.02) for broilers fed the low-phytate pea than for birds fed the normal pea diets. Birds fed diets containing the lower level of phosphorus had a higher TTAA of phosphorus (50.64 vs. 46.68%) than broilers fed diets adequate in phosphorus. Protein source had no effect on weight gain, feed intake or feed conversion. Broilers fed the low phosphorus diets had lower weight gain (p = 0.04) and feed intake (p < 0.01) than broilers fed the higher phosphorus level. Bone strength was higher (p < 0.01) for broilers fed diets based on low-phytate pea than for those fed diets based on normal pea or soybean meal. Increasing the availability of the phosphorus in peas could mean that less inorganic phosphorus would be required in order to meet the nutritional requirements of broilers. Since inorganic phosphorus sources tend to be expensive, a reduction in their use would lower ration costs. In addition, increased availability of phosphorus would reduce the amount of phosphorus excreted thus reducing the amount of phosphorus that can potentially pollute the environment.

  19. Comparative Transcriptomic Analyses of Vegetable and Grain Pea (Pisum sativum L.) Seed Development

    PubMed Central

    Liu, Na; Zhang, Guwen; Xu, Shengchun; Mao, Weihua; Hu, Qizan; Gong, Yaming

    2015-01-01

    Understanding the molecular mechanisms regulating pea seed developmental process is extremely important for pea breeding. In this study, we used high-throughput RNA-Seq and bioinformatics analyses to examine the changes in gene expression during seed development in vegetable pea and grain pea, and compare the gene expression profiles of these two pea types. RNA-Seq generated 18.7 G of raw data, which were then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Our results illustrate that transcriptional control during pea seed development is a highly coordinated process. There were 459 and 801 genes differentially expressed at early and late seed maturation stages between vegetable pea and grain pea, respectively. Soluble sugar and starch metabolism related genes were significantly activated during the development of pea seeds coinciding with the onset of accumulation of sugar and starch in the seeds. A comparative analysis of genes involved in sugar and starch biosynthesis in vegetable pea (high seed soluble sugar and low starch) and grain pea (high seed starch and low soluble sugar) revealed that differential expression of related genes at late development stages results in a negative correlation between soluble sugar and starch biosynthetic flux in vegetable and grain pea seeds. RNA-Seq data was validated by using real-time quantitative RT-PCR analysis for 30 randomly selected genes. To our knowledge, this work represents the first report of seed development transcriptomics in pea. The obtained results provide a foundation to support future efforts to unravel the underlying mechanisms that control the developmental biology of pea seeds, and serve as a valuable resource for improving pea breeding. PMID:26635856

  20. Emulsifying and foaming properties of commercial yellow pea (Pisum sativum L.) seed flours.

    PubMed

    Aluko, Rotimi E; Mofolasayo, Olawunmi A; Watts, Beverley M

    2009-10-28

    Commercial yellow pea seed flours prepared by a patented wet-milling process and pea protein isolate (PPI) were analyzed for emulsifying and foaming properties at pH 3.0, 5.0, and 7.0 and compared to soybean protein isolate (SPI). PPI and SPI formed emulsions with significantly smaller (p < 0.05) oil droplet sizes, 16-30 and 23-54 microm, respectively, than flours that primarily contained fiber such as Centara III and IV, or those that consisted mainly of starch: Centu-tex, Uptake 80 and Accu-gel. PPI was a better emulsifier than SPI at pH 7.0, and a better foaming agent at pH 3.0 and pH 7.0, although foaming capacity varied with sample concentration. Centu-tex and Uptake 80 have exactly the same chemical composition, but the latter has a much smaller flour particle size range, and had significantly smaller (p < 0.05) emulsion oil droplets. Incorporation of pea starch into SPI emulsions produced a synergistic effect that led to significant increases (p < 0.05) in emulsification capacity (reduced emulsion oil droplet size) when compared to SPI or starch alone. These results showed that PPI had generally significantly higher (p < 0.05) emulsion and foam forming properties than SPI, and that pea starch could be used to improve the quality of SPI-stabilized food emulsions.

  1. Degradation of PVC/HC blends. II. Terrestrial plant growth test.

    PubMed

    Pascu, Mihaela; Agafiţei, Gabriela-Elena; Profire, Lenuţa; Vasile, Cornelia

    2009-01-01

    The behavior at degradation by soil burial of some plasticized polyvinyl chloride (PVC) based blends with a variable content of hydrolyzed collagen (HC) has been followed. The modifications induced in the environment by the polymer systems (pH variation, physiologic state of the plants, assimilatory pigments) were studied. Using the growth test of the terrestrial plants, we followed the development of Triticum (wheat), Helianthus annus minimus (little sunflower), Pisum sativum (pea), and Vicia X hybrida hort, during a vegetation cycle. After the harvest, for each plant, the quantities of chlorophyll and carotenoidic pigments and of trace- and macroelements were determined. It was proved that, in the presence of polymer blends, the plants do not suffer morphological and physiological modifications, the products released in the culture soil being not toxic for the plants growth.

  2. A Proteomic Workflow Using High-Throughput De Novo Sequencing Towards Complementation of Genome Information for Improved Comparative Crop Science.

    PubMed

    Turetschek, Reinhard; Lyon, David; Desalegn, Getinet; Kaul, Hans-Peter; Wienkoop, Stefanie

    2016-01-01

    The proteomic study of non-model organisms, such as many crop plants, is challenging due to the lack of comprehensive genome information. Changing environmental conditions require the study and selection of adapted cultivars. Mutations, inherent to cultivars, hamper protein identification and thus considerably complicate the qualitative and quantitative comparison in large-scale systems biology approaches. With this workflow, cultivar-specific mutations are detected from high-throughput comparative MS analyses, by extracting sequence polymorphisms with de novo sequencing. Stringent criteria are suggested to filter for confidential mutations. Subsequently, these polymorphisms complement the initially used database, which is ready to use with any preferred database search algorithm. In our example, we thereby identified 26 specific mutations in two cultivars of Pisum sativum and achieved an increased number (17 %) of peptide spectrum matches.

  3. The structure of the stem endodermis in etiolated pea seedlings

    NASA Technical Reports Server (NTRS)

    Sack, F. D.

    1987-01-01

    Differentiation of the endodermis was examined in third internodes of etiolated Pisum sativum L. cv. Alaska seedlings. The endodermis in young internodes contains large, sedimented amyloplasts; in older internodes, a casparian strip differentiates and the endodermis becomes depleted of starch except for the proximal region of the stem, which retains sedimented amyloplasts and remains graviresponsive. Sedimentation occurs in the hook but does not occur consistently until cells reach the base of the hook, where the axis becomes vertical, rapid cell elongation starts, and amyloplast diameter increases substantially. Contact between endoplasmic reticulum and amyloplasts was observed. Endoplasmic reticulum is not distributed polarly with respect to gravity. No symplastic or apoplastic blockages exist in the endodermis at the level of the stem where lateral gradients may be established during tropic curvature.

  4. Protein-enriched pea flour extract protects stored milled rice against the rice weevil, Sitophilus oryzae.

    PubMed

    Pretheep-Kumar, P; Mohan, S; Ramaraju, K

    2004-01-01

    Studies were conducted to evaluate the effect of a protein-enriched pea (Pisum sativum var. Bonneville) flour extract against the rice weevil, Sitophilus oryzae in its repellency, toxicity, effect on fecundity, stability and sensory properties. Milled rice admixed with pea flour extract at 1% concentration significantly repelled S. oryzae. Mortality of S. oryzae was found to increase and fecundity was markedly suppressed, in rice treated with 1% pea flour extract. The toxicity and reproductive effects of the pea protein-enriched rice were found to be stable for a period of 5 months. The sensory characteristics of stored rice when eaten were not affected by the treatment with pea flour extract. This study indicates that the protein-enriched flour extract obtained from the Bonneville pea may be feasible to protect stored milled rice from insect attack.

  5. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.

  6. Diversity of Pea-Associated F. proliferatum and F. verticillioides Populations Revealed by FUM1 Sequence Analysis and Fumonisin Biosynthesis

    PubMed Central

    Waśkiewicz, Agnieszka; Stępień, Łukasz; Wilman, Karolina; Kachlicki, Piotr

    2013-01-01

    Fusarium proliferatum and F. verticillioides are considered as minor pathogens of pea (Pisum sativum L.). Both species can survive in seed material without visible disease symptoms, but still contaminating it with fumonisins. Two populations of pea-derived F. proliferatum and F. verticillioides strains were subjected to FUM1 sequence divergence analysis, forming a distinct group when compared to the collection strains originating from different host species. Furthermore, the mycotoxigenic abilities of those strains were evaluated on the basis of in planta and in vitro fumonisin biosynthesis. No differences were observed in fumonisin B (FB) levels measured in pea seeds (maximum level reached 1.5 μg g−1); however, in rice cultures, the majority of F. proliferatum genotypes produced higher amounts of FB1–FB3 than F. verticillioides strains. PMID:23470545

  7. Changes in topography and function of thylakoid membranes following membrane protein phosphorylation.

    PubMed

    Black, M T; Lee, P; Horton, P

    1986-09-01

    Changes in topography and function of pea (Pisum sativum L.) thylakoid membrane fractions following membrane protein phosphorylation have been studied. After protein phosphorylation the stromal membrane fraction had a higher chlorophyll a/b ratio, an increased content of light-harvesting chlorophyll protein and a higher ratio of chlorophyll to cytochrome f. This indicates that a pool of light-harvesting chlorophyll protein migrates from the photosystem II-enriched grana regions to the photosystem I-enriched stroma lamellae, in agreement with Kyle et al. (1984, Biochim. Biophys. Acta 765, 89-96) and Larsson et al. (1983, Eur. J. Biochem. 136, 25-29). Phosphorylation caused a stimulation in the rate of light-limited photosystem-I electron transfer in the unappressed membrane fraction, indicating that the translocated LHC-II becomes functionally associated with photosystem I.

  8. Purification, identification and preliminary crystallographic studies of an allergenic protein from Lathyrus sativus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qureshi, Insaf A.; Sethi, Dhruv K.; Salunke, Dinakar M., E-mail: dinakar@nii.res.in

    2006-09-01

    A 24 kDa protein was purified from the seeds of L. sativus by ammonium sulfate fractionation and ion-exchange chromatography. Crystals were obtained by the hanging-drop vapour-diffusion method. A 24 kDa protein was purified from the seeds of Lathyrus sativus by ammonium sulfate fractionation and ion-exchange chromatography. The N-terminal amino-acid sequence showed significant homology with the 2S albumin class of seed storage proteins. The protein showed 85% sequence homology with the seed albumin of Pisum sativum within the 40 N-terminal residues. Crystals were obtained by the hanging-drop vapour-diffusion method. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cellmore » parameters a = 43.5, b = 82.7, c = 153.4 Å.« less

  9. Role of pectolytic enzymes in the programmed separation of cells from the root cap of higher plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawes, M.C.

    1995-03-01

    The objective of this research was to develop a model system to study border cell separation in transgenic pea roots. In addition, the hypothesis that genes encoding pectolytic enzymes in the root cap play a role in the programmed separation of root border cells from the root tip was tested. The following objectives have been accomplished: (1) the use of transgenic hairy roots to study border cell separation has been optimized for Pisum sativum; (2) a cDNA encoding a root cap pectinmethylesterase (PME) has been cloned; (3) PME and polygalacturonase activities in cell walls of the root cap have beenmore » characterized and shown to be correlated with border cell separation. A fusion gene encoding pectate lyase has also been transformed into pea hairy root cells.« less

  10. Effects of steam distillation and screw-pressing on extraction, composition and functional properties of protein in dehulled coriander (Coriandrum sativum L.)

    USDA-ARS?s Scientific Manuscript database

    Coriander (Coriandrum sativum L.) is a summer annual plant commonly used as fresh green herb, spice, or for its essential oil. An integrated process combined steam distillation, dehulling, and screw pressing to recover the essential oil and edible oil from coriander fruit. The current work determine...

  11. Molecular detection and in vitro antioxidant activity of S-allyl-L-cysteine (SAC) extracted from Allium sativum.

    PubMed

    Sun, Y-E; Wang, W-D

    2016-06-30

    It is well known that Allium sativum has potential applications to clinical treatment of various cancers due to its remarkable ability in eliminating free radicals and increasing metabolism. An allyl-substituted cysteine derivative - S-allyl-L-cysteine (SAC) was separated and identified from Allium sativum. The extracted SAC was reacted with 1-pyrenemethanol to obtain pyrene-labelled SAC (Py-SAC) to give SAC fluorescence properties. Molecular detection of Py-SAC was conducted by steady-state fluorescence spectroscopy and time-resolved fluorescence method to quantitatively measure concentrations of Py-SAC solutions. The ability of removing 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical using Py-SAC was determined through oxygen radical absorbance capacity (ORAC). Results showed the activity of Py-SAC and Vitamin C (VC) with ORAC as index, the concentrations of Py-SAC and VC were 58.43 mg/L and 5.72 mg/L respectively to scavenge DPPH, and 8.16 mg/L and 1.67 mg/L to scavenge •OH respectively. Compared with VC, the clearance rates of Py-SAC to scavenge DPPH were much higher, Py-SAC could inhibit hydroxyl radical. The ability of removing radical showed a dose-dependent relationship within the scope of the drug concentration.

  12. Assessment of Anti-Influenza Activity and Hemagglutination Inhibition of Plumbago indica and Allium sativum Extracts

    PubMed Central

    Chavan, Rahul Dilip; Shinde, Pramod; Girkar, Kaustubh; Madage, Rajendra; Chowdhary, Abhay

    2016-01-01

    Background: Human influenza is a seasonal disease associated with significant morbidity and mortality. Anti-flu ayurvedic/herbal medicines have played a significant role in fighting the virus pandemic. Plumbagin and allicin are commonly used ingredients in many therapeutic remedies, either alone or in conjunction with other natural substances. Evidence suggests that these extracts are associated with a variety of pharmacological activities. Objective: To evaluate anti-influenza activity from Plumbago indica and Allium sativum extract against Influenza A (H1N1)pdm09. Materials and Methods: Different extraction procedures were used to isolate the active ingredient in the solvent system, and quantitative HPLTC confirms the presence of plumbagin and allicin. The cytotoxicity was carried out on Madin-Darby Canine kidney cells, and the 50% cytotoxic concentration (CC50) values were below 20 mg/mL for both plant extracts. To assess the anti-influenza activity, two assays were employed, simultaneous and posttreatment assay. Results: A. sativum methanolic and ethanolic extracts showed only 14% reduction in hemagglutination in contrast to P. indica which exhibited 100% reduction in both simultaneous and posttreatment assay at concentrations of 10 mg/mL, 5 mg/mL, and 1 mg/mL. Conclusions: Our results suggest that P. indica extracts are good candidates for anti-influenza therapy and should be used in medical treatment after further research. SUMMARY The search for natural antiviral compounds from plants is a promising approach in the development of new therapeutic agents. In the past century, several scientific efforts have been directed toward identifying phytochemicals capable of inhibiting virus. Knowledge of ethnopharmacology can lead to new bioactive plant compounds suitable for drug discovery and development. Macromolecular docking studies provides most detailed possible view of drug-receptor interaction where the structure of drug is designed based on its fit to three

  13. Assessment of Anti-Influenza Activity and Hemagglutination Inhibition of Plumbago indica and Allium sativum Extracts.

