Sample records for mutation induction evaluation

  1. Inactivation and mutation induction in Saccharomyces cerevisiae exposed to simulated sunlight: evaluation of action spectra.

    PubMed

    Schenk-Meuser, K; Pawlowsky, K; Kiefer, J

    1992-07-15

    The effectiveness of polychromatic light irradiation was investigated for haploid yeast cells. Inactivation and mutation induction were measured in both a RAD-wildtype strain and an excision-repair defective strain. The behaviour of vegetative "wet" cells was compared to that of dehydrated cells. The aim of the study was to assess the interaction of UVC with other wavelengths in cells of different states of humidity. The irradiation procedure was therefore carried out using a solar simulator either with full spectrum or with a UVC-blocking filter (modified sunlight) added. The results were analysed on the basis of separately determined action spectra. The summation of the efficiency of individual wavelengths was compared to the values obtained from polychromatic irradiation. It is shown that the effects caused by the whole-spectrum irradiation in wet cells can be predicted sufficiently from the calculation, while dried wildtype cells exhibit higher mutation rates. Thus it can be assumed that drying-specific damage leads to lethal and mutagenic lesions which are processed in different ways, causing a synergistic behaviour in mutation induction. Irradiation of vegetative cells with modified sunlight (UVC-) results in less inactivation and lower mutation rates than were calculated. From these results it can be concluded that this antagonistic behaviour is caused by the interaction of near-UV photoproducts.

  2. Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning.

    PubMed

    Alexander, J; Stainier, D Y; Yelon, D

    1998-01-01

    The genetic pathways underlying the induction and anterior-posterior patterning of the heart are poorly understood. The recent emergence of the zebrafish model system now allows a classical genetic approach to such challenging problems in vertebrate development. Two large-scale screens for mutations affecting zebrafish embryonic development have recently been completed; among the hundreds of mutations identified were several that affect specific aspects of cardiac morphogenesis, differentiation, and function. However, very few mutations affecting induction and/or anterior-posterior patterning of the heart were identified. We hypothesize that a directed approach utilizing molecular markers to examine these particular steps of heart development will uncover additional such mutations. To test this hypothesis, we are conducting two parallel screens for mutations that affect either the induction or the anterior-posterior patterning of the zebrafish heart. As an indicator of cardiac induction, we examine expression of nkx2.5, the earliest known marker of precardiac mesoderm; to assess anterior-posterior patterning, we distinguish ventricle from atrium with antibodies that recognize different myosin heavy chain isoforms. In order to expedite the examination of a large number of mutations, we are screening the haploid progeny of mosaic F1 females. In these ongoing screens, we have identified four mutations that affect nkx2.5 expression as well as 21 that disrupt either ventricular or atrial development and thus far have recovered several of these mutations, demonstrating the value of our approach. Future analysis of these and other cardiac mutations will provide further insight into the processes of induction and anterior-posterior patterning of the heart.

  3. Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia.

    PubMed

    Jourdan, Eric; Boissel, Nicolas; Chevret, Sylvie; Delabesse, Eric; Renneville, Aline; Cornillet, Pascale; Blanchet, Odile; Cayuela, Jean-Michel; Recher, Christian; Raffoux, Emmanuel; Delaunay, Jacques; Pigneux, Arnaud; Bulabois, Claude-Eric; Berthon, Céline; Pautas, Cécile; Vey, Norbert; Lioure, Bruno; Thomas, Xavier; Luquet, Isabelle; Terré, Christine; Guardiola, Philippe; Béné, Marie C; Preudhomme, Claude; Ifrah, Norbert; Dombret, Hervé

    2013-03-21

    Not all patients with core binding factor acute myeloid leukemia (CBF-AML) display a good outcome. Modern risk factors include KIT and/or FLT3 gene mutations and minimal residual disease (MRD) levels, but their respective values have never been prospectively assessed. A total of 198 CBF-AML patients were randomized between a reinforced and a standard induction course, followed by 3 high-dose cytarabine consolidation courses. MRD levels were monitored prospectively. Gene mutations were screened at diagnosis. Despite a more rapid MRD decrease after reinforced induction, induction arm did not influence relapse-free survival (RFS) (64% in both arms; P = .91). Higher WBC, KIT, and/or FLT3-ITD/TKD gene mutations, and a less than 3-log MRD reduction after first consolidation, were associated with a higher specific hazard of relapse, but MRD remained the sole prognostic factor in multivariate analysis. At 36 months, cumulative incidence of relapse and RFS were 22% vs 54% (P < .001) and 73% vs 44% (P < .001) in patients who achieved 3-log MRD reduction vs the others. These results suggest that MRD, rather than gene mutations, should be used for future treatment stratifications in CBF-AML patients. This trial was registered at EudraCT as #2006-005163-26 and at www.clinicaltrials.gov as #NCT 00428558.

  4. LET and ion-species dependence for cell killing and mutation induction in normal human fibroblasts.

    PubMed

    Tsuruoka, Chizuru; Suzuki, Masao; Fujitaka, Kazunobu

    2003-10-01

    We have been studying LET and ion species dependence of RBE values in cell killing and mutation induction. Normal human skin fibroblasts were irradiated with heavy-ion beams such as carbon (290 Mev/u and 135 Mev/u), neon (230 Mev/u and 400 Mev/u), silicon (490 Mev/u) and iron (500 Mev/u) ion beams, generated by Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS). Cell killing effect was detected as reproductive cell death using a colony formation assay. Mutation induction in hprt locus was detected to measure 6-thioguanine resistant colonies. The RBE-LET curves of cell killing and mutation induction were different each ion beam. So, we plotted RBE for cell killing and mutation induction as function of Z*2/beta2 instead of LET. RBE-Z*2/beta2 curves of cell killing indicated that the discrepancy of RBE-LET curves was reconciled each ion species. But RBE-Z*2/beta2 curves of mutation induction didn't corresponded between carbon- and silicon-ion beams. These results suggested that different biological endpoints may be suitable for different physical parameter, which represent the track structure of energy deposition of ion beams.

  5. Mutation induction by heavy ions

    NASA Astrophysics Data System (ADS)

    Kiefer, J.; Stoll, U.; Schneider, E.

    1994-10-01

    Mutation induction by heavy ions is compared in yeast and mammalian cells. Since mutants can only be recovered in survivors the influence of inactivation cross sections has to be taken into account. It is shown that both the size of the sensitive cellular site as well as track structure play an important role. Another parameter which influences the probability of mutation induction is repair: Contrary to naive assumptions primary radiation damage does not directly lead to mutations but requires modification to reconstitute the genetic machinery so that mutants can survive. The molecular structure of mutations was analyzed after exposure to deuterons by amplification with the aid of polymerase chain reaction. The results-although preliminary-demonstrate that even with densely ionizing particles a large fraction does not carry big deletions which suggests that point mutations may also be induced by heavy ions.

  6. "Aspartame: A review of genotoxicity data".

    PubMed

    Kirkland, David; Gatehouse, David

    2015-10-01

    Aspartame is a methyl ester of a dipeptide of aspartic acid and phenylalanine. It is 200× sweeter than sucrose and is approved for use in food products in more than 90 countries around the world. Aspartame has been evaluated for genotoxic effects in microbial, cell culture and animal models, and has been subjected to a number of carcinogenicity studies. The in vitro and in vivo genotoxicity data available on aspartame are considered sufficient for a thorough evaluation. There is no evidence of induction of gene mutations in a series of bacterial mutation tests. There is some evidence of induction of chromosomal damage in vitro, but this may be an indirect consequence of cytotoxicity. The weight of evidence from in vivo bone marrow micronucleus, chromosomal aberration and Comet assays is that aspartame is not genotoxic in somatic cells in vivo. The results of germ cell assays are difficult to evaluate considering limited data available and deviations from standard protocols. The available data therefore support the conclusions of the European Food Safety Authority (EFSA) that aspartame is non-genotoxic. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Problems and solutions in the estimation of genetic risks from radiation and chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, W. L.

    1980-01-01

    Extensive investigations with mice on the effects of various physical and biological factors, such as dose rate, sex and cell stage, on radiation-induced mutation have provided an evaluation of the genetics hazards of radiation in man. The mutational results obtained in both sexes with progressive lowering of the radiation dose rate have permitted estimation of the mutation frequency expected under the low-level radiation conditions of most human exposure. Supplementing the studies on mutation frequency are investigations on the phenotypic effects of mutations in mice, particularly anatomical disorders of the skeleton, which allow an estimation of the degree of human handicapmore » associated with the occurrence of parallel defects in man. Estimation of the genetic risk from chemical mutagens is much more difficult, and the research is much less advanced. Results on transmitted mutations in mice indicate a poor correlation with mutation induction in non-mammalian organisms.« less

  8. HPRT mutations in V79 Chinese hamster cells induced by accelerated Ni, Au and Pb ions.

    PubMed

    Stoll, U; Barth, B; Scheerer, N; Schneider, E; Kiefer, J

    1996-07-01

    Mutation induction by accelerated heavy ions to 6-TG resistance (HPRT system) in V79 Chinese hamster cells was investigated with Ni (6-630 Me V/u), Au (2.2, 8.7 Me V/u) and Pb ions (11.6-980 Me V/u) corresponding to a LET range between 180 and 12895 ke V/microns. Most experiments could only be performed once due to technical limitations using accelerator beam times. Survival curves were exponential, mutation induction curves linear with fluence. From their slopes inactivation- and mutation-induction cross-sections were derived. If they are plotted versus LET, single, ion-specific curves are obtained. It is shown that other parameters like ion energy and effective charge play an important role. In the case of Au and Pb ions the cross-sections follow a common line, since these ions have nearly the same atomic weight, so that they should have similar spatial ionization patterns in matter at the same energies. Calculated RBEs were higher for mutation induction than for killing for all LETs.

  9. Formation of DNA adducts and induction of lacI mutations in Big Blue Rat-2 cells treated with temozolomide: implications for the treatment of low-grade adult and pediatric brain tumors.

    PubMed

    Bodell, William J; Gaikwad, Nilesh W; Miller, Douglas; Berger, Mitchel S

    2003-06-01

    Temozolomide (TMZ) is a chemotherapeutic agent used in the treatment of high-grade brain tumors. Treatment of patients with alkylating chemotherapeutic agents has been established to increase their risk for acute myelogenous leukemia. The formation of DNA adducts and induction of mutations are likely to play a role in the etiology of therapy-related acute myeloid leukemia. To evaluate this issue for TMZ, we have measured the formation of DNA adducts and induction of lacI mutations in Big Blue Rat-2 cells treated with TMZ. Treatment of Big Blue Rat-2 cells with either 0, 0.5, or 1 mM TMZ resulted in lacI mutant frequencies of 9.1 +/- 2.9 x 10(-5), 48.9 +/- 12 x 10(-5), and 89.7 +/- 40.3 x 10(-5), respectively. Comparison of the mutant frequencies demonstrated that 0.5 and 1 mM TMZ treatments increased the mutant frequencies by 5.3- and 9.8-fold and that this increase was significant (P < 0.001). Sequence analysis of the lacI mutants from the TMZ treatment group demonstrated that they were GC-->AT transitions at non-CpG sites, which is significantly different from the mutation spectrum observed in the control treatment group. Treatment of Big Blue Rat-2 cells with various concentrations of TMZ produced a linear increase in the levels of N7-methylguanine and O(6)-methylguanine. The lacI mutation spectrum induced by TMZ treatment is consistent with these mutations being produced by O(6)-MeG. This study establishes TMZ has significant mutagenic potential and suggests that careful consideration in the use of TMZ for the treatment of low-grade adult and pediatric brain tumors should be given.

  10. A pilot study: sequential gemcitabine/cisplatin and icotinib as induction therapy for stage IIB to IIIA non-small-cell lung adenocarcinoma

    PubMed Central

    2013-01-01

    Background A phase II clinical trial previously evaluated the sequential administration of erlotinib after chemotherapy for advanced non-small-cell lung cancer (NSCLC). This current pilot study assessed the feasibility of sequential induction therapy in patients with stage IIB to IIIA NSCLC adenocarcinoma. Methods Patients received gemcitabine 1,250 mg/m2 on days 1 and 8 and cisplatin 75 mg/m2 on day 1, followed by oral icotinib (125 mg, three times a day) on days 15 to 28. A repeatcomputed tomography(CT) scan evaluated the response to the induction treatment after two 4-week cycles and eligible patients underwent surgical resection. The primary objective was to assess the objective response rate (ORR), while EGFR and KRAS mutations and mRNA and protein expression levels of ERCC1 and RRM1 were analyzed in tumor tissues and blood samples. Results Eleven patients, most with stage IIIA disease, completed preoperative treatment. Five patients achieved partial response according to the Response Evaluation Criteria in Solid Tumors (RECIST) criteria (ORR=45%) and six patients underwent resection. Common toxicities included neutropenia, alanine transaminase (ALT) elevation, fatigue, dry skin, rash, nausea, alopecia and anorexia. No serious complications were recorded perioperatively. Three patients had exon 19 deletions and those with EGFR mutations were more likely to achieve a clinical response (P= 0.083). Furthermore, most cases who achieved a clinical response had low levels of ERCC1 expression and high levels of RRM1. Conclusions Two cycles of sequentially administered gemcitabine/cisplatin with icotinib as an induction treatment is a feasible and efficacious approach for stage IIB to IIIA NSCLC adenocarcinoma, which provides evidence for the further investigation of these chemotherapeutic and molecularly targeted therapies. PMID:23621919

  11. Silymarin inhibits melanoma cell growth both in vitro and in vivo by targeting cell cycle regulators, angiogenic biomarkers and induction of apoptosis.

    PubMed

    Vaid, Mudit; Singh, Tripti; Prasad, Ram; Katiyar, Santosh K

    2015-11-01

    Cutaneous malignant melanoma is the leading cause of death from skin diseases and is often associated with activating mutations of the proto-oncogene BRAF. To develop more effective strategies for the prevention or treatment of melanoma, we have examined the inhibitory effects of silymarin, a flavanoid from Silybum marianum, on melanoma cells. Using A375 (BRAF-mutated) and Hs294t (non BRAF-mutated but highly metastatic) human melanoma cell lines, we found that in vitro treatment with silymarin resulted in a dose-dependent: (i) reduction in cell viability; (ii) enhancement of either Go/G1 (A375) or G2-M (Hs294t) phase cell cycle arrest with corresponding alterations in cyclins and cyclin-dependent kinases; and (iii) induction of apoptosis. The silymarin-induced apoptosis of human melanoma cells was associated with a reduction in the levels of anti-apoptotic proteins (Bcl-2 and Bcl-xl), an increase in the levels of pro-apoptotic protein (Bax), and activation of caspases. Further, oral administration of silymarin (500 mg/kg body weight/2× a week) significantly inhibited (60%, P < 0.01) the growth of BRAF-mutated A375 melanoma tumor xenografts, and this was associated with: (i) inhibition of cell proliferation; (ii) induction of apoptosis of tumor cells; (iii) alterations in cell cycle regulatory proteins; and (iv) reduced expression of tumor angiogenic biomarkers in tumor xenograft tissues. These results indicate that silymarin may have a chemotherapeutic effect on human melanoma cell growth and warrant its further evaluation. © 2014 Wiley Periodicals, Inc.

  12. Mutation induction in haploid yeast after split-dose radiation-exposure. I. Fractionated UV-irradiation.

    PubMed

    Schenk, K; Zölzer, F; Kiefer, J

    1989-01-01

    Mutation induction was investigated in wild-type haploid yeast Saccharomyces cerevisiae after split-dose UV-irradiation. Cells were exposed to fractionated 254 nm-UV-doses separated by intervals from 0 to 6 h with incubation either on non-nutrient or nutrient agar between. The test parameter was resistance to canavanine. If modifications of sensitivity due to incubation are appropriately taken into account there is no change of mutation frequency.

  13. DNA repair properties of Escherichia coli tif-1, recAo281 and lexA1 strains deficient in single-strand DNA binding protein.

    PubMed

    Whittier, R F; Chase, J W

    1983-01-01

    Mutations affecting single-strand DNA binding protein (SSB) impair induction of mutagenic (SOS) repair. To further investigate the role of SSB in SOS induction and DNA repair, isogenic strains were constructed combining the ssb+, ssb-1 or ssb-113 alleles with one or more mutations known to alter regulation of damage inducible functions. As is true in ssb+ strains tif-1 (recA441) was found to allow thermal induction of prophage lambda + and Weigle reactivation in ssb-1 and ssb-113 strains. Furthermore, tif-1 decreased the UV sensitivity of the ssb-113 strain slightly and permitted UV induction of prophage lambda + at 30 degrees C. Strains carrying the recAo281 allele were also constructed. This mutation causes high constitutive levels of RecA protein synthesis and relieves much of the UV sensitivity conferred by lexA- alleles without restoring SOS (error-prone) repair. In contrast, the recAo281 allele failed to alleviate the UV sensitivity associated with either ssb- mutation. In a lexA1 recAo281 background the ssb-1 mutation increased the extent of postirradiation DNA degradation and concommitantly increased UV sensitivity 20-fold to the level exhibited by a recA1 strain. The ssb-113 mutation also increased UV sensitivity markedly in this background but did so without greatly increasing postirradiation DNA degradation. These results suggest a direct role for SSB in recombinational repair apart from and in addition to its role in facilitating induction of the recA-lexA regulon.

  14. Role of folate status and methylenetetrahydrofolate reductase genotype on the toxicity and outcome of induction chemotherapy in children with acute lymphoblastic leukemia.

    PubMed

    Roy Moulik, Nirmalya; Kumar, Archana; Agrawal, Suraksha; Awasthi, Shally; Mahdi, Abbas Ali; Kumar, Ashutosh

    2015-05-01

    The effect of serum folate levels and methylenetetrahydrofolate reductase (MTHFR) genotype on complications and outcome of induction chemotherapy in 150 children with acute lymphoblastic leukemia (ALL) was studied. Folate deficiency in 26% at baseline was more common in children with MTHFR 677 mutations. Folate deficient children had a higher incidence of neutropenia (p = 0.03), thrombocytopenia (p = 0.02) and febrile neutropenia (p = 0.01) and higher transfusion requirement during induction compared to folate sufficient children. Sepsis related induction deaths were more frequent in folate deficient children (p = 0.02) during induction. Children with 677 and 1298 mutations had a higher incidence of cytopenias (p = 0.01) and mucositis (p = 0.007), the risks of which increased with concomitant folate deficiency. A significant fall in folate levels was observed post-induction (p = 0.02), most markedly in mutant 677 genotypes. Multivariate analysis revealed associations of baseline folate deficiency with low counts at day 14 (p = 0.001) and MTHFR 1298 mutations with mucositis (p = 0.02).

  15. Clinical Impact of Additional Cytogenetic Aberrations, cKIT and RAS Mutations, and Treatment Elements in Pediatric t(8;21)-AML: Results From an International Retrospective Study by the International Berlin-Frankfurt-Münster Study Group

    PubMed Central

    Klein, Kim; Kaspers, Gertjan; Harrison, Christine J.; Beverloo, H. Berna; Reedijk, Ardine; Bongers, Mathilda; Cloos, Jacqueline; Pession, Andrea; Reinhardt, Dirk; Zimmerman, Martin; Creutzig, Ursula; Dworzak, Michael; Alonzo, Todd; Johnston, Donna; Hirsch, Betsy; Zapotocky, Michal; De Moerloose, Barbara; Fynn, Alcira; Lee, Vincent; Taga, Takashi; Tawa, Akio; Auvrignon, Anne; Zeller, Bernward; Forestier, Erik; Salgado, Carmen; Balwierz, Walentyna; Popa, Alexander; Rubnitz, Jeffrey; Raimondi, Susana; Gibson, Brenda

    2015-01-01

    Purpose This retrospective cohort study aimed to determine the predictive relevance of clinical characteristics, additional cytogenetic aberrations, and cKIT and RAS mutations, as well as to evaluate whether specific treatment elements were associated with outcomes in pediatric t(8;21)-positive patients with acute myeloid leukemia (AML). Patients and Methods Karyotypes of 916 pediatric patients with t(8;21)-AML were reviewed for the presence of additional cytogenetic aberrations, and 228 samples were screened for presence of cKIT and RAS mutations. Multivariable regression models were used to assess the relevance of anthracyclines, cytarabine, and etoposide during induction and overall treatment. End points were the probability of achieving complete remission, cumulative incidence of relapse (CIR), probability of event-free survival, and probability of overall survival. Results Of 838 patients included in final analyses, 92% achieved complete remission. The 5-year overall survival, event-free survival, and CIR were 74%, 58%, and 26%, respectively. cKIT mutations and RAS mutations were not significantly associated with outcome. Patients with deletions of chromosome arm 9q [del(9q); n = 104] had a lower probability of complete remission (P = .01). Gain of chromosome 4 (+4; n = 21) was associated with inferior CIR and survival (P < .01). Anthracycline doses greater than 150 mg/m2 and etoposide doses greater than 500 mg/m2 in the first induction course and high-dose cytarabine 3 g/m2 during induction were associated with better outcomes on various end points. Cumulative doses of cytarabine greater than 30 g/m2 and etoposide greater than 1,500 mg/m2 were associated with lower CIR rates and better probability of event-free survival. Conclusion Pediatric patients with t(8;21)-AML and additional del(9q) or additional +4 might not be considered at good risk. Patients with t(8;21)-AML likely benefit from protocols that have high doses of anthracyclines, etoposide, and cytarabine during induction, as well as from protocols comprising cumulative high doses of cytarabine and etoposide. PMID:26573082

  16. LET and ion-species dependence for mutation induction and mutation spectrum on hprt locus in normal human fibroblasts.

    PubMed

    Tsuruoka, Chizuru; Suzuki, Masao; Fujitaka, Kazunobu

    2004-11-01

    We have been studying LET and ion species dependence of RBE in mutation frequency and mutation spectrum of deletion pattern of exons in hprt locus. Normal human skin fibroblasts were irradiated with heavy-ion beams, such as carbon- (290 MeV/u and 135 MeV/u), neon- (230 MeV/u and 400 MeV/u), silicon- (490 MeV/u) and iron- (500 MeV/u) ion beams, generated by Heavy Ion Medical Accelerator in Chiba (HIMAC) at national Institute of Radiological Sciences (NIRS). Mutation induction in hprt locus was detected to measure 6-thioguanine resistant colonies and deletion spectrum of exons was analyzed by multiplex PCR. The LET-RBE curves of mutation induction for carbon- and neon-ion beams showed a peak around 75 keV/micrometers and 155 keV/micrometers, respectively. On the other hand, there observed no clear peak for silicon-ion beams. The deletion spectrum of exons was different in induced mutants among different ion species. These results suggested that quantitative and qualitative difference in mutation occurred when using different ion species even if similar LET values.

  17. Mutation induction in yeast by very heavy ions

    NASA Astrophysics Data System (ADS)

    Kiefer, J.

    1994-10-01

    Resistance to canavanine was studied in haploid yeast after exposure to heavy ions (argon to uranium) of energies between 1 and 10 MeV/u covering a LET-range up to about 10000 keV/μm. Mutations were found in all instances but the induction cross sections increased with ion energy. This is taken to mean that the contribution of penumbra electrons plays an important role. The probability to recover surviving mutants is highest if the cell is not directly hit by the particle. The experiments demonstrate that the geometrical dimensions of the target cell nucleus as well as its sensitivity in terms of survival have a critical influence on mutation induction with very heavy ions.

  18. Functional Relevance of Improbable Antibody Mutations for HIV Broadly Neutralizing Antibody Development.

    PubMed

    Wiehe, Kevin; Bradley, Todd; Meyerhoff, R Ryan; Hart, Connor; Williams, Wilton B; Easterhoff, David; Faison, William J; Kepler, Thomas B; Saunders, Kevin O; Alam, S Munir; Bonsignori, Mattia; Haynes, Barton F

    2018-06-13

    HIV-1 broadly neutralizing antibodies (bnAbs) require high levels of activation-induced cytidine deaminase (AID)-catalyzed somatic mutations for optimal neutralization potency. Probable mutations occur at sites of frequent AID activity, while improbable mutations occur where AID activity is infrequent. One bottleneck for induction of bnAbs is the evolution of viral envelopes (Envs) that can select bnAb B cell receptors (BCR) with improbable mutations. Here we define the probability of bnAb mutations and demonstrate the functional significance of key improbable mutations in three bnAb B cell lineages. We show that bnAbs are enriched for improbable mutations, which implies that their elicitation will be critical for successful vaccine induction of potent bnAb B cell lineages. We discuss a mutation-guided vaccine strategy for identification of Envs that can select B cells with BCRs that have key improbable mutations required for bnAb development. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Sequential inductions of the ZEB1 transcription factor caused by mutation of Rb and then Ras proteins are required for tumor initiation and progression.

    PubMed

    Liu, Yongqing; Sánchez-Tilló, Ester; Lu, Xiaoqin; Huang, Li; Clem, Brian; Telang, Sucheta; Jenson, Alfred B; Cuatrecasas, Miriam; Chesney, Jason; Postigo, Antonio; Dean, Douglas C

    2013-04-19

    Rb1 restricts cell cycle progression, and it imposes cell contact inhibition to suppress tumor outgrowth. It also triggers oncogene-induced senescence to block Ras mutation. Loss of the Rb1 pathway, which is a hallmark of cancer cells, then provides a permissive environment for Ras mutation, and Ras is sufficient for invasive tumor formation in Rb1 family mutant mouse embryo fibroblasts (MEFs). These results demonstrate that sequential mutation of the Rb1 and Ras pathways comprises a tumor initiation axis. Both Rb1 and Ras regulate expression of the transcription factor ZEB1, thereby linking tumor initiation to the subsequent invasion and metastasis, which is induced by ZEB1. ZEB1 acts in a negative feedback loop to block expression of miR-200, which is thought to facilitate tumor invasion and metastasis. However, ZEB1 also represses cyclin-dependent kinase (cdk) inhibitors to control the cell cycle; its mutation in MEFs leads to induction of these inhibitors and premature senescence. Here, we provide evidence for two sequential inductions of ZEB1 during Ras transformation of MEFs. Rb1 constitutively represses cdk inhibitors, and induction of ZEB1 when the Rb1 pathway is lost is required to maintain this repression, allowing for the classic immortalization and loss of cell contact inhibition seen when the Rb1 pathway is lost. In vivo, we show that this induction of ZEB1 is required for Ras-initiated tumor formation. ZEB1 is then further induced by Ras, beyond the level seen with Rb1 mutation, and this Ras superinduction is required to reach a threshold of ZEB1 sufficient for repression of miR-200 and tumor invasion.

  20. Kinetics of mutation induction by ultraviolet light in excision-deficient yeast.

    PubMed

    Eckardt, F; Haynes, R H

    1977-02-01

    We have measured the frequency of UV-induced reversions (locus plus suppressor) for the ochre alleles ade2-1 and lys2-1 and forward mutations (ade2 adex double auxotrophs) in an excision-deficient strain of Saccharomyces cerevisiae (rad2-20). For very low UV doses, both mutational systems exhibit linear induction kinetics. However, as the dose increases, a strikingly different response is observed: in the selective reversion system a transition to higher order induction kinetics occurs near 9 ergs/mm2 (25% survival), whereas in the nonselective forward system the mutation frequency passes through a maximum near 14 ergs/mm2 (4.4% survival) and then declines. This contrast in kinetics cannot be explained in any straightforward way by current models of induced mutagenesis, which have been developed primarily on the basis of bacterial data. The bacterial models are designed to accommodate the quadratic induction kinetics that are frequently observed in these systems. We have derived a mathematical expression for mutation frequency that enables us to fit both the forward and reversion data on the assumptions that mutagenesis is basically a "single event" Poisson process, and that mutation and killing are not necessarily independent of one another. In particular, the dose-response relations are consistent with the idea that the sensitivity of the revertants is about 25% less than that of the original cell population, whereas the sensitivity of the forward mutants is about 29% greater than the population average. We argue that this relatively small differential sensitivity of mutant and nonmutant cells is associated with events that take place during mutation expression and clonal growth.

  1. Mutation induction in haploid yeast after split-dose radiation exposure. II. Combination of UV-irradiation and X-rays.

    PubMed

    Keller, B; Zölzer, F; Kiefer, J

    2004-01-01

    Split-dose protocols can be used to investigate the kinetics of recovery from radiation damage and to elucidate the mechanisms of cell inactivation and mutation induction. In this study, a haploid strain of the yeast, Saccharomyces cerevisiae, wild-type with regard to radiation sensitivity, was irradiated with 254-nm ultraviolet (UV) light and then exposed to X-rays after incubation for 0-6 hr. The cells were incubated either on nutrient medium or salt agar between the treatments. Loss of reproductive ability and mutation to canavanine resistance were measured. When the X-ray exposure immediately followed UV-irradiation, the X-ray survival curves had the same slope irrespective of the pretreatment, while the X-ray mutation induction curves were changed from linear to linear quadratic with increasing UV fluence. Incubations up to about 3 hr on nutrient medium between the treatments led to synergism with respect to cell inactivation and antagonism with respect to mutation, but after 4-6 hr the two treatments acted independently. Incubation on salt agar did not cause any change in the survival curves, but there was a strong suppression of X-ray-induced mutation with increasing UV fluence. On the basis of these results, we suggest that mutation after combined UV and X-ray exposure is affected not only by the induction and suppression of DNA repair processes, but also by radiation-induced modifications of cell-cycle progression and changes in the expression of the mutant phenotype. Copyright 2004 Wiley-Liss, Inc.

  2. Naturally occurring mutation affecting the MyD88-binding site of TNFRSF13B impairs triggering of class switch recombination

    PubMed Central

    Almejun, Maria B.; Cols, Montserrat; Zelazko, Marta; Oleastro, Matias; Cerutti, Andrea; Oppezzo, Pablo; Cunningham-Rundles, Charlotte; Danielian, Silvia

    2013-01-01

    Mutations in the transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) were previously found to be associated with hypogammaglobulinemia in humans. It has been shown that proliferation inducing ligand (APRIL) elicits class switch recombination (CSR) by inducing recruitment of MyD88 to a TACI highly conserved cytoplasmic domain (THC). We have identified a patient with hypogammaglobulinemia carrying a missense mutation (S231R) predicted to affect the THC. Aiming to evaluate the relevance of this novel mutation of TACI in CSR induction, we tested the ability of TACI, TLR9, or/and CD40 ligands to trigger CSR in naive B cells and B-cell lines carrying S231R. IgG secretion was impaired when triggered by TACI or/and TLR9 ligands on S231R-naive B cells. Likewise, these stimuli induced less expression of activation-induced cytidine deaminase, I(γ)1-C(μ), and I(γ)1-C(μ), while induction by optimal CD40 stimulation was indistinguishable from controls. These cells also showed an impaired cooperation between TACI and TLR9 pathways, as well as a lack of APRIL-mediated enhancement of CD40 activation in suboptimal conditions. Finally, after APRIL ligation, S231R-mutated TACI failed to colocalize with MyD88. Collectively, these results highlight the requirement of an intact MyD88-binding site in TACI to trigger CSR. PMID:23225259

  3. Induced mutations in mice and genetic risk assessment in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selby, P.B.

