Null missense ABCR (ABCA4) mutations in a family with stargardt disease and retinitis pigmentosa.
Shroyer, N F; Lewis, R A; Yatsenko, A N; Lupski, J R
2001-11-01
To determine the type of ABCR mutations that segregate in a family that manifests both Stargardt disease (STGD) and retinitis pigmentosa (RP), and the functional consequences of the underlying mutations. Direct sequencing of all 50 exons and flanking intronic regions of ABCR was performed for the STGD- and RP-affected relatives. RNA hybridization, Western blot analysis, and azido-adenosine triphosphate (ATP) labeling was used to determine the effect of disease-associated ABCR mutations in an in vitro assay system. Compound heterozygous missense mutations were identified in patients with STGD and RP. STGD-affected individual AR682-03 was compound heterozygous for the mutation 2588G-->C and a complex allele, [W1408R; R1640W]. RP-affected individuals AR682-04 and-05 were compound heterozygous for the complex allele [W1408R; R1640W] and the missense mutation V767D. Functional analysis of the mutation V767D by Western blot and ATP binding revealed a severe reduction in protein expression. In vitro analysis of ABCR protein with the mutations W1408R and R1640W showed a moderate effect of these individual mutations on expression and ATP-binding; the complex allele [W1408R; R1640W] caused a severe reduction in protein expression. These data reveal that missense ABCR mutations may be associated with RP. Functional analysis reveals that the RP-associated missense ABCR mutations are likely to be functionally null. These studies of the complex allele W1408R; R1640W suggest a synergistic effect of the individual mutations. These data are congruent with a model in which RP is associated with homozygous null mutations and with the notion that severity of retinal disease is inversely related to residual ABCR activity.
Zahorakova, Daniela; Rosipal, Robert; Hadac, Jan; Zumrova, Alena; Bzduch, Vladimir; Misovicova, Nadezda; Baxova, Alice; Zeman, Jiri; Martasek, Pavel
2007-01-01
Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder in females, is caused mainly by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). Here we report mutation analysis of the MECP2 gene in 87 patients with RTT from the Czech and Slovak Republics, and Ukraine. The patients, all girls, with classical RTT were investigated for mutations using bi-directional DNA sequencing and conformation sensitive gel electrophoresis analysis of the coding sequence and exon/intron boundaries of the MECP2 gene. Restriction fragment length polymorphism analysis was performed to confirm the mutations that cause the creation or abolition of the restriction site. Mutation-negative cases were subsequently examined by multiple ligation-dependent probe amplification (MLPA) to identify large deletions. Mutation screening revealed 31 different mutations in 68 patients and 12 non-pathogenic polymorphisms. Six mutations have not been previously published: two point mutations (323T>A, 904C>T), three deletions (189_190delGA, 816_832del17, 1069delAGC) and one deletion/inversion (1063_1236del174;1189_1231inv43). MLPA analysis revealed large deletions in two patients. The detection rate was 78.16%. Our results confirm the high frequency of MECP2 mutations in females with RTT and provide data concerning the mutation heterogeneity in the Slavic population.
Genetic analysis in Bartter syndrome from India.
Sharma, Pradeep Kumar; Saikia, Bhaskar; Sharma, Rachna; Ankur, Kumar; Khilnani, Praveen; Aggarwal, Vinay Kumar; Cheong, Hae
2014-10-01
Bartter syndrome is a group of inherited, salt-losing tubulopathies presenting as hypokalemic metabolic alkalosis with normotensive hyperreninemia and hyperaldosteronism. Around 150 cases have been reported in literature till now. Mutations leading to salt losing tubulopathies are not routinely tested in Indian population. The authors have done the genetic analysis for the first time in the Bartter syndrome on two cases from India. First case was antenatal Bartter syndrome presenting with massive polyuria and hyperkalemia. Mutational analysis revealed compound heterozygous mutations in KCNJ1(ROMK) gene [p(Leu220Phe), p(Thr191Pro)]. Second case had a phenotypic presentation of classical Bartter syndrome however, genetic analysis revealed only heterozygous novel mutation in SLC12A gene p(Ala232Thr). Bartter syndrome is a clinical diagnosis and genetic analysis is recommended for prognostication and genetic counseling.
Congenital combined pituitary hormone deficiency attributable to a novel PROP1 mutation (467insT).
Nose, Osamu; Tatsumi, Keita; Nakano, Yukiko; Amino, Nobuyuki
2006-04-01
Combined pituitary hormone deficiency (CPHD) is an anterior pituitary disorder, commonly resulting in growth retardation. PROP1 gene mutations appear to be frequently responsible for CPHD, particularly in Middle and Eastern Europe and the Americas, but few cases have been reported in Japan. Two sisters (aged 8.4 and 4.3 years at presentation) exhibited proportional short stature from about 2 years of age. Genetic analysis determined the nature and location of mutations. Pituitary size by magnetic resonance imaging (MRI) indicated only slight hypoplasia, while hormone analysis revealed deficiencies in secretion of growth hormone (GH), thyroid stimulating hormone, prolactin and gonadotropins; adrenocortinotropin secretion appeared adequate. Genetic analysis revealed a novel familial inherited PROP1 mutation. A unique insertion mutation was found in codon 156 (467insT) located in the transcription-activating region of the PROP1 gene. The resulting PROP1 protein (191 amino acids) would lack the transcription activation domain and consequently be non-functional. Gene analysis suggested that the siblings had inherited a unique autosomal recessive PROP1 gene mutation resulting in severe GH deficiency and subsequent growth retardation.
Przytycki, Pawel F; Singh, Mona
2017-08-25
A major aim of cancer genomics is to pinpoint which somatically mutated genes are involved in tumor initiation and progression. We introduce a new framework for uncovering cancer genes, differential mutation analysis, which compares the mutational profiles of genes across cancer genomes with their natural germline variation across healthy individuals. We present DiffMut, a fast and simple approach for differential mutational analysis, and demonstrate that it is more effective in discovering cancer genes than considerably more sophisticated approaches. We conclude that germline variation across healthy human genomes provides a powerful means for characterizing somatic mutation frequency and identifying cancer driver genes. DiffMut is available at https://github.com/Singh-Lab/Differential-Mutation-Analysis .
Yoshida, Noriaki; Miyoshi, Hiroaki; Kato, Takeharu; Sakata-Yanagimoto, Mamiko; Niino, Daisuke; Taniguchi, Hiroaki; Moriuchi, Yukiyoshi; Miyahara, Masaharu; Kurita, Daisuke; Sasaki, Yuya; Shimono, Joji; Kawamoto, Keisuke; Utsunomiya, Atae; Imaizumi, Yoshitaka; Seto, Masao; Ohshima, Koichi
2016-04-01
Adult T cell leukaemia/lymphoma (ATLL) is an intractable T cell neoplasm caused by human T cell leukaemia virus type 1. Next-generation sequencing-based comprehensive mutation studies have revealed recurrent somatic CCR4 mutations in ATLL, although clinicopathological findings associated with CCR4 mutations remain to be delineated. In the current study, 184 cases of peripheral T cell lymphoma, including 113 cases of ATLL, were subjected to CCR4 mutation analysis. This sequence analysis identified mutations in 27% (30/113) of cases of ATLL and 9% (4/44) of cases of peripheral T cell lymphoma not otherwise specified. Identified mutations included nonsense (NS) and frameshift (FS) mutations. No significant differences in clinicopathological findings were observed between ATLL cases stratified by presence of CCR4 mutation. All ATLL cases with CCR4 mutations exhibited cell-surface CCR4 positivity. Semi-quantitative CCR4 protein analysis of immunohistochemical sections revealed higher CCR4 expression in cases with NS mutations of CCR4 than in cases with wild-type (WT) CCR4. Furthermore, among ATLL cases, FS mutation was significantly associated with a poor prognosis, compared with NS mutation and WT CCR4. These results suggest that CCR4 mutation is an important determinant of the clinical course in ATLL cases, and that NS and FS mutations of CCR4 behave differently with respect to ATLL pathophysiology. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Koizumi, A; Shoji, Y; Nozaki, J; Noguchi, A; E, X; Dakeishi, M; Ohura, T; Tsuyoshi, K; Yasuhiko, W; Manabe, M; Takasago, Y; Takada, G
2000-09-01
Lysinuric protein intolerance is an autosomal recessive disease characterized by defective transport of the dibasic aminoacids. Mutational analysis of LPI patients in the northern part of Japan revealed that six were homozygous for the R410X mutation and two others were compound heterozygotes of R410X and other unknown mutations. In the population epidemiology study in a local cluster in the northern part of Iwate, ten heterozygotes were found in 1190 newborn babies leading to an estimated LPI incidence of 1/57,000. Polymorphism analysis revealed two major alleles, A and B, in intron 8. While the population frequency of allele A was 0.9 and that of allele B was 0.1 in the northern part of Japan the R410X mutations were exclusively on allele B in 31 chromosomes suggesting a founder effect. Genetic analysis in patients revealed strong linkage disequilibrium with D14S283 and TCRA indicating that the R410X mutation occurred before at least 130 generations ago (about 2600 years). The R410X mutation was shown to be useful as a molecular marker for screening LPI patients in the northern part of Japan. Copyright 2000 Wiley-Liss, Inc.
Cai, Zhi-Xiong; Chen, Geng; Zeng, Yong-Yi; Dong, Xiu-Qing; Lin, Min-Jie; Huang, Xin-Hui; Zhang, Da; Liu, Xiao-Long; Liu, Jing-Feng
2017-09-01
Circulating tumor DNA (ctDNA) provides a potential non-invasive biomarker for cancer diagnosis and prognosis, but whether it could reflect tumor heterogeneity and monitor therapeutic responses in hepatocellular carcinoma (HCC) is unclear. Focusing on 574 cancer genes known to harbor actionable mutations, we identified the mutation repertoire of HCC tissues, and monitored the corresponding ctDNA features in blood samples to evaluate its clinical significance. Analysis of 3 HCC patients' mutation profiles revealed that ctDNA could overcome tumor heterogeneity and provide information of tumor burden and prognosis. Further analysis was conducted on the 4th HCC case with multiple lesion samples and sequential plasma samples. We identified 160 subclonal SNVs in tumor tissues as well as matched peritumor tissues with PBMC as control. 96.9% of this patient's tissue mutations could be also detected in plasma samples. These subclonal SNVs were grouped into 9 clusters according to their trends of cellular prevalence shift in tumor tissues. Two clusters constituted of tumor stem somatic mutations showed circulating levels relating with cancer progression. Analysis of tumor somatic mutations revealed that circulating level of such tumor stem somatic mutations could reflect tumor burden and even predict prognosis earlier than traditional strategies. Furthermore, HCK (p.V174M), identified as a recurrent/metastatic related mutation site, could promote migration and invasion of HCC cells. Taken together, study of mutation profiles in biopsy and plasma samples in HCC patients showed that ctDNA could overcome tumor heterogeneity and real-time track the therapeutic responses in the longitudinal monitoring. © 2017 UICC.
Granados-Riveron, Javier T; Ghosh, Tushar K; Pope, Mark; Bu'Lock, Frances; Thornborough, Christopher; Eason, Jacqueline; Kirk, Edwin P; Fatkin, Diane; Feneley, Michael P; Harvey, Richard P; Armour, John A L; David Brook, J
2010-10-15
Congenital heart defects (CHD) are collectively the most common form of congenital malformation. Studies of human cases and animal models have revealed that mutations in several genes are responsible for both familial and sporadic forms of CHD. We have previously shown that a mutation in MYH6 can cause an autosomal dominant form of atrial septal defect (ASD), whereas others have identified mutations of the same gene in patients with hypertrophic and dilated cardiomyopathy. In the present study, we report a mutation analysis of MYH6 in patients with a wide spectrum of sporadic CHD. The mutation analysis of MYH6 was performed in DNA samples from 470 cases of isolated CHD using denaturing high-performance liquid chromatography and sequence analysis to detect point mutations and small deletions or insertions, and multiplex amplifiable probe hybridization to detect partial or complete copy number variations. One non-sense mutation, one splicing site mutation and seven non-synonymous coding mutations were identified. Transfection of plasmids encoding mutant and non-mutant green fluorescent protein-MYH6 fusion proteins in mouse myoblasts revealed that the mutations A230P and A1366D significantly disrupt myofibril formation, whereas the H252Q mutation significantly enhances myofibril assembly in comparison with the non-mutant protein. Our data indicate that functional variants of MYH6 are associated with cardiac malformations in addition to ASD and provide a novel potential mechanism. Such phenotypic heterogeneity has been observed in other genes mutated in CHD.
Below, Jennifer E.; Earl, Dawn L.; Shively, Kathryn M.; McMillin, Margaret J.; Smith, Joshua D.; Turner, Emily H.; Stephan, Mark J.; Al-Gazali, Lihadh I.; Hertecant, Jozef L.; Chitayat, David; Unger, Sheila; Cohn, Daniel H.; Krakow, Deborah; Swanson, James M.; Faustman, Elaine M.; Shendure, Jay; Nickerson, Deborah A.; Bamshad, Michael J.
2013-01-01
Opsismodysplasia is a rare, autosomal-recessive skeletal dysplasia characterized by short stature, characteristic facial features, and in some cases severe renal phosphate wasting. We used linkage analysis and whole-genome sequencing of a consanguineous trio to discover that mutations in inositol polyphosphate phosphatase-like 1 (INPPL1) cause opsismodysplasia with or without renal phosphate wasting. Evaluation of 12 families with opsismodysplasia revealed that INPPL1 mutations explain ∼60% of cases overall, including both of the families in our cohort with more than one affected child and 50% of the simplex cases. PMID:23273567
Use of mutation spectra analysis software.
Rogozin, I; Kondrashov, F; Glazko, G
2001-02-01
The study and comparison of mutation(al) spectra is an important problem in molecular biology, because these spectra often reflect on important features of mutations and their fixation. Such features include the interaction of DNA with various mutagens, the function of repair/replication enzymes, and properties of target proteins. It is known that mutability varies significantly along nucleotide sequences, such that mutations often concentrate at certain positions, called "hotspots," in a sequence. In this paper, we discuss in detail two approaches for mutation spectra analysis: the comparison of mutation spectra with a HG-PUBL program, (FTP: sunsite.unc.edu/pub/academic/biology/dna-mutations/hyperg) and hotspot prediction with the CLUSTERM program (www.itba.mi.cnr.it/webmutation; ftp.bionet.nsc.ru/pub/biology/dbms/clusterm.zip). Several other approaches for mutational spectra analysis, such as the analysis of a target protein structure, hotspot context revealing, multiple spectra comparisons, as well as a number of mutation databases are briefly described. Mutation spectra in the lacI gene of E. coli and the human p53 gene are used for illustration of various difficulties of such analysis. Copyright 2001 Wiley-Liss, Inc.
Mutation dynamics and fitness effects followed in single cells.
Robert, Lydia; Ollion, Jean; Robert, Jerome; Song, Xiaohu; Matic, Ivan; Elez, Marina
2018-03-16
Mutations have been investigated for more than a century but remain difficult to observe directly in single cells, which limits the characterization of their dynamics and fitness effects. By combining microfluidics, time-lapse imaging, and a fluorescent tag of the mismatch repair system in Escherichia coli , we visualized the emergence of mutations in single cells, revealing Poissonian dynamics. Concomitantly, we tracked the growth and life span of single cells, accumulating ~20,000 mutations genome-wide over hundreds of generations. This analysis revealed that 1% of mutations were lethal; nonlethal mutations displayed a heavy-tailed distribution of fitness effects and were dominated by quasi-neutral mutations with an average cost of 0.3%. Our approach has enabled the investigation of single-cell individuality in mutation rate, mutation fitness costs, and mutation interactions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Ashkenazi-Hoffnung, Liat; Lebenthal, Yael; Wyatt, Alexander W; Ragge, Nicola K; Dateki, Sumito; Fukami, Maki; Ogata, Tsutomu; Phillip, Moshe; Gat-Yablonski, Galia
2010-06-01
Heterozygous mutations of the gene encoding transcription factor OTX2 were recently shown to be responsible for ocular as well as pituitary abnormalities. Here, we describe a patient with unilateral anophthalmia and short stature. Endocrine evaluation of the hypothalamic-pituitary axis revealed isolated growth hormone deficiency (IGHD) with small anterior pituitary gland, invisible stalk, ectopic posterior lobe, and right anophthalmia on brain magnetic resonance imaging. DNA was analyzed for mutations in the HESX1, SOX2, and OTX2 genes. Molecular analysis yielded a novel heterozygous OTX2 mutation (c.270A>T, p.R90S) within the homeodomain. Functional analysis revealed that the mutation inhibited both the DNA binding and transactivation activities of the protein. This novel loss-of-function mutation is associated with anophthalmia and IGHD in a patient of Sephardic Jewish descent. We recommend that patients with GH deficiency and ocular malformation in whom genetic analysis for classic transcription factor genes (PROP1, POU1F1, HESX1, and LHX4) failed to identify alterations should be checked for the presence of mutations in the OTX2 gene.
Leshinsky-Silver, E; Lev, D; Tzofi-Berman, Z; Cohen, S; Saada, A; Yanoov-Sharav, M; Gilad, E; Lerman-Sagie, T
2005-08-26
Leigh syndrome can result from both nuclear and mitochondrial DNA defects. Mutations in complex V genes of the respiratory chain were considered until recently as the most frequent cause for mitochondrial inherited Leigh syndrome, while gene defects in complex I were related to recessive Leigh syndrome. Recently few reports of mutations in the mitochondrial-encoded complex I subunit genes causing Leigh syndrome have been reported. We describe a 1-month-old baby who acutely deteriorated, with abrupt onset of brainstem dysfunction, due to basal ganglia lesions extending to the brainstem. A muscle biopsy demonstrated complex I deficiency. Subsequent analysis of the mitochondrial genome revealed a homoplastic T10191C mutation in the ND3 gene (in blood and muscle), resulting in a substitution of serine to proline. Hair root analysis revealed a 50% mutant load, reflecting heteroplasmy in early embryonic stages. The mutation was also detected in his mother (5%). Western blot analysis revealed a decrease of the 20 kDa subunit (likely ND6) and of the 30 kDa subunit (NDUFA9), which is probably due to instability attributed to the inability to form subcomplexes with ND3. This is the first description of infantile Leigh syndrome due to a maternally transmitted T10191C substitution in ND3 and not due to a de novo mutation. This mutation is age and tissue dependent and therefore may not be amenable to prenatal testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leshinsky-Silver, E.; Mitochondrial Disease Center, Wolfson Medical Center, Holon; E-mail: leshinsky@wolfson.health.gov.il
Leigh syndrome can result from both nuclear and mitochondrial DNA defects. Mutations in complex V genes of the respiratory chain were considered until recently as the most frequent cause for mitochondrial inherited Leigh syndrome, while gene defects in complex I were related to recessive Leigh syndrome. Recently few reports of mutations in the mitochondrial-encoded complex I subunit genes causing Leigh syndrome have been reported. We describe a 1-month-old baby who acutely deteriorated, with abrupt onset of brainstem dysfunction, due to basal ganglia lesions extending to the brainstem. A muscle biopsy demonstrated complex I deficiency. Subsequent analysis of the mitochondrial genomemore » revealed a homoplastic T10191C mutation in the ND3 gene (in blood and muscle), resulting in a substitution of serine to proline. Hair root analysis revealed a 50% mutant load, reflecting heteroplasmy in early embryonic stages. The mutation was also detected in his mother (5%). Western blot analysis revealed a decrease of the 20 kDa subunit (likely ND6) and of the 30 kDa subunit (NDUFA9), which is probably due to instability attributed to the inability to form subcomplexes with ND3. This is the first description of infantile Leigh syndrome due to a maternally transmitted T10191C substitution in ND3 and not due to a de novo mutation. This mutation is age and tissue dependent and therefore may not be amenable to prenatal testing.« less
X-Linked Hypohidrotic Ectodermal Dysplasia: New Features and a Novel EDA Gene Mutation.
Savasta, Salvatore; Carlone, Giorgia; Castagnoli, Riccardo; Chiappe, Francesca; Bassanese, Francesco; Piras, Roberta; Salpietro, Vincenzo; Brazzelli, Valeria; Verrotti, Alberto; Marseglia, Gian L
2017-01-01
We described a 5-year-old male with hypodontia, hypohidrosis, and facial dysmorphisms characterized by a depressed nasal bridge, maxillary hypoplasia, and protuberant lips. Chromosomal analysis revealed a normal 46,XY male karyotype. Due to the presence of clinical features of hypohidrotic ectodermal dysplasia (HED), the EDA gene, located at Xq12q13.1, of the patient and his family was sequenced. Analysis of the proband's sequence revealed a missense mutation (T to A transversion) in hemizygosity state at nucleotide position 158 in exon 1 of the EDA gene, which changes codon 53 from leucine to histidine, while heterozygosity at this position was detected in the slightly affected mother; moreover, this mutation was not found in the publically available Human Gene Mutation Database. To date, our findings indicate that a novel mutation in EDA is associated with X-linked HED, adding it to the repertoire of EDA mutations. © 2017 S. Karger AG, Basel.
Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma.
Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh
2017-03-03
In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies.
Novel EDA mutation in X-linked hypohidrotic ectodermal dysplasia and genotype-phenotype correlation.
Zeng, B; Lu, H; Xiao, X; Zhou, L; Lu, J; Zhu, L; Yu, D; Zhao, W
2015-11-01
X-linked hypohidrotic ectodermal dysplasia (XLHED) is characterized by abnormalities of hair, teeth, and sweat glands, while non-syndromic hypodontia (NSH) affects only teeth. Mutations in Ectodysplasin A (EDA) underlie both XLHED and NSH. This study investigated the genetic causes of six hypohidrotic ectodermal dysplasia (HED) patients and genotype-phenotype correlation. The EDA gene of six patients with HED was sequenced. Bioinformatics analysis and structural modeling for the mutations were performed. The records of 134 patients with XLHED and EDA-related NSH regarding numbers of missing permanent teeth from this study and 20 articles were reviewed. Nonparametric tests were used to analyze genotype-phenotype correlations. In four of the six patients, we identified a novel mutation c.852T>G (p.Phe284Leu) and three reported mutations: c.467G>A (p.Arg156His), c.776C>A (p.Ala259Glu), and c.871G>A (p.Gly291Arg). They were predicted to be pathogenic by bioinformatics analysis and structural modeling. Genotype-phenotype correlation analysis revealed that truncating mutations were associated with more missing teeth. Missense mutations and the mutations affecting the TNF homology domain were correlated with fewer missing teeth. This study extended the mutation spectrum of XLHED and revealed the relationship between genotype and the number of missing permanent teeth. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma
Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh
2017-01-01
In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies. PMID:28256603
Turton, J P; Strom, M; Langham, S; Dattani, M T; Le Tissier, P
2012-03-01
Mutations in the POU1F1 gene severely affect the development and function of the anterior pituitary gland and lead to combined pituitary hormone deficiency (CPHD). The clinical and genetic analysis of a patient presenting with CPHD and functional characterization of identified mutations. We describe a male patient with extreme short stature, learning difficulties, anterior pituitary hypoplasia, secondary hypothyroidism and undetectable prolactin, growth hormone (GH) and insulin-like growth factor 1 (IGF1), with normal random cortisol. The POU1F1 coding region was amplified by PCR and sequenced; the functional consequence of the mutations was analysed by cell transfection and in vitro assays. Genetic analysis revealed compound heterozygosity for two novel putative loss of function mutations in POU1F1: a transition at position +3 of intron 1 [IVS1+3nt(A>G)] and a point mutation in exon 6 resulting in a substitution of arginine by tryptophan (R265W). Functional analysis revealed that IVS1+3nt(A>G) results in a reduction in the correctly spliced POU1F1 mRNA, which could be corrected by mutations of the +4, +5 and +6 nucleotides. Analysis of POU1F1(R265W) revealed complete loss of function resulting from severely reduced protein stability. Combined pituitary hormone deficiency in this patient is caused by loss of POU1F1 function by two novel mechanisms, namely aberrant splicing (IVS1+3nt (A>G) and protein instability (R265W). Identification of the genetic basis of CPHD enabled the cessation of hydrocortisone therapy without the need for further assessment for evolving endocrinopathy. © 2012 Blackwell Publishing Ltd.
2013-01-01
Background The body of disease mutations with known phenotypic relevance continues to increase and is expected to do so even faster with the advent of new experimental techniques such as whole-genome sequencing coupled with disease association studies. However, genomic association studies are limited by the molecular complexity of the phenotype being studied and the population size needed to have adequate statistical power. One way to circumvent this problem, which is critical for the study of rare diseases, is to study the molecular patterns emerging from functional studies of existing disease mutations. Current gene-centric analyses to study mutations in coding regions are limited by their inability to account for the functional modularity of the protein. Previous studies of the functional patterns of known human disease mutations have shown a significant tendency to cluster at protein domain positions, namely position-based domain hotspots of disease mutations. However, the limited number of known disease mutations remains the main factor hindering the advancement of mutation studies at a functional level. In this paper, we address this problem by incorporating mutations known to be disruptive of phenotypes in other species. Focusing on two evolutionarily distant organisms, human and yeast, we describe the first inter-species analysis of mutations of phenotypic relevance at the protein domain level. Results The results of this analysis reveal that phenotypic mutations from yeast cluster at specific positions on protein domains, a characteristic previously revealed to be displayed by human disease mutations. We found over one hundred domain hotspots in yeast with approximately 50% in the exact same domain position as known human disease mutations. Conclusions We describe an analysis using protein domains as a framework for transferring functional information by studying domain hotspots in human and yeast and relating phenotypic changes in yeast to diseases in human. This first-of-a-kind study of phenotypically relevant yeast mutations in relation to human disease mutations demonstrates the utility of a multi-species analysis for advancing the understanding of the relationship between genetic mutations and phenotypic changes at the organismal level. PMID:23819456
Takahashi, Yuji; Fukuda, Yoko; Yoshimura, Jun; Toyoda, Atsushi; Kurppa, Kari; Moritoyo, Hiroyoko; Belzil, Veronique V.; Dion, Patrick A.; Higasa, Koichiro; Doi, Koichiro; Ishiura, Hiroyuki; Mitsui, Jun; Date, Hidetoshi; Ahsan, Budrul; Matsukawa, Takashi; Ichikawa, Yaeko; Moritoyo, Takashi; Ikoma, Mayumi; Hashimoto, Tsukasa; Kimura, Fumiharu; Murayama, Shigeo; Onodera, Osamu; Nishizawa, Masatoyo; Yoshida, Mari; Atsuta, Naoki; Sobue, Gen; Fifita, Jennifer A.; Williams, Kelly L.; Blair, Ian P.; Nicholson, Garth A.; Gonzalez-Perez, Paloma; Brown, Robert H.; Nomoto, Masahiro; Elenius, Klaus; Rouleau, Guy A.; Fujiyama, Asao; Morishita, Shinichi; Goto, Jun; Tsuji, Shoji
2013-01-01
Amyotrophic lateral sclerosis (ALS) is a devastating neurological disorder characterized by the degeneration of motor neurons and typically results in death within 3–5 years from onset. Familial ALS (FALS) comprises 5%–10% of ALS cases, and the identification of genes associated with FALS is indispensable to elucidating the molecular pathogenesis. We identified a Japanese family affected by late-onset, autosomal-dominant ALS in which mutations in genes known to be associated with FALS were excluded. A whole- genome sequencing and parametric linkage analysis under the assumption of an autosomal-dominant mode of inheritance with incomplete penetrance revealed the mutation c.2780G>A (p. Arg927Gln) in ERBB4. An extensive mutational analysis revealed the same mutation in a Canadian individual with familial ALS and a de novo mutation, c.3823C>T (p. Arg1275Trp), in a Japanese simplex case. These amino acid substitutions involve amino acids highly conserved among species, are predicted as probably damaging, and are located within a tyrosine kinase domain (p. Arg927Gln) or a C-terminal domain (p. Arg1275Trp), both of which mediate essential functions of ErbB4 as a receptor tyrosine kinase. Functional analysis revealed that these mutations led to a reduced autophosphorylation of ErbB4 upon neuregulin-1 (NRG-1) stimulation. Clinical presentations of the individuals with mutations were characterized by the involvement of both upper and lower motor neurons, a lack of obvious cognitive dysfunction, and relatively slow progression. This study indicates that disruption of the neuregulin-ErbB4 pathway is involved in the pathogenesis of ALS and potentially paves the way for the development of innovative therapeutic strategies such using NRGs or their agonists to upregulate ErbB4 functions. PMID:24119685
Gee, Heon Yung; Kim, Chang Keun; Kim, So Won; Lee, Ji Hyun; Kim, Jeong-Ho; Kim, Kyung Hwan; Lee, Min Goo
2010-01-01
Cystic fibrosis (CF) is an autosomal recessive disorder usually found in populations of white Caucasian descent. CF is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. A 5-yr-old Korean girl was admitted complaining of coughing and greenish sputum. Chest radiographs and computed tomographic (CT) scan revealed diffuse bronchiectasis in both lungs. The patient had chronic diarrhea and poor weight gain, and the abdominal pancreaticobiliary CT scan revealed atrophy of the pancreas. Finally, CF was confirmed by the repeated analysis of the quantitative pilocarpine iontophoresis test. The chloride concentration of sweat samples taken from both forearms of the pateint was an average of 88.7 mM/L (normal value <40 mM/L). After a comprehensive search for mutations in the CFTR gene, the patient was found to carry the non-synonymous L441P mutation in one allele. Molecular physiologic analysis of the L441P mutation of CFTR revealed that the L441P mutation completely abolished the CFTR Cl(-) channel activity by disrupting proper protein folding and membrane trafficking of CFTR protein. These results confirmed the pathogenicity of the L441P mutation of CFTR circulating in the Korean population. The possibility of CF should be suspected in patients with chronic bronchiectasis, although the frequency of CF is relatively rare in East Asia.
Schulpis, Kleopatra H; Thodi, Georgia; Iakovou, Konstantinos; Chatzidaki, Maria; Dotsikas, Yannis; Molou, Elina; Triantafylli, Olga; Loukas, Yannis L
2017-10-01
Classical galactosaemia is an inborn error of metabolism due to the deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). The aim of the study was to identify the underlying mutations in Greek patients with GALT deficiency and evaluate their psychomotor and speech development. Patients with GALT deficiency (n = 17) were picked up through neonatal screening. Mutational analysis was conducted via Sanger sequencing, while in silico analysis was used in the cases of novel missense mutations. Psychomotor speech development tests were utilized for the clinical evaluation of the patients. Eleven different mutations in the GALT gene were detected in the patient cohort, including two novel ones. The most frequent mutation was p.Q188R (c.563 A > G). As for the novel mutations, p.M298I (c.894 G > A) was identified in four out of 32 independent alleles, while p.P115S (c.343 C > T) was identified once. Psychomotor evaluation revealed that most of the patients were found in the borderline area (Peabody test), while only two had speech delay problems. The WISK test revealed three patients at borderline limits and two were at lower than normal limits. The mutational spectrum of the GALT gene in Greek patients is presented for the first time. The mutation p.Q188R is the most frequent among Greek patients. Two novel mutations were identified and their potential pathogenicity was estimated. Regarding the phenotypic characteristics, psychomotor disturbances and speech delay were mainly observed among GALT-deficient patients.
Lenarduzzi, S; Morgutti, M; Crovella, S; Coiana, A; Rosatelli, M C
2014-11-14
Cystic fibrosis (CF) is a common recessive genetic disease caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. More than 1800 different mutations have been described to date. Here, we report 3 novel mutations in CFTR in 3 Italian CF patients. To detect and identify 36 frequent mutations in Caucasians, we used the INNO-LiPA CFTR19 and INNO-LiPA CFTR17+Tn Update kits (Innogenetics; Ghent, Belgium). Our first analysis did not reveal both of the responsible mutations; thus, direct sequencing of the CFTR gene coding region was performed. The 3 patients were compound heterozygous. In one allele, the F508del (c.1521_1523delCTT, p.PHE508del) mutation in exon 11 was observed in each case. For the second allele, in patient No.1, direct sequencing revealed an 11-base pair deletion (GAGGCGATACT) in exon 14 (c.2236_2246del; pGlu746Alafs*29). In patient No. 2, direct sequencing revealed a nonsense mutation at nucleotide 3892 (c.3892G>T) in exon 24. In patient No. 3, direct sequencing revealed a deletion of cytosine in exon 27 (c.4296delC; p.Asn1432Lysfs*16). These 3 novel mutations indicate the production of a truncated protein, which consequently results in a non-functional polypeptide.
Suzuki, Erina; Yatsuga, Shuichi; Igarashi, Maki; Miyado, Mami; Nakabayashi, Kazuhiko; Hayashi, Keiko; Hata, Kenichirou; Umezawa, Akihiro; Yamada, Gen; Ogata, Tsutomu; Fukami, Maki
2014-01-01
Missense, nonsense, and splice mutations in the Fibroblast Growth Factor 8(FGF8) have recently been identified in patients with hypothalamo-pituitary dysfunction and craniofacial anomalies. Here, we report a male patient with a frameshift mutation in FGF8. The patient exhibited micropenis, craniofacial anomalies, and ventricular septal defect at birth. Clinical evaluation at 16 years and 8 months of age revealed delayed puberty, hyposmia, borderline mental retardation, and mild hearing difficulty. Endocrine findings included gonadotropin deficiency and primary hypothyroidism. Molecular analysis identified a de novo heterozygous p.S192fsX204 mutation in the last exon of FGF8. RT-PCR analysis of normal human tissues detected FGF8 expression in the genital skin, and whole-mount in situ hybridization analysis of mouse embryos revealed Fgf8 expression in the anlage of the penis. The results indicate that frameshift mutations in FGF8 account for a part of the etiology of hypothalamo-pituitary dysfunction. Micropenis in patients with FGF8 abnormalities appears to be caused by gonadotropin deficiency and defective outgrowth of the anlage of the penis.
Impact of glucocerebrosidase mutations on motor and nonmotor complications in Parkinson's disease.
Oeda, Tomoko; Umemura, Atsushi; Mori, Yuko; Tomita, Satoshi; Kohsaka, Masayuki; Park, Kwiyoung; Inoue, Kimiko; Fujimura, Harutoshi; Hasegawa, Hiroshi; Sugiyama, Hiroshi; Sawada, Hideyuki
2015-12-01
Homozygous mutations of the glucocerebrosidase gene (GBA) cause Gaucher disease (GD), and heterozygous mutations of GBA are a major risk factor for Parkinson's disease (PD). This study examined the impact of GBA mutations on the longitudinal clinical course of PD patients by retrospective cohort design. GBA-coding regions were fully sequenced in 215 PD patients and GD-associated GBA mutations were identified in 19 (8.8%) PD patients. In a retrospective cohort study, time to develop dementia, psychosis, wearing-off, and dyskinesia were examined. Survival time analysis followed a maximum 12-year observation (median 6.0 years), revealing that PD patients with GD-associated mutations developed dementia and psychosis significantly earlier than those without mutations (p < 0.001 and p = 0.017, respectively). Adjusted hazard ratios of GBA mutations were 8.3 for dementia (p < 0.001) and 3.1 for psychosis (p = 0.002). No statistically significant differences were observed for wearing-off and dyskinesia between the groups. N-isopropyl-p[(123)I] iodoamphetamine single-photon emission tomography pixel-by-pixel analysis revealed that regional cerebral blood flow was reduced in the bilateral parietal cortex, including the precuneus of GD-associated mutant PD patients, compared with matched PD controls without mutations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
GATA3 mutation in a family with hypoparathyroidism, deafness and renal dysplasia syndrome.
Zhu, Zi-Yang; Zhou, Qiao-Li; Ni, Shi-Ning; Gu, Wei
2014-08-01
The hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome is an autosomal dominant disorder primarily caused by GATA3 gene mutation. We report here a case that both of a Chinese boy and his father had HDR syndrome which caused by a novel mutation of GATA3. Polymerase chain reaction and DNA sequencing was performed to detect the exons of the GATA3 gene for mutation analysis. Sequence analysis of GATA3 revealed a heterozygous nonsense mutation in this family: a mutation of GATA3 at exon 2 (c.515C >A) that resulted in a premature stop at codon 172 (p.S172X) with a loss of two zinc finger domains. We identified a novel nonsense mutation which will expand the spectrum of HDR-associated GATA3 mutations.
Ishiura, Hiroyuki; Tsuji, Shoji
2013-01-01
Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is an autosomal dominant neurodegenerative disease characterized by proximal predominant weakness and muscle atrophy accompanied by distal sensory disturbance. Linkage analysis using 4 families identified a region on chromosome 3 showing a LOD score exceeding 4. Further refinement of candidate region was performed by haplotype analysis using high-density SNP data, resulting in a minimum candidate region spanning 3.3 Mb. Exome analysis of an HMSN-P patient revealed a mutation (c.854C>T, p.Pro285Leu) in TRK-fused gene (TFG). The identical mutation was found in the four families, which cosegregated with the disease. The mutation was neither found in Japanese control subjects nor public databases. Detailed haplotype analysis suggested two independent origins of the mutation. These findings indicate that the mutation in TFG causes HMSN-P.
RASA1 analysis guides management in a family with capillary malformation-arteriovenous malformation
Flore, Leigh Anne; Leon, Eyby; Maher, Tom A.; Milunsky, Jeff M.
2012-01-01
Capillary malformation-arteriovenous malformation (CM-AVM; MIM 60354) is an autosomal dominant disorder characterized by multifocal cutaneous capillary malformations, often in association with fast-flow vascular lesions, which may be cutaneous, subcutaneous, intramuscular, intraosseus, or cerebral arteriovenous malformations or arteriovenous fistulas. CM-AVM results from heterozygous mutations in the RASA1 gene. Capillary malformations of the skin are common, and clinical examination alone may not be able to definitively diagnose-or exclude- CM-AVM. We report a family in which the proband was initially referred for a genetic evaluation in the neonatal period because of the presence of a cardiac murmur and minor dysmorphic features. Both he and his mother were noted to have multiple capillary malformations on the face, head, and extremities. Echocardiography revealed dilated head and neck vessels and magnetic resonance imaging and angiography of the brain revealed a large infratentorial arteriovenous fistula, for which he has had two embolization procedures. RASA1 sequence analysis revealed a heterozygous mutation, confirming his diagnosis of CM-AVM. We established targeted mutation analysis for the proband's mother and sister, the latter of whom is a healthy 3-year-old whose only cutaneous finding is a facial capillary malformation. This revealed that the proband's mother is also heterozygous for the RASA1 mutation, but his sister is negative. Consequently, his mother will undergo magnetic resonance imaging and angiography screening for intracranial and spinal fast-flow lesions, while his sister will require no imaging or serial evaluations. Targeted mutation analysis has been offered to additional maternal family members. This case illustrates the benefit of molecular testing in diagnosis and making screening recommendations for families with CM-AVM. PMID:27625812
RASA1 analysis guides management in a family with capillary malformation-arteriovenous malformation.
Flore, Leigh Anne; Leon, Eyby; Maher, Tom A; Milunsky, Jeff M
2012-06-01
Capillary malformation-arteriovenous malformation (CM-AVM; MIM 60354) is an autosomal dominant disorder characterized by multifocal cutaneous capillary malformations, often in association with fast-flow vascular lesions, which may be cutaneous, subcutaneous, intramuscular, intraosseus, or cerebral arteriovenous malformations or arteriovenous fistulas. CM-AVM results from heterozygous mutations in the RASA1 gene. Capillary malformations of the skin are common, and clinical examination alone may not be able to definitively diagnose-or exclude- CM-AVM. We report a family in which the proband was initially referred for a genetic evaluation in the neonatal period because of the presence of a cardiac murmur and minor dysmorphic features. Both he and his mother were noted to have multiple capillary malformations on the face, head, and extremities. Echocardiography revealed dilated head and neck vessels and magnetic resonance imaging and angiography of the brain revealed a large infratentorial arteriovenous fistula, for which he has had two embolization procedures. RASA1 sequence analysis revealed a heterozygous mutation, confirming his diagnosis of CM-AVM. We established targeted mutation analysis for the proband's mother and sister, the latter of whom is a healthy 3-year-old whose only cutaneous finding is a facial capillary malformation. This revealed that the proband's mother is also heterozygous for the RASA1 mutation, but his sister is negative. Consequently, his mother will undergo magnetic resonance imaging and angiography screening for intracranial and spinal fast-flow lesions, while his sister will require no imaging or serial evaluations. Targeted mutation analysis has been offered to additional maternal family members. This case illustrates the benefit of molecular testing in diagnosis and making screening recommendations for families with CM-AVM.
Exome sequencing supports a de novo mutational paradigm for schizophrenia
Xu, Bin; Roos, J. Louw; Dexheimer, Phillip; Boone, Braden; Plummer, Brooks; Levy, Shawn; Gogos, Joseph A.; Karayiorgou, Maria
2011-01-01
Despite high heritability, a large fraction of cases with schizophrenia do not have a family history of the disease (sporadic cases). Here, we examine the possibility that rare de novo protein-altering mutations contribute to the genetic component of schizophrenia by sequencing the exome of 53 sporadic cases, 22 unaffected controls and their parents. We identified 40 de novo mutations in 27 patients affecting 40 genes including a potentially disruptive mutation in DGCR2, a gene removed by the recurrent schizophrenia-predisposing 22q11.2 microdeletion. Comparison to rare inherited variants revealed that the identified de novo mutations show a large excess of nonsynonymous changes in cases, as well as a greater potential to affect protein structure and function. Our analysis reveals a major role of de novo mutations in schizophrenia and also a large mutational target, which together provide a plausible explanation for the high global incidence and persistence of the disease. PMID:21822266
Molecular biological analysis in a patient with multiple lung adenocarcinomas.
Wakayama, Tomoshige; Hirata, Hirokuni; Suka, Shunsuke; Sato, Kozo; Tatewaki, Masamitsu; Souma, Ryosuke; Satoh, Hideyuki; Tamura, Motohiko; Matsumura, Yuji; Imada, Hiroki; Sugiyama, Kumiya; Arima, Masafumi; Kurasawa, Kazuhiro; Fukuda, Takeshi; Fukushima, Yasutsugu
2018-05-01
The utility of molecular biological analysis in lung adenocarcinoma has been demonstrated. Herein we report a rare case presenting as multiple lung adenocarcinomas with four different EGFR gene mutations detected in three lung tumors. After opacification was detected by routine chest X-ray, the patient, a 64-year-old woman, underwent chest computed tomography which revealed a right lung segment S4 ground-glass nodule (GGN). Follow-up computed tomography revealed a 42 mm GGN nodule with a 26 mm nodule (S6) and a 20 mm GGN (S10). Histopathology of resected specimens from the right middle and lower lobes revealed all three nodules were adenocarcinomas. Four EGFR mutations were detected; no three tumors had the same mutations. Molecular biological analysis is a promising tool for the diagnosis of primary tumors in patients with multiple lung carcinomas of the same histotype, enabling appropriate treatment. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Macher, Hada C; Martinez-Broca, Maria A; Rubio-Calvo, Amalia; Leon-Garcia, Cristina; Conde-Sanchez, Manuel; Costa, Alzenira; Navarro, Elena; Guerrero, Juan M
2012-01-01
The multiple endocrine neoplasia type 2A (MEN2A) is a monogenic disorder characterized by an autosomal dominant pattern of inheritance which is characterized by high risk of medullary thyroid carcinoma in all mutation carriers. Although this disorder is classified as a rare disease, the patients affected have a low life quality and a very expensive and continuous treatment. At present, MEN2A is diagnosed by gene sequencing after birth, thus trying to start an early treatment and by reduction of morbidity and mortality. We first evaluated the presence of MEN2A mutation (C634Y) in serum of 25 patients, previously diagnosed by sequencing in peripheral blood leucocytes, using HRM genotyping analysis. In a second step, we used a COLD-PCR approach followed by HRM genotyping analysis for non-invasive prenatal diagnosis of a pregnant woman carrying a fetus with a C634Y mutation. HRM analysis revealed differences in melting curve shapes that correlated with patients diagnosed for MEN2A by gene sequencing analysis with 100% accuracy. Moreover, the pregnant woman carrying the fetus with the C634Y mutation revealed a melting curve shape in agreement with the positive controls in the COLD-PCR study. The mutation was confirmed by sequencing of the COLD-PCR amplification product. In conclusion, we have established a HRM analysis in serum samples as a new primary diagnosis method suitable for the detection of C634Y mutations in MEN2A patients. Simultaneously, we have applied the increase of sensitivity of COLD-PCR assay approach combined with HRM analysis for the non-invasive prenatal diagnosis of C634Y fetal mutations using pregnant women serum.
Molecular and Clinical Characterization of Albinism in a Large Cohort of Italian Patients
Gargiulo, Annagiusi; Testa, Francesco; Rossi, Settimio; Di Iorio, Valentina; Fecarotta, Simona; de Berardinis, Teresa; Iovine, Antonello; Magli, Adriano; Signorini, Sabrina; Fazzi, Elisa; Galantuomo, Maria Silvana; Fossarello, Maurizio; Montefusco, Sandro; Ciccodicola, Alfredo; Neri, Alberto; Macaluso, Claudio; Simonelli, Francesca; Surace, Enrico Maria
2011-01-01
Purpose. The purpose of this study was to identify the molecular basis of albinism in a large cohort of Italian patients showing typical ocular landmarks of the disease and to provide a full characterization of the clinical ophthalmic manifestations. Methods. DNA samples from 45 patients with ocular manifestations of albinism were analyzed by direct sequencing analysis of five genes responsible for albinism: TYR, P, TYRP1, SLC45A2 (MATP), and OA1. All patients studied showed a variable degree of skin and hair hypopigmentation. Eighteen patients with distinct mutations in each gene associated with OCA were evaluated by detailed ophthalmic analysis, optical coherence tomography (OCT), and fundus autofluorescence. Results. Disease-causing mutations were identified in more than 95% of analyzed patients with OCA (28/45 [62.2%] cases with two or more mutations; 15/45 [33.3%] cases with one mutation). Thirty-five different mutant alleles were identified of which 15 were novel. Mutations in TYR were the most frequent (73.3%), whereas mutations in P occurred more rarely (13.3%) than previously reported. Novel mutations were also identified in rare loci such as TYRP1 and MATP. Mutations in the OA1 gene were not detected. Clinical assessment revealed that patients with iris and macular pigmentation had significantly higher visual acuity than did severe hypopigmented phenotypes. Conclusions. TYR gene mutations represent a relevant cause of oculocutaneous albinism in Italy, whereas mutations in P present a lower frequency than that found in other populations. Clinical analysis revealed that the severity of the ocular manifestations depends on the degree of retinal pigmentation. PMID:20861488
Norrie disease: first mutation report and prenatal diagnosis in an Indian family.
Ghosh, Manju; Sharma, Shipra; Shastri, Shivaram; Arora, Sadhna; Shukla, Rashmi; Gupta, Neerja; Deka, Deepika; Kabra, Madhulika
2012-11-01
Norrie Disease (ND) is a rare X-linked recessive disorder characterised by congenital blindness due to severe retinal dysgenesis. Hearing loss and intellectual disability is present in 30-50 % cases. ND is caused by mutations in the NDP gene, located at Xp11.3. The authors describe mutation analysis of a proband with ND and subsequently prenatal diagnosis. Sequence analysis of the NDP gene revealed a hemizygous missense mutation arginine to serine in codon 41 (p.Arg41Ser) in the affected child. Mother was carrier for the mutation. In a subsequent di-chorionic di-amniotic pregnancy, the authors performed prenatal diagnosis by mutation analysis on chorionic villi sample at 11 wk of gestation. The fetuses were unaffected. This is a first mutation report and prenatal diagnosis of a familial case of Norrie disease from India. The importance of genetic testing of Norrie disease for confirmation, carrier testing, prenatal diagnosis and genetic counseling is emphasized.
Salmas, Ramin Ekhteiari; Mestanoglu, Mert; Unlu, Ayhan; Yurtsever, Mine; Durdagi, Serdar
2016-11-01
Mutated form (G52E) of diphtheria toxin (DT) CRM197 is an inactive and nontoxic enzyme. Here, we provided a molecular insight using comparative molecular dynamics (MD) simulations to clarify the influence of a single point mutation on overall protein and active-site loop. Post-processing MD analysis (i.e. stability, principal component analysis, hydrogen-bond occupancy, etc.) is carried out on both wild and mutated targets to investigate and to better understand the mechanistic differences of structural and dynamical properties on an atomic scale especially at nicotinamide adenine dinucleotide (NAD) binding site when a single mutation (G52E) happens at the DT. In addition, a docking simulation is performed for wild and mutated forms. The docking scoring analysis and docking poses results revealed that mutant form is not able to properly accommodate the NAD molecule.
[Analysis of gene mutation in a Chinese family with Norrie disease].
Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue
2012-09-01
To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.
Transcription factor mutations in myelodysplastic/myeloproliferative neoplasms
Ernst, Thomas; Chase, Andrew; Zoi, Katerina; Waghorn, Katherine; Hidalgo-Curtis, Claire; Score, Joannah; Jones, Amy; Grand, Francis; Reiter, Andreas; Hochhaus, Andreas; Cross, Nicholas C.P.
2010-01-01
Background Aberrant activation of tyrosine kinases, caused by either mutation or gene fusion, is of major importance for the development of many hematologic malignancies, particularly myeloproliferative neoplasms. We hypothesized that hitherto unrecognized, cytogenetically cryptic tyrosine kinase fusions may be common in non-classical or atypical myeloproliferative neoplasms and related myelodysplastic/myeloproliferative neoplasms. Design and Methods To detect genomic copy number changes associated with such fusions, we performed a systematic search in 68 patients using custom designed, targeted, high-resolution array comparative genomic hybridization. Arrays contained 44,000 oligonucleotide probes that targeted 500 genes including all 90 tyrosine kinases plus downstream tyrosine kinase signaling components, other translocation targets, transcription factors, and other factors known to be important for myelopoiesis. Results No abnormalities involving tyrosine kinases were detected; however, nine cytogenetically cryptic copy number imbalances were detected in seven patients, including hemizygous deletions of RUNX1 or CEBPA in two cases with atypical chronic myeloid leukemia. Mutation analysis of the remaining alleles revealed non-mutated RUNX1 and a frameshift insertion within CEBPA. A further mutation screen of 187 patients with myelodysplastic/myeloproliferative neoplasms identified RUNX1 mutations in 27 (14%) and CEBPA mutations in seven (4%) patients. Analysis of other transcription factors known to be frequently mutated in acute myeloid leukemia revealed NPM1 mutations in six (3%) and WT1 mutations in two (1%) patients with myelodysplastic/myeloproliferative neoplasms. Univariate analysis indicated that patients with mutations had a shorter overall survival (28 versus 44 months, P=0.019) compared with patients without mutations, with the prognosis for cases with CEBPA, NPM1 or WT1 mutations being particularly poor. Conclusions We conclude that mutations of transcription and other nuclear factors are frequent in myelodysplastic/myeloproliferative neoplasms and are generally mutually exclusive. CEBPA, NPM1 or WT1 mutations may be associated with a poor prognosis, an observation that will need to be confirmed by detailed prospective studies. PMID:20421268
Rodríguez-Escudero, Isabel; Oliver, María D; Andrés-Pons, Amparo; Molina, María; Cid, Víctor J; Pulido, Rafael
2011-11-01
The PTEN (phosphatase and tensin homolog) phosphatase is unique in mammals in terms of its tumor suppressor activity, exerted by dephosphorylation of the lipid second messenger PIP(3) (phosphatidylinositol 3,4,5-trisphosphate), which activates the phosphoinositide 3-kinase/Akt/mTOR (mammalian target of rapamycin) oncogenic pathway. Loss-of-function mutations in the PTEN gene are frequent in human cancer and in the germline of patients with PTEN hamartoma tumor-related syndromes (PHTSs). In addition, PTEN is mutated in patients with autism spectrum disorders (ASDs), although no functional information on these mutations is available. Here, we report a comprehensive in vivo functional analysis of human PTEN using a heterologous yeast reconstitution system. Ala-scanning mutagenesis at the catalytic loops of PTEN outlined the critical role of residues within the P-catalytic loop for PIP(3) phosphatase activity in vivo. PTEN mutations that mimic the P-catalytic loop of mammalian PTEN-like proteins (TPTE, TPIP, tensins and auxilins) affected PTEN function variably, whereas tumor- or PHTS-associated mutations targeting the PTEN P-loop produced complete loss of function. Conversely, Ala-substitutions, as well as tumor-related mutations at the WPD- and TI-catalytic loops, displayed partial activity in many cases. Interestingly, a tumor-related D92N mutation was partially active, supporting the notion that the PTEN Asp92 residue might not function as the catalytic general acid. The analysis of a panel of ASD-associated hereditary PTEN mutations revealed that most of them did not substantially abrogate PTEN activity in vivo, whereas most of PHTS-associated mutations did. Our findings reveal distinctive functional patterns among PTEN mutations found in tumors and in the germline of PHTS and ASD patients, which could be relevant for therapy.
Genetic diversity of HA1 domain of heammaglutinin gene of influenza A(H1N1)pdm09 in Tunisia
2013-01-01
We present major results concerning isolation and determination of the nucleotide sequence of hemagglutinin (HA1) of the pandemic (H1N1)pdm09 influenza viruses found in Tunisia. Amino acid analysis revealed minor amino acid changes in the antigenic or receptor-binding domains. We found mutations that were also present in 1918 pandemic virus, which includes S183P in 4 and S185T mutation in 19 of 27 viruses analyzed from 2011, while none of the 2009 viruses carried these mutations. Also two specific amino acid differences into N-glycosylation sites (N288T and N276H) were detected. The phylogenetic analysis revealed that the majority of the Tunisian isolates clustered with clade A/St. Petersburg/27/2011 viruses characterized by D97N and S185T mutations. However it also reveals a trend of 2010 strains to accumulate amino acid variation and form new phylogenetic clade with three specific amino acid substitutions: V47I, E172K and K308E. PMID:23679923
Blankenstein, O; Mühlenberg, R; Kim, C; Wüller, S; Pfäffle, R; Heimann, G
2001-01-01
We describe a newborn with clinical signs of severe hypothyroidism and combined pituitary hormone deficiency due to a new mutation in the PIT-1 gene. Endocrine stimulation test revealed a deficiency for PRL, TSH and GH, suggesting a defect in the pituitary transcription factor PIT-1. Genetic analysis of the PIT-1 gene was performed by exon-specific PCR, followed by SSCP mutation screening and DNA sequencing of the abnormal migrating fragments. DNA sequencing revealed a new mutation (V272ter) in direct neighborhood to a known mutational hot spot (R271W) in the C-terminal part of the PIT-1 molecule. Whereas the R271W mutation has a dominant negative effect on the mutant protein, the newly described mutation is inherited in an autosomal-recessive way. The biological consequences of these two different mutations are discussed. Copyright 2002 S. Karger AG, Basel
Adaptive Evolution under Extreme Genetic Drift in Oxidatively Stressed Caenorhabditis elegans
Christy, Stephen F; Wernick, Riana I; Lue, Michael J; Velasco, Griselda; Howe, Dana K; Denver, Dee R
2017-01-01
Abstract A mutation-accumulation (MA) experiment with Caenorhabditis elegans nematodes was conducted in which replicate, independently evolving lines were initiated from a low-fitness mitochondrial electron transport chain mutant, gas-1. The original intent of the study was to assess the effect of electron transport chain dysfunction involving elevated reactive oxygen species production on patterns of spontaneous germline mutation. In contrast to results of standard MA experiments, gas-1 MA lines evolved slightly higher mean fitness alongside reduced among-line genetic variance compared with their ancestor. Likewise, the gas-1 MA lines experienced partial recovery to wildtype reactive oxygen species levels. Whole-genome sequencing and analysis revealed that the molecular spectrum but not the overall rate of nuclear DNA mutation differed from wildtype patterns. Further analysis revealed an enrichment of mutations in loci that occur in a gas-1-centric region of the C. elegans interactome, and could be classified into a small number of functional-genomic categories. Characterization of a backcrossed four-mutation set isolated from one gas-1 MA line revealed this combination to be beneficial on both gas-1 mutant and wildtype genetic backgrounds. Our combined results suggest that selection favoring beneficial mutations can be powerful even under unfavorable population genetic conditions, and agree with fitness landscape theory predicting an inverse relationship between population fitness and the likelihood of adaptation. PMID:29069345
Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.
Engin, H Billur; Kreisberg, Jason F; Carter, Hannah
2016-01-01
Recently it has been shown that cancer mutations selectively target protein-protein interactions. We hypothesized that mutations affecting distinct protein interactions involving established cancer genes could contribute to tumor heterogeneity, and that novel mechanistic insights might be gained into tumorigenesis by investigating protein interactions under positive selection in cancer. To identify protein interactions under positive selection in cancer, we mapped over 1.2 million nonsynonymous somatic cancer mutations onto 4,896 experimentally determined protein structures and analyzed their spatial distribution. In total, 20% of mutations on the surface of known cancer genes perturbed protein-protein interactions (PPIs), and this enrichment for PPI interfaces was observed for both tumor suppressors (Odds Ratio 1.28, P-value < 10(-4)) and oncogenes (Odds Ratio 1.17, P-value < 10(-3)). To study this further, we constructed a bipartite network representing structurally resolved PPIs from all available human complexes in the Protein Data Bank (2,864 proteins, 3,072 PPIs). Analysis of frequently mutated cancer genes within this network revealed that tumor-suppressors, but not oncogenes, are significantly enriched with functional mutations in homo-oligomerization regions (Odds Ratio 3.68, P-Value < 10(-8)). We present two important examples, TP53 and beta-2-microglobulin, for which the patterns of somatic mutations at interfaces provide insights into specifically perturbed biological circuits. In patients with TP53 mutations, patient survival correlated with the specific interactions that were perturbed. Moreover, we investigated mutations at the interface of protein-nucleotide interactions and observed an unexpected number of missense mutations but not silent mutations occurring within DNA and RNA binding sites. Finally, we provide a resource of 3,072 PPI interfaces ranked according to their mutation rates. Analysis of this list highlights 282 novel candidate cancer genes that encode proteins participating in interactions that are perturbed recurrently across tumors. In summary, mutation of specific protein interactions is an important contributor to tumor heterogeneity and may have important implications for clinical outcomes.
Landscape of somatic mutations in 560 breast cancer whole-genome sequences
Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; ...
2016-05-02
Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less
Landscape of somatic mutations in 560 breast cancer whole-genome sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nik-Zainal, Serena; Davies, Helen; Staaf, Johan
Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less
Landscape of somatic mutations in 560 breast cancer whole genome sequences
Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; Ramakrishna, Manasa; Glodzik, Dominik; Zou, Xueqing; Martincorena, Inigo; Alexandrov, Ludmil B.; Martin, Sancha; Wedge, David C.; Van Loo, Peter; Ju, Young Seok; Smid, Marcel; Brinkman, Arie B; Morganella, Sandro; Aure, Miriam R.; Lingjærde, Ole Christian; Langerød, Anita; Ringnér, Markus; Ahn, Sung-Min; Boyault, Sandrine; Brock, Jane E.; Broeks, Annegien; Butler, Adam; Desmedt, Christine; Dirix, Luc; Dronov, Serge; Fatima, Aquila; Foekens, John A.; Gerstung, Moritz; Hooijer, Gerrit KJ; Jang, Se Jin; Jones, David R.; Kim, Hyung-Yong; King, Tari A.; Krishnamurthy, Savitri; Lee, Hee Jin; Lee, Jeong-Yeon; Li, Yilong; McLaren, Stuart; Menzies, Andrew; Mustonen, Ville; O’Meara, Sarah; Pauporté, Iris; Pivot, Xavier; Purdie, Colin A.; Raine, Keiran; Ramakrishnan, Kamna; Rodríguez-González, F. Germán; Romieu, Gilles; Sieuwerts, Anieta M.; Simpson, Peter T; Shepherd, Rebecca; Stebbings, Lucy; Stefansson, Olafur A; Teague, Jon; Tommasi, Stefania; Treilleux, Isabelle; Van den Eynden, Gert G.; Vermeulen, Peter; Vincent-Salomon, Anne; Yates, Lucy; Caldas, Carlos; van’t Veer, Laura; Tutt, Andrew; Knappskog, Stian; Tan, Benita Kiat Tee; Jonkers, Jos; Borg, Åke; Ueno, Naoto T; Sotiriou, Christos; Viari, Alain; Futreal, P. Andrew; Campbell, Peter J; Span, Paul N.; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E.; Thompson, Alastair M.; Birney, Ewan; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W.M.; Børresen-Dale, Anne-Lise; Richardson, Andrea L.; Kong, Gu; Thomas, Gilles; Stratton, Michael R.
2016-01-01
We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer. PMID:27135926
A Genetic Interaction Screen for Breast Cancer Progression Driver Genes
2013-06-01
analysis of genetic alterations in human breast cancers has revealed that individual tumors accumulate mutations in approximately ninety different genes ...cancer. We performed a screen to test the roles of seventy breast cancer mutated genes in mouse mammary tumorigenesis using the MMTV-PyVT mouse breast...cancer model and piggyBac insertional mutation strains. We found that insertional mutations in 23 genes altered the onset of tumor formation and four
Zatz, Mayana; Pavanello, Rita de Cassia M; Lourenço, Naila Cristina V; Cerqueira, Antonia; Lazar, Monize; Vainzof, Mariz
2012-12-01
Improvement in DNA technology is increasingly revealing unexpected/unknown mutations in healthy persons and generating anxiety due to their still unknown health consequences. We report a 44-year-old healthy father of a 10-year-old daughter with bilateral coloboma and hearing loss, but without muscle weakness, in whom a whole-genome CGH revealed a deletion of exons 38-44 in the dystrophin gene. This mutation was inherited from her asymptomatic father, who was further clinically and molecularly evaluated for prognosis and genetic counseling (GC). This deletion was never identified by us in 982 Duchenne/Becker patients. To assess whether the present case represents a rare case of non-penetrance, and aiming to obtain more information for prognosis and GC, we suggested that healthy older relatives submit their DNA for analysis, to which several complied. Mutation analysis revealed that his mother, brother, and 56-year-old maternal uncle also carry the 38-44 deletion, suggesting it an unlikely cause of muscle weakness. Genome sequencing will disclose mutations and variants whose health impact are still unknown, raising important problems in interpreting results, defining prognosis, and discussing GC. We suggest that, in addition to family history, keeping the DNA of older relatives could be very informative, in particular for those interested in having their genome sequenced.
Ni, Duan; Song, Kun; Zhang, Jian; Lu, Shaoyong
2017-10-26
Ras proteins, as small GTPases, mediate cell proliferation, survival and differentiation. Ras mutations have been associated with a broad spectrum of human cancers and thus targeting Ras represents a potential way forward for cancer therapy. A recently reported monobody NS1 allosterically disrupts the Ras-mediated signaling pathway, but its efficacy is reduced by R135K mutation in H-Ras. However, the detailed mechanism is unresolved. Here, using molecular dynamics (MD) simulations and dynamic network analysis, we explored the molecular mechanism for the unbinding of NS1 to H-Ras and shed light on the underlying allosteric network in H-Ras. MD simulations revealed that the overall structures of the two complexes did not change significantly, but the H-Ras-NS1 interface underwent significant conformational alteration in the mutant Binding free energy analysis showed that NS1 binding was unfavored after R135K mutation, which resulted in the unfavorable binding of NS1. Furthermore, the critical residues on H-Ras responsible for the loss of binding of NS1 were identified. Importantly, the allosteric networks for these important residues were revealed, which yielded a novel insight into the allosteric regulatory mechanism of H-Ras.
Song, Kun; Zhang, Jian; Lu, Shaoyong
2017-01-01
Ras proteins, as small GTPases, mediate cell proliferation, survival and differentiation. Ras mutations have been associated with a broad spectrum of human cancers and thus targeting Ras represents a potential way forward for cancer therapy. A recently reported monobody NS1 allosterically disrupts the Ras-mediated signaling pathway, but its efficacy is reduced by R135K mutation in H-Ras. However, the detailed mechanism is unresolved. Here, using molecular dynamics (MD) simulations and dynamic network analysis, we explored the molecular mechanism for the unbinding of NS1 to H-Ras and shed light on the underlying allosteric network in H-Ras. MD simulations revealed that the overall structures of the two complexes did not change significantly, but the H-Ras–NS1 interface underwent significant conformational alteration in the mutant Binding free energy analysis showed that NS1 binding was unfavored after R135K mutation, which resulted in the unfavorable binding of NS1. Furthermore, the critical residues on H-Ras responsible for the loss of binding of NS1 were identified. Importantly, the allosteric networks for these important residues were revealed, which yielded a novel insight into the allosteric regulatory mechanism of H-Ras. PMID:29072601
Takahashi, Yuji; Fukuda, Yoko; Yoshimura, Jun; Toyoda, Atsushi; Kurppa, Kari; Moritoyo, Hiroyoko; Belzil, Veronique V; Dion, Patrick A; Higasa, Koichiro; Doi, Koichiro; Ishiura, Hiroyuki; Mitsui, Jun; Date, Hidetoshi; Ahsan, Budrul; Matsukawa, Takashi; Ichikawa, Yaeko; Moritoyo, Takashi; Ikoma, Mayumi; Hashimoto, Tsukasa; Kimura, Fumiharu; Murayama, Shigeo; Onodera, Osamu; Nishizawa, Masatoyo; Yoshida, Mari; Atsuta, Naoki; Sobue, Gen; Fifita, Jennifer A; Williams, Kelly L; Blair, Ian P; Nicholson, Garth A; Gonzalez-Perez, Paloma; Brown, Robert H; Nomoto, Masahiro; Elenius, Klaus; Rouleau, Guy A; Fujiyama, Asao; Morishita, Shinichi; Goto, Jun; Tsuji, Shoji
2013-11-07
Amyotrophic lateral sclerosis (ALS) is a devastating neurological disorder characterized by the degeneration of motor neurons and typically results in death within 3-5 years from onset. Familial ALS (FALS) comprises 5%-10% of ALS cases, and the identification of genes associated with FALS is indispensable to elucidating the molecular pathogenesis. We identified a Japanese family affected by late-onset, autosomal-dominant ALS in which mutations in genes known to be associated with FALS were excluded. A whole- genome sequencing and parametric linkage analysis under the assumption of an autosomal-dominant mode of inheritance with incomplete penetrance revealed the mutation c.2780G>A (p. Arg927Gln) in ERBB4. An extensive mutational analysis revealed the same mutation in a Canadian individual with familial ALS and a de novo mutation, c.3823C>T (p. Arg1275Trp), in a Japanese simplex case. These amino acid substitutions involve amino acids highly conserved among species, are predicted as probably damaging, and are located within a tyrosine kinase domain (p. Arg927Gln) or a C-terminal domain (p. Arg1275Trp), both of which mediate essential functions of ErbB4 as a receptor tyrosine kinase. Functional analysis revealed that these mutations led to a reduced autophosphorylation of ErbB4 upon neuregulin-1 (NRG-1) stimulation. Clinical presentations of the individuals with mutations were characterized by the involvement of both upper and lower motor neurons, a lack of obvious cognitive dysfunction, and relatively slow progression. This study indicates that disruption of the neuregulin-ErbB4 pathway is involved in the pathogenesis of ALS and potentially paves the way for the development of innovative therapeutic strategies such using NRGs or their agonists to upregulate ErbB4 functions. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
De novo mutations in ATP1A3 cause alternating hemiplegia of childhood
Heinzen, Erin L.; Swoboda, Kathryn J.; Hitomi, Yuki; Gurrieri, Fiorella; Nicole, Sophie; de Vries, Boukje; Tiziano, F. Danilo; Fontaine, Bertrand; Walley, Nicole M.; Heavin, Sinéad; Panagiotakaki, Eleni; Fiori, Stefania; Abiusi, Emanuela; Di Pietro, Lorena; Sweney, Matthew T.; Newcomb, Tara M.; Viollet, Louis; Huff, Chad; Jorde, Lynn B.; Reyna, Sandra P.; Murphy, Kelley J.; Shianna, Kevin V.; Gumbs, Curtis E.; Little, Latasha; Silver, Kenneth; Ptác̆ek, Louis J.; Haan, Joost; Ferrari, Michel D.; Bye, Ann M.; Herkes, Geoffrey K.; Whitelaw, Charlotte M.; Webb, David; Lynch, Bryan J.; Uldall, Peter; King, Mary D.; Scheffer, Ingrid E.; Neri, Giovanni; Arzimanoglou, Alexis; van den Maagdenberg, Arn M.J.M.; Sisodiya, Sanjay M.; Mikati, Mohamad A.; Goldstein, David B.; Nicole, Sophie; Gurrieri, Fiorella; Neri, Giovanni; de Vries, Boukje; Koelewijn, Stephany; Kamphorst, Jessica; Geilenkirchen, Marije; Pelzer, Nadine; Laan, Laura; Haan, Joost; Ferrari, Michel; van den Maagdenberg, Arn; Zucca, Claudio; Bassi, Maria Teresa; Franchini, Filippo; Vavassori, Rosaria; Giannotta, Melania; Gobbi, Giuseppe; Granata, Tiziana; Nardocci, Nardo; De Grandis, Elisa; Veneselli, Edvige; Stagnaro, Michela; Gurrieri, Fiorella; Neri, Giovanni; Vigevano, Federico; Panagiotakaki, Eleni; Oechsler, Claudia; Arzimanoglou, Alexis; Nicole, Sophie; Giannotta, Melania; Gobbi, Giuseppe; Ninan, Miriam; Neville, Brian; Ebinger, Friedrich; Fons, Carmen; Campistol, Jaume; Kemlink, David; Nevsimalova, Sona; Laan, Laura; Peeters-Scholte, Cacha; van den Maagdenberg, Arn; Casaer, Paul; Casari, Giorgio; Sange, Guenter; Spiel, Georg; Boneschi, Filippo Martinelli; Zucca, Claudio; Bassi, Maria Teresa; Schyns, Tsveta; Crawley, Francis; Poncelin, Dominique; Vavassori, Rosaria
2012-01-01
Alternating hemiplegia of childhood (AHC) is a rare, severe neurodevelopmental syndrome characterized by recurrent hemiplegic episodes and distinct neurologic manifestations. AHC is usually a sporadic disorder with unknown etiology. Using exome sequencing of seven patients with AHC, and their unaffected parents, we identified de novo nonsynonymous mutations in ATP1A3 in all seven AHC patients. Subsequent sequence analysis of ATP1A3 in 98 additional patients revealed that 78% of AHC cases have a likely causal ATP1A3 mutation, including one inherited mutation in a familial case of AHC. Remarkably, six ATP1A3 mutations explain the majority of patients, including one observed in 36 patients. Unlike ATP1A3 mutations that cause rapid-onset-dystonia-parkinsonism, AHC-causing mutations revealed consistent reductions in ATPase activity without effects on protein expression. This work identifies de novo ATP1A3 mutations as the primary cause of AHC, and offers insight into disease pathophysiology by expanding the spectrum of phenotypes associated with mutations in this gene. PMID:22842232
Hosaka, Takashi; Ishii, Kazuhiro; Miura, Takeshi; Mezaki, Naomi; Kasuga, Kensaku; Ikeuchi, Takeshi; Tamaoka, Akira
2017-09-15
Progranulin gene (GRN) mutations are major causes of frontotemporal lobar degeneration. To date, 68 pathogenic GRN mutations have been identified. However, very few of these mutations have been reported in Asians. Moreover, some GRN mutations manifest with familial phenotypic heterogeneity. Here, we present a novel GRN mutation resulting in frontotemporal lobar degeneration with a distinct clinical phenotype, and we review reports of GRN mutations associated with familial phenotypic heterogeneity. We describe the case of a 74-year-old woman with left frontotemporal lobe atrophy who presented with progressive anarthria and non-fluent aphasia. Her brother had been diagnosed with corticobasal syndrome (CBS) with right-hand limb-kinetic apraxia, aphasia, and a similar pattern of brain atrophy. Laboratory blood examinations did not reveal abnormalities that could have caused cognitive dysfunction. In the cerebrospinal fluid, cell counts and protein concentrations were within normal ranges, and concentrations of tau protein and phosphorylated tau protein were also normal. Since similar familial cases due to mutation of GRN and microtubule-associated protein tau gene (MAPT) were reported, we performed genetic analysis. No pathological mutations of MAPT were identified, but we identified a novel GRN frameshift mutation (c.1118_1119delCCinsG: p.Pro373ArgX37) that resulted in progranulin haploinsufficiency. This is the first report of a GRN mutation associated with familial phenotypic heterogeneity in Japan. Literature review of GRN mutations associated with familial phenotypic heterogeneity revealed no tendency of mutation sites. The role of progranulin has been reported in this and other neurodegenerative diseases, and the analysis of GRN mutations may lead to the discovery of a new therapeutic target.
Wang, Qi; Diao, Ying; Xu, Zhenping; Li, Xiaohui; Luo, Xiao Ping; Xu, Haibo; Ouyang, Ping; Liu, Mugen; Hu, Zhongli; Wang, Qing K; Liu, Jing Yu
2009-12-10
A Chinese family with autosomal recessive pituitary dwarfism was identified and the proband was evaluated by MRI and hormonal analysis, which revealed pituitary dwarfism with a complete growth hormone deficiency. MRI showed a pituitary gland with a small anterior pituitary of 2.2mm and evidence of hypoplastic pituitary. Linkage analysis with markers spanning 17 known genes for dwarfism revealed linkage of the family to the growth hormone-releasing hormone receptor (GHRHR) gene. Mutational analysis of all exons and exon-intron boundaries of GHRHR was carried out using direct DNA sequence analysis. A novel homozygosis mutation, a G to A transition located in the splice donor site at the beginning of intron 8 (IVS8+1G>A), was identified in the proband. The two other patients in the family are homozygous, whereas the living mother of the proband is heterozygous for the IVS8+1G>A mutation. The mutation was not found in 100 normal chromosomes from healthy Chinese individuals of Han nationality. An in vitro splicing assay using HeLa cells transfected with expression vectors containing the normal or the mutant GHRHR minigenes consisting of genomic fragments spanning exons 7-9 showed that the IVS8+1G>A mutation caused abnormal splicing, which is predicted to give rise to truncation or frameshift, leading to severely truncated GHRHR proteins. These results provide strong evidence that the splicing mutation IVS8+1G>A of GHRHR is a cause of pituitary dwarfism in the Chinese family.
Rates and Genomic Consequences of Spontaneous Mutational Events in Drosophila melanogaster
Schrider, Daniel R.; Houle, David; Lynch, Michael; Hahn, Matthew W.
2013-01-01
Because spontaneous mutation is the source of all genetic diversity, measuring mutation rates can reveal how natural selection drives patterns of variation within and between species. We sequenced eight genomes produced by a mutation-accumulation experiment in Drosophila melanogaster. Our analysis reveals that point mutation and small indel rates vary significantly between the two different genetic backgrounds examined. We also find evidence that ∼2% of mutational events affect multiple closely spaced nucleotides. Unlike previous similar experiments, we were able to estimate genome-wide rates of large deletions and tandem duplications. These results suggest that, at least in inbred lines like those examined here, mutational pressures may result in net growth rather than contraction of the Drosophila genome. By comparing our mutation rate estimates to polymorphism data, we are able to estimate the fraction of new mutations that are eliminated by purifying selection. These results suggest that ∼99% of duplications and deletions are deleterious—making them 10 times more likely to be removed by selection than nonsynonymous mutations. Our results illuminate not only the rates of new small- and large-scale mutations, but also the selective forces that they encounter once they arise. PMID:23733788
Abstract: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous cancer comprising at least two molecular subtypes that differ in gene expression and distribution of mutations. Recently, application of genome/exome sequencing and RNA-seq to DLBCL has revealed numerous genes that are recurrent targets of somatic point mutation in this disease.
A novel D458V mutation in the SANS PDZ binding motif causes atypical Usher syndrome.
Kalay, E; de Brouwer, A P M; Caylan, R; Nabuurs, S B; Wollnik, B; Karaguzel, A; Heister, J G A M; Erdol, H; Cremers, F P M; Cremers, C W R J; Brunner, H G; Kremer, H
2005-12-01
Homozygosity mapping and linkage analysis in a Turkish family with autosomal recessive prelingual sensorineural hearing loss revealed a 15-cM critical region at 17q25.1-25.3 flanked by the polymorphic markers D17S1807 and D17S1806. The maximum two-point lod score was 4.07 at theta=0.0 for the marker D17S801. The linkage interval contains the Usher syndrome 1G gene (USH1G) that is mutated in patients with Usher syndrome (USH) type 1g and encodes the SANS protein. Mutation analysis of USH1G led to the identification of a homozygous missense mutation D458V at the -3 position of the PDZ binding motif of SANS. This mutation was also present homozygously in one out of 64 additional families from Turkey with autosomal recessive nonsyndromic hearing loss and heterozygously in one out of 498 control chromosomes. By molecular modeling, we provide evidence that this mutation impairs the interaction of SANS with harmonin. Ophthalmologic examination and vestibular evaluation of patients from both families revealed mild retinitis pigmentosa and normal vestibular function. These results suggest that these patients suffer from atypical USH.
Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms.
Pietra, Daniela; Brisci, Angela; Rumi, Elisa; Boggi, Sabrina; Elena, Chiara; Pietrelli, Alessandro; Bordoni, Roberta; Ferrari, Maurizio; Passamonti, Francesco; De Bellis, Gianluca; Cremonesi, Laura; Cazzola, Mario
2011-04-01
Somatic mutations of MPL exon 10, mainly involving a W515 substitution, have been described in JAK2 (V617F)-negative patients with essential thrombocythemia and primary myelofibrosis. We used direct sequencing and high-resolution melt analysis to identify mutations of MPL exon 10 in 570 patients with myeloproliferative neoplasms, and allele specific PCR and deep sequencing to further characterize a subset of mutated patients. Somatic mutations were detected in 33 of 221 patients (15%) with JAK2 (V617F)-negative essential thrombocythemia or primary myelofibrosis. Only one patient with essential thrombocythemia carried both JAK2 (V617F) and MPL (W515L). High-resolution melt analysis identified abnormal patterns in all the MPL mutated cases, while direct sequencing did not detect the mutant MPL in one fifth of them. In 3 cases carrying double MPL mutations, deep sequencing analysis showed identical load and location in cis of the paired lesions, indicating their simultaneous occurrence on the same chromosome.
Qendro, Veneta; Bugos, Grace A; Lundgren, Debbie H; Glynn, John; Han, May H; Han, David K
2017-03-01
In order to gain mechanistic insights into multiple sclerosis (MS) pathogenesis, we utilized a multi-dimensional approach to test the hypothesis that mutations in myelin proteins lead to immune activation and central nervous system autoimmunity in MS. Mass spectrometry-based proteomic analysis of human MS brain lesions revealed seven unique mutations of PLP1; a key myelin protein that is known to be destroyed in MS. Surprisingly, in-depth genomic analysis of two MS patients at the genomic DNA and mRNA confirmed mutated PLP1 in RNA, but not in the genomic DNA. Quantification of wild type and mutant PLP RNA levels by qPCR further validated the presence of mutant PLP RNA in the MS patients. To seek evidence linking mutations in abundant myelin proteins and immune-mediated destruction of myelin, specific immune response against mutant PLP1 in MS patients was examined. Thus, we have designed paired, wild type and mutant peptide microarrays, and examined antibody response to multiple mutated PLP1 in sera from MS patients. Consistent with the idea of different patients exhibiting unique mutation profiles, we found that 13 out of 20 MS patients showed antibody responses against specific but not against all the mutant-PLP1 peptides. Interestingly, we found mutant PLP-directed antibody response against specific mutant peptides in the sera of pre-MS controls. The results from integrative proteomic, genomic, and immune analyses reveal a possible mechanism of mutation-driven pathogenesis in human MS. The study also highlights the need for integrative genomic and proteomic analyses for uncovering pathogenic mechanisms of human diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shaheen, Ranad; Faqeih, Eissa; Alshammari, Muneera J; Swaid, Abdulrahman; Al-Gazali, Lihadh; Mardawi, Elham; Ansari, Shinu; Sogaty, Sameera; Seidahmed, Mohammed Z; AlMotairi, Muhammed I; Farra, Chantal; Kurdi, Wesam; Al-Rasheed, Shatha; Alkuraya, Fowzan S
2013-01-01
Meckel–Gruber syndrome (MKS, OMIM #249000) is a multiple congenital malformation syndrome that represents the severe end of the ciliopathy phenotypic spectrum. Despite the relatively common occurrence of this syndrome among Arabs, little is known about its genetic architecture in this population. This is a series of 18 Arab families with MKS, who were evaluated clinically and studied using autozygome-guided mutation analysis and exome sequencing. We show that autozygome-guided candidate gene analysis identified the underlying mutation in the majority (n=12, 71%). Exome sequencing revealed a likely pathogenic mutation in three novel candidate MKS disease genes. These include C5orf42, Ellis–van-Creveld disease gene EVC2 and SEC8 (also known as EXOC4), which encodes an exocyst protein with an established role in ciliogenesis. This is the largest and most comprehensive genomic study on MKS in Arabs and the results, in addition to revealing genetic and allelic heterogeneity, suggest that previously reported disease genes and the novel candidates uncovered by this study account for the overwhelming majority of MKS patients in our population. PMID:23169490
A new Gsdma3 mutation affecting anagen phase of first hair cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Shigekazu; Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540; Tamura, Masaru
2007-08-10
Recombination-induced mutation 3 (Rim3) is a spontaneous mouse mutation that exhibits dominant phenotype of hyperkeratosis and hair loss. Fine linkage analysis of Rim3 and sequencing revealed a novel single point mutation, G1124A leading to Ala348Thr, in Gsdma3 in chromosome 11. Transgenesis with BAC DNA harboring the Rim3-type Gsdma3 recaptured the Rim3 phenotype, providing direct evidence that Gsdma3 is the causative gene of Rim3. We examined the spatial expression of Gsdma3 and characterized the Rim3 phenotype in detail. Gsdma3 is expressed in differentiated epidermal cells in the skin, but not in the proliferating epidermal cells. Histological analysis of Rim3 mutant showedmore » hyperplasia of the epidermal cells in the upper hair follicles and abnormal anagen phase at the first hair cycle. Furthermore, immunohistochemical analysis revealed hyperproliferation and misdifferentiation of the upper follicular epidermis in Rim3 mutant. These results suggest that Gsdma3 is involved in the proliferation and differentiation of epidermal stem cells.« less
Magoulas, Pilar L; El-Hattab, Ayman W; Roy, Angshumoy; Bali, Deeksha S; Finegold, Milton J; Craigen, William J
2012-06-01
Glycogen storage disease type IV is a rare autosomal recessive disorder of glycogen metabolism caused by mutations in the GBE1 gene that encodes the 1,4-alpha-glucan-branching enzyme 1. Its clinical presentation is variable, with the most common form presenting in early childhood with primary hepatic involvement. Histologic manifestations in glycogen storage disease type IV typically consist of intracytoplasmic non-membrane-bound inclusions containing abnormally branched glycogen (polyglucosan bodies) within hepatocytes and myocytes. We report a female infant with classic hepatic form of glycogen storage disease type IV who demonstrated diffuse reticuloendothelial system involvement with the spleen, bone marrow, and lymph nodes infiltrated by foamy histiocytes with intracytoplasmic polyglucosan deposits. Sequence analysis of the GBE1 gene revealed compound heterozygosity for a previously described frameshift mutation (c.1239delT) and a novel missense mutation (c.1279G>A) that is predicted to alter a conserved glycine residue. GBE enzyme analysis revealed no detectable activity. A review of the literature for glycogen storage disease type IV patients with characterized molecular defects and deficient enzyme activity reveals most GBE1 mutations to be missense mutations clustering in the catalytic enzyme domain. Individuals with the classic hepatic form of glycogen storage disease type IV tend to be compound heterozygotes for null and missense mutations. Although the extensive reticuloendothelial system involvement that was observed in our patient is not typical of glycogen storage disease type IV, it may be associated with severe enzymatic deficiency and a poor outcome. Copyright © 2012 Elsevier Inc. All rights reserved.
Determination of EGFR and KRAS mutational status in Greek non-small-cell lung cancer patients
PAPADOPOULOU, EIRINI; TSOULOS, NIKOLAOS; TSIRIGOTI, ANGELIKI; APESSOS, ANGELA; AGIANNITOPOULOS, KONSTANTINOS; METAXA-MARIATOU, VASILIKI; ZAROGOULIDIS, KONSTANTINOS; ZAROGOULIDIS, PAVLOS; KASARAKIS, DIMITRIOS; KAKOLYRIS, STYLIANOS; DAHABREH, JUBRAIL; VLASTOS, FOTIS; ZOUBLIOS, CHARALAMPOS; RAPTI, AGGELIKI; PAPAGEORGIOU, NIKI GEORGATOU; VELDEKIS, DIMITRIOS; GAGA, MINA; ARAVANTINOS, GERASIMOS; KARAVASILIS, VASILEIOS; KARAGIANNIDIS, NAPOLEON; NASIOULAS, GEORGE
2015-01-01
It has been reported that certain patients with non-small-cell lung cancer (NSCLC) that harbor activating somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene may be effectively treated using targeted therapy. The use of EGFR inhibitors in patient therapy has been demonstrated to improve response and survival rates; therefore, it was suggested that clinical screening for EGFR mutations should be performed for all patients. Numerous clinicopathological factors have been associated with EGFR and Kirsten-rat sarcoma oncogene homolog (KRAS) mutational status including gender, smoking history and histology. In addition, it was reported that EGFR mutation frequency in NSCLC patients was ethnicity-dependent, with an incidence rate of ~30% in Asian populations and ~15% in Caucasian populations. However, limited data has been reported on intra-ethnic differences throughout Europe. The present study aimed to investigate the frequency and spectrum of EGFR mutations in 1,472 Greek NSCLC patients. In addition, KRAS mutation analysis was performed in patients with known smoking history in order to determine the correlation of type and mutation frequency with smoking. High-resolution melting curve (HRM) analysis followed by Sanger sequencing was used to identify mutations in exons 18–21 of the EGFR gene and in exon 2 of the KRAS gene. A sensitive next-generation sequencing (NGS) technology was also employed to classify samples with equivocal results. The use of sensitive mutation detection techniques in a large study population of Greek NSCLC patients in routine diagnostic practice revealed an overall EGFR mutation frequency of 15.83%. This mutation frequency was comparable to that previously reported in other European populations. Of note, there was a 99.8% concordance between the HRM method and Sanger sequencing. NGS was found to be the most sensitive method. In addition, female non-smokers demonstrated a high prevalence of EGFR mutations. Furthermore, KRAS mutation analysis in patients with a known smoking history revealed no difference in mutation frequency according to smoking status; however, a different mutation spectrum was observed. PMID:26622815
Qu, Ling-Hui; Jin, Xin; Xu, Hai-Wei; Li, Shi-Ying; Yin, Zheng-Qin
2015-02-01
Usher syndrome (USH) is the most common cause of combined blindness and deafness inherited in an autosomal recessive mode. Molecular diagnosis is of great significance in revealing the molecular pathogenesis and aiding the clinical diagnosis of this disease. However, molecular diagnosis remains a challenge due to high phenotypic and genetic heterogeneity in USH. This study explored an approach for detecting disease-causing genetic mutations in candidate genes in five index cases from unrelated USH families based on targeted next-generation sequencing (NGS) technology. Through systematic data analysis using an established bioinformatics pipeline and segregation analysis, 10 pathogenic mutations in the USH disease genes were identified in the five USH families. Six of these mutations were novel: c.4398G > A and EX38-49del in MYO7A, c.988_989delAT in USH1C, c.15104_15105delCA and c.6875_6876insG in USH2A. All novel variations segregated with the disease phenotypes in their respective families and were absent from ethnically matched control individuals. This study expanded the mutation spectrum of USH and revealed the genotype-phenotype relationships of the novel USH mutations in Chinese patients. Moreover, this study proved that targeted NGS is an accurate and effective method for detecting genetic mutations related to USH. The identification of pathogenic mutations is of great significance for elucidating the underlying pathophysiology of USH.
