Science.gov

Sample records for mutation impairs trafficking

  1. Mutations in the D1 domain of von Willebrand factor impair their propeptide-dependent multimerization, intracellular trafficking and secretion.

    PubMed

    Yin, Jie; Ma, Zhenni; Su, Jian; Wang, Jiong-Wei; Zhao, Xiaojuan; Ling, Jing; Bai, Xia; Ouyang, Wanyan; Wang, Zhaoyue; Yu, Ziqiang; Ruan, Changgeng

    2015-01-01

    We identified three novel mutations (p.Gly39Arg, p.Lys157Glu, p.Cys379Gly) and one previously known mutation (p.Asp141Asn) in the von Willebrand factor propeptide from three von Willebrand disease patients. All four mutations impaired multimerization of von Willebrand factor, due to reduced oxidoreductase activity of isomeric propeptide. These mutations resulted in the endothelial reticulum retention and impaired basal and stimulated secretions of von Willebrand factor. Our results support that the mutations in the D1 domain lead to defective multimerization, intracellular trafficking, and secretion of von Willebrand factor and result in bleeding of patients. PMID:26088471

  2. Slitrk Missense Mutations Associated with Neuropsychiatric Disorders Distinctively Impair Slitrk Trafficking and Synapse Formation

    PubMed Central

    Kang, Hyeyeon; Han, Kyung Ah; Won, Seoung Youn; Kim, Ho Min; Lee, Young-Ho; Ko, Jaewon; Um, Ji Won

    2016-01-01

    Slit- and Trk-like (Slitrks) are a six-member family of synapse organizers that control excitatory and inhibitory synapse formation by forming trans-synaptic adhesions with LAR receptor protein tyrosine phosphatases (PTPs). Intriguingly, genetic mutations of Slitrks have been associated with a multitude of neuropsychiatric disorders. However, nothing is known about the neuronal and synaptic consequences of these mutations. Here, we report the structural and functional effects on synapses of various rare de novo mutations identified in patients with schizophrenia or Tourette syndrome. A number of single amino acid substitutions in Slitrk1 (N400I or T418S) or Slitrk4 (V206I or I578V) reduced their surface expression levels. These substitutions impaired glycosylation of Slitrks expressed in HEK293T cells, caused retention of Slitrks in the endoplasmic reticulum and cis-Golgi compartment in COS-7 cells and neurons, and abolished Slitrk binding to PTPδ. Furthermore, these substitutions eliminated the synapse-inducing activity of Slitrks, abolishing their functional effects on synapse density in cultured neurons. Strikingly, a valine-to-methionine mutation in Slitrk2 (V89M) compromised synapse formation activity in cultured neuron, without affecting surface transport, expression, or synapse-inducing activity in coculture assays. Similar deleterious effects were observed upon introduction of the corresponding valine-to-methionine mutation into Slitrk1 (V85M), suggesting that this conserved valine residue plays a key role in maintaining the synaptic functions of Slitrks. Collectively, these data indicate that inactivation of distinct cellular mechanisms caused by specific Slitrk dysfunctions may underlie Slitrk-associated neuropsychiatric disorders in humans, and provide a robust cellular readout for the development of knowledge-based therapies. PMID:27812321

  3. AP1S3 mutations are associated with pustular psoriasis and impaired Toll-like receptor 3 trafficking.

    PubMed

    Setta-Kaffetzi, Niovi; Simpson, Michael A; Navarini, Alexander A; Patel, Varsha M; Lu, Hui-Chun; Allen, Michael H; Duckworth, Michael; Bachelez, Hervé; Burden, A David; Choon, Siew-Eng; Griffiths, Christopher E M; Kirby, Brian; Kolios, Antonios; Seyger, Marieke M B; Prins, Christa; Smahi, Asma; Trembath, Richard C; Fraternali, Franca; Smith, Catherine H; Barker, Jonathan N; Capon, Francesca

    2014-05-01

    Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has the unique potential to deliver insights into gene function. Here, we report two founder mutations (c.11T>G [p.Phe4Cys] and c.97C>T [p.Arg33Trp]) in AP1S3, the gene encoding AP-1 complex subunit σ1C, in 15 unrelated individuals with a severe autoinflammatory skin disorder known as pustular psoriasis. Because the variants are predicted to destabilize the 3D structure of the AP-1 complex, we generated AP1S3-knockdown cell lines to investigate the consequences of AP-1 deficiency in skin keratinocytes. We found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling. These findings identify pustular psoriasis as an autoinflammatory phenotype caused by defects in vesicular trafficking and demonstrate a requirement of AP-1 for Toll-like receptor homeostasis. PMID:24791904

  4. Loss-of-function mutations in ATP6V0A2 impair vesicular trafficking, tropoelastin secretion and cell survival.

    PubMed

    Hucthagowder, Vishwanathan; Morava, Eva; Kornak, Uwe; Lefeber, Dirk J; Fischer, Björn; Dimopoulou, Aikaterini; Aldinger, Annika; Choi, Jiwon; Davis, Elaine C; Abuelo, Dianne N; Adamowicz, Maciej; Al-Aama, Jumana; Basel-Vanagaite, Lina; Fernandez, Bridget; Greally, Marie T; Gillessen-Kaesbach, Gabriele; Kayserili, Hulya; Lemyre, Emmanuelle; Tekin, Mustafa; Türkmen, Seval; Tuysuz, Beyhan; Yüksel-Konuk, Berrin; Mundlos, Stefan; Van Maldergem, Lionel; Wevers, Ron A; Urban, Zsolt

    2009-06-15

    Autosomal recessive cutis laxa type 2 (ARCL2), a syndrome of growth and developmental delay and redundant, inelastic skin, is caused by mutations in the a2 subunit of the vesicular ATPase H+-pump (ATP6V0A2). The goal of this study was to define the disease mechanisms that lead to connective tissue lesions in ARCL2. In a new cohort of 17 patients, DNA sequencing of ATP6V0A2 detected either homozygous or compound heterozygous mutations. Considerable allelic and phenotypic heterogeneity was observed, with a missense mutation of a moderately conserved residue p.P87L leading to unusually mild disease. Abnormal N- and/or mucin type O-glycosylation was observed in all patients tested. Premature stop codon mutations led to decreased ATP6V0A2 mRNA levels by destabilizing the mutant mRNA via the nonsense-mediated decay pathway. Loss of ATP6V0A2 either by siRNA knockdown or in ARCL2 cells resulted in distended Golgi cisternae, accumulation of abnormal lysosomes and multivesicular bodies. Immunostaining of ARCL2 cells showed the accumulation of tropoelastin (TE) in the Golgi and in large, abnormal intracellular and extracellular aggregates. Pulse-chase studies confirmed impaired secretion and increased intracellular retention of TE, and insoluble elastin assays showed significantly reduced extracellular deposition of mature elastin. Fibrillin-1 microfibril assembly and secreted lysyl oxidase activity were normal in ARCL2 cells. TUNEL staining demonstrated increased rates of apoptosis in ARCL2 cell cultures. We conclude that loss-of-function mutations in ATP6V0A2 lead to TE aggregation in the Golgi, impaired clearance of TE aggregates and increased apoptosis of elastogenic cells.

  5. Loss-of-function mutations in ATP6V0A2 impair vesicular trafficking, tropoelastin secretion and cell survival

    PubMed Central

    Hucthagowder, Vishwanathan; Morava, Eva; Kornak, Uwe; Lefeber, Dirk J.; Fischer, Björn; Dimopoulou, Aikaterini; Aldinger, Annika; Choi, Jiwon; Davis, Elaine C.; Abuelo, Dianne N.; Adamowicz, Maciej; Al-Aama, Jumana; Basel-Vanagaite, Lina; Fernandez, Bridget; Greally, Marie T.; Gillessen-Kaesbach, Gabriele; Kayserili, Hulya; Lemyre, Emmanuelle; Tekin, Mustafa; Türkmen, Seval; Tuysuz, Beyhan; Yüksel-Konuk, Berrin; Mundlos, Stefan; Van Maldergem, Lionel; Wevers, Ron A.; Urban, Zsolt

    2009-01-01

    Autosomal recessive cutis laxa type 2 (ARCL2), a syndrome of growth and developmental delay and redundant, inelastic skin, is caused by mutations in the a2 subunit of the vesicular ATPase H+-pump (ATP6V0A2). The goal of this study was to define the disease mechanisms that lead to connective tissue lesions in ARCL2. In a new cohort of 17 patients, DNA sequencing of ATP6V0A2 detected either homozygous or compound heterozygous mutations. Considerable allelic and phenotypic heterogeneity was observed, with a missense mutation of a moderately conserved residue p.P87L leading to unusually mild disease. Abnormal N- and/or mucin type O-glycosylation was observed in all patients tested. Premature stop codon mutations led to decreased ATP6V0A2 mRNA levels by destabilizing the mutant mRNA via the nonsense-mediated decay pathway. Loss of ATP6V0A2 either by siRNA knockdown or in ARCL2 cells resulted in distended Golgi cisternae, accumulation of abnormal lysosomes and multivesicular bodies. Immunostaining of ARCL2 cells showed the accumulation of tropoelastin (TE) in the Golgi and in large, abnormal intracellular and extracellular aggregates. Pulse–chase studies confirmed impaired secretion and increased intracellular retention of TE, and insoluble elastin assays showed significantly reduced extracellular deposition of mature elastin. Fibrillin-1 microfibril assembly and secreted lysyl oxidase activity were normal in ARCL2 cells. TUNEL staining demonstrated increased rates of apoptosis in ARCL2 cell cultures. We conclude that loss-of-function mutations in ATP6V0A2 lead to TE aggregation in the Golgi, impaired clearance of TE aggregates and increased apoptosis of elastogenic cells. PMID:19321599

  6. Mechanism of impaired microtubule-dependent peroxisome trafficking and oxidative stress in SPAST-mutated cells from patients with Hereditary Spastic Paraplegia

    PubMed Central

    Wali, Gautam; Sutharsan, Ratneswary; Fan, Yongjun; Stewart, Romal; Tello Velasquez, Johana; Sue, Carolyn M; Crane, Denis I.; Mackay-Sim, Alan

    2016-01-01

    Hereditary spastic paraplegia (HSP) is an inherited neurological condition that leads to progressive spasticity and gait abnormalities. Adult-onset HSP is most commonly caused by mutations in SPAST, which encodes spastin a microtubule severing protein. In olfactory stem cell lines derived from patients carrying different SPAST mutations, we investigated microtubule-dependent peroxisome movement with time-lapse imaging and automated image analysis. The average speed of peroxisomes in patient-cells was slower, with fewer fast moving peroxisomes than in cells from healthy controls. This was not because of impairment of peroxisome-microtubule interactions because the time-dependent saltatory dynamics of movement of individual peroxisomes was unaffected in patient-cells. Our observations indicate that average peroxisome speeds are less in patient-cells because of the lower probability of individual peroxisome interactions with the reduced numbers of stable microtubules: peroxisome speeds in patient cells are restored by epothilone D, a tubulin-binding drug that increases the number of stable microtubules to control levels. Patient-cells were under increased oxidative stress and were more sensitive than control-cells to hydrogen peroxide, which is primarily metabolised by peroxisomal catalase. Epothilone D also ameliorated patient-cell sensitivity to hydrogen-peroxide. Our findings suggest a mechanism for neurodegeneration whereby SPAST mutations indirectly lead to impaired peroxisome transport and oxidative stress. PMID:27229699

  7. M-CSF receptor mutations in hereditary diffuse leukoencephalopathy with spheroids impair not only kinase activity but also surface expression

    SciTech Connect

    Hiyoshi, Masateru; Hashimoto, Michihiro; Yukihara, Mamiko; Bhuyan, Farzana; Suzu, Shinya

    2013-11-01

    Highlights: •Many mutations were identified in Fms as a putative genetic cause of HDLS. •All of the mutations tested severely impair the kinase activity. •Most of the mutations also impair the trafficking to the cell surface. •These defects further suggest that HDLS is caused by a loss of Fms function. -- Abstract: The tyrosine kinase Fms, the cell surface receptor for M-CSF and IL-34, is critical for microglial proliferation and differentiation in the brain. Recently, a number of mutations have been identified in Fms as a putative genetic cause of hereditary diffuse leukoencephalopathy with spheroids (HDLS), implying an important role of microglial dysfunction in HDLS pathogenesis. In this study, we initially confirmed that 11 mutations, which reside within the ATP-binding or major tyrosine kinase domain, caused a severe impairment of ligand-induced Fms auto-phosphorylation. Intriguingly, we found that 10 of the 11 mutants also showed a weak cell surface expression, which was associated with a concomitant increase in the low molecular weight hypo-N-glycosylated immature gp130Fms-like species. Indeed, the mutant proteins heavily accumulated to the Golgi-like perinuclear regions. These results indicate that all of the Fms mutations tested severely impair the kinase activity and most of the mutations also impair the trafficking to the cell surface, further suggesting that HDLS is caused by the loss of Fms function.

  8. The AQP2 mutation V71M causes nephrogenic diabetes insipidus in humans but does not impair the function of a bacterial homolog

    PubMed Central

    Klein, Noreen; Kümmerer, Nadine; Hobernik, Dominika; Schneider, Dirk

    2015-01-01

    Several point mutations have been identified in human aquaporins, but their effects on the function of the respective aquaporins are mostly enigmatic. We analyzed the impact of the aquaporin 2 mutation V71M, which causes nephrogenic diabetes insipidus in humans, on aquaporin structure and activity, using the bacterial aquaglyceroporin GlpF as a model. Importantly, the sequence and structure around the V71M mutation is highly conserved between aquaporin 2 and GlpF. The V71M mutation neither impairs substrate flux nor oligomerization of the aquaglyceroporin. Therefore, the human aquaporin 2 mutant V71M is most likely active, but cellular trafficking is probably impaired. PMID:26442203

  9. Distinct phenotype of a Wilson disease mutation reveals a novel trafficking determinant in the copper transporter ATP7B

    PubMed Central

    Braiterman, Lelita T.; Murthy, Amrutha; Jayakanthan, Samuel; Nyasae, Lydia; Tzeng, Eric; Gromadzka, Grazyna; Woolf, Thomas B.; Lutsenko, Svetlana; Hubbard, Ann L.

    2014-01-01

    Wilson disease (WD) is a monogenic autosomal-recessive disorder of copper accumulation that leads to liver failure and/or neurological deficits. WD is caused by mutations in ATP7B, a transporter that loads Cu(I) onto newly synthesized cupro-enzymes in the trans-Golgi network (TGN) and exports excess copper out of cells by trafficking from the TGN to the plasma membrane. To date, most WD mutations have been shown to disrupt ATP7B activity and/or stability. Using a multidisciplinary approach, including clinical analysis of patients, cell-based assays, and computational studies, we characterized a patient mutation, ATP7BS653Y, which is stable, does not disrupt Cu(I) transport, yet renders the protein unable to exit the TGN. Bulky or charged substitutions at position 653 mimic the phenotype of the patient mutation. Molecular modeling and dynamic simulation suggest that the S653Y mutation induces local distortions within the transmembrane (TM) domain 1 and alter TM1 interaction with TM2. S653Y abolishes the trafficking-stimulating effects of a secondary mutation in the N-terminal apical targeting domain. This result indicates a role for TM1/TM2 in regulating conformations of cytosolic domains involved in ATP7B trafficking. Taken together, our experiments revealed an unexpected role for TM1/TM2 in copper-regulated trafficking of ATP7B and defined a unique class of WD mutants that are transport-competent but trafficking-defective. Understanding the precise consequences of WD-causing mutations will facilitate the development of advanced mutation-specific therapies. PMID:24706876

  10. Mutations of Vasopressin Receptor 2 Including Novel L312S Have Differential Effects on Trafficking

    PubMed Central

    Tiulpakov, Anatoly; White, Carl W.; Abhayawardana, Rekhati S.; See, Heng B.; Chan, Audrey S.; Seeber, Ruth M.; Heng, Julian I.; Dedov, Ivan; Pavlos, Nathan J.

    2016-01-01

    Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a genetic disease first described in 2 unrelated male infants with severe symptomatic hyponatremia. Despite undetectable arginine vasopressin levels, patients have inappropriately concentrated urine resulting in hyponatremia, hypoosmolality, and natriuresis. Here, we describe and functionally characterize a novel vasopressin type 2 receptor (V2R) gain-of-function mutation. An L312S substitution in the seventh transmembrane domain was identified in a boy presenting with water-induced hyponatremic seizures at the age of 5.8 years. We show that, compared with wild-type V2R, the L312S mutation results in the constitutive production of cAMP, indicative of the gain-of-function NSIAD profile. Interestingly, like the previously described F229V and I130N NSIAD-causing mutants, this appears to both occur in the absence of notable constitutive β-arrestin2 recruitment and can be reduced by the inverse agonist Tolvaptan. In addition, to understand the effect of various V2R substitutions on the full receptor “life-cycle,” we have used and further developed a bioluminescence resonance energy transfer intracellular localization assay using multiple localization markers validated with confocal microscopy. This allowed us to characterize differences in the constitutive and ligand-induced localization and trafficking profiles of the novel L312S mutation as well as for previously described V2R gain-of-function mutants (NSIAD; R137C and R137L), loss-of-function mutants (nephrogenic diabetes insipidus; R137H, R181C, and M311V), and a putative silent V266A V2R polymorphism. In doing so, we describe differences in trafficking between unique V2R substitutions, even at the same amino acid position, therefore highlighting the value of full and thorough characterization of receptor function beyond simple signaling pathway analysis. PMID:27355191

  11. Mutations of Vasopressin Receptor 2 Including Novel L312S Have Differential Effects on Trafficking.

    PubMed

    Tiulpakov, Anatoly; White, Carl W; Abhayawardana, Rekhati S; See, Heng B; Chan, Audrey S; Seeber, Ruth M; Heng, Julian I; Dedov, Ivan; Pavlos, Nathan J; Pfleger, Kevin D G

    2016-08-01

    Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a genetic disease first described in 2 unrelated male infants with severe symptomatic hyponatremia. Despite undetectable arginine vasopressin levels, patients have inappropriately concentrated urine resulting in hyponatremia, hypoosmolality, and natriuresis. Here, we describe and functionally characterize a novel vasopressin type 2 receptor (V2R) gain-of-function mutation. An L312S substitution in the seventh transmembrane domain was identified in a boy presenting with water-induced hyponatremic seizures at the age of 5.8 years. We show that, compared with wild-type V2R, the L312S mutation results in the constitutive production of cAMP, indicative of the gain-of-function NSIAD profile. Interestingly, like the previously described F229V and I130N NSIAD-causing mutants, this appears to both occur in the absence of notable constitutive β-arrestin2 recruitment and can be reduced by the inverse agonist Tolvaptan. In addition, to understand the effect of various V2R substitutions on the full receptor "life-cycle," we have used and further developed a bioluminescence resonance energy transfer intracellular localization assay using multiple localization markers validated with confocal microscopy. This allowed us to characterize differences in the constitutive and ligand-induced localization and trafficking profiles of the novel L312S mutation as well as for previously described V2R gain-of-function mutants (NSIAD; R137C and R137L), loss-of-function mutants (nephrogenic diabetes insipidus; R137H, R181C, and M311V), and a putative silent V266A V2R polymorphism. In doing so, we describe differences in trafficking between unique V2R substitutions, even at the same amino acid position, therefore highlighting the value of full and thorough characterization of receptor function beyond simple signaling pathway analysis. PMID:27355191

  12. An Eye on Trafficking Genes: Identification of Four Eye Color Mutations in Drosophila

    PubMed Central

    Grant, Paaqua; Maga, Tara; Loshakov, Anna; Singhal, Rishi; Wali, Aminah; Nwankwo, Jennifer; Baron, Kaitlin; Johnson, Diana

    2016-01-01

    Genes that code for proteins involved in organelle biogenesis and intracellular trafficking produce products that are critical in normal cell function . Conserved orthologs of these are present in most or all eukaryotes, including Drosophila melanogaster. Some of these genes were originally identified as eye color mutants with decreases in both types of pigments found in the fly eye. These criteria were used for identification of such genes, four eye color mutations that are not annotated in the genome sequence: chocolate, maroon, mahogany, and red Malpighian tubules were molecularly mapped and their genome sequences have been evaluated. Mapping was performed using deletion analysis and complementation tests. chocolate is an allele of the VhaAC39-1 gene, which is an ortholog of the Vacuolar H+ ATPase AC39 subunit 1. maroon corresponds to the Vps16A gene and its product is part of the HOPS complex, which participates in transport and organelle fusion. red Malpighian tubule is the CG12207 gene, which encodes a protein of unknown function that includes a LysM domain. mahogany is the CG13646 gene, which is predicted to be an amino acid transporter. The strategy of identifying eye color genes based on perturbations in quantities of both types of eye color pigments has proven useful in identifying proteins involved in trafficking and biogenesis of lysosome-related organelles. Mutants of these genes can form the basis of valuable in vivo models to understand these processes. PMID:27558665

  13. Biosynthesis and Trafficking of the Bile Salt Export Pump, BSEP: Therapeutic Implications of BSEP Mutations

    PubMed Central

    Soroka, Carol J.; Boyer, James L.

    2013-01-01

    The bile salt export pump (BSEP, ABCB11) is the primary transporter of bile acids from the hepatocyte to the biliary system. This rate-limiting step in bile formation is essential to the formation of bile salt dependent bile flow, the enterohepatic circulation of bile acids, and the digestion of dietary fats. Mutations in BSEP are associated with cholestatic diseases such as progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2), drug-induced cholestasis, and intrahepatic cholestasis of pregnancy. Development of clinical therapies for these conditions necessitates a clear understanding of the cell biology of biosynthesis, trafficking, and transcriptional and translational regulation of BSEP. This chapter will focus on the molecular and cell biological aspects of this critical hepatic membrane transporter. PMID:23685087

  14. Functional Rescue of Trafficking-Impaired ABCB4 Mutants by Chemical Chaperones

    PubMed Central

    Gordo-Gilart, Raquel; Andueza, Sara; Hierro, Loreto; Jara, Paloma; Alvarez, Luis

    2016-01-01

    Multidrug resistance protein 3 (MDR3, ABCB4) is a hepatocellular membrane protein that mediates biliary secretion of phosphatidylcholine. Null mutations in ABCB4 gene give rise to severe early-onset cholestatic liver disease. We have previously shown that the disease-associated mutations p.G68R, p.G228R, p.D459H, and p.A934T resulted in retention of ABCB4 in the endoplasmic reticulum, thus failing to target the plasma membrane. In the present study, we tested the ability of two compounds with chaperone-like activity, 4-phenylbutyrate and curcumin, to rescue these ABCB4 mutants by assessing their effects on subcellular localization, protein maturation, and phospholipid efflux capability. Incubation of transfected cells at a reduced temperature (30°C) or exposure to pharmacological doses of either 4-PBA or curcumin restored cell surface expression of mutants G228R and A934T. The delivery of these mutants to the plasma membrane was accompanied by a switch in the ratio of mature to inmature protein forms, leading to a predominant expression of the mature protein. This effect was due to an improvement in the maturation rate and not to the stabilization of the mature forms. Both mutants were also functionally rescued, displaying bile salt-dependent phospholipid efflux activity after addition of 4-PBA or curcumin. Drug-induced rescue was mutant specific, given neither 4-PBA nor curcumin had an effect on the ABCB4 mutants G68R and A934T. Collectively, these data indicate that the functionality of selected trafficking-defective ABCB4 mutants can be recovered by chemical chaperones through restoration of membrane localization, suggesting a potential treatment for patients carrying such mutations. PMID:26900700

  15. RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome.

    PubMed

    Patel, Ami; Yamashita, Naoya; Ascaño, Maria; Bodmer, Daniel; Boehm, Erica; Bodkin-Clarke, Chantal; Ryu, Yun Kyoung; Kuruvilla, Rejji

    2015-12-14

    Down syndrome is the most common chromosomal disorder affecting the nervous system in humans. To date, investigations of neural anomalies in Down syndrome have focused on the central nervous system, although dysfunction of the peripheral nervous system is a common manifestation. The molecular and cellular bases underlying peripheral abnormalities have remained undefined. Here, we report the developmental loss of sympathetic innervation in human Down syndrome organs and in a mouse model. We show that excess regulator of calcineurin 1 (RCAN1), an endogenous inhibitor of the calcineurin phosphatase that is triplicated in Down syndrome, impairs neurotrophic support of sympathetic neurons by inhibiting endocytosis of the nerve growth factor (NGF) receptor, TrkA. Genetically correcting RCAN1 levels in Down syndrome mice markedly improves NGF-dependent receptor trafficking, neuronal survival and innervation. These results uncover a critical link between calcineurin signalling, impaired neurotrophin trafficking and neurodevelopmental deficits in the peripheral nervous system in Down syndrome.

  16. RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome

    PubMed Central

    Patel, Ami; Yamashita, Naoya; Ascaño, Maria; Bodmer, Daniel; Boehm, Erica; Bodkin-Clarke, Chantal; Ryu, Yun Kyoung; Kuruvilla, Rejji

    2015-01-01

    Down syndrome is the most common chromosomal disorder affecting the nervous system in humans. To date, investigations of neural anomalies in Down syndrome have focused on the central nervous system, although dysfunction of the peripheral nervous system is a common manifestation. The molecular and cellular bases underlying peripheral abnormalities have remained undefined. Here, we report the developmental loss of sympathetic innervation in human Down syndrome organs and in a mouse model. We show that excess regulator of calcineurin 1 (RCAN1), an endogenous inhibitor of the calcineurin phosphatase that is triplicated in Down syndrome, impairs neurotrophic support of sympathetic neurons by inhibiting endocytosis of the nerve growth factor (NGF) receptor, TrkA. Genetically correcting RCAN1 levels in Down syndrome mice markedly improves NGF-dependent receptor trafficking, neuronal survival and innervation. These results uncover a critical link between calcineurin signalling, impaired neurotrophin trafficking and neurodevelopmental deficits in the peripheral nervous system in Down syndrome. PMID:26658127

  17. C. pneumoniae disrupts eNOS trafficking and impairs NO production in human aortic endothelial cells.

    PubMed

    Mueller, Konrad E; Wolf, Katerina

    2015-01-01

    Endothelial nitric oxide synthase (eNOS) generated NO plays a crucial physiological role in the regulation of vascular tone. eNOS is a constitutively expressed synthase whose enzymatic function is regulated by dual acylation, phosphorylation, protein-protein interaction and subcellular localization. In endothelial cells, the enzyme is primarily localized to the Golgi apparatus (GA) and the plasma membrane where it binds to caveolin-1. Upon stimulation, the enzyme is translocated from the plasma membrane to the cytoplasm where it generates NO. When activation of eNOS ceases, the majority of the enzyme is recycled back to the membrane fraction. An inability of eNOS to cycle between the cytosol and the membrane leads to impaired NO production and vascular dysfunction. Chlamydia pneumoniae is a Gram-negative obligate intracellular bacterium that primarily infects epithelial cells of the human respiratory tract, but unlike any other chlamydial species, C. pneumoniae displays tropism toward atherosclerotic tissues. In this study, we demonstrate that C. pneumoniae inclusions colocalize with eNOS, and the microorganism interferes with trafficking of the enzyme from the GA to the plasma membrane in primary human aortic endothelial cells. This mislocation of eNOS results in significant inhibition of NO release by C. pneumoniae-infected cells. Furthermore, we show that the distribution of eNOS in C. pneumoniae-infected cells is altered due to an intimate association of the Golgi complex with chlamydial inclusions rather than by direct interaction of the enzyme with the chlamydial inclusion membrane.

  18. The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking

    PubMed Central

    Dumas, Audrey; Lê-Bury, Gabrielle; Marie-Anaïs, Florence; Herit, Floriane; Mazzolini, Julie; Guilbert, Thomas; Bourdoncle, Pierre; Russell, David G.; Benichou, Serge; Zahraoui, Ahmed

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) impairs major functions of macrophages but the molecular basis for this defect remains poorly characterized. Here, we show that macrophages infected with HIV-1 were unable to respond efficiently to phagocytic triggers and to clear bacteria. The maturation of phagosomes, defined by the presence of late endocytic markers, hydrolases, and reactive oxygen species, was perturbed in HIV-1–infected macrophages. We showed that maturation arrest occurred at the level of the EHD3/MICAL-L1 endosomal sorting machinery. Unexpectedly, we found that the regulatory viral protein (Vpr) was crucial to perturb phagosome maturation. Our data reveal that Vpr interacted with EB1, p150Glued, and dynein heavy chain and was sufficient to critically alter the microtubule plus end localization of EB1 and p150Glued, hence altering the centripetal movement of phagosomes and their maturation. Thus, we identify Vpr as a modulator of the microtubule-dependent endocytic trafficking in HIV-1–infected macrophages, leading to strong alterations in phagolysosome biogenesis. PMID:26504171

  19. An ancient founder mutation in PROKR2 impairs human reproduction.

    PubMed

    Avbelj Stefanija, Magdalena; Jeanpierre, Marc; Sykiotis, Gerasimos P; Young, Jacques; Quinton, Richard; Abreu, Ana Paula; Plummer, Lacey; Au, Margaret G; Balasubramanian, Ravikumar; Dwyer, Andrew A; Florez, Jose C; Cheetham, Timothy; Pearce, Simon H; Purushothaman, Radhika; Schinzel, Albert; Pugeat, Michel; Jacobson-Dickman, Elka E; Ten, Svetlana; Latronico, Ana Claudia; Gusella, James F; Dode, Catherine; Crowley, William F; Pitteloud, Nelly

    2012-10-01

    Congenital gonadotropin-releasing hormone (GnRH) deficiency manifests as absent or incomplete sexual maturation and infertility. Although the disease exhibits marked locus and allelic heterogeneity, with the causal mutations being both rare and private, one causal mutation in the prokineticin receptor, PROKR2 L173R, appears unusually prevalent among GnRH-deficient patients of diverse geographic and ethnic origins. To track the genetic ancestry of PROKR2 L173R, haplotype mapping was performed in 22 unrelated patients with GnRH deficiency carrying L173R and their 30 first-degree relatives. The mutation's age was estimated using a haplotype-decay model. Thirteen subjects were informative and in all of them the mutation was present on the same ~123 kb haplotype whose population frequency is ≤10%. Thus, PROKR2 L173R represents a founder mutation whose age is estimated at approximately 9000 years. Inheritance of PROKR2 L173R-associated GnRH deficiency was complex with highly variable penetrance among carriers, influenced by additional mutations in the other PROKR2 allele (recessive inheritance) or another gene (digenicity). The paradoxical identification of an ancient founder mutation that impairs reproduction has intriguing implications for the inheritance mechanisms of PROKR2 L173R-associated GnRH deficiency and for the relevant processes of evolutionary selection, including potential selective advantages of mutation carriers in genes affecting reproduction.

  20. A590T mutation in KCNQ1 C-terminal helix D decreases IKs channel trafficking and function but not Yotiao interaction.

    PubMed

    Kinoshita, Koshi; Komatsu, Takuto; Nishide, Kohki; Hata, Yukiko; Hisajima, Nozomi; Takahashi, Hiroyuki; Kimoto, Katsuya; Aonuma, Kei; Tsushima, Eikichi; Tabata, Toshihide; Yoshida, Tomoyuki; Mori, Hisashi; Nishida, Kunihiro; Yamaguchi, Yoshiaki; Ichida, Fukiko; Fukurotani, Kenkichi; Inoue, Hiroshi; Nishida, Naoki

    2014-07-01

    KCNQ1 encodes the α subunit of the voltage-gated channel that mediates the cardiac slow delayed rectifier K(+) current (IKs). Here, we report a KCNQ1 allele encoding an A590T mutation [KCNQ1(A590T)] found in a 39-year-old female with a mild QT prolongation. A590 is located in the C-terminal α helical region of KCNQ1 that mediates subunit tetramerization, membrane trafficking, and interaction with Yotiao. This interaction is known to be required for the proper modulation of IKs by cAMP. Since previous studies reported that mutations in the vicinity of A590 impair IKs channel surface expression and function, we examined whether and how the A590T mutation affects the IKs channel. Electrophysiological measurements in HEK-293T cells showed that the A590T mutation caused a reduction in IKs density and a right-shift of the current-voltage relation of channel activation. Immunocytochemical and immunoblot analyses showed the reduced cell surface expression of KCNQ1(A590T) subunit and its rescue by coexpression of the wild-type KCNQ1 [KCNQ1(WT)] subunit. Moreover, KCNQ1(A590T) subunit interacted with Yotiao and had a cAMP-responsiveness comparable to that of KCNQ1(WT) subunit. These findings indicate that the A590 of KCNQ1 subunit plays important roles in the maintenance of channel surface expression and function via a novel mechanism independent of interaction with Yotiao.

  1. Exome Sequence Data From Multigenerational Families Implicate AMPA Receptor Trafficking in Neurocognitive Impairment and Schizophrenia Risk.

    PubMed

    Kos, Mark Z; Carless, Melanie A; Peralta, Juan; Blackburn, August; Almeida, Marcio; Roalf, David; Pogue-Geile, Michael F; Prasad, Konasale; Gur, Ruben C; Nimgaonkar, Vishwajit; Curran, Joanne E; Duggirala, Ravi; Glahn, David C; Blangero, John; Gur, Raquel E; Almasy, Laura

    2016-03-01

    Schizophrenia is a mental disorder characterized by impairments in behavior, thought, and neurocognitive performance. We searched for susceptibility loci at a quantitative trait locus (QTL) previously reported for abstraction and mental flexibility (ABF), a cognitive function often compromised in schizophrenia patients and their unaffected relatives. Exome sequences were determined for 134 samples in 8 European American families from the original linkage study, including 25 individuals with schizophrenia or schizoaffective disorder. At chromosome 5q32-35.3, we analyzed 407 protein-altering variants for association with ABF and schizophrenia status. For replication, significant, Bonferroni-corrected findings were tested against cognitive traits in Mexican American families (n = 959), as well as interrogated for schizophrenia risk using GWAS results from the Psychiatric Genomics Consortium (PGC). From the gene SYNPO, rs6579797 (MAF = 0.032) shows significant associations with ABF (P = .015) and schizophrenia (P = .040), as well as jointly (P = .0027). In the Mexican American pedigrees, rs6579797 exhibits significant associations with IQ (P = .011), indicating more global effects on neurocognition. From the PGC results, other SYNPO variants were identified with near significant effects on schizophrenia risk, with a local linkage disequilibrium block displaying signatures of positive selection. A second missense variant within the QTL, rs17551608 (MAF = 0.19) in the gene WWC1, also displays a significant effect on schizophrenia in our exome sequences (P = .038). Remarkably, the protein products of SYNPO and WWC1 are interaction partners involved in AMPA receptor trafficking, a brain process implicated in synaptic plasticity. Our study reveals variants in these genes with significant effects on neurocognition and schizophrenia risk, identifying a potential pathogenic mechanism for schizophrenia spectrum disorders. PMID:26405221

  2. Mutant Huntingtin Impairs Post-Golgi Trafficking to Lysosomes by Delocalizing Optineurin/Rab8 Complex from the Golgi Apparatus

    PubMed Central

    del Toro, Daniel; Alberch, Jordi; Lázaro-Diéguez, Francisco; Martín-Ibáñez, Raquel; Xifró, Xavier; Egea, Gustavo

    2009-01-01

    Huntingtin regulates post-Golgi trafficking of secreted proteins. Here, we studied the mechanism by which mutant huntingtin impairs this process. Colocalization studies and Western blot analysis of isolated Golgi membranes showed a reduction of huntingtin in the Golgi apparatus of cells expressing mutant huntingtin. These findings correlated with a decrease in the levels of optineurin and Rab8 in the Golgi apparatus that can be reverted by overexpression of full-length wild-type huntingtin. In addition, immunoprecipitation studies showed reduced interaction between mutant huntingtin and optineurin/Rab8. Cells expressing mutant huntingtin produced both an accumulation of clathrin adaptor complex 1 at the Golgi and an increase of clathrin-coated vesicles in the vicinity of Golgi cisternae as revealed by electron microscopy. Furthermore, inverse fluorescence recovery after photobleaching analysis for lysosomal-associated membrane protein-1 and mannose-6-phosphate receptor showed that the optineurin/Rab8-dependent post-Golgi trafficking to lysosomes was impaired in cells expressing mutant huntingtin or reducing huntingtin levels by small interfering RNA. Accordingly, these cells showed a lower content of cathepsin D in lysosomes, which led to an overall reduction of lysosomal activity. Together, our results indicate that mutant huntingtin perturbs post-Golgi trafficking to lysosomal compartments by delocalizing the optineurin/Rab8 complex, which, in turn, affects the lysosomal function. PMID:19144827

  3. Targeting and intracellular trafficking of clinically relevant hTHTR1 mutations in human cell lines.

    PubMed

    Subramanian, Veedamali S; Marchant, Jonathan S; Said, Hamid M

    2007-07-01

    The micronutrient thiamine is required for normal growth and development of human tissues, and is accumulated into cells through the activity of plasma membrane thiamine transporters, e.g. hTHTR1 (human thiamine transporter 1). Recent genetic evidence has linked mutations in hTHTR1 with the manifestation of TRMA (thiamine-responsive megaloblastic anaemia), a condition also associated with diabetes mellitus, sensorineural deafness and retinal disorders. To examine how mutations in hTHTR1 impair thiamine accumulation, we have investigated the targeting and functional properties of several different hTHTR1 mutants in human cell lines derived from epithelia relevant to thiamine absorption or tissues implicated in TRMA pathology. These constructs encompassed two newly identified point mutations (P51L and T158R) and two truncations of hTHTR1 identical with those found in TRMA kindreds (W358X and Delta383fs). Our results reveal a spectrum of mutant phenotypes, underlining that TRMA can result from decreased thiamine transport activity underpinned by changes in hTHTR1 expression levels, cellular targeting and/or protein transport activity.

  4. Inherited human sex reversal due to impaired nucleocytoplasmic trafficking of SRY defines a male transcriptional threshold.

    PubMed

    Chen, Yen-Shan; Racca, Joseph D; Phillips, Nelson B; Weiss, Michael A

    2013-09-17

    Human testis determination is initiated by SRY (sex determining region on Y chromosome). Mutations in SRY cause gonadal dysgenesis with female somatic phenotype. Two subtle variants (V60L and I90M in the high-mobility group box) define inherited alleles shared by an XY sterile daughter and fertile father. Whereas specific DNA binding and bending are unaffected in a rat embryonic pre-Sertoli cell line, the variants exhibited selective defects in nucleocytoplasmic shuttling due to impaired nuclear import (V60L; mediated by Exportin-4) or export (I90M; mediated by chromosome region maintenance 1). Decreased shuttling limits nuclear accumulation of phosphorylated (activated) SRY, in turn reducing occupancy of DNA sites regulating Sertoli-cell differentiation [the testis-specific SRY-box 9 (Sox9) enhancer]. Despite distinct patterns of biochemical and cell-biological perturbations, V60L and I90M each attenuated Sox9 expression in transient transfection assays by twofold. Such attenuation was also observed in studies of V60A, a clinical variant associated with ovotestes and hence ambiguity between divergent cell fates. This shared twofold threshold is reminiscent of autosomal syndromes of transcription-factor haploinsufficiency, including XY sex reversal associated with mutations in SOX9. Our results demonstrate that nucleocytoplasmic shuttling of SRY is necessary for robust initiation of testicular development. Although also characteristic of ungulate orthologs, such shuttling is not conserved among rodents wherein impaired nuclear export of the high-mobility group box and import-dependent phosphorylation are compensated by a microsatellite-associated transcriptional activation domain. Human sex reversal due to subtle defects in the nucleocytoplasmic shuttling of SRY suggests that its transcriptional activity lies near the edge of developmental ambiguity. PMID:24003159

  5. Foxp2 mutations impair auditory-motor association learning.

    PubMed

    Kurt, Simone; Fisher, Simon E; Ehret, Günter

    2012-01-01

    Heterozygous mutations of the human FOXP2 transcription factor gene cause the best-described examples of monogenic speech and language disorders. Acquisition of proficient spoken language involves auditory-guided vocal learning, a specialized form of sensory-motor association learning. The impact of etiological Foxp2 mutations on learning of auditory-motor associations in mammals has not been determined yet. Here, we directly assess this type of learning using a newly developed conditioned avoidance paradigm in a shuttle-box for mice. We show striking deficits in mice heterozygous for either of two different Foxp2 mutations previously implicated in human speech disorders. Both mutations cause delays in acquiring new motor skills. The magnitude of impairments in association learning, however, depends on the nature of the mutation. Mice with a missense mutation in the DNA-binding domain are able to learn, but at a much slower rate than wild type animals, while mice carrying an early nonsense mutation learn very little. These results are consistent with expression of Foxp2 in distributed circuits of the cortex, striatum and cerebellum that are known to play key roles in acquisition of motor skills and sensory-motor association learning, and suggest differing in vivo effects for distinct variants of the Foxp2 protein. Given the importance of such networks for the acquisition of human spoken language, and the fact that similar mutations in human FOXP2 cause problems with speech development, this work opens up a new perspective on the use of mouse models for understanding pathways underlying speech and language disorders.

  6. A Novel Trafficking-defective HCN4 Mutation is Associated with Early-Onset Atrial Fibrillation

    PubMed Central

    Zhang, Michael L.; Sinner, Moritz F.; Dolmatova, Elena V.; Tucker, Nathan R.; McLellan, Micheal; Shea, Marisa A.; Milan, David J.; Lunetta, Kathryn L.; Benjamin, Emelia J.; Ellinor, Patrick T.

    2014-01-01

    Background Atrial fibrillation (AF) is the most common arrhythmia, and a recent genome-wide association study identified HCN4 as a novel AF susceptibility locus. HCN4 encodes for the cardiac pacemaker channel and HCN4 mutations are associated with familial sinus bradycardia and AF. Objective To determine whether novel variants in the coding region of HCN4 contribute to the susceptibility for AF. Methods We sequenced the coding region of HCN4 for novel variants from 527 cases with early-onset AF from the Massachusetts General Hospital AF Study and 443 referents from the Framingham Heart Study. We used site-directed mutagenesis, cellular electrophysiology, immunocytochemistry and confocal microscopy to functionally characterize novel variants. Results We found the frequency of novel coding HCN4 variants was 2-fold greater for individuals with AF (seven variants) compared to the referents (three variants). We determined that one, (p.Pro257Ser, located in the amino-terminus adjacent to the first transmembrane spanning domain) of the seven novel HCN4 variants in our AF cases did not traffick to cell membrane while the remaining six were not functionally different from wild type. Also, the three novel variants in our referents did not alter function compared to wild type. Co-expression studies showed that the p.Pro257Ser mutant channel failed to co-localize with the wild type HCN4 channel on the cell membrane. Conclusion Our findings are consistent with HCN4 haploinsufficiency as the likely mechanism for early-onset AF in the p.Pro257Ser carrier. PMID:24607718

  7. Visual impairment in FOXG1-mutated individuals and mice.

    PubMed

    Boggio, E M; Pancrazi, L; Gennaro, M; Lo Rizzo, C; Mari, F; Meloni, I; Ariani, F; Panighini, A; Novelli, E; Biagioni, M; Strettoi, E; Hayek, J; Rufa, A; Pizzorusso, T; Renieri, A; Costa, M

    2016-06-01

    The Forkead Box G1 (FOXG1 in humans, Foxg1 in mice) gene encodes for a DNA-binding transcription factor, essential for the development of the telencephalon in mammalian forebrain. Mutations in FOXG1 have been reported to be involved in the onset of Rett Syndrome, for which sequence alterations of MECP2 and CDKL5 are known. While visual alterations are not classical hallmarks of Rett syndrome, an increasing body of evidence shows visual impairment in patients and in MeCP2 and CDKL5 animal models. Herein we focused on the functional role of FOXG1 in the visual system of animal models (Foxg1(+/Cre) mice) and of a cohort of subjects carrying FOXG1 mutations or deletions. Visual physiology of Foxg1(+/Cre) mice was assessed by visually evoked potentials, which revealed a significant reduction in response amplitude and visual acuity with respect to wild-type littermates. Morphological investigation showed abnormalities in the organization of excitatory/inhibitory circuits in the visual cortex. No alterations were observed in retinal structure. By examining a cohort of FOXG1-mutated individuals with a panel of neuro-ophthalmological assessments, we found that all of them exhibited visual alterations compatible with high-level visual dysfunctions. In conclusion our data show that Foxg1 haploinsufficiency results in an impairment of mouse and human visual cortical function. PMID:27001178

  8. A Cytoplasmic Dynein Tail Mutation Impairs Motor Processivity

    PubMed Central

    Ori-McKenney, Kassandra M.; Xu, Jing; Gross, Steven P.; Vallee, Richard B.

    2012-01-01

    Mutations in the tail of the cytoplasmic dynein molecule have been reported to cause neurodegenerative disease in mice. The mutant mouse strain Legs at Odd Angles (Loa) exhibits impaired retrograde axonal transport, but the molecular deficiencies in the mutant dynein molecule, and how they contribute to neurodegeneration, are unknown. To address these questions, we purified wild-type and mutant mouse dynein. Using biochemical, single molecule, and live cell imaging techniques, we find a strong inhibition of motor run-length in vitro and in vivo, and significantly altered motor domain coordination in the mutant dynein. These results suggest a potential role for the dynein tail in motor function, and provide the first direct evidence for a link between single-motor processivity and disease. PMID:21102439

  9. Trafficking Dynamics of PCSK9-Induced LDLR Degradation: Focus on Human PCSK9 Mutations and C-Terminal Domain.

    PubMed

    Poirier, Steve; Hamouda, Hocine Ait; Villeneuve, Louis; Demers, Annie; Mayer, Gaétan

    2016-01-01

    PCSK9 is a secreted ligand and negative post-translational regulator of low-density lipoprotein receptor (LDLR) in hepatocytes. Gain-of-function (GOF) or loss-of-function (LOF) mutations in PCSK9 are directly correlated with high or low plasma LDL-cholesterol levels, respectively. Therefore, PCSK9 is a prevailing lipid-lowering target to prevent coronary heart diseases and stroke. Herein, we fused monomeric fluorescent proteins to PCSK9 and LDLR to visualize their intra- and extracellular trafficking dynamics by live confocal microscopy. Fluorescence recovery after photobleaching (FRAP) showed that PCSK9 LOF R46L mutant and GOF mutations S127R and D129G, but not the LDLR high-affinity mutant D374Y, significantly accelerate PCSK9 exit from the endoplasmic reticulum (ER). Quantitative analysis of inverse FRAP revealed that only R46L presented a much slower trafficking from the trans-Golgi network (TGN) to the plasma membrane and a lower mobile fraction likely suggesting accumulation or delayed exit at the TGN as an underlying mechanism. While not primarily involved in LDLR binding, PCSK9 C-terminal domain (CTD) was found to be essential to induce LDLR degradation both upon its overexpression in cells or via the extracellular pathway. Our data revealed that PCSK9 CTD is required for the localization of PCSK9 at the TGN and increases its LDLR-mediated endocytosis. Interestingly, intracellular lysosomal targeting of PCSK9-ΔCTD was able to rescue its capacity to induce LDLR degradation emphasizing a role of the CTD in the sorting of PCSK9-LDLR complex towards late endocytic compartments. Finally, we validated our dual fluorescence system as a cell based-assay by preventing PCSK9 internalization using a PCSK9-LDLR blocking antibody, which may be expended to identify protein, peptide or small molecule inhibitors of PCSK9. PMID:27280970

  10. Trafficking Dynamics of PCSK9-Induced LDLR Degradation: Focus on Human PCSK9 Mutations and C-Terminal Domain

    PubMed Central

    Villeneuve, Louis; Demers, Annie; Mayer, Gaétan

    2016-01-01

    PCSK9 is a secreted ligand and negative post-translational regulator of low-density lipoprotein receptor (LDLR) in hepatocytes. Gain-of-function (GOF) or loss-of-function (LOF) mutations in PCSK9 are directly correlated with high or low plasma LDL-cholesterol levels, respectively. Therefore, PCSK9 is a prevailing lipid-lowering target to prevent coronary heart diseases and stroke. Herein, we fused monomeric fluorescent proteins to PCSK9 and LDLR to visualize their intra- and extracellular trafficking dynamics by live confocal microscopy. Fluorescence recovery after photobleaching (FRAP) showed that PCSK9 LOF R46L mutant and GOF mutations S127R and D129G, but not the LDLR high-affinity mutant D374Y, significantly accelerate PCSK9 exit from the endoplasmic reticulum (ER). Quantitative analysis of inverse FRAP revealed that only R46L presented a much slower trafficking from the trans-Golgi network (TGN) to the plasma membrane and a lower mobile fraction likely suggesting accumulation or delayed exit at the TGN as an underlying mechanism. While not primarily involved in LDLR binding, PCSK9 C-terminal domain (CTD) was found to be essential to induce LDLR degradation both upon its overexpression in cells or via the extracellular pathway. Our data revealed that PCSK9 CTD is required for the localization of PCSK9 at the TGN and increases its LDLR-mediated endocytosis. Interestingly, intracellular lysosomal targeting of PCSK9-ΔCTD was able to rescue its capacity to induce LDLR degradation emphasizing a role of the CTD in the sorting of PCSK9-LDLR complex towards late endocytic compartments. Finally, we validated our dual fluorescence system as a cell based-assay by preventing PCSK9 internalization using a PCSK9-LDLR blocking antibody, which may be expended to identify protein, peptide or small molecule inhibitors of PCSK9. PMID:27280970

  11. The mixture of "ecstasy" and its metabolites impairs mitochondrial fusion/fission equilibrium and trafficking in hippocampal neurons, at in vivo relevant concentrations.

    PubMed

    Barbosa, Daniel José; Serrat, Romàn; Mirra, Serena; Quevedo, Martí; de Barreda, Elena Goméz; Àvila, Jesús; Ferreira, Luísa Maria; Branco, Paula Sério; Fernandes, Eduarda; Lourdes Bastos, Maria de; Capela, João Paulo; Soriano, Eduardo; Carvalho, Félix

    2014-06-01

    3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a potentially neurotoxic recreational drug of abuse. Though the mechanisms involved are still not completely understood, formation of reactive metabolites and mitochondrial dysfunction contribute to MDMA-related neurotoxicity. Neuronal mitochondrial trafficking, and their targeting to synapses, is essential for proper neuronal function and survival, rendering neurons particularly vulnerable to mitochondrial dysfunction. Indeed, MDMA-associated disruption of Ca(2+) homeostasis and ATP depletion have been described in neurons, thus suggesting possible MDMA interference on mitochondrial dynamics. In this study, we performed real-time functional experiments of mitochondrial trafficking to explore the role of in situ mitochondrial dysfunction in MDMA's neurotoxic actions. We show that the mixture of MDMA and six of its major in vivo metabolites, each compound at 10μM, impaired mitochondrial trafficking and increased the fragmentation of axonal mitochondria in cultured hippocampal neurons. Furthermore, the overexpression of mitofusin 2 (Mfn2) or dynamin-related protein 1 (Drp1) K38A constructs almost completely rescued the trafficking deficits caused by this mixture. Finally, in hippocampal neurons overexpressing a Mfn2 mutant, Mfn2 R94Q, with impaired fusion and transport properties, it was confirmed that a dysregulation of mitochondrial fission/fusion events greatly contributed to the reported trafficking phenotype. In conclusion, our study demonstrated, for the first time, that the mixture of MDMA and its metabolites, at concentrations relevant to the in vivo scenario, impaired mitochondrial trafficking and increased mitochondrial fragmentation in hippocampal neurons, thus providing a new insight in the context of "ecstasy"-induced neuronal injury.

  12. DNA repair capacity is impaired in healthy BRCA1 heterozygous mutation carriers.

    PubMed

    Vaclová, Tereza; Gómez-López, Gonzalo; Setién, Fernando; Bueno, José María García; Macías, José Antonio; Barroso, Alicia; Urioste, Miguel; Esteller, Manel; Benítez, Javier; Osorio, Ana

    2015-07-01

    BRCA1 germline mutations increase the lifetime risk of developing breast and ovarian cancers. However, taking into account the differences in disease manifestation among mutation carriers, it is probable that different BRCA1 mutations have distinct haploinsufficiency effects and lead to the formation of different phenotypes. Using lymphoblastoid cell lines derived from heterozygous BRCA1 mutation carriers and non-carriers, we investigated the haploinsufficiency effects of various mutation types using qPCR, immunofluorescence, and microarray technology. Lymphoblastoid cell lines carrying a truncating mutation showed significantly lower BRCA1 mRNA and protein levels and higher levels of gamma-H2AX than control cells or those harboring a missense mutation, indicating greater spontaneous DNA damage. Cells carrying either BRCA1 mutation type showed impaired RAD51 foci formation, suggesting defective repair in mutated cells. Moreover, compared to controls, cell lines carrying missense mutations displayed a more distinct expression profile than cells with truncating mutations, which is consistent with different mutations giving rise to distinct phenotypes. Alterations in the immune response pathway in cells harboring missense mutations point to possible mechanisms of breast cancer initiation in carriers of these mutations. Our findings offer insight into how various heterozygous mutations in BRCA1 could lead to impairment of BRCA1 function and provide strong evidence of haploinsufficiency in BRCA1 mutation carriers.

  13. A Mutation in the Vesicle-Trafficking Protein VAPB Causes Late-Onset Spinal Muscular Atrophy and Amyotrophic Lateral Sclerosis

    PubMed Central

    Nishimura, Agnes L.; Mitne-Neto, Miguel; Silva, Helga C. A.; Richieri-Costa, Antônio; Middleton, Susan; Cascio, Duilio; Kok, Fernando; Oliveira, João R. M.; Gillingwater, Tom; Webb, Jeanette; Skehel, Paul; Zatz, Mayana

    2004-01-01

    Motor neuron diseases (MNDs) are a group of neurodegenerative disorders with involvement of upper and/or lower motor neurons, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), progressive bulbar palsy, and primary lateral sclerosis. Recently, we have mapped a new locus for an atypical form of ALS/MND (atypical amyotrophic lateral sclerosis [ALS8]) at 20q13.3 in a large white Brazilian family. Here, we report the finding of a novel missense mutation in the vesicle-associated membrane protein/synaptobrevin-associated membrane protein B (VAPB) gene in patients from this family. Subsequently, the same mutation was identified in patients from six additional kindreds but with different clinical courses, such as ALS8, late-onset SMA, and typical severe ALS with rapid progression. Although it was not possible to link all these families, haplotype analysis suggests a founder effect. Members of the vesicle-associated proteins are intracellular membrane proteins that can associate with microtubules and that have been shown to have a function in membrane transport. These data suggest that clinically variable MNDs may be caused by a dysfunction in intracellular membrane trafficking. PMID:15372378

  14. Human Trafficking

    MedlinePlus

    ... TRAFFICKING (English) Listen < Back to Search FACT SHEET: HUMAN TRAFFICKING (English) Published: August 2, 2012 Topics: Public Awareness , ... organizations that protect and serve trafficking victims. National Human Trafficking Resource Center at 1.888.373.7888 Last ...

  15. Mexiletine differentially restores the trafficking defects caused by two brugada syndrome mutations.

    PubMed

    Moreau, Adrien; Keller, Dagmar I; Huang, Hai; Fressart, Véronique; Schmied, Christian; Timour, Quadiri; Chahine, Mohamed

    2012-01-01

    The human cardiac sodium channel Na(v)1.5 encoded by the SCN5A gene plays a critical role in cardiac excitability and the propagation of action potentials. Na(v)1.5 dysfunctions due to mutations cause cardiac diseases such as the LQT3 form of long QT syndrome, conduction disorders, and Brugada syndrome (BrS). They have also recently been associated with dilated cardiomyopathy. BrS is characterized by coved ST-segment elevation on surface ECGs and lethal ventricular arrhythmias in an apparently structurally normal heart. Na(v)1.5 mutations that cause BrS result in a loss of channel function. Our aim was to functionally characterize two novel Na(v)1.5 mutations (A124D and V1378M) in BrS patients. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in tsA201 cells in the presence of the β(1)-auxiliary subunit. The patch-clamp technique and immunocytochemistry approaches were used to study the mutant channels and their cellular localization. The two mutant channels displayed a dramatic reduction in current density but had normal gating properties. The reduction in current density was caused by the retention of channel proteins in the endoplasmic reticulum (ER). Mutant channel retention could be partially reversed by incubating transfected cells at 25°C and by treating them with mexiletine (for V1378M but not A124D), or with curcumin or thapsigargin, two drugs that target ER resident proteins. It is likely that the clinical phenotypes observed in these two BrS patients were related to a surface expression defect caused by ER retention. PMID:22529811

  16. Mutations in the YRB1 gene encoding yeast ran-binding-protein-1 that impair nucleocytoplasmic transport and suppress yeast mating defects.

    PubMed Central

    Künzler, M; Trueheart, J; Sette, C; Hurt, E; Thorner, J

    2001-01-01

    We identified two temperature-sensitive (ts) mutations in the essential gene, YRB1, which encodes the yeast homolog of Ran-binding-protein-1 (RanBP1), a known coregulator of the Ran GTPase cycle. Both mutations result in single amino acid substitutions of evolutionarily conserved residues (A91D and R127K, respectively) in the Ran-binding domain of Yrb1. The altered proteins have reduced affinity for Ran (Gsp1) in vivo. After shift to restrictive temperature, both mutants display impaired nuclear protein import and one also reduces poly(A)+ RNA export, suggesting a primary defect in nucleocytoplasmic trafficking. Consistent with this conclusion, both yrb1ts mutations display deleterious genetic interactions with mutations in many other genes involved in nucleocytoplasmic transport, including SRP1 (alpha-importin) and several beta-importin family members. These yrb1ts alleles were isolated by their ability to suppress two different types of mating-defective mutants (respectively, fus1Delta and ste5ts), indicating that reduction in nucleocytoplasmic transport enhances mating proficiency. Indeed, in both yrb1ts mutants, Ste5 (scaffold protein for the pheromone response MAPK cascade) is mislocalized to the cytosol, even in the absence of pheromone. Also, both yrb1ts mutations suppress the mating defect of a null mutation in MSN5, which encodes the receptor for pheromone-stimulated nuclear export of Ste5. Our results suggest that reimport of Ste5 into the nucleus is important in downregulating mating response. PMID:11238397

  17. Restoration of proper trafficking to the cell surface for membrane proteins harboring cysteine mutations.

    PubMed

    Lopez-Rodriguez, Angelica; Holmgren, Miguel

    2012-01-01

    A common phenotype for many genetic diseases is that the cell is unable to deliver full-length membrane proteins to the cell surface. For some forms of autism, hereditary spherocytosis and color blindness, the culprits are single point mutations to cysteine. We have studied two inheritable cysteine mutants of cyclic nucleotide-gated channels that produce achromatopsia, a common form of severe color blindness. By taking advantage of the reactivity of cysteine's sulfhydryl group, we modified these mutants with chemical reagents that attach moieties with similar chemistries to the wild-type amino acids' side chains. We show that these modifications restored proper delivery to the cell membrane. Once there, the channels exhibited normal functional properties. This strategy might provide a unique opportunity to assess the chemical nature of membrane protein traffic problems. PMID:23082193

  18. Impaired Function is a Common Feature of Neuropathy-Associated Glycyl-tRNA Synthetase Mutations

    PubMed Central

    Griffin, Laurie B.; Sakaguchi, Reiko; McGuigan, David; Gonzalez, Michael A.; Searby, Charles; Züchner, Stephan; Hou, Ya-Ming; Antonellis, Anthony

    2014-01-01

    Charcot-Marie-Tooth disease type 2D (CMT2D) is an autosomal dominant axonal peripheral neuropathy characterized by impaired motor and sensory function in the distal extremities. Mutations in the glycyl-tRNA synthetase (GARS) gene cause CMT2D. GARS is a member of the ubiquitously expressed aminoacyl-tRNA synthetase (ARS) family and is responsible for charging tRNA with glycine. To date, thirteen GARS mutations have been identified in patients with CMT disease. While functional studies have revealed loss-of-function characteristics, only four GARS mutations have been rigorously studied. Here, we report the functional evaluation of nine CMT-associated GARS mutations in tRNA charging, yeast complementation, and subcellular localization assays. Our results demonstrate that impaired function is a common characteristic of CMT-associated GARS mutations. Additionally, one mutation previously associated with CMT disease (p.Ser581Leu) does not demonstrate impaired function, was identified in the general population, and failed to segregate with disease in two newly identified families with CMT disease. Thus, we propose that this variant is not a disease-causing mutation. Together, our data indicate that impaired function is a key component of GARS-mediated CMT disease and emphasize the need for careful genetic and functional evaluation before implicating a variant in disease onset. PMID:25168514

  19. Mutation of a C-Terminal Motif Affects Kaposi's Sarcoma-Associated Herpesvirus ORF57 RNA Binding, Nuclear Trafficking, and Multimerization ▿

    PubMed Central

    Taylor, Adam; Jackson, Brian R.; Noerenberg, Marko; Hughes, David J.; Boyne, James R.; Verow, Mark; Harris, Mark; Whitehouse, Adrian

    2011-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein is essential for virus lytic replication. ORF57 regulates virus gene expression at multiple levels, enhancing transcription, stability, nuclear export, and translation of viral transcripts. To enhance the nuclear export of viral intronless transcripts, ORF57 (i) binds viral intronless mRNAs, (ii) shuttles between the nucleus, nucleolus, and the cytoplasm, and (iii) interacts with multiple cellular nuclear export proteins to access the TAP-mediated nuclear export pathway. We investigated the implications on the subcellular trafficking, cellular nuclear export factor recruitment, and ultimately nuclear mRNA export of an ORF57 protein unable to bind RNA. We observed that mutation of a carboxy-terminal RGG motif, which prevents RNA binding, affects the subcellular localization and nuclear trafficking of the ORF57 protein, suggesting that it forms subnuclear aggregates. Further analysis of the mutant shows that although it still retains the ability to interact with cellular nuclear export proteins, it is unable to export viral intronless mRNAs from the nucleus. Moreover, computational molecular modeling and biochemical studies suggest that, unlike the wild-type protein, this mutant is unable to self-associate. Therefore, these results suggest the mutation of a carboxy-terminal RGG motif affects ORF57 RNA binding, nuclear trafficking, and multimerization. PMID:21593148

  20. Rare Mutations in Renal Sodium and Potassium Transporter Genes Exhibit Impaired Transport Function

    PubMed Central

    Welling, Paul A.

    2014-01-01

    Purpose of review Recent efforts to explore the genetic underpinnings of hypertension revealed rare mutations in kidney salt transport genes contribute to blood pressure variation and hypertension susceptibility in the general population. The current review focuses on these latest findings, highlighting a discussion about the rare mutations and how they affect transport function. Recent findings Rare mutations that confer a low blood pressure trait and resistance to hypertension have recently been extensively studied. Physiological and biochemical analyses of the effected renal salt transport molecules (NKCC2 (SLC12A1), ROMK (KCNJ1), and NCC (SLC12A3)) revealed that most of the mutations do, in fact, cause a loss of transport function. The mutations disrupt transport by many different mechanisms, including altering biosynthetic processing, trafficking, ion transport, and regulation. Summary New insights into the genetic basis of hypertension have recently emerged, supporting a major role of rare, rather than common, gene variants. Many different rare mutations have been found to affect the functions of different salt transporter genes by different mechanisms, yet all confer the same blood pressure phenotype. These studies reinforce the critical roles of the kidney, and renal salt transport in blood pressure regulation and hypertension. PMID:24253496

  1. 2-Deoxyglucose Impairs Saccharomyces cerevisiae Growth by Stimulating Snf1-Regulated and α-Arrestin-Mediated Trafficking of Hexose Transporters 1 and 3

    PubMed Central

    O'Donnell, Allyson F.; McCartney, Rhonda R.; Chandrashekarappa, Dakshayini G.; Zhang, Bob B.; Thorner, Jeremy

    2014-01-01

    The glucose analog 2-deoxyglucose (2DG) inhibits the growth of Saccharomyces cerevisiae and human tumor cells, but its modes of action have not been fully elucidated. Yeast cells lacking Snf1 (AMP-activated protein kinase) are hypersensitive to 2DG. Overexpression of either of two low-affinity, high-capacity glucose transporters, Hxt1 and Hxt3, suppresses the 2DG hypersensitivity of snf1Δ cells. The addition of 2DG or the loss of Snf1 reduces HXT1 and HXT3 expression levels and stimulates transporter endocytosis and degradation in the vacuole. 2DG-stimulated trafficking of Hxt1 and Hxt3 requires Rod1/Art4 and Rog3/Art7, two members of the α-arrestin trafficking adaptor family. Mutations in ROD1 and ROG3 that block binding to the ubiquitin ligase Rsp5 eliminate Rod1- and Rog3-mediated trafficking of Hxt1 and Hxt3. Genetic analysis suggests that Snf1 negatively regulates both Rod1 and Rog3, but via different mechanisms. Snf1 activated by 2DG phosphorylates Rod1 but fails to phosphorylate other known targets, such as the transcriptional repressor Mig1. We propose a novel mechanism for 2DG-induced toxicity whereby 2DG stimulates the modification of α-arrestins, which promote glucose transporter internalization and degradation, causing glucose starvation even when cells are in a glucose-rich environment. PMID:25547292

  2. 2-Deoxyglucose impairs Saccharomyces cerevisiae growth by stimulating Snf1-regulated and α-arrestin-mediated trafficking of hexose transporters 1 and 3.

    PubMed

    O'Donnell, Allyson F; McCartney, Rhonda R; Chandrashekarappa, Dakshayini G; Zhang, Bob B; Thorner, Jeremy; Schmidt, Martin C

    2015-03-01

    The glucose analog 2-deoxyglucose (2DG) inhibits the growth of Saccharomyces cerevisiae and human tumor cells, but its modes of action have not been fully elucidated. Yeast cells lacking Snf1 (AMP-activated protein kinase) are hypersensitive to 2DG. Overexpression of either of two low-affinity, high-capacity glucose transporters, Hxt1 and Hxt3, suppresses the 2DG hypersensitivity of snf1Δ cells. The addition of 2DG or the loss of Snf1 reduces HXT1 and HXT3 expression levels and stimulates transporter endocytosis and degradation in the vacuole. 2DG-stimulated trafficking of Hxt1 and Hxt3 requires Rod1/Art4 and Rog3/Art7, two members of the α-arrestin trafficking adaptor family. Mutations in ROD1 and ROG3 that block binding to the ubiquitin ligase Rsp5 eliminate Rod1- and Rog3-mediated trafficking of Hxt1 and Hxt3. Genetic analysis suggests that Snf1 negatively regulates both Rod1 and Rog3, but via different mechanisms. Snf1 activated by 2DG phosphorylates Rod1 but fails to phosphorylate other known targets, such as the transcriptional repressor Mig1. We propose a novel mechanism for 2DG-induced toxicity whereby 2DG stimulates the modification of α-arrestins, which promote glucose transporter internalization and degradation, causing glucose starvation even when cells are in a glucose-rich environment.

  3. ATRX mutations and glioblastoma: Impaired DNA damage repair, alternative lengthening of telomeres, and genetic instability.

    PubMed

    Koschmann, Carl; Lowenstein, Pedro R; Castro, Maria G

    2016-05-01

    Alpha thalassemia/mental retardation syndrome X-linked (ATRX) is mutated in nearly a third of pediatric glioblastoma (GBM) patients. We developed an animal model of ATRX-deficient GBM. Using this model combined with analysis of multiple human glioma genome-wide datasets, we determined that ATRX mutation leads to genetic instability, impaired non-homologous end joining, and alternate lengthening of telomeres (ALT). PMID:27314101

  4. Kinase-impaired BRAF mutations in lung cancer confer sensitivity to dasatinib.

    PubMed

    Sen, Banibrata; Peng, Shaohua; Tang, Ximing; Erickson, Heidi S; Galindo, Hector; Mazumdar, Tuhina; Stewart, David J; Wistuba, Ignacio; Johnson, Faye M

    2012-05-30

    During a clinical trial of the tyrosine kinase inhibitor dasatinib for advanced non-small cell lung cancer (NSCLC), one patient responded dramatically and remains cancer-free 4 years later. A comprehensive analysis of his tumor revealed a previously undescribed, kinase-inactivating BRAF mutation ((Y472C)BRAF); no inactivating BRAF mutations were found in the nonresponding tumors taken from other patients. Cells transfected with (Y472C)BRAF exhibited CRAF, MEK (mitogen-activated or extracellular signal-regulated protein kinase kinase), and ERK (extracellular signal-regulated kinase) activation-characteristics identical to signaling changes that occur with previously known kinase-inactivating BRAF mutants. Dasatinib selectively induced senescence in NSCLC cells with inactivating BRAF mutations. Transfection of other NSCLC cells with these BRAF mutations also increased these cells' dasatinib sensitivity, whereas transfection with an activating BRAF mutation led to their increased dasatinib resistance. The sensitivity induced by (Y472C)BRAF was reversed by the introduction of a BRAF mutation that impairs RAF dimerization. Dasatinib inhibited CRAF modestly, but concurrently induced RAF dimerization, resulting in ERK activation in NSCLC cells with kinase-inactivating BRAF mutations. The sensitivity of NSCLC with kinase-impaired BRAF to dasatinib suggested synthetic lethality of BRAF and an unknown dasatinib target. Inhibiting BRAF in NSCLC cells expressing wild-type BRAF likewise enhanced these cells' dasatinib sensitivity. Thus, the patient's BRAF mutation was likely responsible for his tumor's marked response to dasatinib, suggesting that tumors bearing kinase-impaired BRAF mutations may be exquisitely sensitive to dasatinib. Moreover, the potential synthetic lethality of combination therapy including dasatinib and BRAF inhibitors may lead to additional therapeutic options against cancers with wild-type BRAF. PMID:22649091

  5. Clinical findings in nondemented mutation carriers predisposed to Alzheimer's disease: a model of mild cognitive impairment.

    PubMed

    Almkvist, Ove; Axelman, Karin; Basun, Hans; Jensen, Malene; Viitanen, Matti; Wahlund, Lars-Olof; Lannfelt, Lars

    2003-01-01

    Individuals carrying a mutation associated with Alzheimer's disease (AD) may serve as a model of mild cognitive impairment (MCI). Nondemented individuals from these families can be subdivided into asymptomatic and symptomatic groups. Four families were studied. Two families are associated with APP mutations (KN670/671ML, E693G) and two with PS1 mutation (M146V, H163Y). Clinical symptoms, level of global cognitive functioning as evaluated by Mini-Mental State Examination, neuropsychological test results, neuroradiological examinations (magnetic resonance imaging (MRI) and single-photon emission tomography (SPECT)), as well as cerebrospinal fluid (CSF) measurements of tau and beta-amyloid are reported. Nondemented mutation carriers did not report any symptoms indicating cognitive decline. In addition, no clinical signs of dementia or marked cognitive impairment in neuropsychological tests were found. A reduction of temporal blood flow with SPECT was indicated in 5/13 nondemented mutation carriers. Two of these 13 individuals had moderate hyperintensities in deep white matter as observed on MRI. CSF measurements of A beta 42/43 were inconclusive because of large biological variation. A nonsignificant elevation of tau was detected in mutation carriers. In conclusion, clinical examinations of relatively young individuals carrying an AD mutation did not reveal any marked abnormalities before the clinical onset of dementia. PMID:12603253

  6. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors.

    PubMed

    Rothwell, Patrick E; Fuccillo, Marc V; Maxeiner, Stephan; Hayton, Scott J; Gokce, Ozgun; Lim, Byung Kook; Fowler, Stephen C; Malenka, Robert C; Südhof, Thomas C

    2014-07-01

    In humans, neuroligin-3 mutations are associated with autism, whereas in mice, the corresponding mutations produce robust synaptic and behavioral changes. However, different neuroligin-3 mutations cause largely distinct phenotypes in mice, and no causal relationship links a specific synaptic dysfunction to a behavioral change. Using rotarod motor learning as a proxy for acquired repetitive behaviors in mice, we found that different neuroligin-3 mutations uniformly enhanced formation of repetitive motor routines. Surprisingly, neuroligin-3 mutations caused this phenotype not via changes in the cerebellum or dorsal striatum but via a selective synaptic impairment in the nucleus accumbens/ventral striatum. Here, neuroligin-3 mutations increased rotarod learning by specifically impeding synaptic inhibition onto D1-dopamine receptor-expressing but not D2-dopamine receptor-expressing medium spiny neurons. Our data thus suggest that different autism-associated neuroligin-3 mutations cause a common increase in acquired repetitive behaviors by impairing a specific striatal synapse and thereby provide a plausible circuit substrate for autism pathophysiology.

  7. Ceramide signaling targets the PP2A-like protein phosphatase Sit4p to impair vacuolar function, vesicular trafficking and autophagy in Isc1p deficient cells.

    PubMed

    Teixeira, Vitor; Medeiros, Tânia C; Vilaça, Rita; Ferreira, João; Moradas-Ferreira, Pedro; Costa, Vítor

    2016-01-01

    The vacuoles play important roles in cellular homeostasis and their functions include the digestion of cytoplasmic material and organelles derived from autophagy. Conserved nutrient signaling pathways regulate vacuolar function and autophagy, ensuring normal cell and organismal development and aging. Recent evidence implicates sphingolipids in the modulation of these processes, but the impact of ceramide signaling on vacuolar dynamics and autophagy remains largely unknown. Here, we show that yeast cells lacking Isc1p, an orthologue of mammalian neutral sphingomyelinase type 2, exhibit vacuolar fragmentation and dysfunctions, namely decreased Pep4p-mediated proteolysis and V-ATPase activity, which impairs vacuolar acidification. Moreover, these phenotypes are suppressed by downregulation of the ceramide-activated protein phosphatase Sit4p. The isc1Δ cells also exhibit defective Cvt and vesicular trafficking in a Sit4p-dependent manner, ultimately contributing to a reduced autophagic flux. Importantly, these phenotypes are also suppressed by downregulation of the nutrient signaling kinase TORC1, which is known to inhibit Sit4p and autophagy, or Sch9p. These results support a model in which Sit4p functions downstream of Isc1p in a TORC1-independent, ceramide-dependent signaling branch that impairs vacuolar function and vesicular trafficking, leading to autophagic defects in yeast.

  8. Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation

    PubMed Central

    Valentin-Vega, Yasmine A.; Wang, Yong-Dong; Parker, Matthew; Patmore, Deanna M.; Kanagaraj, Anderson; Moore, Jennifer; Rusch, Michael; Finkelstein, David; Ellison, David W.; Gilbertson, Richard J.; Zhang, Jinghui; Kim, Hong Joo; Taylor, J. Paul

    2016-01-01

    DDX3X is a DEAD-box RNA helicase that has been implicated in multiple aspects of RNA metabolism including translation initiation and the assembly of stress granules (SGs). Recent genomic studies have reported recurrent DDX3X mutations in numerous tumors including medulloblastoma (MB), but the physiological impact of these mutations is poorly understood. Here we show that a consistent feature of MB-associated mutations is SG hyper-assembly and concomitant translation impairment. We used CLIP-seq to obtain a comprehensive assessment of DDX3X binding targets and ribosome profiling for high-resolution assessment of global translation. Surprisingly, mutant DDX3X expression caused broad inhibition of translation that impacted DDX3X targeted and non-targeted mRNAs alike. Assessment of translation efficiency with single-cell resolution revealed that SG hyper-assembly correlated precisely with impaired global translation. SG hyper-assembly and translation impairment driven by mutant DDX3X were rescued by a genetic approach that limited SG assembly and by deletion of the N-terminal low complexity domain within DDX3X. Thus, in addition to a primary defect at the level of translation initiation caused by DDX3X mutation, SG assembly itself contributes to global translation inhibition. This work provides mechanistic insights into the consequences of cancer-related DDX3X mutations, suggesting that globally reduced translation may provide a context-dependent survival advantage that must be considered as a possible contributor to tumorigenesis. PMID:27180681

  9. Study of modifiers factors associated to mitochondrial mutations in individuals with hearing impairment

    SciTech Connect

    Sousa de Moraes, Vanessa Cristine; Alexandrino, Fabiana; Andrade, Paula Baloni; Camara, Marilia Fontenele; Sartorato, Edi Lucia

    2009-04-03

    Hearing impairment is the most prevalent sensorial deficit in the general population. Congenital deafness occurs in about 1 in 1000 live births, of which approximately 50% has hereditary cause in development countries. Non-syndromic deafness can be caused by mutations in both nuclear and mitochondrial genes. Mutations in mtDNA have been associated with aminoglycoside-induced and non-syndromic deafness in many families worldwide. However, the nuclear background influences the phenotypic expression of these pathogenic mutations. Indeed, it has been proposed that nuclear modifier genes modulate the phenotypic manifestation of the mitochondrial A1555G mutation in the MTRNR1 gene. The both putative nuclear modifiers genes TRMU and MTO1 encoding a highly conserved mitochondrial related to tRNA modification. It has been hypothesizes that human TRMU and also MTO1 nuclear genes may modulate the phenotypic manifestation of deafness-associated mitochondrial mutations. The aim of this work was to elucidate the contribution of mitochondrial mutations, nuclear modifier genes mutations and aminoglycoside exposure in the deafness phenotype. Our findings suggest that the genetic background of individuals may play an important role in the pathogenesis of deafness-associated with mitochondrial mutation and aminoglycoside-induced.

  10. Developing regional genetic counseling for southern Chinese with nonsyndromic hearing impairment: a unique mutational spectrum

    PubMed Central

    2014-01-01

    Background Racial and regional factors are important for the clinical diagnosis of non-syndromic hearing impairment. Comprehensive genetic analysis of deaf patients in different regions of China must be performed to provide effective genetic counseling. To evaluate the mutational spectrum of south Chinese families, we performed genetic analysis for non-syndromic hearing impairment in this population. Methods Complete clinical evaluations were performed on 701 unrelated patients with non-syndromic hearing impairment from six provinces in south China. Each subject was screened for common mutations, including SLC26A4 c.IVS7-2A > G, c.2168A > G; mitochondrial DNA m.1555A > G, m.1494C > T, m.7444G > A, m.7445A > G; GJB3 c.538C > T, c.547G > A; and WFS1 c.1901A > C, using pyrosequencing. GJB2 and SLC26A4 coding region mutation detection were performed using Sanger sequencing. Results Genetic analysis revealed that among the etiology of non-syndromic hearing impairment, GJB2, SLC26A4, and mitochondrial m.1555A > G mutations accounted for 18.0%, 13.1%, and 0.9%, respectively. Common mutations included GJB2 c.235delC, c.109G > A, SLC26A4 c.IVS7-2A > G, c.1229 T > C, and mitochondrial m.1555A > G. The total mutation rate was 45.1% in all patients examined in south China. Overall, the clear contribution of GJB2, SLC26A4, and mitochondrial m.1555A > G to the etiology of the non-syndromic deafness population in south China was 32.0%. Conclusions Our study is the first genetic analysis of non-syndromic hearing impairment in south China, and revealed that a clear genetic etiology accounted for 32.0% of non-syndromic hearing cases in patients from these regions. The mutational spectrum of non-syndromic hearing impairment in the south Chinese population provides useful and targeted information to aid in genetic counseling. PMID:24612839

  11. A human CCT5 gene mutation causing distal neuropathy impairs hexadecamer assembly in an archaeal model

    PubMed Central

    Min, Wonki; Angileri, Francesca; Luo, Haibin; Lauria, Antonino; Shanmugasundaram, Maruda; Almerico, Anna Maria; Cappello, Francesco; de Macario, Everly Conway; Lednev, Igor K.; Macario, Alberto J. L.; Robb, Frank T.

