A Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway with a GAP.
Spanò, Stefania; Gao, Xiang; Hannemann, Sebastian; Lara-Tejero, María; Galán, Jorge E
2016-02-10
Cell-autonomous defense mechanisms are potent strategies that protect individual cells against intracellular pathogens. The Rab-family GTPase Rab32 was previously shown to restrict the intracellular human pathogen Salmonella Typhi, but its potential broader role in antimicrobial defense remains unknown. We show that Rab32 represents a general cell-autonomous, antimicrobial defense that is counteracted by two Salmonella effectors. Mice lacking Rab-32 or its nucleotide exchange factor BLOC-3 are permissive to S. Typhi infection and exhibit increased susceptibility to S. Typhimurium. S. Typhimurium counters this defense pathway by delivering two type III secretion effectors, SopD2, a Rab32 GAP, and GtgE, a specific Rab32 protease. An S. Typhimurium mutant strain lacking these two effectors exhibits markedly reduced virulence, which is fully restored in BLOC-3-deficient mice. These results demonstrate that a cell-autonomous, Rab32-dependent host defense pathway plays a central role in the defense against vacuolar pathogens and describe a mechanism evolved by a bacterial pathogen to counter it. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Feifei; Chen, Xiaoqing; Zhang, Xiaoqing; Ma, Lan
2008-08-01
Agonist-induced phosphorylation, internalization, and intracellular trafficking of G protein-coupled receptors are critical in regulating both cellular responsiveness and signal transduction. The current study investigated the role of receptor phosphorylation state in regulation of agonist-induced internalization and intracellular trafficking of mu-opioid receptor (MOR). Our results showed that after agonist stimulation, the recycle of a mutant MOR that lacks the C-terminal residues after Asn(362) (MOR362T) was greatly decreased, whereas a C-terminal phosphorylation sites-mutated MOR (MOR3A), which is deficient in agonist-induced phosphorylation recycled back to the membrane at a level comparable to that of the wild-type receptor, however, interestingly at a slower rate. Inhibition of functions of either Rab4 or Rab11 by dominant-negative mutants and small interfering RNA both significantly impaired the recycling of the wild-type MOR, whereas the recycling of the phosphorylation-deficient mutant was only inhibited by the dominant-negative mutant and small interfering RNA of Rab11, suggesting that the recycling of nonphosphorylated MOR is exclusively via Rab11-mediated pathway. Furthermore, phosphorylated MOR was observed accumulated in Rab5- and Rab4-, but not Rab11-positive vesicles. Our data indicate that both phosphorylated and nonphosphorylated MOR internalize via Rab5-dependent pathway after agonist stimulation, and the phosphorylated and nonphosphorylated MORs recycle through distinct vesicular trafficking pathways mediated by Rab4 and Rab11, respectively, which may ultimately lead to differential cellular responsiveness or downstream signaling.
Regulation of Synaptic Transmission by RAB-3 and RAB-27 in Caenorhabditis elegans
Mahoney, Timothy R.; Liu, Qiang; Itoh, Takashi; Luo, Shuo; Hadwiger, Gayla; Vincent, Rose; Wang, Zhao-Wen; Fukuda, Mitsunori
2006-01-01
Rab small GTPases are involved in the transport of vesicles between different membranous organelles. RAB-3 is an exocytic Rab that plays a modulatory role in synaptic transmission. Unexpectedly, mutations in the Caenorhabditis elegans RAB-3 exchange factor homologue, aex-3, cause a more severe synaptic transmission defect as well as a defecation defect not seen in rab-3 mutants. We hypothesized that AEX-3 may regulate a second Rab that regulates these processes with RAB-3. We found that AEX-3 regulates another exocytic Rab, RAB-27. Here, we show that C. elegans RAB-27 is localized to synapse-rich regions pan-neuronally and is also expressed in intestinal cells. We identify aex-6 alleles as containing mutations in rab-27. Interestingly, aex-6 mutants exhibit the same defecation defect as aex-3 mutants. aex-6; rab-3 double mutants have behavioral and pharmacological defects similar to aex-3 mutants. In addition, we demonstrate that RBF-1 (rabphilin) is an effector of RAB-27. Therefore, our work demonstrates that AEX-3 regulates both RAB-3 and RAB-27, that both RAB-3 and RAB-27 regulate synaptic transmission, and that RAB-27 potentially acts through its effector RBF-1 to promote soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) function. PMID:16571673
Disease Mutations in Rab7 Result in Unregulated Nucleotide Exchange and Inappropriate Activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
B McCray; E Skordalakes; J Taylor
2011-12-31
Rab GTPases are molecular switches that orchestrate vesicular trafficking, maturation and fusion by cycling between an active, GTP-bound form, and an inactive, GDP-bound form. The activity cycle is coupled to GTP hydrolysis and is tightly controlled by regulatory proteins. Missense mutations of the GTPase Rab7 cause a dominantly inherited axonal degeneration known as Charcot-Marie-Tooth type 2B through an unknown mechanism. We present the 2.8 A crystal structure of GTP-bound L129F mutant Rab7 which reveals normal conformations of the effector binding regions and catalytic site, but an alteration to the nucleotide binding pocket that is predicted to alter GTP binding. Throughmore » extensive biochemical analysis, we demonstrate that disease-associated mutations in Rab7 do not lead to an intrinsic GTPase defect, but permit unregulated nucleotide exchange leading to both excessive activation and hydrolysis-independent inactivation. Consistent with augmented activity, mutant Rab7 shows significantly enhanced interaction with a subset of effector proteins. In addition, dynamic imaging demonstrates that mutant Rab7 is abnormally retained on target membranes. However, we show that the increased activation of mutant Rab7 is counterbalanced by unregulated, GTP hydrolysis-independent membrane cycling. Notably, disease mutations are able to rescue the membrane cycling of a GTPase-deficient mutant. Thus, we demonstrate that disease mutations uncouple Rab7 from the spatial and temporal control normally imposed by regulatory proteins and cause disease not by a gain of novel toxic function, but by misregulation of native Rab7 activity.« less
Prieto, Ana I; Hernández, Sara B; Cota, Ignacio; Pucciarelli, M Graciela; Orlov, Yuri; Ramos-Morales, Francisco; García-del Portillo, Francisco; Casadesús, Josep
2009-06-01
A genetic screen for suppressors of bile sensitivity in DNA adenine methylase (dam) mutants of Salmonella enterica serovar Typhimurium yielded insertions in an uncharacterized locus homologous to the Escherichia coli asmA gene. Disruption of asmA suppressed bile sensitivity also in phoP and wec mutants of S. enterica and increased the MIC of sodium deoxycholate for the parental strain ATCC 14028. Increased levels of marA mRNA were found in asmA, asmA dam, asmA phoP, and asmA wec strains of S. enterica, suggesting that lack of AsmA activates expression of the marRAB operon. Hence, asmA mutations may enhance bile resistance by inducing gene expression changes in the marRAB-controlled Mar regulon. In silico analysis of AsmA structure predicted the existence of one transmembrane domain. Biochemical analysis of subcellular fractions revealed that the asmA gene of S. enterica encodes a protein of approximately 70 kDa located in the outer membrane. Because AsmA is unrelated to known transport and/or efflux systems, we propose that activation of marRAB in asmA mutants may be a consequence of envelope reorganization. Competitive infection of BALB/c mice with asmA(+) and asmA isogenic strains indicated that lack of AsmA attenuates Salmonella virulence by the oral route but not by the intraperitoneal route. Furthermore, asmA mutants showed a reduced ability to invade epithelial cells in vitro.
Two Novel Rab2 Interactors Regulate Dense-core Vesicle Maturation
Ailion, Michael; Hannemann, Mandy; Dalton, Susan; Pappas, Andrea; Watanabe, Shigeki; Hegermann, Jan; Liu, Qiang; Han, Hsiao-Fen; Gu, Mingyu; Goulding, Morgan Q.; Sasidharan, Nikhil; Schuske, Kim; Hullett, Patrick; Eimer, Stefan; Jorgensen, Erik M.
2014-01-01
Summary Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi, and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1 and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a new pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. PMID:24698274
Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein
Sato, Miyuki; Sato, Ken; Liou, Willisa; Pant, Saumya; Harada, Akihiro; Grant, Barth D
2008-01-01
Using Caenorhabditis elegans genetic screens, we identified receptor-mediated endocytosis (RME)-4 and RME-5/RAB-35 as important regulators of yolk endocytosis in vivo. In rme-4 and rab-35 mutants, yolk receptors do not accumulate on the plasma membrane as would be expected in an internalization mutant, rather the receptors are lost from cortical endosomes and accumulate in dispersed small vesicles, suggesting a defect in receptor recycling. Consistent with this, genetic tests indicate the RME-4 and RAB-35 function downstream of clathrin, upstream of RAB-7, and act synergistically with recycling regulators RAB-11 and RME-1. We find that RME-4 is a conserved DENN domain protein that binds to RAB-35 in its GDP-loaded conformation. GFP–RME-4 also physically interacts with AP-2, is enriched on clathrin-coated pits, and requires clathrin but not RAB-5 for cortical association. GFP–RAB-35 localizes to the plasma membrane and early endocytic compartments but is lost from endosomes in rme-4 mutants. We propose that RME-4 functions on coated pits and/or vesicles to recruit RAB-35, which in turn functions in the endosome to promote receptor recycling. PMID:18354496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukamoto, Yuta; Kagiwada, Satoshi; Shimazu, Sayuri
The small GTPase Rab5 is reported to regulate various cellular functions, such as vesicular transport and endocytosis. VPS9 domain-containing proteins are thought to activate Rab5(s) by their guanine-nucleotide exchange activities. Numerous VPS9 proteins have been identified and are structurally conserved from yeast to mammalian cells. However, the functional relationships among VPS9 proteins in cells remain unclear. Only one Rab5 and two VPS9 proteins were identified in the Schizosaccharomyces pombe genome. Here, we examined the cellular function of two VPS9 proteins and the relationship between these proteins in cellular functions. Vps901-GFP and Vps902-GFP exhibited dotted signals in vegetative and differentiated cells.more » vps901 deletion mutant (Δvps901) cells exhibited a phenotype deficient in the mating process and responses to high concentrations of ions, such as calcium and metals, and Δvps901Δvps902 double mutant cells exhibited round cell shapes similar to ypt5-909 (Rab5 mutant allele) cells. Deletion of both vps901 and vps902 genes completely abolished the mating process and responses to various stresses. A lack of vacuole formation and aberrant inner cell membrane structures were also observed in Δvps901Δvps902 cells by electron microscopy. These data strongly suggest that Vps901 and Vps902 are cooperatively involved in the regulation of cellular functions, such as cell morphology, sexual development, response to ion stresses, and vacuole formation, via Rab5 signaling pathways in fission yeast cells. - Highlights: • Roles of Rab5 activator VPS9 proteins in cellular functions. • Cooperation between VPS9 proteins in Rab5 signaling pathway. • Roles of each VPS9 protein in Rab5 signaling pathway are discussed.« less
TBC-8, a putative RAB-2 GAP, regulates dense core vesicle maturation in Caenorhabditis elegans.
Hannemann, Mandy; Sasidharan, Nikhil; Hegermann, Jan; Kutscher, Lena M; Koenig, Sabine; Eimer, Stefan
2012-01-01
Dense core vesicles (DCVs) are thought to be generated at the late Golgi apparatus as immature DCVs, which subsequently undergo a maturation process through clathrin-mediated membrane remodeling events. This maturation process is required for efficient processing of neuropeptides within DCVs and for removal of factors that would otherwise interfere with DCV release. Previously, we have shown that the GTPase, RAB-2, and its effector, RIC-19, are involved in DCV maturation in Caenorhabditis elegans motoneurons. In rab-2 mutants, specific cargo is lost from maturing DCVs and missorted into the endosomal/lysosomal degradation route. Cargo loss could be prevented by blocking endosomal delivery. This suggests that RAB-2 is involved in retention of DCV components during the sorting process at the Golgi-endosomal interface. To understand how RAB-2 activity is regulated at the Golgi, we screened for RAB-2-specific GTPase activating proteins (GAPs). We identified a potential RAB-2 GAP, TBC-8, which is exclusively expressed in neurons and which, when depleted, shows similar DCV maturation defects as rab-2 mutants. We could demonstrate that RAB-2 binds to its putative GAP, TBC-8. Interestingly, TBC-8 also binds to the RAB-2 effector, RIC-19. This interaction appears to be conserved as TBC-8 also interacted with the human ortholog of RIC-19, ICA69. Therefore, we propose that a dynamic ON/OFF cycling of RAB-2 at the Golgi induced by the GAP/effector complex is required for proper DCV maturation.
UNC-108/Rab2 Regulates Postendocytic Trafficking in Caenorhabditis elegans
Chun, Denise K.; McEwen, Jason M.; Burbea, Michelle
2008-01-01
After endocytosis, membrane proteins are often sorted between two alternative pathways: a recycling pathway and a degradation pathway. Relatively little is known about how trafficking through these alternative pathways is differentially regulated. Here, we identify UNC-108/Rab2 as a regulator of postendocytic trafficking in both neurons and coelomocytes. Mutations in the Caenorhabditis elegans Rab2 gene unc-108, caused the green fluorescent protein (GFP)-tagged glutamate receptor GLR-1 (GLR-1::GFP) to accumulate in the ventral cord and in neuronal cell bodies. In neuronal cell bodies of unc-108/Rab2 mutants, GLR-1::GFP was found in tubulovesicular structures that colocalized with markers for early and recycling endosomes, including Syntaxin-13 and Rab8. GFP-tagged Syntaxin-13 also accumulated in the ventral cord of unc-108/Rab2 mutants. UNC-108/Rab2 was not required for ubiquitin-mediated sorting of GLR-1::GFP into the multivesicular body (MVB) degradation pathway. Mutations disrupting the MVB pathway and unc-108/Rab2 mutations had additive effects on GLR-1::GFP levels in the ventral cord. In coelomocytes, postendocytic trafficking of the marker Texas Red-bovine serum albumin was delayed. These results demonstrate that UNC-108/Rab2 regulates postendocytic trafficking, most likely at the level of early or recycling endosomes, and that UNC-108/Rab2 and the MVB pathway define alternative postendocytic trafficking mechanisms that operate in parallel. These results define a new function for Rab2 in protein trafficking. PMID:18434599
TBC-8, a Putative RAB-2 GAP, Regulates Dense Core Vesicle Maturation in Caenorhabditis elegans
Hannemann, Mandy; Sasidharan, Nikhil; Hegermann, Jan; Kutscher, Lena M.; Koenig, Sabine; Eimer, Stefan
2012-01-01
Dense core vesicles (DCVs) are thought to be generated at the late Golgi apparatus as immature DCVs, which subsequently undergo a maturation process through clathrin-mediated membrane remodeling events. This maturation process is required for efficient processing of neuropeptides within DCVs and for removal of factors that would otherwise interfere with DCV release. Previously, we have shown that the GTPase, RAB-2, and its effector, RIC-19, are involved in DCV maturation in Caenorhabditis elegans motoneurons. In rab-2 mutants, specific cargo is lost from maturing DCVs and missorted into the endosomal/lysosomal degradation route. Cargo loss could be prevented by blocking endosomal delivery. This suggests that RAB-2 is involved in retention of DCV components during the sorting process at the Golgi-endosomal interface. To understand how RAB-2 activity is regulated at the Golgi, we screened for RAB-2–specific GTPase activating proteins (GAPs). We identified a potential RAB-2 GAP, TBC-8, which is exclusively expressed in neurons and which, when depleted, shows similar DCV maturation defects as rab-2 mutants. We could demonstrate that RAB-2 binds to its putative GAP, TBC-8. Interestingly, TBC-8 also binds to the RAB-2 effector, RIC-19. This interaction appears to be conserved as TBC-8 also interacted with the human ortholog of RIC-19, ICA69. Therefore, we propose that a dynamic ON/OFF cycling of RAB-2 at the Golgi induced by the GAP/effector complex is required for proper DCV maturation. PMID:22654674
The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles
Topalidou, Irini; Cattin-Ortolá, Jérôme; MacCoss, Michael J.
2016-01-01
The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. PMID:27191843
Rab5 Isoforms Specifically Regulate Different Modes of Endocytosis in Leishmania.
Rastogi, Ruchir; Verma, Jitender Kumar; Kapoor, Anjali; Langsley, Gordon; Mukhopadhyay, Amitabha
2016-07-08
Differential functions of Rab5 isoforms in endocytosis are not well characterized. Here, we cloned, expressed, and characterized Rab5a and Rab5b from Leishmania and found that both of them are localized in the early endosome. To understand the role of LdRab5 isoforms in different modes of endocytosis in Leishmania, we generated transgenic parasites overexpressing LdRab5a, LdRab5b, or their dominant-positive (LdRab5a:Q93L and LdRab5b:Q80L) or dominant-negative mutants (LdRab5a:N146I and LdRab5b:N133I). Using LdRab5a or its mutants overexpressing parasites, we found that LdRab5a specifically regulates the fluid-phase endocytosis of horseradish peroxidase and also specifically induced the transport of dextran-Texas Red to the lysosomes. In contrast, cells overexpressing LdRab5b or its mutants showed that LdRab5b explicitly controls receptor-mediated endocytosis of hemoglobin, and overexpression of LdRab5b:WT enhanced the transport of internalized Hb to the lysosomes in comparison with control cells. To unequivocally demonstrate the role of Rab5 isoforms in endocytosis in Leishmania, we tried to generate null-mutants of LdRab5a and LdRab5b parasites, but both were lethal indicating their essential functions in parasites. Therefore, we used heterozygous LdRab5a(+/-) and LdRab5b(+/-) cells. LdRab5a(+/-) Leishmania showed 50% inhibition of HRP uptake, but hemoglobin endocytosis was uninterrupted. In contrast, about 50% inhibition of Hb endocytosis was observed in LdRab5b(+/-) cells without any significant effect on HRP uptake. Finally, we tried to identify putative LdRab5a and LdRab5b effectors. We found that LdRab5b interacts with clathrin heavy chain and hemoglobin receptor. However, LdRab5a failed to interact with the clathrin heavy chain, and interaction with hemoglobin receptor was significantly less. Thus, our results showed that LdRab5a and LdRab5b differentially regulate fluid phase and receptor-mediated endocytosis in Leishmania. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Sequential Actions of Rab5 and Rab7 Regulate Endocytosis in the Xenopus Oocyte
Mukhopadhyay, Amitabha; Barbieri, Alejandro M.; Funato, Kouichi; Roberts, Richard; Stahl, Philip D.
1997-01-01
To explore the role of GTPases in endocytosis, we developed an assay using Xenopus oocytes injected with recombinant proteins to follow the uptake of the fluid phase marker HRP. HRP uptake was inhibited in cells injected with GTPγS or incubated with aluminum fluoride, suggesting a general role for GTPases in endocytosis. Injection of Rab5 into oocytes, as well as Rab5:Q79L, a mutant with decreased GTPase activity, increased HRP uptake. Injection of Rab5:S34N, the dominant-negative mutant, inhibited HRP uptake. Injection of N-ethylmaleimide–sensitive factor (NSF) stimulated HRP uptake, and ATPase-defective NSF mutants inhibited HRP uptake when coinjected with Rab5:Q79L, confirming a requirement for NSF in endocytosis. Surprisingly, injection of Rab7:WT stimulated both uptake and degradation/activation of HRP. The latter appears to be due to enhanced transport to a late endosomal/prelysosomal degradative compartment that is monensin sensitive. Enhancement of uptake by Rab7 appears to function via an Rab5-sensitive pathway in oocytes since the stimulatory effect of Rab7 was blocked by coinjection of Rab5:S34N. Stimulation of uptake by Rab5 was blocked by Rab5:S34N but not by Rab7:T22N. Our results suggest that Rab7, while functioning downstream of Rab5, may be rate limiting for endocytosis in oocytes. PMID:9087439
Gómez-Suaga, Patricia; Rivero-Ríos, Pilar; Fdez, Elena; Blanca Ramírez, Marian; Ferrer, Isidro; Aiastui, Ana; López De Munain, Adolfo; Hilfiker, Sabine
2014-12-20
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset autosomal dominant Parkinson's disease (PD), and sequence variations at the LRRK2 locus are associated with increased risk for sporadic PD. LRRK2 contains both GTPase and kinase domains flanked by protein interaction motifs, and mutations associated with familial PD have been described for both catalytic domains. LRRK2 has been implicated in diverse cellular processes, and recent evidence pinpoints to an important role for LRRK2 in modulating a variety of intracellular membrane trafficking pathways. However, the underlying mechanisms are poorly understood. Here, by studying the classical, well-understood, degradative trafficking pathway of the epidermal growth factor receptor (EGFR), we show that LRRK2 regulates endocytic membrane trafficking in an Rab7-dependent manner. Mutant LRRK2 expression causes a slight delay in early-to-late endosomal trafficking, and a pronounced delay in trafficking out of late endosomes, which become aberrantly elongated into tubules. This is accompanied by a delay in EGFR degradation. The LRRK2-mediated deficits in EGFR trafficking and degradation can be reverted upon coexpression of active Rab7 and of a series of proteins involved in bridging the EGFR to Rab7 on late endosomes. Effector pulldown assays indicate that pathogenic LRRK2 decreases Rab7 activity both in cells overexpressing LRRK2, as well as in fibroblasts from pathogenic mutant LRRK2 PD patients when compared with healthy controls. Together, these findings provide novel insights into a previously unknown regulation of Rab7 activity by mutant LRRK2 which impairs membrane trafficking at very late stages of the endocytic pathway. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gesemann, Matthias; Mateos, José M.; Barmettler, Gery; Forbes, Austin; Ziegler, Urs
2017-01-01
Ciliopathies are human disorders caused by dysfunction of primary cilia, ubiquitous organelles involved in transduction of environmental signals such as light sensation in photoreceptors. Concentration of signal detection proteins such as opsins in the ciliary membrane is achieved by RabGTPase-regulated polarized vesicle trafficking and by a selective barrier at the ciliary base, the transition zone (TZ). Dysfunction of the TZ protein CC2D2A causes Joubert/Meckel syndromes in humans and loss of ciliary protein localization in animal models, including opsins in retinal photoreceptors. The link between the TZ and upstream vesicle trafficking has been little explored to date. Moreover, the role of the small GTPase Rab8 in opsin-carrier vesicle (OCV) trafficking has been recently questioned in a mouse model. Using correlative light and electron microscopy and live imaging in zebrafish photoreceptors, we provide the first live characterization of Rab8-mediated trafficking in photoreceptors in vivo. Our results support a possibly redundant role for both Rab8a/b paralogs in OCV trafficking, based on co-localization of Rab8 and opsins in vesicular structures, and joint movement of Rab8-tagged particles with opsin. We further investigate the role of the TZ protein Cc2d2a in Rab8-mediated trafficking using cc2d2a zebrafish mutants and identify a requirement for Cc2d2a in the latest step of OCV trafficking, namely vesicle fusion. Progressive accumulation of opsin-containing vesicles in the apical portion of photoreceptors lacking Cc2d2a is caused by disorganization of the vesicle fusion machinery at the periciliary membrane with mislocalization and loss of the t-SNAREs SNAP25 and Syntaxin3 and of the exocyst component Exoc4. We further observe secondary defects on upstream Rab8-trafficking with cytoplasmic accumulation of Rab8. Taken together, our results support participation of Rab8 in OCV trafficking and identify a novel role for the TZ protein Cc2d2a in fusion of incoming ciliary-directed vesicles, through organization of the vesicle fusion machinery at the periciliary membrane. PMID:29281629
Ojeda Naharros, Irene; Gesemann, Matthias; Mateos, José M; Barmettler, Gery; Forbes, Austin; Ziegler, Urs; Neuhauss, Stephan C F; Bachmann-Gagescu, Ruxandra
2017-12-01
Ciliopathies are human disorders caused by dysfunction of primary cilia, ubiquitous organelles involved in transduction of environmental signals such as light sensation in photoreceptors. Concentration of signal detection proteins such as opsins in the ciliary membrane is achieved by RabGTPase-regulated polarized vesicle trafficking and by a selective barrier at the ciliary base, the transition zone (TZ). Dysfunction of the TZ protein CC2D2A causes Joubert/Meckel syndromes in humans and loss of ciliary protein localization in animal models, including opsins in retinal photoreceptors. The link between the TZ and upstream vesicle trafficking has been little explored to date. Moreover, the role of the small GTPase Rab8 in opsin-carrier vesicle (OCV) trafficking has been recently questioned in a mouse model. Using correlative light and electron microscopy and live imaging in zebrafish photoreceptors, we provide the first live characterization of Rab8-mediated trafficking in photoreceptors in vivo. Our results support a possibly redundant role for both Rab8a/b paralogs in OCV trafficking, based on co-localization of Rab8 and opsins in vesicular structures, and joint movement of Rab8-tagged particles with opsin. We further investigate the role of the TZ protein Cc2d2a in Rab8-mediated trafficking using cc2d2a zebrafish mutants and identify a requirement for Cc2d2a in the latest step of OCV trafficking, namely vesicle fusion. Progressive accumulation of opsin-containing vesicles in the apical portion of photoreceptors lacking Cc2d2a is caused by disorganization of the vesicle fusion machinery at the periciliary membrane with mislocalization and loss of the t-SNAREs SNAP25 and Syntaxin3 and of the exocyst component Exoc4. We further observe secondary defects on upstream Rab8-trafficking with cytoplasmic accumulation of Rab8. Taken together, our results support participation of Rab8 in OCV trafficking and identify a novel role for the TZ protein Cc2d2a in fusion of incoming ciliary-directed vesicles, through organization of the vesicle fusion machinery at the periciliary membrane.
Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning.
Dodson, Mark W; Zhang, Ting; Jiang, Changan; Chen, Shengdi; Guo, Ming
2012-03-15
LRRK2 (PARK8) is the most common genetic determinant of Parkinson's disease (PD), with dominant mutations in LRRK2 causing inherited PD and sequence variation at the LRRK2 locus associated with increased risk for sporadic PD. Although LRRK2 has been implicated in diverse cellular processes encompassing almost all cellular compartments, the precise functions of LRRK2 remain unclear. Here, we show that the Drosophila homolog of LRRK2 (Lrrk) localizes to the membranes of late endosomes and lysosomes, physically interacts with the crucial mediator of late endosomal transport Rab7 and negatively regulates rab7-dependent perinuclear localization of lysosomes. We also show that a mutant form of lrrk analogous to the pathogenic LRRK2(G2019S) allele behaves oppositely to wild-type lrrk in that it promotes rather than inhibits rab7-dependent perinuclear lysosome clustering, with these effects of mutant lrrk on lysosome position requiring both microtubules and dynein. These data suggest that LRRK2 normally functions in Rab7-dependent lysosomal positioning, and that this function is disrupted by the most common PD-causing LRRK2 mutation, linking endolysosomal dysfunction to the pathogenesis of LRRK2-mediated PD.
Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning
Dodson, Mark W.; Zhang, Ting; Jiang, Changan; Chen, Shengdi; Guo, Ming
2012-01-01
LRRK2 (PARK8) is the most common genetic determinant of Parkinson's disease (PD), with dominant mutations in LRRK2 causing inherited PD and sequence variation at the LRRK2 locus associated with increased risk for sporadic PD. Although LRRK2 has been implicated in diverse cellular processes encompassing almost all cellular compartments, the precise functions of LRRK2 remain unclear. Here, we show that the Drosophila homolog of LRRK2 (Lrrk) localizes to the membranes of late endosomes and lysosomes, physically interacts with the crucial mediator of late endosomal transport Rab7 and negatively regulates rab7-dependent perinuclear localization of lysosomes. We also show that a mutant form of lrrk analogous to the pathogenic LRRK2G2019S allele behaves oppositely to wild-type lrrk in that it promotes rather than inhibits rab7-dependent perinuclear lysosome clustering, with these effects of mutant lrrk on lysosome position requiring both microtubules and dynein. These data suggest that LRRK2 normally functions in Rab7-dependent lysosomal positioning, and that this function is disrupted by the most common PD-causing LRRK2 mutation, linking endolysosomal dysfunction to the pathogenesis of LRRK2-mediated PD. PMID:22171073
Arabidopsis RabF1 (ARA6) Is Involved in Salt Stress and Dark-Induced Senescence (DIS)
Yin, Congfei; Karim, Sazzad; Zhang, Hongsheng; Aronsson, Henrik
2017-01-01
Arabidopsis small GTPase RabF1 (ARA6) functions in endosomal vesicle transport and may play a crucial role in recycling and degradation of molecules, thus involved in stress responses. Here we have reported that complementary overexpression lines RabF1OE (overexpression), GTPase mutants RabF1Q93L (constitutively active) and RabF1S47N (dominant negative) lines show longer root growth than wild-type, rabF1 knockout and N-myristoylation deletion (Δ1−29, N-terminus) complementary overexpression mutant plants under salt induced stress, which indicates that N-myristoylation of RabF1 is indispensable for salt tolerance. Moreover, RabF1 is highly expressed during senescence and RabF1OE lines were more tolerant of dark-induced senescence (DIS) than wild-type and rabF1. PMID:28157156
RAB-5 and RAB-10 cooperate to regulate neuropeptide release in Caenorhabditis elegans
Sasidharan, Nikhil; Sumakovic, Marija; Hannemann, Mandy; Hegermann, Jan; Liewald, Jana F.; Olendrowitz, Christian; Koenig, Sabine; Grant, Barth D.; Rizzoli, Silvio O.; Gottschalk, Alexander; Eimer, Stefan
2012-01-01
Neurons secrete neuropeptides from dense core vesicles (DCVs) to modulate neuronal activity. Little is known about how neurons manage to differentially regulate the release of synaptic vesicles (SVs) and DCVs. To analyze this, we screened all Caenorhabditis elegans Rab GTPases and Tre2/Bub2/Cdc16 (TBC) domain containing GTPase-activating proteins (GAPs) for defects in DCV release from C. elegans motoneurons. rab-5 and rab-10 mutants show severe defects in DCV secretion, whereas SV exocytosis is unaffected. We identified TBC-2 and TBC-4 as putative GAPs for RAB-5 and RAB-10, respectively. Multiple Rabs and RabGAPs are typically organized in cascades that confer directionality to membrane-trafficking processes. We show here that the formation of release-competent DCVs requires a reciprocal exclusion cascade coupling RAB-5 and RAB-10, in which each of the two Rabs recruits the other’s GAP molecule. This contributes to a separation of RAB-5 and RAB-10 domains at the Golgi–endosomal interface, which is lost when either of the two GAPs is inactivated. Taken together, our data suggest that RAB-5 and RAB-10 cooperate to locally exclude each other at an essential stage during DCV sorting. PMID:23100538
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvis, Adriana; Giambini, Hugo; Villasana, Zoilmar
In this study, we initiated experiments to address the structure-function relationship of Rin1. A total of ten substitute mutations were created, and their effects on Rin1 function were examined. Of the ten mutants, four of them (P541A, E574A, Y577F, T580A) were defective in Rab5 binding, while two other Rin1 mutants (D537A, Y561F) partially interacted with Rab5. Mutations in several other residues (Y506F, Y523F, T572A, Y578F) resulted in partial loss of Rab5 function. Biochemical studies showed that six of them (D537A, P541A, Y561F, E574A, Y577F, T580A) were unable to activate Rab5 in an in vitro assay. In addition, Rin1: D537A andmore » Rin1: Y561F mutants showed dominant inhibition of Rab5 function. Consistent with the biochemical studies, we observed that these two Rin1 mutants have lost their ability to stimulate the endocytosis of EGF, form enlarged Rab5-positive endosomes, or support in vitro endosome fusion. Based on these data, our results showed that mutations in the Vps9 domain of Rin1 lead to a loss-of-function phenotype, indicating a specific structure-function relationship between Rab5 and Rin1.« less
Lin-Moshier, Yaping; Keebler, Michael V.; Hooper, Robert; Boulware, Michael J.; Liu, Xiaolong; Churamani, Dev; Abood, Mary E.; Walseth, Timothy F.; Brailoiu, Eugen; Patel, Sandip; Marchant, Jonathan S.
2014-01-01
The two-pore channels (TPC1 and TPC2) belong to an ancient family of intracellular ion channels expressed in the endolysosomal system. Little is known about how regulatory inputs converge to modulate TPC activity, and proposed activation mechanisms are controversial. Here, we compiled a proteomic characterization of the human TPC interactome, which revealed that TPCs complex with many proteins involved in Ca2+ homeostasis, trafficking, and membrane organization. Among these interactors, TPCs were resolved to scaffold Rab GTPases and regulate endomembrane dynamics in an isoform-specific manner. TPC2, but not TPC1, caused a proliferation of endolysosomal structures, dysregulating intracellular trafficking, and cellular pigmentation. These outcomes required both TPC2 and Rab activity, as well as their interactivity, because TPC2 mutants that were inactive, or rerouted away from their endogenous expression locale, or deficient in Rab binding, failed to replicate these outcomes. Nicotinic acid adenine dinucleotide phosphate (NAADP)-evoked Ca2+ release was also impaired using either a Rab binding-defective TPC2 mutant or a Rab inhibitor. These data suggest a fundamental role for the ancient TPC complex in trafficking that holds relevance for lysosomal proliferative scenarios observed in disease. PMID:25157141
Lin-Moshier, Yaping; Keebler, Michael V; Hooper, Robert; Boulware, Michael J; Liu, Xiaolong; Churamani, Dev; Abood, Mary E; Walseth, Timothy F; Brailoiu, Eugen; Patel, Sandip; Marchant, Jonathan S
2014-09-09
The two-pore channels (TPC1 and TPC2) belong to an ancient family of intracellular ion channels expressed in the endolysosomal system. Little is known about how regulatory inputs converge to modulate TPC activity, and proposed activation mechanisms are controversial. Here, we compiled a proteomic characterization of the human TPC interactome, which revealed that TPCs complex with many proteins involved in Ca(2+) homeostasis, trafficking, and membrane organization. Among these interactors, TPCs were resolved to scaffold Rab GTPases and regulate endomembrane dynamics in an isoform-specific manner. TPC2, but not TPC1, caused a proliferation of endolysosomal structures, dysregulating intracellular trafficking, and cellular pigmentation. These outcomes required both TPC2 and Rab activity, as well as their interactivity, because TPC2 mutants that were inactive, or rerouted away from their endogenous expression locale, or deficient in Rab binding, failed to replicate these outcomes. Nicotinic acid adenine dinucleotide phosphate (NAADP)-evoked Ca(2+) release was also impaired using either a Rab binding-defective TPC2 mutant or a Rab inhibitor. These data suggest a fundamental role for the ancient TPC complex in trafficking that holds relevance for lysosomal proliferative scenarios observed in disease.
Jopling, Helen M.; Odell, Adam F.; Pellet-Many, Caroline; Latham, Antony M.; Frankel, Paul; Sivaprasadarao, Asipu; Walker, John H.; Zachary, Ian C.; Ponnambalam, Sreenivasan
2014-01-01
Rab GTPases are implicated in endosome-to-plasma membrane recycling, but how such membrane traffic regulators control vascular endothelial growth factor receptor 2 (VEGFR2/KDR) dynamics and function are not well understood. Here, we evaluated two different recycling Rab GTPases, Rab4a and Rab11a, in regulating endothelial VEGFR2 trafficking and signalling with implications for endothelial cell migration, proliferation and angiogenesis. In primary endothelial cells, VEGFR2 displays co-localisation with Rab4a, but not Rab11a GTPase, on early endosomes. Expression of a guanosine diphosphate (GDP)-bound Rab4a S22N mutant caused increased VEGFR2 accumulation in endosomes. TfR and VEGFR2 exhibited differences in endosome-to-plasma membrane recycling in the presence of chloroquine. Depletion of Rab4a, but not Rab11a, levels stimulated VEGF-A-dependent intracellular signalling. However, depletion of either Rab4a or Rab11a levels inhibited VEGF-A-stimulated endothelial cell migration. Interestingly, depletion of Rab4a levels stimulated VEGF-A-regulated endothelial cell proliferation. Rab4a and Rab11a were also both required for endothelial tubulogenesis. Evaluation of a transgenic zebrafish model showed that both Rab4 and Rab11a are functionally required for blood vessel formation and animal viability. Rab-dependent endosome-to-plasma membrane recycling of VEGFR2 is important for intracellular signalling, cell migration and proliferation during angiogenesis. PMID:24785348
Involvement of Rab9 and Rab11 in the intracellular trafficking of TRPC6.
Cayouette, Sylvie; Bousquet, Simon M; Francoeur, Nancy; Dupré, Emilie; Monet, Michaël; Gagnon, Hugo; Guedri, Youssef B; Lavoie, Christine; Boulay, Guylain
2010-07-01
TRPC proteins become involved in Ca2+ entry following the activation of Gq-protein coupled receptors. TRPC6 is inserted into the plasma membrane upon stimulation and remains in the plasma membrane as long as the stimulus is present. However, the mechanism that regulates the trafficking of TRPC6 is unclear. In the present study, we highlighted the involvement of two Rab GTPases in the trafficking of TRPC6. Rab9 co-localized in vesicular structures with TRPC6 in HeLa cells and co-immunoprecipitated with TRPC6. When co-expressed with TRPC6, Rab9(S21N), a dominant negative mutant, caused an increase in the level of TRPC6 at the plasma membrane and in TRPC6-mediated Ca2+ entry upon activation by a muscarinic receptor agonist. Similarly, the expression of Rab11 also caused an increase in TRPC6 expression at the cell surface and an increase in TRPC6-mediated Ca2+ entry. The co-expression of TRPC6 with the dominant negative mutant Rab11(S25N) abolished CCh-induced TRPC6 activation and reduced the level of TRPC6 at the plasma membrane. This study demonstrates that the trans-Golgi network and recycling endosomes are involved in the intracellular trafficking of TRPC6 by regulating channel density at the cell surface. 2010 Elsevier B.V. All rights reserved.
Ducharme, Nicole A; Hales, Chadwick M; Lapierre, Lynne A; Ham, Amy-Joan L; Oztan, Asli; Apodaca, Gerard; Goldenring, James R
2006-08-01
Rab11a, myosin Vb, and the Rab11-family interacting protein 2 (FIP2) regulate plasma membrane recycling in epithelial cells. This study sought to characterize more fully Rab11-FIP2 function by identifying kinase activities modifying Rab11-FIP2. We have found that gastric microsomal membrane extracts phosphorylate Rab11-FIP2 on serine 227. We identified the kinase that phosphorylated Rab11-FIP2 as MARK2/EMK1/Par-1Balpha (MARK2), and recombinant MARK2 phosphorylated Rab11-FIP2 only on serine 227. We created stable Madin-Darby canine kidney (MDCK) cell lines expressing enhanced green fluorescent protein-Rab11-FIP2 wild type or a nonphosphorylatable mutant [Rab11-FIP2(S227A)]. Analysis of these cell lines demonstrates a new role for Rab11-FIP2 in addition to that in the plasma membrane recycling system. In calcium switch assays, cells expressing Rab11-FIP2(S227A) showed a defect in the timely reestablishment of p120-containing junctional complexes. However, Rab11-FIP2(S227A) did not affect localization with recycling system components or the normal function of apical recycling and transcytosis pathways. These results indicate that phosphorylation of Rab11-FIP2 on serine 227 by MARK2 regulates an alternative pathway modulating the establishment of epithelial polarity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukamoto, Yuta; Katayama, Chisako; Shinohara, Miki
Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our datamore » strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, Sunil K.; Horiuchi, Hisanori; Fukuda, Mitsunori
Liddle's syndrome (excessive absorption of sodium ions) and PHA-1 (pseudohypoaldosteronism type 1) with decreased sodium absorption are caused by the mutations in the amiloride-sensitive epithelial sodium channel ENaC. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. Earlier, we reported that Rab27a inhibits ENaC-mediated currents through protein-protein interaction in HT-29 cells. We hereby report that Rab27a-dependent inhibition is associated with the GTP/GDP status as constitutively active or GTPase-deficient mutant Q78L inhibits amiloride-sensitive currents whereas GDP-locked inactive mutant T23N showed no effect. In order to further explore the molecular mechanism of this regulation, we performed competitive assays withmore » two Rab27a-binding proteins: synaptotagmin-like protein (SLP-5) and Munc13-4 (a putative priming factor for exocytosis). Both proteins eliminate negative modulation of Rab27a on ENaC function. The SLP-5 reversal of Rab27a effect was restricted to C-terminal C2A/C2B domains assigned for putative phospholipids-binding function while the Rab27a-binding SHD motif imparted higher inhibition. The ENaC-mediated currents remain unaffected by Rab27a though SLP-5 appears to strongly bind it. The immunoprecipitation experiments suggest that in the presence of excessive Munc13-4 and SLP-5 proteins, Rab27a interaction with ENaC is diminished. Munc13-4 and SLP-5 limit the Rab27a availability to ENaC, thus minimizing its effect on channel function. These observations decisively prove that Rab27a inhibits ENaC function through a complex mechanism that involves GTP/GDP status, and protein-protein interactions involving Munc13-4 and SLP-5 effector proteins.« less
Vázquez-Calvo, Angela; Caridi, Flavia; Rodriguez-Pulido, Miguel; Borrego, Belén; Sáiz, Margarita; Sobrino, Francisco; Martín-Acebes, Miguel A
2012-11-01
The role of cellular Rab GTPases that govern traffic between different endosome populations was analysed on foot-and-mouth disease virus (FMDV) infection. Changes of viral receptor specificity did not alter Rab5 requirement for infection. However, a correlation between uncoating pH and requirement of Rab5 for infection was observed. A mutant FMDV with less acidic uncoating pH threshold was less sensitive to inhibition of Rab5, whereas another mutant with more acidic requirements was more sensitive to inhibition of Rab5. On the contrary, opposed correlations between uncoating pH and dependence of Rab function were observed upon expression of dominant-negative forms of Rab7 or 11. Modulation of uncoating pH also reduced FMDV virulence in suckling mice. These results are consistent with FMDV uncoating inside early endosomes and indicate that displacements from optimum pH for uncoating reduce viral fitness in vivo.
Shigella subverts the host recycling compartment to rupture its vacuole.
Mellouk, Nora; Weiner, Allon; Aulner, Nathalie; Schmitt, Christine; Elbaum, Michael; Shorte, Spencer L; Danckaert, Anne; Enninga, Jost
2014-10-08
Shigella enters epithlial cells via internalization into a vacuole. Subsequent vacuolar membrane rupture allows bacterial escape into the cytosol for replication and cell-to-cell spread. Bacterial effectors such as IpgD, a PI(4,5)P2 phosphatase that generates PI(5)P and alters host actin, facilitate this internalization. Here, we identify host proteins involved in Shigella uptake and vacuolar membrane rupture by high-content siRNA screening and subsequently focus on Rab11, a constituent of the recycling compartment. Rab11-positive vesicles are recruited to the invasion site before vacuolar rupture, and Rab11 knockdown dramatically decreases vacuolar membrane rupture. Additionally, Rab11 recruitment is absent and vacuolar rupture is delayed in the ipgD mutant that does not dephosphorylate PI(4,5)P₂ into PI(5)P. Ultrastructural analyses of Rab11-positive vesicles further reveal that ipgD mutant-containing vacuoles become confined in actin structures that likely contribute to delayed vacular rupture. These findings provide insight into the underlying molecular mechanism of vacuole progression and rupture during Shigella invasion. Copyright © 2014 Elsevier Inc. All rights reserved.
Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania*
Bahl, Surbhi; Parashar, Smriti; Malhotra, Himanshu; Raje, Manoj; Mukhopadhyay, Amitabha
2015-01-01
Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania. PMID:26499792
Capmany, Anahí; Damiani, María Teresa
2010-01-01
Chlamydia trachomatis are obligate intracellular bacteria that survive and replicate in a bacterial-modified phagosome called inclusion. As other intracellular parasites, these bacteria subvert the phagocytic pathway to avoid degradation in phagolysosomes and exploit trafficking pathways to acquire both energy and nutrients essential for their survival. Rabs are host proteins that control intracellular vesicular trafficking. Rab14, a Golgi-related Rab, controls Golgi to endosomes transport. Since Chlamydia establish a close relationship with the Golgi apparatus, the recruitment and participation of Rab14 on inclusion development and bacteria growth were analyzed. Time course analysis revealed that Rab14 associated with inclusions by 10 h post infection and was maintained throughout the entire developmental cycle. The recruitment was bacterial protein synthesis-dependent but independent of microtubules and Golgi integrity. Overexpression of Rab14 dominant negative mutants delayed inclusion enlargement, and impaired bacteria replication as determined by IFU. Silencing of Rab14 by siRNA also decreased bacteria multiplication and infectivity. By electron microscopy, aberrant bacteria were observed in cells overexpressing the cytosolic negative Rab14 mutant. Our results showed that Rab14 facilitates the delivery of sphingolipids required for bacterial development and replication from the Golgi to chlamydial inclusions. Novel anti-chlamydial therapies could be developed based on the knowledge of how bacteria subvert host vesicular transport events through Rabs manipulation. PMID:21124879
Capmany, Anahí; Damiani, María Teresa
2010-11-22
Chlamydia trachomatis are obligate intracellular bacteria that survive and replicate in a bacterial-modified phagosome called inclusion. As other intracellular parasites, these bacteria subvert the phagocytic pathway to avoid degradation in phagolysosomes and exploit trafficking pathways to acquire both energy and nutrients essential for their survival. Rabs are host proteins that control intracellular vesicular trafficking. Rab14, a Golgi-related Rab, controls Golgi to endosomes transport. Since Chlamydia establish a close relationship with the Golgi apparatus, the recruitment and participation of Rab14 on inclusion development and bacteria growth were analyzed. Time course analysis revealed that Rab14 associated with inclusions by 10 h post infection and was maintained throughout the entire developmental cycle. The recruitment was bacterial protein synthesis-dependent but independent of microtubules and Golgi integrity. Overexpression of Rab14 dominant negative mutants delayed inclusion enlargement, and impaired bacteria replication as determined by IFU. Silencing of Rab14 by siRNA also decreased bacteria multiplication and infectivity. By electron microscopy, aberrant bacteria were observed in cells overexpressing the cytosolic negative Rab14 mutant. Our results showed that Rab14 facilitates the delivery of sphingolipids required for bacterial development and replication from the Golgi to chlamydial inclusions. Novel anti-chlamydial therapies could be developed based on the knowledge of how bacteria subvert host vesicular transport events through Rabs manipulation.
RAB-7 Antagonizes LET-23 EGFR Signaling during Vulva Development in Caenorhabditis elegans
Skorobogata, Olga; Rocheleau, Christian E.
2012-01-01
The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR) to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK) signaling, to assess the genetic requirements for rab-7. Using a rab-7 deletion mutant, we demonstrate that rab-7 antagonizes LET-23 EGFR signaling to a similar extent, but in a distinct manner, as previously described negative regulators such as sli-1 c-Cbl. Epistasis analysis places rab-7 upstream of or in parallel to lin-3 EGF and let-23 EGFR. However, expression of gfp::rab-7 in the Vulva Presursor Cells (VPCs) is sufficient to rescue the rab-7(−) VPC induction phenotypes indicating that RAB-7 functions in the signal receiving cell. We show that components of the Endosomal Sorting Complex Required for Transport (ESCRT)-0, and -I, complexes, hgrs-1 Hrs, and vps-28, also antagonize signaling, suggesting that LET-23 EGFR likely transits through Multivesicular Bodies (MVBs) en route to the lysosome. Consistent with RAB-7 regulating LET-23 EGFR trafficking, rab-7 mutants have increased number of LET-23::GFP-positive endosomes. Our data imply that Rab7, by mediating EGFR trafficking and degradation, plays an important role in downregulation of EGFR signaling. Failure to downregulate EGFR signaling contributes to oncogenesis, and thus Rab7 could possess tumor suppressor activity in humans. PMID:22558469
RAB-7 antagonizes LET-23 EGFR signaling during vulva development in Caenorhabditis elegans.
Skorobogata, Olga; Rocheleau, Christian E
2012-01-01
The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR) to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK) signaling, to assess the genetic requirements for rab-7. Using a rab-7 deletion mutant, we demonstrate that rab-7 antagonizes LET-23 EGFR signaling to a similar extent, but in a distinct manner, as previously described negative regulators such as sli-1 c-Cbl. Epistasis analysis places rab-7 upstream of or in parallel to lin-3 EGF and let-23 EGFR. However, expression of gfp::rab-7 in the Vulva Presursor Cells (VPCs) is sufficient to rescue the rab-7(-) VPC induction phenotypes indicating that RAB-7 functions in the signal receiving cell. We show that components of the Endosomal Sorting Complex Required for Transport (ESCRT)-0, and -I, complexes, hgrs-1 Hrs, and vps-28, also antagonize signaling, suggesting that LET-23 EGFR likely transits through Multivesicular Bodies (MVBs) en route to the lysosome. Consistent with RAB-7 regulating LET-23 EGFR trafficking, rab-7 mutants have increased number of LET-23::GFP-positive endosomes. Our data imply that Rab7, by mediating EGFR trafficking and degradation, plays an important role in downregulation of EGFR signaling. Failure to downregulate EGFR signaling contributes to oncogenesis, and thus Rab7 could possess tumor suppressor activity in humans.
Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania.
Bahl, Surbhi; Parashar, Smriti; Malhotra, Himanshu; Raje, Manoj; Mukhopadhyay, Amitabha
2015-12-11
Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Drosophila 14-3-3ε has a crucial role in anti-microbial peptide secretion and innate immunity.
Shandala, Tetyana; Woodcock, Joanna M; Ng, Yeap; Biggs, Lisa; Skoulakis, Efthimios M C; Brooks, Doug A; Lopez, Angel F
2011-07-01
The secretion of anti-microbial peptides is recognised as an essential step in innate immunity, but there is limited knowledge of the molecular mechanism controlling the release of these effectors from immune response cells. Here, we report that Drosophila 14-3-3ε mutants exhibit reduced survival when infected with either Gram-positive or Gram-negative bacteria, indicating a functional role for 14-3-3ε in innate immunity. In 14-3-3ε mutants, there was a reduced release of the anti-microbial peptide Drosomycin into the haemolymph, which correlated with an accumulation of Drosomycin-containing vesicles near the plasma membrane of cells isolated from immune response tissues. Drosomycin appeared to be delivered towards the plasma membrane in Rab4- and Rab11-positive vesicles and smaller Rab11-positive vesicles. RNAi silencing of Rab11 and Rab4 significantly blocked the anterograde delivery of Drosomycin from the perinuclear region to the plasma membrane. However, in 14-3-3ε mutants there was an accumulation of small Rab11-positive vesicles near the plasma membrane. This vesicular phenotype was similar to that observed in response to the depletion of the vesicular Syntaxin protein Syx1a. In wild-type Drosophila immune tissue, 14-3-3ε was detected adjacent to Rab11, and partially overlapping with Syx1a, on vesicles near the plasma membrane. We conclude that 14-3-3ε is required for Rab11-positive vesicle function, which in turn enables antimicrobial peptide secretion during an innate immune response.
Rab6a/a’ Are Important Golgi Regulators of Pro-Inflammatory TNF Secretion in Macrophages
Micaroni, Massimo; Stanley, Amanda C.; Khromykh, Tatiana; Venturato, Juliana; Wong, Colin X. F.; Lim, Jet P.; Marsh, Brad J.; Storrie, Brian; Gleeson, Paul A.; Stow, Jennifer L.
2013-01-01
Lipopolysaccharide (LPS)-activated macrophages secrete pro-inflammatory cytokines, including tumor necrosis factor (TNF) to elicit innate immune responses. Secretion of these cytokines is also a major contributing factor in chronic inflammatory disease. In previous studies we have begun to elucidate the pathways and molecules that mediate the intracellular trafficking and secretion of TNF. Rab6a and Rab6a' (collectively Rab6) are trans-Golgi-localized GTPases known for roles in maintaining Golgi structure and Golgi-associated trafficking. We found that induction of TNF secretion by LPS promoted the selective increase of Rab6 expression. Depletion of Rab6 (via siRNA and shRNA) resulted in reorganization of the Golgi ribbon into more compact structures that at the resolution of electron microcopy consisted of elongated Golgi stacks that likely arose from fusion of smaller Golgi elements. Concomitantly, the delivery of TNF to the cell surface and subsequent release into the media was reduced. Dominant negative mutants of Rab6 had similar effects in disrupting TNF secretion. In live cells, Rab6–GFP were localized on trans-Golgi network (TGN)-derived tubular carriers demarked by the golgin p230. Rab6 depletion and inactive mutants altered carrier egress and partially reduced p230 membrane association. Our results show that Rab6 acts on TNF trafficking at the level of TGN exit in tubular carriers and our findings suggest Rab6 may stabilize p230 on the tubules to facilitate TNF transport. Both Rab6 isoforms are needed in macrophages for Golgi stack organization and for the efficient post-Golgi transport of TNF. This work provides new insights into Rab6 function and into the role of the Golgi complex in cytokine secretion in inflammatory macrophages. PMID:23437303
Rab6a/a' are important Golgi regulators of pro-inflammatory TNF secretion in macrophages.
Micaroni, Massimo; Stanley, Amanda C; Khromykh, Tatiana; Venturato, Juliana; Wong, Colin X F; Lim, Jet P; Marsh, Brad J; Storrie, Brian; Gleeson, Paul A; Stow, Jennifer L
2013-01-01
Lipopolysaccharide (LPS)-activated macrophages secrete pro-inflammatory cytokines, including tumor necrosis factor (TNF) to elicit innate immune responses. Secretion of these cytokines is also a major contributing factor in chronic inflammatory disease. In previous studies we have begun to elucidate the pathways and molecules that mediate the intracellular trafficking and secretion of TNF. Rab6a and Rab6a' (collectively Rab6) are trans-Golgi-localized GTPases known for roles in maintaining Golgi structure and Golgi-associated trafficking. We found that induction of TNF secretion by LPS promoted the selective increase of Rab6 expression. Depletion of Rab6 (via siRNA and shRNA) resulted in reorganization of the Golgi ribbon into more compact structures that at the resolution of electron microcopy consisted of elongated Golgi stacks that likely arose from fusion of smaller Golgi elements. Concomitantly, the delivery of TNF to the cell surface and subsequent release into the media was reduced. Dominant negative mutants of Rab6 had similar effects in disrupting TNF secretion. In live cells, Rab6-GFP were localized on trans-Golgi network (TGN)-derived tubular carriers demarked by the golgin p230. Rab6 depletion and inactive mutants altered carrier egress and partially reduced p230 membrane association. Our results show that Rab6 acts on TNF trafficking at the level of TGN exit in tubular carriers and our findings suggest Rab6 may stabilize p230 on the tubules to facilitate TNF transport. Both Rab6 isoforms are needed in macrophages for Golgi stack organization and for the efficient post-Golgi transport of TNF. This work provides new insights into Rab6 function and into the role of the Golgi complex in cytokine secretion in inflammatory macrophages.
Biogenesis of influenza a virus hemagglutinin cross-protective stem epitopes.
Magadán, Javier G; Altman, Meghan O; Ince, William L; Hickman, Heather D; Stevens, James; Chevalier, Aaron; Baker, David; Wilson, Patrick C; Ahmed, Rafi; Bennink, Jack R; Yewdell, Jonathan W
2014-06-01
Antigenic variation in the globular domain of influenza A virus (IAV) hemagglutinin (HA) precludes effective immunity to this major human pathogen. Although the HA stem is highly conserved between influenza virus strains, HA stem-reactive antibodies (StRAbs) were long considered biologically inert. It is now clear, however, that StRAbs reduce viral replication in animal models and protect against pathogenicity and death, supporting the potential of HA stem-based immunogens as drift-resistant vaccines. Optimally designing StRAb-inducing immunogens and understanding StRAb effector functions require thorough comprehension of HA stem structure and antigenicity. Here, we study the biogenesis of HA stem epitopes recognized in cells infected with various drifted IAV H1N1 strains using mouse and human StRAbs. Using a novel immunofluorescence (IF)-based assay, we find that human StRAbs bind monomeric HA in the endoplasmic reticulum (ER) and trimerized HA in the Golgi complex (GC) with similar high avidity, potentially good news for producing effective monomeric HA stem immunogens. Though HA stem epitopes are nestled among several N-linked oligosaccharides, glycosylation is not required for full antigenicity. Rather, as N-linked glycans increase in size during intracellular transport of HA through the GC, StRAb binding becomes temperature-sensitive, binding poorly to HA at 4°C and well at 37°C. A de novo designed, 65-residue protein binds the mature HA stem independently of temperature, consistent with a lack of N-linked oligosaccharide steric hindrance due to its small size. Likewise, StRAbs bind recombinant HA carrying simple N-linked glycans in a temperature-independent manner. Chemical cross-linking experiments show that N-linked oligosaccharides likely influence StRAb binding by direct local effects rather than by globally modifying the conformational flexibility of HA. Our findings indicate that StRAb binding to HA is precarious, raising the possibility that sufficient immune pressure on the HA stem region could select for viral escape mutants with increased steric hindrance from N-linked glycans.
Zacchi, Paola; Stenmark, Harald; Parton, Robert G.; Orioli, Donata; Lim, Filip; Giner, Angelika; Mellman, Ira; Zerial, Marino; Murphy, Carol
1998-01-01
A key feature of polarized epithelial cells is the ability to maintain the specific biochemical composition of the apical and basolateral plasma membrane domains while selectively allowing transport of proteins and lipids from one pole to the opposite by transcytosis. The small GTPase, rab17, a member of the rab family of regulators of intracellular transport, is specifically induced during cell polarization in the developing kidney. We here examined its intracellular distribution and function in both nonpolarized and polarized cells. By confocal immunofluorescence microscopy, rab17 colocalized with internalized transferrin in the perinuclear recycling endosome of BHK-21 cells. In polarized Eph4 cells, rab17 associated with the apical recycling endosome that has been implicated in recycling and transcytosis. The localization of rab17, therefore, strengthens the proposed homology between this compartment and the recycling endosome of nonpolarized cells. Basolateral to apical transport of two membrane-bound markers, the transferrin receptor and the FcLR 5-27 chimeric receptor, was specifically increased in Eph4 cells expressing rab17 mutants defective in either GTP binding or hydrolysis. Furthermore, the mutant proteins stimulated apical recycling of FcLR 5-27. These results support a role for rab17 in regulating traffic through the apical recycling endosome, suggesting a function in polarized sorting in epithelial cells. PMID:9490718
Leiva, Natalia; Pavarotti, Martín; Colombo, María I; Damiani, María T
2006-06-10
By phagocytosis, macrophages engulf large particles, microorganisms and senescent cells in vesicles called phagosomes. Many internalized proteins rapidly shuttle back to the plasma membrane following phagosome biogenesis. Here, we report a new approach to the study of recycling from the phagosomal compartment: streptolysin O- (SLO) permeabilized macrophages. In this semi-intact cell system, energy and cytosol are required to efficiently reconstitute recycling transport. Addition of GDPbetaS strongly inhibits this transport step, suggesting that a GTP-binding protein modulates the dynamics of cargo exit from the phagosomal compartment. GTPases of the Rab family control vesicular trafficking, and Rab11 is involved in transferrin receptor recycling. To unravel the role of Rab11 in the phagocytic pathway, we added recombinant proteins to SLO-permeabilized macrophages. Rab11:S25N, a negative mutant, strongly diminishes the release of recycled proteins from phagosomes. In contrast, wild type Rab11 and its positive mutant (Rab11:Q70L) favor this vesicular transport event. Using biochemical and morphological assays, we confirm that overexpression of Rab11:S25N substantially decreases recycling from phagosomes in intact cells. These findings show the requirement of a functional Rab11 for the retrieval to the plasma membrane of phagosomal content. SLO-permeabilized macrophages likely constitute a useful tool to identify new molecules involved in regulating transport along the phagocytic pathway.
Roos, Jonas; Bejai, Sarosh; Oide, Shinichi; Dixelius, Christina
2014-01-01
Verticillium longisporum is a soil-borne pathogen with a preference for plants within the family Brassicaceae. Following invasion of the roots, the fungus proliferates in the plant vascular system leading to stunted plant growth, chlorosis and premature senescence. RabGTPases have been demonstrated to play a crucial role in regulating multiple responses in plants. Here, we report on the identification and characterization of the Rab GTPase-activating protein RabGAP22 gene from Arabidopsis, as an activator of multiple components in the immune responses to V. longisporum. RabGAP22Pro:GUS transgenic lines showed GUS expression predominantly in root meristems, vascular tissues and stomata, whereas the RabGAP22 protein localized in the nucleus. Reduced RabGAP22 transcript levels in mutants of the brassinolide (BL) signaling gene BRI1-ASSOCIATED RECEPTOR KINASE 1, together with a reduction of fungal proliferation following BL pretreatment, suggested RabGAP22 to be involved in BL-mediated responses. Pull-down assays revealed SERINE:GLYOXYLATE AMINOTRANSFERASE (AGT1) as an interacting partner during V. longisporum infection and bimolecular fluorescence complementation (BiFC) showed the RabGAP22-AGT1 protein complex to be localized in the peroxisomes. Further, fungal-induced RabGAP22 expression was found to be associated with elevated endogenous levels of the plant hormones jasmonic acid (JA) and abscisic acid (ABA). An inadequate ABA response in rabgap22-1 mutants, coupled with a stomata-localized expression of RabGAP22 and impairment of guard cell closure in response to V. longisporum and Pseudomonas syringae, suggest that RabGAP22 has multiple roles in innate immunity. PMID:24505423
Zhang, Jinzhong; Johnson, Jennifer L; He, Jing; Napolitano, Gennaro; Ramadass, Mahalakshmi; Rocca, Celine; Kiosses, William B; Bucci, Cecilia; Xin, Qisheng; Gavathiotis, Evripidis; Cuervo, Ana María; Cherqui, Stephanie; Catz, Sergio D
2017-06-23
The lysosomal storage disease cystinosis, caused by cystinosin deficiency, is characterized by cell malfunction, tissue failure, and progressive renal injury despite cystine-depletion therapies. Cystinosis is associated with defects in chaperone-mediated autophagy (CMA), but the molecular mechanisms are incompletely understood. Here, we show CMA substrate accumulation in cystinotic kidney proximal tubule cells. We also found mislocalization of the CMA lysosomal receptor LAMP2A and impaired substrate translocation into the lysosome caused by defective CMA in cystinosis. The impaired LAMP2A trafficking and localization were rescued either by the expression of wild-type cystinosin or by the disease-associated point mutant CTNS-K280R, which has no cystine transporter activity. Defective LAMP2A trafficking in cystinosis was found to associate with decreased expression of the small GTPase Rab11 and the Rab7 effector RILP. Defective Rab11 trafficking in cystinosis was rescued by treatment with small-molecule CMA activators. RILP expression was restored by up-regulation of the transcription factor EB (TFEB), which was down-regulated in cystinosis. Although LAMP2A expression is independent of TFEB, TFEB up-regulation corrected lysosome distribution and lysosomal LAMP2A localization in Ctns -/- cells but not Rab11 defects. The up-regulation of Rab11, Rab7, or RILP, but not its truncated form RILP-C33, rescued LAMP2A-defective trafficking in cystinosis, whereas dominant-negative Rab11 or Rab7 impaired LAMP2A trafficking. Treatment of cystinotic cells with a CMA activator increased LAMP2A localization at the lysosome and increased cell survival. Altogether, we show that LAMP2A trafficking is regulated by cystinosin, Rab11, and RILP and that CMA up-regulation is a potential clinically relevant mechanism to increase cell survival in cystinosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Liu, Chun-Chun; Zhang, Yun-Na; Li, Zhao-Yao; Hou, Jin-Xiu; Zhou, Jing; Kan, Lin; Zhou, Bin; Chen, Pu-Yan
2017-10-01
During infection Japanese encephalitis virus (JEV) generally enters host cells via receptor-mediated clathrin-dependent endocytosis. The trafficking of JEV within endosomes is controlled by Rab GTPases, but which Rab proteins are involved in JEV entry into BHK-21 cells is unknown. In this study, entry and postinternalization of JEV were analyzed using biochemical inhibitors, RNA interference, and dominant negative (DN) mutants. Our data demonstrate that JEV entry into BHK-21 cells depends on clathrin, dynamin, and cholesterol but not on caveolae or macropinocytosis. The effect on JEV infection of dominant negative (DN) mutants of four Rab proteins that regulate endosomal trafficking was examined. Expression of DN Rab5 and DN Rab11, but not DN Rab7 and DN Rab9, significantly inhibited JEV replication. These results were further tested by silencing Rab5 or Rab11 expression before viral infection. Confocal microscopy showed that virus particles colocalized with Rab5 or Rab11 within 15 min after virus entry, suggesting that after internalization JEV moves to early and recycling endosomes before the release of the viral genome. Our findings demonstrate the roles of Rab5 and Rab11 on JEV infection of BHK-21 cells through the endocytic pathway, providing new insights into the life cycle of flaviviruses. IMPORTANCE Although Japanese encephalitis virus (JEV) utilizes different endocytic pathways depending on the cell type being infected, the detailed mechanism of its entry into BHK-21 cells is unknown. Understanding the process of JEV endocytosis and postinternalization will advance our knowledge of JEV infection and pathogenesis as well as provide potential novel drug targets for antiviral intervention. With this objective, we used systematic approaches to dissect this process. The results show that entry of JEV into BHK-21 cells requires a low-pH environment and that the process occurs through dynamin-, actin-, and cholesterol-dependent clathrin-mediated endocytosis that requires Rab5 and Rab11. Our work provides a detailed picture of the entry of JEV into BHK-21 cells and the cellular events that follow. Copyright © 2017 American Society for Microbiology.
Sun, Jim; Wang, Xuetao; Lau, Alice; Liao, Ting-Yu Angela; Bucci, Cecilia; Hmama, Zakaria
2010-01-01
Background Microorganisms capable of surviving within macrophages are rare, but represent very successful pathogens. One of them is Mycobacterium tuberculosis (Mtb) whose resistance to early mechanisms of macrophage killing and failure of its phagosomes to fuse with lysosomes causes tuberculosis (TB) disease in humans. Thus, defining the mechanisms of phagosome maturation arrest and identifying mycobacterial factors responsible for it are key to rational design of novel drugs for the treatment of TB. Previous studies have shown that Mtb and the related vaccine strain, M. bovis bacille Calmette-Guérin (BCG), disrupt the normal function of host Rab5 and Rab7, two small GTPases that are instrumental in the control of phagosome fusion with early endosomes and late endosomes/lysosomes respectively. Methodology/Principal Findings Here we show that recombinant Mtb nucleoside diphosphate kinase (Ndk) exhibits GTPase activating protein (GAP) activity towards Rab5 and Rab7. Then, using a model of latex bead phagosomes, we demonstrated that Ndk inhibits phagosome maturation and fusion with lysosomes in murine RAW 264.7 macrophages. Maturation arrest of phagosomes containing Ndk-beads was associated with the inactivation of both Rab5 and Rab7 as evidenced by the lack of recruitment of their respective effectors EEA1 (early endosome antigen 1) and RILP (Rab7-interacting lysosomal protein). Consistent with these findings, macrophage infection with an Ndk knocked-down BCG strain resulted in increased fusion of its phagosome with lysosomes along with decreased survival of the mutant. Conclusion Our findings provide evidence in support of the hypothesis that mycobacterial Ndk is a putative virulence factor that inhibits phagosome maturation and promotes survival of mycobacteria within the macrophage. PMID:20098737
A RabGAP Regulates Life-Cycle Duration via Trimeric G-protein Cascades in Dictyostelium discoideum
Kuwayama, Hidekazu; Miyanaga, Yukihiro; Urushihara, Hideko; Ueda, Masahiro
2013-01-01
Background The life-cycle of cellular slime molds comprises chronobiologically regulated processes. During the growth phase, the amoeboid cells proliferate at a definite rate. Upon starvation, they synthesize cAMP as both first and second messengers in signalling pathways and form aggregates, migrating slugs, and fruiting bodies, consisting of spores and stalk cells, within 24 h. In Dictyostelium discoideum, because most growth-specific events cease during development, proliferative and heterochronic mutations are not considered to be interrelated and no genetic factor governing the entire life-cycle duration has ever been identified. Methodology/Principal Findings Using yeast 2-hybrid library screening, we isolated a Dictyostelium discoideum RabGAP, Dd Rbg-3, as a candidate molecule by which the Dictyostelium Gα2 subunit directs its effects. Rab GTPase-activating protein, RabGAP, acts as a negative regulator of Rab small GTPases, which orchestrate the intracellular membrane trafficking involved in cell proliferation. Deletion mutants of Dd rbg-3 exhibited an increased growth rate and a shortened developmental period, while an overexpression mutant demonstrated the opposite effects. We also show that Dd Rbg-3 interacts with 2 Gα subunits in an activity-dependent manner in vitro. Furthermore, both human and Caenorhabditis elegans rbg-3 homologs complemented the Dd rbg-3–deletion phenotype in D. discoideum, indicating that similar pathways may be generally conserved in multicellular organisms. Conclusions/Significance Our findings suggest that Dd Rbg-3 acts as a key element regulating the duration of D. discoideum life-span potentially via trimeric G-protein cascades. PMID:24349132
Functional Characterization of Rare RAB12 Variants and Their Role in Musician's and Other Dystonias.
Hebert, Eva; Borngräber, Friederike; Schmidt, Alexander; Rakovic, Aleksandar; Brænne, Ingrid; Weissbach, Anne; Hampf, Jennie; Vollstedt, Eva-Juliane; Größer, Leopold; Schaake, Susen; Müller, Michaela; Manzoor, Humera; Jabusch, Hans-Christian; Alvarez-Fischer, Daniel; Kasten, Meike; Kostic, Vladimir S; Gasser, Thomas; Zeuner, Kirsten E; Kim, Han-Joon; Jeon, Beomseok; Bauer, Peter; Altenmüller, Eckart; Klein, Christine; Lohmann, Katja
2017-10-18
Mutations in RAB (member of the Ras superfamily) genes are increasingly recognized as cause of a variety of disorders including neurological conditions. While musician's dystonia (MD) and writer's dystonia (WD) are task-specific movement disorders, other dystonias persistently affect postures as in cervical dystonia. Little is known about the underlying etiology. Next-generation sequencing revealed a rare missense variant (c.586A>G; p.Ile196Val) in RAB12 in two of three MD/WD families. Next, we tested 916 additional dystonia patients; 512 Parkinson's disease patients; and 461 healthy controls for RAB12 variants and identified 10 additional carriers of rare missense changes among dystonia patients (1.1%) but only one carrier in non-dystonic individuals (0.1%; p = 0.005). The detected variants among index patients comprised p.Ile196Val ( n = 6); p.Ala174Thr ( n = 3); p.Gly13Asp; p.Ala148Thr; and p.Arg181Gln in patients with MD; cervical dystonia; or WD. Two relatives of MD patients with WD also carried p.Ile196Val. The two variants identified in MD patients (p.Ile196Val; p.Gly13Asp) were characterized on endogenous levels in patient-derived fibroblasts and in two RAB12-overexpressing cell models. The ability to hydrolyze guanosine triphosphate (GTP), so called GTPase activity, was increased in mutants compared to wildtype. Furthermore, subcellular distribution of RAB12 in mutants was altered in fibroblasts. Soluble Transferrin receptor 1 levels were reduced in the blood of all three tested p.Ile196Val carriers. In conclusion, we demonstrate an enrichment of missense changes among dystonia patients. Functional characterization revealed altered enzyme activity and lysosomal distribution in mutants suggesting a contribution of RAB12 variants to MD and other dystonias.
Docking is not a prerequisite but a temporal constraint for fusion of secretory granules.
Kasai, Kazuo; Fujita, Takuji; Gomi, Hiroshi; Izumi, Tetsuro
2008-07-01
We examined secretory granule dynamics using total internal reflection fluorescence microscopy in normal pancreatic beta cells and their mutants devoid of Rab27a and/or its effector, granuphilin, which play critical roles in the docking and recruitment of insulin granules to the plasma membrane. In the early phase of glucose stimulation in wild-type cells, we observed marked fusion of granules recruited from a relatively distant area, in parallel with that from granules located underneath the plasma membrane. Furthermore, despite a lack of granules directly attached to the plasma membrane, both spontaneous and evoked fusion was increased in granuphilin-null cells. In addition to these granuphilin-null phenotypes, Rab27a/granuphilin doubly deficient cells showed the decreases in granules located next to the docked area and in fusion from granules near the plasma membrane in the early phase of glucose-stimulated secretion, similar to Rab27a-mutated cells. Thus, the two proteins play nonoverlapping roles in insulin exocytosis: granuphilin acts on the granules underneath the plasma membrane, whereas Rab27a acts on those in a more distal area. These findings demonstrate that, in contrast to our conventional understanding, stable attachment of secretory granules to the plasma membrane is not prerequisite but temporally inhibitory for both spontaneous and evoked fusion.
Role of Rab5 in the formation of macrophage-derived foam cell.
Chan, Lokwern; Hong, Jin; Pan, Junjie; Li, Jian; Wen, Zhichao; Shi, Haiming; Ding, Jianping; Luo, Xinping
2017-09-12
Foam cells play a key role in the occurrence and pathogenesis of atherosclerosis. Its formation starts with the ingestion of oxidized low-density lipoprotein (oxLDL). The process is associated with Ras related protein in brain 5 (Rab5) which plays a critical role in regulating endocytosis and early endosomal trafficking. Base on this, we presumed that Rab5 might participate in the maturation of foam cell. The aim of this study is to investigate the effect of Rab5 on macrophage cholesterol during the evolvement of macrophage when induced by oxLDL to the formation of foam cell. Immunohistochemistry was performed to analyze the distribution of macrophages and Rab5 in atherosclerotic plaque. RNA inteference study and transfection of inactive mutant (GFP-Rab5-S34N) and active mutant (GFP-Rab5-Q79L) in U937-derived macrophage were utilized to investigate the impact of Rab5 on the process of macrophage cholesterol, which could be detected by oil red O staining, determination of intracellular lipid content, filipin staining, nile red staining and the costaining of early endosome antigen-1 (EEA-1) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylin dicarbocyanine (Dil)-labelled oxLDL (Dil-oxLDL). Rab5 was found abundantly localized in macrophage rich areas of human atherosclerotic lesions. On the foam cell study, the expression of Rab5 was increased after the incubation of oxLDL. The inteference study indicated the depletion of Rab5 led to the decreases of oil red O staining areas, total cholesterol and cholesterol esters in U937-derived marophages. Moreover, the fluorescence intensity of filipin and nile red staining were lower in GFP-Rab5-S34N as compared with GFP-Rab5-Q79L. The confocal study demonstrated less Dil-oxLDL was internalized in GFP-Rab5-S34N as compared with GFP-Rab5-Q79L; the result showed also the decrease in colocalization of internalized Dil-oxLDL and EEA-1 for GFP-Rab5-S34N as compared with GFP-Rab5-Q79L. Rab5 plays an important role in modulating the intracellular cholesterol of macrophages and consequently mediating the formation of foam cells.
CED-10/Rac1 Regulates Endocytic Recycling through the RAB-5 GAP TBC-2
Sun, Lin; Liu, Ou; Desai, Jigar; Karbassi, Farhad; Sylvain, Marc-André; Shi, Anbing; Zhou, Zheng; Rocheleau, Christian E.; Grant, Barth D.
2012-01-01
Rac1 is a founding member of the Rho-GTPase family and a key regulator of membrane remodeling. In the context of apoptotic cell corpse engulfment, CED-10/Rac1 acts with its bipartite guanine nucleotide exchange factor, CED-5/Dock180-CED-12/ELMO, in an evolutionarily conserved pathway to promote phagocytosis. Here we show that in the context of the Caenorhabditis elegans intestinal epithelium CED-10/Rac1, CED-5/Dock180, and CED-12/ELMO promote basolateral recycling. Furthermore, we show that CED-10 binds to the RAB-5 GTPase activating protein TBC-2, that CED-10 contributes to recruitment of TBC-2 to endosomes, and that recycling cargo is trapped in recycling endosomes in ced-12, ced-10, and tbc-2 mutants. Expression of GTPase defective RAB-5(Q78L) also traps recycling cargo. Our results indicate that down-regulation of early endosome regulator RAB-5/Rab5 by a CED-5, CED-12, CED-10, TBC-2 cascade is an important step in the transport of cargo through the basolateral recycling endosome for delivery to the plasma membrane. PMID:22807685
Terebiznik, M. R.; Vazquez, C. L.; Torbicki, K.; Banks, D.; Wang, T.; Hong, W.; Blanke, S. R.; Colombo, M. I.; Jones, N. L.
2006-01-01
Helicobacter pylori colonizes the gastric epithelium of at least 50% of the world's human population, playing a causative role in the development of chronic gastritis, peptic ulcers, and gastric adenocarcinoma. Current evidence indicates that H. pylori can invade epithelial cells in the gastric mucosa. However, relatively little is known about the biology of H. pylori invasion and survival in host cells. Here, we analyze both the nature of and the mechanisms responsible for the formation of H. pylori's intracellular niche. We show that in AGS cells infected with H. pylori, bacterium-containing vacuoles originate through the fusion of late endocytic organelles. This process is mediated by the VacA-dependent retention of the small GTPase Rab7. In addition, functional interactions between Rab7 and its downstream effector, Rab-interacting lysosomal protein (RILP), are necessary for the formation of the bacterial compartment since expression of mutant forms of RILP or Rab7 that fail to bind each other impaired the formation of this unique bacterial niche. Moreover, the VacA-mediated sequestration of active Rab7 disrupts the full maturation of vacuoles as assessed by the lack of both colocalization with cathepsin D and degradation of internalized cargo in the H. pylori-containing vacuole. Based on these findings, we propose that the VacA-dependent isolation of the H. pylori-containing vacuole from bactericidal components of the lysosomal pathway promotes bacterial survival and contributes to the persistence of infection. PMID:17000720
A phorbol ester-binding protein is required downstream of Rab5 in endosome fusion.
Aballay, A; Barbieri, M A; Colombo, M I; Arenas, G N; Stahl, P D; Mayorga, L S
1998-12-28
Previous observations indicate that a zinc and phorbol ester binding factor is necessary for endosome fusion. To further characterize the role of this factor in the process, we used an in vitro endosome fusion assay supplemented with recombinant Rab5 proteins. Both zinc depletion and addition of calphostin C, an inhibitor of protein kinase C, inhibited endosome fusion in the presence of active Rab5. Addition of the phorbol ester PMA (phorbol 12-myristate 13-acetate) reversed the inhibition of endosome fusion caused by a Rab5 negative mutant. Moreover, PMA stimulated fusion in the presence of Rab5 immunodepleted cytosol. These results suggest that the phorbol ester binding protein is acting downstream of Rab5 in endosome fusion.
Jia, Feifei; Li, Ye; Huang, Yan; Chen, Tingjin; Li, Shan; Xu, Yanquan; Wu, Zhongdao; Li, Xuerong; Yu, Xinbing
2013-07-01
Accumulating evidences suggest that Rab7 GTPase is important for the normal progression of autophagy. However, the role of Rab7 GTPase in regulation of autophagy in Clonorchis sinensis is not known. In this study, a gene encoding Rab7 was isolated from C. sinensis adult cDNA. Recombinant CsRab7 was expressed and purified from Escherichia coli. CsRab7 transcripts were detected in the cDNA of adult worm, metacercaria, cercaria, and egg of C. sinensis, and were highly expressed in the metacercaria. Immunohistochemical localization results revealed that CsRab7 was specifically deposited on the vitellarium and eggs of adult worm. Furthermore, EGFP signal of CsRab7WT and the active mutant CsRab7Q67L were associated with autophagic vesicles in transiently transfected 293T cells. It is concluded from the present study that CsRab7 GTPase possibly contributes to the development of C. sinensis and that the autophagy pathway could be an important site of action with respect to the developmental role of CsRab7 in C. sinensis.
ARHGEF10 directs the localization of Rab8 to Rab6-positive executive vesicles.
Shibata, Satoshi; Kawanai, Tsubasa; Hara, Takayuki; Yamamoto, Asuka; Chaya, Taro; Tokuhara, Yasunori; Tsuji, Chinami; Sakai, Manabu; Tachibana, Taro; Inagaki, Shinobu
2016-10-01
The function of ARHGEF10, a known guanine nucleotide exchange factor (GEF) for RhoA with proposed roles in various diseases, is poorly understood. To understand the precise function of this protein, we raised a monoclonal antibody against ARHGEF10 and determined its localization in HeLa cells. ARHGEF10 was found to localize to vesicles containing Rab6 (of which there are three isoforms, Rab6a, Rab6b and Rab6c), Rab8 (of which there are two isoforms, Rab8a and Rab8b), and/or the secretion marker neuropeptide Y (NPY)-Venus in a Rab6-dependent manner. These vesicles were known to originate from the Golgi and contain secreted or membrane proteins. Ectopic expression of an N-terminal-truncated ARHGEF10 mutant led to the generation of large vesicle-like structures containing both Rab6 and Rab8. Additionally, small interfering (si)RNA-mediated knockdown of ARHGEF10 impaired the localization of Rab8 to these exocytotic vesicles. Furthermore, the invasiveness of MDA-MB231 cells was markedly decreased by knockdown of ARHGEF10, as well as of Rab8. From these results, we propose that ARHGEF10 acts in exocytosis and tumor invasion in a Rab8-dependent manner. © 2016. Published by The Company of Biologists Ltd.
Functional Characterization of Rare RAB12 Variants and Their Role in Musician’s and Other Dystonias
Hebert, Eva; Borngräber, Friederike; Schmidt, Alexander; Rakovic, Aleksandar; Brænne, Ingrid; Weissbach, Anne; Hampf, Jennie; Vollstedt, Eva-Juliane; Größer, Leopold; Schaake, Susen; Müller, Michaela; Manzoor, Humera; Jabusch, Hans-Christian; Alvarez-Fischer, Daniel; Kasten, Meike; Kostic, Vladimir S.; Gasser, Thomas; Zeuner, Kirsten E.; Kim, Han-Joon; Jeon, Beomseok; Bauer, Peter; Altenmüller, Eckart; Klein, Christine; Lohmann, Katja
2017-01-01
Mutations in RAB (member of the Ras superfamily) genes are increasingly recognized as cause of a variety of disorders including neurological conditions. While musician’s dystonia (MD) and writer’s dystonia (WD) are task-specific movement disorders, other dystonias persistently affect postures as in cervical dystonia. Little is known about the underlying etiology. Next-generation sequencing revealed a rare missense variant (c.586A>G; p.Ile196Val) in RAB12 in two of three MD/WD families. Next, we tested 916 additional dystonia patients; 512 Parkinson’s disease patients; and 461 healthy controls for RAB12 variants and identified 10 additional carriers of rare missense changes among dystonia patients (1.1%) but only one carrier in non-dystonic individuals (0.1%; p = 0.005). The detected variants among index patients comprised p.Ile196Val (n = 6); p.Ala174Thr (n = 3); p.Gly13Asp; p.Ala148Thr; and p.Arg181Gln in patients with MD; cervical dystonia; or WD. Two relatives of MD patients with WD also carried p.Ile196Val. The two variants identified in MD patients (p.Ile196Val; p.Gly13Asp) were characterized on endogenous levels in patient-derived fibroblasts and in two RAB12-overexpressing cell models. The ability to hydrolyze guanosine triphosphate (GTP), so called GTPase activity, was increased in mutants compared to wildtype. Furthermore, subcellular distribution of RAB12 in mutants was altered in fibroblasts. Soluble Transferrin receptor 1 levels were reduced in the blood of all three tested p.Ile196Val carriers. In conclusion, we demonstrate an enrichment of missense changes among dystonia patients. Functional characterization revealed altered enzyme activity and lysosomal distribution in mutants suggesting a contribution of RAB12 variants to MD and other dystonias. PMID:29057844
Gutkowska, Malgorzata; Wnuk, Marta; Nowakowska, Julita; Lichocka, Malgorzata; Stronkowski, Michal M.; Swiezewska, Ewa
2015-01-01
Rab proteins, key players in vesicular transport in all eukaryotic cells, are post-translationally modified by lipid moieties. Two geranylgeranyl groups are attached to the Rab protein by the heterodimeric enzyme Rab geranylgeranyl transferase (RGT) αβ. Partial impairment in this enzyme activity in Arabidopsis, by disruption of the AtRGTB1 gene, is known to influence plant stature and disturb gravitropic and light responses. Here it is shown that mutations in each of the RGTB genes cause a tip growth defect, visible as root hair and pollen tube deformations. Moreover, FM 1–43 styryl dye endocytosis and recycling are affected in the mutant root hairs. Finally, it is demonstrated that the double mutant, with both AtRGTB genes disrupted, is non-viable due to absolute male sterility. Doubly mutated pollen is shrunken, has an abnormal exine structure, and shows strong disorganization of internal membranes, particularly of the endoplasmic reticulum system. PMID:25316062
Rab11a and its binding partners regulate the recycling of the β1-adrenergic receptor
Gardner, Lidia A.; Hajjhussein, Hassan; Frederick, Katherine C.; Bahouth, Suleiman W.
2010-01-01
β1-adrenergic receptors (β1-AR) are internalized in response to agonists and then recycle back for another round of signaling. The serine 312 to alanine mutant of the β1-AR (S312A) is internalized but does not recycle. We determined that WT β1-AR and S312A were internalized initially to an early sorting compartment because they colocalized by >70% with the early endosomal markers rab5a and early endosomal antigen-1 (EEA1). Subsequently, the WT β1-AR trafficked via rab4a-expressing sorting endosomes to recycling endosomes. In recycling endosomes WT β1-AR were colocalized by >70% with the rab11 GTPase. S312A did not colocalize with either rab4a or rab11, instead they exited from early endosomes to late endosomes/lysosomes in which they were degraded. Rab11a played a prominent role in recycling of the WT β1-AR because dominant negative rab11a inhibited, while constitutively active rab11a accelerated the recycling of the β1-AR. Next, we determined the effect of each of the rab11-intercating proteins on trafficking of the WT β1-AR. The recycling of the β1-AR was markedly inhibited when myosin Vb, FIP2, FIP3 and rabphillin were knocked down. These data indicate that rab11a and a select group of its binding partners play a prominent role recycling of the human β1-AR. PMID:20727405
Dynamin and Rab5a-dependent trafficking and signaling of the neurokinin 1 receptor.