Er, Tze-Kiong; Chen, Chih-Chieh; Liu, Yen-Yi; Chang, Hui-Chiu; Chien, Yin-Hsiu; Chang, Jan-Gowth; Hwang, Jenn-Kang; Jong, Yuh-Jyh
2011-10-21
Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is an autosomal recessive disease caused by the defects in the mitochondrial electron transfer system and the metabolism of fatty acids. Recently, mutations in electron transfer flavoprotein dehydrogenase (ETFDH) gene, encoding electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) have been reported to be the major causes of riboflavin-responsive MADD. To date, no studies have been performed to explore the functional impact of these mutations or their mechanism of disrupting enzyme activity. High resolution melting (HRM) analysis and sequencing of the entire ETFDH gene revealed a novel mutation (p.Phe128Ser) and the hotspot mutation (p.Ala84Thr) from a patient with MADD. According to the predicted 3D structure of ETF:QO, the two mutations are located within the flavin adenine dinucleotide (FAD) binding domain; however, the two residues do not have direct interactions with the FAD ligand. Using molecular dynamics (MD) simulations and normal mode analysis (NMA), we found that the p.Ala84Thr and p.Phe128Ser mutations are most likely to alter the protein structure near the FAD binding site as well as disrupt the stability of the FAD binding required for the activation of ETF:QO. Intriguingly, NMA revealed that several reported disease-causing mutations in the ETF:QO protein show highly correlated motions with the FAD-binding site. Based on the present findings, we conclude that the changes made to the amino acids in ETF:QO are likely to influence the FAD-binding stability.
2011-01-01
Background Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is an autosomal recessive disease caused by the defects in the mitochondrial electron transfer system and the metabolism of fatty acids. Recently, mutations in electron transfer flavoprotein dehydrogenase (ETFDH) gene, encoding electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) have been reported to be the major causes of riboflavin-responsive MADD. To date, no studies have been performed to explore the functional impact of these mutations or their mechanism of disrupting enzyme activity. Results High resolution melting (HRM) analysis and sequencing of the entire ETFDH gene revealed a novel mutation (p.Phe128Ser) and the hotspot mutation (p.Ala84Thr) from a patient with MADD. According to the predicted 3D structure of ETF:QO, the two mutations are located within the flavin adenine dinucleotide (FAD) binding domain; however, the two residues do not have direct interactions with the FAD ligand. Using molecular dynamics (MD) simulations and normal mode analysis (NMA), we found that the p.Ala84Thr and p.Phe128Ser mutations are most likely to alter the protein structure near the FAD binding site as well as disrupt the stability of the FAD binding required for the activation of ETF:QO. Intriguingly, NMA revealed that several reported disease-causing mutations in the ETF:QO protein show highly correlated motions with the FAD-binding site. Conclusions Based on the present findings, we conclude that the changes made to the amino acids in ETF:QO are likely to influence the FAD-binding stability. PMID:22013910
Matsumura, Yuki; Suzuki, Hiroyuki; Ohira, Tetsuya; Shiono, Satoshi; Abe, Jiro; Sagawa, Motoyasu; Sakurada, Akira; Katahira, Masato; Machida, Yuichiro; Takahashi, Satomi; Okada, Yoshinori
2017-12-01
It is unclear whether epidermal growth factor receptor (EGFR) mutation status is a risk factor for postoperative recurrence of surgically resected lung adenocarcinoma (ADC). Therefore, we conducted a multi-institutional study employing matched-pair analysis to compare recurrence-free survival (RFS) and overall survival (OS) of patients with lung ADC according to EGFR mutation status. We collected the records of 909 patients who underwent surgical resection for lung ADC between 2005 and 2012 at five participating institutions and were also examined their EGFR mutation status. For each patient with an EGFR mutation, we selected one with the wild-type EGFR sequence and matched them according to institution, age, gender, smoking history, pathological stage (pStage), and adjuvant treatment. We compared RFS and OS of the matched cohort. The patients were allocated into groups (n=181 each) with mutated or wild-type EGFR sequences. Both cohorts had identical characteristics as follows: institution, median age (68 years), men (85, 47%), ever smokers (77, 43%), and pStage (IA, 108, 60%; IB, 48, 27%; II, 14, 8%; III, 11, 6%). The 3- and 5-year RFS rates of patients with mutated or wild-type EGFR sequence were 79%, 68% and 77%, 68%, respectively (p=0.557). The respective OS rates were 92%, 81%, and 89%, 79% (p=0.574). Matched-pair and multi-institutional analysis reveals that an EGFR mutation was not a significant risk factor for recurrence of patients with surgically resected lung adenocarcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.
Truncation- and motif-based pan-cancer analysis reveals tumor-suppressing kinases.
Hudson, Andrew M; Stephenson, Natalie L; Li, Cynthia; Trotter, Eleanor; Fletcher, Adam J; Katona, Gitta; Bieniasz-Krzywiec, Patrycja; Howell, Matthew; Wirth, Chris; Furney, Simon; Miller, Crispin J; Brognard, John
2018-04-17
A major challenge in cancer genomics is identifying "driver" mutations from the many neutral "passenger" mutations within a given tumor. To identify driver mutations that would otherwise be lost within mutational noise, we filtered genomic data by motifs that are critical for kinase activity. In the first step of our screen, we used data from the Cancer Cell Line Encyclopedia and The Cancer Genome Atlas to identify kinases with truncation mutations occurring within or before the kinase domain. The top 30 tumor-suppressing kinases were aligned, and hotspots for loss-of-function (LOF) mutations were identified on the basis of amino acid conservation and mutational frequency. The functional consequences of new LOF mutations were biochemically validated, and the top 15 hotspot LOF residues were used in a pan-cancer analysis to define the tumor-suppressing kinome. A ranked list revealed MAP2K7, an essential mediator of the c-Jun N-terminal kinase (JNK) pathway, as a candidate tumor suppressor in gastric cancer, despite its mutational frequency falling within the mutational noise for this cancer type. The majority of mutations in MAP2K7 abolished its catalytic activity, and reactivation of the JNK pathway in gastric cancer cells harboring LOF mutations in MAP2K7 or the downstream kinase JNK suppressed clonogenicity and growth in soft agar, demonstrating the functional relevance of inactivating the JNK pathway in gastric cancer. Together, our data highlight a broadly applicable strategy to identify functional cancer driver mutations and define the JNK pathway as tumor-suppressive in gastric cancer. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Na, Kiyong; Sung, Ji-Youn; Kim, Hyun-Soo
2017-12-01
Diffuse and strong nuclear p53 immunoreactivity and a complete lack of p53 expression are regarded as indicative of missense and nonsense mutations, respectively, of the TP53 gene. Tubo-ovarian and peritoneal high-grade serous carcinoma (HGSC) is characterized by aberrant p53 expression induced by a TP53 mutation. However, our experience with some HGSC cases with a wild-type p53 immunostaining pattern led us to comprehensively review previous cases and investigate the TP53 mutational status of the exceptional cases. We analyzed the immunophenotype of 153 cases of HGSC and performed TP53 gene sequencing analysis in those with a wild-type p53 immunostaining pattern. Immunostaining revealed that 109 (71.3%) cases displayed diffuse and strong p53 expression (missense mutation pattern), while 39 (25.5%) had no p53 expression (nonsense mutation pattern). The remaining five cases of HGSC showed a wild-type p53 immunostaining pattern. Direct sequencing analysis revealed that three of these cases harbored nonsense TP53 mutations and two had novel splice site deletions. TP53 mutation is almost invariably present in HGSC, and p53 immunostaining can be used as a surrogate marker of TP53 mutation. In cases with a wild-type p53 immunostaining pattern, direct sequencing for TP53 mutational status can be helpful to confirm the presence of a TP53 mutation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Khateb, Samer; Zelinger, Lina; Mizrahi-Meissonnier, Liliana; Ayuso, Carmen; Koenekoop, Robert K; Laxer, Uri; Gross, Menachem; Banin, Eyal; Sharon, Dror
2014-07-01
Usher syndrome (USH) is a heterogeneous group of inherited retinitis pigmentosa (RP) and sensorineural hearing loss (SNHL) caused by mutations in at least 12 genes. Our aim is to identify additional USH-related genes. Clinical examination included visual acuity test, funduscopy and electroretinography. Genetic analysis included homozygosity mapping and whole exome sequencing (WES). A combination of homozygosity mapping and WES in a large consanguineous family of Iranian Jewish origin revealed nonsense mutations in two ciliary genes: c.3289C>T (p.Q1097*) in C2orf71 and c.3463C>T (p.R1155*) in centrosome-associated protein CEP250 (C-Nap1). The latter has not been associated with any inherited disease and the c.3463C>T mutation was absent in control chromosomes. Patients who were double homozygotes had SNHL accompanied by early-onset and severe RP, while patients who were homozygous for the CEP250 mutation and carried a single mutant C2orf71 allele had SNHL with mild retinal degeneration. No ciliary structural abnormalities in the respiratory system were evident by electron microscopy analysis. CEP250 expression analysis of the mutant allele revealed the generation of a truncated protein lacking the NEK2-phosphorylation region. A homozygous nonsense CEP250 mutation, in combination with a heterozygous C2orf71 nonsense mutation, causes an atypical form of USH, characterised by early-onset SNHL and a relatively mild RP. The severe retinal involvement in the double homozygotes indicates an additive effect caused by nonsense mutations in genes encoding ciliary proteins. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Two novel CHN1 mutations in two families with Duane’s retraction syndrome
Chan, Wai-Man; Miyake, Noriko; Zhu-Tam, Lily; Andrews, Caroline; Engle, Elizabeth C.
2012-01-01
Objective To determine the genetic cause of Duane’s retraction syndrome (DRS) in two families segregating DRS as an autosomal dominant trait. Method Members of two unrelated pedigrees were enrolled in an ongoing genetic study. Linkage analysis was performed using fluorescent microsatellite markers flanking the CHN1 locus. Probands and family members were screened for CHN1 mutations. Results Of the six clinically affected individuals in the two pedigrees, three have bilateral and three have unilateral DRS. Both pedigrees are consistent with linkage to the DURS2 locus, one with complete and one with incomplete penetrance. Sequence analysis revealed the pedigrees segregate novel heterozygous missense CHN1 mutations, c.422C>T and c.754C>T, predicted to result in α2-chimaerin amino acid substitutions P141L and P252S, respectively. Conclusion Genetic analysis of two pedigrees segregating nonsyndromic DRS reveals two novel mutations in CHN1, bringing the number of DRS pedigrees know to harbor CHN1 mutations, and the number of unique CHN1 mutations, from seven to nine. Both mutations identified in this study alter residues that participate in intramolecular interactions that stabilize the inactive, closed conformation of α2-chimerin, and thus are predicted to result in its hyper-activation. Moreover, amino acid residue P252 was altered to a different residue in a previously reported DRS pedigree; thus, this is the first report of two CHN1 mutations altering the same residue, further supporting a gain-of-function etiology. Clinical Relevance Members of families segregating DRS as an autosomal dominant trait should be screened for mutations in the CHN1 gene, enhancing genetic counseling and permitting earlier diagnosis. PMID:21555619
Mutation screening of Chinese Treacher Collins syndrome patients identified novel TCOF1 mutations.
Chen, Ying; Guo, Luo; Li, Chen-Long; Shan, Jing; Xu, Hai-Song; Li, Jie-Ying; Sun, Shan; Hao, Shao-Juan; Jin, Lei; Chai, Gang; Zhang, Tian-Yu
2018-04-01
Treacher Collins syndrome (TCS) (OMIM 154500) is a rare congenital craniofacial disorder with an autosomal dominant manner of inheritance in most cases. To date, three pathogenic genes (TCOF1, POLR1D and POLR1C) have been identified. In this study, we conducted mutational analysis on Chinese TCS patients to reveal a mutational spectrum of known causative genes and show phenotype-genotype data to provide more information for gene counselling and future studies on the pathogenesis of TCS. Twenty-two TCS patients were recruited from two tertiary referral centres, and Sanger sequencing for the coding exons and exon-intron boundaries of TCOF1, POLR1D and POLR1C was performed. For patients without small variants, further copy number variations (CNVs) analysis was conducted using high-density SNP array platforms. The Sanger sequencing overall mutation detection rate was as high as 86.3% (19/22) for our cohort. Fifteen TCOF1 pathogenic variants, including ten novel mutations, were identified in nineteen patients. No causative mutations in POLR1D and POLR1C genes and no CNVs mutations were detected. A suspected autosomal dominant inheritance case that implies germinal mosaicism was described. Our study confirmed that TCOF1 was the main disease-causing gene for the Chinese TCS population and revealed its mutation spectrum. We also addressed the need for more studies of mosaicism in TCS cases, which could explain the mechanism of autosomal dominant inheritance in TCS cases and benefit the prevention of TCS.
Ikemoto, Yu; Takayama, Yoshinaga; Fujii, Katsunori; Masuda, Mokuri; Kato, Chise; Hatsuse, Hiromi; Fujitani, Kazuko; Nagao, Kazuaki; Kameyama, Kohzoh; Ikehara, Hajime; Toyoda, Masashi; Umezawa, Akihiro; Miyashita, Toshiyuki
2017-08-01
Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterised by developmental defects and tumorigenesis, such as medulloblastomas and basal cell carcinomas, caused by mutations of the patched-1 ( PTCH1 ) gene. In this article, we seek to demonstrate a mosaicism containing double mutations in PTCH1 in an individual with NBCCS. A de novo germline mutation of PTCH1 (c.272delG) was detected in a 31-year-old woman with NBCCS. Gene analysis of two out of four induced pluripotent stem cell (iPSC) clones established from the patient unexpectedly revealed an additional mutation, c.274delT. Deep sequencing confirmed a low-prevalence somatic mutation (5.5%-15.6% depending on the tissue) identical to the one found in iPSC clones. This is the first case of mosaicism unequivocally demonstrated in NBCCS. Furthermore, the mosaicism is unique in that the patient carries one normal and two mutant alleles. Because these mutations are located in close proximity, reversion error is likely to be involved in this event rather than a spontaneous mutation. In addition, this study indicates that gene analysis of iPSC clones can contribute to the detection of mosaicism containing a minor population carrying a second mutation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Tang, Bin; Dutt, Karoni; Papale, Ligia; Rusconi, Raffaella; Shankar, Anupama; Hunter, Jessica; Tufik, Sergio; Yu, Frank H.; Catterall, William A.; Mantegazza, Massimo; Goldin, Alan L.; Escayg, Andrew
2009-01-01
Mutations in the voltage-gated sodium channel SCN1A are responsible for a number of seizure disorders including Generalized Epilepsy with Febrile Seizures Plus (GEFS+) and Severe Myoclonic Epilepsy of Infancy (SMEI). To determine the effects of SCN1A mutations on channel function in vivo, we generated a bacterial artificial chromosome (BAC) transgenic mouse model that expresses the human SCN1A GEFS+ mutation, R1648H. Mice with the R1648H mutation exhibit a more severe response to the proconvulsant kainic acid compared with mice expressing a control Scn1a transgene. Electrophysiological analysis of dissociated neurons from mice with the R1648H mutation reveal delayed recovery from inactivation and increased use-dependent inactivation only in inhibitory bipolar neurons, as well as a hyperpolarizing shift in the voltage dependence of inactivation only in excitatory pyramidal neurons. These results demonstrate that the effects of SCN1A mutations are cell type-dependent and that the R1648H mutation specifically leads to a reduction in interneuron excitability. PMID:19409490
Shukla, Rohit; Shukla, Harish; Tripathi, Timir
2018-01-01
Mycobacterium tuberculosis isocitrate lyase (MtbICL) is a crucial enzyme of the glyoxylate cycle and is a validated anti-tuberculosis drug target. Structurally distant, non-active site mutation (H46A) in MtbICL has been found to cause loss of enzyme activity. The aim of the present work was to explore the structural alterations induced by H46A mutation that caused the loss of enzyme activity. The structural and dynamic consequences of H46A mutation were studied using multiple computational methods such as docking, molecular dynamics simulation and residue interaction network analysis (RIN). Principal component analysis and cross correlation analysis revealed the difference in conformational flexibility and collective modes of motions between the wild-type and mutant enzyme, particularly in the active site region. RIN analysis revealed that the active site geometry was disturbed in the mutant enzyme. Thus, the dynamic perturbation of the active site led to enzyme transition from its active form to inactive form upon mutation. The computational analyses elucidated the mutant-specific conformational alterations, differential dominant motions, and anomalous residue level interactions that contributed to the abrogated function of mutant MtbICL. An understanding of interactions of mutant enzymes may help in modifying the existing drugs and designing improved drugs for successful control of tuberculosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Holocarboxylase synthetase deficiency: novel clinical and molecular findings.
Tammachote, R; Janklat, S; Tongkobpetch, S; Suphapeetiporn, K; Shotelersuk, V
2010-07-01
Multiple carboxylase deficiency (MCD) is an autosomal recessive metabolic disorder caused by defective activity of biotinidase or holocarboxylase synthetase (HLCS) in the biotin cycle. Clinical symptoms include skin lesions and severe metabolic acidosis. Here, we reported four unrelated Thai patients with MCD, diagnosed by urine organic acid analysis. Unlike Caucasians, which biotinidase deficiency has been found to be more common, all of our four Thai patients were affected by HLCS deficiency. Instead of the generally recommended high dose of biotin, our patients were given biotin at 1.2 mg/day. This low-dose biotin significantly improved their clinical symptoms and stabilized the metabolic state on long-term follow-up. Mutation analysis by polymerase chain reaction-sequencing of the entire coding region of the HLCS gene revealed the c.1522C>T (p.R508W) mutation in six of the eight mutant alleles. This suggests it as the most common mutation in the Thai population, which paves the way for a rapid and unsophisticated diagnostic method for the ethnic Thai. Haplotype analysis revealed that the c.1522C>T was on three different haplotypes suggesting that it was recurrent, not caused by a founder effect. In addition, a novel mutation, c.1513G>C (p.G505R), was identified, expanding the mutational spectrum of this gene.
Molecular analysis of holoprosencephaly in South America
Savastano, Clarice Pagani; El-Jaick, Kênia Balbi; Costa-Lima, Marcelo Aguiar; Abath, Cristina Maria Batista; Bianca, Sebastiano; Cavalcanti, Denise Pontes; Félix, Têmis Maria; Scarano, Gioacchino; Llerena, Juan Clinton; Vargas, Fernando Regla; Moreira, Miguel Ângelo Martins; Seuánez, Hector N.; Castilla, Eduardo Enrique; Orioli, Iêda Maria
2014-01-01
Holoprosencephaly (HPE) is a spectrum of brain and facial malformations primarily reflecting genetic factors, such as chromosomal abnormalities and gene mutations. Here, we present a clinical and molecular analysis of 195 probands with HPE or microforms; approximately 72% of the patients were derived from the Latin American Collaborative Study of Congenital Malformations (ECLAMC), and 82% of the patients were newborns. Alobar HPE was the predominant brain defect in almost all facial defect categories, except for patients without oral cleft and median or lateral oral clefts. Ethmocephaly, cebocephaly, and premaxillary agenesis were primarily observed among female patients. Premaxillary agenesis occurred in six of the nine diabetic mothers. Recurrence of HPE or microform was approximately 19%. The frequency of microdeletions, detected using Multiplex Ligation-dependant Probe Amplification (MLPA) was 17% in patients with a normal karyotype. Cytogenetics or QF-PCR analyses revealed chromosomal anomalies in 27% of the probands. Mutational analyses in genes SHH, ZIC2, SIX3 and TGIF were performed in 119 patients, revealing eight mutations in SHH, two mutations in SIX3 and two mutations in ZIC2. Thus, a detailed clinical description of new HPE cases with identified genetic anomalies might establish genotypic and phenotypic correlations and contribute to the development of additional strategies for the analysis of new cases. PMID:24764759
Chen, Chih-Ping; Su, Yi-Ning; Chang, Tung-Yao; Chern, Schu-Rern; Chen, Chen-Yu; Su, Jun-Wei; Wang, Wayseen
2012-06-01
To present second-trimester ultrasound and molecular diagnosis for osteogenesis imperfecta (OI) type I in a female fetus and incidental identification of a dominant COL1A1 deletion mutation in her paucisymptomatic father. A 30-year-old, primigravid woman was referred for genetic counseling in the second trimester because of bowing of the fetal lower limbs. She and her husband were non-consanguineous, and there was no family history of skeletal dysplasias. Prenatal ultrasound at 22 weeks of gestation revealed short and curved right femur and left tibia, and a short left fibula. The lengths of other long bones were normal. The husband was 158 cm tall, had blue sclerae, a history of habitual subluxation and dislocation of bilateral elbows and left knee, and an episode of left ulna fracture, and was not aware of his being affected with OI type I. The woman underwent amniocentesis. Cytogenetic analysis revealed a karyotype of 46,XX. Molecular analysis of the amniocytes revealed a heterozygous deletion mutation of c.1064_1068delCTGGT in exon 17 of the COL1A1 gene. By genetic testing the husband was found to carry the same mutation. Despite counseling of favorable outcome for OI type I with the parents, the woman elected to terminate the pregnancy. Postnatal skeletal X-ray findings were consistent with OI type I. Prenatal ultrasound diagnosis of mild forms of OI should include molecular analysis of type I collagen genes in both fetus and parents. Molecular genetic analysis of the family may incidentally identify a collagen gene mutation in the paucisymptomatic affected parent. Copyright © 2012. Published by Elsevier B.V.
Zhao, Xin; Yang, Chaoshan; Tong, Yi; Zhang, Xiaohui; Xu, Liang; Li, Yang
2010-08-25
To describe the clinical and genetic findings in one Chinese family with juvenile-onset open angle glaucoma (JOAG). One family was examined clinically and a follow-up took place 5 years later. After informed consent was obtained, genomic DNA was extracted from the venous blood of all participants. Linkage analysis was performed with three microsatellite markers around the MYOC gene (D1S196, D1S2815, and D1S218) in the family. Mutation screening of all coding exons of MYOC was performed by direct sequencing of PCR-amplified DNA fragments and restriction fragment length polymorphism (RFLP) analysis. Bioinformatics analysis by the Garnier-Osguthorpe-Robson (GOR) method predicted the effects of variants detected on secondary structures of the MYOC protein. Clinical examination and pedigree analysis revealed a three- generation family with seven members diagnosed with JOAG, three with ocular hypertension, and five normal individuals. Through genotyping, the pedigree showed a linkage to the MYOC on chromosome 1q24-25. Mutation screening of MYOC in this family revealed an A-->T transition at position 1348 (p. N450Y) of the cDNA sequence. This missense mutation co-segregated with the disease phenotype of the family, but was not found in 100 normal controls. Secondary structure prediction of the p.N450Y by the GOR method revealed the replacement of a coil with a beta sheet at the amino acid 447. Early onset JOAG, with incomplete penetrance, is consistent with a novel mutation in MYOC. The finding provides pre-symptomatic molecular diagnosis for the members of this family and is useful for further genetic consultation.
Kageyama, Kazunori; Usui, Takeshi; Yoshizawa, Kaori; Daimon, Makoto
2014-09-01
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant tumor syndrome caused by mutations in the MEN1 gene. Mutations in this tumor suppressor gene are often associated with neuroendocrine tumors. Here we describe a novel deletion mutation at codon 304 in the MEN1 gene of a patient with a prolactinoma and strong family history of pancreatic tumors. We describe the patient's clinical course and mutational analysis and review the relevant literature. A 30-year-old pregnant female was referred to our institution's psychological department for treatment of depression. She had developed a prolactinoma at age 17 and was being treated with 1 mg/week of cabergoline. A medical interview revealed a family history of pancreatic islet cell and other tumors; her mother died of pancreatic cancer, her brother is living with gastrinoma, and her sister died of leiomyosarcoma. Extensive examinations performed after delivery, including laboratory tests and computed tomography (CT) scans, did not reveal any other tumors. Mutational analysis of the MEN1 gene identified a heterozygous deletion mutation (c911_914delAGGT) at codon 304. This mutation produces a frameshift at p.304Lys and might disturb the splicing of intron 6 due to the lack of a donor site. The predicted menin protein from the mutated allele is truncated at amino acid 328. We report a novel deletion mutation (c911_914delAGGT) in the MEN1 gene that was likely associated with the patient's prolactinoma and her strong family history of pancreatic tumors.
Hepatitis B among immigrants from Myanmar: Genotypes and their clinical relevance.
Schulz, Thomas R; Edwards, Rosalind; Thurnheer, M Christine; Yuen, Lilly; Littlejohn, Margaret; Revill, Peter; Chu, Melissa; Tanyeri, Firuz; Wade, Amanda; Biggs, Beverley-Ann; Sasadeusz, Joseph
2018-02-01
Hepatitis B virus (HBV) from 76 adult immigrants in Australia from Myanmar was characterized to determine the prevalence of different HBV genotypes and subgenotypes. A mutational analysis was then performed to determine the presence of clinically significant mutations and correlate them to clinical outcomes. Initial genotyping revealed 68 patients with genotype C (89.5%) and eight patients with genotype B (10.5%). Phylogenetic analysis revealed the large majority of the genotype C infections were of subgenotype C1 (67/68). Sequencing of the HBV polymerase gene (and overlapping surface gene) revealed no mutations associated with antiviral resistance. HBV surface gene mutations were detected in 10 patients with subgenotype C1. HBV BCP/PC sequencing was obtained for 71/76 (93%) patients. BCP and/or PC mutations were identified in 57/71 (80%) of PCR positive patients. Treatment had been commenced for 15/76 (18%) patients, a further 26 untreated patients were in a stage of disease where HBV treatment would be considered standard of care. It was identified that genotype C1 is the predominant sub-genotype in this population. Genotype C is known to be associated with increased risk of development of HCC. This highlights the need for screening for HCC given the potential for the development of liver cancer. It was also identified that people with HBV were potentially not receiving optimal therapy in a timely fashion. © 2017 Wiley Periodicals, Inc.
Severe Bleeding In a Woman Heterozygous for the Fibrinogen γR275C Mutation
Rein, Chantelle M.; Anderson, Brian L; Ballard, Morgan M.; Domes, Christopher M.; Johnston, Joshua M.; Madsen, R. Jared; Wolper, Kathryn K. M.; Terker, Andrew S.; Strother, John M.; Deloughery, Thomas G.; Farrell, David H.
2010-01-01
The dysfibrinogen γR275C can be a clinically silent mutation, with only two out of seventeen cases in the literature reporting a hemorrhagic presentation, and four cases reporting a thrombotic presentation. We describe here a particularly severe presentation in 54-year-old female patient who required a hysterectomy at 47 years of age due to heavy menstrual bleeding. Coagulation studies revealed a prolonged prothrombin time and thrombin time, a normal fibrinogen antigen level, and a low fibrinogen activity level. Molecular analysis of the patient’s DNA revealed a γ chain gene mutation resulting in an amino acid substitution at residue 275 (γR275C). Protein sequencing of the fibrinogen γ chain confirmed this mutation, which was named Fibrinogen Portland I. This case demonstrates that the γR275C mutation can lead to a severe hemorrhagic phenotype. PMID:20386430
IRS2 mutations linked to invasion in pleomorphic invasive lobular carcinoma
Zhu, Sha; Ward, B. Marie; Yu, Jun; Matthew-Onabanjo, Asia N.; Janusis, Jenny; Hsieh, Chung-Cheng; Tomaszewicz, Keith; Hutchinson, Lloyd; Zhu, Lihua Julie; Kandil, Dina; Shaw, Leslie M.
2018-01-01
Pleomorphic invasive lobular carcinoma (PILC) is an aggressive variant of invasive lobular breast cancer that is associated with poor clinical outcomes. Limited molecular data are available to explain the mechanistic basis for PILC behavior. To address this issue, targeted sequencing was performed to identify molecular alterations that define PILC. This sequencing analysis identified genes that distinguish PILC from classic ILC and invasive ductal carcinoma by the incidence of their genomic changes. In particular, insulin receptor substrate 2 (IRS2) is recurrently mutated in PILC, and pathway analysis reveals a role for the insulin receptor (IR)/insulin-like growth factor-1 receptor (IGF1R)/IRS2 signaling pathway in PILC. IRS2 mutations identified in PILC enhance invasion, revealing a role for this signaling adaptor in the aggressive nature of PILC. PMID:29669935
Guo, Lei; Liang, Pei; Zhou, Xuguo; Gao, Xiwu
2014-01-01
A previous study documented a glycine to glutamic acid mutation (G4946E) in ryanodine receptor (RyR) was highly correlated to diamide insecticide resistance in field populations of Plutella xylostella (Lepidoptera: Plutellidae). In this study, a field population collected in Yunnan province, China, exhibited a 2128-fold resistance to chlorantraniliprole. Sequence comparison between resistant and susceptible P. xylostella revealed three novel mutations including a glutamic acid to valine substitution (E1338D), a glutamine to leucine substitution (Q4594L) and an isoleucine to methionine substitution (I4790M) in highly conserved regions of RyR. Frequency analysis of all four mutations in this field population showed that the three new mutations showed a high frequency of 100%, while the G4946E had a frequency of 20%. Furthermore, the florescent ligand binding assay revealed that the RyR containing multiple mutations displayed a significantly lower affinity to the chlorantraniliprole. The combined results suggested that the co-existence of different combinations of the four mutations was involved in the chlorantraniliprole resistance. An allele-specific PCR based method was developed for the diagnosis of the four mutations in the field populations of P. xylostella. PMID:25377064
Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease
Braun, Terry A.; Mullins, Robert F.; Wagner, Alex H.; Andorf, Jeaneen L.; Johnston, Rebecca M.; Bakall, Benjamin B.; Deluca, Adam P.; Fishman, Gerald A.; Lam, Byron L.; Weleber, Richard G.; Cideciyan, Artur V.; Jacobson, Samuel G.; Sheffield, Val C.; Tucker, Budd A.; Stone, Edwin M.
2013-01-01
Mutations in ABCA4 cause Stargardt disease and other blinding autosomal recessive retinal disorders. However, sequencing of the complete coding sequence in patients with clinical features of Stargardt disease sometimes fails to detect one or both mutations. For example, among 208 individuals with clear clinical evidence of ABCA4 disease ascertained at a single institution, 28 had only one disease-causing allele identified in the exons and splice junctions of the primary retinal transcript of the gene. Haplotype analysis of these 28 probands revealed 3 haplotypes shared among ten families, suggesting that 18 of the 28 missing alleles were rare enough to be present only once in the cohort. We hypothesized that mutations near rare alternate splice junctions in ABCA4 might cause disease by increasing the probability of mis-splicing at these sites. Next-generation sequencing of RNA extracted from human donor eyes revealed more than a dozen alternate exons that are occasionally incorporated into the ABCA4 transcript in normal human retina. We sequenced the genomic DNA containing 15 of these minor exons in the 28 one-allele subjects and observed five instances of two different variations in the splice signals of exon 36.1 that were not present in normal individuals (P < 10−6). Analysis of RNA obtained from the keratinocytes of patients with these mutations revealed the predicted alternate transcript. This study illustrates the utility of RNA sequence analysis of human donor tissue and patient-derived cell lines to identify mutations that would be undetectable by exome sequencing. PMID:23918662
Gucev, Z S; Slaveska, N; Laban, N; Danilovski, D; Tasic, V; Pop-Jordanova, N; Zatkova, A
2011-01-01
Alkaptonuria (AKU) is a disorder of phenylalanine/tyrosine metabolism due to a defect in the enzyme homogentisate 1,2-dioxygenase (HGD). This recessive disease is caused by mutations in the HGD gene. We report a 14-year-old girl who was referred after presenting black urine. Careful examination revealed ochronosis of the conjunctiva. There was no affection of the cardiac valves. Elevated excretion of homogentisic acid in urine was found. Sequence analysis of the HGD gene from genomic DNA revealed that the patient is a compound heterozygote with a previously described mutation (c.473C>T, p.Pro158Leu), and a novel one (c.821C>T, p.Pro274Leu). Her mother is heterozygous for the novel mutation, while the brother is heterozygous for the previously described mutation. In summary, we describe an alkaptonuric patient with ocular ochronosis and a novel HGD mutation, c.821C>T, p.Pro274Leu.
Kim, Myeong-Kyu; Park, Man-Seok; Kim, Byeong-Chae; Cho, Ki-Hyun; Kim, Young-Seon; Kim, Jin-Hee; Heo, Tag; Kim, Eun-Young
2005-01-01
The neuronal migration disorders, X-linked lissencephaly syndrome (XLIS) and subcortical band heterotopia (SBH), also called "double cortex", have been linked to missense, nonsense, aberrant splicing, deletion, and insertion mutations in doublecortin (DCX) in families and sporadic cases. Most DCX mutations identified to date are located in two evolutionarily conserved domains. We performed mutation analysis of DCX in two Korean patients with SBH. The SBH patients had mild to moderate developmental delays, drug-resistant generalized seizures, and diffuse thick SBH upon brain MRI. Sequence analysis of the DCX coding region in Patient 1 revealed a c.386 C>T change in exon 3. The sequence variation results in a serine to leucine amino acid change at position 129 (S129L), which has not been found in other family members of Patient 1 or in a large panel of 120 control X-chromosomes. We report here a novel c.386 C>T mutation of DCX that is responsible for SBH. PMID:16100463
Bibi, Nosheen; Ahmad, Saeed; Ahmad, Wasim; Naeem, Muhammad
2011-02-01
Hypohidrotic ectodermal dysplasia is an inherited disorder characterized by defective development of teeth, hairs and sweat glands. X-linked hypohidrotic ectodermal dysplasia is caused by mutations in the EDA gene, and autosomal forms of hypohidrotic ectodermal dysplasia are caused by mutations in either the EDAR or the EDARADD genes. To study the molecular genetic cause of autosomal recessive hypohidrotic ectodermal dysplasia in three consanguineous Pakistani families (A, B and C), genotyping of 13 individuals was carried out by using polymorphic microsatellite markers that are closely linked to the EDAR gene on chromosome 2q11-q13 and the EDARADD gene on chromosome 1q42.2-q43. The results revealed linkage in the three families to the EDAR locus. Sequence analysis of the coding exons and splice junctions of the EDAR gene revealed two mutations: a novel non-sense mutation (p.E124X) in the probands of families A and B and a missense mutation (p.G382S) in the proband of family C. In addition, two synonymous single-nucleotide polymorphisms were also identified. The finding of mutations in Pakistani families extends the body of evidence that supports the importance of EDAR for the development of hypohidrotic ectodermal dysplasia. © 2010 The Authors. Australasian Journal of Dermatology © 2010 The Australasian College of Dermatologists.
Whole-exome sequencing revealed two novel mutations in Usher syndrome.
Koparir, Asuman; Karatas, Omer Faruk; Atayoglu, Ali Timucin; Yuksel, Bayram; Sagiroglu, Mahmut Samil; Seven, Mehmet; Ulucan, Hakan; Yuksel, Adnan; Ozen, Mustafa
2015-06-01
Usher syndrome is a clinically and genetically heterogeneous autosomal recessive inherited disorder accompanied by hearing loss and retinitis pigmentosa (RP). Since the associated genes are various and quite large, we utilized whole-exome sequencing (WES) as a diagnostic tool to identify the molecular basis of Usher syndrome. DNA from a 12-year-old male diagnosed with Usher syndrome was analyzed by WES. Mutations detected were confirmed by Sanger sequencing. The pathogenicity of these mutations was determined by in silico analysis. A maternally inherited deleterious frameshift mutation, c.14439_14454del in exon 66 and a paternally inherited non-sense c.10830G>A stop-gain SNV in exon 55 of USH2A were found as two novel compound heterozygous mutations. Both of these mutations disrupt the C terminal of USH2A protein. As a result, WES revealed two novel compound heterozygous mutations in a Turkish USH2A patient. This approach gave us an opportunity to have an appropriate diagnosis and provide genetic counseling to the family within a reasonable time. Copyright © 2015 Elsevier B.V. All rights reserved.
Manga, Prashiela; Kromberg, Jennifer G. R.; Turner, Angela; Jenkins, Trefor; Ramsay, Michele
2001-01-01
In southern Africa, brown oculocutaneous albinism (BOCA) is a distinct pigmentation phenotype. In at least two cases, it has occurred in the same families as tyrosinase-positive oculocutaneous albinism (OCA2), suggesting that it may be allelic, despite the fact that this phenotype was attributed to mutations in the TYRP1 gene in an American individual of mixed ancestry. Linkage analysis in five families mapped the BOCA locus to the same region as the OCA2 locus (maximum LOD 3.07; θ=0 using a six-marker haplotype). Mutation analysis of the human homologue of the mouse pink-eyed dilution gene (P), in 10 unrelated individuals with BOCA revealed that 9 had one copy of the 2.7-kb deletion. No other mutations were identified. Additional haplotype studies, based on closely linked markers (telomere to centromere: D15S1048, D15S1019, D15S1533, P-gene 2.7-kb deletion, D15S219, and D15S156) revealed several BOCA-associated P haplotypes. These could be divided into two core haplotypes, suggesting that a limited number of P-gene mutations give rise to this phenotype. PMID:11179026
Coexistence of glandular papilloma and sclerosing pneumocytoma in the bronchiole.
Kitawaki, Yuko; Fujishima, Fumiyoshi; Taniuchi, Shinji; Saito, Ryoko; Nakamura, Yasuhiro; Sato, Ryoko; Aoyama, Yayoi; Onodera, Yoshiaki; Inoshita, Naoko; Matsuda, Yasushi; Watanabe, Mika; Sasano, Hironobu
2018-04-25
Both glandular papilloma (GP) and sclerosing pneumocytoma (SP) are rare tumors in the lung. We herein report an extremely rare case of coexistence of these two uncommon tumors. The patient was a 40-year-old Japanese woman with no chief complaint. A solitary nodule of the lung was detected using chest computed tomography. The transbronchial biopsy revealed that the tumor histologically corresponded to GP. The patient subsequently underwent partial resection of the right upper lobe. Histological examination of the resected specimens further revealed that the mass contained two different and independent elements and displayed typically histological features of GP and SP. Molecular analysis further revealed the presence of BRAF V600E and AKT1 E17K mutations in GP, whereas only AKT1 mutation was detected in SP. To our knowledge, this is the first case of coexistence of GP and SP in the bronchiole harboring common AKT1 mutation and different BRAF V600E mutational status. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.
Xiong, Hui Y; Alipanahi, Babak; Lee, Leo J; Bretschneider, Hannes; Merico, Daniele; Yuen, Ryan K C; Hua, Yimin; Gueroussov, Serge; Najafabadi, Hamed S; Hughes, Timothy R; Morris, Quaid; Barash, Yoseph; Krainer, Adrian R; Jojic, Nebojsa; Scherer, Stephen W; Blencowe, Benjamin J; Frey, Brendan J
2015-01-09
To facilitate precision medicine and whole-genome annotation, we developed a machine-learning technique that scores how strongly genetic variants affect RNA splicing, whose alteration contributes to many diseases. Analysis of more than 650,000 intronic and exonic variants revealed widespread patterns of mutation-driven aberrant splicing. Intronic disease mutations that are more than 30 nucleotides from any splice site alter splicing nine times as often as common variants, and missense exonic disease mutations that have the least impact on protein function are five times as likely as others to alter splicing. We detected tens of thousands of disease-causing mutations, including those involved in cancers and spinal muscular atrophy. Examination of intronic and exonic variants found using whole-genome sequencing of individuals with autism revealed misspliced genes with neurodevelopmental phenotypes. Our approach provides evidence for causal variants and should enable new discoveries in precision medicine. Copyright © 2015, American Association for the Advancement of Science.
Mohd-Yusoff, Nur Fatihah; Ruperao, Pradeep; Tomoyoshi, Nurain Emylia; Edwards, David; Gresshoff, Peter M.; Biswas, Bandana; Batley, Jacqueline
2015-01-01
Genetic structure can be altered by chemical mutagenesis, which is a common method applied in molecular biology and genetics. Second-generation sequencing provides a platform to reveal base alterations occurring in the whole genome due to mutagenesis. A model legume, Lotus japonicus ecotype Miyakojima, was chemically mutated with alkylating ethyl methanesulfonate (EMS) for the scanning of DNA lesions throughout the genome. Using second-generation sequencing, two individually mutated third-generation progeny (M3, named AM and AS) were sequenced and analyzed to identify single nucleotide polymorphisms and reveal the effects of EMS on nucleotide sequences in these mutant genomes. Single-nucleotide polymorphisms were found in every 208 kb (AS) and 202 kb (AM) with a bias mutation of G/C-to-A/T changes at low percentage. Most mutations were intergenic. The mutation spectrum of the genomes was comparable in their individual chromosomes; however, each mutated genome has unique alterations, which are useful to identify causal mutations for their phenotypic changes. The data obtained demonstrate that whole genomic sequencing is applicable as a high-throughput tool to investigate genomic changes due to mutagenesis. The identification of these single-point mutations will facilitate the identification of phenotypically causative mutations in EMS-mutated germplasm. PMID:25660167
Mutation and prognostic analyses of PIK3CA in patients with completely resected lung adenocarcinoma.
Song, Zhengbo; Yu, Xinmin; Zhang, Yiping
2016-10-01
PIK3CA mutation represents a clinical subset of diverse carcinomas. We explored the status of PIK3CA mutation and evaluated its genetic variability, treatment, and prognosis in patients with lung adenocarcinoma. A total of 810 patients with completely resected lung adenocarcinoma were recruited between 2008 and 2013. The status of PIK3CA mutation and other three genes, that is, EGFR mutation, KRAS mutation and ALK fusion were examined by reverse transcription-polymerase chain reaction (RT-PCR). Survival curves were plotted with the Kaplan-Meier method and log-rank for comparison. Cox proportional hazard model was performed for multivariate analysis. Among the 810 patients, 23 cases of PIK3CA mutation were identified with a frequency of 2.8%. There were 14 men and 9 women with a median age of 61 years. Seventeen tumors revealed concurrent gene abnormalities of EGFR mutation (n = 12), KRAS mutation (n = 3), and ALK fusion (n = 2). Seven patients with EGFR & PIK3CA mutations recurred and administrated of EGFR-TKIs yielded a median progression free-survival of 6.0 months. Among four eviromous-treated patients, stable disease was observed in three patients with a median Progression-free survival (PFS) of 3.5 months. Patients with and without PIK3CA mutation had different overall survivals (32.2 vs. 49.6 months, P = 0.003). Multivariate analysis revealed that PIK3CA mutation was an independent predictor of poor overall survival (HR = 2.37, P = 0.017). The frequency of PIK3CA mutation was around 2.8% in the Chinese patients of lung adenocarcinoma. PIK3CA mutation was associated with reduced PFS of EGFR-TKIs treatment and shorter overall survival. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
[Analysis of H63D mutation in hemochromatosis (HFE) gene in populations of central Eurasia].
Khusainova, R I; Khusnutdinova, N N; Litvinov, S S; Khusnutdinova, E K
2013-02-01
An analysis of the frequency of H63D (c. 187C>G) mutations in the HFEgene in 19 populations from Central Eurasia demonstrated that the distribution of the mutation in the region of interest was not uniform and that there were the areas of H63D accumulation. The investigation of three polymorphic variants, c.340+4T>C (rs2071303, IVS2(+4)T>C), c.893-44T>C (rs1800708, IVS4(-44)T>C), and c.1007-47G>A (rs1572982, IVS5(-47)A>G), in the HFE gene in individuals homozygous for H63D mutations in the HFE gene revealed the linkage of H63D with three haplotypes, *CTA, *TG, and *TTA. These findings indicated the partial spread of the mutation in Central Eurasia from Western Europe, as well as the possible repeated appearance of the mutation on the territory on interest.
Urzúa, Blanca; Ortega-Pinto, Ana; Farias, Daniela Adorno; Franco, Eugenia; Morales-Bozo, Irene; Moncada, Gustavo; Escobar-Pezoa, Nicolás; Scholz, Ursula; Cifuentes, Victor
2012-01-01
The purpose of this study was to conduct a multidisciplinary analysis of a specific type of tooth enamel disturbance (amelogenesis imperfecta) affecting two Chilean families to obtain a precise diagnosis and to investigate possible underlying mutations. Two non-related families affected with amelogenesis imperfecta were evaluated with clinical, radiographic and histopathological methods. Furthermore, pedigrees of both families were constructed and the presence of eight mutations in the enamelin gene (ENAM) and three mutations in the enamelysin gene (MMP-20) were investigated by PCR and direct sequencing. In the two affected patients, the dental malformation presented as soft and easily disintegrated enamel and exposed dark dentin. Neither of the affected individuals presented with a dental and skeletal open bite. Histologically, a high level of an organic matrix with prismatic organization was found. Genetic analysis indicated that the condition is autosomal recessive in one family and either autosomal recessive or due to a new mutation in the other family. Molecular mutational analysis revealed that none of the eight mutations previously described in the ENAM gene or the three mutations in the MMP-20 gene were present in the probands. A multidisciplinary analysis allowed for a diagnosis of hypocalcified amelogenesis imperfecta, Witkop type III, which was unrelated to previously described mutations in the ENAM or MMP-20 genes.
Lamy, Philippe; Nordentoft, Iver; Birkenkamp-Demtröder, Karin; Thomsen, Mathilde Borg Houlberg; Villesen, Palle; Vang, Søren; Hedegaard, Jakob; Borre, Michael; Jensen, Jørgen Bjerggaard; Høyer, Søren; Pedersen, Jakob Skou; Ørntoft, Torben F; Dyrskjøt, Lars
2016-10-01
Greater knowledge concerning tumor heterogeneity and clonality is needed to determine the impact of targeted treatment in the setting of bladder cancer. In this study, we performed whole-exome, transcriptome, and deep-focused sequencing of metachronous tumors from 29 patients initially diagnosed with early-stage bladder tumors (14 with nonprogressive disease and 15 with progressive disease). Tumors from patients with progressive disease showed a higher variance of the intrapatient mutational spectrum and a higher frequency of APOBEC-related mutations. Allele-specific expression was also higher in these patients, particularly in tumor suppressor genes. Phylogenetic analysis revealed a common origin of the metachronous tumors, with a higher proportion of clonal mutations in the ancestral branch; however, 19 potential therapeutic targets were identified as both ancestral and tumor-specific alterations. Few subclones were present based on PyClone analysis. Our results illuminate tumor evolution and identify candidate therapeutic targets in bladder cancer. Cancer Res; 76(19); 5894-906. ©2016 AACR. ©2016 American Association for Cancer Research.
Evolutionary and genetic analysis of the VP2 gene of canine parvovirus.
Li, Gairu; Ji, Senlin; Zhai, Xiaofeng; Zhang, Yuxiang; Liu, Jie; Zhu, Mengyan; Zhou, Jiyong; Su, Shuo
2017-07-17
Canine parvovirus (CPV) type 2 emerged in 1978 in the USA and quickly spread among dog populations all over the world with high morbidity. Although CPV is a DNA virus, its genomic substitution rate is similar to some RNA viruses. Therefore, it is important to trace the evolution of CPV to monitor the appearance of mutations that might affect vaccine effectiveness. Our analysis shows that the VP2 genes of CPV isolated from 1979 to 2016 are divided into six groups: GI, GII, GIII, GIV, GV, and GVI. Amino acid mutation analysis revealed several undiscovered important mutation sites: F267Y, Y324I, and T440A. Of note, the evolutionary rate of the CPV VP2 gene from Asia and Europe decreased. Codon usage analysis showed that the VP2 gene of CPV exhibits high bias with an ENC ranging from 34.93 to 36.7. Furthermore, we demonstrate that natural selection plays a major role compared to mutation pressure driving CPV evolution. There are few studies on the codon usage of CPV. Here, we comprehensively studied the genetic evolution, codon usage pattern, and evolutionary characterization of the VP2 gene of CPV. The novel findings revealing the evolutionary process of CPV will greatly serve future CPV research.
Molecular and immunohistochemical analysis of P53 in phaeochromocytoma.
Dahia, P. L.; Aguiar, R. C.; Tsanaclis, A. M.; Bendit, I.; Bydlowski, S. P.; Abelin, N. M.; Toledo, S. P.
1995-01-01
We searched for mutations of the p53 gene in 25 phaeochromocytomas using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis of the entire conserved region of the gene, encompassing exons 4-8; expression of the p53 protein was assessed by immunohistochemistry. No mutations were found, while a polymorphism in codon 72 was observed. Immunohistochemistry revealed nuclear p53 overexpression in one tumour sample. We conclude that mutations of the 'hotspot' region of the p53 gene do not seem to play a role in the pathogenesis of phaeochromocytoma. Images Figure 1 Figure 2 Figure 3 PMID:7577469
Arbab Jafari, Pourya; Ayatollahi, Hossein; Sadeghi, Ramin; Sheikhi, Maryam; Asghari, Amir
2018-05-14
Serine/arginine-rich splicing factor 2 (SRSF2) mutations were detected frequently in myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML) patients. However, its prognostic value has not yet been fully clarified. In this meta-analysis, Hazard Ratio (HR) and 95% confidence interval (CI) for overall-survival (OS) were chosen to evaluate the prognostic impact of SRSF2 mutations and to compare SRSF2 mutations to those with wild-type. A total of 2056 patients from 12 studies were obtained. The pooled HRs for OSsuggested that patients with MDS had a poorer prognosis (HR = 1.780, 95% CI (1.410-2.249)), while analysis on SRSF2 mutations revealed no significant effect on the prognosis of CMML patients (HR = 1.091, 95% CI (0.925-1.286)). The frequency of SRSF2 mutations was found to be 11.5% and 39.8% in patients with MDS and CMML, respectively. This meta-analysis suggests that SRSF2 has a poor prognosis in patients with MDS, but no prognosis impact on patients with CMML. In conclusion, SRSF2 mutations were significantly related to the shorter OS in patients with MDS which may consider as an adverse prognostic risk factor. Whereas, analysis did not show any prognostic effect on OS of CMML patients with SRSF2 mutations.
Parkinsonism Associated with Glucocerebrosidase Mutation
Sunwoo, Mun-Kyung; Kim, Seung-Min; Lee, Sarah
2011-01-01
Background Gaucher's disease is an autosomal recessive, lysosomal storage disease caused by mutations of the β-glucocerebrosidase gene (GBA). There is increasing evidence that GBA mutations are a genetic risk factor for the development of Parkinson's disease (PD). We report herein a family of Koreans exhibiting parkinsonism-associated GBA mutations. Case Report A 44-year-old woman suffering from slowness and paresthesia of the left arm for the previous 1.5years, visited our hospital to manage known invasive ductal carcinoma. During a preoperative evaluation, she was diagnosed with Gaucher's disease and double mutations of S271G and R359X in GBA. Parkinsonian features including low amplitude postural tremors, rigidity, bradykinesia and shuffling gait were observed. Genetic analysis also revealed that her older sister, who had also been diagnosed with PD and had been taking dopaminergic drugs for 8-years, also possessed a heterozygote R359X mutation in GBA. 18F-fluoropropylcarbomethoxyiodophenylnortropane positron-emission tomography in these patients revealed decreased uptake of dopamine transporter in the posterior portion of the bilateral putamen. Conclusions This case study demonstrates Korean familial cases of PD with heterozygote mutation of GBA, further supporting the association between PD and GBA mutation. PMID:21779299
McWilliams, S; Nelson, T; Sudo, R T; Zapata-Sudo, G; Batti, M; Sambuughin, N
2002-07-01
Malignant hyperthermia (MH) is an autosomal dominant disorder that predisposes susceptible individuals to a potentially life-threatening crisis when exposed to commonly used anesthetics. Mutations in the skeletal muscle calcium release channel, ryanodine receptor (RYR1) are associated with MH in over 50% of affected families. Linkage analysis of the RYR1 gene region at 19q13 was performed in a large Brazilian family and a distinct disease co-segregating haplotype was revealed in the majority of members with diagnosis of MH. Subsequent sequencing of RYR1 mutational hot spots revealed a nucleotide substitution of C to T at position 7062, causing a novel amino acid change from Arg2355 to Cys associated with MH in the family. Haplotype analysis of the RYR1 gene area at 19q13 in the family with multiple MH members is an important tool in identification of genetic cause underlying this disease.
Novel nonsense mutation in the katA gene of a catalase-negative Staphylococcus aureus strain.
Lagos, Jaime; Alarcón, Pedro; Benadof, Dona; Ulloa, Soledad; Fasce, Rodrigo; Tognarelli, Javier; Aguayo, Carolina; Araya, Pamela; Parra, Bárbara; Olivares, Berta; Hormazábal, Juan Carlos; Fernández, Jorge
2016-01-01
We report the first description of a rare catalase-negative strain of Staphylococcus aureus in Chile. This new variant was isolated from blood and synovial tissue samples of a pediatric patient. Sequencing analysis revealed that this catalase-negative strain is related to ST10 strain, which has earlier been described in relation to S. aureus carriers. Interestingly, sequence analysis of the catalase gene katA revealed presence of a novel nonsense mutation that causes premature translational truncation of the C-terminus of the enzyme leading to a loss of 222 amino acids. Our study suggests that loss of catalase activity in this rare catalase-negative Chilean strain is due to this novel nonsense mutation in the katA gene, which truncates the enzyme to just 283 amino acids. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Locke, Jeffrey B.; Hilgers, Mark; Shaw, Karen Joy
2009-01-01
Following recent reports of ribosomal protein L3 mutations in laboratory-derived linezolid-resistant (LZDr) Staphylococcus aureus, we investigated whether similar mutations were present in LZDr staphylococci of clinical origin. Sequence analysis of a variety of LZDr isolates revealed two L3 mutations, ΔSer145 (S. aureus NRS127) and Ala157Arg (Staphylococcus epidermidis 1653059), both occurring proximal to the oxazolidinone binding site in the peptidyl transferase center. The oxazolidinone torezolid maintained a ≥8-fold potency advantage over linezolid for both strains. PMID:19805557
Dysfibrinogenemia in childhood: two cases of congenital dysfibrinogens.
Kotlín, Roman; Blažek, Bohumír; Suttnar, Jiří; Malý, Martin; Kvasnička, Jan; Dyr, Jan E
2010-10-01
A 2-year-old asymptomatic boy and his relatives were investigated for a suspected fibrinogen mutation after coagulation tests revealed a decreased functional fibrinogen level (family A). Eight-year-old and 1-year-old asymptomatic brothers were investigated for a suspected fibrinogen mutation after coagulation tests revealed a decreased functional fibrinogen level and prolonged thrombin time (family B). To identify whether genetic mutations were responsible for these dysfibrinogens, DNA extracted from the blood was analyzed. Fibrin polymerization and fibrinolysis were measured by a turbidimetric method at 450 nm. DNA analysis was performed by the Sanger method. Mass spectroscopy was performed on a Biflex IV mass spectrometer. DNA sequencing showed the heterozygous point mutation Aα Arg16His in the fibrinogen of family A and the heterozygous point mutation Aα Arg16Cys in the fibrinogen of family B. Kinetics of fibrinopeptide release, fibrinolysis, and fibrin polymerization were impaired in the carriers of the mutations in both families. Mass spectroscopy showed the presence of mutant fibrinogen chains in circulation. Scanning electron microscopy revealed thicker fibrin fibers, differing significantly from the normal control in both cases. Two cases of asymptomatic dysfibrinogenemias, found by routine coagulation testing, were genetically identified as new cases of fibrinogen variants Aα Arg16His and Aα Arg16Cys.
Jatana, Nidhi; Thukral, Lipi; Latha, N
2016-01-01
Human Dopamine Receptor D4 (DRD4) orchestrates several neurological functions and represents a target for many psychological disorders. Here, we examined two rare variants in DRD4; V194G and R237L, which elicit functional alterations leading to disruption of ligand binding and G protein coupling, respectively. Using atomistic molecular dynamics (MD) simulations, we provide in-depth analysis to reveal structural signatures of wild and mutant complexes with their bound agonist and antagonist ligands. We constructed intra-protein network graphs to discriminate the global conformational changes induced by mutations. The simulations also allowed us to elucidate the local side-chain dynamical variations in ligand-bound mutant receptors. The data suggest that the mutation in transmembrane V (V194G) drastically disrupts the organization of ligand binding site and causes disorder in the native helical arrangement. Interestingly, the R237L mutation leads to significant rewiring of side-chain contacts in the intracellular loop 3 (site of mutation) and also affects the distant transmembrane topology. Additionally, these mutations lead to compact ICL3 region compared to the wild type, indicating that the receptor would be inaccessible for G protein coupling. Our findings thus reveal unreported structural determinants of the mutated DRD4 receptor and provide a robust framework for design of effective novel drugs.
Kono, Michihiro; Takama, Hiromichi; Hamajima, Nobuyuki; Akiyama, Masashi
2014-01-01
Mutations in LIPH cause of autosomal recessive woolly hair/hypotrichosis (ARWH), and the 2 missense mutations c.736T>A (p.Cys246Ser) and c.742C>A (p.His248Asn) are considered prevalent founder mutations for ARWH in the Japanese population. To reveal genotype/phenotype correlations in ARWH cases in Japan and the haplotypes in 14 Japanese patients from 14 unrelated Japanese families. 13 patients had woolly hair, and 1 patient had complete baldness since birth. An LIPH mutation search revealed homozygous c.736T>A mutations in 10 of the patients. Compound heterozygous c.736T>A and c.742C>A mutations were found in 3 of the patients, and homozygous c.742C>A mutation in 1 patient. The phenotype of mild hypotrichosis with woolly hair was restricted to the patients with the homozygous c.736T>A mutation. The severe phenotype of complete baldness was seen in only 1 patient with homozygous c.742C>A. Haplotype analysis revealed that the alleles containing the LIPH c.736T>A mutation had a haplotype identical to that reported previously, although 4 alleles out of 5 chromosomes containing the LIPH c.742C>A mutation had a different haplotype from the previously reported founder allele. These alleles with c.742C>A are thought to be the third founder LIPH mutation causing ARWH. To accurately determine the prevalence of the founder mutations, we investigated allele frequencies of those mutations in 819 Japanese controls. Heterozygous c.736T>A mutations were found in 13 controls (allele frequency: 0.0079; carrier rate: 0.016), and heterozygous c.742C>A mutations were found in 2 controls (allele frequency: 0.0012; carrier rate: 0.0024). In conclusion, this study confirms the more accurate allele frequencies of the pathogenic founder mutations of LIPH and shows that there is a third founder mutation in Japan. In addition, the present findings suggest that the mutation patterns of LIPH might be associated with hypotrichosis severity in ARWH. PMID:24586639
Hereditary cancer genes are highly susceptible to splicing mutations
Soemedi, Rachel; Maguire, Samantha; Murray, Michael F.; Monaghan, Sean F.
2018-01-01
Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5′ and 3′ splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77%) of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36%) of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing. PMID:29505604
Ardighieri, Laura; Zeppernick, Felix; Hannibal, Charlotte G; Vang, Russell; Cope, Leslie; Junge, Jette; Kjaer, Susanne K; Kurman, Robert J; Shih, Ie-Ming
2014-01-01
There is debate as to whether peritoneal implants associated with serous borderline tumours/atypical proliferative serous tumours (SBT/APSTs) of the ovary are derived from the primary ovarian tumour or arise independently in the peritoneum. We analysed 57 SBT/APSTs from 45 patients with advanced-stage disease identified from a nation-wide tumour registry in Denmark. Mutational analysis for hotspots in KRAS and BRAF was successful in 55 APSTs and demonstrated KRAS mutations in 34 (61.8%) and BRAF mutations in eight (14.5%). Mutational analysis was successful in 56 peritoneal implants and revealed KRAS mutations in 34 (60.7%) and BRAF mutations in seven (12.5%). Mutational analysis could not be performed in two primary tumours and in nine implants, either because DNA amplification failed or because there was insufficient tissue for mutational analysis. For these specimens we performed VE1 immunohistochemistry, which was shown to be a specific and sensitive surrogate marker for a V600E BRAF mutation. VE1 staining was positive in one of two APSTs and seven of nine implants. Thus, among 63 implants for which mutation status was known (either by direct mutational analysis or by VE1 immunohistochemistry), 34 (53.9%) had KRAS mutations and 14 (22%) had BRAF mutations, of which identical KRAS mutations were found in 34 (91%) of 37 SBT/APST–implant pairs and identical BRAF mutations in 14 (100%) of 14 SBT/APST–implant pairs. Wild-type KRAS and BRAF (at the loci investigated) were found in 11 (100%) of 11 SBT/APST–implant pairs. Overall concordance of KRAS and BRAF mutations was 95% in 59 of 62 SBT/APST–implant (non-invasive and invasive) pairs (p < 0.00001). This study provides cogent evidence that the vast majority of peritoneal implants, non-invasive and invasive, harbour the identical KRAS or BRAF mutations that are present in the associated SBT/APST, supporting the view that peritoneal implants are derived from the primary ovarian tumour. PMID:24307542
Bu, Rong; Siraj, Abdul K; Al-Obaisi, Khadija A S; Beg, Shaham; Al Hazmi, Mohsen; Ajarim, Dahish; Tulbah, Asma; Al-Dayel, Fouad; Al-Kuraya, Khawla S
2016-09-01
Ethnic differences of breast cancer genomics have prompted us to investigate the spectra of BRCA1 and BRCA2 mutations in different populations. The prevalence and effect of BRCA 1 and BRCA 2 mutations in Middle Eastern population is not fully explored. To characterize the prevalence of BRCA mutations in Middle Eastern breast cancer patients, BRCA mutation screening was performed in 818 unselected breast cancer patients using Capture and/or Sanger sequencing. 19 short tandem repeat (STR) markers were used for founder mutation analysis. In our study, nine different types of deleterious mutation were identified in 28 (3.4%) cases, 25 (89.3%) cases in BRCA 1 and 3 (10.7%) cases in BRCA 2. Seven recurrent mutations identified accounted for 92.9% (26/28) of all the mutant cases. Haplotype analysis was performed to confirm c.1140 dupG and c.4136_4137delCT mutations as novel putative founder mutation, accounting for 46.4% (13/28) of all BRCA mutant cases and 1.6% (13/818) of all the breast cancer cases, respectively. Moreover, BRCA 1 mutation was significantly associated with BRCA 1 protein expression loss (p = 0.0005). Our finding revealed that a substantial number of BRCA mutations were identified in clinically high risk breast cancer from Middle East region. Identification of the mutation spectrum, prevalence and founder effect in Middle Eastern population facilitates genetic counseling, risk assessment and development of cost-effective screening strategy. © 2016 UICC.
Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Tomiguchi, Mai; Sueta, Aiko; Murakami, Keiichi; Omoto, Yoko; Iwase, Hirotaka
2017-08-08
The measurement of ESR1 and PIK3CA mutations in plasma cell-free DNA (cfDNA) has been studied as a non-invasive method to quickly assess and monitor endocrine therapy (ET) resistant metastatic breast cancer (MBC) patients. The subjects of this retrospective study were a total of 185 plasma samples from 86 estrogen receptor-positive BC patients, of which 151 plasma samples were from 69 MBC patients and 34 plasma samples were from 17 primary BC (PBC) patients. We developed multiplex droplet digital PCR assays to verify the clinical significance of ESR1 and PIK3CA mutations both in a snapshot and serially in these patients. cfDNA ESR1 and PIK3CA mutations were found in 28.9% and 24.6 % of MBC patients, respectively. The relation between ESR1 or PIK3CA mutations and clinical features showed that ESR1 mutations occurred mostly in patients previously treated by ET, which was not the case for PIK3CA mutations. The analysis of the clinical impact of those mutations on subsequent lines of treatment for the 69 MBC patients revealed that both ESR1 and PIK3CA mutations detection were related to a shorter duration of ET effectiveness in univariate analysis but only for ESR1 mutations in multivariate analysis. The monitoring of cfDNA in a subset of 52 patients showed that loss of ESR1 mutations was related to a longer duration of response, which was not the case for PIK3CA mutations. We have demonstrated the clinical significance of on-treatment ESR1 mutations both in a snapshot and serially in comparison with PIK3CA mutations.
Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Tomiguchi, Mai; Sueta, Aiko; Murakami, Keiichi; Omoto, Yoko; Iwase, Hirotaka
2017-01-01
Background The measurement of ESR1 and PIK3CA mutations in plasma cell-free DNA (cfDNA) has been studied as a non-invasive method to quickly assess and monitor endocrine therapy (ET) resistant metastatic breast cancer (MBC) patients. Methods The subjects of this retrospective study were a total of 185 plasma samples from 86 estrogen receptor-positive BC patients, of which 151 plasma samples were from 69 MBC patients and 34 plasma samples were from 17 primary BC (PBC) patients. We developed multiplex droplet digital PCR assays to verify the clinical significance of ESR1 and PIK3CA mutations both in a snapshot and serially in these patients. Results cfDNA ESR1 and PIK3CA mutations were found in 28.9% and 24.6 % of MBC patients, respectively. The relation between ESR1 or PIK3CA mutations and clinical features showed that ESR1 mutations occurred mostly in patients previously treated by ET, which was not the case for PIK3CA mutations. The analysis of the clinical impact of those mutations on subsequent lines of treatment for the 69 MBC patients revealed that both ESR1 and PIK3CA mutations detection were related to a shorter duration of ET effectiveness in univariate analysis but only for ESR1 mutations in multivariate analysis. The monitoring of cfDNA in a subset of 52 patients showed that loss of ESR1 mutations was related to a longer duration of response, which was not the case for PIK3CA mutations. Conclusions We have demonstrated the clinical significance of on-treatment ESR1 mutations both in a snapshot and serially in comparison with PIK3CA mutations. PMID:28881720
Hoefele, Julia; Mayer, Karin; Marschall, Christoph; Alberer, Martin; Klein, Hanns-Georg; Kirschstein, Martin
2016-11-01
There are several clinical reports about the co-occurrence of autosomal dominant polycystic kidney disease (ADPKD) and connective tissue disorders. A simultaneous occurrence of osteogenesis imperfecta (OI) type I and ADPKD has not been observed so far. This report presents the first patient with OI type I and ADPKD. Mutational analysis of PKD1 and COL1A1 in the index patient revealed a heterozygous mutation in each of the two genes. Mutational analysis of the parents indicated the mother as a carrier of the PKD1 mutation and the father as a carrier of the COL1A1 mutation. The simultaneous occurrence of both disorders has an estimated frequency of 3.5:100 000 000. In singular cases, ADPKD can occur in combination with other rare disorders, e.g. connective tissue disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmen Herranz, Ma; Sanchez-Navarro, Jesus-Angel; Sauri, Ana
2005-08-15
The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutantsmore » and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.« less
Carmen Herranz, Ma; Sanchez-Navarro, Jesús-Angel; Saurí, Ana; Mingarro, Ismael; Pallás, Vicente
2005-08-15
The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.
Detection and Characteristics of Rifampicin-Resistant Isolates of Mycobacterium tuberculosis.
Cherednichenko, A G; Dymova, M A; Solodilova, O A; Petrenko, T I; Prozorov, A I; Filipenko, M L
2016-03-01
Genotyping and analysis the drug resistance of 59 isolates of M. tuberculosis obtained from patients living in Altai Territory were performed using a BACTEC MGIT 960 fluorometric system by means of VNTR typing (variable number tandem repeat), PCR-RFLP analysis, and sequence analysis. The occurrence frequency was highest for isolates of the Beijing family (n=30, 50.8%). Analysis of mutation spectrum in the rpoB gene associated with rifampicin resistance revealed the major mutation (codon 531 of the rpoB gene) in 93% samples, which allows us to use rapid test systems.
Molar Tooth Sign with Deranged Liver Function Tests: An Indian Case with COACH Syndrome.
Sanjeev, Rama Krishna; Kapoor, Seema; Goyal, Manisha; Kapur, Rajiv; Gleeson, Joseph Gerard
2015-01-01
We report the first genetically proven case of COACH syndrome from the Indian subcontinent in a 6-year-old girl who presented with typical features of Joubert syndrome along with hepatic involvement. Mutation analysis revealed compound heterozygous missense mutation in the known gene TMEM67 (also called MKS3).
Cataracts and Microphthalmia Caused by a Gja8 Mutation in Extracellular Loop 2
Cheng, Catherine; White, Thomas W.; Gong, Xiaohua
2012-01-01
The mouse semi-dominant Nm2249 mutation displays variable cataracts in heterozygous mice and smaller lenses with severe cataracts in homozygous mice. This mutation is caused by a Gja8R205G point mutation in the second extracellular loop of the Cx50 (or α8 connexin) protein. Immunohistological data reveal that Cx50-R205G mutant proteins and endogenous wild-type Cx46 (or α3 connexin) proteins form diffuse tiny spots rather than typical punctate signals of normal gap junctions in the lens. The level of phosphorylated Cx46 proteins is decreased in Gja8R205G/R205G mutant lenses. Genetic analysis reveals that the Cx50-R205G mutation needs the presence of wild-type Cx46 to disrupt lens peripheral fibers and epithelial cells. Electrophysiological data in Xenopus oocytes reveal that Cx50-R205G mutant proteins block channel function of gap junctions composed of wild-type Cx50, but only affect the gating of wild-type Cx46 channels. Both genetic and electrophysiological results suggest that Cx50-R205G mutant proteins alone are unable to form functional channels. These findings imply that the Gja8R205G mutation differentially impairs the functions of Cx50 and Cx46 to cause cataracts, small lenses and microphthalmia. The Gja8R205G mutation occurs at the same conserved residue as the human GJA8R198W mutation. This work provides molecular insights to understand the cataract and microphthalmia/microcornea phenotype caused by Gja8 mutations in mice and humans. PMID:23300808
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vries, D.D.; Oost, B.A. van; Went, L.N.
1996-04-01
A rare form of Leber hereditary optic neuropathy (LHON) that is associated with hereditary spastic dystonia has been studied in a large Dutch family. Neuropathy and ophthalmological lesions were present together in some family members, whereas only one type of abnormality was found in others. mtDNA mutations previously reported in LHON were not present. Sequence analysis of the protein-coding mitochondrial genes revealed two previously unreported mtDNA mutations. A heteroplasmic A{yields}G transition at nucleotide position 11696 in the ND4 gene resulted in the substitution of an isoleucine for valine at amino acid position 312. A second mutation, a homoplasmic T{yields}A transitionmore » at nucleotide position 14596 in the ND6 gene, resulted in the substitution of a methionine for the isoleucine at amino acid residue 26. Biochemical analysis of a muscle biopsy revealed a severe complex I deficiency, providing a link between these unique mtDNA mutations and this rare, complex phenotype including Leber optic neuropathy. 80 refs., 2 figs., 3 tabs.« less
McConnell, Bradley K; Singh, Sonal; Fan, Qiying; Hernandez, Adriana; Portillo, Jesus P; Reiser, Peter J; Tikunova, Svetlana B
2015-01-01
The physiological consequences of aberrant Ca(2+) binding and exchange with cardiac myofilaments are not clearly understood. In order to examine the effect of decreasing Ca(2+) sensitivity of cTnC on cardiac function, we generated knock-in mice carrying a D73N mutation (not known to be associated with heart disease in human patients) in cTnC. The D73N mutation was engineered into the regulatory N-domain of cTnC in order to reduce Ca(2+) sensitivity of reconstituted thin filaments by increasing the rate of Ca(2+) dissociation. In addition, the D73N mutation drastically blunted the extent of Ca(2+) desensitization of reconstituted thin filaments induced by cTnI pseudo-phosphorylation. Compared to wild-type mice, heterozygous knock-in mice carrying the D73N mutation exhibited a substantially decreased Ca(2+) sensitivity of force development in skinned ventricular trabeculae. Kaplan-Meier survival analysis revealed that median survival time for knock-in mice was 12 weeks. Echocardiographic analysis revealed that knock-in mice exhibited increased left ventricular dimensions with thinner walls. Echocardiographic analysis also revealed that measures of systolic function, such as ejection fraction (EF) and fractional shortening (FS), were dramatically reduced in knock-in mice. In addition, knock-in mice displayed electrophysiological abnormalities, namely prolonged QRS and QT intervals. Furthermore, ventricular myocytes isolated from knock-in mice did not respond to β-adrenergic stimulation. Thus, knock-in mice developed pathological features similar to those observed in human patients with dilated cardiomyopathy (DCM). In conclusion, our results suggest that decreasing Ca(2+) sensitivity of the regulatory N-domain of cTnC is sufficient to trigger the development of DCM.
Chahal, Manik; Pleasance, Erin; Grewal, Jasleen; Zhao, Eric; Ng, Tony; Chapman, Erin; Jones, Martin R.; Shen, Yaoqing; Mungall, Karen L.; Bonakdar, Melika; Taylor, Gregory A.; Ma, Yussanne; Mungall, Andrew J.; Moore, Richard A.; Lim, Howard; Renouf, Daniel; Yip, Stephen; Jones, Steven J.M.; Marra, Marco A.; Laskin, Janessa
2018-01-01
Metastatic adenoid cystic carcinomas (ACCs) can cause significant morbidity and mortality. Because of their slow growth and relative rarity, there is limited evidence for systemic therapy regimens. Recently, molecular profiling studies have begun to reveal the genetic landscape of these poorly understood cancers, and new treatment possibilities are beginning to emerge. The objective is to use whole-genome and transcriptome sequencing and analysis to better understand the genetic alterations underlying the pathology of metastatic and rare ACCs and determine potentially actionable therapeutic targets. We report five cases of metastatic ACC, not originating in the salivary glands, in patients enrolled in the Personalized Oncogenomics (POG) Program at the BC Cancer Agency. Genomic workup included whole-genome and transcriptome sequencing, detailed analysis of tumor alterations, and integration with existing knowledge of drug–target combinations to identify potential therapeutic targets. Analysis reveals low mutational burden in these five ACC cases, and mutation signatures that are commonly observed in multiple cancer types. Notably, the only recurrent structural aberration identified was the well-described MYB-NFIB fusion that was present in four of five cases, and one case exhibited a closely related MYBL1-NFIB fusion. Recurrent mutations were also identified in BAP1 and BCOR, with additional mutations in individual samples affecting NOTCH1 and the epigenetic regulators ARID2, SMARCA2, and SMARCB1. Copy changes were rare, and they included amplification of MYC and homozygous loss of CDKN2A in individual samples. Genomic analysis revealed therapeutic targets in all five cases and served to inform a therapeutic choice in three of the cases to date. PMID:29610392
Ardin, Maude; Cahais, Vincent; Castells, Xavier; Bouaoun, Liacine; Byrnes, Graham; Herceg, Zdenko; Zavadil, Jiri; Olivier, Magali
2016-04-18
The nature of somatic mutations observed in human tumors at single gene or genome-wide levels can reveal information on past carcinogenic exposures and mutational processes contributing to tumor development. While large amounts of sequencing data are being generated, the associated analysis and interpretation of mutation patterns that may reveal clues about the natural history of cancer present complex and challenging tasks that require advanced bioinformatics skills. To make such analyses accessible to a wider community of researchers with no programming expertise, we have developed within the web-based user-friendly platform Galaxy a first-of-its-kind package called MutSpec. MutSpec includes a set of tools that perform variant annotation and use advanced statistics for the identification of mutation signatures present in cancer genomes and for comparing the obtained signatures with those published in the COSMIC database and other sources. MutSpec offers an accessible framework for building reproducible analysis pipelines, integrating existing methods and scripts developed in-house with publicly available R packages. MutSpec may be used to analyse data from whole-exome, whole-genome or targeted sequencing experiments performed on human or mouse genomes. Results are provided in various formats including rich graphical outputs. An example is presented to illustrate the package functionalities, the straightforward workflow analysis and the richness of the statistics and publication-grade graphics produced by the tool. MutSpec offers an easy-to-use graphical interface embedded in the popular Galaxy platform that can be used by researchers with limited programming or bioinformatics expertise to analyse mutation signatures present in cancer genomes. MutSpec can thus effectively assist in the discovery of complex mutational processes resulting from exogenous and endogenous carcinogenic insults.
PDH E1β deficiency with novel mutations in two patients with Leigh syndrome.
Quintana, E; Mayr, J A; García Silva, M T; Font, A; Tortoledo, M A; Moliner, S; Ozaez, L; Lluch, M; Cabello, A; Ricoy, J R; Koch, J; Ribes, A; Sperl, W; Briones, P
2009-12-01
Most cases of pyruvate dehydrogenase complex (PDHc) deficiency are attributable to mutations in the PDHA1 gene which encodes the E(1)α subunit, with few cases of mutations in the genes for E(3), E3BP (E(3) binding protein), E(2) and E(1)-phosphatase being reported. Only seven patients with deficiency of the E(1)β subunit have been described, with mutations in the PDHB gene in six of them. Clinically they presented with a non-specific encephalomyopathy. We report two patients with new mutations in PDHB and Leigh syndrome. Patient 1 was a boy with neonatal onset of hyperlactataemia, corpus callosum hypoplasia and a convulsive encephalopathy. After neurological deterioration, he died at age 5 months. Autopsy revealed the characteristic features of Leigh syndrome. Patient 2, also a boy, presented a milder clinical course. First symptoms were noticed at age 16 months with muscular hypotonia, lactic acidosis and recurrent episodes of somnolence and transient tetraparesis. MRI revealed bilateral signal hyperintensities in the globus pallidus, midbrain and crura cerebri. PDHc and E(1) activities were deficient in fibroblasts in patient 1; in patient 2 PDHc deficiency was found in skeletal muscle. Mutations in PDHA1 were excluded. Sequencing of PDHB revealed a homozygous point mutation (c.302T>C), causing a predicted amino acid change (p.M101T) in patient 1. Patient 2 is compound heterozygote for mutations c.301A>G (p.M101V) and c.313G>A (p.R105Q). All three mutations appear to destabilize the E(1) enzyme with a decrease of both E(1)α and E(1)β subunits in immunoblot analysis. To our knowledge, these patients with novel PDHB mutations are the first reported with Leigh syndrome.
Goji, Katsumi; Ozaki, Kayo; Sadewa, Ahmad H; Nishio, Hisahide; Matsuo, Masafumi
2006-02-01
Familial hypophosphatemic rickets is usually transmitted as an X-linked dominant disorder (XLH), although autosomal dominant forms have also been observed. Genetic studies of these disorders have identified mutations in PHEX and FGF23 as the causes of X-linked dominant disorder and autosomal dominant forms, respectively. The objective of the study was to describe the molecular genetic findings in a family affected by hypophosphatemic rickets with presumed autosomal dominant inheritance. We studied a family in which the father and the elder of his two daughters, but not the second daughter, were affected by hypophosphatemic rickets. The pedigree interpretation of the family suggested that genetic transmission of the disorder occurred as an autosomal dominant trait. Direct nucleotide sequencing of FGF23 and PHEX revealed that the elder daughter was heterozygous for an R567X mutation in PHEX, rather than FGF23, suggesting that the genetic transmission occurred as an X-linked dominant trait. Unexpectedly, the father was heterozygous for this mutation. Single-nucleotide primer extension and denaturing HPLC analysis of the father using DNA from single hair roots revealed that he was a somatic mosaic for the mutation. Haplotype analysis confirmed that the father transmitted the genotypes for 18 markers on the X chromosome equally to his two daughters. The fact that the father transmitted the mutation to only one of his two daughters indicated that he was a germline mosaic for the mutation. Somatic and germline mosaicism for an X-linked dominant mutation in PHEX may mimic autosomal dominant inheritance.
Hirschhorn, R; Chakravarti, V; Puck, J; Douglas, S D
1991-01-01
We have identified a previously unrecognized missense mutation in a patient with severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID). The mutation is a G646-to-A transition at a CG dinucleotide and predicts a glycine-to-arginine substitution at codon 216. Computer analysis of secondary structure predicts a major alteration with loss of a beta-pleated sheet in a highly conserved region of the protein. The basepair substitution also generates a new site for the restriction enzyme BstXI in exon 7 of the genomic DNA. Digestion of genomic DNA from the patient and from his parents revealed that he was homozygous for the mutation and that his mother and father were carriers. This mutation in homozygous form appears to be associated with very severe disease, since the patient had perinatal onset of clinical manifestations of SCID, the highest concentration of the toxic metabolite deoxyATP in nine patients studied, and a relatively poor immunologic response during the initial 2 years of therapy with polyethylene glycol-adenosine deaminase. Analysis of DNA from 21 additional patients with ADA-SCID and from 19 unrelated normals revealed that, while none of the normal individuals showed the abnormal restriction fragment, two of the 21 patients studied were heterozygous for the G646-to-A mutation. Images Figure 2 PMID:1680289
Schrank, Bertold; Schoser, Benedikt; Klopstock, Thomas; Schneiderat, Peter; Horvath, Rita; Abicht, Angela; Holinski-Feder, Elke; Augustis, Sarunas
2017-05-01
We report a 36-year-old female having lifetime exercise intolerance and lactic acidosis with nausea associated with novel compound heterozygous Acyl-CoA dehydrogenase 9 gene (ACAD9) mutations (p.Ala390Thr and p.Arg518Cys). ACAD9 is an assembly factor for the mitochondrial respiratory chain complex I. ACAD9 mutations are recognized as frequent causes of complex I deficiency. Our patient presented with exercise intolerance, rapid fatigue, and nausea since early childhood. Mild physical workload provoked the occurrence of nausea and vomiting repeatedly. Her neurological examination, laboratory findings and muscle biopsy demonstrated no abnormalities. A bicycle spiroergometry provoked significant lactic acidosis during and following exercise pointing towards a mitochondrial disorder. Subsequently, the analysis of respiratory chain enzyme activities in muscle revealed severe isolated complex I deficiency. Candidate gene sequencing revealed two novel heterozygous ACAD9 mutations. This patient report expands the mutational and phenotypic spectrum of diseases associated with mutations in ACAD9. Copyright © 2017 Elsevier B.V. All rights reserved.
Identifcation of a Novel Mutation p.I240T in the FRMD7 gene in a Family with Congenital Nystagmus
NASA Astrophysics Data System (ADS)
Zhu, Yihua; Zhuang, Jianfu; Ge, Xianglian; Zhang, Xiao; Wang, Zheng; Sun, Ji; Yang, Juhua; Gu, Feng
2013-10-01
Congenital Nystagmus (CN) is a genetically heterogeneous ocular disease, which causes a significant proportion of childhood visual impairment. To identify the underlying genetic defect of a CN family, twenty-two members were recruited. Genotype analysis showed that affected individuals shared a common haplotype with markers flanking FRMD7 locus. Sequencing FRMD7 revealed a T > C transition in exon 8, causing a conservative substitution of Isoleucine to Tyrosine at codon 240. By protein structural modeling, we found the mutation may disrupt the hydrophobic core and destabilize the protein structure. We reviewed the literature and found that exons 2, 8, and 9 (11.4% of the sequence of FRMD7 mRNA) represent the majority (55.3%) of the reported FRMD7 mutations. In summary, we identified a novel mutation in FRMD7, showed its molecular consequence, and revealed the mutation-rich exons of the FRMD7 gene. Collectively, this provides molecular insights for future CN clinical genetic diagnosis and treatment.
Christofferson, Austin; Aldrich, Jessica; Jewell, Scott; Kittles, Rick A.; Derome, Mary; Craig, David Wesley; Carpten, John D.
2017-01-01
Multiple Myeloma (MM) is a plasma cell malignancy with significantly greater incidence and mortality rates among African Americans (AA) compared to Caucasians (CA). The overall goal of this study is to elucidate differences in molecular alterations in MM as a function of self-reported race and genetic ancestry. Our study utilized somatic whole exome, RNA-sequencing, and correlated clinical data from 718 MM patients from the Multiple Myeloma Research Foundation CoMMpass study Interim Analysis 9. Somatic mutational analyses based upon self-reported race corrected for ancestry revealed significant differences in mutation frequency between groups. Of interest, BCL7A, BRWD3, and AUTS2 demonstrate significantly higher mutation frequencies among AA cases. These genes are all involved in translocations in B-cell malignancies. Moreover, we detected a significant difference in mutation frequency of TP53 and IRF4 with frequencies higher among CA cases. Our study provides rationale for interrogating diverse tumor cohorts to best understand tumor genomics across populations. PMID:29166413
Eisenkraft, Arik; Pode-Shakked, Ben; Goldstein, Nurit; Shpirer, Zvi; van Bokhoven, Hans; Anikster, Yair
2015-01-01
Mutations in the TP63 gene have been associated with a variety of ectodermal dysplasia syndromes, among which the clinically overlapping Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) and the Rapp-Hodgkin syndromes. We report a multiplex nonconsanguineous family of Ashkenazi-Jewish descent, in which the index patient presented with a persistent scalp skin lesion, dystrophic nails and light thin hair. Further evaluation revealed over 10 affected individuals in the kindred, over four generations, exhibiting varying degrees of ectodermal involvement. Analysis of the TP63 gene from four of the patients and from two healthy individuals of the same family was performed. Gene sequencing of the patients revealed a nonsense mutation leading to a premature termination codon (PTC) (p.Gln16X). The same mutation was found in all tested affected individuals in the family, but gave rise to marked phenotypic variability with minor clinical manifestations in some individuals, underscoring the clinical heterogeneity associated with the recently described PTC-causing mutations.
Identifcation of a novel mutation p.I240T in the FRMD7 gene in a family with congenital nystagmus.