    2014-01-01

    Chaperonins mediate protein folding in a cavity formed by multisubunit rings. The human CCT has eight non-identical subunits and the His147Arg mutation in one subunit, CCT5, causes neuropathy. Knowledge is scarce on the impact of this and other mutations upon the chaperone's structure and functions. To make progress, experimental models must be developed. We used an archaeal mutant homolog and demonstrated that the His147Arg mutant has impaired oligomeric assembly, ATPase activity, and defective protein homeostasis functions. These results establish for the first time that a human chaperonin gene defect can be reproduced and studied at the molecular level with an archaeal homolog. The major advantage of the system, consisting of rings with eight identical subunits, is that it amplifies the effects of a mutation as compared with the human counterpart, in which just one subunit per ring is defective. Therefore, the slight deficit of a non-lethal mutation can be detected and characterized. PMID:25345891

  12. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment.

    PubMed

    Dibbens, Leanne M; Tarpey, Patrick S; Hynes, Kim; Bayly, Marta A; Scheffer, Ingrid E; Smith, Raffaella; Bomar, Jamee; Sutton, Edwina; Vandeleur, Lucianne; Shoubridge, Cheryl; Edkins, Sarah; Turner, Samantha J; Stevens, Claire; O'Meara, Sarah; Tofts, Calli; Barthorpe, Syd; Buck, Gemma; Cole, Jennifer; Halliday, Kelly; Jones, David; Lee, Rebecca; Madison, Mark; Mironenko, Tatiana; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Teague, John; Dicks, Ed; Butler, Adam; Menzies, Andrew; Jenkinson, Andrew; Shepherd, Rebecca; Gusella, James F; Afawi, Zaid; Mazarib, Aziz; Neufeld, Miriam Y; Kivity, Sara; Lev, Dorit; Lerman-Sagie, Tally; Korczyn, Amos D; Derry, Christopher P; Sutherland, Grant R; Friend, Kathryn; Shaw, Marie; Corbett, Mark; Kim, Hyung-Goo; Geschwind, Daniel H; Thomas, Paul; Haan, Eric; Ryan, Stephen; McKee, Shane; Berkovic, Samuel F; Futreal, P Andrew; Stratton, Michael R; Mulley, John C; Gécz, Jozef

    2008-06-01

    Epilepsy and mental retardation limited to females (EFMR) is a disorder with an X-linked mode of inheritance and an unusual expression pattern. Disorders arising from mutations on the X chromosome are typically characterized by affected males and unaffected carrier females. In contrast, EFMR spares transmitting males and affects only carrier females. Aided by systematic resequencing of 737 X chromosome genes, we identified different protocadherin 19 (PCDH19) gene mutations in seven families with EFMR. Five mutations resulted in the introduction of a premature termination codon. Study of two of these demonstrated nonsense-mediated decay of PCDH19 mRNA. The two missense mutations were predicted to affect adhesiveness of PCDH19 through impaired calcium binding. PCDH19 is expressed in developing brains of human and mouse and is the first member of the cadherin superfamily to be directly implicated in epilepsy or mental retardation.

  13. A Novel Splice-Site Mutation in the GJB2 Gene Causing Mild Postlingual Hearing Impairment

    PubMed Central

    Gandía, Marta; del Castillo, Francisco J.; Rodríguez-Álvarez, Francisco J.; Garrido, Gema; Villamar, Manuela; Calderón, Manuela; Moreno-Pelayo, Miguel A.; Moreno, Felipe; del Castillo, Ignacio

    2013-01-01

    The DFNB1 subtype of autosomal recessive, nonsyndromic hearing impairment, caused by mutations affecting the GJB2 (connection-26) gene, is highly prevalent in most populations worldwide. DFNB1 hearing impairment is mostly severe or profound and usually appears before the acquisition of speech (prelingual onset), though a small number of hypomorphic missense mutations result in mild or moderate deafness of postlingual onset. We identified a novel GJB2 splice-site mutation, c. -22-2A>C, in three siblings with mild postlingual hearing impairment that were compound heterozygous for c. -22-2A>C and c.35delG. Reverse transcriptase-PCR experiments performed on total RNA extracted from saliva samples from one of these siblings confirmed that c. -22-2A>C abolished the acceptor splice site of the single GJB2 intron, resulting in the absence of normally processed transcripts from this allele. However, we did isolate transcripts from the c. -22-2A>C allele that keep an intact GJB2 coding region and that were generated by use of an alternative acceptor splice site previously unknown. The residual expression of wild-type connection-26 encoded by these transcripts probably underlies the mild severity and late onset of the hearing impairment of these subjects. PMID:24039984

  14. PLEKHM2 mutation leads to abnormal localization of lysosomes, impaired autophagy flux and associates with recessive dilated cardiomyopathy and left ventricular noncompaction.

    PubMed

    Muhammad, Emad; Levitas, Aviva; Singh, Sonia R; Braiman, Alex; Ofir, Rivka; Etzion, Sharon; Sheffield, Val C; Etzion, Yoram; Carrier, Lucie; Parvari, Ruti

    2015-12-20

    Gene mutations, mostly segregating with a dominant mode of inheritance, are important causes of dilated cardiomyopathy (DCM), a disease characterized by enlarged ventricular dimensions, impaired cardiac function, heart failure and high risk of death. Another myocardial abnormality often linked to gene mutations is left ventricular noncompaction (LVNC) characterized by a typical diffuse spongy appearance of the left ventricle. Here, we describe a large Bedouin family presenting with a severe recessive DCM and LVNC. Homozygosity mapping and exome sequencing identified a single gene variant that segregated as expected and was neither reported in databases nor in Bedouin population controls. The PLEKHM2 cDNA2156_2157delAG variant causes the frameshift p.Lys645AlafsTer12 and/or the skipping of exon 11 that results in deletion of 30 highly conserved amino acids. PLEKHM2 is known to interact with several Rabs and with kinesin-1, affecting endosomal trafficking. Accordingly, patients' primary fibroblasts exhibited abnormal subcellular distribution of endosomes marked by Rab5, Rab7 and Rab9, as well as the Golgi apparatus. In addition, lysosomes appeared to be concentrated in the perinuclear region, and autophagy flux was impaired. Transfection of wild-type PLEKHM2 cDNA into patient's fibroblasts corrected the subcellular distribution of the lysosomes, supporting the causal effect of PLEKHM2 mutation. PLEKHM2 joins LAMP-2 and BAG3 as a disease gene altering autophagy resulting in an isolated cardiac phenotype. The association of PLEKHM2 mutation with DCM and LVNC supports the importance of autophagy for normal cardiac function. PMID:26464484

  15. HNF1beta/TCF2 mutations impair transactivation potential through altered co-regulator recruitment.

    PubMed

    Barbacci, Elena; Chalkiadaki, Angeliki; Masdeu, Christelle; Haumaitre, Cécile; Lokmane, Ludmilla; Loirat, Chantal; Cloarec, Sylvie; Talianidis, Iannis; Bellanne-Chantelot, Christine; Cereghini, Silvia

    2004-12-15

    Mutations in the HNF1beta gene, encoding the dimeric POU-homeodomain transcription factor HNF1beta (TCF2 or vHNF1), cause various phenotypes including maturity onset diabetes of the young 5 (MODY5), and abnormalities in kidney, pancreas and genital tract development. To gain insight into the molecular mechanisms underlying these phenotypes and into the structure of HNF1beta, we functionally characterized eight disease-causing mutations predicted to produce protein truncations, amino acids substitutions or frameshift deletions in different domains of the protein. Truncated mutations, retaining the dimerization domain, displayed defective nuclear localization and weak dominant-negative activity when co-expressed with the wild-type protein. A frameshift mutation located within the C-terminal QSP-rich domain partially reduced transcriptional activity, whereas selective deletion of this domain abolished transactivation. All five missense mutations, which concern POU-specific and homeodomain residues, were correctly expressed and localized to the nucleus. Although having different effects on DNA-binding capacity, which ranged from complete loss to a mild reduction, these mutations exhibited a severe reduction in their transactivation capacity. The transcriptional impairment of those mutants, whose DNA-binding activity was weakly or not affected, correlated with the loss of association with one of the histone-acetyltransferases CBP or PCAF. In contrast to wild-type HNF1beta, whose transactivation potential depends on the synergistic action of CBP and PCAF, the activity of these mutants was not increased by the synergistic action of these two coactivators or by treatment with the specific histone-deacetylase inhibitor TSA. Our findings suggest that the complex syndrome associated with HNF1beta-MODY5 mutations arise from either defective DNA-binding or transactivation function through impaired coactivator recruitment. PMID:15509593

  16. Impaired posttranslational processing and trafficking of an endosomal Na+/H+ exchanger NHE6 mutant (Δ(370)WST(372)) associated with X-linked intellectual disability and autism.

    PubMed

    Ilie, Alina; Weinstein, Erica; Boucher, Annie; McKinney, R Anne; Orlowski, John

    2014-07-01

    Na(+)/H(+) exchanger NHE6/SLC9A6 is an X-linked gene that is widely expressed and especially abundant in brain, heart and skeletal muscle where it is implicated in endosomal pH homeostasis and trafficking as well as maintenance of cell polarity. Recent genetic studies have identified several mutations in the coding region of NHE6 that are linked with severe intellectual disability, autistic behavior, ataxia and other abnormalities. One such defect consists of an in-frame deletion of three amino acids ((370)Trp-Ser-Thr(372), ΔWST) that adjoin the predicted ninth transmembrane helix of the exchanger. To better understand the nature of this mutation, a NHE6ΔWST construct was generated and assessed for its effects on the biochemical and cellular properties of the transporter. In transfected fibroblastic CHO and neuroblastoma SH-SY5Y cells, immunoblot analyses showed that the mutant protein was effectively synthesized, but its subsequent oligosaccharide maturation and overall half-life were dramatically reduced compared to wild-type. These changes correlated with significant accumulation of ΔWST in the endoplasmic reticulum, with only minor sorting to the plasma membrane and negligible trafficking to recycling endosomes. The diminished accumulation in recycling endosomes was associated with a significant decrease in the rate of endocytosis of cell surface ΔWST compared to wild-type. Furthermore, while ectopic expression of wild-type NHE6 enhanced the uptake of other vesicular cargo such as transferrin along the clathrin-mediated recycling endosomal pathway, this ability was lost in the ΔWST mutant. Similarly, in transfected primary mouse hippocampal neurons, wild-type NHE6 was localized in discrete puncta throughout the soma and neurites, whereas the ΔWST mutant displayed a diffuse reticular pattern. Remarkably, the extensive dendritic arborization observed in neurons expressing wild-type NHE6 was noticeably diminished in ΔWST-transfectants. These results suggest

  17. Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III

    PubMed Central

    Thiffault, Isabelle; Wolf, Nicole I.; Forget, Diane; Guerrero, Kether; Tran, Luan T.; Choquet, Karine; Lavallée-Adam, Mathieu; Poitras, Christian; Brais, Bernard; Yoon, Grace; Sztriha, Laszlo; Webster, Richard I.; Timmann, Dagmar; van de Warrenburg, Bart P.; Seeger, Jürgen; Zimmermann, Alíz; Máté, Adrienn; Goizet, Cyril; Fung, Eva; van der Knaap, Marjo S.; Fribourg, Sébastien; Vanderver, Adeline; Simons, Cas; Taft, Ryan J.; Yates III, John R.; Coulombe, Benoit; Bernard, Geneviève

    2015-01-01

    A small proportion of 4H (Hypomyelination, Hypodontia and Hypogonadotropic Hypogonadism) or RNA polymerase III (POLR3)-related leukodystrophy cases are negative for mutations in the previously identified causative genes POLR3A and POLR3B. Here we report eight of these cases carrying recessive mutations in POLR1C, a gene encoding a shared POLR1 and POLR3 subunit, also mutated in some Treacher Collins syndrome (TCS) cases. Using shotgun proteomics and ChIP sequencing, we demonstrate that leukodystrophy-causative mutations, but not TCS mutations, in POLR1C impair assembly and nuclear import of POLR3, but not POLR1, leading to decreased binding to POLR3 target genes. This study is the first to show that distinct mutations in a gene coding for a shared subunit of two RNA polymerases lead to selective modification of the enzymes' availability leading to two different clinical conditions and to shed some light on the pathophysiological mechanism of one of the most common hypomyelinating leukodystrophies, POLR3-related leukodystrophy. PMID:26151409

  18. Novel FOXC2 Mutation in Hereditary Distichiasis Impairs DNA-Binding Activity and Transcriptional Activation.

    PubMed

    Zhang, Leilei; He, Jie; Han, Bing; Lu, Linna; Fan, Jiayan; Zhang, He; Ge, Shengfang; Zhou, Yixiong; Jia, Renbing; Fan, Xianqun

    2016-01-01

    Distichiasis presents as double rows of eyelashes arising from aberrant differentiation of the meibomian glands of the eyelids, and it may be sporadic or hereditary. FOXC2 gene mutations in hereditary distichiasis are rarely reported. Here, we examined two generations of a Chinese family with hereditary distichiasis but without lymphedema or other features of LD syndrome. The FOXC2 gene was amplified and sequenced in all family members. Subcellular localization and luciferase assays were performed to assess the activity of the mutant FOXC2 protein. Clinical examinations showed distichiasis, lower eyelid ectropion, congenital ptosis and photophobia in all affected individuals. Sequence analysis revealed a novel frameshift mutation, c.964_965insG, in the coding region of the FOXC2 gene. This mutation caused protein truncation due to the presence of a premature stop codon. A fluorescence assay showed that this mutation did not change the nuclear localization of the protein. However, it impaired DNA-binding activity and decreased transcriptional activation. This is the first report of a FOXC2 mutation in hereditary distichiasis in the Chinese population. The findings of our study expand the FOXC2 mutation spectrum and contribute to the understanding of the genotype-phenotype correlation of this disease. PMID:27570485

  19. Novel FOXC2 Mutation in Hereditary Distichiasis Impairs DNA-Binding Activity and Transcriptional Activation

    PubMed Central

    Zhang, Leilei; He, Jie; Han, Bing; Lu, Linna; Fan, Jiayan; Zhang, He; Ge, Shengfang; Zhou, Yixiong; Jia, Renbing; Fan, Xianqun

    2016-01-01

    Distichiasis presents as double rows of eyelashes arising from aberrant differentiation of the meibomian glands of the eyelids, and it may be sporadic or hereditary. FOXC2 gene mutations in hereditary distichiasis are rarely reported. Here, we examined two generations of a Chinese family with hereditary distichiasis but without lymphedema or other features of LD syndrome. The FOXC2 gene was amplified and sequenced in all family members. Subcellular localization and luciferase assays were performed to assess the activity of the mutant FOXC2 protein. Clinical examinations showed distichiasis, lower eyelid ectropion, congenital ptosis and photophobia in all affected individuals. Sequence analysis revealed a novel frameshift mutation, c.964_965insG, in the coding region of the FOXC2 gene. This mutation caused protein truncation due to the presence of a premature stop codon. A fluorescence assay showed that this mutation did not change the nuclear localization of the protein. However, it impaired DNA-binding activity and decreased transcriptional activation. This is the first report of a FOXC2 mutation in hereditary distichiasis in the Chinese population. The findings of our study expand the FOXC2 mutation spectrum and contribute to the understanding of the genotype-phenotype correlation of this disease. PMID:27570485

  20. Mutation of Dcdc2 in mice leads to impairments in auditory processing and memory ability

    PubMed Central

    Truong, Dongnhu T.; Che, Alicia; Rendall, Amanda R.; Szalkowski, Caitlin E.; LoTurco, Joseph J.; Galaburda, Albert M.; Fitch, R. Holly

    2014-01-01

    Dyslexia is a complex neurodevelopmental disorder characterized by impaired reading ability despite normal intellect, and is associated with specific difficulties in phonological and rapid auditory processing, visual attention, and working memory. Genetic variants in DCDC2 have been associated with dyslexia, impairments in phonological processing, and in short term/working memory. The purpose of this study was to determine whether sensory and behavioral impairments can result directly from mutation of the Dcdc2 gene in mice. Several behavioral tasks, including a modified pre-pulse inhibition paradigm (to examine auditory processing), a 4/8 radial arm maze (to assess/dissociate working versus reference memory), and rotarod (to examine sensorimotor ability and motor learning) were used to assess the effects of Dcdc2 mutation. Behavioral results revealed deficits in rapid auditory processing, working memory, and reference memory in Dcdc2del2/del2 mice as compared to matched wild types. Current findings parallel clinical research linking genetic variants of DCDC2 with specific impairments of phonological processing and memory ability. PMID:25130614

  1. Mutation of Dcdc2 in mice leads to impairments in auditory processing and memory ability.

    PubMed

    Truong, D T; Che, A; Rendall, A R; Szalkowski, C E; LoTurco, J J; Galaburda, A M; Holly Fitch, R

    2014-11-01

    Dyslexia is a complex neurodevelopmental disorder characterized by impaired reading ability despite normal intellect, and is associated with specific difficulties in phonological and rapid auditory processing (RAP), visual attention and working memory. Genetic variants in Doublecortin domain-containing protein 2 (DCDC2) have been associated with dyslexia, impairments in phonological processing and in short-term/working memory. The purpose of this study was to determine whether sensory and behavioral impairments can result directly from mutation of the Dcdc2 gene in mice. Several behavioral tasks, including a modified pre-pulse inhibition paradigm (to examine auditory processing), a 4/8 radial arm maze (to assess/dissociate working vs. reference memory) and rotarod (to examine sensorimotor ability and motor learning), were used to assess the effects of Dcdc2 mutation. Behavioral results revealed deficits in RAP, working memory and reference memory in Dcdc2(del2/del2) mice when compared with matched wild types. Current findings parallel clinical research linking genetic variants of DCDC2 with specific impairments of phonological processing and memory ability.

  2. Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling

    PubMed Central

    Zwerger, Monika; Jaalouk, Diana E.; Lombardi, Maria L.; Isermann, Philipp; Mauermann, Monika; Dialynas, George; Herrmann, Harald; Wallrath, Lori L.; Lammerding, Jan

    2013-01-01

    Lamins are intermediate filament proteins that assemble into a meshwork underneath the inner nuclear membrane, the nuclear lamina. Mutations in the LMNA gene, encoding lamins A and C, cause a variety of diseases collectively called laminopathies. The disease mechanism for these diverse conditions is not well understood. Since lamins A and C are fundamental determinants of nuclear structure and stability, we tested whether defects in nuclear mechanics could contribute to the disease development, especially in laminopathies affecting mechanically stressed tissue such as muscle. Using skin fibroblasts from laminopathy patients and lamin A/C-deficient mouse embryonic fibroblasts stably expressing a broad panel of laminopathic lamin A mutations, we found that several mutations associated with muscular dystrophy and dilated cardiomyopathy resulted in more deformable nuclei; in contrast, lamin mutants responsible for diseases without muscular phenotypes did not alter nuclear deformability. We confirmed our results in intact muscle tissue, demonstrating that nuclei of transgenic Drosophila melanogaster muscle expressing myopathic lamin mutations deformed more under applied strain than controls. In vivo and in vitro studies indicated that the loss of nuclear stiffness resulted from impaired assembly of mutant lamins into the nuclear lamina. Although only a subset of lamin mutations associated with muscular diseases caused increased nuclear deformability, almost all mutations tested had defects in force transmission between the nucleus and cytoskeleton. In conclusion, our results indicate that although defective nuclear stability may play a role in the development of muscle diseases, other factors, such as impaired nucleo-cytoskeletal coupling, likely contribute to the muscle phenotype. PMID:23427149

  3. De Novo Mutations in CHAMP1 Cause Intellectual Disability with Severe Speech Impairment

    PubMed Central

    Hempel, Maja; Cremer, Kirsten; Ockeloen, Charlotte W.; Lichtenbelt, Klaske D.; Herkert, Johanna C.; Denecke, Jonas; Haack, Tobias B.; Zink, Alexander M.; Becker, Jessica; Wohlleber, Eva; Johannsen, Jessika; Alhaddad, Bader; Pfundt, Rolph; Fuchs, Sigrid; Wieczorek, Dagmar; Strom, Tim M.; van Gassen, Koen L.I.; Kleefstra, Tjitske; Kubisch, Christian; Engels, Hartmut; Lessel, Davor

    2015-01-01

    CHAMP1 encodes a protein with a function in kinetochore-microtubule attachment and in the regulation of chromosome segregation, both of which are known to be important for neurodevelopment. By trio whole-exome sequencing, we have identified de novo deleterious mutations in CHAMP1 in five unrelated individuals affected by intellectual disability with severe speech impairment, motor developmental delay, muscular hypotonia, and similar dysmorphic features including short philtrum and a tented upper and everted lover lip. In addition to two frameshift and one nonsense mutations, we found an identical nonsense mutation, c.1192C>T (p.Arg398∗), in two affected individuals. All mutations, if resulting in a stable protein, are predicted to lead to the loss of the functionally important zinc-finger domains in the C terminus of the protein, which regulate CHAMP1 localization to chromosomes and the mitotic spindle, thereby providing a mechanistic understanding for their pathogenicity. We thus establish deleterious de novo mutations in CHAMP1 as a cause of intellectual disability. PMID:26340335

  4. CNNM2 mutations cause impaired brain development and seizures in patients with hypomagnesemia.

    PubMed

    Arjona, Francisco J; de Baaij, Jeroen H F; Schlingmann, Karl P; Lameris, Anke L L; van Wijk, Erwin; Flik, Gert; Regele, Sabrina; Korenke, G Christoph; Neophytou, Birgit; Rust, Stephan; Reintjes, Nadine; Konrad, Martin; Bindels, René J M; Hoenderop, Joost G J

    2014-04-01

    Intellectual disability and seizures are frequently associated with hypomagnesemia and have an important genetic component. However, to find the genetic origin of intellectual disability and seizures often remains challenging because of considerable genetic heterogeneity and clinical variability. In this study, we have identified new mutations in CNNM2 in five families suffering from mental retardation, seizures, and hypomagnesemia. For the first time, a recessive mode of inheritance of CNNM2 mutations was observed. Importantly, patients with recessive CNNM2 mutations suffer from brain malformations and severe intellectual disability. Additionally, three patients with moderate mental disability were shown to carry de novo heterozygous missense mutations in the CNNM2 gene. To elucidate the physiological role of CNNM2 and explain the pathomechanisms of disease, we studied CNNM2 function combining in vitro activity assays and the zebrafish knockdown model system. Using stable Mg(2+) isotopes, we demonstrated that CNNM2 increases cellular Mg2+ uptake in HEK293 cells and that this process occurs through regulation of the Mg(2+)-permeable cation channel TRPM7. In contrast, cells expressing mutated CNNM2 proteins did not show increased Mg(2+) uptake. Knockdown of cnnm2 isoforms in zebrafish resulted in disturbed brain development including neurodevelopmental impairments such as increased embryonic spontaneous contractions and weak touch-evoked escape behaviour, and reduced body Mg content, indicative of impaired renal Mg(2+) absorption. These phenotypes were rescued by injection of mammalian wild-type Cnnm2 cRNA, whereas mammalian mutant Cnnm2 cRNA did not improve the zebrafish knockdown phenotypes. We therefore concluded that CNNM2 is fundamental for brain development, neurological functioning and Mg(2+) homeostasis. By establishing the loss-of-function zebrafish model for CNNM2 genetic disease, we provide a unique system for testing therapeutic drugs targeting CNNM2 and

  5. CNNM2 mutations cause impaired brain development and seizures in patients with hypomagnesemia.

    PubMed

    Arjona, Francisco J; de Baaij, Jeroen H F; Schlingmann, Karl P; Lameris, Anke L L; van Wijk, Erwin; Flik, Gert; Regele, Sabrina; Korenke, G Christoph; Neophytou, Birgit; Rust, Stephan; Reintjes, Nadine; Konrad, Martin; Bindels, René J M; Hoenderop, Joost G J

    2014-04-01

    Intellectual disability and seizures are frequently associated with hypomagnesemia and have an important genetic component. However, to find the genetic origin of intellectual disability and seizures often remains challenging because of considerable genetic heterogeneity and clinical variability. In this study, we have identified new mutations in CNNM2 in five families suffering from mental retardation, seizures, and hypomagnesemia. For the first time, a recessive mode of inheritance of CNNM2 mutations was observed. Importantly, patients with recessive CNNM2 mutations suffer from brain malformations and severe intellectual disability. Additionally, three patients with moderate mental disability were shown to carry de novo heterozygous missense mutations in the CNNM2 gene. To elucidate the physiological role of CNNM2 and explain the pathomechanisms of disease, we studied CNNM2 function combining in vitro activity assays and the zebrafish knockdown model system. Using stable Mg(2+) isotopes, we demonstrated that CNNM2 increases cellular Mg2+ uptake in HEK293 cells and that this process occurs through regulation of the Mg(2+)-permeable cation channel TRPM7. In contrast, cells expressing mutated CNNM2 proteins did not show increased Mg(2+) uptake. Knockdown of cnnm2 isoforms in zebrafish resulted in disturbed brain development including neurodevelopmental impairments such as increased embryonic spontaneous contractions and weak touch-evoked escape behaviour, and reduced body Mg content, indicative of impaired renal Mg(2+) absorption. These phenotypes were rescued by injection of mammalian wild-type Cnnm2 cRNA, whereas mammalian mutant Cnnm2 cRNA did not improve the zebrafish knockdown phenotypes. We therefore concluded that CNNM2 is fundamental for brain development, neurological functioning and Mg(2+) homeostasis. By establishing the loss-of-function zebrafish model for CNNM2 genetic disease, we provide a unique system for testing therapeutic drugs targeting CNNM2 and

  6. A growth hormone receptor mutation impairs growth hormone autofeedback signaling in pituitary tumors.

    PubMed

    Asa, Sylvia L; Digiovanni, Rebecca; Jiang, Jing; Ward, Megan L; Loesch, Kimberly; Yamada, Shozo; Sano, Toshiaki; Yoshimoto, Katsuhiko; Frank, Stuart J; Ezzat, Shereen

    2007-08-01

    Pituitary tumors are a diverse group of neoplasms that are classified based on clinical manifestations, hormone excess, and histomorphologic features. Those that cause growth hormone (GH) excess and acromegaly are subdivided into morphologic variants that have not yet been shown to have pathogenetic significance or predictive value for therapy and outcome. Here, we identify a selective somatic histidine-to-leucine substitution in codon 49 of the extracellular domain of the GH receptor (GHR) in a morphologic subtype of human GH-producing pituitary tumors that is characterized by the presence of cytoskeletal aggresomes. This GHR mutation significantly impairs glycosylation-mediated receptor processing, maturation, ligand binding, and signaling. Pharmacologic GH antagonism recapitulates the morphologic phenotype of pituitary tumors from which this mutation was identified, inducing the formation of cytoskeletal keratin aggresomes. This novel GHR mutation provides evidence for impaired hormone autofeedback in the pathogenesis of these pituitary tumors. It explains the lack of responsiveness to somatostatin analogue therapy of this tumor type, in contrast to the exquisite sensitivity of tumors that lack aggresomes, and has therapeutic implications for the safety of GH antagonism as a therapeutic modality in acromegaly. PMID:17671221

  7. Hypomorphic mutation in mouse Nppc gene causes retarded bone growth due to impaired endochondral ossification

    SciTech Connect

    Tsuji, Takehito Kondo, Eri; Yasoda, Akihiro; Inamoto, Masataka; Kiyosu, Chiyo; Nakao, Kazuwa; Kunieda, Tetsuo

    2008-11-07

    Long bone abnormality (lbab/lbab) is a spontaneous mutant mouse characterized by dwarfism with shorter long bones. A missense mutation was reported in the Nppc gene, which encodes C-type natriuretic peptide (CNP), but it has not been confirmed whether this mutation is responsible for the dwarf phenotype. To verify that the mutation causes the dwarfism of lbab/lbab mice, we first investigated the effect of CNP in lbab/lbab mice. By transgenic rescue with chondrocyte-specific expression of CNP, the dwarf phenotype in lbab/lbab mice was completely compensated. Next, we revealed that CNP derived from the lbab allele retained only slight activity to induce cGMP production through its receptor. Histological analysis showed that both proliferative and hypertrophic zones of chondrocytes in the growth plate of lbab/lbab mice were markedly reduced. Our results demonstrate that lbab/lbab mice have a hypomorphic mutation in the Nppc gene that is responsible for dwarfism caused by impaired endochondral ossification.

  8. Idiopathic basal ganglia calcification-associated PDGFRB mutations impair the receptor signalling

    PubMed Central

    Arts, Florence A; Velghe, Amélie I; Stevens, Monique; Renauld, Jean-Christophe; Essaghir, Ahmed; Demoulin, Jean-Baptiste

    2015-01-01

    Platelet-derived growth factors (PDGF) bind to two related receptor tyrosine kinases, which are encoded by the PDGFRA and PDGFRB genes. Recently, heterozygous PDGFRB mutations have been described in patients diagnosed with idiopathic basal ganglia calcification (IBGC or Fahr disease), a rare inherited neurological disorder. The goal of the present study was to determine whether these mutations had a positive or negative impact on the PDGFRB activity. We first showed that the E1071V mutant behaved like wild-type PDGFRB and may represent a polymorphism unrelated to IBGC. In contrast, the L658P mutant had no kinase activity and failed to activate any of the pathways normally stimulated by PDGF. The R987W mutant activated Akt and MAP kinases but did not induce the phosphorylation of signal transducer and activator of transcription 3 (STAT3) after PDGF stimulation. Phosphorylation of phospholipase Cγ was also decreased. Finally, we showed that the R987W mutant was more rapidly degraded upon PDGF binding compared to wild-type PDGFRB. In conclusion, PDGFRB mutations associated with IBGC impair the receptor signalling. PDGFRB loss of function in IBGC is consistent with recently described inactivating mutations in the PDGF-B ligand. These results raise concerns about the long-term safety of PDGF receptor inhibition by drugs such as imatinib. PMID:25292412

  9. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport.

    PubMed

    Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R; Mans, Dorus A; Huber, Celine; Boldt, Karsten; Patel, Mitali; van Reeuwijk, Jeroen; Plaza, Jean-Marc; van Beersum, Sylvia E C; Yap, Zhi Min; Letteboer, Stef J F; Taylor, S Paige; Herridge, Warren; Johnson, Colin A; Scambler, Peter J; Ueffing, Marius; Kayserili, Hulya; Krakow, Deborah; King, Stephen M; Beales, Philip L; Al-Gazali, Lihadh; Wicking, Carol; Cormier-Daire, Valerie; Roepman, Ronald; Mitchison, Hannah M; Witman, George B

    2015-01-01

    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. PMID:26044572

  10. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    PubMed Central

    Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R.; Mans, Dorus A.; Huber, Celine; Boldt, Karsten; Patel, Mitali; van Reeuwijk, Jeroen; Plaza, Jean-Marc; van Beersum, Sylvia E. C.; Yap, Zhi Min; Letteboer, Stef J. F.; Taylor, S. Paige; Herridge, Warren; Johnson, Colin A.; Scambler, Peter J.; Ueffing, Marius; Kayserili, Hulya; Krakow, Deborah; King, Stephen M.; Beales, Philip L.; Al-Gazali, Lihadh; Wicking, Carol; Cormier-Daire, Valerie; Roepman, Ronald; Mitchison, Hannah M.; Witman, George B.; Al-Turki, Saeed; Anderson, Carl; Anney, Richard; Antony, Dinu; Asimit, Jennifer; Ayub, Mohammad; Barrett, Jeff; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Blackwood, Douglas; Bobrow, Martin; Bochukova, Elena; Bolton, Patrick; Boustred, Chris; Breen, Gerome; Brion, Marie-Jo; Brown, Andrew; Calissano, Mattia; Carss, Keren; Chatterjee, Krishna; Chen, Lu; Cirak, Sebhattin; Clapham, Peter; Clement, Gail; Coates, Guy; Collier, David; Cosgrove, Catherine; Cox, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Daly, Allan; Danecek, Petr; Smith, George Davey; Day-Williams, Aaron; Day, Ian; Durbin, Richard; Edkins, Sarah; Ellis, Peter; Evans, David; Farooqi, I. Sadaf; Fatemifar, Ghazaleh; Fitzpatrick, David; Flicek, Paul; Floyd, Jamie; Foley, A. Reghan; Franklin, Chris; Futema, Marta; Gallagher, Louise; Gaunt, Tom; Geschwind, Daniel; Greenwood, Celia; Grozeva, Detelina; Guo, Xiaosen; Gurling, Hugh; Hart, Deborah; Hendricks, Audrey; Holmans, Peter; Huang, Jie; Humphries, Steve E.; Hurles, Matt; Hysi, Pirro; Jackson, David; Jamshidi, Yalda; Jewell, David; Chris, Joyce; Kaye, Jane; Keane, Thomas; Kemp, John; Kennedy, Karen; Kent, Alastair; Kolb-Kokocinski, Anja; Lachance, Genevieve; Langford, Cordelia; Lee, Irene; Li, Rui; Li, Yingrui; Ryan, Liu; Lönnqvist, Jouko; Lopes, Margarida; MacArthur, Daniel G.; Massimo, Mangino; Marchini, Jonathan; Maslen, John; McCarthy, Shane; McGuffin, Peter; McIntosh, Andrew; McKechanie, Andrew; McQuillin, Andrew; Memari, Yasin; Metrustry, Sarah; Min, Josine; Moayyeri, Alireza; Morris, James; Muddyman, Dawn; Muntoni, Francesco; Northstone, Kate; O'Donovan, Michael; O'Rahilly, Stephen; Onoufriadis, Alexandros; Oualkacha, Karim; Owen, Michael; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Perry, John; Pietilainen, Olli; Plagnol, Vincent; Quail, Michael A.; Quaye, Lydia; Raymond, Lucy; Rehnström, Karola; Brent Richards, J.; Ring, Sue; Ritchie, Graham R S; Savage, David B.; Schoenmakers, Nadia; Semple, Robert K.; Serra, Eva; Shihab, Hashem; Shin, So-Youn; Skuse, David; Small, Kerrin; Smee, Carol; Soler, Artigas María; Soranzo, Nicole; Southam, Lorraine; Spector, Tim; St Pourcain, Beate; St. Clair, David; Stalker, Jim; Surdulescu, Gabriela; Suvisaari, Jaana; Tachmazidou, Ioanna; Tian, Jing; Timpson, Nic; Tobin, Martin; Valdes, Ana; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Wain, Louise; Walter, Klaudia; Wang, Jun; Ward, Kirsten; Wheeler, Ellie; Whittall, Ros; Williams, Hywel; Williamson, Kathy; Wilson, Scott G.; Wong, Kim; Whyte, Tamieka; ChangJiang, Xu; Zeggini, Eleftheria; Zhang, Feng; Zheng, Hou-Feng

    2015-01-01

    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. PMID:26044572

  11. Autosomal recessive PGM3 mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment

    PubMed Central

    Zhang, Yu; Yu, Xiaomin; Ichikawa, Mie; Lyons, Jonathan J.; Datta, Shrimati; Lamborn, Ian T.; Jing, Huie; Kim, Emily S.; Biancalana, Matthew; Wolfe, Lynne A.; DiMaggio, Thomas; Matthews, Helen F.; Kranick, Sarah M.; Stone, Kelly D.; Holland, Steven M.; Reich, Daniel S.; Hughes, Jason D.; Mehmet, Huseyin; McElwee, Joshua; Freeman, Alexandra F.; Freeze, Hudson H.; Su, Helen C.; Milner, Joshua D.

    2014-01-01

    Background Identifying genetic syndromes that lead to significant atopic disease can open new pathways for investigation and intervention in allergy. Objective To define a genetic syndrome of severe atopy, elevated serum IgE, immune deficiency, autoimmunity, and motor and neurocognitive impairment. Methods Eight patients from two families who had similar syndromic features were studied. Thorough clinical evaluations, including brain MRI and sensory evoked potentials, were performed. Peripheral lymphocyte flow cytometry, antibody responses, and T cell cytokine production were measured. Whole exome sequencing was performed to identify disease-causing mutations. Immunoblotting, qRT-PCR, enzymatic assays, nucleotide sugar and sugar phosphate analyses along with MALDI-TOF mass spectrometry of glycans were used to determine the molecular consequences of the mutations. Results Marked atopy and autoimmunity were associated with increased TH2 and TH17 cytokine production by CD4+ T cells. Bacterial and viral infection susceptibility were noted along with T cell lymphopenia, particularly of CD8+ T cells, and reduced memory B cells. Apparent brain hypomyelination resulted in markedly delayed evoked potentials and likely contributed to neurological abnormalities. Disease segregated with novel autosomal recessive mutations in a single gene, phosphoglucomutase 3 (PGM3). Although PGM3 protein expression was variably diminished, impaired function was demonstrated by decreased enzyme activity and reduced UDP-GlcNAc, along with decreased O- and N-linked protein glycosylation in patients’ cells. These results define a new Congenital Disorder of Glycosylation. Conclusions Autosomal recessive, hypomorphic PGM3 mutations underlie a disorder of severe atopy, immune deficiency, autoimmunity, intellectual disability and hypomyelination. PMID:24589341

  12. Paternally Inherited Gsα Mutation Impairs Adipogenesis and Potentiates a Lean Phenotype In Vivo

    PubMed Central

    Liu, Jan-jan; Russell, Elizabeth; Zhang, Deyu; Kaplan, Frederick S.; Pignolo, Robert J.; Shore, Eileen M.

    2012-01-01

    Paternally inherited inactivating mutations of the GNAS gene have been associated with a rare and disabling genetic disorder, progressive osseous heteroplasia, in which heterotopic ossification occurs within extraskeletal soft tissues, such as skin, subcutaneous fat, and skeletal muscle. This ectopic bone formation is hypothesized to be caused by dysregulated mesenchymal progenitor cell differentiation that affects a bipotential osteogenic-adipogenic lineage cell fate switch. Interestingly, patients with paternally inherited inactivating mutations of GNAS are uniformly lean. Using a mouse model of Gsα-specific exon 1 disruption, we examined whether heterozygous inactivation of Gnas affects adipogenic differentiation of mesenchymal precursor cells from subcutaneous adipose tissues (fat pad). We found that paternally inherited Gsα inactivation (Gsα+/p−) impairs adipogenic differentiation of adipose-derived stromal cells (ASCs). The Gsα+/p− mutation in ASCs also decreased expression of the adipogenic factors CCAAT-enhancer-binding protein (C/EBP)β, C/EBPα, peroxisome proliferator-activated receptor gamma, and adipocyte protein 2. Impaired adipocyte differentiation was rescued by an adenylyl cyclase activator, forskolin, and provided evidence that Gsα-cAMP signals are necessary in early stages of this process. Supporting a role for Gnas in adipogenesis in vivo, fat tissue weight and expression of adipogenic genes from multiple types of adipose tissues from Gsα+/p− mice were significantly decreased. Interestingly, the inhibition of adipogenesis by paternally inherited Gsα mutation also enhances expression of the osteogenic factors, msh homeobox 2, runt-related transcription factor 2, and osteocalcin. These data support the hypothesis that Gsα plays a critical role in regulating the balance between fat and bone determination in soft tissues, a finding that has important implications for a wide variety of disorders of osteogenesis and adipogenesis. PMID

  13. A Mutation in the Mouse Ttc26 Gene Leads to Impaired Hedgehog Signaling

    PubMed Central

    Swiderski, Ruth E.; Nakano, Yoko; Mullins, Robert F.; Seo, Seongjin; Bánfi, Botond

    2014-01-01

    The phenotype of the spontaneous mutant mouse hop-sterile (hop) is characterized by a hopping gait, polydactyly, hydrocephalus, and male sterility. Previous analyses of the hop mouse revealed a deficiency of inner dynein arms in motile cilia and a lack of sperm flagella, potentially accounting for the hydrocephalus and male sterility. The etiology of the other phenotypes and the location of the hop mutation remained unexplored. Here we show that the hop mutation is located in the Ttc26 gene and impairs Hedgehog (Hh) signaling. Expression analysis showed that this mutation led to dramatically reduced levels of the Ttc26 protein, and protein-protein interaction assays demonstrated that wild-type Ttc26 binds directly to the Ift46 subunit of Intraflagellar Transport (IFT) complex B. Although IFT is required for ciliogenesis, the Ttc26 defect did not result in a decrease in the number or length of primary cilia. Nevertheless, Hh signaling was reduced in the hop mouse, as revealed by impaired activation of Gli transcription factors in embryonic fibroblasts and abnormal patterning of the neural tube. Unlike the previously characterized mutations that affect IFT complex B, hop did not interfere with Hh-induced accumulation of Gli at the tip of the primary cilium, but rather with the subsequent dissociation of Gli from its negative regulator, Sufu. Our analysis of the hop mouse line provides novel insights into Hh signaling, demonstrating that Ttc26 is necessary for efficient coupling between the accumulation of Gli at the ciliary tip and its dissociation from Sufu. PMID:25340710

  14. TMEM240 mutations cause spinocerebellar ataxia 21 with mental retardation and severe cognitive impairment.

    PubMed

    Delplanque, Jérôme; Devos, David; Huin, Vincent; Genet, Alexandre; Sand, Olivier; Moreau, Caroline; Goizet, Cyril; Charles, Perrine; Anheim, Mathieu; Monin, Marie Lorraine; Buée, Luc; Destée, Alain; Grolez, Guillaume; Delmaire, Christine; Dujardin, Kathy; Dellacherie, Delphine; Brice, Alexis; Stevanin, Giovanni; Strubi-Vuillaume, Isabelle; Dürr, Alexandra; Sablonnière, Bernard

    2014-10-01

    Autosomal dominant cerebellar ataxia corresponds to a clinically and genetically heterogeneous group of neurodegenerative disorders that primarily affect the cerebellum. Here, we report the identification of the causative gene in spinocerebellar ataxia 21, an autosomal-dominant disorder previously mapped to chromosome 7p21.3-p15.1. This ataxia was firstly characterized in a large French family with slowly progressive cerebellar ataxia, accompanied by severe cognitive impairment and mental retardation in two young children. Following the recruitment of 12 additional young family members, linkage analysis enabled us to definitively map the disease locus to chromosome 1p36.33-p36.32. The causative mutation, (c.509C>T/p.P170L) in the transmembrane protein gene TMEM240, was identified by whole exome sequencing and then was confirmed by Sanger sequencing and co-segregation analyses. Index cases from 368 French families with autosomal-dominant cerebellar ataxia were also screened for mutations. In seven cases, we identified a range of missense mutations (c.509C>T/p.P170L, c.239C>T/p.T80M, c.346C>T/p.R116C, c.445G>A/p.E149K, c.511C>T/p.R171W), and a stop mutation (c.489C>G/p.Y163*) in the same gene. TMEM240 is a small, strongly conserved transmembrane protein of unknown function present in cerebellum and brain. Spinocerebellar ataxia 21 may be a particular early-onset disease associated with severe cognitive impairment.

  15. Human Trafficking

    ERIC Educational Resources Information Center

    Wilson, David McKay

    2011-01-01

    The shadowy, criminal nature of human trafficking makes evaluating its nature and scope difficult. The U.S. State Department and anti-trafficking groups estimate that worldwide some 27 million people are caught in a form of forced servitude today. Public awareness of modern-day slavery is gaining momentum thanks to new abolitionist efforts. Among…

  16. Human mutations in methylenetetrahydrofolate dehydrogenase 1 impair nuclear de novo thymidylate biosynthesis.

    PubMed

    Field, Martha S; Kamynina, Elena; Watkins, David; Rosenblatt, David S; Stover, Patrick J

    2015-01-13

    An inborn error of metabolism associated with mutations in the human methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) gene has been identified. The proband presented with SCID, megaloblastic anemia, and neurologic abnormalities, but the causal metabolic impairment is unknown. SCID has been associated with impaired purine nucleotide metabolism, whereas megaloblastic anemia has been associated with impaired de novo thymidylate (dTMP) biosynthesis. MTHFD1 functions to condense formate with tetrahydrofolate and serves as the primary entry point of single carbons into folate-dependent one-carbon metabolism in the cytosol. In this study, we examined the impact of MTHFD1 loss of function on folate-dependent purine, dTMP, and methionine biosynthesis in fibroblasts from the proband with MTHFD1 deficiency. The flux of formate incorporation into methionine and dTMP was decreased by 90% and 50%, respectively, whereas formate flux through de novo purine biosynthesis was unaffected. Patient fibroblasts exhibited enriched MTHFD1 in the nucleus, elevated uracil in DNA, lower rates of de novo dTMP synthesis, and increased salvage pathway dTMP biosynthesis relative to control fibroblasts. These results provide evidence that impaired nuclear de novo dTMP biosynthesis can lead to both megaloblastic anemia and SCID in MTHFD1 deficiency.

  17. Mutation in E1, the ubiquitin activating enzyme, reduces Drosophila lifespan and results in motor impairment.

    PubMed

    Liu, Hsiu-Yu; Pfleger, Cathie M

    2013-01-01

    Neurodegenerative diseases cause tremendous suffering for those afflicted and their families. Many of these diseases involve accumulation of mis-folded or aggregated proteins thought to play a causal role in disease pathology. Ubiquitinated proteins are often found in these protein aggregates, and the aggregates themselves have been shown to inhibit the activity of the proteasome. These and other alterations in the Ubiquitin Pathway observed in neurodegenerative diseases have led to the question of whether impairment of the Ubiquitin Pathway on its own can increase mortality or if ongoing neurodegeneration alters Ubiquitin Pathway function as a side-effect. To address the role of the Ubiquitin Pathway in vivo, we studied loss-of-function mutations in the Drosophila Ubiquitin Activating Enzyme, Uba1 or E1, the most upstream enzyme in the Ubiquitin Pathway. Loss of only one functional copy of E1 caused a significant reduction in adult lifespan. Rare homozygous hypomorphic E1 mutants reached adulthood. These mutants exhibited further reduced lifespan and showed inappropriate Ras activation in the brain. Removing just one functional copy of Ras restored the lifespan of heterozygous E1 mutants to that of wild-type flies and increased the survival of homozygous E1 mutants. E1 homozygous mutants also showed severe motor impairment. Our findings suggest that processes that impair the Ubiquitin Pathway are sufficient to cause early mortality. Reduced lifespan and motor impairment are seen in the human disease X-linked Infantile Spinal Muscular Atrophy, which is associated with mutation in human E1 warranting further analysis of these mutants as a potential animal model for study of this disease.

  18. [Effects of mutations in the autographa californica multiple nucleopolyhedrovirus E25 on its trafficking to nucleus and budded virus production].

    PubMed

    Luo, Xiao-chun; Yue, Xiu-li; Li, Lu-lin; Li, Lu-lin

    2013-09-01

    This study was performed to investigate the effects of different regions of the Autographa califor nica multiple nucleopolyhedrovirus envelope protein E25 on its trafficking into nucleus and nuclear localization in host cells and on virus replication. Fourteen recombinant bacmids, each containing an e25 mutant with substitution or insertion of egfp, in the absence or presence of the native e25, were constructed and used to transfect Sf9 cells. The E25-EGFP fusion proteins and native E25 expressed in the cells transfect ed with individual recombinant bacmid were traced by autofluorescence from EGFP or by immuno-fluorescence assays. Confocal microscopy revealed that the E25-EGFP fusion protein with the N-domain (2-45aa) of E25 substituted by EGFP only distributed in the cytoplasm in transfected cells; and the fusion protein with EGFP inserted at the laa/2aa site of E25 completely remained outside of the nucleus and resided along the nuclear membrane. The E25-EGFPs with 46-118aa of E25 substituted by EGFP or with EGFP inserted at the 118aa/119aa site were present outside, across from the nuclear membrane or in nuclear plasm in dot-like shapes. The fusion proteins with the C-domain substituted by EGFP or with EGFP inserted at the site of 45/46aa or at the C-terminal formed a condensed ring or spread throughout the nucleus, in a similar manner to the E25 distributed in the cells transfected by the e25-knockout repair bacmid. These results prove that the N-terminal domain is critical for nuclear transportation of E25 and possibly to its position on the cytoplasm membrane as well; and the sequence downstream of the N-terminal domain also affects trafficking and nuclear localization of the protein. In cells transfected with bacmids containing both the native e25 and individual e25-egfp mutants, the E25-EGFP fusion proteins co-localized with E25 individually, showing similar patterns of subcellular localization as E25 mutants in the absence of native E25 in most cases

  19. Accumulation of wildtype and ALS-linked mutated VAPB impairs activity of the proteasome.

    PubMed

    Moumen, Anice; Virard, Isabelle; Raoul, Cédric

    2011-01-01

    Cellular homeostasis relies on a tight control of protein synthesis, folding and degradation, in which the endoplasmic reticulum (ER) quality control and the ubiquitin proteasome system (UPS) have an instrumental function. ER stress and aberrant accumulation of misfolded proteins represent a pathological signature of amyotrophic lateral sclerosis (ALS), a fatal paralytic disorder caused by the selective degeneration of motoneurons in the brain and spinal cord. Mutations in the ER-resident protein VAPB have been associated with familial forms of the disease. ALS-linked mutations cause VAPB to form cytoplasmic aggregates. We previously demonstrated that viral-mediated expression of both wildtype and mutant human VAPB (hVAPB) leads to an ER stress response that contributes to the selective death of motoneurons. However, the mechanisms behind ER stress, defective UPS and hVAPB-associated motoneuron degeneration remain elusive. Here, we show that the overexpression of wildtype and mutated hVAPB, which is found to be less stable than the wildtype protein, leads to the abnormal accumulation of ubiquitin and ubiquitin-like protein conjugates in non-human primate cells. We observed that overexpression of both forms of hVAPB elicited an ER stress response. Treatment of wildtype and mutated hVAPB expressing cells with the ER stress inhibitor salubrinal diminished the burden of ubiquitinated proteins, suggesting that ER stress contributes to the impairment of proteasome function. We also found that both wildtype and mutated hVAPB can associate with the 20S proteasome, which was found to accumulate at the ER with wildtype hVAPB or in mutant hVAPB aggregates. Our results suggest that ER stress and corruption of the proteasome function might contribute to the aberrant protein homeostasis associated with hVAPB.

  20. Persistent Hepatitis C Virus Infection Impairs Ribavirin Antiviral Activity through Clathrin-Mediated Trafficking of Equilibrative Nucleoside Transporter 1

    PubMed Central

    Panigrahi, Rajesh; Chandra, Partha K.; Ferraris, Pauline; Kurt, Ramazan; Song, Kyoungsub; Garry, Robert F.; Reiss, Krzysztof; Coe, Imogen R.; Furihata, Tomomi; Balart, Luis A.; Wu, Tong

    2014-01-01

    ABSTRACT Ribavirin (RBV) continues to be an important component of interferon-free hepatitis C treatment regimens, as RBV alone does not inhibit hepatitis C virus (HCV) replication effectively; the reason for this ineffectiveness has not been established. In this study, we investigated the RBV resistance mechanism using a persistently HCV-infected cell culture system. The antiviral activity of RBV against HCV was progressively impaired in the persistently infected culture, whereas interferon lambda 1 (IFN-λ1), a type III IFN, showed a strong antiviral response and induced viral clearance. We found that HCV replication in persistently infected cultures induces an autophagy response that impairs RBV uptake by preventing the expression of equilibrative nucleoside transporter 1 (ENT1). The Huh-7.5 cell line treated with an autophagy inducer, Torin 1, downregulated membrane expression of ENT1 and terminated RBV uptake. In contrast, the autophagy inhibitors hydroxychloroquine (HCQ), 3-methyladenine (3-MA), and bafilomycin A1 (BafA1) prevented ENT1 degradation and enhanced RBV antiviral activity. The HCV-induced autophagy response, as well as treatment with Torin 1, degrades clathrin heavy chain expression in a hepatoma cell line. Reduced expression of the clathrin heavy chain by HCV prevents ENT1 recycling to the plasma membrane and forces ENT1 to the lysosome for degradation. This study provides a potential mechanism for the impairment of RBV antiviral activity in persistently HCV-infected cell cultures and suggests that inhibition of the HCV-induced autophagy response could be used as a strategy for improving RBV antiviral activity against HCV infection. IMPORTANCE The results from this work will allow a review of the competing theories of antiviral therapy development in the field of HCV virology. Ribavirin (RBV) remains an important component of interferon-free hepatitis C treatment regimens. The reason why RBV alone does not inhibit HCV replication effectively has

  1. Biallelic mutations in CAD, impair de novo pyrimidine biosynthesis and decrease glycosylation precursors

    PubMed Central

    Ng, Bobby G.; Wolfe, Lynne A.; Ichikawa, Mie; Markello, Thomas; He, Miao; Tifft, Cynthia J.; Gahl, William A.; Freeze, Hudson H.

    2015-01-01

    In mitochondria, carbamoyl-phosphate synthetase 1 activity produces carbamoyl phosphate for urea synthesis, and deficiency results in hyperammonemia. Cytoplasmic carbamoyl-phosphate synthetase 2, however, is part of a tri-functional enzyme encoded by CAD; no human disease has been attributed to this gene. The tri-functional enzyme contains carbamoyl-phosphate synthetase 2 (CPS2), aspartate transcarbamylase (ATCase) and dihydroorotase (DHOase) activities, which comprise the first three of six reactions required for de novo pyrimidine biosynthesis. Here we characterize an individual who is compound heterozygous for mutations in different domains of CAD. One mutation, c.1843-1G>A, results in an in-frame deletion of exon 13. The other, c.6071G>A, causes a missense mutation (p.Arg2024Gln) in a highly conserved residue that is essential for carbamoyl-phosphate binding. Metabolic flux studies showed impaired aspartate incorporation into RNA and DNA through the de novo synthesis pathway. In addition, CTP, UTP and nearly all UDP-activated sugars that serve as donors for glycosylation were decreased. Uridine supplementation rescued these abnormalities, suggesting a potential therapy for this new glycosylation disorder. PMID:25678555

  2. Retinitis Pigmentosa Mutations in Bad Response to Refrigeration 2 (Brr2) Impair ATPase and Helicase Activity.

    PubMed

    Ledoux, Sarah; Guthrie, Christine

    2016-06-01

    Brr2 is an RNA-dependent ATPase required to unwind the U4/U6 snRNA duplex during spliceosome assembly. Mutations within the ratchet helix of the Brr2 RNA binding channel result in a form of degenerative human blindness known as retinitis pigmentosa (RP). The biochemical consequences of these mutations on Brr2's RNA binding, helicase, and ATPase activity have not yet been characterized. Therefore, we identified the largest construct of Brr2 that is soluble in vitro, which truncates the first 247 amino acids of the N terminus (Δ247-Brr2), to characterize the effects of the RP mutations on Brr2 activity. The Δ247-Brr2 RP mutants exhibit a gradient of severity of weakened RNA binding, reduced helicase activity, and reduced ATPase activity compared with wild type Δ247-Brr2. The globular C-terminal Jab1/Mpn1-like domain of Prp8 increases the ability of Δ247-Brr2 to bind the U4/U6 snRNA duplex at high pH and increases Δ247-Brr2's RNA-dependent ATPase activity and the extent of RNA unwinding. However, this domain of Prp8 does not differentially affect the Δ247-Brr2 RP mutants compared with the wild type Δ247-Brr2. When stimulated by Prp8, wild type Δ247-Brr2 is able to unwind long stable duplexes in vitro, and even the RP mutants capable of binding RNA with tight affinity are incapable of fully unwinding short duplex RNAs. Our data suggest that the RP mutations within the ratchet helix impair Brr2 translocation through RNA helices. PMID:27072132

  3. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway

    PubMed Central

    Hermkens, Dorien; Wlodarski, Marcin W.; Da Costa, Lydie; MacInnes, Alyson W.

    2015-01-01

    Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. PMID:26132763

  4. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking.

    PubMed

    Nakamura, Tsutomu; Arima-Yoshida, Fumiko; Sakaue, Fumika; Nasu-Nishimura, Yukiko; Takeda, Yasuko; Matsuura, Ken; Akshoomoff, Natacha; Mattson, Sarah N; Grossfeld, Paul D; Manabe, Toshiya; Akiyama, Tetsu

    2016-01-01

    Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients. PMID:26979507

  5. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking.

    PubMed

    Nakamura, Tsutomu; Arima-Yoshida, Fumiko; Sakaue, Fumika; Nasu-Nishimura, Yukiko; Takeda, Yasuko; Matsuura, Ken; Akshoomoff, Natacha; Mattson, Sarah N; Grossfeld, Paul D; Manabe, Toshiya; Akiyama, Tetsu

    2016-01-01

    Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients.

  6. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking

    PubMed Central

    Nakamura, Tsutomu; Arima-Yoshida, Fumiko; Sakaue, Fumika; Nasu-Nishimura, Yukiko; Takeda, Yasuko; Matsuura, Ken; Akshoomoff, Natacha; Mattson, Sarah N.; Grossfeld, Paul D.; Manabe, Toshiya; Akiyama, Tetsu

    2016-01-01

    Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients. PMID:26979507

  7. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations*

    PubMed Central

    Halwani, Rabih; Ma, Cindy S.; Wong, Natalie; Soudais, Claire; Henderson, Lauren A.; Marzouqa, Hiyam; Shamma, Jamal; Gonzalez, Marcela; Martinez-Barricarte, Rubén; Okada, Chizuru; Avery, Danielle T.; Latorre, Daniela; Deswarte, Caroline; Jabot-Hanin, Fabienne; Torrado, Egidio; Fountain, Jeffrey; Belkadi, Aziz; Itan, Yuval; Boisson, Bertrand; Migaud, Mélanie; Arlehamn, Cecilia S. Lindestam; Sette, Alessandro; Breton, Sylvain; McCluskey, James; Rossjohn, Jamie; de Villartay, Jean-Pierre; Moshous, Despina; Hambleton, Sophie; Latour, Sylvain; Arkwright, Peter D.; Picard, Capucine; Lantz, Olivier; Engelhard, Dan; Kobayashi, Masao; Abel, Laurent; Casanova, Jean-Laurent

    2015-01-01

    Human inborn errors of immunity mediated by the cytokines interleukin (IL)-17A/F underlie mucocutaneous candidiasis, whereas inborn errors of interferon (IFN)-γ immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORγ and RORγT isoforms resulted in the absence of IL-17A/F-producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORγ- and RORγT-deficient individuals also displayed an impaired IFN-γ response to Mycobacterium. This principally reflected profoundly defective IFN-γ production by circulating γδ T cells and CD4+CCR6+ CXCR3+ αβ T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORγ, or RORγT, or both. PMID:26160376

  8. Munc18-1 mutations that strongly impair SNARE-complex binding support normal synaptic transmission

    PubMed Central

    Meijer, Marieke; Burkhardt, Pawel; de Wit, Heidi; Toonen, Ruud F; Fasshauer, Dirk; Verhage, Matthijs

    2012-01-01

    Synaptic transmission depends critically on the Sec1p/Munc18 protein Munc18-1, but it is unclear whether Munc18-1 primarily operates as a integral part of the fusion machinery or has a more upstream role in fusion complex assembly. Here, we show that point mutations in Munc18-1 that interfere with binding to the free Syntaxin1a N-terminus and strongly impair binding to assembled SNARE complexes all support normal docking, priming and fusion of synaptic vesicles, and normal synaptic plasticity in munc18-1 null mutant neurons. These data support a prevailing role of Munc18-1 before/during SNARE-complex assembly, while its continued association to assembled SNARE complexes is dispensable for synaptic transmission. PMID:22446389

  9. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function.

    PubMed

    Leupin, Olivier; Piters, Elke; Halleux, Christine; Hu, Shouih; Kramer, Ina; Morvan, Frederic; Bouwmeester, Tewis; Schirle, Markus; Bueno-Lozano, Manuel; Fuentes, Feliciano J Ramos; Itin, Peter H; Boudin, Eveline; de Freitas, Fenna; Jennes, Karen; Brannetti, Barbara; Charara, Nadine; Ebersbach, Hilmar; Geisse, Sabine; Lu, Chris X; Bauer, Andreas; Van Hul, Wim; Kneissel, Michaela

    2011-06-01

    Humans lacking sclerostin display progressive bone overgrowth due to increased bone formation. Although it is well established that sclerostin is an osteocyte-secreted bone formation inhibitor, the underlying molecular mechanisms are not fully elucidated. We identified in tandem affinity purification proteomics screens LRP4 (low density lipoprotein-related protein 4) as a sclerostin interaction partner. Biochemical assays with recombinant proteins confirmed that sclerostin LRP4 interaction is direct. Interestingly, in vitro overexpression and RNAi-mediated knockdown experiments revealed that LRP4 specifically facilitates the previously described inhibitory action of sclerostin on Wnt1/β-catenin signaling. We found the extracellular β-propeller structured domain of LRP4 to be required for this sclerostin facilitator activity. Immunohistochemistry demonstrated that LRP4 protein is present in human and rodent osteoblasts and osteocytes, both presumed target cells of sclerostin action. Silencing of LRP4 by lentivirus-mediated shRNA delivery blocked sclerostin inhibitory action on in vitro bone mineralization. Notably, we identified two mutations in LRP4 (R1170W and W1186S) in patients suffering from bone overgrowth. We found that these mutations impair LRP4 interaction with sclerostin and its concomitant sclerostin facilitator effect. Together these data indicate that the interaction of sclerostin with LRP4 is required to mediate the inhibitory function of sclerostin on bone formation, thus identifying a novel role for LRP4 in bone.

  10. GIGYF2 mutation in late-onset Parkinson’s disease with cognitive impairment

    PubMed Central

    Ruiz-Martinez, Javier; Krebs, Catharine E.; Makarov, Vladimir; Gorostidi, Ana; Martí-Massó, Jose Félix; Paisán-Ruiz, Coro

    2015-01-01

    Although in the last two decades there has been considerable progress in understanding the genetic basis of Parkinson’s disease (PD), the majority of PD is sporadic and its genetic causes are largely unknown. In an attempt to identify novel genetic causes of PD, whole exome sequencing and subsequent analyses were performed in a family featuring late-onset PD with cognitive impairment. A novel genetic variant (p.Arg610Gly) in the GIGYF2 gene, previously known to be associated with PD, was identified as potential disease-causing mutation. The GIGYF2 p.Arg610Gly mutation situated in the GYF domain of the encoding protein was predicted to be pathogenic and to disrupt the GYF’s ligand–binding abilities. While further research is still required, this finding may shed light on the GIGYF2-associated mechanisms that lead to PD and suggests insulin dysregulation as a disease-specific mechanism for both PD and cognitive dysfunction. PMID:26134514

  11. Identification of a Point Mutation Impairing the Binding between Aquaporin-4 and Neuromyelitis Optica Autoantibodies*

    PubMed Central

    Pisani, Francesco; Mola, Maria Grazia; Simone, Laura; Rosito, Stefania; Alberga, Domenico; Mangiatordi, Giuseppe Felice; Lattanzi, Gianluca; Nicolotti, Orazio; Frigeri, Antonio; Svelto, Maria; Nicchia, Grazia Paola

    2014-01-01

    Neuromyelitis optica (NMO) is characterized by the presence of pathogenic autoantibodies (NMO-IgGs) against supra-molecular assemblies of aquaporin-4 (AQP4), known as orthogonal array of particles (OAPs). NMO-IgGs have a polyclonal origin and recognize different conformational epitopes involving extracellular AQP4 loops A, C, and E. Here we hypothesize a pivotal role for AQP4 transmembrane regions (TMs) in epitope assembly. On the basis of multialignment analysis, mutagenesis, NMO-IgG binding, and cytotoxicity assay, we have disclosed the key role of aspartate 69 (Asp69) of TM2 for NMO-IgG epitope assembly. Mutation of Asp69 to histidine severely impairs NMO-IgG binding for 85.7% of the NMO patient sera analyzed here. Although Blue Native-PAGE, total internal reflection fluorescence microscopy, and water transport assays indicate that the OAP Asp69 mutant is similar in structure and function to the wild type, molecular dynamic simulations have revealed that the D69H mutation has the effect of altering the structural rearrangements of extracellular loop A. In conclusion, Asp69 is crucial for the spatial control of loop A, the particular molecular conformation of which enables the assembly of NMO-IgG epitopes. These findings provide additional clues for new strategies for NMO treatment and a wealth of information to better approach NMO pathogenesis. PMID:25239624

  12. A mutation in polynucleotide phosphorylase from Escherichia coli impairing RNA binding and degradosome stability

    PubMed Central

    Regonesi, Maria Elena; Briani, Federica; Ghetta, Andrea; Zangrossi, Sandro; Ghisotti, Daniela; Tortora, Paolo; Dehò, Gianni

    2004-01-01

    Polynucleotide phosphorylase (PNPase), a 3′ to 5′ exonuclease encoded by pnp, plays a key role in Escherichia coli RNA decay. The enzyme, made of three identical 711 amino acid subunits, may also be assembled in the RNA degradosome, a heteromultimeric complex involved in RNA degradation. PNPase autogenously regulates its expression by promoting the decay of pnp mRNA, supposedly by binding at the 5′-untranslated leader region of an RNase III-processed form of this transcript. The KH and S1 RNA-binding domains at the C-terminus of the protein (amino acids 552–711) are thought to be involved in pnp mRNA recognition. Here we show that a G454D substitution in E.coli PNPase impairs autogenous regulation whereas it does not affect the catalytic activities of the enzyme. Although the mutation maps outside of the KH and S1 RNA-binding domains, analysis of the mutant protein revealed a defective RNA binding, thus suggesting that other determinants may be involved in PNPase–RNA interactions. The mutation also caused a looser association with the degradosome and an abnormal electrophoretic mobility in native gels. The latter feature suggests an altered structural conformation of PNPase, which may account for the properties of the mutant protein. PMID:14963263

  13. Mutations in Ralstonia solanacearum loci involved in lipopolysaccharide biogenesis, phospholipid trafficking and peptidoglycan recycling render bacteriophage infection.

    PubMed

    Hong, Yu-Hau; Huang, Chi; Wang, Kuan-Chung; Chu, Tai-Hsiang; Li, Chien-Hui; Chu, Yu-Ju; Cheng, Chiu-Ping

    2014-09-01

    Ralstonia solanacearum causes deadly wilting on many crops worldwide. However, the information on its components important for cell integrity and interactions with phages is limited. By systematically characterizing mutants resistant to a T7-like phage, we showed that the biosynthesis of rough lipopolysaccharides (R-LPS) was crucial for maintaining the membrane integrity, while the production of smooth LPS (S-LPS) was required for the resistance to polymyxin B and phage adsorption. Furthermore, RSc0154/ampG disruption did not affect LPS production and phage adsorption but may have caused aberrant release of peptidoglycan fragments, thus hindering phage DNA injection into or virion release from the cell. Mutations in the RSc2958-RSc2962/mla cluster, although not affecting LPS production, may have caused elevated phospholipid level in the outer leaflet of the outer membrane, consequently sheltering the mutants from phage adsorption on the O-antigen. These results specify important roles of the biogenesis and homeogenesis of envelope components for R. solanacearum-phage interaction.

  14. Gain-of-Function Mutations in RARB Cause Intellectual Disability with Progressive Motor Impairment.

    PubMed

    Srour, Myriam; Caron, Véronique; Pearson, Toni; Nielsen, Sarah B; Lévesque, Sébastien; Delrue, Marie-Ange; Becker, Troy A; Hamdan, Fadi F; Kibar, Zoha; Sattler, Shannon G; Schneider, Michael C; Bitoun, Pierre; Chassaing, Nicolas; Rosenfeld, Jill A; Xia, Fan; Desai, Sonal; Roeder, Elizabeth; Kimonis, Virginia; Schneider, Adele; Littlejohn, Rebecca Okashah; Douzgou, Sofia; Tremblay, André; Michaud, Jacques L

    2016-08-01

    Retinoic acid (RA) signaling plays a key role in the development and function of several systems in mammals. We previously discovered that the de novo mutations c.1159C>T (p.Arg387Cys) and c.1159C>A (p.Arg387Ser) in the RA Receptor Beta (RARB) gene cause microphthalmia and diaphragmatic hernia. However, the natural history of affected subjects beyond the prenatal or neonatal period was unknown. Here, we describe nine additional subjects with microphthalmia who have de novo mutations in RARB, including the previously described p.Arg387Cys as well as the novel c.887G>C (p.Gly296Ala) and c.638T>C (p.Leu213Pro). Moreover, we review the information on four previously reported cases. All subjects who survived the neonatal period (n = 10) displayed severe global developmental delay with progressive motor impairment due to spasticity and/or dystonia (with or without chorea). The majority of subjects also showed Chiari type I malformation and severe feeding difficulties. We previously found that p.Arg387Cys and p.Arg387Ser induce a gain-of-function. We show here that the p.Gly296Ala and p.Leu213Pro RARB mutations further promote the RA ligand-induced transcriptional activity by twofold to threefold over the wild-type receptor, also indicating a gain-of-function mechanism. These observations suggest that precise regulation of RA signaling is required for brain development and/or function in humans. PMID:27120018

  15. Plant vacuolar trafficking occurs through distinctly regulated pathways.

    PubMed

    Ebine, Kazuo; Inoue, Takeshi; Ito, Jun; Ito, Emi; Uemura, Tomohiro; Goh, Tatsuaki; Abe, Hiroshi; Sato, Ken; Nakano, Akihiko; Ueda, Takashi

    2014-06-16

    The multifunctional vacuole is the largest organelle in plant cells, and many proteins are transported to and stored in this organelle; thus, the vacuole has great physiological and agronomical importance. However, the molecular mechanism and regulation of plant vacuolar traffic remain largely unknown. In this study, we demonstrate that multiple vacuolar trafficking pathways operate in plants. RAB5 and RAB7 are evolutionarily conserved subfamilies of Rab GTPase, whose animal and yeast counterparts regulate vacuolar/endosomal trafficking in a sequential manner. Functional analyses of a putative activating complex for RAB7 indicated that this complex is responsible for maturation from RAB5- to RAB7-positive endosomes in plant cells. Moreover, these machinery components are recruited to a more complex trafficking network. Mutations in RAB5 and RAB7 conferred counteracting effects on the vti11 mutant. Furthermore, impairment of RAB5- and RAB7-dependent pathways differentially affected the transport of distinctive cargos. These results indicate that plants have developed a complex vacuolar transport system distinct from that of nonplant systems by assigning evolutionarily conserved machinery to unique trafficking pathways. These pathways provide a fundamental basis for plant development at the cellular and higher-ordered levels.

  16. A novel biallelic splice site mutation of TECTA causes moderate to severe hearing impairment in an Algerian family.

    PubMed

    Behlouli, Asma; Bonnet, Crystel; Abdi, Samia; Hasbellaoui, Mokhtar; Boudjenah, Farid; Hardelin, Jean-Pierre; Louha, Malek; Makrelouf, Mohamed; Ammar-Khodja, Fatima; Zenati, Akila; Petit, Christine

    2016-08-01

    Congenital deafness is certainly one of the most common monogenic diseases in humans, but it is also one of the most genetically heterogeneous, which makes molecular diagnosis challenging in most cases. Whole-exome sequencing in two out of three Algerian siblings affected by recessively-inherited, moderate to severe sensorineural deafness allowed us to identify a novel splice donor site mutation (c.5272+1G > A) in the gene encoding α-tectorin, a major component of the cochlear tectorial membrane. The mutation was present at the homozygous state in the three affected siblings, and at the heterozygous state in their unaffected, consanguineous parents. To our knowledge, this is the first reported TECTA mutation leading to the DFNB21 form of hearing impairment among Maghrebian individuals suffering from congenital hearing impairment, which further illustrates the diversity of the genes involved in congenital deafness in the Maghreb. PMID:27368438

  17. A novel biallelic splice site mutation of TECTA causes moderate to severe hearing impairment in an Algerian family.

    PubMed

    Behlouli, Asma; Bonnet, Crystel; Abdi, Samia; Hasbellaoui, Mokhtar; Boudjenah, Farid; Hardelin, Jean-Pierre; Louha, Malek; Makrelouf, Mohamed; Ammar-Khodja, Fatima; Zenati, Akila; Petit, Christine

    2016-08-01

    Congenital deafness is certainly one of the most common monogenic diseases in humans, but it is also one of the most genetically heterogeneous, which makes molecular diagnosis challenging in most cases. Whole-exome sequencing in two out of three Algerian siblings affected by recessively-inherited, moderate to severe sensorineural deafness allowed us to identify a novel splice donor site mutation (c.5272+1G > A) in the gene encoding α-tectorin, a major component of the cochlear tectorial membrane. The mutation was present at the homozygous state in the three affected siblings, and at the heterozygous state in their unaffected, consanguineous parents. To our knowledge, this is the first reported TECTA mutation leading to the DFNB21 form of hearing impairment among Maghrebian individuals suffering from congenital hearing impairment, which further illustrates the diversity of the genes involved in congenital deafness in the Maghreb.

  18. Mutations Affecting the SAND Domain of DEAF1 Cause Intellectual Disability with Severe Speech Impairment and Behavioral Problems

    PubMed Central

    Vulto-van Silfhout, Anneke T.; Rajamanickam, Shivakumar; Jensik, Philip J.; Vergult, Sarah; de Rocker, Nina; Newhall, Kathryn J.; Raghavan, Ramya; Reardon, Sara N.; Jarrett, Kelsey; McIntyre, Tara; Bulinski, Joseph; Ownby, Stacy L.; Huggenvik, Jodi I.; McKnight, G. Stanley; Rose, Gregory M.; Cai, Xiang; Willaert, Andy; Zweier, Christiane; Endele, Sabine; de Ligt, Joep; van Bon, Bregje W.M.; Lugtenberg, Dorien; de Vries, Petra F.; Veltman, Joris A.; van Bokhoven, Hans; Brunner, Han G.; Rauch, Anita; de Brouwer, Arjan P.M.; Carvill, Gemma L.; Hoischen, Alexander; Mefford, Heather C.; Eichler, Evan E.; Vissers, Lisenka E.L.M.; Menten, Björn; Collard, Michael W.; de Vries, Bert B.A.

    2014-01-01

    Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1. PMID:24726472

  19. Secretion-Positive LGI1 Mutations Linked to Lateral Temporal Epilepsy Impair Binding to ADAM22 and ADAM23 Receptors

    PubMed Central

    Dazzo, Emanuela; Belluzzi, Elisa; Malacrida, Sandro; Vitiello, Libero; Greggio, Elisa; Tosatto, Silvio C. E.

    2016-01-01

    Autosomal dominant lateral temporal epilepsy (ADTLE) is a focal epilepsy syndrome caused by mutations in the LGI1 gene, which encodes a secreted protein. Most ADLTE-causing mutations inhibit LGI1 protein secretion, and only a few secretion-positive missense mutations have been reported. Here we describe the effects of four disease-causing nonsynonymous LGI1 mutations, T380A, R407C, S473L, and R474Q, on protein secretion and extracellular interactions. Expression of LGI1 mutant proteins in cultured cells shows that these mutations do not inhibit protein secretion. This finding likely results from the lack of effects of these mutations on LGI1 protein folding, as suggested by 3D protein modelling. In addition, immunofluorescence and co-immunoprecipitation experiments reveal that all four mutations significantly impair interaction of LGI1 with the ADAM22 and ADAM23 receptors on the cell surface. These results support the existence of a second mechanism, alternative to inhibition of protein secretion, by which ADLTE-causing LGI1 mutations exert their loss-of-function effect extracellularly, and suggest that interactions of LGI1 with both ADAM22 and ADAM23 play an important role in the molecular mechanisms leading to ADLTE. PMID:27760137

  20. RUNX2 Mutation Impairs 1α,25-Dihydroxyvitamin D3 mediated Osteoclastogenesis in Dental Follicle Cells.

    PubMed

    Wang, X Z; Sun, X Y; Zhang, C Y; Yang, X; Yan, W J; Ge, L H; Zheng, S G

    2016-01-01

    Cleidocranial dysplasia (CCD), a skeletal disorder characterized by delayed permanent tooth eruption and other dental abnormalities, is caused by heterozygous RUNX2 mutations. As an osteoblast-specific transcription factor, RUNX2 plays a role in bone remodeling, tooth formation and tooth eruption. To investigate the crosstalk between RUNX2 and 1α,25-dihydroxyvitamin D3 (1α,25-(OH)2D3) in human dental follicle cells (hDFCs) during osteoclast formation, we established a co-culture system of hDFCs from CCD patient and healthy donors with peripheral blood mononuclear cells (PBMCs). Expression of the osteoclast-associated genes and the number of TRAP(+) cells were reduced in CCD hDFCs, indicating its suppressed osteoclast-inductive ability, which was reflected by the downregulated RANKL/OPG ratio. In addition, 1α,25-(OH)2D3-stimulation elevated the expression of osteoclast-related genes, as well as RANKL mRNA levels and RANKL/OPG ratios in control hDFCs. Conversely, RUNX2 mutation abolished this 1α,25-(OH)2D3-induced RANKL gene activation and osteoclast formation in CCD hDFCs. Therefore, RUNX2 haploinsufficiency impairs dental follicle-induced osteoclast formation capacity through RANKL/OPG signaling, which may be partially responsible for delayed permanent tooth eruption in CCD patients. Furthermore, this abnormality was not rescued by 1α,25-(OH)2D3 application because 1α,25-(OH)2D3-induced RANKL activation in hDFCs is mediated principally via the RUNX2-dependent pathway. PMID:27068678

  1. Association between idiopathic hearing loss and mitochondrial DNA mutations: A study on 169 hearing-impaired subjects

    PubMed Central

    GUARAN, VALERIA; ASTOLFI, LAURA; CASTIGLIONE, ALESSANDRO; SIMONI, EDI; OLIVETTO, ELENA; GALASSO, MARCO; TREVISI, PATRIZIA; BUSI, MICOL; VOLINIA, STEFANO; MARTINI, ALESSANDRO

    2013-01-01

    Mutations in mitochondrial DNA (mtDNA) have been shown to be an important cause of sensorineural hearing loss (SNHL). In this study, we performed a clinical and genetic analysis of 169 hearing-impaired patients and some of their relatives suffering from idiopathic SNHL, both familial and sporadic. The analysis of four fragments of their mtDNA identified several polymorphisms, the well known pathogenic mutation, A1555G, and some novel mutations in different genes, implying changes in the aminoacidic sequence. A novel sporadic mutation in 12S rRNA (MT-RNR1), not previously reported in the literature, was found in a case of possible aminoglycoside-induced progressive deafness. PMID:23969527

  2. Homeostatic regulation of T cell trafficking by a B cell-derived peptide is impaired in autoimmune and chronic inflammatory disease.