    PubMed

    Chavan, Rahul Dilip; Shinde, Pramod; Girkar, Kaustubh; Madage, Rajendra; Chowdhary, Abhay

    2016-01-01

    Human influenza is a seasonal disease associated with significant morbidity and mortality. Anti-flu ayurvedic/herbal medicines have played a significant role in fighting the virus pandemic. Plumbagin and allicin are commonly used ingredients in many therapeutic remedies, either alone or in conjunction with other natural substances. Evidence suggests that these extracts are associated with a variety of pharmacological activities. To evaluate anti-influenza activity from Plumbago indica and Allium sativum extract against Influenza A (H1N1)pdm09. Different extraction procedures were used to isolate the active ingredient in the solvent system, and quantitative HPLTC confirms the presence of plumbagin and allicin. The cytotoxicity was carried out on Madin-Darby Canine kidney cells, and the 50% cytotoxic concentration (CC50) values were below 20 mg/mL for both plant extracts. To assess the anti-influenza activity, two assays were employed, simultaneous and posttreatment assay. A. sativum methanolic and ethanolic extracts showed only 14% reduction in hemagglutination in contrast to P. indica which exhibited 100% reduction in both simultaneous and posttreatment assay at concentrations of 10 mg/mL, 5 mg/mL, and 1 mg/mL. Our results suggest that P. indica extracts are good candidates for anti-influenza therapy and should be used in medical treatment after further research. The search for natural antiviral compounds from plants is a promising approach in the development of new therapeutic agents. In the past century, several scientific efforts have been directed toward identifying phytochemicals capable of inhibiting virus. Knowledge of ethnopharmacology can lead to new bioactive plant compounds suitable for drug discovery and development. Macromolecular docking studies provides most detailed possible view of drug-receptor interaction where the structure of drug is designed based on its fit to three dimensional structures of receptor site rather than by analogy to other

  14. PDGFRA-mutant syndrome.

    PubMed

    Ricci, Riccardo; Martini, Maurizio; Cenci, Tonia; Carbone, Arnaldo; Lanza, Paola; Biondi, Alberto; Rindi, Guido; Cassano, Alessandra; Larghi, Alberto; Persiani, Roberto; Larocca, Luigi M

    2015-07-01

    Germline PDGFRA mutations cause multiple heterogeneous gastrointestinal mesenchymal tumors. In its familial form this disease, which was formerly termed intestinal neurofibromatosis/neurofibromatosis 3b (INF/NF3b), has been included among familial gastrointestinal stromal tumors (GISTs) because of its genotype, described when GIST was the only known PDGFRA-mutant gastrointestinal tumor. Shortly afterwards, however, inflammatory fibroid polyps also revealed PDGFRA mutations. Subsequently, gastrointestinal CD34+ 'fibrous tumors' of uncertain classification were described in a germline PDGFRA-mutant context. Our aim was to characterize the syndrome produced by germline PDGFRA mutations and establish diagnostic criteria and management strategies for this hitherto puzzling disease. We studied a kindred displaying multiple gastrointestinal mesenchymal tumors, comparing it with published families/individuals with possible analogous conditions. We identified a novel inherited PDGFRA mutation (P653L), constituting the third reported example of familial PDGFRA mutation. In adult mutants we detected inflammatory fibroid polyps, gastric GISTs and gastrointestinal fibrous tumors of uncertain nosology. We demonstrate that the syndrome formerly defined as INF/NF3b (exemplified by the family reported herein) is simplistically considered a form of familial GIST, because inflammatory fibroid polyps often prevail. Fibrous tumors appear variants of inflammatory fibroid polyps. 'INF/NF3b' and 'familial GIST' are misleading terms which we propose changing to 'PDGFRA-mutant syndrome'. In this condition, unlike KIT-dependent familial GIST syndromes, if present, GISTs are stomach-restricted and diffuse Cajal cell hyperplasia is not observed. This restriction of GISTs to the stomach in PDGFRA-mutant syndrome: (i) focuses oncological concern on gastric masses, as inflammatory fibroid polyps are benign; (ii) supports a selective role of gastric environment for PDGFRA mutations to elicit GISTs

  15. Kinetic studies of adsorption of Cu (II) from aqueous solution by coriander seeds (Coriandrum Sativum)

    NASA Astrophysics Data System (ADS)

    Kadiri, L.; Lebkiri, A.; Rifi, E. H.; Ouass, A.; Essaadaoui, Y.; Lebkiri, I.; Hamad, H.

    2018-05-01

    The adsorption of copper ions Cu2+ by Coriandrum Sativum seeds (CSS) from aqueous solution was studied in order to highlight the importance of coriander seeds as a potential tool in the treatment of wastewaters containing heavy metals. The kinetic studies of adsorption of Cu (II) were discussed using the spectroscopic technique "Inducting Coupled Plasma" (ICP). The effects of initial copper ion concentration and contact time were determined. All results show that coriander seeds have, over their culinary and medicinal benefits, a significant adsorbent power of copper ions.

  16. Antileishmanial and Immunomodulatory Activity of Allium sativum (Garlic): A Review.

    PubMed

    Foroutan-Rad, Masoud; Tappeh, Khosrow Hazrati; Khademvatan, Shahram

    2017-01-01

    Leishmaniasis is caused by an obligate intracellular protozoa belonging to Leishmania genus. The current drugs for treatment of leishmaniasis possess many disadvantages; therefore, researchers are continuously looking for the more effective and safer drugs. The aim of this study is to review the effectiveness, toxicities, and possible mechanisms of pharmaceutical actions of different garlic extracts and organosulfur compounds isolated from garlic against Leishmania spp. in a variety of in vitro, in vivo and clinical trials reports. All relevant databases were searched using the terms "Allium sativum," "Garlic," "Allicin," "Ajoene," "Leishmania," "in vitro," "in vivo," and "clinical trial," alone or in combination from 5 English databases (Web of Science, PubMed, Science Direct, Scopus, Google Scholar) and 3 Persian databases (Scientific Information Database, Iran Medex, and Magiran) from 1990 to 2014. In summary, garlic with immunomodulatory effects and apoptosis induction contributes to the treatment of leishmaniasis. © The Author(s) 2015.

  17. Hexavalent chromium-induced differential disruption of cortical microtubules in some Fabaceae species is correlated with acetylation of α-tubulin.

    PubMed

    Eleftheriou, Eleftherios P; Adamakis, Ioannis-Dimosthenis S; Michalopoulou, Vasiliki A

    2016-03-01

    The effects of hexavalent chromium [Cr(VI)] on the cortical microtubules (MTs) of five species of the Fabaceae family (Vicia faba, Pisum sativum, Vigna sinensis, Vigna angularis, and Medicago sativa) were investigated by confocal laser scanning microscopy after immunolocalization of total tubulin with conventional immunofluorescence techniques and of acetylated α-tubulin with the specific 6-11B-1 monoclonal antibody. Moreover, total α-tubulin and acetylated α-tubulin were quantified by Western immunoblotting and scanning densitometry. Results showed the universality of Cr(VI) detrimental effects to cortical MTs, which proved to be a sensitive and reliable subcellular marker for monitoring Cr(VI) toxicity in plant cells. However, a species-specific response was recorded, and a correlation of MT disturbance with the acetylation status of α-tubulin was demonstrated. In V. faba, MTs were depolymerized at the gain of cytoplasmic tubulin background and displayed low α-tubulin acetylation, while in P. sativum, V. sinensis, V. angularis, and M. sativa, MTs became bundled and changed orientation from perpendicular to oblique or longitudinal. Bundled MTs were highly acetylated as determined by both immunofluorescence and Western immunoblotting. Tubulin acetylation in P. sativum and M. sativa preceded MT bundling; in V. sinensis it followed MT derangement, while in V. angularis the two phenomena coincided. Total α-tubulin remained constant in all treatments. Should acetylation be an indicator of MT stabilization, it is deduced that bundled MTs became stabilized, lost their dynamic properties, and were rendered inactive. Results of this report allow the conclusion that Cr(VI) toxicity disrupts MTs and deranges the MT-mediated functions either by depolymerizing or stabilizing them.

  18. Acaricidal activities of apiol and its derivatives from Petroselinum sativum seeds against Dermatophagoides pteronyssinus, Dermatophagoides farinae, and Tyrophagus putrescentiae.

    PubMed

    Song, Ha Yun; Yang, Ji Yeon; Suh, Joo Won; Lee, Hoi Seon

    2011-07-27

    The acaricidal effects of an active constituent derived from Petroselinum sativum seeds and its derivatives were determined using impregnated fabric disk bioassay against Dermatophagoides farinae , Dermatophagoides pteronyssinus , and Tyrophagus putrescentiae and compared with that of synthetic acaricide. The acaricidal constituent of P. sativum was isolated by various chromatographic techniques and identified as apiol. On the basis of LD(50) values against D. farinae and D. pteronyssinus, apiol (0.81 and 0.94 μg/cm(2)) was 12.4 and 10.2 times more toxic than benzyl benzoate (10.0 and 9.58 μg/cm(2)), respectively. In acaricidal studies of apiol derivatives, 3,4-methylenedioxybenzonitrile (0.04, 0.03, and 0.59 μg/cm(2)) was 250, 319, and 20.7 times more toxic than benzyl benzoate (10.0, 9.58, and 12.2 μg/cm(2)) against D. farinae, D. pteronyssinus, and T. putrescentiae. In structure-activity relationships, the acaricidal activities of apiol derivatives could be related to allyl (-C(3)H(5)) and methoxy (-OCH(3)) functional groups. Furthermore, apiol and its derivatives could be useful for natural acaricides against these three mite species.

  19. Monoclonal antibodies to the light-harvesting chlorophyll a/b protein complex of photosystem II

    PubMed Central

    1986-01-01

    A collection of 17 monoclonal antibodies elicited against the light- harvesting chlorophyll a/b protein complex which serves photosystem II (LHC-II) of Pisum sativum shows six classes of binding specificity. Antibodies of two of the classes recognize a single polypeptide (the 28- or the 26- kD polypeptides), thereby suggesting that the two proteins are not derived from a common precursor. Other classes of antibodies cross-react with several polypeptides of LHC-II or with polypeptides of both LHC-II and the light-harvesting chlorophyll a/b polypeptides of photosystem I (LHC-I), indicating that there are structural similarities among the polypeptides of LHC-II and LHC-I. The evidence for protein processing by which the 26-, 25.5-, and 24.5-kD polypeptides are derived from a common precursor polypeptide is discussed. Binding studies using antibodies specific for individual LHC- II polypeptides were used to quantify the number of antigenic polypeptides in the thylakoid membrane. 27 copies of the 26-kD polypeptide and two copies of the 28-kD polypeptide were found per 400 chlorophylls. In the chlorina f2 mutant of barley, and in intermittent light-treated barley seedlings, the amount of the 26-kD polypeptide in the thylakoid membranes was greatly reduced, while the amount of 28-kD polypeptide was apparently not affected. We propose that stable insertion and assembly of the 28-kD polypeptide, unlike the 26-kD polypeptide, is not regulated by the presence of chlorophyll b. PMID:3528171

  20. Dynamics of the active site architecture in plant-type ferredoxin-NADP(+) reductases catalytic complexes.

    PubMed

    Sánchez-Azqueta, Ana; Catalano-Dupuy, Daniela L; López-Rivero, Arleth; Tondo, María Laura; Orellano, Elena G; Ceccarelli, Eduardo A; Medina, Milagros

    2014-10-01

    Kinetic isotope effects in reactions involving hydride transfer and their temperature dependence are powerful tools to explore dynamics of enzyme catalytic sites. In plant-type ferredoxin-NADP(+) reductases the FAD cofactor exchanges a hydride with the NADP(H) coenzyme. Rates for these processes are considerably faster for the plastidic members (FNR) of the family than for those belonging to the bacterial class (FPR). Hydride transfer (HT) and deuteride transfer (DT) rates for the NADP(+) coenzyme reduction of four plant-type FNRs (two representatives of the plastidic type FNRs and the other two from the bacterial class), and their temperature dependences are here examined applying a full tunnelling model with coupled environmental fluctuations. Parameters for the two plastidic FNRs confirm a tunnelling reaction with active dynamics contributions, but isotope effects on Arrhenius factors indicate a larger contribution for donor-acceptor distance (DAD) dynamics in the Pisum sativum FNR reaction than in the Anabaena FNR reaction. On the other hand, parameters for bacterial FPRs are consistent with passive environmental reorganisation movements dominating the HT coordinate and no contribution of DAD sampling or gating fluctuations. This indicates that active sites of FPRs are more organised and rigid than those of FNRs. These differences must be due to adaptation of the active sites and catalytic mechanisms to fulfil their particular metabolic roles, establishing a compromise between protein flexibility and functional optimisation. Analysis of site-directed mutants in plastidic enzymes additionally indicates the requirement of a minimal optimal architecture in the catalytic complex to provide a favourable gating contribution. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Novel Two-Step Hierarchical Screening of Mutant Pools Reveals Mutants under Selection in Chicks

    PubMed Central

    Yang, Hee-Jeong; Bogomolnaya, Lydia M.; Elfenbein, Johanna R.; Endicott-Yazdani, Tiana; Reynolds, M. Megan; Porwollik, Steffen; Cheng, Pui; Xia, Xiao-Qin

    2016-01-01

    Contaminated chicken/egg products are major sources of human salmonellosis, yet the strategies used by Salmonella to colonize chickens are poorly understood. We applied a novel two-step hierarchical procedure to identify new genes important for colonization and persistence of Salmonella enterica serotype Typhimurium in chickens. A library of 182 S. Typhimurium mutants each containing a targeted deletion of a group of contiguous genes (for a total of 2,069 genes deleted) was used to identify regions under selection at 1, 3, and 9 days postinfection in chicks. Mutants in 11 regions were under selection at all assayed times (colonization mutants), and mutants in 15 regions were under selection only at day 9 (persistence mutants). We assembled a pool of 92 mutants, each deleted for a single gene, representing nearly all genes in nine regions under selection. Twelve single gene deletion mutants were under selection in this assay, and we confirmed 6 of 9 of these candidate mutants via competitive infections and complementation analysis in chicks. STM0580, STM1295, STM1297, STM3612, STM3615, and STM3734 are needed for Salmonella to colonize and persist in chicks and were not previously associated with this ability. One of these key genes, STM1297 (selD), is required for anaerobic growth and supports the ability to utilize formate under these conditions, suggesting that metabolism of formate is important during infection. We report a hierarchical screening strategy to interrogate large portions of the genome during infection of animals using pools of mutants of low complexity. Using this strategy, we identified six genes not previously known to be needed during infection in chicks, and one of these (STM1297) suggests an important role for formate metabolism during infection. PMID:26857572

  2. Chemical Composition and Insecticidal Activity of Essential Oil from Coriandrum sativum Seeds against Tribolium confusum and Callosobruchus maculatus

    PubMed Central

    Khani, Abbas; Rahdari, Tahere

    2012-01-01

    The biological activity of essential oil extracted from coriander, Coriandrum sativum L. (Apiaceae), seeds against adults of Tribolium confusum Duval (Coleoptera: Tenebrionidae) and Callosobruchus maculatus F. (Coleoptera: Bruchidae) was investigated in a series of laboratory experiments. Fumigant toxicity was assessed at 27 ± 1°C and 65 ± 5% R.H., in dark condition. Dry seeds of the plant were subject to hydrodistillation using a Clevenger-type apparatus. The composition of essential oil was analyzed by gas chromatography mass spectrometry. The predominant components in the oil were linalool (57.57%) and geranyl acetate (15.09%). The mortality of 1–7-day-old adults of the insect pests increased with concentration from 43 to 357 μL/L air and with exposure time from 3 to 24 h. In the probit analysis, LC50 values (lethal concentration for 50% mortality) showed that C. maculatus (LC50 = 1.34 μL/L air) was more susceptible than T. confusum (LC50 = 318.02 μL/L air) to seed essential oil of this plant. The essential oil of C. sativum can play an important role in stored grain protection and reduce the risks associated with the use of synthetic insecticides. PMID:23227365

  3. Chemical Composition and Insecticidal Activity of Essential Oil from Coriandrum sativum Seeds against Tribolium confusum and Callosobruchus maculatus.