Schmidlin, F; Dery, O; DeFea, K O; Slice, L; Patierno, S; Sternini, C; Grady, E F; Bunnett, N W
2001-07-06
Understanding the molecular mechanisms of agonist-induced trafficking of G-protein-coupled receptors is important because of the essential role of trafficking in signal transduction. We examined the role of the GTPases dynamin 1 and Rab5a in substance P (SP)-induced trafficking and signaling of the neurokinin 1 receptor (NK1R), an important mediator of pain, depression, and inflammation, by studying transfected cells and enteric neurons that naturally express the NK1R. In unstimulated cells, the NK1R colocalized with dynamin at the plasma membrane, and Rab5a was detected in endosomes. SP induced translocation of the receptor into endosomes containing Rab5a immediately beneath the plasma membrane and then in a perinuclear location. Expression of the dominant negative mutants dynamin 1 K44E and Rab5aS34N inhibited endocytosis of SP by 45 and 32%, respectively. Dynamin K44E caused membrane retention of the NK1R, whereas Rab5aS34N also impeded the translocation of the receptor from superficially located to perinuclear endosomes. Both dynamin K44E and Rab5aS34N strongly inhibited resensitization of SP-induced Ca(2+) mobilization by 60 and 85%, respectively, but had no effect on NK1R desensitization. Dynamin K44E but not Rab5aS34N markedly reduced SP-induced phosphorylation of extracellular signal regulated kinases 1 and 2. Thus, dynamin mediates the formation of endosomes containing the NK1R, and Rab5a mediates both endosomal formation and their translocation from a superficial to a perinuclear location. Dynamin and Rab5a-dependent trafficking is essential for NK1R resensitization but is not necessary for desensitization of signaling. Dynamin-dependent but not Rab5a-dependent trafficking is required for coupling of the NK1R to the mitogen-activated protein kinase cascade. These processes may regulate the nociceptive, depressive, and proinflammatory effects of SP.
Roosterman, Dirk; Cottrell, Graeme S; Schmidlin, Fabien; Steinhoff, Martin; Bunnett, Nigel W
2004-07-16
Substance P (SP) induces endocytosis and recycling of the neurokinin 1 receptor (NK1R) in endothelial cells and spinal neurons at sites of inflammation and pain, and it is thus important to understand the mechanism and function of receptor trafficking. We investigated how the SP concentration affects NK1R trafficking and determined the role of Rab GTPases in trafficking. NK1R trafficking was markedly influenced by the SP concentration. High SP (10 nM) induced translocation of the NK1R and beta-arrestin 1 to perinuclear sorting endosomes containing Rab5a, where NK1R remained for >60 min. Low SP (1 nM) induced translocation of the NK1R to early endosomes located immediately beneath the plasma membrane that also contained Rab5a and beta-arrestin 1, followed by rapid recycling of the NK1R. Overexpression of Rab5a promoted NK1R translocation to perinuclear sorting endosomes, whereas the GTP binding-deficient mutant Rab5aS34N caused retention of the NK1R in superficial early endosomes. NK1R translocated from superficial early endosomes to recycling endosomes containing Rab4a and Rab11a, and Rab11aS25N inhibited NK1R recycling. Rapid NK1R recycling coincided with resensitization of SP-induced Ca2+ mobilization and with the return of surface SP binding sites. Resensitization was minimally affected by inhibition of vacuolar H(+)-ATPase and phosphatases but was markedly suppressed by disruption of Rab4a and Rab11a. Thus, whereas beta-arrestins mediate NK1R endocytosis, Rab5a regulates translocation between early and sorting endosomes, and Rab4a and Rab11a regulate trafficking through recycling endosomes. We have thus identified a new function of Rab5a as a control protein for directing concentration-dependent trafficking of the NK1R into different intracellular compartments and obtained evidence that Rab4a and Rab11a contribute to G-protein-coupled receptor recycling from early endosomes.
Regulation of neuromuscular junction organization by Rab2 and its effector ICA69 in Drosophila.
Mallik, Bhagaban; Dwivedi, Manish Kumar; Mushtaq, Zeeshan; Kumari, Manisha; Verma, Praveen Kumar; Kumar, Vimlesh
2017-06-01
The mechanisms underlying synaptic differentiation, which involves neuronal membrane and cytoskeletal remodeling, are not completely understood. We performed a targeted RNAi-mediated screen of Drosophila BAR-domain proteins and identified islet cell autoantigen 69 kDa (ICA69) as one of the key regulators of morphological differentiation of the larval neuromuscular junction (NMJ). We show that Drosophila ICA69 colocalizes with α-Spectrin at the NMJ. The conserved N-BAR domain of ICA69 deforms liposomes in vitro Full-length ICA69 and the ICAC but not the N-BAR domain of ICA69 induce filopodia in cultured cells. Consistent with its cytoskeleton regulatory role, ICA69 mutants show reduced α-Spectrin immunoreactivity at the larval NMJ. Manipulating levels of ICA69 or its interactor PICK1 alters the synaptic level of ionotropic glutamate receptors (iGluRs). Moreover, reducing PICK1 or Rab2 levels phenocopies ICA69 mutation. Interestingly, Rab2 regulates not only synaptic iGluR but also ICA69 levels. Thus, our data suggest that: (1) ICA69 regulates NMJ organization through a pathway that involves PICK1 and Rab2, and (2) Rab2 functions genetically upstream of ICA69 and regulates NMJ organization and targeting/retention of iGluRs by regulating ICA69 levels. © 2017. Published by The Company of Biologists Ltd.
Zhang, Zhanquan; Qin, Guozheng; Li, Boqiang; Tian, Shiping
2014-06-01
Pathogenic fungi usually secrete a series of virulence factors to the extracellular environment to facilitate infection. Rab GTPases play a central role in the secretory pathway. To explore the function of Rab/GTPase in filamentous fungi, we knocked out a Rab/GTPase family gene, Bcsas1, in Botrytis cinerea, an aggressive fungal pathogen that infects more than 200 plant species. A detailed analysis was conducted on the virulence and the secretory capability of the mutants. The results indicated that knockout of Bcsas1 inhibited hyphal development and reduced sporulation of B. cinerea on potato dextrose agar plates resulting in reduced virulence on various fruit hosts. Knocking out the Bcsas1 gene led to an accumulation of transport vesicles at the hyphal tip, significantly reduced extracellular protein content, and lowered the activity of polygalacturonase and xylanase in the extracellular medium. However, mutation of Bcsas1 did not affect the expression of genes encoding polygalacturonase and xylanase, suggesting the secretion of these two family enzymes was suppressed in the mutant. Moreover, a comparative analysis of the secretome provided further evidence that the disruption of Bcsas1 in mutant strains significantly depressed the secretion of polysaccharide hydrolases and proteases. The results indicate that Bcsas1, the Rab8/SEC4-like gene, plays a crucial role in development, protein secretion, and virulence of B. cinerea.
Meng, Zhen; Edman, Maria C.; Hsueh, Pang-Yu; Chen, Chiao-Yu; Klinngam, Wannita; Tolmachova, Tanya; Okamoto, Curtis T.
2016-01-01
The mechanism responsible for the altered spectrum of tear proteins secreted by lacrimal gland acinar cells (LGAC) in patients with Sjögren's Syndrome (SS) remains unknown. We have previously identified increased cathepsin S (CTSS) activity as a unique characteristic of tears of patients with SS. Here, we investigated the role of Rab3D, Rab27a, and Rab27b proteins in the enhanced release of CTSS from LGAC. Similar to patients with SS and to the male nonobese diabetic (NOD) mouse model of SS, CTSS activity was elevated in tears of mice lacking Rab3D. Findings of lower gene expression and altered localization of Rab3D in NOD LGAC reinforce a role for Rab3D in suppressing excess CTSS release under physiological conditions. However, CTSS activity was significantly reduced in tears of mice lacking Rab27 isoforms. The reliance of CTSS secretion on Rab27 activity was supported by in vitro findings that newly synthesized CTSS was detected in and secreted from Rab27-enriched secretory vesicles and that expression of dominant negative Rab27b reduced carbachol-stimulated secretion of CTSS in cultured LGAC. High-resolution 3D-structured illumination microscopy revealed microdomains of Rab3D and Rab27 isoforms on the same secretory vesicles but present in different proportions on different vesicles, suggesting that changes in their relative association with secretory vesicles may tailor the vesicle contents. We propose that a loss of Rab3D from secretory vesicles, leading to disproportionate Rab27-to-Rab3D activity, may contribute to the enhanced release of CTSS in tears of patients with SS. PMID:27076615
Differential endosomal sorting of a novel P2Y12 purinoreceptor mutant.
Cunningham, Margaret R; Nisar, Shaista P; Cooke, Alexandra E; Emery, Elizabeth D; Mundell, Stuart J
2013-05-01
P2Y12 receptor internalization and recycling play an essential role in ADP-induced platelet activation. Recently, we identified a patient with a mild bleeding disorder carrying a heterozygous mutation of P2Y12 (P341A) whose P2Y12 receptor recycling was significantly compromised. Using human cell line models, we identified key proteins regulating wild-type (WT) P2Y12 recycling and investigated P2Y12 -P341A receptor traffic. Treatment with ADP resulted in delayed Rab5-dependent internalization of P341A when compared with WT P2Y12 . While WT P2Y12 rapidly recycled back to the membrane via Rab4 and Rab11 recycling pathways, limited P341A recycling was observed, which relied upon Rab11 activity. Although minimal receptor degradation was evident, P341A was localized in Rab7-positive endosomes with considerable agonist-dependent accumulation in the trans-Golgi network (TGN). Rab7 activity is known to facilitate recruitment of retromer complex proteins to endosomes to transport cargo to the TGN. Here, we identified that P341A colocalized with Vps26; depletion of which blocked limited recycling and promoted receptor degradation. This study has identified key points of divergence in the endocytic traffic of P341A versus WT-P2Y12 . Given that these pathways are retained in human platelets, this research helps define the molecular mechanisms regulating P2Y12 receptor traffic and explain the compromised receptor function in the platelets of the P2Y12 -P341A-expressing patient. © 2013 John Wiley & Sons A/S.
Arf6 negatively controls the rapid recycling of the β2 adrenergic receptor.
Macia, Eric; Partisani, Mariagrazia; Paleotti, Olivia; Luton, Frederic; Franco, Michel
2012-09-01
β2-adrenergic receptor (β2AR), a member of the GPCR (G-protein coupled receptor) family, is internalized in a ligand- and β-arrestin-dependent manner into early endosomes, and subsequently recycled back to the plasma membrane. Here, we report that β-arrestin promotes the activation of the small G protein Arf6, which regulates the recycling and degradation of β2AR. We demonstrate in vitro that the C-terminal region of β-arrestin1 interacts directly and simultaneously with Arf6GDP and its specific exchange factor EFA6, to promote Arf6 activation. Similarly, the ligand-mediated activation of β2AR leads to the formation of Arf6GTP in vivo in a β-arrestin-dependent manner. Expression of either EFA6 or an activated Arf6 mutant caused accumulation of β2AR in the degradation pathway. This phenotype could be rescued by the expression of an activated mutant of Rab4, suggesting that Arf6 acts upstream of Rab4. We propose a model in which Arf6 plays an essential role in β2AR desensitization. The ligand-mediated stimulation of β2AR relocates β-arrestin to the plasma membrane, and triggers the activation of Arf6 by EFA6. The activation of Arf6 leads to accumulation of β2AR in the degradation pathway, and negatively controls Rab4-dependent fast recycling to prevent the re-sensitization of β2AR.
Sriram, V; Krishnan, K S; Mayor, Satyajit
2003-05-12
Endosomal degradation is severely impaired in primary hemocytes from larvae of eye color mutants of Drosophila. Using high resolution imaging and immunofluorescence microscopy in these cells, products of eye color genes, deep-orange (dor) and carnation (car), are localized to large multivesicular Rab7-positive late endosomes containing Golgi-derived enzymes. These structures mature into small sized Dor-negative, Car-positive structures, which subsequently fuse to form tubular lysosomes. Defective endosomal degradation in mutant alleles of dor results from a failure of Golgi-derived vesicles to fuse with morphologically arrested Rab7-positive large sized endosomes, which are, however, normally acidified and mature with wild-type kinetics. This locates the site of Dor function to fusion of Golgi-derived vesicles with the large Rab7-positive endocytic compartments. In contrast, endosomal degradation is not considerably affected in car1 mutant; fusion of Golgi-derived vesicles and maturation of large sized endosomes is normal. However, removal of Dor from small sized Car-positive endosomes is slowed, and subsequent fusion with tubular lysosomes is abolished. Overexpression of Dor in car1 mutant aggravates this defect, implicating Car in the removal of Dor from endosomes. This suggests that, in addition to an independent role in fusion with tubular lysosomes, the Sec1p homologue, Car, regulates Dor function.
Parkin Modulates Endosomal Organization and Function of the Endo-Lysosomal Pathway.
Song, Pingping; Trajkovic, Katarina; Tsunemi, Taiji; Krainc, Dimitri
2016-02-24
Mutations in PARK2 (parkin), which encodes Parkin protein, an E3 ubiquitin ligase, are associated with autosomal recessive early-onset Parkinson's disease (PD). While several studies implicated Parkin in the regulation of mitophagy and proteasomal degradation, the precise mechanism leading to neurodegeneration upon Parkin loss of function remains incompletely understood. In this study, we found that Parkin modulates the endocytic pathway through the regulation of endosomal structure and function. We showed that loss of Parkin function led to decreased endosomal tubulation and membrane association of vesicle protein sorting 35 (VPS35) and sorting nexin 1 (SNX1), as well as decreased mannose 6 phosphate receptor (M6PR), suggesting the impairment of retromer pathway in Parkin-deficient cells. We also found increased formation of intraluminal vesicles coupled with enhanced release of exosomes in the presence of mutant Parkin. To elucidate the molecular mechanism of these alterations in the endocytic pathway in Parkin-deficient cells, we found that Parkin regulates the levels and activity of Rab7 by promoting its ubiquitination on lysine 38 residue. Both endogenous Rab7 in Parkin-deficient cells and overexpressed K38 R-Rab7 mutant displayed decreased effector binding and membrane association. Furthermore, overexpression of K38R-Rab7 in HEK293 cells phenocopied the increased secretion of exosomes observed in Parkin-deficient cells, suggesting that Rab7 deregulation may be at least partially responsible for the endocytic phenotype observed in Parkin-deficient cells. These findings establish a role for Parkin in regulating the endo-lysosomal pathway and retromer function and raise the possibility that alterations in these pathways contribute to the development of pathology in Parkin-linked Parkinson's disease. Copyright © 2016 the authors 0270-6474/16/362425-13$15.00/0.
Zheng, Huakun; Chen, Simiao; Chen, Xiaofeng; Liu, Shuyan; Dang, Xie; Yang, Chengdong; Giraldo, Martha C.; Oliveira-Garcia, Ely; Zhou, Jie; Wang, Zonghua; Valent, Barbara
2016-01-01
The Rab GTPase proteins play important roles in the membrane trafficking, and consequently protein secretion and development of eukaryotic organisms. However, little is known about the function of Rab GTPases in Magnaporthe oryzae. To further explore the function of Rab GTPases, we deleted the ortholog of the yeast Sec4p protein in M. oryzae, namely MoSEC4. The ΔMosec4 mutant is defective in polarized growth and conidiation, and it displays decreased appressorium turgor pressure and attenuated pathogenicity. Notably, the biotrophic invasive hyphae produced in rice cells are more bulbous and compressed in the ΔMosec4 mutant. Further studies showed that deletion of the MoSEC4 gene resulted in decreased secretion of extracellular enzymes and mislocalization of the cytoplasmic effector PWL2-mCherry-NLS. In accordance with a role in secretion, the GFP-MoSec4 fusion protein mainly accumulates at tips of growing vegetative hyphae. Our results suggest that the MoSec4 protein plays important roles in the secretion of extracellular proteins and consequently hyphal development and pathogenicity in the rice blast fungus. PMID:27729922
Hoque, T S; Uraji, M; Tuya, A; Nakamura, Y; Murata, Y
2012-09-01
Methylglyoxal (MG) is a highly reactive metabolite derived from glycolysis. In this study, we examined the effect of MG on seed germination, root elongation, chlorosis and stress-responsive gene expression in Arabidopsis using an abscisic acid (ABA)-deficient mutant, aba2-2. In the wild type, 0.1 mm MG did not affect germination but delayed root elongation, whereas 1.0 mm MG inhibited germination and root elongation and induced chlorosis. MG increased transcription levels of RD29B and RAB18 in a dose-dependent manner but did not affect RD29A transcription level. In contrast, in the aba2-2 mutant, MG inhibition of seed germination at 1.0 mm and 10.0 mm and a delay of root elongation at 0.1 mm MG were mitigated, although there was no significant difference in chlorosis between the wild type and mutant. Moreover, the aba2-2 mutation impaired MG-induced RD29B and RAB18 gene expression. These observations suggest that MG not only directly inhibits germination and root elongation but also indirectly modulates these processes via endogenous ABA in Arabidopsis. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Rab11 in Recycling Endosomes Regulates the Sorting and Basolateral Transport of E-CadherinV⃞
Lock, John G.; Stow, Jennifer L.
2005-01-01
E-cadherin plays an essential role in cell polarity and cell-cell adhesion; however, the pathway for delivery of E-cadherin to the basolateral membrane of epithelial cells has not been fully characterized. We first traced the post-Golgi, exocytic transport of GFP-tagged E-cadherin (Ecad-GFP) in unpolarized cells. In live cells, Ecad-GFP was found to exit the Golgi complex in pleiomorphic tubulovesicular carriers, which, instead of moving directly to the cell surface, most frequently fused with an intermediate compartment, subsequently identified as a Rab11-positive recycling endosome. In MDCK cells, basolateral targeting of E-cadherin relies on a dileucine motif. Both E-cadherin and a targeting mutant, ΔS1-E-cadherin, colocalized with Rab11 and fused with the recycling endosome before diverging to basolateral or apical membranes, respectively. In polarized and unpolarized cells, coexpression of Rab11 mutants disrupted the cell surface delivery of E-cadherin and caused its mistargeting to the apical membrane, whereas apical ΔS1-E-cadherin was unaffected. We thus demonstrate a novel pathway for Rab11 dependent, dileucine-mediated, μ1B-independent sorting and basolateral trafficking, exemplified by E-cadherin. The recycling endosome is identified as an intermediate compartment for the post-Golgi trafficking and exocytosis of E-cadherin, with a potentially important role in establishing and maintaining cadherin-based adhesion. PMID:15689490
Kachhap, Sushant K; Faith, Dennis; Qian, David Z; Shabbeer, Shabana; Galloway, Nathan L; Pili, Roberto; Denmeade, Samuel R; DeMarzo, Angelo M; Carducci, Michael A
2007-09-05
Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1) increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein.
Rab7a modulates ER stress and ER morphology.
Mateus, Duarte; Marini, Elettra Sara; Progida, Cinzia; Bakke, Oddmund
2018-05-01
The Endoplasmic Reticulum (ER) is a membranous organelle with diverse structural and functional domains. Peripheral ER includes interconnected tubules, and dense tubular arrays called "ER matrices" together with bona fide flat cisternae. Transitions between these states are regulated by membrane-associated proteins and cytosolic factors. Recently, the small GTPases Rab10 and Rab18 were reported to control ER shape by regulating ER dynamics and fusion. Here, we present evidence that another Rab protein, Rab7a, modulates the ER morphology by controlling the ER homeostasis and ER stress. Indeed, inhibition of Rab7a expression by siRNA or expression of the dominant negative mutant Rab7aT22 N, leads to enlargement of sheet-like ER structures and spreading towards the cell periphery. Notably, such alterations are ascribable neither to a direct modulation of the ER shaping proteins Reticulon-4b and CLIMP63, nor to interactions with Protrudin, a Rab7a-binding protein known to affect the ER organization. Conversely, depletion of Rab7a leads to basal ER stress, in turn causing ER membrane expansion. Both ER enlargement and basal ER stress are reverted in rescue experiments by Rab7a re-expression, as well as by the ER chemical chaperone tauroursodeoxycholic acid (TUDCA). Collectively, these findings reveal a new role of Rab7a in ER homeostasis, and indicate that genetic and pharmacological ER stress manipulation may restore ER morphology in Rab7a silenced cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Ethylene Regulates Monomeric GTP-Binding Protein Gene Expression and Activity in Arabidopsis1
Moshkov, Igor E.; Mur, Luis A.J.; Novikova, Galina V.; Smith, Aileen R.; Hall, Michael A.
2003-01-01
Ethylene rapidly and transiently up-regulates the activity of several monomeric GTP-binding proteins (monomeric G proteins) in leaves of Arabidopsis as determined by two-dimensional gel electrophoresis and autoradiographic analyses. The activation is suppressed by the receptor-directed inhibitor 1-methylcyclopropene. In the etr1-1 mutant, constitutive activity of all the monomeric G proteins activated by ethylene is down-regulated relative to wild type, and ethylene treatment has no effect on the levels of activity. Conversely, in the ctr1-1 mutant, several of the monomeric G proteins activated by ethylene are constitutively up-regulated. However, the activation profile of ctr1-1 does not exactly mimic that of ethylene-treated wild type. Biochemical and molecular evidence suggested that some of these monomeric G proteins are of the Rab class. Expression of the genes for a number of monomeric G proteins in response to ethylene was investigated by reverse transcriptase-PCR. Rab8 and Ara3 expression was increased within 10 min of ethylene treatment, although levels fell back significantly by 40 min. In the etr1-1 mutant, expression of Rab8 was lower than wild type and unaffected by ethylene; in ctr1-1, expression of Rab8 was much higher than wild type and comparable with that seen in ethylene treatments. Expression in ctr1-1 was also unaffected by ethylene. Thus, the data indicate a role for monomeric G proteins in ethylene signal transduction. PMID:12692329
Castillo-Badillo, Jean A.; Sánchez-Reyes, Omar B.; Alfonzo-Méndez, Marco A.; Romero-Ávila, M. Teresa; Reyes-Cruz, Guadalupe; García-Sáinz, J. Adolfo
2015-01-01
Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs. heterologous). PMID:25799564
Johnson, Jennifer L; He, Jing; Ramadass, Mahalakshmi; Pestonjamasp, Kersi; Kiosses, William B; Zhang, Jinzhong; Catz, Sergio D
2016-02-12
The small GTPase Rab11 and its effectors control trafficking of recycling endosomes, receptor replenishment and the up-regulation of adhesion and adaptor molecules at the plasma membrane. Despite recent advances in the understanding of Rab11-regulated mechanisms, the final steps mediating docking and fusion of Rab11-positive vesicles at the plasma membrane are not fully understood. Munc13-4 is a docking factor proposed to regulate fusion through interactions with SNAREs. In hematopoietic cells, including neutrophils, Munc13-4 regulates exocytosis in a Rab27a-dependent manner, but its possible regulation of other GTPases has not been explored in detail. Here, we show that Munc13-4 binds to Rab11 and regulates the trafficking of Rab11-containing vesicles. Using a novel Time-resolved Fluorescence Resonance Energy Transfer (TR-FRET) assay, we demonstrate that Munc13-4 binds to Rab11a but not to dominant negative Rab11a. Immunoprecipitation analysis confirmed the specificity of the interaction between Munc13-4 and Rab11, and super-resolution microscopy studies support the interaction of endogenous Munc13-4 with Rab11 at the single molecule level in neutrophils. Vesicular dynamic analysis shows the common spatio-temporal distribution of Munc13-4 and Rab11, while expression of a calcium binding-deficient mutant of Munc13-4 significantly affected Rab11 trafficking. Munc13-4-deficient neutrophils showed normal endocytosis, but the trafficking, up-regulation, and retention of Rab11-positive vesicles at the plasma membrane was significantly impaired. This correlated with deficient NADPH oxidase activation at the plasma membrane in response to Rab11 interference. Our data demonstrate that Munc13-4 is a Rab11-binding partner that regulates the final steps of Rab11-positive vesicle docking at the plasma membrane. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Bartusch, Christina; Döring, Tatjana; Prange, Reinhild
2017-06-21
Many viruses take advantage of cellular trafficking machineries to assemble and release new infectious particles. Using RNA interference (RNAi), we demonstrate that the Golgi/autophagosome-associated Rab33B is required for hepatitis B virus (HBV) propagation in hepatoma cell lines. While Rab33B is dispensable for the secretion of HBV subviral envelope particles, its knockdown reduced the virus yield to 20% and inhibited nucleocapsid (NC) formation and/or NC trafficking. The overexpression of a GDP-restricted Rab33B mutant phenocopied the effect of deficit Rab33B, indicating that Rab33B-specific effector proteins may be involved. Moreover, we found that HBV replication enhanced Rab33B expression. By analyzing HBV infection cycle steps, we identified a hitherto unknown membrane targeting module in the highly basic C-terminal domain of the NC-forming core protein. Rab33B inactivation reduced core membrane association, suggesting that membrane platforms participate in HBV assembly reactions. Biochemical and immunofluorescence analyses provided further hints that the viral core, rather than the envelope, is the main target for Rab33B intervention. Rab33B-deficiency reduced core protein levels without affecting viral transcription and hampered core/NC sorting to envelope-positive, intracellular compartments. Together, these results indicate that Rab33B is an important player in intracellular HBV trafficking events, guiding core transport to NC assembly sites and/or NC transport to budding sites.
Cellular vacuolation induced by Clostridium perfringens epsilon-toxin.
Nagahama, Masahiro; Itohayashi, Yukari; Hara, Hideki; Higashihara, Masahiro; Fukatani, Yusuke; Takagishi, Teruhisa; Oda, Masataka; Kobayashi, Keiko; Nakagawa, Ichiro; Sakurai, Jun
2011-09-01
The epsilon-toxin of Clostridium perfringens forms a heptamer in the membranes of Madin-Darby canine kidney cells, leading to cell death. Here, we report that it caused the vacuolation of Madin-Darby canine kidney cells. The toxin induced vacuolation in a dose-dependent and time-dependent manner. The monomer of the toxin formed oligomers on lipid rafts in membranes of the cells. Methyl-β-cyclodextrin and poly(ethylene glycol) 4000 inhibited the vacuolation. Epsilon-toxin was internalized into the cells. Confocal microscopy revealed that the internalized toxin was transported from early endosomes (early endosome antigen 1 staining) to late endosomes and lysosomes (lysosomal-associated membrane protein 2 staining) and then distributed to the membranes of vacuoles. Furthermore, the vacuolation was inhibited by bafilomycin A1, a V-type ATPase inhibitor, and colchicine and nocodazole, microtubule-depolymerizing agents. The early endosomal marker green fluorescent protein-Rab5 and early endosome antigen 1 did not localize to vacuolar membranes. In contrast, the vacuolar membranes were specifically stained by the late endosomal and lysosomal marker green fluorescent protein-Rab7 and lysosomal-associated membrane protein 2. The vacuoles in the toxin-treated cells were stained with LysoTracker Red DND-99, a marker for late endosomes and lysosomes. A dominant negative mutant of Rab7 prevented the vacuolization, whereas a mutant form of Rab5 was less effective. These results demonstrate, for the first time, that: (a) oligomers of epsilon-toxin formed in lipid rafts are endocytosed; and (b) the vacuoles originating from late endosomes and lysosomes are formed by an oligomer of epsilon-toxin. © 2011 The Authors Journal compilation © 2011 FEBS.
Weir, Dawn L; Laing, Eric D; Smith, Ina L; Wang, Lin-Fa; Broder, Christopher C
2014-02-27
Australian bat lyssavirus (ABLV), a rhabdovirus of the genus Lyssavirus which circulates in both pteropid fruit bats and insectivorous bats in mainland Australia, has caused three fatal human infections, the most recent in February 2013, manifested as acute neurological disease indistinguishable from clinical rabies. Rhabdoviruses infect host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion mediated by their single envelope glycoprotein (G), but the specific host factors and pathways involved in ABLV entry have not been determined. ABLV internalization into HEK293T cells was examined using maxGFP-encoding recombinant vesicular stomatitis viruses (rVSV) that express ABLV G glycoproteins. A combination of chemical and molecular approaches was used to investigate the contribution of different endocytic pathways to ABLV entry. Dominant negative Rab GTPases were used to identify the endosomal compartment utilized by ABLV to gain entry into the host cell cytosol. Here we show that ABLV G-mediated entry into HEK293T cells was significantly inhibited by the dynamin-specific inhibitor dynasore, chlorpromazine, a drug that blocks clathrin-mediated endocytosis, and the actin depolymerizing drug latrunculin B. Over expression of dominant negative mutants of Eps15 and Rab5 also significantly reduced ABLV G-mediated entry into HEK293T cells. Chemical inhibitors of caveolae-dependent endocytosis and macropinocytosis and dominant negative mutants of Rab7 and Rab11 had no effect on ABLV entry. The predominant pathway utilized by ABLV for internalization into HEK293T cells is clathrin-and actin-dependent. The requirement of Rab5 for productive infection indicates that ABLV G-mediated fusion occurs within the early endosome compartment.
Ramalho, José S; Anders, Ross; Jaissle, Gesine B; Seeliger, Mathias W; Huxley, Clare; Seabra, Miguel C
2002-01-01
Background Transgenic mice have proven to be a powerful system to study normal and pathological gene functions. Here we describe an attempt to generate a transgenic mouse model for choroideremia (CHM), a slow-onset X-linked retinal degeneration caused by mutations in the Rab Escort Protein-1 (REP1) gene. REP1 is part of the Rab geranylgeranylation machinery, a modification that is essential for Rab function in membrane traffic. The loss of REP1 in CHM patients may trigger retinal degeneration through its effects on Rab proteins. We have previously reported that Rab27a is the Rab most affected in CHM lymphoblasts and hypothesised that the selective dysfunction of Rab27a (and possibly a few other Rab GTPases) plays an essential role in the retinal degenerative process. Results To investigate this hypothesis, we generated several lines of dominant-negative, constitutively-active and wild-type Rab27a (and Rab27b) transgenic mice whose expression was driven either by the pigment cell-specific tyrosinase promoter or the ubiquitous β-actin promoter. High levels of mRNA and protein were observed in transgenic lines expressing wild-type or constitutively active Rab27a and Rab27b. However, only modest levels of transgenic protein were expressed. Pulse-chase experiments suggest that the dominant-negative proteins, but not the constitutively-active or wild type proteins, are rapidly degraded. Consistently, no significant phenotype was observed in our transgenic lines. Coat-colour was normal, indicating normal Rab27a activity. Retinal function as determined by fundoscopy, angiography, electroretinography and histology was also normal. Conclusions We suggest that the instability of the dominant-negative mutant Rab27 proteins in vivo precludes the use of this approach to generate mouse models of disease caused by Rab27 GTPases. PMID:12401133
Liebl, David; Difato, Francesco; Horníková, Lenka; Mannová, Petra; Štokrová, Jitka; Forstová, Jitka
2006-01-01
Mouse polyomavirus (PyV) virions enter cells by internalization into smooth monopinocytic vesicles, which fuse under the cell membrane with larger endosomes. Caveolin-1 was detected on monopinocytic vesicles carrying PyV particles in mouse fibroblasts and epithelial cells (33). Here, we show that PyV can be efficiently internalized by Jurkat cells, which do not express caveolin-1 and lack caveolae, and that overexpression of a caveolin-1 dominant-negative mutant in mouse epithelial cells does not prevent their productive infection. Strong colocalization of VP1 with early endosome antigen 1 (EEA1) and of EEA1 with caveolin-1 in mouse fibroblasts and epithelial cells suggests that the monopinocytic vesicles carrying the virus (and vesicles containing caveolin-1) fuse with EEA1-positive early endosomes. In contrast to SV40, PyV infection is dependent on the acidic pH of endosomes. Bafilomycin A1 abolished PyV infection, and an increase in endosomal pH by NH4Cl markedly reduced its efficiency when drugs were applied during virion transport towards the cell nucleus. The block of acidification resulted in the retention of a fraction of virions in early endosomes. To monitor further trafficking of PyV, we used fluorescent resonance energy transfer (FRET) to determine mutual localization of PyV VP1 with transferrin and Rab11 GTPase at a 2- to 10-nm resolution. Positive FRET between PyV VP1 and transferrin cargo and between PyV VP1 and Rab11 suggests that during later times postinfection (1.5 to 3 h), the virus meets up with transferrin in the Rab11-positive recycling endosome. These results point to a convergence of the virus and the cargo internalized by different pathways in common transitional compartments. PMID:16611921
Xie, Bingxian; Chen, Qiaoli; Chen, Liang; Sheng, Yang; Wang, Hong Yu; Chen, Shuai
2016-11-01
The AS160 (Akt substrate of 160 kDa) is a Rab-GTPase activating protein (RabGAP) with several other functional domains, and its deficiency in mice or human patients lowers GLUT4 protein levels and causes severe insulin resistance. How its deficiency causes diminished GLUT4 proteins remains unknown. We found that the deletion of AS160 decreased GLUT4 levels in a cell/tissue-autonomous manner. Consequently, skeletal muscle-specific deletion of AS160 caused postprandial hyperglycemia and hyperinsulinemia. The pathogenic effects of AS160 deletion are mainly, if not exclusively, due to the loss of its RabGAP function since the RabGAP-inactive AS160 R917K mutant mice phenocopied the AS160 knockout mice. The inactivation of RabGAP of AS160 promotes lysosomal degradation of GLUT4, and the inhibition of lysosome function could restore GLUT4 protein levels. Collectively, these findings demonstrate that the RabGAP activity of AS160 maintains GLUT4 protein levels in a cell/tissue-autonomous manner and its inactivation causes lysosomal degradation of GLUT4 and postprandial hyperglycemia and hyperinsulinemia. © 2016 by the American Diabetes Association.
Juárez-Hernández, L J; García-Pérez, R M; Salas-Casas, A; García-Rivera, G; Orozco, E; Rodríguez, M A
2013-03-01
Vesicular trafficking, which is implicated in secretion of cytolytic molecules as well as in phagocytosis, plays an important role in the pathogenic mechanism of Entamoeba histolytica, the protozoan parasite causative of human amoebiasis. Thus, Rab GTPases, that are key regulators of vesicle trafficking, should be considered as molecules involved in the parasite virulence. EhRabB is a Rab protein located in cytoplasmic vesicles that are translocated to phagocytic mouths during ingestion of target cells, suggesting that this Rab protein is involved in phagocytosis. To prove this hypothesis, we over expressed the wild type EhrabB gene and a mutant gene encoding for a protein (RabBN118I) unable to bind guanine nucleotides and therefore constitutively inactive. The over expression of the mutated protein in E. histolytica trophozoites provoked a dominant negative effect, reflected in a significant decrease of both phagocytosis and cytopathic effect as well as in a failure to produce hepatic abscesses in hamsters. These results confirm that EhRabB is involved in phagocytosis and virulence of E. histolytica. Copyright © 2013 Elsevier Inc. All rights reserved.
Deivasigamani, Senthilkumar; Basargekar, Anagha; Shweta, Kumari; Sonavane, Pooja; Ratnaparkhi, Girish S; Ratnaparkhi, Anuradha
2015-10-01
Mon1 is an evolutionarily conserved protein involved in the conversion of Rab5 positive early endosomes to late endosomes through the recruitment of Rab7. We have identified a role for Drosophila Mon1 in regulating glutamate receptor levels at the larval neuromuscular junction. We generated mutants in Dmon1 through P-element excision. These mutants are short-lived with strong motor defects. At the synapse, the mutants show altered bouton morphology with several small supernumerary or satellite boutons surrounding a mature bouton; a significant increase in expression of GluRIIA and reduced expression of Bruchpilot. Neuronal knockdown of Dmon1 is sufficient to increase GluRIIA levels, suggesting its involvement in a presynaptic mechanism that regulates postsynaptic receptor levels. Ultrastructural analysis of mutant synapses reveals significantly smaller synaptic vesicles. Overexpression of vglut suppresses the defects in synaptic morphology and also downregulates GluRIIA levels in Dmon1 mutants, suggesting that homeostatic mechanisms are not affected in these mutants. We propose that DMon1 is part of a presynaptically regulated transsynaptic mechanism that regulates GluRIIA levels at the larval neuromuscular junction. Copyright © 2015 by the Genetics Society of America.
Kuroda, Taruho S; Fukuda, Mitsunori
2005-01-01
Slac2-c/MyRIP is a specific Rab27A-binding protein that contains an N-terminal synaptotagmin-like protein (Slp) homology domain (SHD, a newly identified GTP-Rab27A-binding motif), but in contrast to the Slp family proteins, it lacks C-terminal tandem C2 domains. In vitro Slac2-c simultaneously directly interacts with both Rab27A and an actin-based motor protein, myosin Va, via its N-terminal SHD and middle region, respectively, consistent with the fact that the overall structure of Slac2-c is similar to that of Slac2-a/melanophilin, a linker protein between Rab27A and myosin Va in the melanosome transport in melanocytes. Unlike Slac2-a, however, the middle region of Slac2-c interacts with two types of myosins, myosin Va and myosin VIIa. In addition, the most C-terminal part of both Slac2-a and Slac2-c functions as an actin-binding domain: it directly interacts with globular and fibrous actin in vitro, and the actin-binding domain of Slac2-a and Slac2-c colocalizes with actin filaments when it is expressed in living cells (i.e., PC12 cells and mouse melanocytes). In this chapter we describe the methods that have been used to analyze the protein-protein interactions of Slac2-c, specifically with Rab27A, myosin Va/VIIa, and actin.
Nayak, Ramesh C.; Keshava, Shiva; Esmon, Charles T.; Pendurthi, Usha R.; Rao, L. Vijaya Mohan
2013-01-01
Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa. PMID:23555015
Chichger, Havovi; Braza, Julie; Duong, Huetran; Boni, Geraldine; Harrington, Elizabeth O
2016-06-01
Pulmonary edema occurs in settings of acute lung injury, in diseases, such as pneumonia, and in acute respiratory distress syndrome. The lung interendothelial junctions are maintained in part by vascular endothelial (VE)-cadherin, an adherens junction protein, and its surface expression is regulated by endocytic trafficking. The Rab family of small GTPases are regulators of endocytic trafficking. The key trafficking pathways are regulated by Rab4, -7, and -9. Rab4 regulates the recycling of endosomes to the cell surface through a rapid-shuttle process, whereas Rab7 and -9 regulate trafficking to the late endosome/lysosome for degradation or from the trans-Golgi network to the late endosome, respectively. We recently demonstrated a role for the endosomal adaptor protein, p18, in regulation of the pulmonary endothelium through enhanced recycling of VE-cadherin to adherens junction. Thus, we hypothesized that Rab4, -7, and -9 regulate pulmonary endothelial barrier function through modulating trafficking of VE-cadherin-positive endosomes. We used Rab mutants with varying activities and associations to the endosome to study endothelial barrier function in vitro and in vivo. Our study demonstrates a key role for Rab4 activation and Rab9 inhibition in regulation of vascular permeability through enhanced VE-cadherin expression at the interendothelial junction. We further showed that endothelial barrier function mediated through Rab4 is dependent on extracellular signal-regulated kinase phosphorylation and activity. Thus, we demonstrate that Rab4 and -9 regulate VE-cadherin levels at the cell surface to modulate the pulmonary endothelium through extracellular signal-regulated kinase-dependent and -independent pathways, respectively. We propose that regulating select Rab GTPases represents novel therapeutic strategies for patients suffering with acute respiratory distress syndrome.
Genetic modifiers of abnormal organelle biogenesis in a Drosophila model of BLOC-1 deficiency
Cheli, Verónica T.; Daniels, Richard W.; Godoy, Ruth; Hoyle, Diego J.; Kandachar, Vasundhara; Starcevic, Marta; Martinez-Agosto, Julian A.; Poole, Stephen; DiAntonio, Aaron; Lloyd, Vett K.; Chang, Henry C.; Krantz, David E.; Dell'Angelica, Esteban C.
2010-01-01
Biogenesis of lysosome-related organelles complex 1 (BLOC-1) is a protein complex formed by the products of eight distinct genes. Loss-of-function mutations in two of these genes, DTNBP1 and BLOC1S3, cause Hermansky–Pudlak syndrome, a human disorder characterized by defective biogenesis of lysosome-related organelles. In addition, haplotype variants within the same two genes have been postulated to increase the risk of developing schizophrenia. However, the molecular function of BLOC-1 remains unknown. Here, we have generated a fly model of BLOC-1 deficiency. Mutant flies lacking the conserved Blos1 subunit displayed eye pigmentation defects due to abnormal pigment granules, which are lysosome-related organelles, as well as abnormal glutamatergic transmission and behavior. Epistatic analyses revealed that BLOC-1 function in pigment granule biogenesis requires the activities of BLOC-2 and a putative Rab guanine-nucleotide-exchange factor named Claret. The eye pigmentation phenotype was modified by misexpression of proteins involved in intracellular protein trafficking; in particular, the phenotype was partially ameliorated by Rab11 and strongly enhanced by the clathrin-disassembly factor, Auxilin. These observations validate Drosophila melanogaster as a powerful model for the study of BLOC-1 function and its interactions with modifier genes. PMID:20015953
Pavarotti, Martín; Capmany, Anahí; Vitale, Nicolas; Colombo, María Isabel; Damiani, María Teresa
2012-02-01
Rab11 is a small GTPase that controls diverse intracellular trafficking pathways. However, the molecular machinery that regulates the participation of Rab11 in those different transport events is poorly understood. In resting cells, Rab11 localizes at the endocytic recycling compartment (ERC), whereas the different protein kinase C (PKC) isoforms display a cytosolic distribution. Sustained phorbol ester stimulation induces the translocation of the classical PKCα and PKCβII isoenzymes to the ERC enriched in Rab11, and results in transferrin recycling inhibition. In contrast, novel PKCε and atypical PKCζ isoenzymes neither redistribute to the perinucleus nor modify transferrin recycling transport after phorbol ester stimulation. Although several Rabs have been shown to be phosphorylated, there is to date no evidence indicating Rab11 as a kinase substrate. In this report, we show that Rab11 appears phosphorylated in vivo in phorbol ester-stimulated cells. A bioinformatic analysis of Rab11 allowed us to identify several high-probability Ser/Thr kinase phosphorylation sites. Our results demonstrate that classical PKC (PKCα and PKCβII but not PKCβI) directly phosphorylate Rab11 in vitro. In addition, novel PKCε and PKCη but not PKCδ isoenzymes also phosphorylate Rab11. Mass spectrometry analysis revealed that Ser 177 is the Rab11 residue to be phosphorylated in vitro by either PKCβII or PKCε. In agreement, the phosphomimetic mutant, Rab11 S177D, retains transferrin at the ERC in the absence of phorbol-12-myristate-13-acetate stimulus. This report shows for the first time that Rab11 is differentially phosphorylated by distinct PKC isoenzymes and that this post-translational modification might be a regulatory mechanism of intracellular trafficking. Copyright © 2012 Soçiété Francaise des Microscopies and Société de Biologie Cellulaire de France.
Suzuki, Tamio; Miyamura, Yoshinori; Inagaki, Katsuhiko; Tomita, Yasushi
2003-08-01
Oculocutaneous albinisms (OCAs) are due to various gene mutations that cause a disruption of melanogenesis in the melanocyte. Four different genes associated with human OCA have been reported, however, not all of OCA patients can be classified according to these four genes. We have sought to find a new major locus for Japanese OCA. Recently two genes, RAB38 and RAB7, were reported to play an important role in melanogenesis in the melanocyte, suggesting that these two genes could be good candidates for new OCA loci. To determine the structures of the human RAB38 and RAB7 genes, and examine if the two genes are new major loci for Japanese OCA. We screened mutations in these genes of 25 Japanese OCA patients who lacked mutations in the OCA1 and OCA2 genes with SSCP/heteroduplexes method. We determined the both genes, and their genomic organizations to design the primers for SSCP/heteroduplexes method. And then we screened mutations, but no mutation was detected. Neither of the genes is a new major locus for Japanese OCA.
Lucas, María; Gaspar, Andrew H.; Pallara, Chiara; Rojas, Adriana Lucely; Fernández-Recio, Juan; Machner, Matthias P.; Hierro, Aitor
2014-01-01
A challenge for microbial pathogens is to assure that their translocated effector proteins target only the correct host cell compartment during infection. The Legionella pneumophila effector vacuolar protein sorting inhibitor protein D (VipD) localizes to early endosomal membranes and alters their lipid and protein composition, thereby protecting the pathogen from endosomal fusion. This process requires the phospholipase A1 (PLA1) activity of VipD that is triggered specifically on VipD binding to the host cell GTPase Rab5, a key regulator of endosomes. Here, we present the crystal structure of VipD in complex with constitutively active Rab5 and reveal the molecular mechanism underlying PLA1 activation. An active site-obstructing loop that originates from the C-terminal domain of VipD is repositioned on Rab5 binding, thereby exposing the catalytic pocket within the N-terminal PLA1 domain. Substitution of amino acid residues located within the VipD–Rab5 interface prevented Rab5 binding and PLA1 activation and caused a failure of VipD mutant proteins to target to Rab5-enriched endosomal structures within cells. Experimental and computational analyses confirmed an extended VipD-binding interface on Rab5, explaining why this L. pneumophila effector can compete with cellular ligands for Rab5 binding. Together, our data explain how the catalytic activity of a microbial effector can be precisely linked to its subcellular localization. PMID:25114243
Kwon, Soon Il; Cho, Hong Joo; Kim, Sung Ryul; Park, Ohkmae K.
2013-01-01
A central component of the plant defense response to pathogens is the hypersensitive response (HR), a form of programmed cell death (PCD). Rapid and localized induction of HR PCD ensures that pathogen invasion is prevented. Autophagy has been implicated in the regulation of HR cell death, but the functional relationship between autophagy and HR PCD and the regulation of these processes during the plant immune response remain controversial. Here, we show that a small GTP-binding protein, RabG3b, plays a positive role in autophagy and promotes HR cell death in response to avirulent bacterial pathogens in Arabidopsis (Arabidopsis thaliana). Transgenic plants overexpressing a constitutively active RabG3b (RabG3bCA) displayed accelerated, unrestricted HR PCD within 1 d of infection, in contrast to the autophagy-defective atg5-1 mutant, which gradually developed chlorotic cell death through uninfected sites over several days. Microscopic analyses showed the accumulation of autophagic structures during HR cell death in RabG3bCA cells. Our results suggest that RabG3b contributes to HR cell death via the activation of autophagy, which plays a positive role in plant immunity-triggered HR PCD. PMID:23404918
Actis Dato, Virginia; Grosso, Rubén A; Sánchez, María C; Fader, Claudio M; Chiabrando, Gustavo A
2018-05-15
Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1) is expressed in retinal Müller glial cells (MGCs) and regulates intracellular translocation to the plasma membrane (PM) of the membrane proteins involved in cellular motility and activity. Different functions of MGCs may be influenced by insulin, including the removal of extracellular glutamate in the retina. In the present work, we investigated whether insulin promotes LRP1 translocation to the PM in the Müller glial-derived cell line MIO-M1 (human retinal Müller glial cell-derived cell line). We demonstrated that LRP1 is stored in small vesicles containing an approximate size of 100 nm (mean diameter range of 100-120 nm), which were positive for sortilin and VAMP2, and also incorporated GLUT4 when it was transiently transfected. Next, we observed that LRP1 translocation to the PM was promoted by insulin-regulated exocytosis through intracellular activation of the IR/PI 3 K/Akt axis and Rab-GTPase proteins such as Rab8A and Rab10. In addition, these Rab-GTPases regulated both the constitutive and insulin-induced LRP1 translocation to the PM. Finally, we found that dominant-negative Rab8A and Rab10 mutants impaired insulin-induced intracellular signaling of the IR/PI3K/Akt axis, suggesting that these GTPase proteins as well as the LRP1 level at the cell surface are involved in insulin-induced IR activation. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Sellier, Chantal; Campanari, Maria-Letizia; Julie Corbier, Camille; Gaucherot, Angeline; Kolb-Cheynel, Isabelle; Oulad-Abdelghani, Mustapha; Ruffenach, Frank; Page, Adeline; Ciura, Sorana; Kabashi, Edor; Charlet-Berguerand, Nicolas
2016-06-15
An intronic expansion of GGGGCC repeats within the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). Ataxin-2 with intermediate length of polyglutamine expansions (Ataxin-2 Q30x) is a genetic modifier of the disease. Here, we found that C9ORF72 forms a complex with the WDR41 and SMCR8 proteins to act as a GDP/GTP exchange factor for RAB8a and RAB39b and to thereby control autophagic flux. Depletion of C9orf72 in neurons partly impairs autophagy and leads to accumulation of aggregates of TDP-43 and P62 proteins, which are histopathological hallmarks of ALS-FTD SMCR8 is phosphorylated by TBK1 and depletion of TBK1 can be rescued by phosphomimetic mutants of SMCR8 or by constitutively active RAB39b, suggesting that TBK1, SMCR8, C9ORF72, and RAB39b belong to a common pathway regulating autophagy. While depletion of C9ORF72 only has a partial deleterious effect on neuron survival, it synergizes with Ataxin-2 Q30x toxicity to induce motor neuron dysfunction and neuronal cell death. These results indicate that partial loss of function of C9ORF72 is not deleterious by itself but synergizes with Ataxin-2 toxicity, suggesting a double-hit pathological mechanism in ALS-FTD. © 2016 The Authors.
Rab5-regulated endocytosis plays a crucial role in apical extrusion of transformed cells.
Saitoh, Sayaka; Maruyama, Takeshi; Yako, Yuta; Kajita, Mihoko; Fujioka, Yoichiro; Ohba, Yusuke; Kasai, Nobuhiro; Sugama, Natsu; Kon, Shunsuke; Ishikawa, Susumu; Hayashi, Takashi; Yamazaki, Tomohiro; Tada, Masazumi; Fujita, Yasuyuki
2017-03-21
Newly emerging transformed cells are often eliminated from epithelial tissues. Recent studies have revealed that this cancer-preventive process involves the interaction with the surrounding normal epithelial cells; however, the molecular mechanisms underlying this phenomenon remain largely unknown. In this study, using mammalian cell culture and zebrafish embryo systems, we have elucidated the functional involvement of endocytosis in the elimination of RasV12-transformed cells. First, we show that Rab5, a crucial regulator of endocytosis, is accumulated in RasV12-transformed cells that are surrounded by normal epithelial cells, which is accompanied by up-regulation of clathrin-dependent endocytosis. Addition of chlorpromazine or coexpression of a dominant-negative mutant of Rab5 suppresses apical extrusion of RasV12 cells from the epithelium. We also show in zebrafish embryos that Rab5 plays an important role in the elimination of transformed cells from the enveloping layer epithelium. In addition, Rab5-mediated endocytosis of E-cadherin is enhanced at the boundary between normal and RasV12 cells. Rab5 functions upstream of epithelial protein lost in neoplasm (EPLIN), which plays a positive role in apical extrusion of RasV12 cells by regulating protein kinase A. Furthermore, we have revealed that epithelial defense against cancer (EDAC) from normal epithelial cells substantially impacts on Rab5 accumulation in the neighboring transformed cells. This report demonstrates that Rab5-mediated endocytosis is a crucial regulator for the competitive interaction between normal and transformed epithelial cells in mammals.
Bertuccio, Claudia A.; Lee, Shih-Liang; Wu, Guangyu; Butterworth, Michael B.; Hamilton, Kirk L.; Devor, Daniel C.
2014-01-01
The intermediate conductance, Ca2+-activated K+ channel (KCa3.1) targets to the basolateral (BL) membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP)-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the μ1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia cells. PMID:24632741
Mendes, Ana Isabel; Matos, Paulo; Moniz, Sónia; Jordan, Peter
2010-01-01
One mechanism by which mammalian cells regulate the uptake of glucose is the number of glucose transporter proteins (GLUT) present at the plasma membrane. In insulin-responsive cells types, GLUT4 is released from intracellular stores through inactivation of the Rab GTPase activating protein Tre-2/USP6-BUB2-Cdc16 domain family member 4 (TBC1D4) (also known as AS160). Here we describe that TBC1D4 forms a protein complex with protein kinase WNK1 in human embryonic kidney (HEK293) cells. We show that WNK1 phosphorylates TBC1D4 in vitro and that the expression levels of WNK1 in these cells regulate surface expression of the constitutive glucose transporter GLUT1. WNK1 was found to increase the binding of TBC1D4 to regulatory 14-3-3 proteins while reducing its interaction with the exocytic small GTPase Rab8A. These effects were dependent on the catalytic activity because expression of a kinase-dead WNK1 mutant had no effect on binding of 14-3-3 and Rab8A, or on surface GLUT1 levels. Together, the data describe a pathway regulating constitutive glucose uptake via GLUT1, the expression level of which is related to several human diseases. PMID:20937822
Roberts, M; Barry, S; Woods, A; van der Sluijs, P; Norman, J
2001-09-18
It has been postulated that the regulation of integrin vesicular traffic facilitates cell migration by internalizing integrins at the rear of the cell and transporting them forward within vesicles for exocytosis at the leading edge to form new contacts with the extracellular matrix. The rab family of GTPases control key targeting events in the endo/exocytic pathway; therefore, these GTPases may be involved in the regulation of cell-matrix contact assembly. The endo/exocytic cycle of alphavbeta3 and alpha5beta1 integrins was studied using mouse 3T3 fibroblast cell lines. In serum-starved cells, internalized integrins were transported through rab4-positive, early endosomes and arrived at the rab11-positive, perinuclear recycling compartment approximately 30 min after endocytosis. From the recycling compartment, integrins were recycled to the plasma membrane in a rab11-dependent fashion. Following treatment with PDGF, alphavbeta3 integrin, but not alpha5beta1, was rapidly recycled directly back to the plasma membrane from the early endosomes via a rab4-dependent mechanism without the involvement of rab11. This rapid recycling pathway directed alphavbeta3 to numerous small puncta distributed evenly across the dorsal surface of the cell, and the integrin only became localized into focal complexes at later times following PDGF addition. Interestingly, inhibition of PDGF-stimulated alphavbeta3 recycling using dominant-negative rab4 mutants compromised cell adhesion and spreading on vitronectin (a ligand for alphavbeta3), but adhesion to fibronectin (a ligand for alpha5beta1 and alphavbeta3) was unchanged. We propose that growth factor-regulated, rab4-dependent recycling of alphavbeta3 integrin from early endosomes to the plasma membrane is a critical upstream event in the assembly of cell-matrix contacts.
Differential Requirements in Endocytic Trafficking for Penetration of Dengue Virus
Acosta, Eliana G.; Castilla, Viviana; Damonte, Elsa B.
2012-01-01
The entry of DENV into the host cell appears to be a very complex process which has been started to be studied in detail. In this report, the route of functional intracellular trafficking after endocytic uptake of dengue virus serotype 1 (DENV-1) strain HW, DENV-2 strain NGC and DENV-2 strain 16681 into Vero cells was studied by using a susceptibility to ammonium chloride assay, dominant negative mutants of several members of the family of cellular Rab GTPases that participate in regulation of transport through endosome vesicles and immunofluorescence colocalization. Together, the results presented demonstrate that in spite of the different internalization route among viral serotypes in Vero cells and regardless of the viral strain, DENV particles are first transported to early endosomes in a Rab5-dependent manner. Then a Rab7-dependent pathway guides DENV-2 16681 to late endosomes, whereas a yet unknown sorting event controls the transport of DENV-2 NGC, and most probably DENV-1 HW, to the perinuclear recycling compartments where fusion membrane would take place releasing nucleocapsid into the cytoplasm. Besides the demonstration of a different intracellular trafficking for two DENV-2 strains that shared the initial clathrin-independent internalization route, these studies proved for the first time the involvement of the slow recycling pathway for DENV-2 productive infection. PMID:22970315
Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis
2012-01-01
Background Membrane-bound organelles are a defining feature of eukaryotic cells, and play a central role in most of their fundamental processes. The Rab G proteins are the single largest family of proteins that participate in the traffic between organelles, with 66 Rabs encoded in the human genome. Rabs direct the organelle-specific recruitment of vesicle tethering factors, motor proteins, and regulators of membrane traffic. Each organelle or vesicle class is typically associated with one or more Rab, with the Rabs present in a particular cell reflecting that cell's complement of organelles and trafficking routes. Results Through iterative use of hidden Markov models and tree building, we classified Rabs across the eukaryotic kingdom to provide the most comprehensive view of Rab evolution obtained to date. A strikingly large repertoire of at least 20 Rabs appears to have been present in the last eukaryotic common ancestor (LECA), consistent with the 'complexity early' view of eukaryotic evolution. We were able to place these Rabs into six supergroups, giving a deep view into eukaryotic prehistory. Conclusions Tracing the fate of the LECA Rabs revealed extensive losses with many extant eukaryotes having fewer Rabs, and none having the full complement. We found that other Rabs have expanded and diversified, including a large expansion at the dawn of metazoans, which could be followed to provide an account of the evolutionary history of all human Rabs. Some Rab changes could be correlated with differences in cellular organization, and the relative lack of variation in other families of membrane-traffic proteins suggests that it is the changes in Rabs that primarily underlies the variation in organelles between species and cell types. PMID:22873208
Messenger, Scott W; Thomas, Diana Dh; Cooley, Michelle M; Jones, Elaina K; Falkowski, Michelle A; August, Benjamin K; Fernandez, Luis A; Gorelick, Fred S; Groblewski, Guy E
2015-11-01
Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P 2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.
Retromer association with membranes: plants have their own rules!
Zelazny, Enric; Santambrogio, Martina; Gaude, Thierry
2013-09-01
The retromer is an endosome-localized complex involved in protein trafficking. To better understand its function and regulation in plants, we recently investigated how Arabidopsis retromer subunits assemble and are targeted to endosomal membranes and highlighted original features compared with mammals. We characterized Arabidopsis vps26 null mutant and showed that it displays severe developmental defaults similar to those observed in vps29 mutant. Here, we go further by describing new phenotypic defects associated with loss of VPS26 function, such as inhibition of lateral root initiation. Recently, we showed that VPS35 subunit plays a crucial role in the recruitment of the plant retromer to endosomes, probably through an interaction with the Rab7 homolog RABG3f. In this work, we now show that contrary to mammals, Arabidopsis Rab5 homologs do not seem to be necessary for the recruitment of the core retromer to endosomal membranes, which highlights a new specificity of the plant retromer.
Dynein-mediated trafficking negatively regulates LET-23 EGFR signaling
Skorobogata, Olga; Meng, Jassy; Gauthier, Kimberley; Rocheleau, Christian E.
2016-01-01
Epidermal growth factor receptor (EGFR) signaling is essential for animal development, and increased signaling underlies many human cancers. Identifying the genes and cellular processes that regulate EGFR signaling in vivo will help to elucidate how this pathway can become inappropriately activated. Caenorhabditis elegans vulva development provides an in vivo model to genetically dissect EGFR signaling. Here we identified a mutation in dhc-1, the heavy chain of the cytoplasmic dynein minus end–directed microtubule motor, in a genetic screen for regulators of EGFR signaling. Despite the many cellular functions of dynein, DHC-1 is a strong negative regulator of EGFR signaling during vulva induction. DHC-1 is required in the signal-receiving cell and genetically functions upstream or in parallel to LET-23 EGFR. LET-23 EGFR accumulates in cytoplasmic foci in dhc-1 mutants, consistent with mammalian cell studies in which dynein is shown to regulate late endosome trafficking of EGFR with the Rab7 GTPase. However, we found different distributions of LET-23 EGFR foci in rab-7 versus dhc-1 mutants, suggesting that dynein functions at an earlier step of LET-23 EGFR trafficking to the lysosome than RAB-7. Our results demonstrate an in vivo role for dynein in limiting LET-23 EGFR signaling via endosomal trafficking. PMID:27654944
D'Souza, Serena A; Rajendran, Luckshika; Bagg, Rachel; Barbier, Louis; van Pel, Derek M; Moshiri, Houtan; Roy, Peter J
2016-04-01
The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle's plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue.
D’Souza, Serena A.; Rajendran, Luckshika; Bagg, Rachel; van Pel, Derek M.; Moshiri, Houtan; Roy, Peter J.
2016-01-01
The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle’s plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue. PMID:27123983
O’Mahony, Fiona; Wroblewski, Kevin; O’Byrne, Sheila M.; Jiang, Hongfeng; Clerkin, Kara; Benhammou, Jihane; Blaner, William S.; Beaven, Simon W.
2014-01-01
Liver X receptors (LXRs) are determinants of hepatic stellate cell (HSC) activation and liver fibrosis. Freshly isolated HSCs from Lxrαβ−/− mice have increased lipid droplet (LD) size but the functional consequences of this are unknown. Our aim was to determine whether LXRs link cholesterol to retinoid storage in HSCs and how this impacts activation. Primary HSCs from Lxrαβ−/− and wild-type (WT) mice were profiled by gene array during in vitro activation. Lipid content was quantified by HPLC and mass spectroscopy. Primary HSCs were treated with nuclear receptor ligands, transfected with siRNA and plasmid constructs, and analyzed by immunocytochemistry. Lxrαβ−/− HSCs have increased cholesterol and retinyl esters (CEs & REs). The retinoid increase drives intrinsic retinoic acid receptor (RAR) signaling and activation occurs more rapidly in Lxrαβ−/− HSCs. We identify Rab18 as a novel retinoic acid responsive, lipid droplet associated protein that helps mediate stellate cell activation. Rab18 mRNA, protein, and membrane insertion increase during activation. Both Rab18 GTPase activity and isoprenylation are required for stellate cell lipid droplet loss and induction of activation markers. These phenomena are accelerated in the Lxrαβ−/− HSCs, where there is greater retinoic acid flux. Conversely, Rab18 knockdown retards lipid droplet loss in culture and blocks activation, just like the functional mutants. Rab18 is also induced with acute liver injury in vivo. Conclusion Retinoid and cholesterol metabolism are linked in stellate cells by the LD associated protein, Rab18. Retinoid overload helps explain the pro-fibrotic phenotype of Lxrαβ−/− mice and we establish a pivotal role for Rab18 GTPase activity and membrane insertion in wild-type stellate cell activation. Interference with Rab18 may have significant therapeutic benefit in ameliorating liver fibrosis. PMID:25482505
O'Mahony, Fiona; Wroblewski, Kevin; O'Byrne, Sheila M; Jiang, Hongfeng; Clerkin, Kara; Benhammou, Jihane; Blaner, William S; Beaven, Simon W
2015-08-01
Liver X receptors (LXRs) are determinants of hepatic stellate cell (HSC) activation and liver fibrosis. Freshly isolated HSCs from Lxrαβ(-/-) mice have increased lipid droplet (LD) size, but the functional consequences of this are unknown. Our aim was to determine whether LXRs link cholesterol to retinoid storage in HSCs and how this impacts activation. Primary HSCs from Lxrαβ(-/-) and wild-type mice were profiled by gene array during in vitro activation. Lipid content was quantified by high-performance liquid chromatography and mass spectroscopy. Primary HSCs were treated with nuclear receptor ligands, transfected with small interfering RNA and plasmid constructs, and analyzed by immunocytochemistry. Lxrαβ(-/-) HSCs have increased cholesterol and retinyl esters. The retinoid increase drives intrinsic retinoic acid receptor signaling, and activation occurs more rapidly in Lxrαβ(-/-) HSCs. We identify Rab18 as a novel retinoic acid-responsive, LD-associated protein that helps mediate stellate cell activation. Rab18 mRNA, protein, and membrane insertion increase during activation. Both Rab18 guanosine triphosphatase activity and isoprenylation are required for stellate cell LD loss and induction of activation markers. These phenomena are accelerated in Lxrαβ(-/-) HSCs, where there is greater retinoic acid flux. Conversely, Rab18 knockdown retards LD loss in culture and blocks activation, just like the functional mutants. Rab18 is also induced with acute liver injury in vivo. Retinoid and cholesterol metabolism are linked in stellate cells by the LD-associated protein Rab18. Retinoid overload helps explain the profibrotic phenotype of Lxrαβ(-/-) mice, and we establish a pivotal role for Rab18 GTPase activity and membrane insertion in wild-type stellate cell activation. Interference with Rab18 may have significant therapeutic benefit in ameliorating liver fibrosis. © 2015 by the American Association for the Study of Liver Diseases.
Lamers, Ideke J C; Reijnders, Margot R F; Venselaar, Hanka; Kraus, Alison; Jansen, Sandra; de Vries, Bert B A; Houge, Gunnar; Gradek, Gyri Aasland; Seo, Jieun; Choi, Murim; Chae, Jong-Hee; van der Burgt, Ineke; Pfundt, Rolph; Letteboer, Stef J F; van Beersum, Sylvia E C; Dusseljee, Simone; Brunner, Han G; Doherty, Dan; Kleefstra, Tjitske; Roepman, Ronald
2017-11-02
The Rab GTPase family comprises ∼70 GTP-binding proteins, functioning in vesicle formation, transport and fusion. They are activated by a conformational change induced by GTP-binding, allowing interactions with downstream effectors. Here, we report five individuals with two recurrent de novo missense mutations in RAB11B; c.64G>A; p.Val22Met in three individuals and c.202G>A; p.Ala68Thr in two individuals. An overlapping neurodevelopmental phenotype, including severe intellectual disability with absent speech, epilepsy, and hypotonia was observed in all affected individuals. Additionally, visual problems, musculoskeletal abnormalities, and microcephaly were present in the majority of cases. Re-evaluation of brain MRI images of four individuals showed a shared distinct brain phenotype, consisting of abnormal white matter (severely decreased volume and abnormal signal), thin corpus callosum, cerebellar vermis hypoplasia, optic nerve hypoplasia and mild ventriculomegaly. To compare the effects of both variants with known inactive GDP- and active GTP-bound RAB11B mutants, we modeled the variants on the three-dimensional protein structure and performed subcellular localization studies. We predicted that both variants alter the GTP/GDP binding pocket and show that they both have localization patterns similar to inactive RAB11B. Evaluation of their influence on the affinity of RAB11B to a series of binary interactors, both effectors and guanine nucleotide exchange factors (GEFs), showed induction of RAB11B binding to the GEF SH3BP5, again similar to inactive RAB11B. In conclusion, we report two recurrent dominant mutations in RAB11B leading to a neurodevelopmental syndrome, likely caused by altered GDP/GTP binding that inactivate the protein and induce GEF binding and protein mislocalization. Copyright © 2017 American Society of Human Genetics. All rights reserved.
Cheng, Shi-Bin; Quinn, Jeffrey A.; Graeber, Carl T.; Filardo, Edward J.
2011-01-01
GPER is a Gs-coupled seven-transmembrane receptor that has been linked to specific estrogen binding and signaling activities that are manifested by plasma membrane-associated enzymes. However, in many cell types, GPER is predominately localized to the endoplasmic reticulum (ER), and only minor amounts of receptor are detectable at the cell surface, an observation that has caused controversy regarding its role as a plasma membrane estrogen receptor. Here, we show that GPER constitutively buds intracellularly into EEA-1+ endosomes from clathrin-coated pits. Nonvisual arrestins-2/-3 do not co-localize with GPER, and expression of arrestin-2 dominant-negative mutants lacking clathrin- or β-adaptin interaction sites fails to block GPER internalization suggesting that arrestins are not involved in GPER endocytosis. Like β1AR, which recycles to the plasma membrane, GPER co-traffics with transferrin+, Rab11+ recycling endosomes. However, endocytosed GPER does not recycle to the cell surface, but instead returns to the trans-Golgi network (TGN) and does not re-enter the ER. GPER is ubiquitinated at the cell surface, exhibits a short half-life (t½ <1 h), and is protected from degradation by the proteasome inhibitor, MG132. Disruption of the TGN by brefeldin A induces the accumulation of endocytosed GPER in Rab11+ perinuclear endosomes and prevents GPER degradation. Our results provide an explanation as to why GPER is not readily detected on the cell surface in some cell types and further suggest that TGN serves as the checkpoint for degradation of endocytosed GPER. PMID:21540189
Rab7-a novel redox target that modulates inflammatory pain processing.
Kallenborn-Gerhardt, Wiebke; Möser, Christine V; Lorenz, Jana E; Steger, Mirco; Heidler, Juliana; Scheving, Reynir; Petersen, Jonas; Kennel, Lea; Flauaus, Cathrin; Lu, Ruirui; Edinger, Aimee L; Tegeder, Irmgard; Geisslinger, Gerd; Heide, Heinrich; Wittig, Ilka; Schmidtko, Achim
2017-07-01
Chronic pain is accompanied by production of reactive oxygen species (ROS) in various cells that are important for nociceptive processing. Recent data indicate that ROS can trigger specific redox-dependent signaling processes, but the molecular targets of ROS signaling in the nociceptive system remain largely elusive. Here, we performed a proteome screen for pain-dependent redox regulation using an OxICAT approach, thereby identifying the small GTPase Rab7 as a redox-modified target during inflammatory pain in mice. Prevention of Rab7 oxidation by replacement of the redox-sensing thiols modulates its GTPase activity. Immunofluorescence studies revealed Rab7 expression to be enriched in central terminals of sensory neurons. Knockout mice lacking Rab7 in sensory neurons showed normal responses to noxious thermal and mechanical stimuli; however, their pain behavior during inflammatory pain and in response to ROS donors was reduced. The data suggest that redox-dependent changes in Rab7 activity modulate inflammatory pain sensitivity.
Leiva, Natalia; Capmany, Anahí; Damiani, María Teresa
2013-01-01
Chlamydia trachomatis, an obligate intracellular pathogen, survives within host cells in a special compartment named 'inclusion' and takes advantage of host vesicular transport pathways for its growth and replication. Rab GTPases are key regulatory proteins of intracellular trafficking. Several Rabs, among them Rab11 and Rab14, are implicated in chlamydial development. FIP2, a member of the Rab11-Family of Interacting Proteins, presents at the C-terminus a Rab-binding domain that interacts with both Rab11 and Rab14. In this study, we determined and characterized the recruitment of endogenous and GFP-tagged FIP2 to the chlamydial inclusions. The recruitment of FIP2 is specific since other members of the Rab11-Family of Interacting Proteins do not associate with the chlamydial inclusions. The Rab-binding domain of FIP2 is essential for its association. Our results indicate that FIP2 binds to Rab11 at the chlamydial inclusion membrane through its Rab-binding domain. The presence of FIP2 at the chlamydial inclusion favours the recruitment of Rab14. Furthermore, our results show that FIP2 promotes inclusion development and bacterial replication. In agreement, the silencing of FIP2 decreases the bacterial progeny. C. trachomatis likely recruits FIP2 to hijack host intracellular trafficking to redirect vesicles full of nutrients towards the inclusion. © 2012 Blackwell Publishing Ltd.
FYCO1 mediates clearance of α-synuclein aggregates through a Rab7-dependent mechanism.
Saridaki, Theodora; Nippold, Markus; Dinter, Elisabeth; Roos, Andreas; Diederichs, Leonie; Fensky, Luisa; Schulz, Jörg B; Falkenburger, Björn H
2018-05-10
Parkinson disease can be caused by mutations in the α-synuclein gene and is characterized by aggregates of α-synuclein protein. We have previously shown that overexpression of the small GTPase Rab7 can induce clearance of α-synuclein aggregates. In this study, we investigate which Rab7 effectors mediate this effect. To model Parkinson disease we expressed the pathogenic A53T mutant of α-synuclein in HEK293T cells and Drosophila melanogaster. We tested the Rab7 effectors FYVE and coiled-coil domain-containing protein 1 (FYCO1) and Rab-interacting lysosomal protein (RILP). FYCO1-EGFP decorated vesicles containing α-synuclein. RILP-EGFP also decorated vesicular structures, but they did not contain α-synuclein. FYCO1 overexpression reduced the number of cells with α-synuclein aggregates, defined as visible particles of EGFP-tagged α-synuclein, whereas RILP did not. FYCO1 but not RILP reduced the amount of α-synuclein protein as assayed by western blot, increased the disappearance of α-synuclein aggregates in time-lapse microscopy, and decreased α-synuclein-induced toxicity assayed by the Trypan blue assay. siRNA-mediated knockdown of FYCO1 but not RILP reduced Rab7 induced aggregate clearance. Collectively, these findings indicate that FYCO1 and not RILP mediates Rab7 induced aggregate clearance. The effect of FYCO1 on aggregate clearance was blocked by the dominant negative Rab7 indicating that FYCO1 requires active Rab7 to function. Electron microscopic analysis and insertion of lysosomal membranes into the plasma membrane indicate that FYCO1 could lead to secretion of α-synuclein aggregates. Extracellular α-synuclein as assayed by ELISA was, however, not increased with FYCO1. Coexpression of FYCO1 in the fly model decreased α-synuclein aggregates as shown by the filter trap assay and rescued the locomotor deficit resulting from neuronal A53T-α-synuclein expression. This latter finding confirms that a pathway involving Rab7 and FYCO1 stimulates degradation of α-synuclein and could be beneficial in patients with Parkinson disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Kizis, Dimosthenis; Pagès, Montserrat
2002-06-01
The abscisic acid-responsive gene rab17 of maize is expressed during late embryogenesis, and is induced by ABA and desiccation in embryo and vegetative tissues. ABRE and DRE cis-elements are involved in regulation of the gene by ABA and drought. Using yeast one-hybrid screening, we isolated two cDNAs encoding two new DRE-binding proteins, designated DBF1 and DBF2, that are members of the AP2/EREBP transcription factor family. Analysis of mRNA accumulation profiles showed that DBF1 is induced during maize embryogenesis and after desiccation, NaCl and ABA treatments in plant seedlings, whereas the DBF2 mRNA is not induced. DNA-binding preferences of DBFs were analysed by electrophoretic mobility shift assays, and showed that both DBF1 and DBF2 bound to the wild-type DRE2 element, but not to the DRE2 mutant or to the DRE1 element which differs only in a single nucleotide. Transactivation activity using particle bombardment showed that DBF1 functioned as activator of DRE2-dependent transcription of rab17 promoter by ABA, whereas DBF2 overexpression had a repression action downregulating not only the basal promoter activity, but also the ABA effect. These results show that ABA plays a role in the regulation of DBF activity, and suggests the existence of an ABA-dependent pathway for the regulation of genes through the C-repeat/DRE element.
Liu, Ou; Grant, Barth D.
2015-01-01
The small GTPase RAB-5/Rab5 is a master regulator of the early endosome, required for a myriad of coordinated activities, including the degradation and recycling of internalized cargo. Here we focused on the recycling function of the early endosome and the regulation of RAB-5 by GAP protein TBC-2 in the basolateral C. elegans intestine. We demonstrate that downstream basolateral recycling regulators, GTPase RAB-10/Rab10 and BAR domain protein AMPH-1/Amphiphysin, bind to TBC-2 and help to recruit it to endosomes. In the absence of RAB-10 or AMPH-1 binding to TBC-2, RAB-5 membrane association is abnormally high and recycling cargo is trapped in early endosomes. Furthermore, the loss of TBC-2 or AMPH-1 leads to abnormally high spatial overlap of RAB-5 and RAB-10. Taken together our results indicate that RAB-10 and AMPH-1 mediated down-regulation of RAB-5 is an important step in recycling, required for cargo exit from early endosomes and regulation of early endosome–recycling endosome interactions. PMID:26393361
Tarafder, Abul K; Bolasco, Giulia; Correia, Maria S; Pereira, Francisco J C; Iannone, Lucio; Hume, Alistair N; Kirkpatrick, Niall; Picardo, Mauro; Torrisi, Maria R; Rodrigues, Inês P; Ramalho, José S; Futter, Clare E; Barral, Duarte C; Seabra, Miguel C
2014-04-01
The transfer of melanin from melanocytes to keratinocytes is a crucial process underlying maintenance of skin pigmentation and photoprotection against UV damage. Here, we present evidence supporting coupled exocytosis of the melanin core, or melanocore, by melanocytes and subsequent endocytosis by keratinocytes as a predominant mechanism of melanin transfer. Electron microscopy analysis of human skin samples revealed three lines of evidence supporting this: (1) the presence of melanocores in the extracellular space; (2) within keratinocytes, melanin was surrounded by a single membrane; and (3) this membrane lacked the melanosomal membrane protein tyrosinase-related protein 1 (TYRP1). Moreover, co-culture of melanocytes and keratinocytes suggests that melanin exocytosis is specifically induced by keratinocytes. Furthermore, depletion of Rab11b, but not Rab27a, caused a marked decrease in both keratinocyte-stimulated melanin exocytosis and transfer to keratinocytes. Thus, we propose that the predominant mechanism of melanin transfer is keratinocyte-induced exocytosis, mediated by Rab11b through remodeling of the melanosome membrane, followed by subsequent endocytosis by keratinocytes.
Integration of two RAB5 groups during endosomal transport in plants
Ebine, Kazuo; Choi, Seung-won; Ichinose, Sakura; Uemura, Tomohiro; Nakano, Akihiko
2018-01-01
RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells. PMID:29749929
Investigation of the Fate of Type I Angiotensin Receptor after Biased Activation
Szakadáti, Gyöngyi; Tóth, András D.; Oláh, Ilona; Erdélyi, László Sándor; Balla, Tamas; Várnai, Péter; Balla, András
2015-01-01
Biased agonism on the type I angiotensin receptor (AT1-R) can achieve different outcomes via activation of G protein–dependent and –independent cellular responses. In this study, we investigated whether the biased activation of AT1-R can lead to different regulation and intracellular processing of the receptor. We analyzed β-arrestin binding, endocytosis, and subsequent trafficking steps, such as early and late phases of recycling of AT1-R in human embryonic kidney 293 cells expressing wild-type or biased mutant receptors in response to different ligands. We used Renilla luciferase–tagged receptors and yellow fluorescent protein–tagged β-arrestin2, Rab5, Rab7, and Rab11 proteins in bioluminescence resonance energy transfer measurements to follow the fate of the receptor after stimulation. We found that not only is the signaling of the receptor different upon using selective ligands, but the fate within the cells is also determined by the type of the stimulation. β-arrestin binding and the internalization kinetics of the angiotensin II–stimulated AT1-R differed from those stimulated by the biased agonists. Similarly, angiotensin II–stimulated wild-type AT1-R showed differences compared with a biased mutant AT1-R (DRY/AAY AT1-R) with regards to β-arrestin binding and endocytosis. We found that the differences in the internalization kinetics of the receptor in response to biased agonist stimulation are due to the differences in plasma membrane phosphatidylinositol 4,5-bisphosphate depletion. Moreover, the stability of the β-arrestin binding is a major determinant of the later fate of the internalized AT1-R receptor. PMID:25804845
Lin, Mingqun; Liu, Hongyan; Xiong, Qingming; Niu, Hua; Cheng, Zhihui; Yamamoto, Akitsugu; Rikihisa, Yasuko
2016-01-01
Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes a potentially fatal emerging zoonosis, human monocytic ehrlichiosis. E. chaffeensis has a limited capacity for biosynthesis and metabolism and thus depends mostly on host-synthesized nutrients for growth. Although the host cell cytoplasm is rich with these nutrients, as E. chaffeensis is confined within the early endosome-like membrane-bound compartment, only host nutrients that enter the compartment can be used by this bacterium. How this occurs is unknown. We found that ehrlichial replication depended on autophagy induction involving class III phosphatidylinositol 3-kinase (PtdIns3K) activity, BECN1 (Beclin 1), and ATG5 (autophagy-related 5). Ehrlichia acquired host cell preincorporated amino acids in a class III PtdIns3K-dependent manner and ehrlichial growth was enhanced by treatment with rapamycin, an autophagy inducer. Moreover, ATG5 and RAB5A/B/C were routed to ehrlichial inclusions. RAB5A/B/C siRNA knockdown, or overexpression of a RAB5-specific GTPase-activating protein or dominant-negative RAB5A inhibited ehrlichial infection, indicating the critical role of GTP-bound RAB5 during infection. Both native and ectopically expressed ehrlichial type IV secretion effector protein, Etf-1, bound RAB5 and the autophagy-initiating class III PtdIns3K complex, PIK3C3/VPS34, and BECN1, and homed to ehrlichial inclusions. Ectopically expressed Etf-1 activated class III PtdIns3K as in E. chaffeensis infection and induced autophagosome formation, cleared an aggregation-prone mutant huntingtin protein in a class III PtdIns3K-dependent manner, and enhanced ehrlichial proliferation. These data support the notion that E. chaffeensis secretes Etf-1 to induce autophagy to repurpose the host cytoplasm and capture nutrients for its growth through RAB5 and class III PtdIns3K, while avoiding autolysosomal killing. PMID:27541856
Lin, Mingqun; Liu, Hongyan; Xiong, Qingming; Niu, Hua; Cheng, Zhihui; Yamamoto, Akitsugu; Rikihisa, Yasuko
2016-11-01
Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes a potentially fatal emerging zoonosis, human monocytic ehrlichiosis. E. chaffeensis has a limited capacity for biosynthesis and metabolism and thus depends mostly on host-synthesized nutrients for growth. Although the host cell cytoplasm is rich with these nutrients, as E. chaffeensis is confined within the early endosome-like membrane-bound compartment, only host nutrients that enter the compartment can be used by this bacterium. How this occurs is unknown. We found that ehrlichial replication depended on autophagy induction involving class III phosphatidylinositol 3-kinase (PtdIns3K) activity, BECN1 (Beclin 1), and ATG5 (autophagy-related 5). Ehrlichia acquired host cell preincorporated amino acids in a class III PtdIns3K-dependent manner and ehrlichial growth was enhanced by treatment with rapamycin, an autophagy inducer. Moreover, ATG5 and RAB5A/B/C were routed to ehrlichial inclusions. RAB5A/B/C siRNA knockdown, or overexpression of a RAB5-specific GTPase-activating protein or dominant-negative RAB5A inhibited ehrlichial infection, indicating the critical role of GTP-bound RAB5 during infection. Both native and ectopically expressed ehrlichial type IV secretion effector protein, Etf-1, bound RAB5 and the autophagy-initiating class III PtdIns3K complex, PIK3C3/VPS34, and BECN1, and homed to ehrlichial inclusions. Ectopically expressed Etf-1 activated class III PtdIns3K as in E. chaffeensis infection and induced autophagosome formation, cleared an aggregation-prone mutant huntingtin protein in a class III PtdIns3K-dependent manner, and enhanced ehrlichial proliferation. These data support the notion that E. chaffeensis secretes Etf-1 to induce autophagy to repurpose the host cytoplasm and capture nutrients for its growth through RAB5 and class III PtdIns3K, while avoiding autolysosomal killing.
Hellman, Kevin; Hernandez, Pepe; Park, Alice; Abel, Ted
2010-01-01
Study Objectives: Genetic manipulation of cAMP-dependent protein kinase A (PKA) in Drosophila has implicated an important role for PKA in sleep/wake state regulation. Here, we characterize the role of this signaling pathway in the regulation of sleep using electroencephalographic (EEG) and electromyographic (EMG) recordings in R(AB) transgenic mice that express a dominant negative form of the regulatory subunit of PKA in neurons within cortex and hippocampus. Previous studies have revealed that these mutant mice have reduced PKA activity that results in the impairment of hippocampus-dependent long-term memory and long-lasting forms of hippocampal synaptic plasticity. Design: PKA assays, in situ hybridization, immunoblots, and sleep studies were performed in R(AB) transgenic mice and wild-type control mice. Measurements and Results: We have found that R(AB) transgenic mice have reduced PKA activity within cortex and reduced Ser845 phosphorylation of the glutamate receptor subunit GluR1. R(AB) transgenic mice exhibit non-rapid eye movement (NREM) sleep fragmentation and increased amounts of rapid eye movement (REM) sleep relative to wild-type mice. Further, R(AB) transgenic mice have more delta power but less sigma power during NREM sleep relative to wild-type mice. After sleep deprivation, the amounts of NREM and REM sleep were comparable between wild-type and R(AB) transgenic mice. However, the homeostatic rebound of sigma power in R(AB) transgenic mice was reduced. Conclusions: Alterations in cortical synaptic receptors, impairments in sleep continuity, and alterations in sleep oscillations in R(AB) mice imply that PKA is involved not only in synaptic plasticity and memory storage but also in the regulation of sleep/wake states. Citation: Hellman K; Hernandez P; Park A; Abel T. Genetic evidence for a role for protein kinase a in the maintenance of sleep and thalamocortical oscillations. SLEEP 2010;33(1):19-28. PMID:20120617
Wiedmer, Michaela; Oevermann, Anna; Borer-Germann, Stephanie E.; Gorgas, Daniela; Shelton, G. Diane; Drögemüller, Michaela; Jagannathan, Vidhya; Henke, Diana; Leeb, Tosso
2015-01-01
We observed a hereditary phenotype in Alaskan Huskies that was characterized by polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV). The affected dogs developed a progressive severe ataxia, which led to euthanasia between 8 and 16 months of age. The pedigrees were consistent with a monogenic autosomal recessive inheritance. We localized the causative genetic defect to a 4 Mb interval on chromosome 19 by a combined linkage and homozygosity mapping approach. Whole genome sequencing of one affected dog, an obligate carrier, and an unrelated control revealed a 218-bp SINE insertion into exon 7 of the RAB3GAP1 gene. The SINE insertion was perfectly associated with the disease phenotype in a cohort of 43 Alaskan Huskies, and it was absent from 541 control dogs of diverse other breeds. The SINE insertion induced aberrant splicing and led to a transcript with a greatly altered exon 7. RAB3GAP1 loss-of-function variants in humans cause Warburg Micro Syndrome 1 (WARBM1), which is characterized by additional developmental defects compared to canine POANV, whereas Rab3gap1-deficient mice have a much milder phenotype than either humans or dogs. Thus, the RAB3GAP1 mutant Alaskan Huskies provide an interesting intermediate phenotype that may help to better understand the function of RAB3GAP1 in development. Furthermore, the identification of the presumed causative genetic variant will enable genetic testing to avoid the nonintentional breeding of affected dogs. PMID:26596647
Rab2 promotes autophagic and endocytic lysosomal degradation
Boda, Attila; Glatz, Gábor; Zobel, Martina; Bisi, Sara; Hegedűs, Krisztina; Scita, Giorgio
2017-01-01
Rab7 promotes fusion of autophagosomes and late endosomes with lysosomes in yeast and metazoan cells, acting together with its effector, the tethering complex HOPS. Here we show that another small GTPase, Rab2, is also required for autophagosome and endosome maturation and proper lysosome function in Drosophila melanogaster. We demonstrate that Rab2 binds to HOPS, and that its active, GTP-locked form associates with autolysosomes. Importantly, expression of active Rab2 promotes autolysosomal fusions unlike that of GTP-locked Rab7, suggesting that its amount is normally rate limiting. We also demonstrate that RAB2A is required for autophagosome clearance in human breast cancer cells. In conclusion, we identify Rab2 as a key factor for autophagic and endocytic cargo delivery to and degradation in lysosomes. PMID:28483915
Dong, Wenjie; Wu, Xinai
2018-01-01
Rab11 family-interacting protein 2 (Rab11-FIP2) can interact with MYO5B and plays an important role in regulating plasma membrane recycling. However, little is known about the clinical significance of DUSP2 in colorectal cancer (CRC). In this study, we investigated Rab11-FIP2 expression by immunohistochemistry in 125 patients with colorectal cancer. Conditioned media containing all secreted factors was harvested. Chemokine secretion and expression were analyzed by Chemi-array. We found that the expression level of Rab11-FIP2 was significantly increased in colorectal cancer tissues and high expression of Rab11-FIP2 was closely correlated with nodal metastasis in colorectal cancer patients. Rab11-FIP2 overexpression promoted colorectal cancer metastasis in vitro and in vivo. Finally, we demonstrated that Rab11-FIP2 overexpression may contribute to increased secretion of PAI-1 in human colorectal cancer cells. Our findings reveal a novel mechanism underlying the role of Rab11-FIP2 in colorectal cancer dissemination, suggesting that targeting Rab11-FIP2 might be a promising therapeutic strategy for CRC.