    1980-01-01

    In studies on mice, in contrast to studies on humans, it is possible to perform carefully controlled experiments with the exposures one desires. The necessity for having separate mammalian tests for looking at the induction of gene mutations and small deficiencies, and at the induction of chromosomal aberrations, is obvious. Mutagens can differ as to which of these types of damage they are more likely to cause. The reason for focusing attention on the mouse in a discussion of hazard from induced gene mutations and small deficiencies is the existence of techniques in this mammal for readily studying the inductionmore » of such genetic effects. Many mutations at the molecular level cause no apparent changes at the gene-product level and many mutations that cause changes at the gene-product level cause no detectable phenotypic changes in heterozygotes. Many dominant mutations that change the phenotype cause no serious handicap. For these reasons, risk estimation for important chemicals must rely heavily on studies on the induction of those germinal mutations in mammals that are easily related to human dominant disorders, such as skeletal and cataract mutations. Molecular or enzyme studies cannot provide definitive answers about risk. The specific-locus method should help greatly in assessing the genetic risks to humans from chemicals. The new sensitive-indicator method should complement it in providing a tool for attacking the question of what treatments induce gene mutations and small deficiencies and for approximating first-generation damage to the skeleton. (ERB)« less

  4. Exploring environmental causes of altered ras effects: fragmentation plus integration?

    PubMed

    Porta, Miquel; Ayude, Daniel; Alguacil, Juan; Jariod, Manuel

    2003-02-01

    Mutations in ras genes are the most common abnormality of oncogenes in human cancer and a major example of activation by point mutation. Experimental and epidemiological studies support the notion that Ki-ras activation and expression may be chemically related. We discuss the potential role of several environmental compounds in the induction or promotion of ras mutations in humans, with a focus on exocrine pancreatic cancer, the human tumor with the highest prevalence at diagnosis of Ki-ras mutations. Organochlorine compounds, organic solvents, and coffee compounds may play an indirect role in causing Ki-ras mutations, rather than as direct inducers of the mutations. Although for some organochlorine compounds the induction of point mutations in ras oncogenes cannot be excluded, it seems more likely that the effects of these compounds are mediated through nongenomic or indirectly genotoxic mechanisms of action. Organic solvents also may act via enzymatic induction of ras mutagens or by providing a proliferation advantage to ras-mutated cell clones. In exocrine pancreatic cancer, caffeine, other coffee compounds, or other factors with which coffee drinking is associated could modulate Ki-ras activation by interfering with DNA repair, cell-cycle checkpoints, and apoptosis. Asbestos, cigarette smoking, and some dietary factors also may be involved in the initiation or the promotion of Ki-ras mutations in lung and colon cancers. Further development of the mechanistic scenarios proposed here could contribute to a meaningful integration of biological, clinical, and environmental knowledge on the causes of altered ras effects. Copyright 2003 Wiley-Liss, Inc.

  5. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    EPA Science Inventory

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene

    Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  6. Utilization of a quantitative mammalian cell mutation system, CHO/HGPRT, in experimental mutagenesis and genetic toxicology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsie, A. W.; Couch, D. B.; O'Neill, J. P.

    1977-01-01

    Development of the CHO/HGPRT system is described and a host-mediated CHO/HGPRT assay is discussed. The following topics are discussed: evidence for the genetic origin of mutation induction in the CHO/HGPRT system; dose-response relationship for EMS-mediated mutation induction and cell lethality; apparent dosimetry of EMS-induced mutagenesis; structure-activity relationship of alkylating agents and ICR compounds; mutagenicity and cytotoxicity of congeners of two classes of nitrosi compounds; and preliminary validation of the CHO/HGPRT assay in predicting chemical carcinogenicity. (HLW)

  7. Uncoupling thermotolerance from the induction of heat shock proteins.

    PubMed Central

    Smith, B J; Yaffe, M P

    1991-01-01

    Exposure of cells to elevated temperatures causes a rapid increase in the synthesis of heat shock proteins (hsps) and induces thermotolerance, the increased ability of cells to survive exposure to lethal temperatures; however, the connection between hsp induction and the acquisition of thermotolerance is unclear. hsp induction in the yeast Saccharomyces cerevisiae is mediated by the activation of heat-shock transcription factor, and recently we have described a mutation, hsf1-m3, in heat-shock transcription factor that prevents the factor's activation. We now demonstrate that this mutation results in a general block in heat-shock induction but does not affect the acquisition of thermotolerance. Our results indicate that high-level induction of the major hsps is not required for cells to acquire thermotolerance. Images PMID:1763024

  8. A somatic T15091C mutation in the Cytb gene of mouse mitochondrial DNA dominantly induces respiration defects.

    PubMed

    Hayashi, Chisato; Takibuchi, Gaku; Shimizu, Akinori; Mito, Takayuki; Ishikawa, Kaori; Nakada, Kazuto; Hayashi, Jun-Ichi

    2015-08-07

    Our previous studies provided evidence that mammalian mitochondrial DNA (mtDNA) mutations that cause mitochondrial respiration defects behave in a recessive manner, because the induction of respiration defects could be prevented with the help of a small proportion (10%-20%) of mtDNA without the mutations. However, subsequent studies found the induction of respiration defects by the accelerated accumulation of a small proportion of mtDNA with various somatic mutations, indicating the presence of mtDNA mutations that behave in a dominant manner. Here, to provide the evidence for the presence of dominant mutations in mtDNA, we used mouse lung carcinoma P29 cells and examined whether some mtDNA molecules possess somatic mutations that dominantly induce respiration defects. Cloning and sequence analysis of 40-48 mtDNA molecules from P29 cells was carried out to screen for somatic mutations in protein-coding genes, because mutations in these genes could dominantly regulate respiration defects by formation of abnormal polypeptides. We found 108 missense mutations existing in one or more of 40-48 mtDNA molecules. Of these missense mutations, a T15091C mutation in the Cytb gene was expected to be pathogenic due to the presence of its orthologous mutation in mtDNA from a patient with cardiomyopathy. After isolation of many subclones from parental P29 cells, we obtained subclones with various proportions of T15091C mtDNA, and showed that the respiration defects were induced in a subclone with only 49% T15091C mtDNA. Because the induction of respiration defects could not be prevented with the help of the remaining 51% mtDNA without the T15091C mutation, the results indicate that the T15091C mutation in mtDNA dominantly induced the respiration defects. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A Genetic Approach to Promoter Recognition during Trans Induction of Viral Gene Expression

    NASA Astrophysics Data System (ADS)

    Coen, Donald M.; Weinheimer, Steven P.; McKnight, Steven L.

    1986-10-01

    Viral infection of mammalian cells entails the regulated induction of viral gene expression. The induction of many viral genes, including the herpes simplex virus gene encoding thymidine kinase (tk), depends on viral regulatory proteins that act in trans. Because recognition of the tk promoter by cellular transcription factors is well understood, its trans induction by viral regulatory proteins may serve as a useful model for the regulation of eukaryotic gene expression. A comprehensive set of mutations was therefore introduced into the chromosome of herpes simplex virus at the tk promoter to directly analyze the effects of promoter mutations on tk transcription. The promoter domains required for efficient tk expression under conditions of trans induction corresponded to those important for recognition by cellular transcription factors. Thus, trans induction of tk expression may be catalyzed initially by the interaction of viral regulatory proteins with cellular transcription factors.

  10. Rapid expansion of preexisting nonleukemic hematopoietic clones frequently follows induction therapy for de novo AML.

    PubMed

    Wong, Terrence N; Miller, Christopher A; Klco, Jeffery M; Petti, Allegra; Demeter, Ryan; Helton, Nichole M; Li, Tiandao; Fulton, Robert S; Heath, Sharon E; Mardis, Elaine R; Westervelt, Peter; DiPersio, John F; Walter, Matthew J; Welch, John S; Graubert, Timothy A; Wilson, Richard K; Ley, Timothy J; Link, Daniel C

    2016-02-18

    There is interest in using leukemia-gene panels and next-generation sequencing to assess acute myelogenous leukemia (AML) response to induction chemotherapy. Studies have shown that patients with AML in morphologic remission may continue to have clonal hematopoiesis with populations closely related to the founding AML clone and that this confers an increased risk of relapse. However, it remains unknown how induction chemotherapy influences the clonal evolution of a patient's nonleukemic hematopoietic population. Here, we report that 5 of 15 patients with genetic clearance of their founding AML clone after induction chemotherapy had a concomitant expansion of a hematopoietic population unrelated to the initial AML. These populations frequently harbored somatic mutations in genes recurrently mutated in AML or myelodysplastic syndromes and were detectable at very low frequencies at the time of AML diagnosis. These results suggest that nonleukemic hematopoietic stem and progenitor cells, harboring specific aging-acquired mutations, may have a competitive fitness advantage after induction chemotherapy, expand, and persist long after the completion of chemotherapy. Although the clinical importance of these "rising" clones remains to be determined, it will be important to distinguish them from leukemia-related populations when assessing for molecular responses to induction chemotherapy. © 2016 by The American Society of Hematology.

  11. [Hygienic evaluation of the total mutagenic activity of snow samples from Magnitogorsk].

    PubMed

    Legostaeva, T B; Ingel', F I; Antipanova, N A; Iurchenko, V V; Iuretseva, N A; Kotliar, N N

    2010-01-01

    The paper gives the results of 4-year monitoring of the total mutagenic activity of snow samples from different Magnitogork areas in a test for induction of dominant lethal mutations (DLM) in the gametes of Drosophila melanogaster. An association was first found between the rate of DLM and the content of some chemical compounds in the ambient air and snow samples; moreover all the substances present in the samples, which had found genotoxic effects, showed a positive correlation with the rate of DLM. Furthermore, direct correlations were first established between the rate of DLM and the air pollution index and morbidity rates in 5-7-year-old children residing in the areas under study. The findings allow the test for induction of dominant lethal mutations (DLM) in the gametes of Drosophila melanogaster to be recommended due to its unique informative and prognostic value for monitoring ambient air pollution and for extensive use in the risk assessment system.

  12. HISTORY OF GERM CELL MUTAGENESIS

    EPA Science Inventory

    Much of the early work on germ cell mutation analysis was conducted with nonmammalian species, but this historical overview will begin with the rodent studies that provided quantitative data on induced mutations. The initial studies of mutation induction utilized the newly develo...

  13. Abnormal RNA splicing and genomic instability after induction of DNMT3A mutations by CRISPR/Cas9 gene editing.

    PubMed

    Banaszak, Lauren G; Giudice, Valentina; Zhao, Xin; Wu, Zhijie; Gao, Shouguo; Hosokawa, Kohei; Keyvanfar, Keyvan; Townsley, Danielle M; Gutierrez-Rodrigues, Fernanda; Fernandez Ibanez, Maria Del Pilar; Kajigaya, Sachiko; Young, Neal S

    2018-03-01

    DNA methyltransferase 3A (DNMT3A) mediates de novo DNA methylation. Mutations in DNMT3A are associated with hematological malignancies, most frequently acute myeloid leukemia. DNMT3A mutations are hypothesized to establish a pre-leukemic state, rendering cells vulnerable to secondary oncogenic mutations and malignant transformation. However, the mechanisms by which DNMT3A mutations contribute to leukemogenesis are not well-defined. Here, we successfully created four DNMT3A-mutated K562 cell lines with frameshift mutations resulting in truncated DNMT3A proteins. DNMT3A-mutated cell lines exhibited significantly impaired growth and increased apoptotic activity compared to wild-type (WT) cells. Consistent with previous studies, DNMT3A-mutated cells displayed impaired differentiation capacity. RNA-seq was used to compare transcriptomes of DNMT3A-mutated and WT cells; DNMT3A ablation resulted in downregulation of genes involved in spliceosome function, causing dysfunction of RNA splicing. Unexpectedly, we observed DNMT3A-mutated cells to exhibit marked genomic instability and an impaired DNA damage response compared to WT. CRISPR/Cas9-mediated DNMT3A-mutated K562 cells may be used to model effects of DNMT3A mutations in human cells. Our findings implicate aberrant splicing and induction of genomic instability as potential mechanisms by which DNMT3A mutations might predispose to malignancy. Published by Elsevier Inc.

  14. Association of mutations with morphological dysplasia in de novo acute myeloid leukemia without 2016 WHO Classification-defined cytogenetic abnormalities

    PubMed Central

    Weinberg, Olga K.; Gibson, Christopher J.; Blonquist, Traci M.; Neuberg, Donna; Pozdnyakova, Olga; Kuo, Frank; Ebert, Benjamin L.; Hasserjian, Robert P.

    2018-01-01

    Despite improvements in our understanding of the molecular basis of acute myeloid leukemia (AML), the association between genetic mutations with morphological dysplasia remains unclear. In this study, we evaluated and scored dysplasia in bone marrow (BM) specimens from 168 patients with de novo AML; none of these patients had cytogenetic abnormalities according to the 2016 World Health Organization Classification. We then performed targeted sequencing of diagnostic BM aspirates for recurrent mutations associated with myeloid malignancies. We found that cohesin pathway mutations [q (FDR-adjusted P)=0.046] were associated with a higher degree of megakaryocytic dysplasia and STAG2 mutations were marginally associated with greater myeloid lineage dysplasia (q=0.052). Frequent megakaryocytes with separated nuclear lobes were more commonly seen among cases with cohesin pathway mutations (q=0.010) and specifically in those with STAG2 mutations (q=0.010), as well as NPM1 mutations (q=0.022 when considering the presence of any vs. no megakaryocytes with separated nuclear lobes). RAS pathway mutations (q=0.006) and FLT3-ITD (q=0.006) were significantly more frequent in cases without evaluable erythroid cells. In univariate analysis of the 153 patients treated with induction chemotherapy, NPM1 mutations were associated with longer event-free survival (EFS) (P=0.042), while RUNX1 (P=0.042), NF1 (P=0.040), frequent micromegakaryocytes (P=0.018) and presence of a subclone (P=0.002) were associated with shorter EFS. In multivariable modeling, NPM1 was associated with longer EFS, while presence of a subclone and frequent micromegakaryocytes remained significantly associated with shorter EFS. PMID:29326119

  15. Effects of near-ultraviolet light on mutations, intragenic and intergenic recombinations in Saccharomyces cerevisiae.

    PubMed

    Machida, I; Saeki, T; Nakai, S

    1986-03-01

    The effects of far (254 nm) and near (290-350 nm) ultraviolet (UV) light on mutations, intragenic and intergenic recombinations were compared in diploid strains of Saccharomyces cerevisiae. At equivalent survival levels there was not much difference in the induction of nonsense and missense mutations between far- and near-UV radiations. However, frameshift mutations were induced more frequently by near-UV than by far-UV radiation. Near-UV radiation induced intragenic recombination (gene conversion) as efficiently as far-UV radiation and the induced levels were similar in both radiations at equitoxic doses. A strikingly higher frequency was observed for the intergenic recombination induced by near-UV radiation than by far-UV radiation when compared at equivalent survival levels. Photoreactivation reduced the frequency only slightly in far-UV induced intergenic recombination and not at all in near-UV induction. These results indicate that near-UV damage involves strand breakage in addition to pyrimidine dimers and other lesions induced, whereas far-UV damage consists largely of photoreactivable lesions, pyrimidine dimers, and near-UV induced damage is more efficient for the induction of crossing-over.

  16. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. III. Dose-response pattern of mutation induction in UV-irradiated rev2ts cells.

    PubMed

    Siede, W; Eckardt, F

    1986-01-01

    Recent studies regarding the influence of cycloheximide on the temperature-dependent increase in survival and mutation frequencies of a thermoconditional rev2 mutant lead to the suggestion that the REV2-coded mutagenic repair function is UV-inducible. In the present study we show that stationary-phase rev2ts cells are characterized by a biphasic linear-quadratic dose-dependence of mutation induction ("mutation kinetics") of ochre alleles at 23 degrees C (permissive temperature) but linear kinetics at the restrictive temperature of 36 degrees C. Mathematical analysis using a model based on Poisson statistics and a further mathematical procedure, the calculation of "apparent survival", support the assumption that the quadratic component of the reverse mutation kinetics investigated can be attributed to a UV-inducible component of mutagenic DNA repair controlled by the REV2 gene.

  17. Mutagenic effect of accelerated heavy ions on bacterial cells

    NASA Astrophysics Data System (ADS)

    Boreyko, A. V.; Krasavin, E. A.

    2011-11-01

    The heavy ion accelerators of the Joint Institute for Nuclear Research were used to study the regularities and mechanisms of formation of different types of mutations in prokaryote cells. The induction of direct (lac-, ton B-, col B) mutations for Esherichia coli cells and reverse his- → His+ mutations of Salmonella typhimurium, Bacillus subtilis cells under the action of radiation in a wide range of linear energy transfer (LET) was studied. The regularities of formation of gene and structural (tonB trp-) mutations for Esherichia coli bacteria under the action of accelerated heavy ions were studied. It was demonstrated that the rate of gene mutations as a function of the dose under the action of Γ rays and accelerated heavy ions is described by linear-quadratic functions. For structural mutations, linear "dose-effect" dependences are typical. The quadratic character of mutagenesis dose curves is determined by the "interaction" of two independent "hitting" events in the course of SOS repair of genetic structures. The conclusion made was that gene mutations under the action of accelerated heavy ions are induced by δ electron regions of charged particle tracks. The methods of SOS chromotest, SOS lux test, and λ prophage induction were used to study the regularities of SOS response of cells under the action of radiations in a wide LET range. The following proposition was substantiated: the molecular basis for formation of gene mutations are cluster single-strand DNA breaks, and that for structural mutations, double-strand DNA breaks. It was found out that the LET dependence of the relative biological efficiency of accelerated ions is described by curves with a local maximum. It was demonstrated that the biological efficiency of ionizing radiations with different physical characteristics on cells with different genotype, estimated by the lethal action, induction of gene and deletion mutations, precision excision of transposons, is determined by the specific features of energy transfer of the radiations that affect the character of induced DNA damage, and the efficiency inducible and constitutive cell repair systems. The growth of relative biological efficiency of heavy charged particles is determined by the growth of the damage yield of the DNA participating in the formation of radiation-induced effects, and higher efficiency of inducible repair systems. It was established that the LET value ( L max) for which the maximum (according to the applied irradiation criteria) coefficients of relative biological efficiency are observed varies depending on the character of the registered radiation induced effect. It was demonstrated that for gene mutations and induction of precision excision of mobile elements the values of L max are realized in a LET range of ≈20 keV/μm. For lethal effects of irradiation and induction of deletion mutations the value of L max is ≈ 100 and 50 keV/μm, respectively. The differences in the L max for the studied radiation gene effectis are determined by the different type of DNA damage participating in the mutation process. A molecular model of the formation of gene mutations in Escherichia coli cells under the action of ionizing radiation was proposed. Basic DNA radiation damage and main repair ways were considered in the framework of this model. The basis is the idea of the decisive role of mutagenic, error-prone, branch of SOS repair in fixing premutation DNA damage into point mutations. It was demonstrated that the central mechanism in this process is the formation of an inducible multi-enzymatic complex including the DNA polymerase V (Umu C), RecA-protease, SSB proteins, subunits of DNA polymerase III, performing erroneous DNA synthesis on the damaged matrix. A mathematical model of induction of gene mutations under ultraviolet cell irradiation was developed based on the molecular model.

  18. Mutation induction in bacteria after heavy ion irradiation

    NASA Technical Reports Server (NTRS)

    Horneck, G.; Kozubek, S.

    1994-01-01

    From a compilation of experimental data on the mutagenic effects of heavy ions in bacteria, main conclusions have been drawn as follows: (1) The mutagenic efficacy of heavy ions in bacteria depends on physical and biological variables. Physical variables are the radiation dose, energy and charge of the ion; the biological variables are the bacterial strain, the repair genotype of bacteria, and the endpoint investigated (type of mutation, induction of enzymes related to mutagenesis); (2) The responses on dose or fluence are mainly linear or linear quadratic. The quadratic component, if found for low LET radiation, is gradually reduced with increasing LET; (3) At low values of Z and LET the cross section of mutation induction sigma m (as well as SOS response, sigma sos. and lambda phage induction, sigma lambda versus LET curves can be quite consistently described by a common function which increases up to approximately 100 keV/mu m. For higher LET values, the sigma(m) versus LET curves show the so-called 'hooks' observed also for other endpoints; (4) For light ions (Z is less than or equal to 4), the cross sections mostly decrease with increasing ion energy, which is probably related to the decrease of the specific energy departed by the ion inside the sensitive volume (cell). For ions in the range of Z = 10, sigma(m) is nearly independent on the ion energy. For heavier ions (Z is greater than or equal to 16), sigma(m) increases with the energy up to a maximum or saturation around 10 MeV/u. The increment becomes steeper with increasing atomic number of the ion. It correlates with the increasing track radius of the heavy ion; (5) The mutagenic efficiency per lethal event changes slightly with ion energy, if Z is small indicating a rough correlation between cellular lethality and mutation induction, only. For ions of higher Z this relation increases with energy, indicating a change in the 'mode' of radiation action from 'killing-prone' to 'mutation-prone'; and (6) Repair genotype substantially influences the radiation induced mutagenesis. Different mechanisms of mutation induction and/or different types of biologically significant lesions in wild type cells compared to repair deficient strains are a likely explanation.

  19. Ultraviolet Radiation Induction of Mutation in Penicillium Claviforme.

    ERIC Educational Resources Information Center

    New, June; Jolley, Ray

    1986-01-01

    Cites reasons why Penicillium claviforme is an exceptionally good species for ultraviolet induced mutation experiments. Provides a set of laboratory instructions for teachers and students. Includes a discussion section. (ML)

  20. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  1. Genetic analysis of tissue interactions required for otic placode induction in the zebrafish.

    PubMed

    Mendonsa, E S; Riley, B B

    1999-02-01

    Development of the vertebrate inner ear begins during gastrulation with induction of the otic placode. Several embryonic tissues, including cephalic mesendoderm, notochord, and hindbrain, have been implicated as potential sources of otic-inducing signals. However, the relative contributions of these tissues have not been determined, nor have any genes affecting placode induction been identified. To address these issues, we analyzed otic placode induction in zebrafish mutants that are deficient in prospective otic-inducing tissues. Otic development was monitored by examining mutant embryos for morphological changes and, in some cases, by visualizing expression patterns of dlx-3 or pax-2.1 in preotic cells several hours before otic placode formation. In cyclops (cyc-) mutants, which develop with a partial deficiency of prechordal mesendoderm, otic induction is delayed by up to 1 h. In one-eyed pinhead (oep-) mutants, which are more completely deficient in prechordal mesendoderm, otic induction is delayed by 1.5 h, and morphology of the otic vesicles is abnormal. Expression of marker genes in other regions of the neural plate is normal, suggesting that ablation of prechordal mesendoderm selectively inhibits otic induction. In contrast, the timing and morphology of otic development is not affected by mutations in no tail (ntl) or floating head (flh), which prevent notochord differentiation. Similarly, a mutation in valentino (val), which blocks early differentiation of rhombomeres 5 and 6 in the hindbrain, does not delay otic induction, although subsequent patterning of the otic vesicle is impaired. To test whether inductive signals from one tissue can compensate for loss of another, we generated double or triple mutants with various combinations of the above mutations. In none of the multiple mutants do the flh or val mutations exacerbate delays in placode induction, although val does contribute additively to defects in subsequent patterning of the otic vesicle. In contrast, mutants homozygous for both oep and ntl, which interact synergistically to disrupt differentiation of cephalic and axial mesendoderm, show a delay in otic development of about 3 h. These data suggest that cephalic mesendoderm, including prechordal mesendoderm and anterior paraxial mesendoderm, provides the first otic-inducing signals during gastrulation, whereas chordamesoderm plays no discernible role in this process. Because val- mutants are deficient for only a portion of the hindbrain, we cannot rule out a role for that tissue in otic placode induction. However, if the hindbrain does provide otic-inducing signals, they apparently differ quantitatively or qualitatively from the signals required for vesicle patterning, as val disrupts only the latter. Copyright 1999 Academic Press.

  2. ELANE mutant-specific activation of different UPR pathways in congenital neutropenia.

    PubMed

    Nustede, Rainer; Klimiankou, Maksim; Klimenkova, Olga; Kuznetsova, Inna; Zeidler, Cornelia; Welte, Karl; Skokowa, Julia

    2016-01-01

    A number of studies have demonstrated induction of the unfolded protein response (UPR) in patients with severe congenital neutropenia (CN) harbouring mutations of ELANE, encoding neutrophil elastase. Why UPR is not activated in patients with cyclic neutropenia (CyN) carrying the same ELANE mutations is unclear. We evaluated the effects of ELANE mutants on UPR induction in myeloid cells from CN and CyN patients, and analysed whether additional CN-specific defects contribute to the differences in UPR induction between CN and CyN patients harbouring identical ELANE mutations. We investigated CN-specific p.C71R and p.V174_C181del (NP_001963.1) and CN/CyN-shared p.S126L (NP_001963.1) ELANE mutants. We found that transduction of haematopoietic cells with p.C71R, but not with p.V174_C181del or p.S126L ELANE mutants induced expression of ATF6, and the ATF6 target genes PPP1R15A, DDIT3 and HSPA5. Recently, we found that levels of secretory leucocyte protease inhibitor (SLPI), a natural ELANE inhibitor, are diminished in myeloid cells from CN patients, but not CyN patients. Combined knockdown of SLPI by shRNA and transduction of ELANE p.S126L in myeloid cells led to elevated levels of ATF6, PPP1R15A and HSPA5 RNA, suggesting that normal levels of SLPI in CyN patients might protect them from the UPR induced by mutant ELANE. In summary, different ELANE mutants have different effects on UPR activation, and SLPI regulates the extent of ELANE-triggered UPR. © 2015 John Wiley & Sons Ltd.

  3. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. IV. Influence of DNA replication and excision repair on REV2 dependent UV-mutagenesis and repair.

    PubMed

    Siede, W; Eckardt, F

    1986-01-01

    A double mutant being thermoconditionally defective in mutation induction as well as in repair of pre-lethal UV-induced DNA damage (rev2ts) and deficient in excision repair (rad3-2) was studied in temperature-shift experiments. The influence of inhibitors of DNA replication (hydroxyurea, aphidicolin) was determined. Additionally, an analysis of the dose-response pattern of mutation induction ("mutation kinetics") at several ochre alleles was carried out. It was concluded that the UV-inducible REV2 dependent mutagenic repair process is not induced in excision-deficient cells. In excision-deficient cells, REV2 dependent mutation fixation is slow and mostly post-replicative though not dependent on DNA replication. The REV2 mediated mutagenic process could be separated from the repair function.

  4. Mutations in the S gene region of hepatitis B virus genotype D in Turkish patients.

    PubMed

    Ozaslan, Mehmet; Ozaslan, Ersan; Barsgan, Arzu; Koruk, Mehmet

    2007-12-01

    The S gene region of the hepatitis B virus (HBV) is responsible for the expression of surface antigens and includes the 'a'-determinant region. Thus, mutation(s) in this region would afford HBV variants a distinct survival advantage, permitting the mutant virus to escape from the immune system. The aim of this study was to search for mutations of the S gene region in different patient groups infected with genotype D variants of HBV, and to analyse the biological significance of these mutations. Moreover, we investigated S gene mutation inductance among family members. Forty HBV-DNA-positive patients were determined among 132 hepatitis B surface antigen (HbsAg) carriers by the first stage of seminested PCR. Genotypes and subtypes were established by sequencing of the amplified S gene regions. Variants were compared with original sequences of these serotypes, and mutations were identified. All variants were designated as genotype D and subtype ayw3. Ten kinds of point mutations were identified within the S region. The highest rates of mutation were found in chronic hepatitis patients and their family members. The amino acid mutations 125 (M -> T) and 127 (T -> P) were found on the first loop of 'a'-determinant. The other consequence was mutation inductance in a family member. We found some mutations in the S gene region known to be stable and observed that some of these mutations affected S gene expression.

  5. Radiation-induced total-deletion mutations in the human hprt gene: a biophysical model based on random walk interphase chromatin geometry

    NASA Technical Reports Server (NTRS)

    Wu, H.; Sachs, R. K.; Yang, T. C.

    1998-01-01

    PURPOSE: To develop a biophysical model that explains the sizes of radiation-induced hprt deletions. METHODS: Key assumptions: (1) Deletions are produced by two DSB that are closer than an interaction distance at the time of DSB induction; (2) Interphase chromatin is modelled by a biphasic random walk distribution; and (3) Misrejoining of DSB from two separate tracks dominates at low-LET and misrejoining of DSB from a single track dominates at high-LET. RESULTS: The size spectra for radiation-induced total deletions of the hprt gene are calculated. Comparing with the results of Yamada and coworkers for gamma-irradiated human fibroblasts the study finds that an interaction distance of 0.75 microm will fit both the absolute frequency and the size spectrum of the total deletions. It is also shown that high-LET radiations produce, relatively, more total deletions of sizes below 0.5 Mb. The model predicts an essential gene to be located between 2 and 3 Mb from the hprt locus towards the centromere. Using the same assumptions and parameters as for evaluating mutation frequencies, a frequency of intra-arm chromosome deletions is calculated that is in agreement with experimental data. CONCLUSIONS: Radiation-induced total-deletion mutations of the human hprt gene and intrachange chromosome aberrations share a common mechanism for their induction.

  6. The induction of mutation and recombination following UV irradiation during meiosis in Saccharomyces cerevisiae.

    PubMed

    Kelly, S L; Parry, J M

    1983-03-01

    Irradiation of yeast cultures with ultraviolet light at discrete stages during meiosis produces cyclic variations in sensitivity, i.e. cells are more sensitive to the lethal effects of UV light prior to entry into the meiotic DNA synthesis, and this corresponds to a peak of induction of point mutation. Cells become more resistant to both induced point mutation and lethality as they enter meiotic DNA synthesis, but become more sensitive again during spore formation. The induced level of intragenic recombination rises during the period of commitment to recombination to a level indistinguishable from the full meiotic level of spontaneous intragenic recombination. Induced reciprocal recombination remains above the spontaneous level up to the point of commitment to sporulation.