    PubMed

    Khani, Abbas; Rahdari, Tahere

    2012-01-01

    The biological activity of essential oil extracted from coriander, Coriandrum sativum L. (Apiaceae), seeds against adults of Tribolium confusum Duval (Coleoptera: Tenebrionidae) and Callosobruchus maculatus F. (Coleoptera: Bruchidae) was investigated in a series of laboratory experiments. Fumigant toxicity was assessed at 27 ± 1°C and 65 ± 5% R.H., in dark condition. Dry seeds of the plant were subject to hydrodistillation using a Clevenger-type apparatus. The composition of essential oil was analyzed by gas chromatography mass spectrometry. The predominant components in the oil were linalool (57.57%) and geranyl acetate (15.09%). The mortality of 1-7-day-old adults of the insect pests increased with concentration from 43 to 357 μL/L air and with exposure time from 3 to 24 h. In the probit analysis, LC(50) values (lethal concentration for 50% mortality) showed that C. maculatus (LC(50) = 1.34 μL/L air) was more susceptible than T. confusum (LC(50) = 318.02 μL/L air) to seed essential oil of this plant. The essential oil of C. sativum can play an important role in stored grain protection and reduce the risks associated with the use of synthetic insecticides.

  4. Activity of selected hydrolytic enzymes in Allium sativum L. anthers.

    PubMed

    Winiarczyk, Krystyna; Gębura, Joanna

    2016-05-01

    The aim of the study was to determine enzymatic activity in sterile Allium sativum anthers in the final stages of male gametophyte development (the stages of tetrads and free microspores). The analysed enzymes were shown to occur in the form of numerous isoforms. In the tetrad stage, esterase activity was predominant, which was manifested by the greater number of isoforms of the enzyme. In turn, in the microspore stage, higher numbers of isoforms of acid phosphatases and proteases were detected. The development of sterile pollen grains in garlic is associated with a high level of protease and acid phosphatase activity and lower level of esterase activities in the anther locule. Probably this is the first description of the enzymes activity (ACPH, EST, PRO) in the consecutives stages of cell wall formation which is considered to be one of the causes of male sterility in flowering plant. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Expression of small heat shock proteins from pea seedlings under gravity altered conditions

    NASA Astrophysics Data System (ADS)

    Talalaev, Alexandr S.

    2005-08-01

    A goal of our study was to evaluate the stress gene expression in Pisum sativum seedlings exposed to altered gravity and temperature elevation. We investigate message for the two inducible forms of the cytosolic small heat shock proteins (sHsp), sHsp 17.7 and sHsp 18.1. Both proteins are able to enhance the refolding of chemically denatured proteins in an ATP- independent manner, in other words they can function as molecular chaperones. We studied sHsps expression in pea seedlings cells by Western blotting. Temperature elevation, as the positive control, significantly increased PsHsp 17.7 and PsHsp 18.1 expression. Expression of the housekeeping protein, actin was constant and comparable to unstressed controls for all treatments. We concluded that gravitational perturbations incurred by clinorotation did not change sHsp genes expression.

  6. [Non-thermal effect of GSM electromagnetic radiation on quality of pea seeds].

    PubMed

    Veselova, T V; Veselovskiĭ, V A; Deev, L I; Baĭzhumanov, A A

    2012-01-01

    The seeds with low level of room temperature phosphorescence (RTP) were selected from a lot of air-dry peas (Pisum sativum) with 62% germination. These strong seeds (95-97% germination percentage) in air-dry, imbibed or emerged states were exposed to 905 MHz GSM-band electromagnetic radiation (EMR). The following effects of EMR were observed. Fraction II with higher RTP level appeared in the air-dry seeds. The germination rate decreased 2-3 fold in the air-dry, swollen and sprouting seeds due to an increase in the ratio of the seedlings with morphological defects (from 3 to 38%) and suffocated seeds (from 1 to 15%). We suggest tentative mechanisms to account for the decreased fitness of peas under GSM-band EMR (905 MHz); also discussed is the role of non-enzymatic hydrolysis of carbohydrates and amino-carbonyl reaction in this process.

  7. Nitrate-Dependent O2 Evolution in Intact Leaves 1

    PubMed Central

    de la Torre, Angel; Delgado, Begoña; Lara, Catalina

    1991-01-01

    Evolution of O2 by illuminated intact detached leaves from barley (Hordeum vulgare L. cv Athos) and pea (Pisum sativum L. cv Lincoln) in a CO2-saturating atmosphere was enhanced when KNO3 (1-2.5 millimolar) had been previously supplied through the transpiration stream. The extra O2 evolution observed after feeding KNO3 increased with the light intensity, being maximal at near saturating photon flux densities and resulting in no changes in the initial slope of the O2 versus light-intensity curve. No stimulation of O2 evolution was otherwise observed after feeding KCl or NH4Cl. The data indicate that nitrate assimilation uses photosynthetically generated reductant and stimulates the rate of non-cyclic electron flow by acting as a second electron-accepting assimilatory process in addition to CO2 fixation. PMID:16668272

  8. Protein-enriched pea flour extract protects stored milled rice against the rice weevil, Sitophilus oryzae

    PubMed Central

    Pretheep-Kumar, P.; Mohan, S.; Ramaraju, K.

    2004-01-01

    Studies were conducted to evaluate the effect of a protein-enriched pea (Pisum sativum var. Bonneville) flour extract against the rice weevil, Sitophilus oryzae in its repellency, toxicity, effect on fecundity, stability and sensory properties. Milled rice admixed with pea flour extract at 1% concentration significantly repelled S. oryzae. Mortality of S. oryzae was found to increase and fecundity was markedly suppressed, in rice treated with 1% pea flour extract. The toxicity and reproductive effects of the pea protein-enriched rice were found to be stable for a period of 5 months. The sensory characteristics of stored rice when eaten were not affected by the treatment with pea flour extract. This study indicates that the protein-enriched flour extract obtained from the Bonneville pea may be feasible to protect stored milled rice from insect attack. PMID:15861241

  9. Pea and Broad Bean Pods as a Natural Source of Dietary Fiber: The Impact on Texture and Sensory Properties of Cake.

    PubMed

    Belghith-Fendri, Lilia; Chaari, Fatma; Kallel, Fatma; Zouari-Ellouzi, Soumaya; Ghorbel, Raoudha; Besbes, Souhail; Ellouz-Chaabouni, Semia; Ghribi-Aydi, Dhouha

    2016-10-01

    Attention has focused on bakery products such as cake which is one of the most common bakery products consumed by people in the world. Legume by-products, pea pods (PPs) (Pisum sativum L.) and broad bean pods (BBPs) (Vicia faba L.) mediterranean (Tunisian), has been studied for its high dietary fiber content (PP: 43.87 g/100 g; BBP: 53.01 g/100 g). Protein content was also a considerable component for both by-products. We investigated the effect of substituted of 5%, 10%, 15%, 20%, 25%, and 30% of PP and BBP flours on the sensory and technological properties in cake. Cakes hardness increased whereas L * and a * color values decreased. The overall acceptability rate showed that a maximum of 15% of PP and BBP flours can be added to prepare acceptable quality cakes. © 2016 Institute of Food Technologists®.

  10. Coriandrum sativum L. (Coriander) Essential Oil: Antifungal Activity and Mode of Action on Candida spp., and Molecular Targets Affected in Human Whole-Genome Expression

    PubMed Central

    Freires, Irlan de Almeida; Murata, Ramiro Mendonça; Furletti, Vivian Fernandes; Sartoratto, Adilson; de Alencar, Severino Matias; Figueira, Glyn Mara; de Oliveira Rodrigues, Janaina Aparecida; Duarte, Marta Cristina Teixeira; Rosalen, Pedro Luiz

    2014-01-01

    Oral candidiasis is an opportunistic fungal infection of the oral cavity with increasingly worldwide prevalence and incidence rates. Novel specifically-targeted strategies to manage this ailment have been proposed using essential oils (EO) known to have antifungal properties. In this study, we aim to investigate the antifungal activity and mode of action of the EO from Coriandrum sativum L. (coriander) leaves on Candida spp. In addition, we detected the molecular targets affected in whole-genome expression in human cells. The EO phytochemical profile indicates monoterpenes and sesquiterpenes as major components, which are likely to negatively impact the viability of yeast cells. There seems to be a synergistic activity of the EO chemical compounds as their isolation into fractions led to a decreased antimicrobial effect. C. sativum EO may bind to membrane ergosterol, increasing ionic permeability and causing membrane damage leading to cell death, but it does not act on cell wall biosynthesis-related pathways. This mode of action is illustrated by photomicrographs showing disruption in biofilm integrity caused by the EO at varied concentrations. The EO also inhibited Candida biofilm adherence to a polystyrene substrate at low concentrations, and decreased the proteolytic activity of Candida albicans at minimum inhibitory concentration. Finally, the EO and its selected active fraction had low cytotoxicity on human cells, with putative mechanisms affecting gene expression in pathways involving chemokines and MAP-kinase (proliferation/apoptosis), as well as adhesion proteins. These findings highlight the potential antifungal activity of the EO from C. sativum leaves and suggest avenues for future translational toxicological research. PMID:24901768

  11. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process.

    PubMed

    Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry

    2015-01-01

    In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid.

  12. Infection Dynamic of Symbiotic Bacteria in the Pea Aphid Acyrthosiphon pisum Gut and Host Immune Response at the Early Steps in the Infection Process

    PubMed Central

    Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry

    2015-01-01

    In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid. PMID:25811863

  13. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa

    PubMed Central

    Khalifa, Ashraf Y.Z.; Alsyeeh, Abdel-Moneium; Almalki, Mohammed A.; Saleh, Farag A.

    2015-01-01

    The aim of the present study was to characterize the endophytic bacterial strain designated MSR1 that was isolated from inside the non-nodulating roots of Medicago sativa after surface-sterilization. MSR1 was identified as Enterobacter cloacae using both 16S rDNA gene sequence analysis and API20E biochemical identification system (Biomerieux, France). Furthermore, this bacterium was characterized using API50CH kit (Biomerieux, France) and tested for antibacterial activities against some food borne pathogens. The results showed that E. cloacae consumed certain carbohydrates such as glycerol, d-xylose, d-maltose and esculin melibiose as a sole carbon source and certain amino acids such as arginine, tryptophan ornithine as nitrogen source. Furthermore, MSR1 possessed multiple plant-growth promoting characteristics; phosphate solubility, production of phytohormones acetoin and bioactive compounds. Inoculation of Pisum sativum with MSR1 significantly improved the growth parameters (the length and dry weight) of this economically important grain legume compared to the non-treated plants. To our knowledge, this is the first report addressing E. cloacae which exist in roots of alfalfa growing in Al-Ahsaa region. The results confirmed that E. cloacae exhibited traits for plant growth promoting and could be developed as an eco-friendly biofertilizer for P. sativum and probably for other important plant species in future. PMID:26858542

  14. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress.

    PubMed

    Ortega-Galisteo, Ana P; Rodríguez-Serrano, María; Pazmiño, Diana M; Gupta, Dharmendra K; Sandalio, Luisa M; Romero-Puertas, María C

    2012-03-01

    Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H(2)O(2) level under abiotic stress.

  15. Symbiotic activity of pea (Pisum sativum) after application of Nod factors under field conditions.

    PubMed

    Siczek, Anna; Lipiec, Jerzy; Wielbo, Jerzy; Kidaj, Dominika; Szarlip, Paweł

    2014-04-29

    Growth and symbiotic activity of legumes are mediated by Nod factors (LCO, lipo-chitooligosaccharides). To assess the effects of application of Nod factors on symbiotic activity and yield of pea, a two-year field experiment was conducted on a Haplic Luvisol developed from loess. Nod factors were isolated from Rhizobium leguminosarum bv. viciae strain GR09. Pea seeds were treated with the Nod factors (10⁻¹¹ M) or water (control) before planting. Symbiotic activity was evaluated by measurements of nitrogenase activity (acetylene reduction assay), nodule number and mass, and top growth by shoot mass, leaf area, and seed and protein yield. Nod factors generally improved pea yield and nitrogenase activity in the relatively dry growing season 2012, but not in the wet growing season in 2013 due to different weather conditions.

  16. Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum sativum) ferritin.