Zhu, Yihua; Zhuang, Jianfu; Ge, Xianglian; Zhang, Xiao; Wang, Zheng; Sun, Ji; Yang, Juhua; Gu, Feng
2013-10-30
Congenital Nystagmus (CN) is a genetically heterogeneous ocular disease, which causes a significant proportion of childhood visual impairment. To identify the underlying genetic defect of a CN family, twenty-two members were recruited. Genotype analysis showed that affected individuals shared a common haplotype with markers flanking FRMD7 locus. Sequencing FRMD7 revealed a T > C transition in exon 8, causing a conservative substitution of Isoleucine to Tyrosine at codon 240. By protein structural modeling, we found the mutation may disrupt the hydrophobic core and destabilize the protein structure. We reviewed the literature and found that exons 2, 8, and 9 (11.4% of the sequence of FRMD7 mRNA) represent the majority (55.3%) of the reported FRMD7 mutations. In summary, we identified a novel mutation in FRMD7, showed its molecular consequence, and revealed the mutation-rich exons of the FRMD7 gene. Collectively, this provides molecular insights for future CN clinical genetic diagnosis and treatment.
Identifcation of a Novel Mutation p.I240T in the FRMD7 gene in a Family with Congenital Nystagmus
Zhu, Yihua; Zhuang, Jianfu; Ge, Xianglian; Zhang, Xiao; Wang, Zheng; Sun, Ji; Yang, Juhua; Gu, Feng
2013-01-01
Congenital Nystagmus (CN) is a genetically heterogeneous ocular disease, which causes a significant proportion of childhood visual impairment. To identify the underlying genetic defect of a CN family, twenty-two members were recruited. Genotype analysis showed that affected individuals shared a common haplotype with markers flanking FRMD7 locus. Sequencing FRMD7 revealed a T > C transition in exon 8, causing a conservative substitution of Isoleucine to Tyrosine at codon 240. By protein structural modeling, we found the mutation may disrupt the hydrophobic core and destabilize the protein structure. We reviewed the literature and found that exons 2, 8, and 9 (11.4% of the sequence of FRMD7 mRNA) represent the majority (55.3%) of the reported FRMD7 mutations. In summary, we identified a novel mutation in FRMD7, showed its molecular consequence, and revealed the mutation-rich exons of the FRMD7 gene. Collectively, this provides molecular insights for future CN clinical genetic diagnosis and treatment. PMID:24169426
Mogensen, Jens; Kubo, Toru; Duque, Mauricio; Uribe, William; Shaw, Anthony; Murphy, Ross; Gimeno, Juan R.; Elliott, Perry; McKenna, William J.
2003-01-01
Restrictive cardiomyopathy (RCM) is an uncommon heart muscle disorder characterized by impaired filling of the ventricles with reduced volume in the presence of normal or near normal wall thickness and systolic function. The disease may be associated with systemic disease but is most often idiopathic. We recognized a large family in which individuals were affected by either idiopathic RCM or hypertrophic cardiomyopathy (HCM). Linkage analysis to selected sarcomeric contractile protein genes identified cardiac troponin I (TNNI3) as the likely disease gene. Subsequent mutation analysis revealed a novel missense mutation, which cosegregated with the disease in the family (lod score: 4.8). To determine if idiopathic RCM is part of the clinical expression of TNNI3 mutations, genetic investigations of the gene were performed in an additional nine unrelated RCM patients with restrictive filling patterns, bi-atrial dilatation, normal systolic function, and normal wall thickness. TNNI3 mutations were identified in six of these nine RCM patients. Two of the mutations identified in young individuals were de novo mutations. All mutations appeared in conserved and functionally important domains of the gene. PMID:12531876
Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.
2014-01-01
We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853
Kadara, H; Choi, M; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Yoo, Y; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Wistuba, I I; Herbst, R S
2017-01-01
Abstract Background Lung adenocarcinomas (LUADs) lead to the majority of deaths attributable to lung cancer. We performed whole-exome sequencing (WES) and immune profiling analyses of a unique set of clinically annotated early-stage LUADs to better understand the pathogenesis of this disease and identify clinically relevant molecular markers. Methods We performed WES of 108 paired stage I-III LUADs and normal lung tissues using the Illumina HiSeq 2000 platform. Ten immune markers (PD-L1, PD-1, CD3, CD4, CD8, CD45ro, CD57, CD68, FOXP3 and Granzyme B) were profiled by imaging-based immunohistochemistry (IHC) in a subset of LUADs (n = 92). Associations among mutations, immune markers and clinicopathological variables were analyzed using ANOVA and Fisher’s exact test. Cox proportional hazards regression models were used for multivariate analysis of clinical outcome. Results LUADs in this cohort exhibited an average of 243 coding mutations. We identified 28 genes with significant enrichment for mutation. SETD2-mutated LUADs exhibited relatively poor recurrence- free survival (RFS) and mutations in STK11 and ATM were associated with poor RFS among KRAS-mutant tumors. EGFR, KEAP1 and PIK3CA mutations were predictive of poor response to adjuvant therapy. Immune marker analysis revealed that LUADs in smokers and with relatively high mutation burdens exhibited increased levels of immune markers. Analysis of immunophenotypes revealed that LUADs with STK11 mutations exhibited relatively low levels of infiltrating CD4+/CD8+ T-cells indicative of a muted immune response. Tumoral PD-L1 was significantly elevated in TP53 mutant LUADs whereas PIK3CA mutant LUADs exhibited markedly down-regulated PD-L1 expression. LUADs with TP53 or KEAP1 mutations displayed relatively increased CD57 and Granzyme B levels indicative of augmented natural killer (NK) cell infiltration. Conclusion(s) Our study highlights molecular and immune phenotypes that warrant further analysis for their roles in clinical outcomes and personalized immune-based therapy of LUAD. PMID:27687306
Kadara, H; Choi, M; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Yoo, Y; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Wistuba, I I; Herbst, R S
2017-01-01
Lung adenocarcinomas (LUADs) lead to the majority of deaths attributable to lung cancer. We performed whole-exome sequencing (WES) and immune profiling analyses of a unique set of clinically annotated early-stage LUADs to better understand the pathogenesis of this disease and identify clinically relevant molecular markers. We performed WES of 108 paired stage I-III LUADs and normal lung tissues using the Illumina HiSeq 2000 platform. Ten immune markers (PD-L1, PD-1, CD3, CD4, CD8, CD45ro, CD57, CD68, FOXP3 and Granzyme B) were profiled by imaging-based immunohistochemistry (IHC) in a subset of LUADs (n = 92). Associations among mutations, immune markers and clinicopathological variables were analyzed using ANOVA and Fisher's exact test. Cox proportional hazards regression models were used for multivariate analysis of clinical outcome. LUADs in this cohort exhibited an average of 243 coding mutations. We identified 28 genes with significant enrichment for mutation. SETD2-mutated LUADs exhibited relatively poor recurrence- free survival (RFS) and mutations in STK11 and ATM were associated with poor RFS among KRAS-mutant tumors. EGFR, KEAP1 and PIK3CA mutations were predictive of poor response to adjuvant therapy. Immune marker analysis revealed that LUADs in smokers and with relatively high mutation burdens exhibited increased levels of immune markers. Analysis of immunophenotypes revealed that LUADs with STK11 mutations exhibited relatively low levels of infiltrating CD4+/CD8+ T-cells indicative of a muted immune response. Tumoral PD-L1 was significantly elevated in TP53 mutant LUADs whereas PIK3CA mutant LUADs exhibited markedly down-regulated PD-L1 expression. LUADs with TP53 or KEAP1 mutations displayed relatively increased CD57 and Granzyme B levels indicative of augmented natural killer (NK) cell infiltration. Our study highlights molecular and immune phenotypes that warrant further analysis for their roles in clinical outcomes and personalized immune-based therapy of LUAD. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Mojbafan, Marzieh; Tonekaboni, Seyed Hassan; Abiri, Maryam; Kianfar, Soudeh; Sarhadi, Ameneh; Nilipour, Yalda; Tavakkoly-Bazzaz, Javad; Zeinali, Sirous
2016-07-01
Calpainopathy is an autosomal recessive form of limb girdle muscular dystrophies which is caused by mutation in CAPN3 gene. In the present study, co-segregation of this disorder was analyzed with four short tandem repeat markers linked to the CAPN3 gene. Three apparently unrelated Iranian families with same ethnicity were investigated. Haplotype analysis and sequencing of the CAPN3 gene were performed. DNA sample from one of the patients was simultaneously sent for next-generation sequencing. DNA sequencing identified two mutations. It was seen as a homozygous c.2105C>T in exon 19 in one family, a homozygous novel mutation c.380G>A in exon 3 in another family, and a compound heterozygote form of these two mutations in the third family. Next-generation sequencing also confirmed our results. It was expected that, due to the rare nature of limb girdle muscular dystrophies, affected individuals from the same ethnic group share similar mutations. Haplotype analysis showed two different homozygote patterns in two families, yet a compound heterozygote pattern in the third family as seen in the mutation analysis. This study shows that haplotype analysis would help in determining presence of different founders.
Overlapping hotspots in CDRs are critical sites for V region diversification.
Wei, Lirong; Chahwan, Richard; Wang, Shanzhi; Wang, Xiaohua; Pham, Phuong T; Goodman, Myron F; Bergman, Aviv; Scharff, Matthew D; MacCarthy, Thomas
2015-02-17
Activation-induced deaminase (AID) mediates the somatic hypermutation (SHM) of Ig variable (V) regions that is required for the affinity maturation of the antibody response. An intensive analysis of a published database of somatic hypermutations that arose in the IGHV3-23*01 human V region expressed in vivo by human memory B cells revealed that the focus of mutations in complementary determining region (CDR)1 and CDR2 coincided with a combination of overlapping AGCT hotspots, the absence of AID cold spots, and an abundance of polymerase eta hotspots. If the overlapping hotspots in the CDR1 or CDR2 did not undergo mutation, the frequency of mutations throughout the V region was reduced. To model this result, we examined the mutation of the human IGHV3-23*01 biochemically and in the endogenous heavy chain locus of Ramos B cells. Deep sequencing revealed that IGHV3-23*01 in Ramos cells accumulates AID-induced mutations primarily in the AGCT in CDR2, which was also the most frequent site of mutation in vivo. Replacing the overlapping hotspots in CDR1 and CDR2 with neutral or cold motifs resulted in a reduction in mutations within the modified motifs and, to some degree, throughout the V region. In addition, some of the overlapping hotspots in the CDRs were at sites in which replacement mutations could change the structure of the CDR loops. Our analysis suggests that the local sequence environment of the V region, and especially of the CDR1 and CDR2, is highly evolved to recruit mutations to key residues in the CDRs of the IgV region.
Thomas, Shery; Thomas, Mervyn G; Andrews, Caroline; Chan, Wai-Man; Proudlock, Frank A; McLean, Rebecca J; Pradeep, Archana; Engle, Elizabeth C; Gottlob, Irene
2014-03-01
Autosomal-dominant idiopathic infantile nystagmus has been linked to 6p12 (OMIM 164100), 7p11.2 (OMIM 608345) and 13q31-q33 (OMIM 193003). PAX6 (11p13, OMIM 607108) mutations can also cause autosomal-dominant nystagmus, typically in association with aniridia or iris hypoplasia. We studied a large multigenerational white British family with autosomal-dominant nystagmus, normal irides and presenile cataracts. An SNP-based genome-wide analysis revealed a linkage to a 13.4-MB region on chromosome 11p13 with a maximum lod score of 2.93. A mutation analysis of the entire coding region and splice junctions of the PAX6 gene revealed a novel heterozygous missense mutation (c.227C>G) that segregated with the phenotype and is predicted to result in the amino-acid substitution of proline by arginine at codon 76 p.(P76R). The amino-acid variation p.(P76R) within the paired box domain is likely to destabilise the protein due to steric hindrance as a result of the introduction of a polar and larger amino acid. Eye movement recordings showed a significant intrafamilial variability of horizontal, vertical and torsional nystagmus. High-resolution in vivo imaging of the retina using optical coherence tomography (OCT) revealed features of foveal hypoplasia, including rudimentary foveal pit, incursion of inner retinal layers, short photoreceptor outer segments and optic nerve hypoplasia. Thus, this study presents a family that segregates a PAX6 mutation with nystagmus and foveal hypoplasia in the absence of iris abnormalities. Moreover, it is the first study showing detailed characteristics using eye movement recordings of autosomal-dominant nystagmus in a multigenerational family with a novel PAX6 mutation.
Nakamura, Haruhiko; Koizumi, Hirotaka; Kimura, Hiroyuki; Marushima, Hideki; Saji, Hisashi; Takagi, Masayuki
2016-09-01
Epidermal growth factor receptor (EGFR) mutation rates in adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) were studied using both DNA analysis and mutation-specific immunohistochemistry. The peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp method was used to detect mutations in exons 18, 19, 20, and 21 of the EGFR gene in DNA samples extracted from paraffin-embedded tissue sections. Simultaneously, immunohistochemical analysis with two EGFR mutation-specific monoclonal antibodies was used to identify proteins resulting from an in-frame deletion in exon 19 (E746_A750del) and a point mutation replacing leucine with arginine at codon 858 of exon 21 (L858R). Forty-three tumors (22 AIS and 21 MIA) were examined. The EGFR mutation rate in AIS detected by DNA analysis was 27.3% (L858R, 5/22; exon 19 deletion,1/22), whereas that detected in MIA was 42.9% (L858R,4/21; exon 19 deletion,5/21). Mutations detected by immunohistochemical analysis included 22.7% (L858R, 4/22; exon 19 deletion, 1/22) in AIS and 42.9% (L858R, 4/21; exon 19 deletion, 5/21) in MIA. Although some results were contradictory, concordant results were obtained using both assays in 38 of 43 cases (88.4%). DNA and immunohistochemical analyses revealed similar EGFR mutation rates in both MIA and AIS, suggesting that mutation-specific monoclonal antibodies are useful to confirm DNA assay results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Somatic hypermutation and antigen-driven selection of B cells are altered in autoimmune diseases.
Zuckerman, Neta S; Hazanov, Helena; Barak, Michal; Edelman, Hanna; Hess, Shira; Shcolnik, Hadas; Dunn-Walters, Deborah; Mehr, Ramit
2010-12-01
B cells have been found to play a critical role in the pathogenesis of several autoimmune (AI) diseases. A common feature amongst many AI diseases is the formation of ectopic germinal centers (GC) within the afflicted tissue or organ, in which activated B cells expand and undergo somatic hypermutation (SHM) and antigen-driven selection on their immunoglobulin variable region (IgV) genes. However, it is not yet clear whether these processes occurring in ectopic GCs are identical to those in normal GCs. The analysis of IgV mutations has aided in revealing many aspects concerning B cell expansion, mutation and selection in GC reactions. We have applied several mutation analysis methods, based on lineage tree construction, to a large set of data, containing IgV productive and non-productive heavy and light chain sequences from several different tissues, to examine three of the most profoundly studied AI diseases - Rheumatoid Arthritis (RA), Multiple Sclerosis (MS) and Sjögren's Syndrome (SS). We have found that RA and MS sequences exhibited normal mutation spectra and targeting motifs, but a stricter selection compared to normal controls, which was more apparent in RA. SS sequence analysis results deviated from normal controls in both mutation spectra and indications of selection, also showing differences between light and heavy chain IgV and between different tissues. The differences revealed between AI diseases and normal control mutation patterns may result from the different microenvironmental influences to which ectopic GCs are exposed, relative to those in normal secondary lymphoid tissues. Copyright © 2010 Elsevier Ltd. All rights reserved.
Rafael, Sara; Vidaurreta, Marta; Veganzones, Silvia; De La Orden, Virgnia; Mediero, Beatriz; Gutierrez, Maria Luisa; Maestro, Maria Luisa
2013-11-01
The aim of the present study was to determine the relation of EPH tyrosine kinase receptor B2 (EPHB2) A9 region mutation and microsatellite instability (MSI); and to analyze their influence in prognosis of patients with sporadic colorectal cancer (CRC). A total of 481 patients with CRC were examined. MSI (NCI criteria) and EPHB2 were analyzed using PCR and fragment analysis software. EPHB2 mutation was detected in 3.1% of patients. Mutation of EPHB2 was associated with location and with MSI status. We considered low instability (L-MSI) when only one marker showed instability, high instability (H-MSI) when two or more markers were positive and microsatelllite stable (MSS) when no instability was detected. The stratified analysis of overall survival (OS) and disease-free survival (DFS) in MSI according to EPHB2 status revealed no statistically significant differences. However, the risk of recurrence of H-MSI tumors with EPHB2 mutation carriers was 3.6-times higher than in non-mutation carriers. The frequency of EPHB2 mutation is higher in patients with H-MSI than MSS tumors. Promising results were found regarding the prognostic influence of EPHB2 in H-MSI.
Blanchard, Adam M.; Egan, Sharon A.; Emes, Richard D.; Warry, Andrew; Leigh, James A.
2016-01-01
The Pragmatic Insertional Mutation Mapping (PIMMS) laboratory protocol was developed alongside various bioinformatics packages (Blanchard et al., 2015) to enable detection of essential and conditionally essential genes in Streptococcus and related bacteria. This extended the methodology commonly used to locate insertional mutations in individual mutants to the analysis of mutations in populations of bacteria. In Streptococcus uberis, a pyogenic Streptococcus associated with intramammary infection and mastitis in ruminants, the mutagen pGhost9:ISS1 was shown to integrate across the entire genome. Analysis of >80,000 mutations revealed 196 coding sequences, which were not be mutated and a further 67 where mutation only occurred beyond the 90th percentile of the coding sequence. These sequences showed good concordance with sequences within the database of essential genes and typically matched sequences known to be associated with basic cellular functions. Due to the broad utility of this mutagen and the simplicity of the methodology it is anticipated that PIMMS will be of value to a wide range of laboratories in functional genomic analysis of a wide range of Gram positive bacteria (Streptococcus, Enterococcus, and Lactococcus) of medical, veterinary, and industrial significance. PMID:27826289
Clinical and genetic analyses reveal novel pathogenic ABCA4 mutations in Stargardt disease families
Lin, Bing; Cai, Xue-Bi; Zheng, Zhi-Li; Huang, Xiu-Feng; Liu, Xiao-Ling; Qu, Jia; Jin, Zi-Bing
2016-01-01
Stargardt disease (STGD1) is a juvenile macular degeneration predominantly inherited in an autosomal recessive pattern, characterized by decreased central vision in the first 2 decades of life. The condition has a genetic basis due to mutation in the ABCA4 gene, and arises from the deposition of lipofuscin-like substance in the retinal pigmented epithelium (RPE) with secondary photoreceptor cell death. In this study, we describe the clinical and genetic features of Stargardt patients from four unrelated Chinese cohorts. The targeted exome sequencing (TES) was carried out in four clinically confirmed patients and their family members using a gene panel comprising 164 known causative inherited retinal dystrophy (IRD) genes. Genetic analysis revealed eight ABCA4 mutations in all of the four pedigrees, including six mutations in coding exons and two mutations in adjacent intronic areas. All the affected individuals showed typical manifestations consistent with the disease phenotype. We disclose two novel ABCA4 mutations in Chinese patients with STGD disease, which will expand the existing spectrum of disease-causing variants and will further aid in the future mutation screening and genetic counseling, as well as in the understanding of phenotypic and genotypic correlations. PMID:27739528
Novel Mutation in the CASR Gene (p.Leu123Ser) in a Case of Autosomal Dominant Hypocalcemia
Regala, Joana; Cavaco, Branca; Domingues, Rita; Limbert, Catarina; Lopes, Lurdes
2015-01-01
Autosomal dominant hypocalcemia, caused by activating mutations of the calcium-sensing receptor (CASR) gene, is characterized by hypocalcemia with an inappropriately low concentration of parathyroid hormone (PTH). In this report, we describe the identification of a novel missense mutation in the CASR gene, in a boy with autosomal dominant hypocalcemia. Polymerase chain reaction (PCR)–single strand and DNA sequencing revealed a heterozygous mutation in CASR gene that causes a leucine substitution for serine at codon 123 (p.Leu123Ser). This mutation was absent in DNA from 50 control patients. In silico studies suggest that the identified variant was likely pathogenic. Sequencing analysis in the mother suggested mosaicism for the same variant, and she was clinically and biochemically unaffected. Clinical manifestations of the index case started with seizures at 14 months of age; cognitive impairment and several neuropsychological disabilities were noted during childhood. Extrapyramidal signs and basal ganglia calcification developed later, namely, hand tremor and rigidity at the age of 7 and 18 years, respectively. Laboratory analysis revealed hypocalcemia, hyperphosphatemia, and low-serum PTH with hypomagnesemia and mild hypercalciuria. After 2 years of treatment with calcium supplements and calcitriol, some brief periods of clinical improvement were reported; as well as an absence of nephrocalcinosis. PMID:27617113
An autopsy case of leptomeningeal amyloidosis associated with transthyretin Gly47Arg mutation.
Uehara, Takuya; Kakuda, Keita; Sumi-Akamaru, Hisae; Yamauchi, Amane; Mochizuki, Hideki; Naka, Takashi
2016-11-29
We report the case of a 47-year-old woman with a 4-year history of progressive numbness in the distal portions of both her lower limbs, diarrhea alternating with periods of constipation, and orthostatic syncope. She demonstrated sensory dominant neuropathy and dysautonomia including orthostatic hypotension, paralytic ileus, and urinary retention. A systemic mutation analysis revealed a G47R mutation in transthyretin (TTR). Her general condition was so poor that we could not perform active treatment. Her consciousness had been impaired for a few months. She died at the age of 47 due to multiple organ failure. An autopsy revealed amyloid deposits in the subarachnoid space of the brainstem and the spinal cord as well as in the peripheral nerve and other organs. To date, this is the first case in which a G47R mutation is associated with leptomeningeal amyloidosis.
Taly, Valerie; Pekin, Deniz; Benhaim, Leonor; Kotsopoulos, Steve K; Le Corre, Delphine; Li, Xinyu; Atochin, Ivan; Link, Darren R; Griffiths, Andrew D; Pallier, Karine; Blons, Hélène; Bouché, Olivier; Landi, Bruno; Hutchison, J Brian; Laurent-Puig, Pierre
2013-12-01
Multiplex digital PCR (dPCR) enables noninvasive and sensitive detection of circulating tumor DNA with performance unachievable by current molecular-detection approaches. Furthermore, picodroplet dPCR facilitates simultaneous screening for multiple mutations from the same sample. We investigated the utility of multiplex dPCR to screen for the 7 most common mutations in codons 12 and 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) oncogene from plasma samples of patients with metastatic colorectal cancer. Fifty plasma samples were tested from patients for whom the primary tumor biopsy tissue DNA had been characterized by quantitative PCR. Tumor characterization revealed that 19 patient tumors had KRAS mutations. Multiplex dPCR analysis of the plasma DNA prepared from these samples identified 14 samples that matched the mutation identified in the tumor, 1 sample contained a different KRAS mutation, and 4 samples had no detectable mutation. Among the tumor samples that were wild type for KRAS, 2 KRAS mutations were identified in the corresponding plasma samples. Duplex dPCR (i.e., wild-type and single-mutation assay) was also used to analyze plasma samples from patients with KRAS-mutated tumors and 5 samples expected to contain the BRAF (v-raf murine sarcoma viral oncogene homolog B) V600E mutation. The results for the duplex analysis matched those for the multiplex analysis for KRAS-mutated samples and, owing to its higher sensitivity, enabled detection of 2 additional samples with low levels of KRAS-mutated DNA. All 5 samples with BRAF mutations were detected. This work demonstrates the clinical utility of multiplex dPCR to screen for multiple mutations simultaneously with a sensitivity sufficient to detect mutations in circulating DNA obtained by noninvasive blood collection.
Rivera, C E; Villagra, J; Riordan, M; Williams, S; Lindstrom, K J; Rick, M E
2001-01-01
We describe a new mutation in glycoprotein IX (GPIX) in a patient with Bernard-Soulier syndrome (BSS). Sequencing of GPIX revealed a homozygous (T-->C) transition at nucleotide 1717 (GenBank/HUMGPIX/M80478), resulting in a Cys(8) (TGT)-->Arg (CGT) replacement in the mature peptide. DNA restriction enzyme analysis using BsaAI revealed that the patient was homozygous and that his parents were heterozygous for the defect. This mutation disrupts a putative disulphide bond between the Cys(8) and Cys(12) that would alter the secondary structure of GPIX and which probably accounts for the absence of the GPIb/IX/V complex from the platelet surface in this patient.
Le Gloan, Laurianne; Hauet, Quentin; David, Albert; Hanna, Nadine; Arfeuille, Chloé; Arnaud, Pauline; Boileau, Catherine; Romefort, Bénédicte; Benbrik, Nadir; Gournay, Véronique; Joram, Nicolas; Baron, Olivier; Isidor, Bertrand
2016-01-01
We report a child and her mother affected by Marfan syndrome. The child presented with a phenotype of neonatal Marfan syndrome, revealed by acute and refractory heart failure, finally leading to death within the first 4 months of life. Her mother had a common clinical presentation. Genetic analysis revealed an inherited FBN1 mutation. This intronic mutation (c.6163+3_6163+6del), undescribed to date, leads to exon 49 skipping, corresponding to in-frame deletion of 42 amino acids (p.Ile2014_Asp2055del). FBN1 next-generation sequencing did not show any argument for mosaicism. Association in the same family of severe neonatal and classical Marfan syndrome illustrates the intrafamilial phenotype variability. PMID:27022329
Le Gloan, Laurianne; Hauet, Quentin; David, Albert; Hanna, Nadine; Arfeuille, Chloé; Arnaud, Pauline; Boileau, Catherine; Romefort, Bénédicte; Benbrik, Nadir; Gournay, Véronique; Joram, Nicolas; Baron, Olivier; Isidor, Bertrand
2016-02-01
We report a child and her mother affected by Marfan syndrome. The child presented with a phenotype of neonatal Marfan syndrome, revealed by acute and refractory heart failure, finally leading to death within the first 4 months of life. Her mother had a common clinical presentation. Genetic analysis revealed an inherited FBN1 mutation. This intronic mutation (c.6163+3_6163+6del), undescribed to date, leads to exon 49 skipping, corresponding to in-frame deletion of 42 amino acids (p.Ile2014_Asp2055del). FBN1 next-generation sequencing did not show any argument for mosaicism. Association in the same family of severe neonatal and classical Marfan syndrome illustrates the intrafamilial phenotype variability.
NOTCH1 Is Aberrantly Activated in Chronic Lymphocytic Leukemia Hematopoietic Stem Cells.
Di Ianni, Mauro; Baldoni, Stefano; Del Papa, Beatrice; Aureli, Patrizia; Dorillo, Erica; De Falco, Filomena; Albi, Elisa; Varasano, Emanuela; Di Tommaso, Ambra; Giancola, Raffaella; Accorsi, Patrizia; Rotta, Gianluca; Rompietti, Chiara; Silva Barcelos, Estevão Carlos; Campese, Antonio Francesco; Di Bartolomeo, Paolo; Screpanti, Isabella; Rosati, Emanuela; Falzetti, Franca; Sportoletti, Paolo
2018-01-01
To investigate chronic lymphocytic leukemia (CLL)-initiating cells, we assessed NOTCH1 mutation/expression in hematopoietic stem cells (HSCs). In NOTCH1- mutated CLL, we detected subclonal mutations in 57% CD34+/CD38- HSCs. NOTCH1 mutation was present in 66% CD34+/CD38+ progenitor cells displaying an increased mutational burden compared to HSCs. Flow cytometric analysis revealed significantly higher NOTCH1 activation in CD34+/CD38- and CD34+/CD38+ cells from CLL patients, regardless NOTCH1 mutation compared to healthy donors. Activated NOTCH1 resulted in overexpression of the NOTCH1 target c-MYC. We conclude that activated NOTCH1 is an early event in CLL that may contribute to aberrant HSCs in this disease.
Swetha, Rayapadi G.
2014-01-01
The T118M mutation in PMP22 gene is associated with Charcot Marie Tooth, type 1A (CMT1A). CMT1A is a form of Charcot-Marie-Tooth disease, the most common inherited disorder of the peripheral nervous system. Mutations in CMT related disorder are seen to increase the stability of the protein resulting in the diseased state. We performed SNP analysis for all the nsSNPs of PMP22 protein and carried out molecular dynamics simulation for T118M mutation to compare the stability difference between the wild type protein structure and the mutant protein structure. The mutation T118M resulted in the overall increase in the stability of the mutant protein. The superimposed structure shows marked structural variation between the wild type and the mutant protein structures. PMID:25400662
Al-Harbi, Khalid M; Abdallah, Atiyeh M
2016-09-01
We report the case of a seven-year-old female from a consanguineous Saudi family with autosomal recessive limb girdle muscular dystrophy type 2D (LGMD2D) most likely caused by a rare SGCA mutation. Histopathological and molecular investigations resulted in the discovery of a homozygous mutation (c.226 C>T (p.L76 F)) in exon 3 of SGCA in the patient. The parents and one sibling were heterozygous carriers, but the mutation was not otherwise detected in 80 ethnic controls from the same geographic area. In silico analysis revealed that the mutation resulted in a functional leucine to phenylalanine alteration that was deleterious to the protein structure. This is only the second reported case of the p.L76F mutation in LGMD, and highlights that molecular genetics analysis is essential to deliver the most appropriate management to the patient and offer the family genetic counseling.
England, Jennifer; Granados-Riveron, Javier; Polo-Parada, Luis; Kuriakose, Diji; Moore, Christopher; Brook, J David; Rutland, Catrin S; Setchfield, Kerry; Gell, Christopher; Ghosh, Tushar K; Bu'Lock, Frances; Thornborough, Christopher; Ehler, Elisabeth; Loughna, Siobhan
2017-05-01
Tropomyosin 1 (TPM1) is an essential sarcomeric component, stabilising the thin filament and facilitating actin's interaction with myosin. A number of sarcomeric proteins, such as alpha myosin heavy chain, play crucial roles in cardiac development. Mutations in these genes have been linked to congenital heart defects (CHDs), occurring in approximately 1 in 145 live births. To date, TPM1 has not been associated with isolated CHDs. Analysis of 380 CHD cases revealed three novel mutations in the TPM1 gene; IVS1+2T>C, I130V, S229F and a polyadenylation signal site variant GATAAA/AATAAA. Analysis of IVS1+2T>C revealed aberrant pre-mRNA splicing. In addition, abnormal structural properties were found in hearts transfected with TPM1 carrying I130V and S229F mutations. Phenotypic analysis of TPM1 morpholino-treated embryos revealed roles for TPM1 in cardiac looping, atrial septation and ventricular trabeculae formation and increased apoptosis was seen within the heart. In addition, sarcomere assembly was affected and altered action potentials were exhibited. This study demonstrated that sarcomeric TPM1 plays vital roles in cardiogenesis and is a suitable candidate gene for screening individuals with isolated CHDs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cartault, François; Munier, Patrick; Benko, Edgar; Desguerre, Isabelle; Hanein, Sylvain; Boddaert, Nathalie; Bandiera, Simonetta; Vellayoudom, Jeanine; Krejbich-Trotot, Pascale; Bintner, Marc; Hoarau, Jean-Jacques; Girard, Muriel; Génin, Emmanuelle; de Lonlay, Pascale; Fourmaintraux, Alain; Naville, Magali; Rodriguez, Diana; Feingold, Josué; Renouil, Michel; Munnich, Arnold; Westhof, Eric; Fähling, Michael; Lyonnet, Stanislas; Henrion-Caude, Alexandra
2012-01-01
The human genome is densely populated with transposons and transposon-like repetitive elements. Although the impact of these transposons and elements on human genome evolution is recognized, the significance of subtle variations in their sequence remains mostly unexplored. Here we report homozygosity mapping of an infantile neurodegenerative disease locus in a genetic isolate. Complete DNA sequencing of the 400-kb linkage locus revealed a point mutation in a primate-specific retrotransposon that was transcribed as part of a unique noncoding RNA, which was expressed in the brain. In vitro knockdown of this RNA increased neuronal apoptosis, consistent with the inappropriate dosage of this RNA in vivo and with the phenotype. Moreover, structural analysis of the sequence revealed a small RNA-like hairpin that was consistent with the putative gain of a functional site when mutated. We show here that a mutation in a unique transposable element-containing RNA is associated with lethal encephalopathy, and we suggest that RNAs that harbor evolutionarily recent repetitive elements may play important roles in human brain development. PMID:22411793
Gu, Lei-Lei; Li, Xin-Hua; Han, Yue; Zhang, Dong-Hua; Gong, Qi-Ming; Zhang, Xin-Xin
2014-02-25
Glycogen storage disease type Ia (GSD-Ia) is an autosomal recessive genetic disorder resulting in hypoglycemia, hepatomegaly and growth retardation. It is caused by mutations in the G6PC gene encoding Glucose-6-phosphatase. To date, over 80 mutations have been identified in the G6PC gene. Here we reported a novel mutation found in a Chinese patient with abnormal transaminases, hypoglycemia, hepatomegaly and short stature. Direct sequencing of the coding region and splicing-sites in the G6PC gene revealed a novel no-stop mutation, p.*358Yext*43, leading to a 43 amino-acid extension of G6Pase. The expression level of mutant G6Pase transcripts was only 7.8% relative to wild-type transcripts. This mutation was not found in 120 chromosomes from 60 unrelated healthy control subjects using direct sequencing, and was further confirmed by digestion with Rsa I restriction endonuclease. In conclusion, we revealed a novel no-stop mutation in this study which expands the spectrum of mutations in the G6PC gene. The molecular genetic analysis was indispensable to the diagnosis of GSD-Ia for the patient. Copyright © 2013 Elsevier B.V. All rights reserved.
Hatae, Ryusuke; Yoshimoto, Koji; Kuga, Daisuke; Akagi, Yojiro; Murata, Hideki; Suzuki, Satoshi O.; Mizoguchi, Masahiro; Iihara, Koji
2016-01-01
High resolution melting (HRM) is a simple and rapid method for screening mutations. It offers various advantages for clinical diagnostic applications. Conventional HRM analysis often yields equivocal results, especially for surgically obtained tissues. We attempted to improve HRM analyses for more effective applications to clinical diagnostics. HRM analyses were performed for IDH1R132 and IDH2R172 mutations in 192 clinical glioma samples in duplicate and these results were compared with sequencing results. BRAFV600E mutations were analyzed in 52 additional brain tumor samples. The melting profiles were used for differential calculus analyses. Negative second derivative plots revealed additional peaks derived from heteroduplexes in PCR products that contained mutations; this enabled unequivocal visual discrimination of the mutations. We further developed a numerical expression, the HRM-mutation index (MI), to quantify the heteroduplex-derived peak of the mutational curves. Using this expression, all IDH1 mutation statuses matched those ascertained by sequencing, with the exception of three samples. These discordant results were all derived from the misinterpretation of sequencing data. The effectiveness of our approach was further validated by analyses of IDH2R172 and BRAFV600E mutations. The present analytical method enabled an unequivocal and objective HRM analysis and is suitable for reliable mutation scanning in surgically obtained glioma tissues. This approach could facilitate molecular diagnostics in clinical environments. PMID:27529619
iMARS--mutation analysis reporting software: an analysis of spontaneous cII mutation spectra.
Morgan, Claire; Lewis, Paul D
2006-01-31
The sensitivity of any mutational assay is determined by the level at which spontaneous mutations occur in the corresponding untreated controls. Establishing the type and frequency at which mutations occur naturally within a test system is essential if one is to draw scientifically sound conclusions regarding chemically induced mutations. Currently, mutation-spectra analysis is laborious and time-consuming. Thus, we have developed iMARS, a comprehensive mutation-spectrum analysis package that utilises routinely used methodologies and visualisation tools. To demonstrate the use and capabilities of iMARS, we have analysed the distribution, types and sequence context of spontaneous base substitutions derived from the cII gene mutation assay in transgenic animals. Analysis of spontaneous mutation spectra revealed variation both within and between the transgenic rodent test systems Big Blue Mouse, MutaMouse and Big Blue Rat. The most common spontaneous base substitutions were G:C-->A:T transitions and G:C-->T:A transversions. All Big Blue Mouse spectra were significantly different from each other by distribution and nearly all by mutation type, whereas the converse was true for the other test systems. Twenty-eight mutation hotspots were observed across all spectra generally occurring in CG, GA/TC, GG and GC dinucleotides. A mutation hotspot at nucleotide 212 occurred at a higher frequency in MutaMouse and Big Blue Rat. In addition, CG dinucleotides were the most mutable in all spectra except two Big Blue Mouse spectra. Thus, spontaneous base-substitution spectra showed more variation in distribution, type and sequence context in Big Blue Mouse relative to spectra derived from MutaMouse and Big Blue Rat. The results of our analysis provide a baseline reference for mutation studies utilising the cII gene in transgenic rodent models. The potential differences in spontaneous base-substitution spectra should be considered when making comparisons between these test systems. The ease at which iMARS has allowed us to carry out an exhaustive investigation to assess mutation distribution, mutation type, strand bias, target sequences and motifs, as well as predict mutation hotspots provides us with a valuable tool in helping to distinguish true chemically induced hotspots from background mutations and gives a true reflection of mutation frequency.
Walter, Andrew W; Ennis, Sara; Best, Hunter; Vaughn, Cecily P; Swensen, Jeffrey J; Openshaw, Amanda; Gripp, Karen W
2013-11-01
A 13-year-old child presented with three simultaneous malignancies: glioblastoma multiforme, Burkitt lymphoma, and colonic adenocarcinoma. She was treated for her diseases without success and died 8 months after presentation. Genetic analysis revealed a homozygous mutation in the PMS2 gene, consistent with constitutional mismatch repair deficiency. Her siblings and parents were screened: three of four siblings and both parents were heterozygous for this mutation; the fourth sibling did not have the mutation. Copyright © 2013 Wiley Periodicals, Inc.
Deconstruction of the Ras switching cycle through saturation mutagenesis
Bandaru, Pradeep; Shah, Neel H; Bhattacharyya, Moitrayee; Barton, John P; Kondo, Yasushi; Cofsky, Joshua C; Gee, Christine L; Chakraborty, Arup K; Kortemme, Tanja; Ranganathan, Rama; Kuriyan, John
2017-01-01
Ras proteins are highly conserved signaling molecules that exhibit regulated, nucleotide-dependent switching between active and inactive states. The high conservation of Ras requires mechanistic explanation, especially given the general mutational tolerance of proteins. Here, we use deep mutational scanning, biochemical analysis and molecular simulations to understand constraints on Ras sequence. Ras exhibits global sensitivity to mutation when regulated by a GTPase activating protein and a nucleotide exchange factor. Removing the regulators shifts the distribution of mutational effects to be largely neutral, and reveals hotspots of activating mutations in residues that restrain Ras dynamics and promote the inactive state. Evolutionary analysis, combined with structural and mutational data, argue that Ras has co-evolved with its regulators in the vertebrate lineage. Overall, our results show that sequence conservation in Ras depends strongly on the biochemical network in which it operates, providing a framework for understanding the origin of global selection pressures on proteins. DOI: http://dx.doi.org/10.7554/eLife.27810.001 PMID:28686159
Dhayat, Nasser; Simonin, Alexandre; Anderegg, Manuel; Pathare, Ganesh; Lüscher, Benjamin P; Deisl, Christine; Albano, Giuseppe; Mordasini, David; Hediger, Matthias A; Surbek, Daniel V; Vogt, Bruno; Sass, Jörn Oliver; Kloeckener-Gruissem, Barbara; Fuster, Daniel G
2016-05-01
A heterozygous mutation (c.643C>A; p.Q215X) in the monocarboxylate transporter 12-encoding gene MCT12 (also known as SLC16A12) that mediates creatine transport was recently identified as the cause of a syndrome with juvenile cataracts, microcornea, and glucosuria in a single family. Whereas the MCT12 mutation cosegregated with the eye phenotype, poor correlation with the glucosuria phenotype did not support a pathogenic role of the mutation in the kidney. Here, we examined MCT12 in the kidney and found that it resides on basolateral membranes of proximal tubules. Patients with MCT12 mutation exhibited reduced plasma levels and increased fractional excretion of guanidinoacetate, but normal creatine levels, suggesting that MCT12 may function as a guanidinoacetate transporter in vivo However, functional studies in Xenopus oocytes revealed that MCT12 transports creatine but not its precursor, guanidinoacetate. Genetic analysis revealed a separate, undescribed heterozygous mutation (c.265G>A; p.A89T) in the sodium/glucose cotransporter 2-encoding gene SGLT2 (also known as SLC5A2) in the family that segregated with the renal glucosuria phenotype. When overexpressed in HEK293 cells, the mutant SGLT2 transporter did not efficiently translocate to the plasma membrane, and displayed greatly reduced transport activity. In summary, our data indicate that MCT12 functions as a basolateral exit pathway for creatine in the proximal tubule. Heterozygous mutation of MCT12 affects systemic levels and renal handling of guanidinoacetate, possibly through an indirect mechanism. Furthermore, our data reveal a digenic syndrome in the index family, with simultaneous MCT12 and SGLT2 mutation. Thus, glucosuria is not part of the MCT12 mutation syndrome. Copyright © 2016 by the American Society of Nephrology.
Kim, Suk Kyeong; Kim, Dong-Lim; Han, Hye Seung; Kim, Wan Seop; Kim, Seung Ja; Moon, Won Jin; Oh, Seo Young; Hwang, Tae Sook
2008-06-01
Fine-needle aspiration biopsy (FNAB) is the primary means of distinguishing benign from malignant and of guiding therapeutic intervention in thyroid nodules. However, 10% to 30% of cases with indeterminate cytology in FNAB need other diagnostic tools to refine diagnosis. We compared the pyrosequencing method with the conventional direct DNA sequencing analysis and investigated the usefulness of preoperative BRAF mutation analysis as an adjunct diagnostic tool with routine FNAB. A total of 103 surgically confirmed patients' FNA slides were recruited and DNA was extracted after atypical cells were scraped from the slides. BRAF mutation was analyzed by pyrosequencing and direct DNA sequencing. Sixty-three (77.8%) of 81 histopathologically diagnosed malignant nodules revealed positive BRAF mutation on pyrosequencing analysis. In detail, 63 (84.0%) of 75 papillary thyroid carcinoma (PTC) samples showed positive BRAF mutation, whereas 3 follicular thyroid carcinomas, 1 anaplastic carcinoma, 1 medullary thyroid carcinoma, and 1 metastatic lung carcinoma did not show BRAF mutation. None of 22 benign nodules had BRAF mutation in both pyrosequencing and direct DNA sequencing. Out of 27 thyroid nodules classified as 'indeterminate' on cytologic examination preoperatively, 21 (77.8%) cases turned out to be malignant: 18 PTCs (including 2 follicular variant types) and 3 follicular thyroid carcinomas. Among these, 13 (61.9%) classic PTCs had BRAF mutation. None of 6 benign nodules, including 3 follicular adenomas and 3 nodular hyperplasias, had BRAF mutation. Among 63 PTCs with positive BRAF mutation detected by pyrosequencing analysis, 3 cases did not show BRAF mutation by direct DNA sequencing. Although it was not statistically significant, pyrosequencing was superior to direct DNA sequencing in detecting the BRAF mutation of thyroid nodules (P=0.25). Detecting BRAF mutation by pyrosequencing is more sensitive, faster, and less expensive than direct DNA sequencing and is proposed as an adjunct diagnostic tool in evaluating thyroid nodules of indeterminate cytology.
Naito, E; Ito, M; Yokota, I; Saijo, T; Matsuda, J; Osaka, H; Kimura, S; Kuroda, Y
1997-08-01
We report molecular analysis of thiamin-responsive pyruvate dehydrogenase complex (PDHC) deficiency in a patient with an X-linked form of Leigh syndrome. PDHC activity in cultured lymphoblastoid cells of this patient and his asymptomatic mother were normal in the presence of a high thiamin pyrophosphate (TPP) concentration (0.4 mmol/L). However, in the presence of a low concentration (1 x 10(-4) mmol/L) of TPP, the activity was significantly decreased, indicating that PDHC deficiency in this patient was due to decreased affinity of PDHC for TPP. The patient's older brother also was diagnosed as PDHC deficiency with Leigh syndrome, suggesting that PDHC deficiency in these two brothers was not a de novo mutation. Sequencing of the X-linked PDHC E1 alpha subunit revealed a C-->G point mutation at nucleotide 787, resulting in a substitution of glycine for arginine 263. Restriction enzyme analysis of the E1 alpha gene revealed that the mother was a heterozygote, indicating that thiamin-responsive PDHC deficiency associated with Leigh syndrome due to this mutation is transmitted by X-linked inheritance.
Genetic analysis of hispanic individuals with cystic fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grebe, T.A.; Doane, W.W.; Norman, R.A.
1994-03-01
The authors have performed molecular genetic analysis of Hispanic individuals with cystic fibrosis (CF) in the southwestern United States. Of 129 CF chromosomes analyzed, oly 46% (59/129) carry [Delta]F508. The G542X mutation was found on 5% (7/129) of CF chromosomes. The 3849+10kbC[yields]T mutation, detected primarily in Ashkenazi Jews, was present on 2% (3/129). R1162X and R334W, mutations identified in Spain and Italy, each occurred on 1.6% (2/129) of CF chromosomes. W1282X and R553X were each detected once. G551D and N1303K were not found. Overall, screening for 22 or more mutations resulted in detection of only 58% of CF transmembrane conductancemore » regulator gene mutations among Hispanic individuals. Analysis of KM19/XV2c haplotypes revealed an unusual distribution. Although the majority of [Delta]508 mutations are on chromosomes of B haplotypes, the other CF mutations are on A and C haplotypes at higher-than-expected frequencies. These genetic analysis demonstrate significant differences between Hispanic individuals with CF and those of the general North American population. Assessment of carrier/affected risk in Hispanic CF individuals cannot, therefore, be based on the mutation frequencies found through studies of the general population but must be adjusted to better reflect the genetic makeup of this ethnic group. Further studies are necessary to identify the causative mutation(s) in this population and to better delineate genotype/phenotype correlations. These will enable counselors to provide more accurate genetic counseling. 22 refs., 2 tabs.« less
Hyakuna, Nobuyuki; Muramatsu, Hideki; Higa, Takeshi; Chinen, Yasutsugu; Wang, Xinan; Kojima, Seiji
2015-03-01
Germline mutations in CBL have been identified in patients with Noonan syndrome-like phenotypes, while juvenile myelomonocytic leukemia (JMML) harbors duplication of a germline CBL, resulting in acquired isodisomy. The association between moyamoya disease and Noonan syndrome carrying a PTPN11 mutation has recently been reported. We present a patient with JMML who developed moyamoya disease and neovascular glaucoma. Our patient exhibited a Noonan syndrome-like phenotype. Genetic analysis revealed acquired isodisomy and a germline heterozygous mutation in CBL. This is a rare case of CBL mutation associated with moyamoya disease. Prolonged RAS pathway signaling may cause disruption of cerebrovascular development. © 2014 Wiley Periodicals, Inc.
Jeon, Junhyun; Choi, Jaeyoung; Lee, Gir-Won; Dean, Ralph A; Lee, Yong-Hwan
2013-01-01
Knowledge on mutation processes is central to interpreting genetic analysis data as well as understanding the underlying nature of almost all evolutionary phenomena. However, studies on genome-wide mutational spectrum and dynamics in fungal pathogens are scarce, hindering our understanding of their evolution and biology. Here, we explored changes in the phenotypes and genome sequences of the rice blast fungus Magnaporthe oryzae during the forced in vitro evolution by weekly transfer of cultures on artificial media. Through combination of experimental evolution with high throughput sequencing technology, we found that mutations accumulate rapidly prior to visible phenotypic changes and that both genetic drift and selection seem to contribute to shaping mutational landscape, suggesting the buffering capacity of fungal genome against mutations. Inference of mutational effects on phenotypes through the use of T-DNA insertion mutants suggested that at least some of the DNA sequence mutations are likely associated with the observed phenotypic changes. Furthermore, our data suggest oxidative damages and UV as major sources of mutation during subcultures. Taken together, our work revealed important properties of original source of variation in the genome of the rice blast fungus. We believe that these results provide not only insights into stability of pathogenicity and genome evolution in plant pathogenic fungi but also a model in which evolution of fungal pathogens in natura can be comparatively investigated.
Digital PCR Improves Mutation Analysis in Pancreas Fine Needle Aspiration Biopsy Specimens.
Sho, Shonan; Court, Colin M; Kim, Stephen; Braxton, David R; Hou, Shuang; Muthusamy, V Raman; Watson, Rabindra R; Sedarat, Alireza; Tseng, Hsian-Rong; Tomlinson, James S
2017-01-01
Applications of precision oncology strategies rely on accurate tumor genotyping from clinically available specimens. Fine needle aspirations (FNA) are frequently obtained in cancer management and often represent the only source of tumor tissues for patients with metastatic or locally advanced diseases. However, FNAs obtained from pancreas ductal adenocarcinoma (PDAC) are often limited in cellularity and/or tumor cell purity, precluding accurate tumor genotyping in many cases. Digital PCR (dPCR) is a technology with exceptional sensitivity and low DNA template requirement, characteristics that are necessary for analyzing PDAC FNA samples. In the current study, we sought to evaluate dPCR as a mutation analysis tool for pancreas FNA specimens. To this end, we analyzed alterations in the KRAS gene in pancreas FNAs using dPCR. The sensitivity of dPCR mutation analysis was first determined using serial dilution cell spiking studies. Single-cell laser-microdissection (LMD) was then utilized to identify the minimal number of tumor cells needed for mutation detection. Lastly, dPCR mutation analysis was performed on 44 pancreas FNAs (34 formalin-fixed paraffin-embedded (FFPE) and 10 fresh (non-fixed)), including samples highly limited in cellularity (100 cells) and tumor cell purity (1%). We found dPCR to detect mutations with allele frequencies as low as 0.17%. Additionally, a single tumor cell could be detected within an abundance of normal cells. Using clinical FNA samples, dPCR mutation analysis was successful in all preoperative FNA biopsies tested, and its accuracy was confirmed via comparison with resected tumor specimens. Moreover, dPCR revealed additional KRAS mutations representing minor subclones within a tumor that were not detected by the current clinical gold standard method of Sanger sequencing. In conclusion, dPCR performs sensitive and accurate mutation analysis in pancreas FNAs, detecting not only the dominant mutation subtype, but also the additional rare mutation subtypes representing tumor heterogeneity.
Digital PCR Improves Mutation Analysis in Pancreas Fine Needle Aspiration Biopsy Specimens
Court, Colin M.; Kim, Stephen; Braxton, David R.; Hou, Shuang; Muthusamy, V. Raman; Watson, Rabindra R.; Sedarat, Alireza; Tseng, Hsian-Rong; Tomlinson, James S.
2017-01-01
Applications of precision oncology strategies rely on accurate tumor genotyping from clinically available specimens. Fine needle aspirations (FNA) are frequently obtained in cancer management and often represent the only source of tumor tissues for patients with metastatic or locally advanced diseases. However, FNAs obtained from pancreas ductal adenocarcinoma (PDAC) are often limited in cellularity and/or tumor cell purity, precluding accurate tumor genotyping in many cases. Digital PCR (dPCR) is a technology with exceptional sensitivity and low DNA template requirement, characteristics that are necessary for analyzing PDAC FNA samples. In the current study, we sought to evaluate dPCR as a mutation analysis tool for pancreas FNA specimens. To this end, we analyzed alterations in the KRAS gene in pancreas FNAs using dPCR. The sensitivity of dPCR mutation analysis was first determined using serial dilution cell spiking studies. Single-cell laser-microdissection (LMD) was then utilized to identify the minimal number of tumor cells needed for mutation detection. Lastly, dPCR mutation analysis was performed on 44 pancreas FNAs (34 formalin-fixed paraffin-embedded (FFPE) and 10 fresh (non-fixed)), including samples highly limited in cellularity (100 cells) and tumor cell purity (1%). We found dPCR to detect mutations with allele frequencies as low as 0.17%. Additionally, a single tumor cell could be detected within an abundance of normal cells. Using clinical FNA samples, dPCR mutation analysis was successful in all preoperative FNA biopsies tested, and its accuracy was confirmed via comparison with resected tumor specimens. Moreover, dPCR revealed additional KRAS mutations representing minor subclones within a tumor that were not detected by the current clinical gold standard method of Sanger sequencing. In conclusion, dPCR performs sensitive and accurate mutation analysis in pancreas FNAs, detecting not only the dominant mutation subtype, but also the additional rare mutation subtypes representing tumor heterogeneity. PMID:28125707
Cytochrome C oxydase deficiency: SURF1 gene investigation in patients with Leigh syndrome.
Maalej, Marwa; Kammoun, Thouraya; Alila-Fersi, Olfa; Kharrat, Marwa; Ammar, Marwa; Felhi, Rahma; Mkaouar-Rebai, Emna; Keskes, Leila; Hachicha, Mongia; Fakhfakh, Faiza
2018-03-18
Leigh syndrome (LS) is a rare progressive neurodegenerative disorder occurring in infancy. The most common clinical signs reported in LS are growth retardation, optic atrophy, ataxia, psychomotor retardation, dystonia, hypotonia, seizures and respiratory disorders. The paper reported a manifestation of 3 Tunisian patients presented with LS syndrome. The aim of this study is the MT[HYPHEN]ATP6 and SURF1 gene screening in Tunisian patients affected with classical Leigh syndrome and the computational investigation of the effect of detected mutations on its structure and functions by clinical and bioinformatics analyses. After clinical investigations, three Tunisian patients were tested for mutations in both MT-ATP6 and SURF1 genes by direct sequencing followed by in silico analyses to predict the effects of sequence variation. The result of mutational analysis revealed the absence of mitochondrial mutations in MT-ATP6 gene and the presence of a known homozygous splice site mutation c.516-517delAG in sibling patients added to the presence of a novel double het mutations in LS patient (c.752-18 A > C/c. c.751 + 16G > A). In silico analyses of theses intronic variations showed that it could alters splicing processes as well as SURF1 protein translation. Leigh syndrome (LS) is a rare progressive neurodegenerative disorder occurring in infancy. The most common clinical signs reported in LS are growth retardation, optic atrophy, ataxia, psychomotor retardation, dystonia, hypotonia, seizures and respiratory disorders. The paper reported a manifestation of 3 Tunisian patients presented with LS syndrome. The aim of this study is MT-ATP6 and SURF1 genes screening in Tunisian patients affected with classical Leigh syndrome and the computational investigation of the effect of detected mutations on its structure and functions. After clinical investigations, three Tunisian patients were tested for mutations in both MT-ATP6 and SURF1 genes by direct sequencing followed by in silico analysis to predict the effects of sequence variation. The result of mutational analysis revealed the absence of mitochondrial mutations in MT-ATP6 gene and the presence of a known homozygous splice site mutation c.516-517delAG in sibling patients added to the presence of a novel double het mutations in LS patient (c.752-18 A>C/ c.751+16G>A). In silico analysis of theses intronic vaiations showed that it could alters splicing processes as well as SURF1 protein translation. Copyright © 2018 Elsevier Inc. All rights reserved.
Ha, Nguyen Thanh; Chau, Hoang Minh; Cung, Le Xuan; Thanh, Ton Kim; Fujiki, Keiko; Murakami, Akira; Hiratsuka, Yoshimune; Kanai, Atsushi
2003-08-01
Mutations in a new carbohydrate sulfotransferase gene (CHST6) encoding corneal N-acetylglucosamine-6-sulfotransferase (C-GlcNac-6-ST) have been identified as the cause of macular corneal dystrophy (MCD) in various ethnicities. This study was conducted to examine the CHST6 gene in Vietnamese with MCD. Nineteen unrelated families, including 35 patients and 38 unaffected relatives were examined clinically. Blood samples were collected. Fifty normal Vietnamese individuals served as control subjects. Genomic DNA was extracted from leukocytes. Analysis of the CHST6 gene was performed with polymerase chain reaction and direct sequencing. Corneal buttons were studied histopathologically. A slit lamp examination revealed clinical features of MCD with gray-white opacities and stromal haze between. On histopathology, corneal sections showed positive staining with colloidal iron. Sequencing of the CHST6 gene revealed six homozygous and three compound heterozygous mutations. The homozygous mutations, including L59P, V66L, R211Q, W232X, Y268C, and 1067-1068ins(GGCCGTG) were detected, respectively, in two, one, eight, one, one, and two families. Compound heterozygous mutations R211Q/Q82X, S51L/Y268C, and Y268C/1067-1068ins(GGCCGTG) were identified, each in one family. A single heterozygous change at codon 76 (GTG-->ATG) was detected in family L, resulting in a valine-to-methionine substitution (V76M). None of these mutations was detected in the control group. Mutations identified in the CHST6 gene cosegregated with the disease phenotype in all but one family studied and thus caused MCD. Among these, the R211Q detected in 9 of 19 families may be the most common mutation in Vietnamese. These data also indicate that significant allelic heterogeneity exists for MCD.
Whole-Exome Sequencing Study of Thyrotropin-Secreting Pituitary Adenomas.
Sapkota, Santosh; Horiguchi, Kazuhiko; Tosaka, Masahiko; Yamada, Syozo; Yamada, Masanobu
2017-02-01
Thyrotropin (TSH)-secreting pituitary adenomas (TSHomas) are a rare cause of hyperthyroidism, and the genetic aberrations responsible remain unknown. To identify somatic genetic abnormalities in TSHomas. A single-nucleotide polymorphism (SNP) array analysis was performed on 8 TSHomas. Four tumors with no allelic losses or limited loss of heterozygosity were selected, and whole-exome sequencing was performed, including their corresponding blood samples. Somatic variants were confirmed by Sanger sequencing. A set of 8 tumors was also assessed to validate candidate genes. Twelve patients with sporadic TSHomas were examined. The overall performance of whole-exome sequencing was good, with an average coverage of each base in the targeted region of 97.6%. Six DNA variants were confirmed as candidate driver mutations, with an average of 1.5 somatic mutations per tumor. No mutations were recurrent. Two of these mutations were found in genes with an established role in malignant tumorigenesis (SMOX and SYTL3), and 4 had unknown roles (ZSCAN23, ASTN2, R3HDM2, and CWH43). Similarly, an SNP array analysis revealed frequent chromosomal regions of copy number gains, including recurrent gains at loci harboring 4 of these 6 genes. Several candidate somatic mutations and changes in copy numbers for TSHomas were identified. The results showed no recurrence of mutations in the tumors studied but a low number of mutations, thereby highlighting their benign nature. Further studies on a larger cohort of TSHomas, along with the use of epigenetic and transcriptomic approaches, may reveal the underlying genetic lesions. Copyright © 2017 by the Endocrine Society
Karacan, İlker; Uğurlu, Serdal; Tolun, Aslıhan; Tahir Turanlı, Eda; Ozdogan, Huri
2017-01-01
No MEFV mutations are detected in approximately 10% of the patients with clinical FMF in populations where the disease is highly prevalent. Causative mutations were searched in other genes in two such families with "MEFV negative clinical FMF". Father and daughter of family A had attacks of fever, abdominal pain and AA amyloidosis. The two sibs of family B complained of febrile episodes with abdominal pain and arthritis. The patients were clinically investigated. Exome analysis in the daughter in family A and linkage analysis and candidate gene sequencing for the members of family B were performed. All patients were re-evaluated in the light of the genetic findings. In the daughter in family A, filtering of the exome file for variants in 25 autoimmune/inflammatory disease-related genes revealed two heterozygous missense variants in TNFRSF1A, novel p.Cys72Phe and frequent p.Arg121Gln. In family B, novel, homozygous missense p.Cys161Arg in MVK was identified. A clinical re-evaluation of the patients revealed a phenotype consistent with FMF rather than TRAPS in family A and an overlap of FMF with HIDS in family B. In high risk populations of FMF a proportion of patients without MEFV mutations may carry causative mutations in other genes, and the clinical findings may not be fully consistent with the phenotype expected of the mutation identified but rather resemble FMF or an overlap syndrome.
Shen, Xin-Ming; Brengman, Joan; Neubauer, David; Sine, Steven M; Engel, Andrew G
2016-02-12
We identify two heteroallelic mutations in the acetylcholine receptor δ-subunit from a patient with severe myasthenic symptoms since birth: a novel δD140N mutation in the signature Cys-loop and a mutation in intron 7 of the δ-subunit gene that disrupts splicing of exon 8. The mutated Asp residue, which determines the disease phenotype, is conserved in all eukaryotic members of the Cys-loop receptor superfamily. Studies of the mutant acetylcholine receptor expressed in HEK 293 cells reveal that δD140N attenuates cell surface expression and apparent channel gating, predicting a reduced magnitude and an accelerated decay of the synaptic response, thus reducing the safety margin for neuromuscular transmission. Substituting Asn for Asp at equivalent positions in the α-, β-, and ϵ-subunits also suppresses apparent channel gating, but the suppression is much greater in the α-subunit. Mutant cycle analysis applied to single and pairwise mutations reveals that αAsp-138 is energetically coupled to αArg-209 in the neighboring pre-M1 domain. Our findings suggest that the conserved αAsp-138 and αArg-209 contribute to a principal pathway that functionally links the ligand binding and pore domains. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
ENPP1 Mutation Causes Recessive Cole Disease by Altering Melanogenesis.
Chourabi, Marwa; Liew, Mei Shan; Lim, Shawn; H'mida-Ben Brahim, Dorra; Boussofara, Lobna; Dai, Liang; Wong, Pui Mun; Foo, Jia Nee; Sriha, Badreddine; Robinson, Kim Samirah; Denil, Simon; Common, John Ea; Mamaï, Ons; Ben Khalifa, Youcef; Bollen, Mathieu; Liu, Jianjun; Denguezli, Mohamed; Bonnard, Carine; Saad, Ali; Reversade, Bruno
2018-02-01
Cole disease is a genodermatosis of pigmentation following a strict dominant mode of inheritance. In this study, we investigated eight patients affected with an overlapping genodermatosis after recessive inheritance. The patients presented with hypo- and hyperpigmented macules over the body, resembling dyschromatosis universalis hereditaria in addition to punctuate palmoplantar keratosis. By homozygosity mapping and whole-exome sequencing, a biallelic p.Cys120Arg mutation in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) was identified in all patients. We found that this mutation, like those causing dominant Cole disease, impairs homodimerization of the ENPP1 enzyme that is mediated by its two somatomedin-B-like domains. Histological analysis revealed structural and molecular changes in affected skin that were likely to originate from defective melanocytes because keratinocytes do not express ENPP1. Consistently, RNA-sequencing analysis of patient-derived primary melanocytes revealed alterations in melanocyte development and in pigmentation signaling pathways. We therefore conclude that germline ENPP1 cysteine-specific mutations, primarily affecting the melanocyte lineage, cause a clinical spectrum of dyschromatosis, in which the p.Cys120Arg allele represents a recessive and more severe form of Cole disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Hirayanagi, Kimitoshi; Sato, Masayuki; Furuta, Natsumi; Makioka, Kouki; Ikeda, Yoshio
2016-01-01
A 24-year-old Japanese woman developed anterocollis, weakness of the proximal arms, and subsequent cognitive impairment. A neurological examination revealed amyotrophic lateral sclerosis (ALS) without a family history. Systemic muscle atrophy progressed rapidly. Cerebral MRI clearly exhibited high signal intensities along the bilateral pyramidal tracts. An analysis of the FUS gene revealed a heterozygous two-base pair deletion, c.1507-1508delAG (p.G504WfsX515). A subset of juvenile-onset familial/sporadic ALS cases with FUS gene mutations reportedly demonstrates mental retardation or learning difficulty. Our study emphasizes the importance of conducting a FUS gene analysis in juvenile-onset ALS cases, even when no family occurrence is confirmed.
Clonal status of actionable driver events and the timing of mutational processes in cancer evolution
McGranahan, Nicholas; Favero, Francesco; de Bruin, Elza C.; Birkbak, Nicolai Juul; Szallasi, Zoltan; Swanton, Charles
2015-01-01
Deciphering whether actionable driver mutations are found in all or a subset of tumor cells will likely be required to improve drug development and precision medicine strategies. We analyzed nine cancer types to determine the subclonal frequencies of driver events, to time mutational processes during cancer evolution, and to identify drivers of subclonal expansions. Although mutations in known driver genes typically occurred early in cancer evolution, we also identified later subclonal “actionable” mutations, including BRAF(V600E), IDH1(R132H), PIK3CA(E545K), EGFR(L858R), and KRAS(G12D), which may compromise the efficacy of targeted therapy approaches. More than 20% of IDH1 mutations in glioblastomas, and 15% of mutations in genes in the PI3K(phosphatidylinositol 3-kinase)–AKT–mTOR (mammalian target of rapamycin) signaling axis across all tumor types were subclonal. Mutations in the RAS–MEK (mitogen-activated protein kinase kinase) signaling axis were less likely to be subclonal than mutations in genes associated with PI3K-AKT-mTORsignaling. Analysis of late mutations revealed a link between APOBEC-mediated mutagenesis and the acquisition of subclonal driver mutations and uncovered putative cancer genes involved in subclonal expansions, including CTNNA2 and ATXN1. Our results provide a pan-cancer census of driver events within the context of intratumor heterogeneity and reveal patterns of tumor evolution across cancers. The frequent presence of subclonal driver mutations suggests the need to stratify targeted therapy response according to the proportion of tumor cells in which the driver is identified. PMID:25877892
Association of a novel point mutation in MSH2 gene with familial multiple primary cancers.
Hu, Hai; Li, Hong; Jiao, Feng; Han, Ting; Zhuo, Meng; Cui, Jiujie; Li, Yixue; Wang, Liwei
2017-10-03
Multiple primary cancers (MPC) have been identified as two or more cancers without any subordinate relationship that occur either simultaneously or metachronously in the same or different organs of an individual. Lynch syndrome is an autosomal dominant genetic disorder that increases the risk of many types of cancers. Lynch syndrome patients who suffer more than two cancers can also be considered as MPC; patients of this kind provide unique resources to learn how genetic mutation causes MPC in different tissues. We performed a whole genome sequencing on blood cells and two tumor samples of a Lynch syndrome patient who was diagnosed with five primary cancers. The mutational landscape of the tumors, including somatic point mutations and copy number alternations, was characterized. We also compared Lynch syndrome with sporadic cancers and proposed a model to illustrate the mutational process by which Lynch syndrome progresses to MPC. We revealed a novel pathologic mutation on the MSH2 gene (G504 splicing) that associates with Lynch syndrome. Systematical comparison of the mutation landscape revealed that multiple cancers in the proband were evolutionarily independent. Integrative analysis showed that truncating mutations of DNA mismatch repair (MMR) genes were significantly enriched in the patient. A mutation progress model that included germline mutations of MMR genes, double hits of MMR system, mutations in tissue-specific driver genes, and rapid accumulation of additional passenger mutations was proposed to illustrate how MPC occurs in Lynch syndrome patients. Our findings demonstrate that both germline and somatic alterations are driving forces of carcinogenesis, which may resolve the carcinogenic theory of Lynch syndrome.
Raffler, Gabriele; Zitt, Emanuel; Sprenger-Mähr, Hannelore; Nagel, Mato; Lhotta, Karl
2016-04-01
Uromodulin (UMOD)-associated kidney disease belongs to the group of autosomal dominant interstitial kidney diseases and is caused by mutations in the UMOD gene. Affected patients present with hyperuricemia, gout, and progressive renal failure. The disease is thought to be very rare but is probably underdiagnosed. Two index patients from two families with tubulointerstitial nephropathy and hyperuricemia were examined, including blood and urine chemistry, ultrasound, and mutation analysis of the UMOD gene. In addition, other available family members were studied. In a 46-year-old female patient with a fractional excretion of uric acid of 3 %, analysis of the UMOD gene revealed a p.W202S missense mutation. The same mutation was found in her 72-year-old father, who suffers from gout and end-stage renal disease. The second index patient was a 47-year-old female with chronic kidney disease and gout for more than 10 years. Her fractional uric acid excretion was 3.5 %. Genetic analysis identified a novel p.H250Q UMOD mutation that was also present in her 12-year-old son, who had normal renal function and uric acid levels. In patients suffering from chronic tubulointerstitial nephropathy, hyperuricemia, and a low fractional excretion of uric acid mutation, analysis of the UMOD gene should be performed to diagnose UMOD-associated kidney disease.
A high proportion of ADA point mutations associated with a specific alanine-to-valine substitution.
Markert, M L; Norby-Slycord, C; Ward, F E
1989-09-01
In 15%-20% of children with severe combined immunodeficiency (SCID), the underlying defect is adenosine deaminase (ADA) deficiency. The overall goal of our research has been to identify the precise molecular defects in patients with ADA-deficient SCID. In this study, we focused on a patient whom we found to have normal sized ADA mRNA by Northern analysis and an intact ADA structural gene by Southern analysis. By cloning and sequencing this patient's ADA cDNA, we found a C-to-T point mutation in exon 11. This resulted in the amino acid substitution of a valine for an alanine at position 329 of the ADA protein. Sequence analysis revealed that this mutation created a new BalI restriction site. Using Southern analyses, we were able to directly screen individuals to determine the frequency of this mutation. By combining data on eight families followed at our institution with data on five other families reported in the literature, we established that five of 13 patients (seven of 22 alleles) with known or suspected point mutations have this defect. This mutation was found to be associated with three different ADA haplotypes. This argues against a founder effect and suggests that the mutation is very old. In summary, a conservative amino acid substitution is found in a high proportion of patients with ADA deficiency; this can easily be detected by Southern analysis.
Zhao, Yang; Hosono, Katsuhiro; Suto, Kimiko; Ishigami, Chie; Arai, Yuuki; Hikoya, Akiko; Hirami, Yasuhiko; Ohtsubo, Masafumi; Ueno, Shinji; Terasaki, Hiroko; Sato, Miho; Nakanishi, Hiroshi; Endo, Shiori; Mizuta, Kunihiro; Mineta, Hiroyuki; Kondo, Mineo; Takahashi, Masayo; Minoshima, Shinsei; Hotta, Yoshihiro
2014-09-01
Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease. The USH2A gene, which accounts for approximately 74-90% of Usher syndrome type 2 (USH2) cases, is also one of the major autosomal recessive RP (arRP) causative genes among Caucasian populations. To identify disease-causing USH2A gene mutations in Japanese RP patients, all 73 exons were screened for mutations by direct sequencing. In total, 100 unrelated Japanese RP patients with no systemic manifestations were identified, excluding families with obvious autosomal dominant inheritance. Of these 100 patients, 82 were included in this present study after 18 RP patients with very likely pathogenic EYS (eyes shut homolog) mutations were excluded. The mutation analysis of the USH2A revealed five very likely pathogenic mutations in four patients. A patient had only one very likely pathogenic mutation and the others had two of them. Caucasian frequent mutations p.C759F in arRP and p.E767fs in USH2 were not found. All the four patients exhibited typical clinical features of RP. The observed prevalence of USH2A gene mutations was approximately 4% among Japanese arRP patients, and the profile of the USH2A gene mutations differed largely between Japanese patients and previously reported Caucasian populations.
Mabuchi, Akihiko; Manabe, Noriyo; Haga, Nobuhiko; Kitoh, Hiroshi; Ikeda, Toshiyuki; Kawaji, Hiroyuki; Tamai, Kazuya; Hamada, Junichiro; Nakamura, Shigeru; Brunetti-Pierri, Nicola; Kimizuka, Mamori; Takatori, Yoshio; Nakamura, Kozo; Nishimura, Gen; Ohashi, Hirofumi; Ikegawa, Shiro
2003-01-01
Mutations in the gene encoding cartilage oligomeric matrix protein ( COMP) cause two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). More than 40 mutations have been identified; however, genotype-phenotype relationships are not well delineated. Further, mutations other than in-frame insertion/deletions and substitutions have not been found, and currently known mutations are clustered within relatively small regions. Here we report the identification of nine novel and three recurrent COMP mutations in PSACH and MED patients. These include two novel types of mutations; the first, a gross deletion spanning an exon-intron junction, causes an exon deletion. The second, a frameshift mutation that results in a truncation of the C-terminal domain, is the first known truncating mutation in the COMP gene. The remaining mutations, other than a novel exon 18 mutation, affected highly conserved aspartate or cysteine residues in the calmodulin-like repeat (CLR) region. Genotype-phenotype analysis revealed a correlation between the position and type of mutations and the severity of short stature. Mutations in the seventh CLR produced more severe short stature compared with mutations elsewhere in the CLRs ( P=0.0003) and elsewhere in the COMP gene ( P=0.0007). Patients carrying mutations within the five-aspartates repeat (aa 469-473) in the seventh CLR were extremely short (below -6 SD). Patients with deletion mutations were significantly shorter than those with substitution mutations ( P=0.0024). These findings expand the mutation spectrum of the COMP gene and highlight genotype-phenotype relationships, facilitating improved genetic diagnosis and analysis of COMP function in humans.
Codina-Solà, Marta; Rodríguez-Santiago, Benjamín; Homs, Aïda; Santoyo, Javier; Rigau, Maria; Aznar-Laín, Gemma; Del Campo, Miguel; Gener, Blanca; Gabau, Elisabeth; Botella, María Pilar; Gutiérrez-Arumí, Armand; Antiñolo, Guillermo; Pérez-Jurado, Luis Alberto; Cuscó, Ivon
2015-01-01
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with high heritability. Recent findings support a highly heterogeneous and complex genetic etiology including rare de novo and inherited mutations or chromosomal rearrangements as well as double or multiple hits. We performed whole-exome sequencing (WES) and blood cell transcriptome by RNAseq in a subset of male patients with idiopathic ASD (n = 36) in order to identify causative genes, transcriptomic alterations, and susceptibility variants. We detected likely monogenic causes in seven cases: five de novo (SCN2A, MED13L, KCNV1, CUL3, and PTEN) and two inherited X-linked variants (MAOA and CDKL5). Transcriptomic analyses allowed the identification of intronic causative mutations missed by the usual filtering of WES and revealed functional consequences of some rare mutations. These included aberrant transcripts (PTEN, POLR3C), deregulated expression in 1.7% of mutated genes (that is, SEMA6B, MECP2, ANK3, CREBBP), allele-specific expression (FUS, MTOR, TAF1C), and non-sense-mediated decay (RIT1, ALG9). The analysis of rare inherited variants showed enrichment in relevant pathways such as the PI3K-Akt signaling and the axon guidance. Integrative analysis of WES and blood RNAseq data has proven to be an efficient strategy to identify likely monogenic forms of ASD (19% in our cohort), as well as additional rare inherited mutations that can contribute to ASD risk in a multifactorial manner. Blood transcriptomic data, besides validating 88% of expressed variants, allowed the identification of missed intronic mutations and revealed functional correlations of genetic variants, including changes in splicing, expression levels, and allelic expression.
Eisenberger, Tobias; Neuhaus, Christine; Khan, Arif O; Decker, Christian; Preising, Markus N; Friedburg, Christoph; Bieg, Anika; Gliem, Martin; Charbel Issa, Peter; Holz, Frank G; Baig, Shahid M; Hellenbroich, Yorck; Galvez, Alberto; Platzer, Konrad; Wollnik, Bernd; Laddach, Nadja; Ghaffari, Saeed Reza; Rafati, Maryam; Botzenhart, Elke; Tinschert, Sigrid; Börger, Doris; Bohring, Axel; Schreml, Julia; Körtge-Jung, Stefani; Schell-Apacik, Chayim; Bakur, Khadijah; Al-Aama, Jumana Y; Neuhann, Teresa; Herkenrath, Peter; Nürnberg, Gudrun; Nürnberg, Peter; Davis, John S; Gal, Andreas; Bergmann, Carsten; Lorenz, Birgit; Bolz, Hanno J
2013-01-01
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover "hidden mutations" such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5' exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5'-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading.
Lannoy, N; Lambert, C; Vikkula, M; Hermans, C
2015-06-01
Roughly 40% of observed mutations responsible for hemophilia A (HA) are novel and present in either a single family or a limited number of unrelated families. During routine diagnostic analysis of 73 unrelated Belgian patients with mild HA, 4 out of 43 different mutations (p.Ser2030Asn, p.Arg2178Cys, p.Arg2178His, and p.Pro2311His) were detected in more than one family, representing 35% of total identified mutations. To discriminate between an independent recurrence or a founder effect, an analysis of intra- and -extragenic single nucleotide polymorphisms (SNPs) and short tandem repeats (STRs) flanking the F8 gene was conducted. SNP haplotype and microsatellite analysis revealed strong evidence that p.Ser2030Asn and p.Pro2311His mutations were probably associated with a founder effect. The two other mutations localized in an F8 cytosine-phosphate-guanine (CpG) site likely resulted from recurrent de novo events. This study suggests that missense mutations producing C-to-T or G-to-A substitutions in CpG dinucleotide can occur de novo with more repetition than other causal substitutions that do not affect the CpG site. Analysis of F8 database implied that CpG sites throughout the F8 gene are not all mutated with the same frequency. Causes are still unknown and remain to be identified. Copyright © 2015 Elsevier Ltd. All rights reserved.
A new nonsense mutation in the NF1 gene with neurofibromatosis-Noonan syndrome phenotype.
Yimenicioğlu, Sevgi; Yakut, Ayten; Karaer, Kadri; Zenker, Martin; Ekici, Arzu; Carman, Kürşat Bora
2012-12-01
Neurofibromatosis-Noonan syndrome is a rare autosomal dominant disorder which combines neurofibromatosis type 1 (NF1) features with Noonan syndrome. NF1 gene mutations are reported in the majority of these patients. Sequence analysis of the established genes for Noonan syndrome revealed no mutation; a heterozygous NF1 point mutation c.7549C>T in exon 51, creating a premature stop codon (p.R2517X), had been demonstrated. Neurofibromatosis-Noonan syndrome recently has been considered a subtype of NF1 and caused by different NF1 mutations. We report the case of a 14-year-old boy with neurofibromatosis type 1 with Noonan-like features, who complained of headache with triventricular hydrocephaly and a heterozygous NF1 point mutation c.7549C>T in exon 51.
Trentin, Luca; Bresolin, Silvia; Giarin, Emanuela; Bardini, Michela; Serafin, Valentina; Accordi, Benedetta; Fais, Franco; Tenca, Claudya; De Lorenzo, Paola; Valsecchi, Maria Grazia; Cazzaniga, Giovanni; Kronnie, Geertruy Te; Basso, Giuseppe
2016-10-04
To induce and sustain the leukaemogenic process, MLL-AF4+ leukaemia seems to require very few genetic alterations in addition to the fusion gene itself. Studies of infant and paediatric patients with MLL-AF4+ B cell precursor acute lymphoblastic leukaemia (BCP-ALL) have reported mutations in KRAS and NRAS with incidences ranging from 25 to 50%. Whereas previous studies employed Sanger sequencing, here we used next generation amplicon deep sequencing for in depth evaluation of RAS mutations in 36 paediatric patients at diagnosis of MLL-AF4+ leukaemia. RAS mutations including those in small sub-clones were detected in 63.9% of patients. Furthermore, the mutational analysis of 17 paired samples at diagnosis and relapse revealed complex RAS clone dynamics and showed that the mutated clones present at relapse were almost all originated from clones that were already detectable at diagnosis and survived to the initial therapy. Finally, we showed that mutated patients were indeed characterized by a RAS related signature at both transcriptional and protein levels and that the targeting of the RAS pathway could be of beneficial for treatment of MLL-AF4+ BCP-ALL clones carrying somatic RAS mutations.
Defesche, J C; Van Diermen, D E; Hayden, M R; Kastelein, J P
1996-04-01
Of the three major Afrikaner founder mutations, responsible for more than 95% of Familial Hypercholesterolemia cases among South African Afrikaners, one mutation called V408M or FHAfrikaner-2 was identified in the Netherlands. Subsequent analysis of a group of Canadian patients of Dutch origin with Familial Hypercholesterolemia revealed the presence of this mutation in western Canada. The founder of the Canadian family, suffering from Familial Hypercholesterolemia caused by V408M, was traced back to Andijk, a small village in the northwestern part of the Netherlands, a region from where the first settlers to South Africa departed in the 17th and 18th century. Further genealogical investigation demonstrated that the mutation must have been introduced in the Netherlands by an individual from northern Germany. Haplotype analysis resulted in the identification of the common haplotypes TaqI-, StuI+, AvaII+, NcoI+ in Canadian as well as Dutch patients with V408M. The results of this study further support the hypothesis that Dutch settlers introduced this Afrikaner founder mutation in the Afrikaner population in South Africa. After a recombinational event in the mutated gene, the mutation was also introduced in western Canada.
A novel CDKL5 mutation in a Japanese patient with atypical Rett syndrome.
Christianto, Antonius; Katayama, Syouichi; Kameshita, Isamu; Inazu, Tetsuya
2016-08-01
Rett syndrome (RTT) is a severe X-linked dominant inheritance disorder with a wide spectrum of clinical manifestations. Mutations in Methyl CpG binding protein 2 (MECP2), Cyclin dependent kinase-like 5 (CDKL5) and Forkhead box G1 (FOXG1) have been associated with classic and/or variant RTT. This study was conducted to identify the responsible gene(s) in atypical RTT patient, and to examine the effect of the mutation on protein function. DNA sequence analysis showed a novel heterozygous mutation in CDKL5 identified as c.530A>G which resulted in an amino acid substitution at position 177, from tyrosine to cysteine. Genotyping analysis indicated that the mutation was not merely a single nucleotide polymorphism (SNP). We also revealed that patient's blood lymphocytes had random X-chromosome inactivation (XCI) pattern. Further examination by bioinformatics analysis demonstrated the mutation caused damage or deleterious in its protein. In addition, we demonstrated in vitro kinase assay of mutant protein showed impairment of its activity. Taken together, the results suggested the mutant CDKL5 was responsible for the disease. Copyright © 2016 Elsevier B.V. All rights reserved.
A novel mutation in PAX3 associated with Waardenburg syndrome type I in a Chinese family.
Xiao, Yun; Luo, Jianfen; Zhang, Fengguo; Li, Jianfeng; Han, Yuechen; Zhang, Daogong; Wang, Mingming; Ma, Yalin; Xu, Lei; Bai, Xiaohui; Wang, Haibo
2016-01-01
The novel compound heterozygous mutation in PAX3 was the key genetic reason for WS1 in this family, which was useful to the molecular diagnosis of WS1. Screening the pathogenic mutations in a four generation Chinese family with Waardenburg syndrome type I (WS1). WS1 was diagnosed in a 4-year-old boy according to the Waardenburg syndrome Consortium criteria. The detailed family history revealed four affected members in the family. Routine clinical, audiological examination, and ophthalmologic evaluation were performed on four affected and 10 healthy members in this family. The genetic analysis was conducted, including the targeted next-generation sequencing of 127 known deafness genes combined with Sanger sequencing, TA clone and bioinformatic analysis. A novel compound heterozygous mutation c.[169_170insC;172_174delAAG] (p.His57ProfsX55) was identified in PAX3, which was co-segregated with WS1 in the Chinese family. This mutation was absent in the unaffected family members and 200 ethnicity-matched controls. The phylogenetic analysis and three-dimensional (3D) modeling of Pax3 protein further confirmed that the novel compound heterozygous mutation was pathogenic.
Hellenbroich, Y; Tzivras, G; Neppert, B; Schwinger, E; Zühlke, C
2001-01-01
Five autosomal dominantly inherited corneal dystrophies are caused by missense mutations in the betaIGH3 gene on chromosome 5q31. Here we describe the clinical features and the analysis of the betaIGH3 gene in a Greek four-generation family with lattice corneal dystrophy type 1 (CDL1). Sequencing of the betaIGH3 cDNA from an affected family member revealed the R124C mutation. More recent data indicate that this is probably a mutation hot spot in CDL1. We could not find a common haplotype with another CDL1 family with the R124C mutation demonstrating that this mutation occurs independently in different families. The clinical course of the disease showed a remarkable variability between the affected family members. To investigate a possible role between the phenotypic variability and apolipoprotein E (ApoE), which co-localises with amyloid deposits in CDL1, we determined the ApoE genotype of all family members. The resulting data revealed no association with the variable clinical course. Copyright 2001 S. Karger AG, Basel
Subclinical hyperthyroidism due to a thyrotropin receptor (TSHR) gene mutation (S505R).
Pohlenz, Joachim; Pfarr, Nicole; Krüger, Silvia; Hesse, Volker
2006-12-01
To identify the molecular defect by which non-autoimmune subclinical hyperthyroidism was caused in a 6-mo-old infant who presented with weight loss. Congenital non-autoimmune hyperthyroidism is caused by activating germline mutations in the thyrotropin receptor (TSHR) gene. Therefore, the TSHR gene was sequenced directly from the patient's genomic DNA. Molecular analysis revealed a heterozygous point mutation (S505R) in the TSHR gene as the underlying defect. A constitutively activating mutation in the TSHR gene has to be considered not only in patients with severe congenital non-autoimmune hyperthyroidism, but also in children with subclinical non-autoimmune hyperthyroidism.
Hao, Xiuping; Cheng, XiaoLi; Ye, Jiajia; Wang, Yingyu; Yang, LiHong; Wang, Mingshan; Jin, Yanhui
2016-06-01
Congenital coagulation factor VII (FVII) deficiency is a rare disorder caused by mutation in F7 gene. Herein, we reported a patient who had unexplained hematuria and vertigo with consanguineous parents. He has been diagnosed as having FVII deficiency based on the results of reduced FVII activity (2.0%) and antigen (12.8%). The thrombin generation tests verified that the proband has obstacles in producing thrombin. Direct sequencing analysis revealed a novel homozygous missense mutation p.Trp284Gly. Also noteworthy is the fact that the mutational residue belongs to structurally conserved loop 140s, which majorly undergo rearrangement after FVII activation. Model analysis indicated that the substitution disrupts these native hydrophobic interactions, which are of great importance to the conformation in the activation domain of FVIIa.
Novel alpha-galactosidase A mutation in a female with recurrent strokes.