  7. Feasibility Study of Sequentially Alternating EGFR-TKIs and Chemotherapy for Patients with Non-small Cell Lung Cancer.

    PubMed

    Takemura, Yoshizumi; Chihara, Yusuke; Morimoto, Yoshie; Tanimura, Keiko; Imabayashi, Tatsuya; Seko, Yurie; Kaneko, Yoshiko; Date, Koji; Ueda, Mikio; Arimoto, Taichiro; Iwasaki, Yoshinobu; Takayama, Koichi

    2018-04-01

    The purpose of this trial was to evaluate the feasibility and efficacy of alternating platinum-based doublet chemotherapy with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in patients with EGFR-mutant non-small cell lung cancer (NSCLC). Chemotherapy-naive patients with advanced NSCLC harboring an EGFR mutation were enrolled. All patients underwent induction chemotherapy by sequentially alternating pemetrexed/cisplatin/bevacizumab and EGFR-TKIs followed by maintenance therapy with pemetrexed/bevacizumab and EGFR-TKIs. The primary outcome was the completion rate of the induction therapy. Eighteen eligible patients were enrolled between May 2011 and March 2016. The completion rate of induction therapy was 72.2% (13/18). Unfortunately, one patient developed grade 4 acute renal injury, but no other serious complications concerning this protocol were observed. Furthermore, diarrhea, rashes, and hematological adverse effects were mild. The completion rate of induction therapy was promising. Alternating chemotherapy and EGFR-TKIs should be further investigated regarding feasibility and efficacy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. A novel class of Saccharomyces cerevisiae mutants specifically UV-sensitive to "petite" induction.

    PubMed

    Moustacchi, E; Perlman, P S; Mahler, H R

    1976-11-17

    A mutant of Saccharomyces cerevisiae has been isolated which, though exhibiting a normal response to nuclear genetic damage by ultraviolet light (UV), is more sensitive than its wild type specifically in the production of the cytoplasmic (rho-) mutation by this agent. Some of the features of this mutation which has been designated uvsrho 5 are: i) The mutation is recessive, it exhibits a Mendelian, and hence presumably nuclear, pattern of segregation, but manifests its effects specifically and pleiotropically on mitochondrial functions. ii) Mutant cells resemble their wild type parents in a) growth characteristics on glucose; b) in their UV induced dose response to lethality or nuclear mutation and c) the ability of their mitochondrial genome, upon mating with appropriate testers, of transmitting and recombining various markers, albeit with enhanced efficiency. Similarly, d) they are able to modulate the expression of mitochondrial mutagenesis by ethidium bromide. Thus their mitochondrial DNA appears genetically as competent as that of the wild type. iii) Mutant cells differ from their wild type parents in a) growth characteristics on glycerol; b) susceptibility to induction of the mitochondrial (rho-) mutation by various mutagens, in that the rate of spontaneous mutation is slightly and that by UV is significantly enhanced, whild that by ethidium bromide is greatly diminished. Conversely, c) modulating influences resulting in the repair of initial damage are diminished fro UV and stimulated in the case of Berenil. iv) The amount of mitochondrial DNA per cell appears elevated in the mutant, relative to wild type, and its rate of degradation subsequent to a mutagenic exposure to either UV or ethidium bromide is diminished. v) A self-consistent scheme to account for this and all other information so far available for the induction and modulation of the (rho-) mutation is presented. In a previous study it was shown that some nuclear mutants of Saccharomyces cerevisiae, more sensitive to lethal damage induced by ultraviolet light (rad) than their parent wild type (RAD), also exhibit a concomitant modification in sensitivity to both nuclear and cytoplasmic genetic damage (Moustacchi, 1971). However, another class of rad mutants respond to the induction of the cytoplasmic "petite" also designated as rho- (or rho-) mutation by UV in a manner indistinguishable from that of the RAD strain. One possible interpretation of this last observation is that some of the steps in the expression of the UV damage on mitochondrial (mt)DNA may be governed by other nuclear and cytoplasmic genetic determinants, the products of which may then act specifically on mitochondrial lesions. If this assumption is correct, it should be possible to find mutants with a normal response to nuclear damage but specifically UV-sensitive towards induction of (rho-)...

  9. Inducible DNA-repair systems in yeast: competition for lesions.

    PubMed

    Mitchel, R E; Morrison, D P

    1987-03-01

    DNA lesions may be recognized and repaired by more than one DNA-repair process. If two repair systems with different error frequencies have overlapping lesion specificity and one or both is inducible, the resulting variable competition for the lesions can change the biological consequences of these lesions. This concept was demonstrated by observing mutation in yeast cells (Saccharomyces cerevisiae) exposed to combinations of mutagens under conditions which influenced the induction of error-free recombinational repair or error-prone repair. Total mutation frequency was reduced in a manner proportional to the dose of 60Co-gamma- or 254 nm UV radiation delivered prior to or subsequent to an MNNG exposure. Suppression was greater per unit radiation dose in cells gamma-irradiated in O2 as compared to N2. A rad3 (excision-repair) mutant gave results similar to wild-type but mutation in a rad52 (rec-) mutant exposed to MNNG was not suppressed by radiation. Protein-synthesis inhibition with heat shock or cycloheximide indicated that it was the mutation due to MNNG and not that due to radiation which had changed. These results indicate that MNNG lesions are recognized by both the recombinational repair system and the inducible error-prone system, but that gamma-radiation induction of error-free recombinational repair resulted in increased competition for the lesions, thereby reducing mutation. Similarly, gamma-radiation exposure resulted in a radiation dose-dependent reduction in mutation due to MNU, EMS, ENU and 8-MOP + UVA, but no reduction in mutation due to MMS. These results suggest that the number of mutational MMS lesions recognizable by the recombinational repair system must be very small relative to those produced by the other agents. MNNG induction of the inducible error-prone systems however, did not alter mutation frequencies due to ENU or MMS exposure but, in contrast to radiation, increased the mutagenic effectiveness of EMS. These experiments demonstrate that in this lower eukaryote, mutagen exposure does not necessarily result in a fixed risk of mutation, but that the risk can be markedly influenced by a variety of external stimuli including heat shock or exposure to other mutagens.

  10. Multi-walled carbon nanotubes (NM401) induce ROS-mediated HPRT mutations in Chinese hamster lung fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio, Laura; El Yamani, Naouale; Kazimirova, Alena

    Although there is an important set of data showing potential genotoxic effects of nanomaterials (NMs) at the DNA (comet assay) and chromosome (micronucleus test) levels, few studies have been conducted to analyze their potential mutagenic effects at gene level. We have determined the ability of multi-walled carbon nanotubes (MWCNT, NM401), to induce mutations in the HPRT gene in Chinese hamster lung (V79) fibroblasts. NM401, characterized in the EU NanoGenotox project, were further studied within the EU Framework Programme Seven (FP7) project NANoREG. From the proliferation assay data we selected a dose-range of 0.12 to 12 µg/cm{sup 2} At these rangemore » we have been able to observe significant cellular uptake of MWCNT by using transmission electron microscopy (TEM), as well as a concentration-dependent induction of intracellular reactive oxygen species. In addition, a clear concentration-dependent increase in the induction of HPRT mutations was also observed. Data support a potential genotoxic/ carcinogenic risk associated with MWCNT exposure. - Highlights: • MWCNT were tested in V79 cells. • Cellular uptake of MWCNT was detected using TEM. • Intracellular ROS induction was observed after MWCNT exposure. • MWCNT induced a concentration-dependent increase of HPRT mutations.« less

  11. Inactive and mutagenic effects induced by carbon beams of different LET values in a red yeast strain

    NASA Astrophysics Data System (ADS)

    Wang, Jufang; Lu, Dong; Wu, Xin; Sun, Haining; Ma, Shuang; Li, Renmin; Li, Wenjian

    2010-09-01

    To evaluate biological action of microorganism exposed to charged particles during the long distance space exploration, induction of inactivation and mutation in a red yeast strain Rhodotorula glutinis AY 91015 by carbon beams of different LET values (14.9-120.0 keV μm -1) was investigated. It was found that survival curves were exponential, and mutation curves were linear for all LET values. The dependence of inactivation cross section on LET approached saturation near 120.0 keV μm -1. The mutation cross section saturated when LET was higher than 58.2 keV μm -1. Meanwhile, the highest RBE i for inactivation located at 120.0 keV μm -1 and the highest RBE m for mutation was at 58.2 keV μm -1. The experiments imply that the most efficient mutagenic part of the depth dose profile of carbon ion is at the plateau region with intermediate LET value in which energy deposited is high enough to induce mutagenic lesions but too low to induce over kill effect in the yeast cells.

  12. Characterizing RecA-Independent Induction of Shiga toxin2-Encoding Phages by EDTA Treatment

    PubMed Central

    Imamovic, Lejla; Muniesa, Maite

    2012-01-01

    Background The bacteriophage life cycle has an important role in Shiga toxin (Stx) expression. The induction of Shiga toxin-encoding phages (Stx phages) increases toxin production as a result of replication of the phage genome, and phage lysis of the host cell also provides a means of Stx toxin to exit the cell. Previous studies suggested that prophage induction might also occur in the absence of SOS response, independently of RecA. Methodology/Principal Findings The influence of EDTA on RecA-independent Stx2 phage induction was assessed, in laboratory lysogens and in EHEC strains carrying Stx2 phages in their genome, by Real-Time PCR. RecA-independent mechanisms described for phage λ induction (RcsA and DsrA) were not involved in Stx2 phage induction. In addition, mutations in the pathway for the stress response of the bacterial envelope to EDTA did not contribute to Stx2 phage induction. The effect of EDTA on Stx phage induction is due to its chelating properties, which was also confirmed by the use of citrate, another chelating agent. Our results indicate that EDTA affects Stx2 phage induction by disruption of the bacterial outer membrane due to chelation of Mg2+. In all the conditions evaluated, the pH value had a decisive role in Stx2 phage induction. Conclusions/Significance Chelating agents, such as EDTA and citrate, induce Stx phages, which raises concerns due to their frequent use in food and pharmaceutical products. This study contributes to our understanding of the phenomenon of induction and release of Stx phages as an important factor in the pathogenicity of Shiga toxin-producing Escherichia coli (STEC) and in the emergence of new pathogenic strains. PMID:22393404

  13. The BlcC (AttM) lactonase of Agrobacterium tumefaciens does not quench the quorum-sensing system that regulates Ti plasmid conjugative transfer.

    PubMed

    Khan, Sharik R; Farrand, Stephen K

    2009-02-01

    The conjugative transfer of Agrobacterium plasmids is controlled by a quorum-sensing system consisting of TraR and its acyl-homoserine lactone (HSL) ligand. The acyl-HSL is essential for the TraR-mediated activation of the Ti plasmid Tra genes. Strains A6 and C58 of Agrobacterium tumefaciens produce a lactonase, BlcC (AttM), that can degrade the quormone, leading some to conclude that the enzyme quenches the quorum-sensing system. We tested this hypothesis by examining the effects of the mutation, induction, or mutational derepression of blcC on the accumulation of acyl-HSL and on the conjugative competence of strain C58. The induction of blc resulted in an 8- to 10-fold decrease in levels of extracellular acyl-HSL but in only a twofold decrease in intracellular quormone levels, a measure of the amount of active intracellular TraR. The induction or mutational derepression of blc as well as a null mutation in blcC had no significant effect on the induction of or continued transfer of pTiC58 from donors in any stage of growth, including stationary phase. In matings performed in developing tumors, wild-type C58 transferred the Ti plasmid to recipients, yielding transconjugants by 14 to 21 days following infection. blcC-null donors yielded transconjugants 1 week earlier, but by the following week, transconjugants were recovered at numbers indistinguishable from those of the wild type. Donors mutationally derepressed for blcC yielded transconjugants in planta at numbers 10-fold lower than those for the wild type at weeks 2 and 3, but by week 4, the two donors showed no difference in recoverable transconjugants. We conclude that BlcC has no biologically significant effect on Ti plasmid transfer or its regulatory system.

  14. What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination?

    PubMed Central

    2017-01-01

    A key goal of HIV-1 vaccine development is the induction of broadly neutralizing antibodies (bnAbs) targeted to the vulnerable regions of the HIV envelope. BnAbs develop overtime in ∼50%of HIV-1-infected individuals. However, to date, no vaccines have induced bnAbs and few or none of these vaccine-elicited HIV-1 antibodies carry the high frequencies of V(D)J mutations characteristic of bnAbs. Do the high frequencies of mutations characteristic of naturally induced bnAbs represent a fundamental barrier to the induction of bnAbs by vaccines? Recent studies suggest that high frequencies of V(D)J mutations can be achieved by serial vaccination strategies. Rather, it appears that, in the absence of HIV-1 infection, physiologic immune tolerance controls, including a germinal center process termed affinity reversion, may limit vaccine-driven bnAb development by clonal elimination or selecting for mutations incompatible with bnAb activity. PMID:28630077

  15. Scavenging of long-lived radicals by (-)-epigallocatechin-3- O-gallate and simultaneous suppression of mutation in irradiated mammalian cells

    NASA Astrophysics Data System (ADS)

    Kumagai, Jun; Nakama, Mitsuo; Miyazaki, Tetsuo; Ise, Tamaki; Kodama, Seiji; Watanabe, Masami

    2002-07-01

    Effect of (-)-epigallocatechin-3- O-gallate (EGCg) on scavenging long-lived radicals and its biological significance were investigated using electron-spin-resonance spectroscopy and mutation assay in cultured human embryo cells. EGCg scavenged long-lived radicals in irradiated golden hamster embryo cells and albumin solution, and simultaneously reduced mutation frequency in the irradiated human embryo cells. These results indicate that long-lived radials are involved in the induction of mutation by radiation.

  16. Prediction of BRCA1 and BRCA2 mutation status using post-irradiation assays of lymphoblastoid cell lines is compromised by inter-cell-line phenotypic variability.

    PubMed

    Lovelock, Paul K; Wong, Ee Ming; Sprung, Carl N; Marsh, Anna; Hobson, Karen; French, Juliet D; Southey, Melissa; Sculley, Tom; Pandeya, Nirmala; Brown, Melissa A; Chenevix-Trench, Georgia; Spurdle, Amanda B; McKay, Michael J

    2007-09-01

    Assays to determine the pathogenicity of unclassified sequence variants in disease-associated genes include the analysis of lymphoblastoid cell lines (LCLs). We assessed the ability of several assays of LCLs to distinguish carriers of germline BRCA1 and BRCA2 gene mutations from mutation-negative controls to determine their utility for use in a diagnostic setting. Post-ionising radiation cell viability and micronucleus formation, and telomere length were assayed in LCLs carrying BRCA1 or BRCA2 mutations, and in unaffected mutation-negative controls. Post-irradiation cell viability and micronucleus induction assays of LCLs from individuals carrying pathogenic BRCA1 mutations, unclassified BRCA1 sequence variants or wildtype BRCA1 sequence showed significant phenotypic heterogeneity within each group. Responses were not consistent with predicted functional consequences of known pathogenic or normal sequences. Telomere length was also highly heterogeneous within groups of LCLs carrying pathogenic BRCA1 or BRCA2 mutations, and normal BRCA1 sequences, and was not predictive of mutation status. Given the significant degree of phenotypic heterogeneity of LCLs after gamma-irradiation, and the lack of association with BRCA1 or BRCA2 mutation status, we conclude that the assays evaluated in this study should not be used as a means of differentiating pathogenic and non-pathogenic sequence variants for clinical application. We suggest that a range of normal controls must be included in any functional assays of LCLs to ensure that any observed differences between samples reflect the genotype under investigation rather than generic inter-individual variation.

  17. Molecular mechanisms of transformation of C3H/10T1/2 C1 8 mouse embryo cells and diploid human fibroblasts by carcinogenic metal compounds.

    PubMed Central

    Landolph, J R

    1994-01-01

    Carcinogenic arsenic, nickel, and chromium compounds induced morphological and neoplastic transformation but no mutation to ouabain resistance in 10T1/2 mouse embryo cells; lead chromate also did not induce mutation to ouabain or 6-thioguanine resistance in Chinese hamster ovary cells. The mechanism of metal-induced morphological transformation was likely not due to the specific base substitution mutations measured in ouabain resistance mutation assays, and for lead chromate, likely not due to this type of base substitution mutation or to frameshift mutations. Preliminary data indicate increases in steady-state levels of c-myc RNA in arsenic-, nickel-, and chromium-transformed cell lines. We also showed that carcinogenic nickel, chromium, and arsenic compounds and N-methyl-N-nitro-N-nitrosoguanidine (MNNG) induced stable anchorage independence (Al) in diploid human fibroblasts (DHF) but no focus formation or immortality. Nickel subsulfide and lead chromate induced Al but not mutation to 6-thioguanine resistance. The mechanism of induction of Al by metal salts in DHF was likely not by the type of base substitution or frameshift mutations measured in these assays. MNNG induced Al, mutation to 6-thioguanine resistance, and mutation to ouabain resistance, and might induce Al by base substitution or frameshift mutations. Dexamethasone, aspirin, and salicylic acid inhibited nickel subsulfide, MNNG, and 12-O-tetrade-canoylphorbol-13-acetate (TPA)-induced Al in DHF, suggesting that arachidonic acid metabolism and oxygen radical generation play a role in induction of Al. We propose that nickel compounds stimulate arachidonic acid metabolism, consequent oxygen radical generation, and oxygen radical attack upon DNA.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. PMID:7843085

  18. A Laboratory Exercise for Isolation and Characterizing Microbial Mutants with Metabolic Defects.

    ERIC Educational Resources Information Center

    Doe, Frank J.; Leslie, John F.

    1993-01-01

    Describes science experiments for undergraduate biology instruction on the concepts of mutation and characterization of the resulting mutant strains. The filamentous fungi "Fusarium moniliforme" is used to illustrate the induction of mutants (mutagenesis), identification of the mutated gene, construction of a biochemical pathway, and…

  19. THE EFFECTS OF CHLORAMPHENICOL, STREPTOMYCIN, AND PENICILLIN ON THE INDUCTION OF MUTATIONS BY X-RAYS IN DROSOPHILA MELANOGASTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, A.M.

    The injection of chloramphenicol, streptomycin, or penicillin into Drosophila males just before exposure to x irradiation caused a reduction in the yield of sex linked recessive lethal mutations. The effect appears to be primarily on spermatids and possibly spermatocytes. (auth)

  20. AIP mutations impair AhR signaling in pituitary adenoma patients fibroblasts and in GH3 cells.

    PubMed

    Lecoq, Anne-Lise; Viengchareun, Say; Hage, Mirella; Bouligand, Jérôme; Young, Jacques; Boutron, Audrey; Zizzari, Philippe; Lombès, Marc; Chanson, Philippe; Kamenický, Peter

    2016-05-01

    Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene predispose humans to pituitary adenomas through unknown molecular mechanisms. The best-known interacting partner of AIP is the aryl hydrocarbon receptor (AhR), a transcription factor that mediates the effects of xenobiotics implicated in carcinogenesis. As 75% of AIP mutations disrupt the physical and/or functional interaction with AhR, we postulated that the tumorigenic potential of AIP mutations might result from altered AhR signaling. We evaluated the impact of AIP mutations on the AhR signaling pathway, first in fibroblasts from AIP-mutated patients with pituitary adenomas, by comparison with fibroblasts from healthy subjects, then in transfected pituitary GH3 cells. The AIP protein level in mutated fibroblasts was about half of that in cells from healthy subjects, but AhR expression was unaffected. Gene expression analyses showed significant modifications in the expression of the AhR target genes CYP1B1 and AHRR in AIP-mutated fibroblasts, both before and after stimulation with the endogenous AhR ligand kynurenine. Kynurenine increased Cyp1b1 expression to a greater extent in GH3 cells overexpressing wild type compared with cells expressing mutant AIP Knockdown of endogenous Aip in these cells attenuated Cyp1b1 induction by the AhR ligand. Both mutant AIP expression and knockdown of endogenous Aip affected the kynurenine-dependent GH secretion of GH3 cells. This study of human fibroblasts bearing endogenous heterozygous AIP mutations and transfected pituitary GH3 cells shows that AIP mutations affect the AIP protein level and alter AhR transcriptional activity in a gene- and tissue-dependent manner. © 2016 Society for Endocrinology.

  1. Lipid signalling couples translational surveillance to systemic detoxification in Caenorhabditis elegans

    PubMed Central

    Govindan, J. Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Breen, Peter; Larkins-Ford, Jonah; Mylonakis, Eleftherios

    2015-01-01

    Translation in eukaryotes is surveilled to detect toxins and virulence factors and coupled to the induction of defense pathways. C. elegans germline-specific mutations in translation components are detected by this system to induce detoxification and immune responses in distinct somatic cells. An RNAi screen revealed gene inactivations that act at multiple steps in lipid biosynthetic and kinase pathways that act upstream of MAP kinase to mediate the systemic communication of translation-defects to induce detoxification genes. Mammalian bile acids can rescue the defect in detoxification gene induction caused by C. elegans lipid biosynthetic gene inactivations. Extracts prepared from C. elegans with translation deficits but not from wild type can also rescue detoxification gene induction in lipid biosynthetic defective strains. These eukaryotic antibacterial countermeasures are not ignored by bacteria: particular bacterial species suppress normal C. elegans detoxification responses to mutations in translation factors. PMID:26322678

  2. Inducible transgenics. New lessons on events governing the induction and commitment in mammary tumorigenesis.

    PubMed

    Hulit, J; Di Vizio, D; Pestell, R G

    2001-01-01

    Breast cancer arises from multiple genetic events that together contribute to the established, irreversible malignant phenotype. The development of inducible tissue-specific transgenics has allowed a careful dissection of the events required for induction and subsequent maintenance of tumorigenesis. Mammary gland targeted expression of oncogenic Ras or c-Myc is sufficient for the induction of mammary gland tumorigenesis in the rodent, and when overexpressed together the rate of tumor onset is substantially enhanced. In an exciting recent finding, D'Cruz et al discovered tetracycline-regulated c-Myc overexpression in the mammary gland induced invasive mammary tumors that regressed upon withdrawal of c-Myc expression. Almost one-half of the c-Myc-induced tumors harbored K-ras or N-ras gene point mutations, correlating with tumor persistence on withdrawal of c-Myc transgene expression. These findings suggest maintenance of tumorigenesis may involve a second mutation within the Ras pathway.

  3. CP-31398 inhibits the growth of p53-mutated liver cancer cells in vitro and in vivo.

    PubMed

    He, Xing-Xing; Zhang, Yu-Nan; Yan, Jun-Wei; Yan, Jing-Jun; Wu, Qian; Song, Yu-Hu

    2016-01-01

    The tumor suppressor p53 is one of the most frequently mutated genes in hepatocellular carcinoma (HCC). Previous studies demonstrated that CP-31398 restored the native conformation of mutant p53 and trans-activated p53 downstream genes in tumor cells. However, the research on the application of CP-31398 to liver cancer has not been reported. Here, we investigated the effects of CP-31398 on the phenotype of HCC cells carrying p53 mutation. The effects of CP-31398 on the characteristic of p53-mutated HCC cells were evaluated through analyzing cell cycle, cell apoptosis, cell proliferation, and the expression of p53 downstream genes. In tumor xenografts developed by PLC/PRF/5 cells, the inhibition of tumor growth by CP-31398 was analyzed through gross morphology, growth curve, and the expression of p53-related genes. Firstly, we demonstrated that CP-31398 inhibited the growth of p53-mutated liver cancer cells in a dose-dependent and p53-dependent manner. Then, further study showed that CP-31398 re-activated wild-type p53 function in p53-mutated HCC cells, which resulted in inhibitive response of cell proliferation and an induction of cell-cycle arrest and apoptosis. Finally, in vivo data confirmed that CP-31398 blocked the growth of xenografts tumors through transactivation of p53-responsive downstream molecules. Our results demonstrated that CP-31398 induced desired phenotypic change of p53-mutated HCC cells in vitro and in vivo, which revealed that CP-31398 would be developed as a therapeutic candidate for HCC carrying p53 mutation.

  4. Ewes carrying the Booroola and Vacaria prolificacy alleles respond differently to ovulation induction with equine chorionic gonadotrophin.

    PubMed

    Moraes, J C F; Souza, C J H

    2017-09-21

    The magnitude of ovulation rate (OR) after hormonal induction in sheep should be considered when prolific genotypes are used. We investigated for the first time the effect of the Vacaria allele and its combined effect with the Booroola prolificacy mutation on OR after hormonal treatment during breeding and anoestrous season. A hundred forty-nine Ile de France crossbred ewes, raised in natural pastures in South Brazil, were used to evaluate the OR after treatment with progestagen (MAP) followed or not by equine chorionic gonadotrophin (eCG) treatment (MAP + eCG). During the breeding season, 96% MAP-treated ewes ovulated in comparison to 97% of MAP + eCG-treated females. The double heterozygous carriers (BNVN) presented the higher OR, followed by the single Vacaria (NNVN) and Booroola (BNNN) heterozygous females and least the wild-type (NNNN) ewes. During anoestrus, 96% eCG-treated ewes ovulated, in contrast to 6% treated with MAP alone. The OR of the gonadotrophin-treated females was higher in BNVN and BNNN than NNVN and NNNN ewes. An additive effect in the OR of the two mutations was observed since OR in double heterozygous ewes was similar to the sum of the effects of the alleles of the single heterozygous carrier ewes.

  5. METHYLATED TRIVALENT ARSENICALS AS CANDIDATE ULTIMATE GENOTOXIC FORMS OF ARSENIC: INDUCTION OF CHROMOSOMAL MUTATIONS BUT NOT GENE MUTATIONS

    EPA Science Inventory

    ABSTRACT
    Arsenic is a prevalent human carcinogen whose mutagenicity has not been characterized fully. Exposure to either form of inorganic arsenic, AsIII or AsV, can result in the formation of at least four organic metabolites: monomethylarsonic acid, monomethylarsonous aci...

  6. What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? Breaking through Immunity's Glass Ceiling.

    PubMed

    Kelsoe, Garnett; Haynes, Barton F

    2018-05-01

    A key goal of HIV-1 vaccine development is the induction of broadly neutralizing antibodies (bnAbs) targeted to the vulnerable regions of the HIV envelope. BnAbs develop over time in ∼50% of HIV-1-infected individuals. However, to date, no vaccines have induced bnAbs and few or none of these vaccine-elicited HIV-1 antibodies carry the high frequencies of V(D)J mutations characteristic of bnAbs. Do the high frequencies of mutations characteristic of naturally induced bnAbs represent a fundamental barrier to the induction of bnAbs by vaccines? Recent studies suggest that high frequencies of V(D)J mutations can be achieved by serial vaccination strategies. Rather, it appears that, in the absence of HIV-1 infection, physiologic immune tolerance controls, including a germinal center process termed affinity reversion, may limit vaccine-driven bnAb development by clonal elimination or selecting for mutations incompatible with bnAb activity. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Induction of mutations by bismuth-212 alpha particles at two genetic loci in human B-lymphoblasts.

    PubMed

    Metting, N F; Palayoor, S T; Macklis, R M; Atcher, R W; Liber, H L; Little, J B

    1992-12-01

    The human lymphoblast cell line TK6 was exposed to the alpha-particle-emitting radon daughter 212Bi by adding DTPA-chelated 212Bi directly to the cell suspension. Cytotoxicity and mutagenicity at two genetic loci were measured, and the molecular nature of mutant clones was studied by Southern blot analysis. Induced mutant fractions were 2.5 x 10(-5)/Gy at the hprt locus and 3.75 x 10(-5)/Gy at the tk locus. Molecular analysis of HPRT- mutant DNAs showed a high frequency (69%) of clones with partial or full deletions of the hprt gene among radiation-induced mutants compared with spontaneous mutants (31%). Chi-squared analyses of mutational spectra show a significant difference (P < or = 0.005) between spontaneous mutants and alpha-particle-induced mutants. Comparison with published studies of accelerator-produced heavy-ion exposures of TK6 cells indicates that the induction of mutations at the hprt locus, and perhaps a subset of mutations at the tk locus, is a simple linear function of particle fluence regardless of the ion species or its LET.

  8. Coffee mitigates cyclophosphamide-induced genotoxic damage in Drosophila melanogaster germ cells.

    PubMed

    Nagpal, Isha; Abraham, Suresh K

    2018-02-26

    In the present study, coffee (CF) was evaluated for its protective effects against genotoxic damage and oxidative stress induced by the chemotherapeutic drug, cyclophosphamide (CPH). The sex-linked recessive lethal (SLRL) test was employed to study the induction of mutations in the larvae as well as in all the successive germ cell stages of treated males. Control and treated third instar larvae were used to monitor the biomarkers of oxidative stress response such as glutathione content (GSH), glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and lipid peroxidation (MDA content). Our results demonstrated that co-administration of CF (2%) with CPH (3 mM) has significantly reduced CPH-induced lethal mutations in the germ cells of larvae and adult flies. The reductions observed in mutation frequencies were: 75% in larvae and 62.4% in the adult. Significant enhancement in antioxidant enzymatic levels: CAT (46.6%) > SOD (43.0%) > GST (42.4%) > GSH (31.6%) and reduction in MDA levels (32.05%) in the pretreated third instar larvae demonstrated the antioxidant activity of CF against CPH-induced oxidative stress. The findings from the present study suggest that the Drosophila model is an ideal one for evaluating the antigenotoxic and antioxidant activity of complex mixtures like CF.

  9. v-src induction of the TIS10/PGS2 prostaglandin synthase gene is mediated by an ATF/CRE transcription response element.

    PubMed

    Xie, W; Fletcher, B S; Andersen, R D; Herschman, H R

    1994-10-01

    We recently reported the cloning of a mitogen-inducible prostaglandin synthase gene, TIS10/PGS2. In addition to growth factors and tumor promoters, the v-src oncogene induces TIS10/PGS2 expression in 3T3 cells. Deletion analysis, using luciferase reporters, identifies a region between -80 and -40 nucleotides 5' of the TIS10/PGS2 transcription start site that mediates pp60v-src induction in 3T3 cells. This region contains the sequence CGTCACGTG, which includes overlapping ATF/CRE (CGTCA) and E-box (CACGTG) sequences. Gel shift-oligonucleotide competition experiments with nuclear extracts from cells stably transfected with a temperature-sensitive v-src gene demonstrate that the CGTCACGTG sequence can bind proteins at both the ATF/CRE and E-box sequences. Dominant-negative CREB and Myc proteins that bind DNA, but do not transactivate, block v-src induction of a luciferase reporter driven by the first 80 nucleotides of the TIS10/PGS2 promoter. Mutational analysis distinguishes which TIS10/PGS2 cis-acting element mediates pp60v-src induction. E-box mutation has no effect on the fold induction in response to pp60v-src. In contrast, ATF/CRE mutation attenuates the pp60v-src response. Antibody supershift and methylation interference experiments demonstrate that CREB and at least one other ATF transcription factor in these extracts bind to the TIS10/PGS2 ATF/CRE element. Expression of a dominant-negative ras gene also blocks TIS10/PGS2 induction by v-src. Our data suggest that Ras mediates pp60v-src activation of an ATF transcription factor, leading to induced TIS10/PGS2 expression via the ATF/CRE element of the TIS10/PGS2 promoter. This is the first description of v-src activation of gene expression via an ATF/CRE element.