    PubMed Central

    Lobreaux, S; Yewdall, S J; Briat, J F; Harrison, P M

    1992-01-01

    The iron storage protein, ferritin, is widely distributed in the living kingdom. Here the complete cDNA and derived amino-acid sequence of pea seed ferritin are described, together with its predicted secondary structure, namely a four-helix-bundle fold similar to those of mammalian ferritins, with a fifth short helix at the C-terminus. An N-terminal extension of 71 residues contains a transit peptide (first 47 residues) responsible for plastid targetting as in other plant ferritins, and this is cleaved before assembly. The second part of the extension (24 residues) belongs to the mature subunit; it is cleaved during germination. The amino-acid sequence of pea seed ferritin is aligned with those of other ferritins (49% amino-acid identity with H-chains and 40% with L-chains of human liver ferritin in the aligned region). A three-dimensional model has been constructed by fitting the aligned sequence to the coordinates of human H-chains, with appropriate modifications. A folded conformation with an 11-residue helix is predicted for the N-terminal extension. As in mammalian ferritins, 24 subunits assemble into a hollow shell. In pea seed ferritin, its N-terminal extension is exposed on the outside surface of the shell. Within each pea subunit is a ferroxidase centre resembling those of human ferritin H-chains except for a replacement of Glu-62 by His. The channel at the 4-fold-symmetry axes defined by E-helices, is predicted to be hydrophilic in plant ferritins, whereas it is hydrophobic in mammalian ferritins. Images Fig. 3. Fig. 5. Fig. 6. PMID:1472006

  17. Mitogen-activated protein kinases participate in determination of apical-basal symmetry in Pisum sativum.

    PubMed

    Winnicki, Konrad; Polit, Justyna Teresa; Żabka, Aneta; Maszewski, Janusz

    2017-03-01

    Mitogen-activated protein kinases (MAPKs) are implicated in various processes in plants. Apart from response to biotic and abiotic stresses they are involved in regulation of embryo development. Although MAPKs were found to be indispensable during embryo development it has never been established at which stages of embryogenesis and in which regions of a plant embryo activated MAPKs can be observed. Here, we show that apical and basal regions display activation of the same types of MAPKs and the only difference concerns the level of their phosphorylation and cellular localization. Dually-phosphorylated MAPKs were found in nuclei of the apical region of an embryo both at the early and late cotyledonary stage while no immunofluorescence signals were detected in nuclei of the basal region. However, in this case phosphorylated MAPKs were immunodetected in cytoplasm in the apical domain of cortex cells, indicating their role in auxin transport from the basal to apical region of an embryo. Furthermore, obtained data indicate that nuclear localization of activated MAPKs may result from epigenetic modifications and polar auxin transport. The presented data and previous studies lead to the conclusion that activated MAPKs and their cellular localization define apical and basal regions during formation of an apical-basal axis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Relating physico-chemical properties of frozen green peas (Pisum sativum L.) to sensory quality.

    PubMed

    Nleya, Kathleen M; Minnaar, Amanda; de Kock, Henriëtte L

    2014-03-30

    The acceptability of frozen green peas depends on their sensory quality. There is a need to relate physico-chemical parameters to sensory quality. In this research, six brands of frozen green peas representing product sold for retail and caterer's markets were purchased and subjected to descriptive sensory evaluation and physico-chemical analyses (including dry matter content, alcohol insoluble solids content, starch content, °Brix, residual peroxidase activity, size sorting, hardness using texture analysis and colour measurements) to assess and explain product quality. The sensory quality of frozen green peas, particularly texture properties, were well explained using physico-chemical methods of analysis notably alcohol insoluble solids, starch content, hardness and °Brix. Generally, retail class peas were of superior sensory quality to caterer's class peas although one caterer's brand was comparable to the retail brands. Retail class peas were sweeter, smaller, greener, more moist and more tender than the caterer's peas. Retail class peas also had higher °Brix, a(*) , hue and chroma values; lower starch, alcohol insoluble solids, dry matter content and hardness measured. The sensory quality of frozen green peas can be partially predicted by measuring physico-chemical parameters particularly °Brix and to a lesser extent hardness by texture analyser, alcohol insoluble solids, dry matter and starch content. © 2013 Society of Chemical Industry.

  19. Cells of pea (Pisum sativum) that differentiate from G2 phase have extrachromosomal DNA.

    PubMed Central

    Van't Hof, J; Bjerknes, C A

    1982-01-01

    Velocity sedimentation in an alkaline sucrose gradient of newly replicated chromosomal DNA revealed the presence of extrachromosomal DNA that was not replicated by differentiating cells in the elongation zone. The extrachromosomal DNA had a number average molecular weight of 12 X 10(6) to 15 X 10(6) and a weight average molecular weight of 25 X 10(6), corresponding to about 26 X 10(6) and 50 X 10(6) daltons, respectively, of double-stranded DNA. The molecules were stable, lasting at least 72 h after being formed. Concurrent measurements by velocity sedimentation, autoradiography, and cytophotometry of isolated nuclei indicated that the extrachromosomal molecules were associated with root-tip cells that stopped dividing and differentiated from G2 phase but not with those that stopped dividing and differentiated from G1 phase. PMID:7110135

  20. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress

    PubMed Central

    Ortega-Galisteo, Ana P.; Rodríguez-Serrano, María; Pazmiño, Diana M.; Gupta, Dharmendra K.; Sandalio, Luisa M.; Romero-Puertas, María C.

    2012-01-01

    Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H2O2 level under abiotic stress. PMID:22213812

  1. Kasugamycin-dependent mutants of Escherichia coli.

    PubMed Central

    Dabbs, E R

    1978-01-01

    Kasugamycin-dependent mutants have been isolated from Escherichia coli B. They were obtained through mutagenesis with ethyl methane sulfonate or nitrosoguanidine in conjunction with an antibiotic underlay technique. In the case of nitrosoguanidine, dependent mutants were obtained at a frequency of about 3% of survivors growing up in the selection. In the case of ethyl methane sulfonate, the corresponding value was 1%. Nineteen mutants showing a kasugamycin-dependent phenotype were studied. In terms of response to various temperatures and antibiotic concentrations, they were very heterogeneous, although most fell into two general classes. Genetic analysis indicated that in at least some cases, the kasugamycin-dependent phenotype was the product of two mutations. Two-dimensional gel electropherograms revealed alterations in the ribosomal proteins of seven mutants. One mutant had an alteration in protein S13, and one had an alteration in protein L14. Three showed changes in protein S9. Each of two mutants had changes in two proteins, S18 and L11. Three of these mutants additionally had protein S18 occurring in a partly altered, partly unaltered form. Images PMID:363701

  2. Antimycobacterial and Antibacterial Activity of Allium sativum Bulbs

    PubMed Central

    Viswanathan, V.; Phadatare, A. G.; Mukne, Alka

    2014-01-01

    Tuberculosis is one of the major public health problems faced globally. Resistance of Mycobacterium tuberculosis to antitubercular agents has called for an urgent need to investigate newer drugs to combat tuberculosis. Garlic (Allium sativum) is an edible plant which has generated a lot of curiosity throughout human history as a medicinal plant. Garlic contains sulfur compounds like allicin, ajoene, allylmethyltrisulfide, diallyltrisulfide, diallyldisulphide and others which exhibit various biological properties like antimicrobial, anticancer, antioxidant, immunomodulatory, antiinflammatory, hypoglycemic, and cardiovascular effects. According to various traditional systems of medicine, garlic is one of the established remedies for tuberculosis. The objective of the current study was to investigate in vitro antimycobacterial activity as well as anti-bacterial activity of various extracts rich in specific phytoconstituents from garlic. Preparation of garlic extracts was done based on the chemistry of the constituents and their stability. The estimation of in vitro antimycobacterial activity of different garlic extracts was done using Resazurin microtire plate assay technique whereas activity of garlic oil was evaluated by colony count method. The antibacterial activity of extracts and oil was estimated by zone of inhibition method. Extracts of garlic rich in allicin and ajoene showed appreciable antimycobacterial activity as compared to standard drugs. Garlic oil demonstrated significant antibacterial activity, particularly against methicillin-resistant Staphylococcus aureus. PMID:25035540

  3. Allium sativum L. regulates in vitro IL-17 gene expression in human peripheral blood mononuclear cells.

    PubMed

    Moutia, Mouna; Seghrouchni, Fouad; Abouelazz, Omar; Elouaddari, Anass; Al Jahid, Abdellah; Elhou, Abdelhalim; Nadifi, Sellama; Jamal Eddine, Jamal; Habti, Norddine; Badou, Abdallah

    2016-09-29

    Allium sativum L. (A.S.) "garlic", one of the most interesting medicinal plants, has been suggested to contain compounds that could be beneficial in numerous pathological situations including cancer. In this work, we aimed to assess the immunomodulatory effect of A.S. preparation on human peripheral blood mononuclear cells from healthy individuals. Nontoxic doses of A.S. were identified using MTT assay. Effects on CD4+ or CD8+ T lymphocyte proliferation were studied using flow cytometry. The effect of A.S. on cytokine gene expression was studied using qRT-PCR. Finally, qualitative analysis of A.S. was performed by HPLC approach. Data were analyzed statistically by one-way ANOVA test. The nontoxic doses of A.S. preparation did not affect neither spontaneous nor TCR-mediated CD4+ or CD8+ T lymphocyte proliferation. Interestingly, A.S. exhibited a statistically significant regulation of IL-17 gene expression, a cytokine involved in several inflammatory and autoimmune diseases. In contrast, the expression of IL-4, an anti-inflammatory cytokine, was unaffected. Qualitative analysis of A.S. ethanol preparation indicated the presence of three polyphenol bioactive compounds, which are catechin, vanillic acid and ferulic acid. The specific inhibition of the pro-inflammatory cytokine, IL-17 without affecting cell proliferation in human PBMCs by the Allium sativum L. preparation suggests a potential valuable effect of the compounds present in this plant for the treatment of inflammatory diseases and cancer, where IL-17 is highly expressed. The individual contribution of these three compounds to this global effect will be assessed.

  4. Efficacy of combination of Viola odorata, Rosa damascena and Coriandrum sativum in prevention of migraine attacks: a randomized, double blind, placebo-controlled clinical trial

    PubMed Central

    Kamali, Mohadese; Seifadini, Rostam; Kamali, Hoda; Mehrabani, Mitra; Jahani, Yunes

    2018-01-01

    Background Migraine is the second most common type of headache after tension headaches. In Iranian traditional medicine several herbal drugs are used for the treatment of headache. Including, a product of Iranian traditional medicine, a combination of Viola odorata L. flowers, Rosa damascena L. flowers and Coriandrum sativum L. fruits. Objective To determine the effectiveness of a combination of Viola odorata flowers, Rosa damascene flowers and Coriandrum sativum fruits on severity, duration and frequency of migraine headaches. Methods This randomized, double blind, placebo-controlled clinical trial was performed on 88 patients who had migraine and visited Besat Neurology Clinic No. 4 at Kerman University of Medical Sciences, Kerman, Iran, from September 2016 to march 2017. Patients were randomly divided into the intervention (n=44) or placebo group (n=44). The intervention group received a product of Iranian traditional medicine, a combination of Viola odorata L. flowers, Rosa damascena L. flowers and Coriandrum sativum L. fruits in 500 mg capsules three times a day and propranolol 20mg tablet twice a day, and the control group received placebo capsules (500mg) three times a day and propranolol 20mg tablet twice a day for four weeks. Patients were asked to report the frequency, duration and severity of their headaches in designed forms at home. Then at the end of the 2nd and 4th weeks of treatment, patients were followed for clinical efficacy. Results In terms of duration, frequency and severity of headaches between the two groups of herbal medicine and placebo, the behavior of the two protocols was changed over time (p<0.001). During the 4 weeks, the time and drug interactions, were significant (p <0.001). In other words, the pattern of changes to the two protocols over time, was different. Also, at the end of the 4th week, there was a significant difference between the two groups (p<0.001). Conclusion The study findings suggest that the Iranian traditional

  5. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  6. Chaperone-mediated autophagy degrades mutant p53

    PubMed Central

    Vakifahmetoglu-Norberg, Helin; Kim, Minsu; Xia, Hong-guang; Iwanicki, Marcin P.; Ofengeim, Dimitry; Coloff, Jonathan L.; Pan, Lifeng; Ince, Tan A.; Kroemer, Guido; Brugge, Joan S.; Yuan, Junying

    2013-01-01

    Missense mutations in the gene TP53, which encodes p53, one of the most important tumor suppressors, are common in human cancers. Accumulated mutant p53 proteins are known to actively contribute to tumor development and metastasis. Thus, promoting the removal of mutant p53 proteins in cancer cells may have therapeutic significance. Here we investigated the mechanisms that govern the turnover of mutant p53 in nonproliferating tumor cells using a combination of pharmacological and genetic approaches. We show that suppression of macroautophagy by multiple means promotes the degradation of mutant p53 through chaperone-mediated autophagy in a lysosome-dependent fashion. In addition, depletion of mutant p53 expression due to macroautophagy inhibition sensitizes the death of dormant cancer cells under nonproliferating conditions. Taken together, our results delineate a novel strategy for killing tumor cells that depend on mutant p53 expression by the activation of chaperone-mediated autophagy and potential pharmacological means to reduce the levels of accumulated mutant p53 without the restriction of mutant p53 conformation in quiescent tumor cells. PMID:23913924

  7. A technique for collection of exudate from pea seedlings

    NASA Technical Reports Server (NTRS)

    Hanson, S. D.; Cohen, J. D.; Bandurski, R. S. (Principal Investigator)

    1985-01-01

    Ethylenediaminetetraacetic acid (EDTA), at concentrations higher than 1.0 millimolar, is phytotoxic to etiolated seedlings of Pisum sativum. Substantial vascular exudation from pea epicotyls could be obtained without tissue damage at 0.5 millimolar EDTA if the solution was buffered at pH 7.5 with sodium N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid. Treated seedlings exuded 950 micrograms (leucine equivalents) of ninhydrin-positive material per day and 870 micrograms (glucose equivalents) of anthrone-positive material per day. Amino acid analysis showed the exudate to have glutamine as the major amido nitrogen containing compound and sucrose was shown to be the major sugar. Radiolabeled tryptophan and sucrose applied to cotyledons were transferred through the epicotyl and into the collection medium. The pH profile for exudation shows half maximal exudation at pH 7.2, indicating the promotion of exudation by EDTA is probably not due simply to Ca2+ chelation.

  8. Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against pine wood nematode (Bursaphelenchus xylophilus).

    PubMed

    Kim, Junheon; Seo, Sun-Mi; Lee, Sang-Gil; Shin, Sang-Chul; Park, Il-Kwon

    2008-08-27

    Commercial essential oils from 28 plant species were tested for their nematicidal activities against the pine wood nematode, Bursaphelenchus xylophilus. Good nematicidal activity against B. xylophilus was achieved with essential oils of coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii). Analysis by gas chromatography-mass spectrometry led to the identification of 26, 11, and 4 major compounds from coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) oils, respectively. Compounds from each plant essential oil were tested individually for their nematicidal activities against the pine wood nematode. Among the compounds, benzaldehyde, trans-cinnamyl alcohol, cis-asarone, octanal, nonanal, decanal, trans-2-decenal, undecanal, dodecanal, decanol, and trans-2-decen-1-ol showed strong nematicidal activity. The essential oils described herein merit further study as potential nematicides against the pine wood nematode.