32 CFR 202.10 - RAB adjournment and dissolution.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 2 2013-07-01 2013-07-01 false RAB adjournment and dissolution. 202.10 Section... dissolution. (a) RAB adjournment—(1) Requirements for RAB adjournment. An Installation Commander may adjourn a... Commander decides to adjourn the RAB. (b) RAB dissolution—(1) Requirements for RAB dissolution. An...
32 CFR 202.10 - RAB adjournment and dissolution.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 2 2011-07-01 2011-07-01 false RAB adjournment and dissolution. 202.10 Section... dissolution. (a) RAB adjournment—(1) Requirements for RAB adjournment. An Installation Commander may adjourn a... Commander decides to adjourn the RAB. (b) RAB dissolution—(1) Requirements for RAB dissolution. An...
32 CFR 202.10 - RAB adjournment and dissolution.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false RAB adjournment and dissolution. 202.10 Section... dissolution. (a) RAB adjournment—(1) Requirements for RAB adjournment. An Installation Commander may adjourn a... Commander decides to adjourn the RAB. (b) RAB dissolution—(1) Requirements for RAB dissolution. An...
32 CFR 202.10 - RAB adjournment and dissolution.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false RAB adjournment and dissolution. 202.10 Section... dissolution. (a) RAB adjournment—(1) Requirements for RAB adjournment. An Installation Commander may adjourn a... Commander decides to adjourn the RAB. (b) RAB dissolution—(1) Requirements for RAB dissolution. An...
Bultema, Jarred J.; Ambrosio, Andrea L.; Burek, Carolyn L.; Di Pietro, Santiago M.
2012-01-01
Lysosome-related organelles (LROs) are synthesized in specialized cell types where they largely coexist with conventional lysosomes. Most of the known cellular transport machinery involved in biogenesis are ubiquitously expressed and shared between lysosomes and LROs. Examples of common components are the adaptor protein complex-3 (AP-3) and biogenesis of lysosome-related organelle complex (BLOC)-2. These protein complexes control sorting and transport of newly synthesized integral membrane proteins from early endosomes to both lysosomes and LROs such as the melanosome. However, it is unknown what factors cooperate with the ubiquitous transport machinery to mediate transport to LROs in specialized cells. Focusing on the melanosome, we show that the ubiquitous machinery interacts with cell type-specific Rab proteins, Rab38 and Rab32, to facilitate transport to the maturing organelle. BLOC-2, AP-3, and AP-1 coimmunoprecipitated with Rab38 and Rab32 from MNT-1 melanocytic cell extracts. BLOC-2, AP-3, AP-1, and clathrin partially colocalized with Rab38 and Rab32 by confocal immunofluorescence microscopy in MNT-1 cells. Rab38- and Rab32-deficient MNT-1 cells displayed abnormal trafficking and steady state levels of known cargoes of the BLOC-2, AP-3, and AP-1 pathways, the melanin-synthesizing enzymes tyrosinase and tyrosinase-related protein-1. These observations support the idea that Rab38 and Rab32 are the specific factors that direct the ubiquitous machinery to mediate transport from early endosomes to maturing LROs. Additionally, analysis of tyrosinase-related protein-2 and total melanin production indicates that Rab32 has unique functions that cannot be carried out by Rab38 in melanosome biogenesis. PMID:22511774
Bultema, Jarred J; Ambrosio, Andrea L; Burek, Carolyn L; Di Pietro, Santiago M
2012-06-01
Lysosome-related organelles (LROs) are synthesized in specialized cell types where they largely coexist with conventional lysosomes. Most of the known cellular transport machinery involved in biogenesis are ubiquitously expressed and shared between lysosomes and LROs. Examples of common components are the adaptor protein complex-3 (AP-3) and biogenesis of lysosome-related organelle complex (BLOC)-2. These protein complexes control sorting and transport of newly synthesized integral membrane proteins from early endosomes to both lysosomes and LROs such as the melanosome. However, it is unknown what factors cooperate with the ubiquitous transport machinery to mediate transport to LROs in specialized cells. Focusing on the melanosome, we show that the ubiquitous machinery interacts with cell type-specific Rab proteins, Rab38 and Rab32, to facilitate transport to the maturing organelle. BLOC-2, AP-3, and AP-1 coimmunoprecipitated with Rab38 and Rab32 from MNT-1 melanocytic cell extracts. BLOC-2, AP-3, AP-1, and clathrin partially colocalized with Rab38 and Rab32 by confocal immunofluorescence microscopy in MNT-1 cells. Rab38- and Rab32-deficient MNT-1 cells displayed abnormal trafficking and steady state levels of known cargoes of the BLOC-2, AP-3, and AP-1 pathways, the melanin-synthesizing enzymes tyrosinase and tyrosinase-related protein-1. These observations support the idea that Rab38 and Rab32 are the specific factors that direct the ubiquitous machinery to mediate transport from early endosomes to maturing LROs. Additionally, analysis of tyrosinase-related protein-2 and total melanin production indicates that Rab32 has unique functions that cannot be carried out by Rab38 in melanosome biogenesis.
dOCRL maintains immune cell quiescence by regulating endosomal traffic
Del Signore, Steven J.; Biber, Sarah A.; Lehmann, Katherine S.; Heimler, Stephanie R.; Rosenfeld, Benjamin H.; Eskin, Tania L.
2017-01-01
Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand Spåtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome. PMID:29028801
Drosophila VAMP7 regulates Wingless intracellular trafficking.
Gao, Han; He, Fang; Lin, Xinhua; Wu, Yihui
2017-01-01
Drosophila Wingless (Wg) is a morphogen that determines cell fate during development. Previous studies have shown that endocytic pathways regulate Wg trafficking and signaling. Here, we showed that loss of vamp7, a gene required for vesicle fusion, dramatically increased Wg levels and decreased Wg signaling. Interestingly, we found that levels of Dally-like (Dlp), a glypican that can interact with Wg to suppress Wg signaling at the dorsoventral boundary of the Drosophila wing, were also increased in vamp7 mutant cells. Moreover, Wg puncta in Rab4-dependent recycling endosomes were Dlp positive. We hypothesize that VAMP7 is required for Wg intracellular trafficking and the accumulation of Wg in Rab4-dependent recycling endosomes might affect Wg signaling.
Sedej, Simon; Klemen, Maša Skelin; Schlüter, Oliver M.; Rupnik, Marjan Slak
2013-01-01
Rab3a is a small GTPase of the Rab3 subfamily that acts during late stages of Ca2+-regulated exocytosis. Previous functional analysis in pituitary melanotrophs described Rab3a as a positive regulator of Ca2+-dependent exocytosis. However, the precise role of the Rab3a isoform on the kinetics and intracellular [Ca2+] sensitivity of regulated exocytosis, which may affect the availability of two major peptide hormones, α-melanocyte stimulating hormone (α-MSH) and β-endorphin in plasma, remain elusive. We employed Rab3a knock-out mice (Rab3a KO) to explore the secretory phenotype in melanotrophs from fresh pituitary tissue slices. High resolution capacitance measurements showed that Rab3a KO melanotrophs possessed impaired Ca2+-triggered secretory activity as compared to wild-type cells. The hampered secretion was associated with the absence of cAMP-guanine exchange factor II/ Epac2-dependent secretory component. This component has been attributed to high Ca2+-sensitive release-ready vesicles as determined by slow photo-release of caged Ca2+. Radioimmunoassay revealed that α-MSH, but not β-endorphin, was elevated in the plasma of Rab3a KO mice, indicating increased constitutive exocytosis of α-MSH. Increased constitutive secretion of α-MSH from incubated tissue slices was associated with reduced α-MSH cellular content in Rab3a-deficient pituitary cells. Viral re-expression of the Rab3a protein in vitro rescued the secretory phenotype of melanotrophs from Rab3a KO mice. In conclusion, we suggest that Rab3a deficiency promotes constitutive secretion and underlies selective impairment of Ca2+-dependent release of α-MSH. PMID:24205339
A Rab5 GTPase module is important for autophagosome closure
Lipatova, Zhanna; Sun, Dan; Zhu, Xiaolong; Li, Rui; Wu, Zulin; You, Weiming; Cong, Xiaoxia; Zhou, Yiting; Gyurkovska, Valeriya; Liu, Yutao; Li, Qunli; Li, Wenjing; Cheng, Jie; Segev, Nava
2017-01-01
In the conserved autophagy pathway, the double-membrane autophagosome (AP) engulfs cellular components to be delivered for degradation in the lysosome. While only sealed AP can productively fuse with the lysosome, the molecular mechanism of AP closure is currently unknown. Rab GTPases, which regulate all intracellular trafficking pathways in eukaryotes, also regulate autophagy. Rabs function in GTPase modules together with their activators and downstream effectors. In yeast, an autophagy-specific Ypt1 GTPase module, together with a set of autophagy-related proteins (Atgs) and a phosphatidylinositol-3-phosphate (PI3P) kinase, regulates AP formation. Fusion of APs and endosomes with the vacuole (the yeast lysosome) requires the Ypt7 GTPase module. We have previously shown that the Rab5-related Vps21, within its endocytic GTPase module, regulates autophagy. However, it was not clear which autophagy step it regulates. Here, we show that this module, which includes the Vps9 activator, the Rab5-related Vps21, the CORVET tethering complex, and the Pep12 SNARE, functions after AP expansion and before AP closure. Whereas APs are not formed in mutant cells depleted for Atgs, sealed APs accumulate in cells depleted for the Ypt7 GTPase module members. Importantly, depletion of individual members of the Vps21 module results in a novel phenotype: accumulation of unsealed APs. In addition, we show that Vps21-regulated AP closure precedes another AP maturation step, the previously reported PI3P phosphatase-dependent Atg dissociation. Our results delineate three successive steps in the autophagy pathway regulated by Rabs, Ypt1, Vps21 and Ypt7, and provide the first insight into the upstream regulation of AP closure. PMID:28934205
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yanlan; Chen, Yicheng; Ding, Guoqing
The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacymore » and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.« less
Rasineni, Karuna; McVicker, Benita L.; Tuma, Dean J.; McNiven, Mark A.; Casey, Carol A.
2013-01-01
Background Alcoholic liver disease is manifested by the presence of fatty liver, primarily due to accumulation of hepatocellular lipid droplets (LDs). The presence of membrane-trafficking proteins (e.g. Rab GTPases) with LDs indicates that LDs may be involved in trafficking pathways known to be altered in ethanol damaged hepatocytes. Since these Rab GTPases are crucial regulators of protein trafficking, we examined the effect ethanol administration has on hepatic Rab protein content and association with LDs. Methods Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Whole liver and isolated LD fractions were analyzed. Identification of LDs and associated Rab proteins was performed in frozen liver or paraffin-embedded sections followed by immunohistochemical analysis. Results Lipid accumulation was characterized by larger LD vacuoles and increased total triglyceride content in ethanol-fed rats. Rabs 1, 2, 3d, 5, 7 and 18 were analyzed in post-nuclear supernatant (PNS) as well as LDs. All of the Rabs were found in the PNS, and Rabs 1, 2, 5 and 7 did not show alcohol-altered content, while Rab 3d content was reduced by over 80%, and Rab 18 also showed ethanol-induced reduction in content. Rab 3d was not found to associate with LDs, while all other Rabs were found in the LD fractions, and several showed an ethanol-related decrease (Rabs 2, 5, 7, 18). Immunohistochemical analysis revealed the enhanced content of a LD-associated protein, perilipin 2 (PLIN2) that was paralleled with an associated decrease of Rab 18 in ethanol-fed rat sections. Conclusion Chronic ethanol feeding was associated with increased PLIN2 and altered Rab GTPase content in enriched LD fractions. Although mechanisms driving these changes are not established, further studies on intracellular protein trafficking and LD biology after alcohol administration will likely contribute to our understanding of fatty liver disease. PMID:24117505
Autophagy in Saccharomyces cerevisiae requires the monomeric GTP-binding proteins, Arl1 and Ypt6.
Yang, Shu; Rosenwald, Anne G
2016-10-02
Macroautophagy/autophagy is a cellular degradation process that sequesters organelles or proteins into a double-membrane structure called the phagophore; this transient compartment matures into an autophagosome, which then fuses with the lysosome or vacuole to allow hydrolysis of the cargo. Factors that control membrane traffic are also essential for each step of autophagy. Here we demonstrate that 2 monomeric GTP-binding proteins in Saccharomyces cerevisiae, Arl1 and Ypt6, which belong to the Arf/Arl/Sar protein family and the Rab family, respectively, and control endosome-trans-Golgi traffic, are also necessary for starvation-induced autophagy under high temperature stress. Using established autophagy-specific assays we found that cells lacking either ARL1 or YPT6, which exhibit synthetic lethality with one another, were unable to undergo autophagy at an elevated temperature, although autophagy proceeds normally at normal growth temperature; specifically, strains lacking one or the other of these genes are unable to construct the autophagosome because these 2 proteins are required for proper traffic of Atg9 to the phagophore assembly site (PAS) at the restrictive temperature. Using degron technology to construct an inducible arl1Δ ypt6Δ double mutant, we demonstrated that cells lacking both genes show defects in starvation-inducted autophagy at the permissive temperature. We also found Arl1 and Ypt6 participate in autophagy by targeting the Golgi-associated retrograde protein (GARP) complex to the PAS to regulate the anterograde trafficking of Atg9. Our data show that these 2 membrane traffic regulators have novel roles in autophagy.
Davie, Jeremiah J; Faitar, Silviu L
2017-01-01
Currently, time-consuming serial in vitro experimentation involving immunocytochemistry or radiolabeled materials is required to identify which of the numerous Rab-GTPases (Rab) and Rab-GTPase activating proteins (RabGAP) are capable of functional interactions. These interactions are essential for numerous cellular functions, and in silico methods of reducing in vitro trial and error would accelerate the pace of research in cell biology. We have utilized a combination of three-dimensional protein modeling and protein bioinformatics to identify domains present in Rab proteins that are predictive of their functional interaction with a specific RabGAP. The RabF2 and RabSF1 domains appear to play functional roles in mediating the interaction between Rabs and RabGAPs. Moreover, the RabSF1 domain can be used to make in silico predictions of functional Rab/RabGAP pairs. This method is expected to be a broadly applicable tool for predicting protein-protein interactions where existing crystal structures for homologs of the proteins of interest are available.
A plasmid library of full-length zebrafish rab proteins for in vivo cell biology.
Hall, Thomas E; Martel, Nick; Lo, Harriet P; Xiong, Zherui; Parton, Robert G
2017-01-01
The zebrafish is an emerging model for highly sophisticated medium-throughput experiments such as genetic and chemical screens. However, studies of entire protein families within this context are often hampered by poor genetic resources such as clone libraries. Here we describe a complete collection of 76 full-length open reading frame clones for the zebrafish rab protein family. While the mouse genome contains 60 rab genes and the human genome 63, we find that 18 zebrafish rab genes have 2, and in the case of rab38, 3 paralogues. In contrast, we were unable to identify zebrafish orthologues of the mammalian Rab2b, Rab17 or Rab29. We make this resource available through the Addgene repository to facilitate cell biologic approaches using this model.
Dai, Zhipan; Tang, Xia; Chen, Jia; Tang, Xiaochao; Wang, Xianchun
2017-11-01
Rab3 and synaptotagmin have been suggested to play important roles in the regulation of neurotransmitter release and, however, the molecular mechanism has not been completely clear. Here, we studied the effects of Rab3A and synaptotagmin I (Syt I) on dopamine release using PC12 cells as a model system. Rab3A was demonstrated to have effects on both Ca 2+ -independent and Ca 2+ -dependent dopamine releases from the PC12 cells. Application of Rab3A (up to 2500 nM) gradually decreased the amount of Ca 2+ -dependently released dopamine, indicating that Rab3A is a negative modulator that was further supported by the increase in dopamine release caused by Rab3A knockdown. Syt I knockdown weakened the Ca 2+ -dependent dopamine release, suggesting that Syt I plays a positive regulatory role in the cellular process. Treatment of the Syt I-knocked down PC12 cells with Rab3A further decreased Ca 2+ -dependent dopamine release and, however, the decrease magnitude was significantly reduced compared with that before Syt I knockdown, thus for the first time demonstrating that the inhibitory effect of Rab3A on Ca 2+ -dependent dopamine release involves the interaction with Syt I. This work has shed new light on the molecular mechanism for Rab3 and synaptotamin regulation of neurotransmitter release. J. Cell. Biochem. 118: 3696-3705, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A role for the Rab6A′ GTPase in the inactivation of the Mad2-spindle checkpoint
Miserey-Lenkei, Stéphanie; Couëdel-Courteille, Anne; Del Nery, Elaine; Bardin, Sabine; Piel, Matthieu; Racine, Victor; Sibarita, Jean-Baptiste; Perez, Franck; Bornens, Michel; Goud, Bruno
2006-01-01
The two isoforms of the Rab6 GTPase, Rab6A and Rab6A′, regulate a retrograde transport route connecting early endosomes and the endoplasmic reticulum via the Golgi complex in interphasic cells. Here we report that when Rab6A′ function is altered cells are unable to progress normally through mitosis. Such cells are blocked in metaphase, despite displaying a normal Golgi fragmentation and with the Mad2-spindle checkpoint activated. Furthermore, the Rab6 effector p150Glued, a subunit of the dynein/dynactin complex, remains associated with some kinetochores. A similar phenotype was observed when GAPCenA, a GTPase-activating protein of Rab6, was depleted from cells. Our results suggest that Rab6A′ likely regulates the dynamics of the dynein/dynactin complex at the kinetochores and consequently the inactivation of the Mad2-spindle checkpoint. Rab6A′, through its interaction with p150Glued and GAPCenA, may thus participate in a pathway involved in the metaphase/anaphase transition. PMID:16395330
Drosophila Pkaap regulates Rab4/Rab11-dependent traffic and Rab11 exocytosis of innate immune cargo
Sorvina, Alexandra; Shandala, Tetyana; Brooks, Douglas A.
2016-01-01
ABSTRACT The secretion of immune-mediators is a critical step in the host innate immune response to pathogen invasion, and Rab GTPases have an important role in the regulation of this process. Rab4/Rab11 recycling endosomes are involved in the sorting of immune-mediators into specialist Rab11 vesicles that can traffic this cargo to the plasma membrane; however, how this sequential delivery process is regulated has yet to be fully defined. Here, we report that Drosophila Pkaap, an orthologue of the human dual-specific A-kinase-anchoring protein 2 or D-AKAP2 (also called AKAP10), appeared to have a nucleotide-dependent localisation to Rab4 and Rab11 endosomes. RNAi silencing of pkaap altered Rab4/Rab11 recycling endosome morphology, suggesting that Pkaap functions in cargo sorting and delivery in the secretory pathway. The depletion of pkaap also had a direct effect on Rab11 vesicle exocytosis and the secretion of the antimicrobial peptide Drosomycin at the plasma membrane. We propose that Pkaap has a dual role in antimicrobial peptide traffic and exocytosis, making it an essential component for the secretion of inflammatory mediators and the defence of the host against pathogens. PMID:27190105
Deregulation of Rab and Rab Effector Genes in Bladder Cancer
Ho, Joel R.; Chapeaublanc, Elodie; Kirkwood, Lisa; Nicolle, Remy; Benhamou, Simone; Lebret, Thierry; Allory, Yves; Southgate, Jennifer; Radvanyi, François; Goud, Bruno
2012-01-01
Growing evidence indicates that Rab GTPases, key regulators of intracellular transport in eukaryotic cells, play an important role in cancer. We analysed the deregulation at the transcriptional level of the genes encoding Rab proteins and Rab-interacting proteins in bladder cancer pathogenesis, distinguishing between the two main progression pathways so far identified in bladder cancer: the Ta pathway characterized by a high frequency of FGFR3 mutation and the carcinoma in situ pathway where no or infrequent FGFR3 mutations have been identified. A systematic literature search identified 61 genes encoding Rab proteins and 223 genes encoding Rab-interacting proteins. Transcriptomic data were obtained for normal urothelium samples and for two independent bladder cancer data sets corresponding to 152 and 75 tumors. Gene deregulation was analysed with the SAM (significant analysis of microarray) test or the binomial test. Overall, 30 genes were down-regulated, and 13 were up-regulated in the tumor samples. Five of these deregulated genes (LEPRE1, MICAL2, RAB23, STXBP1, SYTL1) were specifically deregulated in FGFR3-non-mutated muscle-invasive tumors. No gene encoding a Rab or Rab-interacting protein was found to be specifically deregulated in FGFR3-mutated tumors. Cluster analysis showed that the RAB27 gene cluster (comprising the genes encoding RAB27 and its interacting partners) was deregulated and that this deregulation was associated with both pathways of bladder cancer pathogenesis. Finally, we found that the expression of KIF20A and ZWINT was associated with that of proliferation markers and that the expression of MLPH, MYO5B, RAB11A, RAB11FIP1, RAB20 and SYTL2 was associated with that of urothelial cell differentiation markers. This systematic analysis of Rab and Rab effector gene deregulation in bladder cancer, taking relevant tumor subgroups into account, provides insight into the possible roles of Rab proteins and their effectors in bladder cancer pathogenesis. This approach is applicable to other group of genes and types of cancer. PMID:22724020
How Do Rab Proteins Determine Golgi Structure?
Liu, Shijie; Storrie, Brian
2015-01-01
Rab proteins, small GTPases, are key regulators of mammalian Golgi apparatus organization. Based on the effect of Rab activation state, Rab proteins fall into two functional classes. In Class1, inactivation induces Golgi ribbon fragmentation and/or redistribution of Golgi enzymes to the ER, while overexpression of wild type or activation has little, if any, effect on Golgi ribbon organization. In Class 2, the reverse is true. We give emphasis to Rab6, the most abundant Golgi-associated Rab protein. Rab6 depletion in HeLa cells causes an increase in Golgi cisternal number, longer, more continuous cisternae, and a pronounced accumulation of vesicles; the effect of Rab6 on Golgi ribbon organization is probably through regulation of vesicle transport. In effector studies, motor proteins and their regulators are found to be key Rab6 effectors. A related Rab, Rab41, affects Golgi ribbon organization in a contrasting manner. The balance between minus- and plus-end directed motor recruitment may well be the major Rab-dependent factor in Golgi ribbon organization. PMID:25708460
EPI64B Acts as a GTPase-activating Protein for Rab27B in Pancreatic Acinar Cells*
Hou, Yanan; Chen, Xuequn; Tolmachova, Tatyana; Ernst, Stephen A.; Williams, John A.
2013-01-01
The small GTPase Rab27B localizes to the zymogen granule membranes and plays an important role in regulating protein secretion by pancreatic acinar cells, as does Rab3D. A common guanine nucleotide exchange factor (GEF) for Rab3 and Rab27 has been reported; however, the GTPase-activating protein (GAP) specific for Rab27B has not been identified. In this study, the expression in mouse pancreatic acini of two candidate Tre-2/Bub2/Cdc16 (TBC) domain-containing proteins, EPI64 (TBC1D10A) and EPI64B (TBC1D10B), was first demonstrated. Their GAP activity on digestive enzyme secretion was examined by adenovirus-mediated overexpression of EPI64 and EPI64B in isolated pancreatic acini. EPI64B almost completely abolished the GTP-bound form of Rab27B, without affecting GTP-Rab3D. Overexpression of EPI64B also enhanced amylase release. This enhanced release was independent of Rab27A, but dependent on Rab27B, as shown using acini from genetically modified mice. EPI64 had a mild effect on both GTP-Rab27B and amylase release. Co-overexpression of EPI64B with Rab27B can reverse the inhibitory effect of Rab27B on amylase release. Mutations that block the GAP activity decreased the inhibitory effect of EPI64B on the GTP-bound state of Rab27B and abolished the enhancing effect of EPI64B on the amylase release. These data suggest that EPI64B can serve as a potential physiological GAP for Rab27B and thereby participate in the regulation of exocytosis in pancreatic acinar cells. PMID:23671284
Wefers, Benedikt; Meyer, Melanie; Ortiz, Oskar; Hrabé de Angelis, Martin; Hansen, Jens; Wurst, Wolfgang; Kühn, Ralf
2013-01-01
The study of genetic disease mechanisms relies mostly on targeted mouse mutants that are derived from engineered embryonic stem (ES) cells. Nevertheless, the establishment of mutant ES cells is laborious and time-consuming, restricting the study of the increasing number of human disease mutations discovered by high-throughput genomic analysis. Here, we present an advanced approach for the production of mouse disease models by microinjection of transcription activator-like effector nucleases (TALENs) and synthetic oligodeoxynucleotides into one-cell embryos. Within 2 d of embryo injection, we created and corrected chocolate missense mutations in the small GTPase RAB38; a regulator of intracellular vesicle trafficking and phenotypic model of Hermansky-Pudlak syndrome. Because ES cell cultures and targeting vectors are not required, this technology enables instant germline modifications, making heterozygous mutants available within 18 wk. The key features of direct mutagenesis by TALENs and oligodeoxynucleotides, minimal effort and high speed, catalyze the generation of future in vivo models for the study of human disease mechanisms and interventions. PMID:23426636
Striz, Anneliese C.; Tuma, Pamela L.
2016-01-01
A major focus for our laboratory is identifying the molecules and mechanisms that regulate polarized apical protein sorting in hepatocytes, the major epithelial cells of the liver. These trafficking pathways are regulated, in part, by small molecular weight rab GTPases. We chose to investigate rab17, whose expression is restricted to polarized epithelial cells, is enriched in liver, and has been implicated in regulating basolateral to apical transcytosis. To initiate our studies, we generated three recombinant adenoviruses expressing wild type, constitutively active (GTP bound), or dominant-negative (GDP bound) rab17. Immunoblotting revealed rab17 immunoreactive species at 25 kDa (the predicted rab17 molecular mass) and 40 kDa. We determined that mono-sumoylation of the 25-kDa rab17 is responsible for the shift in molecular mass, and that rab17 prenylation is required for sumoylation. We further determined that sumoylation selectively promotes interactions with syntaxin 2 (but not syntaxins 3 or 4) and that these interactions are nucleotide dependent. Furthermore, a K68R-mutated rab17 led to the redistribution of syntaxin 2 and 5′ nucleotidase from the apical membrane to subapical puncta, whereas multidrug resistance protein 2 distributions were not changed. Together these data are consistent with the proposed role of rab17 in vesicle fusion with the apical plasma membrane and further implicate sumoylation as an important mediator of protein-protein interactions. The selectivity in syntaxin binding and apical protein redistribution further suggests that rab17 and syntaxin 2 mediate fusion of transcytotic vesicles at the apical surface. PMID:26957544
The Protease Activated Receptor2 Promotes Rab5a Mediated Generation of Pro-metastatic Microvesicles.
Das, Kaushik; Prasad, Ramesh; Roy, Sreetama; Mukherjee, Ashis; Sen, Prosenjit
2018-05-09
Metastasis, the hallmark of cancer propagation is attributed by the modification of phenotypic/functional behavior of cells to break attachment and migrate to distant body parts. Cancer cell-secreted microvesicles (MVs) contribute immensely in disease propagation. These nano-vesicles, generated from plasma membrane outward budding are taken up by nearby healthy cells thereby inducing phenotypic alterations in those recipient cells. Protease activated receptor 2 (PAR2), activated by trypsin, also contributes to cancer progression by increasing metastasis, angiogenesis etc. Here, we report that PAR2 activation promotes pro-metastatic MVs generation from human breast cancer cell line, MDA-MB-231. Rab5a, located at the plasma membrane plays vital roles in MVs biogenesis. We show that PAR2 stimulation promotes AKT phosphorylation which activates Rab5a by converting inactive Rab5a-GDP to active Rab5a-GTP. Active Rab5a polymerizes actin which critically regulates MVs shedding. Not only MVs generation, has this Rab5a activation also promoted cell migration and invasion. We reveal that Rab5a is over-expressed in human breast tumor specimen and contributes MVs generation in those patients. The involvement of p38 MAPK in MVs-induced cell metastasis has also been highlighted in the present study. Blockade of Rab5a activation can be a potential therapeutic approach to restrict MVs shedding and associated breast cancer metastasis.
Parkinson disease-associated mutations in LRRK2 cause centrosomal defects via Rab8a phosphorylation.
Madero-Pérez, Jesús; Fdez, Elena; Fernández, Belén; Lara Ordóñez, Antonio J; Blanca Ramírez, Marian; Gómez-Suaga, Patricia; Waschbüsch, Dieter; Lobbestael, Evy; Baekelandt, Veerle; Nairn, Angus C; Ruiz-Martínez, Javier; Aiastui, Ana; López de Munain, Adolfo; Lis, Pawel; Comptdaer, Thomas; Taymans, Jean-Marc; Chartier-Harlin, Marie-Christine; Beilina, Alexandria; Gonnelli, Adriano; Cookson, Mark R; Greggio, Elisa; Hilfiker, Sabine
2018-01-23
Mutations in LRRK2 are a common genetic cause of Parkinson's disease (PD). LRRK2 interacts with and phosphorylates a subset of Rab proteins including Rab8a, a protein which has been implicated in various centrosome-related events. However, the cellular consequences of such phosphorylation remain elusive. Human neuroblastoma SH-SY5Y cells stably expressing wildtype or pathogenic LRRK2 were used to test for polarity defects in the context of centrosomal positioning. Centrosomal cohesion deficits were analyzed from transiently transfected HEK293T cells, as well as from two distinct peripheral cell types derived from LRRK2-PD patients. Kinase assays, coimmunoprecipitation and GTP binding/retention assays were used to address Rab8a phosphorylation by LRRK2 and its effects in vitro. Transient transfections and siRNA experiments were performed to probe for the implication of Rab8a and its phosphorylated form in the centrosomal deficits caused by pathogenic LRRK2. Here, we show that pathogenic LRRK2 causes deficits in centrosomal positioning with effects on neurite outgrowth, cell polarization and directed migration. Pathogenic LRRK2 also causes deficits in centrosome cohesion which can be detected in peripheral cells derived from LRRK2-PD patients as compared to healthy controls, and which are reversed upon LRRK2 kinase inhibition. The centrosomal cohesion and polarity deficits can be mimicked when co-expressing wildtype LRRK2 with wildtype but not phospho-deficient Rab8a. The centrosomal defects induced by pathogenic LRRK2 are associated with a kinase activity-dependent increase in the centrosomal localization of phosphorylated Rab8a, and are prominently reduced upon RNAi of Rab8a. Our findings reveal a new function of LRRK2 mediated by Rab8a phosphorylation and related to various centrosomal defects.
Li, Zi; Zhao, Kui; Lan, Yungang; Lv, Xiaoling; Hu, Shiyu; Guan, Jiyu; Lu, Huijun; Zhang, Jing; Shi, Junchao; Yang, Yawen; Song, Deguang; Gao, Feng; He, Wenqi
2017-12-01
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurovirulent coronavirus that invades the central nervous system (CNS) in piglets. Although important progress has been made toward understanding the biology of PHEV, many aspects of its life cycle remain obscure. Here we dissected the molecular mechanism underlying cellular entry and intracellular trafficking of PHEV in mouse neuroblastoma (Neuro-2a) cells. We first performed a thin-section transmission electron microscopy (TEM) assay to characterize the kinetics of PHEV, and we found that viral entry and transfer occur via membranous coating-mediated endo- and exocytosis. To verify the roles of distinct endocytic pathways, systematic approaches were used, including pharmacological inhibition, RNA interference, confocal microscopy analysis, use of fluorescently labeled virus particles, and overexpression of a dominant negative (DN) mutant. Quantification of infected cells showed that PHEV enters cells by clathrin-mediated endocytosis (CME) and that low pH, dynamin, cholesterol, and Eps15 are indispensably involved in this process. Intriguingly, PHEV invasion leads to rapid actin rearrangement, suggesting that the intactness and dynamics of the actin cytoskeleton are positively correlated with viral endocytosis. We next investigated the trafficking of internalized PHEV and found that Rab5- and Rab7-dependent pathways are required for the initiation of a productive infection. Furthermore, a GTPase activation assay suggested that endogenous Rab5 is activated by PHEV and is crucial for viral progression. Our findings demonstrate that PHEV hijacks the CME and endosomal system of the host to enter and traffic within neural cells, providing new insights into PHEV pathogenesis and guidance for antiviral drug design. IMPORTANCE Porcine hemagglutinating encephalomyelitis virus (PHEV), a nonsegmented, positive-sense, single-stranded RNA coronavirus, invades the central nervous system (CNS) and causes neurological dysfunction. Neural cells are its targets for viral progression. However, the detailed mechanism underlying PHEV entry and trafficking remains unknown. PHEV is the etiological agent of porcine hemagglutinating encephalomyelitis, which is an acute and highly contagious disease that causes numerous deaths in suckling piglets and enormous economic losses in China. Understanding the viral entry pathway will not only advance our knowledge of PHEV infection and pathogenesis but also open new approaches to the development of novel therapeutic strategies. Therefore, we employed systematic approaches to dissect the internalization and intracellular trafficking mechanism of PHEV in Neuro-2a cells. This is the first report to describe the process of PHEV entry into nerve cells via clathrin-mediated endocytosis in a dynamin-, cholesterol-, and pH-dependent manner that requires Rab5 and Rab7. Copyright © 2017 Li et al.
Chen, Ming-Chyuan; Cheng, Ying-Min; Hong, Min-Chang; Fang, Lee-Shing
2004-11-19
The intracellular association of symbiotic dinoflagellates (zooxanthellae) with marine cnidarians is the very foundation of the highly productive and diversified coral reef ecosystems. To reveal its underlying molecular mechanisms, we previously cloned ApRab7, a Rab7 homologue of the sea anemone Aiptasia pulchella, and demonstrated its selective exclusion from phagosomes containing live zooxanthellae, but not from those containing either dead or photosynthesis-impaired algae. In this study, Rab5 was characterized, due to its key role in endocytosis and phagocytosis acting upstream of Rab7. The Aiptasia Rab5 homologue (ApRab5) is 79.5% identical to human Rab5C and contains all Rab-specific signature motifs. Subcellular fractionation study showed that ApRab5 is mainly cytosolic. EGFP reporter and phagocytosis studies indicated that membrane-associated ApRab5 is present in early endocytic and phagocytic compartments, and is able to promote their fusion. Significantly, immunofluorescence study showed that the majority of phagosomes containing either resident or newly internalized live zooxanthellae were labeled with ApRab5, while those containing either heat-killed or photosynthesis-impaired algae were mostly negative for ApRab5 staining whereas the opposite was observed for ApRab7. We propose that active phagosomal retention of ApRab5 is part of the mechanisms employed by live zooxanthellae to: (1) persist inside their host cells and (2) exclude ApRab7 from their phagosomes, thereby, establishing and/or maintaining an endosymbiotic relationship with their cnidarian hosts.
Bifid ribs and unusual vertebral anomalies diagnosed in an anatomical specimen. Gorlin syndrome?
Oostra, Roelof-Jan; Maas, Mario
2006-10-01
A hitherto unknown combination of multiple bifid ribs, as seen in Gorlin syndrome (GS), interpedicular fusion and apparent malsegmentation of vertebral laminae at various upper thoracic levels was found in the skeleton of a newborn infant. This specific combination of anomalies is also seen in the mouse open brain (opb) mutant. Since the genes involved in GS (Patched2) and opb (rab23) both play an essential role in the hedgehog signaling pathway, it is likely that the cause of the anomalies presented here is to be sought in impaired functioning of this pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, Sunil K.; Kaur, Simarna
Cystic fibrosis, an autosomal recessive disorder, is caused by the disruption of biosynthesis or function of CFTR. CFTR regulatory mechanisms include channel transport to plasma membrane and protein-protein interactions. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. The colorectal epithelial HT-29 cells natively express CFTR and respond to cAMP with an increase in CFTR-mediated currents. DPC-inhibited currents could be completely eliminated with CFTR-specific SiRNA. Over-expression of Rab27a inhibited, while isoform specific SiRNA and Rab27a antibody stimulated CFTR-mediated currents in HT-29 cells. CFTR activity is inhibited both by Rab27a (Q78L) (constitutive active GTP-bound form of Rab27a) andmore » Rab27a (T23N) (constitutive negative form that mimics the GDP-bound form). Rab27a mediated effects could be reversed by Rab27a-binding proteins, the synaptotagmin-like protein (SLP-5) and Munc13-4 accessory protein (a putative priming factor for exocytosis). The SLP reversal of Rab27a effect was restricted to C2A/C2B domains while the SHD motif imparted little more inhibition. The CFTR-mediated currents remain unaffected by Rab3 though SLP-5 appears to weakly bind it. The immunoprecipitation experiments suggest protein-protein interactions between Rab27a and CFTR. Rab27a appears to impair CFTR appearance at the cell surface by trapping CFTR in the intracellular compartments. Munc13-4 and SLP-5, on the other hand, limit Rab27a availability to CFTR, thus minimizing its effect on channel function. These observations decisively prove that Rab27a is involved in CFTR channel regulation through protein-protein interactions involving Munc13-4 and SLP-5 effector proteins, and thus could be a potential target for cystic fibrosis therapy.« less
Are Rab Proteins the Link Between Golgi Organization and Membrane Trafficking?
Liu, Shijie; Storrie, Brian
2014-01-01
The fundamental separation of Golgi function between subcompartments termed cisternae is conserved across all eukaryotes. Likewise, Rab proteins, small GTPases of the Ras superfamily, are putative common coordinators of Golgi organization and protein transport. However, despite sequence conservation, e.g., Rab6 and Ypt6 are conserved proteins between humans and yeast, the fundamental organization of the organelle can vary profoundly. In the yeast Sacchromyces cerevisiae, the Golgi cisternae are physically separated from one another while, in mammalian cells, the cisternae are stacked one upon the other. Moreover, in mammalian cells many Golgi stacks are typically linked together to generate a ribbon structure. Do evolutionarily conserved Rab proteins regulate secretory membrane trafficking and diverse Golgi organization in a common manner? In mammalian cells, some Golgi associated Rab proteins function in coordination of protein transport and maintenance of Golgi organization. These include Rab6, Rab33B, Rab1, Rab2, Rab18 and Rab43. In yeast, these include Ypt1, Ypt32 and Ypt6. Here, based on evidence from both yeast and mammalian cells, we speculate on the essential role of Rab proteins in Golgi organization and protein transport. PMID:22581368
Schmid, Martin R.; Anderl, Ines; Vo, Hoa T. M.; Valanne, Susanna; Yang, Hairu; Kronhamn, Jesper; Rämet, Mika; Rusten, Tor Erik
2016-01-01
To understand how Toll signaling controls the activation of a cellular immune response in Drosophila blood cells (hemocytes), we carried out a genetic modifier screen, looking for deletions that suppress or enhance the mobilization of sessile hemocytes by the gain-of-function mutation Toll10b (Tl10b). Here we describe the results from chromosome arm 3R, where five regions strongly suppressed this phenotype. We identified the specific genes immune response deficient 1 (ird1), headcase (hdc) and possibly Rab23 as suppressors, and we studied the role of ird1 in more detail. An ird1 null mutant and a mutant that truncates the N-terminal kinase domain of the encoded Ird1 protein affected the Tl10b phenotype, unlike mutations that affect the C-terminal part of the protein. The ird1 null mutant suppressed mobilization of sessile hemocytes, but enhanced other Tl10b hemocyte phenotypes, like the formation of melanotic nodules and the increased number of circulating hemocytes. ird1 mutants also had blood cell phenotypes on their own. They lacked crystal cells and showed aberrant formation of lamellocytes. ird1 mutant plasmatocytes had a reduced ability to spread on an artificial substrate by forming protrusions, which may explain why they did not go into circulation in response to Toll signaling. The effect of the ird1 mutation depended mainly on ird1 expression in hemocytes, but ird1-dependent effects in other tissues may contribute. Specifically, the Toll receptor was translocated from the cell membrane to intracellular vesicles in the fat body of the ird1 mutant, and Toll signaling was activated in that tissue, partially explaining the Tl10b-like phenotype. As ird1 is otherwise known to control vesicular transport, we conclude that the vesicular transport system may be of particular importance during an immune response. PMID:27467079
Bultema, Jarred J.; Boyle, Judith A.; Malenke, Parker B.; Martin, Faye E.; Dell'Angelica, Esteban C.; Cheney, Richard E.; Di Pietro, Santiago M.
2014-01-01
Class V myosins are actin-based motors with conserved functions in vesicle and organelle trafficking. Herein we report the discovery of a function for Myosin Vc in melanosome biogenesis as an effector of melanosome-associated Rab GTPases. We isolated Myosin Vc in a yeast two-hybrid screening for proteins that interact with Rab38, a Rab protein involved in the biogenesis of melanosomes and other lysosome-related organelles. Rab38 and its close homolog Rab32 bind to Myosin Vc but not to Myosin Va or Myosin Vb. Binding depends on residues in the switch II region of Rab32 and Rab38 and regions of the Myosin Vc coiled-coil tail domain. Myosin Vc also interacts with Rab7a and Rab8a but not with Rab11, Rab17, and Rab27. Although Myosin Vc is not particularly abundant on pigmented melanosomes, its knockdown in MNT-1 melanocytes caused defects in the trafficking of integral membrane proteins to melanosomes with substantially increased surface expression of Tyrp1, nearly complete loss of Tyrp2, and significant Vamp7 mislocalization. Knockdown of Myosin Vc in MNT-1 cells more than doubled the abundance of pigmented melanosomes but did not change the number of unpigmented melanosomes. Together the data demonstrate a novel role for Myosin Vc in melanosome biogenesis and secretion. PMID:25324551
The Role of the Rab Coupling Protein in ErbB2-Driven Mammary Tumorigenesis and Metastasis
2014-10-01
Coupling Protein/Rab11FIP1/RCP, Epithelial Mesenchymal Transition , Cell junctions , Cell Proliferation, Senescence. 16. SECURITY CLASSIFICATION OF: 17...Tyrosine Kinase, Her/ErbB2 signaling, Rab Coupling Protein/Rab11FIP1/RCP, Epithelial Mesenchymal Transition , Cell junctions , Cell Proliferation...lines included RCP condition to internalization and detection of E-cadherin, a well-known adherent junction and epithelial mesenchymal transition
Allosteric binding sites in Rab11 for potential drug candidates
2018-01-01
Rab11 is an important protein subfamily in the RabGTPase family. These proteins physiologically function as key regulators of intracellular membrane trafficking processes. Pathologically, Rab11 proteins are implicated in many diseases including cancers, neurodegenerative diseases and type 2 diabetes. Although they are medically important, no previous study has found Rab11 allosteric binding sites where potential drug candidates can bind to. In this study, by employing multiple clustering approaches integrating principal component analysis, independent component analysis and locally linear embedding, we performed structural analyses of Rab11 and identified eight representative structures. Using these representatives to perform binding site mapping and virtual screening, we identified two novel binding sites in Rab11 and small molecules that can preferentially bind to different conformations of these sites with high affinities. After identifying the binding sites and the residue interaction networks in the representatives, we computationally showed that these binding sites may allosterically regulate Rab11, as these sites communicate with switch 2 region that binds to GTP/GDP. These two allosteric binding sites in Rab11 are also similar to two allosteric pockets in Ras that we discovered previously. PMID:29874286
Lee, Juhan; Huh, Kyu Ha; Park, Yongjung; Park, Borae G; Yang, Jaeseok; Jeong, Jong Cheol; Lee, Joongyup; Park, Jae Berm; Cho, Jang-Hee; Lee, Sik; Ro, Han; Han, Seung-Yeup; Kim, Myoung Soo; Kim, Yu Seun; Kim, Sung Joo; Kim, Chan-Duck; Chung, Wookyung; Park, Sung-Bae; Ahn, Curie
2017-07-01
Anti-angiotensin II type 1 receptor antibodies (AT1R-Abs) have been suggested as a risk factor for graft failure and acute rejection (AR). However, the prevalence and clinical significance of pretransplant AT1R-Abs have seldom been evaluated in Asia. In this multicenter, observational cohort study, we tested the AT1R-Abs in pretransplant serum samples obtained from 166 kidney transplant recipients. Statistical analysis was used to set a threshold AT1R-Abs level at 9.05 U/mL. Pretransplant AT1R-Abs were detected in 98/166 (59.0%) of the analyzed recipients. No graft loss or patient death was reported during the study period. AT1R-Abs (+) patients had a significantly higher incidence of biopsy-proven AR than AT1R-Abs (-) patients (27.6 versus 10.3%, P = 0.007). Recipients with pretransplant AT1R-Abs had a 3.2-fold higher risk of AR within a year of transplantation (P = 0.006). Five study subjects developed microcirculation inflammation (score ≥2). Four of them were presensitized to AT1R-Abs. In particular, three patients had a high titer of anti-AT1R-Abs (>22.7 U/mL). Pretransplant AT1R-Abs is an independent risk factor for AR, especially acute cellular rejection, and is possibly associated with the risk of antibody-mediated injury. Pretransplant assessment of AT1R-Abs may be useful for stratifying immunologic risks. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Gerber, Pehuén Pereyra; Cabrini, Mercedes; Jancic, Carolina; Paoletti, Luciana; Banchio, Claudia; von Bilderling, Catalina; Sigaut, Lorena; Pietrasanta, Lía I.; Duette, Gabriel; Freed, Eric O.; de Saint Basile, Genevieve; Moita, Catarina Ferreira; Moita, Luis Ferreira; Amigorena, Sebastian; Benaroch, Philippe; Geffner, Jorge
2015-01-01
During the late stages of the HIV-1 replication cycle, the viral polyprotein Pr55Gag is recruited to the plasma membrane (PM), where it binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and directs HIV-1 assembly. We show that Rab27a controls the trafficking of late endosomes carrying phosphatidylinositol 4-kinase type 2 α (PI4KIIα) toward the PM of CD4+ T cells. Hence, Rab27a promotes high levels of PM phosphatidylinositol 4-phosphate and the localized production of PI(4,5)P2, therefore controlling Pr55Gag membrane association. Rab27a also controls PI(4,5)P2 levels at the virus-containing compartments of macrophages. By screening Rab27a effectors, we identified that Slp2a, Slp3, and Slac2b are required for the association of Pr55Gag with the PM and that Slp2a cooperates with Rab27a in the recruitment of PI4KIIα to the PM. We conclude that by directing the trafficking of PI4KIIα-positive endosomes toward the PM, Rab27a controls PI(4,5)P2 production and, consequently, HIV-1 replication. PMID:25940347
BLOC-3 Mutated in Hermansky-Pudlak Syndrome Is a Rab32/38 Guanine Nucleotide Exchange Factor
Gerondopoulos, Andreas; Langemeyer, Lars; Liang, Jin-Rui; Linford, Andrea; Barr, Francis A.
2012-01-01
Summary Hermansky-Pudlak syndrome (HPS) is a human disease characterized by partial loss of pigmentation and impaired blood clotting [1–3]. These symptoms are caused by defects in the biogenesis of melanosomes and platelet dense granules, often referred to as lysosome-related organelles [2]. Genes mutated in HPS encode subunits of the biogenesis of lysosome-related organelles complexes (BLOCs). BLOC-1 and BLOC-2, together with the AP-3 clathrin adaptor complex, act at early endosomes to sort components required for melanin formation and melanosome biogenesis away from the degradative lysosomal pathway toward early stage melanosomes [4–6]. However the molecular functions of the Hps1-Hps4 complex BLOC-3 remain mysterious [7–9]. Like other trafficking pathways, melanosome biogenesis and transport of enzymes involved in pigmentation involves specific Rab GTPases, in this instance Rab32 and Rab38 [10–12]. We now demonstrate that BLOC-3 is a Rab32 and Rab38 guanine nucleotide exchange factor (GEF). Silencing of the BLOC-3 subunits Hps1 and Hps4 results in the mislocalization of Rab32 and Rab38 and reduction in pigmentation. In addition, we show that BLOC-3 can promote specific membrane recruitment of Rab32/38. BLOC-3 therefore defines a novel Rab GEF family with a specific function in the biogenesis of lysosome-related organelles. PMID:23084991
Bultema, Jarred J; Boyle, Judith A; Malenke, Parker B; Martin, Faye E; Dell'Angelica, Esteban C; Cheney, Richard E; Di Pietro, Santiago M
2014-11-28
Class V myosins are actin-based motors with conserved functions in vesicle and organelle trafficking. Herein we report the discovery of a function for Myosin Vc in melanosome biogenesis as an effector of melanosome-associated Rab GTPases. We isolated Myosin Vc in a yeast two-hybrid screening for proteins that interact with Rab38, a Rab protein involved in the biogenesis of melanosomes and other lysosome-related organelles. Rab38 and its close homolog Rab32 bind to Myosin Vc but not to Myosin Va or Myosin Vb. Binding depends on residues in the switch II region of Rab32 and Rab38 and regions of the Myosin Vc coiled-coil tail domain. Myosin Vc also interacts with Rab7a and Rab8a but not with Rab11, Rab17, and Rab27. Although Myosin Vc is not particularly abundant on pigmented melanosomes, its knockdown in MNT-1 melanocytes caused defects in the trafficking of integral membrane proteins to melanosomes with substantially increased surface expression of Tyrp1, nearly complete loss of Tyrp2, and significant Vamp7 mislocalization. Knockdown of Myosin Vc in MNT-1 cells more than doubled the abundance of pigmented melanosomes but did not change the number of unpigmented melanosomes. Together the data demonstrate a novel role for Myosin Vc in melanosome biogenesis and secretion. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Identification and characterization of a member of Rab subfamily, Rab8, from Clonorchis sinensis.
Liang, Pei; He, Lei; Yu, Jinyun; Xie, Zhizhi; Chen, Xueqing; Mao, Qiang; Liang, Chi; Huang, Yan; Lu, Gang; Yu, Xinbing
2015-05-01
The Rabs act as a binary molecular switch that utilizes the conformational changes associated with the GTP/GDP cycle to elicit responses from target proteins. It regulates a broad spectrum of cellular processes including cell proliferation, cytoskeletal assembly, and intracellular membrane trafficking in eukaryotes. The Rab8 from Clonorchis sinensis (CsRab8) was composed of 199 amino acids. The deduced amino acid sequence shared above 50% identities with other species from trematode, tapeworm, mammal, insecta, nematode, and reptile, respectively. The homologous analysis of sequences showed the conservative domains: G1 box (GDSGVGKS), G2 box (T), G3 box (DTAG), G4 box (GNKCDL), and G5 box. In addition, the structure modeling had also shown other functional domains: GTP/Mg(2+) binding sites, switch I region, and switch II region. A phylogenic tree analysis indicated that the CsRab8 was clustered with the Rab from Schistosoma japonicum, and trematode and tapeworm came from the same branch, which was different from an evolutional branch built by other species, such as mammal animal, insecta, nematode, and reptile. The recombinant CsRab8 protein was expressed in Escherichia coli and the purified protein was a soluble molecule by 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. CsRab8 was identified as a component of excretory/secretory products of C. sinensis by western blot analysis. The transcriptional level of CsRab8 at metacercaria stage was the highest at the four stages and higher by 56.49-folds than that at adult worm, 1.23-folds than that at excysted metacercaria, and 2.69-folds than that at egg stage. Immunohistochemical localization analysis showed that CsRab8 was specifically distributed in the tegument, vitellarium, eggs, and testicle of adult worms, and detected on the vitellarium and tegument of metacercaria. Combined with the results, CsRab8 is indispensable for survival and development of parasites, especially for regulating excretory/secretory products secretion.
The parasite Toxoplasma sequesters diverse Rab host vesicles within an intravacuolar network
2017-01-01
Many intracellular pathogens subvert host membrane trafficking pathways to promote their replication. Toxoplasma multiplies in a membrane-bound parasitophorous vacuole (PV) that interacts with mammalian host organelles and intercepts Golgi Rab vesicles to acquire sphingolipids. The mechanisms of host vesicle internalization and processing within the PV remain undefined. We demonstrate that Toxoplasma sequesters a broad range of Rab vesicles into the PV. Correlative light and electron microscopy analysis of infected cells illustrates that intravacuolar Rab1A vesicles are surrounded by the PV membrane, suggesting a phagocytic-like process for vesicle engulfment. Rab11A vesicles concentrate to an intravacuolar network (IVN), but this is reduced in Δgra2 and Δgra2Δgra6 parasites, suggesting that tubules stabilized by the TgGRA2 and TgGRA6 proteins secreted by the parasite within the PV contribute to host vesicle sequestration. Overexpression of a phospholipase TgLCAT, which is localized to the IVN, results in a decrease in the number of intravacuolar GFP-Rab11A vesicles, suggesting that TgLCAT controls lipolytic degradation of Rab vesicles for cargo release. PMID:29070609
Rab1A is required for assembly of classical swine fever virus particle.
Lin, Jihui; Wang, Chengbao; Liang, Wulong; Zhang, Jing; Zhang, Longxiang; Lv, Huifang; Dong, Wang; Zhang, Yanming
2018-01-15
Rab1A belongs to the small Rab GTPase family and is involved in the lifecycle of numerous viruses. Here, knockdown of Rab1A inhibited CSFV growth. Further study revealed that Rab1A depletion decreased intracellular and extracellular CSFV titers, but did not affect intracellular virus genome copies and E2 protein expression within a virus lifecycle, which suggested that Rab1A is required for CSFV particle assembly rather than for genome replication or virion release. This was proofed by blocking the spread of virus using neutralizing antibodies, through which the negative effects of Rab1A knockdown on multi-cycle replication of CSFV were eliminated. Moreover, co-immunoprecipitation and confocal microscopy assays showed that Rab1A bound to CSFV NS5A protein, indicating that Rab1A and viral NS5A proteins may work cooperatively during CSFV particle assembly. In conclusion, this study demonstrated for the first time that Rab1A is required for CSFV particle assembly and binds to viral particle assembly-related NS5A protein. Copyright © 2017 Elsevier Inc. All rights reserved.
Generation of Rab-based transgenic lines for in vivo studies of endosome biology in zebrafish
Clark, Brian S.; Winter, Mark; Cohen, Andrew R.; Link, Brian A.
2011-01-01
The Rab family of small GTPases function as molecular switches regulating membrane and protein trafficking. Individual Rab isoforms define and are required for specific endosomal compartments. To facilitate in vivo investigation of specific Rab proteins, and endosome biology in general, we have generated transgenic zebrafish lines to mark and manipulate Rab proteins. We also developed software to track and quantify endosome dynamics within time-lapse movies. The established transgenic lines ubiquitously express EGFP fusions of Rab5c (early endosomes), Rab11a (recycling endosomes), and Rab7 (late endosomes) to study localization and dynamics during development. Additionally, we generated UAS-based transgenic lines expressing constitutive active (CA) and dominant negative (DN) versions for each of these Rab proteins. Predicted localization and functional consequences for each line were verified through a variety of assays, including lipophilic dye uptake and Crumbs2a localization. In summary, we have established a toolset for in vivo analyses of endosome dynamics and functions. PMID:21976318
Falcón-Pérez, Juan M; Romero-Calderón, Rafael; Brooks, Elizabeth S; Krantz, David E; Dell'Angelica, Esteban C
2007-02-01
Lysosome-related organelles comprise a group of specialized intracellular compartments that include melanosomes and platelet dense granules (in mammals) and eye pigment granules (in insects). In humans, the biogenesis of these organelles is defective in genetic disorders collectively known as Hermansky-Pudlak syndrome (HPS). Patients with HPS-2, and two murine HPS models, carry mutations in genes encoding subunits of adaptor protein (AP)-3. Other genes mutated in rodent models include those encoding VPS33A and Rab38. Orthologs of all of these genes in Drosophila melanogaster belong to the 'granule group' of eye pigmentation genes. Other genes associated with HPS encode subunits of three complexes of unknown function, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2 and -3, for which the Drosophila counterparts had not been characterized. Here, we report that the gene encoding the Drosophila ortholog of the HPS5 subunit of BLOC-2 is identical to the granule group gene pink (p), which was first studied in 1910 but had not been identified at the molecular level. The phenotype of pink mutants was exacerbated by mutations in AP-3 subunits or in the orthologs of VPS33A and Rab38. These results validate D. melanogaster as a genetic model to study the function of the BLOCs.
Mori, Yasunori; Fukuda, Mitsunori; Henley, Jeremy M.
2014-01-01
Glutamate receptors are fundamental for control synaptic transmission, synaptic plasticity, and neuronal excitability. However, many of the molecular mechanisms underlying their trafficking remain elusive. We previously demonstrated that the small GTPase Rab17 regulates dendritic trafficking in hippocampal neurons. Here, we investigated the role(s) of Rab17 in AMPA receptor (AMPAR) and kainate receptor (KAR) trafficking. Although Rab17 knockdown did not affect surface expression of the AMPAR subunit GluA1 under basal or chemically induced long term potentiation conditions, it significantly reduced surface expression of the KAR subunit GluK2. Rab17 co-localizes with Syntaxin-4 in the soma, dendritic shaft, the tips of developing hippocampal neurons, and in spines. Rab17 knockdown caused Syntaxin-4 redistribution away from dendrites and into axons in developing hippocampal neurons. Syntaxin-4 knockdown reduced GluK2 but had no effect on GluA1 surface expression. Moreover, overexpression of constitutively active Rab17 promoted dendritic surface expression of GluK2 by enhancing Syntaxin-4 translocation to dendrites. These data suggest that Rab17 mediates the dendritic trafficking of Syntaxin-4 to selectively regulate dendritic surface insertion of GluK2-containing KARs in rat hippocampal neurons. PMID:24895134
Krautkrämer, Martina
2017-01-01
Subcellular compartmentalization of receptor signaling is an emerging principle in innate immunity. However, the functional integration of receptor signaling pathways into membrane trafficking routes and its physiological relevance for immune responses is still largely unclear. In this study, using Lyst-mutant beige mice, we show that lysosomal trafficking regulator Lyst links endolysosomal organization to the selective control of toll-like receptor 3 (TLR3)– and TLR4-mediated proinflammatory responses. Consequently, Lyst-mutant mice showed increased susceptibility to bacterial infection and were largely resistant to endotoxin-induced septic shock. Mechanistic analysis revealed that Lyst specifically controls TLR3- and TLR4-induced endosomal TRIF (TIR domain–containing adapter-inducing interferon β) signaling pathways. Loss of functional Lyst leads to dysregulated phagosomal maturation, resulting in a failure to form an activation-induced Rab7+ endosomal/phagosomal compartment. This specific Rab7+ compartment was further demonstrated to serve as a major site for active TRIF signaling events, thus linking phagosomal maturation to specific TLR signaling pathways. The immunoregulatory role of Lyst on TLR signaling pathways was confirmed in human cells by CRISPR/Cas9-mediated gene inactivation. As mutations in LYST cause human Chédiak-Higashi syndrome, a severe immunodeficiency, our findings also contribute to a better understanding of human disease mechanisms. PMID:27881733
Alvers, Ashley L.; Ryan, Sean; Scherz, Paul J.; Huisken, Jan; Bagnat, Michel
2014-01-01
The formation of a single lumen during tubulogenesis is crucial for the development and function of many organs. Although 3D cell culture models have identified molecular mechanisms controlling lumen formation in vitro, their function during vertebrate organogenesis is poorly understood. Using light sheet microscopy and genetic approaches we have investigated single lumen formation in the zebrafish gut. Here we show that during gut development multiple lumens open and enlarge to generate a distinct intermediate, which consists of two adjacent unfused lumens separated by basolateral contacts. We observed that these lumens arise independently from each other along the length of the gut and do not share a continuous apical surface. Resolution of this intermediate into a single, continuous lumen requires the remodeling of contacts between adjacent lumens and subsequent lumen fusion. We show that lumen resolution, but not lumen opening, is impaired in smoothened (smo) mutants, indicating that fluid-driven lumen enlargement and resolution are two distinct processes. Furthermore, we show that smo mutants exhibit perturbations in the Rab11 trafficking pathway and demonstrate that Rab11-mediated trafficking is necessary for single lumen formation. Thus, lumen resolution is a distinct genetically controlled process crucial for single, continuous lumen formation in the zebrafish gut. PMID:24504339
Tett, Adrian J.; Karunakaran, Ramakrishnan; Poole, Philip S.
2014-01-01
Salicylic acid is an important signalling molecule in plant-microbe defence and symbiosis. We analysed the transcriptional responses of the nitrogen fixing plant symbiont, Rhizobium leguminosarum bv viciae 3841 to salicylic acid. Two MFS-type multicomponent efflux systems were induced in response to salicylic acid, rmrAB and the hitherto undescribed system salRAB. Based on sequence similarity salA and salB encode a membrane fusion and inner membrane protein respectively. salAB are positively regulated by the LysR regulator SalR. Disruption of salA significantly increased the sensitivity of the mutant to salicylic acid, while disruption of rmrA did not. A salA/rmrA double mutation did not have increased sensitivity relative to the salA mutant. Pea plants nodulated by salA or rmrA strains did not have altered nodule number or nitrogen fixation rates, consistent with weak expression of salA in the rhizosphere and in nodule bacteria. However, BLAST analysis revealed seventeen putative efflux systems in Rlv3841 and several of these were highly differentially expressed during rhizosphere colonisation, host infection and bacteroid differentiation. This suggests they have an integral role in symbiosis with host plants. PMID:25133394
RNAi KNOCKDOWN OF BmRab3 LED TO LARVA AND PUPA LETHALITY IN SILKWORM Bombyx mori L.
Singh, Chabungbam Orville; Xin, Hu-hu; Chen, Rui-ting; Wang, Mei-xian; Liang, Shuang; Lu, Yan; Cai, Zi-zheng; Zhang, Deng-pan; Miao, Yun-gen
2015-06-01
Rab3 GTPases are known to play key a role in vesicular trafficking, and express highest in brain and endocrine tissues. In mammals, Rab3 GTPases are paralogs unlike in insect. In this study, we cloned Rab3 from the silk gland tissue of silkworm Bombyx mori, and identified it as BmRab3. Our in silico analysis indicated that BmRab3 is an isoform with a theoretical isoelectric point and molecular weight of 5.52 and 24.3 kDa, respectively. Further, BmRab3 showed the C-terminal hypervariability for GGT2 site but having two other putative guanine nucleotide exchange factor/GDP dissociation inhibitor interaction sites. Multiple alignment sequence indicated high similarities of BmRab3 with Rab3 isoforms of other species. The phylogeny tree showed BmRab3 clustered between the species of Tribolium castaneum and Aedes aegypti. Meanwhile, the expression analysis of BmRab3 showed the highest expression in middle silk glands (MSGs) than all other tissues in the third day of fifth-instar larva. Simultaneously, we showed the differential expression of BmRab3 in the early instar larva development, followed by higher expression in male than female pupae. In vivo dsRNA interference of BmRab3 reduced the expression of BmRab3 by 75% compared to the control in the MSGs in the first day. But as the worm grew to the third day, the difference of BmRab3 between knockdown and control was only about 10%. The knockdown later witnessed underdevelopment of the larvae and pharate pupae lethality in the overall development of silkworm B. mori L. © 2015 Wiley Periodicals, Inc.
Gundry, Christine; Marco, Sergi; Rainero, Elena; Miller, Bryan; Dornier, Emmanuel; Mitchell, Louise; Caswell, Patrick T.; Campbell, Andrew D.; Hogeweg, Anna; Sansom, Owen J.; Morton, Jennifer P.; Norman, Jim C.
2017-01-01
The Rab GTPase effector, Rab-coupling protein (RCP) is known to promote invasive behaviour in vitro by controlling integrin and receptor tyrosine kinase (RTK) trafficking, but how RCP influences metastasis in vivo is unclear. Here we identify an RTK of the Eph family, EphA2, to be a cargo of an RCP-regulated endocytic pathway which controls cell:cell repulsion and metastasis in vivo. Phosphorylation of RCP at Ser435 by Lemur tyrosine kinase-3 (LMTK3) and of EphA2 at Ser897 by Akt are both necessary to promote Rab14-dependent (and Rab11-independent) trafficking of EphA2 which generates cell:cell repulsion events that drive tumour cells apart. Genetic disruption of RCP or EphA2 opposes cell:cell repulsion and metastasis in an autochthonous mouse model of pancreatic adenocarcinoma—whereas conditional knockout of another RCP cargo, α5 integrin, does not suppress pancreatic cancer metastasis—indicating a role for RCP-dependent trafficking of an Eph receptor to drive tumour dissemination in vivo. PMID:28294115
Mir, Rafeeq; Tonelli, Francesca; Lis, Pawel; Macartney, Thomas; Polinski, Nicole K.; Martinez, Terina N.; Chou, Meng-Yun; Howden, Andrew J.M.; König, Theresa; Hotzy, Christoph; Milenkovic, Ivan; Brücke, Thomas; Zimprich, Alexander; Sammler, Esther; Alessi, Dario R.
2018-01-01
Missense mutations in the LRRK2 (Leucine-rich repeat protein kinase-2) and VPS35 genes result in autosomal dominant Parkinson's disease. The VPS35 gene encodes for the cargo-binding component of the retromer complex, while LRRK2 modulates vesicular trafficking by phosphorylating a subgroup of Rab proteins. Pathogenic mutations in LRRK2 increase its kinase activity. It is not known how the only thus far described pathogenic VPS35 mutation, [p.D620N] exerts its effects. We reveal that the VPS35[D620N] knock-in mutation strikingly elevates LRRK2-mediated phosphorylation of Rab8A, Rab10, and Rab12 in mouse embryonic fibroblasts. The VPS35[D620N] mutation also increases Rab10 phosphorylation in mouse tissues (the lung, kidney, spleen, and brain). Furthermore, LRRK2-mediated Rab10 phosphorylation is increased in neutrophils as well as monocytes isolated from three Parkinson's patients with a heterozygous VPS35[D620N] mutation compared with healthy donors and idiopathic Parkinson's patients. LRRK2-mediated Rab10 phosphorylation is significantly suppressed by knock-out or knock-down of VPS35 in wild-type, LRRK2[R1441C], or VPS35[D620N] cells. Finally, VPS35[D620N] mutation promotes Rab10 phosphorylation more potently than LRRK2 pathogenic mutations. Available data suggest that Parkinson's patients with VPS35[D620N] develop the disease at a younger age than those with LRRK2 mutations. Our observations indicate that VPS35 controls LRRK2 activity and that the VPS35[D620N] mutation results in a gain of function, potentially causing PD through hyperactivation of the LRRK2 kinase. Our findings suggest that it may be possible to elaborate compounds that target the retromer complex to suppress LRRK2 activity. Moreover, patients with VPS35[D620N] associated Parkinson's might benefit from LRRK2 inhibitor treatment that have entered clinical trials in humans. PMID:29743203
Desmoglein 3 regulates membrane trafficking of cadherins, an implication in cell-cell adhesion.
Moftah, Hanan; Dias, Kasuni; Apu, Ehsanul Hoque; Liu, Li; Uttagomol, Jutamas; Bergmeier, Lesley; Kermorgant, Stephanie; Wan, Hong
2017-05-04
E-cadherin mediated cell-cell adhesion plays a critical role in epithelial cell polarization and morphogenesis. Our recent studies suggest that the desmosomal cadherin, desmoglein 3 (Dsg3) cross talks with E-cadherin and regulates its adhesive function in differentiating keratinocytes. However, the underlying mechanism remains not fully elucidated. Since E-cadherin trafficking has been recognized to be a central determinant in cell-cell adhesion and homeostasis we hypothesize that Dsg3 may play a role in regulating E-cadherin trafficking and hence the cell-cell adhesion. Here we investigated this hypothesis in cells with loss of Dsg3 function through RNAi mediated Dsg3 knockdown or the stable expression of the truncated mutant Dsg3ΔC. Our results showed that loss of Dsg3 resulted in compromised cell-cell adhesion and reduction of adherens junction and desmosome protein expression as well as the cortical F-actin formation. As a consequence, cells failed to polarize but instead displayed aberrant cell flattening. Furthermore, retardation of E-cadherin internalization and recycling was consistently observed in these cells during the process of calcium induced junction assembling. In contrast, enhanced cadherin endocytosis was detected in cells with overexpression of Dsg3 compared to control cells. Importantly, this altered cadherin trafficking was found to be coincided with the reduced expression and activity of Rab proteins, including Rab5, Rab7 and Rab11 which are known to be involved in E-cadherin trafficking. Taken together, our findings suggest that Dsg3 functions as a key in cell-cell adhesion through at least a mechanism of regulating E-cadherin membrane trafficking.
Functional involvement of TMF/ARA160 in Rab6-dependent retrograde membrane traffic.
Yamane, Junko; Kubo, Akiharu; Nakayama, Kazuhisa; Yuba-Kubo, Akiko; Katsuno, Tatsuya; Tsukita, Shoichiro; Tsukita, Sachiko
2007-10-01
The small GTPase Rab6 regulates retrograde membrane traffic from endosomes to the Golgi apparatus and from the Golgi to the endoplasmic reticulum (ER). We examined the role of a Rab6-binding protein, TMF/ARA160 (TATA element modulatory factor/androgen receptor-coactivator of 160 kDa), in this process. High-resolution immunofluorescence imaging revealed that TMF signal surrounded Rab6-positive Golgi structures and immunoelectron microscopy revealed that TMF is concentrated at the budding structures localized at the tips of cisternae. The knockdown of either TMF or Rab6 by RNA interference blocked retrograde transport of endocytosed Shiga toxin from early/recycling endosomes to the trans-Golgi network, causing missorting of the toxin to late endosomes/lysosomes. However, the TMF knockdown caused Rab6-dependent displacement of N-acetylgalactosaminyltransferase-2 (GalNAc-T2), but not beta1,4-galactosyltransferase (GalT), from the Golgi. Analyses using chimeric proteins, in which the cytoplasmic regions of GalNAc-T2 and GalT were exchanged, revealed that the cytoplasmic region of GalNAc-T2 plays a crucial role in its TMF-dependent Golgi retention. These observations suggest critical roles for TMF in two Rab6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER.
Inada, Noriko; Betsuyaku, Shigeyuki; Shimada, Takashi L; Ebine, Kazuo; Ito, Emi; Kutsuna, Natsumaro; Hasezawa, Seiichiro; Takano, Yoshitaka; Fukuda, Hiroo; Nakano, Akihiko; Ueda, Takashi
2016-09-01
RAB5 is a small GTPase that acts in endosomal trafficking. In addition to canonical RAB5 members that are homologous to animal RAB5, land plants harbor a plant-specific RAB5, the ARA6 group, which regulates trafficking events distinct from canonical RAB5 GTPases. Here, we report that plant RAB5, both canonical and plant-specific members, accumulate at the interface between host plants and biotrophic fungal and oomycete pathogens. Biotrophic fungi and oomycetes colonize living plant tissues by establishing specialized infection hyphae, the haustorium, within host plant cells. We found that Arabidopsis thaliana ARA6/RABF1, a plant-specific RAB5, is localized to the specialized membrane that surrounds the haustorium, the extrahaustorial membrane (EHM), formed by the A. thaliana-adapted powdery mildew fungus Golovinomyces orontii Whereas the conventional RAB5 ARA7/RABF2b was also localized to the EHM, endosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) and RAB5-activating proteins were not, which suggests that the EHM has modified endosomal characteristic. The recruitment of host RAB5 to the EHM was a property shared by the barley-adapted powdery mildew fungus Blumeria graminis f.sp. hordei and the oomycete Hyaloperonospora arabidopsidis, but the extrahyphal membrane surrounding the hypha of the hemibiotrophic fungus Colletotrichum higginsianum at the biotrophic stage was devoid of RAB5. The localization of RAB5 to the EHM appears to correlate with the functionality of the haustorium. Our discovery sheds light on a novel relationship between plant RAB5 and obligate biotrophic pathogens. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Palmieri, Diane; Bouadis, Amina; Ronchetti, Ruban; Merino, Maria J; Steeg, Patricia S
2006-11-01
The development of cancer prevention strategies depends on the elucidation of molecular pathways underlying oncogenesis. In a previous proteomic study of matched normal breast ducts and Ductal Carcinoma in Situ (DCIS), we identified overexpression of Rab11a in DCIS. Rab11a is not well studied in cancer, but is known to regulate the recycling of internalized cell surface proteins and receptors from the early endosome through the trans-Golgi network. Using immunohistochemistry, we confirmed our observation, noting increased Rab11a expression in 19 of 22 (86%) DCIS cases compared to matched normal breast epithelium. To study the function of Rab11a, immortal, nontumorigenic MCF10A breast cells were stimulated with ligands to the EGF receptor (EGFR) after transfection with empty vector (control), Rab11a, or a S25N dominant-negative (DN) Rab11a. Using an iodinated ligand:receptor recycling assay, transfection of Rab11a accelerated, while DN-Rab11a postponed EGFR recycling in vitro. The signaling and in vitro phenotypic consequences of Rab11a expression and function were studied. Transfection of DN-Rab11a increased Erk1/2 activation downstream of EGF, but exerted no effect on the Akt pathway. Expression of DN-Rab11a inhibited MCF10A proliferation by 50-60%, and also inhibited anchorage-dependent colonization. Notably, DN-Rab11a transfection increased motility toward EGFR ligands. The data provide a first demonstration that Rab11a modulates EGFR recycling, and promotes the proliferation but inhibits the motility of an immortal breast line, consistent with the DCIS phenotype.
Solis, Gonzalo P.; Hülsbusch, Nikola; Radon, Yvonne; Katanaev, Vladimir L.; Plattner, Helmut; Stuermer, Claudia A. O.
2013-01-01
The lipid raft proteins reggie-1 and -2 (flotillins) are implicated in membrane protein trafficking but exactly how has been elusive. We find that reggie-1 and -2 associate with the Rab11a, SNX4, and EHD1–decorated tubulovesicular recycling compartment in HeLa cells and that reggie-1 directly interacts with Rab11a and SNX4. Short hairpin RNA–mediated down-regulation of reggie-1 (and -2) in HeLa cells reduces association of Rab11a with tubular structures and impairs recycling of the transferrin–transferrin receptor (TfR) complex to the plasma membrane. Overexpression of constitutively active Rab11a rescues TfR recycling in reggie-deficient HeLa cells. Similarly, in a Ca2+ switch assay in reggie-depleted A431 cells, internalized E-cadherin is not efficiently recycled to the plasma membrane upon Ca2+ repletion. E-cadherin recycling is rescued, however, by overexpression of constitutively active Rab11a or SNX4 in reggie-deficient A431 cells. This suggests that the function of reggie-1 in sorting and recycling occurs in association with Rab11a and SNX4. Of interest, impaired recycling in reggie-deficient cells leads to de novo E-cadherin biosynthesis and cell contact reformation, showing that cells have ways to compensate the loss of reggies. Together our results identify reggie-1 as a regulator of the Rab11a/SNX4-controlled sorting and recycling pathway, which is, like reggies, evolutionarily conserved. PMID:23825023
1994-01-01
The small GTPase Rab1 is required for vesicular traffic from the ER to the cis-Golgi compartment, and for transport between the cis and medial compartments of the Golgi stack. In the present study, we examine the role of guanine nucleotide dissociation inhibitor (GDI) in regulating the function of Rab1 in the transport of vesicular stomatitis virus glycoprotein (VSV-G) in vitro. Incubation in the presence of excess GDI rapidly (t1/2 < 30 s) extracted Rab1 from membranes, inhibiting vesicle budding from the ER and sequential transport between the cis-, medial-, and trans-Golgi cisternae. These results demonstrate a direct role for GDI in the recycling of Rab proteins. Analysis of rat liver cytosol by gel filtration revealed that a major pool of Rab1 fractionates with a molecular mass of approximately 80 kD in the form of a GDI-Rab1 complex. When the GDI-Rab1 complex was depleted from cytosol by use of a Rab1-specific antibody, VSV-G failed to exit the ER. However, supplementation of depleted cytosol with a GDI-Rab1 complex prepared in vitro from recombinant forms of Rab1 and GDI efficiently restored export from the ER, and transport through the Golgi stack. These results provide evidence that a cytosolic GDI-Rab1 complex is required for the formation of non-clathrin-coated vesicles mediating transport through the secretory pathway. PMID:8089173
Podocyte Glutamatergic Signaling Contributes to the Function of the Glomerular Filtration Barrier
Giardino, Laura; Armelloni, Silvia; Corbelli, Alessandro; Mattinzoli, Deborah; Zennaro, Cristina; Guerrot, Dominique; Tourrel, Fabien; Ikehata, Masami; Li, Min; Berra, Silvia; Carraro, Michele; Messa, Piergiorgio
2009-01-01
Podocytes possess the complete machinery for glutamatergic signaling, raising the possibility that neuron-like signaling contributes to glomerular function. To test this, we studied mice and cells lacking Rab3A, a small GTPase that regulates glutamate exocytosis. In addition, we blocked the glutamate ionotropic N-methyl-d-aspartate receptor (NMDAR) with specific antagonists. In mice, the absence of Rab3A and blockade of NMDAR both associated with an increased urinary albumin/creatinine ratio. In humans, NMDAR blockade, obtained by addition of ketamine to general anesthesia, also had an albuminuric effect. In vitro, Rab3A-null podocytes displayed a dysregulated release of glutamate with higher rates of spontaneous exocytosis, explained by a reduction in Rab3A effectors resulting in freedom of vesicles from the actin cytoskeleton. In addition, NMDAR antagonism led to profound cytoskeletal remodeling and redistribution of nephrin in cultured podocytes; the addition of the agonist NMDA reversed these changes. In summary, these results suggest that glutamatergic signaling driven by podocytes contributes to the integrity of the glomerular filtration barrier and that derangements in this signaling may lead to proteinuric renal diseases. PMID:19578006
Spatial and Functional Aspects of ER-Golgi Rabs and Tethers
Saraste, Jaakko
2016-01-01
Two conserved Rab GTPases, Rab1 and Rab2, play important roles in biosynthetic-secretory trafficking between the endoplasmic reticulum (ER) and the Golgi apparatus in mammalian cells. Both are expressed as two isoforms that regulate anterograde transport via the intermediate compartment (IC) to the Golgi, but are also required for transport in the retrograde direction. Moreover, Rab1 has been implicated in the formation of autophagosomes. Rab1 and Rab2 have numerous effectors or partners that function in membrane tethering, but also have other roles. These include the coiled-coil proteins p115, GM130, giantin, golgin-84, and GMAP-210, as well as the multisubunit COG (conserved oligomeric Golgi) and TRAPP (transport protein particle) tethering complexes. TRAPP also acts as the GTP exchange factor (GEF) in the activation of Rab1. According to the traditional view of the IC elements as motile, transient structures, the functions of the Rabs could take place at the two ends of the ER-Golgi itinerary, i.e., at ER exit sites (ERES) and/or cis-Golgi. However, there is considerable evidence for their specific association with the IC, including its recently identified pericentrosomal domain (pcIC), where many of the effectors turn out to be present, thus being able to exert their functions at the pre-Golgi level. The IC localization of these proteins is of particular interest based on the imaging of Rab1 dynamics, indicating that the IC is a stable organelle that bidirectionally communicates with the ER and Golgi, and is functionally linked to the endosomal system via the pcIC. PMID:27148530
The emerging role of Rab GTPases in the pathogenesis of Parkinson's disease.
Gao, Yujing; Wilson, Gabrielle R; Stephenson, Sarah E M; Bozaoglu, Kiymet; Farrer, Matthew J; Lockhart, Paul J
2018-02-01
The identification of pathogenic mutations in Ras analog in brain 39B (RAB39B) and Ras analog in brain 32 (RAB32) that cause Parkinson's disease (PD) has highlighted the emerging role of protein trafficking in disease pathogenesis. Ras analog in brain (Rab) Guanosine triphosphatase (GTPase) function as master regulators of membrane trafficking, including vesicle formation, movement along cytoskeletal networks, and membrane fusion. Recent studies have linked Rab GTPases with α-synuclein, Leucine-rich repeat kinase 2, and Vacuolar protein sorting 35, 3 key proteins in PD pathogenesis. In this review, we discuss the various RAB GTPases associated with PD, current progress in the research, and potential future directions. Investigations into the function of RAB GTPases will likely provide significant insight into the etiology of PD and identify novel therapeutic targets for a currently incurable disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.
32 CFR 202.12 - Administrative support and eligible expenses.
Code of Federal Regulations, 2014 CFR
2014-07-01
... expense of a RAB: (1) RAB establishment. (2) Membership selection. (3) Training if it is: (i) Site... availability of funds, administrative support to RABs may be funded as follows: (1) At active installations... Restoration account for the Formerly Used Defense Sites program. ...
32 CFR 202.12 - Administrative support and eligible expenses.
Code of Federal Regulations, 2010 CFR
2010-07-01
... expense of a RAB: (1) RAB establishment. (2) Membership selection. (3) Training if it is: (i) Site... availability of funds, administrative support to RABs may be funded as follows: (1) At active installations... Restoration account for the Formerly Used Defense Sites program. ...
32 CFR 202.12 - Administrative support and eligible expenses.
Code of Federal Regulations, 2011 CFR
2011-07-01
... expense of a RAB: (1) RAB establishment. (2) Membership selection. (3) Training if it is: (i) Site... availability of funds, administrative support to RABs may be funded as follows: (1) At active installations... Restoration account for the Formerly Used Defense Sites program. ...
32 CFR 202.12 - Administrative support and eligible expenses.
Code of Federal Regulations, 2013 CFR
2013-07-01
... expense of a RAB: (1) RAB establishment. (2) Membership selection. (3) Training if it is: (i) Site... availability of funds, administrative support to RABs may be funded as follows: (1) At active installations... Restoration account for the Formerly Used Defense Sites program. ...
32 CFR 202.12 - Administrative support and eligible expenses.
Code of Federal Regulations, 2012 CFR
2012-07-01
... expense of a RAB: (1) RAB establishment. (2) Membership selection. (3) Training if it is: (i) Site... availability of funds, administrative support to RABs may be funded as follows: (1) At active installations... Restoration account for the Formerly Used Defense Sites program. ...
Lin, Ying-Hung; Ke, Chih-Chun; Wang, Ya-Yun; Chen, Mei-Feng; Chen, Tsung-Ming; Ku, Wei-Chi; Chiang, Han-Sun; Yeh, Chung-Hsin
2017-01-05
According to recent estimates, 2%-15% of couples are sterile, and approximately half of the infertility cases are attributed to male reproductive factors. However, the reasons remain undefined in approximately 25% of male infertility cases, and most infertility cases exhibit spermatogenic defects. Numerous genes involved in spermatogenesis still remain unknown. We previously identified Male Germ Cells Rab GTPase-Activating Proteins ( MGCRABGAPs ) through cDNA microarray analysis of human testicular tissues with spermatogenic defects. MGCRABGAP contains a conserved RABGAP catalytic domain, TBC (Tre2/Bub2/Cdc16). RABGAP family proteins regulate cellular function (e.g., cytoskeletal remodeling, vesicular trafficking, and cell migration) by inactivating RAB proteins. MGCRABGAP is a male germ cell-specific protein expressed in elongating and elongated spermatids during mammalian spermiogenesis. The purpose of this study was to identify proteins that interact with MGCRABGAP during mammalian spermiogenesis using a proteomic approach. We found that MGCRABGAP exhibited GTPase-activating bioability, and several MGCRABGAP interactors, possible substrates (e.g., RAB10, RAB5C, and RAP1), were identified using co-immunoprecipitation (co-IP) and nano liquid chromatography-mass spectrometry/mass spectrometry (nano LC-MS/MS). We confirmed the binding ability between RAB10 and MGCRABGAP via co-IP. Additionally, MGCRABGAP-RAB10 complexes were specifically colocalized in the manchette structure, a critical structure for the formation of spermatid heads, and were slightly expressed at the midpiece of mature spermatozoa. Based on these results, we propose that MGCRABGAP is involved in mammalian spermiogenesis by modulating RAB10.