  10. Sequencing analysis of mutations induced by N-ethyl-N-nitrosourea at different sampling times in mouse bone marrow.

    PubMed

    Wang, Jianyong; Chen, Tao

    2010-03-01

    In our previous study (Wang et al., 2004, Toxicol. Sci. 82: 124-128), we observed that the cII gene mutant frequency (MF) in the bone marrow of Big Blue mice showed significant increase as early as day 1, reached the maximum at day 3 and then decreased to a plateau by day 15 after a single dose of carcinogen N-ethyl-N-nitrosourea (ENU) treatment, which is different from the longer mutation manifestation time and the constancy of MFs after reaching their maximum in some other tissues. To determine the mechanism underlying the quick increase in MF and the peak formation in the mutant manifestation, we examined the mutation frequencies and spectra of the ENU-induced mutants collected from different sampling times in this study. The cII mutants from days 1, 3 and 120 after ENU treatment were randomly selected from different animals. The mutation frequencies were 33, 217, 305 and 144 x 10(-6) for control, days 1, 3, and 120, respectively. The mutation spectra at days 1 and 3 were significantly different from that at day 120. Considering that stem cells are responsible for the ultimate MF plateau (day 120) and transit cells are accountable for the earlier MF induction (days 1 or 3) in mouse bone marrow, we conclude that transit cells are much more sensitive to mutation induction than stem cells in mouse bone marrow, which resulted in the specific mutation manifestation induced by ENU.

  11. Amplified Genes in Breast Cancer: Molecular Targets for Investigation and Therapy

    DTIC Science & Technology

    1999-09-01

    checkpoints (Hartwell and Kastan, 1994). Mutations in genes involved in these transactions occur commonly during cancer progression and can greatly ele...induction of micronuclei as a measure of genotoxicity. A report of the U.S. Environmental Protection Agency Gene - Tox Program. Mutat . Res. 123:61-118...evidence for mutations at different loci in the HGPRT gene . J. Cell. Physiol. 85:307-320. 6 Capecchi, M.R., Hughes, S.H. and Wahl, G.M. (1975) Yeast

  12. Radiation sensitivity of the gastrula-stage embryo: Chromosome aberrations and mutation induction in lacZ transgenic mice: The roles of DNA double-strand break repair systems.

    PubMed

    Jacquet, Paul; van Buul, Paul; van Duijn-Goedhart, Annemarie; Reynaud, Karine; Buset, Jasmine; Neefs, Mieke; Michaux, Arlette; Monsieurs, Pieter; de Boer, Peter; Baatout, Sarah

    2015-10-01

    At the gastrula phase of development, just after the onset of implantation, the embryo proper is characterized by extremely rapid cell proliferation. The importance of DNA repair is illustrated by embryonic lethality at this stage after ablation of the genes involved. Insight into mutation induction is called for by the fact that women often do not realize they are pregnant, shortly after implantation, a circumstance which may have important consequences when women are subjected to medical imaging using ionizing radiation. We screened gastrula embryos for DNA synthesis, nuclear morphology, growth, and chromosome aberrations (CA) shortly after irradiation with doses up to 2.5Gy. In order to obtain an insight into the importance of DNA repair for CA induction, we included mutants for the non-homologous end joining (NHEJ) and homologous recombination repair (HRR) pathways, as well as Parp1-/- and p53+/- embryos. With the pUR288 shuttle vector assay, we determined the radiation sensitivity for point mutations and small deletions detected in young adults. We found increased numbers of abnormal nuclei 5h after irradiation; an indication of disturbed development was also observed around this time. Chromosome aberrations 7h after irradiation arose in all genotypes and were mainly of the chromatid type, in agreement with a cell cycle dominated by S-phase. Increased frequencies of CA were found for NHEJ and HR mutants. Gastrula embryos are unusual in that they are low in exchange induction, even after compromised HR. Gastrula embryos were radiation sensitive in the pUR288 shuttle vector assay, giving the highest mutation induction ever reported for this genetic toxicology model. On theoretical grounds, a delayed radiation response must be involved. The compromised developmental profile after doses up to 2.5Gy likely is caused by both apoptosis and later cell death due to large deletions. Our data indicate a distinct radiation-sensitive profile of gastrula embryos, including some stage-specific aspects that are not as yet understood. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A temperature-sensitive mutation in the nodal-related gene cyclops reveals that the floor plate is induced during gastrulation in zebrafish.

    PubMed

    Tian, Jing; Yam, Caleb; Balasundaram, Gayathri; Wang, Hui; Gore, Aniket; Sampath, Karuna

    2003-07-01

    The floor plate, a specialized group of cells in the ventral midline of the neural tube of vertebrates, plays crucial roles in patterning the central nervous system. Recent work from zebrafish, chick, chick-quail chimeras and mice to investigate the development of the floor plate have led to several models of floor-plate induction. One model suggests that the floor plate is formed by inductive signalling from the notochord to the overlying neural tube. The induction is thought to be mediated by notochord-derived Sonic hedgehog (Shh), a secreted protein, and requires direct cellular contact between the notochord and the neural tube. Another model proposes a role for the organizer in generating midline precursor cells that produce floor plate cells independent of notochord specification, and proposes that floor plate specification occurs early, during gastrulation. We describe a temperature-sensitive mutation that affects the zebrafish Nodal-related secreted signalling factor, Cyclops, and use it to address the issue of when the floor plate is induced in zebrafish. Zebrafish cyclops regulates the expression of shh in the ventral neural tube. Although null mutations in cyclops result in the lack of the medial floor plate, embryos homozygous for the temperature-sensitive mutation have floor plate cells at the permissive temperature and lack floor plate cells at the restrictive temperature. We use this mutant allele in temperature shift-up and shift-down experiments to answer a central question pertaining to the timing of vertebrate floor plate induction. Abrogation of Cyc/Nodal signalling in the temperature-sensitive mutant embryos at various stages indicates that the floor plate in zebrafish is induced early in development, during gastrulation. In addition, continuous Cyclops signalling is required through gastrulation for a complete ventral neural tube throughout the length of the neuraxis. Finally, by modulation of Nodal signalling levels in mutants and in ectopic overexpression experiments, we show that, similar to the requirements for prechordal plate mesendoderm fates, uninterrupted and high levels of Cyclops signalling are required for induction and specification of a complete ventral neural tube.

  14. Survival and SOS response induction in ultraviolet B irradiated Escherichia coli cells with defective repair mechanisms.

    PubMed

    Prada Medina, Cesar Augusto; Aristizabal Tessmer, Elke Tatjana; Quintero Ruiz, Nathalia; Serment-Guerrero, Jorge; Fuentes, Jorge Luis

    2016-06-01

    Purpose In this paper, the contribution of different genes involved in DNA repair for both survival and SOS induction in Escherichia coli mutants exposed to ultraviolet B radiation (UVB, [wavelength range 280-315 nm]) was evaluated. Materials and methods E. coli strains defective in uvrA, oxyR, recO, recN, recJ, exoX, recB, recD or xonA genes were used to determine cell survival. All strains also had the genetic sulA::lacZ fusion, which allowed for the quantification of SOS induction through the SOS Chromotest. Results Five gene products were particularly important for survival, as follows: UvrA > RecB > RecO > RecJ > XonA. Strains defective in uvrA and recJ genes showed elevated SOS induction compared with the wild type, which remained stable for up to 240 min after UVB-irradiation. In addition, E. coli strains carrying the recO or recN mutation showed no SOS induction. Conclusions The nucleotide excision and DNA recombination pathways were equally used to repair UVB-induced DNA damage in E. coli cells. The sulA gene was not turned off in strains defective in UvrA and RecJ. RecO protein was essential for processing DNA damage prior to SOS induction. In this study, the roles of DNA repair proteins and their contributions to the mechanisms that induce SOS genes in E. coli are proposed.

  15. Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA.

    PubMed

    Kanazashi, Yuhei; Hirose, Aya; Takahashi, Ippei; Mikami, Masafumi; Endo, Masaki; Hirose, Sakiko; Toki, Seiichi; Kaga, Akito; Naito, Ken; Ishimoto, Masao; Abe, Jun; Yamada, Tetsuya

    2018-03-01

    Using a gRNA and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two GmPPD loci in soybean. Mutations in GmPPD loci were confirmed in at least 33% of T 2 seeds. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system is a powerful tool for site-directed mutagenesis in crops. Using a single guide RNA (gRNA) and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two homoeologous loci in soybean (Glycine max), GmPPD1 and GmPPD2, which encode the orthologs of Arabidopsis thaliana PEAPOD (PPD). Most of the T 1 plants had heterozygous and/or chimeric mutations for the targeted loci. The sequencing analysis of T 1 and T 2 generations indicates that putative mutation induced in the T 0 plant is transmitted to the T 1 generation. The inheritable mutation induced in the T 1 plant was also detected. This result indicates that continuous induction of mutations during T 1 plant development increases the occurrence of mutations in germ cells, which ensures the transmission of mutations to the next generation. Simultaneous site-directed mutagenesis in both GmPPD loci was confirmed in at least 33% of T 2 seeds examined. Approximately 19% of double mutants did not contain the Cas9/gRNA expression construct. Double mutants with frameshift mutations in both GmPPD1 and GmPPD2 had dome-shaped trifoliate leaves, extremely twisted pods, and produced few seeds. Taken together, our data indicate that continuous induction of mutations in the whole plant and advancing generations of transgenic plants enable efficient simultaneous site-directed mutagenesis in duplicated loci in soybean.

  16. A nuclear mutation defective in mitochondrial recombination in yeast.

    PubMed

    Ling, F; Makishima, F; Morishima, N; Shibata, T

    1995-08-15

    Homologous recombination (crossing over and gene conversion) is generally essential for heritage and DNA repair, and occasionally causes DNA aberrations, in nuclei of eukaryotes. However, little is known about the roles of homologous recombination in the inheritance and stability of mitochondrial DNA which is continuously damaged by reactive oxygen species, by-products of respiration. Here, we report the first example of a nuclear recessive mutation which suggests an essential role for homologous recombination in the stable inheritance of mitochondrial DNA. For the detection of this class of mutants, we devised a novel procedure, 'mitochondrial crossing in haploid', which has enabled us to examine many mutant clones. Using this procedure, we examined mutants of Saccharomyces cerevisiae that showed an elevated UV induction of respiration-deficient mutations. We obtained a mutant that was defective in both the omega-intron homing and Endo.SceI-induced homologous gene conversion. We found that the mutant cells are temperature sensitive in the maintenance of mitochondrial DNA. A tetrad analysis indicated that elevated UV induction of respiration-deficient mutations, recombination deficiency and temperature sensitivity are all caused by a single nuclear mutation (mhr1) on chromosome XII. The pleiotropic characteristics of the mutant suggest an essential role for the MHR1 gene in DNA repair, recombination and the maintenance of DNA in mitochondria.

  17. Genetic toxicology assessment of HI-6 dichloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putman, D.; San, R.H.; Bigger, C.A.

    1996-08-01

    The oxime HI-6 dichloride (1-(2 hydroxyiminomethyl- 1-pyridino)-3- (4-carbamoyl-1- pyridino)-2-oxapropane dichloride monohydrate) has shown to be a potent reactivator of cholinesterase activity and may have efficacy for the treatment of organo-phosphate intoxication (SIPRI, 1976; Schenk et al.; Arch Toxicol 36:71-81, 1976). As part of a pre-clinical safety assessment program, the genetic toxicology of HI-6 dichloride was evaluated in a series of assays designed to measure induction of gene mutations and chromosomal aberrations. HI-6 dichloride gave negative responses in the Salmonella mutagenicity assay and in the CHO/HGPRT gene mutation assay. Dose-dependent increases in the frequency of chromosomal aberrations when HI-6 dichloride wasmore » tested in cultured CHO cells and in cultured human peripheral blood lymphocytes. The mouse lymphoma gene mutation assay, reputed to measure both gene mutations and chromosomal deletions, was negative in the absence of metabolic activation. Depending on the criteria employed, a negative or equivocal response was seen in the presence of rat liver-derived S-9 mix. An in vivo rat bone marrow metaphase assay performed to further investigate the in vitro clastogenic responses was negative. The results from these studies indicate that HI-6 dichloride does not induce gene mutations in vitro; however, it is clastogenic in vitro but does not appear to be clastogenic in vivo.« less

  18. Induction of the unfolded protein response by constitutive G-protein signaling in rod photoreceptor cells.

    PubMed

    Wang, Tian; Chen, Jeannie

    2014-10-17

    Phototransduction is a G-protein signal transduction cascade that converts photon absorption to a change in current at the plasma membrane. Certain genetic mutations affecting the proteins in the phototransduction cascade cause blinding disorders in humans. Some of these mutations serve as a genetic source of "equivalent light" that activates the cascade, whereas other mutations lead to amplification of the light response. How constitutive phototransduction causes photoreceptor cell death is poorly understood. We showed that persistent G-protein signaling, which occurs in rod arrestin and rhodopsin kinase knock-out mice, caused a rapid and specific induction of the PERK pathway of the unfolded protein response. These changes were not observed in the cGMP-gated channel knock-out rods, an equivalent light condition that mimics light-stimulated channel closure. Thus transducin signaling, but not channel closure, triggers rapid cell death in light damage caused by constitutive phototransduction. Additionally, we show that in the albino light damage model cell death was not associated with increase in global protein ubiquitination or unfolded protein response induction. Taken together, these observations provide novel mechanistic insights into the cell death pathway caused by constitutive phototransduction and identify the unfolded protein response as a potential target for therapeutic intervention. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Safety evaluation of a proprietary food-grade, dried fermentate preparation of Saccharomyces cerevisiae.

    PubMed

    Schauss, Alexander G; Glavits, R; Endres, John; Jensen, Gitte S; Clewell, Amy

    2012-01-01

    A safety evaluation was performed for EpiCor, a product produced by a proprietary fermentation process using Saccharomyces cerevisiae. Studies included the following assays: bacterial reverse mutation, mouse lymphoma cell mutagenicity, mitogenicity assay in human peripheral lymphocytes, and a cytochrome P450 ([CYP] CYP1A2 and CYP3A4) induction assessment as well as 14-day acute, 90-day subchronic, and 1-year chronic oral toxicity studies in rats. No evidence of genotoxicity or mitogenicity was seen in any of the in vitro or in vivo studies. The CYP assessment showed no interactions or inductions. No toxic clinical symptoms or histopathological lesions were observed in the acute, subchronic, or chronic oral toxicity studies in the rat. Results of the studies performed indicate that EpiCor does not possess genotoxic activity and has a low order of toxicity that is well tolerated when administered orally. The no observable adverse effect level (NOAEL) was 1500 mg/kg body weight (bw)/d for the 90-day study and 800 mg/kg bw/d for the 1 year study, for the highest doses tested.

  20. Protective effects of tea polyphenols and β-carotene against γ-radiation induced mutation and oxidative stress in Drosophila melanogaster.

    PubMed

    Nagpal, Isha; Abraham, Suresh K

    2017-01-01

    The commonly consumed antioxidants β-carotene and tea polyphenols were used to assess their protective effects against γ-radiation induced sex-linked recessive lethal (SLRL) mutation and oxidative stress in Drosophila melanogaster . Third instar larvae and adult males of wild-type Oregon-K (ORK) were fed on test agents for 24 and 72 h respectively before exposure to 10Gy γ-irradiation. The treated/control flies were used to assess the induction of SLRLs. We also evaluated antioxidant properties of these phytochemicals in the third instar larvae. Different stages of spermatogenesis in adult males showed a decrease in γ-radiation induced SLRL frequencies upon co-treatment with test agents. A similar trend was observed in larvae. Furthermore, a significant increase in antioxidant enzymatic activities with a decrease in malondialdehyde content was observed. β-carotene and tea polyphenols have exerted antigenotoxic and antioxidant effects in Drosophila . This study demonstrated the suitability of Drosophila as an alternative to mammalian testing for evaluating the antigenotoxic and antioxidant activity of natural products.

  1. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models

    PubMed Central

    Barmada, Sami J.; Serio, Andrea; Arjun, Arpana; Bilican, Bilada; Daub, Aaron; Ando, D. Michael; Tsvetkov, Andrey; Pleiss, Michael; Li, Xingli; Peisach, Daniel; Shaw, Christopher; Chandran, Siddharthan; Finkbeiner, Steven

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have distinct clinical features but a common pathology—cytoplasmic inclusions rich in TDP43. Rare TDP43 mutations cause ALS or FTD, but abnormal TDP43 levels and localization may cause disease even if TDP43 lacks a mutation. Here we showed that individual neurons vary in their ability to clear TDP43 and are exquisitely sensitive to TDP43 levels. To measure TDP43 clearance, we developed and validated a single-cell optical method that overcomes the confounding effects of aggregation and toxicity, and discovered that pathogenic mutations significantly shorten TDP43 half-life. Novel compounds that stimulate autophagy improved TDP43 clearance and localization, and enhanced survival in primary murine neurons and in human stem cell–derived neurons and astrocytes harboring mutant TDP43. These findings indicate that the levels and localization of TDP43 critically determine neurotoxicity and show that autophagy induction mitigates neurodegeneration by acting directly on TDP43 clearance. PMID:24974230

  2. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway

    PubMed Central

    Reizis, Boris; Leder, Philip

    2002-01-01

    The Notch signaling pathway regulates the commitment and early development of T lymphocytes. We studied Notch-mediated induction of the pre-T cell receptor α (pTa) gene, a T-cell-specific transcriptional target of Notch. The pTa enhancer was activated by Notch signaling and contained binding sites for its nuclear effector, CSL. Mutation of the CSL-binding sites abolished enhancer induction by Notch and delayed the up-regulation of pTa transgene expression during T cell lineage commitment. These results show a direct mechanism of stage- and tissue-specific gene induction by the mammalian Notch/CSL signaling pathway. PMID:11825871

  3. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene.

    PubMed Central

    Schüller, C; Brewster, J L; Alexander, M R; Gustin, M C; Ruis, H

    1994-01-01

    The HOG signal pathway of the yeast Saccharomyces cerevisiae is defined by the PBS2 and HOG1 genes encoding members of the MAP kinase kinase and of the MAP kinase family, respectively. Mutations in this pathway (deletions of PBS2 or HOG1, or point mutations in HOG1) almost completely abolish the induction of transcription by osmotic stress that is mediated by stress response elements (STREs). We have demonstrated previously that STREs also mediate induction of transcription by heat shock, nitrogen starvation and oxidative stress. This study shows that they are also activated by low external pH, sorbate, benzoate or ethanol stress. Induction by these other stress signals appears to be HOG pathway independent. HOG1-dependent osmotic induction of transcription of the CTT1 gene encoding the cytosolic catalase T occurs in the presence of a protein synthesis inhibitor and can be detected rapidly after an increase of tyrosine phosphorylation of Hog1p triggered by high osmolarity. Consistent with a role of STREs in the induction of stress resistance, a number of other stress protein genes (e.g. HSP104) are regulated like CTT1. Furthermore, catalase T was shown to be important for viability under severe osmotic stress, and heat shock was demonstrated to provide cross-protection against osmotic stress. Images PMID:7523111

  4. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene.

    PubMed

    Schüller, C; Brewster, J L; Alexander, M R; Gustin, M C; Ruis, H

    1994-09-15

    The HOG signal pathway of the yeast Saccharomyces cerevisiae is defined by the PBS2 and HOG1 genes encoding members of the MAP kinase kinase and of the MAP kinase family, respectively. Mutations in this pathway (deletions of PBS2 or HOG1, or point mutations in HOG1) almost completely abolish the induction of transcription by osmotic stress that is mediated by stress response elements (STREs). We have demonstrated previously that STREs also mediate induction of transcription by heat shock, nitrogen starvation and oxidative stress. This study shows that they are also activated by low external pH, sorbate, benzoate or ethanol stress. Induction by these other stress signals appears to be HOG pathway independent. HOG1-dependent osmotic induction of transcription of the CTT1 gene encoding the cytosolic catalase T occurs in the presence of a protein synthesis inhibitor and can be detected rapidly after an increase of tyrosine phosphorylation of Hog1p triggered by high osmolarity. Consistent with a role of STREs in the induction of stress resistance, a number of other stress protein genes (e.g. HSP104) are regulated like CTT1. Furthermore, catalase T was shown to be important for viability under severe osmotic stress, and heat shock was demonstrated to provide cross-protection against osmotic stress.

  5. Mutations of glucocorticoid receptor differentially affect AF2 domain activity in a steroid-selective manner to alter the potency and efficacy of gene induction and repression†

    PubMed Central

    Tao, Yong-guang; Xu, Yong; Xu, H. Eric; Simons, S. Stoney

    2009-01-01

    The transcriptional activity of steroid hormones is intimately associated with their structure. Deacylcortivazol (DAC) contains several features that were predicted to make it an inactive glucocorticoid. Nevertheless, gene induction and repression by complexes of glucocorticoid receptor (GR) with DAC occurs with greater potency (lower EC50) than, and equal efficacy (maximal activity, or Amax) to, the very active and smaller synthetic glucocorticoid dexamethasone (Dex). Guided by a recent x-ray structure of DAC bound to the GR ligand binding domain (LBD), we now report that several point mutants in the LBD have little effect on the binding of either agonist steroid. However, these same mutations dramatically alter the Amax and/or EC50 of exogenous and endogenous genes in a manner that depends on steroid structure. In some cases, Dex is no longer a full agonist. These properties appear to result from a preferential inactivation of the AF2 activation domain in the GR LBD of Dex-, but not DAC-, bound receptors. The Dex-bound receptors display normal binding to, but greatly reduced response to, the coactivator TIF2, thus indicating a defect in the transmission efficiency of GR-steroid complex information to the coactivator TIF2. In addition, all GR mutants that are active in gene induction with either Dex or DAC have greatly reduced activity in gene repression. This contrasts with the reports of GR mutations preferentially suppressing GR-mediated induction. The properties of these GR mutants in gene induction support the hypothesis that the Amax and EC50 of GR-controlled gene expression can be independently modified, indicate that the receptor can be modified to favor activity with a specific agonist steroid, and suggest that new ligands with suitable substituents may be able to affect the same LBD conformational changes and thereby broaden the therapeutic applications of glucocorticoid steroids PMID:18578507

  6. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors | Office of Cancer Genomics

    Cancer.gov

    We report the most common single-nucleotide substitution/deletion mutations in favorable histology Wilms tumors (FHWTs) to occur within SIX1/2 (7% of 534 tumors) and microRNA processing genes (miRNAPGs) DGCR8 and DROSHA (15% of 534 tumors). Comprehensive analysis of 77 FHWTs indicates that tumors with SIX1/2 and/or miRNAPG mutations show a pre-induction metanephric mesenchyme gene expression pattern and are significantly associated with both perilobar nephrogenic rests and 11p15 imprinting aberrations.

  7. A novel loss-of-function mutation in GPR54/KISS1R leads to hypogonadotropic hypogonadism in a highly consanguineous family.

    PubMed

    Nimri, Revital; Lebenthal, Yael; Lazar, Liora; Chevrier, Lucie; Phillip, Moshe; Bar, Meytal; Hernandez-Mora, Eva; de Roux, Nicolas; Gat-Yablonski, Galia

    2011-03-01

    The G protein-coupled receptor 54 (GPR54), the kisspeptin receptor, is essential for stimulation of GnRH secretion and induction of puberty. Recently loss-of-function mutations of the GPR54 have been implicated as a cause of isolated idiopathic hypogonadotropic hypogonadism (IHH). The objective of the study was to identify the genetic cause of IHH in a consanguineous pedigree and to characterize the phenotypic features from infancy through early adulthood. In six patients with normosmic IHH belonging to two families of Israeli Muslim-Arab origin highly related to one another, DNA was analyzed for mutations in the GnRHR and GPR54 genes, with functional analysis of the mutation found. The five males underwent comprehensive endocrine evaluation and were under longitudinal follow-up; the one female presented in early adulthood. A new homozygous mutation (c.T815C) in GPR54 leading to a phenylalanine substitution by serine (p.F272S) was detected in all patients. Functional analysis showed an almost complete inhibition of kisspeptin-induced GPR54 signaling and a dramatic decrease of the mutated receptor expression at the cell surface. The males exhibited the same clinical features from infancy to adulthood, characterized by cryptorchidism, a relatively short penis, and no spontaneous pubertal development. The female patient presented at 18 yr with impuberism and primary amenorrhea. Repeated stimulation tests demonstrated complete gonadotropin deficiency throughout follow-up. A novel loss-of-function mutation (p.F272S) in the GPR54 gene is associated with familial normosmic IHH. Underdeveloped external genitalia and impuberism point to the major role of GPR54 in the activation of the gonadotropic axis from intrauterine life to adulthood.

  8. Transcriptional specificity in various p53-mutant cells.

    PubMed

    Okaichi, Kumio; Izumi, Nanaka; Takamura, Yuma; Fukui, Shoichi; Kudo, Takashi

    2013-03-01

    Mutation of the tumor suppressor gene p53 is the most common genetic alteration observed in human tumors. However, the relationship between the mutation point of p53 and the transcriptional specificity is not so obvious. We prepared Saos-2 cells with various mutations of p53 that are found in human tumors, and examined the resulting transcriptional alterations in the cells. Loss of function and gain of function were observed in all p53 mutants. Hot-spot mutations of p53 are frequently found in tumor cells. We compared hot-spot mutations and other mutations of p53 and found that a more than 2-fold transcription of CADPS2, PIWIL4 and TRIM9 was induced by hot spot mutations, but not by other mutations. As PIWIL4 suppresses the p16(INK4A) and ARF pathway, restraining cell growth and genomic instability, induction of PIWIL4 expression may be one reason why hot-spot mutations are frequently found in tumor cells.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albertini, R.J.

    This work has focused on the development of in vitro T-cell mutation assays. Conditions have been defined to measure the in vitro induction of mutations at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus in human T-lymphocytes. This assay is a parallel to our in vivo hprt assay, in that the same cells are utilized. However, the in vitro assay allows for carefully controlled dose response studies. 21 refs., 16 figs., 13 tabs.

  10. [Mutants of the yeast Saccharomyces cerevisiae characterized by enhanced induced mutagenesis. III. Effect of the him mutation on the effectiveness and specificity of UF-induced mutagenesis].

    PubMed

    Ivanov, E L; Koval'tsova, S V; Korolev, V G

    1987-09-01

    We have studied the influence of him1-1, him2-1, him3-1 and himX mutations on induction frequency and specificity of UV-induced adenine-dependent mutations in the yeast Saccharomyces cerevisiae. Him mutations do not render haploid cells more sensitive to the lethal action of UV-light; however, in him strains adenine-dependent mutations (ade1, ade2) were induced more frequently (1.5--2-fold), as compared to the HIM strain. An analysis of the molecular nature of ade2 mutants revealed that him1-1, him2-1 and himX mutations increase specifically the yield of transitions (AT----GC and GC----AT), whereas in the him3-1 strain the yield of transversions was enhanced as well. We suggest him mutations analysed to affect specific repair pathway for mismatch correction.

  11. Association Between Mutation Clearance After Induction Therapy and Outcomes in Acute Myeloid Leukemia

    PubMed Central

    Klco, Jeffery M.; Miller, Christopher A.; Griffith, Malachi; Petti, Allegra; Spencer, David H.; Ketkar-Kulkarni, Shamika; Wartman, Lukas D; Christopher, Matthew; Lamprecht, Tamara L.; Helton, Nicole M.; Duncavage, Eric J.; Payton, Jacqueline E.; Baty, Jack; Heath, Sharon E.; Griffith, Obi L.; Shen, Dong; Hundal, Jasreet; Chang, Gue Su; Fulton, Robert; O'Laughlin, Michelle; Fronick, Catrina; Magrini, Vincent; Demeter, Ryan T.; Larson, David E.; Kulkarni, Shashikant; Ozenberger, Bradley A.; Welch, John S; Walter, Matthew J; Graubert, Timothy A.; Westervelt, Peter; Radich, Jerald P.; Link, Daniel C.; Mardis, Elaine R.; DiPersio, John F.; Wilson, Richard K.; Ley, Timothy J.