    PubMed

    Chimen, Myriam; McGettrick, Helen M; Apta, Bonita; Kuravi, Sahithi J; Yates, Clara M; Kennedy, Amy; Odedra, Arjun; Alassiri, Mohammed; Harrison, Matthew; Martin, Ashley; Barone, Francesca; Nayar, Saba; Hitchcock, Jessica R; Cunningham, Adam F; Raza, Karim; Filer, Andrew; Copland, David A; Dick, Andrew D; Robinson, Joseph; Kalia, Neena; Walker, Lucy S K; Buckley, Christopher D; Nash, Gerard B; Narendran, Parth; Rainger, G Ed

    2015-05-01

    During an inflammatory response, lymphocyte recruitment into tissue must be tightly controlled because dysregulated trafficking contributes to the pathogenesis of chronic disease. Here we show that during inflammation and in response to adiponectin, B cells tonically inhibit T cell trafficking by secreting a peptide (PEPITEM) proteolytically derived from 14.3.3 zeta delta (14.3.3.ζδ) protein. PEPITEM binds cadherin-15 on endothelial cells, promoting synthesis and release of sphingosine-1 phosphate, which inhibits trafficking of T cells without affecting recruitment of other leukocytes. Expression of adiponectin receptors on B cells and adiponectin-induced PEPITEM secretion wanes with age, implying immune senescence of the pathway. Additionally, these changes are evident in individuals with type 1 diabetes or rheumatoid arthritis, and circulating PEPITEM in patient serum is reduced compared to that of healthy age-matched donors. In both diseases, tonic inhibition of T cell trafficking across inflamed endothelium is lost. Control of patient T cell trafficking is re-established by treatment with exogenous PEPITEM. Moreover, in animal models of peritonitis, hepatic ischemia-reperfusion injury, Salmonella infection, uveitis and Sjögren's syndrome, PEPITEM reduced T cell recruitment into inflamed tissues. PMID:25894827

  3. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments

    PubMed Central

    Leblond, Claire S.; Nava, Caroline; Polge, Anne; Gauthier, Julie; Huguet, Guillaume; Lumbroso, Serge; Giuliano, Fabienne; Stordeur, Coline; Depienne, Christel; Mouzat, Kevin; Pinto, Dalila; Howe, Jennifer; Lemière, Nathalie; Durand, Christelle M.; Guibert, Jessica; Ey, Elodie; Toro, Roberto; Peyre, Hugo; Mathieu, Alexandre; Amsellem, Frédérique; Rastam, Maria; Gillberg, I. Carina; Rappold, Gudrun A.; Holt, Richard; Monaco, Anthony P.; Maestrini, Elena; Galan, Pilar; Heron, Delphine; Jacquette, Aurélia; Afenjar, Alexandra; Rastetter, Agnès; Brice, Alexis; Devillard, Françoise; Assouline, Brigitte; Laffargue, Fanny; Lespinasse, James; Chiesa, Jean; Rivier, François; Bonneau, Dominique; Regnault, Beatrice; Zelenika, Diana; Delepine, Marc; Lathrop, Mark; Sanlaville, Damien; Schluth-Bolard, Caroline; Edery, Patrick; Perrin, Laurence; Tabet, Anne Claude; Schmeisser, Michael J.; Boeckers, Tobias M.; Coleman, Mary; Sato, Daisuke; Szatmari, Peter; Scherer, Stephen W.; Rouleau, Guy A.; Betancur, Catalina; Leboyer, Marion; Gillberg, Christopher

    2014-01-01

    SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability—more than 1 in 50—warrant its consideration for mutation screening in clinical practice. PMID:25188300

  4. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: a gradient of severity in cognitive impairments.

    PubMed

    Leblond, Claire S; Nava, Caroline; Polge, Anne; Gauthier, Julie; Huguet, Guillaume; Lumbroso, Serge; Giuliano, Fabienne; Stordeur, Coline; Depienne, Christel; Mouzat, Kevin; Pinto, Dalila; Howe, Jennifer; Lemière, Nathalie; Durand, Christelle M; Guibert, Jessica; Ey, Elodie; Toro, Roberto; Peyre, Hugo; Mathieu, Alexandre; Amsellem, Frédérique; Rastam, Maria; Gillberg, I Carina; Rappold, Gudrun A; Holt, Richard; Monaco, Anthony P; Maestrini, Elena; Galan, Pilar; Heron, Delphine; Jacquette, Aurélia; Afenjar, Alexandra; Rastetter, Agnès; Brice, Alexis; Devillard, Françoise; Assouline, Brigitte; Laffargue, Fanny; Lespinasse, James; Chiesa, Jean; Rivier, François; Bonneau, Dominique; Regnault, Beatrice; Zelenika, Diana; Delepine, Marc; Lathrop, Mark; Sanlaville, Damien; Schluth-Bolard, Caroline; Edery, Patrick; Perrin, Laurence; Tabet, Anne Claude; Schmeisser, Michael J; Boeckers, Tobias M; Coleman, Mary; Sato, Daisuke; Szatmari, Peter; Scherer, Stephen W; Rouleau, Guy A; Betancur, Catalina; Leboyer, Marion; Gillberg, Christopher; Delorme, Richard; Bourgeron, Thomas

    2014-09-01

    SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice.

  5. Regulation of polycystin-1 ciliary trafficking by motifs at its C-terminus and polycystin-2 but not by cleavage at the GPS site.

    PubMed

    Su, Xuefeng; Wu, Maoqing; Yao, Gang; El-Jouni, Wassim; Luo, Chong; Tabari, Azadeh; Zhou, Jing

    2015-11-15

    Failure to localize membrane proteins to the primary cilium causes a group of diseases collectively named ciliopathies. Polycystin-1 (PC1, also known as PKD1) is a large ciliary membrane protein defective in autosomal dominant polycystic kidney disease (ADPKD). Here, we developed a large set of PC1 expression constructs and identified multiple sequences, including a coiled-coil motif in the C-terminal tail of PC1, regulating full-length PC1 trafficking to the primary cilium. Ciliary trafficking of wild-type and mutant PC1 depends on the dose of polycystin-2 (PC2, also known as PKD2), and the formation of a PC1-PC2 complex. Modulation of the ciliary trafficking module mediated by the VxP ciliary-targeting sequence and Arf4 and Asap1 does not affect the ciliary localization of full-length PC1. PC1 also promotes PC2 ciliary trafficking. PC2 mutations truncating its C-terminal tail but not those changing the VxP sequence to AxA or impairing the pore of the channel, leading to a dead channel, affect PC1 ciliary trafficking. Cleavage at the GPCR proteolytic site (GPS) of PC1 is not required for PC1 trafficking to cilia. We propose a mutually dependent model for the ciliary trafficking of PC1 and PC2, and that PC1 ciliary trafficking is regulated by multiple cis-acting elements. As all pathogenic PC1 mutations tested here are defective in ciliary trafficking, ciliary trafficking might serve as a functional read-out for ADPKD.

  6. Registered report: IDH mutation impairs histone demethylation and results in a block to cell differentiation

    PubMed Central

    Richarson, Adam D; Scott, David A; Zagnitko, Olga; Aza-Blanc, Pedro; Chang, Chih-Cheng; Russler-Germain, David A

    2016-01-01

    The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered Report describes the proposed replication plan of key experiments from “IDH mutation impairs histone demethylation and results in a block to cell differentiation” by Lu and colleagues, published in Nature in 2012 (Lu et al., 2012). The experiments that will be replicated are those reported in Figures 1B, 2A, 2B, 2D and 4D. Lu and colleagues demonstrated that expression of mutant forms of IDH1 or IDH2 caused global increases in histone methylation and increased levels of 2 hydroxyglutarate (Figure 1B). This was correlated with a block in differentiation (Figures 2A, B and D). This effect appeared to be mediated by the histone demethylase KDM4C (Figure 4D). The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Scienceand Science Exchange, and the results of the replications will be published by eLife. DOI: http://dx.doi.org/10.7554/eLife.10860.001 PMID:26971564

  7. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations.

    PubMed

    Okada, Satoshi; Markle, Janet G; Deenick, Elissa K; Mele, Federico; Averbuch, Dina; Lagos, Macarena; Alzahrani, Mohammed; Al-Muhsen, Saleh; Halwani, Rabih; Ma, Cindy S; Wong, Natalie; Soudais, Claire; Henderson, Lauren A; Marzouqa, Hiyam; Shamma, Jamal; Gonzalez, Marcela; Martinez-Barricarte, Rubén; Okada, Chizuru; Avery, Danielle T; Latorre, Daniela; Deswarte, Caroline; Jabot-Hanin, Fabienne; Torrado, Egidio; Fountain, Jeffrey; Belkadi, Aziz; Itan, Yuval; Boisson, Bertrand; Migaud, Mélanie; Arlehamn, Cecilia S Lindestam; Sette, Alessandro; Breton, Sylvain; McCluskey, James; Rossjohn, Jamie; de Villartay, Jean-Pierre; Moshous, Despina; Hambleton, Sophie; Latour, Sylvain; Arkwright, Peter D; Picard, Capucine; Lantz, Olivier; Engelhard, Dan; Kobayashi, Masao; Abel, Laurent; Cooper, Andrea M; Notarangelo, Luigi D; Boisson-Dupuis, Stéphanie; Puel, Anne; Sallusto, Federica; Bustamante, Jacinta; Tangye, Stuart G; Casanova, Jean-Laurent

    2015-08-01

    Human inborn errors of immunity mediated by the cytokines interleukin-17A and interleukin-17F (IL-17A/F) underlie mucocutaneous candidiasis, whereas inborn errors of interferon-γ (IFN-γ) immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORγ and RORγT isoforms resulted in the absence of IL-17A/F-producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORγ- and RORγT-deficient individuals also displayed an impaired IFN-γ response to Mycobacterium. This principally reflected profoundly defective IFN-γ production by circulating γδ T cells and CD4(+)CCR6(+)CXCR3(+) αβ T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORγ, RORγT, or both.

  8. Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation.

    PubMed

    Gerlai, R; McNamara, A; Choi-Lundberg, D L; Armanini, M; Ross, J; Powell-Braxton, L; Phillips, H S

    2001-10-01

    Exogenous glial cell line-derived neurotrophic factor (GDNF) exhibits potent survival-promoting effects on dopaminergic neurons of the nigrostriatal pathway that is implicated in Parkinson's disease and also protects neurons in forebrain ischemia of animal models. However, a role for endogenous GDNF in brain function has not been established. Although mice homozygous for a targeted deletion of the GDNF gene have been generated, these mice die within hours of birth because of deficits in kidney morphogenesis, and, thus, the effect of the absence of GDNF on brain function could not be studied. Herein, we sought to determine whether adult mice, heterozygous for a GDNF mutation on two different genetic backgrounds, demonstrate alterations in the nigrostriatal dopaminergic system or in cognitive function. While both neurochemical and behavioural measures suggested that reduction of GDNF gene expression in the mutant mice does not alter the nigrostriatal dopaminergic system, it led to a significant and selective impairment of performance in the spatial version of the Morris water maze. A standard panel of blood chemistry tests and basic pathological analyses did not reveal alterations in the mutants that could account for the observed performance deficit. These results suggest that endogenous GDNF may not be critical for the development and functioning of the nigrostriatal dopaminergic system but it plays an important role in cognitive abilities. PMID:11683907

  9. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations.

    PubMed

    Okada, Satoshi; Markle, Janet G; Deenick, Elissa K; Mele, Federico; Averbuch, Dina; Lagos, Macarena; Alzahrani, Mohammed; Al-Muhsen, Saleh; Halwani, Rabih; Ma, Cindy S; Wong, Natalie; Soudais, Claire; Henderson, Lauren A; Marzouqa, Hiyam; Shamma, Jamal; Gonzalez, Marcela; Martinez-Barricarte, Rubén; Okada, Chizuru; Avery, Danielle T; Latorre, Daniela; Deswarte, Caroline; Jabot-Hanin, Fabienne; Torrado, Egidio; Fountain, Jeffrey; Belkadi, Aziz; Itan, Yuval; Boisson, Bertrand; Migaud, Mélanie; Arlehamn, Cecilia S Lindestam; Sette, Alessandro; Breton, Sylvain; McCluskey, James; Rossjohn, Jamie; de Villartay, Jean-Pierre; Moshous, Despina; Hambleton, Sophie; Latour, Sylvain; Arkwright, Peter D; Picard, Capucine; Lantz, Olivier; Engelhard, Dan; Kobayashi, Masao; Abel, Laurent; Cooper, Andrea M; Notarangelo, Luigi D; Boisson-Dupuis, Stéphanie; Puel, Anne; Sallusto, Federica; Bustamante, Jacinta; Tangye, Stuart G; Casanova, Jean-Laurent

    2015-08-01

    Human inborn errors of immunity mediated by the cytokines interleukin-17A and interleukin-17F (IL-17A/F) underlie mucocutaneous candidiasis, whereas inborn errors of interferon-γ (IFN-γ) immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORγ and RORγT isoforms resulted in the absence of IL-17A/F-producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORγ- and RORγT-deficient individuals also displayed an impaired IFN-γ response to Mycobacterium. This principally reflected profoundly defective IFN-γ production by circulating γδ T cells and CD4(+)CCR6(+)CXCR3(+) αβ T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORγ, RORγT, or both. PMID:26160376

  10. Functional analysis of human CNGA3 mutations associated with colour blindness suggests impaired surface expression of channel mutants A3(R427C) and A3(R563C).

    PubMed

    Koeppen, Katja; Reuter, Peggy; Kohl, Susanne; Baumann, Britta; Ladewig, Thomas; Wissinger, Bernd

    2008-05-01

    Mutations in the CNGA3 gene have been associated with complete and incomplete forms of total colour blindness (achromatopsia), a disorder characterized by reduced visual acuity, lack of colour discrimination, photophobia and nystagmus. CNGA3 encodes the A-subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel, an essential component of the phototransduction cascade. Here we report the identification of three new CNGA3 mutations in patients with achromatopsia. To assess the pathogenicity of these newly identified and four previously reported mutations, mutant CNGA3 channels were heterologously expressed in a human embryonic kidney cell line (HEK293 cells) and functionally analysed using calcium imaging. Channels with the mutations R427C and R563C showed a response in imaging experiments and were subsequently characterized in-depth with the patch-clamp technique. The mutant channels were analysed as homooligomers and also as heterooligomers with the wild-type B-subunit present in native channels. Overall, cyclic guanosine monophosphate (cGMP) maximum currents of mutant channels were profoundly reduced in homo- and heteromers. Treatment with the chemical chaperone glycerol effectively increased macroscopic currents, presumably by enhancing surface expression of mutant channels as confirmed by immunocytochemistry. These results suggest decreased channel density in the cell membrane due to impaired folding or trafficking of the channel protein as the main pathogenic effect of the mutations R427C and R563C. Moreover, A3(R427C) homomers showed distinctly increased cGMP and cyclic adenosine monophosphate (cAMP) sensitivities as well as cAMP fractional currents that were raised to over 90% of cGMP maximum currents. Co-expression of A3(R427C) with the B3 subunit compensated for most of these aberrant properties, apart from the reduced cGMP maximum currents. PMID:18445228

  11. Functional analysis of human CNGA3 mutations associated with colour blindness suggests impaired surface expression of channel mutants A3(R427C) and A3(R563C).

    PubMed

    Koeppen, Katja; Reuter, Peggy; Kohl, Susanne; Baumann, Britta; Ladewig, Thomas; Wissinger, Bernd

    2008-05-01

    Mutations in the CNGA3 gene have been associated with complete and incomplete forms of total colour blindness (achromatopsia), a disorder characterized by reduced visual acuity, lack of colour discrimination, photophobia and nystagmus. CNGA3 encodes the A-subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel, an essential component of the phototransduction cascade. Here we report the identification of three new CNGA3 mutations in patients with achromatopsia. To assess the pathogenicity of these newly identified and four previously reported mutations, mutant CNGA3 channels were heterologously expressed in a human embryonic kidney cell line (HEK293 cells) and functionally analysed using calcium imaging. Channels with the mutations R427C and R563C showed a response in imaging experiments and were subsequently characterized in-depth with the patch-clamp technique. The mutant channels were analysed as homooligomers and also as heterooligomers with the wild-type B-subunit present in native channels. Overall, cyclic guanosine monophosphate (cGMP) maximum currents of mutant channels were profoundly reduced in homo- and heteromers. Treatment with the chemical chaperone glycerol effectively increased macroscopic currents, presumably by enhancing surface expression of mutant channels as confirmed by immunocytochemistry. These results suggest decreased channel density in the cell membrane due to impaired folding or trafficking of the channel protein as the main pathogenic effect of the mutations R427C and R563C. Moreover, A3(R427C) homomers showed distinctly increased cGMP and cyclic adenosine monophosphate (cAMP) sensitivities as well as cAMP fractional currents that were raised to over 90% of cGMP maximum currents. Co-expression of A3(R427C) with the B3 subunit compensated for most of these aberrant properties, apart from the reduced cGMP maximum currents.

  12. Mito-protective autophagy is impaired in erythroid cells of aged mtDNA-mutator mice.

    PubMed

    Li-Harms, XiuJie; Milasta, Sandra; Lynch, John; Wright, Christopher; Joshi, Aashish; Iyengar, Rekha; Neale, Geoffrey; Wang, Xi; Wang, Yong-Dong; Prolla, Tomas A; Thompson, James E; Opferman, Joseph T; Green, Douglas R; Schuetz, John; Kundu, Mondira

    2015-01-01

    Somatic mitochondrial DNA (mtDNA) mutations contribute to the pathogenesis of age-related disorders, including myelodysplastic syndromes (MDS). The accumulation of mitochondria harboring mtDNA mutations in patients with these disorders suggests a failure of normal mitochondrial quality-control systems. The mtDNA-mutator mice acquire somatic mtDNA mutations via a targeted defect in the proofreading function of the mtDNA polymerase, PolgA, and develop macrocytic anemia similar to that of patients with MDS. We observed an unexpected defect in clearance of dysfunctional mitochondria at specific stages during erythroid maturation in hematopoietic cells from aged mtDNA-mutator mice. Mechanistically, aberrant activation of mechanistic target of rapamycin signaling and phosphorylation of uncoordinated 51-like kinase (ULK) 1 in mtDNA-mutator mice resulted in proteasome-mediated degradation of ULK1 and inhibition of autophagy in erythroid cells. To directly evaluate the consequence of inhibiting autophagy on mitochondrial function in erythroid cells harboring mtDNA mutations in vivo, we deleted Atg7 from erythroid progenitors of wild-type and mtDNA-mutator mice. Genetic disruption of autophagy did not cause anemia in wild-type mice but accelerated the decline in mitochondrial respiration and development of macrocytic anemia in mtDNA-mutator mice. These findings highlight a pathological feedback loop that explains how dysfunctional mitochondria can escape autophagy-mediated degradation and propagate in cells predisposed to somatic mtDNA mutations, leading to disease.

  13. Aspartate mutations in presenilin and gamma-secretase inhibitors both impair notch1 proteolysis and nuclear translocation with relative preservation of notch1 signaling.

    PubMed

    Berezovska, O; Jack, C; McLean, P; Aster, J C; Hicks, C; Xia, W; Wolfe, M S; Kimberly, W T; Weinmaster, G; Selkoe, D J; Hyman, B T

    2000-08-01

    It has been hypothesized that a presenilin 1 (PS1)-related enzymatic activity is responsible for proteolytic cleavage of the C-terminal intracellular protein of Notch1, in addition to its role in beta-amyloid protein (Abeta) formation from the amyloid precursor protein (APP). We developed an assay to monitor ligand-induced Notch1 proteolysis and nuclear translocation in individual cells : Treatment of full-length Notch1-enhanced green fluorescent protein-transfected Chinese hamster ovary (CHO) cells with a soluble preclustered form of the physiologic ligand Delta leads to rapid accumulation of the C terminus of Notch1 in the nucleus and to transcriptional activation of a C-promoter binding factor 1 (CBF1) reporter construct. Nuclear translocation was blocked by cotransfection with Notch's physiologic inhibitor Numb. Using this assay, we now confirm and extend the observation that PS1 is involved in Notch1 nuclear translocation and signaling in mammalian cells. We demonstrate that the D257A and the D385A PS1 mutations, which had been shown previously to block APP gamma-secretase activity, also prevent Notch1 cleavage and translocation to the nucleus but do not alter Notch1 trafficking to the cell surface. We also show that two APP gamma-secretase inhibitors block Notch1 nuclear translocation with an IC(50) similar to that reported for APP gamma-secretase. Notch1 signaling, assessed by measuring the activity of CBF1, a downstream transcription factor, was impaired but not abolished by the PS1 aspartate mutations or gamma-secretase inhibitors. Our results support the hypotheses that (a) PS1-dependent APP gamma-secretase-like enzymatic activity is critical for both APP and Notch processing and (b) the Notch1 signaling pathway remains partially activated even when Notch1 proteolytic processing and nuclear translocation are markedly inhibited. The latter is an important finding from the perspective of therapeutic treatment of Alzheimer's disease by targeting gamma

  14. Economics of human trafficking.

    PubMed

    Wheaton, Elizabeth M; Schauer, Edward J; Galli, Thomas V

    2010-01-01

    Because freedom of choice and economic gain are at the heart of productivity, human trafficking impedes national and international economic growth. Within the next 10 years, crime experts expect human trafficking to surpass drug and arms trafficking in its incidence, cost to human well-being, and profitability to criminals (Schauer and Wheaton, 2006: 164-165). The loss of agency from human trafficking as well as from modern slavery is the result of human vulnerability (Bales, 2000: 15). As people become vulnerable to exploitation and businesses continually seek the lowest-cost labour sources, trafficking human beings generates profit and a market for human trafficking is created. This paper presents an economic model of human trafficking that encompasses all known economic factors that affect human trafficking both across and within national borders. We envision human trafficking as a monopolistically competitive industry in which traffickers act as intermediaries between vulnerable individuals and employers by supplying differentiated products to employers. In the human trafficking market, the consumers are employers of trafficked labour and the products are human beings. Using a rational-choice framework of human trafficking we explain the social situations that shape relocation and working decisions of vulnerable populations leading to human trafficking, the impetus for being a trafficker, and the decisions by employers of trafficked individuals. The goal of this paper is to provide a common ground upon which policymakers and researchers can collaborate to decrease the incidence of trafficking in humans.

  15. Economics of human trafficking.

    PubMed

    Wheaton, Elizabeth M; Schauer, Edward J; Galli, Thomas V

    2010-01-01

    Because freedom of choice and economic gain are at the heart of productivity, human trafficking impedes national and international economic growth. Within the next 10 years, crime experts expect human trafficking to surpass drug and arms trafficking in its incidence, cost to human well-being, and profitability to criminals (Schauer and Wheaton, 2006: 164-165). The loss of agency from human trafficking as well as from modern slavery is the result of human vulnerability (Bales, 2000: 15). As people become vulnerable to exploitation and businesses continually seek the lowest-cost labour sources, trafficking human beings generates profit and a market for human trafficking is created. This paper presents an economic model of human trafficking that encompasses all known economic factors that affect human trafficking both across and within national borders. We envision human trafficking as a monopolistically competitive industry in which traffickers act as intermediaries between vulnerable individuals and employers by supplying differentiated products to employers. In the human trafficking market, the consumers are employers of trafficked labour and the products are human beings. Using a rational-choice framework of human trafficking we explain the social situations that shape relocation and working decisions of vulnerable populations leading to human trafficking, the impetus for being a trafficker, and the decisions by employers of trafficked individuals. The goal of this paper is to provide a common ground upon which policymakers and researchers can collaborate to decrease the incidence of trafficking in humans. PMID:20645472

  16. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development.

    PubMed

    Ross, Jaime M; Stewart, James B; Hagström, Erik; Brené, Stefan; Mourier, Arnaud; Coppotelli, Giuseppe; Freyer, Christoph; Lagouge, Marie; Hoffer, Barry J; Olson, Lars; Larsson, Nils-Göran

    2013-09-19

    Ageing is due to an accumulation of various types of damage, and mitochondrial dysfunction has long been considered to be important in this process. There is substantial sequence variation in mammalian mitochondrial DNA (mtDNA), and the high mutation rate is counteracted by different mechanisms that decrease maternal transmission of mutated mtDNA. Despite these protective mechanisms, it is becoming increasingly clear that low-level mtDNA heteroplasmy is quite common and often inherited in humans. We designed a series of mouse mutants to investigate the extent to which inherited mtDNA mutations can contribute to ageing. Here we report that maternally transmitted mtDNA mutations can induce mild ageing phenotypes in mice with a wild-type nuclear genome. Furthermore, maternally transmitted mtDNA mutations lead to anticipation of reduced fertility in mice that are heterozygous for the mtDNA mutator allele (PolgA(wt/mut)) and aggravate premature ageing phenotypes in mtDNA mutator mice (PolgA(mut/mut)). Unexpectedly, a combination of maternally transmitted and somatic mtDNA mutations also leads to stochastic brain malformations. Our findings show that a pre-existing mutation load will not only allow somatic mutagenesis to create a critically high total mtDNA mutation load sooner but will also increase clonal expansion of mtDNA mutations to enhance the normally occurring mosaic respiratory chain deficiency in ageing tissues. Our findings suggest that maternally transmitted mtDNA mutations may have a similar role in aggravating aspects of normal human ageing.

  17. A Novel de novo Mutation in CEACAM16 Associated with Postlingual Hearing Impairment

    PubMed Central

    Hofrichter, Michaela A.H.; Nanda, Indrajit; Gräf, Jens; Schröder, Jörg; Shehata-Dieler, Wafaa; Vona, Barbara; Haaf, Thomas

    2015-01-01

    Mutations in CEACAM16 cause autosomal dominant nonsyndromic hearing loss (DFNA4B). So far, 2 families have been reported with segregating missense mutations, both in the immunoglobulin constant domain A of the CEACAM16 protein. In this study, we used the TruSight One panel to investigate a parent-child trio without familial history of hearing loss and one affected child. When filtering for recessive inheritance and de novo events, we discovered a de novo CEACAM16 mutation (c.1094T>G, p.Leu365Arg) as the sole likely pathogenic variant. The de novo mutation was confirmed by Sanger sequencing and STR analysis. The proband's hearing loss closely matches the described onset and severity for DFNA4B. We present the third CEACAM16 variant and the first de novo mutation in CEACAM16. This de novo mutation is robustly described as a pathogenic mutation according to in silico mutation prediction tools and affects a highly conserved amino acid in the most strongly conserved CEACAM16 N2 domain. Our strategy of screening family trios enhances de novo mutation discovery and the exclusion of other variants of potential interest through pedigree filtering. PMID:26648831

  18. Mutational analysis of the intramembranous H10 loop of yeast Nhx1 reveals a critical role in ion homoeostasis and vesicle trafficking.

    PubMed

    Mukherjee, Sanchita; Kallay, Laura; Brett, Christopher L; Rao, Rajini

    2006-08-15

    Yeast Nhx1 [Na+(K+)/H+ exchanger 1] is an intracellular Na+(K+)/H+ exchanger, localizing to the late endosome where it is important for ion homoeostasis and vesicle trafficking. Phylogenetic analysis of NHE (Na+/H+ exchanger) sequences has identified orthologous proteins, including HsNHE6 (human NHE6), HsNHE7 and HsNHE9 of unknown physiological role. These appear distinct from well-studied mammalian plasma membrane isoforms (NHE1-NHE5). To explore the differences between plasma membrane and intracellular NHEs and understand the link between ion homoeostasis and vesicle trafficking, we examined the consequence of replacing residues in the intramembranous H10 loop of Nhx1 between transmembrane segments 9 and 10. The critical role for the carboxy group of Glu355 in ion transport is consistent with the invariance of this residue in all NHEs. Surprisingly, residues specifically conserved in the intracellular isoforms (such as Phe357 and Tyr361) could not be replaced with closely similar residues (leucine and phenylalanine) found in the plasma membrane isoforms without loss of function, revealing unexpected side chain specificity. The trafficking phenotypes of all Nhx1 mutants, including hygromycin-sensitivity and missorting of carboxypeptidase Y, were found to directly correlate with pH homoeostasis defects and could be proportionately corrected by titration with weak base. The present study demonstrates the importance of the H10 loop of the NHE family, highlights the differences between plasma membrane and intracellular isoforms and shows that trafficking defects are tightly coupled with pH homoeostasis.

  19. PKA catalytic subunit mutations in adrenocortical Cushing's adenoma impair association with the regulatory subunit.

    PubMed

    Calebiro, Davide; Hannawacker, Annette; Lyga, Sandra; Bathon, Kerstin; Zabel, Ulrike; Ronchi, Cristina; Beuschlein, Felix; Reincke, Martin; Lorenz, Kristina; Allolio, Bruno; Kisker, Caroline; Fassnacht, Martin; Lohse, Martin J

    2014-01-01

    We recently identified a high prevalence of mutations affecting the catalytic (Cα) subunit of protein kinase A (PKA) in cortisol-secreting adrenocortical adenomas. The two identified mutations (Leu206Arg and Leu199_Cys200insTrp) are associated with increased PKA catalytic activity, but the underlying mechanisms are highly controversial. Here we utilize a combination of biochemical and optical assays, including fluorescence resonance energy transfer in living cells, to analyze the consequences of the two mutations with respect to the formation of the PKA holoenzyme and its regulation by cAMP. Our results indicate that neither mutant can form a stable PKA complex, due to the location of the mutations at the interface between the catalytic and the regulatory subunits. We conclude that the two mutations cause high basal catalytic activity and lack of regulation by cAMP through interference of complex formation between the regulatory and the catalytic subunits of PKA. PMID:25477193

  20. Missense mutations cluster within the carboxyl-terminal region of DAX-1 and impair transcriptional repression.

    PubMed

    Achermann, J C; Ito, M; Silverman, B L; Habiby, R L; Pang, S; Rosler, A; Jameson, J L

    2001-07-01

    DAX-1 is an orphan nuclear receptor that plays a key role in the development and function of the adrenal gland and hypothalamic-pituitary gonadal axis. Mutations in the gene encoding DAX-1 result in X-linked adrenal hypoplasia congenita (AHC). Affected boys typically present with primary adrenal failure in infancy or childhood and hypogonadotropic hypogonadism at the time of puberty. The majority of DAX1 mutations described to date are nonsense or frameshift mutations that result in premature truncation of the DAX-1 protein and loss of DAX-1 repressor function. Relatively few missense mutations in DAX1 have been reported. Here, we describe missense mutations in three additional families with X-linked AHC. When combined with previous reports, the DAX1 missense mutations appear to cluster within restricted regions of the putative ligand-binding domain of DAX-1 and affect amino acids that are evolutionarily conserved, suggesting that these regions correspond to critical functional domains. Transcription assays, using a variety of artificial and native target genes, were performed to assess the effects of these mutations on the function of DAX-1. All DAX-1 missense mutant constructs showed marked loss of repressor function, with the exception of I439S, a mutation previously shown to be associated with delayed-onset adrenal failure and incomplete hypogonadotropic hypogonadism. These data indicate that most DAX1 missense mutations associated with classic AHC exhibit marked loss of function. The locations of these mutations thereby identify important functional domains in the carboxyl-terminus of the protein.

  1. Impaired mitochondrial respiration and decreased fatigue resistance followed by severe muscle weakness in skeletal muscle of mitochondrial DNA mutator mice.

    PubMed

    Yamada, Takashi; Ivarsson, Niklas; Hernández, Andrés; Fahlström, Andreas; Cheng, Arthur J; Zhang, Shi-Jin; Bruton, Joseph D; Ulfhake, Brun; Westerblad, Håkan

    2012-12-01

    Mitochondrial dysfunction can drastically impair muscle function, with weakness and exercise intolerance as key symptoms. Here we examine the time course of development of muscle dysfunction in a mouse model of premature ageing induced by defective proofreading function of mitochondrial DNA (mtDNA) polymerase (mtDNA mutator mouse). Isolated fast-twitch muscles and single muscle fibres from young (3-5 months) and end-stage (11 months) mtDNA mutator mice were compared to age-matched control mice. Force and free myoplasmic [Ca(2+)] ([Ca(2+)](i)) were measured under resting conditions and during fatigue induced by repeated tetani. Muscles of young mtDNA mutator mice displayed no weakness in the rested state, but had lower force and [Ca(2+)](i) than control mice during induction of fatigue. Muscles of young mtDNA mutator mice showed decreased activities of citrate synthase and β-hydroxyacyl-coenzyme A dehydrogenase, reduced expression of cytochrome c oxidase, and decreased expression of triggers of mitochondrial biogenesis (PGC-1α, PPARα, AMPK). Muscles from end-stage mtDNA mutator mice showed weakness under resting conditions with markedly decreased tetanic [Ca(2+)](i), force per cross-sectional area and protein expression of the sarcoplasmic reticulum Ca(2+) pump (SERCA1). In conclusion, fast-twitch muscles of prematurely ageing mtDNA mutator mice display a sequence of deleterious mitochondrial-to-nucleus signalling with an initial decrease in oxidative capacity, which was not counteracted by activation of signalling to increase mitochondrial biogenesis. This was followed by severe muscle weakness in the end stage. These results have implication for normal ageing and suggest that decreased mitochondrial oxidative capacity due to a sedentary lifestyle may predispose towards muscle weakness developing later in life.

  2. Autism-Associated Insertion Mutation (InsG) of Shank3 Exon 21 Causes Impaired Synaptic Transmission and Behavioral Deficits.

    PubMed

    Speed, Haley E; Kouser, Mehreen; Xuan, Zhong; Reimers, Jeremy M; Ochoa, Christine F; Gupta, Natasha; Liu, Shunan; Powell, Craig M

    2015-07-01

    SHANK3 (also known as PROSAP2) is a postsynaptic scaffolding protein at excitatory synapses in which mutations and deletions have been implicated in patients with idiopathic autism, Phelan-McDermid (aka 22q13 microdeletion) syndrome, and other neuropsychiatric disorders. In this study, we have created a novel mouse model of human autism caused by the insertion of a single guanine nucleotide into exon 21 (Shank3(G)). The resulting frameshift causes a premature STOP codon and loss of major higher molecular weight Shank3 isoforms at the synapse. Shank3(G/G) mice exhibit deficits in hippocampus-dependent spatial learning, impaired motor coordination, altered response to novelty, and sensory processing deficits. At the cellular level, Shank3(G/G) mice also exhibit impaired hippocampal excitatory transmission and plasticity as well as changes in baseline NMDA receptor-mediated synaptic responses. This work identifies clear alterations in synaptic function and behavior in a novel, genetically accurate mouse model of autism mimicking an autism-associated insertion mutation. Furthermore, these findings lay the foundation for future studies aimed to validate and study region-selective and temporally selective genetic reversal studies in the Shank3(G/G) mouse that was engineered with such future experiments in mind.

  3. Autism-Associated Insertion Mutation (InsG) of Shank3 Exon 21 Causes Impaired Synaptic Transmission and Behavioral Deficits.

    PubMed

    Speed, Haley E; Kouser, Mehreen; Xuan, Zhong; Reimers, Jeremy M; Ochoa, Christine F; Gupta, Natasha; Liu, Shunan; Powell, Craig M

    2015-07-01

    SHANK3 (also known as PROSAP2) is a postsynaptic scaffolding protein at excitatory synapses in which mutations and deletions have been implicated in patients with idiopathic autism, Phelan-McDermid (aka 22q13 microdeletion) syndrome, and other neuropsychiatric disorders. In this study, we have created a novel mouse model of human autism caused by the insertion of a single guanine nucleotide into exon 21 (Shank3(G)). The resulting frameshift causes a premature STOP codon and loss of major higher molecular weight Shank3 isoforms at the synapse. Shank3(G/G) mice exhibit deficits in hippocampus-dependent spatial learning, impaired motor coordination, altered response to novelty, and sensory processing deficits. At the cellular level, Shank3(G/G) mice also exhibit impaired hippocampal excitatory transmission and plasticity as well as changes in baseline NMDA receptor-mediated synaptic responses. This work identifies clear alterations in synaptic function and behavior in a novel, genetically accurate mouse model of autism mimicking an autism-associated insertion mutation. Furthermore, these findings lay the foundation for future studies aimed to validate and study region-selective and temporally selective genetic reversal studies in the Shank3(G/G) mouse that was engineered with such future experiments in mind. PMID:26134648

  4. Mitochondrial impairment observed in fibroblasts from South African Parkinson's disease patients with parkin mutations.

    PubMed

    van der Merwe, Celia; Loos, Ben; Swart, Chrisna; Kinnear, Craig; Henning, Franclo; van der Merwe, Lize; Pillay, Komala; Muller, Nolan; Zaharie, Dan; Engelbrecht, Lize; Carr, Jonathan; Bardien, Soraya

    2014-05-01

    Parkinson's disease (PD), defined as a neurodegenerative disorder, is characterized by the loss of dopaminergic neurons in the substantia nigra in the midbrain. Loss-of-function mutations in the parkin gene are a major cause of autosomal recessive, early-onset PD. Parkin has been implicated in the maintenance of healthy mitochondria, although previous studies show conflicting findings regarding mitochondrial abnormalities in fibroblasts from patients harboring parkin-null mutations. The aim of the present study was to determine whether South African PD patients with parkin mutations exhibit evidence for mitochondrial dysfunction. Fibroblasts were cultured from skin biopsies obtained from three patients with homozygous parkin-null mutations, two heterozygous mutation carriers and two wild-type controls. Muscle biopsies were obtained from two of the patients. The muscle fibers showed subtle abnormalities such as slightly swollen mitochondria in focal areas of the fibers and some folding of the sarcolemma. Although no differences in the degree of mitochondrial network branching were found in the fibroblasts, ultrastructural abnormalities were observed including the presence of electron-dense vacuoles. Moreover, decreased ATP levels which are consistent with mitochondrial dysfunction were observed in the patients' fibroblasts compared to controls. Remarkably, these defects did not manifest in one patient, which may be due to possible compensatory mechanisms. These results suggest that parkin-null patients exhibit features of mitochondrial dysfunction. Involvement of mitochondria as a key role player in PD pathogenesis will have important implications for the design of new and more effective therapies.

  5. The ER-Membrane Transport System Is Critical for Intercellular Trafficking of the NSm Movement Protein and Tomato Spotted Wilt Tospovirus

    PubMed Central

    Feng, Zhike; Xue, Fan; Xu, Min; Chen, Xiaojiao; Zhao, Wenyang; Garcia-Murria, Maria J.; Mingarro, Ismael; Liu, Yong; Huang, Ying; Jiang, Lei; Zhu, Min; Tao, Xiaorong

    2016-01-01

    Plant viruses move through plasmodesmata to infect new cells. The plant endoplasmic reticulum (ER) is interconnected among cells via the ER desmotubule in the plasmodesma across the cell wall, forming a continuous ER network throughout the entire plant. This ER continuity is unique to plants and has been postulated to serve as a platform for the intercellular trafficking of macromolecules. In the present study, the contribution of the plant ER membrane transport system to the intercellular trafficking of the NSm movement protein and Tomato spotted wilt tospovirus (TSWV) is investigated. We showed that TSWV NSm is physically associated with the ER membrane in Nicotiana benthamiana plants. An NSm-GFP fusion protein transiently expressed in single leaf cells was trafficked into neighboring cells. Mutations in NSm that impaired its association with the ER or caused its mis-localization to other subcellular sites inhibited cell-to-cell trafficking. Pharmacological disruption of the ER network severely inhibited NSm-GFP trafficking but not GFP diffusion. In the Arabidopsis thaliana mutant rhd3 with an impaired ER network, NSm-GFP trafficking was significantly reduced, whereas GFP diffusion was not affected. We also showed that the ER-to-Golgi secretion pathway and the cytoskeleton transport systems were not involved in the intercellular trafficking of TSWV NSm. Importantly, TSWV cell-to-cell spread was delayed in the ER-defective rhd3 mutant, and this reduced viral infection was not due to reduced replication. On the basis of robust biochemical, cellular and genetic analysis, we established that the ER membrane transport system serves as an important direct route for intercellular trafficking of NSm and TSWV. PMID:26863622

  6. The cross-talk of LDL-cholesterol with cell motility: insights from the Niemann Pick Type C1 mutation and altered integrin trafficking.

    PubMed

    Hoque, Monira; Rentero, Carles; Conway, James R; Murray, Rachael Z; Timpson, Paul; Enrich, Carlos; Grewal, Thomas

    2015-01-01

    Cholesterol is considered indispensible for the recruitment and functioning of integrins in focal adhesions for cell migration. However, the physiological cholesterol pools that control integrin trafficking and focal adhesion assembly remain unclear. Using Niemann Pick Type C1 (NPC) mutant cells, which accumulate Low Density lipoprotein (LDL)-derived cholesterol in late endosomes (LE), several recent studies indicate that LDL-cholesterol has multiple roles in regulating focal adhesion dynamics. Firstly, targeting of endocytosed LDL-cholesterol from LE to focal adhesions controls their formation at the leading edge of migrating cells. Other newly emerging literature suggests that this may be coupled to vesicular transport of integrins, Src kinase and metalloproteases from the LE compartment to focal adhesions. Secondly, our recent work identified LDL-cholesterol as a key factor that determines the distribution and ability of several Soluble NSF Attachment Protein (SNAP) Receptor (SNARE) proteins, key players in vesicle transport, to control integrin trafficking to the cell surface and extracellular matrix (ECM) secretion. Collectively, dietary, genetic and pathological changes in cholesterol metabolism may link with efficiency and speed of integrin and ECM cell surface delivery in metastatic cancer cells. This commentary will summarize how direct and indirect pathways enable LDL-cholesterol to modulate cell motility.

  7. Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC).

    PubMed

    Zheng, Jie; van de Veerdonk, Frank L; Crossland, Katherine L; Smeekens, Sanne P; Chan, Chun M; Al Shehri, Tariq; Abinun, Mario; Gennery, Andrew R; Mann, Jelena; Lendrem, Dennis W; Netea, Mihai G; Rowan, Andrew D; Lilic, Desa

    2015-10-01

    Signal transducer and activator of transcription 3 (STAT3) triggered production of Th-17 cytokines mediates protective immunity against fungi. Mutations affecting the STAT3/interleukin 17 (IL-17) pathway cause selective susceptibility to fungal (Candida) infections, a hallmark of chronic mucocutaneous candidiasis (CMC). In patients with autosomal dominant CMC, we and others previously reported defective Th17 responses and underlying gain-of-function (GOF) STAT1 mutations, but how this affects STAT3 function leading to decreased IL-17 is unclear. We also assessed how GOF-STAT1 mutations affect STAT3 activation, DNA binding, gene expression, cytokine production, and epigenetic modifications. We excluded impaired STAT3 phosphorylation, nuclear translocation, and sequestration of STAT3 into STAT1/STAT3 heterodimers and confirm significantly reduced transcription of STAT3-inducible genes (RORC/IL-17/IL-22/IL-10/c-Fos/SOCS3/c-Myc) as likely underlying mechanism. STAT binding to the high affinity sis-inducible element was intact but binding to an endogenous STAT3 DNA target was impaired. Reduced STAT3-dependent gene transcription was reversed by inhibiting STAT1 activation with fludarabine or enhancing histone, but not STAT1 or STAT3 acetylation with histone deacetylase (HDAC) inhibitors trichostatin A or ITF2357. Silencing HDAC1, HDAC2, and HDAC3 indicated a role for HDAC1 and 2. Reduced STAT3-dependent gene transcription underlies low Th-17 responses in GOF-STAT1 CMC, which can be reversed by inhibiting acetylation, offering novel targets for future therapies.

  8. Mitochondrial impairment observed in fibroblasts from South African Parkinson’s disease patients with parkin mutations

    SciTech Connect

    Merwe, Celia van der; Loos, Ben; Swart, Chrisna; Kinnear, Craig; Merwe, Lize van der; Pillay, Komala; Muller, Nolan; Zaharie, Dan; Engelbrecht, Lize; Carr, Jonathan; and others

    2014-05-02

    Highlights: • Mitochondrial dysfunction observed in patients with parkin-null mutations. • Mitochondrial ATP levels were decreased. • Electron-dense vacuoles were observed in the patients. • Mitochondria from muscle biopsies appeared within normal limits. • One patient did not show these defects possibly due to compensatory mechanisms. - Abstract: Parkinson’s disease (PD), defined as a neurodegenerative disorder, is characterized by the loss of dopaminergic neurons in the substantia nigra in the midbrain. Loss-of-function mutations in the parkin gene are a major cause of autosomal recessive, early-onset PD. Parkin has been implicated in the maintenance of healthy mitochondria, although previous studies show conflicting findings regarding mitochondrial abnormalities in fibroblasts from patients harboring parkin-null mutations. The aim of the present study was to determine whether South African PD patients with parkin mutations exhibit evidence for mitochondrial dysfunction. Fibroblasts were cultured from skin biopsies obtained from three patients with homozygous parkin-null mutations, two heterozygous mutation carriers and two wild-type controls. Muscle biopsies were obtained from two of the patients. The muscle fibers showed subtle abnormalities such as slightly swollen mitochondria in focal areas of the fibers and some folding of the sarcolemma. Although no differences in the degree of mitochondrial network branching were found in the fibroblasts, ultrastructural abnormalities were observed including the presence of electron-dense vacuoles. Moreover, decreased ATP levels which are consistent with mitochondrial dysfunction were observed in the patients’ fibroblasts compared to controls. Remarkably, these defects did not manifest in one patient, which may be due to possible compensatory mechanisms. These results suggest that parkin-null patients exhibit features of mitochondrial dysfunction. Involvement of mitochondria as a key role player in PD

  9. Putative Breast Cancer Driver Mutations in TBX3 Cause Impaired Transcriptional Repression

    PubMed Central

    Fischer, Kathrin; Pflugfelder, Gert O.

    2015-01-01

    The closely related T-box transcription factors TBX2 and TBX3 are frequently overexpressed in melanoma and various types of human cancers, in particular, breast cancer. The overexpression of TBX2 and TBX3 can have several cellular effects, among them suppression of senescence, promotion of epithelial–mesenchymal transition, and invasive cell motility. In contrast, loss of function of TBX3 and most other human T-box genes causes developmental haploinsufficiency syndromes. Stephens and colleagues (1), by exome sequencing of breast tumor samples, identified five different mutations in TBX3, all affecting the DNA-binding T-domain. One in-frame deletion of a single amino acid, p.N212delN, was observed twice. Due to the clustering of these mutations to the T-domain and for statistical reasons, TBX3 was inferred to be a driver gene in breast cancer. Since mutations in the T-domain generally cause loss of function and because the tumorigenic action of TBX3 has generally been attributed to overexpression, we determined whether the putative driver mutations had loss- or gain-of-function properties. We tested two in-frame deletions, one missense, and one frameshift mutant protein for DNA-binding in vitro, and for target gene repression in cell culture. In addition, we performed an in silico analysis of somatic TBX mutations in breast cancer, collected in The Cancer Genome Atlas (TCGA). Both the experimental and the in silico analysis indicate that the observed mutations predominantly cause loss of TBX3 function. PMID:26579496

  10. Homozygous SLC6A17 Mutations Cause Autosomal-Recessive Intellectual Disability with Progressive Tremor, Speech Impairment, and Behavioral Problems

    PubMed Central

    Iqbal, Zafar; Willemsen, Marjolein H.; Papon, Marie-Amélie; Musante, Luciana; Benevento, Marco; Hu, Hao; Venselaar, Hanka; Wissink-Lindhout, Willemijn M.; Vulto-van Silfhout, Anneke T.; Vissers, Lisenka E.L.M.; de Brouwer, Arjan P.M.; Marouillat, Sylviane; Wienker, Thomas F.; Ropers, Hans Hilger; Kahrizi, Kimia; Nadif Kasri, Nael; Najmabadi, Hossein; Laumonnier, Frédéric; Kleefstra, Tjitske; van Bokhoven, Hans

    2015-01-01

    We report on Dutch and Iranian families with affected individuals who present with moderate to severe intellectual disability and additional phenotypes including progressive tremor, speech impairment, and behavioral problems in certain individuals. A combination of exome sequencing and homozygosity mapping revealed homozygous mutations c.484G>A (p.Gly162Arg) and c.1898C>G (p.Pro633Arg) in SLC6A17. SLC6A17 is predominantly expressed in the brain, encodes a synaptic vesicular transporter of neutral amino acids and glutamate, and plays an important role in the regulation of glutamatergic synapses. Prediction programs and 3D modeling suggest that the identified mutations are deleterious to protein function. To directly test the functional consequences, we investigated the neuronal subcellular localization of overexpressed wild-type and mutant variants in mouse primary hippocampal neuronal cells. Wild-type protein was present in soma, axons, dendrites, and dendritic spines. p.Pro633Arg altered SLC6A17 was found in soma and proximal dendrites but did not reach spines. p.Gly162Arg altered SLC6A17 showed a normal subcellular distribution but was associated with an abnormal neuronal morphology mainly characterized by the loss of dendritic spines. In summary, our genetic findings implicate homozygous SLC6A17 mutations in autosomal-recessive intellectual disability, and their pathogenic role is strengthened by genetic evidence and in silico and in vitro functional analyses. PMID:25704603

  11. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients.

    PubMed

    Sun, Yishan; Paşca, Sergiu P; Portmann, Thomas; Goold, Carleton; Worringer, Kathleen A; Guan, Wendy; Chan, Karen C; Gai, Hui; Vogt, Daniel; Chen, Ying-Jiun J; Mao, Rong; Chan, Karrie; Rubenstein, John Lr; Madison, Daniel V; Hallmayer, Joachim; Froehlich-Santino, Wendy M; Bernstein, Jonathan A; Dolmetsch, Ricardo E

    2016-01-01

    Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons. PMID:27458797

  12. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients

    PubMed Central

    Sun, Yishan; Paşca, Sergiu P; Portmann, Thomas; Goold, Carleton; Worringer, Kathleen A; Guan, Wendy; Chan, Karen C; Gai, Hui; Vogt, Daniel; Chen, Ying-Jiun J; Mao, Rong; Chan, Karrie; Rubenstein, John LR; Madison, Daniel V; Hallmayer, Joachim; Froehlich-Santino, Wendy M; Bernstein, Jonathan A; Dolmetsch, Ricardo E

    2016-01-01

    Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons. DOI: http://dx.doi.org/10.7554/eLife.13073.001 PMID:27458797

  13. Mutations in NALCN cause an autosomal-recessive syndrome with severe hypotonia, speech impairment, and cognitive delay.

    PubMed

    Al-Sayed, Moeenaldeen D; Al-Zaidan, Hamad; Albakheet, Albandary; Hakami, Hana; Kenana, Rosan; Al-Yafee, Yusra; Al-Dosary, Mazhor; Qari, Alya; Al-Sheddi, Tarfa; Al-Muheiza, Muhammed; Al-Qubbaj, Wafa; Lakmache, Yamina; Al-Hindi, Hindi; Ghaziuddin, Muhammad; Colak, Dilek; Kaya, Namik

    2013-10-01

    Sodium leak channel, nonselective (NALCN) is a voltage-independent and cation-nonselective channel that is mainly responsible for the leaky sodium transport across neuronal membranes and controls neuronal excitability. Although NALCN variants have been conflictingly reported to be in linkage disequilibrium with schizophrenia and bipolar disorder, to our knowledge, no mutations have been reported to date for any inherited disorders. Using linkage, SNP-based homozygosity mapping, targeted sequencing, and confirmatory exome sequencing, we identified two mutations, one missense and one nonsense, in NALCN in two unrelated families. The mutations cause an autosomal-recessive syndrome characterized by subtle facial dysmorphism, variable degrees of hypotonia, speech impairment, chronic constipation, and intellectual disability. Furthermore, one of the families pursued preimplantation genetic diagnosis on the basis of the results from this study, and the mother recently delivered healthy twins, a boy and a girl, with no symptoms of hypotonia, which was present in all the affected children at birth. Hence, the two families we describe here represent instances of loss of function in human NALCN. PMID:24075186

  14. Impaired gating of an L-Type Ca(2+) channel carrying a mutation linked to malignant hyperthermia.

    PubMed

    Bannister, Roger A; Beam, Kurt G

    2013-05-01

    Recently, we characterized the functional properties of a mutant skeletal muscle L-type Ca(2+) channel (CaV1.1 R174W) linked to the pharmacogenetic disorder malignant hyperthermia. Although the R174W mutation neutralizes the innermost basic amino acid in the voltage-sensing S4 helix of the first conserved membrane repeat of CaV1.1, the ability of the mutant channel to engage excitation-contraction coupling was largely unaffected by the introduction of the bulky tryptophan residue. In stark contrast, the mutation ablated the ability of CaV1.1 to produce L-type current under our standard recording conditions. In this study, we have investigated the mechanism of channel dysfunction more extensively. We found that CaV1.1 R174W will open and conduct Ca(2+) in response to strong or prolonged depolarizations in the presence of the 1,4-dihydropyridine receptor agonist ±Bay K 8644. From these results, we have concluded that the R174W mutation impedes entry into both mode 1(low Po) and mode 2 (high Po) gating states and that these gating impairments can be partially overcome by maneuvers that promote entry into mode 2. PMID:23663834

  15. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients

    PubMed Central

    Sun, Yishan; Paşca, Sergiu P; Portmann, Thomas; Goold, Carleton; Worringer, Kathleen A; Guan, Wendy; Chan, Karen C; Gai, Hui; Vogt, Daniel; Chen, Ying-Jiun J; Mao, Rong; Chan, Karrie; Rubenstein, John LR; Madison, Daniel V; Hallmayer, Joachim; Froehlich-Santino, Wendy M; Bernstein, Jonathan A; Dolmetsch, Ricardo E

    2016-01-01

    Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons. DOI: http://dx.doi.org/10.7554/eLife.13073.001 PMID:27458797

  16. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis.

    PubMed

    Zhang, Yi; Nikolovski, Nino; Sorieul, Mathias; Vellosillo, Tamara; McFarlane, Heather E; Dupree, Ray; Kesten, Christopher; Schneider, René; Driemeier, Carlos; Lathe, Rahul; Lampugnani, Edwin; Yu, Xiaolan; Ivakov, Alexander; Doblin, Monika S; Mortimer, Jenny C; Brown, Steven P; Persson, Staffan; Dupree, Paul

    2016-01-01

    As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus. PMID:27277162

  17. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis

    PubMed Central

    Zhang, Yi; Nikolovski, Nino; Sorieul, Mathias; Vellosillo, Tamara; McFarlane, Heather E.; Dupree, Ray; Kesten, Christopher; Schneider, René; Driemeier, Carlos; Lathe, Rahul; Lampugnani, Edwin; Yu, Xiaolan; Ivakov, Alexander; Doblin, Monika S.; Mortimer, Jenny C.; Brown, Steven P.; Persson, Staffan; Dupree, Paul

    2016-01-01

    As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus. PMID:27277162

  18. NADP(+)-IDH Mutations Promote Hypersuccinylation that Impairs Mitochondria Respiration and Induces Apoptosis Resistance.

    PubMed

    Li, Feng; He, Xiadi; Ye, Dingwei; Lin, Yan; Yu, Hongxiu; Yao, Cuifang; Huang, Lei; Zhang, Jianong; Wang, Fang; Xu, Sha; Wu, Xiaohui; Liu, Lixia; Yang, Chen; Shi, Jiaqi; He, Xiaoyang; Liu, Jie; Qu, Yuanyuan; Guo, Fushen; Zhao, Jianyuan; Xu, Wei; Zhao, Shimin

    2015-11-19

    Elucidating the tumorigenic mechanism of R-2-hydroxyglutarate (R-2HG) is critical for determining how NADP(+)-IDH mutations cause cancer. Here we report that R-2HG induces cancerous metabolism and apoptosis resistance through promoting hypersuccinylation. By competitive inhibition of the mitochondrial tricarboxylic acid cycle enzyme succinate dehydrogenase (SDH), R-2HG preferentially induced succinyl-CoA accumulation and hypersuccinylation in the mitochondria. IDH1 mutation-bearing glioma samples and cells were hypersuccinylated in the mitochondria. IDH1 mutation or SDH inactivation resulted in hypersuccinylation, causing respiration inhibition and inducing cancerous metabolism and mitochondrial depolarization. These mitochondrial dysfunctions induced BCL-2 accumulation at the mitochondrial membrane, leading to apoptosis resistance of hypersuccinylated cells. Relief of hypersuccinylation by overexpressing the desuccinylase SIRT5 or supplementing glycine rescued mitochondrial dysfunctions, reversed BCL-2 accumulation, and slowed the oncogenic growth of hypersuccinylated IDH1(R132C)-harboring HT1080 cells. Thus, R-2HG-induced hypersuccinylation contributes to the tumorigenicity of NADP(+)-IDH mutations, suggesting the potential of hypersuccinylation inhibition as an intervention for hypersuccinylation-related tumors. PMID:26585387

  19. Dravet Syndrome and "SCN1A" Gene Mutation Related-Epilepsies: Cognitive Impairment and Its Determinants

    ERIC Educational Resources Information Center

    Guerrini, Renzo; Falchi, Melania

    2011-01-01

    Some studies have demonstrated that cognitive decline occurs in Dravet syndrome, starting shortly after the onset of seizures, rapidly progressing and then plateauing within a few years. It is unclear whether children that develop the syndrome had entirely normal cognitive skills before seizure onset, since subtle impairment easily escapes…

  20. The Sorting Receptor SorCS1 Regulates Trafficking of Neurexin and AMPA Receptors.

    PubMed

    Savas, Jeffrey N; Ribeiro, Luís F; Wierda, Keimpe D; Wright, Rebecca; DeNardo-Wilke, Laura A; Rice, Heather C; Chamma, Ingrid; Wang, Yi-Zhi; Zemla, Roland; Lavallée-Adam, Mathieu; Vennekens, Kristel M; O'Sullivan, Matthew L; Antonios, Joseph K; Hall, Elizabeth A; Thoumine, Olivier; Attie, Alan D; Yates, John R; Ghosh, Anirvan; de Wit, Joris

    2015-08-19

    The formation, function, and plasticity of synapses require dynamic changes in synaptic receptor composition. Here, we identify the sorting receptor SorCS1 as a key regulator of synaptic receptor trafficking. Four independent proteomic analyses identify the synaptic adhesion molecule neurexin and the AMPA glutamate receptor (AMPAR) as major proteins sorted by SorCS1. SorCS1 localizes to early and recycling endosomes and regulates neurexin and AMPAR surface trafficking. Surface proteome analysis of SorCS1-deficient neurons shows decreased surface levels of these, and additional, receptors. Quantitative in vivo analysis of SorCS1-knockout synaptic proteomes identifies SorCS1 as a global trafficking regulator and reveals decreased levels of receptors regulating adhesion and neurotransmission, including neurexins and AMPARs. Consequently, glutamatergic transmission at SorCS1-deficient synapses is reduced due to impaired AMPAR surface expression. SORCS1 mutations have been associated with autism and Alzheimer disease, suggesting that perturbed receptor trafficking contributes to synaptic-composition and -function defects underlying synaptopathies.

  1. The Sorting Receptor SorCS1 Regulates Trafficking of Neurexin and AMPA Receptors

    PubMed Central

    Savas, Jeffrey N.; Ribeiro, Luís F.; Wierda, Keimpe D.; Wright, Rebecca; DeNardo, Laura A.; Rice, Heather C.; Chamma, Ingrid; Wang, Yi-Zhi; Zemla, Roland; Lavallée-Adam, Mathieu; Vennekens, Kristel M.; O'Sullivan, Matthew L.; Antonios, Joseph K.; Hall, Elizabeth A.; Thoumine, Olivier; Attie, Alan D.; Ghosh, Anirvan; Yates, John R.; de Wit, Joris

    2015-01-01

    The formation, function, and plasticity of synapses require dynamic changes in synaptic receptor composition. Here we identify the sorting receptor SorCS1 as a key regulator of synaptic receptor trafficking. Four independent proteomic analyses identify the synaptic adhesion molecule neurexin and the AMPA glutamate receptor (AMPAR) as major proteins sorted by SorCS1. SorCS1 localizes to early and recycling endosomes and regulates neurexin and AMPAR surface trafficking. Surface proteome analysis of SorCS1-deficient neurons shows decreased surface levels of these, and additional, receptors. Quantitative in vivo analysis of SorCS1 knockout synaptic proteomes identifies SorCS1 as a global trafficking regulator and reveals decreased levels of receptors regulating adhesion and neurotransmission, including neurexins and AMPARs. Consequently, glutamatergic transmission at SorCS1–deficient synapses is reduced due to impaired AMPAR surface expression. SORCS1 mutations have been associated with autism and Alzheimer's disease, suggesting that perturbed receptor trafficking contributes to defects in synaptic composition and function underlying synaptopathies. PMID:26291160

  2. Germline Mutations in FAN1 Cause Hereditary Colorectal Cancer by Impairing DNA Repair.

    PubMed

    Seguí, Nuria; Mina, Leonardo B; Lázaro, Conxi; Sanz-Pamplona, Rebeca; Pons, Tirso; Navarro, Matilde; Bellido, Fernando; López-Doriga, Adriana; Valdés-Mas, Rafael; Pineda, Marta; Guinó, Elisabet; Vidal, August; Soto, José Luís; Caldés, Trinidad; Durán, Mercedes; Urioste, Miguel; Rueda, Daniel; Brunet, Joan; Balbín, Milagros; Blay, Pilar; Iglesias, Silvia; Garré, Pilar; Lastra, Enrique; Sánchez-Heras, Ana Beatriz; Valencia, Alfonso; Moreno, Victor; Pujana, Miguel Ángel; Villanueva, Alberto; Blanco, Ignacio; Capellá, Gabriel; Surrallés, Jordi; Puente, Xose S; Valle, Laura

    2015-09-01

    Identification of genes associated with hereditary cancers facilitates management of patients with family histories of cancer. We performed exome sequencing of DNA from 3 individuals from a family with colorectal cancer who met the Amsterdam criteria for risk of hereditary nonpolyposis colorectal cancer. These individuals had mismatch repair-proficient tumors and each carried nonsense variant in the FANCD2/FANCI-associated nuclease 1 gene (FAN1), which encodes a nuclease involved in DNA inter-strand cross-link repair. We sequenced FAN1 in 176 additional families with histories of colorectal cancer and performed in vitro functional analyses of the mutant forms of FAN1 identified. We detected FAN1 mutations in approximately 3% of families who met the Amsterdam criteria and had mismatch repair-proficient cancers with no previously associated mutations. These findings link colorectal cancer predisposition to the Fanconi anemia DNA repair pathway, supporting the connection between genome integrity and cancer risk.

  3. Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation.

    PubMed

    Mahammad, Saleemulla; Murthy, S N Prasanna; Didonna, Alessandro; Grin, Boris; Israeli, Eitan; Perrot, Rodolphe; Bomont, Pascale; Julien, Jean-Pierre; Kuczmarski, Edward; Opal, Puneet; Goldman, Robert D

    2013-05-01

    Giant axonal neuropathy (GAN) is an early-onset neurological disorder caused by mutations in the GAN gene (encoding for gigaxonin), which is predicted to be an E3 ligase adaptor. In GAN, aggregates of intermediate filaments (IFs) represent the main pathological feature detected in neurons and other cell types, including patients' dermal fibroblasts. The molecular mechanism by which these mutations cause IFs to aggregate is unknown. Using fibroblasts from patients and normal individuals, as well as Gan-/- mice, we demonstrated that gigaxonin was responsible for the degradation of vimentin IFs. Gigaxonin was similarly involved in the degradation of peripherin and neurofilament IF proteins in neurons. Furthermore, proteasome inhibition by MG-132 reversed the clearance of IF proteins in cells overexpressing gigaxonin, demonstrating the involvement of the proteasomal degradation pathway. Together, these findings identify gigaxonin as a major factor in the degradation of cytoskeletal IFs and provide an explanation for IF aggregate accumulation, the subcellular hallmark of this devastating human disease.

  4. Impaired dNTPase Activity of SAMHD1 by Phosphomimetic Mutation of Thr-592*♦

    PubMed Central

    Tang, Chenxiang; Ji, Xiaoyun; Wu, Li; Xiong, Yong

    2015-01-01

    SAMHD1 is a cellular protein that plays key roles in HIV-1 restriction and regulation of cellular dNTP levels. Mutations in SAMHD1 are also implicated in the pathogenesis of chronic lymphocytic leukemia and Aicardi-Goutières syndrome. The anti-HIV-1 activity of SAMHD1 is negatively modulated by phosphorylation at residue Thr-592. The mechanism underlying the effect of phosphorylation on anti-HIV-1 activity remains unclear. SAMHD1 forms tetramers that possess deoxyribonucleotide triphosphate triphosphohydrolase (dNTPase) activity, which is allosterically controlled by the combined action of GTP and all four dNTPs. Here we demonstrate that the phosphomimetic mutation T592E reduces the stability of the SAMHD1 tetramer and the dNTPase activity of the enzyme. To better understand the underlying mechanisms, we determined the crystal structures of SAMHD1 variants T592E and T592V. Although the neutral substitution T592V does not perturb the structure, the charged T592E induces large conformational changes, likely triggered by electrostatic repulsion from a distinct negatively charged environment surrounding Thr-592. The phosphomimetic mutation results in a significant decrease in the population of active SAMHD1 tetramers, and hence the dNTPase activity is substantially decreased. These results provide a mechanistic understanding of how SAMHD1 phosphorylation at residue Thr-592 may modulate its cellular and antiviral functions. PMID:26294762

  5. A mutation in FRIZZLED2 impairs Wnt signaling and causes autosomal dominant omodysplasia

    PubMed Central

    Saal, Howard M.; Prows, Cynthia A.; Guerreiro, Iris; Donlin, Milene; Knudson, Luke; Sund, Kristen L.; Chang, Ching-Fang; Brugmann, Samantha A.; Stottmann, Rolf W.

    2015-01-01

    Autosomal dominant omodysplasia is a rare skeletal dysplasia characterized by short humeri, radial head dislocation, short first metacarpals, facial dysmorphism and genitourinary anomalies. We performed next-generation whole-exome sequencing and comparative analysis of a proband with omodysplasia, her unaffected parents and her affected daughter. We identified a de novo mutation in FRIZZLED2 (FZD2) in the proband and her daughter that was not found in unaffected family members. The FZD2 mutation (c.1644G>A) changes a tryptophan residue at amino acid 548 to a premature stop (p.Trp548*). This altered protein is still produced in vitro, but we show reduced ability of this mutant form of FZD2 to interact with its downstream target DISHEVELLED. Furthermore, expressing the mutant form of FZD2 in vitro is not able to facilitate the cellular response to canonical Wnt signaling like wild-type FZD2. We therefore conclude that the FRIZZLED2 mutation is a de novo, novel cause for autosomal dominant omodysplasia. PMID:25759469

  6. Functional characterization of an AQP0 missense mutation, R33C, that causes dominant congenital lens cataract, reveals impaired cell-to-cell adhesion

    PubMed Central

    Kumari, Sindhu S.; Gandhi, Jason; Mustehsan, Mohammed H.; Eren, Semih; Varadaraj, Kulandaiappan

    2013-01-01

    Aquaporin 0 (AQP0) performs dual functions in the lens fiber cells, as a water pore and as a cell-to-cell adhesion molecule. Mutations in AQP0 cause severe lens cataract in both humans and mice. An arginine to cysteine missense mutation at amino acid 33 (R33C) produced congenital autosomal dominant cataract in a Chinese family for five generations. We re-created this mutation in wild type (WT-AQP0) human AQP0 cDNA by site-directed mutagenesis, and cloned and expressed the mutant AQP0 (AQP0-R33C) in heterologous expression systems. Mutant AQP0-R33C showed proper trafficking and membrane localization like WT-AQP0. Functional studies conducted in Xenopus oocytes showed no significant difference (P>0.05) in water permeability between AQP0-R33C and WT-AQP0. However, the cell-to-cell adhesion property of AQP0-R33C was significantly reduced (P< 0.001) compared to that of WT-AQP0, indicated by cell aggregation and cell-to-cell adhesion assays. Scrape-loading assay using Lucifer Yellow dye showed reduction in cell-to-cell adhesion affecting gap junction coupling (P< 0.001). The data provided suggest that this mutation might not have caused significant alterations in protein folding since there was no obstruction in protein trafficking or water permeation. Reduction in cell-to-cell adhesion and development of cataract suggest that the conserved positive charge of Extracellular Loop A may play an important role in bringing fiber cells closer. The proposed schematic models illustrate that cell-to-cell adhesion elicited by AQP0 is vital for lens transparency and homeostasis. PMID:24120416

  7. Human Immunodeficiency Virus Type 1 Capsid Mutation N74D Alters Cyclophilin A Dependence and Impairs Macrophage Infection

    PubMed Central

    Lee, KyeongEun; Ndjomou, Jean; Xu, Hongzhan; Oztop, Ilker; Matous, James; Takemura, Taichiro; Unutmaz, Derya; Engelman, Alan; Hughes, Stephen H.

    2012-01-01

    The antiviral factor CPSF6-358 interferes with the nuclear entry of human immunodeficiency virus type 1 (HIV-1). HIV-1 acquires resistance to CPSF6-358 through the N74D mutation of the capsid (CA), which alters its nuclear entry pathway. Here we show that compared to wild-type (WT) HIV-1, N74D HIV-1 is more sensitive to cyclosporine, has increased sensitivity to nevirapine, and is impaired in macrophage infection prior to reverse transcription. These phenotypes suggest a difference in the N74D reverse transcription complex that manifests early after infection and prior to interaction with the nuclear pore. Overall, our data indicate that N74D HIV-1 replication in transformed cells requires cyclophilin A but is dependent on other interactions in macrophages. PMID:22301145

  8. Juvenile-onset Sporadic Amyotrophic Lateral Sclerosis with a Frameshift FUS Gene Mutation Presenting Unique Neuroradiological Findings and Cognitive Impairment.

    PubMed

    Hirayanagi, Kimitoshi; Sato, Masayuki; Furuta, Natsumi; Makioka, Kouki; Ikeda, Yoshio

    2016-01-01

    A 24-year-old Japanese woman developed anterocollis, weakness of the proximal arms, and subsequent cognitive impairment. A neurological examination revealed amyotrophic lateral sclerosis (ALS) without a family history. Systemic muscle atrophy progressed rapidly. Cerebral MRI clearly exhibited high signal intensities along the bilateral pyramidal tracts. An analysis of the FUS gene revealed a heterozygous two-base pair deletion, c.1507-1508delAG (p.G504WfsX515). A subset of juvenile-onset familial/sporadic ALS cases with FUS gene mutations reportedly demonstrates mental retardation or learning difficulty. Our study emphasizes the importance of conducting a FUS gene analysis in juvenile-onset ALS cases, even when no family occurrence is confirmed. PMID:26984092

  9. Impaired neuronal KCC2 function by biallelic SLC12A5 mutations in migrating focal seizures and severe developmental delay.

    PubMed

    Saitsu, Hirotomo; Watanabe, Miho; Akita, Tenpei; Ohba, Chihiro; Sugai, Kenji; Ong, Winnie Peitee; Shiraishi, Hideaki; Yuasa, Shota; Matsumoto, Hiroshi; Beng, Khoo Teik; Saitoh, Shinji; Miyatake, Satoko; Nakashima, Mitsuko; Miyake, Noriko; Kato, Mitsuhiro; Fukuda, Atsuo; Matsumoto, Naomichi

    2016-01-01

    Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the early-onset epileptic syndromes characterized by migrating polymorphous focal seizures. Whole exome sequencing (WES) in ten sporadic and one familial case of EIMFS revealed compound heterozygous SLC12A5 (encoding the neuronal K(+)-Cl(-) co-transporter KCC2) mutations in two families: c.279 + 1G > C causing skipping of exon 3 in the transcript (p.E50_Q93del) and c.572 C >T (p.A191V) in individuals 1 and 2, and c.967T > C (p.S323P) and c.1243 A > G (p.M415V) in individual 3. Another patient (individual 4) with migrating multifocal seizures and compound heterozygous mutations [c.953G > C (p.W318S) and c.2242_2244del (p.S748del)] was identified by searching WES data from 526 patients and SLC12A5-targeted resequencing data from 141 patients with infantile epilepsy. Gramicidin-perforated patch-clamp analysis demonstrated strongly suppressed Cl(-) extrusion function of E50_Q93del and M415V mutants, with mildly impaired function of A191V and S323P mutants. Cell surface expression levels of these KCC2 mutants were similar to wildtype KCC2. Heterologous expression of two KCC2 mutants, mimicking the patient status, produced a significantly greater intracellular Cl(-) level than with wildtype KCC2, but less than without KCC2. These data clearly demonstrated that partially disrupted neuronal Cl(-) extrusion, mediated by two types of differentially impaired KCC2 mutant in an individual, causes EIMFS. PMID:27436767

  10. Impaired neuronal KCC2 function by biallelic SLC12A5 mutations in migrating focal seizures and severe developmental delay

    PubMed Central

    Saitsu, Hirotomo; Watanabe, Miho; Akita, Tenpei; Ohba, Chihiro; Sugai, Kenji; Ong, Winnie Peitee; Shiraishi, Hideaki; Yuasa, Shota; Matsumoto, Hiroshi; Beng, Khoo Teik; Saitoh, Shinji; Miyatake, Satoko; Nakashima, Mitsuko; Miyake, Noriko; Kato, Mitsuhiro; Fukuda, Atsuo; Matsumoto, Naomichi

    2016-01-01

    Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the early-onset epileptic syndromes characterized by migrating polymorphous focal seizures. Whole exome sequencing (WES) in ten sporadic and one familial case of EIMFS revealed compound heterozygous SLC12A5 (encoding the neuronal K+-Cl− co-transporter KCC2) mutations in two families: c.279 + 1G > C causing skipping of exon 3 in the transcript (p.E50_Q93del) and c.572 C >T (p.A191V) in individuals 1 and 2, and c.967T > C (p.S323P) and c.1243 A > G (p.M415V) in individual 3. Another patient (individual 4) with migrating multifocal seizures and compound heterozygous mutations [c.953G > C (p.W318S) and c.2242_2244del (p.S748del)] was identified by searching WES data from 526 patients and SLC12A5-targeted resequencing data from 141 patients with infantile epilepsy. Gramicidin-perforated patch-clamp analysis demonstrated strongly suppressed Cl− extrusion function of E50_Q93del and M415V mutants, with mildly impaired function of A191V and S323P mutants. Cell surface expression levels of these KCC2 mutants were similar to wildtype KCC2. Heterologous expression of two KCC2 mutants, mimicking the patient status, produced a significantly greater intracellular Cl− level than with wildtype KCC2, but less than without KCC2. These data clearly demonstrated that partially disrupted neuronal Cl− extrusion, mediated by two types of differentially impaired KCC2 mutant in an individual, causes EIMFS. PMID:27436767

  11. Muscular Dystrophy Mutations Impair the Nuclear Envelope Emerin Self-assembly Properties.

    PubMed

    Herrada, Isaline; Samson, Camille; Velours, Christophe; Renault, Louis; Östlund, Cecilia; Chervy, Pierre; Puchkov, Dmytro; Worman, Howard J; Buendia, Brigitte; Zinn-Justin, Sophie

    2015-12-18

    More than 100 genetic mutations causing X-linked Emery-Dreifuss muscular dystrophy have been identified in the gene encoding the integral inner nuclear membrane protein emerin. Most mutations are nonsense or frameshift mutations that lead to the absence of emerin in cells. Only very few cases are due to missense or short in-frame deletions. Molecular mechanisms explaining the corresponding emerin variants' loss of function are particularly difficult to identify because of the mostly intrinsically disordered state of the emerin nucleoplasmic region. We now demonstrate that this EmN region can be produced as a disordered monomer, as revealed by nuclear magnetic resonance, but rapidly self-assembles in vitro. Increases in concentration and temperature favor the formation of long curvilinear filaments with diameters of approximately 10 nm, as observed by electron microscopy. Assembly of these filaments can be followed by fluorescence through Thioflavin-T binding and by Fourier-transform Infrared spectrometry through formation of β-structures. Analysis of the assembly properties of five EmN variants reveals that del95-99 and Q133H impact filament assembly capacities. In cells, these variants are located at the nuclear envelope, but the corresponding quantities of emerin-emerin and emerin-lamin proximities are decreased compared to wild-type protein. Furthermore, variant P183H favors EmN aggregation in vitro, and variant P183T provokes emerin accumulation in cytoplasmic foci in cells. Substitution of residue Pro183 might systematically favor oligomerization, leading to emerin aggregation and mislocalization in cells. Our results suggest that emerin self-assembly is necessary for its proper function and that a loss of either the protein itself or its ability to self-assemble causes muscular dystrophy.

  12. Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deafness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies

    PubMed Central

    Niceta, Marcello; Stellacci, Emilia; Gripp, Karen W.; Zampino, Giuseppe; Kousi, Maria; Anselmi, Massimiliano; Traversa, Alice; Ciolfi, Andrea; Stabley, Deborah; Bruselles, Alessandro; Caputo, Viviana; Cecchetti, Serena; Prudente, Sabrina; Fiorenza, Maria T.; Boitani, Carla; Philip, Nicole; Niyazov, Dmitriy; Leoni, Chiara; Nakane, Takaya; Keppler-Noreuil, Kim; Braddock, Stephen R.; Gillessen-Kaesbach, Gabriele; Palleschi, Antonio; Campeau, Philippe M.; Lee, Brendan H.L.; Pouponnot, Celio; Stella, Lorenzo; Bocchinfuso, Gianfranco; Katsanis, Nicholas; Sol-Church, Katia; Tartaglia, Marco

    2015-01-01

    Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing development. PMID:25865493

  13. Mutations in the NB-ARC Domain of I-2 That Impair ATP Hydrolysis Cause Autoactivation1[OA

    PubMed Central

    Tameling, Wladimir I.L.; Vossen, Jack H.; Albrecht, Mario; Lengauer, Thomas; Berden, Jan A.; Haring, Michel A.; Cornelissen, Ben J.C.; Takken, Frank L.W.

    2006-01-01

    Resistance (R) proteins in plants confer specificity to the innate immune system. Most R proteins have a centrally located NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) domain. For two tomato (Lycopersicon esculentum) R proteins, I-2 and Mi-1, we have previously shown that this domain acts as an ATPase module that can hydrolyze ATP in vitro. To investigate the role of nucleotide binding and hydrolysis for the function of I-2 in planta, specific mutations were introduced in conserved motifs of the NB-ARC domain. Two mutations resulted in autoactivating proteins that induce a pathogen-independent hypersensitive response upon expression in planta. These mutant forms of I-2 were found to be impaired in ATP hydrolysis, but not in ATP binding, suggesting that the ATP- rather than the ADP-bound state of I-2 is the active form that triggers defense signaling. In addition, upon ADP binding, the protein displayed an increased affinity for ADP suggestive of a change of conformation. Based on these data, we propose that the NB-ARC domain of I-2, and likely of related R proteins, functions as a molecular switch whose state (on/off) depends on the nucleotide bound (ATP/ADP). PMID:16489136

  14. Mutations in PGAP3 impair GPI-anchor maturation, causing a subtype of hyperphosphatasia with mental retardation.

    PubMed

    Howard, Malcolm F; Murakami, Yoshiko; Pagnamenta, Alistair T; Daumer-Haas, Cornelia; Fischer, Björn; Hecht, Jochen; Keays, David A; Knight, Samantha J L; Kölsch, Uwe; Krüger, Ulrike; Leiz, Steffen; Maeda, Yusuke; Mitchell, Daphne; Mundlos, Stefan; Phillips, John A; Robinson, Peter N; Kini, Usha; Taylor, Jenny C; Horn, Denise; Kinoshita, Taroh; Krawitz, Peter M

    2014-02-01

    Glycosylphophatidylinositol (GPI)-anchored proteins play important roles in many biological processes, and mutations affecting proteins involved in the synthesis of the GPI anchor are reported to cause a wide spectrum of intellectual disabilities (IDs) with characteristic additional phenotypic features. Here, we describe a total of five individuals (from three unrelated families) in whom we identified mutations in PGAP3, encoding a protein that is involved in GPI-anchor maturation. Three siblings in a consanguineous Pakistani family presented with profound developmental delay, severe ID, no speech, psychomotor delay, and postnatal microcephaly. A combination of autozygosity mapping and exome sequencing identified a 13.8 Mb region harboring a homozygous c.275G>A (p.Gly92Asp) variant in PGAP3 region 17q11.2-q21.32. Subsequent testing showed elevated serum alkaline phosphatase (ALP), a GPI-anchored enzyme, in all three affected children. In two unrelated individuals in a cohort with developmental delay, ID, and elevated ALP, we identified compound-heterozygous variants c.439dupC (p.Leu147Profs(∗)16) and c.914A>G (p.Asp305Gly) and homozygous variant c.314C>G (p.Pro105Arg). The 1 bp duplication causes a frameshift and nonsense-mediated decay. Further evidence supporting pathogenicity of the missense mutations c.275G>A, c.314C>G, and c.914A>G was provided by the absence of the variants from ethnically matched controls, phylogenetic conservation, and functional studies on Chinese hamster ovary cell lines. Taken together with recent data on PGAP2, these results confirm the importance of the later GPI-anchor remodelling steps for normal neuronal development. Impairment of PGAP3 causes a subtype of hyperphosphatasia with ID, a congenital disorder of glycosylation that is also referred to as Mabry syndrome. PMID:24439110

  15. SLC30A10 Is a Cell Surface-Localized Manganese Efflux Transporter, and Parkinsonism-Causing Mutations Block Its Intracellular Trafficking and Efflux Activity

    PubMed Central

    Leyva-Illades, Dinorah; Chen, Pan; Zogzas, Charles E.; Hutchens, Steven; Mercado, Jonathan M.; Swaim, Caleb D.; Morrisett, Richard A.; Bowman, Aaron B.