Crystal structure of TBC1D15 GTPase‐activating protein (GAP) domain and its activity on Rab GTPases
Chen, Yan‐Na; Gu, Xin; Zhou, X. Edward; Wang, Weidong; Cheng, Dandan; Ge, Yinghua; Ye, Fei
2017-01-01
Abstract TBC1D15 belongs to the TBC (Tre‐2/Bub2/Cdc16) domain family and functions as a GTPase‐activating protein (GAP) for Rab GTPases. So far, the structure of TBC1D15 or the TBC1D15·Rab complex has not been determined, thus, its catalytic mechanism on Rab GTPases is still unclear. In this study, we solved the crystal structures of the Shark and Sus TBC1D15 GAP domains, to 2.8 Å and 2.5 Å resolution, respectively. Shark‐TBC1D15 and Sus‐TBC1D15 belong to the same subfamily of TBC domain‐containing proteins, and their GAP‐domain structures are highly similar. This demonstrates the evolutionary conservation of the TBC1D15 protein family. Meanwhile, the newly determined crystal structures display new variations compared to the structures of yeast Gyp1p Rab GAP domain and TBC1D1. GAP assays show that Shark and Sus GAPs both have higher catalytic activity on Rab11a·GTP than Rab7a·GTP, which differs from the previous study. We also demonstrated the importance of arginine and glutamine on the catalytic sites of Shark GAP and Sus GAP. When arginine and glutamine are changed to alanine or lysine, the activities of Shark GAP and Sus GAP are lost. PMID:28168758
Rab proteins in the brain and corpus allatum of Bombyx mori.
Uno, Tomohide; Furutani, Masayuki; Watanabe, Chihiro; Sakamoto, Katsuhiko; Uno, Yuichi; Kanamaru, Kengo; Yamagata, Hiroshi; Mizoguchi, Akira; Takeda, Makio
2016-07-01
In eukaryotic cells, Rab guanosine triphosphate-ases serve as key regulators of membrane-trafficking events, such as exocytosis and endocytosis. Rab3, Rab6, and Rab27 control the regulatory secretory pathway of neuropeptides and neurotransmitters. The cDNAs of Rab3, Rab6, and Rab27 from B. mori were inserted into a plasmid, transformed into Escherichia coli, and then subsequently purified. We then produced antibodies against Rab3, Rab6, and Rab27 of Bombyx mori in rabbits and rats for use in western immunoblotting and immunohistochemistry. Western immunoblotting of brain tissue revealed a single band at approximately 26 kDa. Immunohistochemistry results revealed that Rab3, Rab6, and Rab27 expression was restricted to neurons in the pars intercerebralis and dorsolateral protocerebrum of the brain. Rab3 and Rab6 co-localized with bombyxin, an insect neuropeptide. However, there was no Rab that co-localized with prothoracicotropic hormone. The corpus allatum secretes neuropeptides synthesized in the brain into the hemolymph. Results showed that Rab3 and Rab6 co-localized with bombyxin in the corpus allatum. These findings suggest that Rab3 and Rab6 are involved in neurosecretion in B. mori. This study is the first to report a possible relationship between Rab and neurosecretion in the insect corpus allatum.
A proteomic approach to identify endosomal cargoes controlling cancer invasiveness
Diaz-Vera, Jesica; Palmer, Sarah; Hernandez-Fernaud, Juan Ramon; Dornier, Emmanuel; Mitchell, Louise E.; Macpherson, Iain; Edwards, Joanne; Zanivan, Sara
2017-01-01
ABSTRACT We have previously shown that Rab17, a small GTPase associated with epithelial polarity, is specifically suppressed by ERK2 (also known as MAPK1) signalling to promote an invasive phenotype. However, the mechanisms through which Rab17 loss permits invasiveness, and the endosomal cargoes that are responsible for mediating this, are unknown. Using quantitative mass spectrometry-based proteomics, we have found that knockdown of Rab17 leads to a highly selective reduction in the cellular levels of a v-SNARE (Vamp8). Moreover, proteomics and immunofluorescence indicate that Vamp8 is associated with Rab17 at late endosomes. Reduced levels of Vamp8 promote transition between ductal carcinoma in situ (DCIS) and a more invasive phenotype. We developed an unbiased proteomic approach to elucidate the complement of receptors that redistributes between endosomes and the plasma membrane, and have pin-pointed neuropilin-2 (NRP2) as a key pro-invasive cargo of Rab17- and Vamp8-regulated trafficking. Indeed, reduced Rab17 or Vamp8 levels lead to increased mobilisation of NRP2-containing late endosomes and upregulated cell surface expression of NRP2. Finally, we show that NRP2 is required for the basement membrane disruption that accompanies the transition between DCIS and a more invasive phenotype. PMID:28062852
MiR-20a-5p promotes radio-resistance by targeting Rab27B in nasopharyngeal cancer cells.
Huang, Dabing; Bian, Geng; Pan, Yueyin; Han, Xinghua; Sun, Yubei; Wang, Yong; Shen, Guodong; Cheng, Min; Fang, Xiang; Hu, Shilian
2017-01-01
MicroRNAs (miRNAs) was reported to be involved in cancer radio-resistance, which remains a major obstacle for effective cancer therapy. The differently expressed miRNAs were detected by RNA-seq experiment in nasopharyngeal cancer (NPC) cells. MiR-20a-5p was selected as our target, which was subject to finding its target gene Rab27B via bioinformatics analysis. The qRT-PCR, western blot and the luciferase reporter assays were performed to confirm Rab27B as the target of miR-20a-5p. In addition, the roles of miR-20a-5p in NPC radio-resistance were detected by transfection of either miR-20a-5p-mimic or miR-20a-5p-antagomiR. The involvement of Rab27B with NPC radio-resistance was also detected by the experiments with siRNA-mediated repression of Rab27B or over-expression of GFP-Rab27B. Wound healing and invasion assays were performed to detect the roles of both miR-20a-5p and Rab27B. MiR-20a-5p promotes NPC radio-resistance. We identified that its target gene Rab27B negatively correlates with miR-20a-5p-mediated NPC radio-resistance by systematic studies of a radio-sensitive (CNE-2) and resistant (CNE-1) NPC cell lines. Repression of Rab27B by siRNA suppresses cell apoptosis and passivates CNE-2 cells, whereas over-expression of Rab27B triggered cell apoptosis and sensitizes CNE-1 cells. MiR-20a-5p and its target gene Rab27B might be involved in the NPC radio-resistance. Thus the key players and regulators involved in this pathway might be the potential targets for developing effective therapeutic strategies against NPC.
Shapiro, A D; Pfeffer, S R
1995-05-12
Rab9 is a Ras-like GTPase required for the transport of mannose 6-phosphate receptors between late endosomes and the trans Golgi network. Rab9 occurs in the cytosol as a complex with GDP dissociation inhibitor (GDI), which we have shown delivers prenyl Rab9 to late endosomes in a functional form. We report here basal rate constants for guanine nucleotide dissociation and GTP hydrolysis for prenyl Rab9. Both rate constants were influenced in part by the hydrophobic environment of the prenyl group. Guanine nucleotide dissociation and GTP hydrolysis rates were lower in the presence of lipid; detergent stimulated intrinsic nucleotide exchange. GDI-alpha inhibited GDP dissociation from prenyl Rab9 by 2.4-fold. GDI-alpha associated with prenyl Rab9 with a KD of 60 nM in 0.1% Lubrol and 23 nM in 0.02% Lubrol. In 0.1% Lubrol, GDI-alpha inhibited GDP dissociation half maximally at 72 +/- 18 nM, consistent with the KD determinations. These data suggest that GDI-alpha associates with prenyl Rab9 with a KD of < or = 23 nM under physiological conditions. Finally, a previously uncharacterized minor form of GDI-alpha inhibited GDP dissociation from prenyl Rab9 by 1.9-fold and bound prenyl Rab9 with a KD of 67 nM in 0.1% Lubrol.
Desmoglein 3 regulates membrane trafficking of cadherins, an implication in cell-cell adhesion
Moftah, Hanan; Dias, Kasuni; Apu, Ehsanul Hoque; Liu, Li; Uttagomol, Jutamas; Bergmeier, Lesley; Kermorgant, Stephanie; Wan, Hong
2017-01-01
ABSTRACT E-cadherin mediated cell-cell adhesion plays a critical role in epithelial cell polarization and morphogenesis. Our recent studies suggest that the desmosomal cadherin, desmoglein 3 (Dsg3) cross talks with E-cadherin and regulates its adhesive function in differentiating keratinocytes. However, the underlying mechanism remains not fully elucidated. Since E-cadherin trafficking has been recognized to be a central determinant in cell-cell adhesion and homeostasis we hypothesize that Dsg3 may play a role in regulating E-cadherin trafficking and hence the cell-cell adhesion. Here we investigated this hypothesis in cells with loss of Dsg3 function through RNAi mediated Dsg3 knockdown or the stable expression of the truncated mutant Dsg3ΔC. Our results showed that loss of Dsg3 resulted in compromised cell-cell adhesion and reduction of adherens junction and desmosome protein expression as well as the cortical F-actin formation. As a consequence, cells failed to polarize but instead displayed aberrant cell flattening. Furthermore, retardation of E-cadherin internalization and recycling was consistently observed in these cells during the process of calcium induced junction assembling. In contrast, enhanced cadherin endocytosis was detected in cells with overexpression of Dsg3 compared to control cells. Importantly, this altered cadherin trafficking was found to be coincided with the reduced expression and activity of Rab proteins, including Rab5, Rab7 and Rab11 which are known to be involved in E-cadherin trafficking. Taken together, our findings suggest that Dsg3 functions as a key in cell-cell adhesion through at least a mechanism of regulating E-cadherin membrane trafficking. PMID:27254775
Bilder, David; Fischer, Janice A.
2011-01-01
Notch signaling requires ligand internalization by the signal sending cells. Two endocytic proteins, epsin and auxilin, are essential for ligand internalization and signaling. Epsin promotes clathrin-coated vesicle formation, and auxilin uncoats clathrin from newly internalized vesicles. Two hypotheses have been advanced to explain the requirement for ligand endocytosis. One idea is that after ligand/receptor binding, ligand endocytosis leads to receptor activation by pulling on the receptor, which either exposes a cleavage site on the extracellular domain, or dissociates two receptor subunits. Alternatively, ligand internalization prior to receptor binding, followed by trafficking through an endosomal pathway and recycling to the plasma membrane may enable ligand activation. Activation could mean ligand modification or ligand transcytosis to a membrane environment conducive to signaling. A key piece of evidence supporting the recycling model is the requirement in signaling cells for Rab11, which encodes a GTPase critical for endosomal recycling. Here, we use Drosophila Rab11 and auxilin mutants to test the ligand recycling hypothesis. First, we find that Rab11 is dispensable for several Notch signaling events in the eye disc. Second, we find that Drosophila female germline cells, the one cell type known to signal without clathrin, also do not require auxilin to signal. Third, we find that much of the requirement for auxilin in Notch signaling was bypassed by overexpression of both clathrin heavy chain and epsin. Thus, the main role of auxilin in Notch signaling is not to produce uncoated ligand-containing vesicles, but to maintain the pool of free clathrin. Taken together, these results argue strongly that at least in some cell types, the primary function of Notch ligand endocytosis is not for ligand recycling. PMID:21448287
Giansanti, Maria Grazia; Vanderleest, Timothy E.; Jewett, Cayla E.; Sechi, Stefano; Frappaolo, Anna; Fabian, Lacramioara; Robinett, Carmen C.; Brill, Julie A.; Loerke, Dinah; Fuller, Margaret T.; Blankenship, J. Todd
2015-01-01
Mitotic and cytokinetic processes harness cell machinery to drive chromosomal segregation and the physical separation of dividing cells. Here, we investigate the functional requirements for exocyst complex function during cell division in vivo, and demonstrate a common mechanism that directs anaphase cell elongation and cleavage furrow progression during cell division. We show that onion rings (onr) and funnel cakes (fun) encode the Drosophila homologs of the Exo84 and Sec8 exocyst subunits, respectively. In onr and fun mutant cells, contractile ring proteins are recruited to the equatorial region of dividing spermatocytes. However, cytokinesis is disrupted early in furrow ingression, leading to cytokinesis failure. We use high temporal and spatial resolution confocal imaging with automated computational analysis to quantitatively compare wild-type versus onr and fun mutant cells. These results demonstrate that anaphase cell elongation is grossly disrupted in cells that are compromised in exocyst complex function. Additionally, we observe that the increase in cell surface area in wild type peaks a few minutes into cytokinesis, and that onr and fun mutant cells have a greatly reduced rate of surface area growth specifically during cell division. Analysis by transmission electron microscopy reveals a massive build-up of cytoplasmic astral membrane and loss of normal Golgi architecture in onr and fun spermatocytes, suggesting that exocyst complex is required for proper vesicular trafficking through these compartments. Moreover, recruitment of the small GTPase Rab11 and the PITP Giotto to the cleavage site depends on wild-type function of the exocyst subunits Exo84 and Sec8. Finally, we show that the exocyst subunit Sec5 coimmunoprecipitates with Rab11. Our results are consistent with the exocyst complex mediating an essential, coordinated increase in cell surface area that potentiates anaphase cell elongation and cleavage furrow ingression. PMID:26528720
NASA Astrophysics Data System (ADS)
Li, Hewang; Yu, Peiying; Sun, Yuansheng; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.
2010-09-01
The dynamic regulation of the cellular trafficking of human angiotensin (Ang) type 1 receptor (AT1R) is not well understood. Therefore, we investigated the cellular trafficking of AT1R-enhanced green fluorescent protein (EGFP) (AT1R-EGFP) heterologously expressed in HEK293 cells by determining the change in donor lifetime (AT1R-EGFP) in the presence or absence of acceptor(s) using fluorescence lifetime imaging-fluorescence resonance energy transfer (FRET) microscopy. The average lifetime of AT1R-EGFP in our donor-alone samples was ~2.33 ns. The basal state lifetime was shortened slightly in the presence of Rab5 (2.01+/-0.10 ns) or Rab7 (2.11+/-0.11 ns) labeled with Alexa 555, as the acceptor fluorophore. A 5-min Ang II treatment markedly shortened the lifetime of AT1R-EGFP in the presence of Rab5-Alexa 555 (1.78+/-0.31 ns) but was affected minimally in the presence of Rab7-Alexa 555 (2.09+/-0.37 ns). A 30-min Ang II treatment further decreased the AT1R-EGFP lifetime in the presence of both Rab5- and Rab7-Alexa 555. Latrunculin A but not nocodazole pretreatment blocked the ability of Ang II to shorten the AT1R-EGFP lifetime. The occurrence of FRET between AT1R-EGFP (donor) and LAMP1-Alexa 555 (acceptor) with Ang II stimulation was impaired by photobleaching the acceptor. These studies demonstrate that Ang II-induced AT1R lysosomal degradation through its association with LAMP1 is regulated by Rab5/7 via mechanisms that are dependent on intact actin cytoskeletons.
Suda, Yasuyuki; Tachikawa, Hiroyuki; Inoue, Ichiro; Kurita, Tomokazu; Saito, Chieko; Kurokawa, Kazuo; Nakano, Akihiko; Irie, Kenji
2018-02-01
Sec2 activates Sec4 Rab GTPase as a guanine nucleotide exchange factor for the recruitment of downstream effectors to facilitate tethering and fusion of post-Golgi vesicles at the plasma membrane. During the meiosis and sporulation of budding yeast, post-Golgi vesicles are transported to and fused at the spindle pole body (SPB) to form a de novo membrane, called the prospore membrane. Previous studies have revealed the role of the SPB outer surface called the meiotic outer plaque (MOP) in docking and fusion of post-Golgi vesicles. However, the upstream molecular machinery for post-Golgi vesicular fusion that facilitates prospore membrane formation remains enigmatic. Here, we demonstrate that the GTP exchange factor for Sec4, Sec2, participates in the formation of the prospore membrane. A conditional mutant in which the SEC2 expression is shut off during sporulation showed sporulation defects. Inactivation of Sec2 caused Sec4 targeting defects along the prospore membranes, thereby causing insufficient targeting of downstream effectors and cargo proteins to the prospore membrane. These results suggest that the activation of Sec4 by Sec2 is required for the efficient supply of post-Golgi vesicles to the prospore membrane and thus for prospore membrane formation/extension and subsequent deposition of spore wall materials. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
32 CFR 202.11 - Documenting RAB activities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Documenting RAB activities. 202.11 Section 202.11 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS RESTORATION ADVISORY BOARDS Operating Requirements § 202.11 Documenting RAB activities. (a) The installation shall document information...
32 CFR 202.8 - Training RAB members.
Code of Federal Regulations, 2010 CFR
2010-07-01
... provide in-house assistance to discuss technical issues. Funding for training activities must be within... 32 National Defense 2 2010-07-01 2010-07-01 false Training RAB members. 202.8 Section 202.8...) MISCELLANEOUS RESTORATION ADVISORY BOARDS Operating Requirements § 202.8 Training RAB members. Training is not...
Rab5 and Alsin regulate stress-activated cytoprotective signaling on mitochondria
Hsu, FoSheng; Spannl, Stephanie; Ferguson, Charles; Hyman, Anthony A; Parton, Robert G
2018-01-01
Mitochondrial stress response is essential for cell survival, and damaged mitochondria are a hallmark of neurodegenerative diseases. Thus, it is fundamental to understand how mitochondria relay information within the cell. Here, by investigating mitochondrial-endosomal contact sites we made the surprising observation that the small GTPase Rab5 translocates from early endosomes to mitochondria upon oxidative stress. This process is reversible and accompanied by an increase in Rab5-positive endosomes in contact with mitochondria. Interestingly, activation of Rab5 on mitochondria depends on the Rab5-GEF ALS2/Alsin, encoded by a gene mutated in amyotrophic lateral sclerosis (ALS). Alsin-deficient human-induced pluripotent stem cell-derived spinal motor neurons are defective in relocating Rab5 to mitochondria and display increased susceptibility to oxidative stress. These findings define a novel pathway whereby Alsin catalyzes the assembly of the Rab5 endocytic machinery on mitochondria. Defects in stress-sensing by endosomes could be crucial for mitochondrial quality control during the onset of ALS. PMID:29469808
Crystal structure of TBC1D15 GTPase-activating protein (GAP) domain and its activity on Rab GTPases.
Chen, Yan-Na; Gu, Xin; Zhou, X Edward; Wang, Weidong; Cheng, Dandan; Ge, Yinghua; Ye, Fei; Xu, H Eric; Lv, Zhengbing
2017-04-01
TBC1D15 belongs to the TBC (Tre-2/Bub2/Cdc16) domain family and functions as a GTPase-activating protein (GAP) for Rab GTPases. So far, the structure of TBC1D15 or the TBC1D15·Rab complex has not been determined, thus, its catalytic mechanism on Rab GTPases is still unclear. In this study, we solved the crystal structures of the Shark and Sus TBC1D15 GAP domains, to 2.8 Å and 2.5 Å resolution, respectively. Shark-TBC1D15 and Sus-TBC1D15 belong to the same subfamily of TBC domain-containing proteins, and their GAP-domain structures are highly similar. This demonstrates the evolutionary conservation of the TBC1D15 protein family. Meanwhile, the newly determined crystal structures display new variations compared to the structures of yeast Gyp1p Rab GAP domain and TBC1D1. GAP assays show that Shark and Sus GAPs both have higher catalytic activity on Rab11a·GTP than Rab7a·GTP, which differs from the previous study. We also demonstrated the importance of arginine and glutamine on the catalytic sites of Shark GAP and Sus GAP. When arginine and glutamine are changed to alanine or lysine, the activities of Shark GAP and Sus GAP are lost. © 2017 The Protein Society.
Qi, Yaoyao; Marlin, M. Caleb; Liang, Zhimin; Zhang, Dongmei; Zhou, Jie; Wang, Zonghua; Lu, Guodong; Li, Guangpu
2018-01-01
Rab GTPases are master regulators of intracellular membrane trafficking along endocytic and exocytic pathways. In this chapter, we began to characterize the exocytic and recycling Rabs from the filamentous fungus Magnaporthe oryzae (M. oryzae) that causes the rice blast disease. Among the 11 putative Rabs identified from the M. oryzae genome database (MoRabs), MoRab1, MoRab8, and MoRab11 appear orthologs of mammalian Rab1, Rab8, and Rab11 and likely function in exocytosis and endosomal recycling. To test this contention, we cloned, expressed, and determined intracellular localization of the three MoRabs in mammalian cells, in comparison to their human counterparts (hRabs). The MoRabs were well expressed as GFP fusion proteins and colocalized with the tdTomato-labeled hRabs on exocytic and recycling organelles, as determined by immunoblot analysis and confocal fluorescence microscopy. The colocalization supports the contention that the MoRabs are indeed Rab orthologs and may play important roles in the development and pathogenicity of M. oryzae. PMID:26360026
Rab5 and Rab4 Regulate Axon Elongation in the Xenopus Visual System
Konopacki, Filip A.; Zivraj, Krishna H.; Holt, Christine E.
2014-01-01
The elongation rate of axons is tightly regulated during development. Recycling of the plasma membrane is known to regulate axon extension; however, the specific molecules involved in recycling within the growth cone have not been fully characterized. Here, we investigated whether the small GTPases Rab4 and Rab5 involved in short-loop recycling regulate the extension of Xenopus retinal axons. We report that, in growth cones, Rab5 and Rab4 proteins localize to endosomes, which accumulate markers that are constitutively recycled. Fluorescence recovery after photo-bleaching experiments showed that Rab5 and Rab4 are recruited to endosomes in the growth cone, suggesting that they control recycling locally. Dynamic image analysis revealed that Rab4-positive carriers can bud off from Rab5 endosomes and move to the periphery of the growth cone, suggesting that both Rab5 and Rab4 contribute to recycling within the growth cone. Inhibition of Rab4 function with dominant-negative Rab4 or Rab4 morpholino and constitutive activation of Rab5 decreases the elongation of retinal axons in vitro and in vivo, but, unexpectedly, does not disrupt axon pathfinding. Thus, Rab5- and Rab4-mediated control of endosome trafficking appears to be crucial for axon growth. Collectively, our results suggest that recycling from Rab5-positive endosomes via Rab4 occurs within the growth cone and thereby supports axon elongation. PMID:24403139
Denby, Katie J.; Rolfe, Matthew D.; Crick, Ellen; Sanguinetti, Guido; Poole, Robert K.
2015-01-01
Summary Systematic analyses of transcriptional and metabolic changes occurring when E scherichia coli K‐12 switches from fermentative growth to anaerobic respiratory growth with trimethylamine‐N‐oxide (TMAO) as the terminal electron acceptor revealed: (i) the induction of torCAD, but not genes encoding alternative TMAO reductases; (ii) transient expression of frmRAB, encoding formaldehyde dehydrogenase; and (iii) downregulation of copper resistance genes. Simultaneous inference of 167 transcription factor (TF) activities implied that transcriptional re‐programming was mediated by 20 TFs, including the transient inactivation of the two‐component system ArcBA; a prediction validated by direct measurement of phosphorylated ArcA. Induction of frmRAB, detection of dimethylamine in culture medium and formaldehyde production when cell‐free extracts were incubated with TMAO suggested the presence of TMAO demethylase activity. Accordingly, the viability of an frmRAB mutant was compromised upon exposure to TMAO. Downregulation of genes involved in copper resistance could be accounted for by TMAO inhibition of Cu(II) reduction. The simplest interpretation of the data is that during adaptation to the presence of environmental TMAO, anaerobic fermentative cultures of E . coli respond by activating the TorTSR regulatory system with consequent induction of TMAO reductase activity, resulting in net oxidation of menaquinone and inhibition of Cu(II) reduction, responses that are sensed by ArcBA and CusRS respectively. PMID:25471524
Regulation of podocalyxin trafficking by Rab small GTPases in epithelial cells
Mrozowska, Paulina S.; Fukuda, Mitsunori
2016-01-01
ABSTRACT The characteristic feature of polarity establishment in MDCK II cells is transcytosis of apical glycoprotein podocalyxin (PCX) from the outer plasma membrane to the newly formed apical domain. This transcytotic event consists of multiple steps, including internalization from the plasma membrane, transport through early endosomes and Rab11-positive recycling endosomes, and delivery to the apical membrane. These steps are known to be tightly coordinated by Rab small GTPases, which act as molecular switches cycling between active GTP-bound and inactive GDP-bound states. However, our knowledge regarding which sets of Rabs regulate particular steps of PCX trafficking was rather limited. Recently, we have performed a comprehensive analysis of Rab GTPase engagement in the transcytotic pathway of PCX during polarity establishment in 2-dimensional (2D) and 3-dimensional (3D) MDCK II cell cultures. In this Commentary we summarize our findings and set them in the context of previous reports. PMID:27463697
Rab5a‑mediated autophagy regulates the phenotype and behavior of vascular smooth muscle cells.
Tan, Jin-Yun; Jia, Luo-Qi; Shi, Wei-Hao; He, Qing; Zhu, Lei; Yu, Bo
2016-11-01
Rab5a, a key member of the Rab family of GTPases, was determined to be a regulator of vascular smooth muscle cell (VSMC) proliferation and migration. However, the exact regulatory mechanism remains unclear. As Rab5a has been shown to be associated with autophagy, which is essential for the conversion of VSMCs from a contractile to a synthetic phenotype in order to prevent cell death due to oxidative stress. The present study hypothesized that autophagy may be responsible for the proliferation and migration of VSMCs via the Rab5a protein. The aim of the present study was to evaluate the effect of Rab5a on autophagy in VSMCs. The human aorta vascular smooth muscle cell line, T/G HA‑VSMCs, was treated with small interfering (si)RNA against Rab5a and/or platelet‑derived growth factor (PDGF). Following treatment, the phenotype transition of the VSMCs was evaluated by detecting the mRNA and protien expression levels of VSMC molecular markers using reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. In addition, autophagy in VSMCs was evaluated by western blotting for autophagy‑associated proteins, flow cytometry of acidic vesicular organelles, punctate fluorescence of microtubule associated protein light chain 3 and transmission electron microscopy of typical scattered double‑membrane vacuolar structures. Additionally, the proliferation, migration, cell cycle and apoptotic response of VSMCs were detected by sulforhodamine B assay, transwell assay and flow cytometry, respectively. The results revealed that transfection with siRNA against Rab5a led to a significant decrease in Rab5a protein expression, while the reduced expression trend of Rab5a was rescued by intervention with PDGF. Furthermore, cells transfected with siRNA against Rab5a inhibited the autophagy of VSMCs. Downregulated Rab5a inhibited the phenotype transition of VSMCs. Additionally, downregulated Rab5a led to slowed cell growth, decreased numbers of migrated cells, decreased numbers of cells at the G0‑G1 phase and a higher apoptosis rate. However, PDGF significantly rescued these phenomena caused by siRNA against Rab5a. These results indicated that Rab5a‑mediated autophagy may regulate the phenotype transition and cell behavior of VSMCs through the activation of the extracellular‑regulated kinase 1/2 signaling pathway.
Characterization of a Rab11-like GTPase, EhRab11, of Entamoeba histolytica.
McGugan, Glen C; Temesvari, Lesly A
2003-07-01
The Entamoeba histolytica Rab11 family of small molecular weight GTPases consists of three members, EhRab11, EhRab11B, and EhRab11C. The functions of these Rabs in Entamoeba have not been determined. Therefore, as an approach to elucidate the role of the Rab11 family of GTPases in Entamoeba, immunofluorescence microscopy was undertaken to define the subcellular localization of one member of this family, EhRab11. Under conditions of growth, EhRab11 displayed a punctate pattern in the cytoplasm of trophozoites. EhRab11 did not colocalize with markers for the Golgi apparatus, endoplasmic reticulum, pinosomes, phagosomes, or compartments formed by receptor-mediated endocytosis, suggesting that this Rab may not play a role in vesicle trafficking between these organelles. Under conditions of iron and serum starvation, EhRab11 was translocated to the periphery of the cell. The altered cellular localization was accompanied by multinucleation of the cells as well as the acquisition of detergent resistance by the cells, features that are characteristic of Entamoeba cysts. The translocation of EhRab11 to the periphery of the cell during iron and serum starvation was specific as the subcellular localizations of two other Rab GTPases, EhRab7 and EhRabA, were not altered under the same conditions. In addition, the formation of multinucleated cells by inhibition of cytokinesis was not sufficient to induce the translocation of EhRab11 to the cell periphery. Taken together, the data suggest that iron and serum starvation may induce encystation in E. histolytica and that EhRab11 may play a role in this process. Moreover, these studies are the first to describe a putative role for a Rab GTPase in encystation in Entamoeba sp.
Bedoyan, Jirair Krikor; Schaibley, Valerie M; Peng, Weiping; Bai, Yongsheng; Mondal, Kajari; Shetty, Amol C; Durham, Mark; Micucci, Joseph A; Dhiraaj, Arti; Skidmore, Jennifer M; Kaplan, Julie B; Skinner, Cindy; Schwartz, Charles E; Antonellis, Anthony; Zwick, Michael E; Cavalcoli, James D; Li, Jun Z; Martin, Donna M
2012-05-01
Martin--Probst syndrome (MPS) is a rare X-linked disorder characterised by deafness, cognitive impairment, short stature and distinct craniofacial dysmorphisms, among other features. The authors sought to identify the causative mutation for MPS. Massively parallel sequencing in two affected, related male subjects with MPS identified a RAB40AL (also called RLGP) missense mutation (chrX:102,079,078-102,079,079AC→GA p.D59G; hg18). RAB40AL encodes a small Ras-like GTPase protein with one suppressor of cytokine signalling box. The p.D59G variant is located in a highly conserved region of the GTPase domain between β-2 and β-3 strands. Using RT-PCR, the authors show that RAB40AL is expressed in human fetal and adult brain and kidney, and adult lung, heart, liver and skeletal muscle. RAB40AL appears to be a primate innovation, with no orthologues found in mouse, Xenopus or zebrafish. Western analysis and fluorescence microscopy of GFP-tagged RAB40AL constructs from transiently transfected COS7 cells show that the D59G missense change renders RAB40AL unstable and disrupts its cytoplasmic localisation. This is the first study to show that mutation of RAB40AL is associated with a human disorder. Identification of RAB40AL as the gene mutated in MPS allows for further investigations into the molecular mechanism(s) of RAB40AL and its roles in diverse processes such as cognition, hearing and skeletal development.
Bedoyan, Jirair Krikor; Schaibley, Valerie M; Peng, Weiping; Bai, Yongsheng; Mondal, Kajari; Shetty, Amol C; Durham, Mark; Micucci, Joseph A; Dhiraaj, Arti; Skidmore, Jennifer M; Kaplan, Julie B; Skinner, Cindy; Schwartz, Charles E; Antonellis, Anthony; Zwick, Michael E; Cavalcoli, James D; Li, Jun Z
2012-01-01
Background and aim Martin–Probst syndrome (MPS) is a rare X-linked disorder characterised by deafness, cognitive impairment, short stature and distinct craniofacial dysmorphisms, among other features. The authors sought to identify the causative mutation for MPS. Methods and results Massively parallel sequencing in two affected, related male subjects with MPS identified a RAB40AL (also called RLGP) missense mutation (chrX:102,079,078-102,079,079AC→GA p.D59G; hg18). RAB40AL encodes a small Ras-like GTPase protein with one suppressor of cytokine signalling box. The p.D59G variant is located in a highly conserved region of the GTPase domain between β-2 and β-3 strands. Using RT-PCR, the authors show that RAB40AL is expressed in human fetal and adult brain and kidney, and adult lung, heart, liver and skeletal muscle. RAB40AL appears to be a primate innovation, with no orthologues found in mouse, Xenopus or zebrafish. Western analysis and fluorescence microscopy of GFP-tagged RAB40AL constructs from transiently transfected COS7 cells show that the D59G missense change renders RAB40AL unstable and disrupts its cytoplasmic localisation. Conclusions This is the first study to show that mutation of RAB40AL is associated with a human disorder. Identification of RAB40AL as the gene mutated in MPS allows for further investigations into the molecular mechanism(s) of RAB40AL and its roles in diverse processes such as cognition, hearing and skeletal development. PMID:22581972
Yang, Cheng D.; Dang, Xie; Zheng, Hua W.; Chen, Xiao F.; Lin, Xiao L.; Zhang, Dong M.; Abubakar, Yakubu S.; Chen, Xin; Lu, Guodong; Wang, Zonghua; Li, Guangpu; Zhou, Jie
2017-01-01
The rice blast fungus, Magnaporthe oryzae, infects many economically important cereal crops, particularly rice. It has emerged as an important model organism for studying the growth, development, and pathogenesis of filamentous fungi. RabGTPases are important molecular switches in regulation of intracellular membrane trafficking in all eukaryotes. MoRab5A and MoRab5B are Rab5 homologs in M. oryzae, but their functions in the fungal development and pathogenicity are unknown. In this study, we have employed a genetic approach and demonstrated that both MoRab5A and MoRab5B are crucial for vegetative growth and development, conidiogenesis, melanin synthesis, vacuole fusion, endocytosis, sexual reproduction, and plant pathogenesis in M. oryzae. Moreover, both MoRab5A and MoRab5B show similar localization in hyphae and conidia. To further investigate possible functional redundancy between MoRab5A and MoRab5B, we overexpressed MoRAB5A and MoRAB5B, respectively, in MoRab5B:RNAi and MoRab5A:RNAi strains, but neither could rescue each other’s defects caused by the RNAi. Taken together, we conclude that both MoRab5A and MoRab5B are necessary for the development and pathogenesis of the rice blast fungus, while they may function independently. PMID:28529514
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Zheng; Qi, Ruizhao; Guo, Xiaodong
Hepatocellular carcinoma (HCC) is a common digestive malignancy. MiR-223, a well-identified miRNA, exhibits diverse properties in different cancers. In this study, we demonstrated that miR-223 could suppress cell growth and promote apoptosis in HepG2 and Bel-7402 HCC cell lines. We screened and identified a novel miR-223 target, Ras-related protein Rab-1(Rab1). Upregulation of miR-223 would specifically and markedly down-regulate Rab1 expression. In addition, miR-223-overexpressing subclones showed significant cell growth inhibition by increasing cell apoptosis in HepG2 and Bel-7402 cells. To identify the mechanisms, we firstly investigated the mTOR pathway and found that pmTOR, p70S6K and Bcl-2 were dramatically down-regulated after miR-223 transfection,more » while no changes in the level of Bax was visualized. Furthermore, our data showed that the anti-tumor effects arising from miR-223 transfection in HCC cells may be due to the deactivation of mTOR pathway caused by the suppression of Rab1 expression when miR-223 is overexpressed. In summary, our results indicate that miR-223 functions as a tumor suppressor and plays a critical role in inhibiting the tumorigenesis and promoting the apoptosis of HCC through the mTOR signaling pathway in vitro. By targeting Rab1, miR-223 efficiently mediates the mTOR pathway. Given these, miR-223 may be a potential therapeutic target for treating HCC. - Highlights: • miR-223 is downregulated in hepatocellular carcinomas. • Rab1 is a novel downstream target of miR-223. • miR-223 suppressed cell growth and enhanced apoptosis in HepG2 and Bel-7402 cells. • miR-223 modulated mTOR signaling pathway by targeting Rab1.« less
Rab11 family expression in the human placenta: Localization at the maternal-fetal interface
Artemiuk, Patrycja A.; Hanscom, Sara R.; Lindsay, Andrew J.; Wuebbolt, Danielle; Breathnach, Fionnuala M.; Tully, Elizabeth C.; Khan, Amir R.; McCaffrey, Mary W.
2017-01-01
Rab proteins are a family of small GTPases involved in a variety of cellular processes. The Rab11 subfamily in particular directs key steps of intracellular functions involving vesicle trafficking of the endosomal recycling pathway. This Rab subfamily works through a series of effector proteins including the Rab11-FIPs (Rab11 Family-Interacting Proteins). While the Rab11 subfamily has been well characterized at the cellular level, its function within human organ systems is still being explored. In an effort to further study these proteins, we conducted a preliminary investigation of a subgroup of endosomal Rab proteins in a range of human cell lines by Western blotting. The results from this analysis indicated that Rab11a, Rab11c(Rab25) and Rab14 were expressed in a wide range of cell lines, including the human placental trophoblastic BeWo cell line. These findings encouraged us to further analyse the localization of these Rabs and their common effector protein, the Rab Coupling Protein (RCP), by immunofluorescence microscopy and to extend this work to normal human placental tissue. The placenta is a highly active exchange interface, facilitating transfer between mother and fetus during pregnancy. As Rab11 proteins are closely involved in transcytosis we hypothesized that the placenta would be an interesting human tissue model system for Rab investigation. By immunofluorescence microscopy, Rab11a, Rab11c(Rab25), Rab14 as well as their common FIP effector RCP showed prominent expression in the placental cell lines. We also identified the expression of these proteins in human placental lysates by Western blot analysis. Further, via fluorescent immunohistochemistry, we noted abundant localization of these proteins within key functional areas of primary human placental tissues, namely the outer syncytial layer of placental villous tissue and the endothelia of fetal blood vessels. Overall these findings highlight the expression of the Rab11 family within the human placenta, with novel localization at the maternal-fetal interface. PMID:28922401
Lee, Jung Ok; Kim, Nami; Lee, Hye Jeong; Moon, Ji Wook; Lee, Soo Kyung; Kim, Su Jin; Kim, Joong Kwan; Park, Sun Hwa; Kim, Hyeon Soo
2015-07-01
[6]-Gingerol has been used to control diabetes and dyslipidemia; however, its metabolic role is poorly understood. In this study, [6]-gingerol increased adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation in mouse skeletal muscle C2C12 cells. Stimulation of glucose uptake by [6]-gingerol was dependent on AMPKα2. Moreover, both Inhibition and knockdown of AMPKα2 blocked [6]-gingerol-induced glucose uptake. [6]-Gingerol significantly decreased the activity of protein phosphatase 2A (PP2A). Inhibition of PP2A activity with okadaic acid enhanced the phosphorylation of AMPKα2. Moreover, the interaction between AMPKα2 and PP2A was increased by [6]-gingerol, suggesting that PP2A mediates the effect of [6]-gingerol on AMPK phosphorylation. In addition, [6]-gingerol increased the phosphorylation of Akt-substrate 160 (AS160), which is a Rab GTPase-activating protein. Inhibition of AMPKα2 blocked [6]-gingerol-induced AS160 phosphorylation. [6]-gingerol increased the Rab5, and AMPKα2 knockdown blocked [6]-gingerol-induced expression of Rab5, indicating AMPK play as an upstream of Rab5. It also increased glucose transporter 4 (GLUT4) mRNA and protein expression and stimulated GLUT4 translocation. Furthermore, insulin-mediated glucose uptake and Akt phosphorylation were further potentiated by [6]-gingerol treatment. This potentiation was not observed in the presence of AMPK inhibitor compound C. In summary, our results suggest that [6]-gingerol plays an important role in glucose metabolism via the AMPKα2-mediated AS160-Rab5 pathway and through potentiation of insulin-mediated glucose regulation. © 2015 Wiley Periodicals, Inc.
Nie, Zhongzhen; Hirsch, Dianne S; Luo, Ruibai; Jian, Xiaoying; Stauffer, Stacey; Cremesti, Aida; Andrade, Josefa; Lebowitz, Jacob; Marino, Michael; Ahvazi, Bijan; Hinshaw, Jenny E; Randazzo, Paul A
2006-01-24
Arf GAPs are multidomain proteins that function in membrane traffic by inactivating the GTP binding protein Arf1. Numerous Arf GAPs contain a BAR domain, a protein structural element that contributes to membrane traffic by either inducing or sensing membrane curvature. We have examined the role of a putative BAR domain in the function of the Arf GAP ASAP1. ASAP1's N terminus, containing the putative BAR domain together with a PH domain, dimerized to form an extended structure that bound to large unilamellar vesicles containing acidic phospholipids, properties that define a BAR domain. A recombinant protein containing the BAR domain of ASAP1, together with the PH and Arf GAP domains, efficiently bent the surface of large unilamellar vesicles, resulting in the formation of tubular structures. This activity was regulated by Arf1*GTP binding to the Arf GAP domain. In vivo, the tubular structures induced by ASAP1 mutants contained epidermal growth factor receptor (EGFR) and Rab11, and ASAP1 colocalized in tubular structures with EGFR during recycling of receptor. Expression of ASAP1 accelerated EGFR trafficking and slowed cell spreading. An ASAP1 mutant lacking the BAR domain had no effect. The N-terminal BAR domain of ASAP1 mediates membrane bending and is necessary for ASAP1 function. The Arf dependence of the bending activity is consistent with ASAP1 functioning as an Arf effector.
Linford, Andrea; Yoshimura, Shin-ichiro; Bastos, Ricardo Nunes; Langemeyer, Lars; Gerondopoulos, Andreas; Rigden, Daniel J.; Barr, Francis A.
2012-01-01
Summary Rab GTPases define the vesicle trafficking pathways underpinning cell polarization and migration. Here, we find that Rab4, Rab11, and Rab14 and the candidate Rab GDP-GTP exchange factors (GEFs) FAM116A and AVL9 are required for cell migration. Rab14 and its GEF FAM116A localize to and act on an intermediate compartment of the transferrin-recycling pathway prior to Rab11 and after Rab5 and Rab4. This Rab14 intermediate recycling compartment has specific functions in migrating cells discrete from early and recycling endosomes. Rab14-depleted cells show increased N-cadherin levels at junctional complexes and cannot resolve cell-cell junctions. This is due to decreased shedding of cell-surface N-cadherin by the ADAM family protease ADAM10/Kuzbanian. In FAM116A- and Rab14-depleted cells, ADAM10 accumulates in a transferrin-positive endocytic compartment, and the cell-surface level of ADAM10 is correspondingly reduced. FAM116 and Rab14 therefore define an endocytic recycling pathway needed for ADAM protease trafficking and regulation of cell-cell junctions. PMID:22595670
Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET
Peinado, Héctor; Alečković, Maša; Lavotshkin, Simon; Matei, Irina; Costa-Silva, Bruno; Moreno-Bueno, Gema; Hergueta-Redondo, Marta; Williams, Caitlin; García-Santos, Guillermo; Nitadori-Hoshino, Ayuko; Hoffman, Caitlin; Badal, Karen; Garcia, Benjamin A.; Callahan, Margaret K.; Yuan, Jianda; Martins, Vilma R.; Skog, Johan; Kaplan, Rosandra N.; Brady, Mary S.; Wolchok, Jedd D.; Chapman, Paul B.; Kang, Yibin; Bromberg, Jacqueline; Lyden, David
2013-01-01
Tumor-derived exosomes are emerging mediators of tumorigenesis with tissue-specific addresses and messages. We explored the function of melanoma-derived exosomes in the formation of primary tumor and metastases in mouse and human subjects. Exosomes from highly metastatic melanoma increased the metastatic behavior of primary tumors by permanently “educating” bone marrow (BM) progenitors via the MET receptor. Melanoma-derived exosomes also induced vascular leakiness at pre-metastatic sites, and reprogrammed BM progenitors towards a c-Kit+Tie2+Met+ pro-vasculogenic phenotype. Reducing Met expression in exosomes diminished the pro-metastatic behavior of BM cells. Importantly, MET expression was elevated in circulating CD45−C-KITlow/+TIE2+ BM progenitors from metastatic melanoma subjects. RAB1a, RAB5b, RAB7, and RAB27a were highly expressed in melanoma cells and Rab27a RNA interference decreased exosome production, preventing BM education, tumor growth and metastasis. Finally, we identified an exosome-specific “melanoma signature” with prognostic and therapeutic potential, comprised of TYRP2, VLA-4, HSP70, an HSP90 isoform and the MET oncoprotein. PMID:22635005
Okai, Blessing; Lyall, Natalie; Gow, Neil A. R.; Erwig, Lars-Peter
2015-01-01
Avoidance of innate immune defense is an important mechanism contributing to the pathogenicity of microorganisms. The fungal pathogen Candida albicans undergoes morphogenetic switching from the yeast to the filamentous hyphal form following phagocytosis by macrophages, facilitating its escape from the phagosome, which can result in host cell lysis. We show that the intracellular host trafficking GTPase Rab14 plays an important role in protecting macrophages from lysis mediated by C. albicans hyphae. Live-cell imaging of macrophages expressing green fluorescent protein (GFP)-tagged Rab14 or dominant negative Rab14, or with small interfering RNA (siRNA)-mediated knockdown of Rab14, revealed the temporal dynamics of this protein and its influence on the maturation of macrophage phagosomes following the engulfment of C. albicans cells. Phagosomes containing live C. albicans cells became transiently Rab14 positive within 2 min following engulfment. The duration of Rab14 retention on phagosomes was prolonged for hyphal cargo and was directly proportional to hyphal length. Interference with endogenous Rab14 did not affect the migration of macrophages toward C. albicans cells, the rate of engulfment, the overall uptake of fungal cells, or early phagosome processing. However, Rab14 depletion delayed the acquisition of the late phagosome maturation markers LAMP1 and lysosomal cathepsin, indicating delayed formation of a fully bioactive lysosome. This was associated with a significant increase in the level of macrophage killing by C. albicans. Therefore, Rab14 activity promotes phagosome maturation during C. albicans infection but is dysregulated on the phagosome in the presence of the invasive hyphal form, which favors fungal survival and escape. PMID:25644001
Marsolais, Frédéric; Pajak, Agnieszka; Yin, Fuqiang; Taylor, Meghan; Gabriel, Michelle; Merino, Diana M; Ma, Vanessa; Kameka, Alexander; Vijayan, Perumal; Pham, Hai; Huang, Shangzhi; Rivoal, Jean; Bett, Kirstin; Hernández-Sebastià, Cinta; Liu, Qiang; Bertrand, Annick; Chapman, Ralph
2010-06-16
A deficiency in major seed storage proteins is associated with a nearly two-fold increase in sulfur amino acid content in genetically related lines of common bean (Phaseolus vulgaris). Their mature seed proteome was compared by an approach combining label-free quantification by spectral counting, 2-DE, and analysis of selective extracts. Lack of phaseolin, phytohemagglutinin and arcelin was mainly compensated by increases in legumin, alpha-amylase inhibitors and mannose lectin FRIL. Along with legumin, albumin-2, defensin and albumin-1 were major contributors to the elevated sulfur amino acid content. Coordinate induction of granule-bound starch synthase I, starch synthase II-2 and starch branching enzyme were associated with minor alteration of starch composition, whereas increased levels of UDP-glucose 4-epimerase were correlated with a 30% increase in raffinose content. Induction of cell division cycle protein 48 and ubiquitin suggested enhanced ER-associated degradation. This was not associated with a classical unfolded protein response as the levels of ER HSC70-cognate binding protein were actually reduced in the mutant. Repression of rab1 GTPase was consistent with decreased traffic through the secretory pathway. Collectively, these results have implications for the nutritional quality of common bean, and provide information on the pleiotropic phenotype associated with storage protein deficiency in a dicotyledonous seed. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.
Rab3a-Bound CD63 Is Degraded and Rab3a-Free CD63 Is Incorporated into HIV-1 Particles
Kubo, Yoshinao; Masumoto, Hiroshi; Izumida, Mai; Kakoki, Katsura; Hayashi, Hideki; Matsuyama, Toshifumi
2017-01-01
CD63, a member of the tetraspanin family, is involved in virion production by human immunodeficiency virus type 1 (HIV-1), but its mechanism is unknown. In this study, we showed that a small GTP-binding protein, Rab3a, interacts with CD63. When Rab3a was exogenously expressed, the amounts of CD63 decreased in cells. The Rab3a-mediated reduction of CD63 was suppressed by lysosomal and proteasomal inhibitors. The amount of CD63 was increased by reducing the endogenous Rab3a level using a specific shRNA. These results indicate that Rab3a binds to CD63 to induce the degradation of CD63. Rab3a is thought to be involved in exocytosis, but we found that another function of Rab3a affects the fate of CD63 in lysosomes. CD63 interacted with Rab3a and was incorporated into HIV-1 particles. However, Rab3a was not detected in HIV-1 virions, thereby indicating that Rab3a-free CD63, but not Rab3a-bound CD63, is incorporated into HIV-1 particles. Overexpression or silencing of Rab3a moderately reduced HIV-1 virion formation. Overexpression of Rab3a decreased CD63 levels, but did not affect the incorporation of CD63 into HIV-1 particles. This study showed that Rab3a binds to CD63 to induce the degradation of CD63, and only Rab3a-free CD63 is incorporated into HIV-1 particles. PMID:28900422
Wyroba, E; Surmacz, L; Osinska, M; Wiejak, J
2007-01-01
Phagosome maturation is a complex process enabling degradation of internalised particles. Our data obtained at the gene, protein and cellular level indicate that the set of components involved in this process and known up to now in mammalian cells is functioning in unicellular eukaryote. Rab7-interacting partners: homologues of its effector RILP (Rab-interacting lysosomal protein) and LAMP-2 (lysosomal membrane protein 2) as well as alpha7 subunit of the 26S proteasome were revealed in Paramecium phagolysosomal compartment. We identified the gene/transcript fragments encoding RILP-related proteins (RILP1 and RILP2) in Paramecium by PCR/RT-PCR and sequencing. The deduced amino acid sequences of RILP1 and RILP2 show 60.5% and 58.3% similarity, respectively, to the region involved in regulating of lysosomal morphology and dynein-dynactin recruitment of human RILP. RILP colocalised with Rab7 in Paramecium lysosomes and at phagolysosomal membrane during phagocytosis of both the latex beads and bacteria. In the same compartment LAMP-2 was present and its expression during latex internalisation was 2.5-fold higher than in the control when P2 protein fractions (100,000 x g) of equal load were quantified by immunoblotting. LAMP-2 cross-reacting polypeptide of approximately106 kDa was glycosylated as shown by fluorescent and Western analysis of the same blot preceded by PNGase F treatment. The alpha7 subunit of 26S proteasome was detected close to the phagosomal membrane in the small vesicles, in some of which it colocalised with Rab7. Immunoblotting confirmed presence of RILP-related polypeptide and a7 subunit of 26S proteasome in Paramecium protein fractions. These results suggest that Rab7, RILP and LAMP-2 may be involved in phagosome maturation in Paramecium.
Simon, Marissa; Bruex, Angela; Kainkaryam, Raghunandan M.; Zheng, Xiaohua; Huang, Ling; Woolf, Peter J.; Schiefelbein, John
2013-01-01
Traditional genetic analysis relies on mutants with observable phenotypes. Mutants lacking visible abnormalities may nevertheless exhibit molecular differences useful for defining gene function. To examine this, we analyzed tissue-specific transcript profiles from Arabidopsis thaliana transcription factor gene mutants with known roles in root epidermis development, but lacking a single-gene mutant phenotype due to genetic redundancy. We discovered substantial transcriptional changes in each mutant, preferentially affecting root epidermal genes in a manner consistent with the known double mutant effects. Furthermore, comparing transcript profiles of single and double mutants, we observed remarkable variation in the sensitivity of target genes to the loss of one or both paralogous genes, including preferential effects on specific branches of the epidermal gene network, likely reflecting the pathways of paralog subfunctionalization during evolution. In addition, we analyzed the root epidermal transcriptome of the transparent testa glabra2 mutant to clarify its role in the network. These findings provide insight into the molecular basis of genetic redundancy and duplicate gene diversification at the level of a specific gene regulatory network, and they demonstrate the usefulness of tissue-specific transcript profiling to define gene function in mutants lacking informative visible changes in phenotype. PMID:24014549
Hepatitis C Virus-Induced Rab32 Aggregation and Its Implications for Virion Assembly.
Pham, Tu M; Tran, Si C; Lim, Yun-Sook; Hwang, Soon B
2017-02-01
Hepatitis C virus (HCV) is highly dependent on cellular factors for viral propagation. Using high-throughput next-generation sequencing, we analyzed the host transcriptomic changes and identified 30 candidate genes which were upregulated in cell culture-grown HCV (HCVcc)-infected cells. Of these candidates, we selected Rab32 for further investigation. Rab32 is a small GTPase that regulates a variety of intracellular membrane-trafficking events in various cell types. In this study, we demonstrated that both mRNA and protein levels of Rab32 were increased in HCV-infected cells. Furthermore, we showed that HCV infection converted the predominantly expressed GTP-bound Rab32 to GDP-bound Rab32, contributing to the aggregation of Rab32 and thus making it less sensitive to cellular degradation machinery. In addition, GDP-bound Rab32 selectively interacted with HCV core protein and deposited core protein into the endoplasmic reticulum (ER)-associated Rab32-derived aggregated structures in the perinuclear region, which were likely to be viral assembly sites. Using RNA interference technology, we demonstrated that Rab32 was required for the assembly step but not for other stages of the HCV life cycle. Taken together, these data suggest that HCV may modulate Rab32 activity to facilitate virion assembly. Rab32, a member of the Ras superfamily of small GTPases, regulates various intracellular membrane-trafficking events in many cell types. In this study, we showed that HCV infection concomitantly increased Rab32 expression at the transcriptional level and altered the balance between GDP- and GTP-bound Rab32 toward production of Rab32-GDP. GDP-bound Rab32 selectively interacted with HCV core protein and enriched core in the ER-associated Rab32-derived aggregated structures that were probably necessary for viral assembly. Indeed, we showed that Rab32 was specifically required for the assembly of HCV. Collectively, our study identifies that Rab32 is a novel host factor essential for HCV particle assembly. Copyright © 2017 American Society for Microbiology.
Hernández-Méndez, Erick Alejandro; Arreola-Guerra, José Manuel; Morales-Buenrostro, Luis E; Ramírez, Julia B; Calleja, Said; Castelán, Natalia; Salcedo, Isaac; Vilatobá, Mario; Contreras, Alan G; Gabilondo, Bernardo; Granados, Julio; Alberú, Josefina
2014-01-01
Angiotensin II type 1 receptor antibodies (AT1Rab) are associated to a significantly lower graft survival and a higher risk of acute rejection after kidney transplantation. This study aimed to evaluate graft function and BPAR during the 1st year post-transplant (PT) in adult kidney transplant recipients (KTR), between 03/2009 and 08/2012. Pre-KT sera were screened for AT1Rab (ELISA) and HLA-DSA (Luminex). Three groups were analyzed: AT1Rab only (n = 13); HLA-DSA only (n = 8); and no AT1Rab or HLA-DSA (n = 90). No differences were observed in clinical characteristics across groups. A higher percentage of BPAR was observed in the AT1Rab positive group, but this difference was not significant. KTR with AT1Rab had a lower mean eGFR (20 mL/min/1.73m2) when compared to KTR with no Abs at 12 months. The significant difference in eGFR was observed since the 1st month PT. Multivariate analysis showed 4 factors independently and significantly associated with eGFR at 12mos PT: BPAR (-18.7 95%, CI -28.2 to -9.26, p<0.001), AT1Rab (-10.51, CI -20.9 to -0.095, p = 0.048), donor age (-0.42, CI -0.75 to -0.103 p = 0.010), and recipient age (-0.36, CI -0.67 to -0.048, p = 0.024). In this study AT1Rab in pre-transplant sera from KTR, was an independent and significant risk factor contributing to a lower eGFR 12 months. PT. This finding deserves to be confirmed in a larger KTR population.
Sandri, Chiara; Caccavari, Francesca; Valdembri, Donatella; Camillo, Chiara; Veltel, Stefan; Santambrogio, Martina; Lanzetti, Letizia; Bussolino, Federico; Ivaska, Johanna; Serini, Guido
2012-01-01
During developmental and tumor angiogenesis, semaphorins regulate blood vessel navigation by signaling through plexin receptors that inhibit the R-Ras subfamily of small GTPases. R-Ras is mainly expressed in vascular cells, where it induces adhesion to the extracellular matrix (ECM) through unknown mechanisms. We identify the Ras and Rab5 interacting protein RIN2 as a key effector that in endothelial cells interacts with and mediates the pro-adhesive and -angiogenic activity of R-Ras. Both R-Ras-GTP and RIN2 localize at nascent ECM adhesion sites associated with lamellipodia. Upon binding, GTP-loaded R-Ras converts RIN2 from a Rab5 guanine nucleotide exchange factor (GEF) to an adaptor that first interacts at high affinity with Rab5-GTP to promote the selective endocytosis of ligand-bound/active β1 integrins and then causes the translocation of R-Ras to early endosomes. Here, the R-Ras/RIN2/Rab5 signaling module activates Rac1-dependent cell adhesion via TIAM1, a Rac GEF that localizes on early endosomes and is stimulated by the interaction with both Ras proteins and the vesicular lipid phosphatidylinositol 3-monophosphate. In conclusion, the ability of R-Ras-GTP to convert RIN2 from a GEF to an adaptor that preferentially binds Rab5-GTP allows the triggering of the endocytosis of ECM-bound/active β1 integrins and the ensuing funneling of R-Ras-GTP toward early endosomes to elicit the pro-adhesive and TIAM1-mediated activation of Rac1. PMID:22825554
Charcot Marie Tooth 2B Peripheral Sensory Neuropathy: How Rab7 Mutations Impact NGF Signaling?
Liu, Harry; Wu, Chengbiao
2017-02-04
Charcot-Marie-Tooth 2B peripheral sensory neuropathy (CMT2B) is a debilitating autosomal dominant hereditary sensory neuropathy. Patients with this disease lose pain sensation and frequently need amputation. Axonal dysfunction and degeneration of peripheral sensory neurons is a major clinical manifestation of CMT2B. However, the cellular and molecular pathogenic mechanisms remain undefined. CMT2B is caused by missense point mutations (L129F, K157N, N161T/I, V162M) in Rab7 GTPase. Strong evidence suggests that the Rab7 mutation(s) enhances the cellular levels of activated Rab7 proteins, thus resulting in increased lysosomal activity and autophagy. As a consequence, trafficking and signaling of neurotrophic factors such as nerve growth factor (NGF) in the long axons of peripheral sensory neurons are particularly vulnerable to premature degradation. A "gain of toxicity" model has, thus, been proposed based on these observations. However, studies of fly photo-sensory neurons indicate that the Rab7 mutation(s) causes a "loss of function", resulting in haploinsufficiency. In the review, we summarize experimental evidence for both hypotheses. We argue that better models (rodent animals and human neurons) of CMT2B are needed to precisely define the disease mechanisms.
Marubashi, Soujiro; Shimada, Hikaru; Fukuda, Mitsunori; Ohbayashi, Norihiko
2016-01-01
Two cell type-specific Rab proteins, Rab32 and Rab38 (Rab32/38), have been proposed as regulating the trafficking of melanogenic enzymes, including tyrosinase and tyrosinase-related protein 1 (Tyrp1), to melanosomes in melanocytes. Like other GTPases, Rab32/38 function as switch molecules that cycle between a GDP-bound inactive form and a GTP-bound active form; the cycle is thought to be regulated by an activating enzyme, guanine nucleotide exchange factor (GEF), and an inactivating enzyme, GTPase-activating protein (GAP), which stimulates the GTPase activity of Rab32/38. Although BLOC-3 has already been identified as a Rab32/38-specific GEF that regulates the trafficking of tyrosinase and Tyrp1, no physiological GAP for Rab32/38 in melanocytes has ever been identified, and it has remained unclear whether Rab32/38 is involved in the trafficking of dopachrome tautomerase, another melanogenic enzyme, in mouse melanocytes. In this study we investigated RUTBC1, which was originally characterized as a Rab9-binding protein and GAP for Rab32 and Rab33B in vitro, and the results demonstrated that RUTBC1 functions as a physiological GAP for Rab32/38 in the trafficking of all three melanogenic enzymes in mouse melanocytes. The results of this study also demonstrated the involvement of Rab9A in the regulation of the RUTBC1 localization and in the trafficking of all three melanogenic enzymes. We discovered that either excess activation or inactivation of Rab32/38 achieved by manipulating RUTBC1 inhibits the trafficking of all three melanogenic enzymes. These results collectively indicate that proper spatiotemporal regulation of Rab32/38 is essential for the trafficking of all three melanogenic enzymes in mouse melanocytes. PMID:26620560
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bello, Oscar Daniel; Cappa, Andrea Isabel; Paola, Matilde de
Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blotmore » analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. - Highlights: • Rab3A has a similar migration pattern to cortical granules in mouse oocytes. • Rab3A can be a marker of cortical granules. • Active Rab3A triggered cortical granule exocytosis. • Blocking endogenous Rab3A inhibits cortical granule exocytosis. • Rab3A participates in cortical reaction in mouse oocytes.« less
ICAM-1 Binding Rhinoviruses A89 and B14 Uncoat in Different Endosomal Compartments
Conzemius, Rick; Ganjian, Haleh; Blaas, Dieter
2016-01-01
ABSTRACT Human rhinovirus A89 (HRV-A89) and HRV-B14 bind to and are internalized by intercellular adhesion molecule 1 (ICAM-1); as demonstrated earlier, the RNA genome of HRV-B14 penetrates into the cytoplasm from endosomal compartments of the lysosomal pathway. Here, we show by immunofluorescence microscopy that HRV-A89 but not HRV-B14 colocalizes with transferrin in the endocytic recycling compartment (ERC). Applying drugs differentially interfering with endosomal recycling and with the pathway to lysosomes, we demonstrate that these two major-group HRVs productively uncoat in distinct endosomal compartments. Overexpression of constitutively active (Rab11-GTP) and dominant negative (Rab11-GDP) mutants revealed that uncoating of HRV-A89 depends on functional Rab11. Thus, two ICAM-1 binding HRVs are routed into distinct endosomal compartments for productive uncoating. IMPORTANCE Based on similarity of their RNA genomic sequences, the more than 150 currently known common cold virus serotypes were classified as species A, B, and C. The majority of HRV-A viruses and all HRV-B viruses use ICAM-1 for cell attachment and entry. Our results highlight important differences of two ICAM-1 binding HRVs with respect to their intracellular trafficking and productive uncoating; they demonstrate that serotypes belonging to species A and B, but entering the cell via the same receptors, direct the endocytosis machinery to ferry them along distinct pathways toward different endocytic compartments for uncoating. PMID:27334586
Peñalva, Miguel A.; Zhang, Jun; Xiang, Xin; Pantazopoulou, Areti
2017-01-01
Hyphal tip cells of the fungus Aspergillus nidulans are useful for studying long-range intracellular traffic. Post-Golgi secretory vesicles (SVs) containing the RAB11 orthologue RabE engage myosin-5 as well as plus end– and minus end–directed microtubule motors, providing an experimental system with which to investigate the interplay between microtubule and actin motors acting on the same cargo. By exploiting the fact that depolymerization of F-actin unleashes SVs focused at the apex by myosin-5 to microtubule-dependent motors, we establish that the minus end–directed transport of SVs requires the dynein/dynactin supercomplex. This minus end–directed transport is largely unaffected by genetic ablation of the Hook complex adapting early endosomes (EEs) to dynein but absolutely requires p25 in dynactin. Thus dynein recruitment to two different membranous cargoes, namely EEs and SVs, requires p25, highlighting the importance of the dynactin pointed-end complex to scaffold cargoes. Finally, by studying the behavior of SVs and EEs in null and rigor mutants of kinesin-3 and kinesin-1 (UncA and KinA, respectively), we demonstrate that KinA is the major kinesin mediating the anterograde transport of SVs. Therefore SVs arrive at the apex of A. nidulans by anterograde transport involving cooperation of kinesin-1 with myosin-5 and can move away from the apex powered by dynein. PMID:28209731
Denby, Katie J; Rolfe, Matthew D; Crick, Ellen; Sanguinetti, Guido; Poole, Robert K; Green, Jeffrey
2015-07-01
Systematic analyses of transcriptional and metabolic changes occurring when Escherichia coli K-12 switches from fermentative growth to anaerobic respiratory growth with trimethylamine-N-oxide (TMAO) as the terminal electron acceptor revealed: (i) the induction of torCAD, but not genes encoding alternative TMAO reductases; (ii) transient expression of frmRAB, encoding formaldehyde dehydrogenase; and (iii) downregulation of copper resistance genes. Simultaneous inference of 167 transcription factor (TF) activities implied that transcriptional re-programming was mediated by 20 TFs, including the transient inactivation of the two-component system ArcBA; a prediction validated by direct measurement of phosphorylated ArcA. Induction of frmRAB, detection of dimethylamine in culture medium and formaldehyde production when cell-free extracts were incubated with TMAO suggested the presence of TMAO demethylase activity. Accordingly, the viability of an frmRAB mutant was compromised upon exposure to TMAO. Downregulation of genes involved in copper resistance could be accounted for by TMAO inhibition of Cu(II) reduction. The simplest interpretation of the data is that during adaptation to the presence of environmental TMAO, anaerobic fermentative cultures of E. coli respond by activating the TorTSR regulatory system with consequent induction of TMAO reductase activity, resulting in net oxidation of menaquinone and inhibition of Cu(II) reduction, responses that are sensed by ArcBA and CusRS respectively. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Golgi-Resident GTPase Rab30 Promotes the Biogenesis of Pathogen-Containing Autophagosomes
Oda, Seiichiro; Nozawa, Takashi; Nozawa-Minowa, Atsuko; Tanaka, Misako; Aikawa, Chihiro; Harada, Hiroyuki; Nakagawa, Ichiro
2016-01-01
Autophagy acts as a host-defense system against pathogenic microorganisms such as Group A Streptococcus (GAS). Autophagy is a membrane-mediated degradation system that is regulated by intracellular membrane trafficking regulators, including small GTPase Rab proteins. Here, we identified Rab30 as a novel regulator of GAS-containing autophagosome-like vacuoles (GcAVs). We found that Rab30, a Golgi-resident Rab, was recruited to GcAVs in response to autophagy induction by GAS infection in epithelial cells. Rab30 recruitment was dependent upon its GTPase activity. In addition, the knockdown of Rab30 expression significantly reduced GcAV formation efficiency and impaired intracellular GAS degradation. Rab30 normally functions to maintain the structural integrity of the Golgi complex, but GcAV formation occurred even when the Golgi apparatus was disrupted. Although Rab30 also colocalized with a starvation-induced autophagosome, Rab30 was not required for autophagosome formation during starvation. These results suggest that Rab30 mediates autophagy against GAS independently of its normal cellular role in the structural maintenance of the Golgi apparatus, and autophagosome biogenesis during bacterial infection involves specific Rab GTPases. PMID:26771875
Localization and functional analysis of the insect-specific RabX4 in the brain of Bombyx mori.
Uno, Tomohide; Furutani, Masayuki; Sakamoto, Katsuhiko; Uno, Yuichi; Kanamaru, Kengo; Mizoguchi, Akira; Hiragaki, Susumu; Takeda, Makio
2017-09-01
Rab proteins are small monomeric GTPases/GTP-binding proteins, which form the largest branch of the Ras superfamily. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they function as regulators of distinct steps in membrane trafficking. RabX4 is an insect-specific Rab protein that has no close homolog in vertebrates. There is little information about insect-specific Rab proteins. RabX4 was expressed in Escherichia coli and subsequently purified. Antibodies against Bombyx mori RabX4 were produced in rabbits for western immunoblotting and immunohistochemistry. Western blotting of neural tissues revealed a single band, at approximately 26 kD. RabX4-like immunohistochemical reactivity was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum in the brain. Further immunohistochemical analysis revealed that RabX4 colocalized with Rab6 and bombyxin in the corpus allatum, a neuronal organ that secretes neuropeptides synthesized in the brain into the hemolymph. RabX4 expression in the frontal ganglion, part of the insect stomatogastric nervous system that is found in most insect orders, was restricted to two neurons on the outer region and did not colocalize with allatotropin or Rab6. Furthermore, RNA interference of RabX4 decreased bombyxin expression levels in the brain. These findings suggest that RabX4 is involved in the neurosecretion of a secretory organ in Bombyx mori. © 2017 Wiley Periodicals, Inc.
Taniguchi Ishikawa, E.; Chang, K.H.; Nayak, R.; Olsson, H.A; Ficker, A.; Dunn, S.K.; Madhu, M.; Sengupta, A.; Whitsett, J.A.; Grimes, H.L.; Cancelas, J.A.
2013-01-01
Kruppel-like factor 5 (Klf5) regulates pluripotent stem cell self-renewal but its role in somatic stem cells is unknown. Here we show that Klf5 deficient haematopoietic stem cells and progenitors (HSC/P) fail to engraft after transplantation. This HSC/P defect is associated with impaired bone marrow homing and lodging and decreased retention in bone marrow, and with decreased adhesion to fibronectin and expression of membrane-bound β1/β2-integrins. In vivo inducible gain-of-function of Klf5 in HSCs increases HSC/P adhesion. The expression of Rab5 family members, mediators of β1/β2-integrin recycling in the early endosome, is decreased in Klf5Δ/Δ HSC/Ps. Klf5 binds directly to the promoter of Rab5a/b and overexpression of Rab5b rescues the expression of activated β1/β2-integrins, adhesion and bone marrow homing of Klf5Δ/Δ HSC/Ps. Altogether, these data indicate that Klf5 is indispensable for adhesion, homing, lodging and retention of HSC/Ps in the bone marrow through Rab5-dependent post-translational regulation of β1/β2 integrins. PMID:23552075
Rab8 Regulates the Actin-based Movement of MelanosomesV⃞
Chabrillat, Marion L.; Wilhelm, Claire; Wasmeier, Christina; Sviderskaya, Elena V.; Louvard, Daniel; Coudrier, Evelyne
2005-01-01
Rab GTPases have been implicated in the regulation of specific microtubule- and actin-based motor proteins. We devised an in vitro motility assay reconstituting the movement of melanosomes on actin bundles in the presence of ATP to investigate the role of Rab proteins in the actin-dependent movement of melanosomes. Using this assay, we confirmed that Rab27 is required for the actin-dependent movement of melanosomes, and we showed that a second Rab protein, Rab8, also regulates this movement. Rab8 was partially associated with mature melanosomes. Expression of Rab8Q67L perturbed the cellular distribution and increased the frequency of microtubule-independent movement of melanosomes in vivo. Furthermore, anti-Rab8 antibodies decreased the number of melanosomes moving in vitro on actin bundles, whereas melanosomes isolated from cells expressing Rab8Q67L exhibited 70% more movements than wild-type melanosomes. Together, our observations suggest that Rab8 is involved in regulating the actin-dependent movement of melanosomes. PMID:15673612
Outgrowth of Rice Tillers Requires Availability of Glutamine in the Basal Portions of Shoots.
Ohashi, Miwa; Ishiyama, Keiki; Kojima, Soichi; Konishi, Noriyuki; Sasaki, Kazuhiro; Miyao, Mitsue; Hayakawa, Toshihiko; Yamaya, Tomoyuki
2018-05-09
Our previous studies concluded that metabolic disorder in the basal portions of rice shoots caused by a lack of cytosolic glutamine synthetase1;2 (GS1;2) resulted in a severe reduction in the outgrowth of tillers. Rice mutants lacking GS1;2 (gs1;2 mutants) showed a remarkable reduction in the contents of both glutamine and asparagine in the basal portions of shoots. In the current study, we attempted to reveal the mechanisms for this decrease in asparagine content using rice mutants lacking either GS1;2 or asparagine synthetase 1 (AS1). The contributions of the availability of glutamine and asparagine to the outgrowth of rice tillers were investigated. Rice has two AS genes, and the enzymes catalyse asparagine synthesis from glutamine. In the basal portions of rice shoots, expression of OsAS1, the major species in this tissue, was reduced in gs1;2 mutants, whereas OsAS2 expression was relatively constant. OsAS1 was expressed in phloem companion cells of the nodal vascular anastomoses connected to the axillary bud vasculatures in the basal portions of wild-type shoots, whereas cell-specific expression was markedly reduced in gs1;2 mutants. OsAS1 was up-regulated significantly by NH 4 + supply in the wild type but not in gs1;2 mutants. When GS reactions were inhibited by methionine sulfoximine, OsAS1 was up-regulated by glutamine but not by NH 4 + . The rice mutants lacking AS1 (as1 mutants) showed a decrease in asparagine content in the basal portions of shoots. However, glutamine content and tiller number were less affected by the lack of AS1. These results indicate that in phloem companion cells of the nodal vascular anastomoses, asparagine synthesis is largely dependent on glutamine or its related metabolite-responsive AS1. Thus, the decrease in glutamine content caused by a lack of GS1;2 is suggested to result in low expression of OsAS1, decreasing asparagine content. However, the availability of asparagine generated from AS1 reactions is apparently less effective for the outgrowth of tillers. With respect to the tiller number and the contents of glutamine and asparagine in gs1;2 and as1 mutants, the availability of glutamine rather than asparagine in basal portions of rice shoots may be required for the outgrowth of rice tillers.
Identification and characterization of Rab7 from orange-spotted grouper, Epinephelus coioides.
Fu, Jing; Huang, Youhua; Cai, Jia; Wei, Shina; Ouyang, Zhengliang; Ye, Fuzhou; Huang, Xiaohong; Qin, Qiwei
2014-01-01
Rab7 is a small GTPase that regulates vesicular traffic from early to late endosomal stages of the endocytic pathway. During the virus-host co-evolution, host Rab7 was also exploited by virus to complete their life cycle. To date, however, the roles of fish Rab7 in virus infection remained largely unknown. Here, we cloned and characterized a Rab7 gene from grouper, Epinephelus coioides (Ec-Rab7). The full-length Ec-Rab7 cDNA was composed of 1182 bp and encoded a polypeptide of 207 amino acids which shared 99% identity with that from Anoplopoma fimbria or Oreochromis niloticus. Ec-Rab7 contained five conserved domains of Rab GTPase family including GTP-binding or GTPase regions as well as an effector site. RT-PCR analysis revealed that Ec-Rab7 ubiquitously expressed in all detected tissues and its transcript in spleen was up-regulated after challenge with Singapore grouper iridovirus (SGIV). Subcellular localization analysis revealed that Ec-Rab7 was distributed in the cytoplasm as spots and mostly colocalized with lysosomes. Notably, the ectopic expressed Ec-Rab7 partly aggregated into the viral factories in cells infected by SGIV. Furthermore, overexpression of Ec-Rab7 accelerated the occurrence of cytopathic effect (CPE) induced by SGIV infection and promoted viral gene transcription. In addition, far western blotting assay revealed that Ec-Rab7 might interact with viral proteins, including SGIV VP69 and VP101. Taken together, our data suggested that Ec-Rab7 might be potentially involved in SGIV replication. Copyright © 2013 Elsevier Ltd. All rights reserved.
Human factors evaluation of remote afterloading brachytherapy. Volume 2, Function and task analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callan, J.R.; Gwynne, J.W. III; Kelly, T.T.
1995-05-01
A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the first phase of the project, which involved an extensive function and task analysis of RAB. This analysis identified the functions and tasks in RAB, made preliminary estimates of the likelihood of human error in each task, and determined the skills needed to perform each RAB task.more » The findings of the function and task analysis served as the foundation for the remainder of the project, which evaluated four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training and qualifications of RAB staff; and organizational practices and policies. At its completion, the project identified and prioritized areas for recommended NRC and industry attention based on all of the evaluations and analyses.« less
Daou, Pascale; Hasan, Salma; Breitsprecher, Dennis; Baudelet, Emilie; Camoin, Luc; Audebert, Stéphane; Goode, Bruce L; Badache, Ali
2014-03-01
Formins constitute a large family of proteins that regulate the dynamics and organization of both the actin and microtubule cytoskeletons. Previously we showed that the formin mDia1 helps tether microtubules at the cell cortex, acting downstream of the ErbB2 receptor tyrosine kinase. Here we further study the contributions of mDia1 and its two most closely related formins, mDia2 and mDia3, to cortical microtubule capture and ErbB2-dependent breast carcinoma cell migration. We find that depletion of each of these three formins strongly disrupts chemotaxis without significantly affecting actin-based structures. Further, all three formins are required for formation of cortical microtubules in a nonredundant manner, and formin proteins defective in actin polymerization remain active for microtubule capture. Using affinity purification and mass spectrometry analysis, we identify differential binding partners of the formin-homology domain 2 (FH2) of mDia1, mDia2, and mDia3, which may explain their nonredundant roles in microtubule capture. The FH2 domain of mDia1 specifically interacts with Rab6-interacting protein 2 (Rab6IP2). Further, mDia1 is required for cortical localization of Rab6IP2, and concomitant depletion of Rab6IP2 and IQGAP1 severely disrupts cortical capture of microtubules, demonstrating the coinvolvement of mDia1, IQGAP1, and Rab6IP2 in microtubule tethering at the leading edge.
Daou, Pascale; Hasan, Salma; Breitsprecher, Dennis; Baudelet, Emilie; Camoin, Luc; Audebert, Stéphane; Goode, Bruce L.; Badache, Ali
2014-01-01
Formins constitute a large family of proteins that regulate the dynamics and organization of both the actin and microtubule cytoskeletons. Previously we showed that the formin mDia1 helps tether microtubules at the cell cortex, acting downstream of the ErbB2 receptor tyrosine kinase. Here we further study the contributions of mDia1 and its two most closely related formins, mDia2 and mDia3, to cortical microtubule capture and ErbB2-dependent breast carcinoma cell migration. We find that depletion of each of these three formins strongly disrupts chemotaxis without significantly affecting actin-based structures. Further, all three formins are required for formation of cortical microtubules in a nonredundant manner, and formin proteins defective in actin polymerization remain active for microtubule capture. Using affinity purification and mass spectrometry analysis, we identify differential binding partners of the formin-homology domain 2 (FH2) of mDia1, mDia2, and mDia3, which may explain their nonredundant roles in microtubule capture. The FH2 domain of mDia1 specifically interacts with Rab6-interacting protein 2 (Rab6IP2). Further, mDia1 is required for cortical localization of Rab6IP2, and concomitant depletion of Rab6IP2 and IQGAP1 severely disrupts cortical capture of microtubules, demonstrating the coinvolvement of mDia1, IQGAP1, and Rab6IP2 in microtubule tethering at the leading edge. PMID:24403606
Marubashi, Soujiro; Shimada, Hikaru; Fukuda, Mitsunori; Ohbayashi, Norihiko
2016-01-15
Two cell type-specific Rab proteins, Rab32 and Rab38 (Rab32/38), have been proposed as regulating the trafficking of melanogenic enzymes, including tyrosinase and tyrosinase-related protein 1 (Tyrp1), to melanosomes in melanocytes. Like other GTPases, Rab32/38 function as switch molecules that cycle between a GDP-bound inactive form and a GTP-bound active form; the cycle is thought to be regulated by an activating enzyme, guanine nucleotide exchange factor (GEF), and an inactivating enzyme, GTPase-activating protein (GAP), which stimulates the GTPase activity of Rab32/38. Although BLOC-3 has already been identified as a Rab32/38-specific GEF that regulates the trafficking of tyrosinase and Tyrp1, no physiological GAP for Rab32/38 in melanocytes has ever been identified, and it has remained unclear whether Rab32/38 is involved in the trafficking of dopachrome tautomerase, another melanogenic enzyme, in mouse melanocytes. In this study we investigated RUTBC1, which was originally characterized as a Rab9-binding protein and GAP for Rab32 and Rab33B in vitro, and the results demonstrated that RUTBC1 functions as a physiological GAP for Rab32/38 in the trafficking of all three melanogenic enzymes in mouse melanocytes. The results of this study also demonstrated the involvement of Rab9A in the regulation of the RUTBC1 localization and in the trafficking of all three melanogenic enzymes. We discovered that either excess activation or inactivation of Rab32/38 achieved by manipulating RUTBC1 inhibits the trafficking of all three melanogenic enzymes. These results collectively indicate that proper spatiotemporal regulation of Rab32/38 is essential for the trafficking of all three melanogenic enzymes in mouse melanocytes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Chua, Christelle En Lin; Tang, Bor Luen
2014-05-02
Rab31 is a member of the Rab5 subfamily of Rab GTPases. Although localized largely to the trans-Golgi network, it shares common guanine nucleotide exchange factors and effectors with other Rab5 subfamily members that have been implicated in endocytic membrane traffic. We investigated whether Rab31 also has a role in the trafficking of the ligand-bound EGF receptor (EGFR) internalized through receptor-mediated endocytosis. We found that loss of Rab31 inhibits, but overexpression enhances, EGFR trafficking to the late endosomes and that the effect of Rab31 silencing could be specifically rescued by overexpression of a silencing-resistant form of Rab31. Rab31 was found to interact with the EGFR by coimmunoprecipitation and affinity pulldown analyses, and the primarily trans-Golgi network-localized Rab31 has increased colocalization with the EGFR in A431 cells 30 min after pulsing with EGF. A glycerol gradient sedimentation assay suggested that Rab31 is sequestered into a high molecular weight complex after stimulation with EGF, as was early endosome antigen 1 (EEA1), a factor responsible for endosomal tethering and fusion events. We found that loss of EEA1 reduced the interaction between Rab31 and the EGFR and abrogated the effect of Rab31 overexpression on the trafficking of the EGFR. Likewise, loss of GAPex5, a Rab31 guanine nucleotide exchange factor that has a role in ubiquitination and degradation of the EGFR, reduced the interaction of Rab31 with the EGFR and its effect on EGFR trafficking. Taken together, our results suggest that Rab31 is an important regulator of endocytic trafficking of the EGFR and functions in an EGFR trafficking complex that includes EEA1 and GAPex5.
Chua, Christelle En Lin; Tang, Bor Luen
2014-01-01
Rab31 is a member of the Rab5 subfamily of Rab GTPases. Although localized largely to the trans-Golgi network, it shares common guanine nucleotide exchange factors and effectors with other Rab5 subfamily members that have been implicated in endocytic membrane traffic. We investigated whether Rab31 also has a role in the trafficking of the ligand-bound EGF receptor (EGFR) internalized through receptor-mediated endocytosis. We found that loss of Rab31 inhibits, but overexpression enhances, EGFR trafficking to the late endosomes and that the effect of Rab31 silencing could be specifically rescued by overexpression of a silencing-resistant form of Rab31. Rab31 was found to interact with the EGFR by coimmunoprecipitation and affinity pulldown analyses, and the primarily trans-Golgi network-localized Rab31 has increased colocalization with the EGFR in A431 cells 30 min after pulsing with EGF. A glycerol gradient sedimentation assay suggested that Rab31 is sequestered into a high molecular weight complex after stimulation with EGF, as was early endosome antigen 1 (EEA1), a factor responsible for endosomal tethering and fusion events. We found that loss of EEA1 reduced the interaction between Rab31 and the EGFR and abrogated the effect of Rab31 overexpression on the trafficking of the EGFR. Likewise, loss of GAPex5, a Rab31 guanine nucleotide exchange factor that has a role in ubiquitination and degradation of the EGFR, reduced the interaction of Rab31 with the EGFR and its effect on EGFR trafficking. Taken together, our results suggest that Rab31 is an important regulator of endocytic trafficking of the EGFR and functions in an EGFR trafficking complex that includes EEA1 and GAPex5. PMID:24644286
Elmogy, Mohamed; Mohamed, Amr A; Tufail, Muhammad; Uno, Tomohide; Takeda, Makio
2017-05-26
The small Rab GTPases are key regulators of membrane vesicle trafficking. Ovaries of Periplaneta americana (Linnaeus) (Blattodea: Blattidae) have small molecular weight GTP/ATP-binding proteins during early and late vitellogenic periods of oogenesis. However, the identification and characterization of the detected proteins have not been yet reported. Herein, we cloned a cDNA encoding Rab5 from the American cockroach, P. americana, ovaries (PamRab5). It comprises 796 bp, encoding a protein of 213 amino acid residues with a predicted molecular weight of 23.5 kDa. PamRab5 exists as a single-copy gene in the P. americana genome, as revealed by Southern blot analysis. An approximate 2.6 kb ovarian mRNA was transcribed especially at high levels in the previtellogenic ovaries, detected by Northern blot analysis. The muscle and head tissues also showed high levels of PamRab5 transcript. PamRab5 protein was localized, via immunofluorescence labeling, to germline-derived cells of the oocytes, very early during oocyte differentiation. Immunoblotting detected a ∼25 kDa signal as a membrane-associated form revealed after application of detergent in the extraction buffer, and 23 kDa as a cytosolic form consistent with the predicted molecular weight from amino acid sequence in different tissues including ovary, muscles and head. The PamRab5 during late vitellogenic periods is required to regulate the endocytotic machinery during oogenesis in this cockroach. This is the first report on Rab5 from a hemimetabolan, and presents an inaugural step in probing the molecular premises of insect oocyte endocytotic trafficking important for oogenesis and embryonic development. © 2017 Institute of Zoology, Chinese Academy of Sciences.
PKC and Rab13 mediate Ca2+ signal-regulated GLUT4 traffic.
Deng, Bangli; Zhu, Xiaocui; Zhao, Yihe; Zhang, Da; Pannu, Alisha; Chen, Liming; Niu, Wenyan
2018-01-08
Exercise/muscle contraction increases cell surface glucose transporter 4 (GLUT4), leading to glucose uptake to regulate blood glucose level. Elevating cytosolic Ca 2+ mediates this effect, but the detailed mechanism is not clear yet. We used calcium ionophore ionomycin to raise intracellular cytosolic Ca 2+ level to explore the underlying mechanism. We showed that in L6 myoblast muscle cells stably expressing GLUT4myc, ionomycin increased cell surface GLUT4myc levels and the phosphorylation of AS160, TBC1D1. siPKCα and siPKCθ but not siPKCδ and siPKCε inhibited the ionomycin-increased cell surface GLUT4myc level. siPKCα, siPKCθ inhibited the phosphorylation of AS160 and TBC1D1 induced by ionomycin. siPKCα and siPKCθ prevented ionomycin-inhibited endocytosis of GLUT4myc. siPKCθ, but not siPKCα inhibited ionomycin-stimulated exocytosis of GLUT4myc. siRab13 but not siRab8a, siRab10 and siRab14 inhibited the exocytosis of GLUT4myc promoted by ionomycin. In summary, ionomycin-promoted exocytosis of GLUT4 is partly reversed by siPKCθ, whereas ionomycin-inhibited endocytosis of GLUT4 requires both siPKCα and siPKCθ. PKCα and PKCθ contribute to ionomycin-induced phosphorylation of AS160 and TBC1D1. Rab13 is required for ionomycin-regulated GLUT4 exocytosis. Copyright © 2017 Elsevier Inc. All rights reserved.