Tuttolomondo, Antonino; Duro, Giovanni; Miceli, Salvatore; Di Raimondo, Domenico; Pecoraro, Rosaria; Serio, Antonia; Albeggiani, Giuseppe; Nuzzo, Domenico; Iemolo, Francesco; Pizzo, Federica; Sciarrino, Serafina; Licata, Giuseppe; Pinto, Antonio
2012-11-01
Anderson-Fabry disease (AFD) is an X-linked inborn error of glycosphingolipid catabolism resulting from the deficient activity of the lysosomal exoglycohydrolase, a-galactosidase A. The complete genomic and cDNA sequences of the human alpha-galactosidase A gene have been determined and to date, several disease-causing alpha-galactosidase A mutations have been identified, including missense mutations, small deletions/insertions, splice mutations, and large gene rearrangements We report a case of a 56-year-old woman with recurrent cryptogenic strokes. Ophthalmological examination revealed whorled opacities of the cornea (cornea verticillata) and dilated tortuous conjunctival vessels. She did not show other typical signs of Fabry disease such as acroparesthesias and angiokeratoma. The patient's alpha-galactosidase A activity was 4.13 nmol/mL/h in whole blood. Alpha-galactosidase A gene sequence analysis revealed a heterozygous single nucleotide point mutation at nucleotide c.550T>A in exon 4 in this woman, leading to the p.Tyr184Asn amino acid substitution. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Nishimura, Toshihide; Nakamura, Haruhiko
2016-01-01
Molecular therapies targeting lung cancers with mutated epidermal growth factor receptor (EGFR) by EGFR-tyrosin kinase inhibitors (EGFR-TKIs), gefitinib and erlotinib, changed the treatment system of lung cancer. It was revealed that drug efficacy differs by race (e.g., Caucasians vs. Asians) due to oncogenic driver mutations specific to each race, exemplified by gefitinib / erlotinib. The molecular target drugs for lung cancer with anaplastic lymphoma kinase (ALK) gene translocation (the fusion gene, EML4-ALK) was approved, and those targeting lung cancers addicted ROS1, RET, and HER2 have been under development. Both identification and quantification of gatekeeper mutations need to be performed using lung cancer tissue specimens obtained from patients to improve the treatment for lung cancer patients: (1) identification and quantitation data of targeted mutated proteins, including investigation of mutation heterogeneity within a tissue; (2) exploratory mass spectrometry (MS)-based clinical proteogenomic analysis of mutated proteins; and also importantly (3) analysis of dynamic protein-protein interaction (PPI) networks of proteins significantly related to a subgroup of patients with lung cancer not only with good efficacy but also with acquired resistance. MS-based proteogenomics is a promising approach to directly capture mutated and fusion proteins expressed in a clinical sample. Technological developments are further expected, which will provide a powerful solution for the stratification of patients and drug discovery (Precision Medicine).
Okumura, Akiko; Ozaki, Mamoru; Niida, Yo
2015-08-01
Mutation analysis of NF1, the responsible gene for neurofibromatosis type 1 (NF1), is still difficult due to its large size, lack of mutational hotspots, the presence of many pseudogenes, and its wide spectrum of mutations. To develop a simple and inexpensive NF1 genetic testing for clinical use, we analyzed five Japanese families with NF1 as a pilot study. Our original method, CEL endonuclease mediated heteroduplex incision with polyacrylamide gel electrophoresis and silver staining (CHIPS) was optimized for NF1 mutation screening, and reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the effect of transcription. Also, we employed DNA microarray analysis to evaluate the break points of the large deletion. A new nonsense mutation, p.Gln209(∗), was detected in family 1 and the splicing donor site mutation, c.2850+1G>T, was detected in family 2. In family 3, c.4402A>G was detected in exon 34 and the p.Ser1468Gly missense mutation was predicted. However mRNA analysis revealed that this substitution created an aberrant splicing acceptor site, thereby causing the p.Phe1457(∗) nonsense mutation. In the other two families, type-1 and unique NF1 microdeletions were detected by DNA microarray analysis. Our results show that the combination of CHIPS and RT-PCR effectively screen and characterize NF1 point mutations, and both DNA and RNA level analysis are required to understand the nature of the NF1 mutation. Our results also suggest the possibility of a higher incidence and unique profile of NF1 large deletions in the Japanese population as compared to previous studies performed in Europe. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Caridi, Gianluca; Malaventura, Cristina; Dagnino, Monica; Leonardi, Emanuela; Artifoni, Lina; Ghiggeri, Gian Marco; Tosatto, Silvio C.E.; Murer, Luisa
2010-01-01
Background and objectives: Wilms tumor-suppressor gene-1 (WT1) plays a key role in kidney development and function. WT1 mutations usually occur in exons 8 and 9 and are associated with Denys-Drash, or in intron 9 and are associated with Frasier syndrome. However, overlapping clinical and molecular features have been reported. Few familial cases have been described, with intrafamilial variability. Sporadic cases of WT1 mutations in isolated diffuse mesangial sclerosis or focal segmental glomerulosclerosis have also been reported. Design, setting, participants, & measurements: Molecular analysis of WT1 exons 8 and 9 was carried out in five members on three generations of a family with late-onset isolated proteinuria. The effect of the detected amino acid substitution on WT1 protein's structure was studied by bioinformatics tools. Results: Three family members reached end-stage renal disease in full adulthood. None had genital abnormalities or Wilms tumor. Histologic analysis in two subjects revealed focal segmental glomerulosclerosis. The novel sequence variant c.1208G>A in WT1 exon 9 was identified in all of the affected members of the family. Conclusions: The lack of Wilms tumor or other related phenotypes suggests the expansion of WT1 gene analysis in patients with focal segmental glomerulosclerosis, regardless of age or presence of typical Denys-Drash or Frasier syndrome clinical features. Structural analysis of the mutated protein revealed that the mutation hampers zinc finger-DNA interactions, impairing target gene transcription. This finding opens up new issues about WT1 function in the maintenance of the complex gene network that regulates normal podocyte function. PMID:20150449
Zhou, Bin; Irwanto, Astrid; Guo, Yun-Miao; Bei, Jin-Xin; Wu, Qiao; Chen, Ge; Zhang, Tai-Ping; Lei, Jin-Jv; Feng, Qi-Sheng; Chen, Li-Zhen; Liu, Jianjun; Zhao, Yu-Pei
2012-08-01
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers with more than 94% mortality rate mainly due to the widespread metastases. To find out the somatically mutated genes related to the metastasis of PDAC, we analyzed the matched tumor and normal tissue samples from a patient diagnosed with liver metastatic PDAC using intensive exome capture-sequencing analysis (> 170× coverage). Searching for the somatic mutations that drive the clonal expansion of metastasis, we identified 12 genes with higher allele frequencies (AFs) of functional mutations in the metastatic tumor, including known genes KRAS and TP53 for metastasis. Of the 10 candidate genes, 6 (ADRB1, DCLK1, KCNH2, NOP14, SIGLEC1, and ZC3H7A), together with KRAS and TP53, were clustered into a single network (p value = 1 × 10(-22)) that is related to cancer development. Moreover, these candidate genes showed abnormal expression in PDAC tissues and functional impacts on the migration, proliferation, and colony formation abilities of pancreatic cancer cell lines. Furthermore, through digital PCR analysis, we revealed potential genomic mechanisms for the KRAS and TP53 mutations in the metastatic tumor. Taken together, our study shows the possibility for such personalized genomic profiling to provide new biological insight into the metastasis of PDAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogervorst, F.B.L.; Tuijn, A.C. van der; Ommen, G.J.B. van
Hunter syndrome is an X-linked recessive disorder constituting phenotypes ranging from mild to severe. The gene affected in Hunter syndrome is iduronate-2-sulfatase (IDS). The identification of mutations leading to a defective enzyme could be of benefit for the diagnosis and prognosis of patients. At this moment a variety of mutations have been found, including large deletions and base substitutions. We have previously described a method, designated the protein truncation test (PTT), for the detection of mutations leading to premature translation termination. The method combines reverse transcription and PCR (RT-PCR) with in vitro transcript/translation of the products generated. To facilitate amore » PTT analysis, the forward primer is modified by addition of a T7 promoter sequence and an in-frame protein translation initiation sequence. In our department the method has been successfully applied for DMD and FAP. Here we report on the PTT analysis of 8 Hunter patients, all of them without major gene alterations as determined by Southern analysis. Total RNA was isolated from cultured skin fibroblasts or peripheral blood lymphocytes. PTT analysis revealed 4 novel mutations in the IDS gene: two missense mutations and two frameshift mutations (splice donor site alteration in intron 6 and a 13 bp deletion in exon 9). Furthermore, PTT proved to be a simple method to identify carriers. Currently, we use the generated RT-PCR products of the remaining patients for automated sequence analysis. PTT may be of great value in screening disorders in which affected genes give rise to truncated protein products.« less
Pitfalls in genetic analysis of pheochromocytomas/paragangliomas-case report.
Canu, Letizia; Rapizzi, Elena; Zampetti, Benedetta; Fucci, Rossella; Nesi, Gabriella; Richter, Susan; Qin, Nan; Giachè, Valentino; Bergamini, Carlo; Parenti, Gabriele; Valeri, Andrea; Ercolino, Tonino; Eisenhofer, Graeme; Mannelli, Massimo
2014-07-01
About 35% of patients with pheochromocytoma/paraganglioma carry a germline mutation in one of the 10 main susceptibility genes. The recent introduction of next-generation sequencing will allow the analysis of all these genes in one run. When positive, the analysis is generally unequivocal due to the association between a germline mutation and a concordant clinical presentation or positive family history. When genetic analysis reveals a novel mutation with no clinical correlates, particularly in the presence of a missense variant, the question arises whether the mutation is pathogenic or a rare polymorphism. We report the case of a 35-year-old patient operated for a pheochromocytoma who turned out to be a carrier of a novel SDHD (succinate dehydrogenase subunit D) missense mutation. With no positive family history or clinical correlates, we decided to perform additional analyses to test the clinical significance of the mutation. We performed in silico analysis, tissue loss of heterozygosity analysis, immunohistochemistry, Western blot analysis, SDH enzymatic assay, and measurement of the succinate/fumarate concentration ratio in the tumor tissue by tandem mass spectrometry. Although the in silico analysis gave contradictory results according to the different methods, all the other tests demonstrated that the SDH complex was conserved and normally active. We therefore came to the conclusion that the variant was a nonpathogenic polymorphism. Advancements in technology facilitate genetic analysis of patients with pheochromocytoma but also offer new challenges to the clinician who, in some cases, needs clinical correlates and/or functional tests to give significance to the results of the genetic assay.
Alvarez, Carolina; Tapia, Teresa; Perez-Moreno, Elisa; Gajardo-Meneses, Patricia; Ruiz, Catalina; Rios, Mabel; Missarelli, Claudio; Silva, Mariela; Cruz, Adolfo; Matamala, Luis; Carvajal-Carmona, Luis; Camus, Mauricio; Carvallo, Pilar
2017-01-01
Identifying founder mutations in BRCA1 and BRCA2 in specific populations constitute a valuable opportunity for genetic screening. Several studies from different populations have reported recurrent and/or founder mutations representing a relevant proportion of BRCA mutation carriers. In Latin America, only few founder mutations have been described. We screened 453 Chilean patients with hereditary breast cancer for mutations in BRCA1 and BRCA2. For recurrent mutations, we genotyped 11 microsatellite markers in BRCA1 and BRCA2 in order to determine a founder effect through haplotype analysis. We found a total of 25 mutations (6 novel) in 71 index patients among which, nine are present exclusively in Chilean patients. Our analysis revealed the presence of nine founder mutations, 4 in BRCA1 and 5 in BRCA2, shared by 2 to 10 unrelated families and spread in different regions of Chile. Our panel contains the highest amount of founder mutations until today and represents the highest percentage (78%) of BRCA1 and BRCA2 mutation carriers. We suggest that the dramatic reduction of Amerindian population due to smallpox and wars with Spanish conquerors, a scarce population increase during 300 years, and the geographic position of Chile constituted a favorable scenario to establish founder genetic markers in our population. PMID:29088781
Nagara, Majdi; Tiar, Afaf; Ben Halim, Nizar; Ben Rhouma, Faten; Messaoud, Olfa; Bouyacoub, Yosra; Kefi, Rym; Hassayoun, Saida; Zouari, Noura; Ben Ammar, Mohamed Slim; Abdelhak, Sonia; Chemli, Jalel
2013-09-15
Primary hyperoxaluria type 1 (PH1) is an autosomal recessive inherited metabolic disease, characterized by progressive kidney failure due to renal deposition of calcium oxalate. Mutations in the AGXT gene, encoding the liver-specific enzyme alanine glyoxylate aminotransferase, are responsible for the disease. We aimed to determine the mutational spectrum causing PH1 and to provide an accurate tool for diagnosis as well as for prenatal diagnosis in the affected families. Direct sequencing was used to detect mutations in the AGXT gene in DNA samples from 13 patients belonging to 12 Tunisian families. Molecular analysis revealed five mutations causing PH1 in Tunisia. The mutations were identified along exons 1, 2, 4, 5 and 7. The most predominant mutations were the Maghrebian "p.I244T" and the Arabic "p.G190R". Furthermore, three other mutations characteristic of different ethnic groups were found in our study population. These results confirm the mutational heterogeneity related to PH1 in Tunisian population. All the mutations are in a homozygous state, reflecting the high impact of endogamy in our population. Mutation analysis through DNA sequencing can provide a useful first line investigation for PH1. This identification could provide an accurate tool for prenatal diagnosis, genetic counseling and screen for potential presymptomatic individuals. © 2013 Elsevier B.V. All rights reserved.
Genomic analysis of primordial dwarfism reveals novel disease genes.
Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S
2014-02-01
Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis.
Genomic analysis of primordial dwarfism reveals novel disease genes
Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N.; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S.
2014-01-01
Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis. PMID:24389050
Eisenberger, Tobias; Neuhaus, Christine; Khan, Arif O.; Decker, Christian; Preising, Markus N.; Friedburg, Christoph; Bieg, Anika; Gliem, Martin; Issa, Peter Charbel; Holz, Frank G.; Baig, Shahid M.; Hellenbroich, Yorck; Galvez, Alberto; Platzer, Konrad; Wollnik, Bernd; Laddach, Nadja; Ghaffari, Saeed Reza; Rafati, Maryam; Botzenhart, Elke; Tinschert, Sigrid; Börger, Doris; Bohring, Axel; Schreml, Julia; Körtge-Jung, Stefani; Schell-Apacik, Chayim; Bakur, Khadijah; Al-Aama, Jumana Y.; Neuhann, Teresa; Herkenrath, Peter; Nürnberg, Gudrun; Nürnberg, Peter; Davis, John S.; Gal, Andreas; Bergmann, Carsten; Lorenz, Birgit; Bolz, Hanno J.
2013-01-01
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover “hidden mutations” such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5′ exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5′-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading. PMID:24265693
Novel mutation of OCRL1 in Lowe syndrome.
Liu, Ting; Yue, Zhihui; Wang, Haiyan; Tong, Huajuan; Sun, Liangzhong
2015-01-01
Lowe syndrome is a rare, X-linked recessive genetic disease with multi-organ involvement. The pathogenic gene is OCRL1. The authors analyzed the OCRL1 mutation and summarized the clinical features of a Chinese child with Lowe syndrome. The patient is a 3 year 7 mo-old boy. He presented with hypotonia at birth and gradually presented with bilateral congenital cataracts, psychomotor retardation, hypophosphatemic rickets and renal tubular function disorder. Sequence analysis of OCRL1 revealed a novel insertion mutation, c.2367insA (p. Ala813X), in exon 22. This mutation was suspected to cause a premature stop codon of OCRL1 and truncation of the OCRL1 protein. His mother, who carried a heterozygous mutation, had no sign of abnormality.
Kannan, K; Munirajan, A K; Krishnamurthy, J; Bhuvarahamurthy, V; Mohanprasad, B K; Panishankar, K H; Tsuchida, N; Shanmugam, G
2000-03-01
Eighty-seven untreated primary oral squamous cell carcinomas (SCCs) associated with betel quid and tobacco chewing from Indian patients were analysed for the presence of mutations in the commonly shared exon 2 of p16INK4alpha/p19ARF genes. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and sequencing analysis were used to detect mutations. SSCP analysis indicated that only 9% (8/87) of the tumours had mutation in p16INK4alpha/p19ARF genes. Seventy-two tumours studied here were previously analysed for p53 mutations and 21% (15/72) of them were found to have mutations in p53 gene. Only one tumour was found to have mutation at both p53 and p16INK4alpha/p19ARF genes. Thus, the mutation rates observed were 21% for p53, 9% for p16INK4alpha/p19ARF, and 1% for both. Sequencing analysis revealed two types of mutations; i) G to C (GCAG to CCAG) transversion type mutation at intron 1-exon 2 splice junction and ii) another C to T transition type mutation resulting in CGA to TGA changing arginine to a termination codon at p16INK4alpha gene codon 80 and the same mutation will alter codon 94 of p19ARF gene from CCG to CTG (proline to leucine). These results suggest that p16INK4alpha/p19ARF mutations are less frequent than p53 mutations in Indian oral SCCs. The p53 and p16INK4alpha/p19ARF mutational events are independent and are mutually exclusive suggesting that mutational inactivation of either p53 or p16INK4alpha/p19ARF may alleviate the need for the inactivation of the other gene.
Zaneveld, Jacques; Siddiqui, Sorath; Li, Huajin; Wang, Xia; Wang, Hui; Wang, Keqing; Li, Hui; Ren, Huanan; Lopez, Irma; Dorfman, Allison; Khan, Ayesha; Wang, Feng; Salvo, Jason; Gelowani, Violet; Li, Yumei; Sui, Ruifang; Koenekoop, Robert; Chen, Rui
2014-01-01
Purpose Stargardt macular dystrophy (STGD) results in early central vision loss. We sought to explain the genetic cause of STGD in a cohort of 88 patients from three different cultural backgrounds. Methods Next Generation Sequencing using a novel capture panel was used to search for disease causing mutations. Unsolved patients were clinically re-examined and tested for copy number variations (CNVs) as well as intronic mutations. Results We determined the cause of disease in 67% of our patients. Our analysis identified 35 novel ABCA4 alleles. Eleven patients had mutations in genes not previously reported to cause STGD. Finally, 45% of our unsolved patients had single deleterious mutations in ABCA4, a recessive disease gene. No likely pathogenic CNVs were identified. Conclusions This study expands our knowledge of STGD by identifying dozens of novel STGD causing alleles. The frequency of patients with single mutations in ABCA4 is higher than controls, indicating these mutations contribute to disease. Eleven patients were explained by mutations outside ABCA4 underlining the need to genotype all retinal disease genes to maximize genetic diagnostic rates. Few ABCA4 mutations were observed in our French Canadian patients. This population may contain an unidentified founder mutation. Our results indicate that CNVs are unlikely to be a major cause of STGD. PMID:25474345
Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity
NASA Astrophysics Data System (ADS)
Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit
2016-10-01
Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.
Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit
2016-10-01
Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.
Ivanov, E L; Koval'tsova, S V; Korolev, V G
1987-09-01
We have studied the influence of him1-1, him2-1, him3-1 and himX mutations on induction frequency and specificity of UV-induced adenine-dependent mutations in the yeast Saccharomyces cerevisiae. Him mutations do not render haploid cells more sensitive to the lethal action of UV-light; however, in him strains adenine-dependent mutations (ade1, ade2) were induced more frequently (1.5--2-fold), as compared to the HIM strain. An analysis of the molecular nature of ade2 mutants revealed that him1-1, him2-1 and himX mutations increase specifically the yield of transitions (AT----GC and GC----AT), whereas in the him3-1 strain the yield of transversions was enhanced as well. We suggest him mutations analysed to affect specific repair pathway for mismatch correction.
Furuya, Mitsuko; Hong, Seung-Beom; Tanaka, Reiko; Kuroda, Naoto; Nagashima, Yoji; Nagahama, Kiyotaka; Suyama, Takahito; Yao, Masahiro; Nakatani, Yukio
2015-01-01
Birt–Hogg–Dubé syndrome (BHD) is an inherited disorder associated with a germline mutation of the folliculin gene (FLCN). The affected families have a high risk for developing multiple renal cell carcinomas (RCC). Diagnostic markers that distinguish between FLCN-related RCC and sporadic RCC have not been investigated, and many patients with undiagnosed BHD fail to receive proper medical care. We investigated the histopathology of 27 RCCs obtained from 18 BHD patients who were diagnosed by genetic testing. Possible somatic mutations of RCC lesions were investigated by DNA sequencing. Western blotting and immunohistochemical staining were used to compare the expression levels of FLCN and glycoprotein non-metastatic B (GPNMB) between FLCN-related RCCs and sporadic renal tumors (n = 62). The expression of GPNMB was also evaluated by quantitative RT-PCR. Histopathological analysis revealed that the most frequent histological type was chromophobe RCC (n = 12), followed by hybrid oncocytic/chromophobe tumor (n = 6). Somatic mutation analysis revealed small intragenic mutations in six cases and loss of heterozygosity in two cases. Western blot and immunostaining analyses revealed that FLCN-related RCCs showed overexpression of GPNMB and underexpression of FLCN, whereas sporadic tumors showed inverted patterns. GPNMB mRNA in FLCN-related RCCs was 23-fold more abundant than in sporadic tumors. The distinctive expression patterns of GPNMB and FLCN might identify patients with RCCs who need further work-up for BHD. PMID:25594584
Robledo, Raymond F.; Lambert, Amy J.; Birkenmeier, Connie S.; Cirlan, Marius V.; Cirlan, Andreea Flavia M.; Campagna, Dean R.; Lux, Samuel E.
2010-01-01
Five spontaneous, allelic mutations in the α-spectrin gene, Spna1, have been identified in mice (spherocytosis [sph], sph1J, sph2J, sph2BC, sphDem). All cause severe hemolytic anemia. Here, analysis of 3 new alleles reveals previously unknown consequences of red blood cell (RBC) spectrin deficiency. In sph3J, a missense mutation (H2012Y) in repeat 19 introduces a cryptic splice site resulting in premature termination of translation. In sphIhj, a premature stop codon occurs (Q1853Stop) in repeat 18. Both mutations result in markedly reduced RBC membrane spectrin content, decreased band 3, and absent β-adducin. Reevaluation of available, previously described sph alleles reveals band 3 and adducin deficiency as well. In sph4J, a missense mutation occurs in the C-terminal EF hand domain (C2384Y). Notably, an equally severe hemolytic anemia occurs despite minimally decreased membrane spectrin with normal band 3 levels and present, although reduced, β-adducin. The severity of anemia in sph4J indicates that the highly conserved cysteine residue at the C-terminus of α-spectrin participates in interactions critical to membrane stability. The data reinforce the notion that a membrane bridge in addition to the classic protein 4.1-p55-glycophorin C linkage exists at the RBC junctional complex that involves interactions between spectrin, adducin, and band 3. PMID:20056793
Robledo, Raymond F; Lambert, Amy J; Birkenmeier, Connie S; Cirlan, Marius V; Cirlan, Andreea Flavia M; Campagna, Dean R; Lux, Samuel E; Peters, Luanne L
2010-03-04
Five spontaneous, allelic mutations in the alpha-spectrin gene, Spna1, have been identified in mice (spherocytosis [sph], sph(1J), sph(2J), sph(2BC), sph(Dem)). All cause severe hemolytic anemia. Here, analysis of 3 new alleles reveals previously unknown consequences of red blood cell (RBC) spectrin deficiency. In sph(3J), a missense mutation (H2012Y) in repeat 19 introduces a cryptic splice site resulting in premature termination of translation. In sph(Ihj), a premature stop codon occurs (Q1853Stop) in repeat 18. Both mutations result in markedly reduced RBC membrane spectrin content, decreased band 3, and absent beta-adducin. Reevaluation of available, previously described sph alleles reveals band 3 and adducin deficiency as well. In sph(4J), a missense mutation occurs in the C-terminal EF hand domain (C2384Y). Notably, an equally severe hemolytic anemia occurs despite minimally decreased membrane spectrin with normal band 3 levels and present, although reduced, beta-adducin. The severity of anemia in sph(4J) indicates that the highly conserved cysteine residue at the C-terminus of alpha-spectrin participates in interactions critical to membrane stability. The data reinforce the notion that a membrane bridge in addition to the classic protein 4.1-p55-glycophorin C linkage exists at the RBC junctional complex that involves interactions between spectrin, adducin, and band 3.
Kim, Jihun; Kim, Deokhoon; Chun, Sung-Min; Kim, Jiyun; Kim, Tae Won; Park, Inja; Yu, Chang-Sik; Jang, Se Jin
2016-01-01
Early-onset colorectal cancers (EOCRCs) may have biological or genomic features distinct from late-onset CRCs (LOCRCs). Previous studies have mostly focused on the germline predisposition conditions of EOCRCs, but we hypothesized that EOCRCs may have distinct somatic aberrations that accelerate cancer development. To identify the somatic aberrations that accelerate cancer development at an early age, we conducted whole exome sequencing for 28 polyposis-unrelated, microsatellite stable (MSS) EOCRCs with no known germline predisposition conditions. Surprisingly, we found two distinct groups in the context of mutational burden: 6 hypermutated cases with 2325 to 10973 mutations and 22 nonhypermutated cases with 47 to 154 mutations. Further analysis revealed that four of the six hypermutated cases had the same POLE P286R mutation. We validated this finding in 83 MSS EOCRCs and 27 MSS LOCRCs, which revealed that 7.2% of EOCRCs (6/83) had the POLE P286R mutation, which was not found in LOCRCs. Clinicopathologically, EOCRCs with POLE mutations occurred far more frequently in the right colon than in the left colon, affecting men more frequently than women. In summary, we have identified a unique subclass of colon cancer characterized by a hypermutation associated with the POLE mutation. The acquisition of the POLE mutation leading to hypermutation can accelerate cancer development. Clinically, this subset with hypermutation may be susceptible to immune checkpoint blockade. PMID:27612425
OSUMI, HIROKI; SHINOZAKI, EIJI; OSAKO, MASAHIKO; KAWAZOE, YOSHIMASA; OBA, MASARU; MISAKA, TAKAHARU; GOTO, TAKASHI; KAMO, HITOMI; SUENAGA, MITSUKUNI; KUMEKAWA, YOSUKE; OGURA, MARIKO; OZAKA, MASATO; MATSUSAKA, SATOSHI; CHIN, KEISHO; HATAKE, KIYOHIKO; MIZUNUMA, NOBUYUKI
2015-01-01
A number of previous studies have reported that 30–50% of patients with colorectal cancer (CRC) harbor Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations, which is a major predictive biomarker of resistance to epidermal growth factor (EGFR)-targeted therapy. Treatment with an anti-EGFR inhibitor is recommended for patients with KRAS wild-type metastatic colorectal cancer (mCRC). A recent retrospective study of cetuximab reported that patients with KRAS p.G13D mutations had better outcomes compared with those with other mutations. The aim of this retrospective study was to assess the prevalence of KRAS p.G13D mutations and evaluate the effectiveness of cetuximab in mCRC patients with KRAS p.G13D or other KRAS mutations. We reviewed the clinical records of 98 mCRC patients with KRAS mutations who were treated between August, 2004 and January, 2011 in four hospitals located in Tokyo and Kyushu Island. We also investigated KRAS mutation subtypes and patient characteristics. In the patients who received cetuximab, univariate and multivariate analyses were performed to assess the effect of KRAS p.G13D mutations on progression-free survival (PFS) and overall survival (OS). Of the 98 patients, 23 (23.5%) had KRAS p.G13D-mutated tumors, whereas 75 (76.5%) had tumors harboring other mutations. Of the 31 patients who received cetuximab, 9 (29.0%) had KRAS p.G13D mutations and 22 (71.0%) had other mutations. There were no significant differences in age, gender, primary site, pathological type, history of chemotherapy, or the combined use of irinotecan between either of the patient subgroups. The univariate analysis revealed no significant difference in PFS or OS between the patients with KRAS p.G13D mutations and those with other mutations (median PFS, 4.5 vs. 2.8 months, respectively; P=0.65; and median OS, 15.3 vs. 8.9 months, respectively; P=0.51). However, the multivariate analysis revealed a trend toward better PFS among patients harboring p.G13D mutations (PFS: HR=0.29; 95% CI: 0.08–1.10; P=0.07; OS: HR=0.23; 95% CI: 0.04–1.54; P=0.13). In conclusion, treatment with cetuximab may be more clinically beneficial in mCRC patients with a KRAS p.G13D mutation, compared with those harboring other mutations. However, further investigation is required to clearly determine the benefits of cetuximab treatment in patients with KRAS p.G13D mutation-positive mCRC. PMID:26623049
DNA methylation-based reclassification of olfactory neuroblastoma.
Capper, David; Engel, Nils W; Stichel, Damian; Lechner, Matt; Glöss, Stefanie; Schmid, Simone; Koelsche, Christian; Schrimpf, Daniel; Niesen, Judith; Wefers, Annika K; Jones, David T W; Sill, Martin; Weigert, Oliver; Ligon, Keith L; Olar, Adriana; Koch, Arend; Forster, Martin; Moran, Sebastian; Tirado, Oscar M; Sáinz-Japeado, Miguel; Mora, Jaume; Esteller, Manel; Alonso, Javier; Del Muro, Xavier Garcia; Paulus, Werner; Felsberg, Jörg; Reifenberger, Guido; Glatzel, Markus; Frank, Stephan; Monoranu, Camelia M; Lund, Valerie J; von Deimling, Andreas; Pfister, Stefan; Buslei, Rolf; Ribbat-Idel, Julika; Perner, Sven; Gudziol, Volker; Meinhardt, Matthias; Schüller, Ulrich
2018-05-05
Olfactory neuroblastoma/esthesioneuroblastoma (ONB) is an uncommon neuroectodermal neoplasm thought to arise from the olfactory epithelium. Little is known about its molecular pathogenesis. For this study, a retrospective cohort of n = 66 tumor samples with the institutional diagnosis of ONB was analyzed by immunohistochemistry, genome-wide DNA methylation profiling, copy number analysis, and in a subset, next-generation panel sequencing of 560 tumor-associated genes. DNA methylation profiles were compared to those of relevant differential diagnoses of ONB. Unsupervised hierarchical clustering analysis of DNA methylation data revealed four subgroups among institutionally diagnosed ONB. The largest group (n = 42, 64%, Core ONB) presented with classical ONB histology and no overlap with other classes upon methylation profiling-based t-distributed stochastic neighbor embedding (t-SNE) analysis. A second DNA methylation group (n = 7, 11%) with CpG island methylator phenotype (CIMP) consisted of cases with strong expression of cytokeratin, no or scarce chromogranin A expression and IDH2 hotspot mutation in all cases. T-SNE analysis clustered these cases together with sinonasal carcinoma with IDH2 mutation. Four cases (6%) formed a small group characterized by an overall high level of DNA methylation, but without CIMP. The fourth group consisted of 13 cases that had heterogeneous DNA methylation profiles and strong cytokeratin expression in most cases. In t-SNE analysis, these cases mostly grouped among sinonasal adenocarcinoma, squamous cell carcinoma, and undifferentiated carcinoma. Copy number analysis indicated highly recurrent chromosomal changes among Core ONB with a high frequency of combined loss of chromosome 1-4, 8-10, and 12. NGS sequencing did not reveal highly recurrent mutations in ONB, with the only recurrently mutated genes being TP53 and DNMT3A. In conclusion, we demonstrate that institutionally diagnosed ONB are a heterogeneous group of tumors. Expression of cytokeratin, chromogranin A, the mutational status of IDH2 as well as DNA methylation patterns may greatly aid in the precise classification of ONB.
Ritt, Jean-François; Raymond, Frédéric; Leprohon, Philippe; Légaré, Danielle; Corbeil, Jacques; Ouellette, Marc
2013-01-01
Background The human protozoan parasites Leishmania are prototrophic for pyrimidines with the ability of both de novo biosynthesis and uptake of pyrimidines. Methodology/Principal Findings Five independent L. infantum mutants were selected for resistance to the pyrimidine analogue 5-fluorouracil (5-FU) in the hope to better understand the metabolism of pyrimidine in Leishmania. Analysis of the 5-FU mutants by comparative genomic hybridization and whole genome sequencing revealed in selected mutants the amplification of DHFR-TS and a deletion of part of chromosome 10. Point mutations in uracil phosphorybosyl transferase (UPRT), thymidine kinase (TK) and uridine phosphorylase (UP) were also observed in three individual resistant mutants. Transfection experiments confirmed that these point mutations were responsible for 5-FU resistance. Transport studies revealed that one resistant mutant was defective for uracil and 5-FU import. Conclusion/Significance This study provided further insights in pyrimidine metabolism in Leishmania and confirmed that multiple mutations can co-exist and lead to resistance in Leishmania. PMID:24278495
Colakoglu, Seyma; Bayhan, Turan; Tavil, Betül; Keskin, Ebru Yılmaz; Cakir, Volkan; Gümrük, Fatma; Çetin, Mualla; Aytaç, Selin; Berber, Ergul
2018-01-01
Factor XI (FXI) deficiency is an autosomal bleeding disease associated with genetic defects in the F11 gene which cause decreased FXI levels or impaired FXI function. An increasing number of mutations has been reported in the FXI mutation database, most of which affect the serine protease domain of the protein. FXI is a heterogeneous disorder associated with a variable bleeding tendency and a variety of causative F11 gene mutations. The molecular basis of FXI deficiency in 14 patients from ten unrelated families in Turkey was analysed to establish genotype-phenotype correlations and inheritance of the mutations in the patients' families. Fourteen index cases with a diagnosis of FXI deficiency and family members of these patients were enrolled into the study. The patients' F11 genes were amplified by polymerase chain reaction and subjected to direct DNA sequencing analysis. The findings were analysed statistically using bivariate correlations, Pearson's correlation coefficient and the nonparametric Mann-Whitney test. Direct DNA sequencing analysis of the F11 genes revealed that all of the 14 patients had a F11 gene mutation. Eight different mutations were identified in the apple 1, apple 2 or serine protease domains, except one which was a splice site mutation. Six of the mutations were recurrent. Two of the mutations were novel missense mutations, p.Val522Gly and p.Cys581Arg, within the catalytic domain. The p.Trp519Stop mutation was observed in two families whereas all the other mutations were specific to a single family. Identification of mutations confirmed the genetic heterogeneity of FXI deficiency. Most of the patients with mutations did not have any bleeding complications, whereas some had severe bleeding symptoms. Genetic screening for F11 gene mutations is important to decrease the mortality and morbidity rate associated with FXI deficiency, which can be life-threatening if bleeding occurs in tissues with high fibrinolytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunge, S.; Wedemann, H.; Samanns, C.
1993-07-01
Eighty-eight patients/families with autosomal dominant retinitis pigmentosa (RP) were screened for rhodopsin mutations. Direct sequencing revealed 13 different mutations in a total of 14 (i.e., 16%) unrelated patients. Five of these mutations (T4K, Q28H, R135G, F220C, and C222R) have not been reported so far. In addition, multipoint linkage analysis was performed on two large families with autosomal dominant RP due to rhodopsin mutations by using five DNA probes from 3q21-q24. No tight linkage was found between the rhodopsin locus (RHO) and D3S47 ([theta][sub max] = 0.08). By six-point analysis, RHO was localized in the region between D3S21 and D3S47, withmore » a maximum lod score of 13.447 directly at D3S20. 13 refs., 1 fig., 2 tabs.« less
Pirolli, Davide; Sciandra, Francesca; Bozzi, Manuela; Giardina, Bruno; Brancaccio, Andrea; De Rosa, Maria Cristina
2014-01-01
A missense amino acid mutation of valine to aspartic acid in 567 position of alpha-dystroglycan (DG), identified in dag1-mutated zebrafish, results in a reduced transcription and a complete absence of the protein. Lacking experimental structural data for zebrafish DG domains, the detailed mechanism for the observed mutation-induced destabilization of the DG complex and membrane damage, remained unclear. With the aim to contribute to a better clarification of the structure-function relationships featuring the DG complex, three-dimensional structural models of wild-type and mutant (V567D) C-terminal domain of alpha-DG from zebrafish were constructed by a template-based modelling approach. We then ran extensive molecular dynamics (MD) simulations to reveal the structural and dynamic properties of the C-terminal domain and to evaluate the effect of the single mutation on alpha-DG stability. A comparative study has been also carried out on our previously generated model of murine alpha-DG C-terminal domain including the I591D mutation, which is topologically equivalent to the V567D mutation found in zebrafish. Trajectories from MD simulations were analyzed in detail, revealing extensive structural disorder involving multiple beta-strands in the mutated variant of the zebrafish protein whereas local effects have been detected in the murine protein. A biochemical analysis of the murine alpha-DG mutant I591D confirmed a pronounced instability of the protein. Taken together, the computational and biochemical analysis suggest that the V567D/I591D mutation, belonging to the G beta-strand, plays a key role in inducing a destabilization of the alpha-DG C-terminal Ig-like domain that could possibly affect and propagate to the entire DG complex. The structural features herein identified may be of crucial help to understand the molecular basis of primary dystroglycanopathies. PMID:25078606
Pirolli, Davide; Sciandra, Francesca; Bozzi, Manuela; Giardina, Bruno; Brancaccio, Andrea; De Rosa, Maria Cristina
2014-01-01
A missense amino acid mutation of valine to aspartic acid in 567 position of alpha-dystroglycan (DG), identified in dag1-mutated zebrafish, results in a reduced transcription and a complete absence of the protein. Lacking experimental structural data for zebrafish DG domains, the detailed mechanism for the observed mutation-induced destabilization of the DG complex and membrane damage, remained unclear. With the aim to contribute to a better clarification of the structure-function relationships featuring the DG complex, three-dimensional structural models of wild-type and mutant (V567D) C-terminal domain of alpha-DG from zebrafish were constructed by a template-based modelling approach. We then ran extensive molecular dynamics (MD) simulations to reveal the structural and dynamic properties of the C-terminal domain and to evaluate the effect of the single mutation on alpha-DG stability. A comparative study has been also carried out on our previously generated model of murine alpha-DG C-terminal domain including the I591D mutation, which is topologically equivalent to the V567D mutation found in zebrafish. Trajectories from MD simulations were analyzed in detail, revealing extensive structural disorder involving multiple beta-strands in the mutated variant of the zebrafish protein whereas local effects have been detected in the murine protein. A biochemical analysis of the murine alpha-DG mutant I591D confirmed a pronounced instability of the protein. Taken together, the computational and biochemical analysis suggest that the V567D/I591D mutation, belonging to the G beta-strand, plays a key role in inducing a destabilization of the alpha-DG C-terminal Ig-like domain that could possibly affect and propagate to the entire DG complex. The structural features herein identified may be of crucial help to understand the molecular basis of primary dystroglycanopathies.
Cis-acting factors modulate stability of intermediate alleles for Huntington disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, Y.P.; Zeisler, J.; Thielmann, J.
1994-09-01
The genetic basis of Huntington disease (HD), a late-onset autosomal dominant neurodegenerative disorder, has recently been defined as a CAG trinucleotide expansion in a novel gene on 4p16.3. The CAG length in clinically normal people ranges from 9 to 37, with the vast majority of alleles (99%) containing less than 30 repeats. In contrast, HD patients have CAG lengths greater than 36 with the largest repeat reported to date being 121. Molecular analysis of sporadic cases of HD revealed that new mutations are not rare (3%), and arise from intermediate alleles (IAs). IAs are CAG alleles greater than that usuallymore » seen in the general population (>30), but less than that seen in patients with HD and occur with a frequency of approximately 1.5% of the general population (12/797). An important question is whether these IAs are also susceptible to expansion. In new mutation families, these IAs are unstable in passage through the male germline and in sporadic cases expand to the full mutation associated with the HD phenotype. On the 41 meioses analyzed in new mutation families, 61% were unstable. In contrast to IAs in the new mutation families, the IAs in the general population were predominately stable from one generation to the next. Comparison of the frequency of intergenerational stability between the general population and the new mutation families showed that IAs in the general population are considerably more stable than those in the new mutation families. In contrast to SCA 1 where sequence interruption is thought to play a role in CAG trinucleotide stability, sequence analysis of IAs both from the general population and the new mutation families failed to reveal any interruption of the CAG tracts. These findings suggest that while CAG size is an important factor, other cis-acting factors present in new mutation families but not in the general population are likely to be critical in conferring instability upon the CAG trinucleotide repeat.« less
Unexpected identification of a recurrent mutation in the DLX3 gene causing amelogenesis imperfecta.
Kim, Y-J; Seymen, F; Koruyucu, M; Kasimoglu, Y; Gencay, K; Shin, T J; Hyun, H-K; Lee, Z H; Kim, J-W
2016-05-01
To identify the molecular genetic aetiology of a family with autosomal dominant amelogenesis imperfecta (AI). DNA samples were collected from a six-generation family, and the candidate gene approach was used to screen for the enamelin (ENAM) gene. Whole-exome sequencing and linkage analysis with SNP array data identified linked regions, and candidate gene screening was performed. Mutational analysis revealed a mutation (c.561_562delCT and p.Tyr188Glnfs*13) in the DLX3 gene. After finding a recurrent DLX3 mutation, the clinical phenotype of the family members was re-examined. The proband's mother had pulp elongation in the third molars. The proband had not hair phenotype, but her cousin had curly hair at birth. In this study, we identified a recurrent 2-bp deletional DLX3 mutation in a new family. The clinical phenotype was the mildest one associated with the DLX3 mutations. These results will advance the understanding of the functional role of DLX3 in developmental processes. © 2016 The Authors. Oral Diseases Published by John Wiley & Sons Ltd.
Aponte, Elisabeth P; Pulido, Jose S; Ellison, Jay W; Quiram, Polly A; Mohney, Brian G
2009-06-01
Mutations in the Norrie Disease gene, Norrie Disease Pseudoglioma (NDP) lead to a phenotypically heterogeneous group of retinopathies. We report a novel mutation in the NDP gene identified in a patient whose clinical presentation was suggestive of unilateral persistent fetal vasculature (PFV). Ophthalmic examinations, ocular ultrasounds and sequence analysis of the exons of the NDP gene on peripheral blood DNA were performed. A four-month-old boy was referred to our institution for presumed unilateral retinoblastoma. The clinical and ultrasonographic exams were consistent with PFV and retinal detachment of the left eye as well as retinal fibrovascular changes in the right eye. A vitrectomy of the left eye revealed the absence of a retrolenticular stalk and mutation analysis of the NDP gene of the proband and mother demonstrated a novel missense mutation at codon 66, designated as c. 196G > A at the cDNA level and E66K at the protein level. We report a novel mutation in the NDP gene in a patient whose presentation demonstrates the phenotypic heterogeneity of NDP-related disorders.
Králík, L; Flachsová, E; Hansíková, H; Saudek, V; Zeman, J; Martásek, P
2017-01-01
Menkes disease is a severe X-linked recessive disorder caused by a defect in the ATP7A gene, which encodes a membrane copper-transporting ATPase. Deficient activity of the ATP7A protein results in decreased intestinal absorption of copper, low copper level in serum and defective distribution of copper in tissues. The clinical symptoms are caused by decreased activities of copper-dependent enzymes and include neurodegeneration, connective tissue disorders, arterial changes and hair abnormalities. Without therapy, the disease is fatal in early infancy. Rapid diagnosis of Menkes disease and early start of copper therapy is critical for the effectiveness of treatment. We report a molecular biology-based strategy that allows early diagnosis of copper transport defects and implementation of individual therapies before the full development of pathological symptoms. Low serum copper and decreased activity of copperdependent mitochondrial cytochrome c oxidase in isolated platelets found in three patients indicated a possibility of functional defects in copper-transporting proteins, especially in the ATPA7 protein, a copper- transporting P-type ATPase. Rapid mutational screening of the ATP7A gene using high-resolution melting analysis of DNA indicated presence of mutations in the patients. Molecular investigation for mutations in the ATP7A gene revealed three nonsense mutations: c.2170C>T (p.Gln724Ter); c.3745G>T (p.Glu1249Ter); and c.3862C>T (p.Gln1288Ter). The mutation c.3745G>T (p.Glu1249Ter) has not been identified previously. Molecular analysis of the ATOX1 gene as a possible modulating factor of Menkes disease did not reveal presence of pathogenic mutations. Molecular diagnostics allowed early onset of individual therapies, adequate genetic counselling and prenatal diagnosis in the affected families.
Schoutteten, M K; Bravenboer, B; Seneca, S; Stouffs, K; Velkeniers, B
2017-07-01
Regulation of calcium is mediated by parathyroid hormone (PTH) and 1.25-dihydroxyvitamine D3. The calcium-sensing receptor (CaSR) regulates PTH release by a negative feedback system. Gain-of-function mutations in the CaSR gene reset the calcium-PTH axis, leading to hypocalcaemia. We analysed a family with hypocalcaemia. The proband was a 47-year-old man (index, patient I1), who presented with paraesthesias in both limbs. He has two sons (patient II1 a nd I I2). The probands' lab results showed: serum calcium of 1.95 mmol/l, albumin 41 g/l, phosphate 0.81 mmol/l and PTH 6.6 ng/l (normal 15-65 ng/l). Based on this analysis, we suspected a hereditary form of hypocalcaemia and performed genetic testing by polymerase chain reaction and Sanger sequencing of the coding regions and intron boundaries of the CaSR gene. Genetic analysis revealed a new heterozygous mutation: c.2195A>G, p.(Asn732Ser) in exon 7. The lab results of patient II1 showed: serum calcium of 1.93 mmol/l, phosphate 1.31 mmol/l, albumin 41 g/l, and PTH 24.3 ng/l. His genotype revealed the same activating mutation and, like his father, he also lost his scalp hair at an early adolescent age. Patient II2 is asymptomatic, and has neither biochemical abnormalities, nor the familial CaSR gene mutation. He still has all his scalp hair. 1) The c.2195A>G, p.(Asn732Ser) mutation in exon 7 of the CaSR gene leads to hypocalcaemia, and has not been reported before in the medical literature. 2) Possibly, this mutation is linked to premature baldness.
Prenatal diagnose of a fetus with Harlequin ichthyosis in a Chinese family.
Jian, Wei; Du, Qi-Ting; Lai, Zhen-Fei; Li, Yu-Fan; Li, Shi-Quan; Xiong, Zhong-Tang; Chen, Dun-Jin; Chen, Min; Chen, Jing-Si
2018-06-01
Harlequin ichthyosis (HI) was the most severe form of ichthyoses, which leaded to neonatal death in 50% of cases. It was the result of mutations in ABCA12 gene. With the development of ultrasound skills and genetic analysis, HI could be prenatal diagnosed. Here, we reported a case of HI, which was prenatal diagnosed by ultrasound examination and genetic analysis. The fetus was found that severe ectropion, eclabium, flattened nose, and rudimentary ears by ultrasound at 20 weeks gestation. A molecular genetic analysis was performed and revealed two mutations in the ABCA12 gene. One of two mutations were not reported in the past. The fetus was terminated. HI was associated with the poor prognosis of HI neonates. Prenatal ultrasound and genetic analysis were important for prenatal diagnosis of HI and were helpful to give sufficient prenatal counsels for the family with HI baby. Copyright © 2018. Published by Elsevier B.V.
McGranahan, Nicholas; Favero, Francesco; de Bruin, Elza C; Birkbak, Nicolai Juul; Szallasi, Zoltan; Swanton, Charles
2015-04-15
Deciphering whether actionable driver mutations are found in all or a subset of tumor cells will likely be required to improve drug development and precision medicine strategies. We analyzed nine cancer types to determine the subclonal frequencies of driver events, to time mutational processes during cancer evolution, and to identify drivers of subclonal expansions. Although mutations in known driver genes typically occurred early in cancer evolution, we also identified later subclonal "actionable" mutations, including BRAF (V600E), IDH1 (R132H), PIK3CA (E545K), EGFR (L858R), and KRAS (G12D), which may compromise the efficacy of targeted therapy approaches. More than 20% of IDH1 mutations in glioblastomas, and 15% of mutations in genes in the PI3K (phosphatidylinositol 3-kinase)-AKT-mTOR (mammalian target of rapamycin) signaling axis across all tumor types were subclonal. Mutations in the RAS-MEK (mitogen-activated protein kinase kinase) signaling axis were less likely to be subclonal than mutations in genes associated with PI3K-AKT-mTOR signaling. Analysis of late mutations revealed a link between APOBEC-mediated mutagenesis and the acquisition of subclonal driver mutations and uncovered putative cancer genes involved in subclonal expansions, including CTNNA2 and ATXN1. Our results provide a pan-cancer census of driver events within the context of intratumor heterogeneity and reveal patterns of tumor evolution across cancers. The frequent presence of subclonal driver mutations suggests the need to stratify targeted therapy response according to the proportion of tumor cells in which the driver is identified. Copyright © 2015, American Association for the Advancement of Science.
Six uneventful pregnancy outcomes in an extended vascular Ehlers-Danlos syndrome family.
Baas, Annette F; Spiering, Wilko; Moll, Frans L; Page-Christiaens, Lieve; Beenakkers, Ingrid C M; Dooijes, Dennis; Vonken, Evert-Jan P A; van der Smagt, Jasper J; Knoers, Nine V; Koenen, Steven V; van Herwaarden, Joost A; Sieswerda, Gertjan Tj
2017-02-01
Vascular Ehlers-Danlos Syndrome (vEDS) is caused by heterozygous mutations in COL3A1 and is characterized by fragile vasculature and hollow organs, with a high risk of catastrophic events at a young age. During pregnancy and delivery, maternal mortality rates up until 25% have been reported. However, recent pedigree analysis reported a substantial lower pregnancy-related mortality rate of 4.9%. Here, we describe an extended vEDS family with multiple uneventful pregnancy outcomes. In the proband, a 37-year-old woman, DNA-analysis because of an asymptomatic iliac artery dissection revealed a pathogenic mutation in COL3A1 (c.980G>A; p. Gly327Asp). She had had three uneventful vaginal deliveries. At the time of diagnosis, her 33-year-old niece was 25 weeks pregnant. She had had one uneventful vaginal delivery. Targeted DNA-analysis revealed that she was carrier of the COL3A1 mutation. Ultrasound detected an aneurysm in the abdominal aorta with likely a dissection. An uneventful elective cesarean section was performed at a gestational age of 37 weeks. The 40-year-old sister of our proband had had one uneventful vaginal delivery and an active pregnancy wish. Cascade DNA-screening showed her to carry the COL3A1 mutation. Computed Tomography Angiography (CTA) of her aorta revealed a type B dissection with the most proximal entry tear just below the superior mesenteric artery. Pregnancy was therefore discouraged. This familial case illustrates the complexity and challenges of reproductive decision-making in a potentially lethal condition as vEDS, and highlights the importance of a multidisciplinary approach. Moreover, it suggests that previous pregnancy-related risks of vEDS may be overestimated. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Pardanani, Animesh; Lasho, Terra L; Finke, Christy; Mesa, Ruben A; Hogan, William J; Ketterling, Rhett P; Gilliland, Dwight Gary; Tefferi, Ayalew
2007-09-01
JAK2V617F and MPLW515L/K are myeloproliferative disorder (MPD)-associated mutations. We genotyped 552 individual hematopoietic colonies obtained by CD34+ cell culture from 16 affected patients (13 JAK2V617F and 3 MPLW515L/K) to determine (a) the proportion of colonies harboring a particular mutation in the presence or absence of cytokines, (b) the lineage distribution of endogenous colonies for each mutation, and (c) the differences (if any) in the pattern of mutation among the various MPDs, as established by genotyping of individual colonies. Genotyping analysis revealed cohabitation of mutation-negative and mutation-positive endogenous colonies in polycythemia vera as well as other MPDs. Culture of progenitor cells harboring MPLW515L/K yielded virtually no endogenous erythroid colonies in contrast to JAK2V617F-harboring progenitor cells. The mutation pattern (i.e., relative distribution of homozygous, heterozygous, or wild-type colonies) was not a distinguishing feature among the MPDs, and MPLW515 mutations were detected in B and/or T lymphocytes in all three patients tested. These observations suggest that clonal myelopoiesis antedates acquisition of JAK2V617F or MPLW515L/K mutations and that the latter is acquired in a lympho-myeloid progenitor cell.
Gu, Jincui; Xu, Siqi; Huang, Lixia; Li, Shaoli; Wu, Jian; Xu, Junwen; Feng, Jinlun; Liu, Baomo; Zhou, Yanbin
2018-02-01
We sought to investigate the associations between pretreatment serum Carcinoembryonic antigen (CEA) level, 18 F-Fluoro-2-deoxyglucose ( 18 F-FDG) uptake value of primary tumor and epidermal growth factor receptor ( EGFR ) mutation status in non-small cell lung cancer (NSCLC). We retrospectively reviewed medical records of 210 NSCLC patients who underwent EGFR mutation test and 18 F-FDG positron emission tomography/computed tomography (PET/CT) scan before anti-tumor therapy. The associations between EGFR mutations and patients' characteristics, serum CEA, PET/CT imaging characteristics maximal standard uptake value (SUVmax) of the primary tumor were analyzed. Receiver-operating characteristic (ROC) curve was used to assess the predictive value of these factors. EGFR mutations were found in 70 patients (33.3%). EGFR mutations were more common in high CEA group (CEA ≥7.0 ng/mL) than in low CEA group (CEA <7.0 ng/mL) (40.4% vs . 27.6%; P=0.05). Females (P<0.001), non-smokers (P<0.001), patients with adenocarcinoma (P<0.001) and SUVmax <9.0 (P=0.001) were more likely to be EGFR mutation-positive. Multivariate analysis revealed that gender, tumor histology, pretreatment serum CEA level, and SUVmax were the most significant predictors for EGFR mutations. The ROC curve revealed that combining these four factors yielded a higher calculated AUC (0.80). Gender, histology, pretreatment serum CEA level and SUVmax are significant predictors for EGFR mutations in NSCLC. Combining these factors in predicting EGFR mutations has a moderate diagnostic accuracy, and is helpful in guiding anti-tumor treatment.
Denisova, Galina F; Denisov, Dimitri A; Yeung, Jeffrey; Loeb, Mark B; Diamond, Michael S; Bramson, Jonathan L
2008-11-01
Understanding antibody function is often enhanced by knowledge of the specific binding epitope. Here, we describe a computer algorithm that permits epitope prediction based on a collection of random peptide epitopes (mimotopes) isolated by antibody affinity purification. We applied this methodology to the prediction of epitopes for five monoclonal antibodies against the West Nile virus (WNV) E protein, two of which exhibit therapeutic activity in vivo. This strategy was validated by comparison of our results with existing F(ab)-E protein crystal structures and mutational analysis by yeast surface display. We demonstrate that by combining the results of the mimotope method with our data from mutational analysis, epitopes could be predicted with greater certainty. The two methods displayed great complementarity as the mutational analysis facilitated epitope prediction when the results with the mimotope method were equivocal and the mimotope method revealed a broader number of residues within the epitope than the mutational analysis. Our results demonstrate that the combination of these two prediction strategies provides a robust platform for epitope characterization.
Papillary renal cell carcinoma: a clinicopathological and whole-genome exon sequencing study
Liu, Kunpeng; Ren, Yuan; Pang, Lijuan; Qi, Yan; Jia, Wei; Tao, Lin; Hu, Zhengyan; Zhao, Jin; Zhang, Haijun; Li, Li; Yue, Haifeng; Han, Juan; Liang, Weihua; Hu, Jianming; Zou, Hong; Yuan, Xianglin; Li, Feng
2015-01-01
Papillary renal cell carcinoma (PRCC) represents the second most common histological subtype of RCC, and comprises 2 subtypes. Prognosis for type 1 PRCC is relatively good, whereas type 2 PRCC is associated with poor clinical outcomes. The aim of the present study was to evaluate the clinicopathological and mutations characteristics of PRCC. Hence, we reported on 13 cases of PRCC analyzed using whole-exome sequencing. Histologically, type 2 PRCC showed a higher nuclear grade and lymphovascular invasion rate versus type 1 PRCC (P < 0.05). Immunostaining revealed type 1 PRCC had higher CK7 and lower Top IIα expression rates (P < 0.05). Whole-exome sequencing data analysis revealed that the mutational statuses of 373 genes (287 missense, 69 silent, 6 nonsense, and 11 synonymous mutations) differed significantly between PRCC and normal renal tissues (P < 0.05). Functional enrichment analysis was used to classify the 287 missense-mutated genes into 11 biological process clusters (comprised of 61 biological processes) and 5 pathways, involved in cell adhesion, microtubule-based movement, the cell cycle, polysaccharide biosynthesis, muscle cell development and differentiation, cell death, and negative regulation. Associated pathways included the ATP-binding cassette transporter, extracellular matrix-receptor interaction, lysosome, complement and coagulation cascades, and glyoxylate and dicarboxylate metabolism pathways. The missense mutation status of 19 genes differed significantly between the groups (P < 0.05), and alterations in the EEF1D, RFNG, GPR142, and RAB37 genes were located in different chromosomal regions in type 1 and 2 PRCC. These mutations may contribute to future studies on pathogenic mechanisms and targeted therapy of PRCC. PMID:26339402
Xue, Ying; Zhou, Yun; Zhang, Keqin; Li, Ling; Kayoumu, Abudurexiti; Chen, Liye; Wang, Yuhui; Lu, Zhiqiang
2017-09-26
Glutaric aciduria type II (GA II) is an autosomal recessive disorder affecting fatty acid and amino acid metabolism. The late-onset form of GA II disorder is almost exclusively associated with mutations in the electron transfer flavoprotein dehydrogenase (ETFDH) gene. Till now, the clinical features of late-onset GA II vary widely and pose a great challenge for diagnosis. The aim of the current study is to characterize the clinical phenotypes and genetic basis of a late-onset GAII patient. In this study, we described the clinical and biochemical manifestations of a 23-year-old female Chinese patient with late-onset GA II, and performed genomic DNA-based PCR amplifications and sequence analysis of ETFDH gene of the whole pedigree. We also used in-silicon tools to analyze the mutation and evaluated the pathogenicity of the mutation according to the criteria proposed by American College of Medical Genetics and Genomics (ACMG). The muscle biopsy of this patient revealed lipid storage myopathy. Blood biochemical test and urine organic acid analyses were consistent with GA II. Direct sequence analysis of the ETFDH gene (NM_004453) revealed compound heterozygous mutations: c.250G > A (p.A84T) on exon 3 and c.920C > G (p.S307C) on exon 8. Both mutations were classified as "pathogenic" according to ACMG criteria. In conclusion, our study described the phenotype and genotype of a late-onset GA II patient, reiterating the importance of ETFDH gene screening in these patients.
Abdelwahed, Mayssa; Hilbert, Pascale; Ahmed, Asma; Mahfoudh, Hichem; Bouomrani, Salem; Dey, Mouna; Hachicha, Jamil; Kamoun, Hassen; Keskes-Ammar, Leila; Belguith, Neïla
2018-05-31
Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most frequent genetic disorder of the kidneys, is characterized by a typical presenting symptoms include cysts development in different organs and a non-cysts manifestations. ADPKD is caused by mutations in PKD1 or PKD2 genes. In this study, we aimed to search for molecular causative defects among PKD1 and PKD2 genes. Eighteen patients were diagnosed based on renal ultrasonography and renal/extra-renal manifestations. Then, Sanger sequencing was performed for PKD1 and PKD2 genes. Multiplex Ligation dependent Probe Amplification method (MLPA) methods was performed for both PKD genes. Mutational analysis of the PKD2 gene revealed the absence of variants and no deletions or duplications of both PKD genes were detected. But three novels mutations i.e. p.S463C exon 7; c. c.11156+2T>C IVS38 and c.8161-1G>A IVS22 and two previously reported c.1522T>C exon 7 and c.412C>T exon 4 mutations in the PKD1 gene were detected. Bioinformatics tools predicted that the novel variants have a pathogenic effects on splicing machinery, pre-mRNA secondary structure and stability and protein stability. Our results highlighted molecular features of Tunisian patients with ADPKD and revealed novel variations that can be utilized in clinical diagnosis and in the evaluation of living kidney donor. To the best of our knowledge, this is the first report of Autosomal Polycystic Kidney Disease in Tunisia. Copyright © 2017. Published by Elsevier B.V.
Clinical manifestation and molecular genetic characterization of MYH9 disorders.
Provaznikova, Dana; Geierova, Vera; Kumstyrova, Tereza; Kotlin, Roman; Mikulenkova, Dana; Zurkova, Kamila; Matoska, Vaclav; Hrachovinova, Ingrid; Rittich, Simon
2009-08-01
Currently, the May-Hegglin anomaly (MHA), Sebastian (SBS), Fechtner (FTNS) and Epstein (EPS) syndrome are considered to be distinct clinical manifestations of a single disease caused by mutations of the MYH9 gene encoding the heavy chain of non-muscle myosin IIA (NMMHC-IIA). Manifestations of these disorders include giant platelets, thrombocytopenia and combinations of the presence of granulocyte inclusions, deafness, cataracts and renal failure. We examined 15 patients from 10 unrelated families on whom we performed immunostaining of NMMHC-IIA in blood samples. Polymerase chain reaction (PCR) analysis of selected exons of the MYH9 gene revealed mutations in nine samples with one novel mutation. Results of fluorescence and mutational analysis were compared with clinical manifestations of the MYH9 disorder. We also determined the number of glycoprotein sites on the surface of platelets. Most patients had an increased number of glycoproteins, which could be due to platelet size.
Piroti, Georgia; Papadodima, Olga
2018-01-01
Melanoma is a lethal type of skin cancer, unless it is diagnosed early. Formalin-fixed, paraffin-embedded (FFPE) tissue is a valuable source for molecular assays after diagnostic examination, but isolated nucleic acids often suffer from degradation. Here, for the first time, we examine primary melanomas from Greek patients, using whole exome sequencing, so as to derive their mutational profile. Application of a bioinformatic framework revealed a total of 10,030 somatic mutations. Regarding the genes containing putative protein-altering mutations, 73 were common in at least three patients. Sixty-five of these 73 top common genes have been previously identified in melanoma cases. Biological processes related to melanoma were affected by varied genes in each patient, suggesting differences in the components of a pathway possibly contributing to pathogenesis. We performed a multi-level analysis highlighting a short list of candidate genes with a probable causative role in melanoma. PMID:29596374
Emets, A I; Baiard, U V; Nyporko, A Iu; Swire-Clark, G A; Blium, Ia B
2009-01-01
The identification of point mutation locations on beta-tubulin molecules of amiprophosmethyl- and trifluralin-resistant Nicotiana plumbaginifolia lines have described in the work. It was shown that in the first case this mutation is connected with the substitution ofserine residue on proline in position 248; in the second case--with the substitution of phenilalanine on serine in position 317 of beta-tubulin amino acid sequence. Three-dimensional models of beta-tubulin molecule from Chlamydomonas with well-known location of mutations conferring dinitroaniline- and phosphorotioamidate resistance (substitution of lysine residue to methionine on position 350), and beta-tubulin from Nicotiana plumbaginifolia have been reconstructed. On the basis of analysis of site of interaction with dinitroanilines and phosphorotioamides on Chlamydomonas beta-tubulin molecule it was concluded that the revealed mutations on Nicotiana plumbaginifolia beta-tubulin affect amino acid residues participating in formation of this site.
Basmanav, F. Buket; Oprisoreanu, Ana-Maria; Pasternack, Sandra M.; Thiele, Holger; Fritz, Günter; Wenzel, Jörg; Größer, Leopold; Wehner, Maria; Wolf, Sabrina; Fagerberg, Christina; Bygum, Anette; Altmüller, Janine; Rütten, Arno; Parmentier, Laurent; El Shabrawi-Caelen, Laila; Hafner, Christian; Nürnberg, Peter; Kruse, Roland; Schoch, Susanne; Hanneken, Sandra; Betz, Regina C.
2014-01-01
Dowling-Degos disease (DDD) is an autosomal-dominant genodermatosis characterized by progressive and disfiguring reticulate hyperpigmentation. We previously identified loss-of-function mutations in KRT5 but were only able to detect pathogenic mutations in fewer than half of our subjects. To identify additional causes of DDD, we performed exome sequencing in five unrelated affected individuals without mutations in KRT5. Data analysis identified three heterozygous mutations from these individuals, all within the same gene. These mutations, namely c.11G>A (p.Trp4∗), c.652C>T (p.Arg218∗), and c.798-2A>C, are within POGLUT1, which encodes protein O-glucosyltransferase 1. Further screening of unexplained cases for POGLUT1 identified six additional mutations, as well as two of the above described mutations. Immunohistochemistry of skin biopsies of affected individuals with POGLUT1 mutations showed significantly weaker POGLUT1 staining in comparison to healthy controls with strong localization of POGLUT1 in the upper parts of the epidermis. Immunoblot analysis revealed that translation of either wild-type (WT) POGLUT1 or of the protein carrying the p.Arg279Trp substitution led to the expected size of about 50 kDa, whereas the c.652C>T (p.Arg218∗) mutation led to translation of a truncated protein of about 30 kDa. Immunofluorescence analysis identified a colocalization of the WT protein with the endoplasmic reticulum and a notable aggregating pattern for the truncated protein. Recently, mutations in POFUT1, which encodes protein O-fucosyltransferase 1, were also reported to be responsible for DDD. Interestingly, both POGLUT1 and POFUT1 are essential regulators of Notch activity. Our results furthermore emphasize the important role of the Notch pathway in pigmentation and keratinocyte morphology. PMID:24387993
Alaa el Din, Ferdos; Patri, Sylvie; Thoreau, Vincent; Rodriguez-Ballesteros, Montserrat; Hamade, Eva; Bailly, Sabine; Gilbert-Dussardier, Brigitte; Abou Merhi, Raghida; Kitzis, Alain
2015-01-01
Hereditary Hemorrhagic Telangiectasia syndrome (HHT) or Rendu-Osler-Weber (ROW) syndrome is an autosomal dominant vascular disorder. Two most common forms of HHT, HHT1 and HHT2, have been linked to mutations in the endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1or ALK1) genes respectively. This work was designed to examine the pathogenicity of 23 nucleotide variations in ACVRL1 gene detected in more than 400 patients. Among them, 14 missense mutations and one intronic variant were novels, and 8 missense mutations were previously identified with questionable implication in HHT2. The functionality of missense mutations was analyzed in response to BMP9 (specific ligand of ALK1), the maturation of the protein products and their localization were analyzed by western blot and fluorescence microscopy. The splicing impairment of the intronic and of two missense mutations was examined by minigene assay. Functional analysis showed that 18 out of 22 missense mutations were defective. Splicing analysis revealed that one missense mutation (c.733A>G, p.Ile245Val) affects the splicing of the harboring exon 6. Similarly, the intronic mutation outside the consensus splicing sites (c.1048+5G>A in intron 7) was seen pathogenic by splicing study. Both mutations induce a frame shift creating a premature stop codon likely resulting in mRNA degradation by NMD surveillance mechanism. Our results confirm the haploinsufficiency model proposed for HHT2. The affected allele of ACVRL1 induces mRNA degradation or the synthesis of a protein lacking the receptor activity. Furthermore, our data demonstrate that functional and splicing analyses together, represent two robust diagnostic tools to be used by geneticists confronted with novel or conflicted ACVRL1 mutations. PMID:26176610
Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu
2014-01-01
Background Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. Principal Findings In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Conclusions Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers. PMID:24988079
Zhang, Yuannv; Qiu, Zhaoping; Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu
2014-01-01
Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers.
Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes
Biankin, Andrew V.; Waddell, Nicola; Kassahn, Karin S.; Gingras, Marie-Claude; Muthuswamy, Lakshmi B.; Johns, Amber L.; Miller, David K.; Wilson, Peter J.; Patch, Ann-Marie; Wu, Jianmin; Chang, David K.; Cowley, Mark J.; Gardiner, Brooke B.; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J.; Gill, Anthony J.; Pinho, Andreia V.; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J. Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R. Scott; Humphris, Jeremy L.; Kaplan, Warren; Jones, Marc D.; Colvin, Emily K.; Nagrial, Adnan M.; Humphrey, Emily S.; Chou, Angela; Chin, Venessa T.; Chantrill, Lorraine A.; Mawson, Amanda; Samra, Jaswinder S.; Kench, James G.; Lovell, Jessica A.; Daly, Roger J.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M.; Fisher, William E.; Brunicardi, F. Charles; Hodges, Sally E.; Reid, Jeffrey G.; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R.; Dinh, Huyen; Buhay, Christian J.; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E.; Yung, Christina K.; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A.; Petersen, Gloria M.; Gallinger, Steven; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Schulick, Richard D.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A.; Mann, Karen M.; Jenkins, Nancy A.; Perez-Mancera, Pedro A.; Adams, David J.; Largaespada, David A.; Wessels, Lodewyk F. A.; Rust, Alistair G.; Stein, Lincoln D.; Tuveson, David A.; Copeland, Neal G.; Musgrove, Elizabeth A.; Scarpa, Aldo; Eshleman, James R.; Hudson, Thomas J.; Sutherland, Robert L.; Wheeler, David A.; Pearson, John V.; McPherson, John D.; Gibbs, Richard A.; Grimmond, Sean M.
2012-01-01
Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis. PMID:23103869
Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.
Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M
2012-11-15
Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.
Distinct effects of tubulin isotype mutations on neurite growth in Caenorhabditis elegans
Zheng, Chaogu; Diaz-Cuadros, Margarete; Nguyen, Ken C. Q.; Hall, David H.; Chalfie, Martin
2017-01-01
Tubulins, the building block of microtubules (MTs), play a critical role in both supporting and regulating neurite growth. Eukaryotic genomes contain multiple tubulin isotypes, and their missense mutations cause a range of neurodevelopmental defects. Using the Caenorhabditis elegans touch receptor neurons, we analyzed the effects of 67 tubulin missense mutations on neurite growth. Three types of mutations emerged: 1) loss-of-function mutations, which cause mild defects in neurite growth; 2) antimorphic mutations, which map to the GTP binding site and intradimer and interdimer interfaces, significantly reduce MT stability, and cause severe neurite growth defects; and 3) neomorphic mutations, which map to the exterior surface, increase MT stability, and cause ectopic neurite growth. Structure-function analysis reveals a causal relationship between tubulin structure and MT stability. This stability affects neuronal morphogenesis. As part of this analysis, we engineered several disease-associated human tubulin mutations into C. elegans genes and examined their impact on neuronal development at the cellular level. We also discovered an α-tubulin (TBA-7) that appears to destabilize MTs. Loss of TBA-7 led to the formation of hyperstable MTs and the generation of ectopic neurites; the lack of potential sites for polyamination and polyglutamination on TBA-7 may be responsible for this destabilization. PMID:28835377
A novel AMELX mutation causes hypoplastic amelogenesis imperfecta.
Kim, Young-Jae; Kim, Youn Jung; Kang, Jenny; Shin, Teo Jeon; Hyun, Hong-Keun; Lee, Sang-Hoon; Lee, Zang Hee; Kim, Jung-Wook
2017-04-01
Amelogenesis imperfecta (AI) is a hereditary genetic defect affecting tooth enamel. AI is heterogeneous in clinical phenotype as well as in genetic etiology. To date, more than 10 genes have been associated with the etiology of AI. Amelogenin is the most abundant enamel matrix protein, most of which is encoded by the amelogenin gene in the X-chromosome (AMELX). More than 16 alternative splicing transcripts have been identified in the murine Amelx gene. The purpose of this study was to identify the genetic cause of an AI family. We recruited a family with hypoplastic AI and performed mutational analysis on the candidate gene based on the clinical phenotype. Mutational analysis revealed a missense mutation in exon 6 (NM_182680.1; c.242C > T), which changes a sequence in a highly conserved amino acid (NP_872621.1; p.Pro81Leu). Furthermore, a splicing assay using a minigene displayed that the mutation changed the mRNA splicing repertory. In this study, we identified a novel AMELX missense mutation causing hypoplastic AI, and this mutation also resulted in altered mRNA splicing. These results will not only expand the mutation spectrum causing AI but also broaden our understanding of the biological mechanism of enamel formation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ali, Ernie Zuraida; Yunus, Zabedah Md; Desa, Norsiah Md; Hock, Ngu Lock
2013-01-01
Maple syrup urine disease (MSUD) is a rare autosomal recessive metabolic disorder of branched-chain amino acid metabolism caused by the defective function of branched-chain α-ketoacid dehydrogenase complex (BCKDH). It is characterised by increased plasma leucine, isoleucine, and valine levels, and mutations can be detected in any one of the BCKDHA, BCKDHB, and DBT genes. In this study, we describe the molecular basis of a novel mutation found in one MSUD Malay patient from consanguineous parents. A homozygous mutation has been detected in this patient whose both parents carried a heterozygous mutation at DNA coding region c.431G>T in exon 4, which resulted in a substitution of serine to isoleucine at codon 144 (p.S144I). In silico analysis predicted S144I to be potentially damaging. The mutation was located on the alpha helical region of the BCKDHA protein, and it is predicted to affect the stability of protein due to the loss of various polar interactions between local secondary structures. Homology analysis revealed that this mutation occurred in a highly conserved region (100%). This result indicates that S144I mutation is likely pathogenic and may contribute to the classic form of MSUD in this patient.
New splicing-site mutations in the SURF1 gene in Leigh syndrome patients.
Pequignot, M O; Desguerre, I; Dey, R; Tartari, M; Zeviani, M; Agostino, A; Benelli, C; Fouque, F; Prip-Buus, C; Marchant, D; Abitbol, M; Marsac, C
2001-05-04
The gene SURF1 encodes a factor involved in the biogenesis of cytochrome c oxidase, the last complex in the respiratory chain. Mutations of the SURF1 gene result in Leigh syndrome and severe cytochrome c oxidase deficiency. Analysis of seven unrelated patients with cytochrome c oxidase deficiency and typical Leigh syndrome revealed different SURF1 mutations in four of them. Only these four cases had associated demyelinating neuropathy. Three mutations were novel splicing-site mutations that lead to the excision of exon 6. Two different novel heterozygous mutations were found at the same guanine residue at the donor splice site of intron 6; one was a deletion, whereas the other was a transition [588+1G>A]. The third novel splicing-site mutation was a homozygous [516-2_516-1delAG] in intron 5. One patient only had a homozygous polymorphism in the middle of the intron 8 [835+25C>T]. Western blot analysis showed that Surf1 protein was absent in all four patients harboring mutations. Our studies confirm that the SURF1 gene is an important nuclear gene involved in the cytochrome c oxidase deficiency. We also show that Surf1 protein is not implicated in the assembly of other respiratory chain complexes or the pyruvate dehydrogenase complex.
Rubio, Justin P.; Topp, Simon; Warren, Liling; St Jean, Pamela L.; Wegmann, Daniel; Kessner, Darren; Novembre, John; Shen, Judong; Fraser, Dana; Aponte, Jennifer; Nangle, Keith; Cardon, Lon R.; Ehm, Margaret G.; Chissoe, Stephanie L.; Whittaker, John C.; Nelson, Matthew R.; Mooser, Vincent E.
2012-01-01
Genetic variation in LRRK2 predisposes to Parkinson disease (PD), which underpins its development as a therapeutic target. Here, we aimed to identify novel genotype-phenotype associations that might support developing LRRK2 therapies for other conditions. We sequenced the 51 exons of LRRK2 in cases comprising 12 common diseases (n = 9,582), and in 4,420 population controls. We identified 739 single nucleotide variants (SNVs), 62% of which were observed in only one person, including 316 novel exonic variants. We found evidence of purifying selection for the LRRK2 gene and a trend suggesting that this is more pronounced in the central (ROC-COR-kinase) core protein domains of LRRK2 than the flanking domains. Population genetic analyses revealed that LRRK2 is not especially polymorphic or differentiated in comparison to 201 other drug target genes. Amongst Europeans, we identified 17 carriers (0.13%) of pathogenic LRRK2 mutations that were not significantly enriched within any disease or in those reporting a family history of PD. Analysis of pathogenic mutations within Europe reveals that the p.Arg1628Pro (c4883G>C) mutation arose independently in Europe and Asia. Taken together, these findings demonstrate how targeted deep sequencing can help to reveal fundamental characteristics of clinically important loci. PMID:22415848
Rubio, Justin P; Topp, Simon; Warren, Liling; St Jean, Pamela L; Wegmann, Daniel; Kessner, Darren; Novembre, John; Shen, Judong; Fraser, Dana; Aponte, Jennifer; Nangle, Keith; Cardon, Lon R; Ehm, Margaret G; Chissoe, Stephanie L; Whittaker, John C; Nelson, Matthew R; Mooser, Vincent E
2012-07-01
Genetic variation in LRRK2 predisposes to Parkinson disease (PD), which underpins its development as a therapeutic target. Here, we aimed to identify novel genotype-phenotype associations that might support developing LRRK2 therapies for other conditions. We sequenced the 51 exons of LRRK2 in cases comprising 12 common diseases (n = 9,582), and in 4,420 population controls. We identified 739 single-nucleotide variants, 62% of which were observed in only one person, including 316 novel exonic variants. We found evidence of purifying selection for the LRRK2 gene and a trend suggesting that this is more pronounced in the central (ROC-COR-kinase) core protein domains of LRRK2 than the flanking domains. Population genetic analyses revealed that LRRK2 is not especially polymorphic or differentiated in comparison to 201 other drug target genes. Among Europeans, we identified 17 carriers (0.13%) of pathogenic LRRK2 mutations that were not significantly enriched within any disease or in those reporting a family history of PD. Analysis of pathogenic mutations within Europe reveals that the p.Arg1628Pro (c4883G>C) mutation arose independently in Europe and Asia. Taken together, these findings demonstrate how targeted deep sequencing can help to reveal fundamental characteristics of clinically important loci. © 2012 Wiley Periodicals, Inc.
Mutation analysis in a German family identified a new cataract-causing allele in the CRYBB2 gene
Pauli, Silke; Söker, Torben; Klopp, Norman; Illig, Thomas; Engel, Wolfgang
2007-01-01
Purpose The study demonstrates the functional candidate gene analysis in a cataract family of German descent. Methods We screened a German family, clinically documented to have congenital cataracts, for mutation in the candidate genes CRYG (A to D) and CRYBB2 through polymerase chain reaction analyses and sequencing. Results Congenital cataract was first observed in a daughter of healthy parents. Her two children (a boy and a girl) also suffer from congenital cataracts and have been operated within the first weeks of birth. Morphologically, the cataract is characterized as nuclear with an additional ring-shaped cortical opacity. Molecular analysis revealed no causative mutation in any of the CRYG genes. However, sequencing of the exons of the CRYBB2 gene identified a sequence variation in exon 5 (383 A>T) with a substitution of Asp to Val at position 128. All three affected family members revealed this change but it was not observed in any of the unaffected persons of the family. The putative mutation creates a restriction site for the enzyme TaiI. This mutation was checked for in controls of randomly selected DNA samples from ophthalmologically normal individuals from the population-based KORA S4 study (n=96) and no mutation was observed. Moreover, the Asp at position 128 is within a stretch of 12 amino acids, which are highly conserved throughout the animal kingdom. For the mutant protein, the isoelectric point is raised from pH 6.50 to 6.75. Additionally, the random coil structure of the protein between the amino acids 126-139 is interrupted by a short extended strand structure. In addition, this region becomes hydrophobic (from neutral to +1) and the electrostatic potential in the region surrounding the exchanged amino acid alters from a mainly negative potential to an enlarged positive potential. Conclusions The D128V mutation segregates only in affected family members and is not seen in representative controls. It represents the first mutation outside exon 6 of the human CRYBB2 gene. PMID:17653036
Cheyuo, Cletus; Radwan, Walid; Ahn, Janice; Gyure, Kymberly; Qaiser, Rabia; Tomboc, Patrick
2017-10-01
Constitutional mismatch repair deficiency syndrome is a cancer predisposition syndrome caused by autosomal recessive biallelic (homozygous) germline mutations in the mismatch repair genes (MLH1, MSH2, MSH6, and PMS2). The clinical spectrum includes neoplastic and non-neoplastic manifestations. We present the case of a 7-year-old boy who presented with T-lymphoblastic lymphoma and glioblastoma, together with non-neoplastic manifestations including corpus callosum agenesis, arachnoid cyst, developmental venous anomaly, and hydrocephalus. Gene mutation analysis revealed pathogenic biallelic mutations of PMS2 and heterozygous DICER1 variant predicted to be pathogenic. This report is the first to allude to a possible interaction of the mismatch repair system with DICER1 to cause corpus callosum agenesis.
Covassin, L D; Siekmann, A F; Kacergis, M C; Laver, E; Moore, J C; Villefranc, J A; Weinstein, B M; Lawson, N D
2009-05-15
In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development.
Covassin, L. D.; Siekmann, A. F.; Kacergis, M. C.; Laver, E.; Moore, J. C.; Villefranc, J. A.; Weinstein, B. M.; Lawson, N. D.
2009-01-01
In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development. PMID:19269286
Goto, Taichiro; Hirotsu, Yosuke; Mochizuki, Hitoshi; Nakagomi, Takahiro; Shikata, Daichi; Yokoyama, Yujiro; Oyama, Toshio; Amemiya, Kenji; Okimoto, Kenichiro; Omata, Masao
2017-05-09
In cases of multiple lung cancers, individual tumors may represent either a primary lung cancer or both primary and metastatic lung cancers. Treatment selection varies depending on such features, and this discrimination is critically important in predicting prognosis. The present study was undertaken to determine the efficacy and validity of mutation analysis as a means of determining whether multiple lung cancers are primary or metastatic in nature. The study involved 12 patients who underwent surgery in our department for multiple lung cancers between July 2014 and March 2016. Tumor cells were collected from formalin-fixed paraffin-embedded tissues of the primary lesions by using laser capture microdissection, and targeted sequencing of 53 lung cancer-related genes was performed. In surgically treated patients with multiple lung cancers, the driver mutation profile differed among the individual tumors. Meanwhile, in a case of a solitary lung tumor that appeared after surgery for double primary lung cancers, gene mutation analysis using a bronchoscopic biopsy sample revealed a gene mutation profile consistent with the surgically resected specimen, thus demonstrating that the tumor in this case was metastatic. In cases of multiple lung cancers, the comparison of driver mutation profiles clarifies the clonal origin of the tumors and enables discrimination between primary and metastatic tumors.
Alnazawi, Mohamed; Altaher, Abdallah; Kandeel, Mahmoud
2017-01-01
Middle East Respiratory Syndrome Coronavirus (MERS CoV) is a new emerging viral disease characterized by high fatality rate. Understanding MERS CoV genetic aspects and codon usage pattern is important to understand MERS CoV survival, adaptation, evolution, resistance to innate immunity, and help in finding the unique aspects of the virus for future drug discovery experiments. In this work, we provide comprehensive analysis of 238 MERS CoV full genomes comprised of human (hMERS) and camel (cMERS) isolates of the virus. MERS CoV genome shaping seems to be under compositional and mutational bias, as revealed by preference of A/T over G/C nucleotides, preferred codons, nucleotides at the third position of codons (NT3s), relative synonymous codon usage, hydropathicity (Gravy), and aromaticity (Aromo) indices. Effective number of codons (ENc) analysis reveals a general slight codon usage bias. Codon adaptation index reveals incomplete adaptation to host environment. MERS CoV showed high ability to resist the innate immune response by showing lower CpG frequencies. Neutrality evolution analysis revealed a more significant role of mutation pressure in cMERS over hMERS. Correspondence analysis revealed that MERS CoV genomes have three genetic clusters, which were distinct in their codon usage, host, and geographic distribution. Additionally, virtual screening and binding experiments were able to identify three new virus-encoded helicase binding compounds. These compounds can be used for further optimization of inhibitors.
Chat-Uthai, Nunthawut; Vejvisithsakul, Pichpisith; Udommethaporn, Sutthirat; Meesiri, Puttarakun; Danthanawanit, Chetiya; Wongchai, Yannawan; Teerapakpinyo, Chinachote; Shuangshoti, Shanop; Poungvarin, Naravat
2018-01-01
The protein kinase BRAF is one of the key players in regulating cellular responses to extracellular signals. Somatic mutations of the BRAF gene, causing constitutive activation of BRAF, have been found in various types of human cancers such as malignant melanoma, and colorectal cancer. BRAF V600E and V600K, most commonly observed mutations in these cancers, may predict response to targeted therapies. Many techniques suffer from a lack of diagnostic sensitivity in mutation analysis in clinical samples with a low cancer cell percentage or poor-quality fragmented DNA. Here we present allele-specific real-time PCR assay for amplifying 35- to 45-base target sequences in BRAF gene. Forward primer designed for BRAF V600E detection is capable of recognizing both types of BRAF V600E mutation, i.e. V600E1 (c.1799T>A) and V600E2 (c.1799_1800delTGinsAA), as well as complex tandem mutation caused by nucleotide changes in codons 600 and 601. We utilized this assay to analyze Thai formalin-fixed paraffin-embedded tissues. Forty-eight percent of 178 Thai colorectal cancer tissues has KRAS mutation detected by highly sensitive commercial assays. Although these DNA samples contain low overall yield of amplifiable DNA, our newly-developed assay successfully revealed BRAF V600 mutations in 6 of 93 formalin-fixed paraffin-embedded colorectal cancer tissues which KRAS mutation was not detected. Ultra-short PCR assay with forward mutation-specific primers is potentially useful to detect BRAF V600 mutations in highly fragmented DNA specimens from cancer patients.
Shlien, Adam; Campbell, Brittany B; de Borja, Richard; Alexandrov, Ludmil B; Merico, Daniele; Wedge, David; Van Loo, Peter; Tarpey, Patrick S; Coupland, Paul; Behjati, Sam; Pollett, Aaron; Lipman, Tatiana; Heidari, Abolfazl; Deshmukh, Shriya; Avitzur, Na'ama; Meier, Bettina; Gerstung, Moritz; Hong, Ye; Merino, Diana M; Ramakrishna, Manasa; Remke, Marc; Arnold, Roland; Panigrahi, Gagan B; Thakkar, Neha P; Hodel, Karl P; Henninger, Erin E; Göksenin, A Yasemin; Bakry, Doua; Charames, George S; Druker, Harriet; Lerner-Ellis, Jordan; Mistry, Matthew; Dvir, Rina; Grant, Ronald; Elhasid, Ronit; Farah, Roula; Taylor, Glenn P; Nathan, Paul C; Alexander, Sarah; Ben-Shachar, Shay; Ling, Simon C; Gallinger, Steven; Constantini, Shlomi; Dirks, Peter; Huang, Annie; Scherer, Stephen W; Grundy, Richard G; Durno, Carol; Aronson, Melyssa; Gartner, Anton; Meyn, M Stephen; Taylor, Michael D; Pursell, Zachary F; Pearson, Christopher E; Malkin, David; Futreal, P Andrew; Stratton, Michael R; Bouffet, Eric; Hawkins, Cynthia; Campbell, Peter J; Tabori, Uri
2015-03-01
DNA replication-associated mutations are repaired by two components: polymerase proofreading and mismatch repair. The mutation consequences of disruption to both repair components in humans are not well studied. We sequenced cancer genomes from children with inherited biallelic mismatch repair deficiency (bMMRD). High-grade bMMRD brain tumors exhibited massive numbers of substitution mutations (>250/Mb), which was greater than all childhood and most cancers (>7,000 analyzed). All ultra-hypermutated bMMRD cancers acquired early somatic driver mutations in DNA polymerase ɛ or δ. The ensuing mutation signatures and numbers are unique and diagnostic of childhood germ-line bMMRD (P < 10(-13)). Sequential tumor biopsy analysis revealed that bMMRD/polymerase-mutant cancers rapidly amass an excess of simultaneous mutations (∼600 mutations/cell division), reaching but not exceeding ∼20,000 exonic mutations in <6 months. This implies a threshold compatible with cancer-cell survival. We suggest a new mechanism of cancer progression in which mutations develop in a rapid burst after ablation of replication repair.