  9. Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization

    PubMed Central

    2014-01-01

    Background Microalgae are a promising platform for producing neutral lipids, to be used in the application for biofuels or commodities in the feed and food industry. A very promising candidate is the oleaginous green microalga Scenedesmus obliquus, because it accumulates up to 45% w/w triacylglycerol (TAG) under nitrogen starvation. Under these conditions, starch is accumulated as well. Starch can amount up to 38% w/w under nitrogen starvation, which is a substantial part of the total carbon captured. When aiming for optimized TAG production, blocking the formation of starch could potentially increase carbon allocation towards TAG. In an attempt to increase TAG content, productivity and yield, starchless mutants of this high potential strain were generated using UV mutagenesis. Previous studies in Chlamydomonas reinhardtii have shown that blocking the starch synthesis yields higher TAG contents, although these TAG contents do not surpass those of oleaginous microalgae yet. So far no starchless mutants in oleaginous green microalgae have been isolated that result in higher TAG productivities. Results Five starchless mutants have been isolated successfully from over 3,500 mutants. The effect of the mutation on biomass and total fatty acid (TFA) and TAG productivity under nitrogen-replete and nitrogen-depleted conditions was studied. All five starchless mutants showed a decreased or completely absent starch content. In parallel, an increased TAG accumulation rate was observed for the starchless mutants and no substantial decrease in biomass productivity was perceived. The most promising mutant showed an increase in TFA productivity of 41% at 4 days after nitrogen depletion, reached a TAG content of 49.4% (% of dry weight) and had no substantial change in biomass productivity compared to the wild type. Conclusions The improved S. obliquus TAG production strains are the first starchless mutants in an oleaginous green microalga that show enhanced TAG content under

  10. Problem-Solving Test: Tryptophan Operon Mutants

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  11. Identity of the immunomodulatory proteins from garlic (Allium sativum) with the major garlic lectins or agglutinins.

    PubMed

    Clement, Fatima; Pramod, Siddanakoppalu N; Venkatesh, Yeldur P

    2010-03-01

    Garlic (Allium sativum), an important medicinal spice, displays a plethora of biological effects including immunomodulation. Although some immunomodulatory proteins from garlic have been described, their identities are still unknown. The present study was envisaged to isolate immunomodulatory proteins from raw garlic, and examine their effects on certain cells of the immune system (lymphocytes, mast cells, and basophils) in relation to mitogenicity and hypersensitivity. Three protein components of approximately 13 kD (QR-1, QR-2, and QR-3 in the ratio 7:28:1) were separated by Q-Sepharose chromatography of 30 kD ultrafiltrate of raw garlic extract. All the 3 proteins exhibited mitogenic activity towards human peripheral blood lymphocytes, murine splenocytes and thymocytes. The mitogenicity of QR-2 was the highest among the three immunomodulatory proteins. QR-1 and QR-2 displayed hemagglutination and mannose-binding activities; QR-3 showed only mannose-binding activity. Immunoreactivity of rabbit anti-QR-1 and anti-QR-2 polyclonal antisera showed specificity for their respective antigens as well as mutual cross-reactivity; QR-3 was better recognized by anti-QR-2 (82%) than by anti-QR-1 (55%). QR-2 induced a 2-fold higher histamine release in vitro from leukocytes of atopic subjects compared to that of non-atopic subjects. In all functional studies, QR-2 was more potent compared to QR-1. Taken together, all these results indicate that the two major proteins QR-2 and QR-1 present in a ratio of 4:1 in raw garlic contribute to garlic's immunomodulatory activity, and their characteristics are markedly similar to the abundant Allium sativum agglutinins (ASA) I and II, respectively. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Stimulation of root elongation and curvature by calcium

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.; Suge, H.

    1992-01-01

    Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca(2+)-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca(2+)-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may partipate in root tropisms.

  13. Light differentially regulates cell division and the mRNA abundance of pea nucleolin during de-etiolation

    NASA Technical Reports Server (NTRS)

    Reichler, S. A.; Balk, J.; Brown, M. E.; Woodruff, K.; Clark, G. B.; Roux, S. J.

    2001-01-01

    The abundance of plant nucleolin mRNA is regulated during de-etiolation by phytochrome. A close correlation between the mRNA abundance of nucleolin and mitosis has also been previously reported. These results raised the question of whether the effects of light on nucleolin mRNA expression were a consequence of light effects on mitosis. To test this we compared the kinetics of light-mediated increases in cell proliferation with that of light-mediated changes in the abundance of nucleolin mRNA using plumules of dark-grown pea (Pisum sativum) seedlings. These experiments show that S-phase increases 9 h after a red light pulse, followed by M-phase increases in the plumule leaves at 12 h post-irradiation, a time course consistent with separately measured kinetics of red light-induced increases in the expression of cell cycle-regulated genes. These increases in cell cycle-regulated genes are photoreversible, implying that the light-induced increases in cell proliferation are, like nucleolin mRNA expression, regulated via phytochrome. Red light stimulates increases in the mRNA for nucleolin at 6 h post-irradiation, prior to any cell proliferation changes and concurrent with the reported timing of phytochrome-mediated increases of rRNA abundance. After a green light pulse, nucleolin mRNA levels increase without increasing S-phase or M-phase. Studies in animals and yeast indicate that nucleolin plays a significant role in ribosome biosynthesis. Consistent with this function, pea nucleolin can rescue nucleolin deletion mutants of yeast that are defective in rRNA synthesis. Our data show that during de-etiolation, the increased expression of nucleolin mRNA is more directly regulated by light than by mitosis.

  14. Liming can decrease legume crop yield and leaf gas exchange by enhancing root to shoot ABA signalling

    PubMed Central

    Rothwell, Shane A.; Elphinstone, E. David; Dodd, Ian C.

    2015-01-01

    To meet future requirements for food production, sustainable intensive agricultural systems need to optimize nutrient availability to maximize yield, traditionally achieved by maintaining soil pH within an optimal range (6–6.5) by applying lime (calcium carbonate). However, a field trial that applied recommended liming rates to a sandy loam soil (increasing soil pH from 5.5 to 6.2) decreased pod yield of field bean (Vicia faba L. cv. Fuego) by ~30%. Subsequent pot trials, with liming that raised soil pH to 6.3–6.7, reduced stomatal conductance (g s) by 63, 26, and 59% in V. faba, bean (Phaseolus vulgaris), and pea (Pisum sativum), respectively. Furthermore, liming reduced shoot dry biomass by 16–24% in these species. Ionomic analysis of root xylem sap and leaf tissue revealed a decrease in phosphorus concentration that was correlated with decreased g s: both reductions were partially reversed by adding superphosphate fertilizer. Further analysis of pea suggests that leaf gas exchange was reduced by a systemic increase (roots, xylem sap, and leaves) in the phytohormone abscisic acid (ABA) in response to lime-induced suboptimal plant phosphorus concentrations. Supplying synthetic ABA via the transpiration stream to detached pea leaves, at the same xylem sap concentrations induced by liming, decreased transpiration. Furthermore, the g s of the ABA-deficient mutant pea wilty was unresponsive to liming, apparently confirming that ABA mediates some responses to low phosphorus availability caused by liming. This research provides a detailed mechanistic understanding of the physiological processes by which lime application can limit crop yields, and questions the suitability of current liming recommendations. PMID:25740925

  15. Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants*

    PubMed Central

    Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane

    2014-01-01

    Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled 55Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds. PMID:24347170

  16. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis

    PubMed Central

    Rasmussen, Amanda; Hosseini, Seyed Abdollah; Hajirezaei, Mohammed-Reza; Druege, Uwe; Geelen, Danny

    2015-01-01

    Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue’s auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation. PMID:25540438

  17. Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants.

    PubMed

    Ma, Sheng; Martin-Laffon, Jacqueline; Mininno, Morgane; Gigarel, Océane; Brugière, Sabine; Bastien, Olivier; Tardif, Marianne; Ravanel, Stéphane; Alban, Claude

    2016-04-04

    Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro-Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  18. ADP-Glucose Pyrophosphorylase Is Activated by Posttranslational Redox-Modification in Response to Light and to Sugars in Leaves of Arabidopsis and Other Plant Species1[w

    PubMed Central

    Hendriks, Janneke H.M.; Kolbe, Anna; Gibon, Yves; Stitt, Mark; Geigenberger, Peter

    2003-01-01

    ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed reaction in the pathway of starch synthesis. It was recently shown that potato (Solanum tuberosum) tuber AGPase is subject to redox-dependent posttranslational regulation, involving formation of an intermolecular Cys bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme (A. Tiessen, J.H.M. Hendriks, M. Stitt, A. Branscheid, Y. Gibon, E.M. Farré, P. Geigenberger [2002] Plant Cell 14: 2191–2213). We show here that AGPase is also subject to posttranslational regulation in leaves of pea (Pisum sativum), potato, and Arabidopsis. Conversion is accompanied by an increase in activity, which involves changes in the kinetic properties. Light and sugars act as inputs to trigger posttranslational regulation of AGPase in leaves. AGPB is rapidly converted from a dimer to a monomer when isolated chloroplasts are illuminated and from a monomer to a dimer when preilluminated leaves are darkened. AGPB is converted from a dimer to monomer when sucrose is supplied to leaves via the petiole in the dark. Conversion to monomeric form increases during the day as leaf sugars increase. This is enhanced in the starchless phosphoglucomutase mutant, which has higher sugar levels than wild-type Columbia-0. The extent of AGPB monomerization correlates with leaf sugar levels, and at a given sugar content, is higher in the light than the dark. This novel posttranslational regulation mechanism will allow starch synthesis to be regulated in response to light and sugar levels in the leaf. It complements the well-characterized regulation network that coordinates fluxes of metabolites with the recycling of phosphate during photosynthetic carbon fixation and sucrose synthesis. PMID:12972664

  19. Ascorbate efflux as a new strategy for iron reduction and transport in plants.

    PubMed

    Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane

    2014-01-31

    Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled (55)Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds.

  20. Mutant power: using mutant allele collections for yeast functional genomics.

    PubMed

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Misfolded rhodopsin mutants display variable aggregation properties.

    PubMed

    Gragg, Megan; Park, Paul S-H

    2018-06-08

    The largest class of rhodopsin mutations causing autosomal dominant retinitis pigmentosa (adRP) is mutations that lead to misfolding and aggregation of the receptor. The misfolding mutants have been characterized biochemically, and categorized as either partial or complete misfolding mutants. This classification is incomplete and does not provide sufficient information to fully understand the disease pathogenesis and evaluate therapeutic strategies. A Förster resonance energy transfer (FRET) method was utilized to directly assess the aggregation properties of misfolding rhodopsin mutants within the cell. Partial (P23H and P267L) and complete (G188R, H211P, and P267R) misfolding mutants were characterized to reveal variability in aggregation properties. The complete misfolding mutants all behaved similarly, forming aggregates when expressed alone, minimally interacting with the wild-type receptor when coexpressed, and were unresponsive to treatment with the pharmacological chaperone 9-cis retinal. In contrast, variability was observed between the partial misfolding mutants. In the opsin form, the P23H mutant behaved similarly as the complete misfolding mutants. In contrast, the opsin form of the P267L mutant existed as both aggregates and oligomers when expressed alone and formed mostly oligomers with the wild-type receptor when coexpressed. The partial misfolding mutants both reacted similarly to the pharmacological chaperone 9-cis retinal, displaying improved folding and oligomerization when expressed alone but aggregating with wild-type receptor when coexpressed. The observed differences in aggregation properties and effect of 9-cis retinal predict different outcomes in disease pathophysiology and suggest that retinoid-based chaperones will be ineffective or even detrimental. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Neurobehavioral Mutants Identified in an ENU Mutagenesis Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Melloni N.; Dunning, Jonathan P; Wiley, Ronald G

    2007-01-01

    We report on a behavioral screening test battery that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and employed a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open field mutants (one displaying hyper-locomotion, the other hypo-locomotion), four tail suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsivenessmore » to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning and memory mutant (displaying reduced response to the conditioned stimulus) These findings highlight the utility of a set of behavioral tasks used in a high throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.« less

  3. Polarity-defective mutants of Aspergillus nidulans.

    PubMed

    Osherov, N; Mathew, J; May, G S

    2000-12-01

    We have identified two polarity-defective (pod) mutants in Aspergillus nidulans from a collection of heat-sensitive lethal mutants. At restrictive temperature, these mutants are capable of nuclear division but are unable to establish polar hyphal growth. We cloned the two pod genes by complementation of their heat-sensitive lethal phenotypes. The libraries used to clone the pod genes are under the control of the bidirectional niaD and niiA promoters. Complementation of the pod mutants is dependent on growth on inducing medium. We show that rescue of the heat-sensitive phenotype on inducing media is independent of the orientation of the gene relative to the niaD or niiA promoters, demonstrating that the intergenic region between the niaD and the niiA genes functions as an orientation-independent enhancer and repressor that is capable of functioning over long distances. The products of the podG and the podH genes were identified as homologues of the alpha subunit of yeast mitochondrial phenylalanyl--tRNA synthetase and transcription factor IIF interacting component of the CTD phosphatase. Neither of these gene products would have been predicted to produce a pod mutant phenotype based on studies of cellular polarity mutants in other organisms. The implications of these results are discussed. Copyright 2000 Academic Press.

  4. Scolicidal effect of Allium sativum flowers on hydatid cyst protoscolices.

    PubMed

    Rahimi-Esboei, B; Ebrahimzadeh, M A; Fathi, H; Rezaei Anzahaei, F

    2016-01-01

    he s Because there is no effective and safe drug therapy for hydatid cyst, finding of some new agents especially from herbal origin with a desired scolicidal effect attracts great attention for treatment and pre-surgical use to prevent the hydatid cyst recurrence. In this study, the scolicidal effect of ultrasonic methanol extract of Garlic (Allium sativum) flower is investigated. Protoscolices were collected aseptically from sheep livers containing hydatid cyst and were exposed to different concentrations of extract for various exposure times. The viability of protoscolices was confirmed by 0.1% Eosin staining. The scolicidal activity of extract at a concentration of 50 mg ml-1 was 59, 76, 81 and 86% after 10, 30, 60, and 180 min of exposure respectively. The scolicidal effect at 100 mg ml-1 was 67, 78, 85 and 98% after various exposure times, respectively. The results of this study showed that the ultrasonic extract has high scolicidal activity and might be used as a natural scolicidal agent. Garlic flower extracts is a potent protoscolicid and might be used in hydatid cyst treatment and pre-surgery to prevent secondary cyst recurrence.