    2014-01-01

    Manganese (Mn) is an essential metal, but elevated cellular levels are toxic and may lead to the development of an irreversible parkinsonian-like syndrome that has no treatment. Mn-induced parkinsonism generally occurs as a result of exposure to elevated Mn levels in occupational or environmental settings. Additionally, patients with compromised liver function attributable to diseases, such as cirrhosis, fail to excrete Mn and may develop Mn-induced parkinsonism in the absence of exposure to elevated Mn. Recently, a new form of familial parkinsonism was reported to occur as a result of mutations in SLC30A10. The cellular function of SLC30A10 and the mechanisms by which mutations in this protein cause parkinsonism are unclear. Here, using a combination of mechanistic and functional studies in cell culture, Caenorhabditis elegans, and primary midbrain neurons, we show that SLC30A10 is a cell surface-localized Mn efflux transporter that reduces cellular Mn levels and protects against Mn-induced toxicity. Importantly, mutations in SLC30A10 that cause familial parkinsonism blocked the ability of the transporter to traffic to the cell surface and to mediate Mn efflux. Although expression of disease-causing SLC30A10 mutations were not deleterious by themselves, neurons and worms expressing these mutants exhibited enhanced sensitivity to Mn toxicity. Our results provide novel insights into the mechanisms involved in the onset of a familial form of parkinsonism and highlight the possibility of using enhanced Mn efflux as a therapeutic strategy for the potential management of Mn-induced parkinsonism, including that occurring as a result of mutations in SLC30A10. PMID:25319704

  16. Point mutation impairs centromeric CENH3 loading and induces haploid plants

    PubMed Central

    Karimi-Ashtiyani, Raheleh; Ishii, Takayoshi; Niessen, Markus; Stein, Nils; Heckmann, Stefan; Gurushidze, Maia; Banaei-Moghaddam, Ali Mohammad; Fuchs, Jörg; Schubert, Veit; Koch, Kerstin; Weiss, Oda; Demidov, Dmitri; Schmidt, Klaus; Kumlehn, Jochen; Houben, Andreas

    2015-01-01

    The chromosomal position of the centromere-specific histone H3 variant CENH3 (also called “CENP-A”) is the assembly site for the kinetochore complex of active centromeres. Any error in transcription, translation, modification, or incorporation can affect the ability to assemble intact CENH3 chromatin and can cause centromere inactivation [Allshire RC, Karpen GH (2008) Nat Rev Genet 9 (12):923–937]. Here we show that a single-point amino acid exchange in the centromere-targeting domain of CENH3 leads to reduced centromere loading of CENH3 in barley, sugar beet, and Arabidopsis thaliana. Haploids were obtained after cenh3 L130F-complemented cenh3-null mutant plants were crossed with wild-type A. thaliana. In contrast, in a noncompeting situation (i.e., centromeres possessing only mutated or only wild-type CENH3), no uniparental chromosome elimination occurs during early embryogenesis. The high degree of evolutionary conservation of the identified mutation site offers promising opportunities for application in a wide range of crop species in which haploid technology is of interest. PMID:26294252

  17. Point mutation impairs centromeric CENH3 loading and induces haploid plants.

    PubMed

    Karimi-Ashtiyani, Raheleh; Ishii, Takayoshi; Niessen, Markus; Stein, Nils; Heckmann, Stefan; Gurushidze, Maia; Banaei-Moghaddam, Ali Mohammad; Fuchs, Jörg; Schubert, Veit; Koch, Kerstin; Weiss, Oda; Demidov, Dmitri; Schmidt, Klaus; Kumlehn, Jochen; Houben, Andreas

    2015-09-01

    The chromosomal position of the centromere-specific histone H3 variant CENH3 (also called "CENP-A") is the assembly site for the kinetochore complex of active centromeres. Any error in transcription, translation, modification, or incorporation can affect the ability to assemble intact CENH3 chromatin and can cause centromere inactivation [Allshire RC, Karpen GH (2008) Nat Rev Genet 9 (12):923-937]. Here we show that a single-point amino acid exchange in the centromere-targeting domain of CENH3 leads to reduced centromere loading of CENH3 in barley, sugar beet, and Arabidopsis thaliana. Haploids were obtained after cenh3 L130F-complemented cenh3-null mutant plants were crossed with wild-type A. thaliana. In contrast, in a noncompeting situation (i.e., centromeres possessing only mutated or only wild-type CENH3), no uniparental chromosome elimination occurs during early embryogenesis. The high degree of evolutionary conservation of the identified mutation site offers promising opportunities for application in a wide range of crop species in which haploid technology is of interest. PMID:26294252

  18. Defective mutations within the translocation domain of Clostridium difficile toxin B impair disease pathogenesis.

    PubMed

    Hamza, Therwa; Zhang, Zhifen; Melnyk, Roman A; Feng, Hanping

    2016-02-01

    The Clostridium difficile toxin B is one of the main virulence factors and plays an important role in the pathogenesis of C. difficile infection (CDI). We recently revealed crucial residues in the translocation domain of TcdB for the pore formation and toxin translocation. In this study, we investigated the effects of mutating a critical site involved in pore formation, Leu-1106, to residues that differ in size and polarity (Phe, Ala, Cys, Asp). We observed a broad range of effects on TcdB function in vitro consistent with the role of this site in pore formation and translocation. We show that mice challenged systemically with a lethal dose (LD100) of the most defective mutant (L1106K) showed no symptoms of disease highlighting the importance of this residue and the translocation domain in disease pathogenesis. These findings offer insights into the structure function of the toxin translocation pore, and inform novel therapeutic strategies against CDI.

  19. A human vitamin D receptor mutation causes rickets and impaired Th1/Th17 responses.

    PubMed

    van der Eerden, Bram C J; van der Heyden, Josine C; van Hamburg, Jan Piet; Schreuders-Koedam, Marijke; Asmawidjaja, Patrick S; de Muinck Keizer-Schrama, Sabine M; Boot, Annemieke M; Lubberts, Erik; Drop, Stenvert L S; van Leeuwen, Johannes P T M

    2014-12-01

    We present a brother and sister with severe rickets, alopecia and highly elevated serum levels of 1,25-dihydroxyvitamin D (1,25-(OH)2D3). Genomic sequencing showed a homozygous point mutation (A133G) in the vitamin D receptor gene, leading to an amino acid change in the DNA binding domain (K45E), which was described previously. Hereditary vitamin D resistant rickets (HVDRR) was diagnosed. Functional studies in skin biopsy fibroblasts confirmed this. 1,25-(OH)2D3 reduced T helper (Th) cell population-specific cytokine expression of interferon γ (Th1), interleukins IL-17A (Th17) and IL-22 (Th17/Th22) in peripheral blood mononuclear cells (PBMCs) from the patient's parents, whereas IL-4 (Th2) levels were higher, reflecting an immunosuppressive condition. None of these factors were regulated by 1,25-(OH)2D3 in PBMCs from the boy. At present, both patients (boy is 23 years of age, girl is 7) have not experienced any major immune-related disorders. Although both children developed alopecia, the girl did so earlier than the boy. The boy showed complete recovery from the rickets at the age of 17 and does not require any vitamin D supplementations to date. In conclusion, we characterized two siblings with HVDRR, due to a mutation in the DNA binding domain of VDR. Despite a defective T cell response to vitamin D, no signs of any inflammatory-related abnormalities were seen, thus questioning an essential role of vitamin D in the immune system. Despite the fact that currently medicine is not required, close monitoring in the future of these patients is warranted for potential recurrence of vitamin D dependence and diagnosis of (chronic) inflammatory-related diseases.

  20. A collagen α2(I) mutation impairs healing after experimental myocardial infarction.

    PubMed

    Hofmann, Ulrich; Bonz, Andreas; Frantz, Stefan; Hu, Kai; Waller, Christiane; Roemer, Katrin; Wolf, Jürgen; Gattenlöhner, Stefan; Bauersachs, Johann; Ertl, Georg

    2012-01-01

    Collagen breakdown and de novo synthesis are important processes during early wound healing after myocardial infarction (MI). We tested the hypothesis that collagen I, the main constituent of the extracellular matrix, affects wound healing after MI. The osteogenesis imperfecta mouse (OIM), lacking procollagen-α2(I) expression, represents a model of the type III form of the disease in humans. Homozygous (OIM/OIM), heterozygous (OIM/WT), and wild-type (WT/WT) mice were subjected to a permanent myocardial infarction protocol or sham surgery. Baseline functional and geometrical parameters determined by echocardiography did not differ between genotypes. After MI but not after sham surgery, OIM/OIM animals exhibited significantly increased mortality, due to early ventricular rupture between day 3 and 7. Echocardiography at day 1 demonstrated increased left ventricular dilation in OIM/OIM animals. Less collagen I mRNA within the infarct area was found in OIM/OIM animals. At 2 days after MI, MMP-9 expression in the infarct border zone was higher in OIM/OIM than in WT/WT animals. Increased granulocyte infiltration into the infarct border zone occurred in OIM/OIM animals. Neither granulocyte depletion nor MMP inhibition reduced mortality in OIM/OIM animals. In this murine model, deficiency of collagen I leads to a myocardial wound-healing defect. Both structural alterations within pre-existing collagen matrix and impaired collagen de novo expression contribute to a high rate of early myocardial rupture after MI.

  1. Novel MPZ mutations and congenital hypomyelinating neuropathy

    PubMed Central

    McMillan, Hugh J.; Santagata, Sandro; Shapiro, Frederic; Batish, Sat Dev; Couchon, Libby; Donnelly, Stephen; Kang, Peter B.

    2010-01-01

    We report two new MPZ mutations causing congenital hypomyelinating neuropathies; c.368_382delGCACGTTCACTTGTG (in-frame deletion of five amino acids) and c.392A>G, Asn131Ser. Each child had clinical and electrodiagnostic features consistent with an inherited neuropathy, confirmed by sural nerve biopsy. The cases illustrate the clinically heterogeneity that exists even within early-onset forms of this disease. They also lend additional support to the emerging clinical and laboratory evidence that impaired intracellular protein trafficking may represent the cause of some congenital hypomyelinating neuropathies. PMID:20621479

  2. A pathogenic mutation in cytochrome c oxidase results in impaired proton pumping while retaining O(2)-reduction activity.

    PubMed

    Namslauer, Ida; Lee, Hyun Ju; Gennis, Robert B; Brzezinski, Peter

    2010-05-01

    In this work we have investigated the effect of a pathogenic mitochondrial DNA mutation found in human colon cells, at a functional-molecular level. The mutation results in the amino-acid substitution Tyr19His in subunit I of the human CytcO and it is associated with respiratory deficiency. It was introduced into Rhodobacter sphaeroides, which carries a cytochrome c oxidase (cytochrome aa(3)) that serves as a model of the mitochondrial counterpart. The residue is situated in the middle of a pathway that is used to transfer substrate protons as well as protons that are pumped across the membrane. The Tyr33His (equivalent residue in the bacterial CytcO) structural variant of the enzyme was purified and its function was investigated. The results show that in the structurally altered CytcO the activity decreased due to slowed proton transfer; proton transfer from an internal proton donor, the highly-conserved Glu286, to the catalytic site was slowed by a factor of approximately 5, while reprotonation of the Glu from solution was slowed by a factor of approximately 40. In addition, in the structural variant proton pumping was completely impaired. These results are explained in terms of introduction of a barrier for proton transfer through the D pathway and changes in the coordination of water molecules surrounding the Glu286 residue. The study offers an explanation, at the molecular level, to the link between a specific amino-acid substitution and a pathogenic phenotype identified in human colon cells.

  3. Presymptomatic semantic impairment in a case of fronto-temporal lobar degeneration associated with the +16 mutation in MAPT.

    PubMed

    Garrard, Peter; Carroll, Erin

    2005-10-01

    We describe a patient who came to neurological attention because of his at-risk status for the +16 exon 10 splice mutation in the tau gene (microtubule associated protein tau, MAPT), which had given rise to progressive behavioural disturbances in two of his siblings. The patient began to exhibit early signs of behavioural disturbance at around the age of symptom onset in both of his siblings. Although he did not spontaneously complain of difficulties in the domain of language, he met clinical, radiological and neuropsychological criteria for semantic dementia. On the assumption that his illness is mediated by the same pathological process as those of his siblings, we propose that this clinical picture represents the earliest changes of a semantic impairment - a phase of the illness that is often retrospectively described by patients and their relations, but has never previously been documented at first hand. Although typical of semantic dementia in many respects, the illness had several interesting and atypical features that emerged on detailed testing: first, he exhibited no insight into his difficulties; secondly, progression over a twelve-month interval was unusually slow; thirdly, he evinced a striking and consistent advantage for nonliving over living concepts; fourthly, a differential impairment of distinctive over shared knowledge did not emerge except when items that he could still name were compared with those for which he was anomic. Finally, the availability of post mortem pathological analysis from the brains of both of his affected siblings allowed us to attribute his illness to a specific pathological process which is considered unusual for patients with this clinical phenotype. PMID:16251138

  4. Toward a unified biological hypothesis for the BDNF Val66Met-associated memory deficits in humans: a model of impaired dendritic mRNA trafficking

    PubMed Central

    Baj, Gabriele; Carlino, Davide; Gardossi, Lucia; Tongiorgi, Enrico

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) represents promotesa key molecule for the survival and differentiation of specific populations of neurons in the central nervous system. BDNF also regulates plasticity-related processes underlying memory and learning. A common single nucleotide polymorphism (SNP) rs6265 has been identified on the coding sequence of human BDNF located at 11p13. The SNP rs6265 is a single base mutation with an adenine instead of a guanine at position 196 (G196A), resulting in the amino acid substitution Val66Met. This polymorphism only exists in humans and has been associated with a plethora of effects ranging from molecular, cellular and brain structural modifications in association with deficits in social and cognitive functions. To date, the literature on Val66Met polymorphism describes a complex and often conflicting pattern of effects. In this review, we attempt to provide a unifying model of the Val66Met effects. We discuss the clinical evidence of the association between Val66Met and memory deficits, as well as the molecular mechanisms involved including the reduced transport of BDNF mRNA to the dendrites as well as the reduced processing and secretion of BDNF protein through the regulated secretory pathway. PMID:24198753

  5. IL23R (Interleukin 23 Receptor) Variants Protective against Inflammatory Bowel Diseases (IBD) Display Loss of Function due to Impaired Protein Stability and Intracellular Trafficking.

    PubMed

    Sivanesan, Durga; Beauchamp, Claudine; Quinou, Christiane; Lee, Jonathan; Lesage, Sylvie; Chemtob, Sylvain; Rioux, John D; Michnick, Stephen W

    2016-04-15

    Genome-wide association studies as well as murine models have shown that the interleukin 23 receptor (IL23R) pathway plays a pivotal role in chronic inflammatory diseases such as Crohn disease (CD), ulcerative colitis, psoriasis, and type 1 diabetes. Genome-wide association studies and targeted re-sequencing studies have revealed the presence of multiple potentially causal variants of the IL23R. Specifically the G149R, V362I, and R381Q IL23Rα chain variants are linked to protection against the development of Crohn disease and ulcerative colitis in humans. Moreover, the exact mechanism of action of these receptor variants has not been elucidated. We show that all three of these IL23Rα variants cause a reduction in IL23 receptor activation-mediated phosphorylation of the signal-transducing activator of transcription 3 (STAT3) and phosphorylation of signal transducing activator of transcription 4 (STAT4). The reduction in signaling is due to lower levels of cell surface receptor expression. For G149R, the receptor retention in the endoplasmic reticulum is due to an impairment of receptor maturation, whereas the R381Q and V362I variants have reduced protein stability. Finally, we demonstrate that the endogenous expression of IL23Rα protein from V362I and R381Q variants in human lymphoblastoid cell lines exhibited lower expression levels relative to susceptibility alleles. Our results suggest a convergent cause of IL23Rα variant protection against chronic inflammatory disease. PMID:26887945

  6. Methods to analyze subcellular localization and intracellular trafficking of Claudin-16.

    PubMed

    Kausalya, P Jaya; Hunziker, Walter

    2011-01-01

    The integral tight junction protein Claudin-16 (Cldn16) is predominantly expressed in renal epithelial cells of the thick ascending limb of Henle's loop where, together with claudin-19, it forms a cation-selective pore that allows influx of Na+ from the interstitial fluid into the lumen of the kidney tubule. This leads to an electrochemical gradient that drives the reabsorbtion of Mg2+ and Ca2+ ions from the renal filtrate. Mutations in the Cldn16 gene have been identified in patients suffering from familial hypomagnesemia with hypercalciuria and nephrocalcinosis, with excessive renal wastage of Mg2+ and Ca2+ being a hallmark of this condition. Studies into the mechanism by which mutations impair Cldn16 function have shown that although several mutations affect paracellular ion transport, many interfere with intracellular trafficking of Cldn16, ultimately compromising its localization to TJs. Here, we describe the experimental approaches that can be used to monitor intracellular localization and trafficking of Cldn16. These methods can easily be adapted to study other claudins, provided suitable antibodies are available.

  7. [The mutation spectrum of the GJB2 gene in Belarussian patients with hearing loss. Results of pilot genetic screening of hearing impairment in newborns].

    PubMed

    Bliznets, E A; Marcul', D N; Khorov, O G; Markova, T G; Poliakov, A V

    2014-02-01

    A total of 111 unrelated probands and their 8 sibs from Grodno oblast (Belarus) with bilateral isolated sensorineural hearing impairment were studied for the presence of mutations in the connexin 26--GJB2gene. Mutations were detected in 51 probands (46% of the sample). A significantly higher frequency of the GJB2gene mutations was observed in familial cases of the disease with the autosomal recessive type of inheritance (in 78% of families). Detected peculiarities of the GJB2 gene mutation spectrum demonstrated that use of the algorithm, which was developed for Russian patients, is optimal for the molecular study of patients from Be- larus. In the sample of patients with hearing loss, the highest (among other similar samples studied in the world) allele frequency of c.313_326de114 mutation (7% out of all pathological GJB2 alleles) was registered; Polish origin of this deletion was suggested. It was demonstrated that detection of the GJB2 gene mutation on only one patient's chromosome is insufficient to confirm a molecular genetic diagnosis of hearing loss of the DFNB1 genetic type (autosomal recessive hearing loss caused by the GJB2 gene mutations). Pilot screening in the presence of GJB2 gene mutations in newborns from Grodno oblast was conducted. The material from 235 children was studied during the screening; nine heterozygous carriers of the mutation were found. The c.35delG mutation was detected in a homozygous state in a single newborn (hearing loss of moderate severity was subsequently audiologically confirmed in this child). PMID:25711030

  8. Aberrant splicing of genes involved in haemoglobin synthesis and impaired terminal erythroid maturation in SF3B1 mutated refractory anaemia with ring sideroblasts.

    PubMed

    Conte, Simona; Katayama, Shintaro; Vesterlund, Liselotte; Karimi, Mohsen; Dimitriou, Marios; Jansson, Monika; Mortera-Blanco, Teresa; Unneberg, Per; Papaemmanuil, Elli; Sander, Birgitta; Skoog, Tiina; Campbell, Peter; Walfridsson, Julian; Kere, Juha; Hellström-Lindberg, Eva

    2015-11-01

    Refractory anaemia with ring sideroblasts (RARS) is distinguished by hyperplastic inefficient erythropoiesis, aberrant mitochondrial ferritin accumulation and anaemia. Heterozygous mutations in the spliceosome gene SF3B1 are found in a majority of RARS cases. To explore the link between SF3B1 mutations and anaemia, we studied mutated RARS CD34(+) marrow cells with regard to transcriptome sequencing, splice patterns and mutational allele burden during erythroid differentiation. Transcriptome profiling during early erythroid differentiation revealed a marked up-regulation of genes involved in haemoglobin synthesis and in the oxidative phosphorylation process, and down-regulation of mitochondrial ABC transporters compared to normal bone marrow. Moreover, mis-splicing of genes involved in transcription regulation, particularly haemoglobin synthesis, was confirmed, indicating a compromised haemoglobinization during RARS erythropoiesis. In order to define the phase during which erythroid maturation of SF3B1 mutated cells is most affected, we assessed allele burden during erythroid differentiation in vitro and in vivo and found that SF3B1 mutated erythroblasts showed stable expansion until late erythroblast stage but that terminal maturation to reticulocytes was significantly reduced. In conclusion, SF3B1 mutated RARS progenitors display impaired splicing with potential downstream consequences for genes of key importance for haemoglobin synthesis and terminal erythroid differentiation.

  9. Correspondence regarding Ballana et al., "Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment".

    PubMed

    Abreu-Silva, R S; Batissoco, A C; Lezirovitz, K; Romanos, J; Rincon, D; Auricchio, M T B M; Otto, P A; Mingroni-Netto, R C

    2006-05-12

    Ballana et al. [E. Ballana, E. Morales, R. Rabionet, B. Montserrat, M. Ventayol, O. Bravo, P. Gasparini, X. Estivill, Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment, Biochem. Biophys. Res. Commun. 341 (2006) 950-957] detected a T1291C mutation segregating in a Cuban pedigree with hearing impairment. They interpreted it as probably pathogenic, based on family history, RNA conformation prediction and its absence in a control group of 95 Spanish subjects. We screened a sample of 203 deaf subjects and 300 hearing controls (110 "European-Brazilians" and 190 "African-Brazilians") for the mitochondrial mutations A1555G and T1291C. Five deaf subjects had the T1291C substitution, three isolated cases and two familial cases. In the latter, deafness was paternally inherited or segregated with the A1555G mutation. This doesn't support the hypothesis of T1291C mutation being pathogenic. Two "African-Brazilian" controls also had the T1291C substitution. Six of the seven T1291C-carriers (five deaf and two controls) had mitochondrial DNA of African origin, belonging to macrohaplogroup L1/L2. Therefore, these data point to T1291C substitution as most probably an African non-pathogenic polymorphism.

  10. Postnatal microcephaly and pain insensitivity due to a de novo heterozygous DNM1L mutation causing impaired mitochondrial fission and function.

    PubMed

    Sheffer, Ruth; Douiev, Liza; Edvardson, Simon; Shaag, Avraham; Tamimi, Khaled; Soiferman, Devorah; Meiner, Vardiella; Saada, Ann

    2016-06-01

    An emerging class of mitochondrial disorders is caused by mutations in nuclear genes affecting mitochondrial dynamics and function. One of these is the DNM1L gene encoding the dynamin-related protein 1 (DRP1), which is pivotal in the mitochondrial fission process. Here, we describe a patient with a novel dominant-negative, de novo DNM1L mutation, which expands the clinical spectrum. The patient reported here exhibits a chronic neurological disorder, characterized by postnatal microcephaly, developmental delay, and pain insensitivity. Muscle biopsy disclosed decreased respiratory chain complex IV activity. Exome sequencing showed a de novo heterozygous c.1084G>A (p.G362S) mutation. Subsequent studies of patient skin fibroblasts showed markedly impaired mitochondrial fission and a partial respiratory chain defect while peroxisomal morphology remained intact. Human foreskin fibroblasts over-expressing the mutant DNM1L gene displayed aberrant mitochondrial morphology. © 2016 Wiley Periodicals, Inc. PMID:26992161

  11. Postnatal microcephaly and pain insensitivity due to a de novo heterozygous DNM1L mutation causing impaired mitochondrial fission and function.

    PubMed

    Sheffer, Ruth; Douiev, Liza; Edvardson, Simon; Shaag, Avraham; Tamimi, Khaled; Soiferman, Devorah; Meiner, Vardiella; Saada, Ann

    2016-06-01

    An emerging class of mitochondrial disorders is caused by mutations in nuclear genes affecting mitochondrial dynamics and function. One of these is the DNM1L gene encoding the dynamin-related protein 1 (DRP1), which is pivotal in the mitochondrial fission process. Here, we describe a patient with a novel dominant-negative, de novo DNM1L mutation, which expands the clinical spectrum. The patient reported here exhibits a chronic neurological disorder, characterized by postnatal microcephaly, developmental delay, and pain insensitivity. Muscle biopsy disclosed decreased respiratory chain complex IV activity. Exome sequencing showed a de novo heterozygous c.1084G>A (p.G362S) mutation. Subsequent studies of patient skin fibroblasts showed markedly impaired mitochondrial fission and a partial respiratory chain defect while peroxisomal morphology remained intact. Human foreskin fibroblasts over-expressing the mutant DNM1L gene displayed aberrant mitochondrial morphology. © 2016 Wiley Periodicals, Inc.

  12. ESCRT-III-Associated Protein ALIX Mediates High-Affinity Phosphate Transporter Trafficking to Maintain Phosphate Homeostasis in Arabidopsis

    PubMed Central

    Cardona-López, Ximena; Cuyas, Laura; Marín, Elena; Irigoyen, María Luisa; Gil, Erica; Puga, María Isabel; Bligny, Richard; Nussaume, Laurent; Geldner, Niko; Paz-Ares, Javier

    2015-01-01

    Prior to the release of their cargoes into the vacuolar lumen, sorting endosomes mature into multivesicular bodies (MVBs) through the action of ENDOSOMAL COMPLEX REQUIRED FOR TRANSPORT (ESCRT) protein complexes. MVB-mediated sorting of high-affinity phosphate transporters (PHT1) to the vacuole limits their plasma membrane levels under phosphate-sufficient conditions, a process that allows plants to maintain phosphate homeostasis. Here, we describe ALIX, a cytosolic protein that associates with MVB by interacting with ESCRT-III subunit SNF7 and mediates PHT1;1 trafficking to the vacuole in Arabidopsis thaliana. We show that the partial loss-of-function mutant alix-1 displays reduced vacuolar degradation of PHT1;1. ALIX derivatives containing the alix-1 mutation showed reduced interaction with SNF7, providing a simple molecular explanation for impaired cargo trafficking in alix-1 mutants. In fact, the alix-1 mutation also hampered vacuolar sorting of the brassinosteroid receptor BRI1. We also show that alix-1 displays altered vacuole morphogenesis, implying a new role for ALIX proteins in vacuolar biogenesis, likely acting as part of ESCRT-III complexes. In line with a presumed broad target spectrum, the alix-1 mutation is pleiotropic, leading to reduced plant growth and late flowering, with stronger alix mutations being lethal, indicating that ALIX participates in diverse processes in plants essential for their life. PMID:26342016

  13. Prevalence of the A1555G (12S rRNA) and tRNASer(UCN) mitochondrial mutations in hearing-impaired Brazilian patients.

    PubMed

    Abreu-Silva, R S; Lezirovitz, K; Braga, M C C; Spinelli, M; Pirana, S; Della-Rosa, V A; Otto, P A; Mingroni-Netto, R C

    2006-02-01

    Mitochondrial mutations are responsible for at least 1% of the cases of hereditary deafness, but the contribution of each mutation has not yet been defined in African-derived or native American genetic backgrounds. A total of 203 unselected hearing-impaired patients were screened for the presence of the mitochondrial mutation A1555G in the 12S rRNA gene and mutations in the tRNASer(UCN) gene in order to assess their frequency in the ethnically admixed Brazilian population. We found four individuals with A1555G mutation (2%), which is a frequency similar to those reported for European-derived populations in unselected samples. On the other hand, complete sequencing of the tRNASer(UCN) did not reveal reported pathogenic substitutions, namely A7445G, 7472insC, T7510C, or T7511C. Instead, other rare substitutions were found such as T1291C, A7569G, and G7444A. To evaluate the significance of these findings, 110 "European-Brazilians" and 190 "African-Brazilians" unrelated hearing controls were screened. The T1291C, A7569G and G7444A substitutions were each found in about 1% (2/190) of individuals of African ancestry, suggesting that they are probably polymorphic. Our results indicate that screening for the A1555G mutation is recommended among all Brazilian deaf patients, while testing for mutations in the tRNASer(UCN) gene should be considered only when other frequent deafness-causing mutations have been excluded or in the presence of a maternal transmission pattern.

  14. UNC-108/Rab2 Regulates Postendocytic Trafficking in Caenorhabditis elegans

    PubMed Central

    Chun, Denise K.; McEwen, Jason M.; Burbea, Michelle

    2008-01-01

    After endocytosis, membrane proteins are often sorted between two alternative pathways: a recycling pathway and a degradation pathway. Relatively little is known about how trafficking through these alternative pathways is differentially regulated. Here, we identify UNC-108/Rab2 as a regulator of postendocytic trafficking in both neurons and coelomocytes. Mutations in the Caenorhabditis elegans Rab2 gene unc-108, caused the green fluorescent protein (GFP)-tagged glutamate receptor GLR-1 (GLR-1::GFP) to accumulate in the ventral cord and in neuronal cell bodies. In neuronal cell bodies of unc-108/Rab2 mutants, GLR-1::GFP was found in tubulovesicular structures that colocalized with markers for early and recycling endosomes, including Syntaxin-13 and Rab8. GFP-tagged Syntaxin-13 also accumulated in the ventral cord of unc-108/Rab2 mutants. UNC-108/Rab2 was not required for ubiquitin-mediated sorting of GLR-1::GFP into the multivesicular body (MVB) degradation pathway. Mutations disrupting the MVB pathway and unc-108/Rab2 mutations had additive effects on GLR-1::GFP levels in the ventral cord. In coelomocytes, postendocytic trafficking of the marker Texas Red-bovine serum albumin was delayed. These results demonstrate that UNC-108/Rab2 regulates postendocytic trafficking, most likely at the level of early or recycling endosomes, and that UNC-108/Rab2 and the MVB pathway define alternative postendocytic trafficking mechanisms that operate in parallel. These results define a new function for Rab2 in protein trafficking. PMID:18434599

  15. Phenotypic variability in a seven-generation Swedish family segregating autosomal dominant hearing impairment due to a novel EYA4 frameshift mutation.

    PubMed

    Frykholm, Carina; Klar, Joakim; Arnesson, Hanna; Rehnman, Anna-Carin; Lodahl, Marianne; Wedén, Ulla; Dahl, Niklas; Tranebjærg, Lisbeth; Rendtorff, Nanna D

    2015-05-25

    Linkage to an interval overlapping the DFNA10 locus on chromosome 6q22-23 was found through genome wide linkage analysis in a seven-generation Swedish family segregating postlingual, autosomal dominant nonsyndromic sensorineural hearing impairment. A novel heterozygous frame-shift mutation (c.579_580insTACC, p.(Asp194Tyrfs*52)) in EYA4 was identified that truncates the so-called variable region of the protein. The mutation is predicted to result in haploinsufficiency of the EYA4 product. No evidence for dilated cardiomyopathy was found in the family, contrasting to a previous family with a deletion resulting in a similar truncation in the variable region. A highly variable age of onset was seen in the mutation carriers. For assessment of the aetiology of this variability, clinical and audiometric data analyses were performed. The affected family members all had similar cross-sectional and longitudinal deterioration of pure tone average (PTA) once the process of hearing deterioration had started, and no gender, parent-of-origin or family branch differences on PTA could be found. Age at onset varied between the family branches. In summary, this is the ninth published genetically verified DFNA10 family. The results imply that unidentified factors, genetic or environmental, other than the EYA4 mutation, are of importance for the age at onset of DFNA10, and that mutation early in the variable region of the EYA4 protein can occur in the absence of dilated cardiomyopathy.

  16. PAPSS2 Deficiency Causes Androgen Excess via Impaired DHEA Sulfation—In Vitro and in Vivo Studies in a Family Harboring Two Novel PAPSS2 Mutations

    PubMed Central

    Oostdijk, Wilma; Idkowiak, Jan; Mueller, Jonathan W.; House, Philip J.; Taylor, Angela E.; O'Reilly, Michael W.; Hughes, Beverly A.; de Vries, Martine C.; Kant, Sarina G.; Santen, Gijs W. E.; Verkerk, Annemieke J. M. H.; Uitterlinden, André G.; Wit, Jan M.; Losekoot, Monique

    2015-01-01

    Context: PAPSS2 (PAPS synthase 2) provides the universal sulfate donor PAPS (3′-phospho-adenosine-5′-phosphosulfate) to all human sulfotransferases, including SULT2A1, responsible for sulfation of the crucial androgen precursor dehydroepiandrosterone (DHEA). Impaired DHEA sulfation is thought to increase the conversion of DHEA toward active androgens, a proposition supported by the previous report of a girl with inactivating PAPSS2 mutations who presented with low serum DHEA sulfate and androgen excess, clinically manifesting with premature pubarche and early-onset polycystic ovary syndrome. Patients and Methods: We investigated a family harboring two novel PAPSS2 mutations, including two compound heterozygous brothers presenting with disproportionate short stature, low serum DHEA sulfate, but normal serum androgens. Patients and parents underwent a DHEA challenge test comprising frequent blood sampling and urine collection before and after 100 mg DHEA orally, with subsequent analysis of DHEA sulfation and androgen metabolism by mass spectrometry. The functional impact of the mutations was investigated in silico and in vitro. Results: We identified a novel PAPSS2 frameshift mutation, c.1371del, p.W462Cfs*3, resulting in complete disruption, and a novel missense mutation, c.809G>A, p.G270D, causing partial disruption of DHEA sulfation. Both patients and their mother, who was heterozygous for p.W462Cfs*3, showed increased 5α-reductase activity at baseline and significantly increased production of active androgens after DHEA intake. The mother had a history of oligomenorrhea and chronic anovulation that required clomiphene for ovulation induction. Conclusions: We provide direct in vivo evidence for the significant functional impact of mutant PAPSS2 on DHEA sulfation and androgen activation. Heterozygosity for PAPSS2 mutations can be associated with a phenotype resembling polycystic ovary syndrome. PMID:25594860

  17. Mutations affecting the stability of the haemagglutinin molecule impair the immunogenicity of live attenuated H3N2 intranasal influenza vaccine candidates lacking NS1.

    PubMed

    Nakowitsch, Sabine; Wolschek, Markus; Morokutti, Alexander; Ruthsatz, Tanja; Krenn, Brigitte M; Ferko, Boris; Ferstl, Nicole; Triendl, Andrea; Muster, Thomas; Egorov, Andrej; Romanova, Julia

    2011-04-27

    The isolation and cultivation of human influenza viruses in embryonated hen eggs or cell lines often leads to amino acid substitutions in the haemagglutinin (HA) molecule. We found that the propagation of influenza A H3N2 viruses on Vero cells may trigger the appearance of HA destabilising mutations, affecting viral resistance to low pH or high temperature treatment. Two ΔNS1 reassortants, containing the HA sequences identical to the original human H3N2 influenza virus isolates were constructed. Passages of these viruses on Vero cells led to the appearance of single mutations in the HA(1) L194P or HA(2) G75R subunits that impaired virus stability. The original HA sequences and the stable phenotypes of the primary isolates were preserved if reassortants were passaged by infection at pH 5.6 and cultivation in medium at pH 6.5. Corresponding ΔNS1 reassortants were compared for their immunogenicity in ferrets upon intranasal immunisation. Vaccine candidates containing HA mutations demonstrated significantly lower immunogenicity compared to those without mutations. Thus, the retaining of the original HA sequences of human viruses during vaccine production might be crucial for the efficacy of live attenuated influenza vaccines.

  18. The arrhythmogenic human HRC point mutation S96A leads to spontaneous Ca(2+) release due to an impaired ability to buffer store Ca(2+).

    PubMed

    Zhang, Joe Z; McLay, Janet C; Jones, Peter P

    2014-09-01

    The Ser96Ala (S96A) mutation within the histidine rich Ca(2+) binding protein (HRC) has recently been linked to cardiac arrhythmias in idiopathic dilated cardiomyopathy patients, potentially attributable to an increase in spontaneous Ca(2+) release events. However, the molecular mechanism connecting the S96A mutation of HRC to increased Ca(2+) release events remains unclear. Previous findings by our group indicate that these spontaneous Ca(2+) release events may be linked to store overload induced Ca(2+) release (SOICR) via the cardiac ryanodine receptor (RyR2). Therefore, in the present study we sought to determine whether HRC wild type (HRC WT) and S96A mutant (HRC S96A) expression has a direct effect on SOICR. Using both cytosolic and intra-Ca(2+) store measurements in human embryonic kidney cells expressing RyR2, we found that HRC WT significantly inhibited the propensity for SOICR by buffering store free Ca(2+) and inhibiting store Ca(2+) uptake. In contrast, HRC S96A exhibited a markedly suppressed inhibitory effect on SOICR, which was attributed to an impaired ability to buffer store Ca(2+) and reduce store Ca(2+) uptake. In addition to impairing the ability of HRC to regulate bulk store Ca(2+), a proximity ligation assay demonstrated that the S96A mutation also disrupts the Ca(2+) microdomain around the RyR2, as it alters the Ca(2+) dependent association of RyR2 and HRC. Importantly, in contrast to previous reports, the absence of triadin in our experimental model illustrates that the S96A mutation in HRC can alter the propensity for SOICR without any interaction with triadin. Collectively, our results demonstrate that the human HRC mutation S96A leads to an increase in spontaneous Ca(2+) release and ultimately arrhythmias by disrupting the regulation of intra-store free Ca(2+). This is primarily due to an impaired ability to act as an effective bulk and local microdomain store Ca(2+) buffer.

  19. Impaired mechanical response of an EDMD mutation leads to motility phenotypes that are repaired by loss of prenylation.

    PubMed

    Zuela, Noam; Zwerger, Monika; Levin, Tal; Medalia, Ohad; Gruenbaum, Yosef

    2016-05-01

    There are roughly 14 distinct heritable autosomal dominant diseases associated with mutations in lamins A/C, including Emery-Dreifuss muscular dystrophy (EDMD). The mechanical model proposes that the lamin mutations change the mechanical properties of muscle nuclei, leading to cell death and tissue deterioration. Here, we developed an experimental protocol that analyzes the effect of disease-linked lamin mutations on the response of nuclei to mechanical strain in living Caenorhabditis elegans We found that the EDMD mutation L535P disrupts the nuclear mechanical response specifically in muscle nuclei. Inhibiting lamin prenylation rescued the mechanical response of the EDMD nuclei, reversed the muscle phenotypes and led to normal motility. The LINC complex and emerin were also required to regulate the mechanical response of C. elegans nuclei. This study provides evidence to support the mechanical model and offers a potential future therapeutic approach towards curing EDMD.

  20. Impaired mechanical response of an EDMD mutation leads to motility phenotypes that are repaired by loss of prenylation.

    PubMed

    Zuela, Noam; Zwerger, Monika; Levin, Tal; Medalia, Ohad; Gruenbaum, Yosef

    2016-05-01

    There are roughly 14 distinct heritable autosomal dominant diseases associated with mutations in lamins A/C, including Emery-Dreifuss muscular dystrophy (EDMD). The mechanical model proposes that the lamin mutations change the mechanical properties of muscle nuclei, leading to cell death and tissue deterioration. Here, we developed an experimental protocol that analyzes the effect of disease-linked lamin mutations on the response of nuclei to mechanical strain in living Caenorhabditis elegans We found that the EDMD mutation L535P disrupts the nuclear mechanical response specifically in muscle nuclei. Inhibiting lamin prenylation rescued the mechanical response of the EDMD nuclei, reversed the muscle phenotypes and led to normal motility. The LINC complex and emerin were also required to regulate the mechanical response of C. elegans nuclei. This study provides evidence to support the mechanical model and offers a potential future therapeutic approach towards curing EDMD. PMID:27034135

  1. Exploring the link between glucocerebrosidase mutations and parkinsonism

    PubMed Central

    Westbroek, Wendy; Gustafson, Ann Marie; Sidransky, Ellen

    2012-01-01

    Clinical, genetic and pathological studies all demonstrate that mutations in glucocerebrosidase (GBA), which encodes the lysosomal enzyme deficient in Gaucher disease (GD), are an important and common risk factor for Parkinson disease (PD) and related disorders. Some patients with GD and Gaucher carriers develop parkinsonism. Furthermore, subjects with PD have a greatly increased frequency of GBA mutations. GBA mutation carriers exhibit diverse parkinsonian phenotypes, and have glucocerebrosidase-positive Lewy bodies. Although the mechanism for this association is unknown, we present several theories, including enhanced protein aggregation, prion transmission, lipid accumulation, and impaired autophagy, mitophagy or trafficking. Each has inherent limitations, and an unknown “second hit” might be essential. Elucidating the basis for this link will have important consequences and should provide new insights into lysosomal pathways and potential treatment strategies. PMID:21723784

  2. Impaired Acid Catalysis by Mutation of a Protein Loop Hinge Residue in a YopH Mutant Revealed by Crystal Structures

    SciTech Connect

    Brandao, T.; Robinson, H; Johnson, S; Hengge, A

    2009-01-01

    Catalysis by the Yersinia protein-tyrosine phosphatase YopH is significantly impaired by the mutation of the conserved Trp354 residue to Phe. Though not a catalytic residue, this Trp is a hinge residue in a conserved flexible loop (the WPD-loop) that must close during catalysis. To learn why this seemingly conservative mutation reduces catalysis by 2 orders of magnitude, we have solved high-resolution crystal structures for the W354F YopH in the absence and in the presence of tungstate and vanadate. Oxyanion binding to the P-loop in W354F is analogous to that observed in the native enzyme. However, the WPD-loop in the presence of oxyanions assumes a half-closed conformation, in contrast to the fully closed state observed in structures of the native enzyme. This observation provides an explanation for the impaired general acid catalysis observed in kinetic experiments with Trp mutants. A 1.4 Angstroms structure of the W354F mutant obtained in the presence of vanadate reveals an unusual divanadate species with a cyclic [VO]2 core, which has precedent in small molecules but has not been previously reported in a protein crystal structure.

  3. A Thrombomodulin Mutation that Impairs Active Protein C Generation Is Detrimental in Severe Pneumonia-Derived Gram-Negative Sepsis (Melioidosis)

    PubMed Central

    Kager, Liesbeth M.; Wiersinga, W. Joost; Roelofs, Joris J. T. H.; de Boer, Onno J.; Weiler, Hartmut; van 't Veer, Cornelis; van der Poll, Tom

    2014-01-01

    Background During severe (pneumo)sepsis inflammatory and coagulation pathways become activated as part of the host immune response. Thrombomodulin (TM) is involved in a range of host defense mechanisms during infection and plays a pivotal role in activation of protein C (PC) into active protein C (APC). APC has both anticoagulant and anti-inflammatory properties. In this study we investigated the effects of impaired TM-mediated APC generation during melioidosis, a common form of community-acquired Gram-negative (pneumo)sepsis in South-East Asia caused by Burkholderia (B.) pseudomallei. Methodology/Principal Findings (WT) mice and mice with an impaired capacity to activate protein C due to a point mutation in their Thbd gene (TMpro/pro mice) were intranasally infected with B. pseudomallei and sacrificed after 24, 48 or 72 hours for analyses. Additionally, survival studies were performed. When compared to WT mice, TMpro/pro mice displayed a worse survival upon infection with B. pseudomallei, accompanied by increased coagulation activation, enhanced lung neutrophil influx and bronchoalveolar inflammation at late time points, together with increased hepatocellular injury. The TMpro/pro mutation had limited if any impact on bacterial growth and dissemination. Conclusion/Significance TM-mediated protein C activation contributes to protective immunity after infection with B. pseudomallei. These results add to a better understanding of the regulation of the inflammatory and procoagulant response during severe Gram-negative (pneumo)sepsis. PMID:24762740

  4. Age-Related Hearing Impairment (ARHI) Associated with GJB2 Single Mutation IVS1+1G>A in the Yakut Population Isolate in Eastern Siberia

    PubMed Central

    Pshennikova, Vera G.; Solovyev, Aisen V.; Klarov, Leonid A.; Solovyeva, Natalya A.; Kozhevnikov, Andrei A.; Vasilyeva, Lena M.; Fedotova, Elvira E.; Pak, Maria V.; Lekhanova, Sargylana N.; Zakharova, Elena V.; Savvinova, Kyunney E.; Gotovtsev, Nyurgun N.; Rafailo, Adyum M.; Luginov, Nikolay V.; Alexeev, Anatoliy N.; Posukh, Olga L.; Dzhemileva, Lilya U.; Khusnutdinova, Elza K.; Fedorova, Sardana A.

    2014-01-01

    Age-Related Hearing Impairment (ARHI) is one of the frequent sensory disorders registered in 50% of individuals over 80 years. ARHI is a multifactorial disorder due to environmental and poor-known genetic components. In this study, we present the data on age-related hearing impairment of 48 heterozygous carriers of mutation IVS1+1G>A (GJB2 gene) and 97 subjects with GJB2 genotype wt/wt in the Republic of Sakha/Yakutia (Eastern Siberia, Russia). This subarctic territory was found as the region with the most extensive accumulation of mutation IVS1+1G>A in the world as a result of founder effect in the unique Yakut population isolate. The GJB2 gene resequencing and detailed audiological analysis in the frequency range 0.25, 0.5, 1.0, 2.0, 4.0, 8.0 kHz were performed in all examined subjects that allowed to investigate genotype-phenotype correlations between the presence of single mutation IVS1+1G>A and hearing of subjects from examined groups. We revealed the linear correlation between increase of average hearing thresholds at speech frequencies (PTA0.5,1.0,2.0,4.0 kHz) and age of individuals with GJB2 genotype IVS1+1G>A/wt (rs = 0.499, p = 0.006860 for males and rs = 0.427, p = 0.000277 for females). Moreover, the average hearing thresholds on high frequency (8.0 kHz) in individuals with genotype IVS1+1G>A/wt (both sexes) were significantly worse than in individuals with genotype wt/wt (p<0.05). Age of hearing loss manifestation in individuals with genotype IVS1+1G>A/wt was estimated to be ∼40 years (rs = 0.504, p = 0.003). These findings demonstrate that the single IVS1+1G>A mutation (GJB2) is associated with age-related hearing impairment (ARHI) of the IVS1+1G>A carriers in the Yakuts. PMID:24959830

  5. Novel hypomorphic mutation in IKBKG impairs NEMO-ubiquitylation causing ectodermal dysplasia, immunodeficiency, incontinentia pigmenti, and immune thrombocytopenic purpura.

    PubMed

    Ramírez-Alejo, Noé; Alcántara-Montiel, Julio C; Yamazaki-Nakashimada, Marco; Duran-McKinster, Carola; Valenzuela-León, Paola; Rivas-Larrauri, Francisco; Cedillo-Barrón, Leticia; Hernández-Rivas, Rosaura; Santos-Argumedo, Leopoldo

    2015-10-01

    NF-κB essential modulator (NEMO) is a component of the IKK complex, which participates in the activation of the NF-κB pathway. Hypomorphic mutations in the IKBKG gene result in different forms of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) in males without affecting carrier females. Here, we describe a hypomorphic and missense mutation, designated c.916G>A (p.D306N), which affects our patient, his mother, and his sister. This mutation did not affect NEMO expression; however, an immunoprecipitation assay revealed reduced ubiquitylation upon CD40-stimulation in the patient's cells. Functional studies have demonstrated reduced phosphorylation and degradation of IκBα, affecting NF-κB recruitment into the nucleus. The patient presented with clinical features of ectodermal dysplasia, immunodeficiency, and immune thrombocytopenic purpura, the latter of which has not been previously reported in a patient with NEMO deficiency. His mother and sister displayed incontinentia pigmenti indicating that, in addition to amorphic mutations, hypomorphic mutations in NEMO can affect females. PMID:26117626

  6. Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson’s disease

    PubMed Central

    da Costa, Cristine Alves; Sunyach, Claire; Giaime, Emilie; West, Andrew; Corti, Olga; Brice, Alexis; Safe, Stephen; Abou-Sleiman, Patrick M.; Wood, Nicholas W.; Takahashi, Hitoshi; Goldberg, Mathew S.; Shen, Jie; Checler, Frédéric

    2009-01-01

    Mutations of the ubiquitin ligase parkin account for most autosomal recessive forms of juvenile Parkinson’s disease (AR-JP). Several studies have suggested that parkin possesses DNA-binding and transcriptional activity. We report here that parkin is a p53 transcriptional repressor. First, parkin prevented 6-hydroxydopamine-induced caspase-3 activation in a p53-dependent manner. Concomitantly, parkin reduced p53 expression and activity, an effect abrogated by familial parkin mutations known to either abolish or preserve its ligase activity. ChIP experiments indicate that overexpressed and endogenous parkin interact physically with the p53 promoter and that pathogenic mutations abolish DNA binding to and promoter transactivation of p53. Parkin lowered p53 mRNA levels and repressed p53 promoter transactivation through its Ring1 domain. Conversely, parkin depletion enhanced p53 expression and mRNA levels in fibroblasts and mouse brains, and increased cellular p53 activity and promoter transactivation in cells. Finally, familial parkin missense and deletion mutations enhanced p53 expression in human brains affected by AR-JP. This study reveals a ubiquitin ligase-independent function of parkin in the control of transcription and a functional link between parkin and p53 that is altered by AR-JP mutations. PMID:19801972

  7. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.

    PubMed

    Zeyer, Karina A; Reinhardt, Dieter P

    2015-01-01

    Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1. PMID:26281765

  8. Microcephaly, Intellectual Impairment, Bilateral Vesicoureteral Reflux, Distichiasis and Glomuvenous Malformations Associated with a 16q24.3 Contiguous Gene Deletion and a Glomulin Mutation

    PubMed Central

    Butler, Matthew G.; Dagenais, Susan L.; Garcia-Perez, José L.; Brouillard, Pascal; Vikkula, Miikka; Strouse, Peter; Innis, Jeffrey W.; Glover, Thomas W.

    2012-01-01

    Two hereditary syndromes, lymphedema-distichiasis syndrome (LD) and blepharo-chelio-dontic (BCD) syndrome include the aberrant growth of eyelashes from the meibomian glands, known as distichiasis. LD is an autosomal dominant syndrome primarily characterized by distichiasis and the onset of lymphedema usually during puberty. Mutations in the forkhead transcription factor FOXC2 are the only known cause of LD. BCD syndrome consists of autosomal dominant abnormalities of the eyelid, lip, and teeth, and the etiology remains unknown. In this report, we describe a proband that presented with distichiasis, microcephaly, bilateral grade IV vesicoureteral reflux requiring ureteral re-implantation, mild intellectual impairment and apparent glomuvenous malformations. Distichiasis was present in three generations of the proband’s maternal side of the family. The glomuvenous malformations were severe in the proband, and maternal family members exhibited lower extremity varicosities of variable degree. A GLMN (glomulin) gene mutation was identified in the proband that accounts for the observed glomuvenous malformations; no other family member could be tested. TIE2 sequencing revealed no mutations. In the proband, an additional submicroscopic 265 kb contiguous gene deletion was identified in 16q24.3, located 609 kb distal to the FOXC2 locus, which was inherited from the proband’s mother. The deletion includes the C16ORF95, FBXO31, MAP1LC3B, and ZCCHC14 loci and 115 kb of a gene desert distal to FOXC2 and FOXL1. Thus, it is likely that the microcephaly, distichiasis, vesicoureteral and intellectual impairment in this family may be caused by the deletion of one or more of these genes and/or deletion of distant cis-regulatory elements of FOXC2 expression. PMID:22407726

  9. ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function

    PubMed Central

    Murakami, Tetsuro; Qamar, Seema; Lin, Julie Qiaojin; Schierle, Gabriele S. Kaminski; Rees, Eric; Miyashita, Akinori; Costa, Ana R.; Dodd, Roger B.; Chan, Fiona T.S.; Michel, Claire H.; Kronenberg-Versteeg, Deborah; Li, Yi; Yang, Seung-Pil; Wakutani, Yosuke; Meadows, William; Ferry, Rodylyn Rose; Dong, Liang; Tartaglia, Gian Gaetano; Favrin, Giorgio; Lin, Wen-Lang; Dickson, Dennis W.; Zhen, Mei; Ron, David; Schmitt-Ulms, Gerold; Fraser, Paul E.; Shneider, Neil A.; Holt, Christine; Vendruscolo, Michele; Kaminski, Clemens F.; St George-Hyslop, Peter

    2015-01-01

    Summary The mechanisms by which mutations in FUS and other RNA binding proteins cause ALS and FTD remain controversial. We propose a model in which low-complexity (LC) domains of FUS drive its physiologically reversible assembly into membrane-free, liquid droplet and hydrogel-like structures. ALS/FTD mutations in LC or non-LC domains induce further phase transition into poorly soluble fibrillar hydrogels distinct from conventional amyloids. These assemblies are necessary and sufficient for neurotoxicity in a C. elegans model of FUS-dependent neurodegeneration. They trap other ribonucleoprotein (RNP) granule components and disrupt RNP granule function. One consequence is impairment of new protein synthesis by cytoplasmic RNP granules in axon terminals, where RNP granules regulate local RNA metabolism and translation. Nuclear FUS granules may be similarly affected. Inhibiting formation of these fibrillar hydrogel assemblies mitigates neurotoxicity and suggests a potential therapeutic strategy that may also be applicable to ALS/FTD associated with mutations in other RNA binding proteins. PMID:26526393

  10. ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function.

    PubMed

    Murakami, Tetsuro; Qamar, Seema; Lin, Julie Qiaojin; Schierle, Gabriele S Kaminski; Rees, Eric; Miyashita, Akinori; Costa, Ana R; Dodd, Roger B; Chan, Fiona T S; Michel, Claire H; Kronenberg-Versteeg, Deborah; Li, Yi; Yang, Seung-Pil; Wakutani, Yosuke; Meadows, William; Ferry, Rodylyn Rose; Dong, Liang; Tartaglia, Gian Gaetano; Favrin, Giorgio; Lin, Wen-Lang; Dickson, Dennis W; Zhen, Mei; Ron, David; Schmitt-Ulms, Gerold; Fraser, Paul E; Shneider, Neil A; Holt, Christine; Vendruscolo, Michele; Kaminski, Clemens F; St George-Hyslop, Peter

    2015-11-18

    The mechanisms by which mutations in FUS and other RNA binding proteins cause ALS and FTD remain controversial. We propose a model in which low-complexity (LC) domains of FUS drive its physiologically reversible assembly into membrane-free, liquid droplet and hydrogel-like structures. ALS/FTD mutations in LC or non-LC domains induce further phase transition into poorly soluble fibrillar hydrogels distinct from conventional amyloids. These assemblies are necessary and sufficient for neurotoxicity in a C. elegans model of FUS-dependent neurodegeneration. They trap other ribonucleoprotein (RNP) granule components and disrupt RNP granule function. One consequence is impairment of new protein synthesis by cytoplasmic RNP granules in axon terminals, where RNP granules regulate local RNA metabolism and translation. Nuclear FUS granules may be similarly affected. Inhibiting formation of these fibrillar hydrogel assemblies mitigates neurotoxicity and suggests a potential therapeutic strategy that may also be applicable to ALS/FTD associated with mutations in other RNA binding proteins. PMID:26526393

  11. TBC1D24 mutation associated with focal epilepsy, cognitive impairment and a distinctive cerebro-cerebellar malformation.

    PubMed

    Afawi, Zaid; Mandelstam, Simone; Korczyn, Amos D; Kivity, Sara; Walid, Simri; Shalata, Adel; Oliver, Karen L; Corbett, Mark; Gecz, Jozef; Berkovic, Samuel F; Jackson, Graeme D

    2013-07-01

    We describe the clinical and radiological features of a family with a homozygous mutation in TBC1D24. The phenotype comprised onset of focal seizures at 2 months with prominent eye-blinking, facial and limb jerking with an oral sensory aura. These were controllable with medication but persisted into adult life. Associated features were mild to moderate intellectual disability and cerebellar features. MRI showed subtle cortical thickening with cerebellar atrophy and high signal confined to the ansiform lobule. The disorder is allelic with familial infantile myoclonic epilepsy, where intellect and neurologic examination are normal, highlighting the phenotypic variation with mutations of TBC1D24.

  12. Impaired surface membrane insertion of homo- and heterodimeric human muscle chloride channels carrying amino-terminal myotonia-causing mutations

    PubMed Central

    Ronstedt, Katharina; Sternberg, Damien; Detro-Dassen, Silvia; Gramkow, Thomas; Begemann, Birgit; Becher, Toni; Kilian, Petra; Grieschat, Matthias; Machtens, Jan-Philipp; Schmalzing, Günther; Fischer, Martin; Fahlke, Christoph

    2015-01-01

    Mutations in the muscle chloride channel gene (CLCN1) cause myotonia congenita, an inherited condition characterized by muscle stiffness upon sudden forceful movement. We here studied the functional consequences of four disease-causing mutations that predict amino acid substitutions Q43R, S70L, Y137D and Q160H. Wild-type (WT) and mutant hClC-1 channels were heterologously expressed as YFP or CFP fusion protein in HEK293T cells and analyzed by whole-cell patch clamp and fluorescence recordings on individual cells. Q43R, Y137D and Q160H, but not S70L reduced macroscopic current amplitudes, but left channel gating and unitary current amplitudes unaffected. We developed a novel assay combining electrophysiological and fluorescence measurements at the single-cell level in order to measure the probability of ion channel surface membrane insertion. With the exception of S70L, all tested mutations significantly reduced the relative number of homodimeric hClC-1 channels in the surface membrane. The strongest effect was seen for Q43R that reduced the surface insertion probability by more than 99% in Q43R homodimeric channels and by 92 ± 3% in heterodimeric WT/Q43R channels compared to homodimeric WT channels. The new method offers a sensitive approach to investigate mutations that were reported to cause channelopathies, but display only minor changes in ion channel function. PMID:26502825

  13. A Homozygous [Cys25]PTH(1-84) Mutation That Impairs PTH/PTHrP Receptor Activation Defines a Novel Form of Hypoparathyroidism.

    PubMed

    Lee, Sihoon; Mannstadt, Michael; Guo, Jun; Kim, Seul Min; Yi, Hyon-Seung; Khatri, Ashok; Dean, Thomas; Okazaki, Makoto; Gardella, Thomas J; Jüppner, Harald

    2015-10-01

    Hypocalcemia and hyperphosphatemia are encountered in idiopathic hypoparathyroidism (IHP) and pseudohypoparathyroidism type Ib (PHP1B). In contrast to PHP1B, which is caused by resistance toward parathyroid hormone (PTH), the genetic defects leading to IHP impair production of this important regulator of mineral ion homeostasis. So far, only five PTH mutations were shown to cause IHP, each of which is located in the hormone's pre-pro leader segment and thus impair hormone secretion. In three siblings affected by IHP, we now identified a homozygous arginine-to-cysteine mutation at position 25 (R25C) of the mature PTH(1-84) polypeptide; heterozygous family members are healthy. Depending on the assay used for evaluating these patients, plasma PTH levels were either low or profoundly elevated, thus leading to ambiguities regarding the underlying diagnosis, namely IHP or PHP1B. Consistent with increased PTH levels, recombinant [Cys25]PTH(1-84) and wild-type PTH(1-84) were secreted equally well by transfected COS-7 cells. However, synthetic [Cys25]PTH(1-34) was found to have a lower binding affinity for the PTH receptor type-1 (PTH1R) than PTH(1-34) and consequently a lower efficiency for stimulating cAMP formation in cells expressing this receptor. Consistent with these in vitro findings, long-term infusion of [Cys25]PTH(1-34) resulted only in minimal calcemic and phosphaturic responses, despite readily detectable levels of [Cys25]PTH(1-34) in plasma. The mineral ion abnormalities observed in the three IHP patients are thus most likely caused by the inherited homozygous missense PTH mutation, which reduces bioactivity of the secreted hormone. Based on these findings, screening for PTH(1-84) mutations should be considered when clinical and laboratory findings are consistent with PHP1B, but GNAS methylation changes have been excluded. Differentiating between IHP and PHP1B has considerable implications for genetic counseling, therapy, and long-term outcome because

  14. Lysosomal Trafficking Regulator (LYST).

    PubMed

    Ji, Xiaojie; Chang, Bo; Naggert, Jürgen K; Nishina, Patsy M

    2016-01-01

    Regulation of vesicle trafficking to lysosomes and lysosome-related organelles (LROs) as well as regulation of the size of these organelles are critical to maintain their functions. Disruption of the lysosomal trafficking regulator (LYST) results in Chediak-Higashi syndrome (CHS), a rare autosomal recessive disorder characterized by oculocutaneous albinism, prolonged bleeding, severe immunodeficiency, recurrent bacterial infection, neurologic dysfunction and hemophagocytic lympohistiocytosis (HLH). The classic diagnostic feature of the syndrome is enlarged LROs in all cell types, including lysosomes, melanosomes, cytolytic granules and platelet dense bodies. The most striking CHS ocular pathology observed is an enlargement of melanosomes in the retinal pigment epithelium (RPE), which leads to aberrant distribution of eye pigmentation, and results in photophobia and decreased visual acuity. Understanding the molecular function of LYST and identification of its interacting partners may provide therapeutic targets for CHS and other diseases associated with the regulation of LRO size and/or vesicle trafficking, such as asthma, urticaria and Leishmania amazonensis infections. PMID:26427484

  15. Amino-terminal cysteine residues differentially influence RGS4 protein plasma membrane targeting, intracellular trafficking, and function.

    PubMed

    Bastin, Guillaume; Singh, Kevin; Dissanayake, Kaveesh; Mighiu, Alexandra S; Nurmohamed, Aliya; Heximer, Scott P

    2012-08-17

    Regulator of G-protein signaling (RGS) proteins are potent inhibitors of heterotrimeric G-protein signaling. RGS4 attenuates G-protein activity in several tissues. Previous work demonstrated that cysteine palmitoylation on residues in the amino-terminal (Cys-2 and Cys-12) and core domains (Cys-95) of RGS4 is important for protein stability, plasma membrane targeting, and GTPase activating function. To date Cys-2 has been the priority target for RGS4 regulation by palmitoylation based on its putative role in stabilizing the RGS4 protein. Here, we investigate differences in the contribution of Cys-2 and Cys-12 to the intracellular localization and function of RGS4. Inhibition of RGS4 palmitoylation with 2-bromopalmitate dramatically reduced its localization to the plasma membrane. Similarly, mutation of the RGS4 amphipathic helix (L23D) prevented membrane localization and its G(q) inhibitory function. Together, these data suggest that both RGS4 palmitoylation and the amphipathic helix domain are required for optimal plasma membrane targeting and function of RGS4. Mutation of Cys-12 decreased RGS4 membrane targeting to a similar extent as 2-bromopalmitate, resulting in complete loss of its G(q) inhibitory function. Mutation of Cys-2 did not impair plasma membrane targeting but did partially impair its function as a G(q) inhibitor. Comparison of the endosomal distribution pattern of wild type and mutant RGS4 proteins with TGN38 indicated that palmitoylation of these two cysteines contributes differentially to the intracellular trafficking of RGS4. These data show for the first time that Cys-2 and Cys-12 play markedly different roles in the regulation of RGS4 membrane localization, intracellular trafficking, and G(q) inhibitory function via mechanisms that are unrelated to RGS4 protein stabilization.

  16. [Mapping of meiotic genes in rye (Secale cereale L.): localization of sy19 mutation, impairing homologous synapsis, by means of isozyme and microsatellite markers].

    PubMed

    Dolmatovich, T V; Malyshev, S V; Sosnikhina, S P; Tsvetkova, N V; Kartel', N A; Voiĭlokov, A V

    2013-05-01

    The sy19 mutation, which impairs the homology of meiotic chromosome synapsis in rye, were mapped using a specially created F2 population by means of isozyme Acph 1 locus and microsatellite (SSR) markers. The sy19gene was localized in the chromosome 7R in the pericentromeric region of long armbased on the linked inheritance with the Acph 1 locus. The locus was linked with five rye SSR markers, with the Xrems 1234 locus being located closest to the sy19 gene (6.4 cM). The genetic map of the analyzed chromosome 7R region includes ten markers and the sy19 locus. A possible function of the Sy1 and Sy19 genes based on the data on comparative genomics is discussed. PMID:24159800

  17. Health implications of human trafficking.

    PubMed

    Richards, Tiffany A

    2014-01-01

    Freedom is arguably the most cherished right in the United States. But each year, approximately 14,500 to 17,500 women, men and children are trafficked into the United States for the purposes of forced labor or sexual exploitation. Human trafficking has significant effects on both physical and mental health. This article describes the features of human trafficking, its physical and mental health effects and the vital role nurses can play in providing care to this vulnerable population. PMID:24750655

  18. Health implications of human trafficking.

    PubMed

    Richards, Tiffany A

    2014-01-01

    Freedom is arguably the most cherished right in the United States. But each year, approximately 14,500 to 17,500 women, men and children are trafficked into the United States for the purposes of forced labor or sexual exploitation. Human trafficking has significant effects on both physical and mental health. This article describes the features of human trafficking, its physical and mental health effects and the vital role nurses can play in providing care to this vulnerable population.

  19. CYP2R1 Mutations Impair Generation of 25-hydroxyvitamin D and Cause an Atypical Form of Vitamin D Deficiency

    PubMed Central

    Fischer, Philip R.; Singh, Ravinder J.; Roizen, Jeffrey; Levine, Michael A.

    2015-01-01

    Context: Production of the active vitamin D hormone 1,25-dihydroxyvitamin D requires hepatic 25-hydroxylation of vitamin D. The CYP2R1 gene encodes the principal vitamin D 25-hydroxylase in humans. Objective: This study aimed to determine the prevalence of CYP2R1 mutations in Nigerian children with familial rickets and vitamin D deficiency and assess the functional effect on 25-hydroxylase activity. Design and Participants: We sequenced the CYP2R1 gene in subjects with sporadic rickets and affected subjects from families in which more than one member had rickets. Main Outcome Measures: Function of mutant CYP2R1 genes as assessed in vivo by serum 25-hydroxyvitamin D values after administration of vitamin D and in vitro by analysis of mutant forms of the CYP2R1. Results: CYP2R1 sequences were normal in 27 children with sporadic rickets, but missense mutations were identified in affected members of 2 of 12 families, a previously identified L99P, and a novel K242N. In silico analyses predicted that both substitutions would have deleterious effects on the variant proteins, and in vitro studies showed that K242N and L99P had markedly reduced or complete loss of 25-hydroxylase activity, respectively. Heterozygous subjects were less affected than homozygous subjects, and oral administration of vitamin D led to significantly lower increases in serum 25-hydroxyvitamin D in heterozygous than in control subjects, whereas homozygous subjects showed negligible increases. Conclusion: These studies confirm that CYP2R1 is the principal 25-hydroxylase in humans and demonstrate that CYP2R1 alleles have dosage-dependent effects on vitamin D homeostasis. CYP2R1 mutations cause a novel form of genetic vitamin D deficiency with semidominant inheritance. PMID:25942481

  20. Effects of Curculigoside on Memory Impairment and Bone Loss via Anti-Oxidative Character in APP/PS1 Mutated Transgenic Mice

    PubMed Central

    Zhang, Qiaoyan; Zhao, Wenjuan; Wang, Zejian; Yin, Ming

    2015-01-01

    Alzheimer's disease (AD) and osteoporosis are two closely related multifactorial progressively degenerative diseases that predominantly affect aged people. These two diseases share many common risk factors, including old age, being female, smoking, excessive drinking, low estrogen, and vitamin D3 levels. Additionally, oxidative damage and the dysfunction of the antioxidant system play important roles in the pathogenesis of osteoporosis and AD. Aβ not only leads to impaired memory but also plays a crucial role in the demineralization process of bone tissues of older people and women with menopause. Curculigoside can promote calcium deposition and increase the levels of ALP and Runx2 in osteoblasts under oxidative stress via anti-oxidative character. Therefore, we investigated the effects of CUR on the spatial learning and memory by the Morris water maze and brain immunohistochemistry, and bone microstructure and material properties of femurs by micro-computed tomography and mechanical testing in APP/PS1 mutated transgenic mice. Oral administration of CUR can significantly enhance learning performance and ameliorate bone loss in APP/PS1 mutated transgenic mice, and the mechanism may be related to its antioxidant effect. Based on these results, CUR has real potential as a new natural resource for developing medicines or dietary supplements for the prevention and treatment of the two closely linked multifactorial progressive degenerative disorders, AD and osteoporosis. PMID:26186010

  1. Effects of Curculigoside on Memory Impairment and Bone Loss via Anti-Oxidative Character in APP/PS1 Mutated Transgenic Mice.

    PubMed

    Zhao, Lu; Liu, Sha; Wang, Yin; Zhang, Qiaoyan; Zhao, Wenjuan; Wang, Zejian; Yin, Ming

    2015-01-01

    Alzheimer's disease (AD) and osteoporosis are two closely related multifactorial progressively degenerative diseases that predominantly affect aged people. These two diseases share many common risk factors, including old age, being female, smoking, excessive drinking, low estrogen, and vitamin D3 levels. Additionally, oxidative damage and the dysfunction of the antioxidant system play important roles in the pathogenesis of osteoporosis and AD. Aβ not only leads to impaired memory but also plays a crucial role in the demineralization process of bone tissues of older people and women with menopause. Curculigoside can promote calcium deposition and increase the levels of ALP and Runx2 in osteoblasts under oxidative stress via anti-oxidative character. Therefore, we investigated the effects of CUR on the spatial learning and memory by the Morris water maze and brain immunohistochemistry, and bone microstructure and material properties of femurs by micro-computed tomography and mechanical testing in APP/PS1 mutated transgenic mice. Oral administration of CUR can significantly enhance learning performance and ameliorate bone loss in APP/PS1 mutated transgenic mice, and the mechanism may be related to its antioxidant effect. Based on these results, CUR has real potential as a new natural resource for developing medicines or dietary supplements for the prevention and treatment of the two closely linked multifactorial progressive degenerative disorders, AD and osteoporosis.

  2. Somatic mutations and affinity maturation are impaired by excessive numbers of T follicular helper cells and restored by Treg cells or memory T cells

    PubMed Central

    Preite, Silvia; Baumjohann, Dirk; Foglierini, Mathilde; Basso, Camilla; Ronchi, Francesca; Rodriguez, Blanca M. Fernandez; Corti, Davide; Lanzavecchia, Antonio

    2015-01-01

    We previously reported that Cd3e‐deficient mice adoptively transferred with CD4+ T cells generate high numbers of T follicular helper (Tfh) cells, which go on to induce a strong B‐cell and germinal center (GC) reaction. Here, we show that in this system, GC B cells display an altered distribution between the dark and light zones, and express low levels of activation‐induced cytidine deaminase. Furthermore, GC B cells from Cd3e –/– mice accumulate fewer somatic mutations as compared with GC B cells from wild‐type mice, and exhibit impaired affinity maturation and reduced differentiation into long‐lived plasma cells. Reconstitution of Cd3e –/– mice with regulatory T (Treg) cells restored Tfh‐cell numbers, GC B‐cell numbers and B‐cell distribution within dark and light zones, and the rate of antibody somatic mutations. Tfh‐cell numbers and GC B‐cell numbers and dynamics were also restored by pre‐reconstitution of Cd3e –/– mice with Cxcr5 –/– Treg cells or non‐regulatory, memory CD4+ T cells. Taken together, these findings underline the importance of a quantitatively regulated Tfh‐cell response for an efficient and long‐lasting serological response. PMID:26332258

  3. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    PubMed

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells. PMID:24698155

  4. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    PubMed

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells.

  5. Mutation of DNA Polymerase β R137Q Results in Retarded Embryo Development Due to Impaired DNA Base Excision Repair in Mice

    PubMed Central

    Pan, Feiyan; Zhao, Jing; Zhou, Ting; Kuang, Zhihui; Dai, Huifang; Wu, Huan; Sun, Hongfang; Zhou, Xiaolong; Wu, Xuping; Hu, Zhigang; He, Lingfeng; Shen, Binghui; Guo, Zhigang

    2016-01-01

    DNA polymerase β (Pol β), a key enzyme in the DNA base excision repair (BER) pathway, is pivotal in maintaining the integrity and stability of genomes. One Pol β mutation that has been identified in tumors, R137Q (arginine to glutamine substitution), has been shown to lower polymerase activity, and impair its DNA repair capacity. However, the exact functional deficiency associated with this polymorphism in living organisms is still unknown. Here, we constructed Pol β R137Q knock-in mice, and found that homozygous knock-in mouse embryos were typically small in size and had a high mortality rate (21%). These embryonic abnormalities were caused by slow cell proliferation and increased apoptosis. In R137Q knock-in mouse embryos, the BER efficiency was severely impaired, which subsequently resulted in double-strand breaks (DSBs) and chromosomal aberrations. Furthermore, R137Q mouse embryo fibroblasts (MEFs) were more sensitive to DNA-damaging reagents, such as methyl methanesulfonate (MMS) and H2O2. They displayed a higher percentage of DSBs, and were more likely to undergo apoptosis. Our results indicate that R137 is a key amino acid site that is essential for proper Pol β functioning in maintaining genomic stability and embryo development. PMID:27358192

  6. Mutations in the NS1 protein of swine influenza virus impair anti-interferon activity and confer attenuation in pigs.

    PubMed

    Solórzano, Alicia; Webby, Richard J; Lager, Kelly M; Janke, Bruce H; García-Sastre, Adolfo; Richt, Jürgen A

    2005-06-01

    It has been shown previously that the nonstructural protein NS1 of influenza virus is an alpha/beta interferon (IFN-alpha/beta) antagonist, both in vitro and in experimental animal model systems. However, evidence of this function in a natural host has not yet been obtained. Here we investigated the role of the NS1 protein in the virulence of a swine influenza virus (SIV) isolate in pigs by using reverse genetics. The virulent wild-type A/Swine/Texas/4199-2/98 (TX/98) virus and various mutants encoding carboxy-truncated NS1 proteins were rescued. Growth properties of TX/98 viruses with mutated NS1, induction of IFN in tissue culture, and virulence-attenuation in pigs were analyzed and compared to those of the recombinant wild-type TX/98 virus. Our results indicate that deletions in the NS1 protein decrease the ability of the TX/98 virus to prevent IFN-alpha/beta synthesis in pig cells. Moreover, all NS1 mutant viruses were attenuated in pigs, and this correlated with the amount of IFN-alpha/beta induced in vitro. These data suggest that the NS1 protein of SIV is a virulence factor. Due to their attenuation, NS1-mutated swine influenza viruses might have a great potential as live attenuated vaccine candidates against SIV infections of pigs.

  7. SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking.

    PubMed

    Bowton, E; Saunders, C; Reddy, I A; Campbell, N G; Hamilton, P J; Henry, L K; Coon, H; Sakrikar, D; Veenstra-VanderWeele, J M; Blakely, R D; Sutcliffe, J; Matthies, H J G; Erreger, K; Galli, A

    2014-10-14

    Emerging evidence associates dysfunction in the dopamine (DA) transporter (DAT) with the pathophysiology of autism spectrum disorder (ASD). The human DAT (hDAT; SLC6A3) rare variant with an Ala to Val substitution at amino acid 559 (hDAT A559V) was previously reported in individuals with bipolar disorder or attention-deficit hyperactivity disorder (ADHD). We have demonstrated that this variant is hyper-phosphorylated at the amino (N)-terminal serine (Ser) residues and promotes an anomalous DA efflux phenotype. Here, we report the novel identification of hDAT A559V in two unrelated ASD subjects and provide the first mechanistic description of its impaired trafficking phenotype. DAT surface expression is dynamically regulated by DAT substrates including the psychostimulant amphetamine (AMPH), which causes hDAT trafficking away from the plasma membrane. The integrity of DAT trafficking directly impacts DA transport capacity and therefore dopaminergic neurotransmission. Here, we show that hDAT A559V is resistant to AMPH-induced cell surface redistribution. This unique trafficking phenotype is conferred by altered protein kinase C β (PKCβ) activity. Cells expressing hDAT A559V exhibit constitutively elevated PKCβ activity, inhibition of which restores the AMPH-induced hDAT A559V membrane redistribution. Mechanistically, we link the inability of hDAT A559V to traffic in response to AMPH to the phosphorylation of the five most distal DAT N-terminal Ser. Mutation of these N-terminal Ser to Ala restores AMPH-induced trafficking. Furthermore, hDAT A559V has a diminished ability to transport AMPH, and therefore lacks AMPH-induced DA efflux. Pharmacological inhibition of PKCβ or Ser to Ala substitution in the hDAT A559V background restores AMPH-induced DA efflux while promoting intracellular AMPH accumulation. Although hDAT A559V is a rare variant, it has been found in multiple probands with neuropsychiatric disorders associated with imbalances in DA neurotransmission

  8. Structure of Human B12 Trafficking Protein CblD Reveals Molecular Mimicry and Identifies a New Subfamily of Nitro-FMN Reductases.

    PubMed

    Yamada, Kazuhiro; Gherasim, Carmen; Banerjee, Ruma; Koutmos, Markos

    2015-12-01

    In mammals, B12 (or cobalamin) is an essential cofactor required by methionine synthase and methylmalonyl-CoA mutase. A complex intracellular pathway supports the assimilation of cobalamin into its active cofactor forms and delivery to its target enzymes. MMADHC (the methylmalonic aciduria and homocystinuria type D protein), commonly referred to as CblD, is a key chaperone involved in intracellular cobalamin trafficking, and mutations in CblD cause methylmalonic aciduria and/or homocystinuria. Herein, we report the first crystal structure of the globular C-terminal domain of human CblD, which is sufficient for its interaction with MMADHC (the methylmalonic aciduria and homocystinuria type C protein), or CblC, and for supporting the cytoplasmic cobalamin trafficking pathway. CblD contains an α+β fold that is structurally reminiscent of the nitro-FMN reductase superfamily. Two of the closest structural relatives of CblD are CblC, a multifunctional enzyme important for cobalamin trafficking, and the activation domain of methionine synthase. CblD, CblC, and the activation domain of methionine synthase share several distinguishing features and, together with two recently described corrinoid-dependent reductive dehalogenases, constitute a new subclass within the nitro-FMN reductase superfamily. We demonstrate that CblD enhances oxidation of cob(II)alamin bound to CblC and that disease-causing mutations in CblD impair the kinetics of this reaction. The striking structural similarity of CblD to CblC, believed to be contiguous in the cobalamin trafficking pathway, suggests the co-option of molecular mimicry as a strategy for achieving its function.

  9. Targeted mutations in a highly conserved motif of the nsp1β protein impair the interferon antagonizing activity of porcine reproductive and respiratory syndrome virus.