Identification of a novel MYO7A mutation in Usher syndrome type 1.
Cheng, Ling; Yu, Hongsong; Jiang, Yan; He, Juan; Pu, Sisi; Li, Xin; Zhang, Li
2018-01-05
Usher syndrome (USH) is an autosomal recessive disease characterized by deafness and retinitis pigmentosa. In view of the high phenotypic and genetic heterogeneity in USH, performing genetic screening with traditional methods is impractical. In the present study, we carried out targeted next-generation sequencing (NGS) to uncover the underlying gene in an USH family (2 USH patients and 15 unaffected relatives). One hundred and thirty-five genes associated with inherited retinal degeneration were selected for deep exome sequencing. Subsequently, variant analysis, Sanger validation and segregation tests were utilized to identify the disease-causing mutations in this family. All affected individuals had a classic USH type I (USH1) phenotype which included deafness, vestibular dysfunction and retinitis pigmentosa. Targeted NGS and Sanger sequencing validation suggested that USH1 patients carried an unreported splice site mutation, c.5168+1G>A, as a compound heterozygous mutation with c.6070C>T (p.R2024X) in the MYO7A gene. A functional study revealed decreased expression of the MYO7A gene in the individuals carrying heterozygous mutations. In conclusion, targeted next-generation sequencing provided a comprehensive and efficient diagnosis for USH1. This study revealed the genetic defects in the MYO7A gene and expanded the spectrum of clinical phenotypes associated with USH1 mutations.
Koshida, Ryusuke; Yamaguchi, Hideki; Yamasaki, Koji; Tsuchimochi, Wakaba; Yonekawa, Tadato; Nakazato, Masamitsu
2010-09-01
Autosomal recessive hypophosphatemic rickets (ARHR) is an extremely rare disorder of autosomal recessive inheritance, characterized by hypophosphatemia resulting from renal phosphate wasting. Dentin matrix protein 1 (DMP1), a noncollagenous extracellular protein, plays critical roles in bone mineralization and phosphate homeostasis. Recently, loss-of-function mutations in DMP1 gene have been identified as the molecular cause of ARHR. Here, we describe a Japanese family that includes two ARHR-affected siblings carrying a novel mutation of the DMP1 gene. The patients were a 53-year-old woman and a 50-year-old man with short stature and skeletal deformities who were the offspring of a first-cousin marriage. Biochemical examination revealed hypophosphatemia with renal phosphate excretion and low levels of 1,25(OH)(2)D. Serum calcium, parathyroid hormone, and urinary calcium excretion were within the normal range, leading to clinical diagnosis of ARHR. Sequence analysis of peripheral leukocytes from the patients revealed that they carried a novel homozygous nonsense mutation in the DMP1 gene (98G>A, W33X), which leads to a truncated DMP protein with no putative biological function. Unaffected family members were heterozygous for the mutation. This is the first report of a Japanese family with ARHR carrying a novel mutation of the DMP1 gene.
Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy
2017-01-01
Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular spectrum of PRPH2, PRPF8, RHO, RP1, SNRNP200, and TOPORS-associated adRP by the identification of 17 novel mutations. PMID:28076437
Suganthalakshmi, Balasubbu; Shukla, Dhananjay; Rajendran, Anand; Kim, Ramasamy; Nallathambi, Jeyabalan; Sundaresan, Periasamy
2007-04-19
X-linked juvenile retinoschisis (XLRS) is the leading cause of macular degeneration in males. This condition is caused by mutations in the RS1 gene and is, characterized by schisis within the retina. The purpose of this study was to identify the mutations in the RS1 gene associated with XLRS in an Indian cohort. The coding region of RS1 was analyzed for mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and restriction fragment length polymorphism (RFLP) analysis in six unrelated subjects clinically diagnosed as having XLRS and in their available family members. Direct sequencing was performed for all samples that displayed an electrophoretic mobility shift in SSCP gel. Mutation analysis of RS1 gene revealed five mutations in exon 6 like c.574C>T, c.583A>G, c.608C>T, c.617G>A, and c.637C>T, respectively, among them four missense mutations, one nonsense mutation, and two novel sequence variations. These mutations were found in individuals who exhibited clinical features of bilateral foveal and peripheral retinoschisis consistent with XLRS. The mutations were absent in the 100 age matched control samples analyzed. This is the first report of mutations in RS1 to be associated with XLRS in the Indian population. The identified genetic variations, phenotype and genotype correlations were consistent with other studies. Identification of the causative mutation in patients with XLRS is helpful in confirming the diagnosis and in counseling of family members.
Hsu, Cheng-Lung; Liu, Jai-Shin; Wu, Po-Long; Guan, Hong-Hsiang; Chen, Yuh-Ling; Lin, An-Chi; Ting, Huei-Ju; Pang, See-Tong; Yeh, Shauh-Der; Ma, Wen-Lung; Chen, Chung-Jung; Wu, Wen-Guey; Chang, Chawnshang
2014-12-01
Treatment with individual anti-androgens is associated with the development of hot-spot mutations in the androgen receptor (AR). Here, we found that anti-androgens-mt-ARs have similar binary structure to the 5α-dihydrotestosterone-wt-AR. Phage display revealed that these ARs bound to similar peptides, including BUD31, containing an Fxx(F/H/L/W/Y)Y motif cluster with Tyr in the +5 position. Structural analyses of the AR-LBD-BUD31 complex revealed formation of an extra hydrogen bond between the Tyr+5 residue of the peptide and the AR. Functional studies showed that BUD31-related peptides suppressed AR transactivation, interrupted AR N-C interaction, and suppressed AR-mediated cell growth. Combination of peptide screening and X-ray structure analysis may serve as a new strategy for developing anti-ARs that simultaneously suppress both wt and mutated AR function. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Alexiev, Borislav A; Zou, Ying S
2014-12-01
Chromosomal microarray analysis using novel Molecular Inversion Probe (MIP) technology demonstrated 2,570 kb copy neutral LOH of 10q11.22 in two clear cell papillary renal cell carcinomas. In addition, one of the tumors had a big 29,784 kb deletion of 13q11-q14.2. There were two variants of unknown significance, a 2,509 kb gain of Xp22.33 and a 257 kb homozygous deletion of 8p11.22. The somatic mutation panel containing 74 mutations in nine genes did not reveal any mutations. Besides identification of submicroscopic duplications or deletions, SNP microarrays can reveal abnormal allelic imbalances including LOH and copy neutral LOH, which cannot be recognized by chromosome, FISH, and non-SNP microarray arrays. To the best of our knowledge, this is the first study demonstrating copy neutral LOH of 10q11.22 in clear cell papillary renal cell carcinomas using the new MIP SNP OncoScan FFPE Assay Kit on formalin-fixed paraffin-embedded tumor samples. Copyright © 2014 Elsevier GmbH. All rights reserved.
Clinical heterogeneity and phenotype/genotype findings in 5 families with GYG1 deficiency
Ben Yaou, Rabah; Hubert, Aurélie; Nelson, Isabelle; Dahlqvist, Julia R.; Gaist, David; Streichenberger, Nathalie; Beuvin, Maud; Krahn, Martin; Petiot, Philippe; Parisot, Frédéric; Michel, Fabrice; Malfatti, Edoardo; Romero, Norma; Carlier, Robert Yves; Eymard, Bruno; Labrune, Philippe; Duno, Morten; Krag, Thomas; Cerino, Mathieu; Bartoli, Marc; Bonne, Gisèle; Vissing, John; Laforet, Pascal
2017-01-01
Objective: To describe the variability of muscle symptoms in patients carrying mutations in the GYG1 gene, encoding glycogenin-1, an enzyme involved in the biosynthesis of glycogen, and to discuss genotype-phenotype relations. Methods: We describe 9 patients from 5 families in whom muscle biopsies showed vacuoles with an abnormal accumulation of glycogen in muscle fibers, partially α-amylase resistant suggesting polyglucosan bodies. The patients had either progressive early-onset limb-girdle weakness or late-onset distal or scapuloperoneal muscle affection as shown by muscle imaging. No clear definite cardiac disease was found. Histologic and protein analysis investigations were performed on muscle. Results: Genetic analyses by direct or exome sequencing of the GYG1 gene revealed 6 different GYG1 mutations. Four of the mutations were novel. They were compound heterozygous in 3 families and homozygous in 2. Protein analysis revealed either the absence of glycogenin-1 or reduced glycogenin-1 expression with impaired glucosylation. Conclusions: Our report extends the genetic and clinical spectrum of glycogenin-1–related myopathies to include scapuloperoneal and distal affection with glycogen accumulation. PMID:29264399
Clinical heterogeneity and phenotype/genotype findings in 5 families with GYG1 deficiency.
Ben Yaou, Rabah; Hubert, Aurélie; Nelson, Isabelle; Dahlqvist, Julia R; Gaist, David; Streichenberger, Nathalie; Beuvin, Maud; Krahn, Martin; Petiot, Philippe; Parisot, Frédéric; Michel, Fabrice; Malfatti, Edoardo; Romero, Norma; Carlier, Robert Yves; Eymard, Bruno; Labrune, Philippe; Duno, Morten; Krag, Thomas; Cerino, Mathieu; Bartoli, Marc; Bonne, Gisèle; Vissing, John; Laforet, Pascal; Petit, François M
2017-12-01
To describe the variability of muscle symptoms in patients carrying mutations in the GYG1 gene, encoding glycogenin-1, an enzyme involved in the biosynthesis of glycogen, and to discuss genotype-phenotype relations. We describe 9 patients from 5 families in whom muscle biopsies showed vacuoles with an abnormal accumulation of glycogen in muscle fibers, partially α-amylase resistant suggesting polyglucosan bodies. The patients had either progressive early-onset limb-girdle weakness or late-onset distal or scapuloperoneal muscle affection as shown by muscle imaging. No clear definite cardiac disease was found. Histologic and protein analysis investigations were performed on muscle. Genetic analyses by direct or exome sequencing of the GYG1 gene revealed 6 different GYG1 mutations. Four of the mutations were novel. They were compound heterozygous in 3 families and homozygous in 2. Protein analysis revealed either the absence of glycogenin-1 or reduced glycogenin-1 expression with impaired glucosylation. Our report extends the genetic and clinical spectrum of glycogenin-1-related myopathies to include scapuloperoneal and distal affection with glycogen accumulation.
Lv, Xiao; Ma, Yue; Long, Zaiqiu
2018-01-01
B-Raf proto-oncogene, serine/threonine kinase (BRAF) has previously been identified as a candidate target gene in endometriosis. Wild-type and mutated BRAF serve important roles in different diseases. The aim of the present study was to explore BRAF mutation, the mRNA and protein expression of wild-type BRAF (wtBRAF) in endometriosis, and the association between the expression levels of wtBRAF and the predicted transcription factor cAMP responsive element binding protein 1 (CREB1). In the present study, BRAF mutation was detected using Sanger sequencing among 30 ectopic and matched eutopic endometrium samples of patients with endometriosis as well as 25 normal endometrium samples, and no BRAF mutation was detected in exons 11 or 15. A region of ~2,000 bp upstream of the BRAF gene was then screened using NCBI and UCSC databases, and CREB1 was identified as a potential transcription factor of BRAF by analysis with the JASPAR and the TRANSFAC databases. Quantitative polymerase chain reaction was used to analysis the mRNA expression levels of wtBRAF and CREB1, and the corresponding protein expression levels were evaluated using immunohistochemistry and western blot analysis. The results revealed that the mRNA and protein expression levels of wtBRAF and CREB1 were significantly upregulated in the eutopic endometrial tissues of patients with endometriosis compared with normal endometrial tissues (P<0.05) and no significant difference in wtBRAF and CREB1 levels was detected between the ectopic and eutopic endometrium (P>0.05). In addition, correlation analysis revealed that the protein expression of CREB1 was positively correlated with the transcript level and protein expression of wtBRAF. It is reasonable to speculate that CREB1 may activate the transcription of wtBRAF through directly binding to its promoter, increasing BRAF expression and regulating the cell proliferation, migration and invasion of endometriosis. PMID:29286077
Qian, Yaping; Johnson, Judith A; Connor, Jessica A; Valencia, C Alexander; Barasa, Nathaniel; Schubert, Jeffery; Husami, Ammar; Kissell, Diane; Zhang, Ge; Weirauch, Matthew T; Filipovich, Alexandra H; Zhang, Kejian
2014-06-01
The mutations in UNC13D are responsible for familial hemophagocytic lymphohistiocytosis (FHL) type 3. A 253-kb inversion and two deep intronic mutations, c.118-308C > T and c.118-307G > A, in UNC13D were recently reported in European and Asian FHL3 patients. We sought to determine the prevalence of these three non-coding mutations in North American FHL patients and evaluate the significance of examining these new mutations in genetic testing. We performed DNA sequencing of UNC13D and targeted analysis of these three mutations in 1,709 North American patients with a suspected clinical diagnosis of hemophagocytic lymphohistiocytosis (HLH). The 253-kb inversion, intronic mutations c.118-308C > T and c.118-307G > A were found in 11, 15, and 4 patients, respectively, in which the genetic basis (bi-allelic mutations) explained 25 additional patients. Taken together with previously diagnosed FHL3 patients in our HLH patient registry, these three non-coding mutations were found in 31.6% (25/79) of the FHL3 patients. The 253-kb inversion, c.118-308C > T and c.118-307G > A accounted for 7.0%, 8.9%, and 1.3% of mutant alleles, respectively. Significantly, eight novel mutations in UNC13D are being reported in this study. To further evaluate the expression level of the newly reported intronic mutation c.118-307G > A, reverse transcription PCR and Western blot analysis revealed a significant reduction of both RNA and protein levels suggesting that the c.118-307G > A mutation affects transcription. These specified non-coding mutations were found in a significant number of North American patients and inclusion of them in mutation analysis will improve the molecular diagnosis of FHL3. © 2014 Wiley Periodicals, Inc.
Choi, M; Kadara, H; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Kim, K; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Herbst, R S; Wistuba, I I
2017-01-01
Lung squamous cell carcinoma (LUSC) accounts for 20–30% of non-small cell lung cancers (NSCLCs). There are limited treatment strategies for LUSC in part due to our inadequate understanding of the molecular underpinnings of the disease. We performed whole-exome sequencing (WES) and comprehensive immune profiling of a unique set of clinically annotated early-stage LUSCs to increase our understanding of the pathobiology of this malignancy. Matched pairs of surgically resected stage I-III LUSCs and normal lung tissues (n = 108) were analyzed by WES. Immunohistochemistry and image analysis-based profiling of 10 immune markers were done on a subset of LUSCs (n = 91). Associations among mutations, immune markers and clinicopathological variables were statistically examined using analysis of variance and Fisher’s exact test. Cox proportional hazards regression models were used for statistical analysis of clinical outcome. This early-stage LUSC cohort displayed an average of 209 exonic mutations per tumor. Fourteen genes exhibited significant enrichment for somatic mutation: TP53, MLL2, PIK3CA, NFE2L2, CDH8, KEAP1, PTEN, ADCY8, PTPRT, CALCR, GRM8, FBXW7, RB1 and CDKN2A. Among mutated genes associated with poor recurrence-free survival, MLL2 mutations predicted poor prognosis in both TP53 mutant and wild-type LUSCs. We also found that in treated patients, FBXW7 and KEAP1 mutations were associated with poor response to adjuvant therapy, particularly in TP53-mutant tumors. Analysis of mutations with immune markers revealed that ADCY8 and PIK3CA mutations were associated with markedly decreased tumoral PD-L1 expression, LUSCs with PIK3CA mutations exhibited elevated CD45ro levels and CDKN2A-mutant tumors displayed an up-regulated immune response. Our findings pinpoint mutated genes that may impact clinical outcome as well as personalized strategies for targeted immunotherapies in early-stage LUSC.
Structural, Functional, and Genetic Analysis of Sorangicin Inhibition of Bacterial RNA Polymerase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell,E.; Pavlova, O.; Zenkin, N.
2005-01-01
A combined structural, functional, and genetic approach was used to investigate inhibition of bacterial RNA polymerase (RNAP) by sorangicin (Sor), a macrolide polyether antibiotic. Sor lacks chemical and structural similarity to the ansamycin rifampicin (Rif), an RNAP inhibitor widely used to treat tuberculosis. Nevertheless, structural analysis revealed Sor binds in the same RNAP {beta} subunit pocket as Rif, with almost complete overlap of RNAP binding determinants, and functional analysis revealed that both antibiotics inhibit transcription by directly blocking the path of the elongating transcript at a length of 2-3 nucleotides. Genetic analysis indicates that Rif binding is extremely sensitive tomore » mutations expected to change the shape of the antibiotic binding pocket, while Sor is not. We suggest that conformational flexibility of Sor, in contrast to the rigid conformation of Rif, allows Sor to adapt to changes in the binding pocket. This has important implications for drug design against rapidly mutating targets.« less
Jiang, Jingrui; Protopopov, Alexei; Sun, Ruobai; Lyle, Stephen; Russell, Meaghan
2018-04-09
Oncogenic epidermal growth factor receptors (EGFRs) can recruit key effectors in diverse cellular processes to propagate oncogenic signals. Targeted and combinational therapeutic strategies have been successfully applied for treating EGFR-driven cancers. However, a main challenge in EGFR therapies is drug resistance due to mutations, oncogenic shift, alternative signaling, and other potential mechanisms. To further understand the genetic alterations associated with oncogenic EGFRs and to provide further insight into optimal and personalized therapeutic strategies, we applied a proprietary comprehensive next-generation sequencing (NGS)-based assay of 435 genes to systematically study the genomic profiles of 1565 unselected solid cancer patient samples. We found that activating EGFR mutations were predominantly detected in lung cancer, particularly in non-small cell lung cancer (NSCLC). The mutational landscape of EGFR-driven tumors covered most key signaling pathways and biological processes. Strikingly, the Wnt/β-catenin pathway was highly mutated (48 variants detected in 46% of the EGFR-driven tumors), and its variant number topped that in the TP53/apoptosis and PI3K-AKT-mTOR pathways. Furthermore, an analysis of mutation distribution revealed a differential association pattern of gene mutations between EGFR exon 19del and EGFR L858R. Our results confirm the aggressive nature of the oncogenic EGFR-driven tumors and reassure that a combinational strategy should have advantages over an EGFR-targeted monotherapy and holds great promise for overcoming drug resistance.
A novel mutation R190H in the AT-hook 1 domain of MeCP2 identified in an atypical Rett syndrome.
Zhou, Xiao; Liao, Yuangao; Xu, Miaojing; Ji, Zhong; Xu, Yunqi; Zhou, Liang; Wei, Xiaoming; Hu, Peiqian; Han, Peng; Yang, Fanghan; Pan, Suyue; Hu, Yafang
2017-10-10
Mutations in Methyl-CpG binding protein 2 ( MECP2 ) have been identified as the disease-causing mutations in Rett Syndrome (RTT). However, no mutation in the AT-hook 1 domain of MECP2 has been reported in RTT yet. The function of AT-hook 1 domain of MECP2 has not been described either. The clinical and radiological features of a girl with progressive hyperactivity and loss of acquired linguistic and motor functions were presented. Next generation sequencing was used to screen the causative gene. Effect of the mutant protein on histone 3 methylation was assessed in vitro experiment. The patient was diagnosed with an atypical RTT at the age of nine. Magnetic resonance imaging revealed a loss of whole-brain volume and abnormal myelination. Genetic analysis identified a de novo novel missense mutation of MECP2 (NM_004992, c.570G->A, p.Arg190His). This mutation is located in the AT-hook 1 domain of MeCP2 protein. Overexpression of the mutant MeCP2 in cultured neuroblastoma cells SH-SY5Y revealed increased level of dimethylated histone 3 lysine 9, a transcriptional repressor marker. A novel missense mutation in AT-hook 1 domain of MeCP2 was identified in a patient with atypical RTT. Clinical data and in vitro experiment result imply that R190H mutation in AT-hook1 may cause dysfunction of MeCP2 and be a pathogenic variant.
Role of GnRH receptor mutations in patients with a wide spectrum of pubertal delay
Beneduzzi, Daiane; Trarbach, Ericka B.; Min, Le; Jorge, Alexander A. L.; Garmes, Heraldo M.; Renk, Alessandra Covallero; Fichna, Marta; Fichna, Piotr; Arantes, Karina A.; Costa, Elaine M. F.; Zhang, Anna; Adeola, Oluwaseun; Wen, Junping; Carroll, Rona S.; Mendonça, Berenice B.; Kaiser, Ursula B.; Latronico, Ana Claudia; Silveira, Letícia F. G.
2014-01-01
Objective To analyze the GNRHR in patients with normosmic isolated hypogonadotropic hypogonadism (IHH) and constitutional delay of growth and puberty (CDGP). Design Molecular analysis and in vitro experiments correlated with phenotype. Setting Academic medical center. Patient(s) 110 individuals with normosmic IHH (74 males) and 50 with CGDP. Intervention(s) GNRHR coding region was amplified and sequenced. Main Outcome Measure(s) Novel variants were submitted to in vitro analysis. Frequency of mutations and genotype-phenotype correlation were analyzed. Microsatellite markers flanking GNRHR were examined in patients carrying the same mutation to investigate a possible founder effect. Result(s) Eleven IHH patients (10%) carried biallelic GNRHR mutations. In vitro analysis of novel variants (p.Y283H and p.V134G) demonstrated complete inactivation. The founder effect study revealed that Brazilian patients carrying the p.R139H mutation shared the same haplotype. Phenotypic spectrum in patients with GNRHR mutations varied from complete GnRH deficiency to partial and reversible IHH, with a relatively good genotype-phenotype correlation. One boy with CDGP was heterozygous for the p.Q106R variant, which was not considered pathogenic. Conclusion(s) GNRHR mutations are a frequent cause of congenital normosmic IHH and should be the first candidate gene for genetic screening in this condition, especially in autosomal recessive familial cases. The founder effect study suggested that the p.R139H mutation arises from a common ancestor in the Brazilian population. Finally, mutations in GNRHR do not appear to be involved in the pathogenesis of CDGP. PMID:25016926
Linkage and candidate gene analysis of X-linked familial exudative vitreoretinopathy.
Shastry, B S; Hejtmancik, J F; Plager, D A; Hartzer, M K; Trese, M T
1995-05-20
Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disorder characterized by avascularity of the peripheral retina, retinal exudates, tractional detachment, and retinal folds. The disorder is most commonly transmitted as an autosomal dominant trait, but X-linked transmission also occurs. To initiate the process of identifying the gene responsible for the X-linked disorder, linkage analysis has been performed with three previously unreported three- or four-generation families. Two-point analysis showed linkage to MAOA (Zmax = 2.1, theta max = 0) and DXS228 (Zmax = 0.5, theta max = 0.11), and this was further confirmed by multipoint analysis with these same markers (Zmax = 2.81 at MAOA), which both lie near the gene causing Norrie disease. Molecular genetic analysis further reveals a missense mutation (R121W) in the third exon of the Norrie's disease gene that perfectly cosegregates with the disease through three generations in one family. This mutation was not detected in the unaffected family members and six normal unrelated controls, suggesting that it is likely to be the pathogenic mutation. Additionally, a polymorphic missense mutation (H127R) was detected in a severely affected patient.
Genetic analysis--a diagnostic tool for primary hyperoxaluria type I.
Milosevic, Danko; Rinat, Choni; Batinic, Danica; Frishberg, Yaacov
2002-11-01
Primary hyperoxaluria type I is an autosomal recessive metabolic disease in which excessive oxalates are formed by the liver and excreted by the kidneys, causing a wide spectrum of disease, ranging from renal failure in infancy to mere renal stones in late adulthood. The diagnosis may be suspected when clinical signs and increased urinary oxalate and glycolate excretion present, and is confirmed by the measurement of decreased alanine:glyoxylate aminotransferase activity in a liver sample. The enzymatic assay is not readily available to pediatric nephrologists in many parts of the world. We describe three families from Croatia in whom the diagnosis of primary hyperoxaluria was solely based on clinical findings that included nephrolithiasis and nephrocalcinosis accompanied by increased urinary oxalates and glycolate excretion, as enzymatic assays of liver samples could not be performed. Mutation analysis of the AGXT gene encoding the defective enzyme confirmed the diagnosis, revealing three alleles carrying the C156ins mutation and two the G630A mutation. Screening first-degree relatives for the relevant mutation disclosed an asymptomatic affected sibling. Mutation analysis of the AGXT gene is a non-invasive and accurate tool for the diagnosis of type I primary hyperoxaluria that may replace enzymatic assays of liver biopsies.
Wang, Shan; Yang, Shuo; An, Baiyi; Wang, Shichen; Yin, Yuejia; Lu, Yang; Xu, Ying; Hao, Dongyun
2011-01-01
CYP82E4, a cytochrome P450 monooxygenase, has nicotine N-demethylase (NND) activity, which mediates the bioconversion of nicotine into nornicotine in senescing tobacco leaves. Nornicotine is a precursor of the carcinogen, tobacco-specific nitrosamine. CYP82E3 is an ortholog of CYP82E4 with 95% sequence identity, but it lacks NND activity. A recent site-directed mutagenesis study revealed that a single amino acid substitution, i.e., cysteine to tryptophan at the 330 position in the middle of protein, restores the NND activity of CYP82E3 entirely. However, the same amino acid change caused the loss of the NND activity of CYP82E4. To determine the mechanism of the functional turnover of the two molecules, four 3D structures, i.e., the two molecules and their corresponding cys–trp mutants were modeled. The resulting structures exhibited that the mutation site is far from the active site, which suggests that no direct interaction occurs between the two sites. Simulation studies in different biological scenarios revealed that the mutation introduces a conformation drift with the largest change at the F-G loop. The dynamics trajectories analysis using principal component analysis and covariance analysis suggests that the single amino acid change causes the opening and closing of the transfer channels of the substrates, products, and water by altering the motion of the F-G and B-C loops. The motion of helix I is also correlated with the motion of both the F-G loop and the B-C loop and; the single amino acid mutation resulted in the curvature of helix I. These results suggest that the single amino acid mutation outside the active site region may have indirectly mediated the flexibility of the F-G and B-C loops through helix I, causing a functional turnover of the P450 monooxygenase. PMID:21858078
Maletzki, Claudia; Huehns, Maja; Bauer, Ingrid; Ripperger, Tim; Mork, Maureen M; Vilar, Eduardo; Klöcking, Sabine; Zettl, Heike; Prall, Friedrich; Linnebacher, Michael
2017-07-01
Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis. © 2017 Wiley Periodicals, Inc.
MERRF/MELAS overlap syndrome due to the m.3291T>C mutation.
Liu, Kaiming; Zhao, Hui; Ji, Kunqian; Yan, Chuanzhu
2014-03-01
We report the case of a 19-year-old Chinese female harboring the m.3291T>C mutation in the MT-TL1 gene encoding the mitochondrial transfer RNA for leucine. She presented with a complex phenotype characterized by progressive cerebellar ataxia, frequent myoclonus seizures, recurrent stroke-like episodes, migraine-like headaches with nausea and vomiting, and elevated resting lactate blood level. It is known that the myoclonus epilepsy with ragged-red fibers (MERRF) is characterized by cerebellar ataxia and myoclonus epilepsy, while that the mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is characterized by recurrent stroke-like episodes, migraine-like headaches, and elevated resting lactate blood level. So the patient's clinical manifestations suggest the presence of a MERRF/MELAS overlap syndrome. Muscle biopsy of the patient showed the presence of numerous scattered ragged-red fibers, some cytochrome c oxidase-deficient fibers, and several strongly succinate dehygrogenase-reactive vessels, suggestive of a mitochondrial disorder. Direct sequencing of the complete mitochondrial genome of the proband revealed no mutations other than the T-to-C transition at nucleotide position 3291. Restriction fragment length polymorphism analysis of the proband and her family revealed maternal inheritance of the mutation in a heteroplasmic manner. The analysis of aerobic respiration and glycolysis demonstrated that the fibroblasts from the patient had mitochondrial dysfunction. Our results suggest that the m.3291T>C is pathogenic. This study is the first to describe the m.3291T>C mutation in association with the MERRF/MELAS overlap syndrome.
Mi, Xiao-Xiao; Li, Xiao-Guang; Wang, Zi-Rong; Lin, Ling; Xu, Chun-Hai; Shi, Jun-Ping
2017-08-16
Abernethy malformation is a rare congenital anomaly characterised by the partial or complete absence of the portal vein and the subsequent development of an extrahepatic portosystemic shunt. Caroli's disease is a rare congenital condition characterised by non-obstructive saccular intrahepatic bile duct dilation. Caroli's disease combined with congenital hepatic fibrosis and/or renal cystic disease is referred to - Caroli's syndrome. The combination of Abernethy malformation and Caroli's syndrome has not been reported previously. We present the case of a 23-year-old female who was found to have both type II Abernethy malformation and Caroli's syndrome. Radiological imaging was performed, including computed tomography with three-dimensional reconstruction and magnetic resonance imaging with (magnetic resonance cholangiopancreatography (MRCP), which revealed a side-to-side portocaval shunt, intrahepatic bile duct dilation, congenital hepatic fibrosis, and renal cysts. In addition, PKHD1 (polycystic kidney and hepatic disease 1) gene mutational analysis revealed a paternally inherited heterozygous missense mutation (c.1877A > G, p.Lys626Arg). A liver biopsy confirmed the pathological features of Caroli's syndrome. To our knowledge, this is the first reported case of a patient with both type II Abernethy malformation and Caroli's syndrome diagnosed using a comprehensive approach that included imaging, mutational analysis, and liver biopsy. Additionally, this is the second reported case to date of an Asian patient presenting with liver and renal disorders with the same paternally inherited PKHD1 missense mutation.
Shu, Hai-Rong; Bi, Huai; Pan, Yang-Chun; Xu, Hang-Yu; Song, Jian-Xin; Hu, Jie
2015-09-16
Usher syndrome (USH) is an autosomal recessive disorder characterized by hearing impairment and vision dysfunction due to retinitis pigmentosa. Phenotypic and genetic heterogeneities of this disease make it impractical to obtain a genetic diagnosis by conventional Sanger sequencing. In this study, we applied a next-generation sequencing approach to detect genetic abnormalities in patients with USH. Two unrelated Chinese families were recruited, consisting of two USH afflicted patients and four unaffected relatives. We selected 199 genes related to inherited retinal diseases as targets for deep exome sequencing. Through systematic data analysis using an established bioinformatics pipeline, all variants that passed filter criteria were validated by Sanger sequencing and co-segregation analysis. A homozygous frameshift mutation (c.4382delA, p.T1462Lfs*2) was revealed in exon20 of gene USH2A in the F1 family. Two compound heterozygous mutations, IVS47 + 1G > A and c.13156A > T (p.I4386F), located in intron 48 and exon 63 respectively, of USH2A, were identified as causative mutations for the F2 family. Of note, the missense mutation c.13156A > T has not been reported so far. In conclusion, targeted exome sequencing precisely and rapidly identified the genetic defects in two Chinese USH families and this technique can be applied as a routine examination for these disorders with significant clinical and genetic heterogeneity.
Caetano, Francisca; Botelho, Ana; Mota, Paula; Silva, Joana; Leitão Marques, António
2014-03-01
Anderson-Fabry disease is an X-linked lysosomal storage disorder caused by abnormalities of the GLA gene, which encodes the enzyme α-galactosidase A. A deficiency of this enzyme leads to the lysosomal accumulation of glycosphingolipids, which may cause left ventricular hypertrophy that is typically concentric and symmetric. We present the case of a 60-year-old woman with symptoms of dyspnea, atypical chest pain and palpitations, in whom a transthoracic echocardiogram revealed an apical variant of hypertrophic cardiomyopathy. Analysis of specific sarcomeric genetic mutations was negative. The patient underwent a screening protocol for Anderson-Fabry disease, using a dried blood spot test, which was standard at our institution for patients with left ventricular hypertrophy. The enzymatic activity assay revealed reduced α-galactosidase A enzymatic activity. Molecular analysis identified a missense point mutation in the GLA gene (p.R118C). This case report shows that Anderson-Fabry disease may cause an apical form of left ventricular hypertrophy. The diagnosis was only achieved because of systematic screening, which highlights the importance of screening for Anderson-Fabry disease in patients with unexplained left ventricular hypertrophy, including those presenting with more unusual patterns, such as apical variants of left ventricular hypertrophy. This case also supports the idea that the missense mutation R118C is indeed a true pathogenic mutation of Anderson-Fabry disease. Copyright © 2012 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
Klevering, B Jeroen; Blankenagel, Anita; Maugeri, Alessandra; Cremers, Frans P M; Hoyng, Carel B; Rohrschneider, Klaus
2002-06-01
To describe the phenotype of 12 patients with autosomal recessive or isolated cone-rod types of progressive retinal degeneration (CRD) caused by mutations in the ABCA4 gene. The charts of patients who had originally received a diagnosis of isolated or autosomal recessive CRD were reviewed after molecular analysis revealed mutations in the ABCA4 gene. In two of the patients both the photopic and scotopic electroretinogram were nonrecordable. In the remainder, the photopic cone b-wave amplitudes appeared to be more seriously affected than the scotopic rod b-wave amplitudes. Although the clinical presentation was heterogeneous, all patients experienced visual loss early in life, impaired color vision, and a central scotoma. Fundoscopy revealed evidence of early-onset maculopathy, sometimes accompanied by involvement of the retinal periphery in the later stages of the disease. Mutations in the ABCA4 gene are the pathologic cause of the CRD-like dystrophy in these patients, and the resultant clinical pictures are complex and heterogeneous. Given this wide clinical spectrum of CRD-like phenotypes associated with ABCA4 mutations, detailed clinical subclassifications are difficult and may not be very useful.
Leigh syndrome associated with a novel mutation in the COX15 gene.
Miryounesi, Mohammad; Fardaei, Majid; Tabei, Seyed Mohammadbagher; Ghafouri-Fard, Soudeh
2016-06-01
Leigh syndrome (LS) is a subacute necrotizing encephalomyelopathy with a diverse range of symptoms, such as psychomotor delay or regression, weakness, hypotonia, truncal ataxia, intention tremor as well as lactic acidosis in the blood, cerebrospinal fluid or urine. Both nuclear gene defects and mutations of the mitochondrial genome have been detected in these patients. Here we report a 7-year-old girl with hypotonia, tremor, developmental delay and psychomotor regression. However, serum lactate level as well as brain magnetic resonance imaging were normal. Mutational analysis has revealed a novel mutation in exon 4 of COX15 gene (c.415C>G) which results in p.Leu139Val. Previous studies have demonstrated that COX15 mutations are associated with typical LS as well as fatal infantile hypertrophic cardiomyopathy. Consequently, clinical manifestations of COX15 mutations may be significantly different in patients. Such information is of practical importance in genetic counseling.
CADASIL with a novel NOTCH3 mutation (Cys478Tyr).
Ozaki, Kokoro; Irioka, Takashi; Ishikawa, Kinya; Mizusawa, Hidehiro
2015-03-01
Recently, an increasing number of NOTCH3 mutations have been described to cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Here, we report 2 CADASIL patients from a Japanese family, who were found to possess a novel NOTCH3 mutation. The proband only had chronic headache, and her mother had previously suffered a minor stroke. Although the patients' clinical symptoms were mild, their distinctive magnetic resonance imaging (MRI) features suggested CADASIL. Genetic analysis revealed that both patients had a novel heterozygous NOTCH3 mutation (p.Cys478Tyr) leading to stereotypical cysteine loss. The present finding suggests that genetic testing for NOTCH3 mutations in patients with distinctive MRI features, even if the symptoms are as mild as chronic headache, should help to broaden the mutational and clinical spectrum of CADASIL. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Marshall, Christian R; Farrell, Sandra A; Cushing, Donna; Paton, Tara; Stockley, Tracy L; Stavropoulos, Dimitri J; Ray, Peter N; Szego, Michael; Lau, Lynette; Pereira, Sergio L; Cohn, Ronald D; Wintle, Richard F; Abuzenadah, Adel M; Abu-Elmagd, Muhammad; Scherer, Stephen W
2015-01-01
We report a consanguineous couple that has experienced three consecutive pregnancy losses following the foetal ultrasound finding of short limbs. Post-termination examination revealed no skeletal dysplasia, but some subtle proximal limb shortening in two foetuses, and a spectrum of mildly dysmorphic features. Karyotype was normal in all three foetuses (46, XX) and comparative genomic hybridization microarray analysis detected no pathogenic copy number variants. Whole-exome sequencing and genome-wide homozygosity mapping revealed a previously reported frameshift mutation in the OBSL1 gene (c.1273insA p.T425nfsX40), consistent with a diagnosis of 3-M Syndrome 2 (OMIM #612921), which had not been anticipated from the clinical findings. Our study provides novel insight into the early clinical manifestations of this form of 3-M syndrome, and demonstrates the utility of whole exome sequencing as a tool for prenatal diagnosis in particular when there is a family history suggestive of a recurrent set of clinical symptoms.
Novel pathogenic mutations and skin biopsy analysis in Knobloch syndrome
Suzuki, Oscar; Kague, Erika; Bagatini, Kelly; Tu, Hongmin; Heljasvaara, Ritva; Carvalhaes, Lorenza; Gava, Elisandra; de Oliveira, Gisele; Godoi, Paulo; Oliva, Glaucius; Kitten, Gregory; Pihlajaniemi, Taina; Passos-Bueno, Maria-Rita
2009-01-01
Purpose To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation. Methods Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees. We used immunofluorescent histochemistry in skin biopsies to evaluate the presence of type XVIII collagen in four KS patients carrying two already described mutations: c.3277C>T, a nonsense mutation, and c.3601G>A, a missense mutation. Furthermore, we determined the binding properties of the mutated endostatin domain p.A1381T (c.3601G>A) to extracellular matrix proteins using ELISA and surface plasmon resonance assays. Results We identified four novel mutations in COL18A1, including a large deletion involving exon 41. Skin biopsies from KS patients revealed lack of type XVIII collagen in epithelial basement membranes and blood vessels. We also found a reduced affinity of p.A1381T endostatin to some extracellular matrix components. Conclusions COL18A1 mutations involved in Knobloch syndrome have a distribution bias toward the coding exons of the C-terminal end. Large deletions must also be considered when point mutations are not identified in patients with characteristic KS phenotype. We report, for the first time, lack of type XVIII collagen in KS patients by immunofluorescent histochemistry in skin biopsy samples. As a final point, we suggest the employment of this technique as a preliminary and complementary test for diagnosis of KS in cases when mutation screening either does not detect mutations or reveals mutations of uncertain effect, such as the p.A1381T change. PMID:19390655
Novel pathogenic mutations and skin biopsy analysis in Knobloch syndrome.
Suzuki, Oscar; Kague, Erika; Bagatini, Kelly; Tu, Hongmin; Heljasvaara, Ritva; Carvalhaes, Lorenza; Gava, Elisandra; de Oliveira, Gisele; Godoi, Paulo; Oliva, Glaucius; Kitten, Gregory; Pihlajaniemi, Taina; Passos-Bueno, Maria-Rita
2009-01-01
To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation. Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees. We used immunofluorescent histochemistry in skin biopsies to evaluate the presence of type XVIII collagen in four KS patients carrying two already described mutations: c.3277C>T, a nonsense mutation, and c.3601G>A, a missense mutation. Furthermore, we determined the binding properties of the mutated endostatin domain p.A1381T (c.3601G>A) to extracellular matrix proteins using ELISA and surface plasmon resonance assays. We identified four novel mutations in COL18A1, including a large deletion involving exon 41. Skin biopsies from KS patients revealed lack of type XVIII collagen in epithelial basement membranes and blood vessels. We also found a reduced affinity of p.A1381T endostatin to some extracellular matrix components. COL18A1 mutations involved in Knobloch syndrome have a distribution bias toward the coding exons of the C-terminal end. Large deletions must also be considered when point mutations are not identified in patients with characteristic KS phenotype. We report, for the first time, lack of type XVIII collagen in KS patients by immunofluorescent histochemistry in skin biopsy samples. As a final point, we suggest the employment of this technique as a preliminary and complementary test for diagnosis of KS in cases when mutation screening either does not detect mutations or reveals mutations of uncertain effect, such as the p.A1381T change.
Singh, Om P; Dykes, Cherry L; Lather, Manila; Agrawal, Om P; Adak, Tridibes
2011-03-14
Knockdown resistance (kdr) in insects, resulting from mutation(s) in the voltage-gated sodium channel (vgsc) gene is one of the mechanisms of resistance against DDT and pyrethroid-group of insecticides. The most common mutation(s) associated with knockdown resistance in insects, including anophelines, has been reported to be present at residue Leu1014 in the IIS6 transmembrane segment of the vgsc gene. This study reports the presence of two alternative kdr-like mutations, L1014S and L1014F, at this residue in a major malaria vector Anopheles stephensi and describes new PCR assays for their detection. Part of the vgsc (IIS4-S5 linker-to-IIS6 transmembrane segment) of An. stephensi collected from Alwar (Rajasthan, India) was PCR-amplified from genomic DNA, sequenced and analysed for the presence of deduced amino acid substitution(s). Analysis of DNA sequences revealed the presence of two alternative non-synonymous point mutations at L1014 residue in the IIS6 transmembrane segment of vgsc, i.e., T>C mutation on the second position and A>T mutation on the third position of the codon, leading to Leu (TTA)-to-Ser (TCA) and -Phe (TTT) amino acid substitutions, respectively. Polymerase chain reaction (PCR) assays were developed for identification of each of these two point mutations. Genotyping of An. stephensi mosquitoes from Alwar by PCR assays revealed the presence of both mutations, with a high frequency of L1014S. The PCR assays developed for detection of the kdr mutations were specific as confirmed by DNA sequencing of PCR-genotyped samples. Two alternative kdr-like mutations, L1014S and L1014F, were detected in An. stephensi with a high allelic frequency of L1014S. The occurrence of L1014S is being reported for the first time in An. stephensi. Two specific PCR assays were developed for detection of two kdr-like mutations in An. stephensi.
Al-Hebshi, Nezar Noor; Li, Shiyong; Nasher, Akram Thabet; El-Setouhy, Maged; Alsanosi, Rashad; Blancato, Jan; Loffredo, Christopher
2016-07-15
The study sought to identify genetic aberrations driving oral squamous cell carcinoma (OSCC) development among users of shammah, an Arabian preparation of smokeless tobacco. Twenty archival OSCC samples, 15 of which with a history of shammah exposure, were whole-exome sequenced at an average depth of 127×. Somatic mutations were identified using a novel, matched controls-independent filtration algorithm. CODEX and Exomedepth coupled with a novel, Database of Genomic Variant-based filter were employed to call somatic gene-copy number variations. Significantly mutated genes were identified with Oncodrive FM and the Youn and Simon's method. Candidate driver genes were nominated based on Gene Set Enrichment Analysis. The observed mutational spectrum was similar to that reported by the TCGA project. In addition to confirming known genes of OSCC (TP53, CDKNA2, CASP8, PIK3CA, HRAS, FAT1, TP63, CCND1 and FADD) the analysis identified several candidate novel driver events including mutations of NOTCH3, CSMD3, CRB1, CLTCL1, OSMR and TRPM2, amplification of the proto-oncogenes FOSL1, RELA, TRAF6, MDM2, FRS2 and BAG1, and deletion of the recently described tumor suppressor SMARCC1. Analysis also revealed significantly altered pathways not previously implicated in OSCC including Oncostatin-M signalling pathway, AP-1 and C-MYB transcription networks and endocytosis. There was a trend for higher number of mutations, amplifications and driver events in samples with history of shammah exposure particularly those that tested EBV positive, suggesting an interaction between tobacco exposure and EBV. The work provides further evidence for the genetic heterogeneity of oral cancer and suggests shammah-associated OSCC is characterized by extensive amplification of oncogenes. © 2016 UICC.
Bramhall, Naomi F; Kallman, Jeremy C; Verrall, Aimee M; Street, Valerie A
2008-01-01
Background Low frequency sensorineural hearing loss (LFSNHL) is an uncommon clinical finding. Mutations within three different identified genes (DIAPH1, MYO7A, and WFS1) are known to cause LFSNHL. The majority of hereditary LFSNHL is associated with heterozygous mutations in the WFS1 gene (wolframin protein). The goal of this study was to use genetic analysis to determine if a small American family's hereditary LFSNHL is linked to a mutation in the WFS1 gene and to use VEMP and EcochG testing to further characterize the family's audiovestibular phenotype. Methods The clinical phenotype of the American family was characterized by audiologic testing, vestibular evoked myogenic potentials (VEMP), and electrocochleography (EcochG) evaluation. Genetic characterization was performed by microsatellite analysis and direct sequencing of WFS1 for mutation detection. Results Sequence analysis of the WFS1 gene revealed a novel heterozygous mutation at c.2054G>C predicting a p.R685P amino acid substitution in wolframin. The c.2054G>C mutation segregates faithfully with hearing loss in the family and is absent in 230 control chromosomes. The p.R685 residue is located within the hydrophilic C-terminus of wolframin and is conserved across species. The VEMP and EcochG findings were normal in individuals segregating the WFS1 c.2054G>C mutation. Conclusion We discovered a novel heterozygous missense mutation in exon 8 of WFS1 predicting a p.R685P amino acid substitution that is likely to underlie the LFSNHL phenotype in the American family. For the first time, we describe VEMP and EcochG findings for individuals segregating a heterozygous WFS1 mutation. PMID:18518985
Bramhall, Naomi F; Kallman, Jeremy C; Verrall, Aimee M; Street, Valerie A
2008-06-02
Low frequency sensorineural hearing loss (LFSNHL) is an uncommon clinical finding. Mutations within three different identified genes (DIAPH1, MYO7A, and WFS1) are known to cause LFSNHL. The majority of hereditary LFSNHL is associated with heterozygous mutations in the WFS1 gene (wolframin protein). The goal of this study was to use genetic analysis to determine if a small American family's hereditary LFSNHL is linked to a mutation in the WFS1 gene and to use VEMP and EcochG testing to further characterize the family's audiovestibular phenotype. The clinical phenotype of the American family was characterized by audiologic testing, vestibular evoked myogenic potentials (VEMP), and electrocochleography (EcochG) evaluation. Genetic characterization was performed by microsatellite analysis and direct sequencing of WFS1 for mutation detection. Sequence analysis of the WFS1 gene revealed a novel heterozygous mutation at c.2054G>C predicting a p.R685P amino acid substitution in wolframin. The c.2054G>C mutation segregates faithfully with hearing loss in the family and is absent in 230 control chromosomes. The p.R685 residue is located within the hydrophilic C-terminus of wolframin and is conserved across species. The VEMP and EcochG findings were normal in individuals segregating the WFS1 c.2054G>C mutation. We discovered a novel heterozygous missense mutation in exon 8 of WFS1 predicting a p.R685P amino acid substitution that is likely to underlie the LFSNHL phenotype in the American family. For the first time, we describe VEMP and EcochG findings for individuals segregating a heterozygous WFS1 mutation.
De Brouwer, Sara; De Preter, Katleen; Kumps, Candy; Zabrocki, Piotr; Porcu, Michaël; Westerhout, Ellen M; Lakeman, Arjan; Vandesompele, Jo; Hoebeeck, Jasmien; Van Maerken, Tom; De Paepe, Anne; Laureys, Geneviève; Schulte, Johannes H; Schramm, Alexander; Van Den Broecke, Caroline; Vermeulen, Joëlle; Van Roy, Nadine; Beiske, Klaus; Renard, Marleen; Noguera, Rosa; Delattre, Olivier; Janoueix-Lerosey, Isabelle; Kogner, Per; Martinsson, Tommy; Nakagawara, Akira; Ohira, Miki; Caron, Huib; Eggert, Angelika; Cools, Jan; Versteeg, Rogier; Speleman, Frank
2010-09-01
Activating mutations of the anaplastic lymphoma kinase (ALK) were recently described in neuroblastoma. We carried out a meta-analysis of 709 neuroblastoma tumors to determine their frequency and mutation spectrum in relation to genomic and clinical parameters, and studied the prognostic significance of ALK copy number and expression. The frequency and type of ALK mutations, copy number gain, and expression were analyzed in a new series of 254 neuroblastoma tumors. Data from 455 published cases were used for further in-depth analysis. ALK mutations were present in 6.9% of 709 investigated tumors, and mutations were found in similar frequencies in favorable [International Neuroblastoma Staging System (INSS) 1, 2, and 4S; 5.7%] and unfavorable (INSS 3 and 4; 7.5%) neuroblastomas (P = 0.087). Two hotspot mutations, at positions R1275 and F1174, were observed (49% and 34.7% of the mutated cases, respectively). Interestingly, the F1174 mutations occurred in a high proportion of MYCN-amplified cases (P = 0.001), and this combined occurrence was associated with a particular poor outcome, suggesting a positive cooperative effect between both aberrations. Furthermore, the F1174L mutant was characterized by a higher degree of autophosphorylation and a more potent transforming capacity as compared with the R1275Q mutant. Chromosome 2p gains, including the ALK locus (91.8%), were associated with a significantly increased ALK expression, which was also correlated with poor survival. ALK mutations occur in equal frequencies across all genomic subtypes, but F1174L mutants are observed in a higher frequency of MYCN-amplified tumors and show increased transforming capacity as compared with the R1275Q mutants.
Gibberellin regulates pollen viability and pollen tube growth in rice.
Chhun, Tory; Aya, Koichiro; Asano, Kenji; Yamamoto, Eiji; Morinaka, Yoichi; Watanabe, Masao; Kitano, Hidemi; Ashikari, Motoyuki; Matsuoka, Makoto; Ueguchi-Tanaka, Miyako
2007-12-01
Gibberellins (GAs) play many biological roles in higher plants. We collected and performed genetic analysis on rice (Oryza sativa) GA-related mutants, including GA-deficient and GA-insensitive mutants. Genetic analysis of the mutants revealed that rice GA-deficient mutations are not transmitted as Mendelian traits to the next generation following self-pollination of F1 heterozygous plants, although GA-insensitive mutations are transmitted normally. To understand these differences in transmission, we examined the effect of GA on microsporogenesis and pollen tube elongation in rice using new GA-deficient and GA-insensitive mutants that produce semifertile flowers. Phenotypic analysis revealed that the GA-deficient mutant reduced pollen elongation1 is defective in pollen tube elongation, resulting in a low fertilization frequency, whereas the GA-insensitive semidominant mutant Slr1-d3 is mainly defective in viable pollen production. Quantitative RT-PCR revealed that GA biosynthesis genes tested whose mutations are transmitted to the next generation at a lower frequency are preferentially expressed after meiosis during pollen development, but expression is absent or very low before the meiosis stage, whereas GA signal-related genes are actively expressed before meiosis. Based on these observations, we predict that the transmission of GA-signaling genes occurs in a sporophytic manner, since the protein products and/or mRNA transcripts of these genes may be introduced into pollen-carrying mutant alleles, whereas GA synthesis genes are transmitted in a gametophytic manner, since these genes are preferentially expressed after meiosis.
Dusi, Sabrina; Valletta, Lorella; Haack, Tobias B.; Tsuchiya, Yugo; Venco, Paola; Pasqualato, Sebastiano; Goffrini, Paola; Tigano, Marco; Demchenko, Nikita; Wieland, Thomas; Schwarzmayr, Thomas; Strom, Tim M.; Invernizzi, Federica; Garavaglia, Barbara; Gregory, Allison; Sanford, Lynn; Hamada, Jeffrey; Bettencourt, Conceição; Houlden, Henry; Chiapparini, Luisa; Zorzi, Giovanna; Kurian, Manju A.; Nardocci, Nardo; Prokisch, Holger; Hayflick, Susan; Gout, Ivan; Tiranti, Valeria
2014-01-01
Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA. PMID:24360804
CD79B and MYD88 Mutations in Splenic Marginal Zone Lymphoma
Trøen, Gunhild; Warsame, Abdirashid; Delabie, Jan
2013-01-01
The mutation status of genes involved in the NF-κB signaling pathway in splenic marginal zone lymphoma was examined. DNA sequence analysis of four genes was performed: CD79A, CD79B, CARD11, and MYD88 that are activated through BCR signaling or Toll-like and interleukin signaling. A single point mutation was detected in the CD79B gene (Y196H) in one of ten SMZL cases. Additionally, one point mutation was identified in the MYD88 gene (L265P) in another SMZL case. No mutations were revealed in CD79A or CARD11 genes in these SMZL cases. Neither were mutations detected in these four genes studied in 13 control MZL samples. Interestingly, the two cases with mutations of CD79B and MYD88 showed increased numbers of immunoblasts spread among the smaller and typical marginal zone lymphoma cells. Although SMZL shows few mutations of NF-κB signaling genes, our results indicate that the presence of these mutations is associated with a higher histological grade. PMID:23378931
Abdul Wahab, Siti Aishah; Yakob, Yusnita; Abdul Azize, Nor Azimah; Md Yunus, Zabedah; Huey Yin, Leong; Mohd Khalid, Mohd Khairul Nizam; Lock Hock, Ngu
Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome.
Yakob, Yusnita; Abdul Azize, Nor Azimah; Md Yunus, Zabedah; Huey Yin, Leong; Mohd Khalid, Mohd Khairul Nizam; Lock Hock, Ngu
2016-01-01
Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome. PMID:27672653
Nitrative and oxidative DNA damage caused by K-ras mutation in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohnishi, Shiho; Saito, Hiromitsu; Suzuki, Noboru
2011-09-23
Highlights: {yields} Mutated K-ras in transgenic mice caused nitrative DNA damage, 8-nitroguanine. {yields} The mutagenic 8-nitroguanine seemed to be generated by iNOS via Ras-MAPK signal. {yields} Mutated K-ras produces additional mutagenic lesions, as a new oncogenic role. -- Abstract: Ras mutation is important for carcinogenesis. Carcinogenesis consists of multi-step process with mutations in several genes. We investigated the role of DNA damage in carcinogenesis initiated by K-ras mutation, using conditional transgenic mice. Immunohistochemical analysis revealed that mutagenic 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were apparently formed in adenocarcinoma caused by mutated K-ras. 8-Nitroguanine was co-localized with iNOS, eNOS, NF-{kappa}B, IKK, MAPK, MEK,more » and mutated K-ras, suggesting that oncogenic K-ras causes additional DNA damage via signaling pathway involving these molecules. It is noteworthy that K-ras mutation mediates not only cell over-proliferation but also the accumulation of mutagenic DNA lesions, leading to carcinogenesis.« less
Ben Rhouma, Bochra; Kallabi, Fakhri; Mahfoudh, Nadia; Ben Mahmoud, Afif; Engeli, Roger T; Kamoun, Hassen; Keskes, Leila; Odermatt, Alex; Belguith, Neila
2017-01-01
17β-Hydroxysteroid dehydrogenase type 3 (17β-HSD3) is expressed almost exclusively in the testis and converts Δ4-androstene-3,17-dione to testosterone. Mutations in the HSD17B3 gene causing 17β-HSD3 deficiency are responsible for a rare recessive form of 46, XY Disorders of Sex Development (46, XY DSD). We report novel cases of Tunisian patients with 17β-HSD3 deficiency due to previously reported mutations, i.e. p.C206X and p.G133R, as well as a case with the novel compound heterozygous mutations p.C206X and p.Q176P. Moreover, the previously reported polymorphism p.G289S was identified in a heterozygous state in combination with a novel non-coding variant c.54G>T, also in a heterozygous state, in a male patient presenting with micropenis and low testosterone levels. The identification of four different mutations in a cohort of eight patients confirms the generally observed genetic heterogeneity of 17β-HSD3 deficiency. Nevertheless, analysis of DNA from 272 randomly selected healthy controls from the same geographic area (region of Sfax) revealed a high carrier frequency for the p.C206X mutation of approximately 1 in 40. Genotype reconstruction of the affected pedigree members revealed that all p.C206X mutation carriers harbored the same haplotype, indicating inheritance of the mutation from a common ancestor. Thus, the identification of a founder effect and the elevated carrier frequency of the p.C206X mutation emphasize the importance to consider this mutation in the diagnosis and genetic counseling of affected 17β-HSD3 deficiency pedigrees in Tunisia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spectrum of APC and MUTYH germ-line mutations in Russian patients with colorectal malignancies.
Yanus, G A; Akhapkina, T A; Ivantsov, A O; Preobrazhenskaya, E V; Aleksakhina, S N; Bizin, I V; Sokolenko, A P; Mitiushkina, N V; Kuligina, E Sh; Suspitsin, E N; Venina, A R; Holmatov, M M; Zaitseva, O A; Yatsuk, O S; Pashkov, D V; Belyaev, A M; Togo, A V; Imyanitov, E N; Iyevleva, A G
2018-05-01
Distribution of cancer-predisposing mutations demonstrates significant interethnic variations. This study aimed to evaluate patterns of APC and MUTYH germ-line mutations in Russian patients with colorectal malignancies. APC gene defects were identified in 26/38 (68%) subjects with colon polyposis; 8/26 (31%) APC mutations were associated with 2 known mutational hotspots (p.E1309Dfs*4 [n = 5] and p.Q1062fs* [n = 3]), while 6/26 (23%) mutations were novel (p.K73Nfs*6, p.S254Hfs*12, p.S1072Kfs*9, p.E1547Kfs*11, p.L1564X and p.C1263Wfs*22). Biallelic mutations in MUTYH gene were detected in 3/12 (25%) remaining subjects with polyposis and in 6/90 (6.7%) patients with colorectal cancer (CRC) carrying KRAS p.G12C substitution, but not in 231 early-onset CRC cases negative for KRAS p.G12C allele. In addition to known European founder alleles p.Y179C and p.G396D, this study revealed a recurrent character of MUTYH p.R245H germ-line mutation. Besides that, 3 novel pathogenic MUTYH alleles (p.L111P, p.R245S and p.Q293X) were found. Targeted next-generation sequencing of 7 APC/MUTYH mutation-negative DNA samples identified novel potentially pathogenic POLD1 variant (p.L460R) in 1 patient and known low-penetrant cancer-associated allele CHEK2 p.I157T in 3 patients. The analysis of 1120 healthy subjects revealed 15 heterozygous carriers of recurrent MUTYH mutations, thus the expected incidence of MUTYH-associated polyposis in Russia is likely to be 1:23 000. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Wen, Peng-qiang; Wang, Guo-bing; Chen, Zhan-ling; Liu, Xiao-hong; Cui, Dong; Shang, Yue; Li, Cheng-rong
2013-12-01
To analyze the clinical features and SLC25A13 gene mutations of a child with citrin deficiency complicated with purpura, convulsive seizures and methioninemia. The patient was subjected to physical examination and routine laboratory tests. Blood amino acids and acylcarnitines, and urine organic acids and galactose were analyzed respectively with tandem mass spectrometry and gas chromatographic mass spectrometry. SLC25A13 gene mutation screening was conducted by high resolution melt (HRM) analysis. The petechiae on the patient's face and platelet count (27×10(9)/L, reference range 100×10(9)/L-300×10(9)/L) supported the diagnosis of immunologic thrombocytopenic purpura (ITP). Laboratory tests found that the patient have abnormal coagulation, cardiac enzyme, liver function and liver enzymes dysfunction. Tandem mass spectrometry also found methionine to be increased (286 μmol/L, reference ranges 8-35 μmol/L). The patient did not manifest any galactosemia, citrullinemia and tyrosinemia. Analysis of SLC25A13 gene mutation found that the patient has carried IVS16ins3kb, in addition with abnormal HRM result for exon 6. Direct sequencing of exon 6 revealed a novel mutation c.495delA. The same mutation was not detected in 100 unrelated healthy controls. Further analysis of her family has confirmed that the c.495delA mutation has derived from her farther, and that the IVS16ins3kb was derived from her mother. The clinical features and metabolic spectrum of citrin deficiency can be variable. The poor prognosis and severity of clinical symptoms of the patient may be attributed to the novel c.495delA mutation.
Reijnders, Margot R F; Janowski, Robert; Alvi, Mohsan; Self, Jay E; van Essen, Ton J; Vreeburg, Maaike; Rouhl, Rob P W; Stevens, Servi J C; Stegmann, Alexander P A; Schieving, Jolanda; Pfundt, Rolph; van Dijk, Katinke; Smeets, Eric; Stumpel, Connie T R M; Bok, Levinus A; Cobben, Jan Maarten; Engelen, Marc; Mansour, Sahar; Whiteford, Margo; Chandler, Kate E; Douzgou, Sofia; Cooper, Nicola S; Tan, Ene-Choo; Foo, Roger; Lai, Angeline H M; Rankin, Julia; Green, Andrew; Lönnqvist, Tuula; Isohanni, Pirjo; Williams, Shelley; Ruhoy, Ilene; Carvalho, Karen S; Dowling, James J; Lev, Dorit L; Sterbova, Katalin; Lassuthova, Petra; Neupauerová, Jana; Waugh, Jeff L; Keros, Sotirios; Clayton-Smith, Jill; Smithson, Sarah F; Brunner, Han G; van Hoeckel, Ceciel; Anderson, Mel; Clowes, Virginia E; Siu, Victoria Mok; DDD study, The; Selber, Paulo; Leventer, Richard J; Nellaker, Christoffer; Niessing, Dierk; Hunt, David; Baralle, Diana
2018-01-01
Background De novo mutations in PURA have recently been described to cause PURA syndrome, a neurodevelopmental disorder characterised by severe intellectual disability (ID), epilepsy, feeding difficulties and neonatal hypotonia. Objectives To delineate the clinical spectrum of PURA syndrome and study genotype-phenotype correlations. Methods Diagnostic or research-based exome or Sanger sequencing was performed in individuals with ID. We systematically collected clinical and mutation data on newly ascertained PURA syndrome individuals, evaluated data of previously reported individuals and performed a computational analysis of photographs. We classified mutations based on predicted effect using 3D in silico models of crystal structures of Drosophila-derived Pur-alpha homologues. Finally, we explored genotype-phenotype correlations by analysis of both recurrent mutations as well as mutation classes. Results We report mutations in PURA (purine-rich element binding protein A) in 32 individuals, the largest cohort described so far. Evaluation of clinical data, including 22 previously published cases, revealed that all have moderate to severe ID and neonatal-onset symptoms, including hypotonia (96%), respiratory problems (57%), feeding difficulties (77%), exaggerated startle response (44%), hypersomnolence (66%) and hypothermia (35%). Epilepsy (54%) and gastrointestinal (69%), ophthalmological (51%) and endocrine problems (42%) were observed frequently. Computational analysis of facial photographs showed subtle facial dysmorphism. No strong genotype-phenotype correlation was identified by subgrouping mutations into functional classes. Conclusion We delineate the clinical spectrum of PURA syndrome with the identification of 32 additional individuals. The identification of one individual through targeted Sanger sequencing points towards the clinical recognisability of the syndrome. Genotype-phenotype analysis showed no significant correlation between mutation classes and disease severity. PMID:29097605
Spectrum of rhodopsin mutations in Korean patients with retinitis pigmentosa
Kim, Kwang Joong; Kim, Cinoo; Bok, Jeong; Kim, Kyung-Seon; Lee, Eun-Ju; Park, Sung Pyo; Chung, Hum; Han, Bok-Ghee; Kim, Hyung-Lae; Kimm, Kuchan; Yu, Hyeong Gon
2011-01-01
Purpose To determine the spectrum and frequency of rhodopsin gene (RHO) mutations in Korean patients with retinitis pigmentosa (RP) and to characterize genotype–phenotype correlations in patients with mutations. Methods The RHO mutations were screened by direct sequencing, and mutation prevalence was measured in patients and controls. The impact of missense mutations to RP was predicted by segregation analysis, peptide sequence alignment, and in silico analysis. The severity of disease in patients with the missense mutations was compared by visual acuity, electroretinography, optical coherence tomography, and kinetic visual field testing. Results Five heterozygous mutations were identified in six of 302 probands with RP, including a novel mutation (c.893C>A, p.A298D) and four known mutations (c.50C>T, p.T17M; c.533A>G, p.Y178C; c.888G>T, p.K296N; and c.1040C>T, p.P347L). The allele frequency of missense mutations was measured in 114 ethnically matched controls. p.A298D, newly identified in a sporadic patient, had never been found in controls and was predicted to be pathogenic. Among the patients with the missense mutations, we observed the most severe phenotype in patients with p.P347L, less severe phenotypes in patients with p.Y178C or p.A298D, and a relatively moderate phenotype in a patient with p.T17M. Conclusions The results reveal the spectrum of RHO mutations in Korean RP patients and clinical features that vary according to mutations. Our findings will be useful for understanding these genetic spectra and the genotype–phenotype correlations and will therefore help with predicting disease prognosis and facilitating the development of gene therapy. PMID:21677794
Nakano, A; Pulkkinen, L; Murrell, D; Rico, J; Lucky, A W; Garzon, M; Stevens, C A; Robertson, S; Pfendner, E; Uitto, J
2001-05-01
Epidermolysis bullosa with pyloric atresia (EB-PA: OMIM 226730), also known as Carmi syndrome, is a rare autosomal recessive genodermatosis that manifests with neonatal mucocutaneous fragility associated with congenital pyloric atresia. The disease is frequently lethal within the first year, but nonlethal cases have been reported. Mutations in the genes encoding subunit polypeptides of the alpha 6 beta 4 integrin (ITGA6 and ITGB4) have been demonstrated in EB-PA patients. To extend the repertoire of mutations and to identify genotype-phenotype correlations, we examined seven new EB-PA families, four with lethal and three with nonlethal disease variants. DNA from patients was screened for mutations using heteroduplex analysis followed by nucleotide sequencing of PCR products spanning all beta 4 integrin-coding sequences. Mutation analysis disclosed 12 distinct mutations, 11 of them novel. Four mutations predicted a premature termination codon as a result of nonsense mutations or small out-of-frame insertions or deletions, whereas seven were missense mutations. This brings the total number of distinct ITGB4 mutations to 33. The mutation database indicates that premature termination codons are associated predominantly with the lethal EB-PA variants, whereas missense mutations are more prevalent in nonlethal forms. However, the consequences of the missense mutations are position dependent, and substitutions of highly conserved amino acids may have lethal consequences. In general, indirect immunofluorescence studies of affected skin revealed negative staining for beta 4 integrin in lethal cases and positive, but attenuated, staining in nonlethal cases and correlated with clinical phenotype. The data on specific mutations in EB-PA patients allows prenatal testing and preimplantation genetic diagnosis in families at risk.
Radha Rama Devi, A; Ramesh, Vakkalagadda A; Nagarajaram, H A; Satish, S P S; Jayanthi, U; Lingappa, Lokesh
2016-01-01
Glutaric aciduria type I is an autosomal recessive organic acid disorder. The primary defect is the deficiency of Glutaryl-CoA dehydrogenase (EC number 1.3.99.7) enzyme that is involved in the catabolic pathways of the amino acids l-lysine, l-hydroxylysine, and l-tryptophan. It is a treatable neuro-metabolic disorder. Early diagnosis and treatment helps in preventing brain damage. The Glutaryl-CoA dehydrogenase gene (GCDH) gene was sequenced to identify disease causing mutations by direct sequencing of all the exons in twelve patients who were biochemically confirmed with GA I. We identified eleven mutations of which nine are homozygous mutations, one heterozygous and two synonymous mutations. Among the eleven mutations, four mutations p.Q162R, p.P286S, p.W225X in two families and p.V410M are novel. A milder clinical presentation is observed in those families who are either heterozygous or with a benign synonymous SNP. Multiple sequence alignment (MSA) of GCDH with its homologues revealed that the observed novel mutations are not tolerated by protein structure and function. The present study indicates genetic heterogeneity in GCDH gene mutations among South Indian population. Genetic analysis is useful in prenatal diagnosis and prevention. Mutation analysis is a useful tool in the absence of non-availability of enzyme assay in GA I. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Khan, Arif O; Becirovic, Elvir; Betz, Christian; Neuhaus, Christine; Altmüller, Janine; Maria Riedmayr, Lisa; Motameny, Susanne; Nürnberg, Gudrun; Nürnberg, Peter; Bolz, Hanno J
2017-05-03
Deafblindness is mostly due to Usher syndrome caused by recessive mutations in the known genes. Mutation-negative patients therefore either have distinct diseases, mutations in yet unknown Usher genes or in extra-exonic parts of the known genes - to date a largely unexplored possibility. In a consanguineous Saudi family segregating Usher syndrome type 1 (USH1), NGS of genes for Usher syndrome, deafness and retinal dystrophy and subsequent whole-exome sequencing each failed to identify a mutation. Genome-wide linkage analysis revealed two small candidate regions on chromosome 3, one containing the USH3A gene CLRN1, which has never been associated with Usher syndrome in Saudi Arabia. Whole-genome sequencing (WGS) identified a homozygous deep intronic mutation, c.254-649T > G, predicted to generate a novel donor splice site. CLRN1 minigene-based analysis confirmed the splicing of an aberrant exon due to usage of this novel motif, resulting in a frameshift and a premature termination codon. We identified this mutation in an additional two of seven unrelated mutation-negative Saudi USH1 patients. Locus-specific markers indicated that c.254-649T > G CLRN1 represents a founder allele that may significantly contribute to deafblindness in this population. Our finding underlines the potential of WGS to uncover atypically localized, hidden mutations in patients who lack exonic mutations in the known disease genes.
Wen, Miaomiao; Wang, Xuejiao; Sun, Ying; Xia, Jinghua; Fan, Liangbo; Xing, Hao; Zhang, Zhipei; Li, Xiaofei
2016-01-01
Echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) and epidermal growth factor receptor (EGFR) define specific molecular subsets of lung cancer with distinct clinical features. We aimed at revealing the clinical features of EML4-ALK fusion gene and EGFR mutation in non-small-cell lung cancer (NSCLC). We enrolled 694 Chinese patients with NSCLC for analysis. EML4-ALK fusion gene was analyzed by real-time polymerase chain reaction, and EGFR mutations were analyzed by amplified refractory mutation system. Among the 694 patients, 60 (8.65%) patients had EML4-ALK fusions. In continuity correction χ (2) test analysis, EML4-ALK fusion gene was correlated with sex, age, smoking status, and histology, but no significant association was observed between EML4-ALK fusion gene and clinical stage. A total of 147 (21.18%) patients had EGFR mutations. In concordance with previous reports, EGFR mutation was correlated with age, smoking status, histology, and clinical stage, whereas patient age was not significantly associated with EGFR mutation. Meanwhile, to our surprise, six (0.86%) patients had coexisting EML4-ALK fusions and EGFR mutations. EML4-ALK fusion gene defines a new molecular subset in patients with NSCLC. Six patients who harbored both EML4-ALK fusion genes and EGFR mutations were identified in our study. The EGFR mutations and the EML4-ALK fusion genes are coexistent.
Mutations in the Promoter Region of the Aldolase B Gene that cause Hereditary Fructose Intolerance
Coffee, Erin M.; Tolan, Dean R.
2010-01-01
SUMMARY Hereditary fructose intolerance (HFI) is a potentially fatal inherited metabolic disease caused by a deficiency of aldolase B activity in the liver and kidney. Over 40 disease-causing mutations are known in the protein-coding region of ALDOB. Mutations upstream of the protein-coding portion of ALDOB are reported here for the first time. DNA sequence analysis of 61 HFI patients revealed single base mutations in the promoter, intronic enhancer, and the first exon, which is entirely untranslated. One mutation, g.–132G>A, is located within the promoter at an evolutionarily conserved nucleotide within a transcription factor-binding site. A second mutation, IVS1+1G>C, is at the donor splice site of the first exon. In vitro electrophoretic mobility shift assays show a decrease in nuclear extract-protein binding at the g.–132G>A mutant site. The promoter mutation results in decreased transcription using luciferase reporter plasmids. Analysis of cDNA from cells transfected with plasmids harboring the IVS1+1G>C mutation results in aberrant splicing leading to complete retention of the first intron (~ 5 kb). The IVS1+1G>C splicing mutation results in loss of luciferase activity from a reporter plasmid. These novel mutations in ALDOB represent 2% of alleles in American HFI patients, with IVS1+1G>C representing a significantly higher allele frequency (6%) among HFI patients of Hispanic and African-American ethnicity. PMID:20882353
Wen, Miaomiao; Wang, Xuejiao; Sun, Ying; Xia, Jinghua; Fan, Liangbo; Xing, Hao; Zhang, Zhipei; Li, Xiaofei
2016-01-01
Purpose Echinoderm microtubule-associated protein-like 4–anaplastic lymphoma kinase (EML4-ALK) and epidermal growth factor receptor (EGFR) define specific molecular subsets of lung cancer with distinct clinical features. We aimed at revealing the clinical features of EML4-ALK fusion gene and EGFR mutation in non-small-cell lung cancer (NSCLC). Methods We enrolled 694 Chinese patients with NSCLC for analysis. EML4-ALK fusion gene was analyzed by real-time polymerase chain reaction, and EGFR mutations were analyzed by amplified refractory mutation system. Results Among the 694 patients, 60 (8.65%) patients had EML4-ALK fusions. In continuity correction χ2 test analysis, EML4-ALK fusion gene was correlated with sex, age, smoking status, and histology, but no significant association was observed between EML4-ALK fusion gene and clinical stage. A total of 147 (21.18%) patients had EGFR mutations. In concordance with previous reports, EGFR mutation was correlated with age, smoking status, histology, and clinical stage, whereas patient age was not significantly associated with EGFR mutation. Meanwhile, to our surprise, six (0.86%) patients had coexisting EML4-ALK fusions and EGFR mutations. Conclusion EML4-ALK fusion gene defines a new molecular subset in patients with NSCLC. Six patients who harbored both EML4-ALK fusion genes and EGFR mutations were identified in our study. The EGFR mutations and the EML4-ALK fusion genes are coexistent. PMID:27103824
Yagita, M; Huang, C L; Umehara, H; Matsuo, Y; Tabata, R; Miyake, M; Konaka, Y; Takatsuki, K
2000-05-01
We present the establishment of a natural killer (NK) leukemia cell line, designated KHYG-1, from the blood of a patient with aggressive NK leukemia, which both possessed the same p53 point mutation. The immunophenotype of the primary leukemia cells was CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16+, CD56+, CD57+ and HLA-DR+. A new cell line (KHYG-1) was established by culturing peripheral leukemia cells with 100 units of recombinant interleukin (IL)-2. The KHYG-1 cells showed LGL morphology with a large nucleus, coarse chromatin, conspicuous nucleoli, and abundant basophilic cytoplasm with many azurophilic granules. The immunophenotype of KHYG-1 cells was CD1-, CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16-, CD25-, CD33+, CD34-, CD56+, CD57-, CD122+, CD132+, and TdT-. Southern blot analysis of these cells revealed a normal germline configuration for the beta, delta, and gamma chains of the T cell receptor and the immunoglobulin heavy-chain genes. Moreover, the KHYG-1 cells displayed NK cell activity and IL-2-dependent proliferation in vitro, suggesting that they are of NK cell origin. Epstein-Barr virus (EBV) DNA was not detected in KHYG-1 cells by Southern blot analysis with a terminal repeat probe from an EBV genome. A point mutation in exon 7 of the p53 gene was detected in the KHYG-1 cells by PCR/SSCP analysis, and direct sequencing revealed the conversion of C to T at nucleotide 877 in codon 248. The primary leukemia cells also carried the same point mutation. Although the precise role of the p53 point mutation in leukemogenesis remains to be clarified, the establishment of an NK leukemia cell line with a p53 point mutation could be valuable in the study of leukemogenesis.
Frisso, Giulia; Detta, Nicola; Coppola, Pamela; Mazzaccara, Cristina; Pricolo, Maria Rosaria; D'Onofrio, Antonio; Limongelli, Giuseppe; Calabrò, Raffaele; Salvatore, Francesco
2016-11-10
Point mutations are the most common cause of inherited diseases. Bioinformatics tools can help to predict the pathogenicity of mutations found during genetic screening, but they may work less well in determining the effect of point mutations in non-coding regions. In silico analysis of intronic variants can reveal their impact on the splicing process, but the consequence of a given substitution is generally not predictable. The aim of this study was to functionally test five intronic variants ( MYBPC3 -c.506-2A>C, MYBPC3 -c.906-7G>T, MYBPC3 -c.2308+3G>C, SCN5A -c.393-5C>A, and ACTC1 -c.617-7T>C) found in five patients affected by inherited cardiomyopathies in the attempt to verify their pathogenic role. Analysis of the MYBPC3 -c.506-2A>C mutation in mRNA from the peripheral blood of one of the patients affected by hypertrophic cardiac myopathy revealed the loss of the canonical splice site and the use of an alternative splicing site, which caused the loss of the first seven nucleotides of exon 5 ( MYBPC3 -G169AfsX14). In the other four patients, we generated minigene constructs and transfected them in HEK-293 cells. This minigene approach showed that MYBPC3 -c.2308+3G>C and SCN5A -c.393-5C>A altered pre-mRNA processing, thus resulting in the skipping of one exon. No alterations were found in either MYBPC3 -c.906-7G>T or ACTC1 -c.617-7T>C. In conclusion, functional in vitro analysis of the effects of potential splicing mutations can confirm or otherwise the putative pathogenicity of non-coding mutations, and thus help to guide the patient's clinical management and improve genetic counseling in affected families.
Two new mutations in the MTATP6 gene associated with Leigh syndrome.
Moslemi, A-R; Darin, N; Tulinius, M; Oldfors, A; Holme, E
2005-10-01
In this study we have analyzed the mtDNA encoded ATPase 6 and 8 genes ( MTATP6 and MTATP8) in two children with Leigh syndrome (LS) and reduced Mg (2+) ATPase activity in muscle mitochondria. In patient 1, with a mild and reversible phenotype, mutational analysis revealed a heteroplasmic T --> C mutation at nt position 9185 (T9185C) in the MTATP6. The mutation resulted in substitution of a highly conserved leucine to proline at codon 220. The proportion of the mutation was > 97 % in the patient's blood and muscle and 85 % in blood of his asymptomatic mother. Patient 2, with severe clinical phenotype and death at 2 years of age, exhibited a novel heteroplasmic T9191C missense mutation in the MTATP6, which converted a highly conserved leucine to a proline at position 222 of the polypeptide. The proportion of the mutation was 90 % in fibroblasts and 94 % muscle tissue. This mutation was absent in the patient's parents and sister suggesting that the mutation was de novo. Our findings expand the spectrum of mutations causing LS and emphasize the role of MTATP6 gene mutations in pathogenesis of LS.
Alexander Disease: A Novel Mutation in GFAP Leading to Epilepsia Partialis Continua.
Bonthius, Daniel J; Karacay, Bahri
2016-06-01
Alexander disease is a genetically induced leukodystrophy, due to dominant mutations in the glial fibrillary acidic protein (GFAP ) gene, causing dysfunction of astrocytes. We have identified a novel GFAP mutation, associated with a novel phenotype for Alexander disease. A boy with global developmental delay and hypertonia was found to have a leukodystrophy. Genetic analysis revealed a heterozygous point mutation in exon 6 of the GFAP gene. The guanine-to-adenine change causes substitution of the normal glutamic acid codon (GAG) with a mutant lysine codon (AAG) at position 312 (E312 K mutation). At the age of 4 years, the child developed epilepsia partialis continua, consisting of unabating motor seizures involving the unilateral perioral muscles. Epilepsia partialis continua has not previously been reported in association with Alexander disease. Whether and how the E312 K mutation produces pathologic changes and clinical signs that are unique from other Alexander disease-inducing mutations in GFAP remain to be determined. © The Author(s) 2015.
Mutation analysis of the Smad3 gene in human osteoarthritis.
Yao, Jun-Yan; Wang, Yan; An, Jing; Mao, Chun-Ming; Hou, Ning; Lv, Ya-Xin; Wang, You-Liang; Cui, Fang; Huang, Min; Yang, Xiao
2003-09-01
Osteoarthritis (OA) is the most common joint disease worldwide. Recent studies have shown that targeted disruption of Smad3 in mouse results in OA. To reveal the possible association between the Smad3 gene mutation and human OA, we employed polymerase chain reaction-single strand conformation polymorphism and sequencing to screen mutations in all nine exons of the Smad3 gene in 32 patients with knee OA and 50 patients with only bone fracture. A missense mutation of the Smad3 gene was found in one patient. The single base mutation located in the linker region of the SMAD3 protein was A --> T change in the position 2 of codon 197 and resulted in an asparagine to isoleucine amino-acid substitution. The expressions of matrix metalloproteinase 2 (MMP-2) and MMP-9 in sera of the patient carrying the mutation were higher than other OA patients and controls. This is the first report showing that the Smad3 gene mutations could be associated with the pathogenesis of human OA.
Hyun, H-K; Lee, S-K; Lee, K-E; Kang, H-Y; Kim, E-J; Choung, P-H; Kim, J-W
2009-11-01
To determine the underlying molecular genetic aetiology of a family with the hypocalcified form of amelogenesis imperfecta and to investigate the hardness of the enamel and dentine of a known FAM83H mutation. Mutational screening of the FAM83H on the basis of candidate gene approach was performed. All exons and exon-intron boundaries was amplified and sequenced. A microhardness test was performed to measure the Vickers microhardness value. A novel nonsense mutation (c.1354C>T, p.Q452X) was identified in the last exon of FAM83H, which resulted in soft, uncalcified enamel. The affected enamel was extremely soft (about 17% of the normal control), but the underlying dentine was as hard as the normal control. Mutational analysis revealed a novel mutation in FAM83H gene. Hardness of dentine was not affected by the mutation, whilst the enamel was extremely soft.
Chen, Xi; Dou, Hu; Wang, Xingjuan; Huang, Yi; Lu, Ling; Bin, Junqing; Su, Yongchun; Zou, Lin; Yu, Jie; Bao, Liming
2018-04-01
The prevalence and clinical relevance of KIT mutations in childhood core-binding factor (CBF) acute myeloid leukemia (AML) have not been well characterized. In this study, a total of 212 children with de novo AML were enrolled from a Chinese population and 50 (23.5%) of the patients were deemed CBF-AML. KIT mutations were identified in 30% of the CBF-AML cohort. The KIT mutations were clustered in exon 17 and exon 8, and KIT mutations in exons 8 and 17 were correlated with a shorter overall survival (OS) (5-year OS: 30.0 ± 14.5% vs. 73.0 ± 8.5%, p = .007) and event-free survival (EFS) (5-year EFS: 30.0 ± 14.5% vs. 73.0 ± 8.5%, p = .003). Multivariate analysis revealed KIT mutations as an independent risk factor in CBF-AML. Our results suggest that KIT mutations are a molecular marker for an inferior prognosis in pediatric CBF-AML.
Vogler, Amy J.; Nottingham, Roxanne; Busch, Joseph D.; Sahl, Jason W.; Shuey, Megan M.; Foster, Jeffrey T.; Schupp, James M.; Smith, Susan; Rocke, Tonie E.; Klein, Paul; Wagner, David M.
2016-01-01
Underlying mutation rates and other evolutionary forces shape the population structure of bacteria in nature. Although easily overlooked, similar forces are at work in the laboratory and may influence observed mutations. Here, we investigated tissue samples and Yersinia pestis isolates from a rodent laboratory challenge with strain CO92 using whole genome sequencing and multi-locus variable-number tandem repeat (VNTR) analysis (MLVA). We identified six VNTR mutations that were found to have occurred in vitro during laboratory cultivation rather than in vivo during the rodent challenge. In contrast, no single nucleotide polymorphism (SNP) mutations were observed, either in vivo or in vitro. These results were consistent with previously published mutation rates and the calculated number of Y. pestis generations that occurred during the in vitro versus the in vivo portions of the experiment. When genotyping disease outbreaks, the potential for in vitro mutations should be considered, particularly when highly variable genetic markers such as VNTRs are used.
Mutations in WNT1 Cause Different Forms of Bone Fragility
Keupp, Katharina; Beleggia, Filippo; Kayserili, Hülya; Barnes, Aileen M.; Steiner, Magdalena; Semler, Oliver; Fischer, Björn; Yigit, Gökhan; Janda, Claudia Y.; Becker, Jutta; Breer, Stefan; Altunoglu, Umut; Grünhagen, Johannes; Krawitz, Peter; Hecht, Jochen; Schinke, Thorsten; Makareeva, Elena; Lausch, Ekkehart; Cankaya, Tufan; Caparrós-Martín, José A.; Lapunzina, Pablo; Temtamy, Samia; Aglan, Mona; Zabel, Bernhard; Eysel, Peer; Koerber, Friederike; Leikin, Sergey; Garcia, K. Christopher; Netzer, Christian; Schönau, Eckhard; Ruiz-Perez, Victor L.; Mundlos, Stefan; Amling, Michael; Kornak, Uwe; Marini, Joan; Wollnik, Bernd
2013-01-01
We report that hypofunctional alleles of WNT1 cause autosomal-recessive osteogenesis imperfecta, a congenital disorder characterized by reduced bone mass and recurrent fractures. In consanguineous families, we identified five homozygous mutations in WNT1: one frameshift mutation, two missense mutations, one splice-site mutation, and one nonsense mutation. In addition, in a family affected by dominantly inherited early-onset osteoporosis, a heterozygous WNT1 missense mutation was identified in affected individuals. Initial functional analysis revealed that altered WNT1 proteins fail to activate canonical LRP5-mediated WNT-regulated β-catenin signaling. Furthermore, osteoblasts cultured in vitro showed enhanced Wnt1 expression with advancing differentiation, indicating a role of WNT1 in osteoblast function and bone development. Our finding that homozygous and heterozygous variants in WNT1 predispose to low-bone-mass phenotypes might advance the development of more effective therapeutic strategies for congenital forms of bone fragility, as well as for common forms of age-related osteoporosis. PMID:23499309
Zazo Seco, Celia; Serrão de Castro, Luciana; van Nierop, Josephine W.; Morín, Matías; Jhangiani, Shalini; Verver, Eva J.J.; Schraders, Margit; Maiwald, Nadine; Wesdorp, Mieke; Venselaar, Hanka; Spruijt, Liesbeth; Oostrik, Jaap; Schoots, Jeroen; van Reeuwijk, Jeroen; Lelieveld, Stefan H.; Huygen, Patrick L.M.; Insenser, María; Admiraal, Ronald J.C.; Pennings, Ronald J.E.; Hoefsloot, Lies H.; Arias-Vásquez, Alejandro; de Ligt, Joep; Yntema, Helger G.; Jansen, Joop H.; Muzny, Donna M.; Huls, Gerwin; van Rossum, Michelle M.; Lupski, James R.; Moreno-Pelayo, Miguel Angel; Kunst, Henricus P.M.; Kremer, Hannie
2015-01-01
Linkage analysis combined with whole-exome sequencing in a large family with congenital and stable non-syndromic unilateral and asymmetric hearing loss (NS-UHL/AHL) revealed a heterozygous truncating mutation, c.286_303delinsT (p.Ser96Ter), in KITLG. This mutation co-segregated with NS-UHL/AHL as a dominant trait with reduced penetrance. By screening a panel of probands with NS-UHL/AHL, we found an additional mutation, c.200_202del (p.His67_Cys68delinsArg). In vitro studies revealed that the p.His67_Cys68delinsArg transmembrane isoform of KITLG is not detectable at the cell membrane, supporting pathogenicity. KITLG encodes a ligand for the KIT receptor. Also, KITLG-KIT signaling and MITF are suggested to mutually interact in melanocyte development. Because mutations in MITF are causative of Waardenburg syndrome type 2 (WS2), we screened KITLG in suspected WS2-affected probands. A heterozygous missense mutation, c.310C>G (p.Leu104Val), that segregated with WS2 was identified in a small family. In vitro studies revealed that the p.Leu104Val transmembrane isoform of KITLG is located at the cell membrane, as is wild-type KITLG. However, in culture media of transfected cells, the p.Leu104Val soluble isoform of KITLG was reduced, and no soluble p.His67_Cys68delinsArg and p.Ser96Ter KITLG could be detected. These data suggest that mutations in KITLG associated with NS-UHL/AHL have a loss-of-function effect. We speculate that the mechanism of the mutation underlying WS2 and leading to membrane incorporation and reduced secretion of KITLG occurs via a dominant-negative or gain-of-function effect. Our study unveils different phenotypes associated with KITLG, previously associated with pigmentation abnormalities, and will thereby improve the genetic counseling given to individuals with KITLG variants. PMID:26522471
KIT mutations in Russian patients with mucosal melanoma.