  5. Harvest time residues of pendimethalin and oxyfluorfen in vegetables and soil in sugarcane-based intercropping systems.

    PubMed

    Kaur, Navneet; Bhullar, Makhan S

    2015-05-01

    Terminal residues of pendimethalin and oxyfluorfen applied in autumn sugarcane- and vegetables-based intercropping systems were analyzed in peas (Pisum sativum), cabbage (Brassica oleracea), garlic (Allium sativum), gobhi sarson (Brassica napus), and raya (Brassica juncea). The study was conducted in winter season in 2010-2011 and in 2011-2012 at Ludhiana, India. Pendimethalin at 0.56 kg and 0.75 kg ha(-1) was applied immediately after sowing of gobhi sarson, raya, peas, garlic, and 2 days before transplanting of cabbage seedlings. Oxyfluorfen at 0.17 kg and 0.23 kg ha(-1) was applied immediately after sowing of peas and garlic and 2 days before transplanting of cabbage seedlings intercropped in autumn sugarcane. Representative samples of these vegetables were collected at 75, 90, 100, and 165 days after application of herbicides and analyzed by high-performance liquid chromatograph (HPLC) with diode array detector for residues. The residue level of pendimethalin and oxyfluorfen in mature vegetables was found to be below the limit of quantification which is 0.05 mg kg(-1) for both the herbicides. The soil samples were collected at 0, 7, 15, 30, 45, and 60 days after the application of their herbicides. The residues of herbicides in soil samples were found to be below the detectability limit of 0.05 mg kg(-1) after 60 days in case of pendimethalin and after 45 days in case of oxyfluorfen.

  6. Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress

    PubMed Central

    Colville, Louise

    2012-01-01

    The volatile compounds released by orthodox (desiccation-tolerant) seeds during ageing can be analysed using gas chromatography–mass spectrometry (GC-MS). Comparison of three legume species (Pisum sativum, Lathyrus pratensis, and Cytisus scoparius) during artificial ageing at 60% relative humidity and 50 °C revealed variation in the seed volatile fingerprint between species, although in all species the overall volatile concentration increased with storage period, and changes could be detected prior to the onset of viability loss. The volatile compounds are proposed to derive from three main sources: alcoholic fermentation, lipid peroxidation, and Maillard reactions. Lipid peroxidation was confirmed in P. sativum seeds through analysis of malondialdehyde and 4-hydroxynonenal. Volatile production by ageing orthodox seeds was compared with that of recalcitrant (desiccation-sensitive) seeds of Quercus robur during desiccation. Many of the volatiles were common to both ageing orthodox seeds and desiccating recalcitrant seeds, with alcoholic fermentation forming the major source of volatiles. Finally, comparison was made between two methods of analysis; the first used a Tenax adsorbent to trap volatiles, whilst the second used solid phase microextraction to extract volatiles from the headspace of vials containing powdered seeds. Solid phase microextraction was found to be more sensitive, detecting a far greater number of compounds. Seed volatile analysis provides a non-invasive means of characterizing the processes involved in seed deterioration, and potentially identifying volatile marker compounds for the diagnosis of seed viability loss. PMID:23175670

  7. Cross-reactivity of a new food ingredient, dun pea, with legumes, and risk of anaphylaxis in legume allergic children.

    PubMed

    Richard, C; Jacquenet, S; Sergeant, P; Moneret-Vautrin, D A

    2015-07-01

    Legume allergy is the fifth food allergy in Europe. The dun pea (Pisum sativum sativum var. arvense), a pea belonging to the same subspecies as green pea, has been recently introduced as an ingredient in the human food industry. The aims of this study were to evaluate the cross-reactivity between dun pea and other legumes and to search for modification of allergenicity induced by food technologies. A series of 36 patients with legume and/or peanut allergy was studied. They underwent skin tests to peanut and a panel of legumes including dun pea. Specific IgE to dun pea and cross-reactivity to peanut allergens, particularly to Ara h 1, were evaluated by ELISA. Proteins and allergens of different pea extracts were studied by SDS-PAGE and immunoblots. In France and Belgium, 7.7% of severe food anaphylaxis cases were due to legumes. Patients with isolated legume allergy had positive prick tests to dun pea, whereas patients with isolated peanut allergy had negative prick tests. Cross-reactivity between sIgE to peanut and dun pea was observed, and more frequently than expected (96%) peanut-allergic patients with legume sensitization or allergy had sIgE to Ara h 1. Analysis of dun pea allergens suggested that protein epitopes were presented differently in dun pea seeds, isolate and flour. This study identifies, for the first time, a risk of dun pea allergy in legume-allergic patients and in a subset of peanut-allergic patients.

  8. Evaluation of Sorption Mechanism of Pb (II) and Ni (II) onto Pea (Pisum sativum) Peels.

    PubMed

    Haq, Atta Ul; Saeed, Muhammad; Anjum, Salma; Bokhari, Tanveer Hussain; Usman, Muhammad; Tubbsum, Saiqa

    2017-07-01

    The present study was carried out to know the sorption mechanism of Pb (II) and Ni (II) in aqueous solution using pea peels under the influence of sorbent dose, pH, temperature, initial metal ion concentration and contact time. SEM and FTIR were used for characterization of pea peels. The study showed that solution pH affects sorption process and the optimum pH for Pb (II) was 6.0 while for that of Ni (II) was 7.0. Pseudo-second order kinetic model was found to be the most suitable one to explain the kinetic data not only due to high value of R 2 (>0.99) but also due to the closeness of the experimental sorption capacity values to that of calculated sorption capacity values of pseudo second order kinetic model. It can be seen from the results that Freundlich isotherm explains well the equilibrium data (R 2 >0.99). Sorption capacity of pea peels was 140.84 and 32.36 for Pb (II) and Ni (II) mg g -1 respectively. The positive value of ΔH° and negative values of ΔG° suggest that sorption of Pb (II) and Ni (II) onto pea peels is an endothermic and spontaneous process respectively.

  9. A dehydrin cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression.

    PubMed

    Robertson, M; Chandler, P M

    1994-11-01

    Dehydrins are a family of proteins characterised by conserved amino acid motifs, and induced in plants by dehydration or treatment with ABA. An antiserum was raised against a synthetic oligopeptide based on the most highly conserved dehydrin amino acid motif, the lysine-rich (core sequence KIKEK-LPG). This antiserum detected a novel M(r) 40,000 polypeptide and enabled isolation of a corresponding cDNA clone, pPsB61 (B61). The deduced amino acid sequence contained two lysine-rich blocks, however the remainder of the sequenced differed markedly from other pea dehydrins. Surprisingly, the sequence contained a stretch of serine residues, a characteristic common to dehydrins from many plant species but which is missing in pea dehydrin. The expression patterns of B61 mRNA and polypeptide were distinctively different from those of the pea dehydrins during seed development, germination and in young seedlings exposed to dehydration stress or treated with ABA. In particular, dehydration stress led to slightly reduced levels of B61 RNA, and ABA application to young seedlings had no marked effect on its abundance. The M(r) 40,000 polypeptide is thus related to pea dehydrin by the presence of the most highly conserved amino acid sequence motifs, but lacks the characteristic expression pattern of dehydrin. By analogy with heat shock cognate proteins we refer to this protein as a dehydrin cognate.

  10. Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections.

    PubMed

    Liu, Rong; Fang, Li; Yang, Tao; Zhang, Xiaoyan; Hu, Jinguo; Zhang, Hongyan; Han, Wenliang; Hua, Zeke; Hao, Junjie; Zong, Xuxiao

    2017-07-19

    Frost stress is one of the major abiotic stresses causing seedling death and yield reduction in winter pea. To improve the frost tolerance of pea, field evaluation of frost tolerance was conducted on 672 diverse pea accessions at three locations in Northern China in three growing seasons from 2013 to 2016 and marker-trait association analysis of frost tolerance were performed with 267 informative SSR markers in this study. Sixteen accessions were identified as the most winter-hardy for their ability to survive in all nine field experiments with a mean survival rate of 0.57, ranging from 0.41 to 0.75. Population structure analysis revealed a structured population of two sub-populations plus some admixtures in the 672 accessions. Association analysis detected seven markers that repeatedly had associations with frost tolerance in at least two different environments with two different statistical models. One of the markers is the functional marker EST1109 on LG VI which was predicted to co-localize with a gene involved in the metabolism of glycoproteins in response to chilling stress and may provide a novel mechanism of frost tolerance in pea. These winter-hardy germplasms and frost tolerance associated markers will play a vital role in marker-assisted breeding for winter-hardy pea cultivar.

  11. Effect of Coriandrum sativum hydroalcoholic extract and its essential oil on acetic acid- induced acute colitis in rats

    PubMed Central

    Heidari, Bahareh; Sajjadi, Seyed Ebrahim; Minaiyan, Mohsen

    2016-01-01

    Objective: The aim of this study was to determine the protective effects of Coriandrum sativum on acetic acid-inducedcolitis in rats. C. sativum (Coriander) has long been used in Iranian traditional medicine and its use as an anti-inflammatory agent is still common in some herbal formulations. Materials and Methods: Colitis was induced by intra-rectal administration of 2ml acetic acid 4% in fasted male Wistar rats. Treatment was carried out using three increasing doses of extract (250, 500, 1000 mg/kg) and essential oil (0.25, 0.5, 1 ml/kg) of coriander started 2 h before colitis induction and continued for a five-day period. Colon biopsies were taken for weighting, macroscopic scoring of injured tissue, histopathological examination and measuring myeloperoxidase (MPO) activity. Results: Colon weight was decreased in the groups treated with extract (500 and 1000 mg/kg) and essential oil (0.5 ml/kg) compared to the control group. Regarding MPO levels, ulcer severity and area as well as the total colitis index, same results indicating meaningful alleviation of colitis was achieved after treatment with oral extract and essential oil. Conclusion: Since the present experiment was made by oral fractions of coriander thus the resulting effects could be due to both the absorption of the active ingredients and/or the effect of non-absorbable materials on colitis after reaching the colon. In this regard, we propose more toxicological and clinical experiments to warranty its beneficial application in human inflammatory bowel diseases. PMID:27222834

  12. Therapeutic effects of aqueous extracts of Petroselinum sativum on ethylene glycol-induced kidney calculi in rats.

    PubMed

    Saeidi, Jafar; Bozorgi, Hadi; Zendehdel, Ahmad; Mehrzad, Jamshid

    2012-01-01

    To investigate the therapeutic effects of the aqueous extract of Petroselinum Sativum aerial parts and roots on kidney calculi. Thirty-six male Wistar rats were randomly assigned into 6 groups and treated for 30 days. Group A served as normal control and group B received 1% ethylene glycol in drinking water. Groups C, D, E, and F received 1% ethylene glycol from day 0 and were used as the treatment subjects. Rats in groups C and D received 200 and 600 mg/kg body weight of aerial parts aqueous extract, respectively, and those in groups E and F received 200 and 600 mg/kg body weight of root aqueous extract in drinking water, respectively, from the 14th day of the experiment. On the 14th and 30th days of the experiment, serum level of magnesium (1.71 ± 0.12 and 3.81 ± 0.25, respectively) decreased significantly while serum level of calcium (10.45 ± 0.26 and 11.33 ± 0.18, respectively) increased significantly in group B compared with the control group (14th day: magnesium = 2.87 ± 0.17 and calcium = 8.80 ± 0.00 and 30th day: magnesium = 6.01 ± 0.00 and calcium = 8.30 ± 0.22; P < .001). In the treatment groups of C, D, E, and F, the number of deposits decreased significantly compared with group B on the 30th day (P < .001). The weight of the kidneys increased significantly in group B (2.01 ± 0.17) compared with the control group (1.52 ± 0.07) and decreased significantly in treatment groups (P < .05). Petroselinum Sativum has a therapeutic effect on calcium oxalate stones in rats with nephrolithiasis and reduces the number of calcium oxalate deposits.

  13. Escherichia coli mutants impaired in maltodextrin transport.

    PubMed

    Wandersman, C; Schwartz, M; Ferenci, T

    1979-10-01

    Wild-type Escherichia coli K-12 was found to grow equally well on maltose and on maltodextrins containing up to seven glucose residues. Three classes of mutants unable to grow on maltodextrins, but still able to grow on maltose, were investigated in detail. The first class, already known, was composed of phage lambda-resistant mutants, which lack the outer membrane protein coded by gene lamB. These mutants grow on maltose and maltotriose but not at all on maltotetraose and longer maltodextrins which cannot cross the outer membrane. A second class of mutants were affected in malE, the structural gene of the periplasmic maltose binding protein. The maltose binding proteins isolated from the new mutants were altered in their substrate binding properties, but not in a way that could account for the mutant phenotypes. Rather, the results of growth experiments and transport studies suggest that these malE mutants are impaired in their ability to transport maltodextrins across the outer membrane. This implies that the maltose binding protein (in wild-type strains) cooperates with the lambda receptor in permeation through the outer membrane. The last class of mutants described in this paper were affected in malG, or perhaps in an as yet undetected gene close to malG. They were defective in the transfer of maltodextrins from the periplasmic space to the cytoplasm but only slightly affected in the transport of maltose.

  14. Insecticidal activity and fungitoxicity of plant extracts and components of horseradish (Armoracia rusticana) and garlic (Allium sativum).

    PubMed

    Tedeschi, Paola; Leis, Marilena; Pezzi, Marco; Civolani, Stefano; Maietti, Annalisa; Brandolini, Vincenzo

    2011-01-01

    To avoid environmental pollution and health problems caused by the use of traditional synthetic pesticides, there is a trend to search for naturally occurring toxicants from plants. Among the compounds discussed for anti-fungal and insecticidal activity, the natural extracts from garlic and horseradish have attracted considerable attention. The objective of this study is to determine the insecticidal and anti-fungal activity of Armoracia rusticana and Allium sativum L. extracts against larvae of Aedes albopictus (Skuse) and some pathogenic fungi. For the insecticidal test, horseradish and garlic extracts were prepared from fresh plants (cultivated in Emilia Romagna region) in a solution of ethanol 80 % and the two different solutions were used at different concentrations (for the determination of the lethal dose) against the fourth instar mosquito's larvae. The fungicidal test was carried out by the agar plates technique using garlic and horseradish extracts in a 10 % ethanol solution against the following organisms: Sclerotium rolfsii Sacc., Trichoderma longibrachiatum, Botrytis cinerea Pers., Fusarium oxysporum Schlecht. and Fusarium culmorum (Wm. G. Sm.) Sacc. The first results demonstrated that the horseradish ethanol extracts present only a fungistatic activity against Sclerotium rolfsii Sacc., Fusarium oxysporum Schlecht. and F. culmorum (Wm.G. Sm) Sacc. while garlic extracts at the same concentration provided a good fungicidal activity above all against Botrytis cinerea Pers. and S. rolfsii. A. rusticana and A. sativum preparations showed also an interesting and significant insecticidal activity against larvae of A. albopictus, even if horseradish presented a higher efficacy (LC₅₀ value of 2.34 g/L), approximately two times higher than garlic one (LC₅₀ value of 4.48 g/L).