    2015-01-01

    IMPORTANCE Tests that predict outcomes for patients with acute myeloid leukemia (AML) are imprecise, especially for those with intermediate risk AML. OBJECTIVES To determine whether genomic approaches can provide novel prognostic information for adult patients with de novo AML. DESIGN, SETTING, AND PARTICIPANTS Whole-genome or exome sequencing was performed on samples obtained at disease presentation from 71 patients with AML (mean age, 50.8 years) treated with standard induction chemotherapy at a single site starting in March 2002, with follow-up through January 2015. In addition, deep digital sequencing was performed on paired diagnosis and remission samples from 50 patients (including 32 with intermediate-risk AML), approximately 30 days after successful induction therapy. Twenty-five of the 50 were from the cohort of 71 patients, and 25 were new, additional cases. EXPOSURES Whole-genome or exome sequencing and targeted deep sequencing. Risk of identification based on genetic data. MAIN OUTCOMES AND MEASURES Mutation patterns (including clearance of leukemia-associated variants after chemotherapy) and their association with event-free survival and overall survival. RESULTS Analysis of comprehensive genomic data from the 71 patients did not improve outcome assessment over current standard-of-care metrics. In an analysis of 50 patients with both presentation and documented remission samples, 24 (48%) had persistent leukemia-associated mutations in at least 5%of bone marrow cells at remission. The 24 with persistent mutations had significantly reduced event-free and overall survival vs the 26 who cleared all mutations. Patients with intermediate cytogenetic risk profiles had similar findings. Digital Sequencing (n=50)Intermediate CytogeneticRisk Profile (n=32)PersistentMutations(n=24)ClearedMutations(n=26)HR(95% CI)PersistentMutations(n=14)ClearedMutations(n=18)HR(95% CI)Event-free survival,median (95% CI), mo6.0(3.7–9.6)17.9(11.3–40.4)3.67(1.93–7.11)8.8(3.7–14.6)25.6(11.4-notestimable)3.32(1.44–7.67)Overall survival,median (95% CI), mo10.5(7.5–22.2)42.2(20.6-notestimable)2.86(1.39–5.88)19.3(7.5–42.3)46.8(22.6-notestimable)2.88(1.11–7.45) CONCLUSIONS AND RELEVANCE The detection of persistent leukemia-associated mutations in at least 5%of bone marrow cells in day 30 remission samples was associated with a significantly increased risk of relapse, and reduced overall survival. These data suggest that this genomic approach may improve risk stratification for patients with AML. PMID:26305651

  12. Clinical relevance of IDH1/2 mutant allele burden during follow-up in acute myeloid leukemia. A study by the French ALFA group

    PubMed Central

    Ferret, Yann; Boissel, Nicolas; Helevaut, Nathalie; Madic, Jordan; Nibourel, Olivier; Marceau-Renaut, Alice; Bucci, Maxime; Geffroy, Sandrine; Celli-Lebras, Karine; Castaigne, Sylvie; Thomas, Xavier; Terré, Christine; Dombret, Hervé; Preudhomme, Claude; Renneville, Aline

    2018-01-01

    Assessment of minimal residual disease has emerged as a powerful prognostic factor in acute myeloid leukemia. In this study, we investigated the potential of IDH1/2 mutations as targets for minimal residual disease assessment in acute myeloid leukemia, since these mutations collectively occur in 15–20% of cases of acute myeloid leukemia and now represent druggable targets. We employed droplet digital polymerase chain reaction assays to quantify IDH1R132, IDH2R140, and IDH2R172 mutations on genomic DNA in 322 samples from 103 adult patients with primary IDH1/2 mutant acute myeloid leukemia and enrolled on Acute Leukemia French Association (ALFA) - 0701 or -0702 clinical trials. The median IDH1/2 mutant allele fraction in bone marrow samples was 42.3% (range, 8.2 – 49.9%) at diagnosis of acute myeloid leukemia, and below the detection limit of 0.2% (range, <0.2 – 39.3%) in complete remission after induction therapy. In univariate analysis, the presence of a normal karyotype, a NPM1 mutation, and an IDH1/2 mutant allele fraction <0.2% in bone marrow after induction therapy were statistically significant predictors of longer disease-free survival. In multivariate analysis, these three variables remained significantly predictive of disease-free survival. In 7/103 (7%) patients, IDH1/2 mutations persisted at high levels in complete remission, consistent with the presence of an IDH1/2 mutation in pre-leukemic hematopoietic stem cells. Five out of these seven patients subsequently relapsed or progressed toward myelodysplastic syndrome, suggesting that patients carrying the IDH1/2 mutation in a pre-leukemic clone may be at high risk of hematologic evolution. PMID:29472349

  13. Identification of an AR Mutation-Negative Class of Androgen Insensitivity by Determining Endogenous AR Activity.

    PubMed

    Hornig, N C; Ukat, M; Schweikert, H U; Hiort, O; Werner, R; Drop, S L S; Cools, M; Hughes, I A; Audi, L; Ahmed, S F; Demiri, J; Rodens, P; Worch, L; Wehner, G; Kulle, A E; Dunstheimer, D; Müller-Roßberg, E; Reinehr, T; Hadidi, A T; Eckstein, A K; van der Horst, C; Seif, C; Siebert, R; Ammerpohl, O; Holterhus, P-M

    2016-11-01

    Only approximately 85% of patients with a clinical diagnosis complete androgen insensitivity syndrome and less than 30% with partial androgen insensitivity syndrome can be explained by inactivating mutations in the androgen receptor (AR) gene. The objective of the study was to clarify this discrepancy by in vitro determination of AR transcriptional activity in individuals with disorders of sex development (DSD) and male controls. Quantification of DHT-dependent transcriptional induction of the AR target gene apolipoprotein D (APOD) in cultured genital fibroblasts (GFs) (APOD assay) and next-generation sequencing of the complete coding and noncoding AR locus. The study was conducted at a university hospital endocrine research laboratory. GFs from 169 individuals were studied encompassing control males (n = 68), molecular defined DSD other than androgen insensitivity syndrome (AIS; n = 18), AR mutation-positive AIS (n = 37), and previously undiagnosed DSD including patients with a clinical suspicion of AIS (n = 46). There were no interventions. DHT-dependent APOD expression in cultured GF and AR mutation status in 169 individuals was measured. The APOD assay clearly separated control individuals (healthy males and molecular defined DSD patients other than AIS) from genetically proven AIS (cutoff < 2.3-fold APOD-induction; 100% sensitivity, 93.3% specificity, P < .0001). Of 46 DSD individuals with no AR mutation, 17 (37%) fell below the cutoff, indicating disrupted androgen signaling. AR mutation-positive AIS can be reliably identified by the APOD assay. Its combination with next-generation sequencing of the AR locus uncovered an AR mutation-negative, new class of androgen resistance, which we propose to name AIS type II. Our data support the existence of cellular components outside the AR affecting androgen signaling during sexual differentiation with high clinical relevance.

  14. Clinical relevance of IDH1/2 mutant allele burden during follow-up in acute myeloid leukemia. A study by the French ALFA group.

    PubMed

    Ferret, Yann; Boissel, Nicolas; Helevaut, Nathalie; Madic, Jordan; Nibourel, Olivier; Marceau-Renaut, Alice; Bucci, Maxime; Geffroy, Sandrine; Celli-Lebras, Karine; Castaigne, Sylvie; Thomas, Xavier; Terré, Christine; Dombret, Hervé; Preudhomme, Claude; Renneville, Aline

    2018-05-01

    Assessment of minimal residual disease has emerged as a powerful prognostic factor in acute myeloid leukemia. In this study, we investigated the potential of IDH1/2 mutations as targets for minimal residual disease assessment in acute myeloid leukemia, since these mutations collectively occur in 15-20% of cases of acute myeloid leukemia and now represent druggable targets. We employed droplet digital polymerase chain reaction assays to quantify IDH1R132 , IDH2R140 , and IDH2R172 mutations on genomic DNA in 322 samples from 103 adult patients with primary IDH1/2 mutant acute myeloid leukemia and enrolled on Acute Leukemia French Association (ALFA) - 0701 or -0702 clinical trials. The median IDH1/2 mutant allele fraction in bone marrow samples was 42.3% (range, 8.2 - 49.9%) at diagnosis of acute myeloid leukemia, and below the detection limit of 0.2% (range, <0.2 - 39.3%) in complete remission after induction therapy. In univariate analysis, the presence of a normal karyotype, a NPM1 mutation, and an IDH1/2 mutant allele fraction <0.2% in bone marrow after induction therapy were statistically significant predictors of longer disease-free survival. In multivariate analysis, these three variables remained significantly predictive of disease-free survival. In 7/103 (7%) patients, IDH1/2 mutations persisted at high levels in complete remission, consistent with the presence of an IDH1/2 mutation in pre-leukemic hematopoietic stem cells. Five out of these seven patients subsequently relapsed or progressed toward myelodysplastic syndrome, suggesting that patients carrying the IDH1/2 mutation in a pre-leukemic clone may be at high risk of hematologic evolution. Copyright © 2018 Ferrata Storti Foundation.

  15. Characterization of three Agrobacterium tumefaciens avirulent mutants with chromosomal mutations that affect induction of vir genes.

    PubMed

    Metts, J; West, J; Doares, S H; Matthysse, A G

    1991-02-01

    Three Agrobacterium tumefaciens mutants with chromosomal mutations that affect bacterial virulence were isolated by transposon mutagenesis. Two of the mutants were avirulent on all hosts tested. The third mutant, Ivr-211, was a host range mutant which was avirulent on Bryophyllum diagremontiana, Nicotiana tabacum, N. debneyi, N. glauca, and Daucus carota but was virulent on Zinnia elegans and Lycopersicon esculentum (tomato). That the mutant phenotype was due to the transposon insertion was determined by cloning the DNA containing the transposon insertion and using the cloned DNA to replace the wild-type DNA in the parent bacterial strain by marker exchange. The transposon insertions in the three mutants mapped at three widely separated locations on the bacterial chromosome. The effects of the mutations on various steps in tumor formation were examined. All three mutants showed no alteration in binding to carrot cells. However, none of the mutants showed any induction of vir genes by acetosyringone under conditions in which the parent strain showed vir gene induction. When the mutant bacteria were examined for changes in surface components, it was found that all three of the mutants showed a similar alteration in lipopolysaccharide (LPS). LPS from the mutants was larger in size and more heavily saccharide substituted than LPS from the parent strain. Two of the mutants showed no detectable alteration in outer membrane and periplasmic space proteins. The third mutant, Ivr-225, was missing a 79-kDa surface peptide. The reason(s) for the failure of vir gene induction in these mutants and its relationship, if any, to the observed alteration in LPS are unknown.

  16. Novel DNA Motif Binding Activity Observed In Vivo With an Estrogen Receptor α Mutant Mouse

    PubMed Central

    Li, Leping; Grimm, Sara A.; Winuthayanon, Wipawee; Hamilton, Katherine J.; Pockette, Brianna; Rubel, Cory A.; Pedersen, Lars C.; Fargo, David; Lanz, Rainer B.; DeMayo, Francesco J.; Schütz, Günther; Korach, Kenneth S.

    2014-01-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as “tethering.” Evidence for tethering is based on in vitro studies and a widely used “KIKO” mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the “EAAE” ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null–like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo. PMID:24713037

  17. Effects of oestrogens and anti-oestrogens on normal breast tissue from women bearing BRCA1 and BRCA2 mutations

    PubMed Central

    Bramley, M; Clarke, R B; Howell, A; Evans, D G R; Armer, T; Baildam, A D; Anderson, E

    2006-01-01

    There is considerable interest in whether anti-oestrogens can be used to prevent breast cancer in women bearing mutations in the BRCA1 and BRCA2 genes. The effects of oestradiol (E2), tamoxifen (TAM) and fulvestrant (FUL) on proliferation and steroid receptor expression were assessed in normal breast epithelium taken from women at varying risks of breast cancer and implanted into athymic nude mice, which were treated with E2 in the presence and absence of TAM or FUL. Tissue samples were taken at various time points thereafter for assessment of proliferative activity and expression of oestrogen and progesterone receptors (ERα and PgR) by immunohistochemistry. Oestradiol increased proliferation in the breast epithelium from women carrying mutations in the BRCA1/2 genes, those otherwise at increased risk and those at population risk of breast cancer. This increase was reduced by both TAM and FUL in all risk groups. In the absence of E2, PgR expression was reduced in all risk groups but significantly more so in the BRCA-mutated groups. Subsequent E2 treatment caused a rapid, complete induction of PgR expression in the population-risk group but not in the high-risk or BRCA-mutated groups in which PgR induction was significantly delayed. These data suggest that the mechanisms by which E2 induces breast epithelial PgR expression are impaired in BRCA1/2 mutation carriers, whereas those regulating proliferation remain intact. We conclude that early anti-oestrogen treatment should prevent breast cancer in very high-risk women. PMID:16538216

  18. Preleukemic and second-hit mutational events in an acute myeloid leukemia patient with a novel germline RUNX1 mutation.

    PubMed

    Ng, Isaac Ks; Lee, Joanne; Ng, Christopher; Kosmo, Bustamin; Chiu, Lily; Seah, Elaine; Mok, Michelle Meng Huang; Tan, Karen; Osato, Motomi; Chng, Wee-Joo; Yan, Benedict; Tan, Lip Kun

    2018-01-01

    Germline mutations in the RUNX1 transcription factor give rise to a rare autosomal dominant genetic condition classified under the entity: Familial Platelet Disorders with predisposition to Acute Myeloid Leukaemia (FPD/AML). While several studies have identified a myriad of germline RUNX1 mutations implicated in this disorder, second-hit mutational events are necessary for patients with hereditary thrombocytopenia to develop full-blown AML. The molecular picture behind this process remains unclear. We describe a patient of Malay descent with an unreported 7-bp germline RUNX1 frameshift deletion, who developed second-hit mutations that could have brought about the leukaemic transformation from a pre-leukaemic state. These mutations were charted through the course of the treatment and stem cell transplant, showing a clear correlation between her clinical presentation and the mutations present. The patient was a 27-year-old Malay woman who presented with AML on the background of hereditary thrombocytopenia affecting her father and 3 brothers. Initial molecular testing revealed the same novel RUNX1 mutation in all 5 individuals. The patient received standard induction, consolidation chemotherapy, and a haploidentical stem cell transplant from her mother with normal RUNX1 profile. Comprehensive genomic analyses were performed at diagnosis, post-chemotherapy and post-transplant. A total of 8 mutations ( RUNX1 , GATA2 , DNMT3A , BCORL1 , BCOR , 2 PHF6 and CDKN2A ) were identified in the pre-induction sample, of which 5 remained ( RUNX1 , DNMT3A , BCORL1 , BCOR and 1 out of 2 PHF6 ) in the post-treatment sample and none were present post-transplant. In brief, the 3 mutations which were lost along with the leukemic cells at complete morphological remission were most likely acquired leukemic driver mutations that were responsible for the AML transformation from a pre-leukemic germline RUNX1 -mutated state. On the contrary, the 5 mutations that persisted post-treatment, including the germline RUNX1 mutation, were likely to be part of the preleukemic clone. Further studies are necessary to assess the prevalence of these preleukemic and secondary mutations in the larger FPD/AML patient cohort and establish their prognostic significance. Given the molecular heterogeneity of FPD/AML and other AML subtypes, a better understanding of mutational classes and their involvement in AML pathogenesis can improve risk stratification of patients for more effective and targeted therapy.

  19. THE INDUCTION AND TESTING OF SOMATIC MUTATIONS IN APPLES, GRAPES AND OTHER ECONOMIC PLANTS. Progress Report for the Period February 1, 1956 to January 31, 1957

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, C.; Einset, J.

    1958-10-31

    Preliminary data are presented from observations on the response of three varieties of apples and one variety of grapes subjected to a wide range of radiation damage at growth stages ramging from seed to matuee plants. Ultimate objectives of the study are the radioinduced production of mutations in apples and grapes. (C.H.)

  20. Multiple Functions of Let-23, a Caenorhabditis Elegans Receptor Tyrosine Kinase Gene Required for Vulval Induction

    PubMed Central

    Aroian, R. V.; Sternberg, P. W.

    1991-01-01

    The let-23 gene, which encodes a putative tyrosine kinase of the epidermal growth factor (EGF) receptor subfamily, has multiple functions during Caenorhabditis elegans development. We show that let-23 function is required for vulval precursor cells (VPCs) to respond to the signal that induces vulval differentiation: a complete loss of let-23 function results in no induction. However, some let-23 mutations that genetically reduce but do not eliminate let-23 function result in VPCs apparently hypersensitive to inductive signal: as many as five of six VPCs can adopt vulval fates, in contrast to the three that normally do. These results suggest that the let-23 receptor tyrosine kinase controls two opposing pathways, one that stimulates vulval differentiation and another that negatively regulates vulval differentiation. Furthermore, analysis of 16 new let-23 mutations indicates that the let-23 kinase functions in at least five tissues. Since various let-23 mutant phenotypes can be obtained independently, the let-23 gene is likely to have tissue-specific functions. PMID:2071015

  1. The Role of Mitochondria in Cancer Induction, Progression and Changes in Metabolism.

    PubMed

    Rogalinska, Malgorzata

    2016-01-01

    Mitochondria play important roles as energetic centers. Mutations in mitochondrial DNA (mtDNA) were found in several diseases, including cancers. Studies on cytoplasmic hybrids (cybrids) confirm that directed mutation introduced into mtDNA could be a reason for cancer induction. Mitochondria could also be a factor linking cancer transformation and progression. The importance of mitochondria in cancer also confirms their involvement in the resistance to treatment. Resistance to treatment of cancer cells can frequently be a reason for glycolysis acceleration. It could be explained by cancer cells' high proliferation index and high energy request. The involvement of mitochondria in metabolic disturbances of several metabolic diseases, including cancers, was reported. These data confirm that cancer induction, as well as cancer progression, could have metabolic roots. The aberrant products observed in prostate cells involved in the Krebs cycle could promote cancer progression. These multiple relationships between alterations on a genetic level translated into disturbances in cellular metabolism and their potential relation with epigenetic control of gene expression make cancerogenesis more complicated and prognoses' success in studies on cancer etiology more distant in time.

  2. Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus.

    PubMed

    Holzer, Barbara; Bakshi, Siddharth; Bridgen, Anne; Baron, Michael D

    2011-01-01

    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU.

  3. CLL Cells Respond to B-Cell Receptor Stimulation with a MicroRNA/mRNA Signature Associated with MYC Activation and Cell Cycle Progression

    PubMed Central

    Pede, Valerie; Rombout, Ans; Vermeire, Jolien; Naessens, Evelien; Mestdagh, Pieter; Robberecht, Nore; Vanderstraeten, Hanne; Van Roy, Nadine; Vandesompele, Jo; Speleman, Frank; Philippé, Jan; Verhasselt, Bruno

    2013-01-01

    Chronic lymphocytic leukemia (CLL) is a disease with variable clinical outcome. Several prognostic factors such as the immunoglobulin heavy chain variable genes (IGHV) mutation status are linked to the B-cell receptor (BCR) complex, supporting a role for triggering the BCR in vivo in the pathogenesis. The miRNA profile upon stimulation and correlation with IGHV mutation status is however unknown. To evaluate the transcriptional response of peripheral blood CLL cells upon BCR stimulation in vitro, miRNA and mRNA expression was measured using hybridization arrays and qPCR. We found both IGHV mutated and unmutated CLL cells to respond with increased expression of MYC and other genes associated with BCR activation, and a phenotype of cell cycle progression. Genome-wide expression studies showed hsa-miR-132-3p/hsa-miR-212 miRNA cluster induction associated with a set of downregulated genes, enriched for genes modulated by BCR activation and amplified by Myc. We conclude that BCR triggering of CLL cells induces a transcriptional response of genes associated with BCR activation, enhanced cell cycle entry and progression and suggest that part of the transcriptional profiles linked to IGHV mutation status observed in isolated peripheral blood are not cell intrinsic but rather secondary to in vivo BCR stimulation. PMID:23560086

  4. Radiation-induced transgenerational instability.

    PubMed

    Dubrova, Yuri E

    2003-10-13

    To date, the analysis of mutation induction has provided an irrefutable evidence for an elevated germline mutation rate in the parents directly exposed to ionizing radiation and a number of chemical mutagens. However, the results of numerous publications suggest that radiation may also have an indirect effect on genome stability, which is transmitted through the germ line of irradiated parents to their offspring. This review describes the phenomenon of transgenerational instability and focuses on the data showing increased cancer incidence and elevated mutation rates in the germ line and somatic tissues of the offspring of irradiated parents. The possible mechanisms of transgenerational instability are also discussed.

  5. [Induced germ line genomic instability at mini- and micro-satellites in animals].

    PubMed

    Bezlepkin, V G; Gaziev, A I

    2001-01-01

    The recent data on the phenomenon of the induced germline genomic instability at mini- and microsatellites in animals were considered. Natural hypervariability of the minisatellites and microsatellites and their abundance in eukaryotic genome provide it's utility as the useful genetic markers for evaluation of the germline mutation frequency induced by treatment with different type of genotoxic factors at the low doses. High sensitivity of assays and possibility for direct determinations of the mutations, without the necessity to use extrapolation, are ensured. Some discussion is presented on the role of non-targeted mechanisms for the radiation-prone DNA lesions in the induction of germline genomic instability and also on the involving in this process the recombination events upon meiosis or during the early development stages of embryos. It is proposed that quantitative determination of germline genomic instability rate may be used as an acceptable variant for the genetic risk assessment and as indicator of increased probability for cancer and other pathologies at the offspring born to irradiated parents.

  6. Biomarkers in Advanced Larynx Cancer

    PubMed Central

    Bradford, Carol R.; Kumar, Bhavna; Bellile, Emily; Lee, Julia; Taylor, Jeremy; D’Silva, Nisha; Cordell, Kitrina; Kleer, Celina; Kupfer, Robbi; Kumar, Pawan; Urba, Susan; Worden, Francis; Eisbruch, Avraham; Wolf, Gregory T.; Teknos, Theodoros N.; Prince, Mark E.P.; Chepeha, Douglas B.; Hogikyan, Norman D.; Moyer, Jeffrey S.; Carey, Thomas E.

    2014-01-01

    Objectives/Hypothesis To determine if tumor biomarkers were predictive of outcome in a prospective cohort of patients with advanced larynx cancer treated in a phase II clinical trial. Study Design Prospectively collected biopsy specimens from 58 patients entered into a Phase II trial of organ preservation in advanced laryngeal cancer were evaluated for expression of a large panel of biomarkers and correlations with outcome were determined. Methods Tissue microarrays were constructed from pretreatment biopsies and stained for cyclin D1, CD24, EGFR, MDM2, PCNA, p53, survivin, Bcl-xL, Bcl-2, BAK, rhoC, and NFκB. Pattern of invasion and p53 mutations were assessed. Correlations with overall survival (OS), disease-specific survival (DSS), time free from indication of surgery, induction chemotherapy response, and chemoradiation response were determined. Cox models were used to assess combinations of these biomarkers. Results Low expression of BAK was associated with response to induction chemotherapy. Low expression of BAK and cytoplasmic NFκB was associated with chemoradiation response. Aggressive histologic growth pattern was associated with response induction chemotherapy. Expression of cyclin D1 was predictive of overall and disease-specific survival. Overexpression of EGFR was also associated with an increased risk of death from disease. Bcl-xL expression increased significantly in persistent/recurrent tumors specimens when compared to pretreatment specimens derived from the same patient (p = 0.0003). Conclusions Evaluation of biomarker expression in pretreatment biopsy specimens can lend important predictive and prognostic information for patients with advanced larynx cancer. PMID:23775802

  7. Cell inactivation, repair and mutation induction in bacteria after heavy ion exposure: results from experiments at accelerators and in space.

    PubMed

    Horneck, G; Schafer, M; Baltschukat, K; Weisbrod, U; Micke, U; Facius, R; Bucker, H

    1989-01-01

    To understand the mechanisms of accelerated heavy ions on biological matter, the responses of spores of B. subtilis to this structured high LET radiation was investigated applying two different approaches. 1) By the use of the Biostack concept, the inactivation probability as a function of radial distance to single particles' trajectory (i.e. impact parameter) was determined in space experiments as well as at accelerators using low fluences of heavy ions. It was found that spores can survive even a central hit and that the effective range of inactivation extends far beyond impact parameters where inactivation by delta-ray dose would be effective. Concerning the space experiment, the inactivation cross section exceeds those from comparable accelerator experiments by roughly a factor of 20. 2) From fluence effect curves, cross sections for inactivation and mutation induction, and the efficiency of repair processes were determined. They are influenced by the ions characteristics in a complex manner. According to dependence on LET, at least 3 LET ranges can be differentiated: A low LET range (app. < 200 keV/micrometers), where cross sections for inactivation and mutation induction follow a common curve for different ions and where repair processes are effective; an intermediate LET range of the so-called saturation cross section with negligible mutagenic and repair efficiency; and a high LET range (>1000 keV/micrometers) where the biological endpoints are majorly dependent on atomic mass and energy of the ion under consideration.

  8. Effect of endogenous carotenoids on “adaptive” mutation in Escherichia coli FC40

    PubMed Central

    Bridges, Bryn A.; Foster, Patricia L.; Timms, Andrew R.

    2010-01-01

    The appearance over many days of Lac+ frameshift mutations in Escherichia coli strain FC40 incubated on lactose selection plates is a classic example of apparent “adaptive” mutation in an episomal gene. We show that endogenously overproduced carotenoids reduce adaptive mutation under selective conditions by a factor of around two. Carotenoids are known to scavenge singlet oxygen suggesting that the accumulation of oxidative base damage may be an integral part of the adaptive mutation phenomenon. If so, the lesion cannot be 7,8-dihydro-8-oxoguanine since adaptive mutation in FC40 is unaffected by mutM and mutY mutations. If active oxygen species such as singlet oxygen are involved in adaptive mutation then they should also induce frameshift mutations in FC40 under non-selective conditions. We show that such mutations can be induced under non-selective conditions by protoporphyrin photosensitisation and that this photodynamic induction is reduced by a factor of just over two when endogenous carotenoids are present. We argue that the involvement of oxidative damage would in no way be inconsistent with current understanding of the mechanism of adaptive mutation and the role of DNA polymerases. PMID:11166030

  9. Characterization of children with FLT3-ITD acute myeloid leukemia: a report from the AIEOP AML-2002 study group.

    PubMed

    Manara, E; Basso, G; Zampini, M; Buldini, B; Tregnago, C; Rondelli, R; Masetti, R; Bisio, V; Frison, M; Polato, K; Cazzaniga, G; Menna, G; Fagioli, F; Merli, P; Biondi, A; Pession, A; Locatelli, F; Pigazzi, M

    2017-01-01

    Recurrent molecular markers have been routinely used in acute myeloid leukemia (AML) for risk assessment at diagnosis, whereas their post-induction monitoring still represents a debated issue. We evaluated the prognostic value and biological impact of minimal residual disease (MRD) and of the allelic ratio (AR) of FLT3-internal-tandem duplication (ITD) in childhood AML. We retrospectively screened 494 children with de novo AML for FLT3-ITD mutation, identifying 54 harboring the mutation; 51% of them presented high ITD-AR at diagnosis and had worse event-free survival (EFS, 19.2 versus 63.5% for low ITD-AR, <0.05). Forty-one percent of children with high levels of MRD after the 1st induction course, measured by a patient-specific real-time-PCR, had worse EFS (22.2 versus 59.4% in low-MRD patients, P<0.05). Next, we correlated these parameters with gene expression, showing that patients with high ITD-AR or persistent MRD had characteristic expression profiles with deregulated genes involved in methylation and acetylation. Moreover, patients with high CyclinA1 expression presented an unfavorable EFS (20.3 versus 51.2% in low CyclinA1 group, P<0.01). Our results suggest that ITD-AR levels and molecular MRD should be considered in planning clinical management of FLT3-ITD patients. Different transcriptional activation of epigenetic and oncogenic profiles may explain variability in outcome among these patients, for whom novel therapeutic approaches are desirable.

  10. Radiation-quality dependent cellular response in mutation induction in normal human cells.

    PubMed

    Suzuki, Masao; Tsuruoka, Chizuru; Uchihori, Yukio; Kitamura, Hisashi; Liu, Cui Hua

    2009-09-01

    We studied cellular responses in normal human fibroblasts induced with low-dose (rate) or low-fluence irradiations of different radiation types, such as gamma rays, neutrons and high linear energy transfer (LET) heavy ions. The cells were pretreated with low-dose (rate) or low-fluence irradiations (approximately 1 mGy/7-8 h) of 137Cs gamma rays, 241Am-Be neutrons, helium, carbon and iron ions before irradiations with an X-ray challenging dose (1.5 Gy). Helium (LET = 2.3 keV/microm), carbon (LET = 13.3 keV/microm) and iron (LET = 200 keV/microm) ions were produced by the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. No difference in cell-killing effect, measured by a colony forming assay, was observed among the pretreatment with different radiation types. In mutation induction, which was detected in the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus to measure 6-thioguanine resistant clones, there was no difference in mutation frequency induced by the X-ray challenging dose between unpretreated and gamma-ray pretreated cells. In the case of the pretreatment of heavy ions, X-ray-induced mutation was around 1.8 times higher in helium-ion pretreated and 4.0 times higher in carbon-ion pretreated cells than in unpretreated cells (X-ray challenging dose alone). However, the mutation frequency in cells pretreated with iron ions was the same level as either unpretreated or gamma-ray pretreated cells. In contrast, it was reduced at 0.15 times in cells pretreated with neutrons when compared to unpretreated cells. The results show that cellular responses caused by the influence of hprt mutation induced in cells pretreated with low-dose-rate or low-fluence irradiations of different radiation types were radiation-quality dependent manner.

  11. Tamoxifen induces the expression of maspin through estrogen receptor-alpha.

    PubMed

    Liu, Zesheng; Shi, Heidi Y; Nawaz, Zafar; Zhang, Ming

    2004-06-08

    Maspin (mammary serine protease inhibitor) is a tumor suppressor gene that plays an important role in inhibiting tumor growth, invasion and metastasis. Maspin expression is down regulated at transcription level in primary and metastatic breast tumor cells. Previous studies on hormonal regulation of maspin prompt us to test whether an estrogen antagonist tamoxifen (TAM) can exert its anti-tumor function by up regulating maspin gene expression. For this purpose, we first tested whether maspin promoter could be activated in normal and several breast tumor cells. We then carried out a series of promoter analysis in which estrogen receptors and TAM were reconstituted in an in vitro cell culture system. Here we report our new finding that tumor suppresser gene maspin is one of the TAM target genes. TAM induces a maspin/luciferase reporter in cell culture and this induction requires the presence of (estrogen receptor alpha) ERalpha but not estrogen receptor-beta (ERbeta). Maspin promoter deletion and mutation analysis showed that the cis element(s) within a region between -90and+87 bp but not the HRE site (-272 bp) was involved in TAM induction of maspin expression. TAM bound ERalpha may directly control maspin gene expression through the interaction with cofactor (s). Analysis using several ERalpha mutants showed that the N-terminal A/B motif (AF-1) was critical for maspin basal level transcription activation. An ERalpha mutant with point mutations at DNA binding domain abolished estrogen induction of an ERE-luciferase reporter but was still active in activating maspin promoter by TAM. LBD-AF2 domain was required for ERalpha-dependent TAM induction. Deletion of LBD-AF2 or a point mutation in the ERalpha LBD-AF2 region (LBDmtL539A) completely abolished the activation of maspin promoter, suggesting that TAM induction of maspin involves the recruitment of cofactor(s) by ERalpha to the maspin promoter region. This finding indicates that one of the pathways for cancer prevention and tumor inhibition by TAM is mediated through the activation of tumor suppressor gene maspin in breast cancer.