Abysheva, Svetlana N; Iyevleva, Aglaya G; Efimova, Nina V; Mokhina, Yulia B; Sabirova, Feruza A; Ivantsov, Alexandr O; Artemieva, Anna S; Togo, Alexandr V; Moiseyenko, Vladimir M; Matsko, Dmitry E; Imyanitov, Evgeny N
2011-12-01
A single institution series of 48 mucosal melanomas (MMs) has been analyzed for the presence of KIT mutations using high-resolution melting and sequencing of abnormally melted DNA fragments. The analysis of exons 9, 11, 13, and 17 has revealed eight of 48 (17%) nonsynonymous alterations, including zero of seven head and neck, six of 24 anorectal, one of 15 genitourinary, one of one gastric, and zero of one mediastinal MMs. Seven of these mutations were potentially associated with the tumor sensitivity to KIT tyrosine kinase inhibitors. One tumor harbored somatically acquired silent nucleotide substitution c.1383A>G (T461T). This study adds to the evidence that a substantial portion of MMs carry a therapeutically relevant mutation in the KIT oncogene.
Schweigmann, Ulrich; Biliczki, Peter; Ramirez, Rafael J; Marschall, Christoph; Takac, Ina; Brandes, Ralf P; Kotzot, Dieter; Girmatsion, Zenawit; Hohnloser, Stefan H; Ehrlich, Joachim R
2014-01-01
Long QT syndrome (LQTS) leads to arrhythmic events and increased risk for sudden cardiac death (SCD). Homozygous KCNH2 mutations underlying LQTS-2 have previously been termed "human HERG knockout" and typically express severe phenotypes. We studied genotype-phenotype correlations of an LQTS type 2 mutation identified in the homozygous index patient from a consanguineous Turkish family after his brother died suddenly during febrile illness. Clinical work-up, DNA sequencing, mutagenesis, cell culture, patch-clamp, in silico mathematical modelling, protein biochemistry, confocal microscopy were performed. Genetic analysis revealed a homozygous C-terminal KCNH2 mutation (p.R835Q) in the index patient (QTc ∼506 ms with notched T waves). Parents were I° cousins - both heterozygous for the mutation and clinically unremarkable (QTc ∼447 ms, father and ∼396 ms, mother). Heterologous expression of KCNH2-R835Q showed mildly reduced current amplitudes. Biophysical properties of ionic currents were also only nominally changed with slight acceleration of deactivation and more negative V50 in R835Q-currents. Protein biochemistry and confocal microscopy revealed similar expression patterns and trafficking of WT and R835Q, even at elevated temperature. In silico analysis demonstrated mildly prolonged ventricular action potential duration (APD) compared to WT at a cycle length of 1000 ms. At a cycle length of 350 ms M-cell APD remained stable in WT, but displayed APD alternans in R835Q. Kv11.1 channels affected by the C-terminal R835Q mutation display mildly modified biophysical properties, but leads to M-cell APD alternans with elevated heart rate and could precipitate SCD under specific clinical circumstances associated with high heart rates.
Biswas, Arijit; Ivaskevicius, Vytautas; Thomas, Anne; Varvenne, Michael; Brand, Brigitte; Rott, Hannelore; Haussels, Iris; Ruehl, Heiko; Scholz, Ute; Klamroth, Robert; Oldenburg, Johannes
2014-10-01
Mild FXIII deficiency is an under-diagnosed disorder because the carriers of this deficiency are often asymptomatic and reveal a phenotype only under special circumstances like surgery or induced trauma. Mutational reports from this type of deficiency have been rare. In this study, we present the phenotypic and genotypic data of nine patients showing mild FXIII-A deficiency caused by eight novel heterozygous missense mutations (Pro166Leu, Arg171Gln, His342Tyr, Gln415Arg, Leu529Pro, Gln601Lys, Arg703Gln and Arg715Gly) in the F13A1 gene. None of these variants were seen in 200 healthy controls. In silico structural analysis of the local wild-type protein structures (activated and non-activated) from X-ray crystallographic models downloaded from the protein databank identified potential structural/functional effects for the identified mutations. The missense mutations in the core domain are suggested to be directly influencing the catalytic triad. Mutations on other domains might influence other critical factors such as activation peptide cleavage or the barrel domain integrity. In vitro expression and subsequent biochemical studies in the future will be able to confirm the pathophysiological mechanisms proposed for the mutations in this article.
Mory, Adi; Ruiz, Francesc X; Dagan, Efrat; Yakovtseva, Evgenia A; Kurolap, Alina; Parés, Xavier; Farrés, Jaume; Gershoni-Baruch, Ruth
2014-03-01
Nine affected individuals with isolated anophthalmia/microphthalmia from a large Muslim-inbred kindred were investigated. Assuming autosomal-recessive mode of inheritance, whole-genome linkage analysis, on DNA samples from four affected individuals, was undertaken. Homozygosity mapping techniques were employed and a 1.5-Mbp region, homozygous in all affected individuals, was delineated. The region contained nine genes, one of which, aldehyde dehydrogenase 1 (ALDH1A3), was a clear candidate. This gene seems to encode a key enzyme in the formation of a retinoic-acid gradient along the dorsoventral axis during an early eye development and the development of the olfactory system. Sanger sequence analysis revealed a missense mutation, causing a substitution of valine (Val) to methionine (Met) at position 71. Analyzing the p.Val71Met missense mutation using standard open access software (MutationTaster online, PolyPhen, SIFT/PROVEAN) predicts this variant to be damaging. Enzymatic activity, studied in vitro, showed no changes between the mutated and the wild-type ALDH1A3 protein.
Mory, Adi; Ruiz, Francesc X; Dagan, Efrat; Yakovtseva, Evgenia A; Kurolap, Alina; Parés, Xavier; Farrés, Jaume; Gershoni-Baruch, Ruth
2014-01-01
Nine affected individuals with isolated anophthalmia/microphthalmia from a large Muslim-inbred kindred were investigated. Assuming autosomal-recessive mode of inheritance, whole-genome linkage analysis, on DNA samples from four affected individuals, was undertaken. Homozygosity mapping techniques were employed and a 1.5-Mbp region, homozygous in all affected individuals, was delineated. The region contained nine genes, one of which, aldehyde dehydrogenase 1 (ALDH1A3), was a clear candidate. This gene seems to encode a key enzyme in the formation of a retinoic-acid gradient along the dorsoventral axis during an early eye development and the development of the olfactory system. Sanger sequence analysis revealed a missense mutation, causing a substitution of valine (Val) to methionine (Met) at position 71. Analyzing the p.Val71Met missense mutation using standard open access software (MutationTaster online, PolyPhen, SIFT/PROVEAN) predicts this variant to be damaging. Enzymatic activity, studied in vitro, showed no changes between the mutated and the wild-type ALDH1A3 protein. PMID:23881059
Clinical Application of Liquid Biopsy in Targeted Therapy of Metastatic Colorectal Cancer
Trojan, Jörg; Klein-Scory, Susanne; Koch, Christine; Schmiegel, Wolff
2017-01-01
Background. Colorectal cancers (CRC) shed DNA into blood circulation. There is growing evidence that the analysis of circulating tumor DNA can be effectively used for monitoring of disease, to track tumor heterogeneity and to evaluate response to treatment. Case Presentation. Here, we describe two cases of patients with advanced CRC. The first case is about a patient with no available tissue for analysis of RAS mutation status. Liquid biopsy revealed RAS-wild-type and the therapy with anti-EGFR (epidermal growth factor receptor) monoclonal antibody cetuximab could be initiated. In the second case, the mutational profile of a patient with initial wild-type RAS-status was continually tracked during the course of treatment. An acquired KRAS exon 3 mutation was detected. The number of KRAS mutated fragments decreased continuously after the discontinuation of the therapy with EGFR-specific antibodies. Conclusion. Liquid biopsy provides a rapid genotype result, which accurately reproduces the current mutation status of tumor tissue. Furthermore, liquid biopsy enables close monitoring of the onset of secondary resistance to anti-EGFR therapy. PMID:28232873
Clinical Application of Liquid Biopsy in Targeted Therapy of Metastatic Colorectal Cancer.
Trojan, Jörg; Klein-Scory, Susanne; Koch, Christine; Schmiegel, Wolff; Baraniskin, Alexander
2017-01-01
Background. Colorectal cancers (CRC) shed DNA into blood circulation. There is growing evidence that the analysis of circulating tumor DNA can be effectively used for monitoring of disease, to track tumor heterogeneity and to evaluate response to treatment. Case Presentation. Here, we describe two cases of patients with advanced CRC. The first case is about a patient with no available tissue for analysis of RAS mutation status. Liquid biopsy revealed RAS-wild-type and the therapy with anti-EGFR (epidermal growth factor receptor) monoclonal antibody cetuximab could be initiated. In the second case, the mutational profile of a patient with initial wild-type RAS-status was continually tracked during the course of treatment. An acquired KRAS exon 3 mutation was detected. The number of KRAS mutated fragments decreased continuously after the discontinuation of the therapy with EGFR-specific antibodies. Conclusion . Liquid biopsy provides a rapid genotype result, which accurately reproduces the current mutation status of tumor tissue. Furthermore, liquid biopsy enables close monitoring of the onset of secondary resistance to anti-EGFR therapy.
Colakoglu, Seyma; Bayhan, Turan; Tavil, Betül; Keskin, Ebru Yılmaz; Cakir, Volkan; Gümrük, Fatma; Çetin, Mualla; Aytaç, Selin; Berber, Ergul
2018-01-01
Background Factor XI (FXI) deficiency is an autosomal bleeding disease associated with genetic defects in the F11 gene which cause decreased FXI levels or impaired FXI function. An increasing number of mutations has been reported in the FXI mutation database, most of which affect the serine protease domain of the protein. FXI is a heterogeneous disorder associated with a variable bleeding tendency and a variety of causative F11 gene mutations. The molecular basis of FXI deficiency in 14 patients from ten unrelated families in Turkey was analysed to establish genotype-phenotype correlations and inheritance of the mutations in the patients’ families. Material and methods Fourteen index cases with a diagnosis of FXI deficiency and family members of these patients were enrolled into the study. The patients’ F11 genes were amplified by polymerase chain reaction and subjected to direct DNA sequencing analysis. The findings were analysed statistically using bivariate correlations, Pearson’s correlation coefficient and the nonparametric Mann-Whitney test. Results Direct DNA sequencing analysis of the F11 genes revealed that all of the 14 patients had a F11 gene mutation. Eight different mutations were identified in the apple 1, apple 2 or serine protease domains, except one which was a splice site mutation. Six of the mutations were recurrent. Two of the mutations were novel missense mutations, p.Val522Gly and p.Cys581Arg, within the catalytic domain. The p.Trp519Stop mutation was observed in two families whereas all the other mutations were specific to a single family. Discussion Identification of mutations confirmed the genetic heterogeneity of FXI deficiency. Most of the patients with mutations did not have any bleeding complications, whereas some had severe bleeding symptoms. Genetic screening for F11 gene mutations is important to decrease the mortality and morbidity rate associated with FXI deficiency, which can be life-threatening if bleeding occurs in tissues with high fibrinolytic activity. PMID:27723456
Baltruškevičienė, Edita; Mickys, Ugnius; Žvirblis, Tadas; Stulpinas, Rokas; Pipirienė Želvienė, Teresė; Aleknavičius, Eduardas
2016-01-01
Background. KRAS mutation is an important predictive and prognostic factor for patients receiving anti-EGFR therapy. An expanded KRAS, NRAS, BRAF, PIK3CA mutation analysis provides additional prognostic information, but its role in predicting bevacizumab efficacy is unclear. The aim of our study was to evaluate the incidence of KRAS, NRAS, BRAF and PIK3CA mutations in metastatic colorectal cancer patients receiving first line oxaliplatin based chemotherapy with or without bevacizumab and to evaluate their prognostic and predictive significance. Methods. 55 patients with the first-time diagnosed CRC receiving FOLFOX ± bevacizumab were involved in the study. Tumour blocks were tested for KRAS mutations in exons 2, 3 and 4, NRAS mutations in exons 2, 3 and 4, BRAF mutation in exon 15 and PIK3CA mutations in exons 9 and 20. The association between mutations and clinico-pathological factors, treatment outcomes and survival was analyzed. Results. KRAS mutations were detected in 67.3% of the patients, BRAF in 1.8%, PIK3CA in 5.5% and there were no NRAS mutations. A significant association between the high CA 19–9 level and KRAS mutation was detected (mean CA 19–9 levels were 276 and 87 kIU/l, respectively, p = 0.019). There was a significantly higher response rate in the KRAS, NRAS, BRAF and PIK3CA wild type cohort receiving bevacizumab compared to any gene mutant type (100 and 60%, respectively, p = 0.030). The univariate Cox regression analysis did not confirm KRAS and other tested mutations as prognostic factors for PFS or OS. Conclusions. Our study revealed higher KRAS and lower NRAS, BRAF and PIK3CA mutation rates in the Lithuanian population than those reported in the literature. KRAS mutation was associated with the high CA 19–9 level and mucinous histology type, but did not show any predictive or prognostic significance. The expanded KRAS, NRAS, BRAF and PIK3CA mutation analysis provided additional significant predictive information. PMID:28356789
Kawakami, Hiroshi; Uchiyama, Masaki; Maeda, Tatsuo; Tsunoda, Takahiko; Mitsuhashi, Yoshihiko; Tsuboi, Ryoji
2014-01-01
A 54-year-old Japanese woman had repetitive superficial skin peeling and ensuing erythematous changes in the sites since infancy. Her parents had a consanguineous marriage, and she was the only individual affected in her family tree. The erythematous changes seemed to worsen in the summer. Histologically, hyperkeratosis and splitting of the epidermis within the stratum corneum was noted, and electron microscopy revealed shedding of corneal cells in the horny layer and normal-looking corneodesmosomes. Gene analysis revealed a homozygous missense mutation at c.1358G>A in CDSN. Electron microscopic examination of the length and number of corneodesmosomes revealed statistically significant shortness and sparsity in the affected individual (mean ± SD 386.2 ± 149.5 nm) compared with that of an age- and site-matched control (406.6 ± 182.3 nm). We speculate that this size shrinkage of corneodesmosomes might be the result of a missense mutation of CDSN and that this could be one of the factors contributing to the pathological process of skin peeling. PMID:25473393
Kawakami, Hiroshi; Uchiyama, Masaki; Maeda, Tatsuo; Tsunoda, Takahiko; Mitsuhashi, Yoshihiko; Tsuboi, Ryoji
2014-09-01
A 54-year-old Japanese woman had repetitive superficial skin peeling and ensuing erythematous changes in the sites since infancy. Her parents had a consanguineous marriage, and she was the only individual affected in her family tree. The erythematous changes seemed to worsen in the summer. Histologically, hyperkeratosis and splitting of the epidermis within the stratum corneum was noted, and electron microscopy revealed shedding of corneal cells in the horny layer and normal-looking corneodesmosomes. Gene analysis revealed a homozygous missense mutation at c.1358G>A in CDSN. Electron microscopic examination of the length and number of corneodesmosomes revealed statistically significant shortness and sparsity in the affected individual (mean ± SD 386.2 ± 149.5 nm) compared with that of an age- and site-matched control (406.6 ± 182.3 nm). We speculate that this size shrinkage of corneodesmosomes might be the result of a missense mutation of CDSN and that this could be one of the factors contributing to the pathological process of skin peeling.
Low, Van Lun; Chen, Chee Dhang; Lim, Phaik Eem; Lee, Han Lim; Lim, Yvonne Ai Lian; Tan, Tiong Kai; Sofian-Azirun, Mohd
2013-12-01
Given that there is limited available information on the insensitive acetylcholinesterase in insect species in Malaysia, the present study aims to detect the presence of G119S mutation in the acetylcholinesterase gene of Culex quinquefasciatus from 14 residential areas across 13 states and a federal territory in Malaysia. The ace-1 sequence and PCR-RFLP test revealed the presence of glycine-serine ace-1 mutation in the wild populations of Cx. quinquefasciatus. Both direct sequencing and PCR-RFLP methods demonstrated similar results and revealed the presence of a heterozygous genotype at a very low frequency (18 out of 140 individuals), while a homozygous resistant genotype was not detected across any study site in Malaysia. In addition, statistical analysis also revealed that malathion resistance is associated with the frequency of ace-1(R) in Cx. quinquefasciatus populations. This study has demonstrated the first field-evolved instance of G119S mutation in Malaysian populations. Molecular identification of insensitive acetylcholinesterase provides significant insights into the evolution and adaptation of the Malaysian Cx. quinquefasciatus populations. © 2013 Society of Chemical Industry.
Ignacak, M; Starzyk, J; Dziatkowiak, H; Trzeciak, W H
2002-03-01
Molecular diagnostics of the LHR gene was conducted in a 5-year-old boy with clinical symptoms and hormonal profile typical of precocious puberty. His parents and 4 sisters were also diagnosed. Single-strand conformation polymorphism analysis under temperature gradient conditions (Multitemperature SSCP) of 3 overlapping fragments of exon 11 of LHR gene revealed a mutation in the fragment spanning nucleotides 1072 to 1804. This mutation was found in the patient, in his mother and in his 4 sisters, and was confirmed by digestion with the use of restriction enzyme Bbr Cl. Direct sequencing revealed a heterozygous T1193C transition in the DNA fragment of the patient and in one of the alleles of his mother's and sister's DNA. This mutation causes Met398Thr substitution in the second transmembrane helix and results in a constitutive activation of LH receptor. This is the second identical mutation detected in Poland and one of the 7 identified so far in the world population.
BSE Case Associated with Prion Protein Gene Mutation
Richt, Jürgen A.; Hall, S. Mark
2008-01-01
Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy (TSE) of cattle and was first detected in 1986 in the United Kingdom. It is the most likely cause of variant Creutzfeldt-Jakob disease (CJD) in humans. The origin of BSE remains an enigma. Here we report an H-type BSE case associated with the novel mutation E211K within the prion protein gene (Prnp). Sequence analysis revealed that the animal with H-type BSE was heterozygous at Prnp nucleotides 631 through 633. An identical pathogenic mutation at the homologous codon position (E200K) in the human Prnp has been described as the most common cause of genetic CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. A recent epidemiological study revealed that the K211 allele was not detected in 6062 cattle from commercial beef processing plants and 42 cattle breeds, indicating an extremely low prevalence of the E211K variant (less than 1 in 2000) in cattle. PMID:18787697
Vincristine-induced central neurotoxicity in a collie homozygous for the ABCB1Δ mutation.
Krugman, L; Bryan, J N; Mealey, K L; Chen, A
2012-03-01
A six-year-old, neutered, female collie was presented to an oncology specialty service after developing tetraparesis and self-mutilation that progressively worsened while receiving chemotherapy for lymphoma. Neurologic examination revealed ataxia, paresis and diminished conscious proprioception in all limbs with entire spinal reflexes. Magnetic resonance imaging of the brain and spinal cord was normal. Electromyography of the limbs ruled out a vincristine-induced peripheral neuropathy. Cerebrospinal fluid analysis and cerebrospinal fluid and serum testing for Neospora and Toxoplasma were normal. Results of MDR1 genotyping revealed that the dog was homozygous for the ABCB1-1Δ (MDR1) mutation. This clinical presentation strongly resembled the effects seen from inadvertent intrathecal administration of vincristine in humans. Dogs that are homozygous for the ABCB1-1Δ (MDR1) mutation should not receive standard dosages of chemotherapy drugs known to be eliminated by P-glycoprotein, the gene product of ABCB1. Testing for this mutation is strongly recommended before chemotherapy initiation for at-risk breeds. © 2011 British Small Animal Veterinary Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Yanhong; Wei Qiping; Zhou Xiangtian
2006-08-18
We report here the clinical, genetic, and molecular characterization of three Chinese families with maternally transmitted Leber's hereditary optic neuropathy (LHON). Clinical and genetic evaluations revealed the variable severity and age-of-onset in visual impairment in these families. In the affected matrilineal relatives, the loss of central vision is bilateral, the fellow eye becoming affected either simultaneously (45%) or sequentially (55%). The penetrances of vision loss in these pedigrees were 27%, 50%, and 60%, respectively. The age-at-onset of vision loss in these families was 14, 19, and 24 years, respectively. Furthermore, the ratios between affected male and female matrilineal relatives weremore » 1:1, 1:1.2, and 1:2, respectively. Mutational analysis of mitochondrial DNA revealed the presence of homoplasmic ND6 T14484C mutation, which has been associated with LHON. The incomplete penetrance and phenotypic variability implicate the involvement of nuclear modifier gene(s), environmental factor(s) or mitochondrial haplotype(s) in the phenotypic expression of the LHON-associated T14484C mutation in these Chinese pedigrees.« less
Yang, Jeong Hoon; Bae, Sung Jin; Park, Sanghui; Park, Hyun-Kyung; Jung, Hye Seung; Chung, Jae Hoon; Min, Yong-Ki; Lee, Myung-Shik; Kim, Kwang-Won; Lee, Moon-Kyu
2007-04-01
A 42-year old woman presented with headache, palpitation and facial flushing. Ultrasonograms and computed tomograms revealed tumors in both of the adrenal glands, anterior aspect of the inferior vena cava, and the right lobe of the thyroid gland. Fine needle aspiration biopsy of the thyroid nodule revealed papillary thyroid carcinoma. Serum calcitonin, CEA, intact PTH and calcium levels were within normal limits. Markedly elevated levels of urinary normetanephrine and vanillylmandelic acid, and the result of 131I-metaiodobenzylguanidine (131I-MIBG) scintigraphy indicated that both adrenal masses were pheochromocytoma. Bilateral adrenalectomy, paracaval mass removal and total thyroidectomy together with central lymph node dissection were performed. The final pathological diagnosis was bilateral adrenal pheochromocytoma, paraganglioma, papillary thyroid carcinoma and either parathyroid adenoma or hyperplasia. Analysis of the RET proto-oncogene mutation, von Hippel Lindau mutation, succinate dehydrogenase subunit B mutation, and succinate dehydrogenase subunit D mutation yielded negative results. The relationship of these lesions could not be determined. This is the first report of a combination of bilateral pheochromocytoma, abdominal paraganglioma, papillary thyroid carcinoma and either parathyroid adenoma or hyperplasia without hyperparathyroidism.
MELAS syndrome with mitochondrial tRNA(Leu(UUR)) gene mutation in a Chinese family.
Huang, C C; Chen, R S; Chen, C M; Wang, H S; Lee, C C; Pang, C Y; Hsu, H S; Lee, H C; Wei, Y H
1994-01-01
The clinical features of a patient in a Chinese family with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS syndrome) are reported. The study revealed that hearing and visual impairments and miscarriages may be early clinical presentations in MELAS. A heteroplasmic A to G transition in the tRNA(Leu(UUR)) gene was noted at the nucleotide pair 3243 in the mitochondrial DNA of muscle, blood, and hair follicles of the proband and his maternal relatives. Quantitative analysis of the mutated mitochondrial DNA revealed variable proportions in different tissues and subjects of maternal lineage in the family. Muscle tissue contained a higher proportion of the mutant mitochondria than other tissues examined. The function of the reproductive system of the proband seems to be impaired. In one clinically healthy sibling, the 3243rd point mutation was found in sperm mitochondrial DNA, although sperm motility was not affected. It seems that biochemical defects in mitochondrial respiration and oxidative phosphorylation are tissue specific expressions of the 3243rd point mutation in the mitochondrial DNA of the affected target tissues. Images PMID:8201329
Three molecular pathways model colorectal carcinogenesis in Lynch syndrome.
Ahadova, Aysel; Gallon, Richard; Gebert, Johannes; Ballhausen, Alexej; Endris, Volker; Kirchner, Martina; Stenzinger, Albrecht; Burn, John; von Knebel Doeberitz, Magnus; Bläker, Hendrik; Kloor, Matthias
2018-07-01
Lynch syndrome is caused by germline mutations of DNA mismatch repair (MMR) genes. MMR deficiency has long been regarded as a secondary event in the pathogenesis of Lynch syndrome colorectal cancers. Recently, this concept has been challenged by the discovery of MMR-deficient crypt foci in the normal mucosa. We aimed to reconstruct colorectal carcinogenesis in Lynch syndrome by collecting molecular and histology evidence from Lynch syndrome adenomas and carcinomas. We determined the frequency of MMR deficiency in adenomas from Lynch syndrome mutation carriers by immunohistochemistry and by systematic literature analysis. To trace back the pathways of pathogenesis, histological growth patterns and mutational signatures were analyzed in Lynch syndrome colorectal cancers. Literature and immunohistochemistry analysis demonstrated MMR deficiency in 491 (76.7%) out of 640 adenomas (95% CI: 73.3% to 79.8%) from Lynch syndrome mutation carriers. Histologically normal MMR-deficient crypts were found directly adjacent to dysplastic adenoma tissue, proving their role as tumor precursors in Lynch syndrome. Accordingly, mutation signature analysis in Lynch colorectal cancers revealed that KRAS and APC mutations commonly occur after the onset of MMR deficiency. Tumors lacking evidence of polypous growth frequently presented with CTNNB1 and TP53 mutations. Our findings demonstrate that Lynch syndrome colorectal cancers can develop through three pathways, with MMR deficiency commonly representing an early and possibly initiating event. This underlines that targeting MMR-deficient cells by chemoprevention or vaccines against MMR deficiency-induced frameshift peptide neoantigens holds promise for tumor prevention in Lynch syndrome. © 2018 UICC.
Full-length VP2 gene analysis of canine parvovirus reveals emergence of newer variants in India.
Nookala, Mangadevi; Mukhopadhyay, Hirak Kumar; Sivaprakasam, Amsaveni; Balasubramanian, Brindhalakshmi; Antony, Prabhakar Xavier; Thanislass, Jacob; Srinivas, Mouttou Vivek; Pillai, Raghavan Madhusoodanan
2016-12-01
The canine parvovirus (CPV) infection is a highly contagious and serious enteric disease of dogs with high fatality rate. The present study was taken up to characterize the full-length viral polypeptide 2 (VP2) gene of CPV of Indian origin along with the commercially available vaccines. The faecal samples from parvovirus suspected dogs were collected from various states of India for screening by PCR assay and 66.29% of samples were found positive. Six CPV-2a, three CPV-2b, and one CPV-2c types were identified by sequence analysis. Several unique and existing mutations have been noticed in CPV types analyzed indicating emergence of newer variants of CPV in India. The phylogenetic analysis revealed that all the field CPV types were grouped in different subclades within two main clades, but away from the commercial vaccine strains. CPV-2b and CPV-2c types with unique mutations were found to be establishing in India apart from the prevailing CPV-2a type. Mutations and the positive selection of the mutants were found to be the major mechanism of emergence and evolution of parvovirus. Therefore, the incorporation of local strain in the vaccine formulation may be considered for effective control of CPV infections in India.
Soheili, Fariborz; Jalili, Zahra; Rahbar, Mahtab; Khatooni, Zahed; Mashayekhi, Amir; Jafari, Hossein
2018-03-01
The mutations in GATA4 gene induce inherited atrial and ventricular septation defects, which is the most frequent forms of congenital heart defects (CHDs) constituting about half of all cases. We have performed High resolution melting (HRM) mutation scanning of GATA4 coding exons of nonsyndrome 100 patients as a case group including 39 atrial septal defects (ASD), 57 ventricular septal defects (VSD) and four patients with both above defects and 50 healthy individuals as a control group. Our samples are categorized according to their HRM graph. The genome sequencing has been done for 15 control samples and 25 samples of patients whose HRM analysis were similar to healthy subjects for each exon. The PolyPhen-2 and MUpro have been used to determine the causative possibility and structural stability prediction of GATA4 sequence variation. The HRM curve analysis exhibit that 21 patients and 3 normal samples have deviated curves for GATA4 coding exons. Sequencing analysis has revealed 12 nonsynonymous mutations while all of them resulted in stability structure of protein 10 of them are pathogenic and 2 of them are benign. Also we found two nucleotide deletions which one of them was novel and one new indel mutation resulting in frame shift mutation, and 4 synonymous variations or polymorphism in 6 of patients and 3 of normal individuals. Six or about 50% of these nonsynonymous mutations have not been previously reported. Our results show that there is a spectrum of GATA4 mutations resulting in septal defects. © 2018 Wiley Periodicals, Inc.
Valdez-Flores, Marco A; Vargas-Poussou, Rosa; Verkaart, Sjoerd; Tutakhel, Omar A Z; Valdez-Ortiz, Angel; Blanchard, Anne; Treard, Cyrielle; Hoenderop, Joost G J; Bindels, René J M; Jeleń, Sabina
2016-12-01
Gitelman syndrome (GS) is an autosomal recessive salt-wasting tubular disorder resulting from loss-of-function mutations in the thiazide-sensitive NaCl cotransporter (NCC). Functional analysis of these mutations has been limited to the use of Xenopus laevis oocytes. The aim of the present study was, therefore, to analyze the functional consequences of NCC mutations in a mammalian cell-based assay, followed by analysis of mutated NCC protein expression as well as glycosylation and phosphorylation profiles using human embryonic kidney (HEK) 293 cells. NCC activity was assessed with a novel assay based on thiazide-sensitive iodide uptake in HEK293 cells expressing wild-type or mutant NCC (N59I, R83W, I360T, C421Y, G463R, G731R, L859P, or R861C). All mutations caused a significantly lower NCC activity. Immunoblot analysis of the HEK293 cells revealed that 1) all NCC mutants have decreased NCC protein expression; 2) mutant N59I, R83W, I360T, C421Y, G463R, and L859P have decreased NCC abundance at the plasma membrane; 3) mutants C421Y and L859P display impaired NCC glycosylation; and 4) mutants N59I, R83W, C421Y, C731R, and L859P show affected NCC phosphorylation. In conclusion, we developed a mammalian cell-based assay in which NCC activity assessment together with a profiling of mutated protein processing aid our understanding of the pathogenic mechanism of the NCC mutations. Copyright © 2016 the American Physiological Society.
Lakhssassi, Naoufal; Colantonio, Vincent; Flowers, Nicholas D; Zhou, Zhou; Henry, Jason; Liu, Shiming; Meksem, Khalid
2017-07-01
Stearoyl-acyl carrier protein desaturase (SACPD-C) has been reported to control the accumulation of seed stearic acid; however, no study has previously reported its involvement in leaf stearic acid content and impact on leaf structure and morphology. A subset of an ethyl methanesulfonate mutagenized population of soybean ( Glycine max ) 'Forrest' was screened to identify mutants within the GmSACPD-C gene. Using a forward genetics approach, one nonsense and four missense Gmsacpd-c mutants were identified to have high levels of seed, nodule, and leaf stearic acid content. Homology modeling and in silico analysis of the GmSACPD-C enzyme revealed that most of these mutations were localized near or at conserved residues essential for diiron ion coordination. Soybeans carrying Gmsacpd-c mutations at conserved residues showed the highest stearic acid content, and these mutations were found to have deleterious effects on nodule development and function. Interestingly, mutations at nonconserved residues show an increase in stearic acid content yet retain healthy nodules. Thus, random mutagenesis and mutational analysis allows for the achievement of high seed stearic acid content with no associated negative agronomic characteristics. Additionally, expression analysis demonstrates that nodule leghemoglobin transcripts were significantly more abundant in soybeans with deleterious mutations at conserved residues of GmSACPD-C. Finally, we report that Gmsacpd-c mutations cause an increase in leaf stearic acid content and an alteration of leaf structure and morphology in addition to differences in nitrogen-fixing nodule structure. © 2017 American Society of Plant Biologists. All Rights Reserved.
Yagasaki, Hiroshi; Hamanoue, Satoshi; Oda, Tsukasa; Nakahata, Tatsutoshi; Asano, Shigetaka; Yamashita, Takayuki
2004-12-01
Fanconi anemia (FA) is a rare autosomal recessive disorder of hematopoiesis, with at least 11 complementation groups. FANCA, a gene for group A, accounts for the majority of FA patients. Previous studies of FANCA mutations revealed high allelic heterogeneity, frequent occurrence of large deletions, and interpopulation differences. However, systematic mutational analysis, including gene dosage assay to detect large deletions, has not been documented for Asian populations. A newly developed TaqMan quantitative PCR-based gene dosage assay, combined with sequencing of exons and cDNA fragments, allowed for detection of 48 mutant alleles of FANCA in 27 (77%) of 35 unrelated Japanese FA families with no detectable mutations in FANCC or FANCG. We identified 29 different mutations (21 nucleotide substitutions or small deletions/insertions and eight large deletions), at least 20 of which were novel. The FANCA mutational spectrum of the Japanese was different from that of other ethnic groups so far studied. This is the largest scale of mutation analysis of FANCA in the Japanese population. Characterization of these mutations provided new information regarding the mutagenesis mechanisms and structure-function relationship of FANCA. Specifically, our data suggest that diverse mechanisms including nonhomologous recombination as well as Alu-mediated homologous recombination are involved in the generation of large deletions in FANCA. Copyright 2004 Wiley-Liss, Inc.
Suganthalakshmi, Balasubbu; Shukla, Dhananjay; Rajendran, Anand; Kim, Ramasamy; Nallathambi, Jeyabalan
2007-01-01
Purpose X-linked juvenile retinoschisis (XLRS) is the leading cause of macular degeneration in males. This condition is caused by mutations in the RS1 gene and is, characterized by schisis within the retina. The purpose of this study was to identify the mutations in the RS1 gene associated with XLRS in an Indian cohort. Methods The coding region of RS1 was analyzed for mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and restriction fragment length polymorphism (RFLP) analysis in six unrelated subjects clinically diagnosed as having XLRS and in their available family members. Direct sequencing was performed for all samples that displayed an electrophoretic mobility shift in SSCP gel. Results Mutation analysis of RS1 gene revealed five mutations in exon 6 like c.574C>T, c.583A>G, c.608C>T, c.617G>A, and c.637C>T, respectively, among them four missense mutations, one nonsense mutation, and two novel sequence variations. These mutations were found in individuals who exhibited clinical features of bilateral foveal and peripheral retinoschisis consistent with XLRS. The mutations were absent in the 100 age matched control samples analyzed. Conclusions This is the first report of mutations in RS1 to be associated with XLRS in the Indian population. The identified genetic variations, phenotype and genotype correlations were consistent with other studies. Identification of the causative mutation in patients with XLRS is helpful in confirming the diagnosis and in counseling of family members. PMID:17515881
A deletion mutation in bovine SLC4A2 is associated with osteopetrosis in Red Angus cattle
2010-01-01
Background Osteopetrosis is a skeletal disorder of humans and animals characterized by the formation of overly dense bones, resulting from a deficiency in the number and/or function of bone-resorbing osteoclast cells. In cattle, osteopetrosis can either be induced during gestation by viral infection of the dam, or inherited as a recessive defect. Genetically affected calves are typically aborted late in gestation, display skull deformities and exhibit a marked reduction of osteoclasts. Although mutations in several genes are associated with osteopetrosis in humans and mice, the genetic basis of the cattle disorder was previously unknown. Results We have conducted a whole-genome association analysis to identify the mutation responsible for inherited osteopetrosis in Red Angus cattle. Analysis of >54,000 SNP genotypes for each of seven affected calves and nine control animals localized the defective gene to the telomeric end of bovine chromosome 4 (BTA4). Homozygosity analysis refined the interval to a 3.4-Mb region containing the SLC4A2 gene, encoding an anion exchanger protein necessary for proper osteoclast function. Examination of SLC4A2 from normal and affected animals revealed a ~2.8-kb deletion mutation in affected calves that encompasses exon 2 and nearly half of exon 3, predicted to prevent normal protein function. Analysis of RNA from a proven heterozygous individual confirmed the presence of transcripts lacking exons 2 and 3, in addition to normal transcripts. Genotyping of additional animals demonstrated complete concordance of the homozygous deletion genotype with the osteopetrosis phenotype. Histological examination of affected tissues revealed scarce, morphologically abnormal osteoclasts displaying evidence of apoptosis. Conclusions These results indicate that a deletion mutation within bovine SLC4A2 is associated with osteopetrosis in Red Angus cattle. Loss of SLC4A2 function appears to induce premature cell death, and likely results in cytoplasmic alkalinization of osteoclasts which, in turn, may disrupt acidification of resorption lacunae. PMID:20507629
Disruption of the APC gene by t(5;7) translocation in a Turcot family.
Sahnane, Nora; Bernasconi, Barbara; Carnevali, Ileana; Furlan, Daniela; Viel, Alessandra; Sessa, Fausto; Tibiletti, Maria Grazia
2016-03-01
Turcot syndrome (TS) refers to the combination of colorectal polyps and primary tumours of the central nervous system. TS is a heterogeneous genetic condition due to APC and/or mismatch repair germline mutations. When APC is involved the vast majority of mutations are truncating, but in approximately 20%-30% of patients with familial polyposis no germline mutation can be found. A 30-year-old Caucasian woman with a positive pedigree for TS was referred to our Genetic Counselling Service. She was negative for APC and MUTYH but showed a reciprocal balanced translocation t(5;7)(q22;p15) at chromosome analysis. FISH analysis using specific BAC probes demonstrated that 5q22 breakpoint disrupted the APC gene. Transcript analysis by MLPA and digital PCR revealed that the cytogenetic rearrangement involving the 3' end of the APC gene caused a defective expression of a truncated transcript. This result allowed cytogenetic analysis to be offered to all the other family members and segregation analysis clearly demonstrated that all the carriers were affected, whereas non-carriers did not have the polyposis. A cytogenetic approach permitted the identification of the mutation-causing disease in this family, and the segregation analysis together with the transcript study supported the pathogenetic role of this mutation. Karyotype analysis was used as a predictive test in all members of this family. This family suggests that clinically positive TS and FAP cases, which test negative with standard molecular analysis, could be easily and cost-effectively resolved by a classical and molecular cytogenetic approach. Copyright © 2015 Elsevier Inc. All rights reserved.
Khateb, Samer; Zelinger, Lina; Ben-Yosef, Tamar; Crystal-Shalit, Ornit; Gross, Menachem; Banin, Eyal; Sharon, Dror
2012-01-01
We used a combined approach of homozygosity mapping and whole exome sequencing (WES) to search for the genetic cause of autosomal recessive retinitis pigmentosa (arRP) in families of Yemenite Jewish origin. Homozygosity mapping of two arRP Yemenite Jewish families revealed a few homozygous regions. A subsequent WES analysis of the two index cases revealed a shared homozygous novel nucleotide deletion (c.1220delG) leading to a frameshift (p.Gly407Glufs*56) in an alternative exon (#15) of USH1C. Screening of additional Yemenite Jewish patients revealed a total of 16 homozygous RP patients (with a carrier frequency of 0.008 in controls). Funduscopic and electroretinography findings were within the spectrum of typical RP. While other USH1C mutations usually cause Usher type I (including RP, vestibular dysfunction and congenital deafness), audiometric screening of 10 patients who are homozygous for c.1220delG revealed that patients under 40 years of age had normal hearing while older patients showed mild to severe high tone sensorineural hearing loss. This is the first report of a mutation in a known USH1 gene that causes late onset rather than congenital sensorineural hearing loss. The c.1220delG mutation of USH1C accounts for 23% of RP among Yemenite Jewish patients in our cohort. PMID:23251578
2011-01-01
Background Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Methods Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. Results EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Conclusions Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series. PMID:21266046
Peraldo-Neia, Caterina; Migliardi, Giorgia; Mello-Grand, Maurizia; Montemurro, Filippo; Segir, Raffaella; Pignochino, Ymera; Cavalloni, Giuliana; Torchio, Bruno; Mosso, Luciano; Chiorino, Giovanna; Aglietta, Massimo
2011-01-25
Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series.
Grill, Sabine; Yahiaoui-Doktor, Maryam; Dukatz, Ricarda; Lammert, Jacqueline; Ullrich, Mirjam; Engel, Christoph; Pfeifer, Katharina; Basrai, Maryam; Siniatchkin, Michael; Schmidt, Thorsten; Weisser, Burkhard; Rhiem, Kerstin; Ditsch, Nina; Schmutzler, Rita; Bischoff, Stephan C; Halle, Martin; Kiechle, Marion
2017-12-01
The aim of this analysis in a pilot study population was to investigate whether we can verify seemingly harmful lifestyle factors such as nicotine and alcohol indulgence, obesity, and physical inactivity, as well as a low socioeconomic status for increased cancer prevalence in a cohort of BRCA 1 and 2 mutation carriers. The analysis data are derived from 68 participants of the lifestyle intervention study LIBRE-1, a randomized, prospective trial that aimed to test the feasibility of a lifestyle modification in BRCA 1 and 2 mutation carriers. At study entry, factors such as medical history, lifestyle behavior, and socioeconomic status were retrospectively documented by interview and the current BMI was determined by clinical examination. The baseline measurements were compared within the cohort, and presented alongside reference values for the German population. Study participants indicating a higher physical activity during their adolescence showed a significantly lower cancer prevalence (p = 0.019). A significant difference in cancer occurrence was observed in those who smoked prior to the disease, and those who did not smoke (p < 0.001). Diseased mutation carriers tended to have a lower BMI compared to non-diseased mutation carriers (p = 0.079), whereas non-diseased revealed a significantly higher physical activity level than diseased mutation carriers (p = 0.046). The present data in this small cohort of 68 mutation carriers suggest that smoking and low physical activity during adolescence are risk factors for developing breast cancer in women with BRCA1 or BRCA2 mutation. Further data of the ongoing LIBRE 2 study are necessary to confirm these findings in a larger cohort of 600 mutation carriers.
MtDNA mutations are a common cause of severe disease phenotypes in children with Leigh syndrome.
Naess, Karin; Freyer, Christoph; Bruhn, Helene; Wibom, Rolf; Malm, Gunilla; Nennesmo, Inger; von Döbeln, Ulrika; Larsson, Nils-Göran
2009-05-01
Leigh syndrome is a common clinical manifestation in children with mitochondrial disease and other types of inborn errors of metabolism. We characterised clinical symptoms, prognosis, respiratory chain function and performed extensive genetic analysis of 25 Swedish children suffering from Leigh syndrome with the aim to obtain insights into the molecular pathophysiology and to provide a rationale for genetic counselling. We reviewed the clinical history of all patients and used muscle biopsies in order to perform molecular, biochemical and genetic investigations, including sequencing the entire mitochondrial DNA (mtDNA), the mitochondrial DNA polymerase (POLGA) gene and the surfeit locus protein 1 (SURF1) gene. Respiratory chain enzyme activity measurements identified five patients with isolated complex I deficiency and five with combined enzyme deficiencies. No patient presented with isolated complex IV deficiency. Seven patients had a decreased ATP production rate. Extensive sequence analysis identified eight patients with pathogenic mtDNA mutations and one patient with mutations in POLGA. Mutations of mtDNA are a common cause of LS and mtDNA analysis should always be included in the diagnosis of LS patients, whereas SURF1 mutations are not a common cause of LS in Sweden. Unexpectedly, age of onset, clinical symptoms and prognosis did not reveal any clear differences in LS patients with mtDNA or nuclear DNA mutations.
Identifying mutations in Tunisian families with retinal dystrophy.
Habibi, Imen; Chebil, Ahmed; Falfoul, Yosra; Allaman-Pillet, Nathalie; Kort, Fedra; Schorderet, Daniel F; El Matri, Leila
2016-11-22
Retinal dystrophies (RD) are a rare genetic disorder with high genetic heterogeneity. This study aimed at identifying disease-causing variants in fifteen consanguineous Tunisian families. Full ophthalmic examination was performed. Index patients were subjected to IROme analysis or whole exome sequencing followed by homozygosity mapping. All detected variations were confirmed by direct Sanger sequencing. Mutation analysis in our patients revealed two compound heterozygous mutations p.(R91W);(V172D) in RPE65, and five novel homozygous mutations: p.R765C in CNGB1, p.H337R in PDE6B, splice site variant c.1129-2A > G and c.678_681delGAAG in FAM161A and c.1133 + 3_1133 + 6delAAGT in CERKL. The latter mutation impacts pre-mRNA splicing of CERKL. The other changes detected were six previously reported mutations in CNGB3 (p.R203*), ABCA4 (p.W782*), NR2E3 (p.R311Q), RPE65 (p.H182Y), PROM1 (c.1354dupT) and EYS (c.5928-2A > G). Segregation analysis in each family showed that all affected individuals were homozygotes and unaffected individuals were either heterozygote carriers or homozygous wild type allele. These results confirm the involvement of a large number of genes in RD in the Tunisian population.
Zeng, Binghui; Xiao, Xue; Li, Sijie; Lu, Hui; Lu, Jiaxuan; Zhu, Ling; Yu, Dongsheng; Zhao, Wei
2016-09-19
Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of the teeth, hair, and sweat glands. Ectodysplasin A (EDA), Ectodysplasin A receptor (EDAR), and EDAR-associated death domain (EDARADD) are candidate genes for HED, but the relationship between WNT10A and HED has not yet been validated. In this study, we included patients who presented at least two of the three ectodermal dysplasia features. The four genes were analyzed in seven HED patients by PCR and Sanger sequencing. Five EDA and one EDAR heterozygous mutations were identified in families 1-6. Two WNT10A heterozygous mutations were identified in family 7 as a compound heterozygote. c.662G>A (p.Gly221Asp) in EDA and c.354T>G (p.Tyr118*) in WNT10A are novel mutations. Bioinformatics analyses results confirmed the pathogenicity of the two novel mutations. In family 7, we also identified two single-nucleotide polymorphisms (SNPs) that were predicted to affect the splicing of EDAR. Analysis of the patient's total RNA revealed normal splicing of EDAR. This ascertained that the compound heterozygous WNT10A mutations are the genetic defects that led to the onset of HED. Our data revealed the genetic basis of seven HED patients and expended the mutational spectrum. Interestingly, we confirmed WNT10A as a candidate gene of HED and we propose WNT10A to be tested in EDA-negative HED patients.
Taylor, Jared F.; Khattab, Omar S.; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E.; Wang, Ping H.
2015-01-01
Deciphering the multitude of epigenomic and genomic factors that influence the mutation rate is an area of great interest in modern biology. Recently, chromatin has been shown to play a part in this process. To elucidate this relationship further, we integrated our own ultra-deep sequenced human nucleosomal DNA data set with a host of published human genomic and cancer genomic data sets. Our results revealed, that differences in nucleosome occupancy are associated with changes in base-specific mutation rates. Increasing nucleosome occupancy is associated with an increasing transition to transversion ratio and an increased germline mutation rate within the human genome. Additionally, cancer single nucleotide variants and microindels are enriched within nucleosomes and both the coding and non-coding cancer mutation rate increases with increasing nucleosome occupancy. There is an enrichment of cancer indels at the theoretical start (74 bp) and end (115 bp) of linker DNA between two nucleosomes. We then hypothesized that increasing nucleosome occupancy decreases access to DNA by DNA repair machinery and could account for the increasing mutation rate. Such a relationship should not exist in DNA repair knockouts, and we thus repeated our analysis in DNA repair machinery knockouts to test our hypothesis. Indeed, our results revealed no correlation between increasing nucleosome occupancy and increasing mutation rate in DNA repair knockouts. Our findings emphasize the linkage of the genome and epigenome through the nucleosome whose properties can affect genome evolution and genetic aberrations such as cancer. PMID:26308346
Chung, Wendy; Spyres, Meghan; Pass, Robert H.; Silver, Eric; Sampson, Kevin J.; Kass, Robert S.
2007-01-01
Background SCN5A encodes the α-subunit (Nav1.5) of the principle Na+ channel in the human heart. Genetic lesions in SCN5A can cause congenital long QT syndrome (LQTS) variant 3 (LQT-3) in adults by disrupting inactivation of the Nav1.5 channel. Pharmacological targeting of mutation-altered Na+ channels has proven promising in developing a gene-specific therapeutic strategy to manage specifically this LQTS variant. SCN5A mutations that cause similar channel dysfunction may also contribute to sudden infant death syndrome (SIDS) and other arrhythmias in newborns, but the prevalence, impact, and therapeutic management of SCN5A mutations may be distinct in infants compared with adults. Methods and Results Here, in a multidisciplinary approach, we report a de novo SCN5A mutation (F1473C) discovered in a newborn presenting with extreme QT prolongation and differential responses to the Na+ channel blockers flecainide and mexiletine. Our goal was to determine the Na+ channel phenotype caused by this severe mutation and to determine whether distinct effects of different Na+ channel blockers on mutant channel activity provide a mechanistic understanding of the distinct therapeutic responsiveness of the mutation carrier. Sequence analysis of the proband revealed the novel missense SCN5A mutation (F1473C) and a common variant in KCNH2 (K897T). Patch clamp analysis of HEK 293 cells transiently transfected with wild-type or mutant Na+ channels revealed significant changes in channel biophysics, all contributing to the proband's phenotype as predicted by in silico modeling. Furthermore, subtle differences in drug action were detected in correcting mutant channel activity that, together with both the known genetic background and age of the patient, contribute to the distinct therapeutic responses observed clinically. Significance The results of our study provide further evidence of the grave vulnerability of newborns to Na+ channel defects and suggest that both genetic background and age are particularly important in developing a mutation-specific therapeutic personalized approach to manage disorders in the young. PMID:18060054
Tipping, A J; Pearson, T; Morgan, N V; Gibson, R A; Kuyt, L P; Havenga, C; Gluckman, E; Joenje, H; de Ravel, T; Jansen, S; Mathew, C G
2001-05-08
Fanconi anemia (FA) is a rare, genetically heterogeneous autosomal recessive disorder associated with progressive aplastic anemia, congenital abnormalities, and cancer. FA has a very high incidence in the Afrikaner population of South Africa, possibly due to a founder effect. Previously we observed allelic association between polymorphic markers flanking the FA group A gene (FANCA) and disease chromosomes in Afrikaners. We genotyped 26 FA families with microsatellite and single nucleotide polymorphic markers and detected five FANCA haplotypes. Mutation scanning of the FANCA gene revealed association of these haplotypes with four different mutations. The most common was an intragenic deletion of exons 12-31, accounting for 60% of FA chromosomes in 46 unrelated Afrikaner FA patients, while two other mutations accounted for an additional 20%. Screening for these mutations in the European populations ancestral to the Afrikaners detected one patient from the Western Ruhr region of Germany who was heterozygous for the major deletion. The mutation was associated with the same unique FANCA haplotype as in Afrikaner patients. Genealogical investigation of 12 Afrikaner families with FA revealed that all were descended from a French Huguenot couple who arrived at the Cape on June 5, 1688, whereas mutation analysis showed that the carriers of the major mutation were descendants of this same couple. The molecular and genealogical evidence is consistent with transmission of the major mutation to Western Germany and the Cape near the end of the 17th century, confirming the existence of a founder effect for FA in South Africa.
Tipping, A. J.; Pearson, T.; Morgan, N. V.; Gibson, R. A.; Kuyt, L. P.; Havenga, C.; Gluckman, E.; Joenje, H.; de Ravel, T.; Jansen, S.; Mathew, C. G.
2001-01-01
Fanconi anemia (FA) is a rare, genetically heterogeneous autosomal recessive disorder associated with progressive aplastic anemia, congenital abnormalities, and cancer. FA has a very high incidence in the Afrikaner population of South Africa, possibly due to a founder effect. Previously we observed allelic association between polymorphic markers flanking the FA group A gene (FANCA) and disease chromosomes in Afrikaners. We genotyped 26 FA families with microsatellite and single nucleotide polymorphic markers and detected five FANCA haplotypes. Mutation scanning of the FANCA gene revealed association of these haplotypes with four different mutations. The most common was an intragenic deletion of exons 12–31, accounting for 60% of FA chromosomes in 46 unrelated Afrikaner FA patients, while two other mutations accounted for an additional 20%. Screening for these mutations in the European populations ancestral to the Afrikaners detected one patient from the Western Ruhr region of Germany who was heterozygous for the major deletion. The mutation was associated with the same unique FANCA haplotype as in Afrikaner patients. Genealogical investigation of 12 Afrikaner families with FA revealed that all were descended from a French Huguenot couple who arrived at the Cape on June 5, 1688, whereas mutation analysis showed that the carriers of the major mutation were descendants of this same couple. The molecular and genealogical evidence is consistent with transmission of the major mutation to Western Germany and the Cape near the end of the 17th century, confirming the existence of a founder effect for FA in South Africa. PMID:11344308
TRPC6 G757D Loss-of-Function Mutation Associates with FSGS
Riehle, Marc; Büscher, Anja K.; Gohlke, Björn-Oliver; Kaßmann, Mario; Kolatsi-Joannou, Maria; Bräsen, Jan H.; Nagel, Mato; Becker, Jan U.; Winyard, Paul; Hoyer, Peter F.; Preissner, Robert; Krautwurst, Dietmar; Gollasch, Maik
2016-01-01
FSGS is a CKD with heavy proteinuria that eventually progresses to ESRD. Hereditary forms of FSGS have been linked to mutations in the transient receptor potential cation channel, subfamily C, member 6 (TRPC6) gene encoding a nonselective cation channel. Most of these TRPC6 mutations cause a gain-of-function phenotype, leading to calcium–triggered podocyte cell death, but the underlying molecular mechanisms are unclear. We studied the molecular effect of disease-related mutations using tridimensional in silico modeling of tetrameric TRPC6. Our results indicated that G757 is localized in a domain forming a TRPC6-TRPC6 interface and predicted that the amino acid exchange G757D causes local steric hindrance and disruption of the channel complex. Notably, functional characterization of model interface domain mutants suggested a loss-of-function phenotype. We then characterized 19 human FSGS–related TRPC6 mutations, the majority of which caused gain-of-function mutations. However, five mutations (N125S, L395A, G757D, L780P, and R895L) caused a loss-of-function phenotype. Coexpression of wild-type TRPC6 and TRPC6 G757D, mimicking heterozygosity observed in patients, revealed a dominant negative effect of TRPC6 G757D. Our comprehensive analysis of human disease–causing TRPC6 mutations reveals loss of TRPC6 function as an additional concept of hereditary FSGS and provides molecular insights into the mechanism responsible for the loss-of-function phenotype of TRPC6 G757D in humans. PMID:26892346
Ocular phenotypes associated with two mutations (R121W, C126X) in the Norrie disease gene.
Kellner, U; Fuchs, S; Bornfeld, N; Foerster, M H; Gal, A
1996-06-01
To describe the ocular phenotypes associated with 2 mutations in the Norrie disease gene including a manifesting carrier. Ophthalmological examinations were performed in 2 affected males and one manifesting carrier. Genomic DNA was analyzed by direct sequencing of the Norrie disease gene. Family I: A 29-year-old male had the right eye enucleated at the age of 3 years. His left eye showed severe temporal dragging of the retina and central scars. Visual acuity was 20/300. DNA analysis revealed a C-to-T transition of the first nucleotide in codon 121 predicting the replacement of arginine-121 by tryptophan (R121W). Both the mother and maternal grandmother carry the same mutation in heterozygous form. Family 2: A 3-month-old boy presented with severe temporal dragging of the retina on both eyes and subsequently developed retinal detachment. Visual acuity was limited to light perception. His mother's left eye was amaurotic and phthitic. Her right eye showed severe retinal dragging, visual acuity was reduced to 20/60. DNA analysis revealed a T-to-A transversion of the third nucleotide in codon 126 creating a stop codon (C126X). The mother and maternal grandmother were carriers. Mutations in the Norrie disease gene can lead to retinal malformations of variable severity both in hemizygous males and manifesting carriers.
Fizikova, A Iu; Padkina, M V; Sambuk, E V
2009-06-01
The cyclin-dependent protein kinase Pho85 is involved in the regulation of phosphate metabolism in yeast Saccharomyces cerevisiae. Mutations in the PH085 gene lead to constitutive synthesis of Pho5 acidic phosphatase, a delay in cell growth on media containing nonfermentable carbon sources, and other pleiotropic effects. In this work, it was shown that the accumulation of respiratory incompetent cells occurs with high frequency in strains carrying pho85 mutations as early as during the first cell divisions, and the number of these cells at the early logarithmic growth phase of the culture promptly reaches virtually 100%. Cytological analysis revealed a high accumulation rate of [rho(0)] cells the background of gene pho85 that may be related to disturbances in the distribution of mitochondrial nucleoids rather than to changes in morphology of mitochondria and a delay in their transport into the bud. Genetic analysis revealed that the appearing secondary mutations pho4, pho81, pho84, and pho87 stabilize nucleoids and hamper the loss of mitochondrial DNA caused by pho85. These results provide evidence for the influence of intracellular phosphate concentration on the inheritance of mitochondrial nucleoids, but it is fully probable that the occurrence of mutation pho4 in the background of gene pho85 may change the expression level of other genes required for the stabilization of mitochondrial functions.
Ha, Nguyen Thanh; Chau, Hoang Minh; Cung, Le Xuan; Thanh, Ton Kim; Fujiki, Keiko; Murakami, Akira; Hiratsuka, Yoshimune; Hasegawa, Nobuko; Kanai, Atsushi
2003-08-01
To report the clinical and genetic findings of Vietnamese families affected with macular corneal dystrophy (MCD) in 2 generations. Two families, including 7 patients and 3 unaffected members, were examined clinically. Blood samples were collected. Fifty normal Vietnamese individuals were used as controls. Genomic DNA was extracted from leukocytes. Analysis of the carbohydrate sulfotransferase (CHST6) gene was performed using polymerase chain reaction and direct sequencing. The typical form of MCD was recognized in family B, in which sequencing of CHST6 gene revealed an nt 1067-1068ins(GGCCGTG) mutation (frameshift after 125V) homozygously in MCD patients and heterozygously in the unaffected members. Family N also showed clinical features of MCD, moderate in the mother but severe in the affected son. Sequencing revealed a single heterozygous Arg211Gln in the mother, compound heterozygous Arg211Gln+ Gln82Stop in the affected son, and heterozygous Arg211Gln mutation in the unaffected members. The identified mutations in these pedigrees were excluded from normal controls. The novel frameshift and compound heterozygous mutations might be responsible for MCD in the families studied. The phenotypic variation between affected parents and offspring was unclear. In family N, severe MCD phenotype seen in the affected son may be due the fact that he had an early stop codon mutation (Gln82Stop).
Fan, Weiwei; Lin, Chun Shi; Potluri, Prasanth; Procaccio, Vincent; Wallace, Douglas C.
2012-01-01
The role of mitochondrial DNA (mtDNA) mutations and mtDNA recombination in cancer cell proliferation and developmental biology remains controversial. While analyzing the mtDNAs of several mouse L cell lines, we discovered that every cell line harbored multiple mtDNA mutants. These included four missense mutations, two frameshift mutations, and one tRNA homopolymer expansion. The LA9 cell lines lacked wild-type mtDNAs but harbored a heteroplasmic mixture of mtDNAs, each with a different combination of these variants. We isolated each of the mtDNAs in a separate cybrid cell line. This permitted determination of the linkage phase of each mtDNA and its physiological characteristics. All of the polypeptide mutations inhibited their oxidative phosphorylation (OXPHOS) complexes. However, they also increased mitochondrial reactive oxygen species (ROS) production, and the level of ROS production was proportional to the cellular proliferation rate. By comparing the mtDNA haplotypes of the different cell lines, we were able to reconstruct the mtDNA mutational history of the L–L929 cell line. This revealed that every heteroplasmic L-cell line harbored a mtDNA that had been generated by intracellular mtDNA homologous recombination. Therefore, deleterious mtDNA mutations that increase ROS production can provide a proliferative advantage to cancer or stem cells, and optimal combinations of mutant loci can be generated through recombination. PMID:22345519
Two novel disease-causing mutations in the CLRN1 gene in patients with Usher syndrome type 3
García-García, Gema; Aparisi, María J.; Rodrigo, Regina; Sequedo, María D.; Espinós, Carmen; Rosell, Jordi; Olea, José L.; Mendívil, M. Paz; Ramos-Arroyo, María A; Ayuso, Carmen; Jaijo, Teresa; Aller, Elena
2012-01-01
Purpose To identify the genetic defect in Spanish families with Usher syndrome (USH) and probable involvement of the CLRN1 gene. Methods DNA samples of the affected members of our cohort of USH families were tested using an USH genotyping array, and/or genotyped with polymorphic markers specific for the USH3A locus. Based on these previous analyses and clinical findings, CLRN1 was directly sequenced in 17 patients susceptible to carrying mutations in this gene. Results Microarray analysis revealed the previously reported mutation p.Y63X in two unrelated patients, one of them homozygous for the mutation. After CLRN1 sequencing, we found two novel mutations, p.R207X and p.I168N. Both novel mutations segregated with the phenotype. Conclusions To date, 18 mutations in CLRN1 have been reported. In this work, we report two novel mutations and a third one previously identified in the Spanish USH sample. The prevalence of CLRN1 among our patients with USH is low. PMID:23304067
Scherer, Florian; Kurtz, David M; Newman, Aaron M; Stehr, Henning; Craig, Alexander F M; Esfahani, Mohammad Shahrokh; Lovejoy, Alexander F; Chabon, Jacob J; Klass, Daniel M; Liu, Chih Long; Zhou, Li; Glover, Cynthia; Visser, Brendan C; Poultsides, George A; Advani, Ranjana H; Maeda, Lauren S; Gupta, Neel K; Levy, Ronald; Ohgami, Robert S; Kunder, Christian A; Diehn, Maximilian; Alizadeh, Ash A
2016-11-09
Patients with diffuse large B cell lymphoma (DLBCL) exhibit marked diversity in tumor behavior and outcomes, yet the identification of poor-risk groups remains challenging. In addition, the biology underlying these differences is incompletely understood. We hypothesized that characterization of mutational heterogeneity and genomic evolution using circulating tumor DNA (ctDNA) profiling could reveal molecular determinants of adverse outcomes. To address this hypothesis, we applied cancer personalized profiling by deep sequencing (CAPP-Seq) analysis to tumor biopsies and cell-free DNA samples from 92 lymphoma patients and 24 healthy subjects. At diagnosis, the amount of ctDNA was found to strongly correlate with clinical indices and was independently predictive of patient outcomes. We demonstrate that ctDNA genotyping can classify transcriptionally defined tumor subtypes, including DLBCL cell of origin, directly from plasma. By simultaneously tracking multiple somatic mutations in ctDNA, our approach outperformed immunoglobulin sequencing and radiographic imaging for the detection of minimal residual disease and facilitated noninvasive identification of emergent resistance mutations to targeted therapies. In addition, we identified distinct patterns of clonal evolution distinguishing indolent follicular lymphomas from those that transformed into DLBCL, allowing for potential noninvasive prediction of histological transformation. Collectively, our results demonstrate that ctDNA analysis reveals biological factors that underlie lymphoma clinical outcomes and could facilitate individualized therapy. Copyright © 2016, American Association for the Advancement of Science.
Retroviral expression screening of oncogenes in natural killer cell leukemia.
Choi, Young Lim; Moriuchi, Ryozo; Osawa, Mitsujiro; Iwama, Atsushi; Makishima, Hideki; Wada, Tomoaki; Kisanuki, Hiroyuki; Kaneda, Ruri; Ota, Jun; Koinuma, Koji; Ishikawa, Madoka; Takada, Shuji; Yamashita, Yoshihiro; Oshimi, Kazuo; Mano, Hiroyuki
2005-08-01
Aggressive natural killer cell leukemia (ANKL) is an intractable malignancy that is characterized by the outgrowth of NK cells. To identify transforming genes in ANKL, we constructed a retroviral cDNA expression library from an ANKL cell line KHYG-1. Infection of 3T3 cells with recombinant retroviruses yielded 33 transformed foci. Nucleotide sequencing of the DNA inserts recovered from these foci revealed that 31 of them encoded KRAS2 with a glycine-to-alanine mutation at codon 12. Mutation-specific PCR analysis indicated that the KRAS mutation was present only in KHYG-1 cells, not in another ANKL cell line or in clinical specimens (n=8).
Genomic analysis and clinical management of adolescent cutaneous melanoma.
Rabbie, Roy; Rashid, Mamunur; Arance, Ana M; Sánchez, Marcelo; Tell-Marti, Gemma; Potrony, Miriam; Conill, Carles; van Doorn, Remco; Dentro, Stefan; Gruis, Nelleke A; Corrie, Pippa; Iyer, Vivek; Robles-Espinoza, Carla Daniela; Puig-Butille, Joan A; Puig, Susana; Adams, David J
2017-05-01
Melanoma in young children is rare; however, its incidence in adolescents and young adults is rising. We describe the clinical course of a 15-year-old female diagnosed with AJCC stage IB non-ulcerated primary melanoma, who died from metastatic disease 4 years after diagnosis despite three lines of modern systemic therapy. We also present the complete genomic profile of her tumour and compare this to a further series of 13 adolescent melanomas and 275 adult cutaneous melanomas. A somatic BRAF V 600E mutation and a high mutational load equivalent to that found in adult melanoma and composed primarily of C>T mutations were observed. A germline genomic analysis alongside a series of 23 children and adolescents with melanoma revealed no mutations in known germline melanoma-predisposing genes. Adolescent melanomas appear to have genomes that are as complex as those arising in adulthood and their clinical course can, as with adults, be unpredictable. © 2017 The Authors. Pigment Cell & Melanoma Research published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomatsu, Shunji; Fukuda, Seiji; Rezvi, Maruf
1995-09-01
Mucopolysaccharidosis IVA is an autosomal recessive lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). The recent isolation and characterization of cDNA and genomic sequences encoding GALNS has facilitated identification of the molecular lesions that cause MPS IVA. We identified a common missense mutation among Caucasian MPS IVA patients. The mutation was originally detected by SSCP, and successive sequencing revealed an A{yields}T transversion at nt 393. This substitution altered the isoleucine at position 113 to phenylalanine (I113F) in the 622 amino acid GALNS protein and was associated with a severe phenotype in a homozygote. Compound heterogzygotes with onemore » I113F-allele mutation have a wide range of clinical phenotypes. Transfection experiments in GALNS-deficient fibroblasts revealed that the mutation drastically reduces the enzyme activity of GALNS. Allele-specific oligonucleotide or SSCP analysis indicated that this mutation accounted for 22.5% (9/40) of unrelated MPS IVA chromosomes from 23 Caucasian patients, including 6 consanguineous cases. Of interest, the I1e 113{yields}Phe substitution occurred in only Caucasian MPS IVA patients and in none of the GALNS alleles of 20 Japanese patients. These findings identify a frequent missense mutation among MPS IVA patients of Caucasian ancestry that results in severe MPS IVA when homoallelic, and will facilitate molecular diagnosis of most such patients and identification of heterozygous carriers. In addition to this common mutation, 10 different point mutations and 2 small deletions were detected, suggesting allelic heterogeneity in GALNS gene. 32 refs., 2 figs., 3 tabs.« less
Jamsheer, Aleksander; Olech, Ewelina M; Kozłowski, Kazimierz; Niedziela, Marek; Sowińska-Seidler, Anna; Obara-Moszyńska, Monika; Latos-Bieleńska, Anna; Karczewski, Marek; Zemojtel, Tomasz
2016-07-01
Desbuquois dysplasia type 2 (DBQD2) is a rare recessively inherited skeletal genetic disorder characterized by severe prenatal and postnatal growth retardation, generalized joint laxity with dislocation of large joints and facial dysmorphism. The condition was recently described to result from autosomal recessive mutations in XYLT1, encoding the enzyme xylosyltransferase-1. In this paper, we report on a Polish patient with DBQD2 who presented with severe short stature of prenatal onset, joint laxity, psychomotor retardation and multiple radiological abnormalities including short metacarpals, advanced bone age and exaggerated trochanters. Endocrinological examinations revealed that sleep-induced growth hormone (GH) release and GH peak in clonidine- and glucagon-induced provocative tests as well as insulin-like growth factor 1 (IGF-1) and IGF-binding protein-3 levels were all markedly decreased, confirming deficiency of GH secretion. Bone age, unlikely to GH deficiency, was significantly advanced. To establish the diagnosis at a molecular level, we performed whole-exome sequencing and bioinformatic analysis in the index patient, which revealed compound heterozygous XYLT1 mutations: c.595C>T(p.Gln199*) and c.1651C>T(p.Arg551Cys), both of which are novel. Sanger sequencing showed that the former mutation was inherited from the healthy mother, whereas the latter one most probably occurred de novo. Our study describes the first case of DBQD2 resulting from compound heterozygous XYLT1 mutation, expands the mutational spectrum of the disease and provides evidence that the severe growth retardation and microsomia observed in DBQD2 patients may result not only from the skeletal dysplasia itself but also from GH and IGF-1 deficiency.
Yu, Fang; Cai, Wenping; Jiang, Beizhan; Xu, Laijun; Liu, Shangfeng; Zhao, Shouliang
2018-01-01
Supernumerary teeth are teeth that are present in addition to normal teeth. Although several hypotheses and some molecular signalling pathways explain the formation of supernumerary teeth, but their exact disease pathogenesis is unknown. To study the molecular mechanisms of supernumerary tooth-related syndrome (Gardner syndrome), a deeper understanding of the aetiology of supernumerary teeth and the associated syndrome is needed, with the goal of inhibiting disease inheritance via prenatal diagnosis. We recruited a Chinese family with Gardner syndrome. Haematoxylin and eosin staining of supernumerary teeth and colonic polyp lesion biopsies revealed that these patients exhibited significant pathological characteristics. APC gene mutations were detected by PCR and direct sequencing. We revealed the pathological pathway involved in human supernumerary tooth development and the mouse tooth germ development expression profile by RNA sequencing (RNA-seq). Sequencing analysis revealed that an APC gene mutation in exon 15, namely 4292-4293-Del GA, caused Gardner syndrome in this family. This mutation not only initiated the various manifestations typical of Gardner syndrome but also resulted in odontoma and supernumerary teeth in this case. Furthermore, RNA-seq analysis of human supernumerary teeth suggests that the APC gene is the key gene involved in the development of supernumerary teeth in humans. The mouse tooth germ development expression profile shows that the APC gene plays an important role in tooth germ development. We identified a new mutation in the APC gene that results in supernumerary teeth in association with Gardner syndrome. This information may shed light on the molecular pathogenesis of supernumerary teeth. Gene-based diagnosis and gene therapy for supernumerary teeth may become available in the future, and our study provides a high-resolution reference for treating other syndromes associated with supernumerary teeth. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Kishimoto, Rui; Oki, Kenji; Yoneda, Masayasu; Gomez-Sanchez, Celso E.; Ohno, Haruya; Kobuke, Kazuhiro; Itcho, Kiyotaka; Kohno, Nobuoki
2016-01-01
Abstract We aimed to detect novel genes associated with G protein-coupled receptors (GPCRs) in aldosterone-producing adenoma (APA) and elucidate the mechanisms underlying aldosterone production. Microarray analysis targeting GPCR-associated genes was conducted using APA without known mutations (APA-WT) samples (n = 3) and APA with the KCNJ5 mutation (APA-KCNJ5; n = 3). Since gonadotropin-releasing hormone receptor (GNRHR) was the highest expression in APA-WT by microarray analysis, we investigated the effect of gonadotropin-releasing hormone (GnRH) stimulation on aldosterone production. The quantitative polymerase chain reaction assay results revealed higher GNRHR expression levels in APA-WT samples those in APA-KCNJ5 samples (P < 0.05). LHCGR levels were also significantly elevated in APA-WT samples, and there was a significant and positive correlation between GNRHR and LHCGR expression in all APA samples (r = 0.476, P < 0.05). Patients with APA-WT (n = 9), which showed higher GNRHR and LHCGR levels, had significantly higher GnRH-stimulated aldosterone response than those with APA-KCNJ5 (n = 13) (P < 0.05). Multiple regression analysis revealed that the presence of the KCNJ5 mutation was linked to GNRHR mRNA expression (β = 0.94 and P < 0.01). HAC15 cells with KCNJ5 gene carrying T158A mutation exhibited a significantly lower GNRHR expression than that in control cells (P < 0.05). We clarified increased expression of GNRHR and LHCGR in APA-WT, and the molecular analysis including the receptor expression associated with clinical findings of GnRH stimulation. PMID:27196470
Linville, Jessica L.; Rodriguez, Miguel; Land, Miriam; Syed, Mustafa H.; Engle, Nancy L.; Tschaplinski, Timothy J.; Mielenz, Jonathan R.; Cox, Chris D.
2013-01-01
Background An industrially robust microorganism that can efficiently degrade and convert lignocellulosic biomass into ethanol and next-generation fuels is required to economically produce future sustainable liquid transportation fuels. The anaerobic, thermophilic, cellulolytic bacterium Clostridium thermocellum is a candidate microorganism for such conversions but it, like many bacteria, is sensitive to potential toxic inhibitors developed in the liquid hydrolysate produced during biomass processing. Microbial processes leading to tolerance of these inhibitory compounds found in the pretreated biomass hydrolysate are likely complex and involve multiple genes. Methodology/Principal Findings In this study, we developed a 17.5% v/v Populus hydrolysate tolerant mutant strain of C. thermocellum by directed evolution. The genome of the wild type strain, six intermediate population samples and seven single colony isolates were sequenced to elucidate the mechanism of tolerance. Analysis of the 224 putative mutations revealed 73 high confidence mutations. A longitudinal analysis of the intermediate population samples, a pan-genomic analysis of the isolates, and a hotspot analysis revealed 24 core genes common to all seven isolates and 8 hotspots. Genetic mutations were matched with the observed phenotype through comparison of RNA expression levels during fermentation by the wild type strain and mutant isolate 6 in various concentrations of Populus hydrolysate (0%, 10%, and 17.5% v/v). Conclusion/Significance The findings suggest that there are multiple mutations responsible for the Populus hydrolysate tolerant phenotype resulting in several simultaneous mechanisms of action, including increases in cellular repair, and altered energy metabolism. To date, this study provides the most comprehensive elucidation of the mechanism of tolerance to a pretreated biomass hydrolysate by C. thermocellum. These findings make important contributions to the development of industrially robust strains of consolidated bioprocessing microorganisms. PMID:24205326
Lah, Melissa; Niranjan, Tejasvi; Srikanth, Sujata; Holloway, Lynda; Schwartz, Charles E; Wang, Tao; Weaver, David D
2016-04-01
We further evaluated a previously reported family with an apparently undescribed X-linked syndrome involving joint contractures, keloids, an increased optic cup-to-disc ratio, and renal stones to elucidate the genetic cause. To do this, we obtained medical histories and performed physical examination on 14 individuals in the family, five of whom are affected males and three are obligate carrier females. Linkage analysis was performed on all but one individual and chromosome X-exome sequencing was done on two affected males. The analysis localized the putative gene to Xq27-qter and chromosome X-exome sequencing revealed a mutation in exon 28 (c.4726G>A) of the filamin A (FLNA) gene, predicting that a conserved glycine had been replaced by arginine at amino acid 1576 (p.G1576R). Segregation analysis demonstrated that all known carrier females tested were heterozygous (G/A), all affected males were hemizygous for the mutation (A allele) and all normal males were hemizygous for the normal G allele. The data and the bioinformatic analysis indicate that the G1576R mutation in the FLNA gene is very likely pathogenic in this family. The syndrome affecting the family shares phenotypic overlap with other syndromes caused by FLNA mutations, but appears to be a distinct phenotype, likely representing a unique genetic syndrome. © 2016 Wiley Periodicals, Inc.
Tanaka, Brian S; Nguyen, Phuong T; Zhou, Eray Yihui; Yang, Yong; Yarov-Yarovoy, Vladimir; Dib-Hajj, Sulayman D; Waxman, Stephen G
2017-06-02
Dominant mutations in voltage-gated sodium channel Na V 1.7 cause inherited erythromelalgia, a debilitating pain disorder characterized by severe burning pain and redness of the distal extremities. Na V 1.7 is preferentially expressed within peripheral sensory and sympathetic neurons. Here, we describe a novel Na V 1.7 mutation in an 11-year-old male with underdevelopment of the limbs, recurrent attacks of burning pain with erythema, and swelling in his feet and hands. Frequency and duration of the episodes gradually increased with age, and relief by cooling became less effective. The patient's sister had short stature and reported similar complaints of erythema and burning pain, but with less intensity. Genetic analysis revealed a novel missense mutation in Na V 1.7 (2567G>C; p.Gly856Arg) in both siblings. The G856R mutation, located within the DII/S4-S5 linker of the channel, substitutes a highly conserved non-polar glycine by a positively charged arginine. Voltage-clamp analysis of G856R currents revealed that the mutation hyperpolarized (-11.2 mV) voltage dependence of activation and slowed deactivation but did not affect fast inactivation, compared with wild-type channels. A mutation of Gly-856 to aspartic acid was previously found in a family with limb pain and limb underdevelopment, and its functional assessment showed hyperpolarized activation, depolarized fast inactivation, and increased ramp current. Structural modeling using the Rosetta computational modeling suite provided structural clues to the divergent effects of the substitution of Gly-856 by arginine and aspartic acid. Although the proexcitatory changes in gating properties of G856R contribute to the pathophysiology of inherited erythromelalgia, the link to limb underdevelopment is not well understood. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Kumar, Bhattaram Siddhartha; Kumar, Pasupuleti Santhosh; Sowgandhi, Nannepaga; Prajwal, Bhattaram Manoj; Mohan, Alladi; Sarma, Kadainti Venkata Subbaraya; Sarma, Potukuchi Venkata Gurunadha Krishna
2016-08-01
Pyogenic Arthritis, Pyoderma gangrenosum, and Acne (PAPA syndrome) is a rare autosomal dominant, auto-inflammatory disease that affects joints and skin. The disease results due to mutations in the cluster of differentiation 2 binding protein 1 (CD2BP1) gene on chromosome 15q24.3. Rheumatoid arthritis (RA) is a common, genetically complex disease that affects the joints with occasional skin manifestations. Studies related to the pathophysiology of inflammation in these two disorders show a certain degree of overlap at genetic level. The present study was done to confirm the existence of such a genetic overlap between PAPA syndrome and RA in south Indian population. In the present study 100 patients who were clinically diagnosed rheumatoid arthritis and 100 apparently healthy controls were chosen and the 15 exons of CD2BP1 gene were PCR-amplified and sequenced. The sequence analysis showed that in exon 3 thirty eight patients revealed presence of novel heterozygous missense mutations p.Glu51Asp, p.Leu57Arg and p.Ala64Thr. In exons 6, 10 and 14 eight patients showed 44 novel missense mutations and two patients showed novel frame shift mutations p.(Met123_Leu416delinsThr) and p.(Thr337Profs*52) leading to truncated protein formation. Such mutations were not seen in controls. Further, the in silico analysis revealed the mutant CD2BP1 structure showed deletion of Cdc15 and SH3 domains when superimposed with the wild type CD2BP1 structure with variable RMSD values. Therefore, these structural variations in CD2BP1 gene due to the mutations could be one of the strongest reasons to demonstrate the involvement of these gene variations in the patients with rheumatoid arthritis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Shimojo, Masafumi; Sahara, Naruhiko; Mizoroki, Tatsuya; Funamoto, Satoru; Morishima-Kawashima, Maho; Kudo, Takashi; Takeda, Masatoshi; Ihara, Yasuo; Ichinose, Hiroshi; Takashima, Akihiko
2008-06-13
Presenilin (PS)/gamma-secretase-mediated intramembranous proteolysis of amyloid precursor protein produces amyloid beta (Abeta) peptides in which Abeta species of different lengths are generated through multiple cleavages at the gamma-, zeta-, and epsilon-sites. An increased Abeta42/Abeta40 ratio is a common characteristic of most cases of familial Alzheimer disease (FAD)-linked PS mutations. However, the molecular mechanisms underlying amyloid precursor protein proteolysis leading to increased Abeta42/Abeta40 ratios still remain unclear. Here, we report our findings on the enzymatic analysis of gamma-secretase derived from I213T mutant PS1-expressing PS1/PS2-deficient (PS(-/-)) cells and from the brains of I213T mutant PS1 knock-in mice. Kinetics analyses revealed that the FAD mutation reduced de novo Abeta generation, suggesting that mutation impairs the total catalytic rate of gamma-secretase. Analysis of each Abeta species revealed that the FAD mutation specifically reduced Abeta40 levels more drastically than Abeta42 levels, leading to an increased Abeta42/Abeta40 ratio. By contrast, the FAD mutation increased the generation of longer Abeta species such as Abeta43, Abeta45, and >Abeta46. These results were confirmed by analyses of gamma-secretase derived from I213T knock-in mouse brains, in which the reduction of de novo Abeta generation was mutant allele dose-dependent. Our findings clearly indicate that the mechanism underlying the increased Abeta42/Abeta40 ratio observed in cases of FAD mutations is related to the differential inhibition of gamma-site cleavage reactions, in which the reaction producing Abeta40 is subject to more inhibition than that producing Abeta42. Our results also provide novel insight into how enhancing the generation of longer Abetas may contribute to Alzheimer disease onset.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petroulakis, E.; Cao, Z.; Salo, T.
Mutations in the HEXA gene that encodes the {alpha}-subunit of the heterodimeric lysosomal enzyme {beta}-hexosaminidase A, or Hex A ({alpha}{beta}), cause G{sub M2} gangliosidosis, type 1. The infantile form (Tay-Sachs disease) results when there is no residual Hex A activity, while less severe and more variable clinical phenotypes result when residual Hex A activity is present. A non-Jewish male who presented with an acute psychotic episode at age 16 was diagnosed with a subacute encephalopathic form of G{sub M2} gangliosidosis. At age 19, chronic psychosis with intermittent acute exacerbations remains the most disabling symptom in this patient and his affectedmore » brother although both exhibit some ataxia and moderately severe dysarthria. We have found a 4 bp insertion (+TATC 1278) associated with infantile Tay-Sachs disease on one allele; no previously identified mutation was found on the second allele. SSCP analysis detected a shift in exon 13 and sequencing revealed a G1422C mutation in the second allele that results in a Trp474Cys substitution. The presence of the mutation was confirmed by the loss of HaeIII and ScrFI sites in exon 13 PCR products from the subjects and their father. The mutation was introduced into the {alpha}-subunit cDNA and Hex S ({alpha}{alpha}) and Hex A ({alpha}{beta}) were transiently expressed in monkey COS-7 cells. The Trp474Cys mutant protein had approximately 5% and 12% of wild-type Hex S and Hex A activity, respectively. Western blot analysis revealed a small amount of residual mature {alpha}-subunit and a normal level of precursor protein. We conclude that the Trp474Cys mutation is the cause of the Hex A deficiency associated with a subacute (juvenile-onset) phenotype in this patient. Like other mutations in exon 13 of HEXA, it appears to affect intracellular processing. Studies of the defect in intracellular processing are in progress.« less
Smith, Miriam J; Beetz, Christian; Williams, Simon G; Bhaskar, Sanjeev S; O'Sullivan, James; Anderson, Beverley; Daly, Sarah B; Urquhart, Jill E; Bholah, Zaynab; Oudit, Deemesh; Cheesman, Edmund; Kelsey, Anna; McCabe, Martin G; Newman, William G; Evans, D Gareth R
2014-12-20
Heterozygous germline PTCH1 mutations are causative of Gorlin syndrome (naevoid basal cell carcinoma), but detection rates > 70% have rarely been reported. We aimed to define the causative mutations in individuals with Gorlin syndrome without PTCH1 mutations. We undertook exome sequencing on lymphocyte DNA from four unrelated individuals from families with Gorlin syndrome with no PTCH1 mutations found by Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), or RNA analysis. A germline heterozygous nonsense mutation in SUFU was identified in one of four exomes. Sanger sequencing of SUFU in 23 additional PTCH1-negative Gorlin syndrome families identified a SUFU mutation in a second family. Copy-number analysis of SUFU by MLPA revealed a large heterozygous deletion in a third family. All three SUFU-positive families fulfilled diagnostic criteria for Gorlin syndrome, although none had odontogenic jaw keratocysts. Each SUFU-positive family included a single case of medulloblastoma, whereas only two (1.7%) of 115 individuals with Gorlin syndrome and a PTCH1 mutation developed medulloblastoma. We demonstrate convincing evidence that SUFU mutations can cause classical Gorlin syndrome. Our study redefines the risk of medulloblastoma in Gorlin syndrome, dependent on the underlying causative gene. Previous reports have found a 5% risk of medulloblastoma in Gorlin syndrome. We found a < 2% risk in PTCH1 mutation-positive individuals, with a risk up to 20× higher in SUFU mutation-positive individuals. Our data suggest childhood brain magnetic resonance imaging surveillance is justified in SUFU-related, but not PTCH1-related, Gorlin syndrome. © 2014 by American Society of Clinical Oncology.