The role of the small GTPase Rab31 in cancer
Chua, Christelle En Lin; Tang, Bor Luen
2015-01-01
Members of the small GTPase family Rab are emerging as potentially important factors in cancer development and progression. A good number of Rabs have been implicated or associated with various human cancers, and much recent excitement has been associated with the roles of the Rab11 subfamily member Rab25 and its effector, the Rab coupling protein (RCP), in tumourigenesis and metastasis. In this review, we focus on a Rab5 subfamily member, Rab31, and its implicated role in cancer. Well recognized as a breast cancer marker with good prognostic value, recent findings have provided some insights as to the mechanism underlying Rab31's influence on oncogenesis. Levels of Oestrogen Receptor α (ERα)- responsive Rab31 could be elevated through stabilization of its transcript by the RNA binding protein HuR, or though activation by the oncoprotein mucin1-C (MUC1-C), which forms a transcriptional complex with ERα. Elevated Rab31 stabilizes MUC1-C levels in an auto-inductive loop that could lead to aberrant signalling and gene expression associated with cancer progression. Rab31 and its guanine nucleotide exchange factor GAPex-5 have, however, also been shown to enhance early endosome-late endosome transport and degradation of the epidermal growth factor receptor (EGFR). The multifaceted action and influences of Rab31 in cancer is discussed in the light of its new interacting partners and pathways. PMID:25472813
32 CFR 202.9 - Conducting RAB meetings.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Conducting RAB meetings. 202.9 Section 202.9 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED... Administrative Record. (2) The records, reports, minutes, appendixes, working papers, drafts, studies, agenda, or...
32 CFR 202.9 - Conducting RAB meetings.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Conducting RAB meetings. 202.9 Section 202.9 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED... Administrative Record. (2) The records, reports, minutes, appendixes, working papers, drafts, studies, agenda, or...
Lambert, Ambroise; Picardeau, Mathieu; Haake, David A; Sermswan, Rasana W; Srikram, Amporn; Adler, Ben; Murray, Gerald A
2012-06-01
Spirochetes have periplasmic flagella composed of a core surrounded by a sheath. The pathogen Leptospira interrogans has four flaB (proposed core subunit) and two flaA (proposed sheath subunit) genes. The flaA genes are organized in a locus with flaA2 immediately upstream of flaA1. In this study, flaA1 and flaA2 mutants were constructed by transposon mutagenesis. Both mutants still produced periplasmic flagella. The flaA1 mutant did not produce FlaA1 but continued to produce FlaA2 and retained normal morphology and virulence in a hamster model of infection but had reduced motility. The flaA2 mutant did not produce either the FlaA1 or the FlaA2 protein. Cells of the flaA2 mutant lacked the distinctive hook-shaped ends associated with L. interrogans and lacked translational motility in liquid and semisolid media. These observations were confirmed with a second, independent flaA2 mutant. The flaA2 mutant failed to cause disease in animal models of acute infection. Despite lacking FlaA proteins, the flagella of the flaA2 mutant were of the same thickness as wild-type flagella, as measured by electron microscopy, and exhibited a normal flagellum sheath, indicating that FlaA proteins are not essential for the synthesis of the flagellum sheath, as observed for other spirochetes. This study shows that FlaA subunits contribute to leptospiral translational motility, cellular shape, and virulence.
Mitra, Shreya; Federico, Lorenzo; Zhao, Wei; Dennison, Jennifer; Sarkar, Tapasree Roy; Zhang, Fan; Takiar, Vinita; Cheng, Kwai W.; Mani, Sendurai; Lee, Ju Seog; Mills, Gordon B.
2016-01-01
The Rab GTPases regulate vesicular trafficking machinery that transports and delivers a diverse pool of cargo, including growth factor receptors, integrins, nutrient receptors and junction proteins to specific intracellular sites. The trafficking machinery is indeed a major posttranslational modifier and is critical for cellular homeostasis. Deregulation of this stringently controlled system leads to a wide spectrum of disorders including cancer. Herein we demonstrate that Rab25, a key GTPase, mostly decorating the apical recycling endosome, is a dichotomous variable in breast cancer cell lines with higher mRNA and protein expression in Estrogen Receptor positive (ER+ve) lines. Rab25 and its effector, Rab Coupling Protein (RCP) are frequently coamplified and coordinately elevated in ER+ve breast cancers. In contrast, Rab25 levels are decreased in basal-like and almost completely lost in claudin-low tumors. This dichotomy exists despite the presence of the 1q amplicon that hosts Rab25 across breast cancer subtypes and is likely due to differential methylation of the Rab25 promoter. Functionally, elevated levels of Rab25 drive major hallmarks of cancer including indefinite growth and metastasis but in case of luminal B breast cancer only. Importantly, in such ER+ve tumors, coexpression of Rab25 and its effector, RCP is significantly associated with a markedly worsened clinical outcome. Importantly, in claudin-low cell lines, exogenous Rab25 markedly inhibits cell migration. Similarly, during Snail-induced epithelial to mesenchymal transition (EMT) exogenous Rab25 potently reverses Snail-driven invasion. Overall, this study substantiates a striking context dependent role of Rab25 in breast cancer where Rab25 is amplified and enhances aggressiveness in luminal B cancers while in claudin-low tumors, Rab25 is lost indicating possible anti-tumor functions. PMID:27259233
Oesterlin, Lena K; Goody, Roger S; Itzen, Aymelt
2012-04-10
Intracellular vesicular trafficking is regulated by approximately 60 members of the Rab subfamily of small Ras-like GDP/GTP binding proteins. Rab proteins cycle between inactive and active states as well as between cytosolic and membrane bound forms. Membrane extraction/delivery and cytosolic distribution of Rabs is mediated by interaction with the protein GDP dissociation inhibitor (GDI) that binds to prenylated inactive (GDP-bound) Rab proteins. Because the Rab:GDP:GDI complex is of high affinity, the question arises of how GDI can be displaced efficiently from Rab protein in order to allow the necessary recruitment of the Rab to its specific target membrane. While there is strong evidence that DrrA, as a bacterially encoded GDP/GTP exchange factor, contributes to this event, we show here that posttranslational modifications of Rabs can also modulate the affinity for GDI and thus cause effective displacement of GDI from Rab:GDI complexes. These activities have been found associated with the phosphocholination and adenylylation activities of the enzymes AnkX and DrrA/SidM, respectively, from the pathogenic bacterium Legionella pneumophila. Both modifications occur after spontaneous dissociation of Rab:GDI complexes within their natural equilibrium. Therefore, the effective GDI displacement that is observed is caused by inhibition of reformation of Rab:GDI complexes. Interestingly, in contrast to adenylylation by DrrA, AnkX can covalently modify inactive Rabs with high catalytic efficiency even when GDP is bound to the GTPase and hence can inhibit binding of GDI to Rab:GDP complexes. We therefore speculate that human cells could employ similar mechanisms in the absence of infection to effectively displace Rabs from GDI.
Mitra, Shreya; Federico, Lorenzo; Zhao, Wei; Dennison, Jennifer; Sarkar, Tapasree Roy; Zhang, Fan; Takiar, Vinita; Cheng, Kwai W; Mani, Sendurai; Lee, Ju Seog; Mills, Gordon B
2016-06-28
The Rab GTPases regulate vesicular trafficking machinery that transports and delivers a diverse pool of cargo, including growth factor receptors, integrins, nutrient receptors and junction proteins to specific intracellular sites. The trafficking machinery is indeed a major posttranslational modifier and is critical for cellular homeostasis. Deregulation of this stringently controlled system leads to a wide spectrum of disorders including cancer. Herein we demonstrate that Rab25, a key GTPase, mostly decorating the apical recycling endosome, is a dichotomous variable in breast cancer cell lines with higher mRNA and protein expression in Estrogen Receptor positive (ER+ve) lines. Rab25 and its effector, Rab Coupling Protein (RCP) are frequently coamplified and coordinately elevated in ER+ve breast cancers. In contrast, Rab25 levels are decreased in basal-like and almost completely lost in claudin-low tumors. This dichotomy exists despite the presence of the 1q amplicon that hosts Rab25 across breast cancer subtypes and is likely due to differential methylation of the Rab25 promoter. Functionally, elevated levels of Rab25 drive major hallmarks of cancer including indefinite growth and metastasis but in case of luminal B breast cancer only. Importantly, in such ER+ve tumors, coexpression of Rab25 and its effector, RCP is significantly associated with a markedly worsened clinical outcome. Importantly, in claudin-low cell lines, exogenous Rab25 markedly inhibits cell migration. Similarly, during Snail-induced epithelial to mesenchymal transition (EMT) exogenous Rab25 potently reverses Snail-driven invasion. Overall, this study substantiates a striking context dependent role of Rab25 in breast cancer where Rab25 is amplified and enhances aggressiveness in luminal B cancers while in claudin-low tumors, Rab25 is lost indicating possible anti-tumor functions.
Regulation of podocalyxin trafficking by Rab small GTPases in 2D and 3D epithelial cell cultures
Mrozowska, Paulina S.
2016-01-01
MDCK II cells, a widely used model of polarized epithelia, develop into different structures depending on culture conditions: two-dimensional (2D) monolayers when grown on synthetic supports or three-dimensional (3D) cysts when surrounded by an extracellular matrix. The establishment of epithelial polarity is accompanied by transcytosis of the apical marker podocalyxin from the outer plasma membrane to the newly formed apical domain, but its exact route and regulation remain poorly understood. Here, through comprehensive colocalization and knockdown screenings, we identified the Rab GTPases mediating podocalyxin transcytosis and showed that different sets of Rabs coordinate its transport during cell polarization in 2D and 3D structures. Moreover, we demonstrated that different Rab35 effectors regulate podocalyxin trafficking in 2D and 3D environments; trafficking is mediated by OCRL in 2D monolayers and ACAP2 in 3D cysts. Our results give substantial insight into regulation of the transcytosis of this apical marker and highlight differences between trafficking mechanisms in 2D and 3D cell cultures. PMID:27138252
Park, Se Won; Schonhoff, Christopher M.; Webster, Cynthia R. L.
2012-01-01
Cyclic AMP stimulates translocation of Na+/taurocholate cotransporting polypeptide (NTCP) from the cytosol to the sinusoidal membrane and multidrug resistance-associated protein 2 (MRP2) to the canalicular membrane. A recent study suggested that protein kinase Cδ (PKCδ) may mediate cAMP-induced translocation of Ntcp and Mrp2. In addition, cAMP has been shown to stimulate NTCP translocation in part via Rab4. The aim of this study was to determine whether cAMP-induced translocation of NTCP and MRP2 require kinase activity of PKCδ and to test the hypothesis that cAMP-induced activation of Rab4 is mediated via PKCδ. Studies were conducted in HuH-NTCP cells (HuH-7 cells stably transfected with NTCP). Transfection of cells with wild-type PKCδ increased plasma membrane PKCδ and NTCP and increased Rab4 activity. Paradoxically, overexpression of kinase-dead dominant-negative PKCδ also increased plasma membrane PKCδ and NTCP as well as Rab4 activity. Similar results were obtained in PKCδ knockdown experiments, despite a decrease in total PKCδ. These results raised the possibility that plasma membrane localization rather than kinase activity of PKCδ is necessary for NTCP translocation and Rab4 activity. This hypothesis was supported by results showing that rottlerin, which has previously been shown to inhibit cAMP-induced membrane translocation of PKCδ and NTCP, inhibited cAMP-induced Rab4 activity. In addition, LY294002 (a phosphoinositide-3-kinase inhibitor), which has been shown to inhibit cAMP-induced NTCP translocation, also inhibited cAMP-induced PKCδ translocation. In contrast to the results with NTCP, cAMP-induced MRP2 translocation was inhibited in cells transfected with DN-PKCδ and small interfering RNA PKCδ. Taken together, these results suggest that the plasma membrane localization rather than kinase activity of PKCδ plays an important role in cAMP-induced NTCP translocation and Rab4 activity, whereas the kinase activity of PKCδ is necessary for cAMP-induced MRP2 translocation. PMID:22744337
Park, Se Won; Schonhoff, Christopher M; Webster, Cynthia R L; Anwer, M Sawkat
2012-09-01
Cyclic AMP stimulates translocation of Na(+)/taurocholate cotransporting polypeptide (NTCP) from the cytosol to the sinusoidal membrane and multidrug resistance-associated protein 2 (MRP2) to the canalicular membrane. A recent study suggested that protein kinase Cδ (PKCδ) may mediate cAMP-induced translocation of Ntcp and Mrp2. In addition, cAMP has been shown to stimulate NTCP translocation in part via Rab4. The aim of this study was to determine whether cAMP-induced translocation of NTCP and MRP2 require kinase activity of PKCδ and to test the hypothesis that cAMP-induced activation of Rab4 is mediated via PKCδ. Studies were conducted in HuH-NTCP cells (HuH-7 cells stably transfected with NTCP). Transfection of cells with wild-type PKCδ increased plasma membrane PKCδ and NTCP and increased Rab4 activity. Paradoxically, overexpression of kinase-dead dominant-negative PKCδ also increased plasma membrane PKCδ and NTCP as well as Rab4 activity. Similar results were obtained in PKCδ knockdown experiments, despite a decrease in total PKCδ. These results raised the possibility that plasma membrane localization rather than kinase activity of PKCδ is necessary for NTCP translocation and Rab4 activity. This hypothesis was supported by results showing that rottlerin, which has previously been shown to inhibit cAMP-induced membrane translocation of PKCδ and NTCP, inhibited cAMP-induced Rab4 activity. In addition, LY294002 (a phosphoinositide-3-kinase inhibitor), which has been shown to inhibit cAMP-induced NTCP translocation, also inhibited cAMP-induced PKCδ translocation. In contrast to the results with NTCP, cAMP-induced MRP2 translocation was inhibited in cells transfected with DN-PKCδ and small interfering RNA PKCδ. Taken together, these results suggest that the plasma membrane localization rather than kinase activity of PKCδ plays an important role in cAMP-induced NTCP translocation and Rab4 activity, whereas the kinase activity of PKCδ is necessary for cAMP-induced MRP2 translocation.
Determination of Rab5 activity in the cell by effector pull-down assay.
Qi, Yaoyao; Liang, Zhimin; Wang, Zonghua; Lu, Guodong; Li, Guangpu
2015-01-01
Rab5 targets to early endosomes and is a master regulator of early endosome fusion and endocytosis in all eukaryotic cells. Like other GTPases, Rab5 functions as a molecular switch by alternating between GTP-bound and GDP-bound forms, with the former being biologically active via interactions with multiple effector proteins. Thus the Rab5-GTP level in the cell reflects Rab5 activity in promoting endosome fusion and endocytosis and is indicative of cellular endocytic activity. In this chapter, we describe a Rab5 activity assay by using GST fusion proteins with the Rab5 effectors such as Rabaptin-5, Rabenosyn-5, and EEA1 that specifically bind to GTP-bound Rab5. We compare the efficiencies of the three GST fusion proteins in the pull-down of mammalian and fungal Rab5 proteins.
Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Patricio; Soto, Nicolás; Díaz, Jorge
2015-08-21
The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5more » is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo.« less
Madison, Stephanie L.; Buchanan, Matthew L.; Glass, Jeremiah D.; McClain, Tarah F.; Park, Eunsook; Nebenführ, Andreas
2015-01-01
Pollen tube growth is an essential aspect of plant reproduction because it is the mechanism through which nonmotile sperm cells are delivered to ovules, thus allowing fertilization to occur. A pollen tube is a single cell that only grows at the tip, and this tip growth has been shown to depend on actin filaments. It is generally assumed that myosin-driven movements along these actin filaments are required to sustain the high growth rates of pollen tubes. We tested this conjecture by examining seed set, pollen fitness, and pollen tube growth for knockout mutants of five of the six myosin XI genes expressed in pollen of Arabidopsis (Arabidopsis thaliana). Single mutants had little or no reduction in overall fertility, whereas double mutants of highly similar pollen myosins had greater defects in pollen tube growth. In particular, myo11c1 myo11c2 pollen tubes grew more slowly than wild-type pollen tubes, which resulted in reduced fitness compared with the wild type and a drastic reduction in seed set. Golgi stack and peroxisome movements were also significantly reduced, and actin filaments were less organized in myo11c1 myo11c2 pollen tubes. Interestingly, the movement of yellow fluorescent protein-RabA4d-labeled vesicles and their accumulation at pollen tube tips were not affected in the myo11c1 myo11c2 double mutant, demonstrating functional specialization among myosin isoforms. We conclude that class XI myosins are required for organelle motility, actin organization, and optimal growth of pollen tubes. PMID:26358416
Vonderheit, Andreas
2005-01-01
Semliki forest virus (SFV) is internalized by clathrin-mediated endocytosis, and transported via early endosomes to late endosomes and lysosomes. The intracellular pathway taken by individual fluorescently labeled SFV particles was followed using immunofluorescence in untransfected cells, and by video-enhanced, triple-color fluorescence microscopy in live cells transfected with GFP- and RFP-tagged Rab5, Rab7, Rab4, and Arf1. The viruses progressed from Rab5-positive early endosomes to a population of early endosomes (about 10% of total) that contained both Rab5 and Rab7. SFV were sequestered in the Rab7 domains, and they were sorted away from the early endosomes when these domains detached as separate transport carriers devoid of Rab5, Rab4, EEA1, Arf1, and transferrin. The process was independent of Arf1 and the acidic pH in early endosomes. Nocodazole treatment showed that the release of transport carriers was assisted by microtubules. Expression of constitutively inactive Rab7T22N resulted in accumulation of SFV in early endosomes. We concluded that Rab7 is recruited to early endosomes, where it forms distinct domains that mediate cargo sorting as well as the formation of late-endosome-targeted transport vesicles. PMID:15954801
Rab1a regulates sorting of early endocytic vesicles
Mukhopadhyay, Aparna; Quiroz, Jose A.
2014-01-01
We previously reported that Rab1a is associated with asialoorosomucoid (ASOR)-containing early endocytic vesicles, where it is required for their microtubule-based motility. In Rab1a knockdown (KD) cell lines, ASOR failed to segregate from its receptor and, consequently, did not reach lysosomes for degradation, indicating a defect in early endosome sorting. Although Rab1 is required for Golgi/endoplasmic reticulum trafficking, this process was unaffected, likely due to retained expression of Rab1b in these cells. The present study shows that Rab1a has a more general role in endocytic vesicle processing that extends to EGF and transferrin (Tfn) trafficking. Compared with results in control Huh7 cells, EGF accumulated in aggregates within Rab1a KD cells, failing to reach lysosomal compartments. Tfn, a prototypical example of recycling cargo, accumulated in a Rab11-mediated slow-recycling compartment in Rab1a KD cells, in contrast to control cells, which sort Tfn into a fast-recycling Rab4 compartment. These data indicate that Rab1a is an important regulator of early endosome sorting for multiple cargo species. The effectors and accessory proteins recruited by Rab1a to early endocytic vesicles include the minus-end-directed kinesin motor KifC1, while others remain to be discovered. PMID:24407591
Rapid adhesive bonding of advanced composites and titanium
NASA Technical Reports Server (NTRS)
Stein, B. A.; Tyeryart, J. R.; Hodgest, W. T.
1985-01-01
Rapid adhesive bonding (RAB) concepts utilize a toroid induction technique to heat the adhesive bond line directly. This technique was used to bond titanium overlap shear specimens with 3 advanced thermoplastic adhesives and APC-2 (graphite/PEEK) composites with PEEK film. Bond strengths equivalent to standard heated-platen press bonds were produced with large reductions in process time. RAB produced very strong bonds in APC-2 adherend specimens; the APC-2 adherends were highly resistant to delamination. Thermal cycling did not significantly affect the shear strengths of RAB titanium bonds with polyimide adhesives. A simple ultrasonic non-destructive evaluation process was found promising for evaluating bond quality.
Berson, Tobias; von Wangenheim, Daniel; Takáč, Tomáš; Šamajová, Olga; Rosero, Amparo; Ovečka, Miroslav; Komis, George; Stelzer, Ernst H K; Šamaj, Jozef
2014-09-27
Small Rab GTPases are important regulators of vesicular trafficking in plants. AtRabA1d, a member of the RabA1 subfamily of small GTPases, was previously found in the vesicle-rich apical dome of growing root hairs suggesting a role during tip growth; however, its specific intracellular localization and role in plants has not been well described. The transient expression of 35S::GFP:RabA1d construct in Allium porrum and Nicotiana benthamiana revealed vesicular structures, which were further corroborated in stable transformed Arabidopsis thaliana plants. GFP-RabA1d colocalized with the trans-Golgi network marker mCherry-VTI12 and with early FM4-64-labeled endosomal compartments. Late endosomes and endoplasmic reticulum labeled with FYVE-DsRed and ER-DsRed, respectively, were devoid of GFP-RabA1d. The accumulation of GFP-RabA1d in the core of brefeldin A (BFA)-induced-compartments and the quantitative upregulation of RabA1d protein levels after BFA treatment confirmed the association of RabA1d with early endosomes/TGN and its role in vesicle trafficking. Light-sheet microscopy revealed involvement of RabA1d in root development. In root cells, GFP-RabA1d followed cell plate expansion consistently with cytokinesis-related vesicular trafficking and membrane recycling. GFP-RabA1d accumulated in disc-like structures of nascent cell plates, which progressively evolved to marginal ring-like structures of the growing cell plates. During root hair growth and development, GFP-RabA1d was enriched at root hair bulges and at the apical dome of vigorously elongating root hairs. Importantly, GFP-RabA1d signal intensity exhibited an oscillatory behavior in-phase with tip growth. Progressively, this tip localization dissapeared in mature root hairs suggesting a link between tip localization of RabA1d and root hair elongation. Our results support a RabA1d role in events that require vigorous membrane trafficking. RabA1d is located in early endosomes/TGN and is involved in vesicle trafficking. RabA1d participates in both cell plate formation and root hair oscillatory tip growth. The specific GFP-RabA1d subcellular localization confirms a correlation between its specific spatio-temporal accumulation and local vesicle trafficking requirements during cell plate and root hair formation.
Meganathan, R; Bentley, R; Taber, H
1981-01-01
Menaquinone (vitamin K2)-deficient mutants of Bacillus subtilis, whose growth requirement is satisfied by 1,4-dihydroxy-2-naphthoic acid but not by o-succinylbenzoic acid (OSB), have been analyzed for enzymatic defects. Complementation analysis of cell-free extracts of the mutants revealed that there are two groups, as already indicated by genetic analysis. The missing enzyme in each group was identified by complementation of the cell-free extracts with o-succinylbenzoyl-coenzyme A (CoA) synthetase and dihydroxynaphthoate synthase extracted from Mycobacterium phlei. Mutants found to lack dihydroxynaphthoate synthase, and which therefore complement with dihydroxynaphthoate synthase of M. phlei, were designated as menB; those lacking o-succinylbenzoyl-CoA synthetase, and therefore complementing with o-succinylbenzoyl-CoA synthetase, were designated as menE. The menB mutants RB413 (men-325) and RB415 (men-329), when incubated with [2,3-14C2]OSB, produced only the spirodilactone form of OSB in a reaction that was CoA and adenosine 5'-triphosphate dependent. PMID:6780515
Malinova, Irina
2017-01-01
An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5–7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology. PMID:29155859
Malinova, Irina; Fettke, Joerg
2017-01-01
An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5-7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology.
Masilamani, Madhan; Narayanan, Sriram; Prieto, Martha; Borrego, Francisco; Coligan, John E
2008-06-01
The CD94/NKG2A inhibitory receptor, expressed by natural killer and T cells, is constantly exposed to its HLA-E ligand expressed by surrounding cells. Ligand exposure often induces receptor downregulation. For CD94/NKG2A, this could potentiate activation receptor(s) induced responses to normal bystander cells. We investigated CD94/NKG2A endocytosis and found that it occurs by an amiloride-sensitive, Rac1-dependent macropinocytic-like process; however, it does not require clathrin, dynamin, ADP ribosylation factor-6, phosphoinositide-3 kinase or the actin cytoskeleton. Once endocytosed, CD94/NKG2A traffics to early endosomal antigen 1(+), Rab5(+) early endosomes. It does appear in Rab4(+) early/sorting endosome, but, in the time period examined, fails to reach Rab11(+) recycling or Rab7(+) late endosomes or lysosome-associated membrane protein-1(+) lysosomes. These results indicate that CD94/NKG2A utilizes a previously undescribed endocytic mechanism coupled with an abbreviated trafficking pattern, perhaps to insure surface expression.
Sadacca, L. Amanda; Bruno, Joanne; Wen, Jennifer; Xiong, Wenyong; McGraw, Timothy E.
2013-01-01
Adipocyte glucose uptake in response to insulin is essential for physiological glucose homeostasis: stimulation of adipocytes with insulin results in insertion of the glucose transporter GLUT4 into the plasma membrane and subsequent glucose uptake. Here we establish that RAB10 and RAB14 are key regulators of GLUT4 trafficking that function at independent, sequential steps of GLUT4 translocation. RAB14 functions upstream of RAB10 in the sorting of GLUT4 to the specialized transport vesicles that ferry GLUT4 to the plasma membrane. RAB10 and its GTPase-activating protein (GAP) AS160 comprise the principal signaling module downstream of insulin receptor activation that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Although both RAB10 and RAB14 are regulated by the GAP activity of AS160 in vitro, only RAB10 is under the control of AS160 in vivo. Insulin regulation of the pool of RAB10 required for GLUT4 translocation occurs through regulation of AS160, since activation of RAB10 by DENND4C, its GTP exchange factor, does not require insulin stimulation. PMID:23804653
Caza, Tiffany N; Fernandez, David R; Talaber, Gergely; Oaks, Zachary; Haas, Mark; Madaio, Michael P; Lai, Zhi-wei; Miklossy, Gabriella; Singh, Ram R; Chudakov, Dmitriy M; Malorni, Walter; Middleton, Frank; Banki, Katalin; Perl, Andras
2014-01-01
Objective Accumulation of mitochondria underlies T-cell dysfunction in systemic lupus erythematosus (SLE). Mitochondrial turnover involves endosomal traffic regulated by HRES-1/Rab4, a small GTPase that is overexpressed in lupus T cells. Therefore, we investigated whether (1) HRES-1/Rab4 impacts mitochondrial homeostasis and (2) Rab geranylgeranyl transferase inhibitor 3-PEHPC blocks mitochondrial accumulation in T cells, autoimmunity and disease development in lupus-prone mice. Methods Mitochondria were evaluated in peripheral blood lymphocytes (PBL) of 38 SLE patients and 21 healthy controls and mouse models by flow cytometry, microscopy and western blot. MRL/lpr mice were treated with 125 μg/kg 3-PEHPC or 1 mg/kg rapamycin for 10 weeks, from 4 weeks of age. Disease was monitored by antinuclear antibody (ANA) production, proteinuria, and renal histology. Results Overexpression of HRES-1/Rab4 increased the mitochondrial mass of PBL (1.4-fold; p=0.019) and Jurkat cells (2-fold; p=0.000016) and depleted the mitophagy initiator protein Drp1 both in human (−49%; p=0.01) and mouse lymphocytes (−41%; p=0.03). Drp1 protein levels were profoundly diminished in PBL of SLE patients (−86±3%; p=0.012). T cells of 4-week-old MRL/lpr mice exhibited 4.7-fold over-expression of Rab4A (p=0.0002), the murine homologue of HRES-1/Rab4, and depletion of Drp1 that preceded the accumulation of mitochondria, ANA production and nephritis. 3-PEHPC increased Drp1 (p=0.03) and reduced mitochondrial mass in T cells (p=0.02) and diminished ANA production (p=0.021), proteinuria (p=0.00004), and nephritis scores of lupus-prone mice (p<0.001). Conclusions These data reveal a pathogenic role for HRES-1/Rab4-mediated Drp1 depletion and identify endocytic control of mitophagy as a treatment target in SLE. PMID:23897774
Ejlerskov, Patrick; Christensen, Dan Ploug; Beyaie, David; Burritt, James B.; Paclet, Marie-Helene; Gorlach, Agnes; van Deurs, Bo; Vilhardt, Frederik
2012-01-01
Here, we report that activation of different types of tissue macrophages, including microglia, by lipopolysaccharide (LPS) or GM-CSF stimulation correlates with the quantitative redistribution of NADPH oxidase (cyt b558) from the plasma membrane to an intracellular stimulus-responsive storage compartment. Cryo-immunogold labeling of gp91phox and CeCl3 cytochemistry showed the presence of gp91phox and oxidant production in numerous small (<100 nm) vesicles. Cell homogenization and sucrose gradient centrifugation in combination with transferrin-HRP/DAB ablation showed that more than half of cyt b558 is present in fractions devoid of endosomal markers, which is supported by morphological evidence to show that the cyt b558-containing compartment is distinct from endosomes or biosynthetic organelles. Streptolysin-O-mediated guanosine 5′-3-O-(thio)triphosphate loading of Ra2 microglia caused exocytosis of a major complement of cyt b558 under conditions where lysosomes or endosomes were not mobilized. We establish phagocytic particles and soluble mediators ATP, TNFα, and CD40L as physiological inducers of cyt b558 exocytosis to the cell surface, and by shRNA knockdown, we identify Rab27A/B as positive or negative regulators of vesicular mobilization to the phagosome or the cell surface, respectively. Exocytosis was followed by clathrin-dependent internalization of cyt b558, which could be blocked by a dominant negative mutant of the clathrin-coated pit-associated protein Eps15. Re-internalized cyt b558 did not reach lysosomes but associated with recycling endosomes and undefined vesicular elements. In conclusion, cyt b558 depends on clathrin for internalization, and in activated macrophages NADPH oxidase occupies a Rab27A/B-regulated secretory compartment, which allows rapid agonist-induced redistribution of superoxide production in the cell. PMID:22157766
Shatz, Whitney; Hass, Philip E; Mathieu, Mary; Kim, Hok Seon; Leach, Kim; Zhou, Michelle; Crawford, Yongping; Shen, Amy; Wang, Kathryn; Chang, Debby P; Maia, Mauricio; Crowell, Susan R; Dickmann, Leslie; Scheer, Justin M; Kelley, Robert F
2016-09-06
We have developed a tool Fab fragment of a rabbit monoclonal antibody that is useful for early evaluation in rabbit models of technologies for long acting delivery (LAD) of proteins to the eye. Using this Fab we show that vitreal clearance can be slowed through increased hydrodynamic size. Fab (G10rabFab) and Fab' (G10rabFab') fragments of a rabbit monoclonal antibody (G10rabIgG) were expressed in Chinese hamster ovary (CHO) cells and purified using antigen-based affinity chromatography. G10rabFab retains antigen-binding upon thermal stress (37 °C) for 8 weeks in phosphate-buffered saline (PBS) and can be detected in rabbit tissues using an antigen-based ELISA. Hydrodynamic radius, measured using quasi-elastic light scattering (QELS), was increased through site-specific modification of the G10rabFab' free cysteine with linear methoxy-polyethylene glycol(PEG)-maleimide of 20000 or 40000 molecular weight. Pharmacokinetic studies upon intravitreal dosing in New Zealand white rabbits were conducted on the G10rabFab and PEGylated G10rabFab'. Results of single and multidose pharmacokinetic experiments yield reproducible results and a vitreal half-life for G10rabFab of 3.2 days. Clearance from the eye is slowed through increased hydrodynamic size, with vitreal half-life showing a linear dependence on hydrodynamic radius (RH). A linear dependence of vitreal half-life on RH suggests that molecule diffusivity makes an important contribution to vitreal clearance. A method for prediction of vitreal half-life from RH measurements is proposed.
Src promotes delta opioid receptor (DOR) desensitization by interfering with receptor recycling.
Archer-Lahlou, Elodie; Audet, Nicolas; Amraei, Mohammad Gholi; Huard, Karine; Paquin-Gobeil, Mélanie; Pineyro, Graciela
2009-01-01
Abstract An important limitation in the clinical use of opiates is progressive loss of analgesic efficacy over time. Development of analgesic tolerance is tightly linked to receptor desensitization. In the case of delta opioid receptors (DOR), desensitization is especially swift because receptors are rapidly internalized and are poorly recycled to the membrane. In the present study, we investigated whether Src activity contributed to this sorting pattern and to functional desensitization of DORs. A first series of experiments demonstrated that agonist binding activates Src and destabilizes a constitutive complex formed by the spontaneous association of DORs with the kinase. Src contribution to DOR desensitization was then established by showing that pre-treatment with Src inhibitor PP2 (20 microM; 1 hr) or transfection of a dominant negative Src mutant preserved DOR signalling following sustained exposure to an agonist. This protection was afforded without interfering with endocytosis, but suboptimal internalization interfered with PP2 ability to preserve DOR signalling, suggesting a post-endocytic site of action for the kinase. This assumption was confirmed by demonstrating that Src inhibition by PP2 or its silencing by siRNA increased membrane recovery of internalized DORs and was further corroborated by showing that inhibition of recycling by monensin or dominant negative Rab11 (Rab11S25N) abolished the ability of Src blockers to prevent desensitization. Finally, Src inhibitors accelerated recovery of DOR-Galphal3 coupling after desensitization. Taken together, these results indicate that Src dynamically regulates DOR recycling and by doing so contributes to desensitization of these receptors.
Steininger, Christoph; Widhopf, George F.; Ghia, Emanuela M.; Morello, Christopher S.; Vanura, Katrina; Sanders, Rebecca; Spector, Deborah; Guiney, Don; Jäger, Ulrich
2012-01-01
Leukemia cells from patients with chronic lymphocytic leukemia (CLL) express a highly restricted immunoglobulin heavy variable chain (IGHV) repertoire, suggesting that a limited set of antigens reacts with leukemic cells. Here, we evaluated the reactivity of a panel of different CLL recombinant antibodies (rAbs) encoded by the most commonly expressed IGHV genes with a panel of selected viral and bacterial pathogens. Six different CLL rAbs encoded by IGHV1-69 or IGHV3-21, but not a CLL rAb encoded by IGHV4-39 genes, reacted with a single protein of human cytomegalovirus (CMV). The CMV protein was identified as the large structural phosphoprotein pUL32. In contrast, none of the CLL rAbs bound to any other structure of CMV, adenovirus serotype 2, Salmonella enterica serovar Typhimurium, or of cells used for propagation of these microorganisms. Monoclonal antibodies or humanized rAbs of irrelevant specificity to pUL32 did not react with any of the proteins present in the different lysates. Still, rAbs encoded by a germ line IGHV1-69 51p1 allele from CMV-seropositive and -negative adults also reacted with pUL32. The observed reactivity of multiple different CLL rAbs and natural antibodies from CMV-seronegative adults with pUL32 is consistent with the properties of a superantigen. PMID:22234695
Jiang, Zhengning; Wang, Hui; Zhang, Guoqin; Zhao, Renhui; Bie, Tongde; Zhang, Ruiqi; Gao, Derong; Xing, Liping; Cao, Aizhong
2017-04-01
The stripe rust resistance gene, Yr26, is commonly used in wheat production. Identification of Yr26 resistance related genes is important for better understanding of the resistance mechanism. TaRab18, a putative small GTP-binding protein, was screened as a resistance regulated gene as it showed differential expression between the Yr26-containing resistant wheat and the susceptible wheat at different time points after Pst inoculation. TaRab18 contains four typical domains (GI to GIV) of the small GTP-binding proteins superfamily and five domains (RabF1 to RabF5) specific to the Rab subfamily. From the phylogenetic tree that TaRab18 was identified as belonging to the RABC1 subfamily. Chromosome location analysis indicated that TaRab18 and its homeoalles were on the homeologous group 7 chromosomes, and the Pst induced TaRab18 was on the 7 B chromosome. Functional analysis by virus induced gene silencing (VIGS) indicated that TaRab18 was positively involved in the stripe rust resistance through regulating the hypersensitive response, and Pst can develop on the leaves of TaRab18 silenced 92R137. However, over-expression of TaRab18 in susceptible Yangmai158 did not enhance its resistance dramatically, only from 9 grade in Yangmai158 to 8 grade in the transgenic plant. However, histological observation indicated that the transgenic plants with over-expressed TaRab18 showed a strong hypersensitive response at the early infection stage. The research herein, will improve our understanding of the roles of Rab in wheat resistance. Copyright © 2017. Published by Elsevier Masson SAS.
Strick, David J.; Elferink, Lisa A.
2005-01-01
Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways. PMID:16195351
Chen, Ming-Chyuan; Cheng, Ying-Min; Sung, Ping-Jyun; Kuo, Cham-En; Fang, Lee-Shing
2003-08-29
The establishment and maintenance of the intracellular association between marine cnidarians and their symbiotic microalgae is essential to the well being of coral reef ecosystems; however, little is known concerning its underlying molecular mechanisms. In light of the critical roles of the small GTPase, Rab7, as a key regulator of vesicular trafficking, we cloned and characterized the Rab7 protein in the endosymbiosis system between the sea anemone, Aiptasia pulchella and its algal symbiont, Symbiodinium spp. The Aiptasia homologue of Rab7 proteins, ApRab7 is 88% identical to human Rab7 protein and contains all Rab-specific signature motifs. Results of EGFP reporter analysis, protein fractionation, and immunocytochemistry support that ApRab7 is located in late endocytic and phagocytic compartments and is able to promote their fusion. Significantly, the majority of phagosomes containing live symbionts that either have taken long residency in, or were newly internalized by Aiptasia digestive cells did not contain detectable levels of ApRab7, while most phagosomes containing either heat-killed or photosynthesis-impaired symbionts were positive for ApRab7 staining. Overall, our data suggest that live algal symbionts persist inside their host cells by actively excluding ApRab7 from their phagosomes, and thereby, establish and/or maintain an endosymbiotic relationship with their cnidarian hosts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callan, J.R.; Kelly, R.T.; Quinn, M.L.
1995-05-01
Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices usedmore » in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error.« less
Rab7b at the intersection of intracellular trafficking and cell migration.
Distefano, Marita Borg; Kjos, Ingrid; Bakke, Oddmund; Progida, Cinzia
2015-01-01
Rab proteins are small GTPases essential for controlling and coordinating intracellular traffic. The small GTPase Rab7b regulates the retrograde transport from late endosomes toward the Trans-Golgi Network (TGN), and is important for the proper trafficking of several receptors such as Toll-like receptors (TLRs) and sorting receptors. We recently identified the actin motor protein myosin II as a new interaction partner for Rab7b, and found that Rab7b transport is dependent on myosin II. Interestingly, we also discovered that Rab7b influences the phosphorylation state of myosin II by controlling the activation status of the small GTPase RhoA. Consequently, Rab7b is important for the remodeling of actin filaments in processes such as stress fiber formation, cell adhesion, polarization and cell migration. Our finding that Rab7b can control actomyosin reorganization reveals yet another important role for Rab proteins, in addition to their already established role as master regulators of intracellular transport. Here we discuss our findings and speculate how they can explain the importance of Rab7b in dendritic cells (DCs).
Synaptotagmin-Like Proteins Control Formation of a Single Apical Membrane Domain in Epithelial Cells
Gálvez-Santisteban, Manuel; Rodriguez-Fraticelli, Alejo E.; Bryant, David M.; Vergarajauregui, Silvia; Yasuda, Takao; Bañón-Rodríguez, Inmaculada; Bernascone, Ilenia; Datta, Anirban; Spivak, Natalie; Young, Kitty; Slim, Christiaan L.; Brakeman, Paul R.; Fukuda, Mitsunori; Mostov, Keith E.; Martín-Belmonte, Fernando
2012-01-01
SUMMARY The formation of epithelial tissues requires both the generation of apical-basal polarity and the co-ordination of this polarity between neighboring cells to form a central lumen. During de novo lumen formation, vectorial membrane transport contributes to formation of a singular apical membrane, resulting in contribution of each cell to only a single lumen. Here, from a functional screen for genes required for 3D epithelial architecture we identify key roles for Synaptotagmin-like proteins 2-a and 4-a (Slp2-a/4-a) in generation of a single apical surface per cell. Slp2-a localizes to the luminal membrane in a PI(4,5)P2-dependent manner, where it targets Rab27-loaded vesicles to initiate a single lumen. Vesicle tethering and fusion is controlled by Slp4-a, in conjunction with Rab27/Rab3/Rab8 and the SNARE Syntaxin-3. Together, Slp2-a/4-a co-ordinate the spatiotemporal organization of vectorial apical transport to ensure only a single apical surface, and thus formation of a single lumen, occurs per cell. PMID:22820376
Li, Zi; Zhao, Kui; Lv, Xiaoling; Lan, Yungang; Hu, Shiyu; Shi, Junchao; Guan, Jiyu; Yang, Yawen; Lu, Huijun; He, Hongbin; Gao, Feng; He, Wenqi
2018-06-06
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurovirulent coronavirus and causes neurological dysfunction in the central nervous system (CNS), but the neuropathological mechanism of PHEV remains poorly understood. We report that Unc51-like kinase 1 (Ulk1/Unc51.1) is a pivotal regulator of PHEV-induced neurological disorders and functions to selectively control the initiation of NGF/TrkA endosome trafficking. We first identified the function of Ulk1 by histopathologic evaluation in PHEV-infected mouse model where neuronal loss was accompanied by the suppression of Ulk1 expression. Morphogenesis assessments in the primary cortical neurons revealed that overexpression or mutations of Ulk1 modulated neurite outgrowth, collateral sprouting, and endosomal transport. Likewise, Ulk1 expression was decreased following PHEV infection, suggesting that there was a correlation between the neurodegeneration and functional Ulk1 deficiency. We then showed that Ulk1 forms a multiprotein complex with TrkA and the early endosome marker Rab5 and that Ulk1 defects lead to either blocking of NGF/TrkA endocytosis or premature degradation of pTrkA via constitutive activation of the Rab5 GTPase. Further investigation determined that the ectopic expression of Rab5 mutants induces aberrant endosomal accumulation of activated pTrkA, proving that targeting of Ulk1-TrkA-NGF signaling to the retrograde transport route in the neurodegenerative process that underlies PHEV infection is dependent on Rab5 GTPase activity. Therefore, we described a long-distance signaling mechanism of PHEV-driven deficits in neurons and suggested that such Ulk1 repression may result in limited NGF/TrkA retrograde signaling within activated Rab5 endosomes, explaining the progressive failure of neurite outgrowth and survival. IMPORTANCE Porcine hemagglutinating encephalomyelitis virus (PHEV) is neurotropic coronavirus and targets neurons in the nervous system for proliferation, frequently leaving behind grievous neurodegeneration. Structural plasticity disorders occur in the axons, dendrites, and dendritic spines of PHEV-infected neurons, and dysfunction of this neural process may contribute to neurologic pathologies, but the mechanisms remain undetermined. Further understanding of the neurological manifestations underlying PHEV infection in the CNS may provide insights into both neurodevelopmental and neurodegenerative diseases that may be necessarily conducive to targeted approaches for treatment. The significance of our research is in identifying an Ulk1-related neurodegenerative mechanism, focusing on the regulatory functions of Ulk1 in the transport of long-distance trophic signaling endosomes, thereby explaining the progressive failure of neurite outgrowth and survival associated with PHEV aggression. This is the first report to define a mechanistic link between alterations in signaling from endocytic pathways and the neuropathogenesis of PHEV-induced CNS disease. Copyright © 2018 American Society for Microbiology.
2013-01-01
Background Multiple myeloma (MM) is a fatal plasma cell malignancy exhibiting enhanced glucose consumption associated with an aerobic glycolytic phenotype (i.e., the Warburg effect). We have previously demonstrated that myeloma cells exhibit constitutive plasma membrane (PM) localization of GLUT4, consistent with the dependence of MM cells on this transporter for maintenance of glucose consumption rates, proliferative capacity, and viability. The purpose of this study was to investigate the molecular basis of constitutive GLUT4 plasma membrane localization in MM cells. Findings We have elucidated a novel mechanism through which myeloma cells achieve constitutive GLUT4 activation involving elevated expression of the Rab-GTPase activating protein AS160_v2 splice variant to promote the Warburg effect. AS160_v2-positive MM cell lines display constitutive Thr642 phosphorylation, known to be required for inactivation of AS160 Rab-GAP activity. Importantly, we show that enforced expression of AS160_v2 is required for GLUT4 PM translocation and activation in these select MM lines. Furthermore, we demonstrate that ectopic expression of a full-length, phospho-deficient AS160 mutant is sufficient to impair constitutive GLUT4 cell surface residence, which is characteristic of MM cells. Conclusions This is the first study to tie AS160 de-regulation to increased glucose consumption rates and the Warburg effect in cancer. Future studies investigating connections between the insulin/IGF-1/AS160_v2/GLUT4 axis and FDG-PET positivity in myeloma patients are warranted and could provide rationale for therapeutically targeting this pathway in MM patients with advanced disease. PMID:24280290
Routing of the RAB6 secretory pathway towards the lysosome related organelle of melanocytes
Patwardhan, Anand; Bardin, Sabine; Miserey-Lenkei, Stéphanie; Larue, Lionel; Goud, Bruno; Raposo, Graça; Delevoye, Cédric
2017-01-01
Exocytic carriers convey neo-synthesized components from the Golgi apparatus to the cell surface. While the release and anterograde movement of Golgi-derived vesicles require the small GTPase RAB6, its effector ELKS promotes the targeting and docking of secretory vesicles to particular areas of the plasma membrane. Here, we show that specialized cell types exploit and divert the secretory pathway towards lysosome related organelles. In cultured melanocytes, the secretory route relies on RAB6 and ELKS to directly transport and dock Golgi-derived carriers to melanosomes. By delivering specific cargos, such as MART-1 and TYRP2/ DCT, the RAB6/ELKS-dependent secretory pathway controls the formation and maturation of melanosomes but also pigment synthesis. In addition, pigmentation defects are observed in RAB6 KO mice. Our data together reveal for the first time that the secretory pathway can be directed towards intracellular organelles of endosomal origin to ensure their biogenesis and function. PMID:28607494
Ongvarrasopone, Chalermporn; Chomchay, Ekapol; Panyim, Sakol
2010-10-01
PmRab7 is a Penaeus monodon small GTPase protein possibly involved in replication of several shrimp viruses. In this study RNA interference (RNAi) using double-stranded RNA (dsRNA) targeting PmRab7 gene (dsRNA-PmRab7) was employed to silence the expression of PmRab7 to investigate the inhibitory effect on Laem-Singh virus (LSNV) replication. Injection of dsRNA-PmRab7 24h before challenge with the virus resulted in a drastic decrease of PmRab7 mRNA and complete inhibition of LSNV replication at 3 days post-challenge. In a therapeutic mode, shrimp injected with dsRNA-PmRab7 1 day but not at 3 or 5 days post-LSNV challenge resulted in inhibition of LSNV replication. These results pave the way to use dsRNA-PmRab7 to prevent or cure LSNV infection in shrimp. Copyright © 2010 Elsevier B.V. All rights reserved.
The C. elegans rab family: identification, classification and toolkit construction.
Gallegos, Maria E; Balakrishnan, Sanjeev; Chandramouli, Priya; Arora, Shaily; Azameera, Aruna; Babushekar, Anitha; Bargoma, Emilee; Bokhari, Abdulmalik; Chava, Siva Kumari; Das, Pranti; Desai, Meetali; Decena, Darlene; Saramma, Sonia Dev Devadas; Dey, Bodhidipra; Doss, Anna-Louise; Gor, Nilang; Gudiputi, Lakshmi; Guo, Chunyuan; Hande, Sonali; Jensen, Megan; Jones, Samantha; Jones, Norman; Jorgens, Danielle; Karamchedu, Padma; Kamrani, Kambiz; Kolora, Lakshmi Divya; Kristensen, Line; Kwan, Kelly; Lau, Henry; Maharaj, Pranesh; Mander, Navneet; Mangipudi, Kalyani; Menakuru, Himabindu; Mody, Vaishali; Mohanty, Sandeepa; Mukkamala, Sridevi; Mundra, Sheena A; Nagaraju, Sudharani; Narayanaswamy, Rajhalutshimi; Ndungu-Case, Catherine; Noorbakhsh, Mersedeh; Patel, Jigna; Patel, Puja; Pendem, Swetha Vandana; Ponakala, Anusha; Rath, Madhusikta; Robles, Michael C; Rokkam, Deepti; Roth, Caroline; Sasidharan, Preeti; Shah, Sapana; Tandon, Shweta; Suprai, Jagdip; Truong, Tina Quynh Nhu; Uthayaruban, Rubatharshini; Varma, Ajitha; Ved, Urvi; Wang, Zeran; Yu, Zhe
2012-01-01
Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB).
The C. elegans Rab Family: Identification, Classification and Toolkit Construction
Gallegos, Maria E.; Balakrishnan, Sanjeev; Chandramouli, Priya
2012-01-01
Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB). PMID:23185324
Gambarte Tudela, Julian; Capmany, Anahi; Romao, Maryse; Quintero, Cristian; Miserey-Lenkei, Stephanie; Raposo, Graca; Goud, Bruno; Damiani, Maria Teresa
2015-08-15
Given their obligate intracellular lifestyle, Chlamydia trachomatis ensure that they have access to multiple host sources of essential lipids by interfering with vesicular transport. These bacteria hijack Rab6-, Rab11- and Rab14-controlled trafficking pathways to acquire sphingomyelin from the Golgi complex. Another important source of sphingolipids, phospholipids and cholesterol are multivesicular bodies (MVBs). Despite their participation in chlamydial inclusion development and bacterial replication, the molecular mechanisms mediating the interaction between MVBs and chlamydial inclusions remain unknown. In the present study, we demonstrate that Rab39a labels a subset of late endocytic vesicles - mainly MVBs - that move along microtubules. Moreover, Rab39a is actively recruited to chlamydial inclusions throughout the pathogen life cycle by a bacterial-driven process that depends on the Rab39a GTP- or GDP-binding state. Interestingly, Rab39a participates in the delivery of MVBs and host sphingolipids to maturing chlamydial inclusions, thereby promoting inclusion growth and bacterial development. Taken together, our findings indicate that Rab39a favours chlamydial replication and infectivity. This is the first report showing that a late endocytic Rab GTPase is involved in chlamydial infection development. © 2015. Published by The Company of Biologists Ltd.
Wang, Lei; Wang, Xiao-Rong; Liu, Jin; Chen, Chu-Xian; Liu, Yuan; Wang, Wei-Na
2015-10-01
With the destruction of the ecological environment, shrimp cultivation in China has been seriously affected by outbreaks of infectious diseases. Rab, which belong to small GTPase Ras superfamily, can regulate multiple steps in eukaryotic vesicle trafficking including vesicle budding, vesicle tethering, and membrane fusion. Knowledge of Rab in shrimp is essential to understanding regulation and detoxification mechanisms of environmental stress. In this study, we analyzed the functions of Rab from the Pacific white shrimp, Litopenaeus vannamei. Full-length cDNA of Rab was obtained, which was 751 bp long, with open reading frame encoding 206 amino acids. In this study, for the first time, the gene expression of Rab of L. vannamei was analyzed by quantitative real-time PCR after exposure to five kinds of environmental stresses (bacteria, pH, Cd, salinity and low temperature). The results demonstrate that Rab is sensitive and involved in bacteria, pH, and Cd stress responses and Rab is more sensitive to bacteria than other stresses. Therefore we infer that Rab may have relationship with the anti-stress mechanism induced by environment stress in shrimp and Rab could be used as critical biomarkers for environmental quality assessment.
Buvelot Frei, Stéphanie; Rahl, Peter B.; Nussbaum, Maria; Briggs, Benjamin J.; Calero, Monica; Janeczko, Stephanie; Regan, Andrew D.; Chen, Catherine Z.; Barral, Yves; Whittaker, Gary R.; Collins, Ruth N.
2006-01-01
A striking characteristic of a Rab protein is its steady-state localization to the cytosolic surface of a particular subcellular membrane. In this study, we have undertaken a combined bioinformatic and experimental approach to examine the evolutionary conservation of Rab protein localization. A comprehensive primary sequence classification shows that 10 out of the 11 Rab proteins identified in the yeast (Saccharomyces cerevisiae) genome can be grouped within a major subclass, each comprising multiple Rab orthologs from diverse species. We compared the locations of individual yeast Rab proteins with their localizations following ectopic expression in mammalian cells. Our results suggest that green fluorescent protein-tagged Rab proteins maintain localizations across large evolutionary distances and that the major known player in the Rab localization pathway, mammalian Rab-GDI, is able to function in yeast. These findings enable us to provide insight into novel gene functions and classify the uncharacterized Rab proteins Ypt10p (YBR264C) as being involved in endocytic function and Ypt11p (YNL304W) as being localized to the endoplasmic reticulum, where we demonstrate it is required for organelle inheritance. PMID:16980630
The Hsp90 chaperone complex regulates GDI-dependent Rab recycling.
Chen, Christine Y; Balch, William E
2006-08-01
Rab GTPase regulated hubs provide a framework for an integrated coding system, the membrome network, that controls the dynamics of the specialized exocytic and endocytic membrane architectures found in eukaryotic cells. Herein, we report that Rab recycling in the early exocytic pathways involves the heat-shock protein (Hsp)90 chaperone system. We find that Hsp90 forms a complex with guanine nucleotide dissociation inhibitor (GDI) to direct recycling of the client substrate Rab1 required for endoplasmic reticulum (ER)-to-Golgi transport. ER-to-Golgi traffic is inhibited by the Hsp90-specific inhibitors geldanamycin (GA), 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), and radicicol. Hsp90 activity is required to form a functional GDI complex to retrieve Rab1 from the membrane. Moreover, we find that Hsp90 is essential for Rab1-dependent Golgi assembly. The observation that the highly divergent Rab GTPases Rab1 involved in ER-to-Golgi transport and Rab3A involved in synaptic vesicle fusion require Hsp90 for retrieval from membranes lead us to now propose that the Hsp90 chaperone system may function as a general regulator for Rab GTPase recycling in exocytic and endocytic trafficking pathways involved in cell signaling and proliferation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pechenick Jowers, Tali; Featherstone, Rebecca J.; Reynolds, Danielle K.
2015-01-15
Vaccinia virus (VACV) is a large double-stranded DNA virus with a complex cytoplasmic replication cycle that exploits numerous cellular proteins. This work characterises the role of a proviral cellular protein, the small GTPase RAB1A, in VACV replication. Using siRNA, we identified RAB1A as required for the production of extracellular enveloped virions (EEVs), but not intracellular mature virions (IMVs). Immunofluorescence and electron microscopy further refined the role of RAB1A as facilitating the wrapping of IMVs to become intracellular enveloped virions (IEVs). This is consistent with the known function of RAB1A in maintenance of ER to Golgi transport. VACV can therefore bemore » added to the growing list of viruses which require RAB1A for optimal replication, highlighting this protein as a broadly proviral host factor. - Highlights: • Characterisation of the role of the small GTPase RAB1A in VACV replication. • RAB1A is not required for production of the primary virion form (IMV). • RAB1A is required for production of processed virion forms (IEVs, CEVs and EEVs). • Consistent with known role of RAB1A in ER to Golgi transport.« less
Zade, Amrutraj; Sengupta, Malavi; Kondabagil, Kiran
2015-01-01
Rab GTPases are the key regulators of intracellular membrane trafficking in eukaryotes. Many viruses and intracellular bacterial pathogens have evolved to hijack the host Rab GTPase functions, mainly through activators and effector proteins, for their benefit. Acanthamoeba polyphaga mimivirus (APMV) is one of the largest viruses and belongs to the monophyletic clade of nucleo-cytoplasmic large DNA viruses (NCLDV). The inner membrane lining is integral to the APMV virion structure. APMV assembly involves extensive host membrane modifications, like vesicle budding and fusion, leading to the formation of a membrane sheet that is incorporated into the virion. Intriguingly, APMV and all group I members of the Mimiviridae family code for a putative Rab GTPase protein. APMV is the first reported virus to code for a Rab GTPase (encoded by R214 gene). Our thorough in silico analysis of the subfamily specific (SF) region of Mimiviridae Rab GTPase sequences suggests that they are related to Rab5, a member of the group II Rab GTPases, of lower eukaryotes. Because of their high divergence from the existing three isoforms, A, B, and C of the Rab5-family, we suggest that Mimiviridae Rabs constitute a new isoform, Rab5D. Phylogenetic analysis indicated probable horizontal acquisition from a lower eukaryotic ancestor followed by selection and divergence. Furthermore, interaction network analysis suggests that vps34 (a Class III PI3K homolog, coded by APMV L615), Atg-8 and dynamin (host proteins) are recruited by APMV Rab GTPase during capsid assembly. Based on these observations, we hypothesize that APMV Rab plays a role in the acquisition of inner membrane during virion assembly.
Ahmad, Waqas; Li, Yingying; Guo, Yidi; Wang, Xinyu; Duan, Ming; Guan, Zhenhong; Liu, Zengshan; Zhang, Maolin
2017-06-01
Rabies virus (RABV) is a highly neurotropic virus that follows clathrin-mediated endocytosis and pH-dependent pathway for trafficking and invasion into endothelial cells. Early (Rab5, EEA1) and late (Rab7, LAMP1) endosomal proteins play critical roles in endosomal sorting, maturity and targeting various molecular cargoes, but their precise functions in the early stage of RABV neuronal infection remain elusive. In this study, the relationship between enigmatic entry of RABV with these endosomal proteins into neuronal and SH-SY5Y cells was investigated. Immunofluorescence, TCID 50 titers, electron microscopy and western blotting were carried out to determine the molecular interaction of the nucleoprotein (N) of RABV with early or late endosomal proteins in these cell lines. The expression of N was also determined by down-regulating Rab5 and Rab7 in both cell lines through RNA interference. The results were indicative that N proficiently colocalized with Rab5/EEA1 and Rab7/LAMP1 in both cell lines at 24 and 48 h post-infection, while N titers significantly decreased in early infection of RABV. Down-regulation of Rab5 and Rab7 did not inhibit N expression, but it prevented productive infection via blocking the normal trafficking of RABV in a low pH environment. Ultrathin sections of cells studied by electron microscope also verified the close association of RABV with Rab5 and Rab7 in neurons. From the data it was concluded that primary entry of RABV strongly correlates with the kinetics of Rab-proteins present on early and late vesicles, which provides helpful clues to explain the early events of RABV in nerve cells.
Comprehensive functional analysis of Rab GTPases in Drosophila nephrocytes.
Fu, Yulong; Zhu, Jun-Yi; Zhang, Fujian; Richman, Adam; Zhao, Zhanzheng; Han, Zhe
2017-06-01
The Drosophila nephrocyte is a critical component of the fly renal system and bears structural and functional homology to podocytes and proximal tubule cells of the mammalian kidney. Investigations of nephrocyte cell biological processes are fundamental to understanding the insect renal system. Nephrocytes are highly active in endocytosis and vesicle trafficking. Rab GTPases regulate endocytosis and trafficking but specific functions of nephrocyte Rabs remain undefined. We analyzed Rab GTPase expression and function in Drosophila nephrocytes and found that 11 out of 27 Drosophila Rabs were required for normal activity. Rabs 1, 5, 7, 11 and 35 were most important. Gene silencing of the nephrocyte-specific Rab5 eliminated all intracellular vesicles and the specialized plasma membrane structures essential for nephrocyte function. Rab7 silencing dramatically increased clear vacuoles and reduced lysosomes. Rab11 silencing increased lysosomes and reduced clear vacuoles. Our results suggest that Rab5 mediates endocytosis that is essential for the maintenance of functionally critical nephrocyte plasma membrane structures and that Rabs 7 and 11 mediate alternative downstream vesicle trafficking pathways leading to protein degradation and membrane recycling, respectively. Elucidating molecular pathways underlying nephrocyte function has the potential to yield important insights into human kidney cell physiology and mechanisms of cell injury that lead to disease. The Drosophila nephrocyte is emerging as a useful in vivo model system for molecular target identification and initial testing of therapeutic approaches in humans.
Wang, Tuanlao; Hong, Wanjin
2002-01-01
We present evidence to suggest the existence of a regulatory pathway for the Golgi apparatus to modulate the spatial positioning of otherwise distantly located lysosomes. Rab34, a new member of the Rab GTPase family, is associated primarily with the Golgi apparatus. Expression of wild-type or GTP-restricted but not GDP-restricted versions of Rab34 causes spatial redistribution of lysosomes from the periphery to the peri-Golgi region. The regulation of lysosomal positioning by Rab34 depends on its association with the membrane mediated by prenylation and its direct interaction with Rab-interacting lysosomal protein (RILP). This biological activity, mediated by Rab34-RILP interaction, is dependent on Lys82 in the switch I region. Our results have uncovered a novel mechanism for the Golgi apparatus to regulate the spatial distribution of another organelle. PMID:12475955
Zhou, Sharon; Davidson, Cristin; McGlynn, Robert; Stephney, Gloria; Dobrenis, Kostantin; Vanier, Marie T.; Walkley, Steven U.
2011-01-01
Niemann-Pick disease type C (NPC) is a severe neurovisceral lysosomal storage disorder caused by defects in NPC1 or NPC2 proteins. Although numerous studies support the primacy of cholesterol storage, neurons of double-mutant mice lacking both NPC1 and an enzyme required for synthesis of all complex gangliosides (β1,4GalNAc transferase) have been reported to exhibit dramatically reduced cholesterol sequestration. Here we show that NPC2-deficient mice lacking this enzyme also exhibit reduced cholesterol, but that genetically restricting synthesis to only a-series gangliosides fully restores neuronal cholesterol storage to typical disease levels. Examining the subcellular locations of sequestered compounds in neurons lacking NPC1 or NPC2 by confocal microscopy revealed that cholesterol and the two principal storage gangliosides (GM2 and GM3) were not consistently co-localized within the same intracellular vesicles. To determine whether the lack of GM2 and GM3 co-localization was due to differences in synthetic versus degradative pathway expression, we generated mice lacking both NPC1 and lysosomal β-galactosidase, and therefore unable to generate GM2 and GM3 in lysosomes. Double mutants lacked both gangliosides, indicating that each is the product of endosomal/lysosomal processing. Unexpectedly, GM1 accumulation in double mutants increased compared to single mutants consistent with a direct role for NPC1 in ganglioside salvage. These studies provide further evidence that NPC1 and NPC2 proteins participate in endosomal/lysosomal processing of both sphingolipids and cholesterol. PMID:21708114
Gorman, Donald S.; Levine, R. P.
1966-01-01
A mutant strain of Chlamydomonas reinhardi, ac-206, lacks cytochrome 553, at least in an active and detectable form. Chloroplast fragments of this mutant strain are inactive in the photoreduction of NADP when the source of electrons is water, but they are active when the electron source is 2,6-dichlorophenolindophenol and ascorbate. The addition of either cytochrome 553 or plastocyanin, obtained from the wild-type strain, has no effect upon the photosynthetic activities of the mutant strain. Cells of the mutant strain lack both the soluble and insoluble forms of cytochrome 553, but they possess the mitochondrial type cytochrome c. Thus, the loss of cytochrome 553 appears to be specific. Another mutant strain, ac-208, lacks plastocyanin, or possesses it in an inactive and undetectable form. Chloroplast fragments of ac-208 are inactive in the photoreduction of NADP with either water or 2,6-dichlorophenolindophenol and ascorbate as electron donors. However, these reactions are restored upon the addition of plastocyanin. The addition of cytochrome 553 has no effect. The measurement of light-induced absorbance changes with ac-208 reveal that, in the absence of plastocyanin, light fails to sensitize the oxidation of cytochrome 553, but it will sensitize its reduction. However, the addition of plastocyanin restores the light-induced cytochrome oxidation. A third mutant strain, ac-208 (sup.) carries a suppressor mutation that partially restores the wild phenotype. This mutant strain appears to possess a plastocyanin that is less stable than that of the wild-type strain. The observations with the mutant strains are discussed in terms of the sequence of electron transport System II → cytochrome 553 → plastocyanin → System I. PMID:16656453
Fuchs, Evelyn; Haas, Alexander K; Spooner, Robert A; Yoshimura, Shin-ichiro; Lord, J Michael; Barr, Francis A
2007-06-18
Rab family guanosine triphosphatases (GTPases) together with their regulators define specific pathways of membrane traffic within eukaryotic cells. In this study, we have investigated which Rab GTPase-activating proteins (GAPs) can interfere with the trafficking of Shiga toxin from the cell surface to the Golgi apparatus and studied transport of the epidermal growth factor (EGF) from the cell surface to endosomes. This screen identifies 6 (EVI5, RN-tre/USP6NL, TBC1D10A-C, and TBC1D17) of 39 predicted human Rab GAPs as specific regulators of Shiga toxin but not EGF uptake. We show that Rab43 is the target of RN-tre and is required for Shiga toxin uptake. In contrast, RabGAP-5, a Rab5 GAP, was unique among the GAPs tested and reduced the uptake of EGF but not Shiga toxin. These results suggest that Shiga toxin trafficking to the Golgi is a multistep process controlled by several Rab GAPs and their target Rabs and that this process is discrete from ligand-induced EGF receptor trafficking.
Rab3 is involved in cellular immune responses of the cotton bollworm, Helicoverpa armigera.
Li, Jie; Song, Cai-Xia; Li, Yu-Ping; Li, Li; Wei, Xiu-Hong; Wang, Jia-Lin; Liu, Xu-Sheng
2015-06-01
Rab3, a member of the Rab GTPase family, has been found to be involved in innate immunity. However, the precise function of this GTPase in innate immunity remains unknown. In this study, we identified a Rab3 gene (Ha-Rab3) from the cotton bollworm, Helicoverpa armigera and studied its roles in innate immune responses. Expression of Ha-Rab3 was upregulated in the hemocytes of H. armigera larvae after the injection of Escherichia coli or chromatography beads. The dsRNA-mediated knockdown of Ha-Rab3 gene in H. armigera larval hemocytes led to significant reduction in the phagocytosis and nodulation activities of hemocytes against E. coli, significant increase in the bacterial load in larval hemolymph, and significant reduction in the encapsulation activities of hemocytes toward invading chromatography beads. Furthermore, Ha-Rab3 knockdown significantly suppressed spreading of plasmatocytes. These results suggest that Ha-Rab3 plays important roles in H. armigera cellular immune responses, possibly by mediating spreading of hemocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oksayan, Sibil; Wiltzer, Linda; Rowe, Caitlin L.; Blondel, Danielle; Jans, David A.; Moseley, Gregory W.
2012-01-01
Regulated nucleocytoplasmic transport of proteins is central to cellular function and dysfunction during processes such as viral infection. Active protein trafficking into and out of the nucleus is dependent on the presence within cargo proteins of intrinsic specific modular signals for nuclear import (nuclear localization signals, NLSs) and export (nuclear export signals, NESs). Rabies virus (RabV) phospho (P) protein, which is largely responsible for antagonising the host anti-viral response, is expressed as five isoforms (P1–P5). The subcellular trafficking of these isoforms is thought to depend on a balance between the activities of a dominant N-terminal NES (N-NES) and a distinct C-terminal NLS (C-NLS). Specifically, the N-NES-containing isoforms P1 and P2 are cytoplasmic, whereas the shorter P3–P5 isoforms, which lack the N-NES, are believed to be nuclear through the activity of the C-NLS. Here, we show for the first time that RabV P contains an additional strong NLS in the N-terminal region (N-NLS), which, intriguingly, overlaps with the N-NES. This arrangement represents a novel nuclear trafficking module where the N-NLS is inactive in P1 but becomes activated in P3, concomitant with truncation of the N-NES, to become the principal targeting signal conferring nuclear accumulation. Understanding this unique switch arrangement of overlapping, co-regulated NES/NLS sequences is vital to delineating the critical role of RabV P protein in viral infection. PMID:22700958
Levin, Rebecca S; Hertz, Nicholas T; Burlingame, Alma L; Shokat, Kevan M; Mukherjee, Shaeri
2016-08-16
TGF-β activated kinase 1 (TAK1) is a critical signaling hub responsible for translating antigen binding signals to immune receptors for the activation of the AP-1 and NF-κB master transcriptional programs. Despite its importance, known substrates of TAK1 are limited to kinases of the MAPK and IKK families and include no direct effectors of biochemical processes. Here, we identify over 200 substrates of TAK1 using a chemical genetic kinase strategy. We validate phosphorylation of the dynamic switch II region of GTPase Rab1, a mediator of endoplasmic reticulum to Golgi vesicular transport, at T75 to be regulated by TAK1 in vivo. TAK1 preferentially phosphorylates the inactive (GDP-bound) state of Rab1. Phosphorylation of Rab1 disrupts interaction with GDP dissociation inhibitor 1 (GDI1), but not guanine exchange factor (GEF) or GTPase-activating protein (GAP) enzymes, and is exclusive to membrane-localized Rab1, suggesting phosphorylation may stimulate Rab1 membrane association. Furthermore, we found phosphorylation of Rab1 at T75 to be essential for Rab1 function. Previous studies established that the pathogen Legionella pneumophila is capable of hijacking Rab1 function through posttranslational modifications of the switch II region. Here, we present evidence that Rab1 is regulated by the host in a similar fashion, and that the innate immunity kinase TAK1 and Legionella effectors compete to regulate Rab1 by switch II modifications during infection.
Stein, Matthias; Pilli, Manohar; Bernauer, Sabine; Habermann, Bianca H.; Zerial, Marino; Wade, Rebecca C.
2012-01-01
Background Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood. Methodology/Principal Findings Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics. Conclusions/Significance We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity. PMID:22523562
Yersinia pestis Requires Host Rab1b for Survival in Macrophages
Connor, Michael G.; Pulsifer, Amanda R.; Price, Christopher T.; Abu Kwaik, Yousef; Lawrenz, Matthew B.
2015-01-01
Yersinia pestis is a facultative intracellular pathogen that causes the disease known as plague. During infection of macrophages Y. pestis actively evades the normal phagosomal maturation pathway to establish a replicative niche within the cell. However, the mechanisms used by Y. pestis to subvert killing by the macrophage are unknown. Host Rab GTPases are central mediators of vesicular trafficking and are commonly targeted by bacterial pathogens to alter phagosome maturation and killing by macrophages. Here we demonstrate for the first time that host Rab1b is required for Y. pestis to effectively evade killing by macrophages. We also show that Rab1b is specifically recruited to the Yersinia containing vacuole (YCV) and that Y. pestis is unable to subvert YCV acidification when Rab1b expression is knocked down in macrophages. Furthermore, Rab1b knockdown also altered the frequency of association between the YCV with the lysosomal marker Lamp1, suggesting that Rab1b recruitment to the YCV directly inhibits phagosome maturation. Finally, we show that Rab1b knockdown also impacts the pH of the Legionella pneumophila containing vacuole, another pathogen that recruits Rab1b to its vacuole. Together these data identify a novel role for Rab1b in the subversion of phagosome maturation by intracellular pathogens and suggest that recruitment of Rab1b to the pathogen containing vacuole may be a conserved mechanism to control vacuole pH. PMID:26495854
Establishment of Novel Monoclonal Antibody PMab-32 Against Rabbit Podoplanin.
Honma, Ryusuke; Fujii, Yuki; Ogasawara, Satoshi; Oki, Hiroharu; Liu, Xing; Nakamura, Takuro; Kaneko, Mika K; Takagi, Michiaki; Kato, Yukinari
2016-02-01
Podoplanin (PDPN) is a type I transmembrane O-glycoprotein, which is known as a specific lymphatic marker. PDPN activates platelet aggregation by binding to C-type lectin-like receptor-2 (CLEC-2) on platelet. PDPN is also expressed in several normal tissues, including podocytes and type I alveolar cells. Although many monoclonal antibodies (MAbs) against human PDPN (hPDPN), mouse PDPN (mPDPN), and rat PDPN (rPDPN) have been established, useful antibodies against rabbit PDPN (rabPDPN) have not been developed. In this study, we immunized mice with the recombinant proteins of rabPDPN, and developed a novel anti-rabPDPN MAb, named PMab-32. PMab-32 could detect endogenous and exogenous rabPDPN in flow cytometry and Western blot analysis. The KD of PMab-32 was determined to be 6.2 × 10(-8) M by flow cytometry. Immunohistochemical analysis showed that PMab-32 is useful for detecting podocytes, type I alveolar cells, and lymphatic endothelial cells in normal rabbit tissues. PMab-32 is expected to be useful for various rabbit experiments.
Perrin, Laura; Laura, Perrin; Lacas-Gervais, Sandra; Sandra, Lacas-Gervais; Gilleron, Jérôme; Jérôme, Gilleron; Ceppo, Franck; Franck, Ceppo; Prodon, François; François, Prodon; Benmerah, Alexandre; Alexandre, Benmerah; Tanti, Jean-François; Jean-François, Tanti; Cormont, Mireille; Mireille, Cormont
2013-11-01
The endocytic pathway is essential for cell homeostasis and numerous small Rab GTPases are involved in its control. The endocytic trafficking step controlled by Rab4b has not been elucidated, although recent data suggested it could be important for glucose homeostasis, synaptic homeostasis or adaptive immunity. Here, we show that Rab4b is required for early endosome sorting of transferrin receptors (TfRs) to the recycling endosomes, and we identified the AP1γ subunit of the clathrin adaptor AP-1 as a Rab4b effector and key component of the machinery of early endosome sorting. We show that internalised transferrin (Tf) does not reach Vamp3/Rab11 recycling endosomes in the absence of Rab4b, whereas it is rapidly recycled back to the plasma membrane. By contrast, overexpression of Rab4b leads to the accumulation of internalised Tf within AP-1- and clathrin-coated vesicles. These vesicles are poor in early and recycling endocytic markers except for TfR and require AP1γ for their formation. Furthermore, the targeted overexpression of the Rab4b-binding domain of AP1γ to early endosome upon its fusion with FYVE domains inhibited the interaction between Rab4b and endogenous AP1γ, and perturbed Tf traffic. We thus proposed that the interaction between early endocytic Rab4b and AP1γ could allow the budding of clathrin-coated vesicles for subsequent traffic to recycling endosomes. The data also uncover a novel type of endosomes, characterised by low abundance of either early or recycling endocytic markers, which could potentially be generated in cell types that naturally express high level of Rab4b.
Padilla-Parra, Sergi; Marin, Mariana; Kondo, Naoyuki; Melikyan, Gregory B
2014-06-16
The majority of viruses enter host cells via endocytosis. Current knowledge of viral entry pathways is largely based upon infectivity measurements following genetic and/or pharmacological interventions that disrupt vesicular trafficking and maturation. Imaging of single virus entry in living cells provides a powerful means to delineate viral trafficking pathways and entry sites under physiological conditions. Here, we visualized single avian retrovirus co-trafficking with markers for early (Rab5) and late (Rab7) endosomes, acidification of endosomal lumen and the resulting viral fusion measured by the viral content release into the cytoplasm. Virus-carrying vesicles either merged with the existing Rab5-positive early endosomes or slowly accumulated Rab5. The Rab5 recruitment to virus-carrying endosomes correlated with acidification of their lumen. Viral fusion occurred either in early (Rab5-positive) or intermediate (Rab5- and Rab7-positive) compartments. Interestingly, different isoforms of the cognate receptor directed virus entry from distinct endosomes. In cells expressing the transmembrane receptor, viruses preferentially entered and fused with slowly maturing early endosomes prior to accumulation of Rab7. By comparison, in cells expressing the GPI-anchored receptor, viruses entered both slowly and quickly maturing endosomes and fused with early (Rab5-positive) and intermediate (Rab5- and Rab7-positive) compartments. Since the rate of low pH-triggered fusion was independent of the receptor isoform, we concluded that the sites of virus entry are determined by the kinetic competition between endosome maturation and viral fusion. Our findings demonstrate the ability of this retrovirus to enter cells via alternative endocytic pathways and establish infection by releasing its content from distinct endosomal compartments.
Edler, Eileen; Stein, Matthias
2017-10-25
The small GTPase Rab5 is the key regulator of early endosomal fusion. It is post-translationally modified by covalent attachment of two geranylgeranyl (GG) chains to adjacent cysteine residues of the C-terminal hypervariable region (HVR). The GDP dissociation inhibitor (GDI) recognizes membrane-associated Rab5(GDP) and serves to release it into the cytoplasm where it is kept in a soluble state. A detailed new structural and dynamic model for human Rab5(GDP) recognition and binding with human GDI at the early endosome membrane and in its dissociated state is presented. In the cytoplasm, the GDI protein accommodates the GG chains in a transient hydrophobic binding pocket. In solution, two different binding modes of the isoprenoid chains inserted into the hydrophobic pocket of the Rab5(GDP):GDI complex can be identified. This equilibrium between the two states helps to stabilize the protein-protein complex in solution. Interprotein contacts between the Rab5 switch regions and characteristic patches of GDI residues from the Rab binding platform (RBP) and the C-terminus coordinating region (CCR) reveal insight on the formation of such a stable complex. GDI binding to membrane-anchored Rab5(GDP) is initially mediated by the solvent accessible switch regions of the Rab-specific RBP. Formation of the membrane-associated Rab5(GDP):GDI complex induces a GDI reorientation to establish additional interactions with the Rab5 HVR. These results allow to devise a detailed structural model for the process of extraction of GG-Rab5(GDP) by GDI from the membrane and the dissociation from targeting factors and effector proteins prior to GDI binding.
Chamakh-Ayari, Rym; Chenik, Mehdi; Chakroun, Ahmed Sahbi; Bahi-Jaber, Narges; Aoun, Karim; Meddeb-Garnaoui, Amel
2017-04-17
We previously identified a Leishmania (L.) major large RAB GTPase (LmlRAB), a new atypical RAB GTPase protein. It is highly conserved in Leishmania species while displaying low level of homology with mammalian homologues. Leishmania small RAB GTPases proteins have been involved in regulation of exocytic and endocytic pathways whereas the role of large RAB GTPases proteins has not been characterized yet. We report here the immunogenicity of both recombinant rLmlRAB and rLmlRABC, in individuals with immunity against L. major or L. infantum. PBMC were isolated from individuals cured of L. major (CCLm) or from healthy individuals. The latter were subdivided into high or low IFN-γ responders. Healthy high IFN-γ responders, considered as asymptomatics, were living in an endemic area for L. major (HHRLm) or L. infantum (HHRLi). Healthy low IFN-γ responders (HLR) were considered as naïve controls. Cells from all volunteers were stimulated with rLmlRAB or rLmlRABC. Cytokines were analysed by CBA and ELISA and phenotypes of IFN-γ-producing cells were analysed by flow cytometry. Both rLmlRAB and rLmlRABC induced high significant levels of IFN-γ in CCLm, HHRLm and HHRLi groups. Phenotype analysis of rLmlRAB and rLmlRABC-stimulated T cells in CCLm individuals showed a significant increase in the percentage of specific IFN-γ-producing CD4+ and CD8+ T cells. rLmlRAB induced significant granzyme B levels in CCLm and HHRLm. Low but significant granzyme B levels were detected in naïve group. IL-10 was detected in immune and naïve individuals. We showed that rLmlRAB protein and its divergent carboxy-terminal part induced a predominant Th1 response in individuals immune to L. major or L. infantum. Our results suggest that rLmlRAB and rLmlRABC proteins are potential cross-species vaccine candidates against cutaneous and visceral leishmaniasis.
Zsögön, Agustin; Negrini, Ana Clarissa Alves; Peres, Lázaro Eustáquio Pereira; Nguyen, Hoa Thi; Ball, Marilyn C
2015-01-01
Bundle sheath extensions (BSEs) are key features of leaf structure whose distribution differs among species and ecosystems. The genetic control of BSE development is unknown, so BSE physiological function has not yet been studied through mutant analysis. We screened a population of ethyl methanesulfonate (EMS)-induced mutants in the genetic background of the tomato (Solanum lycopersicum) model Micro-Tom and found a mutant lacking BSEs. The leaf phenotype of the mutant strongly resembled the tomato mutant obscuravenosa (obv). We confirmed that obv lacks BSEs and that it is not allelic to our induced mutant, which we named obv-2. Leaves lacking BSEs had lower leaf hydraulic conductance and operated with lower stomatal conductance and correspondingly lower assimilation rates than wild-type leaves. This lower level of function occurred despite similarities in vein density, midvein vessel diameter and number, stomatal density, and leaf area between wild-type and mutant leaves, the implication being that the lack of BSEs hindered water dispersal within mutant leaves. Our results comparing near-isogenic lines within a single species confirm the hypothesised role of BSEs in leaf hydraulic function. They further pave the way for a genetic model-based analysis of a common leaf structure with deep ecological consequences. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.
Villagomez, Fabian R; Medina-Contreras, Oscar; Cerna-Cortes, Jorge Francisco; Patino-Lopez, Genaro
2018-05-28
The study of cancer has allowed researchers to describe some biological characteristics that tumor cells acquire during their development, known as the "hallmarks of cancer" but more research is needed to expand our knowledge about cancer biology and to generate new strategies of treatment. The role that RabGTPases might play in some hallmarks of cancer represents interesting areas of study since these proteins are frequently altered in cancer. However, their participation is not well known. Recently, Rab35was recognized as an oncogenic RabGTPase and and because of its association with different cellular functions, distinctly important in immune cells, a possible role of Rab35 in leukemia can be suggested. Nevertheless, the involvement of Rab35 in cancer remains poorly understood and its possible specific role in leukemia remains unknown. In this review, we analyze general aspects of the participation of RabGTPases in cancer, and especially, the plausible role of Rab35 in leukemia.
Role of Rab family GTPases and their effectors in melanosomal logistics.
Ohbayashi, Norihiko; Fukuda, Mitsunori
2012-04-01
Rab GTPases constitute a family of small GTPases that regulate a variety of membrane trafficking events in all eukaryotic cells by recruiting their specific effector molecules. Recent accumulating evidence indicates that members of the mammalian Rab small GTPase family are involved in certain physiological and pathological processes. In particular, functional impairments of specific Rab proteins, e.g. Rab38 and Rab27A, their regulators or their effectors cause pigmentation disorders in humans and coat colour variations in mice because such impairments cause defects in melanosomal logistics, i.e. defects in melanosome biogenesis and transport. Genetic and biochemical analyses of the gene products responsible for mammalian pigmentation disorders in the past decade have revealed that Rab-mediated endosomal transport systems and melanosome transport systems play crucial roles in the efficient darkening of mammalian hair and skin. In this article, we review current knowledge regarding melanosomal logistics, with particular focus on the roles of Rab small GTPases and their effectors.
Integrin trafficking regulated by Rab21 is necessary for cytokinesis.
Pellinen, Teijo; Tuomi, Saara; Arjonen, Antti; Wolf, Maija; Edgren, Henrik; Meyer, Hannelore; Grosse, Robert; Kitzing, Thomas; Rantala, Juha K; Kallioniemi, Olli; Fässler, Reinhard; Kallio, Marko; Ivaska, Johanna
2008-09-01
Adherent cells undergo remarkable changes in shape during cell division. However, the functional interplay between cell adhesion turnover and the mitotic machinery is poorly understood. The endo/exocytic trafficking of integrins is regulated by the small GTPase Rab21, which associates with several integrin alpha subunits. Here, we show that targeted trafficking of integrins to and from the cleavage furrow is required for successful cytokinesis, and that this is regulated by Rab21. Rab21 activity, integrin-Rab21 association, and integrin endocytosis are all necessary for normal cytokinesis, which becomes impaired when integrin-mediated adhesion at the cleavage furrow fails. We also describe a chromosomal deletion and loss of Rab21 gene expression in human cancer, which leads to the accumulation of multinucleate cells. Importantly, reintroduction of Rab21 rescued this phenotype. In conclusion, Rab21-regulated integrin trafficking is essential for normal cell division, and its defects may contribute to multinucleation and genomic instability, which are hallmarks of cancer.
Bouchet, Jérôme; McCaffrey, Mary W; Graziani, Andrea; Alcover, Andrés
2018-07-04
Several families of small GTPases regulate a variety of fundamental cellular processes, encompassing growth factor signal transduction, vesicular trafficking and control of the cytoskeleton. Frequently, their action is hierarchical and complementary, but much of the detail of their functional interactions remains to be clarified. It is well established that Rab family members regulate a variety of intracellular vesicle trafficking pathways. Moreover, Rho family GTPases are pivotal for the control of the actin and microtubule cytoskeleton. However, the interplay between these 2 types of GTPases has been rarely reported. We discuss here our recent findings showing that Rab11, a key regulator of endosomal recycling, and Rac1, a central actin cytoskeleton regulator involved in lamellipodium formation and cell migration, interplay on endosomes through the Rab11 effector FIP3. In the context of the rapidly reactive T lymphocytes, Rab11-Rac1 endosomal functional interplay is important to control cell shape changes and cell symmetry during lymphocyte spreading and immunological synapse formation and ultimately modulate T cell activation.
Cloning and analysis of 16 Rab genes from macronuclear DNA of Euplotes octocarinatus.
Zhi, Hui; Wang, Wei; Li, Lingyan; Chai, Baofeng; Sun, Yonghua; Liang, Aihua
2005-08-01
Rab proteins belong to the largest family of the Ras superfamily of small GTPase that play an important role in intracellular vesicular traffic. So far, almost 60 members of Rab family have been identified in mammalian cells. To further study the diversity and function of Rab protein in evolution, unicellular protozoa ciliates, Euplotes octocarinatus, were used in this study, Rab genes were screened by PCR method from macronuclear DNA of E. octocarinatus. Sixteen Rab genes were obtained. They share 87.6-99.5% identities. Highly conserved GTP-binding domains were found. There are some hot regions that diverse sharply in these genes as well.