  12. Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor

    PubMed Central

    Morita, Miyo Terao; Tanaka, Yoshiyuki; Kodama, Takashi S.; Kyogoku, Yoshimasa; Yanagi, Hideki; Yura, Takashi

    1999-01-01

    Induction of heat shock proteins in Escherichia coli is primarily caused by increased cellular levels of the heat shock σ-factor σ32 encoded by the rpoH gene. Increased σ32 levels result from both enhanced synthesis and stabilization. Previous work indicated that σ32 synthesis is induced at the translational level and is mediated by the mRNA secondary structure formed within the 5′-coding sequence of rpoH, including the translation initiation region. To understand the mechanism of heat induction of σ32 synthesis further, we analyzed expression of rpoH–lacZ gene fusions with altered stability of mRNA structure before and after heat shock. A clear correlation was found between the stability and expression or the extent of heat induction. Temperature-melting profiles of mRNAs with or without mutations correlated well with the expression patterns of fusion genes carrying the corresponding mutations in vivo. Furthermore, temperature dependence of mRNA–30S ribosome–tRNAfMet complex formation with wild-type or mutant mRNAs in vitro agreed well with that of the expression of gene fusions in vivo. Our results support a novel mechanism in which partial melting of mRNA secondary structure at high temperature enhances ribosome entry and translational initiation without involvement of other cellular components, that is, intrinsic mRNA stability controls synthesis of a transcriptional regulator. PMID:10090722

  13. Induction of homologous recombination in Saccharomyces cerevisiae.

    PubMed

    Simon, J R; Moore, P D

    1988-09-01

    We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.

  14. Gender differences in the induction of chromosomal aberrations and gene mutations in rodent germ cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, Ilse-Dore; Carere, Angelo; Eichenlaub-Ritter, Ursula

    2007-05-15

    Germ cell mutagenicity testing provides experimental data to quantify genetic risk for exposed human populations. The majority of tests are performed with exposure of males, and female data are relatively rare. The reason for this paucity lies in the differences between male and female germ cell biology. Male germ cells are produced throughout reproductive life and all developmental stages can be ascertained by appropriate breeding schemes. In contrast, the female germ cell pool is limited, meiosis begins during embryogenesis and oocytes are arrested over long periods of time until maturation processes start for small numbers of oocytes during the oestrusmore » cycle in mature females. The literature data are reviewed to point out possible gender differences of germ cells to exogenous agents such as chemicals or ionizing radiation. From the limited information, it can be concluded that male germ cells are more sensitive than female germ cells to the induction of chromosomal aberrations and gene mutations. However, exceptions are described which shed doubt on the extrapolation of experimental data from male rodents to the genetic risk of the human population. Furthermore, the female genome may be more sensitive to mutation induction during peri-conceptional stages compared to the male genome of the zygote. With few exceptions, germ cell experiments have been carried out under high acute exposure to optimize the effects and to compensate for the limited sample size in animal experiments. Human exposure to environmental agents, on the other hand, is usually chronic and involves low doses. Under these conditions, gender differences may become apparent that have not been studied so far. Additionally, data are reviewed that suggest a false impression of safety when responses are negative under high acute exposure of male rodents while a mutational response is induced by low chronic exposure. The classical (morphological) germ cell mutation tests are not performed anymore because they are animal and time consuming. Nevertheless, information is needed to place genetic risk extrapolations on more solid grounds and thereby to prevent an increased genetic burden to future generations. It is pointed out that modern molecular methodologies are available now to experimentally address the open questions.« less

  15. Inhibition of Interferon Induction and Action by the Nairovirus Nairobi Sheep Disease Virus/Ganjam Virus

    PubMed Central

    Holzer, Barbara; Bakshi, Siddharth; Bridgen, Anne; Baron, Michael D.

    2011-01-01

    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU. PMID:22163042

  16. Identification of an AR Mutation-Negative Class of Androgen Insensitivity by Determining Endogenous AR Activity

    PubMed Central

    Ukat, M.; Schweikert, H. U.; Hiort, O.; Werner, R.; Drop, S. L. S.; Cools, M.; Hughes, I. A.; Audi, L.; Ahmed, S. F.; Demiri, J.; Rodens, P.; Worch, L.; Wehner, G.; Kulle, A. E.; Dunstheimer, D.; Müller-Roßberg, E.; Reinehr, T.; Hadidi, A. T.; Eckstein, A. K.; van der Horst, C.; Seif, C.; Siebert, R.; Ammerpohl, O.; Holterhus, P.-M.

    2016-01-01

    Context: Only approximately 85% of patients with a clinical diagnosis complete androgen insensitivity syndrome and less than 30% with partial androgen insensitivity syndrome can be explained by inactivating mutations in the androgen receptor (AR) gene. Objective: The objective of the study was to clarify this discrepancy by in vitro determination of AR transcriptional activity in individuals with disorders of sex development (DSD) and male controls. Design: Quantification of DHT-dependent transcriptional induction of the AR target gene apolipoprotein D (APOD) in cultured genital fibroblasts (GFs) (APOD assay) and next-generation sequencing of the complete coding and noncoding AR locus. Setting: The study was conducted at a university hospital endocrine research laboratory. Patients: GFs from 169 individuals were studied encompassing control males (n = 68), molecular defined DSD other than androgen insensitivity syndrome (AIS; n = 18), AR mutation-positive AIS (n = 37), and previously undiagnosed DSD including patients with a clinical suspicion of AIS (n = 46). Intervention(s): There were no interventions. Main Outcome Measure(s): DHT-dependent APOD expression in cultured GF and AR mutation status in 169 individuals was measured. Results: The APOD assay clearly separated control individuals (healthy males and molecular defined DSD patients other than AIS) from genetically proven AIS (cutoff < 2.3-fold APOD-induction; 100% sensitivity, 93.3% specificity, P < .0001). Of 46 DSD individuals with no AR mutation, 17 (37%) fell below the cutoff, indicating disrupted androgen signaling. Conclusions: AR mutation-positive AIS can be reliably identified by the APOD assay. Its combination with next-generation sequencing of the AR locus uncovered an AR mutation-negative, new class of androgen resistance, which we propose to name AIS type II. Our data support the existence of cellular components outside the AR affecting androgen signaling during sexual differentiation with high clinical relevance. PMID:27583472

  17. Use of the microscreen phage-induction assay to assess the genotoxicity of 14 hazardous industrial wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houk, V.S.; DeMarini, D.M.

    1988-01-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage lambda in Escherichia coli WP2s(lambda), was used to test 14 crude (unfractionated) hazardous industrial waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 pg per ml. Comparisons between the ability of these waste samples to induce prophage and their mutagenicity in the Salmonella reverse mutation assay indicate that the phage-induction assay detected genotoxic activity in all but one of the wastes that were mutagenic in Salmonella. Moreover, themore » Microscreen assay detected as genotoxic five additional wastes that were not detected in the Salmonella assay. The applicability of the Microscreen phage-induction assay for screening hazardous wastes for genotoxic activity is discussed, as are some of the problems associated with screening highly toxic wastes containing toxic volatile compounds.« less

  18. p53-independent p21 induction by MELK inhibition.

    PubMed

    Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun

    2017-08-29

    MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated.

  19. p53-independent p21 induction by MELK inhibition

    PubMed Central

    Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun

    2017-01-01

    MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated. PMID:28938528

  20. Heavy ion induced mutations in mammalian cells: Cross sections and molecular analysis

    NASA Technical Reports Server (NTRS)

    Stoll, U.; Schmidt, P.; Schneider, E.; Kiefer, J.

    1994-01-01

    Our investigations of heavy ion-induced mutations in mammalian cells, which had been begun a few years ago, were systematically continued. For the first time, it was possible to cover a large LET range with a few kinds of ions. To do this, both UNILAC and SIS were used to yield comparable data for a large energy range. This is a necessary condition for a comprehensive description of the influence of such ion parameters as energy and LET. In these experiments, the induced resistance against the poison 6-thioguanin (6-TG), which is linked to the HPRT locus on the genome, is being used as mutation system. In addition to the mutation-induction cross-section measurements, the molecular changes of the DNA are being investigated by means of Multiplex PCR ('Polymerase Chain Reaction') gene amplification. From these experiments we expect further elucidation of the mutation-inducing mechanisms composing the biological action of heavy-ion radiation.

  1. The pso4-1 mutation reduces spontaneous mitotic gene conversion and reciprocal recombination in Saccharomyces cerevisiae.

    PubMed

    Meira, L B; Fonseca, M B; Averbeck, D; Schenberg, A C; Henriques, J A

    1992-11-01

    Spontaneous mitotic recombination was examined in the haploid pso4-1 mutant of Saccharomyces cerevisiae and in the corresponding wild-type strain. Using a genetic system involving a duplication of the his4 gene it was shown that the pso4-1 mutation decreases at least fourfold the spontaneous rate of mitotic recombination. The frequency of spontaneous recombination was reduced tenfold in pso4-1 strains, as previously observed in the rad52-1 mutant. However, whereas the rad52-1 mutation specifically reduces gene conversion, the pso4-1 mutation reduces both gene conversion and reciprocal recombination. Induced mitotic recombination was also studied in pso4-1 mutant and wild-type strains after treatment with 8-methoxypsoralen plus UVA and 254 nm UV irradiation. Consistent with previous results, the pso4-1 mutation was found strongly to affect recombination induction.

  2. Effect of sodium benzoate preservative on micronucleus induction, chromosome break, and Ala40Thr superoxide dismutase gene mutation in lymphocytes.

    PubMed

    Pongsavee, Malinee

    2015-01-01

    Sodium benzoate is food preservative that inhibits microbial growth. The effects of sodium benzoate preservative on micronucleus induction, chromosome break, and Ala40Thr superoxide dismutase gene mutation in lymphocytes were studied. Sodium benzoate concentrations of 0.5, 1.0, 1.5, and 2.0 mg/mL were treated in lymphocyte cell line for 24 and 48 hrs, respectively. Micronucleus test, standard chromosome culture technique, PCR, and automated sequencing technique were done to detect micronucleus, chromosome break, and gene mutation. The results showed that, at 24- and 48-hour. incubation time, sodium benzoate concentrations of 1.0, 1.5, and 2.0 mg/mL increased micronucleus formation when comparing with the control group (P < 0.05). At 24- and 48-hour. incubation time, sodium benzoate concentrations of 2.0 mg/mL increased chromosome break when comparing with the control group (P < 0.05). Sodium benzoate did not cause Ala40Thr (GCG→ACG) in superoxide dismutase gene. Sodium benzoate had the mutagenic and cytotoxic toxicity in lymphocytes caused by micronucleus formation and chromosome break.

  3. The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage.

    PubMed Central

    Paulovich, A G; Armour, C D; Hartwell, L H

    1998-01-01

    In wild-type Saccharomyces cerevisiae, a checkpoint slows the rate of progression of an ongoing S phase in response to exposure to a DNA-alkylating agent. Mutations that eliminate S phase regulation also confer sensitivity to alkylating agents, leading us to suggest that, by regulating the S phase rate, cells are either better able to repair or better able to replicate damaged DNA. In this study, we determine the effects of mutations that impair S phase regulation on the ability of excision repair-defective cells to replicate irreparably UV-damaged DNA. We assay survival after UV irradiation, as well as the genetic consequences of replicating a damaged template, namely mutation and sister chromatid exchange induction. We find that RAD9, RAD17, RAD24, and MEC3 are required for UV-induced (although not spontaneous) mutagenesis, and that RAD9 and RAD17 (but not REV3, RAD24, and MEC3) are required for maximal induction of replication-dependent sister chromatid exchange. Therefore, checkpoint genes not only control cell cycle progression in response to damage, but also play a role in accommodating DNA damage during replication. PMID:9725831

  4. The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage.

    PubMed

    Paulovich, A G; Armour, C D; Hartwell, L H

    1998-09-01

    In wild-type Saccharomyces cerevisiae, a checkpoint slows the rate of progression of an ongoing S phase in response to exposure to a DNA-alkylating agent. Mutations that eliminate S phase regulation also confer sensitivity to alkylating agents, leading us to suggest that, by regulating the S phase rate, cells are either better able to repair or better able to replicate damaged DNA. In this study, we determine the effects of mutations that impair S phase regulation on the ability of excision repair-defective cells to replicate irreparably UV-damaged DNA. We assay survival after UV irradiation, as well as the genetic consequences of replicating a damaged template, namely mutation and sister chromatid exchange induction. We find that RAD9, RAD17, RAD24, and MEC3 are required for UV-induced (although not spontaneous) mutagenesis, and that RAD9 and RAD17 (but not REV3, RAD24, and MEC3) are required for maximal induction of replication-dependent sister chromatid exchange. Therefore, checkpoint genes not only control cell cycle progression in response to damage, but also play a role in accommodating DNA damage during replication.

  5. Mutation in HFE gene decreases manganese accumulation and oxidative stress in the brain after olfactory manganese exposure.

    PubMed

    Ye, Qi; Kim, Jonghan

    2016-06-01

    Increased accumulation of manganese (Mn) in the brain is significantly associated with neurobehavioral deficits and impaired brain function. Airborne Mn has a high systemic bioavailability and can be directly taken up into the brain, making it highly neurotoxic. While Mn transport is in part mediated by several iron transporters, the expression of these transporters is altered by the iron regulatory gene, HFE. Mutations in the HFE gene are the major cause of the iron overload disorder, hereditary hemochromatosis, one of the prevalent genetic diseases in humans. However, whether or not HFE mutation modifies Mn-induced neurotoxicity has not been evaluated. Therefore, our goal was to define the role of HFE mutation in Mn deposition in the brain and the resultant neurotoxic effects after olfactory Mn exposure. Mice carrying the H67D HFE mutation, which is homologous to the H63D mutation in humans, and their control, wild-type mice, were intranasally instilled with MnCl2 with different doses (0, 0.2, 1.0 and 5.0 mg kg(-1)) daily for 3 days. Mn levels in the blood, liver and brain were determined using inductively-coupled plasma mass spectrometry (ICP-MS). H67D mutant mice showed significantly lower Mn levels in the blood, liver, and most brain regions, especially in the striatum, while mice fed an iron-overload diet did not. Moreover, mRNA expression of ferroportin, an essential exporter of iron and Mn, was up-regulated in the striatum. In addition, the levels of isoprostane, a marker of lipid peroxidation, were increased in the striatum after Mn exposure in wild-type mice, but were unchanged in H67D mice. Together, our results suggest that the H67D mutation provides decreased susceptibility to Mn accumulation in the brain and neurotoxicity induced by inhaled Mn.

  6. The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence.

    PubMed

    Ren, Jun; Prescott, John F

    2004-11-15

    An 81 kb virulence plasmid containing a pathogenicity island (PI) plays a crucial role in the pathogenesis of Rhodococcus equi pneumonia in foals but its specific function in virulence and regulation of plasmid-encoded virulence genes is unclear. Using a LacZ selection marker developed for R. equi in this study, in combination with an apramycin resistance gene, an efficient two-stage homologous recombination targeted gene mutation procedure was used to mutate three virulence plasmid genes, a LysR regulatory gene homologue (ORF4), a ResD-like two-component response regulator homologue (ORF8), and a gene (ORF10) of unknown function that is highly expressed by R. equi inside macrophages, as well as the chromosomal gene operon, phoPR. Virulence testing by liver clearance after intravenous injection in mice showed that the ORF4 and ORF8 mutants were fully attenuated, that the phoPR mutant was hypervirulent, and that virulence of the ORF10 mutant remained unchanged. A virulence plasmid DNA microarray was used to compare the plasmid gene expression profile of each of the four gene-targeted mutants against the parental R. equi strain. Changes were limited to PI genes and gene induction was observed for all mutants, suggesting that expression of virulence plasmid genes is dominated by a negative regulatory network. The finding of attenuation of ORF4 and ORF8 mutants despite enhanced transcription of vapA suggests that factors other than VapA are important for full expression of virulence. ORF1, a putative Lsr antigen gene, was strongly and similarly induced in all mutants, implying a common regulatory pathway affecting this gene for all four mutated genes. ORF8 is apparently the centre of this common pathway. Two distinct highly correlated gene induction patterns were observed, that of the ORF4 and ORF8 mutants, and that of the ORF10 and phoPR mutants. The gene induction pattern distinguishing these two groups paralleled their virulence in mice.

  7. The Caenorhabditis elegans SH2 domain-containing protein tyrosine phosphatase PTP-2 participates in signal transduction during oogenesis and vulval development

    PubMed Central

    Gutch, Michael J.; Flint, Andrew J.; Keller, James; Tonks, Nicholas K.; Hengartner, Michael O.

    1998-01-01

    Src homology-2 (SH2) domain-containing protein tyrosine phosphatases (SHPs) have been identified as either positive or negative regulators of signaling events downstream of receptor protein tyrosine kinases (R-PTKs). We describe here our characterization of ptp-2, a Caenorhabditis elegans gene that encodes a 668-amino-acid SHP. We isolated a recessive ptp-2 loss-of-function allele, op194, that lacks the conserved protein tyrosine phosphatase catalytic domain by screening for transposon-mediated deletion mutations. Homozygous ptp-2(op194) hermaphrodites exhibit a completely penetrant zygotic semisterile/maternal effect lethal phenotype, characterized by the presence of abnormally large oocytes in the zygotic semisterile animals. These phenotypes indicate that PTP-2 activity is essential for proper oogenesis. Gain-of-function let-60 ras alleles rescued the defects associated with ptp-2(op194), suggesting that LET-60 Ras acts downstream of, or in parallel to, PTP-2 during oogenesis. Although ptp-2 function is not required for normal vulval development, ptp-2(op194) altered significantly the vulval phenotypes caused by mutations in several genes of the inductive signaling pathway. The penetrance of the multivulva phenotype caused by loss-of-function mutations in lin-15, and gain-of-function mutations in let-23 or let-60 ras, was reduced by ptp-2(op194). Moreover, ptp-2(op194) increased the penetrance of the vulvaless phenotype conferred by a weak loss-of-function sem-5 allele. Taken together, our genetic data positions PTP-2 activity downstream of LET-23 in the vulval induction signaling pathway. Although PTP-2 functions to transmit a requisite signal during oogenesis, PTP-2 function during C. elegans vulval cell differentiation appears to be directed at regulating the overall strength of the inductive signal, which may contribute to the quantitative differences in signaling required for the proper specification of the 1°, 2°, and 3° vulval cell fates. PMID:9472025

  8. COTIP: Cotton TILLING Platform, a Resource for Plant Improvement and Reverse Genetic Studies

    PubMed Central

    Aslam, Usman; Cheema, Hafiza M. N.; Ahmad, Sheraz; Khan, Iqrar A.; Malik, Waqas; Khan, Asif A.

    2016-01-01

    Cotton is cultivated worldwide for its white fiber, of which around 90% is tetraploid upland cotton (Gossypium hirsutum L.) carrying both A and D genome. Since centuries, yield increasing efforts for the cotton crop by conventional breeding approaches have caused an extensive erosion of natural genetic variability. Mutation based improvement strategies provide an effective way of creating new allelic variations. Targeting Induced Local Lesions IN Genomes (TILLING) provides a mutation based reverse genetic strategy to create and evaluate induced genetic variability at DNA level. Here, we report development and testing of TILLING populations of allotetraploid cotton (G. hirsutum) for functional genomic studies and mutation based enrichment of cotton genetic resources. Seed of two cotton cultivars “PB-899 and PB-900” were mutagenized with 0.3 and 0.2% (v/v) ethyl methanesulfonate, respectively. The phenotyping of M1 and M2 populations presented numerous mutants regarding the branching pattern, leaf morphology, disease resistance, photosynthetic lesions and flower sterility. Molecular screening for point mutations was performed by TILLING PCR aided CEL1 mismatch cleavage. To estimate the mutation frequency in the mutant genomes, five gene classes were TILLed in 8000 M2 plants of each var. “PB-899” and “PB-900.” These include actin (GhACT), Pectin Methyl Esterase (GhPME), sucrose synthase (GhSUS), resistance gene analog, and defense response gene (DRGs). The var. PB-899 was harboring 47% higher mutation induction rate than PB-900. The highest rate of mutation frequency was identified for NAC-TF5 (EU706348) of DRGs class, ranging from 1/58 kb in PB-899 to 1/105 kb in PB-900. The mutation screening assay revealed the presence of significant proportion of induced mutations in cotton TILLING populations such as 1/153 kb and 1/326 kb in var. “PB-899” and “PB-900,” respectively. The establishment of a cotton TILLING platform (COTIP) and data obtained from the resource TILLING population suggest its effectiveness in widening the genetic bases of cotton for improvement and utilizing it for subsequent reverse genetic studies of various genes. PMID:28082993

  9. Intralaboratory and interlaboratory evaluation of the EpiDerm 3D human reconstructed skin micronucleus (RSMN) assay.

    PubMed

    Hu, Ting; Kaluzhny, Yulia; Mun, Greg C; Barnett, Brenda; Karetsky, Viktor; Wilt, Nathan; Klausner, Mitchell; Curren, Rodger D; Aardema, Marilyn J

    2009-03-17

    A novel in vitro human reconstructed skin micronucleus (RSMN) assay has been developed using the EpiDerm 3D human skin model [R. D. Curren, G. C. Mun, D. P. Gibson, and M. J. Aardema, Development of a method for assessing micronucleus induction in a 3D human skin model EpiDerm, Mutat. Res. 607 (2006) 192-204]. The RSMN assay has potential use in genotoxicity assessments as a replacement for in vivo genotoxicity assays that will be banned starting in 2009 according to the EU 7th Amendment to the Cosmetics Directive. Utilizing EpiDerm tissues reconstructed with cells from four different donors, intralaboratory and interlaboratory reproducibility of the RSMN assay were examined. Seven chemicals were evaluated in three laboratories using a standard protocol. Each chemical was evaluated in at least two laboratories and in EpiDerm tissues from at least two different donors. Three model genotoxins, mitomycin C (MMC), vinblastine sulfate (VB) and methyl methanesulfonate (MMS) induced significant, dose-related increases in cytotoxicity and MN induction in EpiDerm tissues. Conversely, four dermal non-carcinogens, 4-nitrophenol (4-NP), trichloroethylene (TCE), 2-ethyl-1,3-hexanediol (EHD), and 1,2-epoxydodecane (EDD) were negative in the RSMN assay. Results between tissues reconstructed from different donors were comparable. These results indicate the RSMN assay using the EpiDerm 3D human skin model is a promising new in vitro genotoxicity assay that allows evaluation of chromosome damage following "in vivo-like" dermal exposures.

  10. Advances in Radiation Mutagenesis through Studies on Drosophila

    DOE R&D Accomplishments Database

    Muller, H. J.

    1958-06-01

    The approximately linear relation between radiation dose and induced lethals known for Drosophila spermatozoa, is now extended to spermatids. Data are included regarding oogonia. The linearity principle has been confined for minute structural changes in sperm as multi-hit events, on about the 1.5 power of the dose, long known for spermatozoa, is now extended to spermatids and late oocytes, for relatively short exposures. are found to allow union of broken chromosomes. Therefore, the frequencies are lower for more dispersed exposures of varies with lethals induced in late oocytes follow the same frequency pattern and there fore are multi-hit events. Yet han spermatozoan irradiation that two broken ends derived from nonreciprocal. The following is the order of decreasing radiation mutability of different stages found by ourselves and others: spermatids, spermatozoa in females, spermatozoa 0 to 1 day before ejaculation, earlier spermatozoa, late oocytes, gonia of either sex. Lethal frequencies for these stages range over approximately an order of magnitude, gross structural changes far more widely. Of potential usefulness is our extension of genesis by anoxia, known for spermatozoa in adult males, to those in pupal males and in females, to sperion is especially marked but the increase caused by substituting oxygen for air is less marked, perhaps because of enzymatic differences. In contrast, the induction of gross structural changes in oocytes, but not in spermatids, is markedly reduced by oxygen post-treatment; it is increased by dehydration. The efficacy of induction of structural changes by treatment of spermatozoa, whether with radiation or chemical mutagen, is correlated with the conditions of sperm utilization and egg production. Improving our perspective on radiation effects, some 800,000 offspring have been scored for spontaneous visible mutations of 13 specific loci. The average point-mutation rate was 0.5 to 1.0 per locus among 10/sup 5/ germ cells. Most mutation occurred in peri- fertilization stages. All loci studied mutated from one to nine times. Loci mutating oftener spontaneously also gave more radiation mutation, in other studies, Spectra of individual loci prove similar for spontaneous and induced mutation. Studies on back-mutation also showed similarity of spontaneous and radiation mutations. The doubling dose for back-mutations of forked induced in spermatozoa was several hundred roentgens, gonia at diverse loci. Recent analyses of human mutational load lead to mutation-rate estimated like those earlier based on extrapolations from Drosophila, thus supporting the significance for man of the present studies. (auth)

  11. Induction and identification of a small-granule, high-amylose mutant in cassava (Manihot esculenta Crantz).

    PubMed

    Ceballos, Hernán; Sánchez, Teresa; Denyer, Kay; Tofiño, Adriana P; Rosero, Elvia A; Dufour, Dominique; Smith, Alison; Morante, Nelson; Pérez, Juan C; Fahy, Brendan

    2008-08-27

    Only two mutations have been described in the literature, so far, regarding starch and root quality traits in cassava. This article reports on an induced mutation in this crop, first identified in 2006. Botanical seed from five different cassava families were irradiated with gamma rays. Seed was germinated, transplanted to the field (M1 plants), and self-pollinated to produce the M2 generation. Abnormal types regarding starch granule morphology were identified during the single plant evaluation of M2 genotypes. To confirm these characteristics, selected genotypes were cloned and a second evaluation, based on cloned plants obtained from vegetative multiplication, was completed in September 2007. Two M2 genotypes presented small starch granules, but only one could be fully characterized, presenting a granule size of 5.80 +/- 0.33 microm compared with three commercial clones with granule sizes ranging from 13.97 +/- 0.12 to 18.73 +/- 0.10 microm and higher-than-normal amylose content (up to 30.1% in cloned plants harvested in 2007, as compared with the typical values for "normal" cassava starch of around 19.8%). The gels produced by the starch of these plants did not show any viscosity when analyzed with the rapid viscoanalyzers (5% suspension), and the gels had low clarity. Low viscosity could be observed at higher concentrations (8 or 10% suspensions). Preliminary results suggest that the mutation may be due to a lesion in a gene encoding one of the isoforms of isoamylase (probably isa1 or isa2).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manem, V; Paganetti, H

    Purpose: Evaluate the excess relative risk (ERR) induced by photons and protons in each voxel of the lung, and display it as a three-dimensional map, known as the ERRM (i.e. excess relative risk map) along with the dose distribution map. In addition, we also study the effect of variations in the linear energy transfer (LET) distribution on ERRM for a given proton plan. Methods: The excess relative risk due to radiation is estimated using the initiation-inactivation-proliferation formalism. This framework accounts for three biological phenomenon: mutation induction, cell kill and proliferation. Cell kill and mutation induction are taken as a functionmore » of LET using experimental data. LET distributions are calculated using a Monte Carlo algorithm. ERR is then estimated for each voxel in the organ, and displayed as a three dimensional carcinogenic map. Results: The differences in the ERR’s between photons and protons is seen from the three-dimensional ERR map. In addition, we also varied the LET of a proton plan and observed the differences in the corresponding ERR maps demonstrating variations in the ERR maps depend on features of a proton plan. Additionally, our results suggest that any two proton plans that have the same integral dose does not necessarily imply identical ERR maps, and these changes are due to the variations in the LET distribution map. Conclusion: Clinically, it is important to have a three dimensional display of biological end points. This study is an effort to introduce 3D ERR maps into the treatment planning workflow for certain sites such as pediatric head and neck tumors.« less

  13. Physical and biological studies with protons and HZE particles in a NASA supported research center in radiation health.

    PubMed

    Chatterjee, A; Borak, T H

    2001-01-01

    NASA has established and supports a specialized center for research and training (NSCORT) to specifically address the potential deleterious effects of HZE particles on human health. The NSCORT in radiation health is a joint effort between Lawrence Berkeley National Laboratory (LBNL) and Colorado State University (CSU). The overall scope of research encompasses a broad range of subjects from microdosimetric studies to cellular and tissue responses to initial damage produced by highly energetic protons and heavy charged particles of the type found in galactic cosmic rays (GCR) spectrum. The objectives of the microdosimetry studies are to determine the response of Tissue Equivalent Proportional Counter (TEPC) to cosmic rays using ground based accelerators. This includes evaluation of energy loss due to the escape of high-energy delta rays and increased energy deposition due to the enhanced delta ray production in the wall of the detector. In this report major results are presented for 56Fe at 1000, 740, 600 and 400 MeV/nucleon. An assessment of DNA repair and early development of related chromosomal changes is extremely important to our overall understanding of enhanced biological effectiveness of high LET particle radiation. Results are presented with respect to the fidelity of the rejoining of double strand breaks and the implications of misrejoining. The relationship between molecular and cytogenetic measurements is presented by studying damage processing in highly heterochromatic supernumerary (correction of sypernumerary) X chromosomes and the active X-chromosome. One of the important consequences of cell's inability to handle DNA damage can be evaluated through mutation studies. Part of our goal is the assessment of potential radioprotectors to reduce the mutation yield following HZE exposures, and some promising results are presented on one compound. A second goal is the integration of DNA repair and mutation studies. Results are presented on a direct comparison of initial double strand breaks induction, the time course and fidelity of double strand break rejoining, cell killing and mutation induction in the same human model system. In order to understand the carcinogenic potential of protons and HZE particles, the role of damaged microenvironment in this process must be understood. In this project it has been postulated that radiation affects the microenvironment, which then modifies cell interactions in a manner conducive to neoplastic progression. Both TGF-beta and FGF-2 are important components of microenvironment. A recent result on the assessment of the role of FGF-2 and its cross-talk with TGF-beta as a function of radiation quality is presented. Theoretical modeling has so far played a central role in analyzing and integrating experimental data on repair and mutation studies and predicting new phenomena. The integrated NSCORT program also provides a broad training experience for students and postdoctoral fellows in space radiation health.

  14. Physical and biological studies with protons and HZE particles in a NASA supported research center in radiation health

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Borak, T. H.