Kaya, Esra; Kayıkçıoğlu, Meral; Tetik Vardarlı, Aslı; Eroğlu, Zuhal; Payzın, Serdar; Can, Levent
2017-10-01
The molecular basis of the mutations in the PCSK9 gene that produces familial hypercholesterolemia (FH) in the Turkish population is unknown. This study was conducted to determine the presence of four different PCSK9 gain-of-function (GOF) mutations (F216L, R496W, S127R, and D374Y) in a group of patients with FH. A total of 80 consecutive patients with FH (mean age: 56±11 years; mean maximum LDL cholesterol: 251±76 mg/dL) were included in the study. Patients with FH were diagnosed according to the Dutch Lipid Clinic Network criteria based on serum cholesterol levels, personal and family histories of cardiovascular disease, tendon xanthomas, and genetic analysis. To identify F216L, R496W, S127R, and D374Y mutations of the PCSK9 gene, high-resolution melting analysis was performed on isolated DNAs. Of the 80 patients, there were 11 patients (13.8%) with PCSK9 GOF mutations. Detected mutations were D374Y mutation in four (5.0%) patients and R496W in seven patients (8.7%). Only one patient was homozygous for R496W mutation. The other two GOF mutations (S127R and F216 variants) were not detected. There was no significant difference with regard to demographic characteristics and CV disease risk factors and clinical course of the disease between the PCSK9 mutation-positive and PCSK9 mutation-negative groups. This is the first study from a Turkish FH cohort, revealing a higher frequency (approximately 14%) of two PCSK9 GOF mutations (D374Y and R496W) and a different disease course compared to the world literature.
Font, M A; Feliubadaló, L; Estivill, X; Nunes, V; Golomb, E; Kreiss, Y; Pras, E; Bisceglia, L; d'Adamo, A P; Zelante, L; Gasparini, P; Bassi, M T; George , A L; Manzoni, M; Riboni, M; Ballabio, A; Borsani, G; Reig, N; Fernández, E; Zorzano, A; Bertran, J; Palacín, M
2001-02-15
Cystinuria (OMIM 220100) is a common recessive disorder of renal reabsorption of cystine and dibasic amino acids that results in nephrolithiasis of cystine. Mutations in SLC3A1, which encodes rBAT, cause Type I cystinuria, and mutations in SLC7A9, which encodes a putative subunit of rBAT (b(o,+)AT), cause non-Type I cystinuria. Here we describe the genomic structure of SLC7A9 (13 exons) and 28 new mutations in this gene that, together with the seven previously reported, explain 79% of the alleles in 61 non-Type I cystinuria patients. These data demonstrate that SLC7A9 is the main non-Type I cystinuria gene. Mutations G105R, V170M, A182T and R333W are the most frequent SLC7A9 missense mutations found. Among heterozygotes carrying these mutations, A182T heterozygotes showed the lowest urinary excretion values of cystine and dibasic amino acids. Functional analysis of mutation A182T after co-expression with rBAT in HeLa cells revealed significant residual transport activity. In contrast, mutations G105R, V170M and R333W are associated to a complete or almost complete loss of transport activity, leading to a more severe urinary phenotype in heterozygotes. SLC7A9 mutations located in the putative transmembrane domains of b(o,+)AT and affecting conserved amino acid residues with a small side chain generate a severe phenotype, while mutations in non-conserved residues give rise to a mild phenotype. These data provide the first genotype-phenotype correlation in non-Type I cystinuria, and show that a mild urinary phenotype in heterozygotes may associate with mutations with significant residual transport activity.
PTT analysis of polyps from FAP patients reveals a great majority of APC truncating mutations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luijt, R.B. van der; Khan, P.M.; Tops, C.M.J.
The adenomatous polyposis coli (APC) gene plays an important role in colorectal carcinogenesis. Germline APC mutations are associated with familial adenomatous polyposis (FAP), an autosomal dominantly inherited predisposition to colorectal cancer, characterized by the development of numerous adenomatous polyps in the large intestine. In order to investigate whether somatic inactivation of the remaining APC allele is necessary for adenoma formation, we collected multiple adenomatous polyps from individual FAP patients and investigated the presence of somatic mutations in the APC gene. The analysis of somatic APC mutations in these tumor samples was performed using a rapid and sensitive assay, called themore » protein truncation test (PTT). Chain-terminating somatic APC mutations were detected in the great majority of the tumor samples investigated. As expected, these mutations were mainly located in the mutation cluster region (MCR) in exon 15. Our results confirm that somatic mutation of the second APC allele is required for adenoma formation in FAP. Interestingly, in the polyps investigated in our study, the second APC allele is somatically inactivated through point mutation leading to a stop codon rather than by loss of heterozygosity. The observation that somatic second hits in APC are required for tumor development in FAP is in apparent accordance with the Knudson hypothesis for classical tumor suppressor genes. However, it is yet unknown whether chain-terminating APC mutations lead to a truncated protein exerting a dominant-negative effect or whether these mutations result in a null allele. Further investigation of this important issue will hopefully provide a better understanding of the mechanism of action of the mutated APC alleles in colorectal carcinogenesis.« less
Wang, Min; Li, Min; Liu, Yue-Sheng; Lei, Si-Min; Xiao, Yan-Feng
2017-11-01
The aim of the study was to provide a descriptive analysis of familial male-limited precocious puberty (FMPP), which is a rare inherited disease caused by heterozygous constitutively activating mutations of the luteinizing hormone/choriogonadotropin receptor gene (LHCGR). The patient was a ten-month-old boy, presenting with penile enlargement, pubic hair formation, and spontaneous erections. Based on the clinical manifestations and laboratory data, including sexual characteristics, serum testosterone levels, GnRH stimulation test, and bone age, this boy was diagnosed with peripheral precocious puberty. Subsequently the precocious puberty-related genes were analyzed by direct DNA sequencing of amplified PCR products from the patient and his parents. Genetic analysis revealed a novel heterozygous missense mutation c.1732G>C (Asp578His) of the LHCGR gene exon11 in the patient, which had never been reported. His parents had no mutations. After combined treatment with aromatase inhibitor letrozole and anti-androgen spironolactone for six months, the patient's symptoms were controlled. The findings in this study expand the mutation spectrum of the LHCGR gene, and provide molecular evidence for the etiologic diagnosis as well as for the genetic counseling and prenatal diagnosis in the family.
Hassan, Mubashir; Abbas, Qamar; Raza, Hussain; Moustafa, Ahmed A; Seo, Sung-Yum
2017-07-25
Misfolding and structural alteration in proteins lead to serious malfunctions and cause various diseases in humans. Mutations at the active binding site in tyrosinase impair structural stability and cause lethal albinism by abolishing copper binding. To evaluate the histidine mutational effect, all mutated structures were built using homology modelling. The protein sequence was retrieved from the UniProt database, and 3D models of original and mutated human tyrosinase sequences were predicted by changing the residual positions within the target sequence separately. Structural and mutational analyses were performed to interpret the significance of mutated residues (N 180 , R 202 , Q 202 , R 211 , Y 363 , R 367 , Y 367 and D 390 ) at the active binding site of tyrosinases. CSpritz analysis depicted that 23.25% residues actively participate in the instability of tyrosinase. The accuracy of predicted models was confirmed through online servers ProSA-web, ERRAT score and VERIFY 3D values. The theoretical pI and GRAVY generated results also showed the accuracy of the predicted models. The CCA negative correlation results depicted that the replacement of mutated residues at His within the active binding site disturbs the structural stability of tyrosinases. The predicted CCA scores of Tyr 367 (-0.079) and Q/R 202 (0.032) revealed that both mutations have more potential to disturb the structural stability. MD simulation analyses of all predicted models justified that Gln 202 , Arg 202 , Tyr 367 and D 390 replacement made the protein structures more susceptible to destabilization. Mutational results showed that the replacement of His with Q/R 202 and Y/R 363 has a lethal effect and may cause melanin associated diseases such as OCA1. Taken together, our computational analysis depicts that the mutated residues such as Q/R 202 and Y/R 363 actively participate in instability and misfolding of tyrosinases, which may govern OCA1 through disturbing the melanin biosynthetic pathway.
Biallelic Mutations in NBAS Cause Recurrent Acute Liver Failure with Onset in Infancy.
Haack, Tobias B; Staufner, Christian; Köpke, Marlies G; Straub, Beate K; Kölker, Stefan; Thiel, Christian; Freisinger, Peter; Baric, Ivo; McKiernan, Patrick J; Dikow, Nicola; Harting, Inga; Beisse, Flemming; Burgard, Peter; Kotzaeridou, Urania; Kühr, Joachim; Himbert, Urban; Taylor, Robert W; Distelmaier, Felix; Vockley, Jerry; Ghaloul-Gonzalez, Lina; Zschocke, Johannes; Kremer, Laura S; Graf, Elisabeth; Schwarzmayr, Thomas; Bader, Daniel M; Gagneur, Julien; Wieland, Thomas; Terrile, Caterina; Strom, Tim M; Meitinger, Thomas; Hoffmann, Georg F; Prokisch, Holger
2015-07-02
Acute liver failure (ALF) in infancy and childhood is a life-threatening emergency. Few conditions are known to cause recurrent acute liver failure (RALF), and in about 50% of cases, the underlying molecular cause remains unresolved. Exome sequencing in five unrelated individuals with fever-dependent RALF revealed biallelic mutations in NBAS. Subsequent Sanger sequencing of NBAS in 15 additional unrelated individuals with RALF or ALF identified compound heterozygous mutations in an additional six individuals from five families. Immunoblot analysis of mutant fibroblasts showed reduced protein levels of NBAS and its proposed interaction partner p31, both involved in retrograde transport between endoplasmic reticulum and Golgi. We recommend NBAS analysis in individuals with acute infantile liver failure, especially if triggered by fever. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Seo, Joo-Hyun; Song, Sook-Keun
2009-01-01
Background Pantothenate-kinase-associated neurodegeneration (PKAN) is an autosomal recessive neurodegenerative disorder that is characterized by progressive extrapyramidal signs, visual loss, and cognitive impairment. PKAN is caused by mutations in the pantothenate kinase gene (PANK2), which is located on chromosome 20p13 and encodes pantothenate kinase, the key regulatory enzyme in coenzyme-A biosynthesis. Case Report In this report we describe a case of atypical PKAN with a novel PANK2 mutation, presenting with a 10-year history of postural tremor involving both hands. Upon neurological examination, the patient's face was masked and he spoke in a monotonous voice. The patient presented with mild bradykinesia and rigidity that involved all of the extremities. Horizontal saccadic eye movements were slow and fragmented. Brain MRI revealed a typical "eye-of-the-tiger" sign. A mutation analysis revealed three PANK2 mutations: two in exon 3 (Asp 378Gly and Leu385CysfsX13) and one in exon 4 (Arg440Pro). Conclusions Parkinsonism is not an unusual presenting symptom in patients with atypical PKAN, and so it is important for physicians to consider PKAN in the differential diagnosis of patients presenting with young-onset parkinsonism. PMID:20076801
Acute quadriplegia in a young man secondary to prothrombin G20210A mutation.
Sawaya, R; Diken, Z; Mahfouz, R
2011-08-01
We present the case of an 18-year-old man, previously healthy, who presented with acute quadriplegia and respiratory failure. Physical examination was compatible with a high cervical anterior spinal cord lesion. We plan to evaluate the cause of such a neurological presentation in a healthy young man. American University Medical Center, Beirut, Lebanon. The patient underwent routine blood hematological and chemistry work-up, hypercoagulable profile studies, genetic profile for thrombophelias, radiographic studies of the brain and cervical cord, cerebrospinal analysis and extensive electrophyisological studies. Magnetic resonance imaging and magnetic resonance angiogram of the brain, carotid and intracranial vessels were normal. Cerebral angiography was normal. Magnetic resonance imaging of the cervical cord revealed lesion of the anterior segment of the cervical cord between C2 and C5 levels. Hypercoagulable profile studies were normal. Electrophysiological studies confirmed an isolated lesion of the descending cortico-spinal tracts. DNA analysis revealed the presence of a G20210A mutation-causing hyperprothrombinemia. We conclude that a G20210A mutation causing-hyperprothrombinemia can cause anterior spinal artery thrombosis and anterior spinal cord infarction with the resultant neurological deficits in otherwise healthy patients.
NDUFS4 mutations cause Leigh syndrome with predominant brainstem involvement.
Leshinsky-Silver, E; Lebre, Anne-Sophie; Minai, Limor; Saada, Ann; Steffann, Julie; Cohen, Sarit; Rötig, Agnes; Munnich, Arnold; Lev, Dorit; Lerman-Sagie, Tally
2009-07-01
Complex I deficiency is a frequent cause of Leigh syndrome. We describe a non-consanguineous Ashkenazi-Sephardic Jewish patient with Leigh syndrome due to complex I deficiency. The clinical and neuroradiological presentation showed predominant brainstem involvement. Blue native polyacrylamide gel electrophoresis analysis revealed an impaired assembly of complex I. The patient was found to be compound heterozygous of two mutations in the NDUFS4 gene: p.Asp119His (a novel mutation) and p.Lys154fs (recently described in an Ashkenazi Jewish family). These findings support the suggestion that the p.Lys154fs mutation in NDUFS4 should be evaluated in Ashkenazi Jewish patients presenting with early onset Leigh syndrome even before enzymatic studies. Our results further demonstrated that NDUFS4 presents a hotspot of mutations in the genetic apparatus of oxidative phosphorylation and the correct assembly of the subunit it encodes is essential for completion of the assembly of complex I.
Sambuughin, N; Nelson, T E; Jankovic, J; Xin, C; Meissner, G; Mullakandov, M; Ji, J; Rosenberg, H; Sivakumar, K; Goldfarb, L G
2001-09-01
Malignant hyperthermia is a pharmacogenetic disorder associated with mutations in Ca(2+) regulatory proteins. It manifests as a hypermetabolic crisis triggered by commonly used anesthetics. Malignant hyperthermia susceptibility is a dominantly inherited predisposition to malignant hyperthermia that can be diagnosed by using caffeine/halothane contracture tests. In a multigenerational North American family with a severe form of malignant hyperthermia that has caused four deaths, a novel RYR1 A2350T missense mutation was identified in all individuals testing positive for malignant hyperthermia susceptibility. The same A2350T mutation was identified in an Argentinean family with two known fatal MH reactions. Functional analysis in HEK-293 cells revealed an altered Ca(2+) dependence and increased caffeine sensitivity of the expressed mutant protein thus confirming the pathogenic potential of the RYR1 A2350T mutation.
Hoogstraat, Marlous; Gadellaa-van Hooijdonk, Christa G; Ubink, Inge; Besselink, Nicolle J M; Pieterse, Mark; Veldhuis, Wouter; van Stralen, Marijn; Meijer, Eelco F J; Willems, Stefan M; Hadders, Michael A; Kuilman, Thomas; Krijgsman, Oscar; Peeper, Daniel S; Koudijs, Marco J; Cuppen, Edwin; Voest, Emile E; Lolkema, Martijn P
2015-05-01
Resistance to treatment is the main problem of targeted treatment for cancer. We followed ten patients during treatment with vemurafenib, by three-dimensional imaging. In all patients, only a subset of lesions progressed. Next-generation DNA sequencing was performed on sequential biopsies in four patients to uncover mechanisms of resistance. In two patients, we identified mutations that explained resistance to vemurafenib; one of these patients had a secondary BRAF L505H mutation. This is the first observation of a secondary BRAF mutation in a vemurafenib-resistant patient-derived melanoma sample, which confirms the potential importance of the BRAF L505H mutation in the development of therapy resistance. Moreover, this study hints toward an important role for tumor heterogeneity in determining the outcome of targeted treatments. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Crotti, Lia; Lewandowska, Marzena A; Schwartz, Peter J; Insolia, Roberto; Pedrazzini, Matteo; Bussani, Erica; Dagradi, Federica; George, Alfred L; Pagani, Franco
2009-02-01
Genetic screening of long QT syndrome (LQTS) fails to identify disease-causing mutations in about 30% of patients. So far, molecular screening has focused mainly on coding sequence mutations or on substitutions at canonical splice sites. The purpose of this study was to explore the possibility that intronic variants not at canonical splice sites might affect splicing regulatory elements, lead to aberrant transcripts, and cause LQTS. Molecular screening was performed through DHPLC and sequence analysis. The role of the intronic mutation identified was assessed with a hybrid minigene splicing assay. A three-generation LQTS family was investigated. Molecular screening failed to identify an obvious disease-causing mutation in the coding sequences of the major LQTS genes but revealed an intronic A-to-G substitution in KCNH2 (IVS9-28A/G) cosegregating with the clinical phenotype in family members. In vitro analysis proved that the mutation disrupts the acceptor splice site definition by affecting the branch point (BP) sequence and promoting intron retention. We further demonstrated a tight functional relationship between the BP and the polypyrimidine tract, whose weakness is responsible for the pathological effect of the IVS9-28A/G mutation. We identified a novel BP mutation in KCNH2 that disrupts the intron 9 acceptor splice site definition and causes LQT2. The present finding demonstrates that intronic mutations affecting pre-mRNA processing may contribute to the failure of traditional molecular screening in identifying disease-causing mutations in LQTS subjects and offers a rationale strategy for the reduction of genotype-negative cases.
Riahi, Aouatef; Kharrat, Maher; Lariani, Imen; Chaabouni-Bouhamed, Habiba
2014-12-01
Germline deleterious mutations in the BRCA1/BRCA2 genes are associated with an increased risk for the development of breast and ovarian cancer. Given the large size of these genes the detection of such mutations represents a considerable technical challenge. Therefore, the development of cost-effective and rapid methods to identify these mutations became a necessity. High resolution melting analysis (HRM) is a rapid and efficient technique extensively employed as high-throughput mutation scanning method. The purpose of our study was to assess the specificity and sensitivity of HRM for BRCA1 and BRCA2 genes scanning. As a first step we estimate the ability of HRM for detection mutations in a set of 21 heterozygous samples harboring 8 different known BRCA1/BRCA2 variations, all samples had been preliminarily investigated by direct sequencing, and then we performed a blinded analysis by HRM in a set of 68 further sporadic samples of unknown genotype. All tested heterozygous BRCA1/BRCA2 variants were easily identified. However the HRM assay revealed further alteration that we initially had not searched (one unclassified variant). Furthermore, sequencing confirmed all the HRM detected mutations in the set of unknown samples, including homozygous changes, indicating that in this cohort, with the optimized assays, the mutations detections sensitivity and specificity were 100 %. HRM is a simple, rapid and efficient scanning method for known and unknown BRCA1/BRCA2 germline mutations. Consequently the method will allow for the economical screening of recurrent mutations in Tunisian population.
Liu, Yen-Yi; Hwang, Jenn-Kang; Barrio, Maria Jesus; Rodrigo, Maximiliano; Garcia-Toro, Enrique; Herreros-Villanueva, Marta
2013-01-01
Background The issue of whether patients diagnosed with metastatic colorectal cancer who harbor KRAS codon 13 mutations could benefit from the addition of anti-epidermal growth factor receptor therapy remains under debate. The aim of the current study was to perform computational analysis to investigate the structural implications of the underlying mutations caused by c.38G>A (p.G13D) on protein conformation. Methods Molecular dynamics (MD) simulations were performed to understand the plausible structural and dynamical implications caused by c.35G>A (p.G12D) and c.38G>A (p.G13D). The potential of mean force (PMF) simulations were carried out to determine the free energy profiles of the binding processes of GTP interacting with wild-type (WT) KRAS and its mutants (MT). Results Using MD simulations, we observed that the root mean square deviation (RMSD) increased as a function of time for the MT c.35G>A (p.G12D) and MT c.38G>A (p.G13D) when compared with the WT. We also observed that the GTP-binding pocket in the c.35G>A (p.G12D) mutant is more open than that of the WT and the c.38G>A (p.G13D) proteins. Intriguingly, the analysis of atomic fluctuations and free energy profiles revealed that the mutation of c.35G>A (p.G12D) may induce additional fluctuations in the sensitive sites (P-loop, switch I and II regions). Such fluctuations may promote instability in these protein regions and hamper GTP binding. Conclusions Taken together with the results obtained from MD and PMF simulations, the present findings implicate fluctuations at the sensitive sites (P-loop, switch I and II regions). Our findings revealed that KRAS mutations in codon 13 have similar behavior as KRAS WT. To gain a better insight into why patients with metastatic colorectal cancer (mCRC) and the KRAS c.38G>A (p.G13D) mutation appear to benefit from anti-EGFR therapy, the role of the KRAS c.38G>A (p.G13D) mutation in mCRC needs to be further investigated. PMID:23437064
Endometrial Carcinomas with POLE Exonuclease Domain Mutations Have a Favorable Prognosis.
McConechy, Melissa K; Talhouk, Aline; Leung, Samuel; Chiu, Derek; Yang, Winnie; Senz, Janine; Reha-Krantz, Linda J; Lee, Cheng-Han; Huntsman, David G; Gilks, C Blake; McAlpine, Jessica N
2016-06-15
The aim of this study was to confirm the prognostic significance of POLE exonuclease domain mutations (EDM) in endometrial carcinoma patients. In addition, the effect of treatment on POLE-mutated tumors was assessed. A retrospective patient cohort of 496 endometrial carcinoma patients was identified for targeted sequencing of the POLE exonuclease domain, yielding 406 evaluable tumors. Univariable and multivariable analyses were performed to determine the effect of POLE mutation status on progression-free survival (PFS), disease-specific survival (DSS), and overall survival (OS). Combining results from eight studies in a meta-analysis, we computed pooled HR for PFS, DSS, and OS. POLE EDMs were identified in 39 of 406 (9.6%) endometrial carcinomas. Women with POLE-mutated endometrial carcinomas were younger, with stage I (92%) tumors, grade 3 (62%), endometrioid histology (82%), and frequent (49%) lymphovascular invasion. In univariable analysis, POLE-mutated endometrial carcinomas had significantly improved outcomes compared with patients with no EDMs for PFS, DSS, and OS. In multivariable analysis, POLE EDMs were only significantly associated with improved PFS. The effect of adjuvant treatment on POLE-mutated cases could not be determined conclusively; however, both treated and untreated patients with POLE EDMs had good outcomes. Meta-analysis revealed an association between POLE EDMs and improved PFS and DSS with pooled HRs 0.34 [95% confidence interval (CI), 0.15-0.73] and 0.35 (95% CI, 0.13-0.92), respectively. POLE EDMs are prognostic markers associated with excellent outcomes for endometrial carcinoma patients. Further investigation is needed to conclusively determine if treatment is necessary for this group of women. Clin Cancer Res; 22(12); 2865-73. ©2016 AACR. ©2016 American Association for Cancer Research.
Agammaglobulinaemia despite terminal B-cell differentiation in a patient with a novel LRBA mutation.
Al Sukaiti, Nashat; AbdelRahman, Khwater; AlShekaili, Jalila; Al Oraimi, Sumaya; Al Sinani, Aisha; Al Rahbi, Nasser; Cho, Vicky; Field, Matt; Cook, Matthew C
2017-05-01
Mutations in lipopolysaccharide-responsive vesicle trafficking, beach and anchor-containing protein (LRBA) cause immune deficiency and inflammation. Here, we are reporting a novel homozygous mutation in LRBA allele in 7-year-old Omani boy, born to consanguineous parents. He presented with type 1 diabetes, autoimmune haematological cytopenia, recurrent chest infections and lymphocytic interstitial lung disease. The patient was treated with CTLA4-Ig (abatacept) with good outcome every 2 weeks for a period of 3 months. He developed complete IgG deficiency, but remarkably, histological examination revealed germinal centres and plasma cells in lymphoid and inflamed lung tissue. Further charatecterisation showed these cells to express IgM but not IgG. This ex vivo analysis suggests that LRBA mutation confers a defect in class switching despite plasma cell formation.
A novel de novo POGZ mutation in a patient with intellectual disability.
Tan, Bo; Zou, Yongyi; Zhang, Yue; Zhang, Rui; Ou, Jianjun; Shen, Yidong; Zhao, Jingping; Luo, Xiaomei; Guo, Jing; Zeng, Lanlan; Hu, Yiqiao; Zheng, Yu; Pan, Qian; Liang, Desheng; Wu, Lingqian
2016-04-01
POGZ, the gene encoding pogo transposable element-derived protein with zinc-finger domain, has been implicated in autism spectrum disorder and it is widely expressed in the human tissues, including the brain. Intellectual disability (ID) is highly heterogeneous neurodevelopment disorder and affects ~2-3% of the general population. Here we report the identification of a novel frameshift mutation in the coding region of the POGZ gene (c.1277_1278insC), which occurred de novo in a Chinese patient with ID. In silico analysis and western blotting revealed this frameshift mutation generating truncated protein in peripheral blood lymphocytes, and this may disrupt several important domains of POGZ gene. Our finding broadens the spectrum of POGZ mutations and may help to understand the molecular basis of ID and aid genetic counseling.
Militaru, Mariela S; Popp, Radu A; Trifa, Adrian P
2010-06-01
While classical hereditary haemochromatosis, usually associated with mutations in the HFE gene, has an adult age onset and a long, progressive evolution, juvenile haemochromatosis, most often associated with mutations in the HJV gene, is a more severe, rapidly progressive condition and has an onset before the age of 30. We report a 26-year old woman with a severe iron overload, affected by hypogonadotropic hypogonadism and moderate dilative cardiomyopathy, in whom the molecular analysis revealed a homozygous genotype for G320V mutation in the HJV gene. As juvenile haemochromatosis is a severe disease, death usually occurring from cardiac involvement, an efficient iron removal from the body strategy should be started as soon as possible, in order to prevent irreversible damage.
Severe Hypertriglyceridemia due to a novel p.Q240H mutation in the Lipoprotein Lipase gene.
Soto, Angela Ganan; McIntyre, Adam; Agrawal, Sungeeta; Bialo, Shara R; Hegele, Robert A; Boney, Charlotte M
2015-09-04
Lipoprotein Lipase (LPL) deficiency is a rare autosomal recessive disorder with a heterogeneous clinical presentation. Several mutations in the LPL gene have been identified to cause decreased activity of the enzyme. An 11-week-old, exclusively breastfed male presented with coffee-ground emesis, melena, xanthomas, lipemia retinalis and chylomicronemia. Genomic DNA analysis identified lipoprotein lipase deficiency due to compound heterozygosity including a novel p.Q240H mutation in exon 5 of the lipoprotein lipase (LPL) gene. His severe hypertriglyceridemia, including xanthomas, resolved with dietary long-chain fat restriction. We describe a novel mutation of the LPL gene causing severe hypertriglyceridemia and report the response to treatment. A review of the current literature regarding LPL deficiency syndrome reveals a few potential new therapies under investigation.
Metzger, Julia; Gast, Alana Christina; Schrimpf, Rahel; Rau, Janina; Eikelberg, Deborah; Beineke, Andreas; Hellige, Maren; Distl, Ottmar
2017-04-01
The Miniature Shetland pony represents a horse breed with an extremely small body size. Clinical examination of a dwarf Miniature Shetland pony revealed a lowered size at the withers, malformed skull and brachygnathia superior. Computed tomography (CT) showed a shortened maxilla and a cleft of the hard and soft palate which protruded into the nasal passage leading to breathing difficulties. Pathological examination confirmed these findings but did not reveal histopathological signs of premature ossification in limbs or cranial sutures. Whole-genome sequencing of this dwarf Miniature Shetland pony and comparative sequence analysis using 26 reference equids from NCBI Sequence Read Archive revealed three probably damaging missense variants which could be exclusively found in the affected foal. Validation of these three missense mutations in 159 control horses from different horse breeds and five donkeys revealed only the aggrecan (ACAN)-associated g.94370258G>C variant as homozygous wild-type in all control samples. The dwarf Miniature Shetland pony had the homozygous mutant genotype C/C of the ACAN:g.94370258G>C variant and the normal parents were heterozygous G/C. An unaffected full sib and 3/5 unaffected half-sibs were heterozygous G/C for the ACAN:g.94370258G>C variant. In summary, we could demonstrate a dwarf phenotype in a miniature pony breed perfectly associated with a missense mutation within the ACAN gene.
Expanding the spectrum of genetic mutations in antenatal Bartter syndrome type II.
Fretzayas, Andreas; Gole, Evangelia; Attilakos, Achilleas; Daskalaki, Anna; Nicolaidou, Polyxeni; Papadopoulou, Anna
2013-06-01
Bartter syndrome (BS) is a group of genetic disorders characterized by hypokalemic metabolic alkalosis, hyponatremia and elevated renin and aldosterone plasma concentrations. BS type II is caused by mutations in the KCNJ1 gene and usually presents with transient hyperkalemia. We report here a novel KCNJ1 mutation in a male neonate, prematurely born after a pregnancy complicated by polyhydramnios. The infant presented with typical clinical and laboratory findings of BS type II, such as hyponatremia, hypochloremic metabolic alkalosis, severe weight loss, elevated renin and aldosterone levels and transient hyperkalemia in the early postnatal period, which were later normalized. Molecular analysis revealed a compound heterozygous mutation in the KCNJ1 gene, consisting of a novel K76E and an already described V315G mutation, both affecting functional domains of the channel protein. Typical manifestations of antenatal BS in combination with hyperkalemia should prompt the clinician to search for mutations in the KCNJ1 gene first. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.
Bi, Hongyan; Gao, Yunying; Yao, Sheng; Dong, Mingrui; Headley, Alexander Peter; Yuan, Yun
2007-10-01
Hereditary sensory and autonomic neuropathy type I (HSAN I) is an autosomal dominant disorder of the peripheral nervous system characterized by marked progressive sensory loss, with variable autonomic and motor involvement. The HSAN I locus maps to chromosome 9q22.1-22.3 and is caused by mutations in the gene coding for serine palmitoyltransferase long chain base subunit 1 (SPTLC1). Sequencing in HSAN I families have previously identified mutations in exons 5, 6 and 13 of this gene. Here we report the clinical, electrophysiological and pathological findings of a proband in a Chinese family with HSAN I. The affected members showed almost typical clinical features. Electrophysiological findings showed an axonal, predominantly sensory, neuropathy with motor and autonomic involvement. Sural nerve biopsy showed loss of myelinated and unmyelinated fibers. SPTLC1 mutational analysis revealed the C133W mutation, a mutation common in British HSAN I families.
α-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy
Mogensen, Jens; Klausen, Ib C.; Pedersen, Anders K.; Egeblad, Henrik; Bross, Peter; Kruse, Torben A.; Gregersen, Niels; Hansen, Peter S.; Baandrup, Ulrik; Børglum, Anders D.
1999-01-01
We identified the α-cardiac actin gene (ACTC) as a novel disease gene in a pedigree suffering from familial hypertrophic cardiomyopathy (FHC). Linkage analyses excluded all the previously reported FHC loci as possible disease loci in the family studied, with lod scores varying between –2.5 and –6.0. Further linkage analyses of plausible candidate genes highly expressed in the adult human heart identified ACTC as the most likely disease gene, showing a maximal lod score of 3.6. Mutation analysis of ACTC revealed an Ala295Ser mutation in exon 5 close to 2 missense mutations recently described to cause the inherited form of idiopathic dilated cardiomyopathy (IDC). ACTC is the first sarcomeric gene described in which mutations are responsible for 2 different cardiomyopathies. We hypothesize that ACTC mutations affecting sarcomere contraction lead to FHC and that mutations affecting force transmission from the sarcomere to the surrounding syncytium lead to IDC. PMID:10330430
Novel AVPR2 mutation causing partial nephrogenic diabetes insipidus in a Japanese family.
Yamashita, Sumie; Hata, Astuko; Usui, Takeshi; Oda, Hirotsugu; Hijikata, Atsushi; Shirai, Tsuyoshi; Kaneko, Naoto; Hata, Daisuke
2016-05-01
X-linked recessive congenital nephrogenic diabetes insipidus (NDI) is caused by mutations of the arginine vasopressin type 2 receptor gene (AVPR2). More than 200 mutations of the AVPR2 gene with complete NDI have been reported although only 15 mutations with partial NDI has been reported to date. We herein report a Japanese kindred with partial NDI. The proband is an 8-year-old boy who was referred to our hospital for nocturnal enuresis. Water deprivation test and hypertonic saline test suggested partial renal antidiuretic hormone arginine vasopressin (AVP) resistance. Analysis of genomic DNA revealed a novel missense mutation (p.L161P) in the patient. The patient's mother was heterozygous for the mutation. Three-dimensional (3-D) modeling study showed that L161P possibly destabilizes the transmembrane domain of the V2 receptor, resulting in its misfolding or mislocalization. Distinguishing partial NDI from nocturnal enuresis is important. A clinical clue for diagnosis of partial NDI is an incompatibly high level of AVP despite normal serum osmolality.
A novel mutation in HSD11B2 causes apparent mineralocorticoid excess in an Omani kindred.
Yau, Mabel; Azkawi, Hanan Said Al; Haider, Shozeb; Khattab, Ahmed; Badi, Maryam Al; Abdullah, Wafa; Senani, Aisha Al; Wilson, Robert C; Yuen, Tony; Zaidi, Mone; New, Maria I
2016-07-01
Apparent mineralocorticoid excess (AME) is a rare autosomal recessive genetic disorder causing severe hypertension in childhood due to a deficiency of 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2), which is encoded by HSD11B2. Without treatment, chronic hypertension leads to early development of end-organ damage. Approximately 40 causative mutations in HSD11B2 have been identified in ∼100 AME patients worldwide. We have studied the clinical presentation, biochemical parameters, and molecular genetics in six patients from a consanguineous Omani family with AME. DNA sequence analysis of affected members of this family revealed homozygous c.799A>G mutations within exon 4 of HSD11B2, corresponding to a p.T267A mutation of 11βHSD2. The structural change and predicted consequences owing to the p.T267A mutation have been modeled in silico. We conclude that this novel mutation is responsible for AME in this family. © 2016 New York Academy of Sciences.
Autopsy case of the C12orf65 mutation in a patient with signs of mitochondrial dysfunction
Nishihara, Hideaki; Omoto, Masatoshi; Takao, Masaki; Higuchi, Yujiro; Koga, Michiaki; Kawai, Motoharu; Kawano, Hiroo; Ikeda, Eiji; Takashima, Hiroshi
2017-01-01
Objective: To describe the autopsy case of a patient with a homozygous 2-base deletion, c171_172delGA (p.N58fs), in the C12orf65 gene. Methods: We described the clinical history, neuroimaging data, neuropathology, and genetic analysis of the patients with C12orf65 mutations. Results: The patient was a Japanese woman with a history of delayed psychomotor development, primary amenorrhea, and gait disturbance in her 20s. She was hospitalized because of respiratory failure at the age of 60. Pectus excavatum, long fingers and toes, and pes cavus were revealed by physical examination. Her IQ score was 44. Neurologic examination revealed ophthalmoplegia, optic atrophy, dysphagia, distal dominant muscle weakness and atrophy, hyperreflexia at patellar tendon reflex, hyporeflexia at Achilles tendon reflex, and extensor plantar reflexes. At age 60, she died of pneumonia. Lactate levels were elevated in the patient's serum and CSF. T2-weighted brain MRI showed symmetrical hyperintense brainstem lesions. At autopsy, axial sections exposed symmetrical cyst formation with brownish lesions in the upper spinal cord, ventral medulla, pons, dorsal midbrain, and medial hypothalamus. Microscopic analysis of these areas demonstrated mild gliosis with rarefaction. Cell bodies in the choroid plexuses were eosinophilic and swollen. Electron microscopic examination revealed that these cells contained numerous abnormal mitochondria. Whole-exome sequencing revealed the 2-base deletion in C12orf65. Conclusions: We report an autopsy case of the C12orf65 mutation, and findings suggest that mitochondrial dysfunction may underlie the unique clinical presentations. PMID:28804760
Mutational status of EGFR and KIT in thymoma and thymic carcinoma.
Yoh, Kiyotaka; Nishiwaki, Yutaka; Ishii, Genichiro; Goto, Koichi; Kubota, Kaoru; Ohmatsu, Hironobu; Niho, Seiji; Nagai, Kanji; Saijo, Nagahiro
2008-12-01
This study was conducted to evaluate the prevalence of EGFR and KIT mutations in thymomas and thymic carcinomas as a means of exploring the potential for molecularly targeted therapy with tyrosine kinase inhibitors. Genomic DNA was isolated from 41 paraffin-embedded tumor samples obtained from 24 thymomas and 17 thymic carcinomas. EGFR exons 18, 19, and 21, and KIT exons 9, 11, 13, and 17, were analyzed for mutations by PCR and direct sequencing. Protein expression of EGFR and KIT was evaluated immunohistochemically. EGFR mutations were detected in 2 of 20 thymomas, but not in any of the thymic carcinomas. All of the EGFR mutations detected were missense mutations (L858R and G863D) in exon 21. EGFR protein was expressed in 71% of the thymomas and 53% of the thymic carcinomas. The mutational analysis of KIT revealed only a missense mutation (L576P) in exon 11 of one thymic carcinoma. KIT protein was expressed in 88% of the thymic carcinomas and 0% of the thymomas. The results of this study indicate that EGFR and KIT mutations in thymomas and thymic carcinomas are rare, but that many of the tumors express EGFR or KIT protein.
Genetic mutations in human rectal cancers detected by targeted sequencing.
Bai, Jun; Gao, Jinglong; Mao, Zhijun; Wang, Jianhua; Li, Jianhui; Li, Wensheng; Lei, Yu; Li, Shuaishuai; Wu, Zhuo; Tang, Chuanning; Jones, Lindsey; Ye, Hua; Lou, Feng; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; Huang, Xue F; Chen, Si-Yi; Zhang, Enke
2015-10-01
Colorectal cancer (CRC) is widespread with significant mortality. Both inherited and sporadic mutations in various signaling pathways influence the development and progression of the cancer. Identifying genetic mutations in CRC is important for optimal patient treatment and many approaches currently exist to uncover these mutations, including next-generation sequencing (NGS) and commercially available kits. In the present study, we used a semiconductor-based targeted DNA-sequencing approach to sequence and identify genetic mutations in 91 human rectal cancer samples. Analysis revealed frequent mutations in KRAS (58.2%), TP53 (28.6%), APC (16.5%), FBXW7 (9.9%) and PIK3CA (9.9%), and additional mutations in BRAF, CTNNB1, ERBB2 and SMAD4 were also detected at lesser frequencies. Thirty-eight samples (41.8%) also contained two or more mutations, with common combination mutations occurring between KRAS and TP53 (42.1%), and KRAS and APC (31.6%). DNA sequencing for individual cancers is of clinical importance for targeted drug therapy and the advantages of such targeted gene sequencing over other NGS platforms or commercially available kits in sensitivity, cost and time effectiveness may aid clinicians in treating CRC patients in the near future.
Huang, Yanru; Mei, Libin; Pan, Qian; Tan, Hu; Quan, Yi; Gui, Baoheng; Chang, Jiazhen; Ma, Ruiyu; Peng, Ying; Yang, Pu; Liang, Desheng; Wu, Lingqian
2015-07-01
X-linked hypophosphatemic rickets (XLHR), the most common form of inherited rickets, is a dominant disorder characterized by hypophosphatemia, abnormal bone mineralization, and short stature. Mutations in the PHEX gene are major causes of XLHR. Herein, we clinically characterized four unrelated families with hypophosphatemia, bone abnormalities, short stature, and dentin malformation. Mutational analysis of the PHEX gene using Sanger sequencing revealed three recurrent mutations (c.2197T>C, c.1646G>C, and c.2198G>A) and a de novo nonsense mutation (c.148A>T). The novel mutation was not found in any of the unaffected family members or in the 100 healthy controls and was predicted to produce a truncated protein (p.K50X), a truncated form of the PHEX protein caused by nonsense mutations has been frequently detected in XLHR individuals. Thus, our work indicated that the c.148A>T (p.K50X) mutation was the likely pathogenic mutation in individual III-2 in family 2, and that PHEX gene mutations were responsible for XLHR in these Chinese families. These findings expand the mutation spectrum of PHEX and may help us to understand the molecular basis of XLHR in order to facilitate genetic counseling. Copyright © 2015 Elsevier B.V. All rights reserved.
Shen, Tao; Guan, Liping; Li, Shiqiang; Zhang, Jianguo; Xiao, Xueshan; Jiang, Hui; Yang, Jianhua; Guo, Xiangming; Wang, Jun; Zhang, Qingjiong
2015-03-01
The genetic defects underlying approximately half of all retinitis pigmentosa (RP) cases are unknown. A number of genes responsible for Leber congenital amaurosis (LCA) may also cause RP when they are mutated. Our previous study revealed that variants in the most frequently mutated nine exons accounted for approximately half of the mutations detected in a cohort of patients with LCA. The aim of the present study was to detect mutations in LCA-associated genes in patients with RP using two different strategies. Sanger sequencing was used to screen mutations in the nine exons in 293 patients with RP and exome sequencing was used to detect variants in 12 LCA-associated genes in 157 of the 293 patients with RP and then to validate the variants by Sanger sequencing. Potential pathogenic mutations were identified in four patients with early onset RP, including homozygous CRB1 mutations in two patients, compound heterozygous CRB1 mutations in one patient and compound heterozygous CEP290 mutations in one patient. The present study indicated that mutations in CEP290 may also be associated with RP but not with LCA. With the exception of CEP290, the remaining 11 genes known to be associated with LCA but not with RP are unlikely to be a common cause of RP.
Genetics Home Reference: hereditary neuralgic amyotrophy
... tissues. This change in the functioning of septin proteins seems to particularly affect the brachial plexus, but the reason for this ... SH, Andermann E, Bird TD, Chance PF. SEPT9 gene sequencing analysis reveals recurrent mutations in hereditary neuralgic amyotrophy. ...
Cryopyrin-associated periodic syndrome: a case report and review of the Japanese literature.
Aoyama, Kumi; Amano, Hiroo; Takaoka, Yuki; Nishikomori, Ryuta; Ishikawa, Osamu
2012-07-01
Cryopyrin-associated periodic syndrome is an autoinflammatory syndrome caused by mutations of the CIAS1 gene (currently named NLRP3), and is characterized by periodic attacks of an urticaria-like rash, fever, head-ache, conjunctivitis and arthralgia. We report here a case of a 1-year-old boy with cryopyrin-associated periodic syndrome, which manifested as a recurrent skin rash in the postnatal period. Genetic analysis revealed a missense mutation of the CIAS1 gene in the mother and infant.
BRAF V600 Mutation Profile of Metastatic Melanoma in the Thrace Region of Turkey.
Can, Nuray; Taştekin, Ebru; Deniz Yalta, Tülin; Süt, Necdet; Korkmaz, Selma; Usta, Ufuk; Öz Puyan, Fulya; Genç, Ezgi; Cezik, Mert; Binboğa Tutuğ, Busem; Köstek, Osman; Tozkir, Hilmi
2018-02-08
BRAF is the most common mutation in melanoma. The most common subtype is BRAF V600E, followed by V600K. Initially, the authors aimed to investigate whether clinicopathological features of melanoma are associated with BRAF mutations. We then aimed to present the relationships between the clinicopathological features and the mutated subtype (V600E vs V600K). 61 patients with metastatic malignant melanoma (affecting the lymph node or other distant sites) were selected. Patient data regarding age at the time of diagnosis, sex, metastatic site (lymph node, distant metastasis or both) and primary tumour site were obtained from the hospital's database. Tissue samples containing at least 30% tumour cells were isolated from the specimens of 61 patients (24 samples from primary tumours and 37 from metastatic foci) for BRAF analysis. Comparisons between the BRAF V600 mutation and clinicopathological and histopathological features were performed. BRAF V600 mutation was detected in 34 (55.7%) patients. The subtype was BRAF V600E in 22 (64.7%) patients, BRAF V600K in 11(32.4%) patients and BRAF V600R in 1(2.9%) patient. The crucial results of the present study may be summarized as follows: i) BRAF V600 mutation was more common in older patients and tumors with BRAF V600 mutation revealed necrosis and LVI more commonly than wild-type tumors, ii) BRAF V600K mutation was more common in older patients and BRAF V600K mutated tumors exhibited ulceration more commonly than tumors with BRAF V600E mutation (close to significant). The BRAF V600 mutation may have interactions with prognostic clinicoptahological features of melanoma including necrosis and lymphovascular invasion. V600K mutation may be more common than expected and may have different associations with properties of the tumor such as tumor ulceration and patient age. Investigation of the mutated subtype of the BRAF gene may therefore reveal more detailed data about the management of melanoma and may also prevent missing of candidates for BRAF inhibitor therapies.
Mao, Peng; Brown, Alexander J; Malc, Ewa P; Mieczkowski, Piotr A; Smerdon, Michael J; Roberts, Steven A; Wyrick, John J
2017-10-01
DNA base damage is an important contributor to genome instability, but how the formation and repair of these lesions is affected by the genomic landscape and contributes to mutagenesis is unknown. Here, we describe genome-wide maps of DNA base damage, repair, and mutagenesis at single nucleotide resolution in yeast treated with the alkylating agent methyl methanesulfonate (MMS). Analysis of these maps revealed that base excision repair (BER) of alkylation damage is significantly modulated by chromatin, with faster repair in nucleosome-depleted regions, and slower repair and higher mutation density within strongly positioned nucleosomes. Both the translational and rotational settings of lesions within nucleosomes significantly influence BER efficiency; moreover, this effect is asymmetric relative to the nucleosome dyad axis and is regulated by histone modifications. Our data also indicate that MMS-induced mutations at adenine nucleotides are significantly enriched on the nontranscribed strand (NTS) of yeast genes, particularly in BER-deficient strains, due to higher damage formation on the NTS and transcription-coupled repair of the transcribed strand (TS). These findings reveal the influence of chromatin on repair and mutagenesis of base lesions on a genome-wide scale and suggest a novel mechanism for transcription-associated mutation asymmetry, which is frequently observed in human cancers. © 2017 Mao et al.; Published by Cold Spring Harbor Laboratory Press.
A novel mutation in FRMD7 causing X-linked idiopathic congenital nystagmus in a large family
He, Xiang; Gu, Feng; Wang, Yujing; Yan, Jinting; Zhang, Meng; Huang, Shangzhi
2008-01-01
Purpose To identify the gene responsible for causing an X-linked idiopathic congenital nystagmus (XLICN) in a six-generation Chinese family. Methods Forty-nine members of an XLICN family were recruited and examined after obtaining informed consent. Affected male individuals were genotyped with microsatellite markers around the FRMD7 locus. Mutations were comprehensively screened by direct sequencing using gene specific primers. An X-inactivation pattern was investigated by X chromosome methylation analysis. Results The patients showed phenotypes consistent with XLICN. Genotype analysis showed that male affected individuals in the family shared a common haplotype with the selected markers. Sequencing FRMD7 revealed a G>T transversion (c.812G>T) in exon 9, which caused a conservative substitution of Cys to Phe at codon 271 (p.C271F). This mutation co-segregated with all affected individuals and was present in the obligate, non-penetrant female carriers. However, the mutation was not observed in unaffected familial males or 400 control males. Females with the mutant gene could be affected or carrier and they shared the same inactivated X chromosome harboring the mutation in blood cells, which showed there is no clear causal link between X-inactivation pattern and phenotype. Conclusions We identified a novel mutation in FRMD7 and confirmed the role of this mutation in the pathogenesis of X-linked congenital nystagmus. PMID:18246032
Two novel mutations in the PPIB gene cause a rare pedigree of osteogenesis imperfecta type IX.
Jiang, Yu; Pan, Jingxin; Guo, Dongwei; Zhang, Wei; Xie, Jie; Fang, Zishui; Guo, Chunmiao; Fang, Qun; Jiang, Weiying; Guo, Yibin
2017-06-01
Osteogenesis imperfecta (OI) is a rare genetic skeletal disorder characterized by increased bone fragility and vulnerability to fractures. PPIB is identified as a candidate gene for OI-IX, here we detect two pathogenic mutations in PPIB and analyze the genotype-phenotype correlation in a Chinese family with OI. Next-generation sequencing (NGS) was used to screen the whole exome of the parents of proband. Screening of variation frequency, evolutionary conservation comparisons, pathogenicity evaluation, and protein structure prediction were conducted to assess the pathogenicity of the novel mutations. Sanger sequencing was used to confirm the candidate variants. RTQ-PCR was used to analyze the PPIB gene expression. All mutant genes screened out by NGS were excluded except PPIB. Two novel heterozygous PPIB mutations (father, c.25A>G; mother, c.509G>A) were identified in relation to osteogenesis imperfecta type IX. Both mutations were predicted to be pathogenic by bioinformatics analysis and RTQ-PCR analysis revealed downregulated PPIB expression in the two carriers. We report a rare pedigree with an autosomal recessive osteogenesis imperfecta type IX (OI-IX) caused by two novel PPIB mutations identified for the first time in China. The current study expands our knowledge of PPIB mutations and their associated phenotypes, and provides new information on the genetic defects associated with this disease for clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Mkaouar-Rebai, Emna; Chamkha, Imen; Kammoun, Fatma; Kammoun, Thouraya; Aloulou, Hajer; Hachicha, Mongia; Triki, Chahnez; Fakhfakh, Faiza
2009-07-01
Leigh syndrome is a progressive neurodegenerative disorder occurring in infancy and childhood characterized in most cases by a psychomotor retardation, optic atrophy, ataxia, dystonia, failure to thrive, seizures and respiratory failure. In this study, we performed a systematic sequence analysis of mitochondrial genes associated with LS in Tunisian patients. We sequenced the encoded complex I units: ND2, ND3, ND4, ND5 and ND6 genes and the mitochondrial ATPase 6, tRNA(Val), tRNA(Leu(UUR)), tRNA(Trp) and tRNA(Lys) genes in 10 unrelated patients with Leigh syndrome. We revealed the presence of 34 reported polymorphisms, nine novel nucleotide variants and two new mutations (T5523G and A5559G) in the tested patients. These two mutations were localized in two conserved regions of the tRNA(Trp) and affect, respectively, the D-stem and the T-stem of the mitochondrial tRNA leading to a disruption of the secondary structure of this tRNA. SSP-PCR analysis showed that the T5523G and A5559G mutations were present with respective heteroplasmic rates of 66% and 43 %. We report here the first mutational screening of mitochondrial mutations in Tunisian patients with Leigh syndrome which described two novel mutations associated with this disorder.
Behar, Doron M; Inbar, Ori; Shteinberg, Michal; Gur, Michal; Mussaffi, Huda; Shoseyov, David; Ashkenazi, Moshe; Alkrinawi, Soliman; Bormans, Concetta; Hakim, Fahed; Mei-Zahav, Meir; Cohen-Cymberknoh, Malena; Dagan, Adi; Prais, Dario; Sarouk, Ifat; Stafler, Patrick; Bar Aluma, Bat El; Akler, Gidon; Picard, Elie; Aviram, Micha; Efrati, Ori; Livnat, Galit; Rivlin, Joseph; Bentur, Lea; Blau, Hannah; Kerem, Eitan; Singer, Amihood
2017-05-01
Preconception carrier screening for cystic fibrosis (CF) is usually performed using ethnically targeted panels of selected mutations. This has been recently challenged by the use of expanded, ethnically indifferent, pan-population panels. Israel is characterized by genetically heterogeneous populations carrying a wide range of CFTR mutations. To assess the potential of expanding the current Israeli preconception screening program, we sought the subset of molecularly unresolved CF patients listed in the Israeli CF data registry comprising ~650 patients. An Israeli nationwide genotyping of 152 CF cases, representing 176 patients lacking molecular diagnosis, was conducted. Molecular analysis included Sanger sequencing for all exons and splice sites, multiplex ligation probe amplification (MLPA), and next-generation sequencing of the poly-T/TG tracts. We identified 54 different mutations, of which only 16 overlapped the 22 mutations included in the Israeli preconception screening program. A total of 29/54 (53.7%) mutations were already listed as CF causing by the CFTR2 database, and only 4/54 (7.4%) were novel. Molecular diagnosis was reached in 78/152 (51.3%) cases. Prenatal diagnosis of 24/78 (30.8%) cases could have been achieved by including all CFTR2-causing mutations in the Israeli panel. Our data reveal an overwhelming hidden abundance of CFTR gene mutations suggesting that expanded preconception carrier screening might achieve higher preconception detection rates.
Nagirnaja, Liina; Venclovas, Česlovas; Rull, Kristiina; Jonas, Kim C.; Peltoketo, Hellevi; Christiansen, Ole B.; Kairys, Visvaldas; Kivi, Gaily; Steffensen, Rudi; Huhtaniemi, Ilpo T.; Laan, Maris
2012-01-01
Heterodimeric hCG is one of the key hormones determining early pregnancy success. We have previously identified rare missense mutations in hCGβ genes with potential pathophysiological importance. The present study assessed the impact of these mutations on the structure and function of hCG by applying a combination of in silico (sequence and structure analysis, molecular dynamics) and in vitro (co-immunoprecipitation, immuno- and bioassays) approaches. The carrier status of each mutation was determined for 1086 North-Europeans [655 patients with recurrent miscarriage (RM)/431 healthy controls from Estonia, Finland and Denmark] using PCR-restriction fragment length polymorphism. The mutation CGB5 p.Val56Leu (rs72556325) was identified in a single heterozygous RM patient and caused a structural hindrance in the formation of the hCGα/β dimer. Although the amount of the mutant hCGβ assembled into secreted intact hCG was only 10% compared with the wild-type, a stronger signaling response was triggered upon binding to its receptor, thus compensating the effect of poor dimerization. The mutation CGB8 p.Pro73Arg (rs72556345) was found in five heterozygotes (three RM cases and two control individuals) and was inherited by two of seven studied live born children. The mutation caused ∼50% of secreted β-subunits to acquire an alternative conformation, but did not affect its biological activity. For the CGB8 p.Arg8Trp (rs72556341) substitution, the applied in vitro methods revealed no alterations in the assembly of intact hCG as also supported by an in silico analysis. In summary, the accumulated data indicate that only mutations with neutral or mild functional consequences might be tolerated in the major hCGβ genes CGB5 and CGB8. PMID:22554618
Saleha, Shamim; Ajmal, Muhammad; Jamil, Muhammad; Nasir, Muhammad; Hameed, Abdul
2016-01-01
To map Usher phenotype in a consanguineous Pakistani family and identify disease-associated mutation in a causative gene to establish phenotype-genotype correlation. A consanguineous Pakistani family in which Usher phenotype was segregating as an autosomal recessive trait was ascertained. On the basis of results of clinical investigations of affected members of this family disease was diagnosed as Usher syndrome (USH). To identify the locus responsible for the Usher phenotype in this family, genomic DNA from blood sample of each individual was genotyped using microsatellite Short Tandem Repeat (STR) markers for the known Usher syndrome loci. Then direct sequencing was performed to find out disease associated mutations in the candidate gene. By genetic linkage analysis, the USH phenotype of this family was mapped to PCDH15 locus on chromosome 10q21.1. Three different point mutations in exon 11 of PCDH15 were identified and one of them, c.1304A>C was found to be segregating with the disease phenotype in Pakistani family with Usher phenotype. This, c.1304A>C transversion mutation predicts an amino-acid substitution of aspartic acid with an alanine at residue number 435 (p.D435A) of its protein product. Moreover, in silico analysis revealed conservation of aspartic acid at position 435 and predicated this change as pathogenic. The identification of c.1304A>C pathogenic mutation in PCDH15 gene and its association with Usher syndrome in a consanguineous Pakistani family is the first example of a missense mutation of PCDH15 causing USH1 phenotype. In previous reports, it was hypothesized that severe mutations such as truncated protein of PCDH15 led to the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.
Kukita, Yoji; Okami, Jiro; Yoneda-Kato, Noriko; Nakamae, Ikuko; Kawabata, Takeshi; Higashiyama, Masahiko; Kato, Junya; Kodama, Ken; Kato, Kikuya
2016-01-01
In clinical practice, there are a number of cancer patients with clear family histories, but the patients lack mutations in known familial cancer syndrome genes. Recent advances in genomic technologies have enhanced the possibility of identifying causative genes in such cases. Two siblings, an elder sister and a younger brother, were found to have multiple primary lung cancers at the age of 60. The former subsequently developed breast cancer and had a history of uterine myoma. The latter had initially developed prostate cancer at the age of 59 and had a history of colon cancer. Single-nucleotide polymorphism (SNP) genotyping revealed that ∼10% of the genomes were homozygous in both patients. Exome sequencing revealed nonsynonymous mutations in five genes in the runs of homozygosity: CHEK2, FCGRT, INPP5J, MYO18B, and SFI1. Evolutionary conservation of primary protein structures suggested the functional importance of the CHEK2 mutation, p.R474C. This mutation altered the tertiary structure of CHK2 by disrupting the salt bridge between p.R474 and p.E394. No such structural changes were observed with the other mutated genes. Subsequent cell-based transfection analysis revealed that CHK2 p.R474C was unstable and scarcely activated. We concluded that the homozygous CHEK2 variant was contributory in this case of familial cancer. Although homozygous inactivation of CHEK2 in mice led to cancers in multiple organs, accumulation of additional human cases is needed to establish its pathogenic role in humans. PMID:27900359
Kukita, Yoji; Okami, Jiro; Yoneda-Kato, Noriko; Nakamae, Ikuko; Kawabata, Takeshi; Higashiyama, Masahiko; Kato, Junya; Kodama, Ken; Kato, Kikuya
2016-11-01
In clinical practice, there are a number of cancer patients with clear family histories, but the patients lack mutations in known familial cancer syndrome genes. Recent advances in genomic technologies have enhanced the possibility of identifying causative genes in such cases. Two siblings, an elder sister and a younger brother, were found to have multiple primary lung cancers at the age of 60. The former subsequently developed breast cancer and had a history of uterine myoma. The latter had initially developed prostate cancer at the age of 59 and had a history of colon cancer. Single-nucleotide polymorphism (SNP) genotyping revealed that ∼10% of the genomes were homozygous in both patients. Exome sequencing revealed nonsynonymous mutations in five genes in the runs of homozygosity: CHEK2 , FCGRT , INPP5J , MYO18B , and SFI1 . Evolutionary conservation of primary protein structures suggested the functional importance of the CHEK2 mutation, p.R474C. This mutation altered the tertiary structure of CHK2 by disrupting the salt bridge between p.R474 and p.E394. No such structural changes were observed with the other mutated genes. Subsequent cell-based transfection analysis revealed that CHK2 p.R474C was unstable and scarcely activated. We concluded that the homozygous CHEK2 variant was contributory in this case of familial cancer. Although homozygous inactivation of CHEK2 in mice led to cancers in multiple organs, accumulation of additional human cases is needed to establish its pathogenic role in humans.
Screening of mutations affecting protein stability and dynamics of FGFR1—A simulation analysis
Doss, C. George Priya; Rajith, B.; Garwasis, Nimisha; Mathew, Pretty Raju; Raju, Anand Solomon; Apoorva, K.; William, Denise; Sadhana, N.R.; Himani, Tanwar; Dike, IP.
2012-01-01
Single amino acid substitutions in Fibroblast Growth Factor Receptor 1 (FGFR1) destabilize protein and have been implicated in several genetic disorders like various forms of cancer, Kallamann syndrome, Pfeiffer syndrome, Jackson Weiss syndrome, etc. In order to gain functional insight into mutation caused by amino acid substitution to protein function and expression, special emphasis was laid on molecular dynamics simulation techniques in combination with in silico tools such as SIFT, PolyPhen 2.0, I-Mutant 3.0 and SNAP. It has been estimated that 68% nsSNPs were predicted to be deleterious by I-Mutant, slightly higher than SIFT (37%), PolyPhen 2.0 (61%) and SNAP (58%). From the observed results, P722S mutation was found to be most deleterious by comparing results of all in silico tools. By molecular dynamics approach, we have shown that P722S mutation leads to increase in flexibility, and deviated more from the native structure which was supported by the decrease in the number of hydrogen bonds. In addition, biophysical analysis revealed a clear insight of stability loss due to P722S mutation in FGFR1 protein. Majority of mutations predicted by these in silico tools were in good concordance with the experimental results. PMID:27896051
Impacts of the Callipyge Mutation on Ovine Plasma Metabolites and Muscle Fibre Type
Li, Juan; Greenwood, Paul L.; Cockett, Noelle E.; Hadfield, Tracy S.; Vuocolo, Tony; Byrne, Keren; White, Jason D.; Tellam, Ross L.; Schirra, Horst Joachim
2014-01-01
The ovine Callipyge mutation causes postnatal muscle hypertrophy localized to the pelvic limbs and torso, as well as body leanness. The mechanism underpinning enhanced muscle mass is unclear, as is the systemic impact of the mutation. Using muscle fibre typing immunohistochemistry, we confirmed muscle specific effects and demonstrated that affected muscles had greater prevalence and hypertrophy of type 2X fast twitch glycolytic fibres and decreased representation of types 1, 2C, 2A and/or 2AX fibres. To investigate potential systemic effects of the mutation, proton NMR spectra of plasma taken from lambs at 8 and 12 weeks of age were measured. Multivariate statistical analysis of plasma metabolite profiles demonstrated effects of development and genotype but not gender. Plasma from Callipyge lambs at 12 weeks of age, but not 8 weeks, was characterized by a metabolic profile consistent with contributions from the affected hypertrophic fast twitch glycolytic muscle fibres. Microarray analysis of the perirenal adipose tissue depot did not reveal a transcriptional effect of the mutation in this tissue. We conclude that there is an indirect systemic effect of the Callipyge mutation in skeletal muscle in the form of changes of blood metabolites, which may contribute to secondary phenotypes such as body leanness. PMID:24937646
Screening of mutations affecting protein stability and dynamics of FGFR1-A simulation analysis.
Doss, C George Priya; Rajith, B; Garwasis, Nimisha; Mathew, Pretty Raju; Raju, Anand Solomon; Apoorva, K; William, Denise; Sadhana, N R; Himani, Tanwar; Dike, I P
2012-12-01
Single amino acid substitutions in Fibroblast Growth Factor Receptor 1 ( FGFR1 ) destabilize protein and have been implicated in several genetic disorders like various forms of cancer, Kallamann syndrome, Pfeiffer syndrome, Jackson Weiss syndrome, etc. In order to gain functional insight into mutation caused by amino acid substitution to protein function and expression, special emphasis was laid on molecular dynamics simulation techniques in combination with in silico tools such as SIFT, PolyPhen 2.0, I-Mutant 3.0 and SNAP. It has been estimated that 68% nsSNPs were predicted to be deleterious by I-Mutant, slightly higher than SIFT (37%), PolyPhen 2.0 (61%) and SNAP (58%). From the observed results, P722S mutation was found to be most deleterious by comparing results of all in silico tools. By molecular dynamics approach, we have shown that P722S mutation leads to increase in flexibility, and deviated more from the native structure which was supported by the decrease in the number of hydrogen bonds. In addition, biophysical analysis revealed a clear insight of stability loss due to P722S mutation in FGFR1 protein. Majority of mutations predicted by these in silico tools were in good concordance with the experimental results.
Impacts of the Callipyge mutation on ovine plasma metabolites and muscle fibre type.
Li, Juan; Greenwood, Paul L; Cockett, Noelle E; Hadfield, Tracy S; Vuocolo, Tony; Byrne, Keren; White, Jason D; Tellam, Ross L; Schirra, Horst Joachim
2014-01-01
The ovine Callipyge mutation causes postnatal muscle hypertrophy localized to the pelvic limbs and torso, as well as body leanness. The mechanism underpinning enhanced muscle mass is unclear, as is the systemic impact of the mutation. Using muscle fibre typing immunohistochemistry, we confirmed muscle specific effects and demonstrated that affected muscles had greater prevalence and hypertrophy of type 2X fast twitch glycolytic fibres and decreased representation of types 1, 2C, 2A and/or 2AX fibres. To investigate potential systemic effects of the mutation, proton NMR spectra of plasma taken from lambs at 8 and 12 weeks of age were measured. Multivariate statistical analysis of plasma metabolite profiles demonstrated effects of development and genotype but not gender. Plasma from Callipyge lambs at 12 weeks of age, but not 8 weeks, was characterized by a metabolic profile consistent with contributions from the affected hypertrophic fast twitch glycolytic muscle fibres. Microarray analysis of the perirenal adipose tissue depot did not reveal a transcriptional effect of the mutation in this tissue. We conclude that there is an indirect systemic effect of the Callipyge mutation in skeletal muscle in the form of changes of blood metabolites, which may contribute to secondary phenotypes such as body leanness.
NASA Astrophysics Data System (ADS)
Anwar, Muhammad Ayaz; Choi, Sangdun
2017-03-01
Toll-like receptor 4 (TLR4), a vital innate immune receptor present on cell surfaces, initiates a signaling cascade during danger and bacterial intrusion. TLR4 needs to form a stable hexamer complex, which is necessary to dimerize the cytoplasmic domain. However, D299G and T399I polymorphism may abrogate the stability of the complex, leading to compromised TLR4 signaling. Crystallography provides valuable insights into the structural aspects of the TLR4 ectodomain; however, the dynamic behavior of polymorphic TLR4 is still unclear. Here, we employed molecular dynamics simulations (MDS), as well as principal component and residue network analyses, to decipher the structural aspects and signaling propagation associated with mutations in TLR4. The mutated complexes were less cohesive, displayed local and global variation in the secondary structure, and anomalous decay in rotational correlation function. Principal component analysis indicated that the mutated complexes also exhibited distinct low-frequency motions, which may be correlated to the differential behaviors of these TLR4 variants. Moreover, residue interaction networks (RIN) revealed that the mutated TLR4/myeloid differentiation factor (MD) 2 complex may perpetuate abnormal signaling pathways. Cumulatively, the MDS and RIN analyses elucidated the mutant-specific conformational alterations, which may help in deciphering the mechanism of loss-of-function mutations.
Rennert, Hanna; Eng, Kenneth; Zhang, Tuo; Tan, Adrian; Xiang, Jenny; Romanel, Alessandro; Kim, Robert; Tam, Wayne; Liu, Yen-Chun; Bhinder, Bhavneet; Cyrta, Joanna; Beltran, Himisha; Robinson, Brian; Mosquera, Juan Miguel; Fernandes, Helen; Demichelis, Francesca; Sboner, Andrea; Kluk, Michael; Rubin, Mark A; Elemento, Olivier
2016-01-01
We describe Exome Cancer Test v1.0 (EXaCT-1), the first New York State-Department of Health-approved whole-exome sequencing (WES)-based test for precision cancer care. EXaCT-1 uses HaloPlex (Agilent) target enrichment followed by next-generation sequencing (Illumina) of tumour and matched constitutional control DNA. We present a detailed clinical development and validation pipeline suitable for simultaneous detection of somatic point/indel mutations and copy-number alterations (CNAs). A computational framework for data analysis, reporting and sign-out is also presented. For the validation, we tested EXaCT-1 on 57 tumours covering five distinct clinically relevant mutations. Results demonstrated elevated and uniform coverage compatible with clinical testing as well as complete concordance in variant quality metrics between formalin-fixed paraffin embedded and fresh-frozen tumours. Extensive sensitivity studies identified limits of detection threshold for point/indel mutations and CNAs. Prospective analysis of 337 cancer cases revealed mutations in clinically relevant genes in 82% of tumours, demonstrating that EXaCT-1 is an accurate and sensitive method for identifying actionable mutations, with reasonable costs and time, greatly expanding its utility for advanced cancer care. PMID:28781886
Gupta, Divya; Chandrashekar, Laxmisha; Larizza, Lidia; Colombo, Elisa A; Fontana, Laura; Gervasini, Cristina; Thappa, Devinder M; Rajappa, Medha; Rajendiran, Kalai Selvi; Sreenath, Gubbi Shamanna; Kate, Vikram
2017-02-01
Familial lentiginosis syndromes are characterized by a wide array of manifestations resulting from activation of molecular pathways which control growth, proliferation, and differentiation of a broad range of tissues. Familial gastrointestinal stromal tumors (GISTs) are often accompanied by additional features like hyperpigmentation, mastocytosis, and dysphagia. They have been described with mutations in c-kit (most commonly), platelet-derived growth factor receptor A, neurofibromatosis-1, and succinate dehydrogenase genes. We report on molecular characterization and tumor histopathology of two siblings in whom lentigines and café-au-lait macules were present along with multifocal GIST. Immuhistochemical analysis of CD34 and CD117 was performed on GIST biopsy samples from both siblings, while c-kit mutational analysis was done by PCR and direct sequencing on DNA from peripheral blood leukocytes of all family members and from paraffin-embedded gastric biopsy specimens of affected siblings. Histopathology revealed positive expression of CD117 and CD34. Mutational analysis showed the germline c.1676T>C mutation in c-kit exon 11, (p.(Val559Ala)), in the peripheral blood of both siblings and a second exon 11 mutation, c.1669T>A (p.(Trp557Arg)) in the tumor biopsy of one of them. Initiation of imatinib treatment resulted in striking resolution of their hyperpigmentation and a stable gastrointestinal disease in one of them. A c-kit mutational test in familial GISTs is indicated before initiation of imatinib therapy, as it can help predict tumor response to treatment. © 2017 The International Society of Dermatology.
Belostotsky, Ruth; Ben-Shalom, Efrat; Rinat, Choni; Becker-Cohen, Rachel; Feinstein, Sofia; Zeligson, Sharon; Segel, Reeval; Elpeleg, Orly; Nassar, Suheir; Frishberg, Yaacov
2011-02-11
An uncharacterized multisystemic mitochondrial cytopathy was diagnosed in two infants from consanguineous Palestinian kindred living in a single village. The most significant clinical findings were tubulopathy (hyperuricemia, metabolic alkalosis), pulmonary hypertension, and progressive renal failure in infancy (HUPRA syndrome). Analysis of the consanguineous pedigree suggested that the causative mutation is in the nuclear DNA. By using genome-wide SNP homozygosity analysis, we identified a homozygous identity-by-descent region on chromosome 19 and detected the pathogenic mutation c.1169A>G (p.Asp390Gly) in SARS2, encoding the mitochondrial seryl-tRNA synthetase. The same homozygous mutation was later identified in a third infant with HUPRA syndrome. The carrier rate of this mutation among inhabitants of this Palestinian isolate was found to be 1:15. The mature enzyme catalyzes the ligation of serine to two mitochondrial tRNA isoacceptors: tRNA(Ser)(AGY) and tRNA(Ser)(UCN). Analysis of amino acylation of the two target tRNAs, extracted from immortalized peripheral lymphocytes derived from two patients, revealed that the p.Asp390Gly mutation significantly impacts on the acylation of tRNA(Ser)(AGY) but probably not that of tRNA(Ser)(UCN). Marked decrease in the expression of the nonacylated transcript and the complete absence of the acylated tRNA(Ser)(AGY) suggest that this mutation leads to significant loss of function and that the uncharged transcripts undergo degradation. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Schwatz, Charles; Alexov, Emil
2011-03-01
Creatine transporter (CT) protein, which is encoded by SLC6A8 gene, is essential for taking up the creatine in the cell, which in turn plays a key role in the spatial and temporal maintenance of energy in skeletal and cardiac muscle cells. It was shown that some missense mutations in CT cause mental retardation, while others are harmless non-synonymous single nucleoside polymorphism (nsSNP). Currently fifteen missense mutations in CT are known, among which twelve are disease-causing. Sequence analysis reveals that there is no clear trend distinguishing disease-causing from harmless missense mutations. Because of that, we built 3D model of the CT using highly homologous template and use the model to investigate the effects of mutations of CT stability and hydrogen bond network. It is demonstrated that disease-causing mutations affect the folding free energy and ionization states of titratable group in much greater extend as compared with harmless mutations. Supported by grants from NLM, NIH, grant numbers 1R03LM009748 and 1R03LM009748-S1.
Absence of PITX3 mutation in a Tunisian family with congenital cataract and mental retardation
Chograni, Manèl; Chaabouni, Myriam; Chelly, Imen; Helayem, Mohamed Bechir
2010-01-01
Purpose The PITX3 (pituitary homeobox 3) gene encodes for a homeobox bicoid-like transcription factor. When one allele is mutated, it leads to dominant cataract and anterior segment mesenchymal dysgenesis in humans. When both copies are mutated, homozygous mutation contributes to microphtalmia with brain malformations. In the current study, a family with autosomal recessive congenital cataract (ARCC) associated with mental retardation (MR) was examined to identify PITX3 mutations. Methods Sequencing of the PITX3 gene was performed on two affected and three unaffected members of the studied Tunisian family. The results were analyzed with Sequencing Analysis 5.2 and SeqScape. Results No mutation in the four exons of PITX3 was revealed. Two substitution polymorphisms, c.439C>T and c.930C>A, were detected in exons 3 and 4, respectively. These alterations did not segregate with the disease. Conclusions Although PITX3 was shown to be essential to normal embryonic eye and brain development in vertebrates, we report the absence of PITX3 mutations in a family presenting congenital cataract and mental retardation. PMID:20376326
Sequence variants in four genes underlying Bardet-Biedl syndrome in consanguineous families
Ullah, Asmat; Umair, Muhammad; Yousaf, Maryam; Khan, Sher Alam; Nazim-ud-din, Muhammad; Shah, Khadim; Ahmad, Farooq; Azeem, Zahid; Ali, Ghazanfar; Alhaddad, Bader; Rafique, Afzal; Jan, Abid; Haack, Tobias B.; Strom, Tim M.; Meitinger, Thomas; Ghous, Tahseen
2017-01-01
Purpose To investigate the molecular basis of Bardet-Biedl syndrome (BBS) in five consanguineous families of Pakistani origin. Methods Linkage in two families (A and B) was established to BBS7 on chromosome 4q27, in family C to BBS8 on chromosome 14q32.1, and in family D to BBS10 on chromosome 12q21.2. Family E was investigated directly with exome sequence analysis. Results Sanger sequencing revealed two novel mutations and three previously reported mutations in the BBS genes. These mutations include two deletions (c.580_582delGCA, c.1592_1597delTTCCAG) in the BBS7 gene, a missense mutation (p.Gln449His) in the BBS8 gene, a frameshift mutation (c.271_272insT) in the BBS10 gene, and a nonsense mutation (p.Ser40*) in the MKKS (BBS6) gene. Conclusions Two novel mutations and three previously reported variants, identified in the present study, further extend the body of evidence implicating BBS6, BBS7, BBS8, and BBS10 in causing BBS. PMID:28761321
Fernández-Cancio, Mónica; Nistal, Manuel; Gracia, Ricardo; Molina, M Antonia; Tovar, Juan Antonio; Esteban, Cristina; Carrascosa, Antonio; Audí, Laura
2004-01-01
The goal of this study was to perform 5-alpha-reductase type 2 gene (SRD5A2) analysis in a male pseudohermaphrodite (MPH) patient with normal testosterone (T) production and normal androgen receptor (AR) gene coding sequences. A patient of Chinese origin with ambiguous genitalia at 14 months, a 46,XY karyotype, and normal T secretion under human chorionic gonadotropin (hCG) stimulation underwent a gonadectomy at 20 months. Exons 1-8 of the AR gene and exons 1-5 of the SRD5A2 gene were sequenced from peripheral blood DNA. AR gene coding sequences were normal. SRD5A2 gene analysis revealed 2 consecutive mutations in exon 4, each located in a different allele: 1) a T nucleotide deletion, which predicts a frameshift mutation from codon 219, and 2) a missense mutation at codon 227, where the substitution of guanine (CGA) by adenine (CAA) predicts a glutamine replacement of arginine (R227Q). Testes located in the inguinal canal showed a normal morphology for age. The patient was a compound heterozygote for SRD5A2 mutations, carrying 2 mutations in exon 4. The patient showed an R227Q mutation that has been described in an Asian population and MPH patients, along with a novel frameshift mutation, Tdel219. Testis morphology showed that, during early infancy, the 5-alpha-reductase enzyme deficiency may not have affected interstitial or tubular development.
Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer.
Ikeda, Masato; Mitsuhashi, Satoshi; Tanaka, Kenji; Hayashi, Mikiro
2009-03-01
Toward the creation of a robust and efficient producer of L-arginine and L-citrulline (arginine/citrulline), we have performed reengineering of a Corynebacterium glutamicum strain by using genetic information of three classical producers. Sequence analysis of their arg operons identified three point mutations (argR123, argG92(up), and argG45) in one producer and one point mutation (argB26 or argB31) in each of the other two producers. Reconstitution of the former three mutations or of each argB mutation on a wild-type genome led to no production. Combined introduction of argB26 or argB31 with argR123 into a wild type gave rise to arginine/citrulline production. When argR123 was replaced by an argR-deleted mutation (Delta argR), the production was further increased. The best mutation set, Delta argR and argB26, was used to screen for the highest productivity in the backgrounds of different wild-type strains of C. glutamicum. This yielded a robust producer, RB, but the production was still one-third of that of the best classical producer. Transcriptome analysis revealed that the arg operon of the classical producer was much more highly upregulated than that of strain RB. Introduction of leuC456, a mutation derived from a classical L-lysine producer and provoking global induction of the amino acid biosynthesis genes, including the arg operon, into strain RB led to increased production but incurred retarded fermentation. On the other hand, replacement of the chromosomal argB by heterologous Escherichia coli argB, natively insensitive to arginine, caused a threefold-increased production without retardation, revealing that the limitation in strain RB was the activity of the argB product. To overcome this, in addition to argB26, the argB31 mutation was introduced into strain RB, which caused higher deregulation of the enzyme and resulted in dramatically increased production, like the strain with E. coli argB. This reconstructed strain displayed an enhanced performance, thus allowing significantly higher productivity of arginine/citrulline even at the suboptimal 38 degrees C.
Takano, Shingo; Hattori, Keiichiro; Ishikawa, Eiichi; Narita, Yoshitaka; Iwadate, Yasuo; Yamaguchi, Fumio; Nagane, Motoo; Akimoto, Jiro; Oka, Hidehiro; Tanaka, Satoshi; Sakata, Mamiko; Matsuda, Masahide; Yamamoto, Tetsuya; Chiba, Shigeru; Matsumura, Akira
2018-04-01
Recent genetic analysis of primary central nervous system lymphoma (PCNSL) showed that the MyD88 L265P mutation, which is related to NF-κB signaling, was a genetic hallmark for PCNSL; thus it could serve as a genetic marker for diagnosis and a potential target for molecular therapy. However, the role of the MyD88 mutation in PCNSL has not been defined. In this study, we investigated the role of the MyD88 mutation and clinical features of PCNSL-treated patients at several institutions to determine its significance as a prognostic factor. Forty-one PCNSL (diffuse large B-cell type) patients from 8 institutions were included in this study. Their median age was 68 years; median follow-up was 26.7 months; median overall survival was 26.7 months; and their 1-year, 3-year, and 5-year survival rates were 75.6%, 58.5%, and 43.9%, respectively. Deoxyribonucleic acid was extracted from frozen tissue, and the MyD88 L265P mutation was evaluated by polymerase chain reaction and direct sequencing. The MyD88 L265P mutation was found in 61.0% (25/41) of cases. Kaplan-Meier analysis revealed that neither MyD88 L265P mutation nor age >65 years alone significantly predicted overall survival relative to MyD88 wild type and age <65. The MyD88 L265P mutation was predominantly present in patients aged >65 years. Among age >65 patients, the MyD88 L265P mutation portended a worse overall survival compared with the MyD88 wild type (11.5 vs. 56.2 months P < 0.04). The MyD88 L265P mutation predicted a poor prognosis in elderly PCNSL patients. A new tailor-made treatment strategy might be needed for these patients. Copyright © 2017. Published by Elsevier Inc.
MTHFR Gene Polymorphism-Mutations and Air Pollution as Risk Factors for Breast Cancer
Gonzales, Mildred C.; Yu, Pojui; Shiao, S. Pamela K.
2017-01-01
Background The methylenetetrahydrofolate reductase gene (MTHFR) is one of the most investigated genes associated with breast cancer for its role in epigenetic pathways. Objectives The objectives of this metaprediction study were to examine the polymorphism-mutation risk subtypes of MTHFR and air pollution as contributing factors for breast cancer. Methods For triangulation purposes in metapredictive analyses, we used a recursive partition tree, nonlinear association curve fit, and heat maps for data visualization, in addition to the conventional comparison procedure and pooled analyses. Results We included 36,683 breast cancer cases and 40,689 controls across 82 studies for MTHFR 677 and 23,252 cases and 27,094 controls across 50 studies for MTHFR 1298. MTHFR 677 TT was a risk genotype for breast cancer (p = .0004) and in the East Asian subgroup (p = .005). On global maps, the most polymorphism-mutations on MTHFR 677 TT were found in the Middle East, Europe, Asia, and the Americas, whereas the most mutations on MTHFR 1298 CC were located in Europe and the Middle East for the control group. The geographic information system maps further revealed that MTHFR 677 TT mutations yielded a higher risk of breast cancer for Australia, East Asia, the Middle East, South Europe, Morocco, and the Americas and that MTHFR 1298 CC mutations yielded a higher risk in Asia, the Middle East, South Europe, and South America. Metapredictive analysis revealed that air pollution level was significantly associated with MTHFR 677 TT polymorphism-mutation genotype. Discussion We present the most comprehensive analyses to date of MTHFR polymorphism-mutations and breast cancer risk. Future nursing studies are needed to investigate the health impact on breast cancer of epigenetics and air pollution across populations. PMID:28114181
Gonzales, Mildred C; Yu, Pojui; Shiao, S Pamela K
The methylenetetrahydrofolate reductase gene (MTHFR) is one of the most investigated genes associated with breast cancer for its role in epigenetic pathways. The objectives of this metaprediction study were to examine the polymorphism-mutation risk subtypes of MTHFR and air pollution as contributing factors for breast cancer. For triangulation purposes in metapredictive analyses, we used a recursive partition tree, nonlinear association curve fit, and heat maps for data visualization, in addition to the conventional comparison procedure and pooled analyses. We included 36,683 breast cancer cases and 40,689 controls across 82 studies for MTHFR 677 and 23,252 cases and 27,094 controls across 50 studies for MTHFR 1298. MTHFR 677 TT was a risk genotype for breast cancer (p = .0004) and in the East Asian subgroup (p = .005). On global maps, the most polymorphism-mutations on MTHFR 677 TT were found in the Middle East, Europe, Asia, and the Americas, whereas the most mutations on MTHFR 1298 CC were located in Europe and the Middle East for the control group. The geographic information system maps further revealed that MTHFR 677 TT mutations yielded a higher risk of breast cancer for Australia, East Asia, the Middle East, South Europe, Morocco, and the Americas and that MTHFR 1298 CC mutations yielded a higher risk in Asia, the Middle East, South Europe, and South America. Metapredictive analysis revealed that air pollution level was significantly associated with MTHFR 677 TT polymorphism-mutation genotype. We present the most comprehensive analyses to date of MTHFR polymorphism-mutations and breast cancer risk. Future nursing studies are needed to investigate the health impact on breast cancer of epigenetics and air pollution across populations.
Facchinetti, Francesco; Loriot, Yohann; Kuo, Mei-Shiue; Mahjoubi, Linda; Lacroix, Ludovic; Planchard, David; Besse, Benjamin; Farace, Françoise; Auger, Nathalie; Remon, Jordi; Scoazec, Jean-Yves; André, Fabrice; Soria, Jean-Charles; Friboulet, Luc
2016-12-15
The identification of molecular mechanisms conferring resistance to tyrosine kinase inhibitor (TKI) is a key step to improve therapeutic results for patients with oncogene addiction. Several alterations leading to EGFR and anaplastic lymphoma kinase (ALK) resistance to TKI therapy have been described in non-small cell lung cancer (NSCLC). Only two mutations in the ROS1 kinase domain responsible for crizotinib resistance have been described in patients thus far. A patient suffering from a metastatic NSCLC harboring an ezrin (EZR)-ROS1 fusion gene developed acquired resistance to the ALK/ROS1 inhibitor crizotinib. Molecular analysis (whole-exome sequencing, CGH) and functional studies were undertaken to elucidate the mechanism of resistance. Based on this case, we took advantage of the structural homology of ROS1 and ALK to build a predictive model for drug sensitivity regarding future ROS1 mutations. Sequencing revealed a dual mutation, S1986Y and S1986F, in the ROS1 kinase domain. Functional in vitro studies demonstrated that ROS1 harboring either the S1986Y or the S1986F mutation, while conferring resistance to crizotinib and ceritinib, was inhibited by lorlatinib (PF-06463922). The patient's clinical response confirmed the potency of lorlatinib against S1986Y/F mutations. The ROS1 S1986Y/F and ALK C1156Y mutations are homologous and displayed similar sensitivity patterns to ALK/ROS1 TKIs. We extended this analogy to build a model predicting TKI efficacy against potential ROS1 mutations. Clinical evidence, in vitro validation, and homology-based prediction provide guidance for treatment decision making for patients with ROS1-rearranged NSCLC who progressed on crizotinib. Clin Cancer Res; 22(24); 5983-91. ©2016 AACR. ©2016 American Association for Cancer Research.
Vijayan, R.S.K.; Arnold, Eddy; Das, Kalyan
2015-01-01
HIV-1 reverse transcriptase (RT) is a multifunctional enzyme that is targeted by nucleoside analogs (NRTIs) and nonnucleoside inhibitors (NNRTIs). NNRTIs are allosteric inhibitors of RT, and constitute an integral part of the highly active antiretroviral therapy (HAART) regimen. Under selective pressure, HIV-1 acquires resistance against NNRTIs primarily by selecting mutations around the NNRTI pocket. Complete RT sequencing of clinical isolates revealed that spatially distal mutations arising in connection and the RNase H domain also confer NNRTI resistance and contribute to NRTI resistance. However, the precise structural mechanism by which the connection domain mutations confer NNRTI resistance is poorly understood. We performed 50-ns MD simulations, followed by essential dynamics, free-energy landscape analyses and network analyses of RT-DNA, RT-DNA-nevirapine, and N348I/T369I mutant RT-DNA-nevirapine complexes. MD simulation studies revealed altered global motions and restricted conformational landscape of RT upon nevirapine binding. Analysis of protein structure network parameters demonstrated a dissortative hub pattern in the RT-DNA complex and an assortative hub pattern in the RT-DNA-nevirapine complex suggesting enhanced rigidity of RT upon nevirapine binding. The connection subdomain mutations N348I/T369I did not induce any significant structural change; rather, these mutations modulate the conformational dynamics and alter the long-range allosteric communication network between the connection subdomain and NNRTI pocket. Insights from the present study provide a structural basis for the biochemical and clinical findings on drug resistance caused by the connection and RNase H mutations. PMID:24174331
Novel Mutations Causing C5 Deficiency in Three North-African Families.