    PubMed

    Li, Yanhua; Zhu, Longchao; Lawson, Steven R; Fang, Ying

    2013-09-01

    Non-structural protein 1β (nsp1β) of porcine reproductive and respiratory syndrome virus (PRRSV) contains a papain-like cysteine protease (PLPβ) domain and has been identified as the main viral protein antagonizing the host innate immune response. In this study, nsp1β was determined to suppress the expression of reporter genes as well as to suppress 'self-expression' in transfected cells, and this activity appeared to be associated with its interferon (IFN) antagonist function. To knock down the effect of nsp1β on IFN activity, a panel of site-specific mutations in nsp1β was analysed. Double mutations K130A/R134A (type 1 PRRSV) or K124A/R128A (type 2 PRRSV) targeting a highly conserved motif of nsp1β, GKYLQRRLQ (in bold), impaired the ability of nsp1β to suppress IFN-β and reporter gene expression, as well as to suppress 'self-expression' in vitro. Subsequently, viable recombinant viruses vSD01-08-K130A/R134A and vSD95-21-K124A/R128A, containing double mutations in the GKYLQRRLQ motif were generated using reverse genetics. In comparison with WT viruses, these nsp1β mutants showed impaired growth ability in infected cells, but the PLPβ cleavage function was not directly affected. The expression of selected innate immune genes was determined in vSD95-21-K124A/R128A mutant-infected cells. The results consistently showed that gene expression levels of IFN-α, IFN-β and IFN-stimulated gene 15 were upregulated in cells that were infected with the vSD95-21-K124A/R128A compared with that of WT virus. These data suggest that PRRSV nsp1β may selectively suppress cellular gene expression, including expression of genes involved in the host innate immune function. Modifying the key residues in the highly conserved GKYLQRRLQ motif could attenuate virus growth and improve the cellular innate immune responses. PMID:23761406

  10. RGS10-null mutation impairs osteoclast differentiation resulting from the loss of [Ca2+]i oscillation regulation

    PubMed Central

    Yang, Shuying; Li, Yi-Ping

    2007-01-01

    Increased osteoclastic resorption leads to many bone diseases, including osteoporosis and rheumatoid arthritis. While rapid progress has been made in characterizing osteoclast differentiation signaling pathways, how receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) evokes essential [Ca2+]i oscillation signaling remains unknown. Here, we characterized RANKL-induced signaling proteins and found regulator of G-protein signaling 10 (RGS10) is predominantly expressed in osteoclasts. We generated RGS10-deficient (RGS10−/−) mice that exhibited severe osteopetrosis and impaired osteoclast differentiation. Our data demonstrated that ectopic expression of RGS10 dramatically increased the sensitivity of osteoclast differentiation to RANKL signaling; the deficiency of RGS10 resulted in the absence of [Ca2+]i oscillations and loss of NFATc1; ectopic NFATc1 expression rescues impaired osteoclast differentiation from deletion of RGS10; phosphatidylinositol 3,4,5-trisphosphate (PIP3) is essential to PLCγ activation; and RGS10 competitively interacts with Ca2+/calmodulin and PIP3 in a [Ca2+]i-dependent manner to mediate PLCγ activation and [Ca2+]i oscillations. Our results revealed a mechanism through which RGS10 specifically regulates the RANKL-evoked RGS10/calmodulin–[Ca2+]i oscillation–calcineurin–NFATc1 signaling pathway in osteoclast differentiation using an in vivo model. RGS10 provides a potential therapeutic target for the treatment of bone diseases. PMID:17626792

  11. Null Mutation in PGAP1 Impairing Gpi-Anchor Maturation in Patients with Intellectual Disability and Encephalopathy

    PubMed Central

    Murakami, Yoshiko; Tawamie, Hasan; Maeda, Yusuke; Büttner, Christian; Buchert, Rebecca; Radwan, Farah; Schaffer, Stefanie; Sticht, Heinrich; Aigner, Michael; Reis, André; Kinoshita, Taroh; Jamra, Rami Abou

    2014-01-01

    Many eukaryotic cell-surface proteins are anchored to the membrane via glycosylphosphatidylinositol (GPI). There are at least 26 genes involved in biosynthesis and remodeling of GPI anchors. Hypomorphic coding mutations in seven of these genes have been reported to cause decreased expression of GPI anchored proteins (GPI-APs) on the cell surface and to cause autosomal-recessive forms of intellectual disability (ARID). We performed homozygosity mapping and exome sequencing in a family with encephalopathy and non-specific ARID and identified a homozygous 3 bp deletion (p.Leu197del) in the GPI remodeling gene PGAP1. PGAP1 was not described in association with a human phenotype before. PGAP1 is a deacylase that removes an acyl-chain from the inositol of GPI anchors in the endoplasmic reticulum immediately after attachment of GPI to proteins. In silico prediction and molecular modeling strongly suggested a pathogenic effect of the identified deletion. The expression levels of GPI-APs on B lymphoblastoid cells derived from an affected person were normal. However, when those cells were incubated with phosphatidylinositol-specific phospholipase C (PI-PLC), GPI-APs were cleaved and released from B lymphoblastoid cells from healthy individuals whereas GPI-APs on the cells from the affected person were totally resistant. Transfection with wild type PGAP1 cDNA restored the PI-PLC sensitivity. These results indicate that GPI-APs were expressed with abnormal GPI structure due to a null mutation in the remodeling gene PGAP1. Our results add PGAP1 to the growing list of GPI abnormalities and indicate that not only the cell surface expression levels of GPI-APs but also the fine structure of GPI-anchors is important for the normal neurological development. PMID:24784135

  12. The spectrum of mutations in the PCFT gene, coding for an intestinal folate transporter, that are the basis for hereditary folate malabsorption.

    PubMed

    Zhao, Rongbao; Min, Sang Hee; Qiu, Andong; Sakaris, Antoinette; Goldberg, Gary L; Sandoval, Claudio; Malatack, J Jeffrey; Rosenblatt, David S; Goldman, I David

    2007-08-15

    Hereditary folate malabsorption (HFM) is a rare autosomal recessive disorder caused by impaired intestinal folate absorption and impaired folate transport into the central nervous system. Recent studies in 1 family revealed that the molecular basis for this disorder is a loss-of-function mutation in the PCFT gene encoding a proton-coupled folate transporter. The current study broadens the understanding of the spectrum of alterations in the PCFT gene associated with HFM in 5 additional patients. There was no racial, ethnic, or sex pattern. A total of 4 different homozygous mutations were detected in 4 patients; 2 heterozygous mutations were identified in the fifth patient. Mutations involved 4 of the 5 exons, all at highly conserved amino acid residues. A total of 4 of the mutated transporters resulted in a complete loss of transport function, primarily due to decreased protein stability and/or defects in membrane trafficking, while 2 of the mutated carriers manifested residual function. Folate transport at low pH was markedly impaired in transformed lymphocytes from 2 patients. These findings further substantiate the role that mutations in PCFT play in the pathogenesis of HFM and will make possible rapid diagnosis and treatment of this disorder in infants, and prenatal diagnosis in families that carry a mutated gene. PMID:17446347

  13. The DNA Ligase IV Syndrome R278H Mutation Impairs B Lymphopoiesis via Error-Prone Nonhomologous End-Joining.

    PubMed

    Park, Jihye; Welner, Robert S; Chan, Mei-Yee; Troppito, Logan; Staber, Philipp B; Tenen, Daniel G; Yan, Catherine T

    2016-01-01

    Hypomorphic mutations in the nonhomologous end-joining (NHEJ) DNA repair protein DNA ligase IV (LIG4) lead to immunodeficiency with varying severity. In this study, using a murine knock-in model, we investigated the mechanisms underlying abnormalities in class switch recombination (CSR) associated with the human homozygous Lig4 R278H mutation. Previously, we found that despite the near absence of Lig4 end-ligation activity and severely reduced mature B cell numbers, Lig4(R278H/R278H) (Lig4(R/R)) mice exhibit only a partial CSR block, producing near normal IgG1 and IgE but substantially reduced IgG3, IgG2b, and IgA serum levels. In this study, to address the cause of these abnormalities, we assayed CSR in Lig4(R/R) B cells generated via preassembled IgH and IgK V region exons (HL). This revealed that Lig4(R278H) protein levels while intact exhibited a higher turnover rate during activation of switching to IgG3 and IgG2b, as well as delays in CSR kinetics associated with defective proliferation during activation of switching to IgG1 and IgE. Activated Lig4(R/R)HL B cells consistently accumulated high frequencies of activation-induced cytidine deaminase-dependent IgH locus chromosomal breaks and translocations and were more prone to apoptosis, effects that appeared to be p53-independent, as p53 deficiency did not markedly influence these events. Importantly, NHEJ instead of alternative end-joining (A-EJ) was revealed as the predominant mechanism catalyzing robust CSR. Defective CSR was linked to failed NHEJ and residual A-EJ access to unrepaired double-strand breaks. These data firmly demonstrate that Lig4(R278H) activity renders NHEJ to be more error-prone, and they predict increased error-prone NHEJ activity and A-EJ suppression as the cause of the defective B lymphopoiesis in Lig4 patients.

  14. NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment

    PubMed Central

    Casey, Jillian P.; Støve, Svein I.; McGorrian, Catherine; Galvin, Joseph; Blenski, Marina; Dunne, Aimee; Ennis, Sean; Brett, Francesca; King, Mary D.; Arnesen, Thomas; Lynch, Sally Ann

    2015-01-01

    We report two brothers from a non-consanguineous Irish family presenting with a novel syndrome characterised by intellectual disability, facial dysmorphism, scoliosis and long QT. Their mother has a milder phenotype including long QT. X-linked inheritance was suspected. Whole exome sequencing identified a novel missense variant (c.128 A > C; p.Tyr43Ser) in NAA10 (X chromosome) as the cause of the family’s disorder. Sanger sequencing confirmed that the mutation arose de novo in the carrier mother. NAA10 encodes the catalytic subunit of the major human N-terminal acetylation complex NatA. In vitro assays for the p.Tyr43Ser mutant enzyme showed a significant decrease in catalytic activity and reduced stability compared to wild-type Naa10 protein. NAA10 has previously been associated with Ogden syndrome, Lenz microphthalmia syndrome and non-syndromic developmental delay. Our findings expand the clinical spectrum of NAA10 and suggest that the proposed correlation between mutant Naa10 enzyme activity and phenotype severity is more complex than anticipated; the p.Tyr43Ser mutant enzyme has less catalytic activity than the p.Ser37Pro mutant associated with lethal Ogden syndrome but results in a milder phenotype. Importantly, we highlight the need for cardiac assessment in males and females with NAA10 variants as both patients and carriers can have long QT. PMID:26522270

  15. NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment.

    PubMed

    Casey, Jillian P; Støve, Svein I; McGorrian, Catherine; Galvin, Joseph; Blenski, Marina; Dunne, Aimee; Ennis, Sean; Brett, Francesca; King, Mary D; Arnesen, Thomas; Lynch, Sally Ann

    2015-01-01

    We report two brothers from a non-consanguineous Irish family presenting with a novel syndrome characterised by intellectual disability, facial dysmorphism, scoliosis and long QT. Their mother has a milder phenotype including long QT. X-linked inheritance was suspected. Whole exome sequencing identified a novel missense variant (c.128 A > C; p.Tyr43Ser) in NAA10 (X chromosome) as the cause of the family's disorder. Sanger sequencing confirmed that the mutation arose de novo in the carrier mother. NAA10 encodes the catalytic subunit of the major human N-terminal acetylation complex NatA. In vitro assays for the p.Tyr43Ser mutant enzyme showed a significant decrease in catalytic activity and reduced stability compared to wild-type Naa10 protein. NAA10 has previously been associated with Ogden syndrome, Lenz microphthalmia syndrome and non-syndromic developmental delay. Our findings expand the clinical spectrum of NAA10 and suggest that the proposed correlation between mutant Naa10 enzyme activity and phenotype severity is more complex than anticipated; the p.Tyr43Ser mutant enzyme has less catalytic activity than the p.Ser37Pro mutant associated with lethal Ogden syndrome but results in a milder phenotype. Importantly, we highlight the need for cardiac assessment in males and females with NAA10 variants as both patients and carriers can have long QT. PMID:26522270

  16. Mutation of the Theiler’s virus leader protein zinc-finger domain impairs apoptotic activity in murine macrophages

    PubMed Central

    Son, Kyung-No; Liang, Zhiguo; Lipton, Howard L.

    2014-01-01

    The Theiler’s murine encephalomyelitis virus (TMEV) leader (L) protein zinc-finger domain was mutated to study its role in cell death in infection of the murine macrophage cell line M1-D, revealing that an intact zinc-finger domain is required for full apoptotic activity. A functional L zinc-finger domain was also required for activation of p38 MAPK that results in phosphorylation and activation of p53, and in turn, alteration of the conformation of the anti-apoptotic proteins Puma and Mcl-1, leading to the release of pro-apoptotic Bax and apoptosis through the intrinsic pathway. TMEV infection also inhibits host protein synthesis, a stress shown by others to induce apoptosis. Since inhibition of host protein synthesis follows rather than precedes activation of MKK3/6 and p38, it seems less likely that it triggers of apoptosis in infected cells. Finally, we showed that the levels of reactive oxygen species following infection were consistent with apoptotic rather than necrotic cell death. Thus, these experiments support an important role for the TMEV L protein zinc-finger domain in apoptosis in an infected murine macrophage line. PMID:24036175

  17. Mutation of the Theiler's virus leader protein zinc-finger domain impairs apoptotic activity in murine macrophages.

    PubMed

    Son, Kyung-No; Liang, Zhiguo; Lipton, Howard L

    2013-11-01

    The Theiler's murine encephalomyelitis virus (TMEV) leader (L) protein zinc-finger domain was mutated to study its role in cell death in infection of the murine macrophage cell line M1-D, revealing that an intact zinc-finger domain is required for full apoptotic activity. A functional L zinc-finger domain was also required for activation of p38 MAPK that results in phosphorylation and activation of p53, and in turn, alteration of the conformation of the anti-apoptotic proteins Puma and Mcl-1, leading to the release of pro-apoptotic Bax and apoptosis through the intrinsic pathway. TMEV infection also inhibits host protein synthesis, a stress shown by others to induce apoptosis. Since inhibition of host protein synthesis follows rather than precedes activation of MKK3/6 and p38, it seems less likely that it triggers apoptosis in infected cells. Finally, we showed that the levels of reactive oxygen species following infection were consistent with apoptotic rather than necrotic cell death. Thus, these experiments support an important role for the TMEV L protein zinc-finger domain in apoptosis in an infected murine macrophage line.

  18. NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment.

    PubMed

    Casey, Jillian P; Støve, Svein I; McGorrian, Catherine; Galvin, Joseph; Blenski, Marina; Dunne, Aimee; Ennis, Sean; Brett, Francesca; King, Mary D; Arnesen, Thomas; Lynch, Sally Ann

    2015-11-02

    We report two brothers from a non-consanguineous Irish family presenting with a novel syndrome characterised by intellectual disability, facial dysmorphism, scoliosis and long QT. Their mother has a milder phenotype including long QT. X-linked inheritance was suspected. Whole exome sequencing identified a novel missense variant (c.128 A > C; p.Tyr43Ser) in NAA10 (X chromosome) as the cause of the family's disorder. Sanger sequencing confirmed that the mutation arose de novo in the carrier mother. NAA10 encodes the catalytic subunit of the major human N-terminal acetylation complex NatA. In vitro assays for the p.Tyr43Ser mutant enzyme showed a significant decrease in catalytic activity and reduced stability compared to wild-type Naa10 protein. NAA10 has previously been associated with Ogden syndrome, Lenz microphthalmia syndrome and non-syndromic developmental delay. Our findings expand the clinical spectrum of NAA10 and suggest that the proposed correlation between mutant Naa10 enzyme activity and phenotype severity is more complex than anticipated; the p.Tyr43Ser mutant enzyme has less catalytic activity than the p.Ser37Pro mutant associated with lethal Ogden syndrome but results in a milder phenotype. Importantly, we highlight the need for cardiac assessment in males and females with NAA10 variants as both patients and carriers can have long QT.

  19. Mutation of a single residue in the ba3 oxidase specifically impairs protonation of the pump site.

    PubMed

    von Ballmoos, Christoph; Gonska, Nathalie; Lachmann, Peter; Gennis, Robert B; Ädelroth, Pia; Brzezinski, Peter

    2015-03-17

    The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound protein complex that couples electron transfer to O2 to proton translocation across the membrane. To elucidate the mechanism of the redox-driven proton pumping, we investigated the kinetics of electron and proton transfer in a structural variant of the ba3 oxidase where a putative "pump site" was modified by replacement of Asp372 by Ile. In this structural variant, proton pumping was uncoupled from internal electron transfer and O2 reduction. The results from our studies show that proton uptake to the pump site (time constant ∼65 μs in the wild-type cytochrome c oxidase) was impaired in the Asp372Ile variant. Furthermore, a reaction step that in the wild-type cytochrome c oxidase is linked to simultaneous proton uptake and release with a time constant of ∼1.2 ms was slowed to ∼8.4 ms, and in Asp372Ile was only associated with proton uptake to the catalytic site. These data identify reaction steps that are associated with protonation and deprotonation of the pump site, and point to the area around Asp372 as the location of this site in the ba3 cytochrome c oxidase.

  20. A lysine-to-arginine mutation on NEDD8 markedly reduces the activity of cullin RING E3 ligase through the impairment of neddylation cascades

    SciTech Connect

    Sui, Yiyan; Liu, Yaobin; Xu, Guoqiang

    2015-06-12

    Neural-precursor-cell-expressed developmentally down-regulated 8 (NEDD8) is a ubiquitin-like modifier, which forms covalent conjugates on lysines of its substrates. This post-translational modification, neddylation, plays important roles in tumor cell proliferation and viability. Ubiquitin can form diverse polyubiquitin chains, on its seven lysines, which play important functions in various biological processes. However, the roles of lysines in NEDD8 have not been explored. Here, we generated nine NEDD8 point mutants, each with one lysine replaced by an arginine, to study the putative function of lysines in NEDD8. Our experiments discover that Lys27 in NEDD8 is a critical residue for protein neddylation. Replacement of this residue with arginine almost completely eliminates the conjugation of NEDD8 to its substrates. Furthermore, we find that the K27R mutant impairs NEDD8 conjugation to the E2 enzyme, which normally forms thioester bonds for further transferring NEDD8 to its ligases and substrates. Therefore, this mutation completely inhibits global protein neddylation, including neddylation of cullin family proteins, resulting in decreased activity of cullin-RING E3 ligases. This work sheds new light on the roles of NEDD8 lysines on neddylation cascades and provides a dominant negative mutant for the study of neddylation and its biological functions. - Highlights: • Lys27 in NEDD8 is critical for protein neddylation. • NEDD8 K27R mutant impairs the NEDD8 conjugation. • NEDD8 K27R mutant significantly reduces the activity of cullin-RING E3 ligases.

  1. Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate cognitive impairment in humans.

    PubMed

    Wu, Ye; Arai, Amy C; Rumbaugh, Gavin; Srivastava, Anand K; Turner, Gillian; Hayashi, Takashi; Suzuki, Erika; Jiang, Yuwu; Zhang, Lilei; Rodriguez, Jayson; Boyle, Jackie; Tarpey, Patrick; Raymond, F Lucy; Nevelsteen, Joke; Froyen, Guy; Stratton, Mike; Futreal, Andy; Gecz, Jozef; Stevenson, Roger; Schwartz, Charles E; Valle, David; Huganir, Richard L; Wang, Tao

    2007-11-13

    Ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (iGluRs) mediate the majority of excitatory synaptic transmission in the CNS and are essential for the induction and maintenance of long-term potentiation and long-term depression, two cellular models of learning and memory. We identified a genomic deletion (0.4 Mb) involving the entire GRIA3 (encoding iGluR3) by using an X-array comparative genomic hybridization (CGH) and four missense variants (G833R, M706T, R631S, and R450Q) in functional domains of iGluR3 by sequencing 400 males with X-linked mental retardation (XLMR). Three variants were found in males with moderate MR and were absent in 500 control males. Expression studies in HEK293 cells showed that G833R resulted in a 78% reduction of iGluR3 due to protein misfolding. Whole-cell recording studies of iGluR3 homomers in HEK293 cells revealed that neither iGluR3-M706T (S2 domain) nor iGluR3-R631S (near channel core) had substantial channel function, whereas R450Q (S1 domain) was associated with accelerated receptor desensitization. When forming heteromeric receptors with iGluR2 in HEK293 cells, all four iGluR3 variants had altered desensitization kinetics. Our study provides the genetic and functional evidence that mutant iGluR3 with altered kinetic properties is associated with moderate cognitive impairment in humans.

  2. Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate cognitive impairment in humans

    PubMed Central

    Wu, Ye; Arai, Amy C.; Rumbaugh, Gavin; Srivastava, Anand K.; Turner, Gillian; Hayashi, Takashi; Suzuki, Erika; Jiang, Yuwu; Zhang, Lilei; Rodriguez, Jayson; Boyle, Jackie; Tarpey, Patrick; Raymond, F. Lucy; Nevelsteen, Joke; Froyen, Guy; Stratton, Mike; Futreal, Andy; Gecz, Jozef; Stevenson, Roger; Schwartz, Charles E.; Valle, David; Huganir, Richard L.; Wang, Tao

    2007-01-01

    Ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (iGluRs) mediate the majority of excitatory synaptic transmission in the CNS and are essential for the induction and maintenance of long-term potentiation and long-term depression, two cellular models of learning and memory. We identified a genomic deletion (0.4 Mb) involving the entire GRIA3 (encoding iGluR3) by using an X-array comparative genomic hybridization (CGH) and four missense variants (G833R, M706T, R631S, and R450Q) in functional domains of iGluR3 by sequencing 400 males with X-linked mental retardation (XLMR). Three variants were found in males with moderate MR and were absent in 500 control males. Expression studies in HEK293 cells showed that G833R resulted in a 78% reduction of iGluR3 due to protein misfolding. Whole-cell recording studies of iGluR3 homomers in HEK293 cells revealed that neither iGluR3-M706T (S2 domain) nor iGluR3-R631S (near channel core) had substantial channel function, whereas R450Q (S1 domain) was associated with accelerated receptor desensitization. When forming heteromeric receptors with iGluR2 in HEK293 cells, all four iGluR3 variants had altered desensitization kinetics. Our study provides the genetic and functional evidence that mutant iGluR3 with altered kinetic properties is associated with moderate cognitive impairment in humans. PMID:17989220

  3. 31 CFR 536.311 - Narcotics trafficking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Narcotics trafficking. 536.311 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING SANCTIONS REGULATIONS General Definitions § 536.311 Narcotics trafficking. The term narcotics trafficking means any activity...

  4. 31 CFR 536.311 - Narcotics trafficking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Narcotics trafficking. 536.311 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING SANCTIONS REGULATIONS General Definitions § 536.311 Narcotics trafficking. The term narcotics trafficking means any activity...

  5. 31 CFR 536.311 - Narcotics trafficking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Narcotics trafficking. 536.311 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING SANCTIONS REGULATIONS General Definitions § 536.311 Narcotics trafficking. The term narcotics trafficking means any activity...

  6. 31 CFR 536.311 - Narcotics trafficking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Narcotics trafficking. 536.311 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING SANCTIONS REGULATIONS General Definitions § 536.311 Narcotics trafficking. The term narcotics trafficking means any activity...

  7. 31 CFR 536.311 - Narcotics trafficking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Narcotics trafficking. 536.311... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING SANCTIONS REGULATIONS General Definitions § 536.311 Narcotics trafficking. The term narcotics trafficking means any...

  8. DNAJC13 mutations in Parkinson disease

    PubMed Central

    Vilariño-Güell, Carles; Rajput, Alex; Milnerwood, Austen J.; Shah, Brinda; Szu-Tu, Chelsea; Trinh, Joanne; Yu, Irene; Encarnacion, Mary; Munsie, Lise N.; Tapia, Lucia; Gustavsson, Emil K.; Chou, Patrick; Tatarnikov, Igor; Evans, Daniel M.; Pishotta, Frederick T.; Volta, Mattia; Beccano-Kelly, Dayne; Thompson, Christina; Lin, Michelle K.; Sherman, Holly E.; Han, Heather J.; Guenther, Bruce L.; Wasserman, Wyeth W.; Bernard, Virginie; Ross, Colin J.; Appel-Cresswell, Silke; Stoessl, A. Jon; Robinson, Christopher A.; Dickson, Dennis W.; Ross, Owen A.; Wszolek, Zbigniew K.; Aasly, Jan O.; Wu, Ruey-Meei; Hentati, Faycal; Gibson, Rachel A.; McPherson, Peter S.; Girard, Martine; Rajput, Michele; Rajput, Ali H.; Farrer, Matthew J.

    2014-01-01

    A Saskatchewan multi-incident family was clinically characterized with Parkinson disease (PD) and Lewy body pathology. PD segregates as an autosomal-dominant trait, which could not be ascribed to any known mutation. DNA from three affected members was subjected to exome sequencing. Genome alignment, variant annotation and comparative analyses were used to identify shared coding mutations. Sanger sequencing was performed within the extended family and ethnically matched controls. Subsequent genotyping was performed in a multi-ethnic case–control series consisting of 2928 patients and 2676 control subjects from Canada, Norway, Taiwan, Tunisia, and the USA. A novel mutation in receptor-mediated endocytosis 8/RME-8 (DNAJC13 p.Asn855Ser) was found to segregate with disease. Screening of cases and controls identified four additional patients with the mutation, of which two had familial parkinsonism. All carriers shared an ancestral DNAJC13 p.Asn855Ser haplotype and claimed Dutch–German–Russian Mennonite heritage. DNAJC13 regulates the dynamics of clathrin coats on early endosomes. Cellular analysis shows that the mutation confers a toxic gain-of-function and impairs endosomal transport. DNAJC13 immunoreactivity was also noted within Lewy body inclusions. In late-onset disease which is most reminiscent of idiopathic PD subtle deficits in endosomal receptor-sorting/recycling are highlighted by the discovery of pathogenic mutations VPS35, LRRK2 and now DNAJC13. With this latest discovery, and from a neuronal perspective, a temporal and functional ecology is emerging that connects synaptic exo- and endocytosis, vesicular trafficking, endosomal recycling and the endo-lysosomal degradative pathway. Molecular deficits in these processes are genetically linked to the phenotypic spectrum of parkinsonism associated with Lewy body pathology. PMID:24218364

  9. Gene structure and mutations of glutaryl-coenzyme A dehydrogenase: Impaired association of enzyme subunits that is due to an A421V substitution causes glutaric acidemia type I in the Amish

    SciTech Connect

    Biery, B.J.; Stein, D.E.; Goodman, S.I.

    1996-11-01

    The structure of the human glutaryl coenzyme A dehydrogenase (GCD) gene was determined to contain 11 exons and to span {approximately}7 kb. Fibroblast DNA from 64 unrelated glutaric academia type I (GA1) patients was screened for mutations by PCR amplification and analysis of SSCP. Fragments with altered electrophoretic mobility were subcloned and sequenced to detect mutations that caused GA1. This report describes the structure of the GCD gene, as well as point mutations and polymorphisms found in 7 of its 11 exons. Several mutations were found in more than one patient, but no one prevalent mutation was detected in the general population. As expected from pedigree analysis, a single mutant allele causes GA1 in the Old Order Amish of Lancaster County, Pennsylvania. Several mutations have been expressed in Escherichia coli, and all produce diminished enzyme activity. Reduced activity in GCD encoded by the A421V mutation in the Amish may be due to impaired association of enzyme subunits. 13 refs., 5 figs., 3 tabs.

  10. Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence.

    PubMed

    Xie, Yanjie; Xu, Daokun; Cui, Weiti; Shen, Wenbiao

    2012-06-01

    Previous pharmacological results confirmed that haem oxygenase-1 (HO-1) is involved in protection of cells against ultraviolet (UV)-induced oxidative damage in soybean [Glycine max (L.) Merr.] seedlings, but there remains a lack of genetic evidence. In this study, the link between Arabidopsis thaliana HO-1 (HY1) and UV-C tolerance was investigated at the genetic and molecular levels. The maximum inducible expression of HY1 in wild-type Arabidopsis was observed following UV-C irradiation. UV-C sensitivity was not observed in ho2, ho3, and ho4 single and double mutants. However, the HY1 mutant exhibited UV-C hypersensitivity, consistent with the observed decreases in chlorophyll content, and carotenoid and flavonoid metabolism, as well as the down-regulation of antioxidant defences, thereby resulting in severe oxidative damage. The addition of the carbon monoxide donor carbon monoxide-releasing molecule-2 (CORM-2), in particular, and bilirubin (BR), two catalytic by-products of HY1, partially rescued the UV-C hypersensitivity, and other responses appeared in the hy1 mutant. Transcription factors involved in the synthesis of flavonoid or UV responses were induced by UV-C, but reduced in the hy1 mutant. Overall, the findings showed that mutation of HY1 triggered UV-C hypersensitivity, by impairing carotenoid and flavonoid synthesis and antioxidant defences.

  11. Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence

    PubMed Central

    Xie, Yanjie; Xu, Daokun; Cui, Weiti; Shen, Wenbiao

    2012-01-01

    Previous pharmacological results confirmed that haem oxygenase-1 (HO-1) is involved in protection of cells against ultraviolet (UV)-induced oxidative damage in soybean [Glycine max (L.) Merr.] seedlings, but there remains a lack of genetic evidence. In this study, the link between Arabidopsis thaliana HO-1 (HY1) and UV-C tolerance was investigated at the genetic and molecular levels. The maximum inducible expression of HY1 in wild-type Arabidopsis was observed following UV-C irradiation. UV-C sensitivity was not observed in ho2, ho3, and ho4 single and double mutants. However, the HY1 mutant exhibited UV-C hypersensitivity, consistent with the observed decreases in chlorophyll content, and carotenoid and flavonoid metabolism, as well as the down-regulation of antioxidant defences, thereby resulting in severe oxidative damage. The addition of the carbon monoxide donor carbon monoxide-releasing molecule-2 (CORM-2), in particular, and bilirubin (BR), two catalytic by-products of HY1, partially rescued the UV-C hypersensitivity, and other responses appeared in the hy1 mutant. Transcription factors involved in the synthesis of flavonoid or UV responses were induced by UV-C, but reduced in the hy1 mutant. Overall, the findings showed that mutation of HY1 triggered UV-C hypersensitivity, by impairing carotenoid and flavonoid synthesis and antioxidant defences. PMID:22419743

  12. β-III spectrin underpins ankyrin R function in Purkinje cell dendritic trees: protein complex critical for sodium channel activity is impaired by SCA5-associated mutations.

    PubMed

    Clarkson, Yvonne L; Perkins, Emma M; Cairncross, Callum J; Lyndon, Alastair R; Skehel, Paul A; Jackson, Mandy

    2014-07-15

    Beta III spectrin is present throughout the elaborate dendritic tree of cerebellar Purkinje cells and is required for normal neuronal morphology and cell survival. Spinocerebellar ataxia type 5 (SCA5) and spectrin associated autosomal recessive cerebellar ataxia type 1 are human neurodegenerative diseases involving progressive gait ataxia and cerebellar atrophy. Both disorders appear to result from loss of β-III spectrin function. Further elucidation of β-III spectrin function is therefore needed to understand disease mechanisms and identify potential therapeutic options. Here, we report that β-III spectrin is essential for the recruitment and maintenance of ankyrin R at the plasma membrane of Purkinje cell dendrites. Two SCA5-associated mutations of β-III spectrin both reduce ankyrin R levels at the cell membrane. Moreover, a wild-type β-III spectrin/ankyrin-R complex increases sodium channel levels and activity in cell culture, whereas mutant β-III spectrin complexes fail to enhance sodium currents. This suggests impaired ability to form stable complexes between the adaptor protein ankyrin R and its interacting partners in the Purkinje cell dendritic tree is a key mechanism by which mutant forms of β-III spectrin cause ataxia, initially by Purkinje cell dysfunction and exacerbated by subsequent cell death. PMID:24603075

  13. Complex interactions between genes controlling trafficking in primary cilia.

    PubMed

    Ocbina, Polloneal Jymmiel R; Eggenschwiler, Jonathan T; Moskowitz, Ivan; Anderson, Kathryn V

    2011-06-01

    Cilia-associated human genetic disorders are striking in the diversity of their abnormalities and their complex inheritance. Inactivation of the retrograde ciliary motor by mutations in DYNC2H1 causes skeletal dysplasias that have strongly variable expressivity. Here we define previously unknown genetic relationships between Dync2h1 and other genes required for ciliary trafficking. Mutations in mouse Dync2h1 disrupt cilia structure, block Sonic hedgehog signaling and cause midgestation lethality. Heterozygosity for Ift172, a gene required for anterograde ciliary trafficking, suppresses cilia phenotypes, Sonic hedgehog signaling defects and early lethality of Dync2h1 homozygotes. Ift122, like Dync2h1, is required for retrograde ciliary trafficking, but reduction of Ift122 gene dosage also suppresses the Dync2h1 phenotype. These genetic interactions illustrate the cell biology underlying ciliopathies and argue that mutations in intraflagellar transport genes cause their phenotypes because of their roles in cilia architecture rather than direct roles in signaling.

  14. Intracellular mannose binding lectin mediates subcellular trafficking of HIV-1 gp120 in neurons.

    PubMed

    Teodorof, C; Divakar, S; Soontornniyomkij, B; Achim, C L; Kaul, M; Singh, K K

    2014-09-01

    Human immunodeficiency virus-1 (HIV-1) enters the brain early during infection and leads to severe neuronal damage and central nervous system impairment. HIV-1 envelope glycoprotein 120 (gp120), a neurotoxin, undergoes intracellular trafficking and transport across neurons; however mechanisms of gp120 trafficking in neurons are unclear. Our results show that mannose binding lectin (MBL) that binds to the N-linked mannose residues on gp120, participates in intravesicular packaging of gp120 in neuronal subcellular organelles and also in subcellular trafficking of these vesicles in neuronal cells. Perinuclear MBL:gp120 vesicular complexes were observed and MBL facilitated the subcellular trafficking of gp120 via the endoplasmic reticulum (ER) and Golgi vesicles. The functional carbohydrate recognition domain of MBL was required for perinuclear organization, distribution and subcellular trafficking of MBL:gp120 vesicular complexes. Nocodazole, an agent that depolymerizes the microtubule network, abolished the trafficking of MBL:gp120 vesicles, suggesting that these vesicular complexes were transported along the microtubule network. Live cell imaging confirmed the association of the MBL:gp120 complexes with dynamic subcellular vesicles that underwent trafficking in neuronal soma and along the neurites. Thus, our findings suggest that intracellular MBL mediates subcellular trafficking and transport of viral glycoproteins in a microtubule-dependent mechanism in the neurons.

  15. Illicit Trafficking of Natural Radionuclides

    SciTech Connect

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva

    2008-08-07

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  16. Illicit Trafficking of Natural Radionuclides

    NASA Astrophysics Data System (ADS)

    Friedrich, Steinhäusler; Lyudmila, Zaitseva

    2008-08-01

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  17. AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells.

    PubMed

    Kotzer, Amanda M; Brandizzi, Federica; Neumann, Ulla; Paris, Nadine; Moore, Ian; Hawes, Chris

    2004-12-15

    Rab GTPases are universal key regulators of intracellular secretory trafficking events. In particular, Rab 5 homologues have been implicated in endocytic events and in the vacuolar pathway. In this study, we investigate the location and function of a member of this family, AtRabF2b (Ara7) in tobacco (Nicotiana tabacum) leaf epidermal cells using a live cell imaging approach. Fluorescent-tagged AtRabF2b[wt] localized to the prevacuolar compartment and Golgi apparatus, as determined by coexpression studies with fluorescent markers for these compartments. Mutations that impair AtRabF2b function also alter the subcellular location of the GTPase. In addition, coexpression studies of the protein with the vacuole-targeted aleurain-green fluorescent protein (GFP) and rescue experiments with wild-type AtRabF2b indicate that the dominant-negative mutant of AtRabF2b causes the vacuolar marker to be secreted to the apoplast. Our results indicate a clear role of AtRabF2b in the vacuolar trafficking pathway.

  18. Sex trafficking in South Asia.

    PubMed

    Huda, S

    2006-09-01

    Economic and social inequalities and political conflicts have led to the movement of persons within each country and across the borders in South Asia. Globalization has encouraged free mobility of capital, technology, experts and sex tourism. Illiteracy, dependency, violence, social stigma, cultural stereotypes, gender disparity and endemic poverty, among other factors, place women and children in powerless, non-negotiable situations that have contributed to the emergence and breeding of the cavernous problem of sex trafficking in the entire region. This alarming spread of sex trafficking has fuelled the spread of HIV infection in South Asia, posing a unique and serious threat to community health, poverty alleviation and other crucial aspects of human development. Although the SAARC (South Asian Association for Regional Cooperation) Convention on Trafficking in Women and Children has been an important breakthrough, most of the countries in the region do not have anti-trafficking legislation or means to protect the victims. Countries of the region should make a concerted effort to treat trafficking victims as "victims" of human rights violations in all anti-trafficking strategies and actions.

  19. To discuss illicit nuclear trafficking

    SciTech Connect

    Balatsky, Galya I; Severe, William R; Wallace, Richard K

    2010-01-01

    The Illicit nuclear trafficking panel was conducted at the 4th Annual INMM workshop on Reducing the Risk from Radioactive and Nuclear Materials on February 2-3, 2010 in Washington DC. While the workshop occurred prior to the Nuclear Security Summit, April 12-13 2010 in Washington DC, some of the summit issues were raised during the workshop. The Communique of the Washington Nuclear Security Summit stated that 'Nuclear terrorism is one of the most challenging threats to international security, and strong nuclear security measures are the most effective means to prevent terrorists, criminals, or other unauthorized actors from acquiring nuclear materials.' The Illicit Trafficking panel is one means to strengthen nuclear security and cooperation at bilateral, regional and multilateral levels. Such a panel promotes nuclear security culture through technology development, human resources development, education and training. It is a tool which stresses the importance of international cooperation and coordination of assistance to improve efforts to prevent and respond to incidents of illicit nuclear trafficking. Illicit trafficking panel included representatives from US government, an international organization (IAEA), private industry and a non-governmental organization to discuss illicit nuclear trafficking issues. The focus of discussions was on best practices and challenges for addressing illicit nuclear trafficking. Terrorism connection. Workshop discussions pointed out the identification of terrorist connections with several trafficking incidents. Several trafficking cases involved real buyers (as opposed to undercover law enforcement agents) and there have been reports identifying individuals associated with terrorist organizations as prospective plutonium buyers. Some specific groups have been identified that consistently search for materials to buy on the black market, but no criminal groups were identified that specialize in nuclear materials or isotope smuggling

  20. ENU-mutagenesis mice with a non-synonymous mutation in Grin1 exhibit abnormal anxiety-like behaviors, impaired fear memory, and decreased acoustic startle response

    PubMed Central

    2013-01-01

    Background The Grin1 (glutamate receptor, ionotropic, NMDA1) gene expresses a subunit of N-methyl-D-aspartate (NMDA) receptors that is considered to play an important role in excitatory neurotransmission, synaptic plasticity, and brain development. Grin1 is a candidate susceptibility gene for neuropsychiatric disorders, including schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). In our previous study, we examined an N-ethyl-N-nitrosourea (ENU)-generated mutant mouse strain (Grin1Rgsc174/Grin1+) that has a non-synonymous mutation in Grin1. These mutant mice showed hyperactivity, increased novelty-seeking to objects, and abnormal social interactions. Therefore, Grin1Rgsc174/Grin1+ mice may serve as a potential animal model of neuropsychiatric disorders. However, other behavioral characteristics related to these disorders, such as working memory function and sensorimotor gating, have not been fully explored in these mutant mice. In this study, to further investigate the behavioral phenotypes of Grin1Rgsc174/Grin1+ mice, we subjected them to a comprehensive battery of behavioral tests. Results There was no significant difference in nociception between Grin1Rgsc174/Grin1+ and wild-type mice. The mutants did not display any abnormalities in the Porsolt forced swim and tail suspension tests. We confirmed the previous observations that the locomotor activity of these mutant mice increased in the open field and home cage activity tests. They displayed abnormal anxiety-like behaviors in the light/dark transition and the elevated plus maze tests. Both contextual and cued fear memory were severely deficient in the fear conditioning test. The mutant mice exhibited slightly impaired working memory in the eight-arm radial maze test. The startle amplitude was markedly decreased in Grin1Rgsc174/Grin1+ mice, whereas no significant differences between genotypes were detected in the prepulse inhibition (PPI) test. The mutant mice showed no obvious

  1. Trafficking: a perspective from Asia.

    PubMed

    Skeldon, R

    2000-01-01

    The main theme of this article is market development and trafficking as a business. It touches upon most of the aspects of the phenomenon, which have been encountered elsewhere, and translates them into the relatively unfamiliar context of many of the Asian and South-East Asian economies. Equally, the literature cited is also probably unfamiliar. Themes touched upon include democratization, inter-state relations, human rights, and scale and perspectives, together with the problems of definitions, theory, and the reliability of data. The directions and characteristics of trafficking flows together with routes and border control are also considered. Coordinated official responses to criminality and criminal organizations, as well as to trafficked individuals, are beginning to emerge. There is a note of caution sounded that contextual and cultural perspectives, particularly on sex workers, must be viewed somewhat differently to those in Western societies. The article concludes that as long as countries in Asia maintain their policies of restrictive immigration, trafficking can be expected to continue and almost certainly increase. This is because accelerating development creates demand for labor at various skill levels and because even in times of recession migrants and brokers will seek to side-step attempts to expel immigrants and restrict access to labor markets. The elimination of trafficking is unlikely to be realistically achieved through legislation and declarations of intent but by improvements in the socioeconomic status of the population.

  2. [Progress in research on defective protein trafficking and functional restoration in HERG-associated long QT syndrome].

    PubMed

    Fang, Peiliang; Lian, Jiangfang

    2016-02-01

    The human ether-a-go-go related gene (HERG) encodes the α -subunit of the rapid component of the delayed rectifier K(+) channel, which is essential for the third repolarization of the action potential of human myocardial cells. Mutations of the HERG gene can cause type II hereditary long QT syndrome (LQT2), characterized by prolongation of the QT interval, abnormal T wave, torsade de pointes, syncope and sudden cardiac death. So far more than 300 HERG mutations have been identified, the majority of which can cause LQT2 due to HERG protein trafficking defect. It has been reported that certain drugs can induce acquired long QT syndrome through directly blocking the pore and/or affecting the HERG trafficking. The trafficking defects and K(+) currents can be restored with low temperature and certain drugs. However, the mechanisms underlying defective trafficking caused by HERG mutations and the inhibition/restoration of HERG trafficking by drugs are still unknown. This review summarizes the current understanding of the molecular mechanisms including HERG trafficking under physiological and pathological conditions, and the effects of drugs on the HERG trafficking, in order to provide theoretical evidence for the diagnosis and treatment of long QT syndrome.

  3. Trafficking in persons: a health concern?

    PubMed

    Zimmerman, Cathy; Kiss, Ligia; Houssain, Mazeda; Watts, Charlotte

    2009-01-01

    Human trafficking is a phenomenon that has now been documented in most regions in the world. Although trafficking of women and girls for sexual exploitation is the most commonly recognised form of trafficking, it is widely acknowledged that human trafficking also involves men, women and children who are trafficked for various forms of labour exploitation and into other abusive circumstances. Despite the violence and harm inherent in most trafficking situations, there remains extremely little evidence on the individual and public health implications of any form of human trafficking. The Brazilian government has recently launched a national plan to combat human trafficking. However, because the health risks associated with human trafficking have not been well-recognised or documented, there is extremely limited reliable data on the health needs of trafficked persons to inform policy and practices.. Brazilian policy-makers and service providers should be encouraged to learn about the likely range of health impacts of trafficking, and incorporate this into anti-trafficking protection and response strategies. As well as prevention activities, the government, international and local organisations should work together with the public health research community to study the health needs of trafficked persons and explore opportunities to provide safe and appropriate services to victims in need of care. PMID:19721944

  4. Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress.

    PubMed

    Jaiswal, Manish; Haelterman, Nele A; Sandoval, Hector; Xiong, Bo; Donti, Taraka; Kalsotra, Auinash; Yamamoto, Shinya; Cooper, Thomas A; Graham, Brett H; Bellen, Hugo J

    2015-07-01

    Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration--defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise. PMID:26176594

  5. Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress

    PubMed Central

    Jaiswal, Manish; Haelterman, Nele A.; Sandoval, Hector; Xiong, Bo; Donti, Taraka; Kalsotra, Auinash; Yamamoto, Shinya; Cooper, Thomas A.; Graham, Brett H.; Bellen, Hugo J.

    2015-01-01

    Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration—defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise. PMID:26176594

  6. ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation.

    PubMed

    Boutté, Yohann; Jonsson, Kristoffer; McFarlane, Heather E; Johnson, Errin; Gendre, Delphine; Swarup, Ranjan; Friml, Jirí; Samuels, Lacey; Robert, Stéphanie; Bhalerao, Rishikesh P

    2013-10-01

    The plant hormone indole-acetic acid (auxin) is essential for many aspects of plant development. Auxin-mediated growth regulation typically involves the establishment of an auxin concentration gradient mediated by polarly localized auxin transporters. The localization of auxin carriers and their amount at the plasma membrane are controlled by membrane trafficking processes such as secretion, endocytosis, and recycling. In contrast to endocytosis or recycling, how the secretory pathway mediates the localization of auxin carriers is not well understood. In this study we have used the differential cell elongation process during apical hook development to elucidate the mechanisms underlying the post-Golgi trafficking of auxin carriers in Arabidopsis. We show that differential cell elongation during apical hook development is defective in Arabidopsis mutant echidna (ech). ECH protein is required for the trans-Golgi network (TGN)-mediated trafficking of the auxin influx carrier AUX1 to the plasma membrane. In contrast, ech mutation only marginally perturbs the trafficking of the highly related auxin influx carrier LIKE-AUX1-3 or the auxin efflux carrier PIN-FORMED-3, both also involved in hook development. Electron tomography reveals that the trafficking defects in ech mutant are associated with the perturbation of secretory vesicle genesis from the TGN. Our results identify differential mechanisms for the post-Golgi trafficking of de novo-synthesized auxin carriers to plasma membrane from the TGN and reveal how trafficking of auxin influx carriers mediates the control of differential cell elongation in apical hook development. PMID:24043780

  7. The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway

    PubMed Central

    Roboti, Peristera; Sato, Keisuke; Lowe, Martin

    2015-01-01

    Golgins are coiled-coil proteins that participate in membrane-tethering events at the Golgi complex. Golgin-mediated tethering is thought to be important for vesicular trafficking and Golgi organization. However, the degree to which individual golgins contribute to these processes is poorly defined, and it has been proposed that golgins act in a largely redundant manner. Previous studies on the golgin GMAP-210 (also known as TRIP11), which is mutated in the rare skeletal disorder achondrogenesis type 1A, have yielded conflicting results regarding its involvement in trafficking. Here, we re-investigated the trafficking role of GMAP-210, and found that it is indeed required for efficient trafficking in the secretory pathway. GMAP-210 acts at both the endoplasmic reticulum (ER)-to-Golgi intermediate compartment (ERGIC) and Golgi complex during anterograde trafficking, and is also required for retrograde trafficking to the ER. Using co-depletion experiments, we also found that GMAP-210 acts in a partially redundant manner with the golgin GM130 to ensure efficient anterograde cargo delivery to the cis-Golgi. In summary, our results indicate a role for GMAP-210 in several trafficking steps at the ER–Golgi interface, some of which are partially redundant with another golgin, namely GM130 (also known as GOLGA2). PMID:25717001

  8. The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway.

    PubMed

    Roboti, Peristera; Sato, Keisuke; Lowe, Martin

    2015-04-15

    Golgins are coiled-coil proteins that participate in membrane-tethering events at the Golgi complex. Golgin-mediated tethering is thought to be important for vesicular trafficking and Golgi organization. However, the degree to which individual golgins contribute to these processes is poorly defined, and it has been proposed that golgins act in a largely redundant manner. Previous studies on the golgin GMAP-210 (also known as TRIP11), which is mutated in the rare skeletal disorder achondrogenesis type 1A, have yielded conflicting results regarding its involvement in trafficking. Here, we re-investigated the trafficking role of GMAP-210, and found that it is indeed required for efficient trafficking in the secretory pathway. GMAP-210 acts at both the endoplasmic reticulum (ER)-to-Golgi intermediate compartment (ERGIC) and Golgi complex during anterograde trafficking, and is also required for retrograde trafficking to the ER. Using co-depletion experiments, we also found that GMAP-210 acts in a partially redundant manner with the golgin GM130 to ensure efficient anterograde cargo delivery to the cis-Golgi. In summary, our results indicate a role for GMAP-210 in several trafficking steps at the ER-Golgi interface, some of which are partially redundant with another golgin, namely GM130 (also known as GOLGA2). PMID:25717001

  9. POPDC1S201F causes muscular dystrophy and arrhythmia by affecting protein trafficking

    PubMed Central

    Schindler, Roland F.R.; Scotton, Chiara; Zhang, Jianguo; Passarelli, Chiara; Ortiz-Bonnin, Beatriz; Simrick, Subreena; Schwerte, Thorsten; Poon, Kar-Lai; Fang, Mingyan; Rinné, Susanne; Froese, Alexander; Nikolaev, Viacheslav O.; Grunert, Christiane; Müller, Thomas; Tasca, Giorgio; Sarathchandra, Padmini; Drago, Fabrizio; Dallapiccola, Bruno; Rapezzi, Claudio; Arbustini, Eloisa; Di Raimo, Francesca Romana; Neri, Marcella; Selvatici, Rita; Gualandi, Francesca; Fattori, Fabiana; Pietrangelo, Antonello; Li, Wenyan; Jiang, Hui; Xu, Xun; Bertini, Enrico; Decher, Niels; Wang, Jun; Brand, Thomas; Ferlini, Alessandra

    2015-01-01

    The Popeye domain–containing 1 (POPDC1) gene encodes a plasma membrane–localized cAMP-binding protein that is abundantly expressed in striated muscle. In animal models, POPDC1 is an essential regulator of structure and function of cardiac and skeletal muscle; however, POPDC1 mutations have not been associated with human cardiac and muscular diseases. Here, we have described a homozygous missense variant (c.602C>T, p.S201F) in POPDC1, identified by whole-exome sequencing, in a family of 4 with cardiac arrhythmia and limb-girdle muscular dystrophy (LGMD). This allele was absent in known databases and segregated with the pathological phenotype in this family. We did not find the allele in a further screen of 104 patients with a similar phenotype, suggesting this mutation to be family specific. Compared with WT protein, POPDC1S201F displayed a 50% reduction in cAMP affinity, and in skeletal muscle from patients, both POPDC1S201F and WT POPDC2 displayed impaired membrane trafficking. Forced expression of POPDC1S201F in a murine cardiac muscle cell line (HL-1) increased hyperpolarization and upstroke velocity of the action potential. In zebrafish, expression of the homologous mutation (popdc1S191F) caused heart and skeletal muscle phenotypes that resembled those observed in patients. Our study therefore identifies POPDC1 as a disease gene causing a very rare autosomal recessive cardiac arrhythmia and LGMD, expanding the genetic causes of this heterogeneous group of inherited rare diseases. PMID:26642364

  10. Understanding human trafficking in the United States.

    PubMed

    Logan, T K; Walker, Robert; Hunt, Gretchen

    2009-01-01

    The topic of modern-day slavery or human trafficking has received increased media and national attention. However, to date there has been limited research on the nature and scope of human trafficking in the United States. This article describes and synthesizes nine reports that assess the U.S. service organizations' legal representative knowledge of, and experience with, human trafficking cases, as well as information from actual cases and media reports. This article has five main goals: (a) to define what human trafficking is, and is not; (b) to describe factors identified as contributing to vulnerability to being trafficked and keeping a person entrapped in the situation; (c) to examine how the crime of human trafficking differs from other kinds of crimes in the United States; (d) to explore how human trafficking victims are identified; and, (e) to provide recommendations to better address human trafficking in the United States.

  11. Understanding human trafficking in the United States.

    PubMed

    Logan, T K; Walker, Robert; Hunt, Gretchen

    2009-01-01

    The topic of modern-day slavery or human trafficking has received increased media and national attention. However, to date there has been limited research on the nature and scope of human trafficking in the United States. This article describes and synthesizes nine reports that assess the U.S. service organizations' legal representative knowledge of, and experience with, human trafficking cases, as well as information from actual cases and media reports. This article has five main goals: (a) to define what human trafficking is, and is not; (b) to describe factors identified as contributing to vulnerability to being trafficked and keeping a person entrapped in the situation; (c) to examine how the crime of human trafficking differs from other kinds of crimes in the United States; (d) to explore how human trafficking victims are identified; and, (e) to provide recommendations to better address human trafficking in the United States. PMID:19056686

  12. Small GTPases in vesicle trafficking.

    PubMed

    Molendijk, Arthur J; Ruperti, Benedetto; Palme, Klaus

    2004-12-01

    Plant small GTPases belonging to the Rop, Arf, and Rab families are regulators of vesicle trafficking. Rop GTPases regulate actin dynamics and modulate H(2)O(2) production in polar cell growth and pathogen defence. A candidate Rop GDP to Rop GTP exchange factor (RopGEF) SPIKE1 is involved in the morphogenesis of leaf epidermal cells. The ArfGEF GNOM regulates the endosomal recycling of the PIN proteins, which are involved in polar auxin transport. Intracellular localisation of small GTPases and functional studies using dominant mutant versions of Arf and Rab GTPases are defining novel plant-specific membrane compartments, especially those that participate in endosomal vesicle trafficking.

  13. Sex trafficking and the exploitation of adolescents.

    PubMed

    McClain, Natalie M; Garrity, Stacy E

    2011-01-01

    Human trafficking affects a surprisingly large number of adolescents around the globe. Women and girls make up the majority of sex trafficking victims. Nurses must be aware of sex trafficking as a form of sexual violence in the adolescent population. Nurses can play a role in identifying, intervening, and advocating for victims of human trafficking as they currently do for patients that are the victims of other types of violent crimes. PMID:21284727

  14. Novel mutations in the ferritin-L iron-responsive element that only mildly impair IRP binding cause hereditary hyperferritinaemia cataract syndrome

    PubMed Central

    2013-01-01

    Background Hereditary Hyperferritinaemia Cataract Syndrome (HHCS) is a rare autosomal dominant disease characterized by increased serum ferritin levels and early onset of bilateral cataract. The disease is caused by mutations in the Iron-Responsive Element (IRE) located in the 5′ untranslated region of L-Ferritin (FTL) mRNA, which post-transcriptionally regulates ferritin expression. Methods We describe two families presenting high serum ferritin levels and juvenile cataract with novel mutations in the L-ferritin IRE. The mutations were further characterized by in vitro functional studies. Results We have identified two novel mutations in the IRE of L-Ferritin causing HHCS: the Badalona +36C > U and the Heidelberg +52 G > C mutation. Both mutations conferred reduced binding affinity on recombinant Iron Regulatory Proteins (IPRs) in EMSA experiments. Interestingly, the Badalona +36C > U mutation was found not only in heterozygosity, as expected for an autosomal dominant disease, but also in the homozygous state in some affected subjects. Additionally we report an update of all mutations identified so far to cause HHCS. Conclusions The Badalona +36C > U and Heidelberg +52 G > C mutations within the L-ferritin IRE only mildly alter the binding capacity of the Iron Regulatory Proteins but are still causative for the disease. PMID:23421845

  15. 31 CFR 598.310 - Narcotics trafficking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Narcotics trafficking. 598.310 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS General Definitions § 598.310 Narcotics trafficking. The term narcotics trafficking means any illicit activity...

  16. 31 CFR 598.310 - Narcotics trafficking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Narcotics trafficking. 598.310 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS General Definitions § 598.310 Narcotics trafficking. The term narcotics trafficking means any illicit activity...

  17. 31 CFR 598.310 - Narcotics trafficking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Narcotics trafficking. 598.310 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY FOREIGN NARCOTICS KINGPIN SANCTIONS REGULATIONS General Definitions § 598.310 Narcotics trafficking. The term narcotics trafficking means any illicit activity...

  18. 31 CFR 598.310 - Narcotics trafficking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Narcotics trafficking. 598.310 Section 598.310 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE... General Definitions § 598.310 Narcotics trafficking. The term narcotics trafficking means any...

  19. 31 CFR 598.310 - Narcotics trafficking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Narcotics trafficking. 598.310 Section 598.310 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... Definitions § 598.310 Narcotics trafficking. The term narcotics trafficking means any illicit activity...

  20. Identification of TMEM230 mutations in familial Parkinson's disease.

    PubMed

    Deng, Han-Xiang; Shi, Yong; Yang, Yi; Ahmeti, Kreshnik B; Miller, Nimrod; Huang, Cao; Cheng, Lijun; Zhai, Hong; Deng, Sheng; Nuytemans, Karen; Corbett, Nicola J; Kim, Myung Jong; Deng, Hao; Tang, Beisha; Yang, Ziquang; Xu, Yanming; Chan, Piu; Huang, Bo; Gao, Xiao-Ping; Song, Zhi; Liu, Zhenhua; Fecto, Faisal; Siddique, Nailah; Foroud, Tatiana; Jankovic, Joseph; Ghetti, Bernardino; Nicholson, Daniel A; Krainc, Dimitri; Melen, Onur; Vance, Jeffery M; Pericak-Vance, Margaret A; Ma, Yong-Chao; Rajput, Ali H; Siddique, Teepu

    2016-07-01

    Parkinson's disease is the second most common neurodegenerative disorder without effective treatment. It is generally sporadic with unknown etiology. However, genetic studies of rare familial forms have led to the identification of mutations in several genes, which are linked to typical Parkinson's disease or parkinsonian disorders. The pathogenesis of Parkinson's disease remains largely elusive. Here we report a locus for autosomal dominant, clinically typical and Lewy body-confirmed Parkinson's disease on the short arm of chromosome 20 (20pter-p12) and identify TMEM230 as the disease-causing gene. We show that TMEM230 encodes a transmembrane protein of secretory/recycling vesicles, including synaptic vesicles in neurons. Disease-linked TMEM230 mutants impair synaptic vesicle trafficking. Our data provide genetic evidence that a mutant transmembrane protein of synaptic vesicles in neurons is etiologically linked to Parkinson's disease, with implications for understanding the pathogenic mechanism of Parkinson's disease and for developing rational therapies.

  1. Identification of TMEM230 mutations in familial Parkinson's disease.

    PubMed

    Deng, Han-Xiang; Shi, Yong; Yang, Yi; Ahmeti, Kreshnik B; Miller, Nimrod; Huang, Cao; Cheng, Lijun; Zhai, Hong; Deng, Sheng; Nuytemans, Karen; Corbett, Nicola J; Kim, Myung Jong; Deng, Hao; Tang, Beisha; Yang, Ziquang; Xu, Yanming; Chan, Piu; Huang, Bo; Gao, Xiao-Ping; Song, Zhi; Liu, Zhenhua; Fecto, Faisal; Siddique, Nailah; Foroud, Tatiana; Jankovic, Joseph; Ghetti, Bernardino; Nicholson, Daniel A; Krainc, Dimitri; Melen, Onur; Vance, Jeffery M; Pericak-Vance, Margaret A; Ma, Yong-Chao; Rajput, Ali H; Siddique, Teepu

    2016-07-01

    Parkinson's disease is the second most common neurodegenerative disorder without effective treatment. It is generally sporadic with unknown etiology. However, genetic studies of rare familial forms have led to the identification of mutations in several genes, which are linked to typical Parkinson's disease or parkinsonian disorders. The pathogenesis of Parkinson's disease remains largely elusive. Here we report a locus for autosomal dominant, clinically typical and Lewy body-confirmed Parkinson's disease on the short arm of chromosome 20 (20pter-p12) and identify TMEM230 as the disease-causing gene. We show that TMEM230 encodes a transmembrane protein of secretory/recycling vesicles, including synaptic vesicles in neurons. Disease-linked TMEM230 mutants impair synaptic vesicle trafficking. Our data provide genetic evidence that a mutant transmembrane protein of synaptic vesicles in neurons is etiologically linked to Parkinson's disease, with implications for understanding the pathogenic mechanism of Parkinson's disease and for developing rational therapies. PMID:27270108

  2. Common variable immunodeficiency, impaired neurological development and reduced numbers of T regulatory cells in a 10-year-old boy with a STAT1 gain-of-function mutation.

    PubMed

    Kobbe, Robin; Kolster, Manuela; Fuchs, Sebastian; Schulze-Sturm, Ulf; Jenderny, Jutta; Kochhan, Lothar; Staab, Julia; Tolosa, Eva; Grimbacher, Bodo; Meyer, Thomas

    2016-07-25

    Recently, gain-of-function (GOF) mutations in the gene encoding signal transducer and activator of transcription 1 (STAT1) have been associated with chronic mucocutaneous candidiasis (CMC). This case report describes a 10-year-old boy presenting with signs of common variable immunodeficiency (CVID), failure to thrive, impaired neurological development, and a history of recurrent mucocutaneous Candida infections. Sequencing of the STAT1 gene identified a heterozygous missense mutation in exon 7 encoding the STAT1 coiled-coil domain (c.514T>C, p.Phe172Leu). In addition to hypogammaglobulinemia with B-cell deficiency, and a low percentage of Th17 cells, immunological analysis of the patient revealed a marked depletion of forkhead-box P3(+)-expressing regulatory T cells (Tregs). In vitro stimulation of T cells from the patient with interferon-α (IFNα) and/or IFNɣ resulted in a significantly increased expression of STAT1-regulated target genes such as MIG1, IRF1, MX1, MCP1/CCL2, IFI-56K, and CXCL10 as compared to IFN-treated cells from a healthy control, while no IFNα/ɣ-mediated up-regulation of the FOXP3 gene was found. These data demonstrate that the STAT1 GOF mutation F172L, which results in impaired stability of the antiparallel STAT1 dimer conformation, is associated with inhibited Treg cell development and neurological symptoms.

  3. Common variable immunodeficiency, impaired neurological development and reduced numbers of T regulatory cells in a 10-year-old boy with a STAT1 gain-of-function mutation.

    PubMed

    Kobbe, Robin; Kolster, Manuela; Fuchs, Sebastian; Schulze-Sturm, Ulf; Jenderny, Jutta; Kochhan, Lothar; Staab, Julia; Tolosa, Eva; Grimbacher, Bodo; Meyer, Thomas

    2016-07-25

    Recently, gain-of-function (GOF) mutations in the gene encoding signal transducer and activator of transcription 1 (STAT1) have been associated with chronic mucocutaneous candidiasis (CMC). This case report describes a 10-year-old boy presenting with signs of common variable immunodeficiency (CVID), failure to thrive, impaired neurological development, and a history of recurrent mucocutaneous Candida infections. Sequencing of the STAT1 gene identified a heterozygous missense mutation in exon 7 encoding the STAT1 coiled-coil domain (c.514T>C, p.Phe172Leu). In addition to hypogammaglobulinemia with B-cell deficiency, and a low percentage of Th17 cells, immunological analysis of the patient revealed a marked depletion of forkhead-box P3(+)-expressing regulatory T cells (Tregs). In vitro stimulation of T cells from the patient with interferon-α (IFNα) and/or IFNɣ resulted in a significantly increased expression of STAT1-regulated target genes such as MIG1, IRF1, MX1, MCP1/CCL2, IFI-56K, and CXCL10 as compared to IFN-treated cells from a healthy control, while no IFNα/ɣ-mediated up-regulation of the FOXP3 gene was found. These data demonstrate that the STAT1 GOF mutation F172L, which results in impaired stability of the antiparallel STAT1 dimer conformation, is associated with inhibited Treg cell development and neurological symptoms. PMID:27063510

  4. A novel SCARB2 mutation in progressive myoclonus epilepsy indicated by reduced β-glucocerebrosidase activity.

    PubMed

    Zeigler, Marsha; Meiner, Vardiella; Newman, J P; Steiner-Birmanns, Bettina; Bargal, Ruth; Sury, Vivi; Mengistu, Getu; Kakhlon, Or; Leykin, Ina; Argov, Zohar; Abramsky, Oded; Lossos, Alexander

    2014-04-15

    Action myoclonus renal failure (AMRF) syndrome is a rare form of progressive myoclonus epilepsy with renal dysfunction related to mutations in the SCARB2 gene. This gene is involved in lysosomal mannose-6-phosphate-independent trafficking of β-glucocerebrosidase (GC), an enzyme deficient in Gaucher disease. We report a family with myoclonic epilepsy, ataxia and skeletal muscle atrophy but without cognitive impairment or overt renal disease. A novel SCARB2 mutation was indicated by a striking discrepancy between lymphocyte and fibroblast GC activity in the proband evaluated for possible Gaucher disease. Our findings expand the genetic and phenotypic diversity of AMRF and suggest that low GC activity may present an important biochemical clue to the diagnosis of AMRF.

  5. Rab GTPase mediated procollagen trafficking in ascorbic acid stimulated osteoblasts.

    PubMed

    Nabavi, Noushin; Pustylnik, Sofia; Harrison, Rene E

    2012-01-01

    Despite advances in investigating functional aspects of osteoblast (OB) differentiation, especially studies on how bone proteins are deposited and mineralized, there has been little research on the intracellular trafficking of bone proteins during OB differentiation. Collagen synthesis and secretion is the major function of OBs and is markedly up-regulated upon ascorbic acid (AA) stimulation, significantly more so than in fibroblast cells. Understanding the mechanism by which collagen is mobilized in specialized OB cells is important for both basic cell biology and diseases involving defects in bone protein secretion and deposition. Protein trafficking along the exocytic and endocytic pathways is aided by many molecules, with Rab GTPases being master regulators of vesicle targeting. In this study, we used microarray analysis to identify the Rab GTPases that are up-regulated during a 5-day AA differentiation of OBs, namely Rab1, Rab3d, and Rab27b. Further, we investigated the role of identified Rabs in regulating the trafficking of collagen from the site of synthesis in the ER to the Golgi and ultimately to the plasma membrane utilizing Rab dominant negative (DN) expression. We also observed that experimental halting of biosynthetic trafficking by these mutant Rabs initiated proteasome-mediated degradation of procollagen and ceased global protein translation. Acute expression of Rab1 and Rab3d DN constructs partially alleviated this negative feedback mechanism and resulted in impaired ER to Golgi trafficking of procollagen. Similar expression of Rab27b DN constructs resulted in dispersed collagen vesicles which may represent failed secretory vesicles sequestered in the cytosol. A significant and strong reduction in extracellular collagen levels was also observed implicating the functional importance of Rab1, Rab3d and Rab27b in these major collagen-producing cells.

  6. Human trafficking and the healthcare professional.

    PubMed

    Barrows, Jeffrey; Finger, Reginald

    2008-05-01

    Despite the legislation passed in the 19th century outlawing human slavery, it is more widespread today than at the conclusion of the civil war. Modern human slavery, termed human trafficking, comes in several forms. The most common type of human trafficking is sex trafficking, the sale of women and children into prostitution. Labor trafficking is the sale of men, women, and children into hard labor for which they receive little or no compensation. Other forms of trafficking include child soldiering, war brides, and organ removal. Healthcare professionals play a critical role in both finding victims of human trafficking while they are still in captivity, as well as caring for their mental and physical needs upon release. Those working in the healthcare profession need to be educated regarding how a trafficking victim may present, as well as their unique healthcare needs.

  7. Human trafficking and the healthcare professional.

    PubMed

    Barrows, Jeffrey; Finger, Reginald

    2008-05-01

    Despite the legislation passed in the 19th century outlawing human slavery, it is more widespread today than at the conclusion of the civil war. Modern human slavery, termed human trafficking, comes in several forms. The most common type of human trafficking is sex trafficking, the sale of women and children into prostitution. Labor trafficking is the sale of men, women, and children into hard labor for which they receive little or no compensation. Other forms of trafficking include child soldiering, war brides, and organ removal. Healthcare professionals play a critical role in both finding victims of human trafficking while they are still in captivity, as well as caring for their mental and physical needs upon release. Those working in the healthcare profession need to be educated regarding how a trafficking victim may present, as well as their unique healthcare needs. PMID:18414161

  8. NDRG1 functions in LDL receptor trafficking by regulating endosomal recycling and degradation.

    PubMed

    Pietiäinen, Vilja; Vassilev, Boris; Blom, Tomas; Wang, Wei; Nelson, Jessica; Bittman, Robert; Bäck, Nils; Zelcer, Noam; Ikonen, Elina

    2013-09-01

    N-myc downstream-regulated gene 1 (NDRG1) mutations cause Charcot-Marie-Tooth disease type 4D (CMT4D). However, the cellular function of NDRG1 and how it causes CMT4D are poorly understood. We report that NDRG1 silencing in epithelial cells results in decreased uptake of low-density lipoprotein (LDL) due to reduced LDL receptor (LDLR) abundance at the plasma membrane. This is accompanied by the accumulation of LDLR in enlarged EEA1-positive endosomes that contain numerous intraluminal vesicles and sequester ceramide. Concomitantly, LDLR ubiquitylation is increased but its degradation is reduced and ESCRT (endosomal sorting complex required for transport) proteins are downregulated. Co-depletion of IDOL (inducible degrader of the LDLR), which ubiquitylates the LDLR and promotes its degradation, rescues plasma membrane LDLR levels and LDL uptake. In murine oligodendrocytes, Ndrg1 silencing not only results in reduced LDL uptake but also in downregulation of the oligodendrocyte differentiation factor Olig2. Both phenotypes are rescued by co-silencing of Idol, suggesting that ligand uptake through LDLR family members controls oligodendrocyte differentiation. These findings identify NDRG1 as a novel regulator of multivesicular body formation and endosomal LDLR trafficking. The deficiency of functional NDRG1 in CMT4D might impair lipid processing and differentiation of myelinating cells.

  9. Novel AE1 mutations in recessive distal renal tubular acidosis. Loss-of-function is rescued by glycophorin A.

    PubMed

    Tanphaichitr, V S; Sumboonnanonda, A; Ideguchi, H; Shayakul, C; Brugnara, C; Takao, M; Veerakul, G; Alper, S L

    1998-12-15

    The AE1 gene encodes band 3 Cl-/HCO3- exchangers that are expressed both in the erythrocyte and in the acid-secreting, type A intercalated cells of the kidney. Kidney AE1 contributes to urinary acidification by providing the major exit route for HCO3- across the basolateral membrane. Several AE1 mutations cosegregate with dominantly transmitted nonsyndromic renal tubular acidosis (dRTA). However, the modest degree of in vitro hypofunction exhibited by these dRTA-associated mutations fails to explain the disease phenotype in light of the normal urinary acidification associated with the complete loss-of-function exhibited by AE1 mutations linked to dominant spherocytosis. We report here novel AE1 mutations linked to a recessive syndrome of dRTA and hemolytic anemia in which red cell anion transport is normal. Both affected individuals were triply homozygous for two benign mutations M31T and K56E and for the loss-of-function mutation, G701D. AE1 G701D loss-of-function was accompanied by impaired trafficking to the Xenopus oocyte surface. Coexpression with AE1 G701D of the erythroid AE1 chaperonin, glycophorin A, rescued both AE1-mediated Cl- transport and AE1 surface expression in oocytes. The genetic and functional data both suggest that the homozygous AE1 G701D mutation causes recessively transmitted dRTA in this kindred with apparently normal erythroid anion transport. PMID:9854053

  10. CLIC4 regulates apical exocytosis and renal tube luminogenesis through retromer- and actin-mediated endocytic trafficking

    PubMed Central

    Chou, Szu-Yi; Hsu, Kuo-Shun; Otsu, Wataru; Hsu, Ya-Chu; Luo, Yun-Cin; Yeh, Celine; Shehab, Syed S.; Chen, Jie; Shieh, Vincent; He, Guo-an; Marean, Michael B.; Felsen, Diane; Ding, Aihao; Poppas, Dix P.; Chuang, Jen-Zen; Sung, Ching-Hwa

    2016-01-01

    Chloride intracellular channel 4 (CLIC4) is a mammalian homologue of EXC-4 whose mutation is associated with cystic excretory canals in nematodes. Here we show that CLIC4-null mouse embryos exhibit impaired renal tubulogenesis. In both developing and developed kidneys, CLIC4 is specifically enriched in the proximal tubule epithelial cells, in which CLIC4 is important for luminal delivery, microvillus morphogenesis, and endolysosomal biogenesis. Adult CLIC4-null proximal tubules display aberrant dilation. In MDCK 3D cultures, CLIC4 is expressed on early endosome, recycling endosome and apical transport carriers before reaching its steady-state apical membrane localization in mature lumen. CLIC4 suppression causes impaired apical vesicle coalescence and central lumen formation, a phenotype that can be rescued by Rab8 and Cdc42. Furthermore, we show that retromer- and branched actin-mediated trafficking on early endosome regulates apical delivery during early luminogenesis. CLIC4 selectively modulates retromer-mediated apical transport by negatively regulating the formation of branched actin on early endosomes. PMID:26786190

  11. Mutations in the Tight-Junction Gene Claudin 19 (CLDN19) Are Associated with Renal Magnesium Wasting, Renal Failure, and Severe Ocular Involvement

    PubMed Central

    Konrad, Martin; Schaller, André; Seelow, Dominik; Pandey, Amit V.; Waldegger, Siegfried; Lesslauer, Annegret; Vitzthum, Helga; Suzuki, Yoshiro; Luk, John M.; Becker, Christian; Schlingmann, Karl P.; Schmid, Marcel; Rodriguez-Soriano, Juan; Ariceta, Gema; Cano, Francisco; Enriquez, Ricardo; Jüppner, Harald; Bakkaloglu, Sevcan A.; Hediger, Matthias A.; Gallati, Sabina; Neuhauss, Stephan C. F.; Nürnberg, Peter; Weber, Stefanie

    2006-01-01

    Claudins are major components of tight junctions and contribute to the epithelial-barrier function by restricting free diffusion of solutes through the paracellular pathway. We have mapped a new locus for recessive renal magnesium loss on chromosome 1p34.2 and have identified mutations in CLDN19, a member of the claudin multigene family, in patients affected by hypomagnesemia, renal failure, and severe ocular abnormalities. CLDN19 encodes the tight-junction protein claudin-19, and we demonstrate high expression of CLDN19 in renal tubules and the retina. The identified mutations interfere severely with either cell-membrane trafficking or the assembly of the claudin-19 protein. The identification of CLDN19 mutations in patients with chronic renal failure and severe visual impairment supports the fundamental role of claudin-19 for normal renal tubular function and undisturbed organization and development of the retina. PMID:17033971

  12. Analysis of conventional and unconventional trafficking of CFTR and other membrane proteins.

    PubMed

    Gee, Heon Yung; Kim, Joo Young; Lee, Min Goo

    2015-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic transmembrane protein that functions as a cAMP-activated anion channel at the apical membrane of epithelial cells. Mutations in CFTR cause cystic fibrosis and are also associated with monosymptomatic diseases in the lung, pancreas, intestines, and vas deferens. Many disease-causing CFTR mutations, including the deletion of a single phenylalanine residue at position 508 (ΔF508-CFTR), result in protein misfolding and trafficking defects. Therefore, intracellular trafficking of wild-type and mutant CFTR has been studied extensively, and results from these studies significantly contribute to our general understanding of mechanisms involved in the cell-surface trafficking of membrane proteins. CFTR is a glycoprotein that undergoes complex N-glycosylation as it passes through Golgi-mediated conventional exocytosis. Interestingly, results from recent studies revealed that CFTR and other membrane proteins can reach the plasma membrane via an unconventional alternative route that bypasses Golgi in specific cellular conditions. Here, we describe methods that have been used to investigate the conventional and unconventional surface trafficking of CFTR. With appropriate modifications, the protocols described in this chapter can also be applied to studies investigating the intracellular trafficking of other plasma membrane proteins.

  13. Trafficking of Vesicular Neurotransmitter Transporters

    PubMed Central

    Fei, Hao; Grygoruk, Anna; Brooks, Elizabeth S.; Chen, Audrey; Krantz, David E.

    2010-01-01

    Vesicular neurotransmitter transporters are required for the storage of all classical and amino acid neurotransmitters in secretory vesicles. Transporter expression can influence neurotransmitter storage and release, and trafficking targets the transporters to different types of secretory vesicles. Vesicular transporters traffic to synaptic vesicles as well as large dense core vesicles, and are recycled to synaptic vesicles at the nerve terminal. Some of the intrinsic signals for these trafficking events have been defined and include a dileucine motif present in multiple transporter subtypes, an acidic cluster in the neural isoform of the vesicular monoamine transporter (VMAT2) and a polyproline motif in the vesicular glutamate transporter VGLUT1. The sorting of VMAT2 and the vesicular acetylcholine transporter (VAChT) to secretory vesicles is regulated by phosphorylation. In addition, VGLUT1 uses alternative endocytic pathways for recycling back to synaptic vesicles following exocytosis. Regulation of these sorting events has the potential to influence synaptic transmission and behavior. PMID:18507811

  14. Functional rescue of a kidney anion exchanger 1 trafficking mutant in renal epithelial cells.

    PubMed

    Chu, Carmen Y S; King, Jennifer C; Berrini, Mattia; Alexander, R Todd; Cordat, Emmanuelle

    2013-01-01

    Mutations in the SLC4A1 gene encoding the anion exchanger 1 (AE1) can cause distal renal tubular acidosis (dRTA), a disease often due to mis-trafficking of the mutant protein. In this study, we investigated whether trafficking of a Golgi-retained dRTA mutant, G701D kAE1, or two dRTA mutants retained in the endoplasmic reticulum, C479W and R589H kAE1, could be functionally rescued to the plasma membrane of Madin-Darby Canine Kidney (MDCK) cells. Treatments with DMSO, glycerol, the corrector VX-809, or low temperature incubations restored the basolateral trafficking of G701D kAE1 mutant. These treatments had no significant rescuing effect on trafficking of the mis-folded C479W or R589H kAE1 mutants. DMSO was the only treatment that partially restored G701D kAE1 function in the plasma membrane of MDCK cells. Our experiments show that trafficking of intracellularly retained dRTA kAE1 mutants can be partially restored, and that one chemical treatment rescued both trafficking and function of a dRTA mutant. These studies provide an opportunity to develop alternative therapeutic solutions for dRTA patients. PMID:23460825

  15. A Genomic Map of Viroid RNA Motifs Critical for Replication and Systemic Trafficking[W

    PubMed Central

    Zhong, Xuehua; Archual, Anthony J.; Amin, Amy A.; Ding, Biao

    2008-01-01

    RNA replication and systemic trafficking play significant roles in developmental regulation and host–pathogen interactions. Viroids are the simplest noncoding eukaryotic RNA pathogens and genetic units that are capable of autonomous replication and systemic trafficking and offer excellent models to investigate the role of RNA structures in these processes. Like other RNAs, the predicted secondary structure of a viroid RNA contains many loops and bulges flanked by double-stranded helices, the biological functions of which are mostly unknown. Using Potato spindle tuber viroid infection of Nicotiana benthamiana as the experimental system, we tested the hypothesis that these loops/bulges are functional motifs that regulate replication in single cells or trafficking in a plant. Through a genome-wide mutational analysis, we identified multiple loops/bulges essential or important for each of these biological processes. Our results led to a genomic map of viroid RNA motifs that mediate single-cell replication and systemic trafficking, respectively. This map provides a framework to enable high-throughput studies on the tertiary structures and functional mechanisms of RNA motifs that regulate viroid replication and trafficking. Our model and approach should also be valuable for comprehensive investigations of the replication and trafficking motifs in other RNAs. PMID:18178767

  16. Calcium signaling regulates trafficking of familial hypocalciuric hypercalcemia (FHH) mutants of the calcium sensing receptor.

    PubMed

    Grant, Michael P; Stepanchick, Ann; Breitwieser, Gerda E

    2012-12-01

    Calcium-sensing receptors (CaSRs) regulate systemic Ca(2+) homeostasis. Loss-of-function mutations cause familial benign hypocalciuric hypercalcemia (FHH) or neonatal severe hyperparathyroidism (NSHPT). FHH/NSHPT mutations can reduce trafficking of CaSRs to the plasma membrane. CaSR signaling is potentiated by agonist-driven anterograde CaSR trafficking, leading to a new steady state level of plasma membrane CaSR, which is maintained, with minimal functional desensitization, as long as extracellular Ca(2+) is elevated. This requirement for CaSR signaling to drive CaSR trafficking to the plasma membrane led us to reconsider the mechanism(s) contributing to dysregulated trafficking of FHH/NSHPT mutants. We simultaneously monitored dynamic changes in plasma membrane levels of CaSR and intracellular Ca(2+), using a chimeric CaSR construct, which allowed explicit tracking of plasma membrane levels of mutant or wild-type CaSRs in the presence of nonchimeric partners. Expression of mutants alone revealed severe defects in plasma membrane targeting and Ca(2+) signaling, which were substantially rescued by coexpression with wild-type CaSR. Biasing toward heterodimerization of wild-type and FHH/NSHPT mutants revealed that intracellular Ca(2+) oscillations were insufficient to rescue plasma membrane targeting. Coexpression of the nonfunctional mutant E297K with the truncation CaSRΔ868 robustly rescued trafficking and Ca(2+) signaling, whereas coexpression of distinct FHH/NSHPT mutants rescued neither trafficking nor signaling. Our study suggests that rescue of FHH/NSHPT mutants requires a steady state intracellular Ca(2+) response when extracellular Ca(2+) is elevated and argues that Ca(2+) signaling by wild-type CaSRs rescues FHH mutant trafficking to the plasma membrane.