  15. Imaginal Disc Abnormalities in Lethal Mutants of Drosophila

    PubMed Central

    Shearn, Allen; Rice, Thomas; Garen, Alan; Gehring, Walter

    1971-01-01

    Late lethal mutants of Drosophila melanogaster, dying after the larval stage of development, were isolated. The homozygous mutant larvae were examined for abnormal imaginal disc morphology, and the discs were injected into normal larval hosts to test their capacities to differentiate into adult structures. In about half of the mutants analyzed, disc abnormalities were found. Included among the abnormalities were missing discs, small discs incapable of differentiating, morphologically normal discs with limited capacities for differentiation, and discs with homeotic transformations. In some mutants all discs were affected, and in others only certain discs. The most extreme abnormal phenotype is a class of “discless” mutants. The viability of these mutant larvae indicates that the discs are essential only for the development of an adult and not of a larva. The late lethals are therefore a major source of mutants for studying the genetic control of disc formation. Images PMID:5002822

  16. The fa2 gene and molecular markers mapping in the gp segment of the Pisum linkage group V.

    PubMed

    Gawłowska, M; Święcicki, W

    2016-08-01

    Review studies on the world Pisum genetic resources have shown that stem fasciation is controlled by three loci, i.e., fa1 (LGIV; Wt 10006 - type line of the Polish Gene Bank), fa2 (LGV, the line Wt 12185), and fas (LGIII, the line Shtambovii). Outstanding advantages of this character (e.g., pods gathered in upper part of a stem) resulted in breeding some cultivars. Preliminary investigations suggested linkages of the newly described fa2 gene within the gp-U segment. Based on the further linkage test crosses, it was stated that the fa2 is localized between the gp and Pis_Gen_9_3_1 markers (in the LGV). Additionally, four molecular markers (AD175, AB146, AC58, and AD280) and the morphological marker lk were also localized in this segment. Moreover, rms5, lum3, and cri were found to map on the other side of gp with tight linkage observed between lum3 and cri.

  17. Characterization and classification of zebrafish brain morphology mutants

    PubMed Central

    Lowery, Laura Anne; De Rienzo, Gianluca; Gutzman, Jennifer H.; Sive, Hazel

    2010-01-01

    The mechanisms by which the vertebrate brain achieves its three-dimensional structure are clearly complex, requiring the functions of many genes. Using the zebrafish as a model, we have begun to define genes required for brain morphogenesis, including brain ventricle formation, by studying 16 mutants previously identified as having embryonic brain morphology defects. We report the phenotypic characterization of these mutants at several time-points, using brain ventricle dye injection, imaging, and immunohistochemistry with neuronal markers. Most of these mutants display early phenotypes, affecting initial brain shaping, while others show later phenotypes, affecting brain ventricle expansion. In the early phenotype group, we further define four phenotypic classes and corresponding functions required for brain morphogenesis. Although we did not use known genotypes for this classification, basing it solely on phenotypes, many mutants with defects in functionally related genes clustered in a single class. In particular, class 1 mutants show midline separation defects, corresponding to epithelial junction defects; class 2 mutants show reduced brain ventricle size; class 3 mutants show midbrain-hindbrain abnormalities, corresponding to basement membrane defects; and class 4 mutants show absence of ventricle lumen inflation, corresponding to defective ion pumping. Later brain ventricle expansion requires the extracellular matrix, cardiovascular circulation, and transcription/splicing-dependent events. We suggest that these mutants define processes likely to be used during brain morphogenesis throughout the vertebrates. PMID:19051268

  18. Betaine synthesis in chenopods: localization in chloroplasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, A.D.; May A.M.; Grumet, R.

    1985-06-01

    Plants from several families (Chenopodiaceae, Gramineae, Compositae) accumulate betaine (glycine betaine) in response to salt or water stress via the pathway: choline betainal (betaine aldehyde) betaine. Betaine accumulation is probably a metabolic adaptation to stress. Intact protoplasts from leaves of spinach (Spinacia oleracea) oxidized ( UC)choline to betainal and betaine, as did protoplast lysates. Upon differential centrifugation, the ( UC)choline-oxidizing activity of lysates sedimented with chloroplasts. Chloroplasts purified from protoplast lysates by a Percoll cushion procedure retained strong ( UC)choline-oxidizing activity, although the proportion of the intermediate, ( UC)betainal, in the reaction products was usually higher than for protoplasts. Isolatedmore » chloroplasts also readily oxidized ( UC)betainal to betaine. Light increased the oxidation of both ( UC)choline and ( UC)betainal by isolated chloroplasts. Similar results were obtained with another chenopod (Beta vulgaris) but not with pea (Pisum sativum), a species that accumulates no betaine. The chloroplast site for betaine synthesis in chenopods contrasts with the mitochondrial site in mammals.« less

  19. Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum.

    PubMed

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Singh, Vinay; Singh, Harikesh Bahadur

    2015-06-15

    Microbial consortia may provide protection against pathogenic ingress via enhancing plant defense responses. Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27 and Bacillus subtilis BHHU100 were used either singly or in consortia in the pea rhizosphere to observe proteome level changes upon Sclerotinia sclerotiorum challenge. Thirty proteins were found to increase or decrease differentially in 2-DE gels of pea leaves, out of which 25 were identified by MALDI-TOF MS or MS/MS. These proteins were classified into several functional categories including photosynthesis, respiration, phenylpropanoid metabolism, protein synthesis, stress regulation, carbohydrate and nitrogen metabolism and disease/defense-related processes. The respective homologue of each protein identified was trapped in Pisum sativum and a phylogenetic tree was constructed to check the ancestry. The proteomic view of the defense response to S. sclerotiorum in pea, in the presence of beneficial microbes, highlights the enhanced protection that can be provided by these microbes in challenged plants. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Purification and immunolocalization of an annexin-like protein in pea seedlings

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Dauwalder, M.; Roux, S. J.

    1992-01-01

    As part of a study to identify potential targets of calcium action in plant cells, a 35-kDa, annexin-like protein was purified from pea (Pisum sativum L.) plumules by a method used to purify animal annexins. This protein, called p35, binds to a phosphatidylserine affinity column in a calcium-dependent manner and binds 45Ca2+ in a dot-blot assay. Preliminary sequence data confirm a relationship for p35 with the annexin family of proteins. Polyclonal antibodies have been raised which recognize p35 in Western and dot blots. Immunofluorescence and immunogold techniques were used to study the distribution and subcellular localization of p35 in pea plumules and roots. The highest levels of immunostain were found in young developing vascular cells producing wall thickenings and in peripheral root-cap cells releasing slime. This localization in cells which are actively involved in secretion is of interest because one function suggested for the animal annexins is involvement in the mediation of exocytosis.

  1. Bean alpha-amylase inhibitors in transgenic peas inhibit development of pea weevil larvae.

    PubMed

    de Sousa-Majer, Maria José; Hardie, Darryl C; Turner, Neil C; Higgins, Thomas J V

    2007-08-01

    This glasshouse study used an improved larval measurement procedure to evaluate the impact of transgenic pea, Pisum sativum L., seeds expressing a-amylase inhibitor (AI)-1 or -2 proteins on pea weevil, Bruchus pisorum L. Seeds of transgenic 'Laura' and 'Greenfeast' peas expressing alpha-(AI)-1 reduced pea weevil survival by 93-98%. Larval mortality occurred at an early instar. Conversely, in nontransgenic cultivars, approximately 98-99% of the pea weevils emerged as adults. By measuring the head capsule size, we determined that larvae died at the first to early third instar in alpha-(AI)-1 transgenic peas, indicating that this inhibitor is highly effective in controlling this insect. By contrast, transgenic Laura and 'Dundale' expressing alpha-(AI)-2 did not affect pea weevil survival, but they did delay larval development. After 77 d of development, the head capsule size indicated that the larvae were still at the third instar stage in transgenic alpha-(AI)-2 peas, whereas adult bruchids had developed in the nontransgenic peas.

  2. Growth inhibition, turgor maintenance, and changes in yield threshold after cessation of solute import in pea epicotyls

    NASA Technical Reports Server (NTRS)

    Schmalstig, J. G.; Cosgrove, D. J.

    1988-01-01

    The dependence of stem elongation on solute import was investigated in etiolated pea seedlings (Pisum sativum L. var Alaska) by excising the cotyledons. Stem elongation was inhibited by 60% within 5 hours of excision. Dry weight accumulation into the growing region stopped and osmotic pressure of the cell sap declined by 0.14 megapascal over 5 hours. Attempts to assay phloem transport via ethylenediaminetetraacetate-enhanced exudation from cut stems revealed no effect of cotyledon excision, indicating that the technique measured artifactual leakage from cells. Despite the drop in cell osmotic pressure, turgor pressure (measured directly via a pressure probe) did not decline. Turgor maintenance is postulated to occur via uptake of solutes from the free space, thereby maintaining the osmotic pressure difference across the cell membrane. Cell wall properties were measured by the pressure-block stress relaxation technique. Results indicate that growth inhibition after cotyledon excision was mediated primarily via an increase in the wall yield threshold.

  3. "Chitin-specific" peroxidases in plants.

    PubMed

    Maksimov, I V; Cherepanova, E A; Khairullin, R M

    2003-01-01

    The activity of various plant peroxidases and the ability of their individual isoforms to bind chitin was studied. Some increase in peroxidase activity was observed in crude extracts in the presence of chitin. Activated peroxidases of some species fell in the fraction not sorbed on chitin and those of other species can bind chitin. Only anionic isoperoxidases from oat (Avena sativa), rice (Oryza sativa), horseradish (Armoracia rusticana), garden radish (Raphanus sativus var. radicula), peanut (Arachis hypogaea), and tobacco (Nicotiana tabacum Link et Otto) were sorbed on chitin. Both anionic and cationic isoforms from pea (Pisum sativum), galega(Galega orientalis), cucumber (Cucumis sativus), and zucchini (Cucurbita pepo L.) were sorbed on chitin. Peroxidase activation under the influence of chitin was correlated to the processes that occur during hypersensitive reaction and lignification of sites, in which pathogenic fungus penetrates into a plant. The role of chitin-specific isoperoxidases in inhibition of fungal growth and connection of this phenomenon with structural characteristics of isoperoxidases are also discussed.

  4. Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells.

    PubMed

    Ribalta, F M; Croser, J S; Ochatt, S J

    2012-01-01

    Flow cytometry was used to quantify the effect of individual and combined stress treatments on elicitation of androgenesis by analyzing the relative nuclear DNA content of in vitro cultured microspores of Pisum sativum L. Differences in relative nuclear DNA content of microspores within anthers after stress treatments were clearly evident from the flow cytometry profiles, and permitted us to predict whether a combination of stresses were elicitors or enhancers of androgenesis. This is the first report to assess the effect of various stress treatments in a plant species based on relative nuclear DNA content and to use this information to categorize them as 'elicitors' or 'enhancers'. Flow cytometry represents a simple, quick and reliable way to analyze and discriminate the effect of various stress treatments on elicitation of androgenesis. These results form a solid basis for further efforts designed to enhance responses and to extend double haploid technology to other legumes. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. Micromonospora phytophila sp. nov. and Micromonospora luteiviridis sp. nov., isolated as natural inhabitants of plant nodules.

    PubMed

    Carro, Lorena; Veyisoglu, Aysel; Riesco, Raúl; Spröer, Cathrin; Klenk, Hans-Peter; Sahin, Nevzat; Trujillo, Martha E

    2018-01-01

    Two actinobacterial isolates, strains SG15 T and SGB14 T , were recovered through a microbial diversity study of nitrogen fixing nodules from Pisum sativum plants collected in Salamanca (Spain). The taxonomic status of these isolates was determined using a polyphasic approach and both presented chemotaxonomic and morphological properties consistent with their classification in the genus Micromonospora. For strains SG15 T and SGB14 T , the highest 16S rRNA gene sequence similarities were observed with Micromonospora coxensis JCM 13248 T (99.2 %) and Micromonospora purpureochromogenes DSM 43821 T (99.4 %), respectively. However, strains SG15 T and SGB14 T were readily distinguished from their phylogenetic neighbours both genetically and phenotypically indicating that they represent two new Micromonospora species. The following names are proposed for these species: Micromonosporaphytophila sp. nov. type strain SG15 T (=CECT 9369 T ; =DSM 105363 T ), and Micromonosporaluteiviridis sp. nov. type strain SGB14 T (=CECT 9370 T ; =DSM 105362 T ).

  6. Cloning and characterization of TPE4A, a thiol-protease gene induced during ovary senescence and seed germination in pea.

    PubMed

    Cercós, M; Santamaría, S; Carbonell, J

    1999-04-01

    A cDNA clone encoding a thiol-protease (TPE4A) was isolated from senescent ovaries of pea (Pisum sativum) by reverse transcriptase-polymerase chain reaction. The deduced amino acid sequence of TPE4A has the conserved catalytic amino acids of papain. It is very similar to VSCYSPROA, a thiol-protease induced during seed germination in common vetch. TPE4A mRNA levels increase during the senescence of unpollinated pea ovaries and are totally suppressed by treatment with gibberellic acid. In situ hybridization indicated that TPE4A mRNA distribution in senescent pea ovaries is different from that of previously reported thiol-proteases induced during senescence, suggesting the involvement of different proteases in the mobilization of proteins from senescent pea ovaries. TPE4A is also induced during the germination of pea seeds, indicating that a single protease gene can be induced during two different physiological processes, senescence and germination, both of which require protein mobilization.