The Rab11 Effector Protein FIP1 Regulates Adiponectin Trafficking and Secretion
Moreno-Navarrete, Jose Maria; Fernandez-Real, Jose Manuel; Mora, Silvia
2013-01-01
Adiponectin is an adipokine secreted by white adipocytes involved in regulating insulin sensitivity in peripheral tissues. Secretion of adiponectin in adipocytes relies on the endosomal system, however, the intracellular machinery involved in mediating adiponectin release is unknown. We have previously reported that intracellular adiponectin partially compartmentalizes with rab 5 and rab11, markers for the early/sorting and recycling compartments respectively. Here we have examined the role of several rab11 downstream effector proteins (rab11 FIPs) in regulating adiponectin trafficking and secretion. Overexpression of wild type rab11 FIP1, FIP3 and FIP5 decreased the amount of secreted adiponectin expressed in HEK293 cells, whereas overexpression of rab11 FIP2 or FIP4 had no effect. Furthermore shRNA-mediated depletion of FIP1 enhanced adiponectin release whereas knock down of FIP5 decreased adiponectin secretion. Knock down of FIP3 had no effect. In 3T3L1 adipocytes, endogenous FIP1 co-distributed intracellularly with endogenous adiponectin and FIP1 depletion enhanced adiponectin release without altering insulin-mediated trafficking of the glucose transporter Glut4. While adiponectin receptors internalized with transferrin receptors, there were no differences in transferrin receptor recycling between wild type and FIP1 depleted adipocytes. Consistent with its inhibitory role, FIP1 expression was decreased during adipocyte differentiation, by treatment with thiazolidinediones, and with increased BMI in humans. In contrast, FIP1 expression increased upon exposure of adipocytes to TNFα. In all, our findings identify FIP1 as a novel protein involved in the regulation of adiponectin trafficking and release. PMID:24040321
Chang, Wen-Qiang; Wu, Xiu-Zhen; Cheng, Ai-Xia; Zhang, Li; Ji, Mei; Lou, Hong-Xiang
2011-05-01
Retigeric acid B (RAB), a triterpene acid isolated from Lobaria kurokawae exerts antifungal effect. The present study was designed to elucidate the underlying mechanisms by which RAB regulates the proliferation and cell death of Candida albicans. We measured the metabolic activity of C. albicans with WST1 Cell Proliferation and Cytotoxicity Assay Kit, analyzed the cell cycle by flow cytometry, visualized the ultrastructure by transmission electron microscopy (TEM) and investigated the apoptosis and necrosis induced by RAB using confocal microscopy. The reactive oxygen species (ROS) accumulation was determined by spectrophotometry, flow cytometry and fluorescent microscopy. The mtΔψ was detected using flow cytometry. And the levels of intracellular cAMP and ATP were measured with cAMP ELISA and ATP Assay Kits, respectively. The proliferation of the yeasts was blocked in G(2)/M phase by a low dose of RAB treatment and in G(1) phase at high concentration. When cultured in phosphate buffered saline (PBS) deprived of energy source, yeasts displayed the phenotype of death caused by accumulated ROS, mtΔψ hyperpolarization and dramatic decrease in ATP level in the presence of high dose of RAB. RAB inhibits the growth of C. albicans by stimulating ROS production and reducing intracellular cAMP. The ROS accumulation, mtΔψ hyperpolarization, ATP depletion and damaged plasma membrane integrity together mediate cell death of C. albicans induced by RAB. Our findings provide a novel molecular mechanism for exploring possible applications of lichen derived metabolites in fighting fungal infection in humans. Copyright © 2011 Elsevier B.V. All rights reserved.
The small GTPase Arl8b regulates assembly of the mammalian HOPS complex on lysosomes
Khatter, Divya; Raina, Vivek B.; Dwivedi, Devashish; Sindhwani, Aastha; Bahl, Surbhi; Sharma, Mahak
2015-01-01
The homotypic fusion and protein sorting (HOPS) complex is a multi-subunit complex conserved from yeast to mammals that regulates late endosome and lysosome fusion. However, little is known about how the HOPS complex is recruited to lysosomes in mammalian cells. Here, we report that the small GTPase Arl8b, but not Rab7 (also known as RAB7A), is essential for membrane localization of the human (h)Vps41 subunit of the HOPS complex. Assembly of the core HOPS subunits to Arl8b- and hVps41-positive lysosomes is guided by their subunit–subunit interactions. RNA interference (RNAi)-mediated depletion of hVps41 resulted in the impaired degradation of EGFR that was rescued upon expression of wild-type but not an Arl8b-binding-defective mutant of hVps41, suggesting that Arl8b-dependent lysosomal localization of hVps41 is required for its endocytic function. Furthermore, we have also identified that the Arl8b effector SKIP (also known as PLEKHM2) interacts with and recruits HOPS subunits to Arl8b and kinesin-positive peripheral lysosomes. Accordingly, RNAi-mediated depletion of SKIP impaired lysosomal trafficking and degradation of EGFR. These findings reveal that Arl8b regulates the association of the human HOPS complex with lysosomal membranes, which is crucial for the function of this tethering complex in endocytic degradation. PMID:25908847
Endocytosis in the Shiitake Mushroom Lentinula edodes and Involvement of GTPase LeRAB7▿
Lee, Ming Tsung; Szeto, Carol Ying Ying; Ng, Tak Pan; Kwan, Hoi Shan
2007-01-01
Endocytosis is the process by which substrates enter a cell without passing through the plasma membrane but rather invaginate the cell membrane and form intracellular vesicles. Rab7 regulates endocytic trafficking between early and late endosomes and between late endosomes and lysosomes. LeRab7 in Lentinula edodes is strongly homologous to Rab7 in Homo sapiens. Receptors for activated C kinase-1 (LeRACK1) and Rab5 GTPase (LeRAB5) were isolated as interacting partners of LeRab7, and the interactions were confirmed by in vivo and in vitro protein interaction assays. The three genes showed differential expression in the various developmental stages of the mushroom. In situ hybridization showed that the three transcripts were localized in regions of active growth, such as the outer region of trama cells, and the subhymenium of the hymenophore of mature fruiting bodies and the prehymenophore of young fruiting bodies. The existence of endocytosis in the mycelium and hymenophores was confirmed by the internalization of FM4-64. LeRAB7 was partially colocalized with the AM4-64 and was located in the late endocytic pathway. This is the first report of the presence of endocytosis in homobasidiomycetes. LeRAB7, LeRAB5, and LeRACK1 may contribute to the growth of L. edodes and cell differentiation in hymenophores. PMID:17921351
Rab7: roles in membrane trafficking and disease.
Zhang, Ming; Chen, Li; Wang, Shicong; Wang, Tuanlao
2009-06-01
The endocytosis pathway controls multiple cellular and physiological events. The lysosome is the destination of newly synthesized lysosomal hydrolytic enzymes. Internalized molecules or particles are delivered to the lysosome for degradation through sequential transport along the endocytic pathway. The endocytic pathway is also emerging as a signalling platform, in addition to the well-known role of the plasma membrane for signalling. Rab7 is a late endosome-/lysosome-associated small GTPase, perhaps the only lysosomal Rab protein identified to date. Rab7 plays critical roles in the endocytic processes. Through interaction with its partners (including upstream regulators and downstream effectors), Rab7 participates in multiple regulation mechanisms in endosomal sorting, biogenesis of lysosome [or LRO (lysosome-related organelle)] and phagocytosis. These processes are closely related to substrates degradation, antigen presentation, cell signalling, cell survival and microbial pathogen infection. Consistently, mutations or dysfunctions of Rab7 result in traffic disorders, which cause various diseases, such as neuropathy, cancer and lipid metabolism disease. Rab7 also plays important roles in microbial pathogen infection and survival, as well as in participating in the life cycle of viruses. Here, we give a brief review on the central role of Rab7 in endosomal traffic and summarize the studies focusing on the participation of Rab7 in disease pathogenesis. The underlying mechanism governed by Rab7 and its partners will also be discussed.
Intracellular Trafficking Network of Protein Nanocapsules: Endocytosis, Exocytosis and Autophagy.
Zhang, Jinxie; Zhang, Xudong; Liu, Gan; Chang, Danfeng; Liang, Xin; Zhu, Xianbing; Tao, Wei; Mei, Lin
2016-01-01
The inner membrane vesicle system is a complex transport system that includes endocytosis, exocytosis and autophagy. However, the details of the intracellular trafficking pathway of nanoparticles in cells have been poorly investigated. Here, we investigate in detail the intracellular trafficking pathway of protein nanocapsules using more than 30 Rab proteins as markers of multiple trafficking vesicles in endocytosis, exocytosis and autophagy. We observed that FITC-labeled protein nanoparticles were internalized by the cells mainly through Arf6-dependent endocytosis and Rab34-mediated micropinocytosis. In addition to this classic pathway: early endosome (EEs)/late endosome (LEs) to lysosome, we identified two novel transport pathways: micropinocytosis (Rab34 positive)-LEs (Rab7 positive)-lysosome pathway and EEs-liposome (Rab18 positive)-lysosome pathway. Moreover, the cells use slow endocytosis recycling pathway (Rab11 and Rab35 positive vesicles) and GLUT4 exocytosis vesicles (Rab8 and Rab10 positive) transport the protein nanocapsules out of the cells. In addition, protein nanoparticles are observed in autophagosomes, which receive protein nanocapsules through multiple endocytosis vesicles. Using autophagy inhibitor to block these transport pathways could prevent the degradation of nanoparticles through lysosomes. Using Rab proteins as vesicle markers to investigation the detail intracellular trafficking of the protein nanocapsules, will provide new targets to interfere the cellular behaver of the nanoparticles, and improve the therapeutic effect of nanomedicine.
Roche, John P.; Alsharif, Peter; Graf, Ethan R.
2015-01-01
At synapses, the release of neurotransmitter is regulated by molecular machinery that aggregates at specialized presynaptic release sites termed active zones. The complement of active zone proteins at each site is a determinant of release efficacy and can be remodeled to alter synapse function. The small GTPase Rab3 was previously identified as playing a novel role that controls the distribution of active zone proteins to individual release sites at the Drosophila neuromuscular junction. Rab3 has been extensively studied for its role in the synaptic vesicle cycle; however, the mechanism by which Rab3 controls active zone development remains unknown. To explore this mechanism, we conducted a mutational analysis to determine the molecular and structural requirements of Rab3 function at Drosophila synapses. We find that GTP-binding is required for Rab3 to traffick to synapses and distribute active zone components across release sites. Conversely, the hydrolytic activity of Rab3 is unnecessary for this function. Through a structure-function analysis we identify specific residues within the effector-binding switch regions that are required for Rab3 function and determine that membrane attachment is essential. Our findings suggest that Rab3 controls the distribution of active zone components via a vesicle docking mechanism that is consistent with standard Rab protein function. PMID:26317909
Sun, Ying-Jie; Nishikawa, Kaori; Yuda, Hideki; Wang, Yu-Lai; Osaka, Hitoshi; Fukazawa, Nobuna; Naito, Akira; Kudo, Yoshihisa; Wada, Keiji; Aoki, Shunsuke
2006-09-01
With DNA microarrays, we identified a gene, termed Solo, that is downregulated in the cerebellum of Purkinje cell degeneration mutant mice. Solo is a mouse homologue of rat Trio8-one of multiple Trio isoforms recently identified in rat brain. Solo/Trio8 contains N-terminal sec14-like and spectrin-like repeat domains followed by a single guanine nucleotide exchange factor 1 (GEF1) domain, but it lacks the C-terminal GEF2, immunoglobulin-like, and kinase domains that are typical of Trio. Solo/Trio8 is predominantly expressed in Purkinje neurons of the mouse brain, and expression begins following birth and increases during Purkinje neuron maturation. We identified a novel C-terminal membrane-anchoring domain in Solo/Trio8 that is required for enhanced green fluorescent protein-Solo/Trio8 localization to early endosomes (positive for both early-endosome antigen 1 [EEA1] and Rab5) in COS-7 cells and primary cultured neurons. Solo/Trio8 overexpression in COS-7 cells augmented the EEA1-positive early-endosome pool, and this effect was abolished via mutation and inactivation of the GEF domain or deletion of the C-terminal membrane-anchoring domain. Moreover, primary cultured neurons transfected with Solo/Trio8 showed increased neurite elongation that was dependent on these domains. These results suggest that Solo/Trio8 acts as an early-endosome-specific upstream activator of Rho family GTPases for neurite elongation of developing Purkinje neurons.
The content of compound conditioning.
Harris, Justin A; Andrew, Benjamin J; Livesey, Evan J
2012-04-01
In three experiments using Pavlovian conditioning of magazine approach, rats were trained with a compound stimulus, AB, and were concurrently trained with stimulus B on its own. The reinforcement rate of B, rB, was either 1/2, 2/3, or 2/5 of rAB. After extended training, the conditioning strength of A was assessed using probe trials in which A was presented alone. Responding during A was compared with that during AB, B, and a third stimulus, C, for which rC = rAB - rB. In each experiment, the rats' response rate during A was almost identical to that during C (and during B, when rB = 1/2rAB). This suggests that, during AB conditioning, the rats had learned about rA as being equal to [rAB - rB], and implies that the content of their learning was a linear function of r. The findings provide strong support for rate-based models of conditioning (e.g., Gallistel & Gibbon, 2000). They are also consistent with the associative account of learning defined in the Rescorla and Wagner (1972) model, but only if the learning rate during reinforcement equals that during nonreinforcement. (c) 2012 APA, all rights reserved.
Liu, Zhao-liang; Luo, Cong; Dong, Long; Van Toan, Can; Wei, Peng-xiao; He, Xin-hua
2014-04-25
The Rab family, the largest branch of Ras small GTPases, plays a crucial role in the vesicular transport in plants. The members of Rab family act as molecular switches that regulate the fusion of vesicles with target membranes through conformational changes. However, little is known about the Rab5 gene involved in fruit ripening and stress response. In this study, the MiRab5 gene was isolated from stress-induced Mangifera indica. The full-length cDNA sequence was 984bp and contained an open reading frame of 600bp, which encoded a 200 amino acid protein with a molecular weight of 21.83kDa and a theoretical isoelectric point of 6.99. The deduced amino acid sequence exhibited high homology with tomato (91% similarity) and contains all five characteristic Rab motifs. Real-time quantitative RT-PCR analysis demonstrated that MiRab5 was ubiquitously expressed in various mango tree tissues at different levels. The expression of MiRab5 was up-regulated during later stages of fruit ripening. Moreover, MiRab5 was generally up-regulated in response to various abiotic stresses (cold, salinity, and PEG treatments). Recombinant MiRab5 protein was successfully expressed and purified. SDS-PAGE and western blot analysis indicated that the expressed protein was recognized by the anti-6-His antibody. These results provide insights into the role of the MiRab5 gene family in fruit ripening and stress responses in the mango plant. Copyright © 2014 Elsevier B.V. All rights reserved.
Components of the Engulfment Machinery Have Distinct Roles in Corpse Processing
Meehan, Tracy L.; Joudi, Tony F.; Timmons, Allison K.; Taylor, Jeffrey D.; Habib, Corey S.; Peterson, Jeanne S.; Emmanuel, Shanan; Franc, Nathalie C.; McCall, Kimberly
2016-01-01
Billions of cells die in our bodies on a daily basis and are engulfed by phagocytes. Engulfment, or phagocytosis, can be broken down into five basic steps: attraction of the phagocyte, recognition of the dying cell, internalization, phagosome maturation, and acidification. In this study, we focus on the last two steps, which can collectively be considered corpse processing, in which the engulfed material is degraded. We use the Drosophila ovarian follicle cells as a model for engulfment of apoptotic cells by epithelial cells. We show that engulfed material is processed using the canonical corpse processing pathway involving the small GTPases Rab5 and Rab7. The phagocytic receptor Draper is present on the phagocytic cup and on nascent, phosphatidylinositol 3-phosphate (PI(3)P)- and Rab7-positive phagosomes, whereas integrins are maintained on the cell surface during engulfment. Due to the difference in subcellular localization, we investigated the role of Draper, integrins, and downstream signaling components in corpse processing. We found that some proteins were required for internalization only, while others had defects in corpse processing as well. This suggests that several of the core engulfment proteins are required for distinct steps of engulfment. We also performed double mutant analysis and found that combined loss of draper and αPS3 still resulted in a small number of engulfed vesicles. Therefore, we investigated another known engulfment receptor, Crq. We found that loss of all three receptors did not inhibit engulfment any further, suggesting that Crq does not play a role in engulfment by the follicle cells. A more complete understanding of how the engulfment and corpse processing machinery interact may enable better understanding and treatment of diseases associated with defects in engulfment by epithelial cells. PMID:27347682
Ananphongmanee, Vorawit; Srisala, Jiraporn; Sritunyalucksana, Kallaya; Boonchird, Chuenchit
2015-01-01
Cell surface display using the yeasts Saccharomyces cerevisiae and Pichia pastoris has been extensively developed for application in bioindustrial processes. Due to the rigid structure of their cell walls, a number of proteins have been successfully displayed on their cell surfaces. It was previously reported that the viral binding protein Rab7 from the giant tiger shrimp Penaeus monodon (PmRab7) and its binding partner envelope protein VP28 of white spot syndrome virus (WSSV) could independently protect shrimp against WSSV infection. Thus, we aimed to display these two proteins independently on the cell surfaces of 2 yeast clones with the ultimate goal of using a mixture of the two clones as an orally deliverable, antiviral agent to protect shrimp against WSSV infection. PmRab7 and VP28 were modified by N-terminal tagging to the C-terminal half of S. cerevisiae α-agglutinin. DNA fragments, harboring fused-gene expression cassettes under control of an alcohol oxidase I (AOX1) promoter were constructed and used to transform the yeast cells. Immunofluorescence microscopy with antibodies specific to both proteins demonstrated that mutated PmRab7 (mPmRab7) and partial VP28 (pVP28) were localized on the cell surfaces of the respective clones, and fluorescence intensity for each was significantly higher than that of control cells by flow cytometry. Enzyme-linked immunosorbant assay (ELISA) using cells displaying mPmRab7 or pVP28 revealed that the binding of specific antibodies for each was dose-dependent, and could be saturated. In addition, the binding of mPmRab7-expressing cells with free VP28, and vice versa was dose dependent. Binding between the two surface-expressed proteins was confirmed by an assay showing agglutination between cells expressing complementary mPmRab7 and pVP28. In summary, our genetically engineered P. pastoris can display biologically active mPmRab7 and pVP28 and is now ready for evaluation of efficacy in protecting shrimp against WSSV by oral administration.
Fine structure of OXI1, the mitochondrial gene coding for subunit II of yeast cytochrome c oxidase.
Weiss-Brummer, B; Guba, R; Haid, A; Schweyen, R J
1979-12-01
Genetic and biochemical studies have been performed with 110 mutants which are defective in cytochrome a·a3 and map in the regions on mit DNA previously designated OXI1 and OXI2. With 88 mutations allocated to OXI1 fine structure mapping was achieved by the analysis of rho (-) deletions. The order of six groups of mutational sites (A 1, A2, B 1, B2, C 1, C2) thus determined was confirmed by oxi i x oxi j recombination analysis.Analysis of mitochondrially translated polypeptides of oxil mutants by SDS-polyacrylamide electrophoresis reveals three classes of mutant patterns: i) similar to wild-tpye (19 mutants); ii) lacking SU II of cytochrome c oxidase (53 mutants); iii) lacking this subunit and exhibiting a single new polypeptide of lower Mr (16 mutants). Mutations of each of these classes are scattered over the OXI1 region without any detectable clustering; this is consistent with the assumption that all oxil mutations studied are within the same gene.New polypeptides observed in oxil mutants of class iii) vary in Mr in the range from 10,500 to 33,000. Those of Mr 17,000 to 33,000 are shown to be antigenically related to subunit II of cytochrome c oxidase. Colinearity is established between the series of new polypeptides of Mr values increasing from 10,500 to 31,500 and the order of the respective mutational sites on the map, e.g. mutations mapping in A 1 generate the smallest and mutations mapping in C2 the largest mutant fragments.From these data we conclude that i) all mutations allocated to the OXI1 region are in the same gene; ii) this gene codes for subunit II of cytochrome c oxidase; iii) the direction of translation is from CAP to 0X12. Out of 19 mutants allocated to OXI2 three exhibit a new polypeptide; these and all the other oxi2 mutants lack subunit III of cytochrome oxidase. This result provides preliminary evidence that the OXI2 region harbours the structural gene for this subunit III.
Recent evidence has established a role for the small GTPase RAB25, as well as related effector proteins, in enacting both pro-oncogenic and anti-oncogenic phenotypes in specific cellular contexts. Here we report the development of all-hydrocarbon stabilized peptides derived from the RAB-binding FIP-family of proteins to target RAB25. Relative to unmodified peptides, optimized stapled peptides exhibit increased structural stability, binding affinity, cell permeability, and inhibition of RAB25:FIP complex formation.
Ramlal, Shylaja; Mondal, Bhairab; Lavu, Padma Sudharani; N, Bhavanashri; Kingston, Joseph
2018-01-16
In the present study, a high throughput whole cell SELEX method has been applied successfully in selecting specific aptamers against whole cells of Staphylococcus aureus, a potent food poisoning bacterium. A total ten rounds of SELEX and three rounds of intermittent counter SELEX, was performed to obtain specific aptamers. Obtained oligonucleotide pool were cloned, sequenced and then grouped into different families based on their primary sequence homology and secondary structure similarity. FITC labeled sequences from different families were selected for further characterization via flow cytometry analysis. The dissociation constant (K d ) values of specific and higher binders ranged from 34 to 128nM. Binding assays to assess the selectivity of aptamer RAB10, RAB 20, RAB 28 and RAB 35 demonstrated high affinity against S. aureus and low binding affinity for other bacteria. To demonstrate the potential use of the aptamer a sensitive dual labeled sandwich detection system was developed using aptamer RAB10 and RAB 35 with a detection limit of 10 2 CFU/mL. Furthermore detection from mixed cell population and spiked sample emphasized the robustness as well as applicability of the developed method. Altogether, the established assay could be a reliable detection tool for the routine investigation of Staphylococcus aureus in samples from food and clinical sources. Copyright © 2017. Published by Elsevier B.V.
Kasai, Kazuo; Ohara-Imaizumi, Mica; Takahashi, Noriko; Mizutani, Shin; Zhao, Shengli; Kikuta, Toshiteru; Kasai, Haruo; Nagamatsu, Shinya; Gomi, Hiroshi; Izumi, Tetsuro
2005-02-01
The monomeric small GTPase Rab27a is specifically localized on both secretory granules and lysosome-related organelles. Although natural mutations of the Rab27a gene in human Griscelli syndrome and in ashen mice cause partial albinism and immunodeficiency reflecting the dysfunction of lysosome-related organelles, phenotypes resulting from the defective exocytosis of secretory granules have not been reported. To explore the roles of Rab27a in secretory granules, we analyzed insulin secretion profiles in ashen mice. Ashen mice showed glucose intolerance after a glucose load without signs of insulin resistance in peripheral tissues or insulin deficiency in the pancreas. Insulin secretion from isolated islets was decreased specifically in response to high glucose concentrations but not other nonphysiological secretagogues such as high K+ concentrations, forskolin, or phorbol ester. Neither the intracellular Ca2+ concentration nor the dynamics of fusion pore opening after glucose stimulation were altered. There were, however, marked reductions in the exocytosis from insulin granules predocked on the plasma membrane and in the replenishment of docked granules during glucose stimulation. These results provide the first genetic evidence to our knowledge for the role of Rab27a in the exocytosis of secretory granules and suggest that the Rab27a/effector system mediates glucose-specific signals for the exocytosis of insulin granules in pancreatic beta cells.
Bultema, Jarred J.; Di Pietro, Santiago M.
2013-01-01
Lysosome-related organelles (LROs) exist in specialized cells to serve specific functions and typically co-exist with conventional lysosomes. The biogenesis of LROs is known to utilize much of the common protein machinery used in the transport of integral membrane proteins to lysosomes. Consequently, an outstanding question in the field has been how specific cargoes are trafficked to LROs instead of lysosomes, particularly in cells that simultaneously produce both organelles. One LRO, the melanosome, is responsible for the production of the pigment melanin and has long been used as a model system to study the formation of specialized LROs. Importantly, melanocytes, where melanosomes are synthesized, are a cell type that also produces lysosomes and must therefore segregate traffic to each organelle. Two small GTPases, Rab32 and Rab38, are key proteins in the biogenesis of melanosomes and were recently shown to redirect the ubiquitous machinery—BLOC-2, AP-1 and AP-3—to traffic specialized cargoes to melanosomes in melanocytes. In addition, the study revealed Rab32 and Rab38 have both redundant and unique roles in the trafficking of melanin-producing enzymes and overall melanosome biogenesis. Here we review these findings, integrate them with previous knowledge on melanosome biogenesis and discuss their implications for biogenesis of other LROs. PMID:23247405
Rab22a enhances CD147 recycling and is required for lung cancer cell migration and invasion.
Zhou, Yang; Wu, Bo; Li, Jiang-Hua; Nan, Gang; Jiang, Jian-Li; Chen, Zhi-Nan
2017-08-01
Rab22a is a member of the Ras-related small GTPase family, which plays a key role in regulating the recycling of cargo proteins entering cells through clathrin-independent endocytosis (CIE). Rab22a is overexpressed in different cancer types, including liver cancer, malignant melanoma, ovarian cancer and osteosarcoma. However, its oncogenic role remains unknown. In this study, we found that silencing of Rab22a suppressed the migration and invasion of lung cancer cells. Furthermore, Rab22a interacts with CD147, and knockdown of Rab22a blocks CD147 recycling and promotes CD147 degradation. Taken together, our findings indicate that Rab22a enhances recycling of CD147, which is required for lung cancer cell migration and invasion,and targeting CD147 recycling may be a rational strategy for lung cancer therapy. Copyright © 2017. Published by Elsevier Inc.
32 CFR 202.9 - Conducting RAB meetings.
Code of Federal Regulations, 2013 CFR
2013-07-01
... public will have a designated time on the agenda to speak to the RAB committee as a whole. (b) Nature of...) MISCELLANEOUS RESTORATION ADVISORY BOARDS Operating Requirements § 202.9 Conducting RAB meetings. (a) Public participation. RAB meetings shall be open to the public. (1) The installation co-chair shall prepare and publish...
High Rab27A expression indicates favorable prognosis in CRC.
Shi, Chuanbing; Yang, Xiaojun; Ni, Yijiang; Hou, Ning; Xu, Li; Zhan, Feng; Zhu, Huijun; Xiong, Lin; Chen, Pingsheng
2015-06-13
Rab27A is a peculiar member in Rab family and has been suggested to play essential roles in the development of human cancers. However, the association between Rab27A expression and clinicopathological characteristics of colorectal cancer (CRC) has not been elucidated yet. One-step quantitative real-time polymerase chain reaction (qPCR) test with 18 fresh-frozen CRC samples and immunohistochemistry (IHC) analysis in 112 CRC cases were executed to evaluate the relationship between Rab27A expression and the clinicopathological features of CRC. Cox regression and Kaplan-Meier survival analyses were performed to identify the prognostic factors for 112 CRC patients. The results specified that the expression levels of Rab27A mRNA and protein were significantly higher in CRC tissues than that in matched non-cancerous tissues, in both qPCR test (p = 0.029) and IHC analysis (p = 0.020). The IHC data indicated that the Rab27A protein expression in CRC was statistically correlated with lymph node metastasis (p = 0.022) and TNM stage (p = 0.026). Cox multi-factor analysis and Kaplan-Meier method suggested Rab27A protein expression (p = 0.012) and tumor differentiation (p = 0.004) were significantly associated with the overall survival of CRC patients. The data indicated the differentiate expression of Rab27A in CRC tissues and matched non-cancerous tissues. Rab27A may be used as a valuable prognostic biomarker for CRC patients.
Finetti, Francesca; Patrussi, Laura; Galgano, Donatella; Cassioli, Chiara; Perinetti, Giuseppe; Pazour, Gregory J.; Baldari, Cosima T.
2015-01-01
ABSTRACT IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11+ endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR+ endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis. PMID:26034069
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terawaki, Shin-ichi, E-mail: terawaki@gunma-u.ac.jp; SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148; Yoshikane, Asuka
Bicaudal-D1 (BICD1) is an α-helical coiled-coil protein mediating the attachment of specific cargo to cytoplasmic dynein. It plays an essential role in minus end-directed intracellular transport along microtubules. The third C-terminal coiled-coil region of BICD1 (BICD1 CC3) has an important role in cargo sorting, including intracellular vesicles associating with the small GTPase Rab6 and the nuclear pore complex Ran binding protein 2 (RanBP2), and inhibiting the association with cytoplasmic dynein by binding to the first N-terminal coiled-coil region (CC1). The crystal structure of BICD1 CC3 revealed a parallel homodimeric coiled-coil with asymmetry and complementary knobs-into-holes interactions, differing from Drosophila BicDmore » CC3. Furthermore, our binding study indicated that BICD1 CC3 possesses a binding surface for two distinct cargos, Rab6 and RanBP2, and that the CC1-binding site overlaps with the Rab6-binding site. These findings suggest a molecular basis for cargo recognition and autoinhibition of BICD proteins during dynein-dependent intracellular retrograde transport. - Highlights: • BICD1 CC3 is a parallel homodimeric coiled-coil with axial asymmetry. • The coiled-coil packing of BICD1 CC3 is adapted to the equivalent heptad position. • BICD1 CC3 has distinct binding sites for two classes of cargo, Rab6 and RanBP2. • The CC1-binding site of BICD1 CC3 overlaps with the Rab6-binding site.« less
USDA-ARS?s Scientific Manuscript database
Previous studies have shown that a null mutant of Arabidopsis that lacks Toc159 receptor is impaired in chloroplast biogenesis and incapable of importing photosynthetic proteins. The mutant is referred to as plastid protein import 2 or ppi2, and has an albino phenotype. In this study, we measured ...
Wyroba, E.; Kwaśniak, P.; Miller, K.; Kobyłecki, K.; Osińska, M.
2016-01-01
Protein products of paralogous genes resulting from whole genome duplication may acquire new functions. The role of post-translational modifications (PTM) in proper targeting of Paramecium Rab7b paralogue (distinct from that of Rab7a directly involved in phagocytosis) was studied using point mutagenesis, proteomic analysis and double immunofluorescence after in vivo electroporation of the mutagenized protein. Here we show that substitution of Thr200 by Ala diminished the incorporation of [P32] by 37% and of [C14-]UDP-glucose by 24% into recombinant Rab7b_200 in comparison to the non-mutagenized control. Double confocal imaging revealed that Rab7b_200 was mistargeted upon electroporation into living cells in contrast to non-mutagenized recombinant Rab7b correctly incorporated in the cytostome area. Using nano LC-MS/MS to compare the peptide map of Rab7b with that after deglycosylation with a mixture of five enzymes of different specificity we identified a peptide ion at m/z=677.63+ representing a glycan group attached to Thr200. Based on its mass and quantitative assays with [P32] and [C14]UDP-glucose, the suggested composition of the adduct attached to Thr200 is (Hex)1(HexNAc)1(Phos)3 or (HexNAc)1 (Deoxyhexose)1 (Phos)1 (HexA)1. These data indicate that PTM of Thr200 located in the hypervariable C-region of Paramecium octaurelia Rab7b is crucial for the proper localization/function of this protein. Moreover, the two Rab7 paralogues differ also in another PTM: substantially more phosphorylated amino acid residues are in Rab7b than in Rab7a. PMID:27349314
Prakoeswa, Cita Rosita Sigit; Wahyuni, Ratna; Iswahyudi; Adriaty, Dinar; Yusuf, Irawan; Sutjipto; Agusni, Indropo; Izumi, Shinzo
2016-06-01
Phagolysosome process in macrophage of leprosy patients' is important in the early phase of eliminating Mycobacterium leprae invasion. This study was to clarify the involvement of Rab5, Rab7, and trytophan aspartate-containing coat protein (TACO) from host macrophage and leprae lipoarabinomannan (Lep-LAM) and phenolic glycolipid-1 (PGL-1) from M. leprae cell wall as the reflection of phagolysosome process in relation to 16 subunit ribosomal RNA (16S rRNA) M. leprae as a marker of viability of M. leprae. Using a cross sectional design study, skin biopsies were obtained from 47 newly diagnosed, untreated leprosy at Dr Soetomo Hospital, Surabaya, Indonesia. RNA isolation and complementary DNA synthesis were performed. Samples were divided into two groups: 16S rRNA M. leprae-positive and 16S rRNA M. leprae-negative. The expressions of Rab5, Rab7, TACO, Lep-LAM, and PGL-1 were assessed with an immunohistochemistry technique. Using Mann-Whitney U analysis, a significant difference in the expression profile of Rab5, Rab7, Lep-LAM, and PGL-1 was found (p<.05), but there was no significant difference of TACO between the two groups (p>.05). Spearman analysis revealed that there was a significant correlation between the score of Rab5, Rab7, Lep-LAM, and PGL-1 and the score of 16S rRNA M. leprae (p<.05). In M. leprae infection, Rab5, Rab7, and Lep-LAM play important roles in the failure of phagolysosome process via a membrane trafficking pathway, while PGL-1 plays a role via blocking lysosomal activities. These inventions might be used for the development of an early diagnostic device in the future. Copyright © 2016 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.
Involvement of Two Plasmids in the Degradation of Carbaryl by Arthrobacter sp. Strain RC100
Hayatsu, Masahito; Hirano, Motoko; Nagata, Tadahiro
1999-01-01
A bacterium capable of utilizing carbaryl (1-naphthyl N-methylcarbamate) as the sole carbon source was isolated from carbaryl-treated soil. This bacterium was characterized taxonomically as Arthrobacter and was designated strain RC100. RC100 hydrolyzes the N-methylcarbamate linkage to 1-naphthol, which was further metabolized via salicylate and gentisate. Strain RC100 harbored three plasmids (designated pRC1, pRC2, and pRC3). Mutants unable to degrade carbaryl arose at a high frequency after treating the culture with mitomycin C. All carbaryl-hydrolysis-deficient mutants (Cah−) lacked pRC1, and all 1-naphthol-utilization-deficient mutants (Nat−) lacked pRC2. The plasmid-free strain RC107 grew on gentisate as a carbon source. These two plasmids could be transferred to Cah− mutants or Nat− mutants by conjugation, resulting in the restoration of the Cah and Nah phenotypes. PMID:10049857
Hook2 is involved in the morphogenesis of the primary cilium
Baron Gaillard, Carole L.; Pallesi-Pocachard, Emilie; Massey-Harroche, Dominique; Richard, Fabrice; Arsanto, Jean-Pierre; Chauvin, Jean-Paul; Lecine, Patrick; Krämer, Helmut; Borg, Jean-Paul; Le Bivic, André
2011-01-01
Primary cilia originate from the centrosome and play essential roles in several cellular, developmental, and pathological processes, but the underlying mechanisms of ciliogenesis are not fully understood. Given the involvement of the adaptor protein Hook2 in centrosomal homeostasis and protein transport to pericentrosomal aggresomes, we explored its role in ciliogenesis. We found that in human retinal epithelial cells, Hook2 localizes at the Golgi apparatus and centrosome/basal body, a strategic partitioning for ciliogenesis. Of importance, Hook2 depletion disrupts ciliogenesis at a stage before the formation of the ciliary vesicle at the distal tip of the mother centriole. Using two hybrid and immunoprecipitation assays and a small interfering RNA strategy, we found that Hook2 interacts with and stabilizes pericentriolar material protein 1 (PCM1), which was reported to be essential for the recruitment of Rab8a, a GTPase that is believed to be crucial for membrane transport to the primary cilium. Of interest, GFP::Rab8a coimmunoprecipitates with endogenous Hook2 and PCM1. Finally, GFP::Rab8a can overcome Hook2 depletion, demonstrating a functional interaction between Hook2 and these two important regulators of ciliogenesis. The data indicate that Hook2 interacts with PCM1 in a complex that also contains Rab8a and regulates a limiting step required for further initiation of ciliogenesis after centriole maturation. PMID:21998199
The membrane trafficking and functionality of the K+-Cl- co-transporter KCC2 is regulated by TGF-β2.
Roussa, Eleni; Speer, Jan Manuel; Chudotvorova, Ilona; Khakipoor, Shokoufeh; Smirnov, Sergei; Rivera, Claudio; Krieglstein, Kerstin
2016-09-15
Functional activation of the neuronal K(+)-Cl(-) co-transporter KCC2 (also known as SLC12A5) is a prerequisite for shifting GABAA responses from depolarizing to hyperpolarizing during development. Here, we introduce transforming growth factor β2 (TGF-β2) as a new regulator of KCC2 membrane trafficking and functional activation. TGF-β2 controls membrane trafficking, surface expression and activity of KCC2 in developing and mature mouse primary hippocampal neurons, as determined by immunoblotting, immunofluorescence, biotinylation of surface proteins and KCC2-mediated Cl(-) extrusion. We also identify the signaling pathway from TGF-β2 to cAMP-response-element-binding protein (CREB) and Ras-associated binding protein 11b (Rab11b) as the underlying mechanism for TGF-β2-mediated KCC2 trafficking and functional activation. TGF-β2 increases colocalization and interaction of KCC2 with Rab11b, as determined by 3D stimulated emission depletion (STED) microscopy and co-immunoprecipitation, respectively, induces CREB phosphorylation, and enhances Rab11b gene expression. Loss of function of either CREB1 or Rab11b suppressed TGF-β2-dependent KCC2 trafficking, surface expression and functionality. Thus, TGF-β2 is a new regulatory factor for KCC2 functional activation and membrane trafficking, and a putative indispensable molecular determinant for the developmental shift of GABAergic transmission. © 2016. Published by The Company of Biologists Ltd.
Ishikura, S; Koshkina, A; Klip, A
2008-01-01
Insulin stimulates glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). GLUT4 cycles between the intracellular compartments and the plasma membrane. GLUT4 traffic-regulating insulin signals are largely within the insulin receptor-insulin receptor substrate-phosphatidylinositol 3-kinase (IR-IRS-PI3K) axis. In muscle cells, insulin signal bifurcates downstream of the PI3K into one arm leading to the activation of the Ser/Thr kinases Akt and atypical protein kinase C, and another leading to the activation of Rho family protein Rac1 leading to actin remodelling. Activated Akt inactivates AS160, a GTPase-activating protein for Rab family small G proteins. Here we review the roles of Rab and Rho proteins, particularly Rab substrates of AS160 and Rac1, in insulin-stimulated GLUT4 traffic. We discuss: (1) how distinct steps in GLUT4 traffic may be regulated by discrete Rab proteins, and (2) the importance of Rac1 activation in insulin-induced actin remodelling in muscle cells, a key element for the net gain in surface GLUT4.
Rab32 modulates apoptosis onset and mitochondria-associated membrane (MAM) properties.
Bui, Michael; Gilady, Susanna Y; Fitzsimmons, Ross E B; Benson, Matthew D; Lynes, Emily M; Gesson, Kevin; Alto, Neal M; Strack, Stefan; Scott, John D; Simmen, Thomas
2010-10-08
The mitochondria-associated membrane (MAM) has emerged as an endoplasmic reticulum (ER) signaling hub that accommodates ER chaperones, including the lectin calnexin. At the MAM, these chaperones control ER homeostasis but also play a role in the onset of ER stress-mediated apoptosis, likely through the modulation of ER calcium signaling. These opposing roles of MAM-localized chaperones suggest the existence of mechanisms that regulate the composition and the properties of ER membrane domains. Our results now show that the GTPase Rab32 localizes to the ER and mitochondria, and we identify this protein as a regulator of MAM properties. Consistent with such a role, Rab32 modulates ER calcium handling and disrupts the specific enrichment of calnexin on the MAM, while not affecting the ER distribution of protein-disulfide isomerase and mitofusin-2. Furthermore, Rab32 determines the targeting of PKA to mitochondrial and ER membranes and through its overexpression or inactivation increases the phosphorylation of Bad and of Drp1. Through a combination of its functions as a PKA-anchoring protein and a regulator of MAM properties, the activity and expression level of Rab32 determine the speed of apoptosis onset.
Rijpma, Sanna R; van der Velden, Maarten; González-Pons, Maria; Annoura, Takeshi; van Schaijk, Ben C L; van Gemert, Geert-Jan; van den Heuvel, Jeroen J M W; Ramesar, Jai; Chevalley-Maurel, Severine; Ploemen, Ivo H; Khan, Shahid M; Franetich, Jean-Francois; Mazier, Dominique; de Wilt, Johannes H W; Serrano, Adelfa E; Russel, Frans G M; Janse, Chris J; Sauerwein, Robert W; Koenderink, Jan B; Franke-Fayard, Blandine M
2016-03-01
Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug-sensitivity profiles as wild type parasites. We show that MRP1-deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2-deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development. © 2015 John Wiley & Sons Ltd.
Rijpma, Sanna R; van der Velden, Maarten; Annoura, Takeshi; Matz, Joachim M; Kenthirapalan, Sanketha; Kooij, Taco W A; Matuschewski, Kai; van Gemert, Geert-Jan; van de Vegte-Bolmer, Marga; Siebelink-Stoter, Rianne; Graumans, Wouter; Ramesar, Jai; Klop, Onny; Russel, Frans G M; Sauerwein, Robert W; Janse, Chris J; Franke-Fayard, Blandine M; Koenderink, Jan B
2016-07-01
Multidrug resistance (MDR) proteins belong to the B subfamily of the ATP Binding Cassette (ABC) transporters, which export a wide range of compounds including pharmaceuticals. In this study, we used reverse genetics to study the role of all seven Plasmodium MDR proteins during the life cycle of malaria parasites. Four P. berghei genes (encoding MDR1, 4, 6 and 7) were refractory to deletion, indicating a vital role during blood stage multiplication and validating them as potential targets for antimalarial drugs. Mutants lacking expression of MDR2, MDR3 and MDR5 were generated in both P. berghei and P. falciparum, indicating a dispensable role for blood stage development. Whereas P. berghei mutants lacking MDR3 and MDR5 had a reduced blood stage multiplication in vivo, blood stage growth of P. falciparum mutants in vitro was not significantly different. Oocyst maturation and sporozoite formation in Plasmodium mutants lacking MDR2 or MDR5 was reduced. Sporozoites of these P. berghei mutants were capable of infecting mice and life cycle completion, indicating the absence of vital roles during liver stage development. Our results demonstrate vital and dispensable roles of MDR proteins during blood stages and an important function in sporogony for MDR2 and MDR5 in both Plasmodium species. © 2016 John Wiley & Sons Ltd.
Thagun, Chonprakun; Srisala, Jiraporn; Sritunyalucksana, Kallaya; Narangajavana, Jarunya; Sojikul, Punchapat
2012-09-15
White spot syndrome virus is currently the leading cause of production losses in the shrimp industry. Penaeus monodon Rab7 protein has been recognized as a viral-binding protein with an efficient protective effect against white spot syndrome infection. Plant-derived recombinant PmRab7 might serve as an alternative source for in-feed vaccination, considering the remarkable abilities of plant expression systems. PmRab7 was introduced into the Arabidopsis thaliana T87 genome. Arabidopsis-derived recombinant PmRab7 showed high binding activity against white spot syndrome virus and a viral envelope, VP28. The growth profile of Arabidopsis suspension culture expressing PmRab7 (ECR21# 35) resembled that of its counterpart. PmRab7 expression in ECR21# 35 reached its maximum level at 5 mg g(-1) dry weight in 12 days, which was higher than those previously reported in Escherichia coli and in Pichia. Co-injection of white spot syndrome virus and Arabidopsis crude extract containing PmRab7 in Litopenaeus vannamei showed an 87% increase in shrimp survival rate at 5 day after injection. In this study, we propose an alternative PmRab7 source with higher production yield, and cheaper culture media costs, that might serve the industry's need for an in-feed supplement against white spot syndrome infection. Copyright © 2012 Elsevier B.V. All rights reserved.
Rab proteins: The key regulators of intracellular vesicle transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuin, Tanmay; Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in
2014-10-15
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied bymore » cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.« less
Yu, Qin; Hu, Liyan; Yao, Qing; Zhu, Yongqun; Dong, Na; Wang, Da-Cheng; Shao, Feng
2013-06-01
Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF3 through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.
Starling, Georgina P; Yip, Yan Y; Sanger, Anneri; Morton, Penny E; Eden, Emily R; Dodding, Mark P
2016-06-01
The spatial distribution of lysosomes is important for their function and is, in part, controlled by cellular nutrient status. Here, we show that the lysosome associated Birt-Hoge-Dubé (BHD) syndrome renal tumour suppressor folliculin (FLCN) regulates this process. FLCN promotes the peri-nuclear clustering of lysosomes following serum and amino acid withdrawal and is supported by the predominantly Golgi-associated small GTPase Rab34. Rab34-positive peri-nuclear membranes contact lysosomes and cause a reduction in lysosome motility and knockdown of FLCN inhibits Rab34-induced peri-nuclear lysosome clustering. FLCN interacts directly via its C-terminal DENN domain with the Rab34 effector RILP Using purified recombinant proteins, we show that the FLCN-DENN domain does not act as a GEF for Rab34, but rather, loads active Rab34 onto RILP We propose a model whereby starvation-induced FLCN association with lysosomes drives the formation of contact sites between lysosomes and Rab34-positive peri-nuclear membranes that restrict lysosome motility and thus promote their retention in this region of the cell. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Capalbo, Luisa; D'Avino, Pier Paolo; Archambault, Vincent; Glover, David M.
2011-01-01
The small GTPase Rab5 is a conserved regulator of membrane trafficking; it regulates the formation of early endosomes, their transport along microtubules, and the fusion to the target organelles. Although several members of the endocytic pathway were recently implicated in spindle organization, it is unclear whether Rab5 has any role during mitosis. Here, we describe that Rab5 is required for proper chromosome alignment during Drosophila mitoses. We also found that Rab5 associated in vivo with nuclear Lamin and mushroom body defect (Mud), the Drosophila counterpart of nuclear mitotic apparatus protein (NuMA). Consistent with this finding, Rab5 was required for the disassembly of the nuclear envelope at mitotic entry and the accumulation of Mud at the spindle poles. Furthermore, Mud depletion caused chromosome misalignment defects that resembled the defects of Rab5 RNAi cells, and double-knockdown experiments indicated that the two proteins function in a linear pathway. Our results indicate a role for Rab5 in mitosis and reinforce the emerging view of the contributions made by cell membrane dynamics to spindle function. PMID:21987826
Mutant E. coli strain with increased succinic acid production
Donnelly, M.; Millard, C.S.; Stols, L.
1998-06-23
A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria. 2 figs.
Giordano, Samantha; Zhao, Xiangmin; Chen, Yiu‐Fai; Litovsky, Silvio H.; Hage, Fadi G.; Townes, Tim M.; Sun, Chiao‐Wang; Wu, Li‐Chen; Oparil, Suzanne
2017-01-01
Abstract Recruitment of neutrophils and monocytes/macrophages to the site of vascular injury is mediated by binding of chemoattractants to interleukin (IL) 8 receptors RA and RB (IL8RA/B) C‐C chemokine receptors (CCR) 2 and 5 expressed on neutrophil and monocyte/macrophage membranes. Endothelial cells (ECs) derived from rat‐induced pluripotent stem cells (RiPS) were transduced with adenovirus containing cDNA of IL8RA/B and/or CCR2/5. We hypothesized that RiPS‐ECs overexpressing IL8RA/B (RiPS‐IL8RA/B‐ECs), CCR2/5 (RiPS‐CCR2/5‐ECs), or both receptors (RiPS‐IL8RA/B+CCR2/5‐ECs) will inhibit inflammatory responses and neointima formation in balloon‐injured rat carotid artery. Twelve‐week‐old male Sprague‐Dawley rats underwent balloon injury of the right carotid artery and intravenous infusion of (a) saline vehicle, (b) control RiPS‐Null‐ECs (ECs transduced with empty virus), (c) RiPS‐IL8RA/B‐ECs, (d) RiPS‐CCR2/5‐ECs, or (e) RiPS‐IL8RA/B+CCR2/5‐ECs. Inflammatory mediator expression and leukocyte infiltration were measured in injured and uninjured arteries at 24 hours postinjury by enzyme‐linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. Neointima formation was assessed at 14 days postinjury. RiPS‐ECs expressing the IL8RA/B or CCR2/5 homing device targeted the injured arteries and decreased injury‐induced inflammatory cytokine expression, neutrophil/macrophage infiltration, and neointima formation. Transfused RiPS‐ECs overexpressing IL8RA/B and/or CCR2/5 prevented inflammatory responses and neointima formation after vascular injury. Targeted delivery of iPS‐ECs with a homing device to inflammatory mediators in injured arteries provides a novel strategy for the treatment of cardiovascular diseases. Stem Cells Translational Medicine 2017;6:1168–1177 PMID:28233474
USDA-ARS?s Scientific Manuscript database
Previous studies have shown that a mutant of Arabidopsis that lacks the Toc159 receptor is impaired in chloroplast biogenesis. The mutant is referred as plastid protein import 2 or ppi2 and has an albino phenotype due to its inability to import the photosynthetic proteins. In this study, we measured...
Esteve-Rudd, Julian; Hazim, Roni A; Diemer, Tanja; Paniagua, Antonio E; Volland, Stefanie; Umapathy, Ankita; Williams, David S
2018-05-22
Stargardt macular dystrophy 3 (STGD3) is caused by dominant mutations in the ELOVL4 gene. Like other macular degenerations, pathogenesis within the retinal pigment epithelium (RPE) appears to contribute to the loss of photoreceptors from the central retina. However, the RPE does not express ELOVL4 , suggesting photoreceptor cell loss in STGD3 occurs through two cell nonautonomous events: mutant photoreceptors first affect RPE cell pathogenesis, and then, second, RPE dysfunction leads to photoreceptor cell death. Here, we have investigated how the RPE pathology occurs, using a STGD3 mouse model in which mutant human ELOVL4 is expressed in the photoreceptors. We found that the mutant protein was aberrantly localized to the photoreceptor outer segment (POS), and that resulting POS phagosomes were degraded more slowly in the RPE. In cell culture, the mutant POSs are ingested by primary RPE cells normally, but the phagosomes are processed inefficiently, even by wild-type RPE. The mutant phagosomes excessively sequester RAB7A and dynein, and have impaired motility. We propose that the abnormal presence of ELOVL4 protein in POSs results in phagosomes that are defective in recruiting appropriate motor protein linkers, thus contributing to slower degradation because their altered motility results in slower basal migration and fewer productive encounters with endolysosomes. In the transgenic mouse retinas, the RPE accumulated abnormal-looking phagosomes and oxidative stress adducts; these pathological changes were followed by pathology in the neural retina. Our results indicate inefficient phagosome degradation as a key component of the first cell nonautonomous event underlying retinal degeneration due to mutant ELOVL4.
Los, Ferdinand C O; Kao, Cheng-Yuan; Smitham, Jane; McDonald, Kent L; Ha, Christine; Peixoto, Christina A; Aroian, Raffi V
2011-02-17
Pore-forming toxins (PFTs) secreted by pathogenic bacteria are the most common bacterial protein toxins and are important virulence factors for infection. PFTs punch holes in host cell plasma membranes, and although cells can counteract the resulting membrane damage, the underlying mechanisms at play remain unclear. Using Caenorhabditis elegans as a model, we demonstrate in vivo and in an intact epithelium that intestinal cells respond to PFTs by increasing levels of endocytosis, dependent upon RAB-5 and RAB-11, which are master regulators of endocytic and exocytic events. Furthermore, we find that RAB-5 and RAB-11 are required for protection against PFT and to restore integrity to the plasma membrane. One physical mechanism involved is the RAB-11-dependent expulsion of microvilli from the apical side of the intestinal epithelial cells. Specific vesicle-trafficking pathways thus protect cells against an attack by PFTs on plasma membrane integrity, via altered plasma membrane dynamics. Copyright © 2011 Elsevier Inc. All rights reserved.
Coughlin, Jason J; Odemuyiwa, Solomon O; Davidson, Courtney E; Moqbel, Redwan
2008-08-29
Eosinophil degranulation is thought to play a pathophysiological role in asthma. Rab27A is a GTP-binding protein that is known to be essential for the degranulation of several leukocyte subsets and thus may be essential for eosinophil granule exocytosis. Here, we show that Rab27A mRNA and protein are expressed in human eosinophils. We have developed a novel assay to assess Rab27A activation and have found a similar activation pattern of this protein upon stimulation of eosinophils, neutrophils and NK cells suggesting a similar function in these cell types. Interestingly, Rab27A expression was elevated in eosinophils from asthmatic donors. Furthermore, eosinophils from eosinophilic donors displayed more rapid Rab27A activation kinetics than those from donors with lower eosinophil counts. Given that elevated blood eosinophil numbers correlate with increased priming of eosinophils, this pattern of Rab27A activation suggests differential protein expression in activated cells may allow eosinophils to degranulate more rapidly upon stimulation.
Moshkov, Igor E.; Novikova, Galina V.; Mur, Luis A.J.; Smith, Aileen R.; Hall, Michael A.
2003-01-01
It is demonstrated that, in etiolated pea (Pisum sativum) epicotyls, ethylene affects the activation of both monomeric GTP-binding proteins (monomeric G-proteins) and protein kinases. For monomeric G-proteins, the effect may be a rapid (2 min) and bimodal up-regulation, a transiently unimodal activation, or a transient down-regulation. Pretreatment with 1-methylcyclopropene abolishes the response to ethylene overall. Immunoprecipitation studies indicate that some of the monomeric G-proteins affected may be of the Rab class. Protein kinase activity is rapidly up-regulated by ethylene, the effect is inhibited by 1-methylcyclopropene, and the activation is bimodal. Immunoprecipitation indicates that the kinase(s) are of the MAP kinase ERK1 group. It is proposed that the data support the hypothesis that a transduction chain exists that is separate and antagonistic to that currently revealed by studies on Arabidopsis mutants. PMID:12692330
Woo, Sang Su; James, Declan J.; Martin, Thomas F. J.
2017-01-01
Munc13-4 is a Ca2+-dependent SNARE (soluble N-ethylmaleimide–sensitive factor attachment protein receptor)- and phospholipid-binding protein that localizes to and primes secretory granules (SGs) for Ca2+-evoked secretion in various secretory cells. Studies in mast cell–like RBL-2H3 cells provide direct evidence that Munc13–4 with its two Ca2+-binding C2 domains functions as a Ca2+ sensor for SG exocytosis. Unexpectedly, Ca2+ stimulation also generated large (>2.4 μm in diameter) Munc13-4+/Rab7+/Rab11+ endosomal vacuoles. Vacuole generation involved the homotypic fusion of Munc13-4+/Rab7+ SGs, followed by a merge with Rab11+ endosomes, and depended on Ca2+ binding to Munc13-4. Munc13-4 promoted the Ca2+-stimulated fusion of VAMP8-containing liposomes with liposomes containing exocytic or endosomal Q-SNAREs and directly interacted with late endosomal SNARE complexes. Thus Munc13-4 is a tethering/priming factor and Ca2+ sensor for both heterotypic SG-plasma membrane and homotypic SG-SG fusion. Total internal reflection fluorescence microscopy imaging revealed that vacuoles were exocytic and mediated secretion of β-hexosaminidase and cytokines accompanied by Munc13-4 diffusion onto the plasma membrane. The results provide new molecular insights into the mechanism of multigranular compound exocytosis commonly observed in various secretory cells. PMID:28100639
Dopamine Modulation of Avoidance Behavior in Caenorhabditis elegans Requires the NMDA Receptor NMR-1
Baidya, Melvin; Genovez, Marx; Torres, Marissa; Chao, Michael Y.
2014-01-01
The nematode C. elegans utilizes a relatively simple neural circuit to mediate avoidance responses to noxious stimuli such as the volatile odorant octanol. This avoidance behavior is modulated by dopamine. cat-2 mutant animals that are deficient in dopamine biosynthesis have an increased response latency to octanol compared to wild type animals, and this defect can be fully restored with the application of exogenous dopamine. Because this avoidance behavior is mediated by glutamatergic signaling between sensory neurons and premotor interneurons, we investigated the genetic interactions between dopaminergic signaling and ionotropic glutamate receptors. cat-2 mutant animals lacking either the GLR-1 or GLR-2 AMPA/kainate receptors displayed an increased response latency to octanol, which could be restored via exogenous dopamine. However, whereas cat-2 mutant animals lacking the NMR-1 NMDA receptor had increased response latency to octanol they were insensitive to exogenous dopamine. Mutants that lacked both AMPA/kainate and NMDA receptors were also insensitive to exogenous dopamine. Our results indicate that dopamine modulation of octanol avoidance requires NMR-1, consistent with NMR-1 as a potential downstream signaling target for dopamine. PMID:25089710
Mizrahi-Aviv, Ela; Mills, David; Benzioni, Aliza; Bar-Zvi, Dudy
2002-10-01
Salt stress results in a massive change in gene expression. An 837 bp cDNA designated ScRab was cloned from shoot cultures of the salt tolerant jojoba (Simmondsia chinesis). The cloned cDNA encodes a full length 200 amino acid long polypeptide that bears high homology to the Rab subfamily of small GTP binding proteins, particularly, the Rab5 subfamily. ScRab expression is reduced in shoots grown in the presence of salt compared to shoots from non-stressed cultures. His6-tagged ScRAB protein was expressed in E. coli, and purified to homogeneity. The purified protein bound radiolabelled GTP. The unlabelled guanine nucleotides GTP, GTP gamma S and GDP but not ATP, CTP or UTP competed with GTP binding.
Najumudeen, Arafath Kaja; Guzmán, Camilo; Posada, Itziar M D; Abankwa, Daniel
2015-01-01
Rab proteins constitute the largest subfamily of Ras-like small GTPases. They are central to vesicular transport and organelle definition in eukaryotic cells. Unlike their Ras counterparts, they are not a hallmark of cancer. However, a number of diseases, including cancer, show a misregulation of Rab protein activity. As for all membrane-anchored signaling proteins, correct membrane organization is critical for Rabs to operate. In this chapter, we provide a detailed protocol for the use of a flow cytometry-based Fluorescence Resonance Energy Transfer (FRET)-biosensors assay, which allows to detect changes in membrane anchorage, subcellular distribution, and of the nanoscale organization of Rab-GTPases in mammalian cell lines. This assay is high-throughput amenable and can therefore be utilized in chemical-genomic and drug discovery efforts.
Modiano, Nir; Lu, Yanping E.; Cresswell, Peter
2005-01-01
Human guanylate-binding protein-1 (hGBP-1) is a large GTPase, similar in structure to the dynamins. Like many smaller GTPases of the Ras/Rab family, it is farnesylated, suggesting it may dock into membranes and perhaps play a role in intracellular trafficking. To date, however, hGBP-1 has never been associated with a specific intracellular compartment. Here we present evidence that hGBP-1 can associate with the Golgi apparatus. Redistribution from the cytosol to the Golgi was observed by immunofluorescence and subcellular fractionation after aluminum fluoride treatment, suggesting that it occurs when hGBP-1 is in its GTP-bound state. Relocalization was blocked by a farnesyl transferase inhibitor. The C589S mutant of hGBP-1, which cannot be farnesylated, and the previously uncharacterized R48P mutant, which cannot bind GTP, both failed to localize to the Golgi. These two mutants had a dominant-negative effect, preventing endogenous wild-type hGBP-1 from efficiently redistributing after aluminum fluoride treatment. Furthermore, hGBP-1 requires another IFN-γ-induced factor to be targeted to the Golgi, because constitutively expressed hGBP-1 remained cytosolic in cells treated with aluminum fluoride unless the cells were preincubated with IFN-γ. Finally, two nonhydrolyzing mutants of hGBP-1, corresponding to active mutants of Ras family proteins, failed to constitutively associate with the Golgi; we propose three possible explanations for this surprising result. PMID:15937107
Modiano, Nir; Lu, Yanping E; Cresswell, Peter
2005-06-14
Human guanylate-binding protein-1 (hGBP-1) is a large GTPase, similar in structure to the dynamins. Like many smaller GTPases of the Ras/Rab family, it is farnesylated, suggesting it may dock into membranes and perhaps play a role in intracellular trafficking. To date, however, hGBP-1 has never been associated with a specific intracellular compartment. Here we present evidence that hGBP-1 can associate with the Golgi apparatus. Redistribution from the cytosol to the Golgi was observed by immunofluorescence and subcellular fractionation after aluminum fluoride treatment, suggesting that it occurs when hGBP-1 is in its GTP-bound state. Relocalization was blocked by a farnesyl transferase inhibitor. The C589S mutant of hGBP-1, which cannot be farnesylated, and the previously uncharacterized R48P mutant, which cannot bind GTP, both failed to localize to the Golgi. These two mutants had a dominant-negative effect, preventing endogenous wild-type hGBP-1 from efficiently redistributing after aluminum fluoride treatment. Furthermore, hGBP-1 requires another IFN-gamma-induced factor to be targeted to the Golgi, because constitutively expressed hGBP-1 remained cytosolic in cells treated with aluminum fluoride unless the cells were preincubated with IFN-gamma. Finally, two nonhydrolyzing mutants of hGBP-1, corresponding to active mutants of Ras family proteins, failed to constitutively associate with the Golgi; we propose three possible explanations for this surprising result.
Wang, Hao; Ishizaki, Ray; Xu, Jun; Kasai, Kazuo; Kobayashi, Eri; Gomi, Hiroshi; Izumi, Tetsuro
2013-02-01
Granuphilin, an effector of the small GTPase Rab27a, mediates the stable attachment (docking) of insulin granules to the plasma membrane and inhibits subsequent fusion of docked granules, possibly through interaction with a fusion-inhibitory Munc18-1/syntaxin complex. However, phenotypes of insulin exocytosis differ considerably between Rab27a- and granuphilin-deficient pancreatic β cells, suggesting that other Rab27a effectors function in those cells. We found that one of the putative Rab27a effector family proteins, exophilin7/JFC1/Slp1, is expressed in β cells; however, unlike granuphilin, exophilin7 overexpressed in the β-cell line MIN6 failed to show granule-docking or fusion-inhibitory activity. Furthermore, exophilin7 has no affinities to either Munc18-1 or Munc18-1-interacting syntaxin-1a, in contrast to granuphilin. Although β cells of exophilin7-knockout mice show no apparent abnormalities in intracellular distribution or in ordinary glucose-induced exocytosis of insulin granules, they do show impaired fusion in response to some stronger stimuli, specifically from granules that have not been docked to the plasma membrane. Exophilin7 appears to mediate the fusion of undocked granules through the affinity of its C2A domain toward the plasma membrane phospholipids. These findings indicate that the two Rab27a effectors, granuphilin and exophilin7, differentially regulate the exocytosis of either stably or minimally docked granules, respectively.
Restoration Advisory Board (RAB) Implementation Guidelines
This document provides recommended procedures for establishing and operating Restoration Advisory Boards (RABs). It is intended as a resource for installation, EPA, and State personnel and citizens who participate in RABs.
Gechev, Tsanko; Mehterov, Nikolay; Denev, Iliya; Hille, Jacques
2013-01-01
A genetic approach is described to isolate mutants more tolerant to oxidative stress. A collection of T-DNA activation tag Arabidopsis thaliana mutant lines was screened for survivors under conditions that trigger H2O2-induced cell death. Oxidative stress was induced by applying the catalase (CAT) inhibitor aminotriazole (AT) in the growth media, which results in decrease in CAT enzyme activity, H2O2 accumulation, and subsequent plant death. One mutant was recovered from the screening and named oxr1 (oxidative stress resistant 1). The location of the T-DNA insertion was identified by TAIL-PCR. Oxr1 exhibited lack of cell death symptoms and more fresh weight and chlorophyll content compared to wild type. The lack of cell death correlated with more prominent induction of anthocyanins synthesis in oxr1. These results demonstrate the feasibility of AT as a screening agent for the isolation of oxidative stress-tolerant mutants and indicate a possible protective role for anthocyanins against AT-induced cell death. The chapter includes protocols for ethyl methanesulfonate mutagenesis, mutant screening using AT, T-DNA identification by TAIL-PCR, CAT activity measurements, and determination of malondialdehyde, chlorophyll, and anthocyanins. Copyright © 2013 Elsevier Inc. All rights reserved.
Genetic separation of phototropism from blue light inhibition of hypocotyl elongation on Arabidopsis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liscum, E.; Young, J.C.; Hangarter, R.P.
1991-05-01
Phototropism and inhibition of stem elongation occur in response to blue light-induced inhibition of cell elongation. However, phototropism is a low fluence response and inhibition of hypocotyl elongation is a high irradiance response. The authors have isolated several mutant lines of Arabidopsis which lack blue light-induced inhibition of hypocotyl elongation but retain normal phototropic functions. In addition, a mutant line which completely lacks the phototropic response retains normal blue light-induced inhibition of hypocotyl elongation. F1 progeny of crosses between these two mutant classes exhibited wild-type phototropism and inhibition of hypocotyl elongation in response to blue light stimuli. In the F2more » generation, one in sixteen seedlings were double mutants lacking both phototropism and blue light-induced hypocotyl growth inhibition. These studies conclusively show that blue light-induced phototropism and hypocotyl growth inhibition function through genetically distinct signal transduction or response systems.« less
Palaniappan, C; Taber, H; Meganathan, R
1994-01-01
The biosynthesis of o-succinylbenzoic acid (OSB), the first aromatic intermediate involved in the biosynthesis of menaquinone (vitamin K2) is demonstrated for the first time in the gram-positive bacterium Bacillus subtilis. Cell extracts were found to contain isochorismate synthase, 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid (SHCHC) synthase-alpha-ketoglutarate decarboxylase and o-succinylbenzoic acid synthase activities. An odhA mutant which lacks the decarboxylase component (usually termed E1, EC 1.2.4.2, oxoglutarate dehydrogenase [lipoamide]) of the alpha-ketoglutarate dehydrogenase complex was found to synthesize SHCHC and form succinic semialdehyde-thiamine pyrophosphate. Thus, the presence of an alternate alpha-ketoglutarate decarboxylase activity specifically involved in menaquinone biosynthesis is established for B. subtilis. A number of OSB-requiring mutants were also assayed for the presence of the various enzymes involved in the biosynthesis of OSB. All mutants were found to lack only the SHCHC synthase activity. PMID:8169214
Essential Role of RAB27A in Determining Constitutive Human Skin Color
Yoshida-Amano, Yasuko; Hachiya, Akira; Ohuchi, Atsushi; Kobinger, Gary P.; Kitahara, Takashi; Takema, Yoshinori; Fukuda, Mitsunori
2012-01-01
Human skin color is predominantly determined by melanin produced in melanosomes within melanocytes and subsequently distributed to keratinocytes. There are many studies that have proposed mechanisms underlying ethnic skin color variations, whereas the processes involved from melanin synthesis in melanocytes to the transfer of melanosomes to keratinocytes are common among humans. Apart from the activities in the melanogenic rate-limiting enzyme, tyrosinase, in melanocytes and the amounts and distribution patterns of melanosomes in keratinocytes, the abilities of the actin-associated factors in charge of melanosome transport within melanocytes also regulate pigmentation. Mutations in genes encoding melanosome transport-related molecules, such as MYO5A, RAB27A and SLAC-2A, have been reported to cause a human pigmentary disease known as Griscelli syndrome, which is associated with diluted skin and hair color. Thus we hypothesized that process might play a role in modulating skin color variations. To address that hypothesis, the correlations of expression of RAB27A and its specific effector, SLAC2-A, to melanogenic ability were evaluated in comparison with tyrosinase, using human melanocytes derived from 19 individuals of varying skin types. Following the finding of the highest correlation in RAB27A expression to the melanogenic ability, darkly-pigmented melanocytes with significantly higher RAB27A expression were found to transfer significantly more melanosomes to keratinocytes than lightly-pigmented melanocytes in co-culture and in human skin substitutes (HSSs) in vivo, resulting in darker skin color in concert with the difference observed in African-descent and Caucasian skins. Additionally, RAB27A knockdown by a lentivirus-derived shRNA in melanocytes concomitantly demonstrated a significantly reduced number of transferred melanosomes to keratinocytes in co-culture and a significantly diminished epidermal melanin content skin color intensity (ΔL* = 4.4) in the HSSs. These data reveal the intrinsically essential role of RAB27A in human ethnic skin color determination and provide new insights for the fundamental understanding of regulatory mechanisms underlying skin pigmentation. PMID:22844437
Novel Regulation of Integrin Trafficking by Rab11-FIP5 in Aggressive Prostate Cancer.
Das, Lipsa; Gard, Jaime M C; Prekeris, Rytis; Nagle, Raymond B; Morrissey, Colm; Knudsen, Beatrice S; Miranti, Cindy K; Cress, Anne E
2018-05-14
The laminin-binding integrins, α3β1 and α6β1, are needed for tumor metastasis and their surface expression is regulated by endocytic recycling. β1 integrins share the Rab11 recycling machinery but the trafficking of α3β1 and α6β1 are distinct by an unknown mechanism. Using a mouse PDX tumor model containing human metastatic prostate cancer, Rab11 family interacting protein 5 (Rab11-FIP5) was identified as a lead candidate for α6β1 trafficking. Rab11-FIP5 and its membrane binding domain were required for α6β1 recycling, without affecting the other laminin-binding integrin (i.e., α3β1) or unrelated membrane receptors like CD44, transferrin receptor, or E-cadherin. Depletion of Rab11-FIP5 resulted in the intracellular accumulation of α6β1 in the Rab11 recycling compartment, loss of cell migration on laminin, and an unexpected loss of α6β1 recycling in cell-cell locations. Taken together, these data demonstrate that α6β1 is distinct from α3β1 via Rab11-FIP5 recycling and recycles in an unexpected cell-cell location. Rab11-FIP5 dependent a6b1 integrin recycling may be selectively targeted to limit migration of prostate cancer cells into laminin-rich tissues. Copyright ©2018, American Association for Cancer Research.
GTP- and GDP-Dependent Rab27a Effectors in Pancreatic Beta-Cells.
Yamaoka, Mami; Ishizaki, Toshimasa; Kimura, Toshihide
2015-01-01
Small guanosine triphosphatases (GTPases) participate in a wide variety of cellular functions including proliferation, differentiation, adhesion, and intracellular transport. Conventionally, only the guanosine 5'-triphosphate (GTP)-bound small GTPase interacts with effector proteins, and the resulting downstream signals control specific cellular functions. Therefore, the GTP-bound form is regarded as active, and the focus has been on searching for proteins that bind the GTP form to look for their effectors. The Rab family small GTPase Rab27a is highly expressed in some secretory cells and is involved in the control of membrane traffic. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in pancreatic beta-cells. In the basal state, GTP-bound Rab27a controls insulin secretion at pre-exocytic stages via its GTP-dependent effectors. We previously identified novel guanosine 5'-diphosphate (GDP)-bound Rab27-interacting proteins. Interestingly, GDP-bound Rab27a controls endocytosis of the secretory membrane via its interaction with these proteins. We also demonstrated that the insulin secretagogue glucose converts Rab27a from its GTP- to GDP-bound forms. Thus, GTP- and GDP-bound Rab27a regulate pre-exocytic and endocytic stages in membrane traffic, respectively. Since the physiological importance of GDP-bound GTPases has been largely overlooked, we consider that the investigation of GDP-dependent effectors for other GTPases is necessary for further understanding of cellular function.
Bozkurt, Fatma Yeşim; Yetkin Ay, Zuhal; Berker, Ezel; Tepe, Eser; Akkuş, Selami
2006-08-01
Cytokines which are produced by host cells play an important role in pathogenesis both rheumatoid arthritis (RA) and chronic periodontitis (CP). In this study, we aim to investigate the levels of Interleukin (IL)-4 and IL-10 in gingival crevicular fluid (GCF). Seventeen patients with CP, 17 patients with RA and 17 healthy controls (HC) were included. The RA group was divided into two groups according to gingival sulcus depths (RA-a: PD < or =3mm, (n=12), RA-b: PD>3mm, (n=5)). For each patient, clinical parameters were recorded. The GCF samples were evaluated by enzyme-linked immunosorbent assay (ELISA) for IL-4 and IL-10 levels. IL-4 levels in the RA-a, RA-b and CP subjects were significantly lower compared to the HC subjects (p<0.05). The mean level of IL-4 in RA-b group was significantly higher than that in CP group (p<0.05). IL-10 mean level in the HC group was higher than those in the other groups (p<0.05). In the RA-a group, higher IL-10 level was found compared to the CP patients (p<0.05). Within the limitations of this preliminary report, it can be concluded that the initiation and progression of periodontal inflammation may be due to a lack or inappropriate response of the anti-inflammatory cytokines in both CP and RA.
Coumailleau, Franck; Das, Vincent; Alcover, Andres; Raposo, Graça; Vandormael-Pournin, Sandrine; Le Bras, Stéphanie; Baldacci, Patricia; Dautry-Varsat, Alice; Babinet, Charles; Cohen-Tannoudji, Michel
2004-01-01
Endocytosed membrane components are recycled to the cell surface either directly from early/sorting endosomes or after going through the endocytic recycling compartment (ERC). Studying recycling mechanisms is difficult, in part due to the fact that specific tools to inhibit this process are scarce. In this study, we have characterized a novel widely expressed protein, named Rififylin (Rffl) for RING Finger and FYVE-like domain-containing protein, that, when overexpressed in HeLa cells, induced the condensation of transferrin receptor-, Rab5-, and Rab11-positive recycling tubulovesicular membranes in the perinuclear region. Internalized transferrin was able to access these condensed endosomes but its exit from this compartment was delayed. Using deletion mutants, we show that the carboxy-terminal RING finger of Rffl is dispensable for its action. In contrast, the amino-terminal domain of Rffl, which shows similarities with the phosphatidylinositol-3-phosphate–binding FYVE finger, is critical for the recruitment of Rffl to recycling endocytic membranes and for the inhibition of recycling, albeit in a manner that is independent of PtdIns(3)-kinase activity. Rffl overexpression represents a novel means to inhibit recycling that will help to understand the mechanisms involved in recycling from the ERC to the plasma membrane. PMID:15229288
Coumailleau, Franck; Das, Vincent; Alcover, Andres; Raposo, Graça; Vandormael-Pournin, Sandrine; Le Bras, Stéphanie; Baldacci, Patricia; Dautry-Varsat, Alice; Babinet, Charles; Cohen-Tannoudji, Michel
2004-10-01
Endocytosed membrane components are recycled to the cell surface either directly from early/sorting endosomes or after going through the endocytic recycling compartment (ERC). Studying recycling mechanisms is difficult, in part due to the fact that specific tools to inhibit this process are scarce. In this study, we have characterized a novel widely expressed protein, named Rififylin (Rffl) for RING Finger and FYVE-like domain-containing protein, that, when overexpressed in HeLa cells, induced the condensation of transferrin receptor-, Rab5-, and Rab11-positive recycling tubulovesicular membranes in the perinuclear region. Internalized transferrin was able to access these condensed endosomes but its exit from this compartment was delayed. Using deletion mutants, we show that the carboxy-terminal RING finger of Rffl is dispensable for its action. In contrast, the amino-terminal domain of Rffl, which shows similarities with the phosphatidylinositol-3-phosphate-binding FYVE finger, is critical for the recruitment of Rffl to recycling endocytic membranes and for the inhibition of recycling, albeit in a manner that is independent of PtdIns(3)-kinase activity. Rffl overexpression represents a novel means to inhibit recycling that will help to understand the mechanisms involved in recycling from the ERC to the plasma membrane.
Lippé, Roger; Miaczynska, Marta; Rybin, Vladimir; Runge, Anja; Zerial, Marino
2001-01-01
Rab GTPases are central elements of the vesicular transport machinery. An emerging view is that downstream effectors of these GTPases are multiprotein complexes that include nucleotide exchange factors to ensure coupling between GTPase activation and effector function. We have previously shown that Rab5, which regulates various steps of transport along the early endocytic pathway, is activated by a complex consisting of Rabex-5, a Rab5 nucleotide exchange factor, and the effector Rabaptin-5. We postulated that the physical association of these two proteins is necessary for their activity in Rab5-dependent endocytic membrane transport. To evaluate the functional implications of such complex formation, we have reconstituted it with the use of recombinant proteins and characterized its properties. First, we show that Rabaptin-5 increases the exchange activity of Rabex-5 on Rab5. Second, Rab5-dependent recruitment of Rabaptin-5 to early endosomes is completely dependent on its physical association with Rabex-5. Third, complex formation between Rabaptin-5 and Rabex-5 is essential for early endosome homotypic fusion. These results reveal a functional synergy between Rabaptin-5 and Rabex-5 in the complex and have implications for the function of analogous complexes for Rab and Rho GTPases. PMID:11452015
Disruption of endocytic trafficking protein Rab7 impairs invasiveness of cholangiocarcinoma cells.
Suwandittakul, Nantana; Reamtong, Onrapak; Molee, Pattamaporn; Maneewatchararangsri, Santi; Sutherat, Maleerat; Chaisri, Urai; Wongkham, Sopit; Adisakwattana, Poom
2017-09-07
Alterations and mutations of endo-lysosomal trafficking proteins have been associated with cancer progression. Identification and characterization of endo-lysosomal trafficking proteins in invasive cholangiocarcinoma (CCA) cells may benefit prognosis and drug design for CCA. To identify and characterize endo-lysosomal trafficking proteins in invasive CCA. A lysosomal-enriched fraction was isolated from a TNF-α induced invasive CCA cell line (KKU-100) and uninduced control cells and protein identification was performed with nano-LC MS/MS. Novel lysosomal proteins that were upregulated in invasive CCA cells were validated by real-time RT-PCR. We selected Rab7 for further studies of protein level using western blotting and subcellular localization using immunofluorescence. The role of Rab7 in CCA invasion was determined by siRNA gene knockdown and matrigel transwell assay. Rab7 mRNA and protein were upregulated in invasive CCA cells compared with non-treated controls. Immunofluorescence studies demonstrated that Rab7 was expressed predominantly in invasive CCA cells and was localized in the cytoplasm and lysosomes. Suppression of Rab7 translation significantly inhibited TNF-α-induced cell invasion compared to non-treated control (p= 0.044). Overexpression of Rab7 in CCA cells was associated with cell invasion, supporting Rab7 as a novel candidate for the development of diagnostic and therapeutic strategies for CCA.
Patrussi, Laura; Baldari, Cosima T
2016-01-01
Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Among them, Rab8 is an essential participant in primary cilium formation. In a report recently published in the Journal of Cell Science, Finetti and colleagues identify Rab8 as a novel player in vesicular traffic in the non-ciliated T lymphocytes, which contributes to the assembly of the specialized signaling platform known as the immune synapse. By interacting with the v-SNARE VAMP-3, Rab8 is indeed responsible for the final docking/fusion step in T cell receptor (TCR) recycling to the immune synapse. A second important take-home message which comes to light from this work is that VAMP-3 also interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of Smoothened at the plasma membrane. Hence the data presented in this report, in addition to identifying Rab8 as a novel player in vesicular traffic to the immune synapse, reveal how both ciliated and non-ciliated cells take advantage of a conserved pathway to build highly specific cellular structures.
Seyhan, Attila A; Varadarajan, Usha; Choe, Sung; Liu, Wei; Ryan, Terence E
2012-04-01
Neratinib (HKI-272) is a small molecule tyrosine kinase inhibitor of the ErbB receptor family currently in Phase III clinical trials. Despite its efficacy, the mechanism of potential cellular resistance to neratinib and genes involved with it remains unknown. We have used a pool-based lentiviral genome-wide functional RNAi screen combined with a lethal dose of neratinib to discover chemoresistant interactions with neratinib. Our screen has identified a collection of genes whose inhibition by RNAi led to neratinib resistance including genes involved in oncogenesis (e.g. RAB33A, RAB6A and BCL2L14), transcription factors (e.g. FOXP4, TFEC, ZNF), cellular ion transport (e.g. CLIC3, TRAPPC2P1, P2RX2), protein ubiquitination (e.g. UBL5), cell cycle (e.g. CCNF), and genes known to interact with breast cancer-associated genes (e.g. CCNF, FOXP4, TFEC, several ZNF factors, GNA13, IGFBP1, PMEPA1, SOX5, RAB33A, RAB6A, FXR1, DDO, TFEC, OLFM2). The identification of novel mediators of cellular resistance to neratinib could lead to the identification of new or neoadjuvant drug targets. Their use as patient or treatment selection biomarkers could make the application of anti-ErbB therapeutics more clinically effective.
The substrate specificity of purine phosphoribosyltransferases in Schizosaccharomyces pombe
De Groodt, A.; Whitehead, E. P.; Heslot, H.; Poirier, L.
1971-01-01
1. The activities of the purine phosphoribosyltransferases (EC 2.4.2.7 and 2.4.2.8) in purine-analogue-resistant mutants of Schizosaccharomyces pombe were checked. An 8-azathioxanthine-resistant mutant lacked hypoxanthine phosphoribosyltransferase, xanthine phosphoribosyltransferase and guanine phosphoribosyltransferase activities (EC 2.4.2.8) and appeared to carry a single mutation. Two 2,6-diaminopurine-resistant mutants retained these activities but lacked adenine phosphoribosyltransferase activity (EC 2.4.2.7). This evidence, together with data on purification and heat-inactivation patterns of phosphoribosyltransferase activities towards the various purines, strongly suggests that there are two phosphoribosyltransferase enzymes for purine bases in Schiz. pombe, one active with adenine, the other with hypoxanthine, xanthine and guanine. 2. Neither growth-medium supplements of purines nor mutations on genes involved in the pathway for new biosynthesis of purine have any influence on the amount of hypoxanthine–xanthine–guanine phosphoribosyltransferase produced by this organism. PMID:5123876
Sanders, Anna A. W. M.; Li, Chunmei; Kennedy, Julie; Cai, Jerry; Scheidel, Noemie; Kennedy, Breandán N.; Morin, Ryan D.; Leroux, Michel R.; Blacque, Oliver E.
2016-01-01
Primary cilia are specialised sensory and developmental signalling devices extending from the surface of most eukaryotic cells. Defects in these organelles cause inherited human disorders (ciliopathies) such as retinitis pigmentosa and Bardet-Biedl syndrome (BBS), frequently affecting many physiological and developmental processes across multiple organs. Cilium formation, maintenance and function depend on intracellular transport systems such as intraflagellar transport (IFT), which is driven by kinesin-2 and IFT-dynein motors and regulated by the Bardet-Biedl syndrome (BBS) cargo-adaptor protein complex, or BBSome. To identify new cilium-associated genes, we employed the nematode C. elegans, where ciliogenesis occurs within a short timespan during late embryogenesis when most sensory neurons differentiate. Using whole-organism RNA-Seq libraries, we discovered a signature expression profile highly enriched for transcripts of known ciliary proteins, including FAM-161 (FAM161A orthologue), CCDC-104 (CCDC104), and RPI-1 (RP1/RP1L1), which we confirm are cilium-localised in worms. From a list of 185 candidate ciliary genes, we uncover orthologues of human MAP9, YAP, CCDC149, and RAB28 as conserved cilium-associated components. Further analyses of C. elegans RAB-28, recently associated with autosomal-recessive cone-rod dystrophy, reveal that this small GTPase is exclusively expressed in ciliated neurons where it dynamically associates with IFT trains. Whereas inactive GDP-bound RAB-28 displays no IFT movement and diffuse localisation, GTP-bound (activated) RAB-28 concentrates at the periciliary membrane in a BBSome-dependent manner and undergoes bidirectional IFT. Functional analyses reveal that whilst cilium structure, sensory function and IFT are seemingly normal in a rab-28 null allele, overexpression of predicted GDP or GTP locked variants of RAB-28 perturbs cilium and sensory pore morphogenesis and function. Collectively, our findings present a new approach for identifying ciliary proteins, and unveil RAB28, a GTPase most closely related to the BBS protein RABL4/IFT27, as an IFT-associated cargo with BBSome-dependent cell autonomous and non-autonomous functions at the ciliary base. PMID:27930654
Jensen, Victor L; Carter, Stephen; Sanders, Anna A W M; Li, Chunmei; Kennedy, Julie; Timbers, Tiffany A; Cai, Jerry; Scheidel, Noemie; Kennedy, Breandán N; Morin, Ryan D; Leroux, Michel R; Blacque, Oliver E
2016-12-01
Primary cilia are specialised sensory and developmental signalling devices extending from the surface of most eukaryotic cells. Defects in these organelles cause inherited human disorders (ciliopathies) such as retinitis pigmentosa and Bardet-Biedl syndrome (BBS), frequently affecting many physiological and developmental processes across multiple organs. Cilium formation, maintenance and function depend on intracellular transport systems such as intraflagellar transport (IFT), which is driven by kinesin-2 and IFT-dynein motors and regulated by the Bardet-Biedl syndrome (BBS) cargo-adaptor protein complex, or BBSome. To identify new cilium-associated genes, we employed the nematode C. elegans, where ciliogenesis occurs within a short timespan during late embryogenesis when most sensory neurons differentiate. Using whole-organism RNA-Seq libraries, we discovered a signature expression profile highly enriched for transcripts of known ciliary proteins, including FAM-161 (FAM161A orthologue), CCDC-104 (CCDC104), and RPI-1 (RP1/RP1L1), which we confirm are cilium-localised in worms. From a list of 185 candidate ciliary genes, we uncover orthologues of human MAP9, YAP, CCDC149, and RAB28 as conserved cilium-associated components. Further analyses of C. elegans RAB-28, recently associated with autosomal-recessive cone-rod dystrophy, reveal that this small GTPase is exclusively expressed in ciliated neurons where it dynamically associates with IFT trains. Whereas inactive GDP-bound RAB-28 displays no IFT movement and diffuse localisation, GTP-bound (activated) RAB-28 concentrates at the periciliary membrane in a BBSome-dependent manner and undergoes bidirectional IFT. Functional analyses reveal that whilst cilium structure, sensory function and IFT are seemingly normal in a rab-28 null allele, overexpression of predicted GDP or GTP locked variants of RAB-28 perturbs cilium and sensory pore morphogenesis and function. Collectively, our findings present a new approach for identifying ciliary proteins, and unveil RAB28, a GTPase most closely related to the BBS protein RABL4/IFT27, as an IFT-associated cargo with BBSome-dependent cell autonomous and non-autonomous functions at the ciliary base.
GNOM regulates root hydrotropism and phototropism independently of PIN-mediated auxin transport.
Moriwaki, Teppei; Miyazawa, Yutaka; Fujii, Nobuharu; Takahashi, Hideyuki
2014-02-01
Plant roots exhibit tropisms in response to gravity, unilateral light and moisture gradients. During gravitropism, an auxin gradient is established by PIN auxin transporters, leading to asymmetric growth. GNOM, a guanine nucleotide exchange factor of ARF GTPase (ARF-GEF), regulates PIN localization by regulating subcellular trafficking of PINs. Therefore, GNOM is important for gravitropism. We previously isolated mizu-kussei2 (miz2), which lacks hydrotropic responses; MIZ2 is allelic to GNOM. Since PIN proteins are not required for root hydrotropism in Arabidopsis, the role of GNOM in root hydrotropism should differ from that in gravitropism. To examine this possibility, we conducted genetic analysis of gnom(miz2) and gnom trans-heterozygotes. The mutant gnom(miz2), which lacks hydrotropic responses, was partially recovered by gnom(emb30-1), which lacks GEF activity, but not by gnom(B4049), which lacks heterotypic domain interactions. Furthermore, the phototropic response of gnom trans-heterozygotes differed from that of the pin2 mutant allele eir1-1. Moreover, defects in the polarities of PIN2 and auxin distribution in a severe gnom mutant were recovered by gnom(miz2). Therefore, an unknown GNOM-mediated vesicle trafficking system may mediate root hydrotropism and phototropism independently of PIN trafficking. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Coupling fission and exit of RAB6 vesicles at Golgi hotspots through kinesin-myosin interactions.