  17. Viral subversion of nucleocytoplasmic trafficking.

    PubMed

    Yarbrough, Melanie L; Mata, Miguel A; Sakthivel, Ramanavelan; Fontoura, Beatriz M A

    2014-02-01

    Trafficking of proteins and RNA into and out of the nucleus occurs through the nuclear pore complex (NPC). Because of its critical function in many cellular processes, the NPC and transport factors are common targets of several viruses that disrupt key constituents of the machinery to facilitate viral replication. Many viruses such as poliovirus and severe acute respiratory syndrome (SARS) virus inhibit protein import into the nucleus, whereas viruses such as influenza A virus target and disrupt host mRNA nuclear export. Current evidence indicates that these viruses may employ such strategies to avert the host immune response. Conversely, many viruses co-opt nucleocytoplasmic trafficking to facilitate transport of viral RNAs. As viral proteins interact with key regulators of the host nuclear transport machinery, viruses have served as invaluable tools of discovery that led to the identification of novel constituents of nuclear transport pathways. This review explores the importance of nucleocytoplasmic trafficking to viral pathogenesis as these studies revealed new antiviral therapeutic strategies and exposed previously unknown cellular mechanisms. Further understanding of nuclear transport pathways will determine whether such therapeutics will be useful treatments for important human pathogens.

  18. Protein trafficking in kinetoplastid protozoa.

    PubMed Central

    Clayton, C; Häusler, T; Blattner, J

    1995-01-01

    The kinetoplastid protozoa infect hosts ranging from invertebrates to plants and mammals, causing diseases of medical and economic importance. They are the earliest-branching organisms in eucaryotic evolution to have either mitochondria or peroxisome-like microbodies. Investigation of their protein trafficking enables us to identify characteristics that have been conserved throughout eucaryotic evolution and also reveals how far variations, or alternative mechanisms, are possible. Protein trafficking in kinetoplastids is in many respects similar to that in higher eucaryotes, including mammals and yeasts. Differences in signal sequence specificities exist, however, for all subcellular locations so far examined in detail--microbodies, mitochondria, and endoplasmic reticulum--with signals being more degenerate, or shorter, than those of their higher eucaryotic counterparts. Some components of the normal array of trafficking mechanisms may be missing in most (if not all) kinetoplastids: examples are clathrin-coated vesicles, recycling receptors, and mannose 6-phosphate-mediated lysosomal targeting. Other aspects and structures are unique to the kinetoplastids or are as yet unexplained. Some of these peculiarities may eventually prove to be weak points that can be used as targets for chemotherapy; others may turn out to be much more widespread than currently suspected. PMID:7565409

  19. Viral Subversion of Nucleocytoplasmic Trafficking

    PubMed Central

    Yarbrough, Melanie L.; Mata, Miguel A.; Sakthivel, Ramanavelan; Fontoura, Beatriz M. A.

    2014-01-01

    Trafficking of proteins and RNA into and out of the nucleus occurs through the nuclear pore complex (NPC). Due to its critical function in many cellular processes, the NPC and transport factors are common targets of several viruses that disrupt key constituents of the machinery to facilitate viral replication. Many viruses such as poliovirus and severe acute respiratory syndrome (SARS) virus inhibit protein import into the nucleus, while viruses such as influenza A virus target and disrupt host mRNA nuclear export. Current evidence indicates that these viruses may employ such strategies to avert the host immune response. Conversely, many viruses co-opt nucleocytoplasmic trafficking to facilitate transport of viral RNAs. Since viral proteins interact with key regulators of the host nuclear transport machinery, viruses have served as invaluable tools of discovery that led to the identification of novel constituents of nuclear transport pathways. In addition, this review explores the importance of nucleocytoplasmic trafficking to viral pathogenesis as these studies revealed new antiviral therapeutic strategies and exposed previously unknown cellular mechanisms. Further understanding of nuclear transport pathways will determine whether such therapeutics will be useful treatments for important human pathogens. PMID:24289861

  20. Agonist-trafficking and hallucinogens.

    PubMed

    González-Maeso, Javier; Sealfon, Stuart C

    2009-01-01

    Seven transmembrane domain receptors, also termed G protein-coupled receptors (GPCRs), represent the most common molecular target for therapeutic drugs. The generally accepted pharmacological model for GPCR activation is the ternary complex model, in which GPCRs exist in a dynamic equilibrium between the active and inactive conformational states. However, the demonstration that different agonists sometimes elicit a different relative activation of two signaling pathways downstream of the same receptor has led to a revision of the ternary complex model. According to this agonist- trafficking model, agonists stabilize distinct activated receptor conformations that preferentially activate specific signaling pathways. Hallucinogenic drugs and non-hallucinogenic drugs represent an attractive experimental system with which to study agonist-trafficking of receptor signaling. Thus many of the behavioral responses induced by hallucinogenic drugs, such as lysergic acid diethylamide (LSD), psilocybin or mescaline, depend on activation of serotonin 5-HT(2A) receptors (5-HT2ARs). In contrast, this neuropsychological state in humans is not induced by closely related chemicals, such as lisuride or ergotamine, despite their similar in vitro activity at the 5-HT2AR. In this review, we summarize the current knowledge, as well as unresolved questions, regarding agonist-trafficking and the mechanism of action of hallucinogenic drugs.

  1. LKB1/AMPK and PKA control ABCB11 trafficking and polarization in hepatocytes.

    PubMed

    Homolya, László; Fu, Dong; Sengupta, Prabuddha; Jarnik, Michal; Gillet, Jean-Pierre; Vitale-Cross, Lynn; Gutkind, J Silvio; Lippincott-Schwartz, Jennifer; Arias, Irwin M

    2014-01-01

    Polarization of hepatocytes is manifested by bile canalicular network formation and activation of LKB1 and AMPK, which control cellular energy metabolism. The bile acid, taurocholate, also regulates development of the canalicular network through activation of AMPK. In the present study, we used collagen sandwich hepatocyte cultures from control and liver-specific LKB1 knockout mice to examine the role of LKB1 in trafficking of ABCB11, the canalicular bile acid transporter. In polarized hepatocytes, ABCB11 traffics from Golgi to the apical plasma membrane and endogenously cycles through the rab 11a-myosin Vb recycling endosomal system. LKB1 knockout mice were jaundiced, lost weight and manifested impaired bile canalicular formation and intracellular trafficking of ABCB11, and died within three weeks. Using live cell imaging, fluorescence recovery after photobleaching (FRAP), particle tracking, and biochemistry, we found that LKB1 activity is required for microtubule-dependent trafficking of ABCB11 to the canalicular membrane. In control hepatocytes, ABCB11 trafficking was accelerated by taurocholate and cAMP; however, in LKB1 knockout hepatocytes, ABCB11 trafficking to the apical membrane was greatly reduced and restored only by cAMP, but not taurocholate. cAMP acted through a PKA-mediated pathway which did not activate AMPK. Our studies establish a regulatory role for LKB1 in ABCB11 trafficking to the canalicular membrane, hepatocyte polarization, and canalicular network formation. PMID:24643070

  2. Spectrum of genetic changes in patients with non-syndromic hearing impairment and extremely high carrier frequency of 35delG GJB2 mutation in Belarus.

    PubMed

    Danilenko, Nina; Merkulava, Elena; Siniauskaya, Marina; Olejnik, Olga; Levaya-Smaliak, Anastasia; Kushniarevich, Alena; Shymkevich, Andrey; Davydenko, Oleg

    2012-01-01

    The genetic nature of sensorineural hearing loss (SNHL) has so far been studied for many ethnic groups in various parts of the world. The single-nucleotide guanine deletion (35delG) of the GJB2 gene coding for connexin 26 was shown to be the main genetic cause of autosomal recessive deafness among Europeans. Here we present the results of the first study of GJB2 and three mitochondrial mutations among two groups of Belarusian inhabitants: native people with normal hearing (757 persons) and 391 young patients with non-syndromic SNHL. We have found an extremely high carrier frequency of 35delG GJB2 mutation in Belarus -5.7%. This point deletion has also been detected in 53% of the patients with SNHL. The 312del14 GJB2 was the second most common mutation in the Belarus patient cohort. Mitochondrial A1555G mt-RNR1 substitution was found in two SNHL patients (0.55%) but none were found in the population cohort. No individuals carried the A7445G mutation of mitochondrial mt-TS1. G7444A as well as T961G substitutions were detected in mitochondrial mt-RNR1 at a rate of about 1% both in the patient and population cohorts. A possible reason for Belarusians having the highest mutation carrier frequency in Europe 35delG is discussed.

  3. Computational analysis of the mutations in BAP1, PBRM1 and SETD2 genes reveals the impaired molecular processes in renal cell carcinoma

    PubMed Central

    Occhipinti, Giulia; Santoni, Matteo; Massari, Francesco; Sotte, Valeria; Iacovelli, Roberto; Burattini, Luciano; Santini, Daniele; Montironi, Rodolfo; Cascinu, Stefano; Principato, Giovanni

    2015-01-01

    Clear cell Renal Cell Carcinoma (ccRCC) is due to loss of von Hippel–Lindau (VHL) gene and at least one out of three chromatin regulating genes BRCA1-associated protein-1 (BAP1), Polybromo-1 (PBRM1) and Set domain-containing 2 (SETD2). More than 350, 700 and 500 mutations are known respectively for BAP1, PBRM1 and SETD2 genes. Each variation damages these genes with different severity levels. Unfortunately for most of these mutations the molecular effect is unknown, so precluding a severity classification. Moreover, the huge number of these gene mutations does not allow to perform experimental assays for each of them. By bioinformatic tools, we performed predictions of the molecular effects of all mutations lying in BAP1, PBRM1 and SETD2 genes. Our results allow to distinguish whether a mutation alters protein function directly or by splicing pattern destruction and how much severely. This classification could be useful to reveal correlation with patients’ outcome, to guide experiments, to select the variations that are worth to be included in translational/association studies, and to direct gene therapies. PMID:26452128

  4. Regulation of aquaporin-2 trafficking.

    PubMed

    Nedvetsky, Pavel I; Tamma, Grazia; Beulshausen, Sven; Valenti, Giovanna; Rosenthal, Walter; Klussmann, Enno

    2009-01-01

    Principal cells lining renal collecting ducts control the fine-tuning of body water homeostasis by regulating water reabsorption through the water channels aquaporin-2 (AQP2), aquaporin-3 (AQP3), and aquaporin-4 (AQP4). While the localization of AQP2 is subject to regulation by arginine-vasopressin (AVP), AQP3 and AQP4 are constitutively expressed in the basolateral plasma membrane. AVP adjusts the amount of AQP2 in the plasma membrane by triggering its redistribution from intracellular vesicles into the plasma membrane. This permits water entry into the cells and water exit through AQP3 and AQP4. The translocation of AQP2 is initiated by an increase in cAMP following V2R activation through AVP. The AVP-induced rise in cAMP activates protein kinase A (PKA), which in turn phosphorylates AQP2, and thereby triggers the redistribution of AQP2. Several proteins participating in the control of cAMP-dependent AQP2 trafficking have been identified; for example, A kinase anchoring proteins (AKAPs) tethering PKA to cellular compartments; phosphodiesterases (PDEs) regulating the local cAMP level; cytoskeletal components such as F-actin and microtubules; small GTPases of the Rho family controlling cytoskeletal dynamics; motor proteins transporting AQP2-bearing vesicles to and from the plasma membrane for exocytic insertion and endocytic retrieval; SNAREs inducing membrane fusions, hsc70, a chaperone, important for endocytic retrieval. In addition, cAMP-independent mechanisms of translocation mainly involving the F-actin cytoskeleton have been uncovered. Defects of AQP2 trafficking cause diseases such as nephrogenic diabetes insipidus (NDI), a disorder characterized by a massive loss of hypoosmotic urine.This review summarizes recent data elucidating molecular mechanisms underlying the trafficking of AQP2. In particular, we focus on proteins involved in the regulation of trafficking, and physiological and pathophysiological stimuli determining the cellular localization of AQP2

  5. A novel missense mutation in the C2C domain of otoferlin causes profound hearing impairment in an Omani family with auditory neuropathy

    PubMed Central

    Al-Wardy, Nadia M.; Al-Kindi, Mohammed N.; Al-Khabouri, Mazin J.; Tamimi, Yahya; van Camp, Guy

    2016-01-01

    Objectives: To identify genetic defects in an Omani family diagnosed with deafness. Methods: A cross-sectional association study was conducted at the Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud, Oman and the Centre of Medical Genetics, University of Antwerp, Antwerp, Belgium between August 2010 and September 2014. Microsatellites markers for nine non-syndromic genes were used to genotype the defective locus using the extracted DNA from family members. Sanger sequencing method was used to identify the disease causative mutation. Eazy linkage 5.05 was used to calculate the logarithm of odds score. Lasergene suite was used to detect the mutation position, and Phyre2, SMART, Rasmol, and GOR IV were used to predict the effects of the defect on protein structure and function. Results: The disease was linked to markers located on chromosome-2 and covering the OTOF (DFNB9) gene. A novel missense mutation that changed nucleotide C to G at position c.1469 and consequently the amino acid Proline to Arginine (P490R) on exon 15 was detected. Protein modeling analysis revealed the impact of the mutation on protein structure and the relevant C2C domain. The mutation seems to create a new protein isoform homologous to the complement component C1q. Conclusion: These findings suggest that the mutation found in C2C domain of the OTOF gene is likely to cause deafness in the studied family reflecting the importance of C2 domains of otoferlin in hearing loss. PMID:27652356

  6. The R215W mutation in NBS1 impairs {gamma}-H2AX binding and affects DNA repair: molecular bases for the severe phenotype of 657del5/R215W Nijmegen breakage syndrome patients

    SciTech Connect

    Masi, Alessandra di Viganotti, Mara; Polticelli, Fabio; Ascenzi, Paolo; Tanzarella, Caterina; Antoccia, Antonio

    2008-05-09

    Nijmegen breakage syndrome (NBS) is a genetic disorder characterized by chromosomal instability and hypersensitivity to ionising radiation. Compound heterozygous 657del5/R215W NBS patients display a clinical phenotype more severe than the majority of NBS patients homozygous for the 657del5 mutation. The NBS1 protein, mutated in NBS patients, contains a FHA/BRCT domain necessary for the DNA-double strand break (DSB) damage response. Recently, a second BRCT domain has been identified, however, its role is still unknown. Here, we demonstrate that the R215W mutation in NBS1 impairs histone {gamma}-H2AX binding after induction of DNA damage, leading to a delay in DNA-DSB rejoining. Molecular modelling reveals that the 215 residue of NBS1 is located between the two BRCT domains, affecting their relative orientation that appears critical for {gamma}-H2AX binding. Present data represent the first evidence for the role of NBS1 tandem BRCT domains in {gamma}-H2AX recognition, and could explain the severe phenotype observed in 657del5/R215W NBS patients.

  7. Human Trafficking in the Emergency Department

    PubMed Central

    Patel, Ronak B.; Ahn, Roy; Burke, Thomas F.

    2010-01-01

    Human trafficking continues to persist, affecting up to 200 million people worldwide. As clinicians in emergency departments commonly encounter victims of intimate partner violence, some of these encounters will be with trafficking victims. These encounters provide a rare opportunity for healthcare providers to intervene and help. This case report of a human trafficking patient from a teaching hospital illustrates the complexity in identifying these victims. Clinicians can better identify potential trafficking cases by increasing their awareness of this phenomenon, using qualified interpreters, isolating potential victims by providing privacy and using simple clear reassuring statements ensuring security. A multidisciplinary approach can then be mobilized to help these patients. PMID:21293753

  8. Regulation of dopamine transporter trafficking by intracellular amphetamine.

    PubMed

    Kahlig, Kristopher M; Lute, Brandon J; Wei, Yuqiang; Loland, Claus J; Gether, Ulrik; Javitch, Jonathan A; Galli, Aurelio

    2006-08-01

    The dopamine (DA) transporter (DAT) mediates the removal of released DA. DAT is the major molecular target responsible for the rewarding properties and abuse potential of the psychostimulant amphetamine (AMPH). AMPH has been shown to reduce the number of DATs at the cell surface, and this AMPH-induced cell surface DAT redistribution may result in long-lasting changes in DA homeostasis. The molecular mechanism by which AMPH induces trafficking is not clear. Because AMPH is a substrate, we do not know whether extracellular AMPH stimulates trafficking through its interaction with DAT and subsequent alteration in DAT function, thereby triggering intracellular signaling or whether AMPH must be transported and then act intracellularly. In agreement with our previous studies, extracellular AMPH caused cytosolic redistribution of the wild-type human DAT (WT-hDAT). However, AMPH did not induce cytosolic redistribution in an uptake-impaired hDAT (Y335A-hDAT) that still binds AMPH. The divalent cation zinc (Zn(2+)) inhibits WT-hDAT activity, but it restores Y335A-hDAT uptake. Coadministration of Zn(2+) and AMPH consistently reduced WT-hDAT trafficking but stimulated cytosolic redistribution of Y335A-hDAT. Furthermore, direct intracellular application of AMPH, via a whole-cell patch pipette, stimulated the trafficking of Y335A-hDAT. Taken together, these data suggest that the DAT transport cycle is not required for AMPH-induced down-regulation and that an increase of intracellular AMPH is an essential component of DAT redistribution.

  9. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects

    PubMed Central

    Schaffner, Adam; Fedick, Anastasia; Kaye, Lauren E.; Liao, Jun; Yachelevich, Naomi; Chu, Mary-Lynn; Boles, Richard G.; Moran, Ellen; Tokita, Mari; Gorman, Elizabeth; Zhang, Wei; Xia, Fan; Leduc, Magalie; Yang, Yaping; Eng, Christine; Wong, Lee-Jun; Schiffmann, Raphael; Diaz, George A.; Kornreich, Ruth; Thummel, Ryan; Wasserstein, Melissa; Yue, Zhenyu; Edelmann, Lisa

    2016-01-01

    Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS). The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES), we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G), as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ) families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026). VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering) protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway. PMID:27120463

  10. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects.

    PubMed

    Zhang, Jinglan; Lachance, Véronik; Schaffner, Adam; Li, Xianting; Fedick, Anastasia; Kaye, Lauren E; Liao, Jun; Rosenfeld, Jill; Yachelevich, Naomi; Chu, Mary-Lynn; Mitchell, Wendy G; Boles, Richard G; Moran, Ellen; Tokita, Mari; Gorman, Elizabeth; Bagley, Kaytee; Zhang, Wei; Xia, Fan; Leduc, Magalie; Yang, Yaping; Eng, Christine; Wong, Lee-Jun; Schiffmann, Raphael; Diaz, George A; Kornreich, Ruth; Thummel, Ryan; Wasserstein, Melissa; Yue, Zhenyu; Edelmann, Lisa

    2016-04-01

    Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS). The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES), we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G), as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ) families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026). VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering) protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway. PMID:27120463

  11. Human anion exchanger1 mutations and distal renal tubular acidosis.

    PubMed

    Yenchitsomanus, Pa-thai

    2003-09-01

    The human anion exchanger 1 (AE1 or SLC4A1) gene encodes anion exchanger 1 (or band 3) protein in erythrocytes and in alpha-intercalated cells of the kidney. Thus, AE1 mutations show pleiotrophic effects resulting in two distinct and seemingly unrelated defects, an erythrocyte abnormality and distal renal tubular acidosis (dRTA). Southeast Asian ovalocytosis (SAO), a well-known red blood cell (RBC) defect, which is widespread in Southeast Asian regions, is caused by AE1 mutation due to a deletion of 27 base pairs in codons 400-408 (delta400-408) leading to an in-frame 9 amino-acid loss in the protein. Co-existence of SAO and dRTA is usually not seen in the same individual. However, the two conditions can co-exist as the result of compound heterozygosities between delta400-408 and other mutations. The reported genotypes include delta400-408/G701D, delta400-408/R602H, delta400-408/deltaV850, and delta400-408/A858D. The presence of dRTA, with or without RBC abnormalities, may occur from homozygous or compound heterozygous conditions of recessive AE1 mutations (eg G701D/G701D, V488M/V488M, deltaV850/deltaV850, deltaV850/A858D, G701D/S773P) or heterozygous dominant AE1 mutations (eg R598H, R589C, R589S, S613F, R901X). Codon 589 of this gene seems to be a 'mutational hot-spot' since repeated mutations at this codon occurring in different ethnic groups and at least two de novo (R589H and R589C) mutations have been observed. Therefore, AE1 mutations can result in both recessive and dominant dRTA, possibly depending on the position of the amino acid change in the protein. As several mutant AE1 proteins still maintain a significant anion transport function but are defective in targeting to the cell surface, impaired intracellular trafficking of the mutant AE1 is an important molecular mechanism involved in the pathogenesis of dRTA associated with AE1 mutations. PMID:15115146

  12. The Domain II S4-S5 Linker in Nav1.9: A Missense Mutation Enhances Activation, Impairs Fast Inactivation, and Produces Human Painful Neuropathy.

    PubMed

    Han, Chongyang; Yang, Yang; de Greef, Bianca T A; Hoeijmakers, Janneke G J; Gerrits, Monique M; Verhamme, Camiel; Qu, Jian; Lauria, Giuseppe; Merkies, Ingemar S J; Faber, Catharina G; Dib-Hajj, Sulayman D; Waxman, Stephen G

    2015-06-01

    Painful small fiber neuropathy is a challenging medical condition with no effective treatment. Non-genetic causes can be identified in one half of the subjects. Gain-of-function variants of sodium channels Nav1.7 and Nav1.8 have recently been associated with painful small fiber neuropathy. More recently, mutations of sodium channel Nav1.9 have been linked to human pain disorders, with two gain-of-function mutations found in patients with painful small fiber neuropathy. Here we report a novel Nav1.9 mutation, a glycine 699 substitution by arginine (G699R) in the domain II S4-S5 linker, identified in a patient with painful small fiber neuropathy. In this study, we assayed the mutant channels by voltage-clamp in superior cervical ganglion neurons, which do not produce endogenous Nav1.8 or Nav1.9 currents, and provide a novel platform where Nav1.9 is expressed at relatively high levels. Voltage-clamp analysis showed that the mutation hyperpolarizes (-10.1 mV) channel activation, depolarizes (+6.3 mV) steady-state fast inactivation, slows deactivation, and enhances ramp responses compared with wild-type Nav1.9 channels. Current-clamp analysis showed that the G699R mutant channels render dorsal root ganglion neurons hyperexcitable, via depolarized resting membrane potential, reduced current threshold and increased evoked firing. These observations show that the domain II S4-S5 linker plays an important role in the gating of Nav1.9 and demonstrates that a mutation in this linker is linked to a common pain disorder. PMID:25791876

  13. The Domain II S4-S5 Linker in Nav1.9: A Missense Mutation Enhances Activation, Impairs Fast Inactivation, and Produces Human Painful Neuropathy.

    PubMed

    Han, Chongyang; Yang, Yang; de Greef, Bianca T A; Hoeijmakers, Janneke G J; Gerrits, Monique M; Verhamme, Camiel; Qu, Jian; Lauria, Giuseppe; Merkies, Ingemar S J; Faber, Catharina G; Dib-Hajj, Sulayman D; Waxman, Stephen G

    2015-06-01

    Painful small fiber neuropathy is a challenging medical condition with no effective treatment. Non-genetic causes can be identified in one half of the subjects. Gain-of-function variants of sodium channels Nav1.7 and Nav1.8 have recently been associated with painful small fiber neuropathy. More recently, mutations of sodium channel Nav1.9 have been linked to human pain disorders, with two gain-of-function mutations found in patients with painful small fiber neuropathy. Here we report a novel Nav1.9 mutation, a glycine 699 substitution by arginine (G699R) in the domain II S4-S5 linker, identified in a patient with painful small fiber neuropathy. In this study, we assayed the mutant channels by voltage-clamp in superior cervical ganglion neurons, which do not produce endogenous Nav1.8 or Nav1.9 currents, and provide a novel platform where Nav1.9 is expressed at relatively high levels. Voltage-clamp analysis showed that the mutation hyperpolarizes (-10.1 mV) channel activation, depolarizes (+6.3 mV) steady-state fast inactivation, slows deactivation, and enhances ramp responses compared with wild-type Nav1.9 channels. Current-clamp analysis showed that the G699R mutant channels render dorsal root ganglion neurons hyperexcitable, via depolarized resting membrane potential, reduced current threshold and increased evoked firing. These observations show that the domain II S4-S5 linker plays an important role in the gating of Nav1.9 and demonstrates that a mutation in this linker is linked to a common pain disorder.

  14. Molybdenum Trafficking for Nitrogen Fixation†

    PubMed Central

    Hernandez, Jose A.; George, Simon J.; Rubio, Luis M.

    2009-01-01

    The molybdenum nitrogenase is responsible for most biological nitrogen fixation, a prokaryotic metabolic process that determines the global biogeochemical cycles of nitrogen and carbon. Here we describe the trafficking of molybdenum for nitrogen fixation in the model diazotrophic bacterium Azotobacter vinelandii. The genes and proteins involved in molybdenum uptake, homeostasis, storage, regulation, and nitrogenase cofactor biosynthesis are reviewed. Molybdenum biochemistry in A. vinelandii reveals unexpected mechanisms and a new role for iron-sulfur clusters in the sequestration and delivery of molybdenum. PMID:19772354

  15. Optical Control of Peroxisomal Trafficking.

    PubMed

    Spiltoir, Jessica I; Strickland, Devin; Glotzer, Michael; Tucker, Chandra L

    2016-07-15

    The blue-light-responsive LOV2 domain of Avena sativa phototropin1 (AsLOV2) has been used to regulate activity and binding of diverse protein targets with light. Here, we used AsLOV2 to photocage a peroxisomal targeting sequence, allowing light regulation of peroxisomal protein import. We generated a protein tag, LOV-PTS1, that can be appended to proteins of interest to direct their import to the peroxisome with light. This method provides a means to inducibly trigger peroxisomal protein trafficking in specific cells at user-defined times. PMID:26513473

  16. Mutations within the conserved NS1 nuclear export signal lead to inhibition of influenza A virus replication

    PubMed Central

    2014-01-01

    Background The influenza A virus NS1 protein is a virulence factor and an antagonist of host cell innate immune responses. During virus infection NS1 protein has several functions both in the nucleus and in the cytoplasm and its intracellular localization is regulated by one or two nuclear localization signals (NLS) and a nuclear export signal (NES). Methods In order to investigate the role of NS1 NES in intracellular localization, virus life cycle and host interferon responses, we generated recombinant A/Udorn/72 viruses harboring point mutations in the NES sequence. Results NS1 NES was found to be inactivated by several of the mutations resulting in nuclear retention of NS1 at late stages of infection confirming that this sequence is a bona fide functional NES. Some of the mutant viruses showed reduced growth properties in cell culture, inability to antagonize host cell interferon production and increased p-IRF3 levels, but no clear correlation between these phenotypes and NS1 localization could be made. Impaired activation of Akt phosphorylation by the replication-deficient viruses indicates possible disruption of NS1-p85β interaction by mutations in the NES region. Conclusion We conclude that mutations within the NS1 NES result in impairment of several NS1 functions which extends further from the NES site being only involved in regulating the nuclear-cytoplasmic trafficking of NS1. PMID:25023993

  17. Disturbed vesicular trafficking of membrane proteins in prion disease.

    PubMed

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.

  18. Three distinct motifs within the C-terminus of acid-sensing ion channel 1a regulate its surface trafficking.

    PubMed

    Jing, L; Chu, X-P; Zha, X-M

    2013-09-01

    Various protein motifs play a key role in regulating protein biogenesis and trafficking. Here, we discovered that three distinct motifs regulate the trafficking of acid-sensing ion channel 1a (ASIC1a), the primary neuronal proton receptor which plays critical roles in neurological diseases including stroke, multiple sclerosis and seizures. Mutating the PDZ binding motif of ASIC1a increased its surface expression and current density. In contrast, mutating either a RRGK motif or a KEAKR motif reduced ASIC1a surface expression and acid-activated current density. Mutating or deleting the RRGK motif also reduced pH sensitivity and the rate of desensitization of ASIC1a. These changes were likely due to a change in ASIC1a biogenesis; mutating either the RRGK or KEAKR motif reduced N-glycosylation of ASIC1a while mutating the PDZ binding motif had the opposite effect. Our results demonstrate that these C-terminal motifs are important for ASIC1a trafficking and channel function. In addition, in contrast to multiple previous studies, which all show that K/R containing motifs lead to endoplasmic reticulum (ER) retention, our findings indicate that these motifs can also be required for efficient trafficking.

  19. Systematic analysis of intracellular trafficking motifs located within the cytoplasmic domain of simian immunodeficiency virus glycoprotein gp41.

    PubMed

    Postler, Thomas S; Bixby, Jacqueline G; Desrosiers, Ronald C; Yuste, Eloísa

    2014-01-01

    Previous studies have shown that truncation of the cytoplasmic-domain sequences of the simian immunodeficiency virus (SIV) envelope glycoprotein (Env) just prior to a potential intracellular-trafficking signal of the sequence YIHF can strongly increase Env protein expression on the cell surface, Env incorporation into virions and, at least in some contexts, virion infectivity. Here, all 12 potential intracellular-trafficking motifs (YXXΦ or LL/LI/IL) in the gp41 cytoplasmic domain (gp41CD) of SIVmac239 were analyzed by systematic mutagenesis. One single and 7 sequential combination mutants in this cytoplasmic domain were characterized. Cell-surface levels of Env were not significantly affected by any of the mutations. Most combination mutations resulted in moderate 3- to 8-fold increases in Env incorporation into virions. However, mutation of all 12 potential sites actually decreased Env incorporation into virions. Variant forms with 11 or 12 mutated sites exhibited 3-fold lower levels of inherent infectivity, while none of the other single or combination mutations that were studied significantly affected the inherent infectivity of SIVmac239. These minor effects of mutations in trafficking motifs form a stark contrast to the strong increases in cell-surface expression and Env incorporation which have previously been reported for large truncations of gp41CD. Surprisingly, mutation of potential trafficking motifs in gp41CD of SIVmac316, which differs by only one residue from gp41CD of SIVmac239, effectively recapitulated the increases in Env incorporation into virions observed with gp41CD truncations. Our results indicate that increases in Env surface expression and virion incorporation associated with truncation of SIVmac239 gp41CD are not fully explained by loss of consensus trafficking motifs. PMID:25479017

  20. Systematic Analysis of Intracellular Trafficking Motifs Located within the Cytoplasmic Domain of Simian Immunodeficiency Virus Glycoprotein gp41

    PubMed Central

    Postler, Thomas S.; Bixby, Jacqueline G.; Desrosiers, Ronald C.; Yuste, Eloísa

    2014-01-01

    Previous studies have shown that truncation of the cytoplasmic-domain sequences of the simian immunodeficiency virus (SIV) envelope glycoprotein (Env) just prior to a potential intracellular-trafficking signal of the sequence YIHF can strongly increase Env protein expression on the cell surface, Env incorporation into virions and, at least in some contexts, virion infectivity. Here, all 12 potential intracellular-trafficking motifs (YXXΦ or LL/LI/IL) in the gp41 cytoplasmic domain (gp41CD) of SIVmac239 were analyzed by systematic mutagenesis. One single and 7 sequential combination mutants in this cytoplasmic domain were characterized. Cell-surface levels of Env were not significantly affected by any of the mutations. Most combination mutations resulted in moderate 3- to 8-fold increases in Env incorporation into virions. However, mutation of all 12 potential sites actually decreased Env incorporation into virions. Variant forms with 11 or 12 mutated sites exhibited 3-fold lower levels of inherent infectivity, while none of the other single or combination mutations that were studied significantly affected the inherent infectivity of SIVmac239. These minor effects of mutations in trafficking motifs form a stark contrast to the strong increases in cell-surface expression and Env incorporation which have previously been reported for large truncations of gp41CD. Surprisingly, mutation of potential trafficking motifs in gp41CD of SIVmac316, which differs by only one residue from gp41CD of SIVmac239, effectively recapitulated the increases in Env incorporation into virions observed with gp41CD truncations. Our results indicate that increases in Env surface expression and virion incorporation associated with truncation of SIVmac239 gp41CD are not fully explained by loss of consensus trafficking motifs. PMID:25479017

  1. Neuron membrane trafficking and protein kinases involved in autism and ADHD.

    PubMed

    Kitagishi, Yasuko; Minami, Akari; Nakanishi, Atsuko; Ogura, Yasunori; Matsuda, Satoru

    2015-01-01

    A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1) are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD) is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT). AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  2. Preliminary Validation of the Sex Trafficking Attitudes Scale.

    PubMed

    Houston-Kolnik, Jaclyn D; Todd, Nathan R; Wilson, Midge

    2016-09-01

    This study presents the Sex Trafficking Attitudes Scale (STAS), assessing cognitive, behavioral, and affective attitudes toward the sex trafficking of women and girls. Across two studies, exploratory and confirmatory factor analyses revealed and confirmed six subscales: (a) Knowledge About Sex Trafficking, (b) Awareness of Sex Trafficking, (c) Attitudes Toward Ability to Leave Sex Trafficking, (d) Attitudes Toward Helping Survivors, (e) Empathic Reactions Toward Sex Trafficking, and (f) Efficacy to Reduce Sex Trafficking. Results showed support for convergent validity as the subscales were associated with related measures. The STAS holds promise to expand research and inform efforts to support trafficking survivors.

  3. A novel IFITM5 mutation in severe atypical osteogenesis imperfecta type VI impairs osteoblast production of pigment epithelium-derived factor.

    PubMed

    Farber, Charles R; Reich, Adi; Barnes, Aileen M; Becerra, Patricia; Rauch, Frank; Cabral, Wayne A; Bae, Alison; Quinlan, Aaron; Glorieux, Francis H; Clemens, Thomas L; Marini, Joan C

    2014-06-01

    Osteogenesis imperfecta (OI) types V and VI are caused, respectively, by a unique dominant mutation in IFITM5, encoding BRIL, a transmembrane ifitm-like protein most strongly expressed in the skeletal system, and recessive null mutations in SERPINF1, encoding pigment epithelium-derived factor (PEDF). We identified a 25-year-old woman with severe OI whose dermal fibroblasts and cultured osteoblasts displayed minimal secretion of PEDF, but whose serum PEDF level was in the normal range. SERPINF1 sequences were normal despite bone histomorphometry consistent with type VI OI and elevated childhood serum alkaline phosphatase. We performed exome sequencing on the proband, both parents, and an unaffected sibling. IFITM5 emerged as the candidate gene from bioinformatics analysis, and was corroborated by membership in a murine bone co-expression network module containing all currently known OI genes. The de novo IFITM5 mutation was confirmed in one allele of the proband, resulting in a p.S40L substitution in the intracellular domain of BRIL but was absent in unaffected family members. IFITM5 expression was normal in proband fibroblasts and osteoblasts, and BRIL protein level was similar to control in differentiated proband osteoblasts on Western blot and in permeabilized mutant osteoblasts by microscopy. In contrast, SERPINF1 expression was decreased in proband osteoblasts; PEDF was barely detectable in conditioned media of proband cells. Expression and secretion of type I collagen was similarly decreased in proband osteoblasts; the expression pattern of several osteoblast markers largely overlapped reported values from cells with a primary PEDF defect. In contrast, osteoblasts from a typical case of type V OI, with an activating mutation at the 5'-terminus of BRIL, have increased SERPINF1 expression and PEDF secretion during osteoblast differentiation. Together, these data suggest that BRIL and PEDF have a relationship that connects the genes for types V and VI OI and

  4. Impaired Action Potential Initiation in GABAergic Interneurons Causes Hyperexcitable Networks in an Epileptic Mouse Model Carrying a Human NaV1.1 Mutation

    PubMed Central

    Hedrich, Ulrike B.S.; Liautard, Camille; Kirschenbaum, Daniel; Pofahl, Martin; Lavigne, Jennifer; Liu, Yuanyuan; Theiss, Stephan; Slotta, Johannes; Escayg, Andrew; Dihné, Marcel; Beck, Heinz

    2014-01-01

    Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCN1A mouse model carrying the NaV1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na+ channels in interneurons and persistent Na+ currents were not significantly changed. Instead, the key mechanism of interneuron dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing. This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased spontaneous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca2+ imaging in hippocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the studied mouse model and in patients carrying this mutation. PMID:25378155

  5. Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling.

    PubMed

    Arons, Magali H; Thynne, Charlotte J; Grabrucker, Andreas M; Li, Dong; Schoen, Michael; Cheyne, Juliette E; Boeckers, Tobias M; Montgomery, Johanna M; Garner, Craig C

    2012-10-24

    Mutations in several postsynaptic proteins have recently been implicated in the molecular pathogenesis of autism and autism spectrum disorders (ASDs), including Neuroligins, Neurexins, and members of the ProSAP/Shank family, thereby suggesting that these genetic forms of autism may share common synaptic mechanisms. Initial studies of ASD-associated mutations in ProSAP2/Shank3 support a role for this protein in glutamate receptor function and spine morphology, but these synaptic phenotypes are not universally penetrant, indicating that other core facets of ProSAP2/Shank3 function must underlie synaptic deficits in patients with ASDs. In the present study, we have examined whether the ability of ProSAP2/Shank3 to interact with the cytoplasmic tail of Neuroligins functions to coordinate pre/postsynaptic signaling through the Neurexin-Neuroligin signaling complex in hippocampal neurons of Rattus norvegicus. Indeed, we find that synaptic levels of ProSAP2/Shank3 regulate AMPA and NMDA receptor-mediated synaptic transmission and induce widespread changes in the levels of presynaptic and postsynaptic proteins via Neurexin-Neuroligin transsynaptic signaling. ASD-associated mutations in ProSAP2/Shank3 disrupt not only postsynaptic AMPA and NMDA receptor signaling but also interfere with the ability of ProSAP2/Shank3 to signal across the synapse to alter presynaptic structure and function. These data indicate that ASD-associated mutations in a subset of synaptic proteins may target core cellular pathways that coordinate the functional matching and maturation of excitatory synapses in the CNS.

  6. Impaired surface αβγ GABA(A) receptor expression in familial epilepsy due to a GABRG2 frameshift mutation.

    PubMed

    Tian, Mengnan; Mei, Davide; Freri, Elena; Hernandez, Ciria C; Granata, Tiziana; Shen, Wangzhen; Macdonald, Robert L; Guerrini, Renzo

    2013-02-01

    The purpose of the study was to explore the pathogenic mechanisms underlying generalized epilepsy and febrile seizures plus (GEFS+) in a family with a novel γ2 subunit gene (GABRG2) frameshift mutation. Four affected and one unaffected individuals carried a c.1329delC GABRG2 mutation resulting in a subunit [γ2S(S443delC)] with a modified and elongated carboxy-terminus that is different from that of the wildtype γ2S subunit. We expressed the wildtype γ2S subunit and the predicted mutant γ2S(S443delC) subunit cDNAs in HEK293T cells and performed immunoblotting, flow cytometry and electrophysiology studies. The mutant subunit was translated as a stable protein that was larger than the wildtype γ2S subunit and was retained in the ER and not expressed on the cell surface membrane, suggesting GABRG2 haploinsufficiency. Peak GABA-evoked currents recorded from cells cotransfected with wildtype α1 and β2 subunits and mutant γ2S subunits were significantly decreased and were comparable to α1β2 receptor currents. S443delC is the first GABR epilepsy mutation predicted to abolish the natural stop codon and produce a stop codon in the 3' UTR that leads to translation of an extended peptide. The GEFS+ phenotype observed in this family is likely caused by γ2S subunit loss-of-function and possibly to dominant-negative suppression of α1β2γ2 receptors. Many GABRG2 truncation mutations result in GEFS+, but the spectrum of phenotypic severity is wider, ranging from asymptomatic individuals to the Dravet syndrome. Mechanisms influencing the severity of the phenotype are therefore complex and difficult to correlate with its demonstrable functional effects.

  7. A Novel IFITM5 Mutation in Severe Atypical Osteogenesis Imperfecta Type VI Impairs Osteoblast Production of Pigment Epithelium-Derived Factor

    PubMed Central

    Farber, Charles R; Reich, Adi; Barnes, Aileen M; Becerra, Patricia; Rauch, Frank; Cabral, Wayne A; Bae, Alison; Quinlan, Aaron; Glorieux, Francis H; Clemens, Thomas L; Marini, Joan C

    2015-01-01

    Osteogenesis imperfecta (OI) types V and VI are caused, respectively, by a unique dominant mutation in IFITM5, encoding BRIL, a transmembrane ifitm-like protein most strongly expressed in the skeletal system, and recessive null mutations in SERPINF1, encoding pigment epithelium-derived factor (PEDF). We identified a 25-year-old woman with severe OI whose dermal fibroblasts and cultured osteoblasts displayed minimal secretion of PEDF, but whose serum PEDF level was in the normal range. SERPINF1 sequences were normal despite bone histomorphometry consistent with type VI OI and elevated childhood serum alkaline phosphatase. We performed exome sequencing on the proband, both parents, and an unaffected sibling. IFITM5 emerged as the candidate gene from bioinformatics analysis, and was corroborated by membership in a murine bone co-expression network module containing all currently known OI genes. The de novo IFITM5 mutation was confirmed in one allele of the proband, resulting in a p.S40L substitution in the intracellular domain of BRIL but was absent in unaffected family members. IFITM5 expression was normal in proband fibroblasts and osteoblasts, and BRIL protein level was similar to control in differentiated proband osteoblasts on Western blot and in permeabilized mutant osteoblasts by microscopy. In contrast, SERPINF1 expression was decreased in proband osteoblasts; PEDF was barely detectable in conditioned media of proband cells. Expression and secretion of type I collagen was similarly decreased in proband osteoblasts; the expression pattern of several osteoblast markers largely overlapped reported values from cells with a primary PEDF defect. In contrast, osteoblasts from a typical case of type V OI, with an activating mutation at the 5′-terminus of BRIL, have increased SERPINF1 expression and PEDF secretion during osteoblast differentiation. Together, these data suggest that BRIL and PEDF have a relationship that connects the genes for types V and VI OI and

  8. An engineered tale-transcription factor rescues transcription of factor VII impaired by promoter mutations and enhances its endogenous expression in hepatocytes.

    PubMed

    Barbon, Elena; Pignani, Silvia; Branchini, Alessio; Bernardi, Francesco; Pinotti, Mirko; Bovolenta, Matteo

    2016-06-24

    Tailored approaches to restore defective transcription responsible for severe diseases have been poorly explored. We tested transcription activator-like effectors fused to an activation domain (TALE-TFs) in a coagulation factor VII (FVII) deficiency model. In this model, the deficiency is caused by the -94C > G or -61T > G mutation, which abrogate the binding of Sp1 or HNF-4 transcription factors. Reporter assays in hepatoma HepG2 cells naturally expressing FVII identified a single TALE-TF (TF4) that, by targeting the region between mutations, specifically trans-activated both the variant (>100-fold) and wild-type (20-40-fold) F7 promoters. Importantly, in the genomic context of transfected HepG2 and transduced primary hepatocytes, TF4 increased F7 mRNA and protein levels (2- to 3-fold) without detectable off-target effects, even for the homologous F10 gene. The ectopic F7 expression in renal HEK293 cells was modestly affected by TF4 or by TALE-TF combinations. These results provide experimental evidence for TALE-TFs as gene-specific tools useful to counteract disease-causing promoter mutations.

  9. An engineered tale-transcription factor rescues transcription of factor VII impaired by promoter mutations and enhances its endogenous expression in hepatocytes

    PubMed Central

    Barbon, Elena; Pignani, Silvia; Branchini, Alessio; Bernardi, Francesco; Pinotti, Mirko; Bovolenta, Matteo

    2016-01-01

    Tailored approaches to restore defective transcription responsible for severe diseases have been poorly explored. We tested transcription activator-like effectors fused to an activation domain (TALE-TFs) in a coagulation factor VII (FVII) deficiency model. In this model, the deficiency is caused by the −94C > G or −61T > G mutation, which abrogate the binding of Sp1 or HNF-4 transcription factors. Reporter assays in hepatoma HepG2 cells naturally expressing FVII identified a single TALE-TF (TF4) that, by targeting the region between mutations, specifically trans-activated both the variant (>100-fold) and wild-type (20–40-fold) F7 promoters. Importantly, in the genomic context of transfected HepG2 and transduced primary hepatocytes, TF4 increased F7 mRNA and protein levels (2- to 3-fold) without detectable off-target effects, even for the homologous F10 gene. The ectopic F7 expression in renal HEK293 cells was modestly affected by TF4 or by TALE-TF combinations. These results provide experimental evidence for TALE-TFs as gene-specific tools useful to counteract disease-causing promoter mutations. PMID:27341548

  10. Intracellular trafficking of nucleic acids.

    PubMed

    Zhou, Rui; Geiger, R Christopher; Dean, David A

    2004-11-01

    Until recently, the attention of most researchers has focused on the first and last steps of gene transfer, namely delivery to the cell and transcription, in order to optimise transfection and gene therapy. However, over the past few years, researchers have realised that the intracellular trafficking of plasmids is more than just a "black box" and is actually one of the major barriers to effective gene delivery. After entering the cytoplasm, following direct delivery or endocytosis, plasmids or other vectors must travel relatively long distances through the mesh of cytoskeletal networks before reaching the nuclear envelope. Once at the nuclear envelope, the DNA must either wait until cell division, or be specifically transported through the nuclear pore complex, in order to reach the nucleoplasm where it can be transcribed. This review focuses on recent developments in the understanding of these intracellular trafficking events as they relate to gene delivery. Hopefully, by continuing to unravel the mechanisms by which plasmids and other gene delivery vectors move throughout the cell, and by understanding the cell biology of gene transfer, superior methods of transfection and gene therapy can be developed.

  11. Trafficking activity of myosin XXI is required in assembly of Leishmania flagellum.

    PubMed

    Katta, Santharam S; Tammana, Trinadh V Satish; Sahasrabuddhe, Amogh A; Bajpai, Virendra K; Gupta, Chhitar M

    2010-06-15

    Actin-based myosin motors have a pivotal role in intracellular trafficking in eukaryotic cells. The parasitic protozoan organism Leishmania expresses a novel class of myosin, myosin XXI (Myo21), which is preferentially localized at the proximal region of the flagellum. However, its function in this organism remains largely unknown. Here, we show that Myo21 interacts with actin, and its expression is dependent of the growth stage. We further reveal that depletion of Myo21 levels results in impairment of the flagellar assembly and intracellular trafficking. These defects are, however, reversed by episomal complementation. Additionally, it is shown that deletion of the Myo21 gene leads to generation of ploidy, suggesting an essential role of Myo21 in survival of Leishmania cells. Together, these results indicate that actin-dependent trafficking activity of Myo21 is essentially required during assembly of the Leishmania flagellum. PMID:20501700

  12. Sequence and structure-specific elements of HERG mRNA determine channel synthesis and trafficking efficiency

    PubMed Central

    Sroubek, Jakub; Krishnan, Yamini; McDonald, Thomas V.

    2013-01-01

    Human ether-á-gogo-related gene (HERG) encodes a potassium channel that is highly susceptible to deleterious mutations resulting in susceptibility to fatal cardiac arrhythmias. Most mutations adversely affect HERG channel assembly and trafficking. Why the channel is so vulnerable to missense mutations is not well understood. Since nothing is known of how mRNA structural elements factor in channel processing, we synthesized a codon-modified HERG cDNA (HERG-CM) where the codons were synonymously changed to reduce GC content, secondary structure, and rare codon usage. HERG-CM produced typical IKr-like currents; however, channel synthesis and processing were markedly different. Translation efficiency was reduced for HERG-CM, as determined by heterologous expression, in vitro translation, and polysomal profiling. Trafficking efficiency to the cell surface was greatly enhanced, as assayed by immunofluorescence, subcellular fractionation, and surface labeling. Chimeras of HERG-NT/CM indicated that trafficking efficiency was largely dependent on 5′ sequences, while translation efficiency involved multiple areas. These results suggest that HERG translation and trafficking rates are independently governed by noncoding information in various regions of the mRNA molecule. Noncoding information embedded within the mRNA may play a role in the pathogenesis of hereditary arrhythmia syndromes and could provide an avenue for targeted therapeutics.—Sroubek, J., Krishnan, Y., McDonald, T V. Sequence- and structure-specific elements of HERG mRNA determine channel synthesis and trafficking efficiency. PMID:23608144

  13. G Protein-coupled Receptor Kinase-mediated Phosphorylation Regulates Post-endocytic Trafficking of the D2 Dopamine Receptor*S⃞

    PubMed Central

    Namkung, Yoon; Dipace, Concetta; Javitch, Jonathan A.; Sibley, David R.

    2009-01-01

    We investigated the role of G protein-coupled receptor kinase (GRK)-mediated phosphorylation in agonist-induced desensitization, arrestin association, endocytosis, and intracellular trafficking of the D2 dopamine receptor (DAR). Agonist activation of D2 DARs results in rapid and sustained receptor phosphorylation that is solely mediated by GRKs. A survey of GRKs revealed that only GRK2 or GRK3 promotes D2 DAR phosphorylation. Mutational analyses resulted in the identification of eight serine/threonine residues within the third cytoplasmic loop of the receptor that are phosphorylated by GRK2/3. Simultaneous mutation of these eight residues results in a receptor construct, GRK(-), that is completely devoid of agonist-promoted GRK-mediated receptor phosphorylation. We found that both wild-type (WT) and GRK(-) receptors underwent a similar degree of agonist-induced desensitization as assessed using [35S]GTPγS binding assays. Similarly, both receptor constructs internalized to the same extent in response to agonist treatment. Furthermore, using bioluminescence resonance energy transfer assays to directly assess receptor association with arrestin3, we found no differences between the WT and GRK(-) receptors. Thus, phosphorylation is not required for arrestin-receptor association or agonist-induced desensitization or internalization. In contrast, when we examined recycling of the D2 DARs to the cell surface, subsequent to agonist-induced endocytosis, the GRK(-) construct exhibited less recycling in comparison with the WT receptor. This impairment appears to be due to a greater propensity of the GRK(-) receptors to down-regulate once internalized. In contrast, if the receptor is highly phosphorylated, then receptor recycling is promoted. These results reveal a novel role for GRK-mediated phosphorylation in regulating the post-endocytic trafficking of a G protein-coupled receptor. PMID:19332542

  14. Examining the Risk of Nuclear Trafficking

    SciTech Connect

    Balatsky, Galya; Severe, William R; Schoeneck, Jeffery

    2009-01-01

    The need to stop illicit trafficking of nuclear and radioactive materials around the world is undeniable and urgent. This issue is particularly evident due to the highly dangerous consequences of the risks involved, the known interest of terrorist groups in acquiring such materials and the vulnerability of theft and diversion of such materials. Yet the phenomenon of nuclear trafficking remains a subject where the unknown dominates what is known on the subject. The trafficking panel at the Institute for Nuclear Materials Management (INMM) Workshop on Reducing the Risk of Radioactive and Nuclear Materials that took place in Albuquerque, New Mexico, March 10-11, 2009, dealt with some of the issues associated with nuclear trafficking. Different points of view on how to better address trafficking and thwart perpetrator efforts were discussed. This paper presents some of these views and addresses practical measures that should be considered to improve the situation.

  15. Recessive TRAPPC11 mutations cause a disease spectrum of limb girdle muscular dystrophy and myopathy with movement disorder and intellectual disability.

    PubMed

    Bögershausen, Nina; Shahrzad, Nassim; Chong, Jessica X; von Kleist-Retzow, Jürgen-Christoph; Stanga, Daniela; Li, Yun; Bernier, Francois P; Loucks, Catrina M; Wirth, Radu; Puffenberger, Eric G; Hegele, Robert A; Schreml, Julia; Lapointe, Gabriel; Keupp, Katharina; Brett, Christopher L; Anderson, Rebecca; Hahn, Andreas; Innes, A Micheil; Suchowersky, Oksana; Mets, Marilyn B; Nürnberg, Gudrun; McLeod, D Ross; Thiele, Holger; Waggoner, Darrel; Altmüller, Janine; Boycott, Kym M; Schoser, Benedikt; Nürnberg, Peter; Ober, Carole; Heller, Raoul; Parboosingh, Jillian S; Wollnik, Bernd; Sacher, Michael; Lamont, Ryan E

    2013-07-11

    Myopathies are a clinically and etiologically heterogeneous group of disorders that can range from limb girdle muscular dystrophy (LGMD) to syndromic forms with associated features including intellectual disability. Here, we report the identification of mutations in transport protein particle complex 11 (TRAPPC11) in three individuals of a consanguineous Syrian family presenting with LGMD and in five individuals of Hutterite descent presenting with myopathy, infantile hyperkinetic movements, ataxia, and intellectual disability. By using a combination of whole-exome or genome sequencing with homozygosity mapping, we identified the homozygous c.2938G>A (p.Gly980Arg) missense mutation within the gryzun domain of TRAPPC11 in the Syrian LGMD family and the homozygous c.1287+5G>A splice-site mutation resulting in a 58 amino acid in-frame deletion (p.Ala372_Ser429del) in the foie gras domain of TRAPPC11 in the Hutterite families. TRAPPC11 encodes a component of the multiprotein TRAPP complex involved in membrane trafficking. We demonstrate that both mutations impair the binding ability of TRAPPC11 to other TRAPP complex components and disrupt the Golgi apparatus architecture. Marker trafficking experiments for the p.Ala372_Ser429del deletion indicated normal ER-to-Golgi trafficking but dramatically delayed exit from the Golgi to the cell surface. Moreover, we observed alterations of the lysosomal membrane glycoproteins lysosome-associated membrane protein 1 (LAMP1) and LAMP2 as a consequence of TRAPPC11 dysfunction supporting a defect in the transport of secretory proteins as the underlying pathomechanism.

  16. Recessive TRAPPC11 Mutations Cause a Disease Spectrum of Limb Girdle Muscular Dystrophy and Myopathy with Movement Disorder and Intellectual Disability

    PubMed Central

    Bögershausen, Nina; Shahrzad, Nassim; Chong, Jessica X.; von Kleist-Retzow, Jürgen-Christoph; Stanga, Daniela; Li, Yun; Bernier, Francois P.; Loucks, Catrina M.; Wirth, Radu; Puffenberger, Eric G.; Hegele, Robert A.; Schreml, Julia; Lapointe, Gabriel; Keupp, Katharina; Brett, Christopher L.; Anderson, Rebecca; Hahn, Andreas; Innes, A. Micheil; Suchowersky, Oksana; Mets, Marilyn B.; Nürnberg, Gudrun; McLeod, D. Ross; Thiele, Holger; Waggoner, Darrel; Altmüller, Janine; Boycott, Kym M.; Schoser, Benedikt; Nürnberg, Peter; Ober, Carole; Heller, Raoul; Parboosingh, Jillian S.; Wollnik, Bernd; Sacher, Michael; Lamont, Ryan E.

    2013-01-01

    Myopathies are a clinically and etiologically heterogeneous group of disorders that can range from limb girdle muscular dystrophy (LGMD) to syndromic forms with associated features including intellectual disability. Here, we report the identification of mutations in transport protein particle complex 11 (TRAPPC11) in three individuals of a consanguineous Syrian family presenting with LGMD and in five individuals of Hutterite descent presenting with myopathy, infantile hyperkinetic movements, ataxia, and intellectual disability. By using a combination of whole-exome or genome sequencing with homozygosity mapping, we identified the homozygous c.2938G>A (p.Gly980Arg) missense mutation within the gryzun domain of TRAPPC11 in the Syrian LGMD family and the homozygous c.1287+5G>A splice-site mutation resulting in a 58 amino acid in-frame deletion (p.Ala372_Ser429del) in the foie gras domain of TRAPPC11 in the Hutterite families. TRAPPC11 encodes a component of the multiprotein TRAPP complex involved in membrane trafficking. We demonstrate that both mutations impair the binding ability of TRAPPC11 to other TRAPP complex components and disrupt the Golgi apparatus architecture. Marker trafficking experiments for the p.Ala372_Ser429del deletion indicated normal ER-to-Golgi trafficking but dramatically delayed exit from the Golgi to the cell surface. Moreover, we observed alterations of the lysosomal membrane glycoproteins lysosome-associated membrane protein 1 (LAMP1) and LAMP2 as a consequence of TRAPPC11 dysfunction supporting a defect in the transport of secretory proteins as the underlying pathomechanism. PMID:23830518

  17. Impaired relaxation is the main manifestation in transgenic mice expressing a restrictive cardiomyopathy mutation, R193H, in cardiac TnI.

    PubMed

    Du, Jianfeng; Liu, Jing; Feng, Han-Zhong; Hossain, M M; Gobara, Nariman; Zhang, Chi; Li, Yuejin; Jean-Charles, Pierre-Yves; Jin, Jian-Ping; Huang, Xu-Pei

    2008-06-01

    Transgenic mice were generated to express a restrictive cardiomyopathy (RCM) human cardiac troponin I (cTnI) R192H mutation in the heart (cTnI(193His) mice). The objective of this study was to assess cardiac function during the development of diastolic dysfunction and to gain insight into the pathophysiological impact of the RCM cTnI mutation. Cardiac function and pathophysiological changes were monitored in cTnI193His mice and wild-type littermates for a period of 12 mo. It progressed gradually from abnormal relaxation to diastolic dysfunction characterized with high-resolution echocardiography by a reversed E-to-A ratio, increased deceleration time, and prolonged isovolumetric relaxation time. At the age of 12 mo, cardiac output in cTnI(193His) mice was significantly declined, and some transgenic mice showed congestive heart failure. The negative impact of cTnI193His on ventricular contraction and relaxation was further demonstrated in isolated mouse working heart preparations. The main morphological change in cTnI193His myocytes was shortened cell length. Dobutamine stimulation increased heart rate in cTnI193His mice but did not improve CO. The cTnI193His mice had a phenotype similar to that in human RCM patients carrying the cTnI mutation characterized morphologically by enlarged atria and restricted ventricles and functionally by diastolic dysfunction and diastolic heart failure. The results demonstrate a critical role of the COOH-terminal domain of cTnI in the diastolic function of cardiac muscle.

  18. A Point Mutation in the Ubiquitin Ligase RNF170 That Causes Autosomal Dominant Sensory Ataxia Destabilizes the Protein and Impairs Inositol 1,4,5-Trisphosphate Receptor-mediated Ca2+ Signaling.

    PubMed

    Wright, Forrest A; Lu, Justine P; Sliter, Danielle A; Dupré, Nicolas; Rouleau, Guy A; Wojcikiewicz, Richard J H

    2015-05-29

    RNF170 is an endoplasmic reticulum membrane ubiquitin ligase that contributes to the ubiquitination of activated inositol 1,4,5-trisphosphate (IP3) receptors, and also, when point mutated (arginine to cysteine at position 199), causes autosomal dominant sensory ataxia (ADSA), a disease characterized by neurodegeneration in the posterior columns of the spinal cord. Here we demonstrate that this point mutation inhibits RNF170 expression and signaling via IP3 receptors. Inhibited expression of mutant RNF170 was seen in cells expressing exogenous RNF170 constructs and in ADSA lymphoblasts, and appears to result from enhanced RNF170 autoubiquitination and proteasomal degradation. The basis for these effects was probed via additional point mutations, revealing that ionic interactions between charged residues in the transmembrane domains of RNF170 are required for protein stability. In ADSA lymphoblasts, platelet-activating factor-induced Ca(2+) mobilization was significantly impaired, whereas neither Ca(2+) store content, IP3 receptor levels, nor IP3 production were altered, indicative of a functional defect at the IP3 receptor locus, which may be the cause of neurodegeneration. CRISPR/Cas9-mediated genetic deletion of RNF170 showed that RNF170 mediates the addition of all of the ubiquitin conjugates known to become attached to activated IP3 receptors (monoubiquitin and Lys(48)- and Lys(63)-linked ubiquitin chains), and that wild-type and mutant RNF170 have apparently identical ubiquitin ligase activities toward IP3 receptors. Thus, the Ca(2+) mobilization defect seen in ADSA lymphoblasts is apparently not due to aberrant IP3 receptor ubiquitination. Rather, the defect likely reflects abnormal ubiquitination of other substrates, or adaptation to the chronic reduction in RNF170 levels.

  19. Selective expression of Parkinson's disease-related Leucine-rich repeat kinase 2 G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression

    PubMed Central

    Liu, Guoxiang; Sgobio, Carmelo; Gu, Xinglong; Sun, Lixin; Lin, Xian; Yu, Jia; Parisiadou, Loukia; Xie, Chengsong; Sastry, Namratha; Ding, Jinhui; Lohr, Kelly M.; Miller, Gary W.; Mateo, Yolanda; Lovinger, David M.; Cai, Huaibin

    2015-01-01

    Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release. PMID:26123485

  20. Selective expression of Parkinson's disease-related Leucine-rich repeat kinase 2 G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression.

    PubMed

    Liu, Guoxiang; Sgobio, Carmelo; Gu, Xinglong; Sun, Lixin; Lin, Xian; Yu, Jia; Parisiadou, Loukia; Xie, Chengsong; Sastry, Namratha; Ding, Jinhui; Lohr, Kelly M; Miller, Gary W; Mateo, Yolanda; Lovinger, David M; Cai, Huaibin

    2015-09-15

    Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release.

  1. Trafficking to the Ciliary Membrane

    PubMed Central

    Nachury, Maxence V.; Seeley, E. Scott; Jin, Hua

    2010-01-01

    The primary cilium organizes numerous signal transduction cascades and an understanding of signaling receptors trafficking to cilia is now emerging. A defining feature of cilia is the periciliary diffusion barrier that separates the ciliary and plasma membranes despite the topological continuity between these two membranes. Although lateral transport through this barrier may take place, polarized exocytosis to the base of the cilium has been the prevailing model for delivering membrane proteins to cilia. Key players for this polarized exocytosis model include the GTPases Rab8 and Rab11, the exocyst and possibly the intraflagellar tranport machinery. Sorting membrane proteins to cilia critically relies on the recognition of ciliary targeting signals by sorting machines such as the BBSome coat complex or the GTPase Arf4. Finally, signaling at the cilium entails the bidirectional movement of proteins between cytoplasm and cilia and ubiquitination may promote exit from cilia. PMID:19575670

  2. Mutation of the conserved polyadenosine RNA binding protein, ZC3H14/dNab2, impairs neural function in Drosophila and humans

    PubMed Central

    Pak, ChangHui; Garshasbi, Masoud; Kahrizi, Kimia; Gross, Christina; Apponi, Luciano H.; Noto, John J.; Kelly, Seth M.; Leung, Sara W.; Tzschach, Andreas; Behjati, Farkhondeh; Abedini, Seyedeh Sedigheh; Mohseni, Marzieh; Jensen, Lars R.; Hu, Hao; Huang, Brenda; Stahley, Sara N.; Liu, Guanglu; Williams, Kathryn R.; Burdick, Sharon; Feng, Yue; Sanyal, Subhabrata; Bassell, Gary J.; Ropers, Hans-Hilger; Najmabadi, Hossein; Corbett, Anita H.; Moberg, Kenneth H.; Kuss, Andreas W.

    2011-01-01

    Here we report a human intellectual disability disease locus on chromosome 14q31.3 corresponding to mutation of the ZC3H14 gene that encodes a conserved polyadenosine RNA binding protein. We identify ZC3H14 mRNA transcripts in the human central nervous system, and we find that rodent ZC3H14 protein is expressed in hippocampal neurons and colocalizes with poly(A) RNA in neuronal cell bodies. A Drosophila melanogaster model of this disease created by mutation of the gene encoding the ZC3H14 ortholog dNab2, which also binds polyadenosine RNA, reveals that dNab2 is essential for development and required in neurons for normal locomotion and flight. Biochemical and genetic data indicate that dNab2 restricts bulk poly(A) tail length in vivo, suggesting that this function may underlie its role in development and disease. These studies reveal a conserved requirement for ZC3H14/dNab2 in the metazoan nervous system and identify a poly(A) RNA binding protein associated with a human brain disorder. PMID:21734151

  3. Heterozygous Mutation in IκBNS Leads to Reduced Levels of Natural IgM Antibodies and Impaired Responses to T-Independent Type 2 Antigens

    PubMed Central

    Pedersen, Gabriel K.; Ádori, Monika; Stark, Julian M.; Khoenkhoen, Sharesta; Arnold, Carrie; Beutler, Bruce; Karlsson Hedestam, Gunilla B.

    2016-01-01

    Mice deficient in central components of classical NF-κB signaling have low levels of circulating natural IgM antibodies and fail to respond to immunization with T-independent type 2 (TI-2) antigens. A plausible explanation for these defects is the severely reduced numbers of B-1 and marginal zone B (MZB) cells in such mice. By using an ethyl-N-nitrosourea mutagenesis screen, we identified a role for the atypical IκB protein IκBNS in humoral immunity. IκBNS-deficient mice lack B-1 cells and have severely reduced numbers of MZB cells, and thus resemble several other strains with defects in classical NF-κB signaling. We analyzed mice heterozygous for the identified IκBNS mutation and demonstrate that these mice have an intermediary phenotype in terms of levels of circulating IgM antibodies and responses to TI-2 antigens. However, in contrast to mice that are homozygous for the IκBNS mutation, the heterozygous mice had normal frequencies of B-1 and MZB cells. These results suggest that there is a requirement for IκBNS expression from two functional alleles for maintaining normal levels of circulating natural IgM antibodies and responses to TI-2 antigens. PMID:26973645

  4. The mechanism by which P250L mutation impairs flavivirus-NS1 dimerization: an investigation based on molecular dynamics simulations.

    PubMed

    Oliveira, Edson R A; de Alencastro, Ricardo B; Horta, Bruno A C

    2016-09-01

    The flavivirus non-structural protein 1 (NS1) is a conserved glycoprotein with as yet undefined biological function. This protein dimerizes when inside infected cells or associated to cell membranes but also forms lipid-associated hexamers when secreted to the extracellular space. A single amino acid substitution (P250L) is capable of preventing the dimerization of NS1 resulting in lower virulence and slower virus replication. In this work, based on molecular dynamics simulations of the dengue-2 virus NS1 [Formula: see text]-ladder monomer as a core model, we found that this mutation can induce several conformational changes that importantly affect critical monomer-monomer interactions. Based on additional simulations, we suggest a mechanism by which a highly orchestrated sequence of events propagate the local perturbations around the mutation site towards the dimer interface. The elucidation of such a mechanism could potentially support new strategies for rational production of live-attenuated vaccines and highlights a step forward in the development of novel anti-flavivirus measures. PMID:27324799

  5. [Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in MedB-1 mediastinal lymphoma line].

    PubMed

    Barth, T F E; Melzner, I; Wegener, S; Bucur, A J; Brüderlein, S; Dorsch, K; Hasel, C; Leithäuser, F; Möller, P

    2005-01-01

    Primary mediastinal B-cell lymphoma (PMBL) is a well-defined subtype of diffuse large B-cell lymphoma. Molecular cytogenetics revealed frequent gains of 9 p24. JAK2, mapping in this region, is presently regarded as a candidate oncogene since expression profiling showed high JAK2 transcript levels and JAK2 was found to be constitutively phosphorylated in mediastinal B-cell lymphomas. We confirm that in the MedB-1 mediastinal B-cell line, harbouring a trisomy 9, JAK2 transcription is elevated and the product is highly phosphorylated. However, JAK2 is not over-expressed at the protein level. On top, JAK2 protein turnover is even delayed. This unexpected finding coincides with a biallelic mutation of the SOCS-1 gene in this cell, which abrogates SOCS box function of the protein. Ectopic expression of wt-SOCS-1 in MedB-1 leads to growth arrest, dramatic reduction of phospho-JAK2 and its downstream partner phospho-STAT5. We conclude that, in MedB-1, action of phospho-JAK2 is sustained due to defective SOCS-1. Hence, SOCS-1 qualifies as a novel tumor suppressor. Of note, the SOCS-1 mutations are also present in the parental tumor of MedB-1 and were detected in 9 of 20 PMBL. PMID:18035697

  6. Heterozygous Mutation in IκBNS Leads to Reduced Levels of Natural IgM Antibodies and Impaired Responses to T-Independent Type 2 Antigens.

    PubMed

    Pedersen, Gabriel K; Ádori, Monika; Stark, Julian M; Khoenkhoen, Sharesta; Arnold, Carrie; Beutler, Bruce; Karlsson Hedestam, Gunilla B

    2016-01-01

    Mice deficient in central components of classical NF-κB signaling have low levels of circulating natural IgM antibodies and fail to respond to immunization with T-independent type 2 (TI-2) antigens. A plausible explanation for these defects is the severely reduced numbers of B-1 and marginal zone B (MZB) cells in such mice. By using an ethyl-N-nitrosourea mutagenesis screen, we identified a role for the atypical IκB protein IκBNS in humoral immunity. IκBNS-deficient mice lack B-1 cells and have severely reduced numbers of MZB cells, and thus resemble several other strains with defects in classical NF-κB signaling. We analyzed mice heterozygous for the identified IκBNS mutation and demonstrate that these mice have an intermediary phenotype in terms of levels of circulating IgM antibodies and responses to TI-2 antigens. However, in contrast to mice that are homozygous for the IκBNS mutation, the heterozygous mice had normal frequencies of B-1 and MZB cells. These results suggest that there is a requirement for IκBNS expression from two functional alleles for maintaining normal levels of circulating natural IgM antibodies and responses to TI-2 antigens.

  7. Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair.

    PubMed

    Nakazawa, Yuka; Sasaki, Kensaku; Mitsutake, Norisato; Matsuse, Michiko; Shimada, Mayuko; Nardo, Tiziana; Takahashi, Yoshito; Ohyama, Kaname; Ito, Kosei; Mishima, Hiroyuki; Nomura, Masayo; Kinoshita, Akira; Ono, Shinji; Takenaka, Katsuya; Masuyama, Ritsuko; Kudo, Takashi; Slor, Hanoch; Utani, Atsushi; Tateishi, Satoshi; Yamashita, Shunichi; Stefanini, Miria; Lehmann, Alan R; Yoshiura, Koh-ichiro; Ogi, Tomoo

    2012-05-01

    UV-sensitive syndrome (UV(S)S) is a genodermatosis characterized by cutaneous photosensitivity without skin carcinoma. Despite mild clinical features, cells from individuals with UV(S)S, like Cockayne syndrome cells, are very UV sensitive and are deficient in transcription-coupled nucleotide-excision repair (TC-NER), which removes DNA damage in actively transcribed genes. Three of the seven known UV(S)S cases carry mutations in the Cockayne syndrome genes ERCC8 or ERCC6 (also known as CSA and CSB, respectively). The remaining four individuals with UVSS , one of whom is described for the first time here, formed a separate UV(S)S-A complementation group; however, the responsible gene was unknown. Using exome sequencing, we determine that mutations in the UVSSA gene (formerly known as KIAA1530) cause UV(S)S-A. The UVSSA protein interacts with TC-NER machinery and stabilizes the ERCC6 complex; it also facilitates ubiquitination of RNA polymerase IIo stalled at DNA damage sites. Our findings provide mechanistic insights into the processing of stalled RNA polymerase and explain the different clinical features across these TC-NER–deficient disorders. PMID:22466610

  8. Exome sequencing identifies novel compound heterozygous IFNA4 and IFNA10 mutations as a cause of impaired function in Crohn’s disease patients

    PubMed Central

    Xiao, Chuan-Xing; Xiao, Jing-Jing; Xu, Hong-Zhi; Wang, Huan-Huan; Chen, Xu; Liu, Yuan-Sheng; Li, Ping; Shi, Ying; Nie, Yong-Zhan; Li, Shao; Wu, Kai-Chun; Liu, Zhan-Ju; Ren, Jian-Lin; Guleng, Bayasi

    2015-01-01

    Previous studies have highlighted the role of genetic predispositions in disease, and several genes had been identified as important in Crohn’s disease (CD). However, many of these genes are likely rare and not associated with susceptibility in Chinese CD patients. We found 294 shared identical variants in the CD patients of which 26 were validated by Sanger sequencing. Two heterozygous IFN variants (IFNA10 c.60 T > A; IFNA4 c.60 A > T) were identified as significantly associated with CD susceptibility. The single-nucleotide changes alter a cysteine situated before the signal peptide cleavage site to a stop code (TGA) in IFNA10 result in the serum levels of IFNA10 were significantly decreased in the CD patients compared to the controls. Furthermore, the IFNA10 and IFNA4 mutants resulted in an impairment of the suppression of HCV RNA replication in HuH7 cells, and the administration of the recombinant IFN subtypes restored DSS-induced colonic inflammation through the upregulation of CD4+ Treg cells. We identified heterozygous IFNA10 and IFNA4 variants as a cause of impaired function and CD susceptibility genes in Chinese patients from multiple center based study. These findings might provide clues in the understanding of the genetic heterogeneity of CD and lead to better screening and improved treatment. PMID:26000985

  9. Post mortem identification of deoxyguanosine kinase (DGUOK) gene mutations combined with impaired glucose homeostasis and iron overload features in four infants with severe progressive liver failure

    PubMed Central

    Węglewska-Jurkiewicz, Anna; Taybert, Joanna; Pronicki, Maciej; Szymańska-Dębińska, Tamara; Karkucińska-Więckowska, Agnieszka; Jakóbkiewicz-Banecka, Joanna; Kowalski, Paweł; Piekutowska-Abramczuk, Dorota; Pajdowska, Magdalena; Socha, Piotr; Sykut-Cegielska, Jolanta; Węgrzyn, Grzegorz

    2010-01-01

    Deoxyguanosine kinase deficiency (dGK) is a frequent cause of the hepatocerebral form of mitochondrial depletion syndrome (MDS). A group of 28 infants with severe progressive liver failure of unknown cause was recruited for post mortem search for deoxyguanosine kinase (DGUOK) gene mutations. Four affected patients (14% of the studied group), two homozygotes, one compound heterozygote, and one heterozygote, with DGUOK mutation found on only one allele, were identified. Three known pathogenic mutations in the DGUOK gene were detected, c.3G>A (p.Met1Ile), c.494A>T (p.Glu165Val), and c.766_767insGATT (p.Phe256X), and one novel molecular variant of unknown pathogeneity, c.813_814insTTT (p.Asn271_Thr272insPhe). Profound mitochondrial DNA depletion was confirmed in available specimens of the liver (4%, 15%, and 10% of the normal value) and in the muscle (4%, 23%, 45%, and 6%, respectively). The patients were born with low weights for gestational age and they presented adaptation trouble during the first days of life. Subsequently, liver failure developed, leading to death at the ages of 18, 6, 5.5, and 2.25 months, respectively. Mild neurological involvement was observed in all children (hypotonia, psychomotor retardation, and ptosis). Hypoglycemia (hypoketotic) and lactic acidosis were the constant laboratory findings. Elevated transferrin saturation, high ferritin, and alpha-fetoprotein levels resembled, in two cases, a neonatal hemochromatosis. Liver histopathology showed severe hepatic damage ranging from micronodular formation and cirrhosis to the total loss of liver architecture with diffuse fibrosis and neocholangiolar proliferation. Pancreatic islet cell hyperplasia with numerous confluent giant islets was found in both autopsied infants. Analysis of the natural history of the disease in our patients and the literature data led us to the following observations: (i) islet cell hyperplasia (and hyperinsulinism) may contribute to MDS-associated hypoglycemia; (ii

  10. Female sex trafficking: conceptual issues, current debates, and future directions.

    PubMed

    Meshkovska, Biljana; Siegel, Melissa; Stutterheim, Sarah E; Bos, Arjan E R

    2015-01-01

    Female sex trafficking is a pressing concern. In this article, we provide a comprehensive overview of relevant issues regarding the concept of female sex trafficking and research in the field of human trafficking, drawing on a variety of disciplines, including economics, gender and sexuality studies, psychology, sociology, law, and social work. We discuss the debates surrounding the definition of human trafficking, compare and contrast it with human smuggling, and outline connections between female sex trafficking and the issue of sex work and prostitution. We further discuss the history and current estimations of female sex trafficking. We then outline the main actors in female sex trafficking, including trafficked persons, traffickers, clients, and service providers, and we overview the trafficking process from recruitment to identification, recovery, and (re)integration. Finally, we conclude with recommendations for future research that tie together the concepts of vulnerability, exploitation, and long-term recovery and (re)integration. PMID:25897567

  11. Female sex trafficking: conceptual issues, current debates, and future directions.

    PubMed

    Meshkovska, Biljana; Siegel, Melissa; Stutterheim, Sarah E; Bos, Arjan E R

    2015-01-01

    Female sex trafficking is a pressing concern. In this article, we provide a comprehensive overview of relevant issues regarding the concept of female sex trafficking and research in the field of human trafficking, drawing on a variety of disciplines, including economics, gender and sexuality studies, psychology, sociology, law, and social work. We discuss the debates surrounding the definition of human trafficking, compare and contrast it with human smuggling, and outline connections between female sex trafficking and the issue of sex work and prostitution. We further discuss the history and current estimations of female sex trafficking. We then outline the main actors in female sex trafficking, including trafficked persons, traffickers, clients, and service providers, and we overview the trafficking process from recruitment to identification, recovery, and (re)integration. Finally, we conclude with recommendations for future research that tie together the concepts of vulnerability, exploitation, and long-term recovery and (re)integration.

  12. A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4

    PubMed Central

    Alsina, L; Israelsson, E; Altman, MC; Dang, KK; Ghandil, P; Israel, L; von Bernuth, H; Baldwin, N; Qin, H; Jin, Z; Banchereau, R; Anguiano, E; Ionan, A; Abel, L; Puel, A; Picard, C; Pascual, V; Casanova, JL; Chaussabel, D

    2014-01-01

    Loss of function in the kinase IRAK-4 or the adapter MyD88 in humans interrupts a pathway critical for pathogen sensing and ignition of inflammation. Yet patients with loss of function mutations are surprisingly only susceptible to a limited range of pathogens. We employed a systems approach to investigate transcriptome responses following in vitro exposure of patients’ blood to Toll-like receptor and interleukin-1 receptor agonists, and whole pathogens. Responses to purified agonists were globally abolished but variable residual responses were present following exposure to whole pathogens. Further dissection of the latter responses identified a narrow repertoire of immune transcriptional programs affected by loss of MyD88 or IRAK-4 function. This work introduces the use of a systems approach for the global assessment of innate immune responses, and the characterization of human primary immunodeficiencies. PMID:25344726

  13. Glycosylation-deficient mutations in tissue-nonspecific alkaline phosphatase impair its structure and function and are linked to infantile hypophosphatasia.

    PubMed

    Komaru, Keiichi; Satou, Yasuhito; Al-Shawafi, Hiba A; Numa-Kinjoh, Natsuko; Sohda, Miwa; Oda, Kimimitsu

    2016-03-01

    Tissue-nonspecific alkaline phosphatase (TNSALP) is a membrane glycoprotein with a proposed role in bone mineralization. Indeed, mutations in TNSALP have been identified in patients with hypophosphatasia (HPP), a genetic disease characterized by hypomineralization of bone and teeth and a deficiency in serum ALP activity. TNSALP has five potential N-glycosylation sites at N140, N230, N271, N303 and N430 by standard nomenclature. A mutation at one of these sites, N430, was recently detected in a patient with infantile HPP. Using site-directed mutagenesis, we demonstrated that TNSALP has five N-glycans in transfected COS-1 cells and that individual single N-glycan deletion mutants of TNSALP retain the dimeric structure required for ALP activity, excluding the possibility that any single N-glycan plays a vital role in the structure and function of TNSALP. However, we found that TNSALP (N430Q) and TNSALP (N430E) mutants, but not a TNSALP (N430D) mutant, failed to form dimers. The TNSALP (N430S) mutant linked to infantile HPP was glycosylation-defective and unable to dimerise, similar to TNSALP (N430Q) and TNSALP (N430E) mutants; therefore, TNSALP (N430S) was established as a severe allele without strong ALP activity. By contrast to individual single N-glycan deletion mutants, TNSALP devoid of all five N-glycans was present to a much lesser extent than wild-type TNSALP in transfected cells, possibly reflecting its instability. A comprehensive analysis of a series of multiple N-glycan depletion mutants in TNSALP revealed that three N-glycans on N230, N271 and N303 were the minimal requirement for the structure and function of TNSALP and a prerequisite for its stable expression in a cell.