    2001-01-01

    NASA has established and supports a specialized center for research and training (NSCORT) to specifically address the potential deleterious effects of HZE particles on human health. The NSCORT in radiation health is a joint effort between Lawrence Berkeley National Laboratory (LBNL) and Colorado State University (CSU). The overall scope of research encompasses a broad range of subjects from microdosimetric studies to cellular and tissue responses to initial damage produced by highly energetic protons and heavy charged particles of the type found in galactic cosmic rays (GCR) spectrum. The objectives of the microdosimetry studies are to determine the response of Tissue Equivalent Proportional Counter (TEPC) to cosmic rays using ground based accelerators. This includes evaluation of energy loss due to the escape of high-energy delta rays and increased energy deposition due to the enhanced delta ray production in the wall of the detector. In this report major results are presented for 56Fe at 1000, 740, 600 and 400 MeV/nucleon. An assessment of DNA repair and early development of related chromosomal changes is extremely important to our overall understanding of enhanced biological effectiveness of high LET particle radiation. Results are presented with respect to the fidelity of the rejoining of double strand breaks and the implications of misrejoining. The relationship between molecular and cytogenetic measurements is presented by studying damage processing in highly heterochromatic supernumerary (correction of sypernumerary) X chromosomes and the active X-chromosome. One of the important consequences of cell's inability to handle DNA damage can be evaluated through mutation studies. Part of our goal is the assessment of potential radioprotectors to reduce the mutation yield following HZE exposures, and some promising results are presented on one compound. A second goal is the integration of DNA repair and mutation studies. Results are presented on a direct comparison of initial double strand breaks induction, the time course and fidelity of double strand break rejoining, cell killing and mutation induction in the same human model system. In order to understand the carcinogenic potential of protons and HZE particles, the role of damaged microenvironment in this process must be understood. In this project it has been postulated that radiation affects the microenvironment, which then modifies cell interactions in a manner conducive to neoplastic progression. Both TGF-beta and FGF-2 are important components of microenvironment. A recent result on the assessment of the role of FGF-2 and its cross-talk with TGF-beta as a function of radiation quality is presented. Theoretical modeling has so far played a central role in analyzing and integrating experimental data on repair and mutation studies and predicting new phenomena. The integrated NSCORT program also provides a broad training experience for students and postdoctoral fellows in space radiation health.

  15. Requirement of RecBC enzyme and an elevated level of activated RecA for induced stable DNA replication in Escherichia coli.

    PubMed Central

    Magee, T R; Kogoma, T

    1990-01-01

    During SOS induction, Escherichia coli cells acquire the ability to replicate DNA in the absence of protein synthesis, i.e., induced stable DNA replication (iSDR). Initiation of iSDR can occur in the absence of transcription and DnaA protein activity, which are both required for initiation of normal DNA replication at the origin of replication, oriC. In this study we examined the requirement of recB, recC, and recA for the induction and maintenance of iSDR. We found that recB and recC mutations blocked the induction of iSDR by UV irradiation and nalidixic acid treatment. In recB(Ts) strains, iSDR activity induced at 30 degrees C was inhibited by subsequent incubation at 42 degrees C. In addition, iSDR that was induced after heat activation of the RecA441 protein was abolished by the recB21 mutation. These results indicated that the RecBC enzyme was essential not only for SOS signal generation but also for the reinitiation of DNA synthesis following DNA damage. recAo(Con) lexA3(Ind-) strains were found to be capable of iSDR after nalidixic acid treatment, indicating that the derepression of the recA gene and the activation of the elevated level of RecA protein were the necessary and sufficient conditions for the induction of iSDR. PMID:2180906

  16. Induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway delays the initiation but fails to eradicate established murine acute myeloid leukemia.

    PubMed

    Jaako, P; Ugale, A; Wahlestedt, M; Velasco-Hernandez, T; Cammenga, J; Lindström, M S; Bryder, D

    2017-01-01

    Mutations resulting in constitutive activation of signaling pathways that regulate ribosome biogenesis are among the most common genetic events in acute myeloid leukemia (AML). However, whether ribosome biogenesis presents as a therapeutic target to treat AML remains unexplored. Perturbations in ribosome biogenesis trigger the 5S ribonucleoprotein particle (RNP)-Mdm2-p53 ribosomal stress pathway, and induction of this pathway has been shown to have therapeutic efficacy in Myc-driven lymphoma. In the current study we address the physiological and therapeutic role of the 5S RNP-Mdm2-p53 pathway in AML. By utilizing mice that have defective ribosome biogenesis due to downregulation of ribosomal protein S19 (Rps19), we demonstrate that induction of the 5S RNP-Mdm2-p53 pathway significantly delays the initiation of AML. However, even a severe Rps19 deficiency that normally results in acute bone marrow failure has no consistent efficacy on already established disease. Finally, by using mice that harbor a mutation in the Mdm2 gene disrupting its binding to 5S RNP, we show that loss of the 5S RNP-Mdm2-p53 pathway is dispensable for development of AML. Our study suggests that induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway holds limited potential as a single-agent therapy in the treatment of AML.

  17. Chloroplast mutations induced by 9-aminoacridine hydrochloride are independent of the plastome mutator in Oenothera.

    PubMed

    GuhaMajumdar, M; Baldwin, S; Sears, B B

    2004-02-01

    Oenothera plants homozygous for the recessive plastome mutator allele ( pm) show chloroplast DNA (cpDNA) mutation frequencies that are about 1,000-fold higher than spontaneous levels. The pm-encoded gene product has been hypothesized to have a function in cpDNA replication, repair and/or mutation avoidance. Previous chemical mutagenesis experiments with the alkylating agent nitroso-methyl urea (NMU) showed a synergistic effect of NMU on the induction of mutations in the pm line, suggesting an interaction between the pm-encoded gene product and one of the repair systems that corrects alkylation damage. The goal of the experiments described here was to examine whether the pm activity extends to the repair of damage caused by non-alkylating mutagens. To this end, the intercalating mutagen, 9-aminoacridine hydrochloride (9AA) was tested for synergism with the plastome mutator. A statistical analysis of the data reported here indicates that the pm-encoded gene product is not involved in the repair of the 9AA-induced mutations. However, the recovery of chlorotic sectors in plants derived from the mutagenized seeds shows that 9AA can act as a mutagen of the chloroplast genome.

  18. New mutations affecting induced mutagenesis in yeast.

    PubMed

    Lawrence, C W; Krauss, B R; Christensen, R B

    1985-01-01

    Previously isolated mutations in baker's yeast, Saccharomyces cerevisiae, that impair induced mutagenesis were all identified with the aid of tests that either exclusively or predominantly detect base-pair substitutions. To avoid this bias, we have screened 11 366 potentially mutant clones for UV-induced reversion of the frameshift allele, his4-38, and have identified 10 mutants that give much reduced yields of revertants. Complementation and recombination tests show that 6 of these carry mutations at the previously known REV1, REV1 and REV3 loci, while the remaining 4 define 3 new genes, REV4 (2 mutations), REV5 and REV6. The rev4 mutations are readily suppressed in many genetic backgrounds and, like the rev5 mutation, impart only a limited deficiency for induced mutagenesis: it is likely, therefore that the REV4+ and REV5+ gene functions are only remotely concerned with this process. The rev6 mutants have a more general deficiency, however, as well as marked sensitivity to UV and an increased spontaneous mutation rate, properties that suggest the REV6 gene is directly involved in mutation induction. The REV5 gene is located about 1 cM proximal to CYC1 on chromosome X.

  19. Replication fork collapse is a major cause of the high mutation frequency at three-base lesion clusters

    PubMed Central

    Sedletska, Yuliya; Radicella, J. Pablo; Sage, Evelyne

    2013-01-01

    Unresolved repair of clustered DNA lesions can lead to the formation of deleterious double strand breaks (DSB) or to mutation induction. Here, we investigated the outcome of clusters composed of base lesions for which base excision repair enzymes have different kinetics of excision/incision. We designed multiply damaged sites (MDS) composed of a rapidly excised uracil (U) and two oxidized bases, 5-hydroxyuracil (hU) and 8-oxoguanine (oG), excised more slowly. Plasmids harboring these U-oG/hU MDS-carrying duplexes were introduced into Escherichia coli cells either wild type or deficient for DNA n-glycosylases. Induction of DSB was estimated from plasmid survival and mutagenesis determined by sequencing of surviving clones. We show that a large majority of MDS is converted to DSB, whereas almost all surviving clones are mutated at hU. We demonstrate that mutagenesis at hU is correlated with excision of the U placed on the opposite strand. We propose that excision of U by Ung initiates the loss of U-oG-carrying strand, resulting in enhanced mutagenesis at the lesion present on the opposite strand. Our results highlight the importance of the kinetics of excision by base excision repair DNA n-glycosylases in the processing and fate of MDS and provide evidence for the role of strand loss/replication fork collapse during the processing of MDS on their mutational consequences. PMID:23945941

  20. Mutagenic and lethal effects of (5-/sup 125/I)lodo-2'-deoxyuridine incorporated into DNA of mammalian cells, and their RBEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, N.; Fujiwara, Y.

    1981-12-01

    Decay of /sup 125/I unifilarly incorporated as 5-iodo-2'-deoxyuridine (IdUrd) into DNA of V79 Chinese hamster cells was approximately an order of magnitude more effective in inducing both 6-thioguanine-resistant mutation and cell inactivation than external X rays under equivalent conditions. RBEs of mutation and killing induced by /sup 125/I decays, compared with 170-kVp X rays of low LET, were approx. = 11 for mutation (ratio of the induction rate in frequency/rad = 11.3 X 10/sup -7/ (/sup 125/I)/100 X 10/sup -7/ (X rays at -79/sup o/C)) and approx. = 10 for cell inactivation (D/sub 0/ ratio = 505 rad (X raysmore » at -79/sup o/C)/52 rad (/sup 125/I)). These RBE values may well exceed the reported maximum values for high-LET radiation in the LET range of 80-110 keV/..mu..m, suggesting that the Auger effect is different from the high-LET radiation effect alone. Thus these biological consequences arise not only from radiation effects of Auger electrons on the immediate vicinity in DNA, but also from the nonionogenic effect through charge transfer processes. In addition, higher inductions of mutation and killing by external X rays in unifilarly IdUrd-substituted cells than in ordinal cells were observed, suggesting a possible involvement of X-ray-induced Auger phenomenon in iodine in DNA.« less

  1. Mutation induction by charged particles of defined linear energy transfer.

    PubMed

    Hei, T K; Chen, D J; Brenner, D J; Hall, E J

    1988-07-01

    The mutagenic potential of charged particles of defined linear energy transfer (LET) was assessed using the hypoxanthine-guanine phosphoribosyl transferase locus (HGPRT) in primary human fibroblasts. Exponentially growing cultures of early passaged fibroblasts were grown as monolayers on thin mylar sheets and were irradiated with accelerated protons, deuterons or helium-3 ions. The mutation rates were compared with those generated by 137Cs gamma-rays. LET values for charged particles accelerated at the Radiological Research Accelerator Facility, using the track segment mode, ranged from 10 to 150 keV/micron. After irradiation, cells were trypsinized, subcultured and assayed for both cytotoxicity and 6-thioguanine resistance. For gamma-rays, and for the charged particles of lower LET, the dose-response curves for cell survival were characterized by a marked initial shoulder, but approximated to an exponential function of dose for higher LETs. Mutation frequencies, likewise, showed a direct correlation to LET over the dose range examined. Relative biological effectiveness (RBE) for mutagenesis, based on the initial slopes of the dose-response curves, ranged from 1.30 for 10 keV/micron protons to 9.40 for 150 keV/micron helium-3 ions. Results of the present studies indicate that high-LET radiations, apart from being efficient inducers of cell lethality, are even more efficient in mutation induction as compared to low-LET ionizing radiation. These data are consistent with results previously obtained with both rodent and human fibroblast cell lines.

  2. Ultraviolet mutagenesis studies of [psi], a cytoplasmic determinant of Saccharomyces cerevisiae.

    PubMed

    Tuite, M F; Cox, B S

    1980-07-01

    UV mutagenesis was used to probe the molecular nature of [psi], a nonmitochondrial cytoplasmic determinant of Saccharomyces cerevisiae involved in the control of nonsense suppression. The UV-induced mutation from [psi+] to [psi-] showed characteristics of forward nuclear gene mutation in terms of frequency, induction kinetics, occurrence of whole and sectored mutant clones and the effect of the stage in the growth cycle on mutation frequency. The involvement of pyrimidine dimers in the premutational lesion giving the [psi-] mutation was demonstrated by photoreactivation. UV-induced damage to the [psi] genetic determinant was shown to be repaired by nuclear-coded repair enzymes that are responsible for the repair of nuclear DNA damage. UV-induced damage to mitochondrial DNA appeared to be, at least partly, under the control of different repair processes. The evidence obtained suggests that the [psi] determinant is DNA.

  3. Endogenous estrogen status, but not genistein supplementation, modulates 7,12-dimethylbenz[a]anthracene-induced mutation in the liver cII gene of transgenic big blue rats.

    PubMed

    Chen, Tao; Hutts, Robert C; Mei, Nan; Liu, Xiaoli; Bishop, Michelle E; Shelton, Sharon; Manjanatha, Mugimane G; Aidoo, Anane

    2005-06-01

    A growing number of studies suggest that isoflavones found in soybeans have estrogenic activity and may safely alleviate the symptoms of menopause. One of these isoflavones, genistein, is commonly used by postmenopausal women as an alternative to hormone replacement therapy. Although sex hormones have been implicated as an important risk factor for the development of hepatocellular carcinoma, there are limited data on the potential effects of the estrogens, including phytoestrogens, on chemical mutagenesis in liver. Because of the association between mutation induction and the carcinogenesis process, we investigated whether endogenous estrogen and supplemental genistein affect 7,12-dimethylbenz[a]anthracene (DMBA)-induced mutagenesis in rat liver. Intact and ovariectomized female Big Blue rats were treated with 80 mg DMBA/kg body weight. Some of the rats also received a supplement of 1,000 ppm genistein. Sixteen weeks after the carcinogen treatment, the rats were sacrificed, their livers were removed, and mutant frequencies (MFs) and types of mutations were determined in the liver cII gene. DMBA significantly increased the MFs in liver for both the intact and ovariectomized rats. While there was no significant difference in MF between the ovariectomized and intact control animals, the mutation induction by DMBA in the ovariectomized groups was significantly higher than that in the intact groups. Dietary genistein did not alter these responses. Molecular analysis of the mutants showed that DMBA induced chemical-specific types of mutations in the liver cII gene. These results suggest that endogenous ovarian hormones have an inhibitory effect on liver mutagenesis by DMBA, whereas dietary genistein does not modulate spontaneous or DMBA-induced mutagenesis in either intact or ovariectomized rats.

  4. Gentamicin induces functional type VII collagen in recessive dystrophic epidermolysis bullosa patients

    PubMed Central

    Woodley, David T.; Cogan, Jon; Hou, Yingping; Lyu, Chao; Marinkovich, M. Peter; Keene, Douglas

    2017-01-01

    BACKGROUND. Recessive dystrophic epidermolysis bullosa (RDEB) is an incurable disease caused by mutations in the gene encoding type VII collagen, the major component of anchoring fibrils (AF). We previously demonstrated that gentamicin produced functional type VII collagen in RDEB cells harboring nonsense mutations. Herein, we determined whether topical or intradermal gentamicin administration induces type VII collagen and AFs in RDEB patients. METHODS. A double-blind, placebo-controlled pilot trial assessed safety and efficacy of topical and intradermal gentamicin in 5 RDEB patients with nonsense mutations. The topical arm tested 0.1% gentamicin ointment or placebo application 3 times daily at 2 open erosion sites for 2 weeks. The intradermal arm tested daily intradermal injection of gentamicin solution (8 mg) or placebo into 2 intact skin sites for 2 days in 4 of 5 patients. Primary outcomes were induction of type VII collagen and AFs at the test sites and safety assessment. A secondary outcome assessed wound closure of topically treated erosions. RESULTS. Both topical and intradermal gentamicin administration induced type VII collagen and AFs at the dermal-epidermal junction of treatment sites. Newly created type VII collagen varied from 20% to 165% of that expressed in normal human skin and persisted for 3 months. Topical gentamicin corrected dermal-epidermal separation, improved wound closure, and reduced blister formation. There were no untoward side effects from gentamicin treatments. Type VII collagen induction did not generate anti–type VII collagen autoantibodies in patients’ blood or skin. CONCLUSION. Topical and intradermal gentamicin suppresses nonsense mutations and induces type VII collagen and AFs in RDEB patients. Gentamicin therapy may provide a readily available treatment for RDEB patients with nonsense mutations. TRIAL REGISTRATION. ClinicalTrials.gov NCT02698735. FUNDING. Epidermolysis Bullosa Research Partnership, Epidermolysis Bullosa Medical Research Foundation, NIH, and VA Merit Award. PMID:28691931

  5. Suppression of the UV-sensitive phenotype of Escherichia coli recF mutants by recA(Srf) and recA(Tif) mutations requires recJ+.

    PubMed Central

    Thoms, B; Wackernagel, W

    1988-01-01

    Mutations in recA, such as recA801(Srf) (suppressor of RecF) or recA441(Tif) (temperature-induced filamentation) partially suppress the deficiency in postreplication repair of UV damage conferred by recF mutations. We observed that spontaneous recA(Srf) mutants accumulated in cultures of recB recC sbcB sulA::Mu dX(Ap lac) lexA51 recF cells because they grew faster than the parental strain. We show that in a uvrA recB+ recC+ genetic background there are two prerequisites for the suppression by recA(Srf) of the UV-sensitive phenotype of recF mutants. (i) The recA(Srf) protein must be provided in increased amounts either by SOS derepression or by a recA operator-constitutive mutation in a lexA(Ind) (no induction of SOS functions) genetic background. (ii) The gene recJ, which has been shown previously to be involved in the recF pathway of recombination and repair, must be functional. The level of expression of recJ in a lexA(Ind) strain suffices for full suppression. Suppression by recA441 at 30 degrees C also depends on recJ+. The hampered induction by UV of the SOS gene uvrA seen in a recF mutant was improved by a recA(Srf) mutation. This improvement did not require recJ+. We suggest that recA(Srf) and recA(Tif) mutant proteins can operate in postreplication repair independent of recF by using the recJ+ function. PMID:2841294

  6. Influence of p53 status on the effects of boron neutron capture therapy in glioblastoma.

    PubMed

    Seki, Keiko; Kinashi, Yuko; Takahashi, Sentaro

    2015-01-01

    The tumor suppressor gene p53 is mutated in glioblastoma. We studied the relationship between the p53 gene and the biological effects of boron neutron capture therapy (BNCT). The human glioblastoma cells; A172, expressing wild-type p53, and T98G, with mutant p53, were irradiated by the Kyoto University Research Reactor (KUR). The biological effects after neutron irradiation were evaluated by the cell killing effect, 53BP1 foci assay and apoptosis induction. The survival-fraction data revealed that A172 was more radiosensitive than T98G, but the difference was reduced when boronophenylalanine (BPA) was present. Both cell lines exhibited similar numbers of foci, suggesting that the initial levels of DNA damage did not depend on p53 function. Detection of apoptosis revealed a lower rate of apoptosis in the T98G. BNCT causes cell death in glioblastoma cells, regardless of p53 mutation status. In T98G cells, cell killing and apoptosis occurred effectively following BNCT. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Mutational analysis of FLASH and PTPN13 genes in colorectal carcinomas.

    PubMed

    Jeong, Eun Goo; Lee, Sung Hak; Yoo, Nam Jin; Lee, Sug Hyung

    2008-01-01

    The Fas-Fas ligand system is considered a major pathway for induction of apoptosis in cells and tissues. FLASH was identified as a pro-apoptotic protein that transmits apoptosis signal during Fas-mediated apoptosis. PTPN13 interacts with Fas and functions as both suppressor and inducer of Fas-mediated apoptosis. There are polyadenine tracts in both FLASH (A8 and A9 in exon 8) and PTPN13 (A8 in exon 7) genes that could be frameshift mutation targets in colorectal carcinomas. Because genes encoding proteins in Fas-mediated apoptosis frequently harbor somatic mutations in cancers, we explored the possibility as to whether mutations of FLASH and PTPN13 are a feature of colorectal carcinomas. We analysed human FLASH in exon 8 and PTPN13 in exon 7 for the detection of somatic mutations in 103 colorectal carcinomas by a polymerase chain reaction (PCR)- based single-strand conformation polymorphism (SSCP). We detected two mutations in FLASH gene, but none in PTPN13 gene. However, the two mutations were not frameshift (deletion or insertion) mutations in the polyadenine tracts of FLASH. The two mutations consisted of a deletion mutation (c.3734-3737delAGAA) and a missense mutation (c.3703A>C). These data indicate that frameshift mutation in the polyadenine tracts in both FLASH and PTPN13 genes is rare in colorectal carcinomas. Also, the data suggest that both FLASH and PTPN13 mutations in the polyadenine tracts may not have a crucial role in the pathogenesis of colorectal carcinomas.

  8. Prostaglandin E2 stimulates normal bronchial epithelial cell growth through induction of c-Jun and PDK1, a kinase implicated in oncogenesis.

    PubMed

    Fan, Yu; Wang, Ye; Wang, Ke

    2015-12-18

    Cyclooxygenase-2-derived prostaglandin E2 (PGE2), a bioactive eicosanoid, has been implicated in many biological processes including reproduction, inflammation and tumor growth. We previously showed that PGE2 stimulated lung cancer cell growth and progression through PGE2 receptor EP2/EP4-mediated kinase signaling pathways. However, the role of PGE2 in controlling lung airway epithelial cell phenotype remains unknown. We evaluated the effects of c-Jun and 3-phosphoinositede dependent protein kinase-1 (PDK1) in mediating epithelial cell hyperplasia induced by PGE2. The bronchial epithelial cell lines BEAS-2B and HBEc14-KT were cultured and then treated with PGE2. PDK1 small interfering RNA (siRNA) and a PDK1 inhibitor, an antagonist of the PGE2 receptor subtype EP4 and EP4 siRNA, c-Jun siRNA, and overexpressions of c-Jun and PDK1 have been used to evaluate the effects on cell proliferation. We demonstrated that PGE2 increased normal bronchial epithelial cell proliferation through induction of PDK1, an ankyrin repeat-containing Ser/Thr kinase implicated in the induction of apoptosis and the suppression of tumor growth. PDK1 siRNA and a PDK1 inhibitor blocked the effects of PGE2 on normal cell growth. The PGE2-induced PDK1 expression was blocked by an antagonist of the PGE2 receptor subtype EP4 and by EP4 siRNA. In addition, we showed that induction of PDK1 by PGE2 was associated with induction of the transcription factor, c-Jun protein. Silencing of c-Jun using siRNA and point mutations of c-Jun sites in the PDK1 gene promoter resulted in blockade of PDK1 expression and promoter activity induced by PGE2. In contrast, overexpression of c-Jun induced PDK1 gene promoter activity and expression followed increased cell proliferation. PGE2 increases normal bronchial epithelial cell proliferation through increased PDK1 gene expression that is dependent on EP4 and induction of c-Jun. Therewith, our data suggest a new role of c-Jun and PDK1 in mediating epithelial cell hyperplasia induced by PGE2.

  9. A recessive mutation in the RUB1-conjugating enzyme, RCE1, reveals a requirement for RUB modification for control of ethylene biosynthesis and proper induction of basic chitinase and PDF1.2 in Arabidopsis.

    PubMed

    Larsen, Paul B; Cancel, Jesse D

    2004-05-01

    By screening etiolated Arabidopsis seedlings for mutants with aberrant ethylene-related phenotypes, we identified a mutant that displays features of the ethylene-mediated triple response even in the absence of ethylene. Further characterization showed that the phenotype observed for the dark-grown seedlings of this mutant is reversible by prevention of ethylene perception and is dependent on a modest increase in ethylene production correlated with an increase in 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO) activity in the hypocotyl. Molecular characterization of leaves of the mutant revealed severely impaired induction of basic chitinase (chiB) and plant defensin (PDF)1.2 following treatment with jasmonic acid and/or ethylene. Positional cloning of the mutation resulted in identification of a 49-bp deletion in RCE1 (related to ubiquitin 1 (RUB1)-conjugating enzyme), which has been demonstrated to be responsible for covalent attachment of RUB1 to the SCF (Skpl Cdc 53 F-box) ubiquitin ligase complex to modify its activity. Our analyses with rce1-2 demonstrate a previously unknown requirement for RUB1 modification for regulation of ethylene biosynthesis and proper induction of defense-related genes in Arabidopsis.

  10. Mutagenic and genotoxic potential of direct electric current in Escherichia coli and Salmonella thyphimurium strains.

    PubMed

    Gomes, Marina das Neves; Cardoso, Janine Simas; Leitão, Alvaro Costa; Quaresma, Carla Holandino

    2016-05-01

    Direct electric current has several therapeutic uses such as antibacterial and antiprotozoal action, tissues scarring and regeneration, as well as tumor treatment. This method has shown promising results in vivo and in vitro, with significant efficacy and almost no side effects. Considering lack of studies regarding direct electric current mutagenic and/or genotoxic effects, the present work evaluated both aspects by using five different bacterial experimental assays: survival of repair-deficient mutants, Salmonella-histidine reversion mutagenesis (Ames test), forward mutations to rifampicin resistance, phage reactivation, and lysogenic induction. In these experimental conditions, cells were submitted to an approach that allows evaluation of anodic, cathodic, and electro-ionic effects generated by 2 mA of direct electric current, with doses ranging from 0.36 to 3.60 Coulombs. Our results showed these doses did not induce mutagenic or genotoxic effects. © 2016 Wiley Periodicals, Inc.

  11. Assessment of K-Ras mutant frequency and micronucleus incidence in the mouse duodenum following 90-days of exposure to Cr(VI) in drinking water.

    PubMed

    O'Brien, Travis J; Ding, Hao; Suh, Mina; Thompson, Chad M; Parsons, Barbara L; Harris, Mark A; Winkelman, William A; Wolf, Jeffrey C; Hixon, J Gregory; Schwartz, Arnold M; Myers, Meagan B; Haws, Laurie C; Proctor, Deborah M

    2013-06-14

    Chronic exposure to high concentrations of hexavalent chromium [Cr(VI)] as sodium dichromate dihydrate (SDD) in drinking water induces duodenal tumors in mice, but the mode of action (MOA) for these tumors has been a subject of scientific debate. To evaluate the tumor-site-specific genotoxicity and cytotoxicity of SDD in the mouse small intestine, tissue pathology and cytogenetic damage were evaluated in duodenal crypt and villus enterocytes from B6C3F1 mice exposed to 0.3-520mg/L SDD in drinking water for 7 and 90 days. Allele-competitive blocker PCR (ACB-PCR) was used to investigate the induction of a sensitive, tumor-relevant mutation, specifically in vivo K-Ras codon 12 GAT mutation, in scraped duodenal epithelium following 90 days of drinking water exposure. Cytotoxicity was evident in the villus as disruption of cellular arrangement, desquamation, nuclear atypia and blunting. Following 90 days of treatment, aberrant nuclei, occurring primarily at villi tips, were significantly increased at ≥60mg/L SDD. However, in the crypt compartment, there were no dose-related effects on mitotic and apoptotic indices or the formation of aberrant nuclei indicating that Cr(VI)-induced cytotoxicity was limited to the villi. Cr(VI) caused a dose-dependent proliferative response in the duodenal crypt as evidenced by an increase in crypt area and increased number of crypt enterocytes. Spontaneous K-Ras codon 12 GAT mutations in untreated mice were higher than expected, in the range of 10(-2) to 10(-3); however no treatment-related trend in the K-Ras codon 12 GAT mutation was observed. The high spontaneous background K-Ras mutant frequency and Cr(VI) dose-related increases in crypt enterocyte proliferation, without dose-related increase in K-Ras mutant frequency, micronuclei formation, or change in mitotic or apoptotic indices, are consistent with a lack of genotoxicity in the crypt compartment, and a MOA involving accumulation of mutations late in carcinogenesis as a consequence of sustained regenerative proliferation. Published by Elsevier B.V.

  12. A mutation in the HFE gene is associated with altered brain iron profiles and increased oxidative stress in mice.

    PubMed

    Nandar, Wint; Neely, Elizabeth B; Unger, Erica; Connor, James R

    2013-06-01

    Because of the increasing evidence that H63D HFE polymorphism appears in higher frequency in neurodegenerative diseases, we evaluated the neurological consequences of H63D HFE in vivo using mice that carry H67D HFE (homologous to human H63D). Although total brain iron concentration did not change significantly in the H67D mice, brain iron management proteins expressions were altered significantly. The 6-month-old H67D mice had increased HFE and H-ferritin expression. At 12 months, H67D mice had increased H- and L-ferritin but decreased transferrin expression suggesting increased iron storage and decreased iron mobilization. Increased L-ferritin positive microglia in H67D mice suggests that microglia increase iron storage to maintain brain iron homeostasis. The 6-month-old H67D mice had increased levels of GFAP, increased oxidatively modified protein levels, and increased cystine/glutamate antiporter (xCT) and hemeoxygenase-1 (HO-1) expression indicating increased metabolic and oxidative stress. By 12 months, there was no longer increased astrogliosis or oxidative stress. The decrease in oxidative stress at 12 months could be related to an adaptive response by nuclear factor E2-related factor 2 (Nrf2) that regulates antioxidant enzymes expression and is increased in the H67D mice. These findings demonstrate that the H63D HFE impacts brain iron homeostasis, and promotes an environment of oxidative stress and induction of adaptive mechanisms. These data, along with literature reports on humans with HFE mutations provide the evidence to overturn the traditional paradigm that the brain is protected from HFE mutations. The H67D knock-in mouse can be used as a model to evaluate how the H63D HFE mutation contributes to neurodegenerative diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. p53 deficiency alters the yield and spectrum of radiation-induced lacZ mutants in the brain of transgenic mice

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Kanazawa, N.; Lutze-Mann, L.; Winegar, R. A.

    2001-01-01

    Exposure to heavy particle radiation in the galacto-cosmic environment poses a significant risk in space exploration and the evaluation of radiation-induced genetic damage in tissues, especially in the central nervous system, is an important consideration in long-term manned space missions. We used a plasmid-based transgenic mouse model system, with the pUR288 lacZ transgene integrated in the genome of every cell of C57Bl/6(lacZ) mice, to evaluate the genetic damage induced by iron particle radiation. In order to examine the importance of genetic background on the radiation sensitivity of individuals, we cross-bred p53 wild-type lacZ transgenic mice with p53 nullizygous mice, producing lacZ transgenic mice that were either hemizygous or nullizygous for the p53 tumor suppressor gene. Animals were exposed to an acute dose of 1 Gy of iron particles and the lacZ mutation frequency (MF) in the brain was measured at time intervals from 1 to 16 weeks post-irradiation. Our results suggest that iron particles induced an increase in lacZ MF (2.4-fold increase in p53+/+ mice, 1.3-fold increase in p53+/- mice and 2.1-fold increase in p53-/- mice) and that this induction is both temporally regulated and p53 genotype dependent. Characterization of mutants based on their restriction patterns showed that the majority of the mutants arising spontaneously are derived from point mutations or small deletions in all three genotypes. Radiation induced alterations in the spectrum of deletion mutants and reorganization of the genome, as evidenced by the selection of mutants containing mouse genomic DNA. These observations are unique in that mutations in brain tissue after particle radiation exposure have never before been reported owing to technical limitations in most other mutation assays.