Colobran, Roger; Franco-Jarava, Clara; Martín-Nalda, Andrea; Baena, Neus; Gabau, Elisabeth; Padilla, Natàlia; de la Cruz, Xavier; Pujol-Borrell, Ricardo; Comas, David; Soler-Palacín, Pere; Hernández-González, Manuel
2016-05-01
The complement system plays a central role in defense to encapsulated bacteria through opsonization and membrane attack complex (MAC) dependent lysis. The three activation pathways (classical, lectin, and alternative) converge in the cleavage of C5, which initiates MAC formation and target lysis. C5 deficiency is associated to recurrent infections by Neisseria spp. In the present study, complement deficiency was suspected in three families of North-African origin after one episode of invasive meningitis due to a non-groupable and two uncommon Meningococcal serotypes (E29, Y). Activity of alternative and classical pathways of complement were markedly reduced and the measurement of terminal complement components revealed total C5 absence. C5 gene analysis revealed two novel mutations as causative of the deficiency: Family A propositus carried a homozygous deletion of two adenines in the exon 21 of C5 gene, resulting in a frameshift and a truncated protein (c.2607_2608del/p.Ser870ProfsX3 mutation). Families B and C probands carried the same homozygous deletion of three consecutive nucleotides (CAA) in exon 9 of the C5 gene, leading to the deletion of asparagine 320 (c.960_962del/p.Asn320del mutation). Family studies confirmed an autosomal recessive inheritance pattern. Although sharing the same geographical origin, families B and C were unrelated. This prompted us to investigate this mutation prevalence in a cohort of 768 North-African healthy individuals. We identified one heterozygous carrier of the p.Asn320del mutation (allelic frequency = 0.065 %), indicating that this mutation is present at low frequency in North-African population.
A chemotactic signaling surface on CheY defined by suppressors of flagellar switch mutations.
Roman, S J; Meyers, M; Volz, K; Matsumura, P
1992-01-01
CheY is the response regulator protein that interacts with the flagellar switch apparatus to modulate flagellar rotation during chemotactic signaling. CheY can be phosphorylated and dephosphorylated in vitro, and evidence indicates that CheY-P is the activated form that induces clockwise flagellar rotation, resulting in a tumble in the cell's swimming pattern. The flagellar switch apparatus is a complex macromolecular structure composed of at least three gene products, FliG, FliM, and FliN. Genetic analysis of Escherichia coli has identified fliG and fliM as genes in which mutations occur that allele specifically suppress cheY mutations, indicating interactions among these gene products. We have generated a class of cheY mutations selected for dominant suppression of fliG mutations. Interestingly, these cheY mutations dominantly suppressed both fliG and fliM mutations; this is consistent with the idea that the CheY protein interacts with both switch gene products during signaling. Biochemical characterization of wild-type and suppressor CheY proteins did not reveal altered phosphorylation properties or evidence for phosphorylation-dependent CheY multimerization. These data indicate that suppressor CheY proteins are specifically altered in the ability to transduce chemotactic signals to the switch at some point subsequent to phosphorylation. Physical mapping of suppressor amino acid substitutions on the crystal structure of CheY revealed a high degree of spatial clustering, suggesting that this region of CheY is a signaling surface that transduces chemotactic signals to the switch. Images PMID:1400175
Mutational screening in genes related with porto-pulmonary hypertension: An analysis of 6 cases.
Pousada, Guillermo; Baloira, Adolfo; Valverde, Diana
2017-04-07
Portopulmonary hypertension (PPH) is a rare disease with a low incidence and without a clearly-identified genetic component. The aim of this work was to check genes and genetic modifiers related to pulmonary arterial hypertension in patients with PPH in order to clarify the molecular basis of the pathology. We selected a total of 6 patients with PPH and amplified the exonic regions and intronic flanking regions of the relevant genes and regions of interest of the genetic modifiers. Six patients diagnosed with PPH were analyzed and compared to 55 healthy individuals. Potentially-pathogenic mutations were identified in the analyzed genes of 5 patients. None of these mutations, which are highly conserved throughout evolution, were detected in the control patients nor different databases analyzed (1000 Genomes, ExAC and DECIPHER). After analyzing for genetic modifiers, we found different variations that could favor the onset of the disease. The genetic analysis carried out in this small cohort of patients with PPH revealed a large number of mutations, with the ENG gene showing the greatest mutational frequency. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer
Hong, Matthew K. H.; Macintyre, Geoff; Wedge, David C.; ...
2015-04-01
Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones,more » even years after removal of the prostate. As a result, analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.« less
Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer.
Hong, Matthew K H; Macintyre, Geoff; Wedge, David C; Van Loo, Peter; Patel, Keval; Lunke, Sebastian; Alexandrov, Ludmil B; Sloggett, Clare; Cmero, Marek; Marass, Francesco; Tsui, Dana; Mangiola, Stefano; Lonie, Andrew; Naeem, Haroon; Sapre, Nikhil; Phal, Pramit M; Kurganovs, Natalie; Chin, Xiaowen; Kerger, Michael; Warren, Anne Y; Neal, David; Gnanapragasam, Vincent; Rosenfeld, Nitzan; Pedersen, John S; Ryan, Andrew; Haviv, Izhak; Costello, Anthony J; Corcoran, Niall M; Hovens, Christopher M
2015-04-01
Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones, even years after removal of the prostate. Analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.
Reeve, Stephanie M; Scocchera, Eric; Ferreira, Jacob J; G-Dayanandan, Narendran; Keshipeddy, Santosh; Wright, Dennis L; Anderson, Amy C
2016-07-14
Drug-resistant enzymes must balance catalytic function with inhibitor destabilization to provide a fitness advantage. This sensitive balance, often involving very subtle structural changes, must be achieved through a selection process involving a minimal number of eligible point mutations. As part of a program to design propargyl-linked antifolates (PLAs) against trimethoprim-resistant dihydrofolate reductase (DHFR) from Staphylococcus aureus, we have conducted a thorough study of several clinically observed chromosomal mutations in the enzyme at the cellular, biochemical, and structural levels. Through this work, we have identified a promising lead series that displays significantly greater activity against these mutant enzymes and strains than TMP. The best inhibitors have enzyme inhibition and MIC values near or below that of trimethoprim against wild-type S. aureus. Moreover, these studies employ a series of crystal structures of several mutant enzymes bound to the same inhibitor; analysis of the structures reveals a more detailed molecular understanding of drug resistance in this important enzyme.
Dusi, Sabrina; Valletta, Lorella; Haack, Tobias B; Tsuchiya, Yugo; Venco, Paola; Pasqualato, Sebastiano; Goffrini, Paola; Tigano, Marco; Demchenko, Nikita; Wieland, Thomas; Schwarzmayr, Thomas; Strom, Tim M; Invernizzi, Federica; Garavaglia, Barbara; Gregory, Allison; Sanford, Lynn; Hamada, Jeffrey; Bettencourt, Conceição; Houlden, Henry; Chiapparini, Luisa; Zorzi, Giovanna; Kurian, Manju A; Nardocci, Nardo; Prokisch, Holger; Hayflick, Susan; Gout, Ivan; Tiranti, Valeria
2014-01-02
Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Dhanasekaran, Saravana M.; Balbin, O. Alejandro; Chen, Guoan; Nadal, Ernest; Kalyana-Sundaram, Shanker; Pan, Jincheng; Veeneman, Brendan; Cao, Xuhong; Malik, Rohit; Vats, Pankaj; Wang, Rui; Huang, Stephanie; Zhong, Jinjie; Jing, Xiaojun; Iyer, Matthew; Wu, Yi-Mi; Harms, Paul W.; Lin, Jules; Reddy, Rishindra; Brennan, Christine; Palanisamy, Nallasivam; Chang, Andrew C.; Truini, Anna; Truini, Mauro; Robinson, Dan R.; Beer, David G.; Chinnaiyan, Arul M.
2014-01-01
Lung cancer is emerging as a paradigm for disease molecular subtyping, facilitating targeted therapy based on driving somatic alterations. Here, we perform transcriptome analysis of 153 samples representing lung adenocarcinomas, squamous cell carcinomas, large cell lung cancer, adenoid cystic carcinomas and cell lines. By integrating our data with The Cancer Genome Atlas and published sources, we analyze 753 lung cancer samples for gene fusions and other transcriptomic alterations. We show that higher numbers of gene fusions is an independent prognostic factor for poor survival in lung cancer. Our analysis confirms the recently reported CD74-NRG1 fusion and suggests that NRG1, NF1 and Hippo pathway fusions may play important roles in tumors without known driver mutations. In addition, we observe exon skipping events in c-MET, which are attributable to splice site mutations. These classes of genetic aberrations may play a significant role in the genesis of lung cancers lacking known driver mutations. PMID:25531467
Itonaga, Hidehiro; Tsushima, Hideki; Imanishi, Daisuke; Hata, Tomoko; Doi, Yuko; Mori, Sayaka; Sasaki, Daisuke; Hasegawa, Hiroo; Matsuo, Emi; Nakashima, Jun; Kato, Takeharu; Horai, Makiko; Taguchi, Masataka; Matsuo, Masatoshi; Taniguchi, Hiroaki; Makiyama, Junnya; Sato, Shinya; Horio, Kensuke; Ando, Koji; Moriwaki, Yuji; Sawayama, Yasushi; Ogawa, Daisuke; Yamasaki, Reishi; Takasaki, Yumi; Imaizumi, Yoshitaka; Taguchi, Jun; Kawaguchi, Yasuhisa; Yoshida, Shinichiro; Joh, Tatsuro; Moriuchi, Yukiyoshi; Nonaka, Hiroaki; Soda, Hisashi; Fukushima, Takuya; Nagai, Kazuhiro; Kamihira, Shimeru; Tomonaga, Masao; Yanagihara, Katsunori; Miyazaki, Yasushi
2014-01-01
An appropriate trigger for BCR-ABL1 mutation analysis has not yet been established in unselected cohorts of chronic-phase chronic myelogenous leukemia patients. We examined 92 patients after 12 months of tyrosine kinase inhibitor (TKI) treatment in Nagasaki Prefecture, Japan. Univariate analysis revealed that significant factors associated with not attaining a major molecular response (MMR) were the presence of the minor BCR-ABL1 fusion gene, a low daily dose of TKI, and the emergence of BCR-ABL1 kinase domain mutations conferring resistance to imatinib. Factors associated with the loss of sustained MMR were a low daily dose of TKI and the emergence of alternatively spliced BCR-ABL1 mRNA with a 35-nucleotide insertion. Taken together, our results suggest that the search for BCR-ABL1 mutations should be initiated if patients have not achieved MMR following 12 months of TKI treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
ZMYND10--Mutation Analysis in Slavic Patients with Primary Ciliary Dyskinesia.
Kurkowiak, Małgorzata; Ziętkiewicz, Ewa; Greber, Agnieszka; Voelkel, Katarzyna; Wojda, Alina; Pogorzelski, Andrzej; Witt, Michał
2016-01-01
Primary ciliary dyskinesia (PCD) is a rare recessive disease with a prevalence of 1/10,000; its symptoms are caused by a kinetic dysfunction of motile cilia in the respiratory epithelium, flagella in spermatozoids, and primary cilia in the embryonic node. PCD is genetically heterogeneous: genotyping the already known PCD-related genes explains the genetic basis in 60-65% of the cases, depending on the population. While identification of new genes involved in PCD pathogenesis remains crucial, the search for new, population-specific mutations causative for PCD is equally important. The Slavs remain far less characterized in this respect compared to West European populations, which significantly limits diagnostic capability. The main goal of this study was to characterize the profile of causative genetic defects in one of the PCD-causing genes, ZMYND10, in the cohort of PCD patients of Slavic origin. The study was carried out using biological material from 172 unrelated PCD individuals of Polish origin, with no causative mutation found in nine major PCD genes. While none of the previously described mutations was found using the HRM-based screening, a novel frameshift mutation (c.367delC) in ZMYND10, unique for Slavic PCD population, was found in homozygous state in two unrelated PCD patients. Immunofluorescence analysis confirmed the absence of outer and inner dynein arms from the ciliary axoneme, consistent with the already published ZMYND10-mutated phenotype; cDNA analysis revealed the lack of ZMYND10 mRNA, indicating nonsense-mediated decay of the truncated transcript.
Liu, Hong-Mei; Cheng, Peng; Huang, Xiaodan; Dai, Yu-Hua; Wang, Hai-Fang; Liu, Li-Juan; Zhao, Yu-Qiang; Wang, Huai-Wei; Gong, Mao-Qing
2013-02-01
The present study aimed to investigate deltamethrin resistance in Culex pipiens pallens (C. pipiens pallens) mosquitoes and its correlation with knockdown resistance (kdr) mutations. In addition, mosquito‑resistance testing methods were analyzed. Using specific primers in polymerase chain reaction (PCR) and allele-specific (AS)-PCR, kdr gene sequences isolated from wild C. pipiens pallens mosquitoes were sequenced. Linear regression analysis was used to determine the correlation between the mutations and deltamethrin resistance. A kdr allelic gene was cloned and sequenced. Analysis of the DNA sequences revealed the presence of two point mutations at the L1014 residue in the IIS6 transmembrane segment of the voltage‑gated sodium channel (VGSC): L1014F, TTA→TTT, replacing a leucine (L) with a phenylalanine (F); L1014S, TTA→TCA, replacing leucine (L) with serine (S). Two alternative kdr-like mutations, L1014F and L1014S, were identified to be positively correlated with the deltamethrin-resistant phenotype. In addition a novel mutation, TCT, was identified in the VGSC of C. pipiens pallens. PCR and AS-PCR yielded consistent results with respect to mosquito resistance. However, the detection rate of PCR was higher than that of AS-PCR. Further studies are required to determine the specific resistance mechanism. PCR and AS-PCR demonstrated suitability for mosquito resistance field tests, however, the former method may be superior to the latter.
A Comprehensive Strategy for Accurate Mutation Detection of the Highly Homologous PMS2.
Li, Jianli; Dai, Hongzheng; Feng, Yanming; Tang, Jia; Chen, Stella; Tian, Xia; Gorman, Elizabeth; Schmitt, Eric S; Hansen, Terah A A; Wang, Jing; Plon, Sharon E; Zhang, Victor Wei; Wong, Lee-Jun C
2015-09-01
Germline mutations in the DNA mismatch repair gene PMS2 underlie the cancer susceptibility syndrome, Lynch syndrome. However, accurate molecular testing of PMS2 is complicated by a large number of highly homologous sequences. To establish a comprehensive approach for mutation detection of PMS2, we have designed a strategy combining targeted capture next-generation sequencing (NGS), multiplex ligation-dependent probe amplification, and long-range PCR followed by NGS to simultaneously detect point mutations and copy number changes of PMS2. Exonic deletions (E2 to E9, E5 to E9, E8, E10, E14, and E1 to E15), duplications (E11 to E12), and a nonsense mutation, p.S22*, were identified. Traditional multiplex ligation-dependent probe amplification and Sanger sequencing approaches cannot differentiate the origin of the exonic deletions in the 3' region when PMS2 and PMS2CL share identical sequences as a result of gene conversion. Our approach allows unambiguous identification of mutations in the active gene with a straightforward long-range-PCR/NGS method. Breakpoint analysis of multiple samples revealed that recurrent exon 14 deletions are mediated by homologous Alu sequences. Our comprehensive approach provides a reliable tool for accurate molecular analysis of genes containing multiple copies of highly homologous sequences and should improve PMS2 molecular analysis for patients with Lynch syndrome. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Chen, Yong; Wang, Lijuan; Xu, Hexiang; Liu, Xingxiang; Zhao, Yingren
2013-10-01
Hepatocellular carcinoma (HCC), the most common type of liver cancer, is the third primary cause of cancer-related mortality worldwide. The molecular mechanisms underlying the initiation and formation of HCC remain obscure. In the present study, we performed exome sequencing using tumor and normal tissues from 3 hepatitis B virus (HBV)-positive BCLC stage A HCC patients. Bioinformatic analysis was performed to find candidate protein-altering somatic mutations. Eighty damaging mutations were validated and 59 genes were reported to be mutated in HBV-related HCCs for the first time here. Further analysis using whole genome sequencing (WGS) data of 88 HBV-related HCC patients from the European Genome-phenome Archive database showed that mutations in 33 of the 59 genes were also detected in other samples. Variants of two newly found genes, ZNF717 and PARP4, were detected in more than 10% of the WGS samples. Several other genes, such as FLNA and CNTN2, are also noteworthy. Thus, the exome sequencing analysis of three BCLC stage A patients provides new insights into the molecular events governing the early steps of HBV-induced HCC tumorigenesis.
Liu, Jianhua; Zeng, Weiqiang; Huang, Chengzhi; Wang, Junjiang; Xu, Lishu; Ma, Dong
2018-05-01
The present study aimed to investigate whether c-mesenchymal epithelial transition factor (C-MET) overexpression combined with RAS (including KRAS, NRAS and HRAS ) or BRAF mutations were associated with late distant metastases and the prognosis of patients with colorectal cancer (CRC). A total of 374 patients with stage III CRC were classified into 4 groups based on RAS/BRAF and C-MET status for comprehensive analysis. Mutations in RAS / BRAF were determined using Sanger sequencing and C-MET expression was examined using immunohistochemistry. The associations between RAS/BRAF mutations in combination with C-MET overexpression and clinicopathological variables including survival were evaluated. In addition, their predictive value for late distant metastases were statistically analyzed via logistic regression and receiver operating characteristic analysis. Among 374 patients, mutations in KRAS, NRAS, HRAS, BRAF and C-MET overexpression were observed in 43.9, 2.4, 0.3, 5.9 and 71.9% of cases, respectively. Considering RAS/BRAF mutations and C-MET overexpression, vascular invasion (P=0.001), high carcino-embryonic antigen level (P=0.031) and late distant metastases (P<0.001) were more likely to occur in patients of group 4. Furthermore, survival analyses revealed RAS/BRAF mutations may have a more powerful impact on survival than C-MET overexpression, although they were both predictive factors for adverse prognosis. Further logistic regression suggested that RAS/BRAF mutations and C-MET overexpression may predict late distant metastases. In conclusion, RAS/BRAF mutations and C-MET overexpression may serve as predictive indicators for metastatic behavior and poor prognosis of CRC.
Homozygous EDNRB mutation in a patient with Waardenburg syndrome type 1.
Morimoto, Noriko; Mutai, Hideki; Namba, Kazunori; Kaneko, Hiroki; Kosaki, Rika; Matsunaga, Tatsuo
2018-04-01
To examine and expand the genetic spectrum of Waardenburg syndrome type 1 (WS1). Clinical features related to Waardenburg syndrome (WS) were examined in a five-year old patient. Mutation analysis of genes related to WS was performed in the proband and her parents. Molecular modeling of EDNRB and the p.R319W mutant was conducted to predict the pathogenicity of the mutation. The proband showed sensorineural hearing loss, heterochromia iridis, and dystopia canthorum, fulfilling the clinical criteria of WS1. Genetic analyses revealed that the proband had no mutation in PAX3 which has been known as the cause of WS1, but had a homozygous missense mutation (p.R319W) in endothelin receptor type B (EDNRB) gene. The asymptomatic parents had the mutation in a heterozygote state. This mutation has been previously reported in a heterozygous state in a patient with Hirschsprung's disease unaccompanied by WS, but the patient and her parents did not show any symptoms in gastrointestinal tract. Molecular modeling of EDNRB with the p.R319W mutation demonstrated reduction of the positively charged surface area in this region, which might reduce binding ability of EDNRB to G protein and lead to abnormal signal transduction underlying the WS phenotype. Our findings suggested that autosomal recessive mutation in EDNRB may underlie a part of WS1 with the current diagnostic criteria, and supported that Hirschsprung's disease is a multifactorial genetic disease which requires additional factors. Further molecular analysis is necessary to elucidate the gene interaction and to reappraise the current WS classification. Copyright © 2017 Elsevier B.V. All rights reserved.
Sima, Radek; Vanecek, Tomas; Kacerovska, Denisa; Trubac, Pavel; Cribier, Bernard; Rutten, Arno; Vazmitel, Marina; Spagnolo, Dominic V; Litvik, Radek; Vantuchova, Yvetta; Weyers, Wolfgang; Pearce, Robert L; Pearn, John; Michal, Michal; Kazakov, Dmitry V
2010-06-01
Brooke-Spiegler syndrome (BSS) is an inherited autosomal dominant disease characterized by the development of multiple adnexal cutaneous neoplasms including spiradenoma, cylindroma, spiradenocylindroma, and trichoepithelioma (cribriform trichoblastoma). BSS patients have various mutations in the CYLD gene, a tumor suppressor gene located on chromosome 16q. Our search of the literature revealed 51 germline CYLD mutations reported to date. Somatic CYLD mutations have rarely been investigated. We studied 10 patients from 8 families with BSS. Analysis of germline mutations of the CYLD gene was performed using either peripheral blood or nontumorous tissue. In addition, 19 formalin-fixed paraffin-embedded tumor samples were analyzed for somatic mutations, including loss of heterozygosity studies. A total of 38 tumors were available for histopathologic review. We have identified 8 novel germline mutations, all of which consisted of substitutions, deletions, and insertions/duplications and all except one led to premature stop codons. The substitution mutation in a single case was also predicted to disrupt protein function and seems causally implicated in tumor formation. We demonstrate for the first time that somatic events, loss of heterozygosity, or sequence mutations may differ among multiple neoplasms even of the same histologic type, occurring in the same patient.
Fibrinogen Šumperk II: dysfibrinogenemia in an individual with two coding mutations.
Kotlín, Roman; Suttnar, Jiří; Cápová, Irena; Hrachovinová, Ingrid; Urbánková, Marie; Dyr, Jan Evangelista
2012-05-01
Fibrinogen—a 340-kDa glycoprotein—plays a crucial role in blood coagulation, platelet aggregation, wound healing, and other physiological processes. A mutation in fibrinogen may lead to congenital dysfibrinogenemia,a rare disease characterized by the functional deficiency of fibrinogen. About 580 cases of abnormal fibrinogens have been reported worldwide; thereof 335 cases in the fibrinogen Aa chain[1]. To our knowledge, only five cases of abnormal fibrinogens with two mutations [2–6] and one case of two different mutations in the same family [7] have been described earlier. A 52-year-old female was examined for bleeding. Routine hemostasis screening resulted in a diagnosis of dysfibrinogenemia. Functional testing revealed prolonged fibrin polymerization, prolonged lysis of the clot, abnormal fibrin morphology,and fibrinopeptides release. Genetic analysis showed two heterozygous nonsense mutations—previously described mutation AaGly13Glu and a novel mutation Aa Ser314Cys. The mutation Aa Gly13-Glu was found in her brother and niece, but there was no evidence in either of the mutation Aa Ser314Cys. While mutation Aa Gly13Glu is responsible for abnormal fibrinopeptide release and prolonged thrombin time, the novel mutation Aa Ser314Cys seems to affect fibrin morphology and fibrinolysis.
Beltrán-Valero de Bernabé, D; Jimenez, F J; Aquaron, R; Rodríguez de Córdoba, S
1999-01-01
We recently showed that alkaptonuria (AKU) is caused by loss-of-function mutations in the homogentisate 1,2 dioxygenase gene (HGO). Herein we describe haplotype and mutational analyses of HGO in seven new AKU pedigrees. These analyses identified two novel single-nucleotide polymorphisms (INV4+31A-->G and INV11+18A-->G) and six novel AKU mutations (INV1-1G-->A, W60G, Y62C, A122D, P230T, and D291E), which further illustrates the remarkable allelic heterogeneity found in AKU. Reexamination of all 29 mutations and polymorphisms thus far described in HGO shows that these nucleotide changes are not randomly distributed; the CCC sequence motif and its inverted complement, GGG, are preferentially mutated. These analyses also demonstrated that the nucleotide substitutions in HGO do not involve CpG dinucleotides, which illustrates important differences between HGO and other genes for the occurrence of mutation at specific short-sequence motifs. Because the CCC sequence motifs comprise a significant proportion (34.5%) of all mutated bases that have been observed in HGO, we conclude that the CCC triplet is a mutational hot spot in HGO. PMID:10205262
Late-onset Papillon-Lefèvre syndrome without alteration of the cathepsin C gene.
Pilger, Ulrike; Hennies, Hans Christian; Truschnegg, Astrid; Aberer, Elisabeth
2003-11-01
Mutations in the cathepsin C gene have recently been detected in Papillon-Lefèvre syndrome (PLS). Until now, 5 cases with the late-onset variation of this disease have been reported in the literature. The genetic background of this type of PLS is still unknown. We describe a 46-year-old woman with late-onset transgredient palmar hyperkeratosis and a 10-year history of severe periodontal disease. Histology of skin biopsy specimens revealed a psoriasiform pattern. Dental examination showed severe gingival inflammation with loss of alveolar bone. Dental plaque investigated by a polymerase chain reaction method revealed DNA signals of 5 different dental bacteria. DNA from EDTA blood was investigated for mutations in the cathepsin C gene by polymerase chain reaction analysis and direct sequencing. A silent variation in the codon for proline-459 was detected but interpreted as a polymorphism of this gene. All genetic linkage and mutation studies for PLS performed so far have shown that PLS is genetically homogeneous. Our patient with late-onset variation of PLS, however, did not show a mutation in the cathepsin C gene. Thus, we suspect that there is another genetic cause for the late-onset forms of PLS.
Fakhruddin, Najla; Bahmad, Hisham F; Aridi, Tarek; Yammine, Yara; Mahfouz, Rami; Boulos, Fouad; Awada, Ahmad; Farhat, Fadi
2017-01-01
Hepatoid adenocarcinoma of the stomach (HAS) is a rare aggressive tumor with hepatocellular differentiation. HAS often produces alpha fetoprotein (AFP) and metastasizes to the lymph nodes and the liver. Molecular studies revealed Her2 amplification and overexpression, association with p53 mutations, but no association with KRAS mutations. EGFR and BRAF mutations have not yet been evaluated in hepatoid carcinoma of the stomach so far. Hereby, we present a case of a 41-year-old female patient with HAS with high AFP level and liver metastases. Molecular analysis revealed Her2 overexpression by immunohistochemistry (IHC), but no EGFR, KRAS , or BRAF mutations were detected. The patient underwent chemotherapy type DCX (docetaxel, cisplatinum, and capecitabine) every 3 weeks with partial response after two cycles, maintained for eight cycles, and then was on maintenance therapy with trastuzumab for 7 months before relapsing and dying 18 months from the day of diagnosis. Conclusively, HAS may be misdiagnosed as hepatocellular carcinoma; therefore, it should be considered in the differential diagnosis of multiple hepatic nodules with high AFP and no history of hepatitis, liver fibrosis or cirrhosis.
Hereditary spastic paraplegia type 43 (SPG43) is caused by mutation in C19orf12
Landouré, Guida; Zhu, Peng-Peng; Lourenço, Charles M.; Johnson, Janel O.; Toro, Camilo; Bricceno, Katherine V.; Rinaldi, Carlo; Meilleur, Katherine G.; Sangaré, Modibo; Diallo, Oumarou; Pierson, Tyler M.; Ishiura, Hiroyuki; Tsuji, Shoji; Hein, Nichole; Fink, John K.; Stoll, Marion; Nicholson, Garth; Gonzalez, Michael; Speziani, Fiorella; Dürr, Alexandra; Stevanin, Giovanni; Biesecker, Leslie G.; Accardi, John; Landis, Dennis M. D.; Gahl, William A.; Traynor, Bryan J.; Marques, Wilson; Züchner, Stephan; Blackstone, Craig; Fischbeck, Kenneth H.; Burnett, Barrington G.
2013-01-01
We report here the genetic basis for a form of progressive hereditary spastic paraplegia (SPG43) previously described in two Malian sisters. Exome sequencing revealed a homozygous missense variant (c.187G>C; p.Ala63Pro) in C19orf12, a gene recently implicated in neurodegeneration with brain iron accumulation (NBIA). The same mutation was subsequently also found in a Brazilian family with features of NBIA, and we identified another NBIA patient with a three-nucleotide deletion (c.197_199del; p.Gly66del). Haplotype analysis revealed that the p.Ala63Pro mutations have a common origin, but MRI scans showed no brain iron deposition in the Malian SPG43 subjects. Heterologous expression of these SPG43 and NBIA variants resulted in similar alterations in the subcellular distribution of C19orf12. The SPG43 and NBIA variants reported here as well as the most common C19orf12 missense mutation reported in NBIA patients are found within a highly-conserved, extended hydrophobic domain in C19orf12, underscoring the functional importance of this domain. PMID:23857908
Sivakumar, Smruthy; Lucas, F Anthony San; McDowell, Tina L; Lang, Wenhua; Xu, Li; Fujimoto, Junya; Zhang, Jianjun; Futreal, P Andrew; Fukuoka, Junya; Yatabe, Yasushi; Dubinett, Steven M; Spira, Avrum E; Fowler, Jerry; Hawk, Ernest T; Wistuba, Ignacio I; Scheet, Paul; Kadara, Humam
2017-11-15
There is a dearth of knowledge about the pathogenesis of premalignant lung lesions, especially for atypical adenomatous hyperplasia (AAH), the only known precursor for the major lung cancer subtype adenocarcinoma (LUAD). In this study, we performed deep DNA and RNA sequencing analyses of a set of AAH, LUAD, and normal tissues. Somatic BRAF variants were found in AAHs from 5 of 22 (23%) patients, 4 of 5 of whom had matched LUAD with driver EGFR mutations. KRAS mutations were present in AAHs from 4 of 22 (18%) of patients. KRAS mutations in AAH were only found in ever-smokers and were exclusive to BRAF -mutant cases. Integrative analysis revealed profiles expressed in KRAS -mutant cases ( UBE2C, REL ) and BRAF -mutant cases ( MAX ) of AAH, or common to both sets of cases (suppressed AXL ). Gene sets associated with suppressed antitumor (Th1; IL12A, GZMB ) and elevated protumor ( CCR2, CTLA-4 ) immune signaling were enriched in AAH development and progression. Our results reveal potentially divergent BRAF or KRAS pathways in AAH as well as immune dysregulation in the pathogenesis of this premalignant lung lesion. Cancer Res; 77(22); 6119-30. ©2017 AACR . ©2017 American Association for Cancer Research.
Xie, Jingli; Pabón, Dina; Jayo, Asier; Butta, Nora; González-Manchón, Consuelo
2005-05-01
We report a novel genetic defect in a patient with type I Glanzmann thrombasthenia. Flow cytometry analysis revealed undetectable levels of platelet glycoproteins alphaIIb and beta3, although residual amounts of both proteins were detectable in immunoblotting analysis. Sequence analysis of reversely transcribed platelet beta3 mRNA showed a 100-base pair deletion in the 3'-boundary of exon 11, that results in a frame shift and appearance of a premature STOP codon. Analysis of the corresponding genomic DNA fragment revealed the presence of a homozygous C1815T transition in exon 11. The mutation does not change the amino acid residue but it creates an ectopic consensus splice donor site that is used preferentially, causing splicing out of part of exon 11. The parents of the proband, heterozygous for this mutation, were asymptomatic and had reduced platelet content of alphaIIbbeta3. PCR-based relative quantification of beta3 mRNA failed to detect the mutant transcript in the parents and showed a marked reduction in the patient. The results suggest that the thrombasthenic phenotype is, mainly, the result of the reduced availability of beta3-mRNA, most probably due to activation of the nonsense-mediated mRNA decay mechanism. They also show the convenience of analyzing both genomic DNA and mRNA, in order to ascertain the functional consequences of single nucleotide substitutions.
Mutations in the pericentrin (PCNT) gene cause primordial dwarfism.
Rauch, Anita; Thiel, Christian T; Schindler, Detlev; Wick, Ursula; Crow, Yanick J; Ekici, Arif B; van Essen, Anthonie J; Goecke, Timm O; Al-Gazali, Lihadh; Chrzanowska, Krystyna H; Zweier, Christiane; Brunner, Han G; Becker, Kristin; Curry, Cynthia J; Dallapiccola, Bruno; Devriendt, Koenraad; Dörfler, Arnd; Kinning, Esther; Megarbane, André; Meinecke, Peter; Semple, Robert K; Spranger, Stephanie; Toutain, Annick; Trembath, Richard C; Voss, Egbert; Wilson, Louise; Hennekam, Raoul; de Zegher, Francis; Dörr, Helmuth-Günther; Reis, André
2008-02-08
Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss-of-function mutations in the centrosomal pericentrin (PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial dwarfism type II (MOPD II) in 25 patients. Adults with this rare inherited condition have an average height of 100 centimeters and a brain size comparable to that of a 3-month-old baby, but are of near-normal intelligence. Absence of PCNT results in disorganized mitotic spindles and missegregation of chromosomes. Mutations in related genes are known to cause primary microcephaly (MCPH1, CDK5RAP2, ASPM, and CENPJ).
Activating MAPK1 (ERK2) mutation in an aggressive case of disseminated juvenile xanthogranuloma
Chakraborty, Rikhia; Hampton, Oliver A.; Abhyankar, Harshal; Zinn, Daniel J.; Grimes, Amanda; Skull, Brooks; Eckstein, Olive; Mahmood, Nadia; Wheeler, David A.; Lopez-Terrada, Dolores; Peters, Tricia L.; Hicks, John M.; Elghetany, Tarek; Krance, Robert; Poulikakos, Poulikos I.; Merad, Miriam; McClain, Kenneth L.; Allen, Carl E.; Parsons, Donald W.
2017-01-01
Juvenile xanthogranuloma (JXG) is a rare histiocytic disorder that is usually benign and self-limiting. We present a case of atypical, aggressive JXG harboring a novel mitogen-activated protein kinase (MAPK) pathway mutation in the MAPK1 gene, which encodes mitogen-activated protein kinase 1 or extracellular signal-regulated 2 (ERK2). Our analysis revealed that the mutation results in constitutive ERK activation that is resistant to BRAF or MEK inhibitors but susceptible to an ERK inhibitor. These data highlight the importance of identifying specific MAPK pathway alterations as part of the diagnostic workup for patients with histiocytic disorders rather than initiating empiric treatment with MEK inhibitors. PMID:28512266
Jackson, Carl-Christian; Holter, Spring; Pollett, Aaron; Clendenning, Mark; Chou, Shirley; Senter, Leigha; Ramphal, Raveena; Gallinger, Steven; Boycott, Kym
2008-06-01
A 14-year-old male presented with a T4 sigmoid adenocarcinoma, <10 colonic adenomas and multiple café-au-lait macules. Family history was not suggestive of a dominant hereditary form of colorectal cancer. Evaluation of the tumor revealed abnormal immunohistochemical staining of the PMS2 protein and high frequency microsatellite instability. Germline analysis identified biallelic PMS2 missense mutations. A new cancer syndrome caused by biallelic mutations in the mismatch repair genes, including PMS2, is now emerging and is characterized by café-au-lait macules, colonic polyps and a distinctive tumor spectrum. (c) 2007 Wiley-Liss, Inc.
Parasuraman, Ponnusamy; Murugan, Veeramani; Selvin, Jeyasigamani F A; Gromiha, M Michael; Fukui, Kazuhiko; Veluraja, Kasinadar
2014-08-01
Wheat germ agglutinin (WGA) is a plant lectin, which specifically recognizes the sugars NeuNAc and GlcNAc. Mutated WGA with enhanced binding specificity can be used as biomarkers for cancer. In silico mutations are performed at the active site of WGA to enhance the binding specificity towards sialylglycans, and molecular dynamics simulations of 20 ns are carried out for wild type and mutated WGAs (WGA1, WGA2, and WGA3) in complex with sialylgalactose to examine the change in binding specificity. MD simulations reveal the change in binding specificity of wild type and mutated WGAs towards sialylgalactose and bound conformational flexibility of sialylgalactose. The mutated polar amino acid residues Asn114 (S114N), Lys118 (G118K), and Arg118 (G118R) make direct and water mediated hydrogen bonds and hydrophobic interactions with sialylgalactose. An analysis of possible hydrogen bonds, hydrophobic interactions, total pair wise interaction energy between active site residues and sialylgalactose and MM-PBSA free energy calculation reveals the plausible binding modes and the role of water in stabilizing different binding modes. An interesting observation is that the binding specificity of mutated WGAs (cyborg lectin) towards sialylgalactose is found to be higher in double point mutation (WGA3). One of the substituted residues Arg118 plays a crucial role in sugar binding. Based on the interactions and energy calculations, it is concluded that the order of binding specificity of WGAs towards sialylgalactose is WGA3 > WGA1 > WGA2 > WGA. On comparing with the wild type, double point mutated WGA (WGA3) exhibits increased specificity towards sialylgalactose, and thus, it can be effectively used in targeted drug delivery and as biological cell marker in cancer therapeutics. Copyright © 2014 John Wiley & Sons, Ltd.
A cis-Regulatory Mutation of PDSS2 Causes Silky-Feather in Chickens
Feng, Chungang; Gao, Yu; Dorshorst, Ben; Song, Chi; Gu, Xiaorong; Li, Qingyuan; Li, Jinxiu; Liu, Tongxin; Rubin, Carl-Johan; Zhao, Yiqiang; Wang, Yanqiang; Fei, Jing; Li, Huifang; Chen, Kuanwei; Qu, Hao; Shu, Dingming; Ashwell, Chris; Da, Yang; Andersson, Leif; Hu, Xiaoxiang; Li, Ning
2014-01-01
Silky-feather has been selected and fixed in some breeds due to its unique appearance. This phenotype is caused by a single recessive gene (hookless, h). Here we map the silky-feather locus to chromosome 3 by linkage analysis and subsequently fine-map it to an 18.9 kb interval using the identical by descent (IBD) method. Further analysis reveals that a C to G transversion located upstream of the prenyl (decaprenyl) diphosphate synthase, subunit 2 (PDSS2) gene is causing silky-feather. All silky-feather birds are homozygous for the G allele. The silky-feather mutation significantly decreases the expression of PDSS2 during feather development in vivo. Consistent with the regulatory effect, the C to G transversion is shown to remarkably reduce PDSS2 promoter activity in vitro. We report a new example of feather structure variation associated with a spontaneous mutation and provide new insight into the PDSS2 function. PMID:25166907
Genome Sequencing and Analysis of the Tasmanian Devil and Its Transmissible Cancer
Murchison, Elizabeth P.; Schulz-Trieglaff, Ole B.; Ning, Zemin; Alexandrov, Ludmil B.; Bauer, Markus J.; Fu, Beiyuan; Hims, Matthew; Ding, Zhihao; Ivakhno, Sergii; Stewart, Caitlin; Ng, Bee Ling; Wong, Wendy; Aken, Bronwen; White, Simon; Alsop, Amber; Becq, Jennifer; Bignell, Graham R.; Cheetham, R. Keira; Cheng, William; Connor, Thomas R.; Cox, Anthony J.; Feng, Zhi-Ping; Gu, Yong; Grocock, Russell J.; Harris, Simon R.; Khrebtukova, Irina; Kingsbury, Zoya; Kowarsky, Mark; Kreiss, Alexandre; Luo, Shujun; Marshall, John; McBride, David J.; Murray, Lisa; Pearse, Anne-Maree; Raine, Keiran; Rasolonjatovo, Isabelle; Shaw, Richard; Tedder, Philip; Tregidgo, Carolyn; Vilella, Albert J.; Wedge, David C.; Woods, Gregory M.; Gormley, Niall; Humphray, Sean; Schroth, Gary; Smith, Geoffrey; Hall, Kevin; Searle, Stephen M.J.; Carter, Nigel P.; Papenfuss, Anthony T.; Futreal, P. Andrew; Campbell, Peter J.; Yang, Fengtang; Bentley, David R.; Evers, Dirk J.; Stratton, Michael R.
2012-01-01
Summary The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations. PaperClip PMID:22341448
An Analytical Framework for Runtime of a Class of Continuous Evolutionary Algorithms.
Zhang, Yushan; Hu, Guiwu
2015-01-01
Although there have been many studies on the runtime of evolutionary algorithms in discrete optimization, relatively few theoretical results have been proposed on continuous optimization, such as evolutionary programming (EP). This paper proposes an analysis of the runtime of two EP algorithms based on Gaussian and Cauchy mutations, using an absorbing Markov chain. Given a constant variation, we calculate the runtime upper bound of special Gaussian mutation EP and Cauchy mutation EP. Our analysis reveals that the upper bounds are impacted by individual number, problem dimension number n, searching range, and the Lebesgue measure of the optimal neighborhood. Furthermore, we provide conditions whereby the average runtime of the considered EP can be no more than a polynomial of n. The condition is that the Lebesgue measure of the optimal neighborhood is larger than a combinatorial calculation of an exponential and the given polynomial of n.
Gonzaga-Jauregui, Claudia; Harel, Tamar; Gambin, Tomasz; Kousi, Maria; Griffin, Laurie B.; Francescatto, Ludmila; Ozes, Burcak; Karaca, Ender; Jhangiani, Shalini; Bainbridge, Matthew N.; Lawson, Kim S.; Pehlivan, Davut; Okamoto, Yuji; Withers, Marjorie; Mancias, Pedro; Slavotinek, Anne; Reitnauer, Pamela J; Goksungur, Meryem T.; Shy, Michael; Crawford, Thomas O.; Koenig, Michel; Willer, Jason; Flores, Brittany N.; Pediaditrakis, Igor; Us, Onder; Wiszniewski, Wojciech; Parman, Yesim; Antonellis, Anthony; Muzny, Donna M.; Katsanis, Nicholas; Battaloglu, Esra; Boerwinkle, Eric; Gibbs, Richard A.; Lupski, James R.
2015-01-01
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ~45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy associated genes in subjects versus controls; confirmed in a second ethnically discrete neuropathy cohort, suggesting mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HMPVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity. PMID:26257172
Rosero Lasso, Yuliet Liliana; Arévalo-Jaimes, Betsy Verónica; Delgado, María de Pilar; Vera-Chamorro, José Fernando; García, Daniella; Ramírez, Andrea; Rodríguez-Urrego, Paula A; Álvarez, Johanna; Jaramillo, Carlos Alberto
2018-04-27
To determine the current prevalence of Helicobacter pylori in symptomatic Colombian children and evaluate the presence of mutations associated with clarithromycin resistance. Biopsies from 133 children were analyzed. The gastric fragment was used for urease test and reused for PCR-sequencing of the 23SrDNA gene. Mutations were detected by bioinformatic analysis. PCR-sequencing established that H. pylori infection was present in 47% of patients. Bioinformatics analysis of the 62 positive sequences for 23SrDNA revealed that 92% exhibited a genotype susceptible to clarithromycin, whereas remain strains (8%) showed mutations associated with clarithromycin resistance. The low rate of resistance to clarithromycin (8%) suggests that conventional treatment methods are an appropriate choice for children. Recycling a biopsy that is normally discarded reduces the risks associated with the procedure. The 23SrDNA gene amplification could be used for a dual purpose: detection of H. pylori and determination of susceptibility to clarithromycin.
Hot spot mutations in Finnish non-small cell lung cancers.
Mäki-Nevala, Satu; Sarhadi, Virinder Kaur; Rönty, Mikko; Kettunen, Eeva; Husgafvel-Pursiainen, Kirsti; Wolff, Henrik; Knuuttila, Aija; Knuutila, Sakari
2016-09-01
Non-small cell lung cancer (NSCLC) is a common cancer with a poor prognosis. The aim of this study was to screen Finnish NSCLC tumor samples for common cancer-related mutations by targeted next generation sequencing and to determine their concurrences and associations with clinical features. Sequencing libraries were prepared from DNA isolated from formalin-fixed, paraffin-embedded tumor material of 425 patients using the AmpliSeq Colon and Lung panel covering mutational hot spot regions of 22 cancer genes. Sequencing was performed with the Ion Torrent Personal Genome Machine (PGM). Data analysis of the hot spot mutations revealed mutations in 77% of the patients, with 7% having 3 or more mutations reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Two of the most frequently mutated genes were TP53 (46%) and KRAS (25%). KRAS codon 12 mutations were the most recurrently occurring mutations. EGFR mutations were significantly associated with adenocarcinoma, female gender and never/light-smoking history; CTNNB1 mutations with light ex-smokers, PIK3CA and TP53 mutations with squamous cell carcinoma, and KRAS with adenocarcinoma. TP53 mutations were most prevalent in current smokers and ERBB2, ERBB4, PIK3CA, NRAS, NOTCH1, FBWX7, PTEN and STK11 mutations occurred exclusively in a group of ever-smokers, however the association was not statistically significant. No mutation was found that associated with asbestos exposure. Finnish NSCLC patients have a similar mutation profile as other Western patients, however with a higher frequency of BRAF mutations but a lower frequency of STK11 and ERBB2 mutations. Moreover, TP53 mutations occurred frequently with other gene mutations, most commonly with KRAS, MET, EGFR and PIK3CA mutations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Neoh, Ching Yin; Chen, Huijia; Ng, See Ket; Lane, Ellen Birgitte; Common, John Edmund Armourer
2009-10-01
Keratitis-ichthyosis-deafness (KID) syndrome is a rare ectodermal dysplasia characterized by generalized erythrokeratotic plaques, sensorineural hearing loss, and vascularizing keratitis. Cutaneous changes and hearing loss typically present in early childhood, whereas ocular symptoms present later. Mutations in the connexin (Cx) 26 gene, GJB2, are now established to underlie many of the affected cases, with the majority of patients harboring the p.D50N mutation. A rare patient demonstrating features of incomplete KID syndrome associated with an uncommon Cx26 gene mutation is described. The patient presented late in adolescence with partial features of KID syndrome. There was limited cutaneous involvement and the rare association of cystic acne. Both hearing impairment and ophthalmic involvement were mild in severity. Genetic mutation analysis revealed a previously described, rare mutation in GJB2, resulting in a glycine to arginine change at codon 12 (p.G12R). This report describes a patient exhibiting characteristics suggestive of a late-onset, incomplete form of KID syndrome with the GJB2 mutation (p.G12R). The p.G12R mutation has only been described in one other patient with KID syndrome, whose clinical presentation was not characterized.
Prevalence of EGFR Mutations in Lung Cancer in Uruguayan Population
Touya, Diego; Bertoni, Bernardo; Osinaga, Eduardo; Varangot, Mario
2017-01-01
Background Incorporation of molecular analysis of the epidermal growth factor receptor (EGFR) gene into routine clinical practice represents a milestone for personalized therapy of the non-small-cell lung cancer (NSCLC). However, the genetic testing of EGFR mutations has not yet become a routine clinical practice in developing countries. In view of different prevalence of such mutations among different ethnicities and geographic regions, as well as the limited existing data from Latin America, our aim was to study the frequency of major types of activating mutations of the EGFR gene in NSCLC patients from Uruguay. Methods We examined EGFR mutations in exons 18 through 21 in 289 NSCLC Uruguayan patients by PCR-direct sequencing. Results EGFR mutations were detected in 53 of the 289 (18.3%) patients, more frequently in women (23.4%) than in men (14.5%). The distribution by exon was similar to that generally reported in the literature. Conclusions This first epidemiological study of EGFR mutations in Uruguay reveals a wide spectrum of mutations and an overall prevalence of 18.3%. The background ethnic structure of the Uruguayan population could play an important role in explaining our findings. PMID:28744312
Luzzi, Simona; Colleoni, Lara; Corbetta, Paola; Baldinelli, Sara; Fiori, Chiara; Girelli, Francesca; Silvestrini, Mauro; Caroppo, Paola; Giaccone, Giorgio; Tagliavini, Fabrizio; Rossi, Giacomina
2017-06-01
Gene coding for progranulin, GRN, is a major gene linked to frontotemporal lobar degeneration. While most of pathogenic GRN mutations are null mutations leading to haploinsufficiency, GRN missense mutations do not have an obvious pathogenicity, and only a few have been revealed to act through different pathogenetic mechanisms, such as cytoplasmic missorting, protein degradation, and abnormal cleavage by elastase. The aim of this study was to disclose the pathogenetic mechanisms of the GRN A199V missense mutation, which was previously reported not to alter physiological progranulin features but was associated with a reduced plasma progranulin level. After investigating the family pedigree, we performed genetic and biochemical analysis on its members and performed RNA expression studies. We found that the mutation segregates with the disease and discovered that its pathogenic feature is the alteration of GRN mRNA splicing, actually leading to haploinsufficiency. Thus, when facing with a missense GRN mutation, its pathogenetic effects should be investigated, especially if associated with low plasma progranulin levels, to determine its nature of either benign polymorphism or pathogenic mutation. Copyright © 2017 Elsevier Inc. All rights reserved.
KMeyeDB: a graphical database of mutations in genes that cause eye diseases.
Kawamura, Takashi; Ohtsubo, Masafumi; Mitsuyama, Susumu; Ohno-Nakamura, Saho; Shimizu, Nobuyoshi; Minoshima, Shinsei
2010-06-01
KMeyeDB (http://mutview.dmb.med.keio.ac.jp/) is a database of human gene mutations that cause eye diseases. We have substantially enriched the amount of data in the database, which now contains information about the mutations of 167 human genes causing eye-related diseases including retinitis pigmentosa, cone-rod dystrophy, night blindness, Oguchi disease, Stargardt disease, macular degeneration, Leber congenital amaurosis, corneal dystrophy, cataract, glaucoma, retinoblastoma, Bardet-Biedl syndrome, and Usher syndrome. KMeyeDB is operated using the database software MutationView, which deals with various characters of mutations, gene structure, protein functional domains, and polymerase chain reaction (PCR) primers, as well as clinical data for each case. Users can access the database using an ordinary Internet browser with smooth user-interface, without user registration. The results are displayed on the graphical windows together with statistical calculations. All mutations and associated data have been collected from published articles. Careful data analysis with KMeyeDB revealed many interesting features regarding the mutations in 167 genes that cause 326 different types of eye diseases. Some genes are involved in multiple types of eye diseases, whereas several eye diseases are caused by different mutations in one gene.
Deleterious CHEK2 1100delC and L303X mutants identified among 38 human breast cancer cell lines.
Wasielewski, Marijke; Hanifi-Moghaddam, Pejman; Hollestelle, Antoinette; Merajver, Sofia D; van den Ouweland, Ans; Klijn, Jan G M; Ethier, Stephen P; Schutte, Mieke
2009-01-01
The CHEK2 protein plays a major role in the regulation of DNA damage response pathways. Mutations in the CHEK2 gene, in particular 1100delC, have been associated with increased cancer risks, but the precise function of CHEK2 mutations in carcinogenesis is not known. Human cancer cell lines with CHEK2 mutations are therefore of main interest. Here, we have sequenced 38 breast cancer cell lines for mutations in the CHEK2 gene and identified two cell lines with deleterious CHEK2 mutations. Cell line UACC812 has a nonsense truncating mutation in the CHEK2 kinase domain (L303X) and cell line SUM102PT has the well-known oncogenic CHEK2 1100delC founder mutation. Immunohistochemical analysis revealed that the two CHEK2 mutant cell lines expressed neither CHEK2 nor P-Thr(68) CHEK2 proteins, implying abrogation of normal CHEK2 DNA repair functions. Cell lines UACC812 and SUM102PT thus are the first human CHEK2 null cell lines reported and should therefore be a major help in further unraveling the function of CHEK2 mutations in carcinogenesis.
Chen, Jieping; Yao, Kai; Li, Zaishang; Deng, Chuangzhong; Wang, Liangjiao; Yu, Xingsu; Liang, Peili; Xie, Qiankun; Chen, Peng; Qin, Zike; Ye, Yunlin; Liu, Zhuowei; Zhou, Fangjian; Zhang, Zhenfeng; Han, Hui
2016-08-09
To establish penile cancer (PeCa) cell lines for the study of molecular mechanisms of carcinogenesis and testing therapeutic reagents. We successfully established two PeCa cell lines from fresh tumor tissues from 21 cases. One cell line named Penl1 was isolated from a lymph node metastasis (LNM) of penile squamous cell carcinoma (PeSCC), usual type and comprehensively characterized here. Our in-depth characterization analysis of the Penl1 cell line included morphology, tumorigenicity, genetic characteristics, protein expression, biology, and chemosensitivity. Penl1 was authenticated by single tandem repeat (STR) DNA typing. Comparative histomorphology, genetic characteristics, and protein expression patterns revealed essential similarities between the cell line and its corresponding LNM. In-depth characterization analysis of Penl1 cell line revealed tumorigenicity in immunodeficient mice, negative human papilloma virus (HPV) and mycoplasma infection, TP53 mutations and sensitivity to cisplatin and epirubicin. STR DNA typing did not match any cell lines within three international cell banks. The limitation of this study is that one patient cannot represent the complete heterogeneity of PeCa, especially primary tumor. We established and characterized an HPV-negative and moderately differentiated PeCa cell model with a TP53 missense mutation from a PeSCC, usual type patient. A preliminarily study of carcinogenesis and chemosensitivity suggests that this cell model carries a tumor suppressor gene mutation and is sensitive to chemotherapy drugs.
Li, Zaishang; Deng, Chuangzhong; Wang, Liangjiao; Yu, Xingsu; Liang, Peili; Xie, Qiankun; Chen, Peng; Qin, Zike; Ye, Yunlin; Liu, Zhuowei; Zhou, Fangjian; Zhang, Zhenfeng; Han, Hui
2016-01-01
Purpose To establish penile cancer (PeCa) cell lines for the study of molecular mechanisms of carcinogenesis and testing therapeutic reagents. Materials and Methods We successfully established two PeCa cell lines from fresh tumor tissues from 21 cases. One cell line named Penl1 was isolated from a lymph node metastasis (LNM) of penile squamous cell carcinoma (PeSCC), usual type and comprehensively characterized here. Our in-depth characterization analysis of the Penl1 cell line included morphology, tumorigenicity, genetic characteristics, protein expression, biology, and chemosensitivity. Penl1 was authenticated by single tandem repeat (STR) DNA typing. Results Comparative histomorphology, genetic characteristics, and protein expression patterns revealed essential similarities between the cell line and its corresponding LNM. In-depth characterization analysis of Penl1 cell line revealed tumorigenicity in immunodeficient mice, negative human papilloma virus (HPV) and mycoplasma infection, TP53 mutations and sensitivity to cisplatin and epirubicin. STR DNA typing did not match any cell lines within three international cell banks. The limitation of this study is that one patient cannot represent the complete heterogeneity of PeCa, especially primary tumor. Conclusions We established and characterized an HPV-negative and moderately differentiated PeCa cell model with a TP53 missense mutation from a PeSCC, usual type patient. A preliminarily study of carcinogenesis and chemosensitivity suggests that this cell model carries a tumor suppressor gene mutation and is sensitive to chemotherapy drugs. PMID:27351128
p.R182C mutation in Korean twin with congenital lipoid adrenal hyperplasia
Park, Hye Won; Kwak, Byung Ok; Kim, Gu-Hwan; Yoo, Han-Wook
2013-01-01
Congenital lipoid adrenal hyperplasia (CLAH) is the most severe form of congenital adrenal hyperplasia which is caused by mutations in the steroidogenic acute regulatory protein (StAR). The mutations in StAR gene resulted in failure of the transport cholesterol into mitochondria for steroidogenesis in the adrenal gland. Twin sisters (A, B) with normal 46, XX were born at 36+2 gestational week, premature to nonrelated parents. They had symptoms as hyperpigmentation, slightly elevated potassium level and low level of sodium. Laboratory finding revealed normal 17-hydroxyprogesterone level, elevated adrenocorticotropin hormone (A, 4,379.2 pg/mL; B, 11,616.1 pg/mL), and high plasma renin activity (A, 49.02 ng/mL/hr; B, 52.7 ng mL/hr). However, the level of plasma cortisol before treatment was low (1.5 µg/dL) in patient B but normal (8.71 µg/dL) in patient A. Among them, only patient A was presented with adrenal insufficiency symptoms which was suggestive of CLAH and prompted us to order a gene analysis in both twin. The results of gene analysis of StAR in twin revealed same heterozygous conditions for c.544C>T (Arg182Cys) in exon 5 and c.722C>T (Gln258*) in exon 7. We report the first case on the mutation of p.R182C in exon 5 of the StAR gene in Korea. PMID:24904850
Idkowiak, Jan; Randell, Tabitha; Dhir, Vivek; Patel, Pushpa; Shackleton, Cedric H L; Taylor, Norman F; Krone, Nils; Arlt, Wiebke
2012-03-01
Isolated 17,20 lyase deficiency is commonly defined by apparently normal 17α-hydroxylase activity but severely reduced 17,20 lyase activity of the bifunctional enzyme cytochrome P450 (CYP) enzyme 17A1 (CYP17A1), resulting in sex steroid deficiency but normal glucocorticoid and mineralocorticoid reserve. Cytochrome b5 (CYB5A) is thought to selectively enhance 17,20 lyase activity by facilitating the allosteric interaction of CYP17A1 with its electron donor P450 oxidoreductase (POR). We investigated a large consanguineous family including three siblings with 46,XY disorder of sex development (DSD) presenting with isolated 17,20 lyase deficiency. We investigated the clinical and biochemical phenotype, conducted genetic analyses, and functionally characterized the identified CYB5A mutation in cell-based CYP17A1 coexpression assays. All three siblings presented with 46,XY DSD, sex steroid deficiency, normal mineralocorticoids and glucocorticoids, and a urine steroid metabolome suggestive of isolated 17,20 lyase deficiency. CYP17A1 and POR sequences were normal, but we detected a homozygous CYB5A missense mutation (g.28,400A→T; p.H44L). Functional in vitro analysis revealed normal CYP17A1 17α-hydroxylase activity but severely impaired 17,20 lyase activity. In silico analysis suggested the disruption of CYB5A heme binding by p.H44L. We have identified the first human CYB5A missense mutation as the cause of isolated 17,20 lyase deficiency in three individuals with 46,XY DSD. Detailed review of previously reported cases with apparently isolated 17,20 lyase deficiency due to mutant CYP17A1 and POR reveals impaired 17α-hydroxylase activity as assessed by steroid metabolome analysis and short cosyntropin testing. This suggests that truly isolated 17,20 lyase deficiency is observed only in individuals with inactivating CYB5A mutations.
Zazo Seco, Celia; Serrão de Castro, Luciana; van Nierop, Josephine W; Morín, Matías; Jhangiani, Shalini; Verver, Eva J J; Schraders, Margit; Maiwald, Nadine; Wesdorp, Mieke; Venselaar, Hanka; Spruijt, Liesbeth; Oostrik, Jaap; Schoots, Jeroen; van Reeuwijk, Jeroen; Lelieveld, Stefan H; Huygen, Patrick L M; Insenser, María; Admiraal, Ronald J C; Pennings, Ronald J E; Hoefsloot, Lies H; Arias-Vásquez, Alejandro; de Ligt, Joep; Yntema, Helger G; Jansen, Joop H; Muzny, Donna M; Huls, Gerwin; van Rossum, Michelle M; Lupski, James R; Moreno-Pelayo, Miguel Angel; Kunst, Henricus P M; Kremer, Hannie
2015-11-05
Linkage analysis combined with whole-exome sequencing in a large family with congenital and stable non-syndromic unilateral and asymmetric hearing loss (NS-UHL/AHL) revealed a heterozygous truncating mutation, c.286_303delinsT (p.Ser96Ter), in KITLG. This mutation co-segregated with NS-UHL/AHL as a dominant trait with reduced penetrance. By screening a panel of probands with NS-UHL/AHL, we found an additional mutation, c.200_202del (p.His67_Cys68delinsArg). In vitro studies revealed that the p.His67_Cys68delinsArg transmembrane isoform of KITLG is not detectable at the cell membrane, supporting pathogenicity. KITLG encodes a ligand for the KIT receptor. Also, KITLG-KIT signaling and MITF are suggested to mutually interact in melanocyte development. Because mutations in MITF are causative of Waardenburg syndrome type 2 (WS2), we screened KITLG in suspected WS2-affected probands. A heterozygous missense mutation, c.310C>G (p.Leu104Val), that segregated with WS2 was identified in a small family. In vitro studies revealed that the p.Leu104Val transmembrane isoform of KITLG is located at the cell membrane, as is wild-type KITLG. However, in culture media of transfected cells, the p.Leu104Val soluble isoform of KITLG was reduced, and no soluble p.His67_Cys68delinsArg and p.Ser96Ter KITLG could be detected. These data suggest that mutations in KITLG associated with NS-UHL/AHL have a loss-of-function effect. We speculate that the mechanism of the mutation underlying WS2 and leading to membrane incorporation and reduced secretion of KITLG occurs via a dominant-negative or gain-of-function effect. Our study unveils different phenotypes associated with KITLG, previously associated with pigmentation abnormalities, and will thereby improve the genetic counseling given to individuals with KITLG variants. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Adaptation to High Ethanol Reveals Complex Evolutionary Pathways
Das, Anupam; Espinosa-Cantú, Adriana; De Maeyer, Dries; Arslan, Ahmed; Van Pee, Michiel; van der Zande, Elisa; Meert, Wim; Yang, Yudi; Zhu, Bo; Marchal, Kathleen; DeLuna, Alexander; Van Noort, Vera; Jelier, Rob; Verstrepen, Kevin J.
2015-01-01
Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. PMID:26545090
Sıklar, Zeynep; Berberoğlu, Merih; Legendre, Maria; Amselem, Serge; Evliyaoğlu, Olcay; Hacıhamdioğlu, Bülent; Savaş Erdeve, Senay; Oçal, Gönül
2010-01-01
Patients with growth hormone releasing hormone receptor (GHRHR) mutations exhibit pronounced dwarfism and are phenotypically and biochemically indistinguishable from other forms of isolated growth hormone deficiency (IGHD). We presented here two siblings with clinical findings of IGHD due to a nonsense mutation in the GHRHR gene who reached their target height in spite of late GH treatment. Two female siblings were admitted to our clinic with severe short stature at the age of 13.8 (patient 1) and 14.8 years (patient 2). On admission, height in patient 1 was 107 cm (-8.6 SD) and 117 cm (-6.7 SD) in patient 2. Bone age was delayed in both patients (6 years and 9 years). Clinical and biochemical analyses revealed a diagnosis of complete IGHD (peak GH levels on stimulation test was 0.06 ng/mL in patient 1 and 0.16 ng/mL in patient 2). Patients were given recombinant human GH treatment. Genetic analysis of the GH and GHRHR genes revealed that both patientscarried the GHRHR gene mutation p.Glu72X (c.214 G>T) in exon 3 in homozygous (or hemizygous) state. After seven years of GH treatment, the patients reached a final height appropriate for their target height. Final height was 151 cm (-1.5 SD) in patient 1 and 153 cm (-1.2 SD) in patient 2. In conclusion, genetic analysis is indicated in IGHD patients with severe growth failure and a positive family history. In spite of the very late diagnosis in these two patients who presented with severe growth deficit due to homozygous loss-of-function mutations in GHRHR, their final heights reached the target height.
Pressler, Carsten A; Heinzinger, Jolanta; Jeck, Nikola; Waldegger, Petra; Pechmann, Ulla; Reinalter, Stephan; Konrad, Martin; Beetz, Rolf; Seyberth, Hannsjörg W; Waldegger, Siegfried
2006-08-01
Genetic defects of the Na+-K+-2Cl- (NKCC2) sodium potassium chloride co-transporter result in severe, prenatal-onset renal salt wasting accompanied by polyhydramnios, prematurity, and life-threatening hypovolemia of the neonate (antenatal Bartter syndrome or hyperprostaglandin E syndrome). Herein are described two brothers who presented with hyperuricemia, mild metabolic alkalosis, low serum potassium levels, and bilateral medullary nephrocalcinosis at the ages of 13 and 15 yr. Impaired function of sodium chloride reabsorption along the thick ascending limb of Henle's loop was deduced from a reduced increase in diuresis and urinary chloride excretion upon application of furosemide. Molecular genetic analysis revealed that the brothers were compound heterozygotes for mutations in the SLC12A1 gene coding for the NKCC2 co-transporter. Functional analysis of the mutated rat NKCC2 protein by tracer-flux assays after heterologous expression in Xenopus oocytes revealed significant residual transport activity of the NKCC2 p.F177Y mutant construct in contrast to no activity of the NKCC2-D918fs frameshift mutant construct. However, coexpression of the two mutants was not significantly different from that of NKCC2-F177Y alone or wild type. Membrane expression of NKCC2-F177Y as determined by luminometric surface quantification was not significantly different from wild-type protein, pointing to an intrinsic partial transport defect caused by the p.F177Y mutation. The partial function of NKCC2-F177Y, which is not negatively affected by NKCC2-D918fs, therefore explains a mild and late-onset phenotype and for the first time establishes a mild phenotype-associated SLC12A1 gene mutation.
Cassidy, Andrew J.; van Steensel, Maurice A. M.; Steijlen, Peter M.; van Geel, Michel; Velden, Jaap van der; Morley, Susan M.; Terrinoni, Alessandro; Melino, Gerry; Candi, Eleonora; McLean, W. H. Irwin
2005-01-01
Peeling skin syndrome is an autosomal recessive genodermatosis characterized by the shedding of the outer epidermis. In the acral form, the dorsa of the hands and feet are predominantly affected. Ultrastructural analysis has revealed tissue separation at the junction between the granular cells and the stratum corneum in the outer epidermis. Genomewide linkage analysis in a consanguineous Dutch kindred mapped the gene to 15q15.2 in the interval between markers D15S1040 and D15S1016. Two homozygous missense mutations, T109M and G113C, were found in TGM5, which encodes transglutaminase 5 (TG5), in all affected persons in two unrelated families. The mutation was present on the same haplotype in both kindreds, indicating a probable ancestral mutation. TG5 is strongly expressed in the epidermal granular cells, where it cross-links a variety of structural proteins in the terminal differentiation of the epidermis to form the cornified cell envelope. An established, in vitro, biochemical cross-linking assay revealed that, although T109M is not pathogenic, G113C completely abolishes TG5 activity. Three-dimensional modeling of TG5 showed that G113C lies close to the catalytic domain, and, furthermore, that this glycine residue is conserved in all known transglutaminases, which is consistent with pathogenicity. Other families with more-widespread peeling skin phenotypes lacked TGM5 mutations. This study identifies the first causative gene in this heterogeneous group of skin disorders and demonstrates that the protein cross-linking function performed by TG5 is vital for maintaining cell-cell adhesion between the outermost layers of the epidermis. PMID:16380904
High Frequency of Copy-Neutral Loss of Heterozygosity in Patients with Myelofibrosis.
Rego de Paula Junior, Milton; Nonino, Alexandre; Minuncio Nascimento, Juliana; Bonadio, Raphael S; Pic-Taylor, Aline; de Oliveira, Silviene F; Wellerson Pereira, Rinaldo; do Couto Mascarenhas, Cintia; Forte Mazzeu, Juliana
2018-01-01
Myelofibrosis is the rarest and most severe type of Philadelphia-negative classical myeloproliferative neoplasms. Although mutually exclusive driver mutations in JAK2, MPL, or CALR that activate JAK-STAT pathway have been related to the pathogenesis of the disease, chromosome abnormalities have also been associated with the phenotype and prognosis of the disease. Here, we report the use of a chromosomal microarray platform consisting of both oligo and SNP probes to improve the detection of chromosome abnormalities in patients with myelofibrosis. Sixteen patients with myelofibrosis were tested, and the results were compared to karyotype analysis. Driver mutations in JAK2, MPL, or CALR were investigated by PCR and MLPA. Conventional cytogenetics revealed chromosome abnormalities in 3 out of 16 cases (18.7%), while chromosomal microarray analysis detected copy-number variations (CNV) or copy-neutral loss of heterozygosity (CN-LOH) alterations in 11 out of 16 (68.7%) patients. These included 43 CN-LOH, 14 deletions, 1 trisomy, and 1 duplication. Ten patients showed multiple chromosomal abnormalities, varying from 2 to 13 CNVs or CN-LOHs. Mutational status for JAK2, CALR, and MPL by MLPA revealed a total of 3/16 (18.7%) patients positive for the JAK2 V617F mutation, 9 with CALR deletion or insertion and 1 positive for MPL mutation. Considering that most of the CNVs identified were smaller than the karyotype resolution and the high frequency of CN-LOHs in our study, we propose that chromosomal microarray platforms that combine oligos and SNP should be used as a first-tier genetic test in patients with myelofibrosis. © 2018 S. Karger AG, Basel.
Mahu, M; Pasmans, F; Vranckx, K; De Pauw, N; Vande Maele, L; Vyt, Philip; Vandersmissen, Tamara; Martel, A; Haesebrouck, F; Boyen, F
2017-08-01
Swine dysentery (SD) is an economically important disease for which antimicrobial treatment still occupies an important place to control outbreaks. However, acquired antimicrobial resistance is increasingly observed in Brachyspira hyodysenteriae. In this study, the Minimal Inhibitory Concentrations (MIC) of six antimicrobial compounds for 30 recent Belgian B. hyodysenteriae isolates were determined using a broth microdilution method. In addition, relevant regions of the 16S rRNA, 23S rRNA and the L3 protein encoding genes were sequenced to reveal mutations associated with acquired resistance. Finally, a phylogeny was reconstructed using minimal spanning tree analysis of multi locus sequence typing of the isolates. For lincomycin, doxycycline, tylosin and tylvalosin, at least 70% of the isolates did not belong to the wild-type population and were considered to have acquired resistance. For valnemulin and tiamulin, this was over 50%. In all isolates with acquired resistance to doxycycline, the G1058C mutation was present in their 16S rRNA gene. All isolates showing acquired resistance to lincomycin and both macrolides displayed the A2058T mutation in their 23S rRNA gene. Other mutations in this gene and the N148S mutation in the L3 protein were present in both wild-type isolates and isolates considered to have acquired resistance. Multi locus sequence analysis revealed a previously undescribed clonal complex, with 4 novel sequence types in which the majority of isolates showed acquired resistance to all tested antimicrobial products. In conclusion, acquired antimicrobial resistance is widespread among Belgian B. hyodysenteriae isolates. The emergence of multi-resistant clonal complexes can pose a threat to swine industry. Copyright © 2017 Elsevier B.V. All rights reserved.
A novel mutation in the PAX3 gene causes Waardenburg syndrome type I in an Iranian family.
Jalilian, Nazanin; Tabatabaiefar, Mohammad Amin; Farhadi, Mohammad; Bahrami, Tayyeb; Noori-Daloii, Mohammad Reza
2015-10-01
Sensorineural hearing impairment (HI) is one of the most frequent congenital defects, with a prevalence of 1 in 500 among neonates. Although there are over 400 syndromes involving HI, most cases of HI are nonsyndromic (70%), 20% of which follow autosomal dominant mode of inheritance. Waardenburg syndrome (WS) ranks first among autosomal dominant syndromic forms of HI. WS is characterized by sensorineural hearing impairment, pigmentation abnormalities of hair and skin and hypoplastic blue eyes or heterochromia iridis. WS is subdivided into four major types, WS1-WS4. WS1 is diagnosed by the presence of dystopia canthorum and PAX3 is the only gene involved. This study aims to determine the pathogenic mutation in a large Iranian pedigree affected with WS1 in order to further confirm the clinical diagnosis. In the present study, a family segregating HI was ascertained in a genetic counseling center. Upon clinical inspection, white forelock, dystopia canthorum, broad high nasal root and synophrys, characteristic of WS1 were evident. In order to clarify the genetic etiology and confirm the clinical data, primers were designed to amplify exons and exon-intron boundaries of the responsible gene, PAX3 with 10 exons, followed by the Sanger DNA sequencing method. Genetic analysis of PAX3 revealed a novel mutation in PAX3 (c.1024_1040 del AGCACGATTCCTTCCAA). Our data provide genotype-phenotype correlation for the mutation in PAX3 and WS1 in the studied family, with implications for genetic counseling, which necessitates detailed clinical inspection of HI patients to distinguish syndromic HI from the more common non-syndromic cases. Our results reveal the value of phenotype-directed genetic analysis and could further expand the spectrum of PAX3 mutations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
SF3B1 mutations constitute a novel therapeutic target in breast cancer
Maguire, Sarah L; Leonidou, Andri; Wai, Patty; Marchiò, Caterina; Ng, Charlotte KY; Sapino, Anna; Salomon, Anne-Vincent; Reis-Filho, Jorge S; Weigelt, Britta; Natrajan, Rachael C
2015-01-01
Mutations in genes encoding proteins involved in RNA splicing have been found to occur at relatively high frequencies in several tumour types including myelodysplastic syndromes, chronic lymphocytic leukaemia, uveal melanoma, and pancreatic cancer, and at lower frequencies in breast cancer. To investigate whether dysfunction in RNA splicing is implicated in the pathogenesis of breast cancer, we performed a re-analysis of published exome and whole genome sequencing data. This analysis revealed that mutations in spliceosomal component genes occurred in 5.6% of unselected breast cancers, including hotspot mutations in the SF3B1 gene, which were found in 1.8% of unselected breast cancers. SF3B1 mutations were significantly associated with ER-positive disease, AKT1 mutations, and distinct copy number alterations. Additional profiling of hotspot mutations in a panel of special histological subtypes of breast cancer showed that 16% and 6% of papillary and mucinous carcinomas of the breast harboured the SF3B1 K700E mutation. RNA sequencing identified differentially spliced events expressed in tumours with SF3B1 mutations including the protein coding genes TMEM14C, RPL31, DYNL11, UQCC, and ABCC5, and the long non-coding RNA CRNDE. Moreover, SF3B1 mutant cell lines were found to be sensitive to the SF3b complex inhibitor spliceostatin A and treatment resulted in perturbation of the splicing signature. Albeit rare, SF3B1 mutations result in alternative splicing events, and may constitute drivers and a novel therapeutic target in a subset of breast cancers. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:25424858
Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S
2016-10-01
Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies.
Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S
2016-01-01
Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies. PMID:27338637
Agammaglobulinaemia despite terminal B-cell differentiation in a patient with a novel LRBA mutation
Al Sukaiti, Nashat; AbdelRahman, Khwater; AlShekaili, Jalila; Al Oraimi, Sumaya; Al Sinani, Aisha; Al Rahbi, Nasser; Cho, Vicky; Field, Matt; Cook, Matthew C
2017-01-01
Mutations in lipopolysaccharide-responsive vesicle trafficking, beach and anchor-containing protein (LRBA) cause immune deficiency and inflammation. Here, we are reporting a novel homozygous mutation in LRBA allele in 7-year-old Omani boy, born to consanguineous parents. He presented with type 1 diabetes, autoimmune haematological cytopenia, recurrent chest infections and lymphocytic interstitial lung disease. The patient was treated with CTLA4-Ig (abatacept) with good outcome every 2 weeks for a period of 3 months. He developed complete IgG deficiency, but remarkably, histological examination revealed germinal centres and plasma cells in lymphoid and inflamed lung tissue. Further charatecterisation showed these cells to express IgM but not IgG. This ex vivo analysis suggests that LRBA mutation confers a defect in class switching despite plasma cell formation. PMID:28690850
How do the effects of mutations add up?
NASA Astrophysics Data System (ADS)
Velenich, Andrea; Dai, Mingjie; Gore, Jeff
2011-03-01
Genetic mutations affect the fitness of any organism and provide the variability necessary for natural selection to occur. Given the fitness of a wild type organism and the fitness of mutants A and B which differ from the wild type by a single mutation, predicting the fitness of the double mutant AB is a fundamental problem with broad implications in many fields, from evolutionary theory to medicine. Analysis of millions of double gene knockouts in yeast reveals that, on average, the fitness of AB is the product of the fitness of A and the fitness of B. However, most pairs of mutations deviate from this mean behavior in a way that challenges existing theoretical models. We propose a natural generalization of the geometric Fisher's model which accommodates the experimentally observed features and allows us to characterize the fitness landscape of yeast.
Voronina, O L; Ryzhova, N N; Aksenova, E I; Kunda, M S; Sharapova, N E; Fedyakina, I T; Chvala, I A; Borisevich, S V; Logunov, D Yu; Gintsburg, A L
2018-05-28
Highly pathogenic avian influenza viruses (HPAIV) A(H5N8) of group B (Gochang1-like) have emerged in the Tyva Republic of eastern Russia in May 2016. Since November 2016, HPAIV A(H5N8) has spread throughout the European part of Russia. Thirty-one outbreaks were reported in domestic, wild and zoo birds in 2017. The present study aimed to perform a comparative analysis of new HPAIV A(H5N8) strains. Phylogenetic analysis revealed four genetically distinct subgroups in HPAIV A(H5N8) from the 2016-2017 season. Russian strains consisted of three subgroups with differences between isolates from Tyva, Siberia (Chany Lake), and the European part of Russia. Strains from the European part of Russia showed the beginnings of divergent evolution. Slight differences of the Voronezh strains were suggested by sensitivity to antiviral compounds. Testing for host-specific mutations in sequenced strains revealed the absence of mutations associated with possible increased tropism/virulence in mammalian species, including humans. Only one residue of polymerase basic-1, 13P, is discussed, because the L13P mutation increased complementary RNA synthesis in mammalian cells. We concluded that the evolution of HPAIV A(H5N8) is continuous. Surveillance in Russia revealed new cases of HPAIV A(H5N8) and led to the elaboration of prevention strategies, which should be implemented. Copyright © 2018 Elsevier B.V. All rights reserved.
Tissue-specific mutation accumulation in human adult stem cells during life
NASA Astrophysics Data System (ADS)
Blokzijl, Francis; de Ligt, Joep; Jager, Myrthe; Sasselli, Valentina; Roerink, Sophie; Sasaki, Nobuo; Huch, Meritxell; Boymans, Sander; Kuijk, Ewart; Prins, Pjotr; Nijman, Isaac J.; Martincorena, Inigo; Mokry, Michal; Wiegerinck, Caroline L.; Middendorp, Sabine; Sato, Toshiro; Schwank, Gerald; Nieuwenhuis, Edward E. S.; Verstegen, Monique M. A.; van der Laan, Luc J. W.; de Jonge, Jeroen; Ijzermans, Jan N. M.; Vries, Robert G.; van de Wetering, Marc; Stratton, Michael R.; Clevers, Hans; Cuppen, Edwin; van Boxtel, Ruben
2016-10-01
The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.
Powell, Matthew A.; Wellens, Candice L.; Gao, Feng; Mutch, David G.; Goodfellow, Paul J.; Pollock, Pamela M.
2012-01-01
Mutations in multiple oncogenes including KRAS, CTNNB1, PIK3CA and FGFR2 have been identified in endometrial cancer. The aim of this study was to provide insight into the clinicopathological features associated with patterns of mutation in these genes, a necessary step in planning targeted therapies for endometrial cancer. 466 endometrioid endometrial tumors were tested for mutations in FGFR2, KRAS, CTNNB1, and PIK3CA. The relationships between mutation status, tumor microsatellite instability (MSI) and clinicopathological features including overall survival (OS) and disease-free survival (DFS) were evaluated using Kaplan-Meier survival analysis and Cox proportional hazard models. Mutations were identified in FGFR2 (48/466); KRAS (87/464); CTNNB1 (88/454) and PIK3CA (104/464). KRAS and FGFR2 mutations were significantly more common, and CTNNB1 mutations less common, in MSI positive tumors. KRAS and FGFR2 occurred in a near mutually exclusive pattern (p = 0.05) and, surprisingly, mutations in KRAS and CTNNB1 also occurred in a near mutually exclusive pattern (p = 0.0002). Multivariate analysis revealed that mutation in KRAS and FGFR2 showed a trend (p = 0.06) towards longer and shorter DFS, respectively. In the 386 patients with early stage disease (stage I and II), FGFR2 mutation was significantly associated with shorter DFS (HR = 3.24; 95% confidence interval, CI, 1.35–7.77; p = 0.008) and OS (HR = 2.00; 95% CI 1.09–3.65; p = 0.025) and KRAS was associated with longer DFS (HR = 0.23; 95% CI 0.05–0.97; p = 0.045). In conclusion, although KRAS and FGFR2 mutations share similar activation of the MAPK pathway, our data suggest very different roles in tumor biology. This has implications for the implementation of anti-FGFR or anti-MEK biologic therapies. PMID:22383975
Nakayama, Izuma; Shinozaki, Eiji; Matsushima, Tomohiro; Wakatsuki, Takeru; Ogura, Mariko; Ichimura, Takashi; Ozaka, Masato; Takahari, Daisuke; Suenaga, Mitsukuni; Chin, Keisho; Mizunuma, Nobuyuki; Yamaguchi, Kensei
2017-01-09
After analysis of minor RAS mutations (KRAS exon 3, 4/NRAS) in the FIRE-3 and PRIME studies, an expanded range of RAS mutations were established as a negative predictive marker for the efficacy of anti-EGFR antibody treatment. BRAF and PIK3CA mutations may be candidate biomarkers for anti-EGFR targeted therapies. However, it remains unknown whether RAS/PIK3CA/BRAF tumor mutations can predict the efficacy of bevacizumab in metastatic colorectal cancer. We assessed whether selection according to RAS/PIK3CA/BRAF mutational status could be beneficial for patients treated with bevacizumab as first-line treatment for metastatic colorectal cancer. Of the 1001 consecutive colorectal cancer patients examined for RAS, PIK3CA, and BRAF tumor mutations using a multiplex kit (Luminex®), we studied 90 patients who received combination chemotherapy with bevacizumab as first-line treatment for metastatic colorectal cancer. The objective response rate (ORR) and progression-free survival (PFS) were evaluated according to mutational status. The ORR was higher among patients with wild-type tumors (64.3%) compared to those with tumors that were only wild type with respect to KRAS exon 2 (54.8%), and the differences in ORR between patients with wild-type and mutant-type tumors were greater when considering only KRAS exon 2 mutations (6.8%) rather than RAS/PIK3CA/BRAF mutations (18.4%). There were no statistically significant differences in ORR or PFS between all wild-type tumors and tumors carrying any of the mutations. Multivariate analysis revealed that liver metastasis and RAS and BRAF mutations were independent negative factors for disease progression after first-line treatment with bevacizumab. Patient selection according to RAS/PIK3CA/BRAF mutations could help select patients who will achieve a better response to bevacizumab treatment. We found no clinical benefit of restricting combination therapy with bevacizumab for metastatic colorectal cancer patients with EGFR-wild type tumors.
Siddiqui, Ghizal; Srivastava, Anubhav; Russell, Adrian S; Creek, Darren J
2017-05-01
The emergence of artemisinin resistance in the malaria parasite Plasmodium falciparum poses a major threat to the control and elimination of malaria. Certain point mutations in the propeller domain of PfKelch13 are associated with resistance, but PfKelch13 mutations do not always result in clinical resistance. The underlying mechanisms associated with artemisinin resistance are poorly understood, and the impact of PfKelch13 mutations on cellular biochemistry is not defined. This study aimed to identify global biochemical differences between PfKelch13-mutant artemisinin-resistant and -sensitive strains of P. falciparum by combining liquid chromatography-mass spectrometry (LC-MS)-based proteomics, peptidomics, and metabolomics. Proteomics analysis found both PfKelch13 mutations examined to be specifically associated with decreased abundance of PfKelch13 protein. Metabolomics analysis demonstrated accumulation of glutathione and its precursor, gamma-glutamylcysteine, and significant depletion of 1 other putative metabolite in resistant strains. Peptidomics analysis revealed lower abundance of several endogenous peptides derived from hemoglobin (HBα and HBβ) in the artemisinin-resistant strains. PfKelch13 mutations associated with artemisinin resistance lead to decreased abundance of PfKelch13 protein, decreased hemoglobin digestion, and enhanced glutathione production. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Chen, Chih-Ping; Su, Yi-Ning; Lin, Tzu-Hung; Chang, Tung-Yao; Su, Jun-Wei; Wang, Wayseen
2013-12-01
We describe a prenatal molecular diagnosis of hypochondroplasia (HCH) in a pregnancy not at risk of HCH and review the literature on prenatal diagnosis of HCH. A 28-year-old primigravid woman was referred for genetic counseling at 30 weeks of gestation because of short-limbed dwarfism in the fetus. The woman had a body height of 152 cm. Her husband had a body height of 180 cm. Level II ultrasound showed a normal amount of amniotic fluid and a singleton fetus with fetal biometry equivalent to 30 weeks except for short limbs. Fetal biometry measurements were as follows: biparietal diameter = 7.38 cm (30 weeks); head circumference = 28.14 cm (30 weeks); abdominal circumference (AC) = 24.64 cm (30 weeks); femur length (FL) = 3.97 cm (<5th centile); FL/AC ratio = 0.161 (normal > 0.18); humerus = 3.64 cm (<5th centile); radius = 3.49 cm (30 weeks); ulna = 3.76 cm (<5(th) centile); tibia = 3.67 cm (<5th centile); and fibula = 3.72 cm (<5th centile). The digits and craniofacial appearance were normal. A tentative diagnosis of achondroplasia (ACH) was made. DNA testing for the FGFR3 gene and whole-genome array comparative genomic hybridization (aCGH) analysis were performed using cord blood DNA obtained by cordocentesis. FGFR3 mutation analysis revealed a de novo heterozygous c.833A > G, TAC > TGC transversion in exon 7 leading to a p.Tyr278Cys (Y278C) mutation in the FGFR3 protein. aCGH analysis revealed no genomic imbalance in cord blood. After delivery, the fetus had short limbs, a narrow thorax, brachydactyly, and relative macrocephaly. Cytogenetic analysis of cultured placental cells revealed a karyotype of 46,XX. Prenatal diagnosis of abnormal ultrasound findings suspicious of ACH should include a differential diagnosis of HCH by molecular analysis of FGFR3. Copyright © 2013. Published by Elsevier B.V.
2014-01-01
Background Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized. Results Here, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2, confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus. Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance. Conclusions This first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies. PMID:24565444
Hernandez, Jose A.; Gonzalez, Cesar G.
2017-01-01
There are 8 different human syndromes caused by mutations in the cholesterol synthesis pathway. A subset of these disorders such as Smith-Lemli-Opitz disorder, are associated with facial dysmorphia. However, the molecular and cellular mechanisms underlying such facial deficits are not fully understood, primarily because of the diverse functions associated with the cholesterol synthesis pathway. Recent evidence has demonstrated that mutation of the zebrafish ortholog of HMGCR results in orofacial clefts. Here we sought to expand upon these data, by deciphering the cholesterol dependent functions of the cholesterol synthesis pathway from the cholesterol independent functions. Moreover, we utilized loss of function analysis and pharmacological inhibition to determine the extent of sonic hedgehog (Shh) signaling in animals with aberrant cholesterol and/or isoprenoid synthesis. Our analysis confirmed that mutation of hmgcs1, which encodes the first enzyme in the cholesterol synthesis pathway, results in craniofacial abnormalities via defects in cranial neural crest cell differentiation. Furthermore targeted pharmacological inhibition of the cholesterol synthesis pathway revealed a novel function for isoprenoid synthesis during vertebrate craniofacial development. Mutation of hmgcs1 had no effect on Shh signaling at 2 and 3 days post fertilization (dpf), but did result in a decrease in the expression of gli1, a known Shh target gene, at 4 dpf, after morphological deficits in craniofacial development and chondrocyte differentiation were observed in hmgcs1 mutants. These data raise the possibility that deficiencies in cholesterol modulate chondrocyte differentiation by a combination of Shh independent and Shh dependent mechanisms. Moreover, our results describe a novel function for isoprenoids in facial development and collectively suggest that cholesterol regulates craniofacial development through versatile mechanisms. PMID:28686747