  14. Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line.

    PubMed

    Melzner, Ingo; Bucur, Alexandra Juliana; Brüderlein, Silke; Dorsch, Karola; Hasel, Cornelia; Barth, Thomas F E; Leithäuser, Frank; Möller, Peter

    2005-03-15

    Primary mediastinal B-cell lymphoma (PMBL) is a well-defined subtype of diffuse large B-cell lymphoma. Molecular cytogenetics revealed frequent gains of 9p24. JAK2, mapping in this region, is presently regarded as a candidate oncogene because expression profiling showed high Janus kinase-2 (JAK2) transcript levels and JAK2 was found to be constitutively phosphorylated in mediastinal B-cell lymphomas. We confirm that in the MedB-1 mediastinal B-cell line, harboring a trisomy 9, JAK2 transcription is elevated and the product is highly phosphorylated. However, JAK2 is not overexpressed at the protein level. On top, JAK2 protein turnover is even delayed. This unexpected finding coincides with a biallelic mutation of the suppressor of cytokine signaling-1 (SOCS-1) gene in this cell, which abrogates SOCS box function of the protein. Ectopic expression of wild-type (wt) SOCS-1 in MedB-1 leads to growth arrest and dramatic reduction of phospho-JAK2 and its downstream partner phospho-signal transducer and activator of transcription-5 (phospho-STAT5). Ultimately, the target gene cyclin D1 is repressed in transfectants while RB1, which is silenced in MedB-1, is induced. We conclude that, in MedB-1, action of phospho-JAK2 is sustained due to defective SOCS-1. Hence, SOCS-1 qualifies as a novel tumor suppressor. Of note, SOCS-1 mutations are also present in the parental tumor of MedB-1 and were detected in 9 of 20 PMBLs. PMID:15572583

  15. In vivo and in vitro effects of two novel gamma-actin (ACTG1) mutations that cause DFNA20/26 hearing impairment

    PubMed Central

    Morín, Matías; Bryan, Keith E.; Mayo-Merino, Fernando; Goodyear, Richard; Mencía, Ángeles; Modamio-Høybjør, Silvia; del Castillo, Ignacio; Cabalka, Jessica M.; Richardson, Guy; Moreno, Felipe; Rubenstein, Peter A.; Moreno-Pelayo, Miguel Ángel

    2009-01-01

    Here we report the functional assessment of two novel deafness-associated γ-actin mutants, K118N and E241K, in a spectrum of different situations with increasing biological complexity by combining biochemical and cell biological analysis in yeast and mammalian cells. Our in vivo experiments showed that while the K118N had a very mild effect on yeast behaviour, the phenotype caused by the E241K mutation was very severe and characterized by a highly compromised ability to grow on glycerol as a carbon source, an aberrant multi-vacuolar pattern and the deposition of thick F-actin bundles randomly in the cell. The latter feature is consistent with the highly unusual spontaneous tendency of the E241K mutant to form bundles in vitro, although this propensity to bundle was neutralized by tropomyosin and the E241K filament bundles were hypersensitive to severing in the presence of cofilin. In transiently transfected NIH3T3 cells both mutant actins were normally incorporated into cytoskeleton structures, although cytoplasmic aggregates were also observed indicating an element of abnormality caused by the mutations in vivo. Interestingly, gene-gun mediated expression of these mutants in cochlear hair cells results in no gross alteration in cytoskeletal structures or the morphology of stereocilia. Our results provide a more complete picture of the biological consequences of deafness-associated γ-actin mutants and support the hypothesis that the post-lingual and progressive nature of the DFNA20/26 hearing loss is the result of a progressive deterioration of the hair cell cytoskeleton over time. PMID:19477959

  16. Human trafficking law and social structures.

    PubMed

    Wooditch, Alese

    2012-08-01

    Human trafficking has only recently emerged at the forefront of policy reform, even in developed nations. Yet, heightened awareness of the issue has not translated into effective policy as the majority of nations have ineffective antitrafficking practices; many countries have failed to criminalize human trafficking, whereas others do not actively enforce statutes in place. By applying Black's theory of law, this study offers a preliminary understanding into the variation of global prosecutorial efforts in human trafficking and adequacy of antitrafficking law. To isolate this relationship, the effects of trafficking markets are controlled. As with prior research, the study finds limited support for the theory. The article concludes with a discussion on the implications of the quantity of antitrafficking law and morphology association for policy development.

  17. Committee opinion no. 507: human trafficking.

    PubMed

    2011-09-01

    Human trafficking is a widespread problem with estimates ranging from 14,000 to 50,000 individuals trafficked into the United States annually. This hidden population involves the commercial sex industry, agriculture, factories, hotel and restaurant businesses, domestic workers, marriage brokers, and some adoption firms. Because 80% of trafficked individuals are women and girls, women’s health care providers may better serve their diverse patient population by increasing their awareness of this problem. The exploitation of people of any race, gender, sexual orientation, or ethnicity is unacceptable at any time, in any place. The members of the American College of Obstetricians and Gynecologists should be aware of this problem and strive to recognize and assist their patients who are victims or who have been victims of human trafficking. PMID:21860320

  18. Committee opinion no. 507: human trafficking.

    PubMed

    2011-09-01

    Human trafficking is a widespread problem with estimates ranging from 14,000 to 50,000 individuals trafficked into the United States annually. This hidden population involves the commercial sex industry, agriculture, factories, hotel and restaurant businesses, domestic workers, marriage brokers, and some adoption firms. Because 80% of trafficked individuals are women and girls, women’s health care providers may better serve their diverse patient population by increasing their awareness of this problem. The exploitation of people of any race, gender, sexual orientation, or ethnicity is unacceptable at any time, in any place. The members of the American College of Obstetricians and Gynecologists should be aware of this problem and strive to recognize and assist their patients who are victims or who have been victims of human trafficking.

  19. Sex trafficking of women and girls.

    PubMed

    Deshpande, Neha A; Nour, Nawal M

    2013-01-01

    Sex trafficking involves some form of forced or coerced sexual exploitation that is not limited to prostitution, and has become a significant and growing problem in both the United States and the larger global community. The costs to society include the degradation of human and women's rights, poor public health, disrupted communities, and diminished social development. Victims of sex trafficking acquire adverse physical and psychological health conditions and social disadvantages. Thus, sex trafficking is a critical health issue with broader social implications that requires both medical and legal attention. Healthcare professionals can work to improve the screening, identification, and assistance of victims of sex trafficking in a clinical setting and help these women and girls access legal and social services. PMID:23687554

  20. Ovarian Cystadenoma in a Trafficked Patient.

    PubMed

    Titchen, Kanani E; Katz, Douglas; Martinez, Kidian; White, Krishna

    2016-05-01

    The topic of child sex trafficking is receiving increased attention both in the lay press and in research articles. Recently, a number of physician organizations have issued policy statements calling for the education and involvement of physicians in combating this form of "modern-day slavery." Primary care and emergency medicine physicians have led these efforts, but a number of these victims may present to surgeons. Surgeons are in a unique position to identify trafficked patients; during the process of undraping, intubation, and surgical preparation, signs of trafficking such as tattoos, scars, dental injuries, and bruising may be evident. In addition, these patients may have specific needs in terms of anesthesia and postoperative care due to substance abuse. Here, we report the case of an 18-year-old girl with a history of sexual exploitation who presents for cystadenoma excision. To our knowledge, this is the first report of a sex-trafficked pediatric patient presenting for surgery. PMID:27244785

  1. Sex Trafficking of Women and Girls

    PubMed Central

    Deshpande, Neha A; Nour, Nawal M

    2013-01-01

    Sex trafficking involves some form of forced or coerced sexual exploitation that is not limited to prostitution, and has become a significant and growing problem in both the United States and the larger global community. The costs to society include the degradation of human and women’s rights, poor public health, disrupted communities, and diminished social development. Victims of sex trafficking acquire adverse physical and psychological health conditions and social disadvantages. Thus, sex trafficking is a critical health issue with broader social implications that requires both medical and legal attention. Healthcare professionals can work to improve the screening, identification, and assistance of victims of sex trafficking in a clinical setting and help these women and girls access legal and social services. PMID:23687554

  2. Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules.

    PubMed

    Pulipparacharuvil, Suprabha; Akbar, Mohammed Ali; Ray, Sanchali; Sevrioukov, Evgueny A; Haberman, Adam S; Rohrer, Jack; Krämer, Helmut

    2005-08-15

    Mutations that disrupt trafficking to lysosomes and lysosome-related organelles cause multiple diseases, including Hermansky-Pudlak syndrome. The Drosophila eye is a model system for analyzing such mutations. The eye-color genes carnation and deep orange encode two subunits of the Vps-C protein complex required for endosomal trafficking and pigment-granule biogenesis. Here we demonstrate that dVps16A (CG8454) encodes another Vps-C subunit. Biochemical experiments revealed a specific interaction between the dVps16A C-terminus and the Sec1/Munc18 homolog Carnation but not its closest homolog, dVps33B. Instead, dVps33B interacted with a related protein, dVps16B (CG18112). Deep orange bound both Vps16 homologs. Like a deep orange null mutation, eye-specific RNAi-induced knockdown of dVps16A inhibited lysosomal delivery of internalized ligands and interfered with biogenesis of pigment granules. Ubiquitous knockdown of dVps16A was lethal. Together, these findings demonstrate that Drosophila Vps16A is essential for lysosomal trafficking. Furthermore, metazoans have two types of Vps-C complexes with non-redundant functions. PMID:16046475

  3. A role for sorting nexin 27 in AMPA receptor trafficking

    PubMed Central

    Loo, Li Shen; Tang, Ning; Al-Haddawi, Muthafar; Stewart Dawe, Gavin; Hong, Wanjin

    2014-01-01

    Sorting nexin 27 (SNX27), a PDZ domain-containing endosomal protein, was recently shown to modulate glutamate receptor recycling in Down’s syndrome. However, the precise molecular role of SNX27 in GluA1 trafficking is unclear. Here we report that SNX27 is enriched in dendrites and spines, along with recycling endosomes. Significantly, the mobilization of SNX27 along with recycling endosomes into spines was observed. Mechanistically, SNX27 interacts with K-ras GTPase via the RA domain; and following chemical LTP stimuli, K-ras is recruited to SNX27-enriched endosomes through a Ca2+/CaM-dependent mechanism, which in turn drives the synaptic delivery of homomeric GluA1 receptors. Impairment of SNX27 prevents LTP and associated trafficking of AMPARs. These results demonstrate a role for SNX27 in neuronal plasticity, provide a molecular explanation for the K-ras signal during LTP and identify SNX27 as the PDZ-containing molecular linker that couples the plasticity stimuli to the delivery of postsynaptic cargo. PMID:24458027

  4. Parkinson Disease-linked Vps35 R524W Mutation Impairs the Endosomal Association of Retromer and Induces α-Synuclein Aggregation.

    PubMed

    Follett, Jordan; Bugarcic, Andrea; Yang, Zhe; Ariotti, Nicholas; Norwood, Suzanne J; Collins, Brett M; Parton, Robert G; Teasdale, Rohan D

    2016-08-26

    Endosomal sorting is a highly orchestrated cellular process. Retromer is a heterotrimeric complex that associates with endosomal membranes and facilitates the retrograde sorting of multiple receptors, including the cation-independent mannose 6-phosphate receptor for lysosomal enzymes. The cycling of retromer on and off the endosomal membrane is regulated by a network of retromer-interacting proteins. Here, we find that Parkinson disease-associated Vps35 variant, R524W, but not P316S, is a loss-of-function mutation as marked by a reduced association with this regulatory network and dysregulation of endosomal receptor sorting. Expression of Vps35 R524W-containing retromer results in the accumulation of intracellular α-synuclein-positive aggregates, a hallmark of Parkinson disease. Overall, the Vps35 R524W-containing retromer has a decreased endosomal association, which can be partially rescued by R55, a small molecule previously shown to stabilize the retromer complex, supporting the potential for future targeting of the retromer complex in the treatment of Parkinson disease.

  5. A Dominant Mutation in the Light-Oxygen and Voltage2 Domain Vicinity Impairs Phototropin1 Signaling in Tomato1[C][W][OPEN

    PubMed Central

    Sharma, Sulabha; Kharshiing, Eros; Srinivas, Ankanagari; Zikihara, Kazunori; Tokutomi, Satoru; Nagatani, Akira; Fukayama, Hiroshi; Bodanapu, Reddaiah; Behera, Rajendra K.; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2014-01-01

    In higher plants, blue light (BL) phototropism is primarily controlled by the phototropins, which are also involved in stomatal movement and chloroplast relocation. These photoresponses are mediated by two phototropins, phot1 and phot2. Phot1 mediates responses with higher sensitivity than phot2, and phot2 specifically mediates chloroplast avoidance and dark positioning responses. Here, we report the isolation and characterization of a Nonphototropic seedling1 (Nps1) mutant of tomato (Solanum lycopersicum). The mutant is impaired in low-fluence BL responses, including chloroplast accumulation and stomatal opening. Genetic analyses show that the mutant locus is dominant negative in nature. In dark-grown seedlings of the Nps1 mutant, phot1 protein accumulates at a highly reduced level relative to the wild type and lacks BL-induced autophosphorylation. The mutant harbors a single glycine-1484-to-alanine transition in the Hinge1 region of a phot1 homolog, resulting in an arginine-to-histidine substitution (R495H) in a highly conserved A′α helix proximal to the light-oxygen and voltage2 domain of the translated gene product. Significantly, the R495H substitution occurring in the Hinge1 region of PHOT1 abolishes its regulatory activity in Nps1 seedlings, thereby highlighting the functional significance of the A′α helix region in phototropic signaling of tomato. PMID:24515830

  6. The hidden crime: human trafficking.

    PubMed

    Clause, Kristen J; Lawler, Kate Byrnes

    2013-01-01

    As the primary contact in the health care system, nurses can play a role in combating this crime and assisting the victims. Assessment for abuse, neglect, trauma, recurrent sexually transmitted infections (STIs) and fear of a controlling partner is critical. Following up on "red flags" and understanding methods of safe questioning can make the difference between slavery and recovery for victims. Nurses must also know the professional referrals in their areas once a potential victim has been identified. This may be a very dangerous undertaking and must be handled by experienced personnel. Referrals to forensic nurses or physicians, domestic violence professionals or law enforcement may be indicated. Initially, a nurse may want to consult with the agency social worker for guidance. Human trafficking is a human rights crime. Unfortunately, it is more prevalent in all types of communities than most people suspect. Nurses can be heroes to the victims through understanding of this crime and vigilance in the assessment and care of all people they encounter in their practices. PMID:24218718

  7. The hidden crime: human trafficking.

    PubMed

    Clause, Kristen J; Lawler, Kate Byrnes

    2013-01-01

    As the primary contact in the health care system, nurses can play a role in combating this crime and assisting the victims. Assessment for abuse, neglect, trauma, recurrent sexually transmitted infections (STIs) and fear of a controlling partner is critical. Following up on "red flags" and understanding methods of safe questioning can make the difference between slavery and recovery for victims. Nurses must also know the professional referrals in their areas once a potential victim has been identified. This may be a very dangerous undertaking and must be handled by experienced personnel. Referrals to forensic nurses or physicians, domestic violence professionals or law enforcement may be indicated. Initially, a nurse may want to consult with the agency social worker for guidance. Human trafficking is a human rights crime. Unfortunately, it is more prevalent in all types of communities than most people suspect. Nurses can be heroes to the victims through understanding of this crime and vigilance in the assessment and care of all people they encounter in their practices. To learn more or to help with this cause, visit the Somaly Mam Foundation at www.somaly.org or the U.S. Department of State at www. state.gov. PMID:23977773

  8. The hidden crime: human trafficking.

    PubMed

    Clause, Kristen J; Lawler, Kate Byrnes

    2013-01-01

    As the primary contact in the health care system, nurses can play a role in combating this crime and assisting the victims. Assessment for abuse, neglect, trauma, recurrent sexually transmitted infections (STIs) and fear of a controlling partner is critical. Following up on "red flags" and understanding methods of safe questioning can make the difference between slavery and recovery for victims. Nurses must also know the professional referrals in their areas once a potential victim has been identified. This may be a very dangerous undertaking and must be handled by experienced personnel. Referrals to forensic nurses or physicians, domestic violence professionals or law enforcement may be indicated. Initially, a nurse may want to consult with the agency social worker for guidance. Human trafficking is a human rights crime. Unfortunately, it is more prevalent in all types of communities than most people suspect. Nurses can be heroes to the victims through understanding of this crime and vigilance in the assessment and care of all people they encounter in their practices. To learn more or to help with this cause, visit the Somaly Mam Foundation at www.somaly.org or the U.S. Department of State at www. state.gov.

  9. The hidden crime: human trafficking.

    PubMed

    Clause, Kristen J; Lawler, Kate Byrnes

    2013-01-01

    As the primary contact in the health care system, nurses can play a role in combating this crime and assisting the victims. Assessment for abuse, neglect, trauma, recurrent sexually transmitted infections (STIs) and fear of a controlling partner is critical. Following up on "red flags" and understanding methods of safe questioning can make the difference between slavery and recovery for victims. Nurses must also know the professional referrals in their areas once a potential victim has been identified. This may be a very dangerous undertaking and must be handled by experienced personnel. Referrals to forensic nurses or physicians, domestic violence professionals or law enforcement may be indicated. Initially, a nurse may want to consult with the agency social worker for guidance. Human trafficking is a human rights crime. Unfortunately, it is more prevalent in all types of communities than most people suspect. Nurses can be heroes to the victims through understanding of this crime and vigilance in the assessment and care of all people they encounter in their practices.

  10. Lymphatic Regulation of Cellular Trafficking

    PubMed Central

    Jackson, David G.

    2016-01-01

    Lymphatic vessels play vital roles in immune surveillance and immune regulation by conveying antigen loaded dendritic cells, memory T cells, macrophages and neutrophils from the peripheral tissues to draining lymph nodes where they initiate as well as modify immune responses. Until relatively recently however, there was little understanding of how entry and migration through lymphatic vessels is organized or the specific molecular mechanisms that might be involved. Within the last decade, the situation has been transformed by an explosion of knowledge generated largely through the application of microscopic imaging, transgenic animals, specific markers and function blocking mAbs that is beginning to provide a rational conceptual framework. This article provides a critical review of the recent literature, highlighting seminal discoveries that have revealed the fascinating ultrastructure of leucocyte entry sites in lymphatic vessels, as well as generating controversies over the involvement of integrin adhesion, chemotactic and haptotactic mechanisms in DC entry under normal and inflamed conditions. It also discusses the major changes in lymphatic architecture that occur during inflammation and the different modes of leucocyte entry and trafficking within inflamed lymphatic vessels, as well as presenting a timely update on the likely role of hyaluronan and the major lymphatic endothelial hyaluronan receptor LYVE-1 in leucocyte transit.

  11. Functional Consequences of Glucagon-like Peptide-1 Receptor Cross-talk and Trafficking*

    PubMed Central

    Roed, Sarah Noerklit; Nøhr, Anne Cathrine; Wismann, Pernille; Iversen, Helle; Bräuner-Osborne, Hans; Knudsen, Sanne Moeller; Waldhoer, Maria

    2015-01-01

    The signaling capacity of seven-transmembrane/G-protein-coupled receptors (7TM/GPCRs) can be regulated through ligand-mediated receptor trafficking. Classically, the recycling of internalized receptors is associated with resensitization, whereas receptor degradation terminates signaling. We have shown previously that the incretin glucagon-like peptide-1 receptor (GLP-1R) internalizes fast and is primarily resensitized through recycling back to the cell surface. GLP-1R is expressed in pancreatic islets together with the closely related glucose-dependent insulinotropic polypeptide (GIPR) and glucagon (GCGR) receptors. The interaction and cross-talk between coexpressed receptors is a wide phenomenon of the 7TM/GPCR superfamily. Numerous reports show functional consequences for signaling and trafficking of the involved receptors. On the basis of the high structural similarity and tissue coexpression, we here investigated the potential cross-talk between GLP-1R and GIPR or GCGR in both trafficking and signaling pathways. Using a real-time time-resolved FRET-based internalization assay, we show that GLP-1R, GIPR, and GCGR internalize with differential properties. Remarkably, upon coexpression of the internalizing GLP-1R and the non-internalizing GIPR, GLP-1-mediated GLP-1R internalization was impaired in a GIPR concentration-dependent manner. As a functional consequence of such impaired internalization capability, GLP-1-mediated GLP-1R signaling was abrogated. A similar compromised signaling was found when GLP-1R internalization was abrogated by a dominant-negative version of dynamin (dynamin-1 K44E), which provides a mechanistic link between GLP-1R trafficking and signaling. This study highlights the importance of receptor internalization for full functionality of GLP-1R. Moreover, cross-talk between the two incretin receptors GLP-1R and GIPR is shown to alter receptor trafficking with functional consequences for GLP-1R signaling. PMID:25451942

  12. Germ Line Variants of Human N-Methylpurine DNA Glycosylase Show Impaired DNA Repair Activity and Facilitate 1,N6-Ethenoadenine-induced Mutations*

    PubMed Central

    Adhikari, Sanjay; Chetram, Mahandranauth A.; Woodrick, Jordan; Mitra, Partha S.; Manthena, Praveen V.; Khatkar, Pooja; Dakshanamurthy, Sivanesan; Dixon, Monica; Karmahapatra, Soumendra K.; Nuthalapati, Nikhil K.; Gupta, Suhani; Narasimhan, Ganga; Mazumder, Raja; Loffredo, Christopher A.; Üren, Aykut; Roy, Rabindra

    2015-01-01

    Human N-methylpurine DNA glycosylase (hMPG) initiates base excision repair of a number of structurally diverse purine bases including 1,N6-ethenoadenine, hypoxanthine, and alkylation adducts in DNA. Genetic studies discovered at least eight validated non-synonymous single nucleotide polymorphisms (nsSNPs) of the hMPG gene in human populations that result in specific single amino acid substitutions. In this study, we tested the functional consequences of these nsSNPs of hMPG. Our results showed that two specific arginine residues, Arg-141 and Arg-120, are important for the activity of hMPG as the germ line variants R120C and R141Q had reduced enzymatic activity in vitro as well as in mammalian cells. Expression of these two variants in mammalian cells lacking endogenous MPG also showed an increase in mutations and sensitivity to an alkylating agent compared with the WT hMPG. Real time binding experiments by surface plasmon resonance spectroscopy suggested that these variants have substantial reduction in the equilibrium dissociation constant of binding (KD) of hMPG toward 1,N6-ethenoadenine-containing oligonucleotide (ϵA-DNA). Pre-steady-state kinetic studies showed that the substitutions at arginine residues affected the turnover of the enzyme significantly under multiple turnover condition. Surface plasmon resonance spectroscopy further showed that both variants had significantly decreased nonspecific (undamaged) DNA binding. Molecular modeling suggested that R141Q substitution may have resulted in a direct loss of the salt bridge between ϵA-DNA and hMPG, whereas R120C substitution redistributed, at a distance, the interactions among residues in the catalytic pocket. Together our results suggest that individuals carrying R120C and R141Q MPG variants may be at risk for genomic instability and associated diseases as a consequence. PMID:25538240

  13. Transporter-associated currents in the gamma-aminobutyric acid transporter GAT-1 are conditionally impaired by mutations of a conserved glycine residue.

    PubMed

    Zhou, Yonggang; Kanner, Baruch I

    2005-05-27

    To determine whether glycine residues play a role in the conformational changes during neurotransmitter transport, we have analyzed site-directed mutants of the gamma-aminobutyric acid (GABA) transporter GAT-1 in a domain containing three consecutive glycines conserved throughout the sodium- and chloride-dependent neurotransmitter transporter family. Only cysteine replacement of glycine 80 resulted in the complete loss of [(3)H]GABA uptake, but oocytes expressing this mutant exhibited the sodium-dependent transient currents thought to reflect a charge-moving conformational change. When sodium was removed and subsequently added back, the transients by G80C did not recover, as opposed to wild type, where recovery was almost complete. Remarkably, the transients by G80C could be restored after exposure of the oocytes to either GABA or a depolarizing pre-pulse. These treatments also resulted in a full recovery of the transients by the wild type. Whereas in wild type lithium leak currents are observed after prior sodium depletion, this was not the case for the glycine 80 mutants unless GABA was added or the oocytes were subjected to a depolarizing pre-pulse. Thus, glycine 80 appears essential for conformational transitions in GAT-1. When this residue is mutated, removal of sodium results in "freezing" the transporter in one conformation from which it can only exit by compensatory changes induced by GABA or depolarization. Our results can be explained by a model invoking two outward-facing states of the empty transporter and a defective transition between these states in the glycine 80 mutants.

  14. Mutations at the base of the icosahedral five-fold cylinders of minute virus of mice induce 3'-to-5' genome uncoating and critically impair entry functions.

    PubMed

    Cotmore, Susan F; Tattersall, Peter

    2012-01-01

    The linear single-stranded DNA genome of minute virus of mice can be ejected, in a 3'-to-5' direction, via a cation-linked uncoating reaction that leaves the 5' end of the DNA firmly complexed with its otherwise intact protein capsid. Here we compare the phenotypes of four mutants, L172T, V40A, N149A, and N170A, which perturb the base of cylinders surrounding the icosahedral 5-fold axes of the virus, and show that these structures are strongly implicated in 3'-to-5' release. Although noninfectious at 37°C, all mutants were viable at 32°C, showed a temperature-sensitive cell entry defect, and, after proteolysis of externalized VP2 N termini, were unable to protect the VP1 domain, which is essential for bilayer penetration. Mutant virus yields from multiple-round infections were low and were characterized by the accumulation of virions containing subgenomic DNAs of specific sizes. In V40A, these derived exclusively from the 5' end of the genome, indicative of 3'-to-5' uncoating, while L172T, the most impaired mutant, had long subgenomic DNAs originating from both termini, suggesting additional packaging portal defects. Compared to the wild type, genome release in vitro following cation depletion was enhanced for all mutants, while only L172T released DNA, in both directions, without cation depletion following proteolysis at 37°C. Analysis of progeny from single-round infections showed that uncoating did not occur during virion assembly, release, or extraction. However, unlike the wild type, the V40A mutant extensively uncoated during cell entry, indicating that the V40-L172 interaction restrains an uncoating trigger mechanism within the endosomal compartment.

  15. Single Point Mutation in Bin/Amphiphysin/Rvs (BAR) Sequence of Endophilin Impairs Dimerization, Membrane Shaping, and Src Homology 3 Domain-mediated Partnership*

    PubMed Central

    Gortat, Anna; San-Roman, Mabel Jouve; Vannier, Christian; Schmidt, Anne A.

    2012-01-01

    Bin/Amphiphysin/Rvs (BAR) domain-containing proteins are essential players in the dynamics of intracellular compartments. The BAR domain is an evolutionarily conserved dimeric module characterized by a crescent-shaped structure whose intrinsic curvature, flexibility, and ability to assemble into highly ordered oligomers contribute to inducing the curvature of target membranes. Endophilins, diverging into A and B subgroups, are BAR and SH3 domain-containing proteins. They exert activities in membrane dynamic processes such as endocytosis, autophagy, mitochondrial dynamics, and permeabilization during apoptosis. Here, we report on the involvement of the third α-helix of the endophilin A BAR sequence in dimerization and identify leucine 215 as a key residue within a network of hydrophobic interactions stabilizing the entire BAR dimer interface. With the combination of N-terminal truncation retaining the high dimerization capacity of the third α-helices of endophilin A and leucine 215 substitution by aspartate (L215D), we demonstrate the essential role of BAR sequence-mediated dimerization on SH3 domain partnership. In comparison with wild type, full-length endophilin A2 heterodimers with one protomer bearing the L215D substitution exhibit very significant changes in membrane binding and shaping activities as well as a dramatic decrease of SH3 domain partnership. This suggests that subtle changes in the conformation and/or rigidity of the BAR domain impact both the control of membrane curvature and downstream binding to effectors. Finally, we show that expression, in mammalian cells, of endophilin A2 bearing the L215D substitution impairs the endocytic recycling of transferrin receptors. PMID:22167186

  16. Evidence for ubiquitin-regulated nuclear and subnuclear trafficking among Paramyxovirinae matrix proteins.

    PubMed

    Pentecost, Mickey; Vashisht, Ajay A; Lester, Talia; Voros, Tim; Beaty, Shannon M; Park, Arnold; Wang, Yao E; Yun, Tatyana E; Freiberg, Alexander N; Wohlschlegel, James A; Lee, Benhur

    2015-03-01

    The paramyxovirus matrix (M) protein is a molecular scaffold required for viral morphogenesis and budding at the plasma membrane. Transient nuclear residence of some M proteins hints at non-structural roles. However, little is known regarding the mechanisms that regulate the nuclear sojourn. Previously, we found that the nuclear-cytoplasmic trafficking of Nipah virus M (NiV-M) is a prerequisite for budding, and is regulated by a bipartite nuclear localization signal (NLSbp), a leucine-rich nuclear export signal (NES), and monoubiquitination of the K258 residue within the NLSbp itself (NLSbp-lysine). To define whether the sequence determinants of nuclear trafficking identified in NiV-M are common among other Paramyxovirinae M proteins, we generated the homologous NES and NLSbp-lysine mutations in M proteins from the five major Paramyxovirinae genera. Using quantitative 3D confocal microscopy, we determined that the NES and NLSbp-lysine are required for the efficient nuclear export of the M proteins of Nipah virus, Hendra virus, Sendai virus, and Mumps virus. Pharmacological depletion of free ubiquitin or mutation of the conserved NLSbp-lysine to an arginine, which inhibits M ubiquitination, also results in nuclear and nucleolar retention of these M proteins. Recombinant Sendai virus (rSeV-eGFP) bearing the NES or NLSbp-lysine M mutants rescued at similar efficiencies to wild type. However, foci of cells expressing the M mutants displayed marked fusogenicity in contrast to wild type, and infection did not spread. Recombinant Mumps virus (rMuV-eGFP) bearing the homologous mutations showed similar defects in viral morphogenesis. Finally, shotgun proteomics experiments indicated that the interactomes of Paramyxovirinae M proteins are significantly enriched for components of the nuclear pore complex, nuclear transport receptors, and nucleolar proteins. We then synthesize our functional and proteomics data to propose a working model for the ubiquitin-regulated nuclear

  17. Ferlins: regulators of vesicle fusion for auditory neurotransmission, receptor trafficking and membrane repair.

    PubMed

    Lek, Angela; Evesson, Frances J; Sutton, R Bryan; North, Kathryn N; Cooper, Sandra T

    2012-02-01

    Ferlins are a family of multiple C2 domain proteins with emerging roles in vesicle fusion and membrane trafficking. Ferlin mutations are associated with muscular dystrophy (dysferlin) and deafness (otoferlin) in humans, and infertility in Caenorhabditis elegans (Fer-1) and Drosophila (misfire), demonstrating their importance for normal cellular functioning. Ferlins show ancient origins in eukaryotic evolution and are detected in all eukaryotic kingdoms, including unicellular eukaryotes and apicomplexian protists, suggesting origins in a common ancestor predating eukaryotic evolutionary branching. The characteristic feature of the ferlin family is their multiple tandem cytosolic C2 domains (five to seven C2 domains), the most of any protein family, and an extremely rare feature amongst eukaryotic proteins. Ferlins also bear a unique nested DysF domain and small conserved 60-70 residue ferlin-specific sequences (Fer domains). Ferlins segregate into two subtypes based on the presence (type I ferlin) or absence (type II ferlin) of the DysF and FerA domains. Ferlins have diverse tissue-specific and developmental expression patterns, with ferlin animal models united by pathologies arising from defects in vesicle fusion. Consistent with their proposed role in vesicle trafficking, ferlin interaction partners include cytoskeletal motors, other vesicle-associated trafficking proteins and transmembrane receptors or channels. Herein we summarize the research history of the ferlins, an intriguing family of structurally conserved proteins with a preserved ancestral function as regulators of vesicle fusion and receptor trafficking.

  18. Aberrant protein trafficking in retinal degenerations: The initial phase of retinal remodeling.

    PubMed

    Bales, Katie L; Gross, Alecia K

    2016-09-01

    Retinal trafficking proteins are involved in molecular assemblies that govern protein transport, orchestrate cellular events involved in cilia formation, regulate signal transduction, autophagy and endocytic trafficking, all of which if not properly controlled initiate retinal degeneration. Improper function and or trafficking of these proteins and molecular networks they are involved in cause a detrimental cascade of neural retinal remodeling due to cell death, resulting as devastating blinding diseases. A universal finding in retinal degenerative diseases is the profound detection of retinal remodeling, occurring as a phased modification of neural retinal function and structure, which begins at the molecular level. Retinal remodeling instigated by aberrant trafficking of proteins encompasses many forms of retinal degenerations, such as the diverse forms of retinitis pigmentosa (RP) and disorders that resemble RP through mutations in the rhodopsin gene, retinal ciliopathies, and some forms of glaucoma and age-related macular degeneration (AMD). As a large majority of genes associated with these different retinopathies are overlapping, it is imperative to understand their underlying molecular mechanisms. This review will discuss some of the most recent discoveries in vertebrate retinal remodeling and retinal degenerations caused by protein mistrafficking. PMID:26632497

  19. Trafficking vesicles: pro or contra pathogens?

    PubMed

    Frei dit Frey, Nicolas; Robatzek, Silke

    2009-08-01

    Membrane compartmentalization and trafficking are pivotal for eukaryotic life and demand a higher order of coordination. Even in their resting state, most plant cells exhibit a polarized localization of membrane compartments, which is redirected when plant cells are attacked by microbes. Repositioning of organelles at pathogen penetration sites has been reported since more than a decade; however, only recently has targeted vesicle trafficking upon biotic stress emerged. It has become evident that vesicle secretion and endocytic pathways are engaged in the plant's immune system to actively defend against potential pathogens. By contrast, invasive pathogens have evolved means to utilize these trafficking pathways for the suppression of plant defenses and to the benefit of microbial proliferation. This review summarizes recent findings of host intracellular endomembrane adaptations in response to pathogens and how pathogens exploit them. PMID:19608452

  20. Vesicle trafficking and cell surface membrane patchiness.

    PubMed

    Tang, Q; Edidin, M

    2001-07-01

    Membrane proteins and lipids often appear to be distributed in patches on the cell surface. These patches are often assumed to be membrane domains, arising from specific molecular associations. However, a computer simulation (Gheber and Edidin, 1999) shows that membrane patchiness may result from a combination of vesicle trafficking and dynamic barriers to lateral mobility. The simulation predicts that the steady-state patches of proteins and lipids seen on the cell surface will decay if vesicle trafficking is inhibited. To test this prediction, we compared the apparent sizes and intensities of patches of class I HLA molecules, integral membrane proteins, before and after inhibiting endocytic vesicle traffic from the cell surface, either by incubation in hypertonic medium or by expression of a dominant-negative mutant dynamin. As predicted by the simulation, the apparent sizes of HLA patches increased, whereas their intensities decreased after endocytosis and vesicle trafficking were inhibited. PMID:11423406

  1. Purinergic Signaling During Immune Cell Trafficking.

    PubMed

    Ferrari, Davide; McNamee, Eóin N; Idzko, Marco; Gambari, Roberto; Eltzschig, Holger K

    2016-06-01

    Migration and positioning of immune cells is fundamental for their differentiation and recruitment at sites of infection. Besides the fundamental role played by chemokines and their receptors, recent studies demonstrate that a complex network of purinergic signaling events plays a key role in these trafficking events. This process includes the release of nucleotides (such as ATP and ADP) and subsequent autocrine and paracrine signaling events through nucleotide receptors. At the same time, surface-expressed ectoapyrases and nucleotidases convert extracellular nucleotides to adenosine, and adenosine signaling events play additional functional roles in leucocyte trafficking. In this review we revisit classical paradigms of inflammatory cell trafficking in the context of recent studies implicating purinergic signaling events in this process. PMID:27142306

  2. Trafficking in persons and development: towards greater policy coherence.

    PubMed

    Danailova-Trainor, Gergana; Laczko, Frank

    2010-01-01

    Poverty is often regarded as the "root cause" of trafficking, but the linkages between poverty, a lack of development and trafficking are complex. For example, there is some evidence to suggest that victims of cross-border trafficking are more likely to originate from middle-income rather than lower-income countries. Trafficking and development have tended to be treated as very separate policy areas and the assessment of the development impact of counter-trafficking programmes is still at an early stage. This paper outlines a possible framework for a more evidence-based approach to understanding the linkages between trafficking, trafficking policy and human development. The paper argues that the human development gains from greater mobility could be significantly enhanced if there was greater coherence between policies to combat trafficking and policies to promote development. PMID:20645470

  3. 31 CFR 536.312 - Specially designated narcotics trafficker.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... designated narcotics trafficker means: (a) Persons listed in the annex to Executive Order 12978 (3 CFR, 1995... international narcotics trafficking centered in Colombia; or (2) Materially to assist in, or provide...

  4. Human telomerase: biogenesis, trafficking, recruitment, and activation.

    PubMed

    Schmidt, Jens C; Cech, Thomas R

    2015-06-01

    Telomerase is the ribonucleoprotein enzyme that catalyzes the extension of telomeric DNA in eukaryotes. Recent work has begun to reveal key aspects of the assembly of the human telomerase complex, its intracellular trafficking involving Cajal bodies, and its recruitment to telomeres. Once telomerase has been recruited to the telomere, it appears to undergo a separate activation step, which may include an increase in its repeat addition processivity. This review covers human telomerase biogenesis, trafficking, and activation, comparing key aspects with the analogous events in other species.

  5. Homeostatic plasticity and NMDA receptor trafficking.

    PubMed

    Pérez-Otaño, Isabel; Ehlers, Michael D

    2005-05-01

    Learning, memory and brain development are associated with long-lasting modifications of synapses that are guided by specific patterns of neuronal activity. Such modifications include classical Hebbian plasticities (such as long-term potentiation and long-term depression), which are rapid and synapse-specific, and others, such as synaptic scaling and metaplasticity, that work over longer timescales and are crucial for maintaining and orchestrating neuronal network function. The cellular mechanisms underlying Hebbian plasticity have been well studied and involve rapid changes in the trafficking of highly mobile AMPA receptors. An emerging concept is that activity-dependent alterations in NMDA receptor trafficking contribute to homeostatic plasticity at central glutamatergic synapses.

  6. Determinants in the β and δ subunit cytoplasmic loop regulate Golgi trafficking and surface expression of the muscle acetylcholine receptor.

    PubMed

    Rudell, Jolene Chang; Borges, Lucia S; Rudell, John B; Beck, Kenneth A; Ferns, Michael J

    2014-01-01

    The molecular determinants that govern nicotinic acetylcholine receptor (AChR) assembly and trafficking are poorly defined, and those identified operate largely during initial receptor biogenesis in the endoplasmic reticulum. To identify determinants that regulate later trafficking steps, we performed an unbiased screen using chimeric proteins consisting of CD4 fused to the muscle AChR subunit cytoplasmic loops. In C2 mouse muscle cells, we found that CD4-β and δ subunit loops were expressed at very low levels on the cell surface, whereas the other subunit loops were robustly expressed on the plasma membrane. The low surface expression of CD4-β and δ loops was due to their pronounced retention in the Golgi apparatus and also to their rapid internalization from the plasma membrane. Both retention and recovery were mediated by the proximal 25-28 amino acids in each loop and were dependent on an ordered sequence of charged and hydrophobic residues. Indeed, βK353L and δK351L mutations increased surface trafficking of the CD4-subunit loops by >6-fold and also decreased their internalization from the plasma membrane. Similarly, combined βK353L and δK351L mutations increased the surface levels of assembled AChR expressed in HEK cells to 138% of wild-type levels. This was due to increased trafficking to the plasma membrane and not decreased AChR turnover. These findings identify novel Golgi retention signals in the β and δ subunit loops that regulate surface trafficking of assembled AChR and may help prevent surface expression of unassembled subunits. Together, these results define molecular determinants that govern a Golgi-based regulatory step in nicotinic AChR trafficking.

  7. Defects in optineurin- and myosin VI-mediated cellular trafficking in amyotrophic lateral sclerosis.

    PubMed

    Sundaramoorthy, Vinod; Walker, Adam K; Tan, Vanessa; Fifita, Jennifer A; Mccann, Emily P; Williams, Kelly L; Blair, Ian P; Guillemin, Gilles J; Farg, Manal A; Atkin, Julie D

    2015-07-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder primarily affecting motor neurons. Mutations in optineurin cause a small proportion of familial ALS cases, and wild-type (WT) optineurin is misfolded and forms inclusions in sporadic ALS patient motor neurons. However, it is unknown how optineurin mutation or misfolding leads to ALS. Optineurin acts an adaptor protein connecting the molecular motor myosin VI to secretory vesicles and autophagosomes. Here, we demonstrate that ALS-linked mutations p.Q398X and p.E478G disrupt the association of optineurin with myosin VI, leading to an abnormal diffuse cytoplasmic distribution, inhibition of secretory protein trafficking, endoplasmic reticulum (ER) stress and Golgi fragmentation in motor neuron-like NSC-34 cells. We also provide further insight into the role of optineurin as an autophagy receptor. WT optineurin associated with lysosomes and promoted autophagosome fusion to lysosomes in neuronal cells, implying that it mediates trafficking of lysosomes during autophagy in association with myosin VI. However, either expression of ALS mutant optineurin or small interfering RNA-mediated knockdown of endogenous optineurin blocked lysosome fusion to autophagosomes, resulting in autophagosome accumulation. Together these results indicate that ALS-linked mutations in optineurin disrupt myosin VI-mediated intracellular trafficking processes. In addition, in control human patient tissues, optineurin displayed its normal vesicular localization, but in sporadic ALS patient tissues, vesicles were present in a significantly decreased proportion of motor neurons. Optineurin binding to myosin VI was also decreased in tissue lysates from sporadic ALS spinal cords. This study therefore links several previously described pathological mechanisms in ALS, including defects in autophagy, fragmentation of the Golgi and induction of ER stress, to disruption of optineurin function. These findings also indicate that

  8. Child organ trafficking: global reality and inadequate international response.

    PubMed

    Bagheri, Alireza

    2016-06-01

    In organ transplantation, the demand for human organs has grown far faster than the supply of organs. This has opened the door for illegal organ trade and trafficking including from children. Organized crime groups and individual organ brokers exploit the situation and, as a result, black markets are becoming more numerous and organized organ trafficking is expanding worldwide. While underprivileged and vulnerable men and women in developing countries are a major source of trafficked organs, and may themselves be trafficked for the purpose of illegal organ removal and trade, children are at especial risk of exploitation. With the confirmed cases of children being trafficked for their organs, child organ trafficking, which once called a "modern urban legend", is a sad reality in today's world. By presenting a global picture of child organ trafficking, this paper emphasizes that child organ trafficking is no longer a myth but a reality which has to be addressed. It argues that the international efforts against organ trafficking and trafficking in human beings for organ removal have failed to address child organ trafficking adequately. This chapter suggests that more orchestrated international collaboration as well as development of preventive measure and legally binding documents are needed to fight child organ trafficking and to support its victims. PMID:26612382

  9. 78 FR 70571 - Advisory Council on Wildlife Trafficking; Rescheduled Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... Fish and Wildlife Service Advisory Council on Wildlife Trafficking; Rescheduled Meeting AGENCY: Fish... Service (Service), announce a public meeting of the Advisory Council on Wildlife Trafficking (Council... announce that the Advisory Council on Wildlife Trafficking (Council) will hold a meeting to...

  10. 48 CFR 52.222-50 - Combating Trafficking in Persons.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Combating Trafficking in....222-50 Combating Trafficking in Persons. As prescribed in 22.1705(a), insert the following clause: Combating Trafficking in Persons (FEB 2009) (a) Definitions. As used in this clause— Coercion means—...

  11. Child organ trafficking: global reality and inadequate international response.

    PubMed

    Bagheri, Alireza

    2016-06-01

    In organ transplantation, the demand for human organs has grown far faster than the supply of organs. This has opened the door for illegal organ trade and trafficking including from children. Organized crime groups and individual organ brokers exploit the situation and, as a result, black markets are becoming more numerous and organized organ trafficking is expanding worldwide. While underprivileged and vulnerable men and women in developing countries are a major source of trafficked organs, and may themselves be trafficked for the purpose of illegal organ removal and trade, children are at especial risk of exploitation. With the confirmed cases of children being trafficked for their organs, child organ trafficking, which once called a "modern urban legend", is a sad reality in today's world. By presenting a global picture of child organ trafficking, this paper emphasizes that child organ trafficking is no longer a myth but a reality which has to be addressed. It argues that the international efforts against organ trafficking and trafficking in human beings for organ removal have failed to address child organ trafficking adequately. This chapter suggests that more orchestrated international collaboration as well as development of preventive measure and legally binding documents are needed to fight child organ trafficking and to support its victims.

  12. Human Trafficking: A Review for Mental Health Professionals

    ERIC Educational Resources Information Center

    Yakushko, Oksana

    2009-01-01

    This article provides a review of current research on human trafficking for mental health practitioners and scholars. In addition to an overview of definitions, causes and processes of trafficking, the article highlights mental health consequences of trafficking along with suggestions for treatment of survivors. Directions for counseling services,…

  13. Trafficking of Children in Albania: Patterns of Recruitment and Reintegration

    ERIC Educational Resources Information Center

    Gjermeni, Eglantina; Van Hook, Mary P.; Gjipali, Saemira; Xhillari, Lindita; Lungu, Fatjon; Hazizi, Anila

    2008-01-01

    Problem: Many children in Albania and other countries of Eastern Europe are being trafficked as part of the global business of human trafficking. Objectives: The study sought to identify the patterns of child trafficking involving Albanian children, and especially children's views of the role of family issues and the nature of the trafficking…

  14. Intracellular trafficking of the human Wilson protein: the role of the six N-terminal metal-binding sites.

    PubMed Central

    Cater, Michael A; Forbes, John; La Fontaine, Sharon; Cox, Diane; Mercer, Julian F B

    2004-01-01

    The Wilson protein (ATP7B) is a copper-transporting CPx-type ATPase defective in the copper toxicity disorder Wilson disease. In hepatocytes, ATP7B delivers copper to apo-ceruloplasmin and mediates the excretion of excess copper into bile. These distinct functions require the protein to localize at two different subcellular compartments. At the trans-Golgi network, ATP7B transports copper for incorporation into apo-ceruloplasmin. When intracellular copper levels are increased, ATP7B traffics to post-Golgi vesicles in close proximity to the canalicular membrane to facilitate biliary copper excretion. In the present study, we investigated the role of the six N-terminal MBSs (metal-binding sites) in the trafficking process. Using site-directed mutagenesis, we mutated or deleted various combinations of the MBSs and assessed the effect of these changes on the localization and trafficking of ATP7B. Results show that the MBSs required for trafficking are the same as those previously found essential for the copper transport function. Either MBS 5 or MBS 6 alone was sufficient to support the redistribution of ATP7B to vesicular compartments. The first three N-terminal motifs were not required for copper-dependent intracellular trafficking and could not functionally replace sites 4-6 when placed in the same sequence position. Furthermore, the N-terminal region encompassing MBSs 1-5 (amino acids 64-540) was not essential for trafficking, with only one MBS close to the membrane channel, necessary and sufficient to support trafficking. Our findings were similar to those obtained for the closely related ATP7A protein, suggesting similar mechanisms for trafficking between copper-transporting CPx-type ATPases. PMID:14998371

  15. A vesicle-trafficking protein commandeers Kv channel voltage sensors for voltage-dependent secretion.

    PubMed

    Grefen, Christopher; Karnik, Rucha; Larson, Emily; Lefoulon, Cécile; Wang, Yizhou; Waghmare, Sakharam; Zhang, Ben; Hills, Adrian; Blatt, Michael R

    2015-01-01

    Growth in plants depends on ion transport for osmotic solute uptake and secretory membrane trafficking to deliver material for wall remodelling and cell expansion. The coordination of these processes lies at the heart of the question, unresolved for more than a century, of how plants regulate cell volume and turgor. Here we report that the SNARE protein SYP121 (SYR1/PEN1), which mediates vesicle fusion at the Arabidopsis plasma membrane, binds the voltage sensor domains (VSDs) of K(+) channels to confer a voltage dependence on secretory traffic in parallel with K(+) uptake. VSD binding enhances secretion in vivo subject to voltage, and mutations affecting VSD conformation alter binding and secretion in parallel with channel gating, net K(+) concentration, osmotic content and growth. These results demonstrate a new and unexpected mechanism for secretory control, in which a subset of plant SNAREs commandeer K(+) channel VSDs to coordinate membrane trafficking with K(+) uptake for growth.

  16. Gating characteristics control glutamate receptor distribution and trafficking in vivo.

    PubMed

    Petzoldt, Astrid G; Lee, Yü-Hien; Khorramshahi, Omid; Reynolds, Eric; Plested, Andrew J R; Herzel, Hanspeter; Sigrist, Stephan J

    2014-09-01

    Glutamate-releasing synapses dominate excitatory release in the brain. Mechanisms governing their assembly are of major importance for circuit development and long-term plasticity underlying learning and memory. AMPA/Kainate-type glutamate receptors (GluRs) are tetrameric ligand-gated ion channels that open their ion-conducting pores in response to binding of the neurotransmitter. Changes in subunit composition of postsynaptic GluRs are highly relevant for plasticity and development of glutamatergic synapses [1-4]. To date, posttranslational modifications, mostly operating via the intracellular C-terminal domains (CTDs) of GluRs, are presumed to be the major regulator of trafficking [5]. In recent years, structural and electrophysiological analyses have improved our understanding of GluR gating mechanism [6-11]. However, whether conformational changes subsequent to glutamate binding may per se be able to influence GluR trafficking has remained an unaddressed question. Using a Drosophila system allowing for extended visualization of GluR trafficking in vivo, we here provide evidence that mutations changing the gating behavior alter GluR distribution and trafficking. GluR mutants associated with reduced charge transfer segregated from coexpressed wild-type GluRs on the level of individual postsynaptic densities. Segregation was lost upon blocking of evoked glutamate release. Photobleaching experiments suggested increased mobility of mutants with reduced charge transfer, which accumulated prematurely during early steps of synapse assembly, but failed to further increase their level in accordance with assembly of the presynaptic scaffold. In summary, gating characteristics seem to be a new variable for the understanding of GluR trafficking relevant to both development and plasticity.

  17. Salmonella Disrupts Host Endocytic Trafficking by SopD2-Mediated Inhibition of Rab7.

    PubMed

    D'Costa, Vanessa M; Braun, Virginie; Landekic, Marija; Shi, Rong; Proteau, Ariane; McDonald, Laura; Cygler, Miroslaw; Grinstein, Sergio; Brumell, John H

    2015-09-01

    Intracellular bacterial pathogens of a diverse nature share the ability to evade host immunity by impairing trafficking of endocytic cargo to lysosomes for degradation, a process that is poorly understood. Here, we show that the Salmonella enterica type 3 secreted effector SopD2 mediates this process by binding the host regulatory GTPase Rab7 and inhibiting its nucleotide exchange. Consequently, this limits Rab7 interaction with its dynein- and kinesin-binding effectors RILP and FYCO1 and thereby disrupts host-driven regulation of microtubule motors. Our study identifies a bacterial effector capable of directly binding and thereby modulating Rab7 activity and a mechanism of endocytic trafficking disruption that may provide insight into the pathogenesis of other bacteria. Additionally, we provide a powerful tool for the study of Rab7 function, and a potential therapeutic target. PMID:26299973

  18. The SNARE VAMP7 Regulates Exocytic Trafficking of Interleukin-12 in Dendritic Cells

    PubMed Central

    Chiaruttini, Giulia; Piperno, Giulia M.; Jouve, Mabel; De Nardi, Francesca; Larghi, Paola; Peden, Andrew A.; Baj, Gabriele; Müller, Sabina; Valitutti, Salvatore; Galli, Thierry; Benvenuti, Federica

    2016-01-01

    Summary Interleukin-12 (IL-12), produced by dendritic cells in response to activation, is central to pathogen eradication and tumor rejection. The trafficking pathways controlling spatial distribution and intracellular transport of IL-12 vesicles to the cell surface are still unknown. Here, we show that intracellular IL-12 localizes in late endocytic vesicles marked by the SNARE VAMP7. Dendritic cells (DCs) from VAMP7-deficient mice are partially impaired in the multidirectional release of IL-12. Upon encounter with antigen-specific T cells, IL-12-containing vesicles rapidly redistribute at the immune synapse and release IL-12 in a process entirely dependent on VAMP7 expression. Consistently, acquisition of effector functions is reduced in T cells stimulated by VAMP7-null DCs. These results provide insights into IL-12 intracellular trafficking pathways and show that VAMP7-mediated release of IL-12 at the immune synapse is a mechanism to transmit innate signals to T cells. PMID:26972013

  19. Salmonella Disrupts Host Endocytic Trafficking by SopD2-Mediated Inhibition of Rab7.

    PubMed

    D'Costa, Vanessa M; Braun, Virginie; Landekic, Marija; Shi, Rong; Proteau, Ariane; McDonald, Laura; Cygler, Miroslaw; Grinstein, Sergio; Brumell, John H

    2015-09-01

    Intracellular bacterial pathogens of a diverse nature share the ability to evade host immunity by impairing trafficking of endocytic cargo to lysosomes for degradation, a process that is poorly understood. Here, we show that the Salmonella enterica type 3 secreted effector SopD2 mediates this process by binding the host regulatory GTPase Rab7 and inhibiting its nucleotide exchange. Consequently, this limits Rab7 interaction with its dynein- and kinesin-binding effectors RILP and FYCO1 and thereby disrupts host-driven regulation of microtubule motors. Our study identifies a bacterial effector capable of directly binding and thereby modulating Rab7 activity and a mechanism of endocytic trafficking disruption that may provide insight into the pathogenesis of other bacteria. Additionally, we provide a powerful tool for the study of Rab7 function, and a potential therapeutic target.

  20. Potential use of potassium efflux-deficient yeast for studying trafficking signals and potassium channel functions.

    PubMed

    Bernstein, Joshua D; Okamoto, Yukari; Kim, Minjee; Shikano, Sojin

    2013-01-01

    The activity of potassium (K(+)) channels critically depends on their density on the cell surface membrane, which is regulated by dynamic protein-protein interactions that often involve distinct trafficking signals on the cargo proteins. In this paper we explored the possibility of utilizing the Saccharomyces cerevisiae strain B31 for identification of the signal motifs that regulate surface expression of membrane proteins and for studying structure-function relationships of K(+) channels. B31 cells lack the K(+) efflux system and were reported to show overloaded K(+)-mediated growth inhibition in high K(+) media upon heterologous expression of a mammalian inwardly rectifying K(+) channel (Kir2.1). We show that while the expression of wild-type Kir2.1 channel inhibits the growth of B31 cells in high K(+) media, the human disease-causing mutations of Kir2.1 that abolish K(+) conduction (V302M) or surface trafficking (Δ314/315) fully restores the growth. The expression of two-pore-domain K(+) channel KCNK3 or KCNK9 also inhibited the growth of B31 in high K(+) media while C-terminal mutations that reduce their 14-3-3 protein-dependent cell surface trafficking restored the growth of B31. Finally, the expression of Kir2.1 channels that were C-terminally fused with known sequence motifs including ER retention/retrieval signals and an endocytosis signal allowed the growth of B31 in high K(+) media. These results demonstrate the potential of B31 yeast strain as a unique biological tool to screen the random peptide libraries for novel sequence signals that down-regulate surface expression of membrane proteins, as well as to systematically identify the structural determinants for cell surface trafficking and/or ion conductance of K(+) channels.

  1. Emerging roles of ARHGAP33 in intracellular trafficking of TrkB and pathophysiology of neuropsychiatric disorders

    PubMed Central

    Nakazawa, Takanobu; Hashimoto, Ryota; Sakoori, Kazuto; Sugaya, Yuki; Tanimura, Asami; Hashimotodani, Yuki; Ohi, Kazutaka; Yamamori, Hidenaga; Yasuda, Yuka; Umeda-Yano, Satomi; Kiyama, Yuji; Konno, Kohtarou; Inoue, Takeshi; Yokoyama, Kazumasa; Inoue, Takafumi; Numata, Shusuke; Ohnuma, Tohru; Iwata, Nakao; Ozaki, Norio; Hashimoto, Hitoshi; Watanabe, Masahiko; Manabe, Toshiya; Yamamoto, Tadashi; Takeda, Masatoshi; Kano, Masanobu

    2016-01-01

    Intracellular trafficking of receptor proteins is essential for neurons to detect various extracellular factors during the formation and refinement of neural circuits. However, the precise mechanisms underlying the trafficking of neurotrophin receptors to synapses remain elusive. Here, we demonstrate that a brain-enriched sorting nexin, ARHGAP33, is a new type of regulator for the intracellular trafficking of TrkB, a high-affinity receptor for brain-derived neurotrophic factor. ARHGAP33 knockout (KO) mice exhibit reduced expression of synaptic TrkB, impaired spine development and neuropsychiatric disorder-related behavioural abnormalities. These deficits are rescued by specific pharmacological enhancement of TrkB signalling in ARHGAP33 KO mice. Mechanistically, ARHGAP33 interacts with SORT1 to cooperatively regulate TrkB trafficking. Human ARHGAP33 is associated with brain phenotypes and reduced SORT1 expression is found in patients with schizophrenia. We propose that ARHGAP33/SORT1-mediated TrkB trafficking is essential for synapse development and that the dysfunction of this mechanism may be a new molecular pathology of neuropsychiatric disorders. PMID:26839058

  2. Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure.

    PubMed

    Corcelle-Termeau, Elisabeth; Vindeløv, Signe Diness; Hämälistö, Saara; Mograbi, Baharia; Keldsbo, Anne; Bräsen, Jan Hinrich; Favaro, Elena; Adam, Dieter; Szyniarowski, Piotr; Hofman, Paul; Krautwald, Stefan; Farkas, Thomas; Petersen, Nikolaj H T; Rohde, Mikkel; Linkermann, Andreas; Jäättelä, Marja

    2016-05-01

    Sphingomyelin is an essential cellular lipid that traffics between plasma membrane and intracellular organelles until directed to lysosomes for SMPD1 (sphingomyelin phosphodiesterase 1)-mediated degradation. Inactivating mutations in the SMPD1 gene result in Niemann-Pick diseases type A and B characterized by sphingomyelin accumulation and severely disturbed tissue homeostasis. Here, we report that sphingomyelin overload disturbs the maturation and closure of autophagic membranes. Niemann-Pick type A patient fibroblasts and SMPD1-depleted cancer cells accumulate elongated and unclosed autophagic membranes as well as abnormally swollen autophagosomes in the absence of normal autophagosomes and autolysosomes. The immature autophagic membranes are rich in WIPI2, ATG16L1 and MAP1LC3B but display reduced association with ATG9A. Contrary to its normal trafficking between plasma membrane, intracellular organelles and autophagic membranes, ATG9A concentrates in transferrin receptor-positive juxtanuclear recycling endosomes in SMPD1-deficient cells. Supporting a causative role for ATG9A mistrafficking in the autophagy defect observed in SMPD1-deficient cells, ectopic ATG9A effectively reverts this phenotype. Exogenous C12-sphingomyelin induces a similar juxtanuclear accumulation of ATG9A and subsequent defect in the maturation of autophagic membranes in healthy cells while the main sphingomyelin metabolite, ceramide, fails to revert the autophagy defective phenotype in SMPD1-deficient cells. Juxtanuclear accumulation of ATG9A and defective autophagy are also evident in tissues of smpd1-deficient mice with a subsequent inability to cope with kidney ischemia-reperfusion stress. These data reveal sphingomyelin as an important regulator of ATG9A trafficking and maturation of early autophagic membranes. PMID:27070082

  3. Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure

    PubMed Central

    Corcelle-Termeau, Elisabeth; Vindeløv, Signe Diness; Hämälistö, Saara; Mograbi, Baharia; Keldsbo, Anne; Bräsen, Jan Hinrich; Favaro, Elena; Adam, Dieter; Szyniarowski, Piotr; Hofman, Paul; Krautwald, Stefan; Farkas, Thomas; Petersen, Nikolaj H.T.; Rohde, Mikkel; Linkermann, Andreas; Jäättelä, Marja

    2016-01-01

    ABSTRACT Sphingomyelin is an essential cellular lipid that traffics between plasma membrane and intracellular organelles until directed to lysosomes for SMPD1 (sphingomyelin phosphodiesterase 1)-mediated degradation. Inactivating mutations in the SMPD1 gene result in Niemann-Pick diseases type A and B characterized by sphingomyelin accumulation and severely disturbed tissue homeostasis. Here, we report that sphingomyelin overload disturbs the maturation and closure of autophagic membranes. Niemann-Pick type A patient fibroblasts and SMPD1-depleted cancer cells accumulate elongated and unclosed autophagic membranes as well as abnormally swollen autophagosomes in the absence of normal autophagosomes and autolysosomes. The immature autophagic membranes are rich in WIPI2, ATG16L1 and MAP1LC3B but display reduced association with ATG9A. Contrary to its normal trafficking between plasma membrane, intracellular organelles and autophagic membranes, ATG9A concentrates in transferrin receptor-positive juxtanuclear recycling endosomes in SMPD1-deficient cells. Supporting a causative role for ATG9A mistrafficking in the autophagy defect observed in SMPD1-deficient cells, ectopic ATG9A effectively reverts this phenotype. Exogenous C12-sphingomyelin induces a similar juxtanuclear accumulation of ATG9A and subsequent defect in the maturation of autophagic membranes in healthy cells while the main sphingomyelin metabolite, ceramide, fails to revert the autophagy defective phenotype in SMPD1-deficient cells. Juxtanuclear accumulation of ATG9A and defective autophagy are also evident in tissues of smpd1-deficient mice with a subsequent inability to cope with kidney ischemia-reperfusion stress. These data reveal sphingomyelin as an important regulator of ATG9A trafficking and maturation of early autophagic membranes. PMID:27070082

  4. Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus.

    PubMed

    Kuwahara, M; Iwai, K; Ooeda, T; Igarashi, T; Ogawa, E; Katsushima, Y; Shinbo, I; Uchida, S; Terada, Y; Arthus, M F; Lonergan, M; Fujiwara, T M; Bichet, D G; Marumo, F; Sasaki, S

    2001-10-01

    The vasopressin-regulated water channel aquaporin-2 (AQP2) is known to tetramerize in the apical membrane of the renal tubular cells and contributes to urine concentration. We identified three novel mutations, each in a single allele of exon 4 of the AQP2 gene, in three families showing autosomal dominant nephrogenic diabetes insipidus (NDI). These mutations were found in the C-terminus of AQP2: a deletion of G at nucleotide 721 (721 delG), a deletion of 10 nucleotides starting at nucleotide 763 (763-772del), and a deletion of 7 nucleotides starting at nucleotide 812 (812-818del). The wild-type AQP2 is predicted to be a 271-amino acid protein, whereas these mutant genes are predicted to encode proteins that are 330-333 amino acids in length, because of the frameshift mutations. Interestingly, these three mutant AQP2s shared the same C-terminal tail of 61 amino acids. In Xenopus oocytes injected with mutant AQP2 cRNAs, the osmotic water permeability (Pf) was much smaller than that of oocytes with the AQP2 wild-type (14%-17%). Immunoblot analysis of the lysates of the oocytes expressing the mutant AQP2s detected a band at 34 kD, whereas the immunoblot of the plasma-membrane fractions of the oocytes and immunocytochemistry failed to show a significant surface expression, suggesting a defect in trafficking of these mutant proteins. Furthermore, coinjection of wild-type cRNAs with mutant cRNAs markedly decreased the oocyte Pf in parallel with the surface expression of the wild-type AQP2. Immunoprecipitation with antibodies against wild-type and mutant AQP2 indicated the formation of mixed oligomers composed of wild-type and mutant AQP2 monomers. Our results suggest that the trafficking of mutant AQP2 is impaired because of elongation of the C-terminal tail, and the dominant-negative effect is attributed to oligomerization of the wild-type and mutant AQP2s. Segregation of the mutations in the C-terminus of AQP2 with dominant-type NDI underlies the importance of this

  5. Heme Oxygenase-1 Regulates Myeloid Cell Trafficking in AKI.

    PubMed

    Hull, Travis D; Kamal, Ahmed I; Boddu, Ravindra; Bolisetty, Subhashini; Guo, Lingling; Tisher, Cornelia C; Rangarajan, Sunil; Chen, Bo; Curtis, Lisa M; George, James F; Agarwal, Anupam

    2015-09-01

    Renal ischemia-reperfusion injury is mediated by a complex cascade of events, including the immune response, that occur secondary to injury to renal epithelial cells. We tested the hypothesis that heme oxygenase-1 (HO-1) expression, which is protective in ischemia-reperfusion injury, regulates trafficking of myeloid-derived immune cells in the kidney. Age-matched male wild-type (HO-1(+/+)), HO-1-knockout (HO-1(-/-)), and humanized HO-1-overexpressing (HBAC) mice underwent bilateral renal ischemia for 10 minutes. Ischemia-reperfusion injury resulted in significantly worse renal structure and function and increased mortality in HO-1(-/-) mice. In addition, there were more macrophages (CD45(+) CD11b(hi)F4/80(lo)) and neutrophils (CD45(+) CD11b(hi) MHCII(-) Gr-1(hi)) in HO-1(-/-) kidneys than in sham and HO-1(+/+) control kidneys subjected to ischemia-reperfusion. However, ischemic injury resulted in a significant decrease in the intrarenal resident dendritic cell (DC; CD45(+)MHCII(+)CD11b(lo)F4/80(hi)) population in HO-1(-/-) kidneys compared with controls. Syngeneic transplant experiments utilizing green fluorescent protein-positive HO-1(+/+) or HO-1(-/-) donor kidneys and green fluorescent protein-negative HO-1(+/+) recipients confirmed increased migration of the resident DC population from HO-1(-/-) donor kidneys, compared to HO-1(+/+) donor kidneys, to the peripheral lymphoid organs. This effect on renal DC migration was corroborated in myeloid-specific HO-1(-/-) mice subjected to bilateral ischemia. These mice also displayed impaired renal recovery and increased fibrosis at day 7 after injury. These results highlight an important role for HO-1 in orchestrating the trafficking of myeloid cells in AKI, which may represent a key pathway for therapeutic intervention.

  6. Domestic minor sex trafficking: what the PNP needs to know.

    PubMed

    Hornor, Gail

    2015-01-01

    Human trafficking is a major global public health problem and represents a substantial human rights violation. Human trafficking has been receiving attention in both the lay media and professional literature. Human trafficking can include commercial sex, forced labor, child soldiers, and stealing of human organs. One form of human trafficking represents a significant American pediatric health problem: domestic minor sex trafficking (DMST). DMST is the commercial sexual abuse of children by selling, buying, or trading their sexual service. This continuing education article will define DMST and discuss it in terms of prevalence, risk factors, and practice implications for the pediatric nurse practitioner. PMID:25497135

  7. Domestic minor sex trafficking: what the PNP needs to know.

    PubMed

    Hornor, Gail

    2015-01-01

    Human trafficking is a major global public health problem and represents a substantial human rights violation. Human trafficking has been receiving attention in both the lay media and professional literature. Human trafficking can include commercial sex, forced labor, child soldiers, and stealing of human organs. One form of human trafficking represents a significant American pediatric health problem: domestic minor sex trafficking (DMST). DMST is the commercial sexual abuse of children by selling, buying, or trading their sexual service. This continuing education article will define DMST and discuss it in terms of prevalence, risk factors, and practice implications for the pediatric nurse practitioner.

  8. Cortical development of AMPA receptor trafficking proteins

    PubMed Central

    Murphy, Kathryn M.; Tcharnaia, Lilia; Beshara, Simon P.; Jones, David G.

    2012-01-01

    AMPA-receptor trafficking plays a central role in excitatory plasticity, especially during development. Changes in the number of AMPA receptors and time spent at the synaptic surface are important factors of plasticity that directly affect long-term potentiation (LTP), long-term depression (LTD), synaptic scaling, and the excitatory-inhibitory (E/I) balance in the developing cortex. Experience-dependent changes in synaptic strength in visual cortex (V1) use a molecularly distinct AMPA trafficking pathway that includes the GluA2 subunit. We studied developmental changes in AMPA receptor trafficking proteins by quantifying expression of GluA2, pGluA2 (GluA2serine880), GRIP1, and PICK1 in rat visual and frontal cortex. We used Western Blot analysis of synaptoneurosome preparations of rat visual and frontal cortex from animals ranging in age from P0 to P105. GluA2 and pGluA2 followed different developmental trajectories in visual and frontal cortex, with a brief period of over expression in frontal cortex. The over expression of GluA2 and pGluA2 in immature frontal cortex raises the possibility that there may be a period of GluA2-dependent vulnerability in frontal cortex that is not found in V1. In contrast, GRIP1 and PICK1 had the same developmental trajectories and were expressed very early in development of both cortical areas. This suggests that the AMPA-interacting proteins are available to begin trafficking receptors as soon as GluA2-containing receptors are expressed. Finally, we used all four proteins to analyze the surface-to-internalization balance and found that this balance was roughly equal across both cortical regions, and throughout development. Our finding of an exquisite surface-to-internalization balance highlights that these AMPA receptor trafficking proteins function as a tightly controlled system in the developing cortex. PMID:22623912

  9. Do mutator mutations fuel tumorigenesis?

    PubMed

    Fox, Edward J; Prindle, Marc J; Loeb, Lawrence A

    2013-12-01

    The mutator phenotype hypothesis proposes that the mutation rate of normal cells is insufficient to account for the large number of mutations found in human cancers. Consequently, human tumors exhibit an elevated mutation rate that increases the likelihood of a tumor acquiring advantageous mutations. The hypothesis predicts that tumors are composed of cells harboring hundreds of thousands of mutations, as opposed to a small number of specific driver mutations, and that malignant cells within a tumor therefore constitute a highly heterogeneous population. As a result, drugs targeting specific mutated driver genes or even pathways of mutated driver genes will have only limited anticancer potential. In addition, because the tumor is composed of such a diverse cell population, tumor cells harboring drug-resistant mutations will exist prior to the administration of any chemotherapeutic agent. We present recent evidence in support of the mutator phenotype hypothesis, major arguments against this concept, and discuss the clinical consequences of tumor evolution fueled by an elevated mutation rate. We also consider the therapeutic possibility of altering the rate of mutation accumulation. Most significantly, we contend that there is a need to fundamentally reconsider current approaches to personalized cancer therapy. We propose that targeting cellular pathways that alter the rate of mutation accumulation in tumors will ultimately prove more effective than attempting to identify and target mutant driver genes or driver pathways.

  10. Trafficking and contract migrant workers in the Middle East.

    PubMed

    Jureidini, Ray

    2010-01-01

    The paper addresses a number of issues regarding the extent to which trafficking may be applied to migrant domestic workers who enter under the kafala system of sponsorship in the Middle East. Migrant domestic workers are the most numerous of those mentioned in reports on trafficking for labour exploitation in the region. The discussion seeks to determine whether "trafficking" can be ex post facto, rather than ex ante? In other words, can the label of trafficking be attributed only after the worker has arrived in the receiving country and is victimized according to the principles of trafficking protocols? In addition, must there be a proven intent to traffic by agents, or can employers who harm and/or exploit them be considered as traffickers alone? Should the harm done to workers on arrival at their place of work be classified (and assisted) as victims of trafficking, or as exploited workers?

  11. Physical health symptoms reported by trafficked women receiving post-trafficking support in Moldova: prevalence, severity and associated factors

    PubMed Central

    2012-01-01

    Background Many trafficked people suffer high levels of physical, sexual and psychological abuse. Yet, there has been limited research on the physical health problems associated with human trafficking or how the health needs of women in post-trafficking support settings vary according to socio-demographic or trafficking characteristics. Methods We analysed the prevalence and severity of 15 health symptoms reported by 120 trafficked women who had returned to Moldova between December 2007 and December 2008 and were registered with the International Organisation for Migration Assistance and Protection Programme. Women had returned to Moldova an average of 5.9 months prior to interview (range 2-12 months). Results Headaches (61.7%), stomach pain (60.9%), memory problems (44.2%), back pain (42.5%), loss of appetite (35%), and tooth pain (35%) were amongst the most commonly reported symptoms amongst both women trafficked for sexual exploitation and women trafficked for labour exploitation. The prevalence of headache and memory problems was strongly associated with duration of exploitation. Conclusions Trafficked women who register for post-trafficking support services after returning to their country of origin are likely to have long-term physical and dental health needs and should be provided with access to comprehensive medical services. Health problems among women who register for post-trafficking support services after returning to their country of origin are not limited to women trafficked for sexual exploitation but are also experienced by victims of labour exploitation. PMID:22834807

  12. Drug-induced Inhibition and Trafficking Disruption of ion Channels: Pathogenesis of QT Abnormalities and Drug-induced Fatal Arrhythmias.

    PubMed

    Cubeddu, Luigi X

    2016-01-01

    Risk of severe and fatal ventricular arrhythmias, presenting as Torsade de Pointes (TdP), is increased in congenital and acquired forms of long QT syndromes (LQTS). Drug-induced inhibition of K+ currents, IKs, IKr, IK1, and/or Ito, delay repolarization, prolong QT, and increase the risk of TdP. Drug-induced interference with IKr is the most common cause of acquired LQTS/TdP. Multiple drugs bind to KNCH2-hERG-K+ channels affecting IKr, including antiarrythmics, antibiotics, antivirals, azole-antifungals, antimalarials, anticancer, antiemetics, prokinetics, antipsychotics, and antidepressants. Azithromycin has been recently added to this list. In addition to direct channel inhibition, some drugs interfere with the traffic of channels from the endoplasmic reticulum to the cell membrane, decreasing mature channel membrane density; e.g., pentamidine, geldalamicin, arsenic trioxide, digoxin, and probucol. Other drugs, such as ketoconazole, fluoxetine, norfluoxetine, citalopram, escitalopram, donepezil, tamoxifen, endoxifen, atazanavir, and roxitromycin, induce both direct channel inhibition and impaired channel trafficking. Although many drugs prolong the QT interval, TdP is a rare event. The following conditions increase the risk of drug-induced TdP: a) Disease states/electrolyte levels (heart failure, structural cardiac disease, bradycardia, hypokalemia); b) Pharmacogenomic variables (presence of congenital LQTS, subclinical ion-channel mutations, history of or having a relative with history of drug-induced long QT/TdP); c) Pharmacodynamic and kinetic factors (high doses, women, elderly, metabolism inhibitors, combining two or more QT prolonging drugs, drugs that prolong the QT and increase QT dispersion, and drugs with multiple actions on ion channels). Because most of these conditions are preventable, careful evaluation of risk factors and increased knowledge of drug use associated with repolarization abnormalities are strongly recommended. PMID:26926294

  13. Sex Trafficking: Policies, Programs, and Services.

    PubMed

    Orme, Julie; Ross-Sheriff, Fariyal

    2015-10-01

    Sex trafficking (ST), a contemporary form of female slavery, is a human rights issue of critical concern to social work. The global response to ST has been substantial, and 166 countries have adopted anti-ST legislation. Despite considerable efforts to combat ST, the magnitude is increasing. To date, the majority of anti-ST efforts have focused on criminalization policies that target traffickers or purchasers of sexual services, who are predominantly male; prevention programming and services for predominantly female victims have received less support. Therapeutic services to assist pornography addicts and purchasers of sexual services are also necessary. In this article, authors examine current anti-ST policies, programs, and services, both domestically and globally, and present an innovative paradigm that addresses social inequities and emphasizes prevention programming. They conclude with a discussion of the paradigm's implications for social work policies, practices, and services. PMID:26489349

  14. Technosocial Predictive Analytics for Illicit Nuclear Trafficking

    SciTech Connect

    Sanfilippo, Antonio P.; Butner, R. Scott; Cowell, Andrew J.; Dalton, Angela C.; Haack, Jereme N.; Kreyling, Sean J.; Riensche, Roderick M.; White, Amanda M.; Whitney, Paul D.

    2011-03-29

    Illicit nuclear trafficking networks are a national security threat. These networks can directly lead to nuclear proliferation, as state or non-state actors attempt to identify and acquire nuclear weapons-related expertise, technologies, components, and materials. The ability to characterize and anticipate the key nodes, transit routes, and exchange mechanisms associated with these networks is essential to influence, disrupt, interdict or destroy the function of the networks and their processes. The complexities inherent to the characterization and anticipation of illicit nuclear trafficking networks requires that a variety of modeling and knowledge technologies be jointly harnessed to construct an effective analytical and decision making workflow in which specific case studies can be built in reasonable time and with realistic effort. In this paper, we explore a solution to this challenge that integrates evidentiary and dynamic modeling with knowledge management and analytical gaming, and demonstrate its application to a geopolitical region at risk.

  15. Maritime drug trafficking: an underrated problem.

    PubMed

    Aune, B R

    1990-01-01

    Seizure data indicate that a substantial proportion of the total quantity of drugs seized is confiscated from maritime modes of conveyance or has been transported by sea. The trafficking of narcotic drugs by sea has virtually become an industry comprised of many individual enterprises of varying size and organization. The maritime medium is one of the main ways by which drugs may enter some countries. In response to the problem, various sophisticated anti-trafficking offensives and strategies have been established or contemplated in certain geographical areas. The shipment of drugs to the primary consuming countries has not been curbed, however, and there is every indication that the overall movement of drugs is still unimpeded.

  16. Regulatory T-cell compartmentalization and trafficking

    PubMed Central

    Wei, Shuang; Kryczek, Ilona; Zou, Weiping

    2006-01-01

    CD4+CD25+FOXP3+ regulatory T cells (CD4+ Treg cells) are thought to differentiate in the thymus and immigrate from the thymus to the periphery. Treg cells can regulate both acquired and innate immunity through multiple modes of suppression. The cross-talk between Treg cells and targeted cells, such as antigen-presenting cells (APCs) and T cells, is crucial for ensuring suppression by Treg cells in the appropriate microenvironment. Emerging evidence suggests that Treg compartmentalization and trafficking may be tissue or/and organ specific and that distinct chemokine receptor and integrin expression may contribute to selective retention and trafficking of Treg cells at sites where regulation is required. In this review, the cellular and molecular signals that control specialized migration and retention of Treg cells are discussed. PMID:16537800

  17. Endocytic membrane trafficking and neurodegenerative disease.

    PubMed

    Schreij, Andrea M A; Fon, Edward A; McPherson, Peter S

    2016-04-01

    Neurodegenerative diseases are amongst the most devastating of human disorders. New technologies have led to a rapid increase in the identification of disease-related genes with an enhanced appreciation of the key roles played by genetics in the etiology of these disorders. Importantly, pinpointing the normal function of disease gene proteins leads to new understanding of the cellular machineries and pathways that are altered in the disease process. One such emerging pathway is membrane trafficking in the endosomal system. This key cellular process controls the localization and levels of a myriad of proteins and is thus critical for normal cell function. In this review we will focus on three neurodegenerative diseases; Parkinson disease, amyotrophic lateral sclerosis, and hereditary spastic paraplegias, for which a large number of newly discovered disease genes encode proteins that function in endosomal membrane trafficking. We will describe how alterations in these proteins affect endosomal function and speculate on the contributions of these disruptions to disease pathophysiology. PMID:26721251

  18. Sex Trafficking: Policies, Programs, and Services.

    PubMed

    Orme, Julie; Ross-Sheriff, Fariyal

    2015-10-01

    Sex trafficking (ST), a contemporary form of female slavery, is a human rights issue of critical concern to social work. The global response to ST has been substantial, and 166 countries have adopted anti-ST legislation. Despite considerable efforts to combat ST, the magnitude is increasing. To date, the majority of anti-ST efforts have focused on criminalization policies that target traffickers or purchasers of sexual services, who are predominantly male; prevention programming and services for predominantly female victims have received less support. Therapeutic services to assist pornography addicts and purchasers of sexual services are also necessary. In this article, authors examine current anti-ST policies, programs, and services, both domestically and globally, and present an innovative paradigm that addresses social inequities and emphasizes prevention programming. They conclude with a discussion of the paradigm's implications for social work policies, practices, and services.