Miserey-Lenkei, Stéphanie; Bousquet, Hugo; Pylypenko, Olena; Bardin, Sabine; Dimitrov, Ariane; Bressanelli, Gaëlle; Bonifay, Raja; Fraisier, Vincent; Guillou, Catherine; Bougeret, Cécile; Houdusse, Anne; Echard, Arnaud; Goud, Bruno
2017-11-01
The actin and microtubule cytoskeletons play important roles in Golgi structure and function, but how they are connected remain poorly known. In this study, we investigated whether RAB6 GTPase, a Golgi-associated RAB involved in the regulation of several transport steps at the Golgi level, and two of its effectors, Myosin IIA and KIF20A participate in the coupling between actin and microtubule cytoskeleton. We have previously shown that RAB6-Myosin IIA interaction is critical for the fission of RAB6-positive transport carriers from Golgi/TGN membranes. Here we show that KIF20A is also involved in the fission process and serves to anchor RAB6 on Golgi/TGN membranes near microtubule nucleating sites. We provide evidence that the fission events occur at a limited number of hotspots sites. Our results suggest that coupling between actin and microtubule cytoskeletons driven by Myosin II and KIF20A ensures the spatial coordination between RAB6-positive vesicles fission from Golgi/TGN membranes and their exit along microtubules.
Rab3-GAP controls the progression of synaptic homeostasis at a late stage of vesicle release.
Müller, Martin; Pym, Edward C G; Tong, Amy; Davis, Graeme W
2011-02-24
Homeostatic signaling systems stabilize neural function through the modulation of neurotransmitter receptor abundance, ion channel density, and presynaptic neurotransmitter release. Molecular mechanisms that drive these changes are being unveiled. In theory, molecular mechanisms may also exist to oppose the induction or expression of homeostatic plasticity, but these mechanisms have yet to be explored. In an ongoing electrophysiology-based genetic screen, we have tested 162 new mutations for genes involved in homeostatic signaling at the Drosophila NMJ. This screen identified a mutation in the rab3-GAP gene. We show that Rab3-GAP is necessary for the induction and expression of synaptic homeostasis. We then provide evidence that Rab3-GAP relieves an opposing influence on homeostasis that is catalyzed by Rab3 and which is independent of any change in NMJ anatomy. These data define roles for Rab3-GAP and Rab3 in synaptic homeostasis and uncover a mechanism, acting at a late stage of vesicle release, that opposes the progression of homeostatic plasticity. Copyright © 2011 Elsevier Inc. All rights reserved.
ACBD3 functions as a scaffold to organize the Golgi stacking proteins and a Rab33b-GAP.
Yue, Xihua; Bao, Mengjing; Christiano, Romain; Li, Siyang; Mei, Jia; Zhu, Lianhui; Mao, Feifei; Yue, Qiang; Zhang, Panpan; Jing, Shuaiyang; Rothman, James E; Qian, Yi; Lee, Intaek
2017-09-01
Golgin45 plays important roles in Golgi stack assembly and is known to bind both the Golgi stacking protein GRASP55 and Rab2 in the medial-Golgi cisternae. In this study, we sought to further characterize the cisternal adhesion complex using a proteomics approach. We report here that Acyl-CoA binding domain containing 3 (ACBD3) is likely to be a novel binding partner of Golgin45. ACBD3 interacts with Golgin45 via its GOLD domain, while its co-expression significantly increases Golgin45 targeting to the Golgi. Furthermore, ACBD3 recruits TBC1D22, a Rab33b GTPase activating protein (GAP), to a large multi-protein complex containing Golgin45 and GRASP55. These results suggest that ACBD3 may provide a scaffolding to organize the Golgi stacking proteins and a Rab33b-GAP at the medial-Golgi. © 2017 Federation of European Biochemical Societies.
Interdependence of the Ypt/RabGAP Gyp5p and Gyl1p for recruitment to the sites of polarized growth.
Chesneau, Laurent; Prigent, Magali; Boy-Marcotte, Emmanuelle; Daraspe, Jean; Fortier, Guillaume; Jacquet, Michel; Verbavatz, Jean-Marc; Cuif, Marie-Hélène
2008-04-01
Gyp5p and Gyl1p are two members of the Ypt/Rab guanosine triphosphatases-activating proteins involved in the control of polarized exocytosis in Saccharomyces cerevisiae. We had previously shown that Gyp5p and Gyl1p colocalize at the sites of polarized growth and belong to the same complex in subcellular fractions enriched in plasma membrane or secretory vesicles. Here, we investigate the interaction between Gyp5p and Gyl1p as well as the mechanism of their localization to the sites of polarized growth. We show that purified recombinant Gyp5p and Gyl1p interact directly in vitro. In vivo, both Gyp5p and Gyl1p are mutually required to concentrate at the sites of polarized growth. Moreover, the localization of Gyp5p and Gyl1p to the sites of polarized growth requires the formins Bni1p and Bnr1p and depends on actin cables. We show that, in a sec6-4 mutant, blocking secretion leads to coaccumulation of Gyp5p and Gyl1p, together with Sec4p. Electron microscopy experiments demonstrate that Gyp5p is associated with secretory vesicles. Altogether, our results indicate that both Gyp5p and Gyl1p access the sites of polarized growth by transport on secretory vesicles. Two polarisome components, Spa2p and Bud6p, are involved in maintaining Gyp5p and Gyl1p colocalized at the sites of polarized growth.
Structural Basis for Rab1 De-AMPylation by the Legionella pneumophila Effector SidD
Neunuebel, M. Ramona; Pallara, Chiara; Brady, Jacqueline; Kinch, Lisa N.; Fernández-Recio, Juan; Rojas, Adriana L.; Machner, Matthias P.; Hierro, Aitor
2013-01-01
The covalent attachment of adenosine monophosphate (AMP) to proteins, a process called AMPylation (adenylylation), has recently emerged as a novel theme in microbial pathogenesis. Although several AMPylating enzymes have been characterized, the only known virulence protein with de-AMPylation activity is SidD from the human pathogen Legionella pneumophila. SidD de-AMPylates mammalian Rab1, a small GTPase involved in secretory vesicle transport, thereby targeting the host protein for inactivation. The molecular mechanisms underlying Rab1 recognition and de-AMPylation by SidD are unclear. Here, we report the crystal structure of the catalytic region of SidD at 1.6 Å resolution. The structure reveals a phosphatase-like fold with additional structural elements not present in generic PP2C-type phosphatases. The catalytic pocket contains a binuclear metal-binding site characteristic of hydrolytic metalloenzymes, with strong dependency on magnesium ions. Subsequent docking and molecular dynamics simulations between SidD and Rab1 revealed the interface contacts and the energetic contribution of key residues to the interaction. In conjunction with an extensive structure-based mutational analysis, we provide in vivo and in vitro evidence for a remarkable adaptation of SidD to its host cell target Rab1 which explains how this effector confers specificity to the reaction it catalyses. PMID:23696742
Rab10 Disruption Results in Delayed OPC Maturation.
Zhang, Zhao-Huan; Zhao, Wei-Qian; Ma, Fan-Fei; Zhang, Hui; Xu, Xiao-Hui
2017-10-01
Oligodendrocyte precursor cell (OPC) maturation requires membrane addition for myelin sheath formation. Since the Rab system has been shown to contribute to membrane addition in other cell types, in this study, we explored the role of Rab in OPC maturation. SiRNA and shRNA techniques and conditional knockout mice provided in vitro and in vivo evidence that Rab10 is involved in OPC maturation and may affect myelination during OPC development.
Regulation of vesicular trafficking and leukocyte function by Rab27 GTPases and their effectors
Catz, Sergio Daniel
2013-01-01
The Rab27 family of GTPases regulates the efficiency and specificity of exocytosis in hematopoietic cells, including neutrophils, CTLs, NK cells, and mast cells. However, the mechanisms regulated by Rab27 GTPases are cell-specific, as they depend on the differential expression and function of particular effector molecules that are recruited by the GTPases. In addition, Rab27 GTPases participate in multiple steps of the regulation of the secretory process, including priming, tethering, docking, and fusion through sequential interaction with multiple effector molecules. Finally, recent reports suggest that Rab27 GTPases and their effectors regulate vesicular trafficking mechanisms other than exocytosis, including endocytosis and phagocytosis. This review focuses on the latest discoveries on the function of Rab27 GTPases and their effectors Munc13-4 and Slp1 in neutrophil function comparatively to their functions in other leukocytes. PMID:23378593
Bos, Marian E. H.; Verstappen, Koen M.; Van Cleef, Brigitte A. G. L.; Kluytmans, Jan A. J. W.; Wagenaar, Jaap A.; Heederik, Dick J. J.
2015-01-01
With the ultimate aim of containing the emergence of resistant bacteria, a Dutch policy was set in place in 2010 promoting a reduction of antimicrobial use (AMU) in food-producing animals. In this context, a study evaluated strategies to curb livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA). Fifty-one veal calf farms were assigned to one of 3 study arms: RAB farms reducing antimicrobials by protocol; RAB-CD farms reducing antimicrobials by protocol and applying a cleaning and disinfection program; and Control farms without interventions. MRSA carriage was tested in week 0 and week 12 of 2 consecutive production cycles in farmers, family members and veal calves. Interventions were validated and a cyclic rise in MRSA-prevalence in animals was shown with a more moderate increase in RAB farms. Prevalence in humans declined parallel over time in the study arms but RAB farms were at the lowest MRSA levels from the beginning of the study. In RAB-CD farms, human and animal prevalence did not differ from Control farms and MRSA air loads were significantly higher than in the other study arms. Mimicking the national trend, an overall AMU decrease (daily dosages per animal per cycle (DDDA/C)) was observed over 4 pre-study and the 2 study cycles; this trend did not have a significant effect on a set of evaluated farm technical parameters. AMU was positively associated with MRSA across study arms (ORs per 10 DDDA/C increase = 1.26 for both humans (p = 0.07) and animals (p = 0.12 in first cycle)). These results suggest that AMU reduction might be a good strategy for curbing MRSA in veal calf farming, however the specific cleaning and disinfecting program in RAB-CD farms was not effective. The drop in MRSA prevalence in people during the study could be attributed to the observed long-term AMU decreasing trend. PMID:26305895
Dorado-García, Alejandro; Graveland, Haitske; Bos, Marian E H; Verstappen, Koen M; Van Cleef, Brigitte A G L; Kluytmans, Jan A J W; Wagenaar, Jaap A; Heederik, Dick J J
2015-01-01
With the ultimate aim of containing the emergence of resistant bacteria, a Dutch policy was set in place in 2010 promoting a reduction of antimicrobial use (AMU) in food-producing animals. In this context, a study evaluated strategies to curb livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA). Fifty-one veal calf farms were assigned to one of 3 study arms: RAB farms reducing antimicrobials by protocol; RAB-CD farms reducing antimicrobials by protocol and applying a cleaning and disinfection program; and Control farms without interventions. MRSA carriage was tested in week 0 and week 12 of 2 consecutive production cycles in farmers, family members and veal calves. Interventions were validated and a cyclic rise in MRSA-prevalence in animals was shown with a more moderate increase in RAB farms. Prevalence in humans declined parallel over time in the study arms but RAB farms were at the lowest MRSA levels from the beginning of the study. In RAB-CD farms, human and animal prevalence did not differ from Control farms and MRSA air loads were significantly higher than in the other study arms. Mimicking the national trend, an overall AMU decrease (daily dosages per animal per cycle (DDDA/C)) was observed over 4 pre-study and the 2 study cycles; this trend did not have a significant effect on a set of evaluated farm technical parameters. AMU was positively associated with MRSA across study arms (ORs per 10 DDDA/C increase = 1.26 for both humans (p = 0.07) and animals (p = 0.12 in first cycle)). These results suggest that AMU reduction might be a good strategy for curbing MRSA in veal calf farming, however the specific cleaning and disinfecting program in RAB-CD farms was not effective. The drop in MRSA prevalence in people during the study could be attributed to the observed long-term AMU decreasing trend.
Harris, Janelle L; Dave, Keyur; Gorman, Jeffrey; Khanna, Kum Kum
2018-06-01
5T4 is a transmembrane glycoprotein with limited expression in normal adult tissues and expression in some solid tumours. It is unclear whether 5T4 is preferentially expressed by stem or differentiated cell types. Modes of 5T4 regulation are unknown despite its ongoing development as a cancer immunotherapy target. Our aims were to clarify the differentiation status of 5T4 expressing cells in breast cancer and to understand the mechanism underlying 5T4 membrane presentation. We analysed 5T4 expression in breast cancer cell populations by flow cytometery and found that 5T4 is highly expressed on differentiated cells, where it localizes to focal adhesions. Using immunoprecipitation and mass spectrometry, we identified interactions between 5T4 and the membrane trafficking proteins Rab11, Rab18 and ARF6. Mechanistically we found that Rab11 and Rab18 have oppositional roles in controlling expression and surface presentation of 5T4. 5T4 depletion stabilizes Rab11 protein expression with a consequent stimulation transferrin surface labelling, indicating that 5T4 represses endocytic activity. Successful immunotherapeutic targeting of 5T4 requires surface presentation and different immunotherapy strategies require surface presentation versus endocytosis. While breast cancer cells with high 5T4 surface expression and rapid cell surface turnover would be susceptible to antibody-drug conjugates that rely on intracellular release, 5T4 positive cells with lower expression or lower turnover may still be responsive to T-cell mediated approaches. We find that endocytosis of 5T4 is strongly Rab11 dependent and as such Rab11 activity could affect the success or failure of 5T4-targetted immunotherapy, particularly for antibody-drug conjugate approaches. In fact, 5T4 itself represses Rab11 expression. This newly uncovered relationship between Rab11 and 5T4 suggests that breast tumours with high 5T4 expression may not have efficient endocytic uptake of 5T4-targetted immunotherapeutics. This should be considered when selecting amongst the different types of immunotherapies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Misregulation of membrane trafficking processes in human nonalcoholic steatohepatitis.
Dzierlenga, Anika L; Cherrington, Nathan J
2018-03-01
Nonalcoholic steatohepatitis (NASH) remodels the expression and function of genes and proteins that are critical for drug disposition. This study sought to determine whether disruption of membrane protein trafficking pathways in human NASH contributes to altered localization of multidrug resistance-associated protein 2 (MRP2). A comprehensive immunoblot analysis assessed the phosphorylation, membrane translocation, and expression of transporter membrane insertion regulators, including several protein kinases (PK), radixin, MARCKS, and Rab11. Radixin exhibited a decreased phosphorylation and total expression, whereas Rab11 had an increased membrane localization. PKCδ, PKCα, and PKA had increased membrane activation, whereas PKCε had a decreased phosphorylation and membrane expression. Radixin dephosphorylation may activate MRP2 membrane retrieval in NASH; however, the activation of Rab11/PKCδ and PKA/PKCα suggest an activation of membrane insertion pathways as well. Overall these data suggest an altered regulation of protein trafficking in human NASH, although other processes may be involved in the regulation of MRP2 localization. © 2018 Wiley Periodicals, Inc.
Fromm, Steffanie; Senkler, Jennifer; Eubel, Holger; Peterhänsel, Christoph; Braun, Hans-Peter
2016-01-01
The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific ‘carbonic anhydrase domain’ of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe ‘life without complex I’. PMID:27122571
Wyroba, E; Kwaśniak, P; Miller, K; Kobyłecki, K; Osińska, M
2016-04-11
Protein products of the paralogous genes resulting from the whole genome duplication may acquire new function. The role of post-translational modifications (PTM) in proper targeting of Paramecium Rab7b paralogue - distinct from that of Rab7a directly involved in phagocytosis - was studied using point mutagenesis, proteomic analysis and double immunofluorescence after in vivo electroporation of the mutagenized protein. Here we show that substitution of Thr200 by Ala200 resulted in diminished incorporation of [P32] by 37.4% and of 32 [C14-]UDP-glucose by 24%, respectively, into recombinant Rab7b_200 in comparison to the non-mutagenized control. Double confocal imaging revealed that Rab7b_200 was mistargeted upon electroporation into living cells contrary to non- mutagenized recombinant Rab7b correctly incorporated in the cytostome area. We identified the peptide ion at m/z=677.63+ characteristic for the glycan group attached to Thr200 in Rab7b using nano LC-MS/MS and comparing the peptide map of this protein with that after deglycosylation with the mixture of five enzymes of different specificity. Based on the mass of this peptide ion and quantitative radioactive assays with [P32]and [C14-]UDP- glucose, the suggested composition of the adduct attached to Thr200 might be (Hex)1(HexNAc)1(Phos)3 or (HexNAc)1 (Deoxyhexose)1 (Phos)1 (HexA)1. These data indicate that PTM of Thr200 located in the hypervariable C-region of Rab7b in Paramecium is crucial for the proper localization/function of this protein. Moreover, these proteins differ also in other PTM: the number of phosphorylated amino acids in Rab7b is much higher than in Rab7a.
rab3 mediates cortical granule exocytosis in the sea urchin egg.
Conner, S; Wessel, G M
1998-11-15
Egg activation at fertilization in the sea urchin results in the exocytosis of approximately 15,000 cortical granules that are docked at the plasma membrane. Previously, we reported that several integral membrane proteins modeled in the SNARE hypothesis, synaptotagmin, VAMP, and syntaxin, in addition to a small GTPase of the ras superfamily, rab3, were present on cortical granules (Conner, S., Leaf, D., and Wessel, G., Mol. Reprod. Dev. 48, 1-13, 1997). Here we report that rab3 is associated with cortical granules throughout oogenesis, during cortical granule translocation, and while docked at the egg plasma membrane. Following cortical granule exocytosis, however, rab3 reassociates with a different population of vesicles, at least some of which are of endocytic origin. Because of its selective association with cortical granules in eggs and oocytes, we hypothesize that rab3 functions in cortical granule exocytosis. To test this hypothesis, we used a strategy of interfering with rab3 function by peptide competition with its effector domain, a conserved region within specific rab types. We first identified the effector domain sequence in Lytechinus variegatus eggs and find the sequence 94% identical to the effector domain of rab3 in Stronglocentrotus purpuratus. Then, with synthetic peptides to different regions of the rab3 protein, we find that cortical granule exocytosis is inhibited in eggs injected with effector domain peptides, but not with peptides from the hypervariable region or with a scrambled effector peptide. Additionally, effector-peptide-injected eggs injected with IP3 are blocked in their ability to exocytose cortical granules, suggesting that the inhibition is directly on the membrane fusion event and not the result of interference with the signal transduction mechanism leading to calcium release. We interpret these results to mean that rab3 functions in the regulation of cortical granule exocytosis following vesicle docking. Copyright 1998 Academic Press.
Chen, Wenjin; Guo, Shengdong; Wang, Shenggang
2016-10-22
BACKGROUND The purpose of our study was to determine the functional role of microRNA (miR)-16 in chronic inflammatory pain and to disclose its underlying molecular mechanism. MATERIAL AND METHODS Inflammatory pain was induced by injection of complete Freund's adjuvant (CFA) to Wistar rats. The pWPXL-miR-16, PcDNA3.1- Ras-related protein (RAB23), and/or SB203580 were delivered intrathecally to the rats. Behavioral tests were detected at 0 h, 4 h, 1 d, 4 d, 7 d, and 14 d after CFA injection. After behavioral tests, L4-L6 dorsal spinal cord were obtained and the levels of miR-16, RAB23, and phosphorylation of p38 (p-p38) were evaluated by quantitative real-time PCR (qRT-PCR). In addition, luciferase reporter assay was performed to explore whether RAB23 was a target of miR-16, and qRT-PCR and Western blotting were used to confirm the regulation between RAB23 and miR-16. RESULTS The level of miR-16 was significantly decreased in the CFA-induced inflammatory pain. Intrathecal injection of miR-16 alleviates pain response and raised pain threshold. The level of RAB23 was significantly increased in the pain model, and intrathecal injection of RAB23 aggravated pain response. Luciferase reporter assay confirmed that RAB23 was a direct target of miR-16, and RAB23 was negatively regulated by miR-16. In addition, we found that simultaneous administration of SB203580 and miR-16 further alleviates pain response compared to only administration of miR-16. CONCLUSIONS Our findings suggest that miR-16 relieves chronic inflammatory pain by targeting RAB23 and inhibiting p38 MAPK activation.
Myosin Vb Is Associated with Plasma Membrane Recycling Systems
Lapierre, Lynne A.; Kumar, Ravindra; Hales, Chadwick M.; Navarre, Jennifer; Bhartur, Sheela G.; Burnette, Jason O.; Provance, D. William; Mercer, John A.; Bähler, Martin; Goldenring, James R.
2001-01-01
Myosin Va is associated with discrete vesicle populations in a number of cell types, but little is known of the function of myosin Vb. Yeast two-hybrid screening of a rabbit parietal cell cDNA library with dominant active Rab11a (Rab11aS20V) identified myosin Vb as an interacting protein for Rab11a, a marker for plasma membrane recycling systems. The isolated clone, corresponding to the carboxyl terminal 60 kDa of the myosin Vb tail, interacted with all members of the Rab11 family (Rab11a, Rab11b, and Rab25). GFP-myosin Vb and endogenous myosin Vb immunoreactivity codistributed with Rab11a in HeLa and Madin-Darby canine kidney (MDCK) cells. As with Rab11a in MDCK cells, the myosin Vb immunoreactivity was dispersed with nocodazole treatment and relocated to the apical corners of cells with taxol treatment. A green fluorescent protein (GFP)-myosin Vb tail chimera overexpressed in HeLa cells retarded transferrin recycling and caused accumulation of transferrin and the transferrin receptor in pericentrosomal vesicles. Expression of the myosin Vb tail chimera in polarized MDCK cells stably expressing the polymeric IgA receptor caused accumulation of basolaterally endocytosed polymeric IgA and the polymeric IgA receptor in the pericentrosomal region. The myosin Vb tail had no effects on transferrin trafficking in polarized MDCK cells. The GFP-myosin Va tail did not colocalize with Rab11a and had no effects on recycling system vesicle distribution in either HeLa or MDCK cells. The results indicate myosin Vb is associated with the plasma membrane recycling system in nonpolarized cells and the apical recycling system in polarized cells. The dominant negative effects of the myosin Vb tail chimera indicate that this unconventional myosin is required for transit out of plasma membrane recycling systems. PMID:11408590
Lizundia, Regina; Chaussepied, Marie; Naissant, Bernina; Masse, Guillemette X; Quevillon, Emmanuel; Michel, Fréderique; Monier, Solange; Weitzman, Jonathan B; Langsley, Gordon
2007-08-01
Lymphocyte transformation induced by Theileria parasites involves constitutive activation of c-Jun N-terminal kinase (JNK) and the AP-1 transcription factor. We found that JNK/AP-1 activation is associated with elevated levels of Rab11 protein in Theileria-transformed B cells. We show that AP-1 regulates rab11a promoter activity in B cells and that the induction of c-Jun activity in mouse fibroblasts also leads to increased transcription of the endogenous rab11a gene, consistent with it being an AP-1 target. Pharmacological inhibition of the JNK pathway reduced Rab11 protein levels and endosome recycling of transferrin receptor (TfR) and siRNA knockdown of JNK1 and Rab11A levels also reduced TfR surface expression. We propose a model, where activation of the JNK/AP-1 pathway during cell transformation might assure that the regulation of recycling endosomes is co-ordinated with cell-cycle progression. This might be achieved via the simultaneous upregulation of the cell cycle machinery (e.g. cyclin D1) and the recycling endosome regulators (e.g. Rab11A).
Vuorenpää, Anne; Jørgensen, Trine N.; Newman, Amy H.; Madsen, Kenneth L.; Scheinin, Mika
2016-01-01
The norepinephrine transporter (NET) mediates reuptake of synaptically released norepinephrine in central and peripheral noradrenergic neurons. The molecular processes governing availability of NET in the plasma membrane are poorly understood. Here we use the fluorescent cocaine analogue JHC 1-64, as well as several other approaches, to investigate the trafficking itinerary of NET in live noradrenergic neurons. Confocal imaging revealed extensive constitutive internalization of JHC 1-64-labeled NET in the neuronal somata, proximal extensions and presynaptic boutons. Phorbol 12-myristate 13-acetate increased intracellular accumulation of JHC 1-64-labeled NET and caused a parallel reduction in uptake capacity. Internalized NET strongly colocalized with the “long loop” recycling marker Rab11, whereas less overlap was seen with the “short loop” recycling marker Rab4 and the late endosomal marker Rab7. Moreover, mitigating Rab11 function by overexpression of dominant negative Rab11 impaired NET function. Sorting of NET to the Rab11 recycling compartment was further supported by confocal imaging and reversible biotinylation experiments in transfected differentiated CATH.a cells. In contrast to NET, the dopamine transporter displayed markedly less constitutive internalization and limited sorting to the Rab11 recycling compartment in the differentiated CATH.a cells. Exchange of domains between the two homologous transporters revealed that this difference was determined by non-conserved structural elements in the intracellular N terminus. We conclude that NET displays a distinct trafficking itinerary characterized by continuous shuffling between the plasma membrane and the Rab11 recycling compartment and that the functional integrity of the Rab11 compartment is critical for maintaining proper presynaptic NET function. PMID:26786096
Wilson, Gabrielle R; Sim, Joe C H; McLean, Catriona; Giannandrea, Maila; Galea, Charles A; Riseley, Jessica R; Stephenson, Sarah E M; Fitzpatrick, Elizabeth; Haas, Stefan A; Pope, Kate; Hogan, Kirk J; Gregg, Ronald G; Bromhead, Catherine J; Wargowski, David S; Lawrence, Christopher H; James, Paul A; Churchyard, Andrew; Gao, Yujing; Phelan, Dean G; Gillies, Greta; Salce, Nicholas; Stanford, Lynn; Marsh, Ashley P L; Mignogna, Maria L; Hayflick, Susan J; Leventer, Richard J; Delatycki, Martin B; Mellick, George D; Kalscheuer, Vera M; D'Adamo, Patrizia; Bahlo, Melanie; Amor, David J; Lockhart, Paul J
2014-12-04
Advances in understanding the etiology of Parkinson disease have been driven by the identification of causative mutations in families. Genetic analysis of an Australian family with three males displaying clinical features of early-onset parkinsonism and intellectual disability identified a ∼45 kb deletion resulting in the complete loss of RAB39B. We subsequently identified a missense mutation (c.503C>A [p.Thr168Lys]) in RAB39B in an unrelated Wisconsin kindred affected by a similar clinical phenotype. In silico and in vitro studies demonstrated that the mutation destabilized the protein, consistent with loss of function. In vitro small-hairpin-RNA-mediated knockdown of Rab39b resulted in a reduction in the density of α-synuclein immunoreactive puncta in dendritic processes of cultured neurons. In addition, in multiple cell models, we demonstrated that knockdown of Rab39b was associated with reduced steady-state levels of α-synuclein. Post mortem studies demonstrated that loss of RAB39B resulted in pathologically confirmed Parkinson disease. There was extensive dopaminergic neuron loss in the substantia nigra and widespread classic Lewy body pathology. Additional pathological features included cortical Lewy bodies, brain iron accumulation, tau immunoreactivity, and axonal spheroids. Overall, we have shown that loss-of-function mutations in RAB39B cause intellectual disability and pathologically confirmed early-onset Parkinson disease. The loss of RAB39B results in dysregulation of α-synuclein homeostasis and a spectrum of neuropathological features that implicate RAB39B in the pathogenesis of Parkinson disease and potentially other neurodegenerative disorders. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Hoogenraad, Casper C.; Popa, Ioana; Futai, Kensuke; Sanchez-Martinez, Emma; Wulf, Phebe S.; van Vlijmen, Thijs; Dortland, Bjorn R.; Oorschot, Viola; Govers, Roland; Monti, Maria; Heck, Albert J. R.; Sheng, Morgan; Klumperman, Judith; Rehmann, Holger; Jaarsma, Dick; Kapitein, Lukas C.; van der Sluijs, Peter
2010-01-01
The endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1 (GRASP-1) as a neuron-specific effector of Rab4 and key component of the molecular machinery that coordinates recycling endosome maturation in dendrites. We show that GRASP-1 is necessary for AMPA receptor recycling, maintenance of spine morphology, and synaptic plasticity. At the molecular level, GRASP-1 segregates Rab4 from EEA1/Neep21/Rab5-positive early endosomal membranes and coordinates the coupling to Rab11-labelled recycling endosomes by interacting with the endosomal SNARE syntaxin 13. We propose that GRASP-1 connects early and late recycling endosomal compartments by forming a molecular bridge between Rab-specific membrane domains and the endosomal SNARE machinery. The data uncover a new mechanism to achieve specificity and directionality in neuronal membrane receptor trafficking. PMID:20098723
Goodman, Simon L.; Grote, Hans Juergen; Wilm, Claudia
2012-01-01
Summary The relationship between integrin expression and function in pathologies is often contentious as comparisons between human pathological expression and expression in cell lines is difficult. In addition, the expression of even integrins αvβ6 and αvβ8 in tumor cell lines is not comprehensively documented. Here, we describe rabbit monoclonal antibodies (RabMabs) against the extracellular domains of αv integrins that react with both native integrins and formalin fixed, paraffin embedded (FFPE) human tissues. These RabMabs, against αvβ3 (EM22703), αvβ5 (EM09902), αvβ6 (EM05201), αvβ8 (EM13309), and pan-αv (EM01309), recognize individual integrin chains in Western blots and in flow cytometry. EM22703 detected a ligand-induced binding site (LIBS), reporting an epitope enhanced by the binding of an RGD-peptide to αvβ3. αvβ8 was rarely expressed in human tumor specimens, and weakly expressed in non-small-cell lung carcinoma (NSCLC). However, ovarian carcinoma cell lines expressed αvβ8, as did some melanoma cells, whereas U87MG glioma lacked αvβ8 expression. We observed an unexpected strong expression of αvβ6 in tumor samples of invasive ductal breast adenoma, colorectal carcinoma (CRC), and NSCLC. αvβ3 was strongly expressed in some invasive NSCLC cohorts. Interestingly, PC3 prostate cell and human prostate tumors did not express αvβ3. The RabMabs stained plasma membranes in FFPE-immunohistochemistry (IHC) samples of tumor cell lines from lung, ovary, colon, prostate, squamous cell carcinoma of head and neck (SCCHN), breast, and pancreas carcinomas. The RabMabs are unique tools for probing αv integrin biology, and suggest that especially αvβ6 and αvβ8 biologies still have much to reveal. PMID:23213423
Genetic separation of phototropism and blue light inhibition of stem elongation
NASA Technical Reports Server (NTRS)
Liscum, E.; Young, J. C.; Poff, K. L.; Hangarter, R. P.
1992-01-01
Blue light-induced regulation of cell elongation is a component of the signal response pathway for both phototropic curvature and inhibition of stem elongation in higher plants. To determine if blue light regulates cell elongation in these responses through shared or discrete pathways, phototropism and hypocotyl elongation were investigated in several blue light response mutants in Arabidopsis thaliana. Specifically, the blu mutants that lack blue light-dependent inhibition of hypocotyl elongation were found to exhibit a normal phototropic response. In contrast, a phototropic null mutant (JK218) and a mutant that has a 20- to 30-fold shift in the fluence dependence for first positive phototropism (JK224) showed normal inhibition of hypocotyl elongation in blue light. F1 progeny of crosses between the blu mutants and JK218 showed normal phototropism and inhibition of hypocotyl elongation, and approximately 1 in 16 F2 progeny were double mutants lacking both responses. Thus, blue light-dependent inhibition of hypocotyl elongation and phototropism operate through at least some genetically distinct components.
2011-01-01
Background Reactive oxygen species (ROS) are unavoidable by-products of oxygenic photosynthesis, causing progressive oxidative damage and ultimately cell death. Despite their destructive activity they are also signalling molecules, priming the acclimatory response to stress stimuli. Results To investigate this role further, we exposed wild type Arabidopsis thaliana plants and the double mutant npq1lut2 to excess light. The mutant does not produce the xanthophylls lutein and zeaxanthin, whose key roles include ROS scavenging and prevention of ROS synthesis. Biochemical analysis revealed that singlet oxygen (1O2) accumulated to higher levels in the mutant while other ROS were unaffected, allowing to define the transcriptomic signature of the acclimatory response mediated by 1O2 which is enhanced by the lack of these xanthophylls species. The group of genes differentially regulated in npq1lut2 is enriched in sequences encoding chloroplast proteins involved in cell protection against the damaging effect of ROS. Among the early fine-tuned components, are proteins involved in tetrapyrrole biosynthesis, chlorophyll catabolism, protein import, folding and turnover, synthesis and membrane insertion of photosynthetic subunits. Up to now, the flu mutant was the only biological system adopted to define the regulation of gene expression by 1O2. In this work, we propose the use of mutants accumulating 1O2 by mechanisms different from those activated in flu to better identify ROS signalling. Conclusions We propose that the lack of zeaxanthin and lutein leads to 1O2 accumulation and this represents a signalling pathway in the early stages of stress acclimation, beside the response to ADP/ATP ratio and to the redox state of both plastoquinone pool. Chloroplasts respond to 1O2 accumulation by undergoing a significant change in composition and function towards a fast acclimatory response. The physiological implications of this signalling specificity are discussed. PMID:21481232
Effect of Renin-Angiotensin Blockers on Left Ventricular Remodeling in Severe Aortic Stenosis.
Goh, Serene Si-Ning; Sia, Ching-Hui; Ngiam, Nicholas Jinghao; Tan, Benjamin Yong-Qiang; Lee, Poay Sian; Tay, Edgar Lik-Wui; Kong, William Kok-Fai; Yeo, Tiong Cheng; Poh, Kian-Keong
2017-06-01
Studies have shown that medical therapy with renin-angiotensin blockers (RABs) may benefit patients with aortic stenosis (AS). However, its use and efficacy remains controversial, including in patients with low flow (LF) with preserved left ventricular ejection fraction (LVEF). We examined the effects of RAB use on LV remodeling in patients with severe AS with preserved LVEF, analyzing the differential effects in patients with LF compared with normal flow (NF). This is a retrospective study of 428 consecutive subjects from 2005 to 2014 with echocardiographic diagnosis of severe AS and preserved LVEF. Clinical and echocardiographic parameters were systematically collected and analyzed. Two hundred forty-two (57%) patients had LF. Sixty-four LF patients (26%) were treated with RAB. Patients on RAB treatment had a higher incidence of hyperlipidemia (69% vs 44%) and diabetes mellitus (53% vs 34%). Severity of AS in terms of valve area, transvalvular mean pressure gradient, and aortic valve resistance were similar between both groups as was the degree of LV diastolic function. The RAB group demonstrated significantly lower LV mass index with a correspondingly lower incidence of concentric LV hypertrophy. Regardless of the duration of RAB therapy, patients had increased odds of having a preserved LV mass index compared with those without RAB therapy. In conclusion, RAB therapy may be associated with less LV pathological remodeling and have a role in delaying patients from developing cardiovascular complications of AS. Copyright © 2017 Elsevier Inc. All rights reserved.
The Rab4 effector Rabip4 plays a role in the endocytotic trafficking of Glut 4 in 3T3-L1 adipocytes.
Mari, Muriel; Monzo, Pascale; Kaddai, Vincent; Keslair, Frédérique; Gonzalez, Teresa; Le Marchand-Brustel, Yannick; Cormont, Mireille
2006-04-01
Insulin regulates glucose uptake in the adipocytes by modulating Glut 4 localization, a traffic pathway involving the endocytic small GTPases Rab4, Rab5, and RabThe expression of the Rab4 effector Rabip4 leads to a 30% increase in glucose uptake and Glut 4 translocation in the presence of insulin, without modifications in the basal condition. This effect was not due to modifications of Glut 4 expression or insulin signaling, suggesting that Rabip4 controls Glut 4 trafficking. We present evidence that Rabip4 defines a subdomain of early endosomes and that Rabip4 is redistributed to the plasma membrane by insulin. Rabip4 is mostly absent from structures positive for early endosome antigen 1, Rab11 or transferrin receptors and from Glut 4 sequestration compartments. However, Rabip4 vesicles can be reached by internalized transferrin and Glut 4. Thus, Rabip4 probably defines an endocytic sorting platform for Glut 4 towards its sequestration pool. The expression of a form of Rabip4 unable to bind Rab4 does not modify basal and insulin-induced glucose transport. However, it induces an increase in the amount of Glut 4 at the plasma membrane and perturbs Glut 4 traffic from endosomes towards its sequestration compartments. These observations suggest that the uncoupling between Rabip4 and Rab4 induces the insertion of Glut 4 molecules that are unable to transport glucose into the plasma membrane.
Tangthirasunun, Narumon; Navarro, David; Garajova, Sona; Chevret, Didier; Tong, Laetitia Chan Ho; Gautier, Valérie; Hyde, Kevin D; Silar, Philippe; Berrin, Jean-Guy
2017-01-15
Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose dehydrogenase by increasing beta-glucosidase expression and using an alternate electron donor for LPMO. Copyright © 2016 American Society for Microbiology.
Tangthirasunun, Narumon; Navarro, David; Garajova, Sona; Chevret, Didier; Tong, Laetitia Chan Ho; Gautier, Valérie; Hyde, Kevin D.
2016-01-01
ABSTRACT Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. IMPORTANCE Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose dehydrogenase by increasing beta-glucosidase expression and using an alternate electron donor for LPMO. PMID:27836848
Pagano, Adriana; Crottet, Pascal; Prescianotto-Baschong, Cristina; Spiess, Martin
2004-11-01
The involvement of clathrin and associated adaptor proteins in receptor recycling from endosomes back to the plasma membrane is controversial. We have used an in vitro assay to identify the molecular requirements for the formation of recycling vesicles. Cells expressing the asialoglycoprotein receptor H1, a typical recycling receptor, were surface biotinylated and then allowed to endocytose for 10 min. After stripping away surface-biotin, the cells were permeabilized and the cytosol washed away. In a temperature-, cytosol-, and nucleotide-dependent manner, the formation of sealed vesicles containing biotinylated H1 could be reconstituted. Vesicle formation was strongly inhibited upon immunodepletion of adaptor protein (AP)-1, but not of AP-2 or AP-3, from the cytosol, and was restored by readdition of purified AP-1. Vesicle formation was stimulated by supplemented clathrin, but inhibited by brefeldin A, consistent with the involvement of ARF1 and a brefeldin-sensitive guanine nucleotide exchange factor. The GTPase rab4, but not rab5, was required to generate endosome-derived vesicles. Depletion of rabaptin-5/rabex-5, a known interactor of both rab4 and gamma-adaptin, stimulated and addition of the purified protein strongly inhibited vesicle production. The results indicate that recycling is mediated by AP-1/clathrin-coated vesicles and regulated by rab4 and rabaptin-5/rabex-5.
The Prenylated Rab GTPase Receptor PRA1.F4 Contributes to Protein Exit from the Golgi Apparatus.
Lee, Myoung Hui; Yoo, Yun-Joo; Kim, Dae Heon; Hanh, Nguyen Hong; Kwon, Yun; Hwang, Inhwan
2017-07-01
Prenylated Rab acceptor1 (PRA1) functions in the recruitment of prenylated Rab proteins to their cognate organelles. Arabidopsis ( Arabidopsis thaliana ) contains a large number of proteins belonging to the AtPRA1 family. However, their physiological roles remain largely unknown. Here, we investigated the physiological role of AtPRA1.F4, a member of the AtPRA1 family. A T-DNA insertion knockdown mutant of AtPRA1.F4 , atpra1.f4 , was smaller in stature than parent plants and possessed shorter roots, whereas transgenic plants overexpressing HA:AtPRA1.F4 showed enhanced development of secondary roots and root hairs. However, both overexpression and knockdown plants exhibited increased sensitivity to high-salt stress, lower vacuolar Na + /K + -ATPase and plasma membrane ATPase activities, lower and higher pH in the vacuole and apoplast, respectively, and highly vesiculated Golgi apparatus. HA:AtPRA1.F4 localized to the Golgi apparatus and assembled into high-molecular-weight complexes. atpra1.f4 plants displayed a defect in vacuolar trafficking, which was complemented by low but not high levels of HA : AtPRA1.F4 Overexpression of HA:AtPRA1.F4 also inhibited protein trafficking at the Golgi apparatus, albeit differentially depending on the final destination or type of protein: trafficking of vacuolar proteins, plasma membrane proteins, and trans-Golgi network (TGN)-localized SYP61 was strongly inhibited; trafficking of TGN-localized SYP51 was slightly inhibited; and trafficking of secretory proteins and TGN-localized SYP41 was negligibly or not significantly inhibited. Based on these results, we propose that Golgi-localized AtPRA1.F4 is involved in the exit of many but not all types of post-Golgi proteins from the Golgi apparatus. Additionally, an appropriate level of AtPRA1.F4 is crucial for its function at the Golgi apparatus. © 2017 American Society of Plant Biologists. All Rights Reserved.
Woo, Sang Su; James, Declan J; Martin, Thomas F J
2017-03-15
Munc13-4 is a Ca 2+ -dependent SNARE (soluble N -ethylmaleimide-sensitive factor attachment protein receptor)- and phospholipid-binding protein that localizes to and primes secretory granules (SGs) for Ca 2+ -evoked secretion in various secretory cells. Studies in mast cell-like RBL-2H3 cells provide direct evidence that Munc13-4 with its two Ca 2+ -binding C2 domains functions as a Ca 2+ sensor for SG exocytosis. Unexpectedly, Ca 2+ stimulation also generated large (>2.4 μm in diameter) Munc13-4 + /Rab7 + /Rab11 + endosomal vacuoles. Vacuole generation involved the homotypic fusion of Munc13-4 + /Rab7 + SGs, followed by a merge with Rab11 + endosomes, and depended on Ca 2+ binding to Munc13-4. Munc13-4 promoted the Ca 2+ -stimulated fusion of VAMP8-containing liposomes with liposomes containing exocytic or endosomal Q-SNAREs and directly interacted with late endosomal SNARE complexes. Thus Munc13-4 is a tethering/priming factor and Ca 2+ sensor for both heterotypic SG-plasma membrane and homotypic SG-SG fusion. Total internal reflection fluorescence microscopy imaging revealed that vacuoles were exocytic and mediated secretion of β-hexosaminidase and cytokines accompanied by Munc13-4 diffusion onto the plasma membrane. The results provide new molecular insights into the mechanism of multigranular compound exocytosis commonly observed in various secretory cells. © 2017 Woo et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Takahashi, Masafumi; Ishiko, Takatoshi; Kamohara, Hidenobu; Hidaka, Hideaki; Ikeda, Osamu; Ogawa, Michio; Baba, Hideo
2007-01-01
We investigated the impact of curcumin on neutrophils. Chemotactic activity via human recombinant IL-8 (hrIL-8) was significantly inhibited by curcumin. Curcumin reduced calcium ion flow induced by internalization of the IL-8 receptor. We analyzed flow cytometry to evaluate the status of the IL-8 receptor after curcumin treatment. The change in the distribution of receptors intracellularly and on the cell surface suggested that curcumin may affect the receptor trafficking pathway intracellulary. Rab11 is a low molecular weight G protein associated with the CXCR recycling pathway. Following curcumin treatment, immunoprecipitation studies showed that the IL-8 receptor was associated with larger amounts of active Rab11 than that in control cells. These data suggest that curcumin induces the stacking of the Rab11 vesicle complex with CXCR1 and CXCR2 in the endocytic pathway. The mechanism for antiinflammatory response by curcumin may involve unique regulation of the Rab11 trafficking molecule in recycling of IL-8 receptors. PMID:17710245
Fujita, Naonobu; Huang, Wilson; Lin, Tzu-Han; Groulx, Jean-Francois; Jean, Steve; Nguyen, Jen; Kuchitsu, Yoshihiko; Koyama-Honda, Ikuko; Mizushima, Noboru; Fukuda, Mitsunori; Kiger, Amy A
2017-01-07
Transverse (T)-tubules make-up a specialized network of tubulated muscle cell membranes involved in excitation-contraction coupling for power of contraction. Little is known about how T-tubules maintain highly organized structures and contacts throughout the contractile system despite the ongoing muscle remodeling that occurs with muscle atrophy, damage and aging. We uncovered an essential role for autophagy in T-tubule remodeling with genetic screens of a developmentally regulated remodeling program in Drosophila abdominal muscles. Here, we show that autophagy is both upregulated with and required for progression through T-tubule disassembly stages. Along with known mediators of autophagosome-lysosome fusion, our screens uncovered an unexpected shared role for Rab2 with a broadly conserved function in autophagic clearance. Rab2 localizes to autophagosomes and binds to HOPS complex members, suggesting a direct role in autophagosome tethering/fusion. Together, the high membrane flux with muscle remodeling permits unprecedented analysis both of T-tubule dynamics and fundamental trafficking mechanisms.
Endosomal protein traffic meets nuclear signal transduction head on.
Horazdovsky, Bruce
2004-02-01
Rab5 plays a key role in controlling protein traffic through the early stages of the endocytic pathway. Previous studies on the modulators and effectors of Rab5 protein function have tied the regulation of several signal transduction pathways to the movement of protein through endocytic compartments. In the February 6, 2004, issue of Cell, Miaczynska et al. describe a surprising new link between Rab5 function and the nucleus by uncovering two new Rab5 effectors as potential regulators of the nucleosome remodeling and histone deacetylase protein complex NuRD/MeCP1.
Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen
2018-06-13
Deep learning has been increasingly used to solve a number of problems with state-of-the-art performance in a wide variety of fields. In biology, deep learning can be applied to reduce feature extraction time and achieve high levels of performance. In our present work, we apply deep learning via two-dimensional convolutional neural networks and position-specific scoring matrices to classify Rab protein molecules, which are main regulators in membrane trafficking for transferring proteins and other macromolecules throughout the cell. The functional loss of specific Rab molecular functions has been implicated in a variety of human diseases, e.g., choroideremia, intellectual disabilities, cancer. Therefore, creating a precise model for classifying Rabs is crucial in helping biologists understand the molecular functions of Rabs and design drug targets according to such specific human disease information. We constructed a robust deep neural network for classifying Rabs that achieved an accuracy of 99%, 99.5%, 96.3%, and 97.6% for each of four specific molecular functions. Our approach demonstrates superior performance to traditional artificial neural networks. Therefore, from our proposed study, we provide both an effective tool for classifying Rab proteins and a basis for further research that can improve the performance of biological modeling using deep neural networks. Copyright © 2018 Elsevier Inc. All rights reserved.
Qu, Fangfei; Lorenzo, Damaris N; King, Samantha J; Brooks, Rebecca; Bear, James E; Bennett, Vann
2016-01-01
Endosomal membrane trafficking requires coordination between phosphoinositide lipids, Rab GTPases, and microtubule-based motors to dynamically determine endosome identity and promote long-range organelle transport. Here we report that ankyrin-B (AnkB), through integrating all three systems, functions as a critical node in the protein circuitry underlying polarized recycling of α5β1-integrin in mouse embryonic fibroblasts, which enables persistent fibroblast migration along fibronectin gradients. AnkB associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles in fibroblasts and binds dynactin to promote their long-range motility. We demonstrate that AnkB binds to Rab GTPase Activating Protein 1-Like (RabGAP1L) and recruits it to PI3P-positive organelles, where RabGAP1L inactivates Rab22A, and promotes polarized trafficking to the leading edge of migrating fibroblasts. We further determine that α5β1-integrin depends on an AnkB/RabGAP1L complex for polarized recycling. Our results reveal AnkB as an unexpected key element in coordinating polarized transport of α5β1-integrin and likely of other specialized endocytic cargos. DOI: http://dx.doi.org/10.7554/eLife.20417.001 PMID:27718357
Shields, M S; Montgomery, S O; Cuskey, S M; Chapman, P J; Pritchard, P H
1991-01-01
Pseudomonas cepacia G4 possesses a novel pathway of toluene catabolism that is shown to be responsible for the degradation of trichloroethylene (TCE). This pathway involves conversion of toluene via o-cresol to 3-methylcatechol. In order to determine the enzyme of toluene degradation that is responsible for TCE degradation, chemically induced mutants, blocked in the toluene ortho-monooxygenase (TOM) pathway of G4, were examined. Mutants of the phenotypic class designated TOM A- were all defective in their ability to oxidize toluene, o-cresol, m-cresol, and phenol, suggesting that a single enzyme is responsible for conversion of these compounds to their hydroxylated products (3-methylcatechol from toluene, o-cresol, and m-cresol and catechol from phenol) in the wild type. Mutants of this class did not degrade TCE. Two other mutant classes which were blocked in toluene catabolism, TOM B-, which lacked catechol-2,3-dioxygenase, and TOM C-, which lacked 2-hydroxy-6-oxoheptadienoic acid hydrolase activity, were fully capable of TCE degradation. Therefore, TCE degradation is directly associated with the monooxygenation capability responsible for toluene, cresol, and phenol hydroxylation. PMID:1892384
Nieva, Claudia; Busk, Peter K; Domínguez-Puigjaner, Eva; Lumbreras, Victoria; Testillano, Pilar S; Risueño, Maria-Carmen; Pagès, Montserrat
2005-08-01
The plant hormone abscisic acid regulates gene expression in response to growth stimuli and abiotic stress. Previous studies have implicated members of the bZIP family of transcription factors as mediators of abscisic acid dependent gene expression through the ABRE cis-element. Here, we identify two new maize bZIP transcription factors, EmBP-2 and ZmBZ-1 related to EmBP-1 and OsBZ-8 families. They are differentially expressed during embryo development; EmBP-2 is constitutive, whereas ZmBZ-1 is abscisic acid-inducible and accumulates during late embryogenesis. Both factors are nuclear proteins that bind to ABREs and activate transcription of the abscisic acid-inducible gene rab28 from maize. EmBP-2 and ZmBZ-1 are phosphorylated by protein kinase CK2 and phosphorylation alters their DNA binding properties. Our data suggest that EmBP-2 and ZmBZ-1 are involved in the expression of abscisic acid inducible genes such as rab28 and their activity is modulated by ABA and by phosphorylation.
Phosphatidylinositol 3,5-Bisphosphate-Rich Membrane Domains in Endosomes and Lysosomes.
Takatori, Sho; Tatematsu, Tsuyako; Cheng, Jinglei; Matsumoto, Jun; Akano, Takuya; Fujimoto, Toyoshi
2016-02-01
Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze-fracture electron microscopy. GST-ATG18-4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) was blocked by an excess of the p40(phox) PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)-deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP-deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid-disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP-deficient, PtdIns(3)P-rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5- and RAB7-positive endosome/lysosomes of the tubulo-vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2 -rich and -deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Dall'Osto, Luca; Lico, Chiara; Alric, Jean; Giuliano, Giovanni; Havaux, Michel; Bassi, Roberto
2006-01-01
Background Lutein is the most abundant xanthophyll in the photosynthetic apparatus of higher plants. It binds to site L1 of all Lhc proteins, whose occupancy is indispensable for protein folding and quenching chlorophyll triplets. Thus, the lack of a visible phenotype in mutants lacking lutein has been surprising. Results We have re-assessed the lut2.1 phenotypes through biochemical and spectroscopic methods. Lhc proteins from the lut2.1 mutant compensate the lack of lutein by binding violaxanthin in sites L1 and L2. This substitution reduces the capacity for regulatory mechanisms such as NPQ, reduces antenna size, induces the compensatory synthesis of Antheraxanthin + Zeaxanthin, and prevents the trimerization of LHCII complexes. In vitro reconstitution shows that the lack of lutein per se is sufficient to prevent trimerization. lut2.1 showed a reduced capacity for state I – state II transitions, a selective degradation of Lhcb1 and 2, and a higher level of photodamage in high light and/or low temperature, suggesting that violaxanthin cannot fully restore chlorophyll triplet quenching. In vitro photobleaching experiments and time-resolved spectroscopy of carotenoid triplet formation confirmed this hypothesis. The npq1lut2.1 double mutant, lacking both zeaxanthin and lutein, is highly susceptible to light stress. Conclusion Lutein has the specific property of quenching harmful 3Chl* by binding at site L1 of the major LHCII complex and of other Lhc proteins of plants, thus preventing ROS formation. Substitution of lutein by violaxanthin decreases the efficiency of 3Chl* quenching and causes higher ROS yield. The phenotype of lut2.1 mutant in low light is weak only because rescuing mechanisms of photoprotection, namely zeaxanthin synthesis, compensate for the ROS production. We conclude that zeaxanthin is effective in photoprotection of plants lacking lutein due to the multiple effects of zeaxanthin in photoprotection, including ROS scavenging and direct quenching of Chl fluorescence by binding to the L2 allosteric site of Lhc proteins. PMID:17192177
Rivero-Ríos, Pilar; Gómez-Suaga, Patricia; Fernández, Belén; Madero-Pérez, Jesús; Schwab, Andrew J; Ebert, Allison D; Hilfiker, Sabine
2015-06-01
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene comprise the most common cause of familial Parkinson's disease (PD), and variants increase the risk for sporadic PD. LRRK2 displays kinase and GTPase activity, and altered catalytic activity correlates with neurotoxicity, making LRRK2 a promising therapeutic target. Despite the importance of LRRK2 for disease pathogenesis, its normal cellular function, and the mechanism(s) by which pathogenic mutations cause neurodegeneration remain unclear. LRRK2 seems to regulate a variety of intracellular vesicular trafficking events to and from the late endosome in a manner dependent on various Rab proteins. At least some of those events are further regulated by LRRK2 in a manner dependent on two-pore channels (TPCs). TPCs are ionic channels localized to distinct endosomal structures and can cause localized calcium release from those acidic stores, with downstream effects on vesicular trafficking. Here, we review current knowledge about the link between LRRK2, TPC- and Rab-mediated vesicular trafficking to and from the late endosome, highlighting a possible cross-talk between endolysosomal calcium stores and Rab proteins underlying pathomechanism(s) in LRRK2-related PD.
Fournier, Marjorie; Zhang, Yi; Wildschut, Janine D.; Dolla, Alain; Voordouw, Johanna K.; Schriemer, David C.; Voordouw, Gerrit
2003-01-01
Two mutant strains of Desulfovibrio vulgaris Hildenborough lacking either the sod gene for periplasmic superoxide dismutase or the rbr gene for rubrerythrin, a cytoplasmic hydrogen peroxide (H2O2) reductase, were constructed. Their resistance to oxidative stress was compared to that of the wild-type and of a sor mutant lacking the gene for the cytoplasmic superoxide reductase. The sor mutant was more sensitive to exposure to air or to internally or externally generated superoxide than was the sod mutant, which was in turn more sensitive than the wild-type strain. No obvious oxidative stress phenotype was found for the rbr mutant, indicating that H2O2 resistance may also be conferred by two other rbr genes in the D. vulgaris genome. Inhibition of Sod activity by azide and H2O2, but not by cyanide, indicated it to be an iron-containing Sod. The positions of Fe-Sod and Sor were mapped by two-dimensional gel electrophoresis (2DE). A strong decrease of Sor in continuously aerated cells, indicated by 2DE, may be a critical factor in causing cell death of D. vulgaris. Thus, Sor plays a key role in oxygen defense of D. vulgaris under fully aerobic conditions, when superoxide is generated mostly in the cytoplasm. Fe-Sod may be more important under microaerophilic conditions, when the periplasm contains oxygen-sensitive, superoxide-producing targets. PMID:12486042
RIM, Munc13, and Rab3A interplay in acrosomal exocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bello, Oscar D.; Zanetti, M. Natalia; Laboratorio de Biologia Reproductiva, Instituto de Histologia y Embriologia, IHEM
2012-03-10
Exocytosis is a highly regulated, multistage process consisting of multiple functionally definable stages, including recruitment, targeting, tethering, priming, and docking of secretory vesicles with the plasma membrane, followed by calcium-triggered membrane fusion. The acrosome reaction of spermatozoa is a complex, calcium-dependent regulated exocytosis. Fusion at multiple sites between the outer acrosomal membrane and the cell membrane causes the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. Not much is known about the molecules that mediate membrane docking in this particular fusion model. In neurons, the formation of the ternary RIM/Munc13/Rab3A complex has been suggestedmore » as a critical component of synaptic vesicles docking. Previously, we demonstrated that Rab3A localizes to the acrosomal region in human sperm, stimulates acrosomal exocytosis, and participates in an early stage during membrane fusion. Here, we report that RIM and Munc13 are also present in human sperm and localize to the acrosomal region. Like Rab3A, RIM and Munc13 participate in a prefusion step before the efflux of intra-acrosomal calcium. By means of a functional assay using antibodies and recombinant proteins, we show that RIM, Munc13 and Rab3A interplay during acrosomal exocytosis. Finally, we report by electron transmission microscopy that sequestering RIM and Rab3A alters the docking of the acrosomal membrane to the plasma membrane during calcium-activated acrosomal exocytosis. Our results suggest that the RIM/Munc13/Rab3 A complex participates in acrosomal exocytosis and that RIM and Rab3A have central roles in membrane docking. -- Highlights: Black-Right-Pointing-Pointer RIM and Munc13 are present in human sperm and localize to the acrosomal region. Black-Right-Pointing-Pointer RIM and Munc13 are necessary for acrosomal exocytosis. Black-Right-Pointing-Pointer RIM and Munc13 participate before the acrosomal calcium efflux. Black-Right-Pointing-Pointer RIM, Munc13 and Rab3A interplay in human sperm acrosomal exocytosis. Black-Right-Pointing-Pointer RIM and Rab3A have critical roles in membrane docking.« less
Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize.
Busk, P K; Jensen, A B; Pagès, M
1997-06-01
The rab17 gene from maize is transcribed in late embryonic development and is responsive to abscisic acid and water stress in embryo and vegetative tissues. In vivo footprinting and transient transformation of rab17 were performed in embryos and vegetative tissues to characterize the cis-elements involved in regulation of the gene. By in vivo footprinting, protein binding was observed to nine elements in the promoter, which correspond to five putative ABREs (abscisic acid responsive elements) and four other sequences. The footprints indicated that distinct proteins interact with these elements in the two developmental stages. In transient transformation, six of the elements were important for high level expression of the rab17 promoter in embryos, whereas only three elements were important in leaves. The cis-acting sequences can be divided in embryo-specific, ABA-specific and leaf-specific elements on the basis of protein binding and the ability to confer expression of rab17. We found one positive, new element, called GRA, with the sequence CACTGGCCGCCC. This element was important for transcription in leaves but not in embryos. Two other non-ABRE elements that stimulated transcription from the rab17 promoter resemble previously described abscisic acid and drought-inducible elements. There were differences in protein binding and function of the five ABREs in the rab17 promoter. The possible reasons for these differences are discussed. The in vivo data obtained suggest that an embryo-specific pathway regulates transcription of the rab genes during development, whereas another pathway is responsible for induction in response to ABA and drought in vegetative tissues.
Targeting eukaryotic Rab proteins: a smart strategy for chlamydial survival and replication.
Damiani, María Teresa; Gambarte Tudela, Julián; Capmany, Anahí
2014-09-01
Chlamydia, an obligate intracellular bacterium which passes its entire lifecycle within a membrane-bound vacuole called the inclusion, has evolved a variety of unique strategies to establish an advantageous intracellular niche for survival. This review highlights the mechanisms by which Chlamydia subverts vesicular transport in host cells, particularly by hijacking the master controllers of eukaryotic trafficking, the Rab proteins. A subset of Rabs and Rab interacting proteins that control the recycling pathway or the biosynthetic route are selectively recruited to the chlamydial inclusion membrane. By interfering with Rab-controlled transport steps, this intracellular pathogen not only prevents its own degradation in the phagocytic pathway, but also creates a favourable intracellular environment for growth and replication. Chlamydia, a highly adapted and successful intracellular pathogen, has several redundant strategies to re-direct vesicles emerging from biosynthetic compartments that carry host molecules essential for bacterial development. Although current knowledge is limited, the latest findings have shed light on the role of Rab proteins in the course of chlamydial infections and could open novel opportunities for anti-chlamydial therapy. © 2014 John Wiley & Sons Ltd.
González Montoro, Ayelén; Auffarth, Kathrin; Hönscher, Carina; Bohnert, Maria; Becker, Thomas; Warscheid, Bettina; Reggiori, Fulvio; van der Laan, Martin; Fröhlich, Florian; Ungermann, Christian
2018-06-04
The extensive subcellular network of membrane contact sites plays central roles in organelle biogenesis and communication, yet the precise contributions of the involved machineries remain largely enigmatic. The yeast vacuole forms a membrane contact site with mitochondria, called vacuolar and mitochondrial patch (vCLAMP). Formation of vCLAMPs involves the vacuolar Rab GTPase Ypt7 and the Ypt7-interacting Vps39 subunit of the HOPS tethering complex. Here, we uncover the general preprotein translocase of the outer membrane (TOM) subunit Tom40 as the direct binding partner of Vps39 on mitochondria. We identify Vps39 mutants defective in TOM binding, but functional for HOPS. Cells that cannot form vCLAMPs show reduced growth under stress conditions and impaired survival upon starvation. Unexpectedly, our mutant analysis revealed the existence of two functionally independent vacuole-mitochondria MCSs: one formed by the Ypt7-Vps39-Tom40 tether and a second one by Vps13-Mcp1, which is redundant with ER-mitochondrial contacts formed by ERMES. Copyright © 2018 Elsevier Inc. All rights reserved.
Muhammad, Emad; Levitas, Aviva; Singh, Sonia R.; Braiman, Alex; Ofir, Rivka; Etzion, Sharon; Sheffield, Val C.; Etzion, Yoram; Carrier, Lucie; Parvari, Ruti
2015-01-01
Gene mutations, mostly segregating with a dominant mode of inheritance, are important causes of dilated cardiomyopathy (DCM), a disease characterized by enlarged ventricular dimensions, impaired cardiac function, heart failure and high risk of death. Another myocardial abnormality often linked to gene mutations is left ventricular noncompaction (LVNC) characterized by a typical diffuse spongy appearance of the left ventricle. Here, we describe a large Bedouin family presenting with a severe recessive DCM and LVNC. Homozygosity mapping and exome sequencing identified a single gene variant that segregated as expected and was neither reported in databases nor in Bedouin population controls. The PLEKHM2 cDNA2156_2157delAG variant causes the frameshift p.Lys645AlafsTer12 and/or the skipping of exon 11 that results in deletion of 30 highly conserved amino acids. PLEKHM2 is known to interact with several Rabs and with kinesin-1, affecting endosomal trafficking. Accordingly, patients' primary fibroblasts exhibited abnormal subcellular distribution of endosomes marked by Rab5, Rab7 and Rab9, as well as the Golgi apparatus. In addition, lysosomes appeared to be concentrated in the perinuclear region, and autophagy flux was impaired. Transfection of wild-type PLEKHM2 cDNA into patient's fibroblasts corrected the subcellular distribution of the lysosomes, supporting the causal effect of PLEKHM2 mutation. PLEKHM2 joins LAMP-2 and BAG3 as a disease gene altering autophagy resulting in an isolated cardiac phenotype. The association of PLEKHM2 mutation with DCM and LVNC supports the importance of autophagy for normal cardiac function. PMID:26464484
Muhammad, Emad; Levitas, Aviva; Singh, Sonia R; Braiman, Alex; Ofir, Rivka; Etzion, Sharon; Sheffield, Val C; Etzion, Yoram; Carrier, Lucie; Parvari, Ruti
2015-12-20
Gene mutations, mostly segregating with a dominant mode of inheritance, are important causes of dilated cardiomyopathy (DCM), a disease characterized by enlarged ventricular dimensions, impaired cardiac function, heart failure and high risk of death. Another myocardial abnormality often linked to gene mutations is left ventricular noncompaction (LVNC) characterized by a typical diffuse spongy appearance of the left ventricle. Here, we describe a large Bedouin family presenting with a severe recessive DCM and LVNC. Homozygosity mapping and exome sequencing identified a single gene variant that segregated as expected and was neither reported in databases nor in Bedouin population controls. The PLEKHM2 cDNA2156_2157delAG variant causes the frameshift p.Lys645AlafsTer12 and/or the skipping of exon 11 that results in deletion of 30 highly conserved amino acids. PLEKHM2 is known to interact with several Rabs and with kinesin-1, affecting endosomal trafficking. Accordingly, patients' primary fibroblasts exhibited abnormal subcellular distribution of endosomes marked by Rab5, Rab7 and Rab9, as well as the Golgi apparatus. In addition, lysosomes appeared to be concentrated in the perinuclear region, and autophagy flux was impaired. Transfection of wild-type PLEKHM2 cDNA into patient's fibroblasts corrected the subcellular distribution of the lysosomes, supporting the causal effect of PLEKHM2 mutation. PLEKHM2 joins LAMP-2 and BAG3 as a disease gene altering autophagy resulting in an isolated cardiac phenotype. The association of PLEKHM2 mutation with DCM and LVNC supports the importance of autophagy for normal cardiac function. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Landry, Marie-Claude; Champagne, Claudia; Boulanger, Marie-Chloé; Jetté, Alexandra; Fuchs, Margit; Dziengelewski, Claire; Lavoie, Josée N
2014-01-24
It is believed that mitochondrial dynamics is coordinated with endosomal traffic rates during cytoskeletal remodeling, but the mechanisms involved are largely unknown. The adenovirus early region 4 ORF4 protein (E4orf4) subverts signaling by Src family kinases (SFK) to perturb cellular morphology, membrane traffic, and organellar dynamics and to trigger cell death. Using E4orf4 as a model, we uncovered a functional connection between mitochondria-shaping proteins and the small GTPase Rab11a, a key regulator of polarized transport via recycling endosomes. We found that E4orf4 induced dramatic changes in the morphology of mitochondria along with their mobilization at the vicinity of a polarized actin network typifying E4orf4 action, in a manner controlled by SFK and Rab11a. Mitochondrial remodeling was associated with increased proximity between Rab11a and mitochondrial membranes, changes in fusion-fission dynamics, and mitochondrial relocalization of the fission factor dynamin-related protein 1 (Drp1), which was regulated by the Rab11a effector protein FIP1/RCP. Knockdown of FIP1/RCP or inhibition of Drp1 markedly impaired mitochondrial remodeling and actin assembly, involving Rab11a-mediated mitochondrial dynamics in E4orf4-induced signaling. A similar mobilization of mitochondria near actin-rich structures was mediated by Rab11 and Drp1 in viral Src-transformed cells and contributed to the biogenesis of podosome rosettes. These findings suggest a role for Rab11a in the trafficking of Drp1 to mitochondria upon SFK activation and unravel a novel functional interplay between Rab11a and mitochondria during reshaping of the cell cytoskeleton, which would facilitate mitochondria redistribution near energy-requiring actin-rich structures.
Biogenesis of zinc storage granules in Drosophila melanogaster.
Tejeda-Guzmán, Carlos; Rosas-Arellano, Abraham; Kroll, Thomas; Webb, Samuel M; Barajas-Aceves, Martha; Osorio, Beatriz; Missirlis, Fanis
2018-03-19
Membrane transporters and sequestration mechanisms concentrate metal ions differentially into discrete subcellular microenvironments for use in protein cofactors, signalling, storage or excretion. Here we identify zinc storage granules as the insect's major zinc reservoir in principal Malpighian tubule epithelial cells of Drosophila melanogaster The concerted action of Adaptor Protein-3, Rab32, HOPS and BLOC complexes as well as of the white-scarlet (ABCG2-like) and ZnT35C (ZnT2/ZnT3/ZnT8-like) transporters is required for zinc storage granule biogenesis. Due to lysosome-related organelle defects caused by mutations in the homologous human genes, patients with Hermansky-Pudlak syndrome may lack zinc granules in beta pancreatic cells, intestinal paneth cells and presynaptic vesicles of hippocampal mossy fibers. © 2018. Published by The Company of Biologists Ltd.
Verma, Jitender Kumar; Rastogi, Ruchir
2017-01-01
Several intracellular pathogens arrest the phagosome maturation in the host cells to avoid transport to lysosomes. In contrast, the Leishmania containing parasitophorous vacuole (PV) is shown to recruit lysosomal markers and thus Leishmania is postulated to be residing in the phagolysosomes in macrophages. Here, we report that Leishmania donovani specifically upregulates the expression of Rab5a by degrading c-Jun via their metalloprotease gp63 to downregulate the expression of miR-494 in THP-1 differentiated human macrophages. Our results also show that miR-494 negatively regulates the expression of Rab5a in cells. Subsequently, L. donovani recruits and retains Rab5a and EEA1 on PV to reside in early endosomes and inhibits transport to lysosomes in human macrophages. Similarly, we have also observed that Leishmania PV also recruits Rab5a by upregulating its expression in human PBMC differentiated macrophages. However, the parasite modulates the endosome by recruiting Lamp1 and inactive pro-CathepsinD on PV via the overexpression of Rab5a in infected cells. Furthermore, siRNA knockdown of Rab5a or overexpression of miR-494 in human macrophages significantly inhibits the survival of the parasites. These results provide the first mechanistic insights of parasite-mediated remodeling of endo-lysosomal trafficking to reside in a specialized early endocytic compartment. PMID:28650977
Chan, Ting; Cheung, Florence Shin Gee; Zheng, Jian; Lu, Xiaoxi; Zhu, Ling; Grewal, Thomas; Murray, Michael; Zhou, Fanfan
2016-01-04
Human organic anion transporting polypeptides (OATPs) mediate the influx of many important drugs into cells. Casein kinase 2 (CK2) is a critical protein kinase that phosphorylates >300 protein substrates and is dysregulated in a number of disease states. Among the CK2 substrates are several transporters, although whether this includes human OATPs has not been evaluated. The current study was undertaken to evaluate the regulation of human OATP1A2 by CK2. HEK-239T cells in which OATP1A2 was overexpressed were treated with CK2 specific inhibitors or transfected with CK2 specific siRNA, and the activity, expression, and subcellular trafficking of OATP1A2 was evaluated. CK2 inhibition decreased the uptake of the prototypic OATP1A2 substrate estrone-3-sulfate (E3S). Kinetic studies revealed that this was due to a decrease in the maximum velocity (Vmax) of E3S uptake, while the Michaelis constant was unchanged. The cell surface expression, but not the total cellular expression of OATP1A2, was impaired by CK2 inhibition and knockdown of the catalytic α-subunits of CK2. CK2 inhibition decreased the internalization of OATP1A2 via a clathrin-dependent pathway, decreased OATP1A2 recycling, and likely impaired OATP1A2 targeting to the cell surface. Consistent with these findings, CK2 inhibition also disrupted the colocalization of OATP1A2 and Rab GTPase (Rab)4-, Rab8-, and Rab9-positive endosomal and secretory vesicles. Taken together, CK2 has emerged as a novel regulator of the subcellular trafficking and stability of OATP1A2. Because OATP1A2 transports many molecules of physiological and pharmacological importance, the present data may inform drug selection in patients with diseases in which CK2 and OATP1A2 are dysregulated.
Genome-wide Association Studies Identify Genetic Loci Associated With Albuminuria in Diabetes
Tin, Adrienne; Sorice, Rossella; Gorski, Mathias; Yeo, Nan Cher; Chu, Audrey Y.; Li, Man; Li, Yong; Mijatovic, Vladan; Ko, Yi-An; Taliun, Daniel; Luciani, Alessandro; Chen, Ming-Huei; Yang, Qiong; Foster, Meredith C.; Olden, Matthias; Hiraki, Linda T.; Tayo, Bamidele O.; Fuchsberger, Christian; Dieffenbach, Aida Karina; Shuldiner, Alan R.; Smith, Albert V.; Zappa, Allison M.; Lupo, Antonio; Kollerits, Barbara; Ponte, Belen; Stengel, Bénédicte; Krämer, Bernhard K.; Paulweber, Bernhard; Mitchell, Braxton D.; Hayward, Caroline; Helmer, Catherine; Meisinger, Christa; Gieger, Christian; Shaffer, Christian M.; Müller, Christian; Langenberg, Claudia; Ackermann, Daniel; Siscovick, David; Boerwinkle, Eric; Kronenberg, Florian; Ehret, Georg B.; Homuth, Georg; Waeber, Gerard; Navis, Gerjan; Gambaro, Giovanni; Malerba, Giovanni; Eiriksdottir, Gudny; Li, Guo; Wichmann, H. Erich; Grallert, Harald; Wallaschofski, Henri; Völzke, Henry; Brenner, Herrmann; Kramer, Holly; Leach, I. Mateo; Rudan, Igor; Hillege, Hans L.; Beckmann, Jacques S.; Lambert, Jean Charles; Luan, Jian'an; Zhao, Jing Hua; Chalmers, John; Coresh, Josef; Denny, Joshua C.; Butterbach, Katja; Launer, Lenore J.; Ferrucci, Luigi; Kedenko, Lyudmyla; Haun, Margot; Metzger, Marie; Woodward, Mark; Hoffman, Matthew J.; Nauck, Matthias; Waldenberger, Melanie; Pruijm, Menno; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Wareham, Nicholas J.; Endlich, Nicole; Soranzo, Nicole; Polasek, Ozren; van der Harst, Pim; Pramstaller, Peter Paul; Vollenweider, Peter; Wild, Philipp S.; Gansevoort, Ron T.; Rettig, Rainer; Biffar, Reiner; Carroll, Robert J.; Katz, Ronit; Loos, Ruth J.F.; Hwang, Shih-Jen; Coassin, Stefan; Bergmann, Sven; Rosas, Sylvia E.; Stracke, Sylvia; Harris, Tamara B.; Corre, Tanguy; Zeller, Tanja; Illig, Thomas; Aspelund, Thor; Tanaka, Toshiko; Lendeckel, Uwe; Völker, Uwe; Gudnason, Vilmundur; Chouraki, Vincent; Koenig, Wolfgang; Kutalik, Zoltan; O'Connell, Jeffrey R.; Parsa, Afshin; Heid, Iris M.; Paterson, Andrew D.; de Boer, Ian H.; Devuyst, Olivier; Lazar, Jozef; Endlich, Karlhans; Susztak, Katalin; Tremblay, Johanne; Hamet, Pavel; Jacob, Howard J.; Böger, Carsten A.
2016-01-01
Elevated concentrations of albumin in the urine, albuminuria, are a hallmark of diabetic kidney disease and are associated with an increased risk for end-stage renal disease and cardiovascular events. To gain insight into the pathophysiological mechanisms underlying albuminuria, we conducted meta-analyses of genome-wide association studies and independent replication in up to 5,825 individuals of European ancestry with diabetes and up to 46,061 without diabetes, followed by functional studies. Known associations of variants in CUBN, encoding cubilin, with the urinary albumin-to-creatinine ratio (UACR) were confirmed in the overall sample (P = 2.4 × 10−10). Gene-by-diabetes interactions were detected and confirmed for variants in HS6ST1 and near RAB38/CTSC. Single nucleotide polymorphisms at these loci demonstrated a genetic effect on UACR in individuals with but not without diabetes. The change in the average UACR per minor allele was 21% for HS6ST1 (P = 6.3 × 10–7) and 13% for RAB38/CTSC (P = 5.8 × 10−7). Experiments using streptozotocin-induced diabetic Rab38 knockout and control rats showed higher urinary albumin concentrations and reduced amounts of megalin and cubilin at the proximal tubule cell surface in Rab38 knockout versus control rats. Relative expression of RAB38 was higher in tubuli of patients with diabetic kidney disease compared with control subjects. The loci identified here confirm known pathways and highlight novel pathways influencing albuminuria. PMID:26631737
A mutant of barley lacking NADH-hydroxypyruvate reductase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackwell, R.; Lea, P.
1989-04-01
A mutant of barley, LaPr 88/29, deficient in peroxisomal NADH-hydroxypyruvate reductase (HPR) activity has been identified. Compared to the wild type the activities of NADH-HPR and NADPH-HPR were severely reduced but the mutant was still capable of fixing CO{sub 2} at rates equivalent to 75% of that of the wild type in air. Although lacking an enzyme in the main photorespiratory pathway, there appeared to be little disruption to photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{sup 14}C) serine were similar in both mutant and wild type. LaPr 88/29 has been used tomore » show that NADH-glyoxylate reductase (GR) and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-HPR activity is due to the NADH-HPR enzyme. Immunological studies, using antibodies raised against spinach HPR, have shown that the NADH-dependent enzyme protein is absent in LaPr 88/29 but there appears to be enhanced synthesis of the NADPH-dependent enzyme protein.« less
Sengar, Ameet S; Ellegood, Jacob; Yiu, Adelaide P; Wang, Hua; Wang, Wei; Juneja, Subhash C; Lerch, Jason P; Josselyn, Sheena A; Henkelman, R Mark; Salter, Michael W; Egan, Sean E
2013-02-27
Invertebrate studies have highlighted a role for EH and SH3 domain Intersectin (Itsn) proteins in synaptic vesicle recycling and morphology. Mammals have two Itsn genes (Itsn1 and Itsn2), both of which can undergo alternative splicing to include DBL/PH and C2 domains not present in invertebrate Itsn proteins. To probe for specific and redundant functions of vertebrate Itsn genes, we generated Itsn1, Itsn2, and double mutant mice. While invertebrate mutants showed severe synaptic abnormalities, basal synaptic transmission and plasticity were unaffected at Schaffer CA1 synapses in mutant mice. Surprisingly, intercortical tracts-corpus callosum, ventral hippocampal, and anterior commissures-failed to cross the midline in mice lacking Itsn1, but not Itsn2. In contrast, tracts extending within hemispheres and those that decussate to more caudal brain segments appeared normal. Itsn1 mutant mice showed severe deficits in Morris water maze and contextual fear memory tasks, whereas mice lacking Itsn2 showed normal learning and memory. Thus, coincident with the acquisition of additional signaling domains, vertebrate Itsn1 has been functionally repurposed to also facilitate interhemispheric connectivity essential for high order cognitive functions.
Anthrax edema toxin disrupts distinct steps in Rab11-dependent junctional transport
Guichard, Annabel; Jain, Prashant; Moayeri, Mahtab; Cruz-Moreno, Beatriz; Leppla, Stephen H.; Nizet, Victor
2017-01-01
Various bacterial toxins circumvent host defenses through overproduction of cAMP. In a previous study, we showed that edema factor (EF), an adenylate cyclase from Bacillus anthracis, disrupts endocytic recycling mediated by the small GTPase Rab11. As a result, cargo proteins such as cadherins fail to reach inter-cellular junctions. In the present study, we provide further mechanistic dissection of Rab11 inhibition by EF using a combination of Drosophila and mammalian systems. EF blocks Rab11 trafficking after the GTP-loading step, preventing a constitutively active form of Rab11 from delivering cargo vesicles to the plasma membrane. Both of the primary cAMP effector pathways -PKA and Epac/Rap1- contribute to inhibition of Rab11-mediated trafficking, but act at distinct steps of the delivery process. PKA acts early, preventing Rab11 from associating with its effectors Rip11 and Sec15. In contrast, Epac functions subsequently via the small GTPase Rap1 to block fusion of recycling endosomes with the plasma membrane, and appears to be the primary effector of EF toxicity in this process. Similarly, experiments conducted in mammalian systems reveal that Epac, but not PKA, mediates the activity of EF both in cell culture and in vivo. The small GTPase Arf6, which initiates endocytic retrieval of cell adhesion components, also contributes to junctional homeostasis by counteracting Rab11-dependent delivery of cargo proteins at sites of cell-cell contact. These studies have potentially significant practical implications, since chemical inhibition of either Arf6 or Epac blocks the effect of EF in cell culture and in vivo, opening new potential therapeutic avenues for treating symptoms caused by cAMP-inducing toxins or related barrier-disrupting pathologies. PMID:28945820
Anthrax edema toxin disrupts distinct steps in Rab11-dependent junctional transport.
Guichard, Annabel; Jain, Prashant; Moayeri, Mahtab; Schwartz, Ruth; Chin, Stephen; Zhu, Lin; Cruz-Moreno, Beatriz; Liu, Janet Z; Aguilar, Bernice; Hollands, Andrew; Leppla, Stephen H; Nizet, Victor; Bier, Ethan
2017-09-01
Various bacterial toxins circumvent host defenses through overproduction of cAMP. In a previous study, we showed that edema factor (EF), an adenylate cyclase from Bacillus anthracis, disrupts endocytic recycling mediated by the small GTPase Rab11. As a result, cargo proteins such as cadherins fail to reach inter-cellular junctions. In the present study, we provide further mechanistic dissection of Rab11 inhibition by EF using a combination of Drosophila and mammalian systems. EF blocks Rab11 trafficking after the GTP-loading step, preventing a constitutively active form of Rab11 from delivering cargo vesicles to the plasma membrane. Both of the primary cAMP effector pathways -PKA and Epac/Rap1- contribute to inhibition of Rab11-mediated trafficking, but act at distinct steps of the delivery process. PKA acts early, preventing Rab11 from associating with its effectors Rip11 and Sec15. In contrast, Epac functions subsequently via the small GTPase Rap1 to block fusion of recycling endosomes with the plasma membrane, and appears to be the primary effector of EF toxicity in this process. Similarly, experiments conducted in mammalian systems reveal that Epac, but not PKA, mediates the activity of EF both in cell culture and in vivo. The small GTPase Arf6, which initiates endocytic retrieval of cell adhesion components, also contributes to junctional homeostasis by counteracting Rab11-dependent delivery of cargo proteins at sites of cell-cell contact. These studies have potentially significant practical implications, since chemical inhibition of either Arf6 or Epac blocks the effect of EF in cell culture and in vivo, opening new potential therapeutic avenues for treating symptoms caused by cAMP-inducing toxins or related barrier-disrupting pathologies.
Song, Po-Ching; Wu, Tsung-Meng; Hong, Ming-Chang; Chen, Ming-Chyuan
2015-10-01
Coral bleaching is the consequence of disruption of the mutualistic Cnidaria-dinoflagellate association. Elevated seawater temperatures have been proposed as the most likely cause of coral bleaching whose severity is enhanced by a limitation in the bioavailability of iron. Iron is required by numerous organisms including the zooxanthellae residing inside the symbiosome of cnidarian cells. However, the knowledge of how symbiotic zooxanthellae obtain iron from the host cells and how elevated water temperature affects the association is very limited. Since cellular iron acquisition is known to be mediated through transferrin receptor-mediated endocytosis, a vesicular trafficking pathway specifically regulated by Rab4 and Rab5, we set out to examine the roles of these key proteins in the iron acquisition by the symbiotic Symbiodinium. Thus, we hypothesized that the iron recruitments into symbiotic zooxanthellae-housed symbiosomes may be dependent on rab4/rab5-mediated fusion with vesicles containing iron-bound transferrins and will be retarded under elevated temperature. In this study, we cloned a novel monolobal transferrin (ApTF) gene from the tropical sea anemone Aiptasia pulchella and confirmed that the association of ApTF with A. pulchella Rab4 (ApRab4) or A. pulchella Rab5 (ApRab5) vesicles is inhibited by elevated temperature through immunofluorescence analysis. We confirmed the iron-deficient phenomenon by demonstrating the induced overexpression of iron-deficiency-responsive genes, flavodoxin and high-affinity iron permease 1, and reduced intracellular iron concentration in zooxanthellae under desferrioxamine B (iron chelator) and high temperature treatment. In conclusion, our data are consistent with algal iron deficiency being a contributing factor for the thermal stress-induced bleaching of symbiotic cnidarians. Copyright © 2015 Elsevier Inc. All rights reserved.
Dodson, Mark W; Leung, Lok K; Lone, Mohiddin; Lizzio, Michael A; Guo, Ming
2014-12-01
Mutations in LRRK2 cause a dominantly inherited form of Parkinson's disease (PD) and are the most common known genetic determinant of PD. Inhibitor-based therapies targeting LRRK2 have emerged as a key therapeutic strategy in PD; thus, understanding the consequences of inhibiting the normal cellular functions of this protein is vital. Despite much interest, the physiological functions of LRRK2 remain unclear. Several recent studies have linked the toxicity caused by overexpression of pathogenic mutant forms of LRRK2 to defects in the endolysosomal and autophagy pathways, raising the question of whether endogenous LRRK2 might play a role in these processes. Here, we report the characterization of multiple novel ethyl methanesulfonate (EMS)-induced nonsense alleles in the Drosophila LRRK2 homolog, lrrk. Using these alleles, we show that lrrk loss-of-function causes striking defects in the endolysosomal and autophagy pathways, including the accumulation of markedly enlarged lysosomes that are laden with undigested contents, consistent with a defect in lysosomal degradation. lrrk loss-of-function also results in the accumulation of autophagosomes, as well as the presence of enlarged early endosomes laden with mono-ubiquitylated cargo proteins, suggesting an additional defect in lysosomal substrate delivery. Interestingly, the lysosomal abnormalities in these lrrk mutants can be suppressed by a constitutively active form of the small GTPase rab9, which promotes retromer-dependent recycling from late endosomes to the Golgi. Collectively, our data provides compelling evidence of a vital role for lrrk in lysosomal function and endolysosomal membrane transport in vivo, and suggests a link between lrrk and retromer-mediated endosomal recycling. © 2014. Published by The Company of Biologists Ltd.
Structural and enzymatic characterization of a host-specificity determinant from Salmonella
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohler, Amanda C.; Spanò, Stefania; Galán, Jorge E.