  7. Auxin flow-mediated competition between axillary buds to restore apical dominance

    PubMed Central

    Balla, Jozef; Medveďová, Zuzana; Kalousek, Petr; Matiješčuková, Natálie; Friml, Jiří; Reinöhl, Vilém; Procházka, Stanislav

    2016-01-01

    Apical dominance is one of the fundamental developmental phenomena in plant biology, which determines the overall architecture of aerial plant parts. Here we show apex decapitation activated competition for dominance in adjacent upper and lower axillary buds. A two-nodal-bud pea (Pisum sativum L.) was used as a model system to monitor and assess auxin flow, auxin transport channels, and dormancy and initiation status of axillary buds. Auxin flow was manipulated by lateral stem wounds or chemically by auxin efflux inhibitors 2,3,5-triiodobenzoic acid (TIBA), 1-N-naphtylphtalamic acid (NPA), or protein synthesis inhibitor cycloheximide (CHX) treatments, which served to interfere with axillary bud competition. Redirecting auxin flow to different points influenced which bud formed the outgrowing and dominant shoot. The obtained results proved that competition between upper and lower axillary buds as secondary auxin sources is based on the same auxin canalization principle that operates between the shoot apex and axillary bud. PMID:27824063

  8. An histidine covalent receptor/butenolide complex mediates strigolactone perception

    PubMed Central

    Badet-Denisot, Marie-Ange; Pillot, Jean-Paul; Cornu, David; Le Caer, Jean-Pierre; Burger, Marco; Pelissier, Frank; Retailleau, Pascal; Turnbull, Colin; Bonhomme, Sandrine; Chory, Joanne; Rameau, Catherine; Boyer, François-Didier

    2016-01-01

    Strigolactone plant hormones control plant architecture and are key players in both symbiotic and parasitic interactions. They contain an ABC tricyclic lactone connected to a butenolide group, the D-ring. The DWARF14 (D14) strigolactone receptor belongs to the superfamily of α/β-hydrolases and is known to hydrolyze the bond between the ABC lactone and the D-ring. Here we characterize the binding and catalytic functions of RAMOSUS3 (RMS3), the pea (Pisum sativum) ortholog of rice (Oryza sativa) D14 strigolactone receptor. Using novel profluorescent probes with strigolactone-like bioactivity, we show that RMS3 acts as a single-turnover enzyme that explains its apparent low enzymatic rate. We further demonstrate the formation of a covalent RMS3/D-ring complex, essential for bioactivity, in which the D-ring is attached to Histidine 247 of the catalytic triad. These results reveal an undescribed mechanism of plant hormone reception where the receptor performs an irreversible enzymatic reaction to generate its own ligand. PMID:27479744

  9. Reduction in cab and psb A RNA transcripts in response to supplementary ultraviolet-B radiation.

    PubMed

    Jordan, B R; Chow, W S; Strid, A; Anderson, J M

    1991-06-17

    The cab and psb A RNA transcript levels have been determined in Pisum sativum leaves exposed to supplementary ultraviolet-B radiation. The nuclear-encoded cab transcripts are reduced to low levels after only 4 h of UV-B treatment and are undetectable after 3 days exposure. In contrast, the chloroplast-encoded psb A transcript levels, although reduced, are present for at least 3 days. After short periods of UV-B exposure (4 h or 8 h), followed by recovery under control conditions, cab RNA transcript levels had not recovered after 1 day, but were re-established to ca. 60% of control levels after 2 more days. Increased irradiance during exposure to UV-B reduced the effect upon cab transcripts, although the decrease was still substantial. These results indicate rapid changes in the cellular regulation of gene expression in response to supplementary UV-B and suggest increased UV-B radiation may have profound consequences for future productivity of sensitive crop species.

  10. Zaba: a novel miniature transposable element present in genomes of legume plants.

    PubMed

    Macas, J; Neumann, P; Pozárková, D

    2003-08-01

    A novel family of miniature transposable elements, named Zaba, was identified in pea (Pisum sativum) and subsequently also in other legume species using computer analysis of their DNA sequences. Zaba elements are 141-190 bp long, generate 10-bp target site duplications, and their terminal inverted repeats make up most of the sequence. Zaba elements thus resemble class 3 foldback transposons. The elements are only moderately repetitive in pea (tens to hundreds copies per haploid genome), but they are present in up to thousands of copies in the genomes of several Medicago and Vicia species. More detailed analysis of the elements from pea, including isolation of new sequences from a genomic library, revealed that a fraction of these elements are truncated, and that their last transposition probably did not occur recently. A search for Zaba sequences in EST databases showed that at least some elements are transcribed, most probably due to their association with genic regions.

  11. Evidence That Chlorinated Auxin Is Restricted to the Fabaceae But Not to the Fabeae1[OPEN

    PubMed Central

    McAdam, Scott A.M.; McAdam, Erin L.

    2015-01-01

    Auxin is a pivotal plant hormone, usually occurring in the form of indole-3-acetic acid (IAA). However, in maturing pea (Pisum sativum) seeds, the level of the chlorinated auxin, 4-chloroindole-3-acetic acid (4-Cl-IAA), greatly exceeds that of IAA. A key issue is how plants produce halogenated compounds such as 4-Cl-IAA. To better understand this topic, we investigated the distribution of the chlorinated auxin. We show for the first time, to our knowledge, that 4-Cl-IAA is found in the seeds of Medicago truncatula, Melilotus indicus, and three species of Trifolium. Furthermore, we found no evidence that Pinus spp. synthesize 4-Cl-IAA in seeds, contrary to a previous report. The evidence indicates a single evolutionary origin of 4-Cl-IAA synthesis in the Fabaceae, which may provide an ideal model system to further investigate the action and activity of halogenating enzymes in plants. PMID:25971549

  12. Evidence That Chlorinated Auxin Is Restricted to the Fabaceae But Not to the Fabeae.

    PubMed

    Lam, Hong Kiat; McAdam, Scott A M; McAdam, Erin L; Ross, John J

    2015-07-01

    Auxin is a pivotal plant hormone, usually occurring in the form of indole-3-acetic acid (IAA). However, in maturing pea (Pisum sativum) seeds, the level of the chlorinated auxin, 4-chloroindole-3-acetic acid (4-Cl-IAA), greatly exceeds that of IAA. A key issue is how plants produce halogenated compounds such as 4-Cl-IAA. To better understand this topic, we investigated the distribution of the chlorinated auxin. We show for the first time, to our knowledge, that 4-Cl-IAA is found in the seeds of Medicago truncatula, Melilotus indicus, and three species of Trifolium. Furthermore, we found no evidence that Pinus spp. synthesize 4-Cl-IAA in seeds, contrary to a previous report. The evidence indicates a single evolutionary origin of 4-Cl-IAA synthesis in the Fabaceae, which may provide an ideal model system to further investigate the action and activity of halogenating enzymes in plants. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. The Regulation of Pyruvate Dehydrogenase Activity in Pea Leaf Mitochondria (The Effect of Respiration and Oxidative Phosphorylation).

    PubMed

    Moore, A. L.; Gemel, J.; Randall, D. D.

    1993-12-01

    The regulation of the pea (Pisum sativum) leaf mitochondrial pyruvate dehydrogenase complex by respiratory rate and oxidative phosphorylation has been investigated by measuring the respiratory activity, the redox poise of the quinone pool (Q-pool), and mitochondrial pyruvate dehydrogenase (mtPDC) activity under various metabolic conditions. It was found that, under state 4 conditions, mtPDC activity was unaffected by either the addition of succinate, 2-oxoglutarate, or glycine or the overall respiratory rate and redox poise of the Q-pool but was partially inhibited by NADH due to product inhibition. In the presence of ADP significant inactivation of PDC, which was sensitive to oligomycin, was observed with all substrates, apart from pyruvate, suggesting that inactivation was due to ATP formation. Inactivation of PDC by ADP addition was observed even in the presence of carboxyatractyloside, an inhibitor of the ATP/ADP translocator, suggesting that other mechanisms to facilitate the entry of adenylates, in addition to the adenylate carrier, must exist in plant mitochondria.

  14. N abundance of nodules as an indicator of N metabolism in n(2)-fixing plants.

    PubMed

    Shearer, G; Feldman, L; Bryan, B A; Skeeters, J L; Kohl, D H; Amarger, N; Mariotti, F; Mariotti, A

    1982-08-01

    This paper expands upon previous reports of (15)N elevation in nodules (compared to other tissues) of N(2)-fixing plants. N(2)-Fixing nodules of Glycine max (soybeans), Vigna unguiculata (cowpea), Phaseolus vulgaris (common bean), Phaseolus coccineus (scarlet runner bean), Prosopis glandulosa (mesquite), and Olneya tesota (desert ironwood) were enriched in (15)N. Nodules of Vicia faba (fava beans), Arachis hypogaea (peanut), Trifolium pratense (red clover), Pisum sativum (pea), Lathyrus sativus (grass pea), Medicago sativa (alfalfa), and Lupinus mutabilis (South American lupine) were not; nor were the nodules of nine species of N(2)-fixing nonlegumes. The nitrogen of ineffective nodules of soybeans and cowpeas was not enriched in (15)N. Thus, (15)N elevation in nodules of these plants depends on active N(2)-fixation. Results obtained so far on the generality of (15)N enrichment in N(2)-fixing nodules suggest that only the nodules of plants which actively fix N(2) and which transport allantoin or allantoic acid exhibit (15)N enrichment.

  15. [Enhanced Resistance of Pea Plants to Oxidative: Stress Caused by Paraquat during Colonization by Aerobic Methylobacteria].

    PubMed

    Agafonova, N V; Doronina, N Y; Trotsenko, Yu A

    2016-01-01

    The influence of colonization of the pea (Pisum sativum L.) by aerobic methylobacteria of five different species (Methylophilus flavus Ship, Methylobacterium extorquens G10, Methylobacillus arboreus Iva, Methylopila musalis MUSA, Methylopila turkiensis Sidel) on plant resistance to paraquat-induced stresses has been studied. The normal conditions of pea colonization by methylobacteria were characterized by a decrease in the activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidases) and in the concentrations of endogenous H2O2, proline, and malonic dialdehyde, which is a product of lipid peroxidation and indicator of damage to plant cell membranes, and an increase in the activity of the photosynthetic apparatus (the content of chlorophylls a, b and carotenoids). In the presence of paraquat, the colonized plants had higher activities of antioxidant enzymes, stable photosynthetic indices, and a less intensive accumulation of the products of lipid peroxidation as compared to noncolonized plants. Thus, colonization by methylobacteria considerably increased the adaptive protection of pea plants to the paraquat-induced oxidative stress.

  16. Purification, identification and preliminary crystallographic studies of a 2S albumin seed protein from Lens culinaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Pankaj; Gaur, Vineet; Salunke, Dinakar M., E-mail: dinakar@nii.res.in

    2008-08-01

    A 2S albumin from L. culinaris was purified and crystallized and preliminary crystallographic studies were carried out. Lens culinaris (lentil) is a widely consumed high-protein-content leguminous crop. A 2S albumin protein (26.5 kDa) has been identified using NH{sub 2}-terminal sequencing from a 90% ammonium sulfate saturation fraction of total L. culinaris seed protein extract. The NH{sub 2}-terminal sequence shows very high homology to PA2, an allergy-related protein from Pisum sativum. The 2S albumin protein was purified using a combination of size-exclusion and ion-exchange chromatography. Crystals of the 2S seed albumin obtained using the hanging-drop vapour-diffusion method diffracted to 2.5 Åmore » resolution and were indexed in space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 78.6, c = 135.2 Å.« less

  17. Gas chromatography-mass spectrometry evidence for several endogenous auxins in pea seedling organs.

    PubMed

    Schneider, E A; Kazakoff, C W; Wightman, F

    1985-08-01

    Qualitative analysis by gas chromatography-mass spectrometry (GC-MS) of the auxins present in the root, cotyledons and epicotyl of 3-dold etiolated pea (Pisum sativum L., cv. Alaska) seedlings has shown that all three organs contain phenylacetic acid (PAA), 3-indoleacetic acid (IAA) and 4-chloro-3-indoleacetic acid (4Cl-IAA). In addition, 3-indolepropionic acid (IPA) was present in the root and 3-indolebutyric acid (IBA) was detected in both root and epicotyl. Phenylacetic acid, IAA and IPA were measured quantitatively in the three organs by GC-MS-single ion monitoring, using deuterated internal standards. Levels of IAA were found to range from 13 to 115 pmol g(-1) FW, while amounts of PAA were considerably higher (347-451 pmol g(-1) FW) and the level of IPA was quite low (5 pmol g(-1) FW). On a molar basis the PAA:IAA ratio in the whole seedling was approx. 15:1.

  18. Comparative Indole-3-Acetic Acid Levels in the Slender Pea and Other Pea Phenotypes 1

    PubMed Central

    Law, David M.; Davies, Peter J.

    1990-01-01

    Free indole-3-acetic acid levels were measured by gas chromatography-mass spectrometry in three ultra-tall `slender' Pisum sativum L. lines differing in gibberellin content. Measurements were made for apices and stem elongation zones of light-grown plants and values were compared with wild-type, dwarf, and nana phenotypes in which internode length is genetically regulated, purportedly via the gibberellin level. Indole-3-acetic acid levels of growing stems paralleled growth rates in all lines, and were high in all three slender genotypes. Growth was inhibited by p-chlorophenoxyisobutyric acid, demonstrating the requirement of auxin activity for stem elongation, and also by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. It is concluded that the slender phenotype may arise from constant activation of a gibberellin receptor or transduction chain event leading directly or indirectly to elevated levels of indole-3-acetic acid, and that increased indole-3-acetic acid levels are a significant factor in the promotion of stem elongation. PMID:16667653

  19. Crystal structure of plant photosystem I

    NASA Astrophysics Data System (ADS)

    Ben-Shem, Adam; Frolow, Felix; Nelson, Nathan

    2003-12-01

    Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on Earth. The conversion of sunlight into chemical energy is driven by two multisubunit membrane protein complexes named photosystem I and II. We determined the crystal structure of the complete photosystem I (PSI) from a higher plant (Pisum sativum var. alaska) to 4.4Å resolution. Its intricate structure shows 12 core subunits, 4 different light-harvesting membrane proteins (LHCI) assembled in a half-moon shape on one side of the core, 45 transmembrane helices, 167 chlorophylls, 3 Fe-S clusters and 2 phylloquinones. About 20 chlorophylls are positioned in strategic locations in the cleft between LHCI and the core. This structure provides a framework for exploration not only of energy and electron transfer but also of the evolutionary forces that shaped the photosynthetic apparatus of terrestrial plants after the divergence of chloroplasts from marine cyanobacteria one billion years ago.

  20. Assays for root hydrotropism and response to water stress.

    PubMed

    Eapen, Delfeena; Martínez, Jesús J; Cassab, Gladys I

    2015-01-01

    Roots of most terrestrial plants show hydrotropic curvature when exposed to a moisture gradient. Though this root response is difficult to visualize in the soil habitat, there are reports of hydrotropism as an inherent response of primary roots of different plant species, such as Arabidopsis thaliana, Pisum sativum, and Zea mays L., from in vitro system studies. Many plant species use hydrotropism as a mechanism of avoidance to water stress. The actively growing root tip has the ability to change its direction towards greater water availability by differential growth in the elongation zone. The study of this tropic response has been challenged by the interaction of gravitropism, thigmotropism and possibly phototropism. It is hard to visualize hydrotropic curvature in vitro unless all other stimuli are neutralized by the presence of a moisture gradient. In this chapter, we describe methods for preparation of two assay systems used to visualize hydrotropic curvature in the primary roots of Arabidopsis and one moisture gradient system used for maize root seedlings.