  19. Protein trafficking during plant innate immunity.

    PubMed

    Wang, Wen-Ming; Liu, Peng-Qiang; Xu, Yong-Ju; Xiao, Shunyuan

    2016-04-01

    Plants have evolved a sophisticated immune system to fight against pathogenic microbes. Upon detection of pathogen invasion by immune receptors, the immune system is turned on, resulting in production of antimicrobial molecules including pathogenesis-related (PR) proteins. Conceivably, an efficient immune response depends on the capacity of the plant cell's protein/membrane trafficking network to deploy the right defense-associated molecules in the right place at the right time. Recent research in this area shows that while the abundance of cell surface immune receptors is regulated by endocytosis, many intracellular immune receptors, when activated, are partitioned between the cytoplasm and the nucleus for induction of defense genes and activation of programmed cell death, respectively. Vesicle transport is an essential process for secretion of PR proteins to the apoplastic space and targeting of defense-related proteins to the plasma membrane or other endomembrane compartments. In this review, we discuss the various aspects of protein trafficking during plant immunity, with a focus on the immunity proteins on the move and the major components of the trafficking machineries engaged. PMID:26345282

  20. HDAC6 regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation in renal epithelial cells.

    PubMed

    Liu, Wei; Fan, Lucy X; Zhou, Xia; Sweeney, William E; Avner, Ellis D; Li, Xiaogang

    2012-01-01

    We present for the first time that histone deacetylase 6 (HDAC6) regulates EGFR degradation and trafficking along microtubules in Pkd1 mutant renal epithelial cells. HDAC6, the microtubule-associated α-tubulin deacetylase, demonstrates increased expression and activity in Pkd1 mutant mouse embryonic kidney cells. Targeting HDAC6 with a general HDAC inhibitor, trichostatin (TSA), or a specific HDAC6 inhibitor, tubacin, increased the acetylation of α-tubulin and downregulated the expression of EGFR in Pkd1 mutant renal epithelial cells. HDAC6 was co-localized with EGF induced endocytic EGFR and endosomes, respectively. Inhibition of the activity of HDAC6 accelerated the trafficking of EGFR from early endosomes to late endosomes along the microtubules. Without EGF stimulation EGFR was randomly distributed while after stimulation with EGF for 30 min, EGFR was accumulated around α-tubulin labeled microtubule bundles. These data suggested that the Pkd1 mutation induced upregulation of HDAC6 might act to slow the trafficking of EGFR from early endosomes to late endosomes along the microtubules for degradation through deacetylating α-tubulin. In addition, inhibition of HDAC activity decreased the phosphorylation of ERK1/2, the downstream target of EGFR axis, and normalized EGFR localization from apical to basolateral in Pkd1 knockout mouse kidneys. Thus, targeting HDAC6 to downregulate EGFR activity may provide a potential therapeutic approach to treat polycystic kidney disease.

  1. The Human Epilepsy Mutation GABRG2(Q390X) Causes Chronic Subunit Accumulation and Neurodegeneration

    PubMed Central

    Kang, Jing-Qiong; Shen, Wangzhen; Zhou, Chengwen; Xu, Dong; Macdonald, Robert L.

    2015-01-01

    Genetic epilepsy and neurodegenerative diseases are two common neurological disorders conventionally viewed as being unrelated. A subset of patients with severe genetic epilepsies with impaired development and often death respond poorly to anticonvulsant drug therapy, suggesting a need for new therapeutic targets. Previously, we reported that multiple GABAA receptor epilepsy mutations caused protein misfolding and abnormal receptor trafficking. Here we establish in a novel model of a severe human genetic epileptic encephalopathy, the Gabrg2+/Q390X knock-in mouse, that in addition to impairing inhibitory neurotransmission, mutant GABAA receptor γ2(Q390X) subunits accumulated and aggregated intracellularly, activated caspase 3 and caused widespread, age-dependent neurodegeneration. These novel findings suggest that the fundamental protein metabolism and cellular consequences of the epilepsy-associated mutant γ2(Q390X) ion channel subunit are not fundamentally different from those associated with neurodegeneration. The study has far-reaching significance for identification of conserved pathological cascades and mechanism-based therapies that overlap genetic epilepsies and neurodegenerative diseases. PMID:26005849

  2. HAPLESS13-Mediated Trafficking of STRUBBELIG Is Critical for Ovule Development in Arabidopsis

    PubMed Central

    Wang, Jia-Gang; Feng, Chong; Liu, Hai-Hong; Ge, Fu-Rong; Li, Sha; Zhang, Yan

    2016-01-01

    Planar morphogenesis, a distinct feature of multicellular organisms, is crucial for the development of ovule, progenitor of seeds. Both receptor-like kinases (RLKs) such as STRUBBELIG (SUB) and auxin gradient mediated by PIN-FORMED1 (PIN1) play instructive roles in this process. Fine-tuned intercellular communications between different cell layers during ovule development demands dynamic membrane distribution of these cell-surface proteins, presumably through vesicle-mediated sorting. However, the way it’s achieved and the trafficking routes involved are obscure. We report that HAPLESS13 (HAP13)-mediated trafficking of SUB is critical for ovule development. HAP13 encodes the μ subunit of adaptor protein 1 (AP1) that mediates protein sorting at the trans-Golgi network/early endosome (TGN/EE). The HAP13 mutant, hap13-1, is defective in outer integument growth, resulting in exposed nucellus accompanied with impaired pollen tube guidance and reception. SUB is mis-targeted in hap13-1. However, unlike that of PIN2, the distribution of PIN1 is independent of HAP13. Genetic interference of exocytic trafficking at the TGN/EE by specifically downregulating HAP13 phenocopied the defects of hap13-1 in SUB targeting and ovule development, supporting a key role of sporophytically expressed SUB in instructing female gametogenesis. PMID:27541731

  3. P120-Catenin Regulates Early Trafficking Stages of the N-Cadherin Precursor Complex

    PubMed Central

    Wehrendt, Diana P.; Carmona, Fernando; González Wusener, Ana E.; González, Ángela; Martínez, Juan M. Lázaro; Arregui, Carlos O.

    2016-01-01

    It is well established that binding of p120 catenin to the cytoplasmic domain of surface cadherin prevents cadherin endocytosis and degradation, contributing to cell-cell adhesion. In the present work we show that p120 catenin bound to the N-cadherin precursor, contributes to its anterograde movement from the endoplasmic reticulum (ER) to the Golgi complex. In HeLa cells, depletion of p120 expression, or blocking its binding to N-cadherin, increased the accumulation of the precursor in the ER, while it decreased the localization of mature N-cadherin at intercellular junctions. Reconstitution experiments in p120-deficient SW48 cells with all three major isoforms of p120 (1, 3 and 4) had similar capacity to promote the processing of the N-cadherin precursor to the mature form, and its localization at cell-cell junctions. P120 catenin and protein tyrosine phosphatase PTP1B facilitated the recruitment of the N-ethylmaleimide sensitive factor (NSF), an ATPase involved in vesicular trafficking, to the N-cadherin precursor complex. Dominant negative NSF E329Q impaired N-cadherin trafficking, maturation and localization at cell-cell junctions. Our results uncover a new role for p120 catenin bound to the N-cadherin precursor ensuring its trafficking through the biosynthetic pathway towards the cell surface. PMID:27254316

  4. Galectin-3 regulates intracellular trafficking of epidermal growth factor receptor through Alix and promotes keratinocyte migration

    PubMed Central

    Liu, Wei; Hsu, Daniel K.; Chen, Huan-Yuan; Yang, Ri-Yao; Carraway, Kermit L.; Isseroff, Roslyn R.; Liu, Fu-Tong

    2012-01-01

    The epidermal growth factor receptor (EGFR)-mediated signaling pathways are important in a variety of cellular processes, including cell migration and wound re-epithelialization. Intracellular trafficking of EGFR is critical for maintaining EGFR surface expression. Galectin-3, a member of an animal lectin family, has been implicated in a number of physiological and pathological processes. Through studies of galectin-3-deficient mice and cells isolated from these mice, we demonstrated that absence of galectin-3 impairs keratinocyte migration and skin wound re-epithelialization. We have linked this pro-migratory function to a crucial role of cytosolic galectin-3 in controlling intracellular trafficking and cell surface expression of EGFR after EGF stimulation. Without galectin-3, the surface levels of EGFR are dramatically reduced and the receptor accumulates diffusely in the cytoplasm. This is associated with reduced rates of both endocytosis and recycling of the receptor. We have provided evidence that this novel function of galectin-3 may be mediated through interaction with its binding partner Alix, which is a protein component of the endosomal sorting complex required for transport (ESCRT) machinery. Our results suggest that galectin-3 is potentially a critical regulator of a number of important cellular responses through its intracellular control of trafficking of cell surface receptors. PMID:22785133

  5. HAPLESS13-Mediated Trafficking of STRUBBELIG Is Critical for Ovule Development in Arabidopsis.

    PubMed

    Wang, Jia-Gang; Feng, Chong; Liu, Hai-Hong; Ge, Fu-Rong; Li, Sha; Li, Hong-Ju; Zhang, Yan

    2016-08-01

    Planar morphogenesis, a distinct feature of multicellular organisms, is crucial for the development of ovule, progenitor of seeds. Both receptor-like kinases (RLKs) such as STRUBBELIG (SUB) and auxin gradient mediated by PIN-FORMED1 (PIN1) play instructive roles in this process. Fine-tuned intercellular communications between different cell layers during ovule development demands dynamic membrane distribution of these cell-surface proteins, presumably through vesicle-mediated sorting. However, the way it's achieved and the trafficking routes involved are obscure. We report that HAPLESS13 (HAP13)-mediated trafficking of SUB is critical for ovule development. HAP13 encodes the μ subunit of adaptor protein 1 (AP1) that mediates protein sorting at the trans-Golgi network/early endosome (TGN/EE). The HAP13 mutant, hap13-1, is defective in outer integument growth, resulting in exposed nucellus accompanied with impaired pollen tube guidance and reception. SUB is mis-targeted in hap13-1. However, unlike that of PIN2, the distribution of PIN1 is independent of HAP13. Genetic interference of exocytic trafficking at the TGN/EE by specifically downregulating HAP13 phenocopied the defects of hap13-1 in SUB targeting and ovule development, supporting a key role of sporophytically expressed SUB in instructing female gametogenesis. PMID:27541731

  6. Forensic medical examination of victims of trafficking in human beings.

    PubMed

    Alempijevic, Djordie; Jecmenica, Dragan; Pavlekic, Snezana; Savic, Slobodan; Aleksandric, Branimir

    2007-01-01

    Trafficking in human beigns (THB) is recognized as a global public health issue as well as a violation of human rights. Trafficking has been identified to be associated with several health risks including psychological trauma, injuries from violence, and substance misuse. Public and media reports suggest that the morbidity and mortality associated with trafficking are substantial. The need of medico-legal healthcare for THB victims is being neglected. Forensic medical examination, as specific intervention, is a highly desirable element of ermegency health care provided for victims of tracking. Acting in such a way, the investigation should establish the facts related to the allegatation of trafficking, thereby assisting in identifying those responsible, but also contributing to the procedures designed to obtain redress for the victims. Local anti-trafficking policies and interventions, however, have not acknowledged these needs. Therefore, the agenda of anti-trafficking policies needs to be redrawn to include forensic medical assessment of victims for legal purposes.

  7. Differential Regulation of Endosomal GPCR/β-Arrestin Complexes and Trafficking by MAPK*

    PubMed Central

    Khoury, Etienne; Nikolajev, Ljiljana; Simaan, May; Namkung, Yoon; Laporte, Stéphane A.

    2014-01-01

    β-Arrestins are signaling adaptors that bind to agonist-occupied G protein-coupled receptors (GPCRs) and target them for endocytosis; however, the mechanisms regulating receptor/β-arrestin complexes and trafficking in endosomes, remain ill defined. Here we show, in live cells, differential dynamic regulation of endosomal bradykinin B2 receptor (B2R) complexes with either β-arrestin-1 or -2. We find a novel role for MAPK in the B2R/β-arrestin-2 complex formation, receptor trafficking and signaling mediated by an ERK1/2 regulatory motif in the hinge domain of the rat β-arrestin-2 (PET178P), but not rat β-arrestin-1 (PER177P). While the ERK1/2 regulatory motif is conserved between rat and mouse β-arrestin-2, it is surprisingly not conserved in human β-arrestin-2 (PEK178P). However, mutation of lysine 178 to threonine is sufficient to confer MAPK sensitivity to the human β-arrestin-2. Furthermore, substitution for a phosphomimetic residue in both the rat and the human β-arrestin-2 (T/K178D) significantly stabilizes B2R/β-arrestin complexes in endosomes, delays receptor recycling to the plasma membrane and maintains intracellular MAPK signaling. Similarly, the endosomal trafficking of β2-adrenergic, angiotensin II type 1 and vasopressin V2 receptors was altered by the β-arrestin-2 T178D mutant. Our findings unveil a novel subtype specific mode of MAPK-dependent regulation of β-arrestins in intracellular trafficking and signaling of GPCRs, and suggest differential endosomal receptor/β-arrestin-2 signaling roles among species. PMID:25016018

  8. Differential regulation of endosomal GPCR/β-arrestin complexes and trafficking by MAPK.

    PubMed

    Khoury, Etienne; Nikolajev, Ljiljana; Simaan, May; Namkung, Yoon; Laporte, Stéphane A

    2014-08-22

    β-Arrestins are signaling adaptors that bind to agonist-occupied G protein-coupled receptors (GPCRs) and target them for endocytosis; however, the mechanisms regulating receptor/β-arrestin complexes and trafficking in endosomes, remain ill defined. Here we show, in live cells, differential dynamic regulation of endosomal bradykinin B2 receptor (B2R) complexes with either β-arrestin-1 or -2. We find a novel role for MAPK in the B2R/β-arrestin-2 complex formation, receptor trafficking and signaling mediated by an ERK1/2 regulatory motif in the hinge domain of the rat β-arrestin-2 (PET(178)P), but not rat β-arrestin-1 (PER(177)P). While the ERK1/2 regulatory motif is conserved between rat and mouse β-arrestin-2, it is surprisingly not conserved in human β-arrestin-2 (PEK(178)P). However, mutation of lysine 178 to threonine is sufficient to confer MAPK sensitivity to the human β-arrestin-2. Furthermore, substitution for a phosphomimetic residue in both the rat and the human β-arrestin-2 (T/K178D) significantly stabilizes B2R/β-arrestin complexes in endosomes, delays receptor recycling to the plasma membrane and maintains intracellular MAPK signaling. Similarly, the endosomal trafficking of β2-adrenergic, angiotensin II type 1 and vasopressin V2 receptors was altered by the β-arrestin-2 T178D mutant. Our findings unveil a novel subtype specific mode of MAPK-dependent regulation of β-arrestins in intracellular trafficking and signaling of GPCRs, and suggest differential endosomal receptor/β-arrestin-2 signaling roles among species.

  9. Active Trafficking of Alpha 1 Antitrypsin across the Lung Endothelium

    PubMed Central

    Lockett, Angelia D.; Brown, Mary Beth; Santos-Falcon, Nieves; Rush, Natalia I.; Oueini, Houssam; Oberle, Amber J.; Bolanis, Esther; Fragoso, Miryam A.; Petrusca, Daniela N.; Serban, Karina A.; Schweitzer, Kelly S.; Presson Jr., Robert G.

    2014-01-01

    The homeostatic lung protective effects of alpha-1 antitrypsin (A1AT) may require the transport of circulating proteinase inhibitor across an intact lung endothelial barrier. We hypothesized that uninjured pulmonary endothelial cells transport A1AT to lung epithelial cells. Purified human A1AT was rapidly taken up by confluent primary rat pulmonary endothelial cell monolayers, was secreted extracellularly, both apically and basolaterally, and was taken up by adjacent rat lung epithelial cells co-cultured on polarized transwells. Similarly, polarized primary human lung epithelial cells took up basolaterally-, but not apically-supplied A1AT, followed by apical secretion. Evidence of A1AT transcytosis across lung microcirculation was confirmed in vivo by two-photon intravital microscopy in mice. Time-lapse confocal microscopy indicated that A1AT co-localized with Golgi in the endothelium whilst inhibition of the classical secretory pathway with tunicamycin significantly increased intracellular retention of A1AT. However, inhibition of Golgi secretion promoted non-classical A1AT secretion, associated with microparticle release. Polymerized A1AT or A1AT supplied to endothelial cells exposed to soluble cigarette smoke extract had decreased transcytosis. These results suggest previously unappreciated pathways of A1AT bidirectional uptake and secretion from lung endothelial cells towards the alveolar epithelium and airspaces. A1AT trafficking may determine its functional bioavailablity in the lung, which could be impaired in individuals exposed to smoking or in those with A1AT deficiency. PMID:24743137

  10. TLR signals posttranscriptionally regulate the cytokine trafficking mediator sortilin

    PubMed Central

    Yabe-Wada, Toshiki; Matsuba, Shintaro; Takeda, Kazuya; Sato, Tetsuya; Suyama, Mikita; Ohkawa, Yasuyuki; Takai, Toshiyuki; Shi, Haifeng; Philpott, Caroline C.; Nakamura, Akira

    2016-01-01

    Regulating the transcription, translation and secretion of cytokines is crucial for controlling the appropriate balance of inflammation. Here we report that the sorting receptor sortilin plays a key role in cytokine production. We observed interactions of sortilin with multiple cytokines including IFN-α, and sortilin depletion in plasmacytoid dendritic cells (pDCs) led to a reduction of IFN-α secretion, suggesting a pivotal role of sortilin in the exocytic trafficking of IFN-α in pDCs. Moreover, sortilin mRNA was degraded posttranscriptionally upon stimulation with various TLR ligands. Poly-rC-binding protein 1 (PCBP1) recognized the C-rich element (CRE) in the 3′ UTR of sortilin mRNA, and depletion of PCBP1 enhanced the degradation of sortilin transcripts, suggesting that PCBP1 can act as a trans-acting factor to stabilize sortilin transcripts. The nucleotide-binding ability of PCBP1 was impaired by zinc ions and alterations of intracellular zinc affect sortilin expression. PCBP1 may therefore control the stability of sortilin transcripts by sensing intracellular zinc levels. Collectively, our findings provide insights into the posttranslational regulation of cytokine production through the posttranscriptional control of sortilin expression by TLR signals. PMID:27220277

  11. Domestic minor sex trafficking in the United States.

    PubMed

    Kotrla, Kimberly

    2010-04-01

    By now, most social workers are familiar with the issue of human trafficking. However, many are likely unfamiliar with research indicating that youths constitute the most vulnerable group in the United States for becoming victims of sex trafficking and that most women in prostitution actually entered as minors. Some experts are now referring to the sex trafficking of U.S. children and youths as "domestic minor sex trafficking," or DMST. This article seeks to acquaint readers with what is currently known regarding the extent of DMST, who is at risk for becoming a victim, and implications for the social work profession in addressing this tragedy.

  12. Domestic minor sex trafficking in the United States.

    PubMed

    Kotrla, Kimberly

    2010-04-01

    By now, most social workers are familiar with the issue of human trafficking. However, many are likely unfamiliar with research indicating that youths constitute the most vulnerable group in the United States for becoming victims of sex trafficking and that most women in prostitution actually entered as minors. Some experts are now referring to the sex trafficking of U.S. children and youths as "domestic minor sex trafficking," or DMST. This article seeks to acquaint readers with what is currently known regarding the extent of DMST, who is at risk for becoming a victim, and implications for the social work profession in addressing this tragedy. PMID:20408359

  13. Taste - impaired

    MedlinePlus

    ... longer. Causes of impaired taste include: Bell's palsy Common cold Flu and other viral infections Nasal infection, nasal ... your diet. For taste problems due to the common cold or flu, normal taste should return when the ...

  14. Oxidative stress inhibits caveolin-1 palmitoylation and trafficking in endothelial cells

    NASA Technical Reports Server (NTRS)

    Parat, Marie-Odile; Stachowicz, Rafal Z.; Fox, Paul L.

    2002-01-01

    During normal and pathological conditions, endothelial cells (ECs) are subjected to locally generated reactive oxygen species, produced by themselves or by other vessel wall cells. In excess these molecules cause oxidative injury to the cell but at moderate levels they might modulate intracellular signalling pathways. We have investigated the effect of oxidative stress on the palmitoylation and trafficking of caveolin-1 in bovine aortic ECs. Exogenous H2O2 did not alter the intracellular localization of caveolin-1 in ECs. However, metabolic labelling experiments showed that H2O2 inhibited the trafficking of newly synthesized caveolin-1 to membrane raft domains. Several mechanisms potentially responsible for this inhibition were examined. Impairment of caveolin-1 synthesis by H2O2 was not responsible for diminished trafficking. Similarly, the inhibition was independent of H2O2-induced caveolin-1 phosphorylation as shown by the markedly different concentration dependences. We tested the effect of H2O2 on palmitoylation of caveolin-1 by the incorporation of [3H]palmitic acid. Exposure of ECs to H2O2 markedly inhibited the palmitoylation of caveolin-1. Comparable inhibition was observed after treatment of cells with H2O2 delivered either as a bolus or by continuous delivery with glucose and glucose oxidase. Kinetic studies showed that H2O2 did not alter the rate of caveolin-1 depalmitoylation but instead decreased the 'on-rate' of palmitoylation. Together these results show for the first time the modulation of protein palmitoylation by oxidative stress, and suggest a cellular mechanism by which stress might influence caveolin-1-dependent cell activities such as the concentration of signalling proteins and cholesterol trafficking.

  15. Evidence for Ubiquitin-Regulated Nuclear and Subnuclear Trafficking among Paramyxovirinae Matrix Proteins

    PubMed Central

    Pentecost, Mickey; Vashisht, Ajay A.; Beaty, Shannon M.; Park, Arnold; Wang, Yao E.; Yun, Tatyana E; Freiberg, Alexander N.; Wohlschlegel, James A.; Lee, Benhur

    2015-01-01

    The paramyxovirus matrix (M) protein is a molecular scaffold required for viral morphogenesis and budding at the plasma membrane. Transient nuclear residence of some M proteins hints at non-structural roles. However, little is known regarding the mechanisms that regulate the nuclear sojourn. Previously, we found that the nuclear-cytoplasmic trafficking of Nipah virus M (NiV-M) is a prerequisite for budding, and is regulated by a bipartite nuclear localization signal (NLSbp), a leucine-rich nuclear export signal (NES), and monoubiquitination of the K258 residue within the NLSbp itself (NLSbp-lysine). To define whether the sequence determinants of nuclear trafficking identified in NiV-M are common among other Paramyxovirinae M proteins, we generated the homologous NES and NLSbp-lysine mutations in M proteins from the five major Paramyxovirinae genera. Using quantitative 3D confocal microscopy, we determined that the NES and NLSbp-lysine are required for the efficient nuclear export of the M proteins of Nipah virus, Hendra virus, Sendai virus, and Mumps virus. Pharmacological depletion of free ubiquitin or mutation of the conserved NLSbp-lysine to an arginine, which inhibits M ubiquitination, also results in nuclear and nucleolar retention of these M proteins. Recombinant Sendai virus (rSeV-eGFP) bearing the NES or NLSbp-lysine M mutants rescued at similar efficiencies to wild type. However, foci of cells expressing the M mutants displayed marked fusogenicity in contrast to wild type, and infection did not spread. Recombinant Mumps virus (rMuV-eGFP) bearing the homologous mutations showed similar defects in viral morphogenesis. Finally, shotgun proteomics experiments indicated that the interactomes of Paramyxovirinae M proteins are significantly enriched for components of the nuclear pore complex, nuclear transport receptors, and nucleolar proteins. We then synthesize our functional and proteomics data to propose a working model for the ubiquitin-regulated nuclear

  16. Altered Trafficking and Processing of GALC Mutants Correlates with Globoid Cell Leukodystrophy Severity

    PubMed Central

    Feltri, M. Laura; Wrabetz, Lawrence

    2016-01-01

    Globoid cell leukodystrophy (GLD, Krabbe disease) is due to autosomal recessive mutations in the lysosomal enzyme galactosylceramidase (GALC). Many GLD patients develop infantile-onset of progressive neurologic deterioration and death by 2 years of age, whereas others have a later-onset, milder disease. Cord blood transplant slows disease progression much more effectively when performed presymptomatically, highlighting the importance of early diagnosis. Current diagnosis is based on reduced GALC activity, DNA sequence, and clinical examination. However, presymptomatic diagnosis is hampered by imperfect genotype-GALC activity-phenotype correlations. In addition, three polymorphisms in the GALC gene are variably associated with disease mutations and have unknown effects on GALC activity and disease outcome. Here, we study mutations that cause infantile or later-onset GLD, and show that GALC activity is significantly lower in infantile versus later-onset mutants when measured in the lysosomal fraction, but not in whole-cell lysates. In parallel, infantile-onset mutant GALCs showed reduced trafficking to lysosomes and processing than later-onset mutant GALCs. Finally, the cis-polymorphisms also affected trafficking to the lysosome and processing of GALC. These differences potentially explain why the activity of different mutations appears similar in whole-cell extracts from lymphocytes, and suggest that measure of GALC activity in lysosomes may better predict the onset and severity of disease for a given GLD genotype. SIGNIFICANCE STATEMENT Globoid cell leukodystrophy (GLD, Krabbe disease) is diagnosed by measuring galactosylceramidase (GALC) activity and DNA analysis. However, genotype and phenotype often do not correlate due to considerable clinical variability, even for the same mutation, for unknown reasons. We find that altered trafficking to the lysosome and processing of GALC correlates with GLD severity and is modulated by cis-polymorphisms. Current diagnosis

  17. p24 proteins and quality control of LIN-12 and GLP-1 trafficking in Caenorhabditis elegans.

    PubMed

    Wen, C; Greenwald, I

    1999-06-14

    Mutations in the Caenorhabditis elegans sel-9 gene elevate the activity of lin-12 and glp-1, which encode members of the LIN-12/NOTCH family of receptors. Sequence analysis indicates SEL-9 is one of several C. elegans p24 proteins. Allele-specific genetic interactions suggest that reducing sel-9 activity increases the activity of mutations altering the extracellular domains of LIN-12 or GLP-1. Reducing sel-9 activity restores the trafficking to the plasma membrane of a mutant GLP-1 protein that would otherwise accumulate within the cell. Our results suggest a role for SEL-9 and other p24 proteins in the negative regulation of transport of LIN-12 and GLP-1 to the cell surface, and favor a role for p24 proteins in a quality control mechanism for endoplasmic reticulum-Golgi transport. PMID:10366590

  18. α-Synuclein–induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models

    PubMed Central

    Mazzulli, Joseph R.; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri

    2016-01-01

    Parkinson’s disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi–tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders. PMID:26839413

  19. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models.

    PubMed

    Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri

    2016-02-16

    Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi-tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders. PMID:26839413

  20. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models.

    PubMed

    Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri

    2016-02-16

    Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi-tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders.

  1. 3 CFR - Continuation of the National Emergency With Respect to Significant Narcotics Traffickers Centered...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to Significant Narcotics Traffickers Centered in Colombia Presidential Documents Other Presidential... Narcotics Traffickers Centered in Colombia On October 21, 1995, by Executive Order 12978, the President... economy of the United States constituted by the actions of significant narcotics traffickers centered...

  2. 3 CFR - Continuation of the National Emergency With Respect to Significant Narcotics Traffickers Centered...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to Significant Narcotics Traffickers Centered in Colombia Presidential Documents Other Presidential... Narcotics Traffickers Centered in Colombia On October 21, 1995, by Executive Order 12978, the President... economy of the United States constituted by the actions of significant narcotics traffickers centered...

  3. 3 CFR - Continuation of the National Emergency With Respect to Significant Narcotics Traffickers Centered...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to Significant Narcotics Traffickers Centered in Colombia Presidential Documents Other Presidential... Narcotics Traffickers Centered in Colombia On October 21, 1995, by Executive Order 12978, the President declared a national emergency with respect to significant narcotics traffickers centered in...

  4. Rab11-FIP1A regulates early trafficking into the recycling endosomes.

    PubMed

    Schafer, Jenny C; McRae, Rebecca E; Manning, Elizabeth H; Lapierre, Lynne A; Goldenring, James R

    2016-01-15

    The Rab11 family of small GTPases, along with the Rab11-family interacting proteins (Rab11-FIPs), are critical regulators of intracellular vesicle trafficking and recycling. We have identified a point mutation of Threonine-197 site to an Alanine in Rab11-FIP1A, which causes a dramatic dominant negative phenotype when expressed in HeLa cells. The normally perinuclear distribution of GFP-Rab11-FIP1A was condensed into a membranous cisternum with almost no GFP-Rab11-FIP1A(T197A) remaining outside of this central locus. Also, this condensed GFP-FIP1A(T197A) altered the distribution of proteins in the Rab11a recycling pathway including endogenous Rab11a, Rab11-FIP1C, and transferrin receptor (CD71). Furthermore, this condensed GFP-FIP1A(T197A)-containing structure exhibited little movement in live HeLa cells. Expression of GFP-FIP1A(T197A) caused a strong blockade of transferrin recycling. Treatment of cells expressing GFP-FIP1A(T197A) with nocodazole did not disperse the Rab11a-containing recycling system. We also found that Rab5 and EEA1 were accumulated in membranes by GFP-Rab11-FIP1A but Rab4 was unaffected, suggesting that a direct pathway may exist from early endosomes into the Rab11a-containing recycling system. Our study of a potent inhibitory trafficking mutation in Rab11-FIP1A shows that Rab11-FIP1A associates with and regulates trafficking at an early step in the process of membrane recycling.

  5. Assisting victims of human trafficking: strategies to facilitate identification, exit from trafficking, and the restoration of wellness.

    PubMed

    Hodge, David R

    2014-04-01

    Human trafficking is a pressing social justice concern. Social work is uniquely situated to address this problem. However, despite the profession's commitment to social justice, the scholarship to equip social workers to address this issue has been largely absent from professional discourse. To address this gap, this article helps social work practitioners to assist victims of human trafficking. After orienting readers to the scope and process of human trafficking, the topics of victim identification, exit from trafficking, and the restoration of psychological wellness are discussed. By equipping themselves in these three areas, practitioners can advance social justice on behalf of some of the most exploited people in the world. PMID:24855860

  6. Assisting victims of human trafficking: strategies to facilitate identification, exit from trafficking, and the restoration of wellness.

    PubMed

    Hodge, David R

    2014-04-01

    Human trafficking is a pressing social justice concern. Social work is uniquely situated to address this problem. However, despite the profession's commitment to social justice, the scholarship to equip social workers to address this issue has been largely absent from professional discourse. To address this gap, this article helps social work practitioners to assist victims of human trafficking. After orienting readers to the scope and process of human trafficking, the topics of victim identification, exit from trafficking, and the restoration of psychological wellness are discussed. By equipping themselves in these three areas, practitioners can advance social justice on behalf of some of the most exploited people in the world.

  7. Modulation of Ciliary Phosphoinositide Content Regulates Trafficking and Sonic Hedgehog Signaling Output.

    PubMed

    Chávez, Marcelo; Ena, Sabrina; Van Sande, Jacqueline; de Kerchove d'Exaerde, Alban; Schurmans, Stéphane; Schiffmann, Serge N

    2015-08-10

    Ciliary transport is required for ciliogenesis, signal transduction, and trafficking of receptors to the primary cilium. Mutations in inositol polyphosphate 5-phosphatase E (INPP5E) have been associated with ciliary dysfunction; however, its role in regulating ciliary phosphoinositides is unknown. Here we report that in neural stem cells, phosphatidylinositol 4-phosphate (PI4P) is found in high levels in cilia whereas phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) is not detectable. Upon INPP5E inactivation, PI(4,5)P2 accumulates at the ciliary tip whereas PI4P is depleted. This is accompanied by recruitment of the PI(4,5)P2-interacting protein TULP3 to the ciliary membrane, along with Gpr161. This results in an increased production of cAMP and a repression of the Shh transcription gene Gli1. Our results reveal the link between ciliary regulation of phosphoinositides by INPP5E and Shh regulation via ciliary trafficking of TULP3/Gpr161 and also provide mechanistic insight into ciliary alterations found in Joubert and MORM syndromes resulting from INPP5E mutations.

  8. Ganglioside Regulation of AMPA Receptor Trafficking

    PubMed Central

    Prendergast, Jillian; Umanah, George K.E.; Yoo, Seung-Wan; Lagerlöf, Olof; Motari, Mary G.; Cole, Robert N.; Huganir, Richard L.; Dawson, Ted M.; Dawson, Valina L.

    2014-01-01

    Gangliosides are major cell-surface determinants on all vertebrate neurons. Human congenital disorders of ganglioside biosynthesis invariably result in intellectual disability and are often associated with intractable seizures. To probe the mechanisms of ganglioside functions, affinity-captured ganglioside-binding proteins from rat cerebellar granule neurons were identified by quantitative proteomic mass spectrometry. Of the six proteins that bound selectively to the major brain ganglioside GT1b (GT1b:GM1 > 4; p < 10−4), three regulate neurotransmitter receptor trafficking: Thorase (ATPase family AAA domain-containing protein 1), soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (γ-SNAP), and the transmembrane protein Nicalin. Thorase facilitates endocytosis of GluR2 subunit-containing AMPA-type glutamate receptors (AMPARs) in an ATPase-dependent manner; its deletion in mice results in learning and memory deficits (J. Zhang et al., 2011b). GluR2-containing AMPARs did not bind GT1b, but bound specifically to another ganglioside, GM1. Addition of noncleavable ATP (ATPγS) significantly disrupted ganglioside binding, whereas it enhanced AMPAR association with Thorase, NSF, and Nicalin. Mutant mice lacking GT1b expressed markedly higher brain Thorase, whereas Thorase-null mice expressed higher GT1b. Treatment of cultured hippocampal neurons with sialidase, which cleaves GT1b (and other sialoglycans), resulted in a significant reduction in the size of surface GluR2 puncta. These data support a model in which GM1-bound GluR2-containing AMPARs are functionally segregated from GT1b-bound AMPAR-trafficking complexes. Release of ganglioside binding may enhance GluR2-containing AMPAR association with its trafficking complexes, increasing endocytosis. Disrupting ganglioside biosynthesis may result in reduced synaptic expression of GluR2-contianing AMPARs resulting in intellectual deficits and seizure susceptibility in mice and humans. PMID:25253868

  9. Autophagy and proteins involved in vesicular trafficking.

    PubMed

    Amaya, Celina; Fader, Claudio Marcelo; Colombo, María Isabel

    2015-11-14

    Autophagy is an intracellular degradation system that, as a basic mechanism it delivers cytoplasmic components to the lysosomes in order to maintain adequate energy levels and cellular homeostasis. This complex cellular process is activated by low cellular nutrient levels and other stress situations such as low ATP levels, the accumulation of damaged proteins or organelles, or pathogen invasion. Autophagy as a multistep process involves vesicular transport events leading to tethering and fusion of autophagic vesicles with several intracellular compartments. This review summarizes our current understanding of the autophagic pathway with emphasis in the trafficking machinery (i.e. Rabs GTPases and SNAP receptors (SNAREs)) involved in specific steps of the pathway.

  10. Plant vacuole morphology and vacuolar trafficking

    PubMed Central

    Zhang, Chunhua; Hicks, Glenn R.; Raikhel, Natasha V.

    2014-01-01

    Plant vacuoles are essential organelles for plant growth and development, and have multiple functions. Vacuoles are highly dynamic and pleiomorphic, and their size varies depending on the cell type and growth conditions. Vacuoles compartmentalize different cellular components such as proteins, sugars, ions and other secondary metabolites and play critical roles in plants response to different biotic/abiotic signaling pathways. In this review, we will summarize the patterns of changes in vacuole morphology in certain cell types, our understanding of the mechanisms of plant vacuole biogenesis, and the role of SNAREs and Rab GTPases in vacuolar trafficking. PMID:25309565

  11. Cellular mechanisms of mutations in Kv7.1: auditory functions in Jervell and Lange-Nielsen syndrome vs. Romano–Ward syndrome

    PubMed Central

    Mousavi Nik, Atefeh; Gharaie, Somayeh; Jeong Kim, Hyo

    2015-01-01

    As a result of cell-specific functions of voltage-activated K+ channels, such as Kv7.1, mutations in this channel produce profound cardiac and auditory defects. At the same time, the massive diversity of K+ channels allows for compensatory substitution of mutant channels by other functional channels of their type to minimize defective phenotypes. Kv7.1 represents a clear example of such functional dichotomy. While several point mutations in the channel result in a cardio-auditory syndrome called Jervell and Lange-Nielsen syndrome (JLNS), about 100-fold mutations result in long QT syndrome (LQTS) denoted as Romano–Ward syndrome (RWS), which has an intact auditory phenotype. To determine whether the cellular mechanisms for the diverse phenotypic outcome of Kv7.1 mutations, are dependent on the tissue-specific function of the channel and/or specialized functions of the channel, we made series of point mutations in hKv7.1 ascribed to JLNS and RWS. For JLNS mutations, all except W248F yielded non-functional channels when expressed alone. Although W248F at the end of the S4 domain yielded a functional current, it underwent marked inactivation at positive voltages, rendering the channel non-functional. We demonstrate that by definition, none of the JLNS mutants operated in a dominant negative (DN) fashion. Instead, the JLNS mutants have impaired membrane trafficking, trapped in the endoplasmic reticulum (ER) and Cis-Golgi. The RWS mutants exhibited varied functional phenotypes. However, they can be summed up as exhibiting DN effects. Phenotypic differences between JLNS and RWS may stem from tissue-specific functional requirements of cardiac vs. inner ear non-sensory cells. PMID:25705178

  12. Contribution of casein kinase 2 and spleen tyrosine kinase to CFTR trafficking and protein kinase A-induced activity.

    PubMed

    Luz, Simão; Kongsuphol, Patthara; Mendes, Ana Isabel; Romeiras, Francisco; Sousa, Marisa; Schreiber, Rainer; Matos, Paulo; Jordan, Peter; Mehta, Anil; Amaral, Margarida D; Kunzelmann, Karl; Farinha, Carlos M

    2011-11-01

    Previously, the pleiotropic "master kinase" casein kinase 2 (CK2) was shown to interact with CFTR, the protein responsible for cystic fibrosis (CF). Moreover, CK2 inhibition abolished CFTR conductance in cell-attached membrane patches, native epithelial ducts, and Xenopus oocytes. CFTR possesses two CK2 phosphorylation sites (S422 and T1471), with unclear impact on its processing and trafficking. Here, we investigated the effects of mutating these CK2 sites on CFTR abundance, maturation, and degradation coupled to effects on ion channel activity and surface expression. We report that CK2 inhibition significantly decreased processing of wild-type (wt) CFTR, with no effect on F508del CFTR. Eliminating phosphorylation at S422 and T1471 revealed antagonistic roles in CFTR trafficking: S422 activation versus T1471 inhibition, as evidenced by a severe trafficking defect for the T1471D mutant. Notably, mutation of Y512, a consensus sequence for the spleen tyrosine kinase (SYK) possibly acting in a CK2 context adjacent to the common CF-causing defect F508del, had a strong effect on both maturation and CFTR currents, allowing the identification of this kinase as a novel regulator of CFTR. These results reinforce the importance of CK2 and the S422 and T1471 residues for regulation of CFTR and uncover a novel regulation of CFTR by SYK, a recognized controller of inflammation.

  13. X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking.

    PubMed

    Frick, Anna; Eriksson, Urszula Kosinska; de Mattia, Fabrizio; Oberg, Fredrik; Hedfalk, Kristina; Neutze, Richard; de Grip, Willem J; Deen, Peter M T; Törnroth-Horsefield, Susanna

    2014-04-29

    Human aquaporin 2 (AQP2) is a water channel found in the kidney collecting duct, where it plays a key role in concentrating urine. Water reabsorption is regulated by AQP2 trafficking between intracellular storage vesicles and the apical membrane. This process is tightly controlled by the pituitary hormone arginine vasopressin and defective trafficking results in nephrogenic diabetes insipidus (NDI). Here we present the X-ray structure of human AQP2 at 2.75 Å resolution. The C terminus of AQP2 displays multiple conformations with the C-terminal α-helix of one protomer interacting with the cytoplasmic surface of a symmetry-related AQP2 molecule, suggesting potential protein-protein interactions involved in cellular sorting of AQP2. Two Cd(2+)-ion binding sites are observed within the AQP2 tetramer, inducing a rearrangement of loop D, which facilitates this interaction. The locations of several NDI-causing mutations can be observed in the AQP2 structure, primarily situated within transmembrane domains and the majority of which cause misfolding and ER retention. These observations provide a framework for understanding why mutations in AQP2 cause NDI as well as structural insights into AQP2 interactions that may govern its trafficking.

  14. Identification of residues in ABCG2 affecting protein trafficking and drug transport, using co-evolutionary analysis of ABCG sequences

    PubMed Central

    Haider, Ameena J.; Cox, Megan H.; Jones, Natalie; Goode, Alice J.; Bridge, Katherine S.; Wong, Kelvin; Briggs, Deborah; Kerr, Ian D.

    2015-01-01

    ABCG2 is an ABC (ATP-binding cassette) transporter with a physiological role in urate transport in the kidney and is also implicated in multi-drug efflux from a number of organs in the body. The trafficking of the protein and the mechanism by which it recognizes and transports diverse drugs are important areas of research. In the current study, we have made a series of single amino acid mutations in ABCG2 on the basis of sequence analysis. Mutant isoforms were characterized for cell surface expression and function. One mutant (I573A) showed disrupted glycosylation and reduced trafficking kinetics. In contrast with many ABC transporter folding mutations which appear to be ‘rescued’ by chemical chaperones or low temperature incubation, the I573A mutation was not enriched at the cell surface by either treatment, with the majority of the protein being retained in the endoplasmic reticulum (ER). Two other mutations (P485A and M549A) showed distinct effects on transport of ABCG2 substrates reinforcing the role of TM helix 3 in drug recognition and transport and indicating the presence of intracellular coupling regions in ABCG2. PMID:26294421

  15. 31 CFR 536.312 - Specially designated narcotics trafficker.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... designated narcotics trafficker means: (a) Persons listed in the annex to Executive Order 12978 (3 CFR, 1995... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Specially designated narcotics... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING...

  16. 31 CFR 536.312 - Specially designated narcotics trafficker.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... designated narcotics trafficker means: (a) Persons listed in the annex to Executive Order 12978 (3 CFR, 1995... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Specially designated narcotics... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING...

  17. 31 CFR 536.312 - Specially designated narcotics trafficker.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... designated narcotics trafficker means: (a) Persons listed in the annex to Executive Order 12978 (3 CFR, 1995... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Specially designated narcotics... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING...

  18. 31 CFR 536.312 - Specially designated narcotics trafficker.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... designated narcotics trafficker means: (a) Persons listed in the annex to Executive Order 12978 (3 CFR, 1995... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Specially designated narcotics... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY NARCOTICS TRAFFICKING...

  19. Adolescent Black Males' Drug Trafficking and Addiction: Three Theoretical Perspectives.

    ERIC Educational Resources Information Center

    Moore, Sharon E.

    1995-01-01

    Explains the incidence and nature of drug trafficking and chemical dependency among adolescent black males. The paper also discusses the social science theories of Emile Durkheim, Karl Marx, and Molefi Asante to better understand the behaviors, and the consequences of those behaviors, of young black males who participate in drug trafficking. (GR)

  20. 78 FR 59317 - Federal Acquisition Regulation; Ending Trafficking in Persons

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... INFORMATION: I. Background The United States has long had a zero-tolerance policy regarding Government... subjection to involuntary servitude, peonage, debt bondage, or slavery, and sex trafficking. As the largest... (77 FR 60029, October 2, 2012), and Title XVII, entitled ``Ending Trafficking in...

  1. Protein kinesis: The dynamics of protein trafficking and stability

    SciTech Connect

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  2. Aggression in Sexually Abused Trafficked Girls and Efficacy of Intervention

    ERIC Educational Resources Information Center

    Deb, Sibnath; Mukherjee, Aparna; Mathews, Ben

    2011-01-01

    The broad objective of this study was to understand the incidence and severity of aggression among sexually abused girls who were trafficked and who were then further used for commercial sexual exploitation (referred to subsequently as sexually abused trafficked girls). In addition, the impact of counseling for minimizing aggression in these girls…

  3. Domestic Minor Sex Trafficking in the United States

    ERIC Educational Resources Information Center

    Kotrla, Kimberly

    2010-01-01

    By now, most social workers are familiar with the issue of human trafficking. However, many are likely unfamiliar with research indicating that youths constitute the most vulnerable group in the United States for becoming victims of sex trafficking and that most women in prostitution actually entered as minors. Some experts are now referring to…

  4. Teaching about Trafficking: Opportunities and Challenges for Critical Engagement

    ERIC Educational Resources Information Center

    Dragiewicz, Molly

    2008-01-01

    The author came to know about trafficking by accident, when she was hired as a research assistant at The Protection Project (TPP) in 1999. As a feminist teacher, the author was very aware of the divisions among feminists on the subject of trafficking, and was interested in communicating these differences to students who were not well versed in the…

  5. Vesicle trafficking in plant immune responses.

    PubMed

    Robatzek, Silke

    2007-01-01

    In plants, perception of pathogen-associated molecular patterns at the surface is the first line of defence in cellular immunity. This review summarizes recent evidence of the involvement of vesicle trafficking in the plant's immune response against pathogens. I first discuss aspects of ligand-stimulated receptor endocytosis. The best-characterized pattern-recognition receptor (PRR), FLS2, is a transmembrane leucine-rich repeat receptor kinase that recognizes bacterial flagellin. FLS2 was recently shown to undergo internalization upon activation with its cognate ligand. An animal PRR, TLR4 that mediates perception of bacterial-derived lipopolysaccharides, similarly exhibits ligand-stimulated endocytosis. The second focus is N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE)-mediated immunity involving syntaxins and their cognate partners. One of the genes involved in basal immunity in Arabidopsis, PEN1, encodes a syntaxin that focally accumulates at fungal penetration sites, raising the possibility that induced exocytosis is important for active defence. Pathogen-triggered endocytic and exocytic processes have to be balanced to ensure host cell homeostasis. Thus, understanding how phytopathogens have evolved strategies to exploit host cell vesicle trafficking to manipulate immune responses is currently an area of intense study. PMID:17081192

  6. Trafficking of Estrella lausannensis in human macrophages.

    PubMed

    Rusconi, Brigida; Kebbi-Beghdadi, Carole; Greub, Gilbert

    2015-07-01

    Estrella lausannensis is a new member of the Chlamydiales order. Like other Chlamydia-related bacteria, it is able to replicate in amoebae and in fish cell lines. A preliminary study investigating the pathogenic potential of Chlamydia-related bacteria found a correlation between antibody response to E. lausannensis and pneumonia in children. To further investigate the pathogenic potential of E. lausannensis, we determined its ability to grow in human macrophages and its intracellular trafficking. The replication in macrophages resulted in viable E. lausannensis; however, it caused a significant cytopathic effect. The intracellular trafficking of E. lausannensis was analyzed by determining the interaction of the Estrella-containing inclusions with various endocytic markers as well as host organelles. The E. lausannensis inclusion escaped the endocytic pathway rapidly avoiding maturation into phagolysosomes by preventing both EEA-1 and LAMP-1 accumulation. Compared to Waddlia chondrophila, another Chlamydia-related bacteria, the recruitment of mitochondria and endoplasmic reticulum was minimal for E. lausannensis inclusions. Estrella lausannensis appears to use a distinct source of nutrients and energy compared to other members of the Chlamydiales order. In conclusion, we hypothesize that E. lausannensis has a restricted growth in human macrophages, due to its reduced capacity to control programmed cell death. PMID:25857735

  7. Secretory protein trafficking in Giardia intestinalis.

    PubMed

    Hehl, Adrian B; Marti, Matthias

    2004-07-01

    Early diverged extant organisms, which may serve as convenient laboratory models to look for and study evolutionary ancient features of eukaryotic cell biology, are rare. The diplomonad Giardia intestinalis, a protozoan parasite known to cause diarrhoeal disease, has become an increasingly popular object of basic research in cell biology, not least because of a genome sequencing project nearing completion. Commensurate with its phylogenetic status, the Giardia trophozoite has a very basic secretory system and even lacks hallmark structures such as a morphologically identifiable Golgi apparatus. The cell's capacity for protein sorting is nevertheless unimpeded, exemplified by its ability to cope with massive amounts of newly synthesized cyst wall proteins and glycans, which are sorted to dedicated Golgi-like compartments termed encystation-specific vesicles (ESVs) generated from endoplasmic reticulum (ER)-derived transport intermediates. This soluble bulk cargo is kept strictly separate from constitutively transported variant surface proteins during export, a function that is dependent on the stage-specific recognition of trafficking signals. Encysting Giardia therefore provide a unique system for the study of unconventional, Golgi-independent protein trafficking mechanisms in the broader context of eukaryotic endomembrane organization and evolution. PMID:15225300

  8. Entrapment and Enmeshment Schemes Used by Sex Traffickers.

    PubMed

    Reid, Joan A

    2016-09-01

    Emerging research suggests that sex traffickers/pimps control the majority of trafficked girls in the United States. The youthfulness of these victims and their lack of psychosocial maturity severely diminish their ability to detect exploitative motives or withstand manipulation of traffickers. A review of 43 cases of sexually exploited girls involving non-relative traffickers and 10 semi-structured interviews with social service providers revealed numerous scripts and schemes used by sex traffickers to entrap and entangle victims including boyfriend/lover scripts, ruses involving debt bondage, friendship or faux-family scripts, threats of forced abortion or to take away children, and coerced co-offending. These findings inform potential prevention efforts and highlight the need for multi-systemic, victim-centered approaches to intervention. PMID:25079777

  9. Entrapment and Enmeshment Schemes Used by Sex Traffickers.

    PubMed

    Reid, Joan A

    2016-09-01

    Emerging research suggests that sex traffickers/pimps control the majority of trafficked girls in the United States. The youthfulness of these victims and their lack of psychosocial maturity severely diminish their ability to detect exploitative motives or withstand manipulation of traffickers. A review of 43 cases of sexually exploited girls involving non-relative traffickers and 10 semi-structured interviews with social service providers revealed numerous scripts and schemes used by sex traffickers to entrap and entangle victims including boyfriend/lover scripts, ruses involving debt bondage, friendship or faux-family scripts, threats of forced abortion or to take away children, and coerced co-offending. These findings inform potential prevention efforts and highlight the need for multi-systemic, victim-centered approaches to intervention.

  10. The role of the nurse in combating human trafficking.

    PubMed

    Sabella, Donna

    2011-02-01

    Human trafficking, also called modern slavery, happens worldwide--and the United States is no exception. Within our borders, thousands of foreign nationals and U.S. citizens, many of them children, are forced or coerced into sex work or various forms of labor every year. Nurses and other health care providers who encounter victims of trafficking often don't realize it, and opportunities to intervene are lost. Although no one sign can demonstrate with certainty when someone is being trafficked, there are several indicators that clinicians should know. This article provides an overview of human trafficking, describes how to recognize signs that a person is being trafficked and how to safely intervene, and offers an extensive resource list.

  11. The role of the nurse in combating human trafficking.

    PubMed

    Sabella, Donna

    2011-02-01

    Human trafficking, also called modern slavery, happens worldwide--and the United States is no exception. Within our borders, thousands of foreign nationals and U.S. citizens, many of them children, are forced or coerced into sex work or various forms of labor every year. Nurses and other health care providers who encounter victims of trafficking often don't realize it, and opportunities to intervene are lost. Although no one sign can demonstrate with certainty when someone is being trafficked, there are several indicators that clinicians should know. This article provides an overview of human trafficking, describes how to recognize signs that a person is being trafficked and how to safely intervene, and offers an extensive resource list. PMID:21270581

  12. Human trafficking: the role of the health care provider.

    PubMed

    Dovydaitis, Tiffany

    2010-01-01

    Human trafficking is a major public health problem, both domestically and internationally. Health care providers are often the only professionals to interact with trafficking victims who are still in captivity. The expert assessment and interview skills of providers contribute to their readiness to identify victims of trafficking. The purpose of this article is to provide clinicians with knowledge on trafficking and give specific tools that they may use to assist victims in the clinical setting. Definitions, statistics, and common health care problems of trafficking victims are reviewed. The role of the health care provider is outlined through a case study and clinical practice tools are provided. Suggestions for future research are also briefly addressed. PMID:20732668

  13. Psychological Coercion in Human Trafficking: An Application of Biderman's Framework.

    PubMed

    Baldwin, Susie B; Fehrenbacher, Anne E; Eisenman, David P

    2015-09-01

    This study examined coercive conditions experienced by trafficked persons in the context of Biderman's theory of coercion. We conducted semi-structured interviews with 12 adult women trafficked into Los Angeles County, from 10 countries, for domestic work and/or sex work. Participants described health problems they experienced in relation to their trafficking experience and their perceptions of conditions that caused health problems. Utilizing a framework analysis approach, we analyzed themes using Biderman's framework. Participants reported experiencing the range of nonphysical coercive tactics outlined by Biderman, including isolation, monopolization of perception, induced debility or exhaustion, threats, occasional indulgences, demonstration of omnipotence, degradation, and enforcement of trivial demands. Our analysis demonstrates how these coercion tactics reinforced the submission of trafficked persons to their traffickers even in the absence of physical force or restraints. Such psychological abuse creates extreme stress that can lead to acute and chronic, physical and mental health problems. PMID:25371382

  14. Human Trafficking: The Role of the Health Care Provider

    PubMed Central

    Dovydaitis, Tiffany

    2011-01-01

    Human trafficking is a major public health problem, both domestically and internationally. Health care providers are often the only professionals to interact with trafficking victims who are still in captivity. The expert assessment and interview skills of providers contribute to their readiness to identify victims of trafficking. The purpose of this article is to provide clinicians with knowledge on trafficking and give specific tools that they may use to assist victims in the clinical setting. Definitions, statistics, and common health care problems of trafficking victims are reviewed. The role of the health care provider is outlined through a case study and clinical practice tools are provided. Suggestions for future research are also briefly addressed. PMID:20732668

  15. New Insights into How Trafficking Regulates T Cell Receptor Signaling

    PubMed Central

    Lou, Jieqiong; Rossy, Jérémie; Deng, Qiji; Pageon, Sophie V.; Gaus, Katharina

    2016-01-01

    There is emerging evidence that exocytosis plays an important role in regulating T cell receptor (TCR) signaling. The trafficking molecules involved in lytic granule (LG) secretion in cytotoxic T lymphocytes (CTL) have been well-studied due to the immune disorder known as familial hemophagocytic lymphohistiocytosis (FHLH). However, the knowledge of trafficking machineries regulating the exocytosis of receptors and signaling molecules remains quite limited. In this review, we summarize the reported trafficking molecules involved in the transport of the TCR and downstream signaling molecules to the cell surface. By combining this information with the known knowledge of LG exocytosis and general exocytic trafficking machinery, we attempt to draw a more complete picture of how the TCR signaling network and exocytic trafficking matrix are interconnected to facilitate T cell activation. This also highlights how membrane compartmentalization facilitates the spatiotemporal organization of cellular responses that are essential for immune functions. PMID:27508206

  16. Loss of cysteine 584 impairs the storage and release, but not the synthesis of von Willebrand factor.

    PubMed

    Daidone, V; Barbon, G; Pontara, E; Cattini, G M; Gallinaro, L; Zampese, E; Pizzo, P; Casonato, A

    2014-12-01

    Cysteines play a key part in von Willebrand factor (VWF) dimerisation and polymerisation, and their loss may severely affect VWF structure and function. We report on three patients with type 3 von Willebrand disease carrying the new c.1751G>T missense mutation that induces the substitution of cysteine 584 by phenylalanine (C584F), and the deletion of seven nucleotides in exon 7 (c.729_735del), producing a premature stop codon at position 454 (E244Lfs*211). VWF was almost undetectable in the patients' plasma and platelets, while a single, poorly represented, oligomer emerged on plasma VWF multimer analysis. No post-DDAVP increase in VWF and factor VIII was observed. Expressing human recombinant C584F-VWF in HEK293T cells showed that C584F-VWF was synthesised and multimerised but not secreted - apart from the first oligomer, which was slightly represented in the conditioned medium, with a pattern similar to the patients' plasma VWF. The in vitro expression of the E244Lfs*211-VWF revealed a defective synthesis of the mutated VWF, with a behavior typical of loss of function mutations. Cellular trafficking, investigated in HEK293 cells, indicated a normal C584F-VWF content in the endoplasmic reticulum and Golgi apparatus, confirming the synthesis and multimerisation of C584F-VWF. No pseudo-Weibel Palade bodies were demonstrable, however, suggesting that C584F mutation impairs the storage of C584F-VWF. These findings point to cysteine 584 having a role in the release of VWF and its targeting to pseudo-Weibel Palade bodies in vitro, as well as in its storage and release by endothelial cells in vivo.

  17. Phosphorylation of Amyloid Precursor Protein at Threonine 668 Is Essential for Its Copper-responsive Trafficking in SH-SY5Y Neuroblastoma Cells*

    PubMed Central

    Acevedo, Karla M.; Opazo, Carlos M.; Norrish, David; Challis, Leesa M.; Li, Qiao-Xin; White, Anthony R.; Bush, Ashley I.; Camakaris, James

    2014-01-01

    Amyloid precursor protein (APP) undergoes post-translational modification, including O- and N-glycosylation, ubiquitination, and phosphorylation as it traffics through the secretory pathway. We have previously reported that copper promotes a change in the cellular localization of APP. We now report that copper increases the phosphorylation of endogenous APP at threonine 668 (Thr-668) in SH-SY5Y neuronal cells. The level of APPT668-p (detected using a phospho-site-specific antibody) exhibited a copper-dependent increase. Using confocal microscopy imaging we demonstrate that the phospho-deficient mutant, Thr-668 to alanine (T668A), does not exhibit detectable copper-responsive APP trafficking. In contrast, mutating a serine to an alanine at residue 655 does not affect copper-responsive trafficking. We further investigated the importance of the Thr-668 residue in copper-responsive trafficking by treating SH-SY5Y cells with inhibitors for glycogen synthase kinase 3-β (GSK3β) and cyclin-dependent kinases (Cdk), the main kinases that phosphorylate APP at Thr-668 in neurons. Our results show that the GSK3β kinase inhibitors LiCl, SB 216763, and SB 415286 prevent copper-responsive APP trafficking. In contrast, the Cdk inhibitors Purvalanol A and B had no significant effect on copper-responsive trafficking in SH-SY5Y cells. In cultured primary hippocampal neurons, copper promoted APP re-localization to the axon, and this effect was inhibited by the addition of LiCl, indicating that a lithium-sensitive kinase(s) is involved in copper-responsive trafficking in hippocampal neurons. This is consistent with APP axonal transport to the synapse, where APP is involved in a number of functions. We conclude that copper promotes APP trafficking by promoting a GSK3β-dependent phosphorylation in SH-SY5Y cells. PMID:24610780

  18. Phosphorylation of amyloid precursor protein at threonine 668 is essential for its copper-responsive trafficking in SH-SY5Y neuroblastoma cells.

    PubMed

    Acevedo, Karla M; Opazo, Carlos M; Norrish, David; Challis, Leesa M; Li, Qiao-Xin; White, Anthony R; Bush, Ashley I; Camakaris, James

    2014-04-18

    Amyloid precursor protein (APP) undergoes post-translational modification, including O- and N-glycosylation, ubiquitination, and phosphorylation as it traffics through the secretory pathway. We have previously reported that copper promotes a change in the cellular localization of APP. We now report that copper increases the phosphorylation of endogenous APP at threonine 668 (Thr-668) in SH-SY5Y neuronal cells. The level of APPT668-p (detected using a phospho-site-specific antibody) exhibited a copper-dependent increase. Using confocal microscopy imaging we demonstrate that the phospho-deficient mutant, Thr-668 to alanine (T668A), does not exhibit detectable copper-responsive APP trafficking. In contrast, mutating a serine to an alanine at residue 655 does not affect copper-responsive trafficking. We further investigated the importance of the Thr-668 residue in copper-responsive trafficking by treating SH-SY5Y cells with inhibitors for glycogen synthase kinase 3-β (GSK3β) and cyclin-dependent kinases (Cdk), the main kinases that phosphorylate APP at Thr-668 in neurons. Our results show that the GSK3β kinase inhibitors LiCl, SB 216763, and SB 415286 prevent copper-responsive APP trafficking. In contrast, the Cdk inhibitors Purvalanol A and B had no significant effect on copper-responsive trafficking in SH-SY5Y cells. In cultured primary hippocampal neurons, copper promoted APP re-localization to the axon, and this effect was inhibited by the addition of LiCl, indicating that a lithium-sensitive kinase(s) is involved in copper-responsive trafficking in hippocampal neurons. This is consistent with APP axonal transport to the synapse, where APP is involved in a number of functions. We conclude that copper promotes APP trafficking by promoting a GSK3β-dependent phosphorylation in SH-SY5Y cells.

  19. A solution NMR investigation into the impaired self-assembly properties of two murine amelogenins containing the point mutations T21→I or P41→T

    SciTech Connect

    Buchko, Garry W.; Lin, Genyao; Tarasevich, Barbara J.; Shaw, Wendy J.

    2013-08-26

    Amelogenesis imperfecta describes a group of inherited disorders that results in defective tooth enamel. Two disorders associated with human amelogenesis imperfecta are the point mutations T21?I or P40?T in amelogenin, the dominant protein present during the early stages of enamel biomineralization. The biophysical properties of wildtype murine amelogenin (M180) and two proteins containing the equivalent mutations in murine amelogenin, T21?I (M180-I) and P41?T (M180-T), were probed by NMR spectroscopy. At low protein concentration (0.1 mM), M180, M180-I, and M180-T are predomi- nately monomeric at pH 3.0 in 2% acetic acid and neither mutation produces a major structural change. Chemical shift perturbation studies as a function of protein (0.1–1.8 mM) or NaCl (0–400 mM) concentra- tions show that the mutations affect the self-association properties by causing self-assembly at lower protein or salt concentrations, relative to wildtype amelogenin, with the largest effect observed for M180-I. Under both conditions, the premature self-assembly is initiated near the N-terminus, providing further evidence for the importance of this region in the self-assembly process. The self-association of M180-I and M180-T at lower protein concentrations and lower ionic strengths than wildtype M180 may account for the clinical phenotypes of these mutations, defective enamel formation.

  20. Illicit trafficking of radiological & nuclear materials : modeling and analysis of trafficking trends and risks.

    SciTech Connect

    York, David L.; Love, Tracia L.; Rochau, Gary Eugene

    2005-01-01

    Concerns over the illicit trafficking of radiological and nuclear materials were focused originally on the lack of security and accountability of such material throughout the former Soviet states. This is primarily attributed to the frequency of events that have occurred involving the theft and trafficking of critical material components that could be used to construct a Radiological Dispersal Device (RDD) or even a rudimentary nuclear device. However, with the continued expansion of nuclear technology and the deployment of a global nuclear fuel cycle these materials have become increasingly prevalent, affording a more diverse inventory of dangerous materials and dual-use items. To further complicate the matter, the list of nuclear consumers has grown to include: (1) Nation-states that have gone beyond the IAEA agreed framework and additional protocols concerning multiple nuclear fuel cycles and processes that reuse the fuel through reprocessing to exploit technologies previously confined to the more industrialized world; (2) Terrorist organizations seeking to acquire nuclear and radiological material due to the potential devastation and psychological effect of their use; (3) Organized crime, which has discovered a lucrative market in trafficking of illicit material to international actors and/or countries; and (4) Amateur smugglers trying to feed their families in a post-Soviet era. An initial look at trafficking trends of this type seems scattered and erratic, localized primarily to a select group of countries. This is not necessarily the case. The success with which other contraband has been smuggled throughout the world suggests that nuclear trafficking may be carried out with relative ease along the same routes by the same criminals or criminal organizations. Because of the inordinately high threat posed by terrorist or extremist groups acquiring the ingredients for unconventional weapons, it is necessary that illicit trafficking of these materials be better

  1. Identification and Functional Analysis of a Novel MIP Gene Mutation Associated with Congenital Cataract in a Chinese Family.

    PubMed

    Shentu, Xingchao; Miao, Qi; Tang, Xiajing; Yin, Houfa; Zhao, Yingying

    2015-01-01

    Congenital cataracts are major cause of visual impairment and blindness in children and previous studies have shown about 1/3 of non-syndromic congenital cataracts are inherited. Major intrinsic protein of the lens (MIP), also known as AQP0, plays a critical role in transparency and development of the lens. To date, more than 10 mutations in MIP have been linked to hereditary cataracts in humans. In this study, we investigated the genetic and functional defects underlying a four-generation Chinese family affected with congenital progressive cortical punctate cataract. Mutation screening of the candidate genes revealed a missense mutation at position 448 (c.448G>C) of MIP, which resulted in the substitution of a conserved aspartic acid with histidine at codon 150 (p.D150H). By linkage and haplotype analysis, we obtained positive multipoint logarithm of odds (LOD) scores at microsatellite markers D12S1632 (Zmax = 1.804 at α = 1.000) and D12S1691 (Zmax = 1.806 at α = 1.000), which flanked the candidate locus. The prediction results of PolyPhen-2 and SIFT indicated that the p.D150H mutation was likely to damage to the structure and function of AQP0. The wild type and p.D150H mutant AQP0 were expressed in HeLa cells separately and the immunofluorescence results showed that the WT-AQP0 distributed at the plasma membrane and in cytoplasm, while AQP0-D150H failed to reach the plasma membrane and was mainly retained in the Golgi apparatus. Moreover, protein levels of AQP0-D150H were significantly lower than those of wide type AQP0 in membrane-enriched lysates when the HEK-293T cells were transfected with the same amount of wild type and mutant plasmids individually. Taken together, our data suggest the p.D150H mutation is a novel disease-causing mutation in MIP, which leads to congenital progressive cortical punctate cataract by impairing the trafficking mechanism of AQP0.

  2. Genetic Inhibition Of The Ubiquitin Ligase Rnf5 Attenuates Phenotypes Associated To F508del Cystic Fibrosis Mutation

    PubMed Central

    Tomati, Valeria; Sondo, Elvira; Armirotti, Andrea; Caci, Emanuela; Pesce, Emanuela; Marini, Monica; Gianotti, Ambra; Ju Jeon, Young; Cilli, Michele; Pistorio, Angela; Mastracci, Luca; Ravazzolo, Roberto; Scholte, Bob; Ronai, Ze’ev; Galietta, Luis J. V.; Pedemonte, Nicoletta

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CFTR chloride channel. Deletion of phenylalanine 508 (F508del), the most frequent CF mutation, impairs CFTR trafficking and gating. F508del-CFTR mistrafficking may be corrected by acting directly on mutant CFTR itself or by modulating expression/activity of CFTR-interacting proteins, that may thus represent potential drug targets. To evaluate possible candidates for F508del-CFTR rescue, we screened a siRNA library targeting known CFTR interactors. Our analysis identified RNF5 as a protein whose inhibition promoted significant F508del-CFTR rescue and displayed an additive effect with the investigational drug VX-809. Significantly, RNF5 loss in F508del-CFTR transgenic animals ameliorated intestinal malabsorption and concomitantly led to an increase in CFTR activity in intestinal epithelial cells. In addition, we found that RNF5 is differentially expressed in human bronchial epithelia from CF vs. control patients. Our results identify RNF5 as a target for therapeutic modalities to antagonize mutant CFTR proteins. PMID:26183966

  3. Mediation of Clathrin-Dependent Trafficking during Cytokinesis and Cell Expansion by Arabidopsis STOMATAL CYTOKINESIS DEFECTIVE Proteins[W

    PubMed Central

    McMichael, Colleen M.; Reynolds, Gregory D.; Koch, Lisa M.; Wang, Chao; Jiang, Nan; Nadeau, Jeanette; Sack, Fred D.; Gelderman, Max B.; Pan, Jianwei; Bednarek, Sebastian Y.

    2013-01-01

    STOMATAL CYTOKINESIS DEFECTIVE1 (SCD1) encodes a putative Rab guanine nucleotide exchange factor that functions in membrane trafficking and is required for cytokinesis and cell expansion in Arabidopsis thaliana. Here, we show that the loss of SCD2 function disrupts cytokinesis and cell expansion and impairs fertility, phenotypes similar to those observed for scd1 mutants. Genetic and biochemical analyses showed that SCD1 function is dependent upon SCD2 and that together these proteins are required for plasma membrane internalization. Further specifying the role of these proteins in membrane trafficking, SCD1 and SCD2 proteins were found to be associated with isolated clathrin-coated vesicles and to colocalize with clathrin light chain at putative sites of endocytosis at the plasma membrane. Together, these data suggest that SCD1 and SCD2 function in clathrin-mediated membrane transport, including plasma membrane endocytosis, required for cytokinesis and cell expansion. PMID:24179130

  4. Molecular basis of maple syrup urine disease: Novel mutations at the E1[alpha] locus that impair E1([alpha][sub 2][beta][sub 2]) assembly or decrease steady-state E1[alpha] mRNA levels of branched-chain [alpha]-keto acid dehydrogenase complex

    SciTech Connect

    Chuang, J.L.; Fisher, C.R.; Chuang, D.T.; Cox, R.P. )

    1994-08-01

    The authors report the occurrence of three novel mutations in the E1[alpha] (BCKDHA) locus of the branched-chain [alpha]-keto acid dehydrogenase (BCKAD) complex that cause maple syrup urine disease (MSUD). An 8-bp deletion in exon 7 is present in one allele of a compound-heterozygous patient (GM-649). A single C nucleotide insertion in exon 2 occurs in one allele of an intermediate-MSUD patient (Lo). The second allele of patient Lo carries an A-to-G transition in exon 9 of the E1[alpha] gene. This missense mutation changes Tyr-368 to Cys (Y368C) in the E1[alpha] subunit. Both the 8-bp deletion and the single C insertion generate a downstream nonsense codon. Both mutations appear to be associated with a low abundance of the mutant E1[alpha] mRNA, as determined by allele-specific oligonucleotide probing. Transfection studies strongly suggest that the Y368C substitution in the E1[alpha] subunit impairs its proper assembly with the normal E1[beta]. Unassembled as well as misassembled E1[alpha] and E1[beta] subunits are degraded in the cell. 32 refs., 8 figs.

  5. Isoflurane unveils a critical role of glutamate transporter type 3 in regulating hippocampal GluR1 trafficking and context-related learning and memory in mice.

    PubMed

    Cao, J; Wang, Z; Mi, W; Zuo, Z

    2014-07-11

    Glutamate transporter type 3 (EAAT3) may play a role in cognition. Isoflurane enhances EAAT3 trafficking to the plasma membrane. Thus, we used isoflurane to determine how EAAT3 might regulate learning and memory and the trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, such as GluR1, to the plasma membrane, a fundamental biochemical process for learning and memory. Here, isoflurane increased EAAT3 but did not change GluR1 levels in the plasma membrane of wild-type mouse hippocampus. Isoflurane increased protein phosphatase activity in the wild-type and EAAT3(-/-) mouse hippocampus. Also, isoflurane reduced GluR1 in the plasma membrane and decreased phospho-GluR1 in EAAT3(-/-) mice. The phosphatase inhibitor okadaic acid attenuated these effects. Finally, isoflurane inhibited context-related fear conditioning in EAAT3(-/-) mice but not in wild-type mice. Thus, isoflurane may increase GluR1 trafficking to the plasma membrane via EAAT3 and inhibit GluR1 trafficking via protein phosphatase. Lack of EAAT3 effects leads to decreased GluR1 trafficking and impaired cognition after isoflurane exposure in EAAT3(-/-) mice.

  6. Hyperinsulinemia and skeletal muscle fatty acid trafficking.

    PubMed

    Kanaley, Jill A; Shadid, Samyah; Sheehan, Michael T; Guo, ZengKui; Jensen, Michael D

    2013-08-15

    We hypothesized that insulin alters plasma free fatty acid (FFA) trafficking into intramyocellular (im) long-chain acylcarnitines (imLCAC) and triglycerides (imTG). Overnight-fasted adults (n = 41) received intravenous infusions of [U-¹³C]palmitate (0400-0900 h) and [U-¹³C]oleate (0800-1400 h) to label imTG and imLCAC. A euglycemic-hyperinsulinemic (1.0 mU·kg fat-free mass⁻¹·min⁻¹) clamp (0800-1400 h) and two muscle biopsies (0900 h, 1400 h) were performed. The patterns of [U-¹³C]palmitate incorporation into imTG-palmitate and palmitoylcarnitine were similar to those we reported in overnight postabsorptive adults (saline control); the intramyocellular palmitoylcarnitine enrichment was not different from and correlated with imTG-palmitate enrichment for both the morning (r = 0.38, P = 0.02) and afternoon (r = 0.44, P = 0.006) biopsy samples. Plasma FFA concentrations, flux, and the incorporation of plasma oleate into imTG-oleate during hyperinsulinemia were ~1/10th of that observed in the previous saline control studies (P < 0.001). At the time of the second biopsy, the enrichment in oleoylcarnitine was <25% of that in imTG-oleate and was not correlated with imTG-oleate enrichment. The intramyocellular nonesterified fatty acid-palmitate-to-imTG-palmitate enrichment ratio was greater (P < 0.05) in women than men, suggesting that sex differences in intramyocellular palmitate trafficking may occur under hyperinsulinemic conditions. We conclude that plasma FFA trafficking into imTG during hyperinsulinemia is markedly suppressed, and these newly incorporated FFA fatty acids do not readily enter the LCAC preoxidative pools. Hyperinsulinemia does not seem to inhibit the entry of fatty acids from imTG pools that were labeled under fasting conditions, possibly reflecting the presence of two distinct imTG pools that are differentially regulated by insulin. PMID:23820622

  7. V-ATPase subunit ATP6AP1 (Ac45) regulates osteoclast differentiation, extracellular acidification, lysosomal trafficking, and protease exocytosis in osteoclast-mediated bone resorption

    PubMed Central

    Yang, De-Qin; Feng, Shengmei; Chen, Wei; Zhao, Haibo; Paulson, Christie; Li, Yi-Ping

    2014-01-01

    Lysosomal trafficking and protease exocytosis in osteoclasts are essential for ruffled border formation and bone resorption. Yet, the mechanism underlying lysosomal trafficking and the related process of exocytosis remains largely unknown. We found ATP6ap1 (Ac45), an accessory subunit of vacuolar-type H+-ATPases (V-ATPases), to be highly induced by receptor activator for nuclear factor kappa B ligand (RANKL) in osteoclast differentiation. Ac45 knockdown osteoclasts formed normal actin rings, but had severely impaired extracellular acidification and bone resorption. Ac45 knockdown significantly reduced osteoclast formation. The decrease in the number of osteoclasts does not result from abnormal apoptosis; rather, it results from decreased osteoclast precursor cell proliferation and fusion, which may be partially due to the downregulation of ERK phosphorylation and FBJ osteosarcoma oncogene (c-fos), nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and Tm7sf4 expression. Notably, Ac45 knockdown osteoclasts exhibited impaired lysosomal trafficking and exocytosis, as indicated by the absence of lysosomal trafficking to the ruffled border and a lack of cathepsin K exocytosis into the resorption lacuna. Our data revealed that the impaired exocytosis is specifically due to Ac45 deficiency, and not the general consequence of a defective V-ATPase. Together, our results demonstrate the essential role of Ac45 in osteoclast-mediated extracellular acidification and protease exocytosis, as well as the ability of Ac45 to guide lysosomal intracellular trafficking to the ruffled border, potentially through its interaction with the small GTPase Rab7. Our work indicates that Ac45 may be a novel therapeutic target for osteolytic disease. PMID:22467241

  8. Plant Vascular Biology 2013: vascular trafficking.

    PubMed

    Ursache, Robertas; Heo, Jung-Ok; Helariutta, Ykä

    2014-04-01

    About 200 researchers from around the world attended the Third International Conference on Plant Vascular Biology (PVB 2013) held in July 2013 at the Rantapuisto Conference Center, in Helsinki, Finland (http://www.pvb2013.org). The plant vascular system, which connects every organ in the mature plant, continues to attract the interest of researchers representing a wide range of disciplines, including development, physiology, systems biology, and computational biology. At the meeting, participants discussed the latest research advances in vascular development, long- and short-distance vascular transport and long-distance signalling in plant defence, in addition to providing a context for how these studies intersect with each other. The meeting provided an opportunity for researchers working across a broad range of fields to share ideas and to discuss future directions in the expanding field of vascular biology. In this report, the latest advances in understanding the mechanism of vascular trafficking presented at the meeting have been summarized.

  9. Glycobiology of leukocyte trafficking in inflammation.

    PubMed

    Wright, Rachael D; Cooper, Dianne

    2014-12-01

    To fulfill their potential, leukocytes must be able to exit the vasculature and reach the site of inflammation within the tissue. This process of leukocyte extravasation is a tightly regulated sequence of events that is governed by a host of cell adhesion molecules, cytokines, chemokines and lipid mediators. Of major importance to this process and the function of many of the proteins and lipids involved is the posttranslational modification of these moieties by glycosylation. The glycosylation process is coordinated by multiple enzymes that add and remove saccharides to/from glycan structures on proteins and lipids, resulting in a unique molecular signature that affords specificity to the molecules involved in leukocyte recruitment. This review will discuss how glycosylation impacts the function of these key molecules involved in the recruitment of leukocytes during inflammation and the function of specific lectins (carbohydrate-binding proteins) that have a role in leukocyte trafficking.

  10. Transnational criminal organizations and drug trafficking.

    PubMed

    Williams, P; Florez, C

    1994-01-01

    Transnational criminal organizations, particularly drug-trafficking organizations, operate unrestricted across international borders. They are very similar in kind to legitimate transnational corporations in structure, strength, size, geographical range and scope of their operations. Above all other features they engage in unregulated forms of capitalist enterprise. To fully understand transnational criminal organizations it is necessary to examine them as organizations responding to economic opportunities and focus on the factors that influence their emergence. Those factors can be understood as a result of the confluence of opportunities, pressures, incentives and resources at the global and national level. The present article identifies the key environmental factors relevant to the emergence of transnational criminal organizations, and explores the intrinsic relationship between those organizations, their home States and host States. It is those conditions which not only give rise to transnational criminal organizations, but also help to sustain them.

  11. Endocytic pathways and endosomal trafficking: a primer.

    PubMed

    Elkin, Sarah R; Lakoduk, Ashley M; Schmid, Sandra L

    2016-05-01

    This brief overview of endocytic trafficking is written in honor of Renate Fuchs, who retires this year. In the mid-1980s, Renate pioneered studies on the ion-conducting properties of the recently discovered early and late endosomes and the mechanisms governing endosomal acidification. As described in this review, after uptake through one of many mechanistically distinct endocytic pathways, internalized proteins merge into a common early/sorting endosome. From there they again diverge along distinct sorting pathways, back to the cell surface, on to the trans-Golgi network or across polarized cells. Other transmembrane receptors are packaged into intraluminal vesicles of late endosomes/multivesicular bodies that eventually fuse with and deliver their conte