The Salmonella effector protein GtgE functions as a cysteine protease to cleave a subset of the Rab-family GTPases and to prevent delivery of antimicrobial agents to the Salmonella-containing vacuole. GtgE is an effector protein from Salmonella Typhimurium that modulates trafficking of the Salmonella-containing vacuole. It exerts its function by cleaving the Rab-family GTPases Rab29, Rab32 and Rab38, thereby preventing the delivery of antimicrobial factors to the bacteria-containing vacuole. Here, the crystal structure of GtgE at 1.65 Å resolution is presented, and structure-based mutagenesis and in vivo infection assays are used to identify its catalytic triad. A panel of cysteine proteasemore » inhibitors were examined and it was determined that N-ethylmaleimide, antipain and chymostatin inhibit GtgE activity in vitro. These findings provide the basis for the development of novel therapeutic strategies to combat Salmonella infections.« less
Pratap Sahi, Vaidurya; Cifrová, Petra; García-González, Judith; Kotannal Baby, Innu; Mouillé, Gregory; Gineau, Emilie; Müller, Karel; Baluška, František; Soukup, Aleš; Petrášek, Jan; Schwarzerová, Katerina
2017-12-25
The cytoskeleton plays an important role in the synthesis of plant cell walls. Both microtubules and actin cytoskeleton are known to be involved in the morphogenesis of plant cells through their role in cell wall building. The role of ARP2/3-nucleated actin cytoskeleton in the morphogenesis of cotyledon pavement cells has been described before. Seedlings of Arabidopsis mutants lacking a functional ARP2/3 complex display specific cell wall-associated defects. In three independent Arabidopsis mutant lines lacking subunits of the ARP2/3 complex, phenotypes associated with the loss of the complex were analysed throughout plant development. Organ size and anatomy, cell wall composition, and auxin distribution were investigated. ARP2/3-related phenotype is associated with changes in cell wall composition, and the phenotype is manifested especially in mature tissues. Cell walls of mature plants contain less cellulose and a higher amount of homogalacturonan, and display changes in cell wall lignification. Vascular bundles of mutant inflorescence stems show a changed pattern of AUX1-YFP expression. Plants lacking a functional ARP2/3 complex have decreased basipetal auxin transport. The results suggest that the ARP2/3 complex has a morphogenetic function related to cell wall synthesis and auxin transport. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rab11-FIP3 Regulation of Lck Endosomal Traffic Controls TCR Signal Transduction.
Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Vázquez-Chávez, Elena; Lasserre, Rémi; Agüera-González, Sonia; Cuche, Céline; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés
2017-04-01
The role of endosomes in receptor signal transduction is a long-standing question, which remains largely unanswered. The T cell Ag receptor and various components of its proximal signaling machinery are associated with distinct endosomal compartments, but how endosomal traffic affects T cell signaling remains ill-defined. In this article, we demonstrate in human T cells that the subcellular localization and function of the protein tyrosine kinase Lck depends on the Rab11 effector FIP3 (Rab11 family interacting protein-3). FIP3 overexpression or silencing and its ability to interact with Rab11 modify Lck subcellular localization and its delivery to the immunological synapse. Importantly, FIP3-dependent Lck localization controls early TCR signaling events, such as tyrosine phosphorylation of TCRζ, ZAP70, and LAT and intracellular calcium concentration, as well as IL-2 gene expression. Interestingly, FIP3 controls both steady-state and poststimulation phosphotyrosine and calcium levels. Finally, our findings indicate that FIP3 modulates TCR-CD3 cell surface expression via the regulation of steady-state Lck-mediated TCRζ phosphorylation, which in turn controls TCRζ protein levels. This may influence long-term T cell activation in response to TCR-CD3 stimulation. Therefore, our data underscore the importance of finely regulated endosomal traffic in TCR signal transduction and T cell activation leading to IL-2 production. Copyright © 2017 by The American Association of Immunologists, Inc.
Phosphorylation-dependent Regulation of Connecdenn/DENND1 Guanine Nucleotide Exchange Factors*
Kulasekaran, Gopinath; Nossova, Nadya; Marat, Andrea L.; Lund, Ingrid; Cremer, Christopher; Ioannou, Maria S.; McPherson, Peter S.
2015-01-01
Connecdenn 1/2 are DENN (differentially expressed in normal and neoplastic cells) domain-bearing proteins that function as GEFs (guanine nucleotide exchange factors) for the small GTPase Rab35. Disruption of connecdenn/Rab35 function leads to defects in the recycling of multiple cargo proteins from endosomes with altered cell function, yet the regulation of connecdenn GEF activity is unexplored. We now demonstrate that connecdenn 1/2 are autoinhibited such that the purified, full-length proteins have significantly less Rab35 binding and GEF activity than the isolated DENN domain. Both proteins are phosphorylated with prominent phosphorylation sites between residues 500 and 600 of connecdenn 1. A large scale proteomics screen revealed that connecdenn 1 is phosphorylated at residues Ser-536 and Ser-538 in an Akt-dependent manner in response to insulin stimulation of adipocytes. Interestingly, we find that an Akt inhibitor reduces connecdenn 1 interaction with Rab35 after insulin treatment of adipocytes. Remarkably, a peptide flanking Ser-536/Ser-538 binds the DENN domain of connecdenn 1, whereas a phosphomimetic peptide does not. Moreover, connecdenn 1 interacts with 14-3-3 proteins, and this interaction is also disrupted by Akt inhibition and by mutation of Ser-536/Ser-538. We propose that Akt phosphorylation of connecdenn 1 downstream of insulin activation regulates connecdenn 1 function through an intramolecular interaction. PMID:26055712
Megger, Dominik Andre; Rosowski, Kristin; Ahrens, Maike; Bracht, Thilo; Eisenacher, Martin; Schlaak, Jörg F; Weber, Frank; Hoffmann, Andreas-Claudius; Meyer, Helmut E; Baba, Hideo A; Sitek, Barbara
2017-03-01
Human hepatocellular carcinoma (HCC) is a severe malignant disease, and accurate and reliable diagnostic markers are still needed. This study was aimed for the discovery of novel marker candidates by quantitative proteomics. Proteomic differences between HCC and nontumorous liver tissue were studied by mass spectrometry. Among several significantly upregulated proteins, translocator protein 18 (TSPO) and Ras-related protein Rab-1A (RAB1A) were selected for verification by immunohistochemistry in an independent cohort. For RAB1A, a high accuracy for the discrimination of HCC and nontumorous liver tissue was observed. RAB1A was verified to be a potent biomarker candidate for HCC.
VanRheenen, Susan M.; Cao, Xiaochun; Sapperstein, Stephanie K.; Chiang, Elbert C.; Lupashin, Vladimir V.; Barlowe, Charles; Waters, M. Gerard
1999-01-01
A screen for mutants of Saccharomyces cerevisiae secretory pathway components previously yielded sec34, a mutant that accumulates numerous vesicles and fails to transport proteins from the ER to the Golgi complex at the restrictive temperature (Wuestehube, L.J., R. Duden, A. Eun, S. Hamamoto, P. Korn, R. Ram, and R. Schekman. 1996. Genetics. 142:393–406). We find that SEC34 encodes a novel protein of 93-kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec34-2 is suppressed by the rab GTPase Ypt1p that functions early in the secretory pathway, or by the dominant form of the ER to Golgi complex target-SNARE (soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor)–associated protein Sly1p, Sly1-20p. Weaker suppression is evident upon overexpression of genes encoding the vesicle tethering factor Uso1p or the vesicle-SNAREs Sec22p, Bet1p, or Ykt6p. This genetic suppression profile is similar to that of sec35-1, a mutant allele of a gene encoding an ER to Golgi vesicle tethering factor and, like Sec35p, Sec34p is required in vitro for vesicle tethering. sec34-2 and sec35-1 display a synthetic lethal interaction, a genetic result explained by the finding that Sec34p and Sec35p can interact by two-hybrid analysis. Fractionation of yeast cytosol indicates that Sec34p and Sec35p exist in an ∼750-kD protein complex. Finally, we describe RUD3, a novel gene identified through a genetic screen for multicopy suppressors of a mutation in USO1, which suppresses the sec34-2 mutation as well. PMID:10562277
Rab GTPases and Membrane Trafficking in Neurodegeneration
Kiral, Ferdi Ridvan; Kohrs, Friederike Elisabeth; Jin, Eugene Jennifer; Hiesinger, Peter Robin
2018-01-01
Defects in membrane trafficking are hallmarks of neurodegeneration. Rab GTPases are key regulators of membrane trafficking. Alterations of Rab GTPases, or the membrane compartments they regulate, are associated with virtually all neuronal activities in health and disease. The observation that many Rab GTPases are associated with neurodegeneration has proven a challenge in the quest for cause and effect. Neurodegeneration can be a direct consequence of a defect in membrane trafficking. Alternatively, changes in membrane trafficking may be secondary consequences or cellular responses. The secondary consequences and cellular responses, in turn, may protect, represent inconsequential correlates or function as drivers of pathology. Here, we attempt to disentangle the different roles of membrane trafficking in neurodegeneration by focusing on selected associations with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and selected neuropathies. We provide an overview of current knowledge on Rab GTPase functions in neurons and review the associations of Rab GTPases with neurodegeneration with respect to the following classifications: primary cause, secondary cause driving pathology or secondary correlate. This analysis is devised to aid the interpretation of frequently observed membrane trafficking defects in neurodegeneration and facilitate the identification of true causes of pathology. PMID:29689231
Holt, Oliver; Kanno, Eiko; Bossi, Giovanna; Booth, Sarah; Daniele, Tiziana; Santoro, Alessandra; Arico, Maurizio; Saegusa, Chika; Fukuda, Mitsunori; Griffiths, Gillian M
2008-01-01
Rab27a is required for polarized secretion of lysosomes from cytotoxic T lymphocytes (CTLs) at the immunological synapse. A series of Rab27a-interacting proteins have been identified; however, only Munc13-4 has been found to be expressed in CTL. In this study, we screened for expression of the synaptotagmin-like proteins (Slps): Slp1/JFC1, Slp2-a/exophilin4, Slp3-a, Slp4/granuphilin, Slp5 and rabphilin in CTL. We found that both Slp1 and Slp2-a are expressed in CTL. Isoforms of Slp2-a in CTL showed variation of the linker region but conserved the C2A and C2B and Slp homology (SHD) domains. Both Slp1 and Slp2-a interact with Rab27a in CTL, and Slp2-a, but not Slp1, is rapidly degraded when Rab27a is absent. Slp2-a contains PEST-like sequences within its linker region, which render it susceptible to degradation. Both Slp1 and Slp2-a localize predominantly to the plasma membrane of both human and mouse CTLs, and we show that Slp2-a can focus tightly at the immunological synapse formed with a target cell. Individual knockouts of either Slp2-a or Slp1 fail to impair CTL-mediated killing of targets; however, overexpression of a dominant-negative construct consisting of the SHD of Slp2-a, which is 56% identical to that of Slp1, reduces target cell death, suggesting that both Slp1 and Slp2-a contribute to secretory lysosome exocytosis from CTL. These results suggest that both Slp1 and Slp2-a may form part of a docking complex, capturing secretory lysosomes at the immunological synapse. PMID:18266782
2012-01-01
Background B cell lymphoma 2 (Bcl-2) proteins are the central regulators of apoptosis. The two bcl-2 genes in Drosophila modulate the response to stress-induced cell death, but not developmental cell death. Because null mutants are viable, Drosophila provides an optimum model system to investigate alternate functions of Bcl-2 proteins. In this report, we explore the role of one bcl-2 gene in nutrient stress responses. Results We report that starvation of Drosophila larvae lacking the bcl-2 gene, buffy, decreases survival rate by more than twofold relative to wild-type larvae. The buffy null mutant reacted to starvation with the expected responses such as inhibition of target of rapamycin (Tor) signaling, autophagy initiation and mobilization of stored lipids. However, the autophagic response to starvation initiated faster in larvae lacking buffy and was inhibited by ectopic buffy. We demonstrate that unusually high basal Tor signaling, indicated by more phosphorylated S6K, was detected in the buffy mutant and that removal of a genomic copy of S6K, but not inactivation of Tor by rapamycin, reverted the precocious autophagy phenotype. Instead, Tor inactivation also required loss of a positive nutrient signal to trigger autophagy and loss of both was sufficient to activate autophagy in the buffy mutant even in the presence of enforced phosphoinositide 3-kinase (PI3K) signaling. Prior to starvation, the fed buffy mutant stored less lipid and glycogen, had high lactate levels and maintained a reduced pool of cellular ATP. These observations, together with the inability of buffy mutant larvae to adapt to nutrient restriction, indicate altered energy metabolism in the absence of buffy. Conclusions All animals in their natural habitats are faced with periods of reduced nutrient availability. This study demonstrates that buffy is required for adaptation to both starvation and nutrient restriction. Thus, Buffy is a Bcl-2 protein that plays an important non-apoptotic role to promote survival of the whole organism in a stressful situation. PMID:22824239
NASA Astrophysics Data System (ADS)
Newman, Brent D.; Havenor, Kay C.; Longmire, Patrick
2016-06-01
Analysis of groundwater chemistry can yield important insights about subsurface conditions, and provide an alternative and complementary method for characterizing basin hydrogeology, especially in areas where hydraulic data are limited. More specifically, hydrochemical facies have been used for decades to help understand basin flow and transport, and a set of facies were developed for the Roswell Artesian Basin (RAB) in a semi-arid part of New Mexico, USA. The RAB is an important agricultural water source, and is an excellent example of a rechargeable artesian system. However, substantial uncertainties about the RAB hydrogeology and groundwater chemistry exist. The RAB was a great opportunity to explore hydrochemcial facies definition. A set of facies, derived from fingerprint diagrams (graphical approach), existed as a basis for testing and for comparison to principal components, factor analysis, and cluster analyses (statistical approaches). Geochemical data from over 300 RAB wells in the central basin were examined. The statistical testing of fingerprint-diagram-based facies was useful in terms of quantitatively evaluating differences between facies, and for understanding potential controls on basin groundwater chemistry. This study suggests the presence of three hydrochemical facies in the shallower part of the RAB (mostly unconfined conditions) and three in the deeper artesian system of the RAB. These facies reflect significant spatial differences in chemistry in the basin that are associated with specific stratigraphic intervals as well as structural features. Substantial chemical variability across faults and within fault blocks was also observed.
SEC16A is a RAB10 effector required for insulin-stimulated GLUT4 trafficking in adipocytes
Bruno, Joanne; Chaudhary, Natasha; Iaea, David
2016-01-01
RAB10 is a regulator of insulin-stimulated translocation of the GLUT4 glucose transporter to the plasma membrane (PM) of adipocytes, which is essential for whole-body glucose homeostasis. We establish SEC16A as a novel RAB10 effector in this process. Colocalization of SEC16A with RAB10 is augmented by insulin stimulation, and SEC16A knockdown attenuates insulin-induced GLUT4 translocation, phenocopying RAB10 knockdown. We show that SEC16A and RAB10 promote insulin-stimulated mobilization of GLUT4 from a perinuclear recycling endosome/TGN compartment. We propose RAB10–SEC16A functions to accelerate formation of the vesicles that ferry GLUT4 to the PM during insulin stimulation. Because GLUT4 continually cycles between the PM and intracellular compartments, the maintenance of elevated cell-surface GLUT4 in the presence of insulin requires accelerated biogenesis of the specialized GLUT4 transport vesicles. The function of SEC16A in GLUT4 trafficking is independent of its previously characterized activity in ER exit site formation and therefore independent of canonical COPII-coated vesicle function. However, our data support a role for SEC23A, but not the other COPII components SEC13, SEC23B, and SEC31, in the insulin stimulation of GLUT4 trafficking, suggesting that vesicles derived from subcomplexes of COPII coat proteins have a role in the specialized trafficking of GLUT4. PMID:27354378
Madsen, Kenneth L.; Thorsen, Thor S.; Rahbek-Clemmensen, Troels; Eriksen, Jacob; Gether, Ulrik
2012-01-01
The scaffolding protein PICK1 (protein interacting with C kinase 1) contains an N-terminal PSD-95/Discs large/ZO-1 (PDZ) domain and a central lipid-binding Bin/amphiphysin/Rvs (BAR) domain. PICK1 is thought to regulate trafficking of its PDZ binding partners but different and even opposing functions have been suggested. Here, we apply ELISA-based assays and confocal microscopy in HEK293 cells with inducible PICK1 expression to assess in an isolated system the ability of PICK1 to regulate trafficking of natural and engineered PDZ binding partners. The dopamine transporter (DAT), which primarily sorts to degradation upon internalization, did not form perinuclear clusters with PICK1, and PICK1 did not affect DAT internalization/recycling. However, transfer of the PICK1-binding DAT C terminus to the β2-adrenergic receptor, which sorts to recycling upon internalization, led to formation of PICK1 co-clusters in Rab11-positive compartments. Furthermore, PICK1 inhibited Rab11-mediated recycling of the receptor in a BAR and PDZ domain-dependent manner. In contrast, transfer of the DAT C terminus to the δ-opioid receptor, which sorts to degradation, did not result in PICK1 co-clusters or any change in internalization/recycling. Further support for a role of PICK1 determined by its PDZ cargo was obtained for the PICK1 interaction partner prolactin-releasing peptide receptor (GPR10). GPR10 co-localized with Rab11 and clustered with PICK1 upon constitutive internalization but co-localized with the late endosomal marker Rab7 and did not cluster with PICK1 upon agonist-induced internalization. Our data suggest a selective role of PICK1 in clustering and reducing the recycling rates of PDZ domain binding partners sorted to the Rab11-dependent recycling pathway. PMID:22303009
Ojeda, Kristylea J.; Box, Jodie M.; Noel, K. Dale
2010-01-01
The Rhizobium etli CE3 O antigen is a fixed-length heteropolymer with O methylation being the predominant type of sugar modification. There are two O-methylated residues that occur, on average, once per complete O antigen: a multiply O-methylated terminal fucose and 2-O methylation of a fucose residue within a repeating unit. The amount of the methylated terminal fucose decreases and the amount of 2-O-methylfucose increases when bacteria are grown in the presence of the host plant, Phaseolus vulgaris, or its seed exudates. Insertion mutagenesis was used to identify open reading frames required for the presence of these O-methylated residues. The presence of the methylated terminal fucose required genes wreA, wreB, wreC, wreD, and wreF, whereas 2-O methylation of internal fucoses required the methyltransferase domain of bifunctional gene wreM. Mutants lacking only the methylated terminal fucose, lacking only 2-O methylation, or lacking both the methylated terminal fucose and 2-O methylation exhibited no other lipopolysaccharide structural defects. Thus, neither of these decorations is required for normal O-antigen length, transport, or assembly into the final lipopolysaccharide. This is in contrast to certain enteric bacteria in which the absence of a terminal decoration severely affects O-antigen length and transport. R. etli mutants lacking only the methylated terminal fucose were not altered in symbiosis with host Phaseolus vulgaris, whereas mutants lacking only 2-O-methylfucose exhibited a delay in nodule development during symbiosis. These results support previous conclusions that the methylated terminal fucose is dispensable for symbiosis, whereas 2-O methylation of internal fucoses somehow facilitates early events in symbiosis. PMID:19948805
Rab GTPases in Immunity and Inflammation.
Prashar, Akriti; Schnettger, Laura; Bernard, Elliott M; Gutierrez, Maximiliano G
2017-01-01
Strict spatiotemporal control of trafficking events between organelles is critical for maintaining homeostasis and directing cellular responses. This regulation is particularly important in immune cells for mounting specialized immune defenses. By controlling the formation, transport and fusion of intracellular organelles, Rab GTPases serve as master regulators of membrane trafficking. In this review, we discuss the cellular and molecular mechanisms by which Rab GTPases regulate immunity and inflammation.
Guo, Woei-Jiun; Meetam, Metha; Goldsbrough, Peter B
2008-04-01
Metallothioneins (MTs) are small cysteine-rich proteins found in various eukaryotes. Plant MTs are classified into four types based on the arrangement of cysteine residues. To determine whether all four types of plant MTs function as metal chelators, six Arabidopsis (Arabidopsis thaliana) MTs (MT1a, MT2a, MT2b, MT3, MT4a, and MT4b) were expressed in the copper (Cu)- and zinc (Zn)-sensitive yeast mutants, Deltacup1 and Deltazrc1 Deltacot1, respectively. All four types of Arabidopsis MTs provided similar levels of Cu tolerance and accumulation to the Deltacup1 mutant. The type-4 MTs (MT4a and MT4b) conferred greater Zn tolerance and higher accumulation of Zn than other MTs to the Deltazrc1 Deltacot1 mutant. To examine the functions of MTs in plants, we studied Arabidopsis plants that lack MT1a and MT2b, two MTs that are expressed in phloem. The lack of MT1a, but not MT2b, led to a 30% decrease in Cu accumulation in roots of plants exposed to 30 mum CuSO(4). Ectopic expression of MT1a RNA in the mt1a-2 mt2b-1 mutant restored Cu accumulation in roots. The mt1a-2 mt2b-1 mutant had normal metal tolerance. However, when MT deficiency was combined with phytochelatin deficiency, growth of the mt1a-2 mt2b-1 cad1-3 triple mutant was more sensitive to Cu and cadmium compared to the cad1-3 mutant. Together these results provide direct evidence for functional contributions of MTs to plant metal homeostasis. MT1a, in particular, plays a role in Cu homeostasis in the roots under elevated Cu. Moreover, MTs and phytochelatins function cooperatively to protect plants from Cu and cadmium toxicity.
Lesteberg, Kelsey; Orange, Jordan; Makedonas, George
2017-10-01
Although cytotoxic T lymphocytes (CTLs) store perforin within cytoplasmic secretory granules for immediate use, perforin is synthesized anew within hours of TCR stimulation. Previously, we observed new perforin protein at an immunologic synapse independent of secretory lysosomes; herein, we aimed to determine how new perforin transits to the synapse if not via lytic granules. We analyzed antigen-specific human CTLs via imaging flow cytometry and high-resolution confocal microscopy, with attention to intracellular trafficking components and new perforin. The recycling endosome compartments identified by rab8, rab11a, rab4, and rab37 co-localized with new perforin, as well as the SNAREs vti1b and VAMP4. After ablating the function of the recycling endosome pathway, we observed a relative accumulation of new perforin in rab8 vesicles. The recycling endosome pathway may serve as an auxiliary intracellular route for the delivery of new perforin to an immunologic synapse in order to perpetuate a cytotoxic response.
Lesteberg, Kelsey E.; Orange, Jordan S.; Makedonas, George
2018-01-01
Background Although cytotoxic T lymphocytes (CTLs) store perforin within cytoplasmic secretory granules for immediate use, perforin is synthesized anew within hours of TCR stimulation. Previously, we observed new perforin protein at an immunologic synapse independent of secretory lysosomes; herein we aimed to determine how new perforin transits to the synapse if not via lytic granules. Results We analyzed antigen-specific human CTLs via imaging flow cytometry and high-resolution confocal microscopy, with attention to intracellular trafficking components and new perforin. The recycling endosome compartments identified by rab8, rab11a, rab4, and rab37 co-localized with new perforin, as well as the SNAREs vti1b and VAMP4. After ablating the function of the recycling endosome pathway, we observed a relative accumulation of new perforin in rab8 vesicles. Conclusions The recycling endosome pathway may serve as an auxiliary intracellular route for the delivery of new perforin to an immunologic synapse in order to perpetuate a cytotoxic response. PMID:28822075
Small Molecules for Early Endosome-Specific Patch Clamping.
Chen, Cheng-Chang; Butz, Elisabeth S; Chao, Yu-Kai; Grishchuk, Yulia; Becker, Lars; Heller, Stefan; Slaugenhaupt, Susan A; Biel, Martin; Wahl-Schott, Christian; Grimm, Christian
2017-07-20
To resolve the subcellular distribution of endolysosomal ion channels, we have established a novel experimental approach to selectively patch clamp Rab5 positive early endosomes (EE) versus Rab7/LAMP1-positive late endosomes/lysosomes (LE/LY). To functionally characterize ion channels in endolysosomal membranes with the patch-clamp technique, it is important to develop techniques to selectively enlarge the respective organelles. We found here that two small molecules, wortmannin and latrunculin B, enlarge Rab5-positive EE when combined but not Rab7-, LAMP1-, or Rab11 (RE)-positive vesicles. The two compounds act rapidly, specifically, and are readily applicable in contrast to genetic approaches or previously used compounds such as vacuolin, which enlarges EE, RE, and LE/LY. We apply this approach here to measure currents mediated by TRPML channels, in particular TRPML3, which we found to be functionally active in both EE and LE/LY in overexpressing cells as well as in endogenously expressing CD11b+ lung-tissue macrophages. Copyright © 2017 Elsevier Ltd. All rights reserved.
2012-01-01
Background Xanthophylls are oxygenated carotenoids playing an essential role as structural components of the photosynthetic apparatus. Xanthophylls contribute to the assembly and stability of light-harvesting complex, to light absorbance and to photoprotection. The first step in xanthophyll biosynthesis from α- and β-carotene is the hydroxylation of ε- and β-rings, performed by both non-heme iron oxygenases (CHY1, CHY2) and P450 cytochromes (LUT1/CYP97C1, LUT5/CYP97A3). The Arabidopsis triple chy1chy2lut5 mutant is almost completely depleted in β-xanthophylls. Results Here we report on the quadruple chy1chy2lut2lut5 mutant, additionally carrying the lut2 mutation (affecting lycopene ε-cyclase). This genotype lacks lutein and yet it shows a compensatory increase in β-xanthophylls with respect to chy1chy2lut5 mutant. Mutant plants show an even stronger photosensitivity than chy1chy2lut5, a complete lack of qE, the rapidly reversible component of non-photochemical quenching, and a peculiar organization of the pigment binding complexes into thylakoids. Biochemical analysis reveals that the chy1chy2lut2lut5 mutant is depleted in Lhcb subunits and is specifically affected in Photosystem I function, showing a deficiency in PSI-LHCI supercomplexes. Moreover, by analyzing a series of single, double, triple and quadruple Arabidopsis mutants in xanthophyll biosynthesis, we show a hitherto undescribed correlation between xanthophyll levels and the PSI-PSII ratio. The decrease in the xanthophyll/carotenoid ratio causes a proportional decrease in the LHCII and PSI core levels with respect to PSII. Conclusions The physiological and biochemical phenotype of the chy1chy2lut2lut5 mutant shows that (i) LUT1/CYP97C1 protein reveals a major β-carotene hydroxylase activity in vivo when depleted in its preferred substrate α-carotene; (ii) xanthophylls are needed for normal level of Photosystem I and LHCII accumulation. PMID:22513258
Truchan, Hilary K.; VieBrock, Lauren; Cockburn, Chelsea L.; Ojogun, Nore; Griffin, Brian P.; Wijesinghe, Dayanjan S.; Chalfant, Charles E.; Carlyon, Jason A.
2016-01-01
Summary Anaplasma phagocytophilum is an emerging human pathogen and obligate intracellular bacterium. It inhabits a host cell-derived vacuole and cycles between replicative reticulate cell (RC) and infectious dense-cored (DC) morphotypes. Host–pathogen interactions that are critical for RC-to-DC conversion are undefined. We previously reported that A. phagocytophilum recruits green fluorescent protein (GFP)-tagged Rab10, a GTPase that directs exocytic traffic from the sphingolipid-rich trans-Golgi network (TGN) to its vacuole in a guanine nucleotide-independent manner. Here, we demonstrate that endogenous Rab10-positive TGN vesicles are not only routed to but also delivered into the A. phagocytophilum-occupied vacuole (ApV). Consistent with this finding, A. phagocytophilum incorporates sphingolipids while intracellular and retains them when naturally released from host cells. TGN vesicle delivery into the ApV is Rab10 dependent, up-regulates expression of the DC-specific marker, APH1235, and is critical for the production of infectious progeny. The A. phagocytophilum surface protein, uridine monophosphate kinase, was identified as a guanine nucleotide-independent, Rab10-specific ligand. These data delineate why Rab10 is important for the A. phagocytophilum infection cycle and expand the understanding of the benefits that exploiting host cell membrane traffic affords intracellular bacterial pathogens. PMID:26289115
Dutta, Dipannita; Donaldson, Julie G
2015-09-01
Clathrin-mediated endocytosis (CME) and clathrin-independent endocytosis (CIE) co-exist in most cells but little is known about their communication and coordination. Here we show that when CME was inhibited, endocytosis by CIE continued but endosomal trafficking of CIE cargo proteins was altered. CIE cargo proteins that normally traffic directly into Arf6-associated tubules after internalization and avoid degradation (CD44, CD98 and CD147) now trafficked to lysosomes and were degraded. The endosomal tubules were also absent and Arf6-GTP levels were elevated. The altered trafficking, loss of the tubular endosomal network and elevated Arf6-GTP levels caused by inhibition of CME were rescued by expression of Rab35, a Rab associated with clathrin-coated vesicles, or its effector ACAPs, Arf6 GTPase activating proteins (GAP) that inactivate Arf6. Furthermore, siRNA knockdown of Rab35 recreated the phenotype of CME ablation on CIE cargo trafficking without altering endocytosis of transferrin. These observations suggest that Rab35 serves as a CME detector and that loss of CME, or Rab35 input, leads to elevated Arf6-GTP and shifts the sorting of CIE cargo proteins to lysosomes and degradation. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Wilson, Kate S; Gonzalez, Olivia; Dutcher, Susan K; Bayly, Philip V
2015-09-01
Changes in the flagellar waveform in response to increased viscosity were investigated in uniflagellate mutants of Chlamydomonas reinhardtii. We hypothesized that the waveforms of mutants lacking different dynein arms would change in different ways as viscosity was increased, and that these variations would illuminate the feedback pathways from force to dynein activity. Previous studies have investigated the effects of viscosity on cell body motion, propulsive force, and power in different mutants, but the effect on waveform has not yet been fully characterized. Beat frequency decreases with viscosity in wild-type uniflagellate (uni1) cells, and outer dynein arm deficient (oda2) mutants. In contrast, the inner dynein arm mutant ida1 (lacking I1/f) maintains beat frequency at high viscosity but alters its flagellar waveform more than either wild-type or oda2. The ida1 waveform is narrower than wild-type, primarily due to an abbreviated recovery stroke; this difference is amplified at high viscosity. The oda2 mutant in contrast, maintains a consistent waveform at high and low viscosity with a slightly longer power stroke than wild-type. Analysis of the delays and shear displacements between bends suggest that direct force feedback in the outer dynein arm system may initiate switching of dynein activity. In contrast, I1/f dynein appears to delay switching, most markedly at the initiation of the power stroke, possibly by controlling inter-doublet separation. © 2015 Wiley Periodicals, Inc.
Wilson, Kate S.; Gonzalez, Olivia; Dutcher, Susan K.; Bayly, P.V.
2015-01-01
Changes in the flagellar waveform in response to increased viscosity were investigated in uniflagellate mutants of Chlamydomonas reinhardtii. We hypothesized that the waveforms of mutants lacking different dynein arms would change in different ways as viscosity was increased, and that these variations would illuminate the feedback pathways from force to dynein activity. Previous studies have investigated the effects of viscosity on cell body motion, propulsive force, and power in different mutants, but the effect on waveform has not yet been fully characterized. Beat frequency decreases with viscosity in wild-type uniflagellate (uni1) cells, and outer dynein arm deficient (oda2) mutants. In contrast, the inner dynein arm mutant ida1 (lacking I1/f) maintains beat frequency at high viscosity but alters its flagellar waveform more than either wild-type or oda2. The ida1 waveform is narrower than wild-type, primarily due to an abbreviated recovery stroke; this difference is amplified at high viscosity. The oda2 mutant in contrast, maintains a consistent waveform at high and low viscosity with a slightly longer power stroke than wild-type. Analysis of the delays and shear displacements between bends suggest that direct force feedback in the outer dynein arm system may initiate switching of dynein activity. In contrast, I1/f dynein appears to delay switching, most markedly at the initiation of the power stroke, possibly by controlling inter-doublet separation. PMID:26314933
Shaw, Duncan J.; Guest, John R.; Meganathan, Rangaswamy; Bentley, Ronald
1982-01-01
Four independent menaquinone (vitamin K2)-deficient mutants of Escherichia coli, blocked in the conversion of o-succinylbenzoate (OSB) to 1,4-dihydroxy-2-naphthoate (DHNA), were found to represent two distinct classes. Enzymatic complementation was observed when a cell-free extract of one mutant was mixed with extracts of any of the remaining three mutants. The missing enzymes in the two classes were identified by in vitro complementation with preparations of OSB-coenzyme A (CoA) synthetase or DHNA synthase isolated from Mycobacterium phlei. Mutants lacking DHNA synthase (and therefore complementing with M. phlei DHNA synthase) were designated menB, and the mutant lacking OSB-CoA synthetase (and therefore complementing with M. phlei OSB-CoA synthetase) was designated menE. The menB mutants produced only the spirodilactone form of OSB when extracts were incubated with [2,3-14C2]OSB, ATP, and CoA; the OSB was unchanged on incubation with an extract from the menE mutant under these conditions. Experiments with strains lysogenized by a λ men transducing phage (λG68) and transduction studies with phage P1 indicated that the menB and menE genes form part of a cluster of four genes, controlling the early steps in menaquinone biosynthesis, located at 48.5 min in the E. coli linkage map. Evidence was obtained for the clockwise gene order gyrA....menC- 0000100000 0000110000 0011111000 0000111000 0011111000 0001110000 0000110101 0001111111 0001100000 0000100000 0001101100 0011111000 0011000000 0011000000 0111000111 0111101110 -B-D, where the asterisk denotes the uncertain position of menE relative to menC and menB. The transducing phage (λG68) contained functional menB, menC, and menE genes, but only part of the menD gene, and it was designated λ menCB(D). PMID:6754698
Kang, Sung Koo; Kim, Dae Kyong; Damron, Derek S; Baek, Kwang Jin; Im, Mie-Jae
2002-04-26
We characterized the alpha(1B)-adrenoreceptor (alpha(1B)-AR)-mediated intracellular Ca(2+) signaling involving G alpha(h) (transglutaminase II, TGII) and phospholipase C (PLC)-delta 1 using DDT1-MF2 cell. Expression of wild-type TGII and a TGII mutant lacking transglutaminase activity resulted in significant increases in a rapid peak and a sustained level of intracellular Ca(2+) concentration ([Ca(2+)](i)) in response to activation of the alpha(1B)-AR. Expression of a TGII mutant lacking the interaction with the receptor or PLC-delta 1 substantially reduced both the peak and sustained levels of [Ca(2+)](i). Expression of TGII mutants lacking the interaction with PLC-delta 1 resulted in a reduced capacitative Ca(2+) entry. Reduced expression of PLC-delta 1 displayed a transient elevation of [Ca(2+)](i) and a reduction in capacitative Ca(2+) entry. Expression of the C2-domain of PLC-delta 1, which contains the TGII interaction site, resulted in reduction of the alpha(1B)-AR-evoked peak increase in [Ca(2+)](i), while the sustained elevation in [Ca(2+)](i) and capacitative Ca(2+) entry remained unchanged. These findings demonstrate that stimulation of PLC-delta 1 via coupling of the alpha(1B)-AR with TGII evokes both Ca(2+) release and capacitative Ca(2+) entry and that capacitative Ca(2+) entry is mediated by the interaction of TGII with PLC-delta 1.
VizieR Online Data Catalog: The MIT-Green Bank 5GHz Survey (Bennett+, 1986-91)
NASA Astrophysics Data System (ADS)
Bennett, C. L.; Lawrence, C. R.; Burke, B. F.; Hewitt, J. N.; Mahoney, J.
2003-08-01
The MIT-Green Bank 5GHz survey catalog was produced from four separate surveys with the National Radio Astronomy Observatory (NRAO) 91m transit telescope (Bennett et al., 1986ApJS...61....1B (MG1); Langston et al., 1990ApJS...72..621L (MG2); Griffith et al., 1990ApJS...74..129G (MG3); Griffith et al. 1991ApJS...75..801G (MG4)). The sky coverage of the various surveys is: 00h < RAB < 24h, -00d30'13" < DECB < +19d29'47" for MG1; 04h < RAJ < 21h, +17.0d < DECJ < +39d09' for MG2; 16h30m < RAB < 05h, +17d < DECB < +39d09' for MG3; and 15h30m < RAB < 02h30m, +37.00d < DECB < +50d58'48" for MG4; where RAB and DECB refer to B1950 coordinates, and RAJ and DECJ refer to J2000 coordinates. The catalog contains 20344 sources detected with a signal-to-noise ratio greater than 5 and 3836 possible detections (MG1) with a signal-to-noise ratio less than 5. Spectral indices are computed for MG1 sources also identified in the Texas 365MHz survey (Douglas et al. 1980), and for MG1-MG4 sources also identified in the NRAO 1400MHz Survey (Condon and Broderick 1985). (1 data file).
VizieR Online Data Catalog: The MIT-Green Bank 5GHz Survey (Bennett+, 1986-91)
NASA Astrophysics Data System (ADS)
Bennett, C. L.; Lawrence, C. R.; Burke, B. F.; Hewitt, J. N.; Mahoney, J.
1999-04-01
The MIT-Green Bank 5 GHz survey catalog was produced from four separate surveys with the National Radio Astronomy Observatory (NRAO) 91m transit telescope (Bennett et al., 1986ApJS...61....1B (MG1); Langston et al., 1990ApJS...72..621L (MG2); Griffith et al., 1990ApJS...74..129G (MG3); Griffith et al. 1991ApJS...75..801G (MG4)). The sky coverage of the various surveys is: 00h < RAB < 24h, -00d30'13" < DECB < +19d29'47" for MG1; 04h < RAJ < 21h, +17.0d < DECJ < +39d09' for MG2; 16h30m < RAB < 05h, +17d < DECB < +39d09' for MG3; and 15h30m < RAB < 02h30m, +37.00d < DECB < +50d58'48" for MG4; where RAB and DECB refer to B1950 coordinates, and RAJ and DECJ refer to J2000 coordinates. The catalog contains 20344 sources detected with a signal-to-noise ratio greater than 5 and 3836 possible detections (MG1) with a signal-to-noise ratio less than 5. Spectral indices are computed for MG1 sources also identified in the Texas 365 MHz survey (Douglas et al. 1980), and for MG1-MG4 sources also identified in the NRAO 1400 MHz Survey (Condon and Broderick 1985). (1 data file).
Wang, Peng; Grimm, Bernhard
2016-11-01
State transitions in photosynthesis provide for the dynamic allocation of a mobile fraction of light-harvesting complex II (LHCII) to photosystem II (PSII) in state I and to photosystem I (PSI) in state II. In the state I-to-state II transition, LHCII is phosphorylated by STN7 and associates with PSI to favor absorption cross-section of PSI. Here, we used Arabidopsis (Arabidopsis thaliana) mutants with defects in chlorophyll (Chl) b biosynthesis or in the chloroplast signal recognition particle (cpSRP) machinery to study the flexible formation of PS-LHC supercomplexes. Intriguingly, we found that impaired Chl b biosynthesis in chlorina1-2 (ch1-2) led to preferentially stabilized LHCI rather than LHCII, while the contents of both LHCI and LHCII were equally depressed in the cpSRP43-deficient mutant (chaos). In view of recent findings on the modified state transitions in LHCI-deficient mutants (Benson et al., 2015), the ch1-2 and chaos mutants were used to assess the influence of varying LHCI/LHCII antenna size on state transitions. Under state II conditions, LHCII-PSI supercomplexes were not formed in both ch1-2 and chaos plants. LHCII phosphorylation was drastically reduced in ch1-2, and the inactivation of STN7 correlates with the lack of state transitions. In contrast, phosphorylated LHCII in chaos was observed to be exclusively associated with PSII complexes, indicating a lack of mobile LHCII in chaos Thus, the comparative analysis of ch1-2 and chaos mutants provides new evidence for the flexible organization of LHCs and enhances our understanding of the reversible allocation of LHCII to the two photosystems. © 2016 American Society of Plant Biologists. All Rights Reserved.
Wang, Peng
2016-01-01
State transitions in photosynthesis provide for the dynamic allocation of a mobile fraction of light-harvesting complex II (LHCII) to photosystem II (PSII) in state I and to photosystem I (PSI) in state II. In the state I-to-state II transition, LHCII is phosphorylated by STN7 and associates with PSI to favor absorption cross-section of PSI. Here, we used Arabidopsis (Arabidopsis thaliana) mutants with defects in chlorophyll (Chl) b biosynthesis or in the chloroplast signal recognition particle (cpSRP) machinery to study the flexible formation of PS-LHC supercomplexes. Intriguingly, we found that impaired Chl b biosynthesis in chlorina1-2 (ch1-2) led to preferentially stabilized LHCI rather than LHCII, while the contents of both LHCI and LHCII were equally depressed in the cpSRP43-deficient mutant (chaos). In view of recent findings on the modified state transitions in LHCI-deficient mutants (Benson et al., 2015), the ch1-2 and chaos mutants were used to assess the influence of varying LHCI/LHCII antenna size on state transitions. Under state II conditions, LHCII-PSI supercomplexes were not formed in both ch1-2 and chaos plants. LHCII phosphorylation was drastically reduced in ch1-2, and the inactivation of STN7 correlates with the lack of state transitions. In contrast, phosphorylated LHCII in chaos was observed to be exclusively associated with PSII complexes, indicating a lack of mobile LHCII in chaos. Thus, the comparative analysis of ch1-2 and chaos mutants provides new evidence for the flexible organization of LHCs and enhances our understanding of the reversible allocation of LHCII to the two photosystems. PMID:27663408
Pérez-Delgado, Carmen M.; García-Calderón, Margarita; Márquez, Antonio J.; Betti, Marco
2015-01-01
It is well established that the plastidic isoform of glutamine synthetase (GS2) is the enzyme in charge of photorespiratory ammonium reassimilation in plants. The metabolic events associated to photorespiratory NH4 + accumulation were analyzed in a Lotus japonicus photorespiratory mutant lacking GS2. The mutant plants accumulated high levels of NH4 + when photorespiration was active, followed by a sudden drop in the levels of this compound. In this paper it was examined the possible existence of enzymatic pathways alternative to GS2 that could account for this decline in the photorespiratory ammonium. Induction of genes encoding for cytosolic glutamine synthetase (GS1), glutamate dehydrogenase (GDH) and asparagine synthetase (ASN) was observed in the mutant in correspondence with the diminishment of NH4 +. Measurements of gene expression, polypeptide levels, enzyme activity and metabolite levels were carried out in leaf samples from WT and mutant plants after different periods of time under active photorespiratory conditions. In the case of asparagine synthetase it was not possible to determine enzyme activity and polypeptide content; however, an increased asparagine content in parallel with the induction of ASN gene expression was detected in the mutant plants. This increase in asparagine levels took place concomitantly with an increase in glutamine due to the induction of cytosolic GS1 in the mutant, thus revealing a major role of cytosolic GS1 in the reassimilation and detoxification of photorespiratory NH4 + when the plastidic GS2 isoform is lacking. Moreover, a diminishment in glutamate levels was observed, that may be explained by the induction of NAD(H)-dependent GDH activity. PMID:26091523
Gromova, Kira V; Muhia, Mary; Rothammer, Nicola; Gee, Christine E; Thies, Edda; Schaefer, Irina; Kress, Sabrina; Kilimann, Manfred W; Shevchuk, Olga; Oertner, Thomas G; Kneussel, Matthias
2018-05-29
Autism spectrum disorders (ASDs) are associated with mutations affecting synaptic components, including GluN2B-NMDA receptors (NMDARs) and neurobeachin (NBEA). NBEA participates in biosynthetic pathways to regulate synapse receptor targeting, synaptic function, cognition, and social behavior. However, the role of NBEA-mediated transport in specific trafficking routes is unclear. Here, we highlight an additional function for NBEA in the local delivery and surface re-insertion of synaptic receptors in mouse neurons. NBEA dynamically interacts with Rab4-positive recycling endosomes, transiently enters spines in an activity-dependent manner, and regulates GluN2B-NMDAR recycling. Furthermore, we show that the microtubule growth inhibitor kinesin KIF21B constrains NBEA dynamics and is present in the NBEA-recycling endosome-NMDAR complex. Notably, Kif21b knockout decreases NMDAR surface expression and alters social behavior in mice, consistent with reported social deficits in Nbea mutants. The influence of NBEA-KIF21B interactions on GluN2B-NMDAR local recycling may be relevant to mechanisms underlying ASD etiology. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Function of isoamylase-type starch debranching enzymes ISA1 and ISA2 in the Zea mays leaf.
Lin, Qiaohui; Facon, Maud; Putaux, Jean-Luc; Dinges, Jason R; Wattebled, Fabrice; D'Hulst, Christophe; Hennen-Bierwagen, Tracie A; Myers, Alan M
2013-12-01
Conserved isoamylase-type starch debranching enzymes (ISAs), including the catalytic ISA1 and noncatalytic ISA2, are major starch biosynthesis determinants. Arabidopsis thaliana leaves require ISA1 and ISA2 for physiological function, whereas endosperm starch is near normal with only ISA1. ISA functions were characterized in maize (Zea mays) leaves to determine whether species-specific distinctions in ISA1 primary structure, or metabolic differences in tissues, are responsible for the differing ISA2 requirement. Genetic methods provided lines lacking ISA1 or ISA2. Biochemical analyses characterized ISA activities in mutant tissues. Starch content, granule morphology, and amylopectin fine structure were determined. Three ISA activity forms were observed in leaves, two ISA1/ISA2 heteromultimers and one ISA1 homomultimer. ISA1 homomultimer activity existed in mutants lacking ISA2. Mutants without ISA2 differed in leaf starch content, granule morphology, and amylopectin structure compared with nonmutants or lines lacking both ISA1 and ISA2. The data imply that both the ISA1 homomultimer and ISA1/ISA2 heteromultimer function in the maize leaf. The ISA1 homomultimer is present and functions in the maize leaf. Evolutionary divergence between monocots and dicots probably explains the ability of ISA1 to function as a homomultimer in maize leaves, in contrast to other species where the ISA1/ISA2 heteromultimer is the only active form. No claim to original US goverment works. New Phytologist © 2013 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, A.J.S.; Blackwell, R.D.; Lea, P.J.
1989-09-01
A mutant of barley (Hordeum vulgare L.), LaPr 88/29, deficient in NADH-dependent hydroxypyruvate reductase (HPR) activity has been isolated. The activities of both NADH (5%) and NADPH-dependent (19%) HPR were severely reduced in this mutant compared to the wild type. Although lacking an enzyme in the main carbon pathway of photorespiration, this mutant was capable of CO{sub 2} fixation rates equivalent to 75% of that of the wild type, in normal atmospheres and 50% O{sub 2}. There also appeared to be little disruption to the photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{supmore » 14}C)serine feeding were similar in both mutant and wild-type leaves. When leaves of LaPr 88/29 were fed either ({sup 14}C)serine or {sup 14}CO{sub 2}, the accumulation of radioactivity was in serine and not in hydroxypyruvate, although the mutant was still able to metabolize over 25% of the supplied ({sup 14}C)serine into sucrose. After 3 hours in air the soluble amino acid pool was almost totally dominated by serine and glycine. LaPr 88/29 has also been used to show that NADH-glyoxylate reductase and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-dependent HPR activity is due to the NADH-dependent enzyme. We also suggest that the alternative NADPH activity can metabolize a proportion, but not all, of the hydroxypyruvate produced during photorespiration and may thus form a useful backup to the NADH-dependent enzyme under conditions of maximal photorespiration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Hiroyuki; Peck, Grantley R.; Blachon, Stephanie
Insulin increases glucose transport in fat and muscle cells by stimulating the exocytosis of specialized vesicles containing the glucose transporter GLUT4. This process, which is referred to as GLUT4 translocation, increases the amount of GLUT4 at the cell surface. Previous studies have provided evidence that insulin signaling increases the amount of Rab10-GTP in the GLUT4 vesicles and that GLUT4 translocation requires the exocyst, a complex that functions in the tethering of vesicles to the plasma membrane, leading to exocytosis. In the present study we show that Rab10 in its GTP form binds to Exoc6 and Exoc6b, which are the twomore » highly homologous isotypes of an exocyst subunit, that both isotypes are found in 3T3-L1 adipocytes, and that knockdown of Exoc6, Exoc6b, or both inhibits GLUT4 translocation in 3T3-L1 adipocytes. These results suggest that the association of Rab10-GTP with Exoc6/6b is a molecular link between insulin signaling and the exocytic machinery in GLUT4 translocation. - Highlights: • Insulin stimulates the fusion of vesicles containing GLUT4 with the plasma membrane. • This requires vesicular Rab10-GTP and the exocyst plasma membrane tethering complex. • We find that Rab10-GTP associates with the Exoc6 subunit of the exocyst. • We find that knockdown of Exoc6 inhibits fusion of GLUT4 vesicles with the membrane. • The interaction of Rab10-GTP with Exoc6 potentially links signaling to exocytosis.« less
Structural plasticity mediates distinct GAP-dependent GTP hydrolysis mechanisms in Rab33 and Rab5.
Majumdar, Soneya; Acharya, Abhishek; Prakash, Balaji
2017-12-01
The classical GTP hydrolysis mechanism, as seen in Ras, employs a catalytic glutamine provided in cis by the GTPase and an arginine supplied in trans by a GTPase activating protein (GAP). The key idea emergent from a large body of research on small GTPases is that GTPases employ a variety of different hydrolysis mechanisms; evidently, these variations permit diverse rates of GTPase inactivation, crucial for temporal regulation of different biological processes. Recently, we unified these variations and argued that a steric clash between active site residues (corresponding to positions 12 and 61 of Ras) governs whether a GTPase utilizes the cis-Gln or the trans-Gln (from the GAP) for catalysis. As the cis-Gln encounters a steric clash, the Rab GTPases employ the so-called dual finger mechanism where the interacting GAP supplies a trans-Gln for catalysis. Using experimental and computational methods, we demonstrate how the cis-Gln of Rab33 overcomes the steric clash when it is stabilized by a residue in the vicinity. In effect, this demonstrates how both cis-Gln- and trans-Gln-mediated mechanisms could operate in the same GTPase in different contexts, i.e. depending on the GAP that regulates its action. Interestingly, in the case of Rab5, which possesses a higher intrinsic GTP hydrolysis rate, a similar stabilization of the cis-Gln appears to overcome the steric clash. Taken together with the mechanisms seen for Rab1, it is evident that the observed variations in Rab and their GAP partners allow structural plasticity, or in other words, the choice of different catalytic mechanisms. © 2017 Federation of European Biochemical Societies.
Giannandrea, Maila; Bianchi, Veronica; Mignogna, Maria Lidia; Sirri, Alessandra; Carrabino, Salvatore; D'Elia, Errico; Vecellio, Matteo; Russo, Silvia; Cogliati, Francesca; Larizza, Lidia; Ropers, Hans-Hilger; Tzschach, Andreas; Kalscheuer, Vera; Oehl-Jaschkowitz, Barbara; Skinner, Cindy; Schwartz, Charles E.; Gecz, Jozef; Van Esch, Hilde; Raynaud, Martine; Chelly, Jamel; de Brouwer, Arjan P.M.; Toniolo, Daniela; D'Adamo, Patrizia
2010-01-01
Human Mental Retardation (MR) is a common and highly heterogeneous pediatric disorder affecting around 3% of the general population; at least 215 X-linked MR (XLMR) conditions have been described, and mutations have been identified in 83 different genes, encoding proteins with a variety of function, such as chromatin remodeling, synaptic function, and intracellular trafficking. The small GTPases of the RAB family, which play an essential role in intracellular vesicular trafficking, have been shown to be involved in MR. We report here the identification of mutations in the small GTPase RAB39B gene in two male patients. One mutation in family X (D-23) introduced a stop codon seven amino acids after the start codon (c.21C > A; p.Y7X). A second mutation, in the MRX72 family, altered the 5′ splice site (c.215+1G > A) and normal splicing. Neither instance produced a protein. Mutations segregate with the disease in the families, and in some family members intellectual disabilities were associated with autism spectrum disorder, epileptic seizures, and macrocephaly. We show that RAB39B, a novel RAB GTPase of unknown function, is a neuronal-specific protein that is localized to the Golgi compartment. Its downregulation leads to an alteration in the number and morphology of neurite growth cones and a significant reduction in presynaptic buttons, suggesting that RAB39B is required for synapse formation and maintenance. Our results demonstrate developmental and functional neuronal alteration as a consequence of downregulation of RAB39B and emphasize the critical role of vesicular trafficking in the development of neurons and human intellectual abilities. PMID:20159109
Hori, K; Kanda, M; Miura, S; Yamada, Y; Saito, Y
1983-01-01
The transfer of phenylalanine from gramicidin S synthetase 1 (GS 1) to gramicidin S synthetase 2 (GS 2) was studied by the use of combinations of wild-type GS 1 with various GS 2s from a wild strain and gramicidin S non-producing mutant strains of Bacillus brevis Nagano. The combinations of mutant GS 2s lacking 4'-phosphopantetheine (from BI-4, C-3, E-1, and E-2) did not transfer D-phenylalanine from GS 1, although they could activate all the constituent amino acids. Other mutant GS 2s containing 4'-phosphopantetheine, except GS 2 from BII-3 (proline-activation lacking) accepted D-phenylalanine from intact GS 1. To ascertain more directly whether 4'-phosphopantetheine is involved in the transfer of D-phenylalanine from GS 1 to GS 2, pepsin digests of GS 2 that accepted [14C]phenylalanine were analyzed by Sephadex G-50 column chromatography and thin-layer chromatography (TLC). Radioactivity of [14C]phenylalanine was always associated with a peptide containing 4'-phosphopantetheine. Furthermore, the position of radioactivity was distinct from the position of 4'-phosphopantetheine on TLC after alkaline treatment or performic acid oxidation of the digests.
Fernandez, David R.; Telarico, Tiffany; Bonilla, Eduardo; Li, Qing; Banerjee, Sanjay; Middleton, Frank A.; Phillips, Paul E.; Crow, Mary K.; Oess, Stefanie; Muller-Esterl, Werner; Perl, Andras
2008-01-01
Persistent mitochondrial hyperpolarization (MHP) and enhanced calcium fluxing underlie aberrant T-cell activation and death pathway selection in systemic lupus erythematosus. Treatment with rapamycin, which effectively controls disease activity, normalizes CD3/CD28-induced calcium fluxing but fails to influence MHP, suggesting that altered calcium fluxing is downstream or independent of mitochondrial dysfunction. Here, we show that activity of the mammalian target of rapamycin (mTOR), which is a sensor of the mitochondrial transmembrane potential, is increased in lupus T cells. Activation of mTOR causes the over-expression of the Rab5A and HRES-1/Rab4 small GTPases that regulate endocytic recycling of surface receptors. Pull-down studies revealed a direct interaction of HRES-1/Rab4 with the T-cell receptor/CD3ζ chain (TCRζ). Importantly, the deficiency of the TCRζ chain and Lck and compensatory upregulation of the Fcε receptor type I γ chain (FcεRIγ) and Syk, which mediate enhanced calcium fluxing in lupus T cells, was reversed in patients treated with rapamcyin in vivo. Knockdown of HRES-1/Rab4 by siRNA and inhibitors of lysosomal function augmented TCRζ protein levels. The results suggest that activation of mTOR causes the loss of TCRζ in lupus T cells through HRES-1/Rab4-dependent lysosomal degradation. PMID:19201859
Sánchez-Sampedro, Lucas; Gómez, Carmen Elena; Mejías-Pérez, Ernesto; Pérez-Jiménez, Eva; Oliveros, Juan Carlos
2013-01-01
Replication-competent poxvirus vectors with an attenuation phenotype and with a high immunogenic capacity of the foreign expressed antigen are being pursued as novel vaccine vectors against different pathogens. In this investigation, we have examined the replication and immunogenic characteristics of two vaccinia virus (VACV) mutants, M65 and M101. These mutants were generated after 65 and 101 serial passages of persistently infected Friend erythroleukemia (FEL) cells. In cultured cells of different origins, the mutants are replication competent and have growth kinetics similar to or slightly reduced in comparison with those of the parental Western Reserve (WR) virus strain. In normal and immune-suppressed infected mice, the mutants showed different levels of attenuation and pathogenicity in comparison with WR and modified vaccinia Ankara (MVA) strains. Wide genome analysis after deep sequencing revealed selected genomic deletions and mutations in a number of viral open reading frames (ORFs). Mice immunized in a DNA prime/mutant boost regimen with viral vectors expressing the LACK (Leishmania homologue for receptors of activated C kinase) antigen of Leishmania infantum showed protection or a delay in the onset of cutaneous leishmaniasis. Protection was similar to that triggered by MVA-LACK. In immunized mice, both polyfunctional CD4+ and CD8+ T cells with an effector memory phenotype were activated by the two mutants, but the DNA-LACK/M65-LACK protocol preferentially induced CD4+ whereas DNA-LACK/M101-LACK preferentially induced CD8+ T cell responses. Altogether, our findings showed the adaptive changes of the WR genome during long-term virus-host cell interaction and how the replication competency of M65 and M101 mutants confers distinct biological properties and immunogenicity in mice compared to those of the MVA strain. These mutants could have applicability for understanding VACV biology and as potential vaccine vectors against pathogens and tumors. PMID:23596295
ARF6 directs axon transport and traffic of integrins and regulates axon growth in adult DRG neurons.
Eva, Richard; Crisp, Sarah; Marland, Jamie R K; Norman, Jim C; Kanamarlapudi, Venkateswarlu; ffrench-Constant, Charles; Fawcett, James W
2012-07-25
Integrins are involved in axon growth and regeneration. Manipulation of integrins is a route to promoting axon regeneration and understanding regeneration failure in the CNS. Expression of α9 integrin promotes axon regeneration, so we have investigated α9β1 trafficking and transport in axons and at the growth cone. We have previously found that α9 and β1 integrins traffic via Rab11-positive recycling endosomes in peripheral axons and growth cones. However, transport via Rab11 is slow, while rapid transport occurs in vesicles lacking Rab11. We have further studied α9 and β1 integrin transport and traffic in adult rat dorsal root ganglion axons and PC12 cells. Integrins are in ARF6 vesicles during rapid axonal transport and during trafficking in the growth cone. We report that rapid axonal transport of these integrins and their trafficking at the cell surface is regulated by ARF6. ARF6 inactivation by expression of ACAP1 leads to increased recycling of β1 integrins to the neuronal surface and to increased anterograde axonal transport. ARF6 activation by expression of the neuronal guanine nucleotide exchange factors, ARNO or EFA6, increases retrograde integrin transport in axons and increases integrin internalization. ARF6 inactivation increases integrin-mediated outgrowth, while activation decreases it. The coordinated changes in integrin transport and recycling resulting from ARF6 activation or inactivation are the probable mechanism behind this regulation of axon growth. Our data suggest a novel mechanism of integrin traffic and transport in peripheral axons, regulated by the activation state of ARF6, and suggest that ARF6 might be targeted to enhance integrin-dependent axon regeneration after injury.
Zhou, Haoyuan; Sheng, Yanqing; Zhao, Xuefei; Gross, Martin; Wen, Zhiyou
2018-05-18
Industries such as mining operations are facing challenges of treating sulfur-containing wastewater such as acid mine drainage (AMD) generated in their plant. The aim of this work is to evaluate the use of a revolving algal biofilm (RAB) reactor to treat AMD with low pH (3.5-4) and high sulfate content (1-4 g/L). The RAB reactors resulted in sulfate removal efficiency up to 46% and removal rate up to 0.56 g/L-day, much higher than those obtained in suspension algal culture. The high-throughput sequencing revealed that the RAB reactor contained diverse cyanobacteria, green algae, diatoms, and acid reducing bacteria that contribute the sulfate removal through various mechanisms. The RAB reactors also showed a superior performance of COD, ammonia and phosphorus removal. Collectively, the study demonstrated that RAB-based process is an effective method to remove sulfate in wastewater with small footprint and can be potentially installed in municipal or industrial wastewater treatment facilities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rhodobacter sphaeroides spd mutations allow cytochrome c2-independent photosynthetic growth.
Rott, M A; Donohue, T J
1990-01-01
In Rhodobacter sphaeroides, cytochrome c2 (cyt c2) is a periplasmic redox protein required for photosynthetic electron transfer. cyt c2-deficient mutants created by replacing the gene encoding the apoprotein for cyt c2 (cycA) with a kanamycin resistance cartridge are photosynthetically incompetent. Spontaneous mutations that suppress this photosynthesis deficiency (spd mutants) arise at a frequency of 1 to 10 in 10(7). We analyzed the cytochrome content of several spd mutants spectroscopically and by heme peroxidase assays. These suppressors lacked detectable cyt c2, but they contained a new soluble cytochrome which was designated isocytochrome c2 (isocyt c2) that was not detectable in either cycA+ or cycA mutant cells. When spd mutants were grown photosynthetically, isocyt c2 was present at approximately 20 to 40% of the level of cyt c2 found in photosynthetically grown wild type cells, and it was found in the periplasm with cytochromes c' and c554. These spd mutants also had several other pleiotropic phenotypes. Although photosynthetic growth rates of the spd mutants were comparable to those of wild-type strains at all light intensities tested, they contained elevated levels of B800-850 pigment-protein complexes. Several spd mutants contained detectable amounts of isocyt c2 under aerobic conditions. Finally, heme peroxidase assays indicated that, under anaerobic conditions, the spd mutants may contain another new cytochrome in addition to isocyt c2. These pleiotropic phenotypes, the frequency at which the spd mutants arise, and the fact that a frameshift mutagen is very effective in generating the spd phenotype suggest that some spd mutants contain a mutation in loci which regulate cytochrome synthesis. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 PMID:2156806
GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan
Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 ormore » glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.« less
Epp, Elias; Walther, Andrea; Guylaine, Lépine; Leon, Zully; Mullick, Alaka; Raymond, Martine; Wendland, Jürgen; Whiteway, Malcolm
2014-01-01
Summary Candida albicans is a diploid fungal pathogen lacking a defined complete sexual cycle, and thus has been refractory to standard forward genetic analysis. Instead, transcription profiling and reverse genetic strategies based on Saccharomyces cerevisiae have typically been used to link genes to functions. To overcome restrictions inherent in such indirect approaches, we have investigated a forward genetic mutagenesis strategy based on the UAU1 technology. We screened 4700 random insertion mutants for defects in hyphal development and linked two new genes (ARP2 and VPS52) to hyphal growth. Deleting ARP2 abolished hyphal formation, generated round and swollen yeast phase cells, disrupted cortical actin patches and blocked virulence in mice. The mutants also showed a global lack of induction of hyphae-specific genes upon the yeast-to-hyphae switch. Surprisingly, both arp2Δ/Δ and arp2Δ/Δarp3Δ/Δ mutants were still able to endocytose FM4-64 and Lucifer Yellow, although as shown by time-lapse movies internalization of FM4-64 was somewhat delayed in mutant cells. Thus the non-essential role of the Arp2/3 complex discovered by forward genetic screening in C. albicans showed that uptake of membrane components from the plasma membrane to vacuolar structures is not dependent on this actin nucleating machinery. PMID:20141603
NASA Technical Reports Server (NTRS)
Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)
1999-01-01
Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.
Davenport, K D; Williams, K E; Ullmann, B D; Gustin, M C
1999-01-01
Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype. PMID:10545444
Multiple ABC transporters are involved in the acquisition of petrobactin in Bacillus anthracis
Dixon, Shandee D.; Janes, Brian K.; Bourgis, Alexandra; Carlson, Paul E.; Hanna, Philip C.
2012-01-01
Summary In Bacillus anthracis the siderophore petrobactin is vital for iron acquisition and virulence. The petrobactin-binding receptor FpuA is required for these processes. Here additional components of petrobactin reacquisition are described. To identify these proteins, mutants of candidate permease and ATPase genes were generated allowing for characterization of multiple petrobactin ATP-binding cassette (ABC)-import systems. Either of two distinct permeases, FpuB or FatCD, are required for iron acquisition and play redundant roles in petrobactin transport. A mutant strain lacking both permeases, ΔfpuBΔfatCD, was incapable of using petrobactin as an iron source and exhibited attenuated virulence in a murine model of inhalational anthrax infection. ATPase mutants were generated in either of the permease mutant backgrounds to identify the ATPase(s) interacting with each individual permease channel. Mutants lacking the FpuB permease and FatE ATPase (ΔfpuBΔfatE) and a mutant lacking the distinct ATPases FpuC and FpuD generated in the ΔfatCD background (ΔfatCDΔfpuCΔfpuD) displayed phenotypic characteristics of a mutant deficient in petrobactin import. A mutant lacking all three of the identified ATPases (ΔfatEΔfpuCΔfpuD) exhibited the same growth defect in iron-depleted conditions. Taken together, these results provide the first description of the permease and ATPase proteins required for the import of petrobactin in B. anthracis. PMID:22429808
Requirements and effects of palmitoylation of rat PLD1.
Xie, Z; Ho, W T; Exton, J H
2001-03-23
Rat brain phospholipase D1 (rPLD1) has two highly conserved motifs (HXKX(4)D), denoted HKD, located in the N- and C-terminal halves, which are required for phospholipase D activity. The two halves of rPLD1 can associate in vivo, and the association is essential for catalytic activity and Ser/Thr phosphorylation of the enzyme. In this study, we found that this association is also required for palmitoylation of rPLD1, which occurs on cysteines 240 and 241. In addition, palmitoylation of rPLD1 requires the N-terminal sequence but not the conserved C-terminal sequence, since rPLD1 that lacks the first 168 amino acids is not palmitoylated in vivo, while the inactive C-terminal deletion mutant is. Palmitoylation of rPLD1 is not necessary for catalytic activity, since N-terminal truncation mutants lacking the first 168 or 319 amino acids exhibit high basal activity although they cannot be stimulated by protein kinase C (PKC). The lack of response to PKC is not due to the lack of palmitoylation, since mutation of both Cys(240) and Cys(241) to alanine in full-length rPLD1 abolishes palmitoylation, but the mutant still retains basal activity and responds to PKC. Palmitoylation-deficient rPLD1 can associate with crude membranes; however, the association is weakened. Wild type rPLD1 remains membrane-associated when extracted with 1 m NaCl or Na(2)CO(3) (pH 11), while rPLD1 mutants that lack palmitoylation are partially released. In addition, we found that palmitoylation-deficient mutants are much less modified by Ser/Thr phosphorylation compared with wild type rPLD1. Characterization of the other cysteine mutations of rPLD1 showed that mutation of cysteine 310 or 612 to alanine increased basal phospholipase D activity 2- and 4-fold, respectively. In summary, palmitoylation of rPLD1 requires interdomain association and the presence of the N-terminal 168 amino acids. Mutations of cysteines 240 and 241 to alanine abolish the extensive Ser/Thr phosphorylation of the enzyme and weaken its association with membranes.
Yarrowia lipolytica vesicle-mediated protein transport pathways
Swennen, Dominique; Beckerich, Jean-Marie
2007-01-01
Background Protein secretion is a universal cellular process involving vesicles which bud and fuse between organelles to bring proteins to their final destination. Vesicle budding is mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and SNARE complexes. The Génolevures II sequencing project made available entire genome sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Candida glabrata. Y. lipolytica is a dimorphic yeast and has good capacities to secrete proteins. The translocation of nascent protein through the endoplasmic reticulum membrane was well studied in Y. lipolytica and is largely co-translational as in the mammalian protein secretion pathway. Results We identified S. cerevisiae proteins involved in vesicular secretion and these protein sequences were used for the BLAST searches against Génolevures protein database (Y. lipolytica, C. glabrata, K. lactis and D. hansenii). These proteins are well conserved between these yeasts and Saccharomyces cerevisiae. We note several specificities of Y. lipolytica which may be related to its good protein secretion capacities and to its dimorphic aspect. An expansion of the Y. lipolytica Rab protein family was observed with autoBLAST and the Rab2- and Rab4-related members were identified with BLAST against NCBI protein database. An expansion of this family is also found in filamentous fungi and may reflect the greater complexity of the Y. lipolytica secretion pathway. The Rab4p-related protein may play a role in membrane recycling as rab4 deleted strain shows a modification of colony morphology, dimorphic transition and permeability. Similarly, we find three copies of the gene (SSO) encoding the plasma membrane SNARE protein. Quantification of the percentages of proteins with the greatest homology between S. cerevisiae, Y. lipolytica and animal homologues involved in vesicular transport shows that 40% of Y. lipolytica proteins are closer to animal ones, whereas they are only 13% in the case of S. cerevisiae. Conclusion These results provide further support for the idea, previously noted about the endoplasmic reticulum translocation pathway, that Y. lipolytica is more representative of vesicular secretion of animals and other fungi than is S. cerevisiae. PMID:17997821
Garby, Tamsyn J.; Matys, Emily D.; Ongley, Sarah E.; Salih, Anya; Larkum, Anthony W. D.; Walter, Malcolm R.
2017-01-01
ABSTRACT To investigate the function of 2-methylhopanoids in modern cyanobacteria, the hpnP gene coding for the radical S-adenosyl methionine (SAM) methylase protein that acts on the C-2 position of hopanoids was deleted from the filamentous cyanobacterium Nostoc punctiforme ATCC 29133S. The resulting ΔhpnP mutant lacked all 2-methylhopanoids but was found to produce much higher levels of two bacteriohopanepentol isomers than the wild type. Growth rates of the ΔhpnP mutant cultures were not significantly different from those of the wild type under standard growth conditions. Akinete formation was also not impeded by the absence of 2-methylhopanoids. The relative abundances of the different hopanoid structures in akinete-dominated cultures of the wild-type and ΔhpnP mutant strains were similar to those of vegetative cell-dominated cultures. However, the ΔhpnP mutant was found to have decreased growth rates under both pH and osmotic stress, confirming a role for 2-methylhopanoids in stress tolerance. Evidence of elevated photosystem II yield and NAD(P)H-dependent oxidoreductase activity in the ΔhpnP mutant under stress conditions, compared to the wild type, suggested that the absence of 2-methylhopanoids increases cellular metabolic rates under stress conditions. IMPORTANCE As the first group of organisms to develop oxygenic photosynthesis, Cyanobacteria are central to the evolutionary history of life on Earth and the subsequent oxygenation of the atmosphere. To investigate the origin of cyanobacteria and the emergence of oxygenic photosynthesis, geobiologists use biomarkers, the remnants of lipids produced by different organisms that are found in geologic sediments. 2-Methylhopanes have been considered indicative of cyanobacteria in some environmental settings, with the parent lipids 2-methylhopanoids being present in many contemporary cyanobacteria. We have created a Nostoc punctiforme ΔhpnP mutant strain that does not produce 2-methylhopanoids to assess the influence of 2-methylhopanoids on stress tolerance. Increased metabolic activity in the mutant under stress indicates compensatory alterations in metabolism in the absence of 2-methylhopanoids. PMID:28455341
Garby, Tamsyn J; Matys, Emily D; Ongley, Sarah E; Salih, Anya; Larkum, Anthony W D; Walter, Malcolm R; Summons, Roger E; Neilan, Brett A
2017-07-01
To investigate the function of 2-methylhopanoids in modern cyanobacteria, the hpnP gene coding for the radical S -adenosyl methionine (SAM) methylase protein that acts on the C-2 position of hopanoids was deleted from the filamentous cyanobacterium Nostoc punctiforme ATCC 29133S. The resulting Δ hpnP mutant lacked all 2-methylhopanoids but was found to produce much higher levels of two bacteriohopanepentol isomers than the wild type. Growth rates of the Δ hpnP mutant cultures were not significantly different from those of the wild type under standard growth conditions. Akinete formation was also not impeded by the absence of 2-methylhopanoids. The relative abundances of the different hopanoid structures in akinete-dominated cultures of the wild-type and Δ hpnP mutant strains were similar to those of vegetative cell-dominated cultures. However, the Δ hpnP mutant was found to have decreased growth rates under both pH and osmotic stress, confirming a role for 2-methylhopanoids in stress tolerance. Evidence of elevated photosystem II yield and NAD(P)H-dependent oxidoreductase activity in the Δ hpnP mutant under stress conditions, compared to the wild type, suggested that the absence of 2-methylhopanoids increases cellular metabolic rates under stress conditions. IMPORTANCE As the first group of organisms to develop oxygenic photosynthesis, Cyanobacteria are central to the evolutionary history of life on Earth and the subsequent oxygenation of the atmosphere. To investigate the origin of cyanobacteria and the emergence of oxygenic photosynthesis, geobiologists use biomarkers, the remnants of lipids produced by different organisms that are found in geologic sediments. 2-Methylhopanes have been considered indicative of cyanobacteria in some environmental settings, with the parent lipids 2-methylhopanoids being present in many contemporary cyanobacteria. We have created a Nostoc punctiforme Δ hpnP mutant strain that does not produce 2-methylhopanoids to assess the influence of 2-methylhopanoids on stress tolerance. Increased metabolic activity in the mutant under stress indicates compensatory alterations in metabolism in the absence of 2-methylhopanoids. Copyright © 2017 American Society for Microbiology.
Romano, Julia D.
2017-01-01
Toxoplasma is an obligate intracellular parasite that replicates in mammalian cells within a parasitophorous vacuole (PV) that does not fuse with any host organelles. One mechanism developed by the parasite for nutrient acquisition is the attraction of host organelles to the PV. Here, we examined the exploitation of host lipid droplets (LD), ubiquitous fat storage organelles, by Toxoplasma. We show that Toxoplasma replication is reduced in host cells that are depleted of LD, or impaired in TAG lipolysis or fatty acid catabolism. In infected cells, the number of host LD and the expression of host LD-associated genes (ADRP, DGAT2), progressively increase until the onset of parasite replication. Throughout infection, the PV are surrounded by host LD. Toxoplasma is capable of accessing lipids stored in host LD and incorporates these lipids into its own membranes and LD. Exogenous addition of oleic acid stimulates LD biogenesis in the host cell and results in the overaccumulation of neutral lipids in very large LD inside the parasite. To access LD-derived lipids, Toxoplasma intercepts and internalizes within the PV host LD, some of which remaining associated with Rab7, which become wrapped by an intravacuolar network of membranes (IVN). Mutant parasites impaired in IVN formation display diminished capacity of lipid uptake from host LD. Moreover, parasites lacking an IVN-localized phospholipase A2 are less proficient in salvaging lipids from host LD in the PV, suggesting a major contribution of the IVN for host LD processing in the PV and, thus lipid content release. Interestingly, gavage of parasites with lipids unveils, for the first time, the presence in Toxoplasma of endocytic-like structures containing lipidic material originating from the PV lumen. This study highlights the reliance of Toxoplasma on host LD for its intracellular development and the parasite’s capability in scavenging neutral lipids from host LD. PMID:28570716
Luo, Jin-Yan; Niu, Chun-Yan; Wang, Xue-Qin; Zhu, You-Ling; Gong, Jun
2003-01-01
AIM: To study the effect of rabeprazole (RAB) on nocturnal acid breakthrough (NAB) and nocturnal alkaline amplitude (NAKA) and to compare it with omeprazole (OME) and pantoprazole (PAN). METHODS: By an open comparative study, forty patients with active peptic ulcer were randomly assigned to receive one of the three PPIs (proton pump inhibitor) with a single oral dose. They were divided into RAB group (10 mg), OME group (20 mg) and PAN group (40 mg). Twenty healthy volunteers were enrolled to the control group (without taking any drug). Intragastric pH monitoring was then performed 1 h before and 24 h after the dose was given. RESULTS: No clinically undesirable signs and symptoms possibly attributed to the administration of RAB or OME and PAN were recognizable throughout the study period. All subjects completed the study according to the protocol. All data were processed by a computer using the Student t test or t’ test followed by an analysis of covariance. P < 0.05 was considered to have statistical significance. The intragastric pH of NAB was significantly higher in RAB group (1.84 ± 0.55) than in either OME group (1.15 ± 0.31) or PAN group (1.10 ± 0.30) (both P < 0.01). RAB produced a longer sustaining time (4.65 ± 1.22 h) on NAKA than OME (3.22 ± 1.89 h) (P < 0.05), PAN (3.15 ± 1.92 h) (P < 0.05), and the sustaining time of NAKA in RAB group was longer than that in the healthy control group (P < 0.01) too. In addition, RAB produced a much higher pH on NAKA (6.41 ± 0.45) in comparison with PAN (6.01 ± 0.92) (P < 0.05). CONCLUSION: A single oral dose of 10 mg RAB may increase the pH of NAB and shorten the sustaining time of NAB, and it may increase the pH of NAKA as well as prolong the sustaining time of NAKA. PMID:14606102
Poliovirus Replication Requires the N-terminus but not the Catalytic Sec7 Domain of ArfGEF GBF1
Belov, George A.; Kovtunovych, Gennadiy; Jackson, Catherine L.; Ehrenfeld, Ellie
2010-01-01
Viruses are intracellular parasites whose reproduction relies on factors provided by the host. The cellular protein GBF1 is critical for poliovirus replication. Here we show that the contribution of GBF1 to virus replication is different from its known activities in uninfected cells. Normally GBF1 activates the Arf GTPases necessary for formation of COPI transport vesicles. GBF1 function is modulated by p115 and Rab1b. However, in polio-infected cells, p115 is degraded and neither p115 nor Rab1b knock-down affects virus replication. Poliovirus infection is very sensitive to BFA, an inhibitor of Arf activation by GBF1. BFA targets the catalytic Sec7 domain of GBF1. Nevertheless the BFA block of polio replication is rescued by expression of only the N-terminal region of GBF1 lacking the Sec7 domain. Replication of BFA-resistant poliovirus in the presence of BFA is uncoupled from Arf activation but is dependent on GBF1. Thus the function(s) of this protein essential for viral replication can be separated from those required for cellular metabolism. PMID:20497182
Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri
2016-02-16
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi-tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders.
Wang, Ying; Loo, Tip W; Bartlett, M Claire; Clarke, David M
2007-03-01
Cystic fibrosis transmembrane conductance regulator (CFTR) and P-glycoprotein (P-gp) are ATP-binding cassette (ABC) transporters that have two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). Defective folding of CFTR lacking phenylalanine 508 (DeltaPhe508) in NBD1 is the most common cause of cystic fibrosis. The Phe508 position seems to be universally important in ABC transporters because deletion of the equivalent residue (Tyr490) in P-gp also inhibits maturation of the protein. The pharmacological chaperone VRT-325 can repair the DeltaPhe508-type folding defects in P-gp or CFTR. VRT-325 may repair the folding defects by promoting dimerization of the two NBDs or by promoting folding of the TMDs. To distinguish between these two mechanisms, we tested the ability of VRT-325 to promote folding of truncation mutants lacking one or both NBDs. Sensitivity to glycosidases was used as an indirect indicator of folding. It was found that VRT-325 could promote maturation of truncation mutants lacking NBD2. Truncation mutants of CFTR or P-gp lacking both NBDs showed deficiencies in core-glycosylation that could be partially reversed by carrying out expression in the presence of VRT-325. The results show that dimerization of the two NBDs to form a "nucleotide-sandwich" structure or NBD interactions with the TMDs are not essential for VRT-325 enhancement of folding. Instead, VRT-325 can promote folding of the TMDs alone. The ability of VRT-325 to promote core-glycosylation of the NBD-less truncation mutants suggests that one mechanism whereby the compound enhances folding is by promoting proper insertion of TM segments attached to the glycosylated loops so that they adopt an orientation favorable for glycosylation.
Oswald, Matthew C. W.; West, Ryan J. H.; Lloyd-Evans, Emyr; Sweeney, Sean T.
2015-01-01
Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is characterized by a loss of distal peripheral sensory and motorneuronal function, neuropathic pain and tissue necrosis. The most common cause of HSAN1 is due to dominant mutations in serine palmitoyl-transferase subunit 1 (SPT1). SPT catalyses the condensation of serine with palmitoyl-CoA, the initial step in sphingolipid biogenesis. Identified mutations in SPT1 are known to both reduce sphingolipid synthesis and generate catalytic promiscuity, incorporating alanine or glycine into the precursor sphingolipid to generate a deoxysphingoid base (DSB). Why either loss of function in SPT1, or generation of DSBs should generate deficits in distal sensory function remains unclear. To address these questions, we generated a Drosophila model of HSAN1. Expression of dSpt1 bearing a disease-related mutation induced morphological deficits in synapse growth at the larval neuromuscular junction consistent with a dominant-negative action. Expression of mutant dSpt1 globally was found to be mildly toxic, but was completely toxic when the diet was supplemented with alanine, when DSBs were observed in abundance. Expression of mutant dSpt1 in sensory neurons generated developmental deficits in dendritic arborization with concomitant sensory deficits. A membrane trafficking defect was observed in soma of sensory neurons expressing mutant dSpt1, consistent with endoplasmic reticulum (ER) to Golgi block. We found that we could rescue sensory function in neurons expressing mutant dSpt1 by co-expressing an effector of ER–Golgi function, Rab1 suggesting compromised ER function in HSAN1 affected dendritic neurons. Our Drosophila model identifies a novel strategy to explore the pathological mechanisms of HSAN1. PMID:26395456
An electrochemical immunosensing method for detecting melanoma cells.
Seenivasan, Rajesh; Maddodi, Nityanand; Setaluri, Vijaysaradhi; Gunasekaran, Sundaram
2015-06-15
An electrochemical immunosensing method was developed to detect melanoma cells based on the affinity between cell surface melanocortin 1 receptor (MC1R) antigen and anti-MC1R antibody (MC1R-Ab). The MC1R-Abs were immobilized in amino-functionalized silica nanoparticles (n-SiNPs)-polypyrrole (PPy) nanocomposite modified on working electrode surface of screen-printed electrode (SPE). Cyclic voltammetry was employed, with the help of redox mediator ([Fe(CN)6](3-)), to measure the change in anodic oxidation peak current arising due to the specific interaction between MC1R antigens and MC1R-Abs when the target melanoma cells are present in the sample. Various factors affecting the sensor performance, such as the amount of MC1R-Abs loaded, incubation time with the target melanoma cells, the presence of interfering non-melanoma cells, were tested and optimized over different expected melanoma cell loads in the range of 50-7500 cells/2.5 mL. The immunosensor is highly sensitive (20 cells/mL), specific, and reproducible, and the antibody-loaded electrode in ready-to-use stage is stable over two weeks. Thus, in conjunction with a microfluidic lab-on-a-chip device our electrochemical immunosensing approach may be suitable for highly sensitive, selective, and rapid detection of circulating tumor cells (CTCs) in blood samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Medicago truncatula Mtha1-2 mutants loose metabolic responses to mycorrhizal colonization.
Hubberten, Hans-Michael; Sieh, Daniela; Zöller, Daniela; Hoefgen, Rainer; Krajinski, Franziska
2015-01-01
Bidirectional nutrient transfer is one of the key features of the arbuscular mycorrhizal symbiosis. Recently we were able to identify a Medicago truncatula mutant (mtha1-2) that is defective in the uptake of phosphate from the periarbuscular space due to a lack of the energy providing proton gradient provided by the symbiosis specific proton ATPase MtHA1 In order to further characterize the impact of fungal colonization on the plant metabolic status, without the beneficial aspect of improved mineral nutrition, we performed leaf ion analyses in mutant and wildtype plants with and without fungal colonization. Although frequency of fungal colonization was unaltered, the mutant did not show a positive growth response to mycorrhizal colonization. This indicates that nutrient transfer into the plant cell fails in the truncated arbuscules due to lacking expression of a functional MtHA1 protein. The leaves of wildtype plants showed clear metabolic responses to root mycorrhizal colonization, whereas no changes of leaf metabolite levels of mycorrhizal mtha1-2 plants were detected, even though they were colonized. These results show that MtHa1 is indispensable for a functional mycorrhizal symbiosis and, moreover, suggest that fungal root colonization per se does not depend on nutrient transfer to the plant host.
Mitra, Shiladitya; Sameer Kumar, Ghantasala S.; Jyothi Lakshmi, B.; Thakur, Suman; Kumar, Satish
2018-01-01
We earlier reported that the male mice lacking the Wdr13 gene (Wdr13-/0) showed mild anxiety, better memory retention, and up-regulation of synaptic proteins in the hippocampus. With increasing evidences from parallel studies in our laboratory about the possible role of Wdr13 in stress response, we investigated its role in brain. We observed that Wdr13 transcript gets up-regulated in the hippocampus of the wild-type mice exposed to stress. To further dissect its function, we analyzed the behavioral and molecular phenotypes of Wdr13-/0 mice when subjected to mild chronic psychological stress, namely; mild (attenuated) social isolation. We employed iTRAQ based quantitative proteomics, real time PCR and western blotting to investigate molecular changes. Three weeks of social isolation predisposed Wdr13-/0 mice to anhedonia, heightened anxiety-measured by Open field test (OFT), increased behavior despair- measured by Forced swim test (FST) and reduced dendritic branching along with decreased spine density of hippocampal CA1 neurons as compared to wild-type counterparts. This depression-like-phenotype was however ameliorated when treated with anti-depressant imipramine. Molecular analysis revealed that out of 1002 quantified proteins [1% False discovery rate (FDR), at-least two unique peptides], strikingly, a significant proportion of synaptic proteins including, SYN1, CAMK2A, and RAB3A were down-regulated in the socially isolated Wdr13-/0 mice as compared to its wild-type counterparts. This was in contrast to the elevated levels of these proteins in non-stressed mutants as compared to the controls. We hypothesized that a de-regulated transcription factor upstream of the synaptic genes might be responsible for the observed phenotype. Indeed, in the socially isolated Wdr13-/0 mice, there was an up-regulation of GATA1 – a transcription factor that negatively regulates synaptic genes and has been associated with Major Depression (MD) in humans. The present study demonstrates significant genotype × enviornment interaction for Wdr13 gene as shown by the reversal in the expression levels of several synaptic proteins in the mutant vis-à-vis wild-type mouse when exposed to social isolation stress. PMID:29743870
Rab GTPases: The Key Players in the Molecular Pathway of Parkinson’s Disease
Shi, Meng-meng; Shi, Chang-he; Xu, Yu-ming
2017-01-01
Parkinson’s disease (PD) is a progressive movement disorder with multiple non-motor symptoms. Although family genetic mutations only account for a small proportion of the cases, these mutations have provided several lines of evidence for the pathogenesis of PD, such as mitochondrial dysfunction, protein misfolding and aggregation, and the impaired autophagy-lysosome system. Recently, vesicle trafficking defect has emerged as a potential pathogenesis underlying this disease. Rab GTPases, serving as the core regulators of cellular membrane dynamics, may play an important role in the molecular pathway of PD through the complex interplay with numerous factors and PD-related genes. This might shed new light on the potential therapeutic strategies. In this review, we emphasize the important role of Rab GTPases in vesicle trafficking and summarize the interactions between Rab GTPases and different PD-related genes. PMID:28400718