  14. Evolution of high-level resistance during low-level antibiotic exposure.

    PubMed

    Wistrand-Yuen, Erik; Knopp, Michael; Hjort, Karin; Koskiniemi, Sanna; Berg, Otto G; Andersson, Dan I

    2018-04-23

    It has become increasingly clear that low levels of antibiotics present in many environments can select for resistant bacteria, yet the evolutionary pathways for resistance development during exposure to low amounts of antibiotics remain poorly defined. Here we show that Salmonella enterica exposed to sub-MIC levels of streptomycin evolved high-level resistance via novel mechanisms that are different from those observed during lethal selections. During lethal selection only rpsL mutations are found, whereas at sub-MIC selection resistance is generated by several small-effect resistance mutations that combined confer high-level resistance via three different mechanisms: (i) alteration of the ribosomal RNA target (gidB mutations), (ii) reduction in aminoglycoside uptake (cyoB, nuoG, and trkH mutations), and (iii) induction of the aminoglycoside-modifying enzyme AadA (znuA mutations). These results demonstrate how the strength of the selective pressure influences evolutionary trajectories and that even weak selective pressures can cause evolution of high-level resistance.

  15. USE OF NEUTRON IRRADIATIONS IN THE BROOKHAVEN MUTATIONS PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miksche, J.P.; Shapiro, S.

    1963-01-01

    Many plant species were irradiated with x rays, thermal and fast neutrons, andd gamma radiation during the past 10 yr of the cooperative mutations program and adjunct mutation breeding program. Four major concepts and/ or approaches related to the use of mutagenic agents in plant breeding that have evolved are discussed. It was concluded that outcrossing between treated and nontreated populations must be reckoned with, and consequently the two populations should be separated before a true measure of mutation induction can be ascertained; chromosome rearrangement studies are useful, with particular emphasis on inducing disease resistance; work concerned with tissue reorgandizationmore » and rearrangement as related to chimera production and basic understanding of tissue ontogeny, particularly with fruit crops andd horticultural crops is promising; and the effectiveness of responses of plant tissues to neutrons and other mutagenic agents is extremely variable and more basic work is needed before the full potentialities of mutation breeding as a tool in crop improvement can be appreciated. (auth)« less

  16. Effect of antibiotic pretreatment on survival, mutability, and electrophoretic spectrum of soluble proteins in a gamma-irradiated chlorella population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovsyannikova, M.N.; Osetrova, A.Ya.

    1977-01-01

    A study was made of the protective action of several antibiotics in a ..gamma..-irradiated chlorella population. It was shown that not all of the antibiotics tested had a protective effect with regard to survival. At the same time, all of the tested antibiotics, with the exception of nistatin, diminished the effectiveness of subsequent ..gamma..-irradiation with respect to induction of mutations. It is assumed that electrophoresis of readily soluble proteins can be used for biochemical identification of mutations in the population.

  17. Induction of diphtheria toxin-resistant mutants in human cells by ultraviolet light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocchi, P.; Ferreri, A.M.; Capucci, A.

    1981-01-01

    Stable spontaneous mutants resistant to the protein synthesis inhibitor diphtheria toxin (DT) have been selected in human cell line EUE at a very low frequency (less than 8 x 10(-6)). U.v.-induced mutation has been quantitatively measured: treatment of cells with u.v. light increased the frequencies of diphtheria toxin resistant (DTr) mutants up to 1000-fold. The maximum recovery of DTr mutants was observed after a short expression period, for all u.v. doses tested, and was followed by a decrease in mutation frequency on subsequent passages.

  18. Induction of diphtheria toxin-resistant mutants in human cells by ultraviolet light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocchi, P.; Ferreri, A.M.; Capucci, A.

    1981-01-01

    Stable spontaneous mutants resistant to the protein synthesis inhibitor diphtheria toxin (DT) have been selected in human cell line EUE at a very low frequency (< 8 x 10/sup -6/). U.v.-induced mutation has been quantitatively measured: treatment of cells with u.v. light increased the frequencies of diphtheria toxin resistant (DTsup(r)) mutants up to 1000-fold. The maximum recovery of DTsup(r) mutants was observed after a short expression period, for all u.v. doses tested, and was followed by a decrease in mutation frequency on subsequent passages.

  19. Mutations in a gene encoding the. cap alpha. subunit of a Saccharomyces cerevisiae G protein indicate a role in mating pheromone signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahng, K.Y.; Ferguson, J.; Reed, S.I.

    1988-06-01

    Mutations which allowed conjugation by Saccharomyces cerevisiae cells lacking a mating pheromone receptor gene were selected. One of the genes defined by such mutations was isolated from a yeast genomic library by complementation of a temperature-sensitive mutation and is identically to the gene GPA1 (also known as SCG1), recently shown to be highly homologous to gene encoding the ..cap alpha.. subunits of mammalian G proteins. Physiological analysis of temperature-sensitive gpal mutations suggests that the encoded G protein is involved in signaling in response to mating pheromones. Mutational disruption of G-protein activity causes cell-cycle arrest in G/sub 1/, deposition of mating-specificmore » cell surface aggultinins, and induction of pheromone-specific mRNa, all of which are responses to pheromone in wild-type cells. In addition, mutants can conjugate without the benefit of mating pheromone or pheromone receptor. A model is presented where the activated G protein has a negative impact on a constitutive signal which normally keeps the pheromone response repressed.« less

  20. Induction of Vermillion in Pyralid moths using CRISPR mutagenesis

    USDA-ARS?s Scientific Manuscript database

    Eye color mutations have been useful markers of genetic activity or alteration in insect genetics. Complementation or disruption of transport or biosynthesis of ommochrome (brown) or pteridine (red) pigments have provided useful targets for transgenic procedures. Tryptophan oxygenase (To) (EC 1.13.1...

  1. A phase I/II study of sunitinib and intensive chemotherapy in patients over 60 years of age with acute myeloid leukaemia and activating FLT3 mutations.

    PubMed

    Fiedler, Walter; Kayser, Sabine; Kebenko, Maxim; Janning, Melanie; Krauter, Jürgen; Schittenhelm, Marcus; Götze, Katharina; Weber, Daniela; Göhring, Gudrun; Teleanu, Veronica; Thol, Felicitas; Heuser, Michael; Döhner, Konstanze; Ganser, Arnold; Döhner, Hartmut; Schlenk, Richard F

    2015-06-01

    Acute myeloid leukaemia (AML) with FLT3 mutation has a dismal prognosis in elderly patients. Treatment with a combination of FLT3 inhibitors and standard chemotherapy has not been extensively studied. Therefore, we instigated a phase I/II clinical trial of chemotherapy with cytosine arabinoside (Ara-C)/daunorubicin induction (7+3) followed by three cycles of intermediate-dose Ara-C consolidation in 22 AML patients with activating FLT3 mutations. Sunitinib was added at predefined dose levels and as maintenance therapy for 2 years. At dose level 1, sunitinib 25 mg daily continuously from day 1 onwards resulted in two cases with dose-limiting toxicity (DLT), prolonged haemotoxicity and hand-foot syndrome. At dose level -1, sunitinib 25 mg was restricted to days 1-7 of each chemotherapy cycle. One DLT was observed in six evaluable patients. Six additional patients were treated in an extension phase. Thirteen of 22 patients (59%; 8/14 with FLT3-internal tandem duplication and 5/8 with FLT3-tyrosine kinase domain) achieved a complete remission/complete remission with incomplete blood count recovery. For the 17 patients included at the lower dose level, median overall, relapse-free and event-free survival were 1·6, 1·0 and 0·4 years, respectively. Four out of five analysed patients with relapse during maintenance therapy lost their initial FLT3 mutation, suggesting outgrowth of FLT3 wild-type subclones. © 2015 John Wiley & Sons Ltd.

  2. Knowledge Discovery in Variant Databases Using Inductive Logic Programming

    PubMed Central

    Nguyen, Hoan; Luu, Tien-Dao; Poch, Olivier; Thompson, Julie D.

    2013-01-01

    Understanding the effects of genetic variation on the phenotype of an individual is a major goal of biomedical research, especially for the development of diagnostics and effective therapeutic solutions. In this work, we describe the use of a recent knowledge discovery from database (KDD) approach using inductive logic programming (ILP) to automatically extract knowledge about human monogenic diseases. We extracted background knowledge from MSV3d, a database of all human missense variants mapped to 3D protein structure. In this study, we identified 8,117 mutations in 805 proteins with known three-dimensional structures that were known to be involved in human monogenic disease. Our results help to improve our understanding of the relationships between structural, functional or evolutionary features and deleterious mutations. Our inferred rules can also be applied to predict the impact of any single amino acid replacement on the function of a protein. The interpretable rules are available at http://decrypthon.igbmc.fr/kd4v/. PMID:23589683

  3. Knowledge discovery in variant databases using inductive logic programming.

    PubMed

    Nguyen, Hoan; Luu, Tien-Dao; Poch, Olivier; Thompson, Julie D

    2013-01-01

    Understanding the effects of genetic variation on the phenotype of an individual is a major goal of biomedical research, especially for the development of diagnostics and effective therapeutic solutions. In this work, we describe the use of a recent knowledge discovery from database (KDD) approach using inductive logic programming (ILP) to automatically extract knowledge about human monogenic diseases. We extracted background knowledge from MSV3d, a database of all human missense variants mapped to 3D protein structure. In this study, we identified 8,117 mutations in 805 proteins with known three-dimensional structures that were known to be involved in human monogenic disease. Our results help to improve our understanding of the relationships between structural, functional or evolutionary features and deleterious mutations. Our inferred rules can also be applied to predict the impact of any single amino acid replacement on the function of a protein. The interpretable rules are available at http://decrypthon.igbmc.fr/kd4v/.

  4. Mutational analysis of the transcriptional activator VirG of Agrobacterium tumefaciens.

    PubMed Central

    Scheeren-Groot, E P; Rodenburg, K W; den Dulk-Ras, A; Turk, S C; Hooykaas, P J

    1994-01-01

    To find VirG proteins with altered properties, the virG gene was mutagenized. Random chemical mutagenesis of single-stranded DNA containing the Agrobacterium tumefaciens virG gene led with high frequency to the inactivation of the gene. Sequence analysis showed that 29% of the mutants contained a virG gene with one single-base-pair substitution somewhere in the open reading frame. Thirty-nine different mutations that rendered the VirG protein inactive were mapped. Besides these inactive mutants, two mutants in which the vir genes were active even in the absence of acetosyringone were found on indicator plates. A VirG protein with an N54D substitution turned out to be able to induce a virB-lacZ reporter gene to a high level even in the absence of the inducer acetosyringone. A VirG protein with an I77V substitution exhibited almost no induction in the absence of acetosyringone but showed a maximum induction level already at low concentrations of acetosyringone. Images PMID:7961391

  5. Restraint of the G2/M Transition by the SR/RRM Family mRNA Shuttling Binding Protein SNXAHRB1 in Aspergillus nidulans

    PubMed Central

    James, Steven W.; Banta, Travis; Barra, James; Ciraku, Lorela; Coile, Clifford; Cuda, Zach; Day, Ryan; Dixit, Cheshil; Eastlack, Steven; Giang, Anh; Goode, James; Guice, Alexis; Huff, Yulon; Humbert, Sara; Kelliher, Christina; Kobie, Julie; Kohlbrenner, Emily; Mwambutsa, Faustin; Orzechowski, Amanda; Shingler, Kristin; Spell, Casey; Anglin, Sarah Lea

    2014-01-01

    Control of the eukaryotic G2/M transition by CDC2/CYCLINB is tightly regulated by protein–protein interactions, protein phosphorylations, and nuclear localization of CDC2/CYCLINB. We previously reported a screen, in Aspergillus nidulans, for extragenic suppressors of nimX2cdc2 that resulted in the identification of the cold-sensitive snxA1 mutation. We demonstrate here that snxA1 suppresses defects in regulators of the CDK1 mitotic induction pathway, including nimX2cdc2, nimE6cyclinB, and nimT23cdc25, but does not suppress G2-arresting nimA1/nimA5 mutations, the S-arresting nimE10cyclinB mutation, or three other G1/S phase mutations. snxA encodes the A. nidulans homolog of Saccharomyces cerevisiae Hrb1/Gbp2; nonessential shuttling messenger RNA (mRNA)-binding proteins belonging to the serine-arginine-rich (SR) and RNA recognition motif (RRM) protein family; and human heterogeneous ribonucleoprotein-M, a spliceosomal component involved in pre-mRNA processing and alternative splicing. snxAHrb1 is nonessential, its deletion phenocopies the snxA1 mutation, and its overexpression rescues snxA1 and ΔsnxA mutant phenotypes. snxA1 and a second allele isolated in this study, snxA2, are hypomorphic mutations that result from decreased transcript and protein levels, suggesting that snxA acts normally to restrain cell cycle progression. SNXAHRB1 is predominantly nuclear, but is not retained in the nucleus during the partially closed mitosis of A. nidulans. We show that the snxA1 mutation does not suppress nimX2 by altering NIMX2CDC2/NIMECYCLINB kinase activity and that snxA1 or ΔsnxA alter localization patterns of NIMECYCLINB at the restrictive temperatures for snxA1 and nimX2. Together, these findings suggest a novel and previously unreported role of an SR/RRM family protein in cell cycle regulation, specifically in control of the CDK1 mitotic induction pathway. PMID:25104516

  6. Colon Tumors with the Simultaneous Induction of Driver Mutations in APC, KRAS, and PIK3CA Still Progress through the Adenoma-to-carcinoma Sequence.

    PubMed

    Hadac, Jamie N; Leystra, Alyssa A; Paul Olson, Terrah J; Maher, Molly E; Payne, Susan N; Yueh, Alexander E; Schwartz, Alexander R; Albrecht, Dawn M; Clipson, Linda; Pasch, Cheri A; Matkowskyj, Kristina A; Halberg, Richard B; Deming, Dustin A

    2015-10-01

    Human colorectal cancers often possess multiple mutations, including three to six driver mutations per tumor. The timing of when these mutations occur during tumor development and progression continues to be debated. More advanced lesions carry a greater number of driver mutations, indicating that colon tumors might progress from adenomas to carcinomas through the stepwise accumulation of mutations following tumor initiation. However, mutations that have been implicated in tumor progression have been identified in normal-appearing epithelial cells of the colon, leaving the possibility that these mutations might be present before the initiation of tumorigenesis. We utilized mouse models of colon cancer to investigate whether tumorigenesis still occurs through the adenoma-to-carcinoma sequence when multiple mutations are present at the time of tumor initiation. To create a model in which tumors could concomitantly possess mutations in Apc, Kras, and Pik3ca, we developed a novel minimally invasive technique to administer an adenovirus expressing Cre recombinase to a focal region of the colon. Here, we demonstrate that the presence of these additional driver mutations at the time of tumor initiation results in increased tumor multiplicity and an increased rate of progression to invasive adenocarcinomas. These cancers can even metastasize to retroperitoneal lymph nodes or the liver. However, despite having as many as three concomitant driver mutations at the time of initiation, these tumors still proceed through the adenoma-to-carcinoma sequence. ©2015 American Association for Cancer Research.

  7. Colon tumors with the simultaneous induction of driver mutations in APC, KRAS, and PIK3CA still progress through the adenoma-to-carcinoma sequence

    PubMed Central

    Hadac, Jamie N.; Leystra, Alyssa A.; Olson, Terrah J. Paul; Maher, Molly E.; Payne, Susan N; Yueh, Alexander E.; Schwartz, Alexander R.; Albrecht, Dawn M.; Clipson, Linda; Pasch, Cheri A.; Matkowskyj, Kristina A.; Halberg, Richard B.; Deming, Dustin A.

    2015-01-01

    Human colorectal cancers often possess multiple mutations, including 3–6 driver mutations per tumor. The timing of when these mutations occur during tumor development and progression continues to be debated. More advanced lesions carry a greater number of driver mutations, indicating that colon tumors might progress from adenomas to carcinomas through the stepwise accumulation of mutations following tumor initiation. However, mutations that have been implicated in tumor progression have been identified in normal-appearing epithelial cells of the colon, leaving the possibility that these mutations might be present prior to the initiation of tumorigenesis. We utilized mouse models of colon cancer to investigate whether tumorigenesis still occurs through the adenoma-to-carcinoma sequence when multiple mutations are present at the time of tumor initiation. To create a model in which tumors could concomitantly possess mutations in Apc, Kras, and Pik3ca, we developed a novel minimally invasive technique to administer an adenovirus expressing Cre recombinase to a focal region of the colon. Here we demonstrate that the presence of these additional driver mutations at the time of tumor initiation results in increased tumor multiplicity and an increased rate of progression to invasive adenocarcinomas. These cancers can even metastasize to retroperitoneal lymph nodes or the liver. However, despite having as many as three concomitant driver mutations at the time of initiation, these tumors still proceed through the adenoma-to-carcinoma sequence. PMID:26276752

  8. Ultraviolet light induction of diphtheria toxin-resistant mutations in normal and DNA repair-deficient human and Chinese hamster fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trosko, J.E.; Schultz, R.S.; Chang, C.C.

    1980-01-01

    The role on unrepaired DNA lesions in the production of mutations is suspected of contributing to the initiation phase of carcinogenesis. Since the molecular basis of mutagenesis is not understood in eukaryotic cells, development of new genetic markers for quantitative in vitro measurement of mutations for mammalian cells is needed. Furthermore, mammalian cells, genetically deficient for various DNA repair enzymes, will be needed to study the role of unrepaired DNA lesions in mutagenesis. The results in this report relate to preliminary attempts to characterize the diphtheria toxin resistance marker as a useful quantitative genetic marker in human cells and tomore » isolate and characterize various DNA repair-deficient Chinese hamster cells.« less

  9. Zea mays assays of chemical/radiation genotoxicity for the study of environmental mutagens.

    PubMed

    Grant, William F; Owens, Elizabeth T

    2006-09-01

    From a literature survey, 86 chemicals are tabulated that have been evaluated in 121 assays for their clastogenic effects in Zea mays. Eighty-one of the 86 chemicals are reported as giving a positive reaction (i.e. causing chromosome aberrations). Of these, 36 are reported positive with a dose response. In addition, 32 assays have been recorded for 7 types of radiation, all of which reacted positively. The results of 126 assays with 63 chemicals and 12 types of radiation tested for the inductions of gene mutations are tabulated, as well as 63 chemicals and/or radiation in combined treatments. Three studies reported positive results for mutations on Zea mays seed sent on space flights. The Zea mays (2n=20) assay is a very good plant bioassay for assessing chromosome damage both in mitosis and meiosis and for somatic mutations induced by chemicals and radiations. The carcinogenicity and Salmonella assays correlate in all cases. The maize bioassay has been shown to be as sensitive and as specific an assay as other plant genotoxicity assays, such as Hordeum vulgare, Vicia faba, Crepis capillaris, Pisum sativum, Lycopersicon esculentum and Allium cepa and should be considered in further studies in assessing clastogenicity. Tests using Zea mays can be made for a spectrum of mutant phenotypes of which many are identifiable in young seedlings.

  10. JAK2 inhibitor TG101348 overcomes erlotinib-resistance in non-small cell lung carcinoma cells with mutated EGF receptor

    PubMed Central

    Duan, Shan-zhou; Xia, Ying-chen; Zhu, Rong-ying; Chen, Yong-bing

    2015-01-01

    Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations are responsive to EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, NSCLC patients with secondary somatic EGFR mutations are resistant to EGFR-TKI treatment. In this study, we investigated the effect of TG101348 (a JAK2 inhibitor) on the tumor growth of erlotinib-resistant NSCLC cells. Cell proliferation, apoptosis, gene expression and tumor growth were evaluated by diphenyltetrazolium bromide (MTT) assay, flow cytometry, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, Western Blot and a xenograft mouse model, respectively. Results showed that erlotinib had a stronger impact on the induction of apoptosis in erlotinib-sensitive PC-9 cells but had a weaker effect on erlotinib-resistant H1975 and H1650 cells than TG101348. TG101348 significantly enhanced the cytotoxicity of erlotinib to erlotinib-resistant NSCLC cells, stimulated erlotinib-induced apoptosis and downregulated the expressions of EGFR, p-EGFR, p-STAT3, Bcl-xL and survivin in erlotinib-resistant NSCLC cells. Moreover, the combined treatment of TG101348 and erlotinib induced apoptosis, inhibited the activation of p-EGFR and p-STAT3, and inhibited tumor growth of erlotinib-resistant NSCLC cells in vivo. Our results indicate that TG101348 is a potential adjuvant for NSCLC patients during erlotinib treatment. PMID:25869210

  11. Kinetics model for initiation and promotion for describing tumor prevalence from HZE radiation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1994-01-01

    A kinetics model for cellular repair and misrepair for multiple radiation-induced lesions (mutation-inactivation) is coupled to a two-mutation model of initiation and promotion in tissue to provide a parametric description of tumor prevalence in the Harderian gland in a mouse. Dose-response curves are described for gamma-rays and relativistic ions. The effects of nuclear fragmentation are also considered for high-energy proton and alpha particle exposures The model described provides a parametric description of age-dependent cancer induction for a wide range of radiation fields. We also consider the two hypotheses that radiation acts either solely as an initiator or as both initiator and promoter and make model calculations for fractionation exposures from gamma-rays and relativistic Fe ions. For fractionated Fe exposures, an inverse dose-rate effect is provided by a promotion hypothesis using a mutation rate for promotion typical of single-gene mutations.

  12. A consistent two-mutation model of bone cancer for two data sets of radium-injected beagles.

    PubMed

    Bijwaard, H; Brugmans, M J P; Leenhouts, H P

    2002-09-01

    A two-mutation carcinogenesis model has been applied to model osteosarcoma incidence in two data sets of beagles injected with 226Ra. Taking age-specific retention into account, the following results have been obtained: (1) a consistent and well-fitting solution for all age and dose groups, (2) mutation rates that are linearly dependent on dose rate, with an exponential decrease for the second mutation at high dose rates, (3) a linear-quadratic dose-effect relationship, which indicates that care should be taken when extrapolating linearly, (4) highest cumulative incidences for injection at young adult age, and highest risks for injection doses of a few kBq kg(-1) at these ages, and (5) when scaled appropriately, the beagle model compares fairly well with a description for radium dial painters, suggesting that a consistent model description of bone cancer induction in beagles and humans may be possible.

  13. Plac8 links oncogenic mutations to regulation of autophagy and is critical to pancreatic cancer progression

    PubMed Central

    Kinsey, Conan; Balakrishnan, Vijaya; O’Dell, Michael R.; Huang, Jing Li; Newman, Laurel; Whitney-Miller, Christa L.; Hezel, Aram F.; Land, Hartmut

    2014-01-01

    Summary Mutations in p53 and RAS potently cooperate in oncogenic transformation and correspondingly these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA) and other human cancers. Previously we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression. PMID:24794439

  14. Back to the future: revisiting HIV-1 lethal mutagenesis

    PubMed Central

    Dapp, Michael J.; Patterson, Steven E.; Mansky, Louis M.

    2012-01-01

    The concept of eliminating HIV-1 infectivity by elevating the viral mutation rate was first proposed over a decade ago, even though the general concept had been conceived earlier for RNA viruses. Lethal mutagenesis was originally viewed as a novel chemotherapeutic approach for treating HIV-1 infection in which use of a viral mutagen would over multiple rounds of replication lead to the lethal accumulation of mutations, rendering the virus population non infectious – known as the slow mutation accumulation model. There have been limitations in obtaining good efficacy data with drug leads, leaving some doubt into clinical translation. More recent studies of the APOBEC3 proteins as well as new progress in the use of nucleoside analogs for inducing lethal mutagenesis have helped to refocus attention on rapid induction of HIV-1 lethal mutagenesis in a single or limited number of replication cycles leading to a rapid mutation accumulation model. PMID:23195922

  15. Direct repeat sequences in the Streptomyces chitinase-63 promoter direct both glucose repression and chitin induction

    PubMed Central

    Ni, Xiangyang; Westpheling, Janet

    1997-01-01

    The chi63 promoter directs glucose-sensitive, chitin-dependent transcription of a gene involved in the utilization of chitin as carbon source. Analysis of 5′ and 3′ deletions of the promoter region revealed that a 350-bp segment is sufficient for wild-type levels of expression and regulation. The analysis of single base changes throughout the promoter region, introduced by random and site-directed mutagenesis, identified several sequences to be important for activity and regulation. Single base changes at −10, −12, −32, −33, −35, and −37 upstream of the transcription start site resulted in loss of activity from the promoter, suggesting that bases in these positions are important for RNA polymerase interaction. The sequences centered around −10 (TATTCT) and −35 (TTGACC) in this promoter are, in fact, prototypical of eubacterial promoters. Overlapping the RNA polymerase binding site is a perfect 12-bp direct repeat sequence. Some base changes within this direct repeat resulted in constitutive expression, suggesting that this sequence is an operator for negative regulation. Other base changes resulted in loss of glucose repression while retaining the requirement for chitin induction, suggesting that this sequence is also involved in glucose repression. The fact that cis-acting mutations resulted in glucose resistance but not inducer independence rules out the possibility that glucose repression acts exclusively by inducer exclusion. The fact that mutations that affect glucose repression and chitin induction fall within the same direct repeat sequence module suggests that the direct repeat sequence facilitates both chitin induction and glucose repression. PMID:9371809

  16. Classification of TP53 Mutations and HPV Predict Survival in Advanced Larynx Cancer

    PubMed Central

    Scheel, Adam; Bellile, Emily; McHugh, Jonathan B.; Walline, Heather M.; Prince, Mark E.; Urba, Susan; Wolf, Gregory T.; Eisbruch, Avraham; Worden, Francis; Carey, Thomas E.; Bradford, Carol

    2016-01-01

    OBJECTIVE Assess TP53 functional mutations in the context of other biomarkers in advanced larynx cancer. STUDY DESIGN Prospective analysis of pretreatment tumor TP53, HPV, Bcl-xL and cyclin D1 status in stage III and IV larynx cancer patients in a clinical trial. METHODS TP53 exons 4-9 from 58 tumors were sequenced. Mutations were grouped using three classifications based on their expected function. Each functional group was analyzed for response to induction chemotherapy, time to surgery, survival, HPV status, p16INK4a, Bcl-xl and cyclin D1 expression. RESULTS TP53 Mutations were found in 22/58 (37.9%) patients with advanced larynx cancer, including missense mutations in 13/58 (22.4%) patients, nonsense mutations in 4/58 (6.9%), and deletions in 5/58 (8.6%). High risk HPV was found in 20/52 (38.5%) tumors. A classification based on crystal Evolutionary Action score of p53 (EAp53) distinguished missense mutations with high risk for decreased survival from low risk mutations (p=0.0315). A model including this TP53 classification, HPV status, cyclin D1 and Bcl-xL staining significantly predicts survival (p=0.0017). CONCLUSION EAp53 functional classification of TP53 mutants and biomarkers predict survival in advanced larynx cancer. PMID:27345657

  17. Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice.

    PubMed

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2015-10-01

    Frequency of CRISPR/Cas9-mediated targeted mutagenesis varies depending on Cas9 expression level and culture period of rice callus. Recent reports have demonstrated that the CRISPR/Cas9 system can function as a sequence-specific nuclease in various plant species. Induction of mutation in proliferating tissue during embryogenesis or in germline cells is a practical means of generating heritable mutations. In the case of plant species in which cultured cells are used for transformation, non-chimeric plants can be obtained when regeneration occurs from mutated cells. Since plantlets are regenerated from both mutated and non-mutated cells in a random manner, any increment in the proportion of mutated cells in Cas9- and guide RNA (gRNA)-expressing cells will help increase the number of plants containing heritable mutations. In this study, we examined factors affecting mutation frequency in rice calli. Following sequential transformation of rice calli with Cas9- and gRNA- expression constructs, the mutation frequency in independent Cas9 transgenic lines was analyzed. A positive correlation between Cas9 expression level and mutation frequency was found. This positive relationship was observed regardless of whether the transgene or an endogenous gene was used as the target for CRISPR/Cas9-mediated mutagenesis. Furthermore, we found that extending the culture period increased the proportion of mutated cells as well as the variety of mutations obtained. Because mutated and non-mutated cells might proliferate equally, these results suggest that a prolonged tissue culture period increases the chance of inducing de novo mutations in non-mutated cells. This fundamental knowledge will help improve systems for obtaining non-chimeric regenerated plants in many plant species.

  18. Modifications in the pmrB gene are the primary mechanism for the development of chromosomally encoded resistance to polymyxins in uropathogenic Escherichia coli.

    PubMed

    Phan, Minh-Duy; Nhu, Nguyen Thi Khanh; Achard, Maud E S; Forde, Brian M; Hong, Kar Wai; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; West, Nicholas P; Walker, Mark J; Paterson, David L; Beatson, Scott A; Schembri, Mark A

    2017-10-01

    Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958. Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost. A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B. This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Levels of H-ras codon 61 CAA to AAA mutation: response to 4-ABP-treatment and Pms2-deficiency.

    PubMed

    Parsons, Barbara L; Delongchamp, Robert R; Beland, Frederick A; Heflich, Robert H

    2006-01-01

    DNA mismatch repair (MMR) deficiencies result in increased frequencies of spontaneous mutation and tumor formation. In the present study, we tested the hypothesis that a chemically-induced mutational response would be greater in a mouse with an MMR-deficiency than in the MMR-proficient mouse models commonly used to assay for chemical carcinogenicity. To accomplish this, the induction of H-ras codon 61 CAA-->AAA mutation was examined in Pms2 knockout mice (Pms2-/-, C57BL/6 background) and sibling wild-type mice (Pms2+/+). Groups of five or six neonatal male mice were treated with 0.3 micromol 4-aminobiphenyl (4-ABP) or the vehicle control, dimethylsulfoxide. Eight months after treatment, liver DNAs were isolated and analysed for levels of H-ras codon 61 CAA-->AAA mutation using allele-specific competitive blocker-PCR. In Pms2-proficient and Pms2-deficient mice, 4-ABP treatment caused an increase in mutant fraction (MF) from 1.65x10(-5) to 2.91x10(-5) and from 3.40x10(-5) to 4.70x10(-5), respectively. Pooling data from 4-ABP-treated and control mice, the approximately 2-fold increase in MF observed in Pms2-deficient as compared with Pms2-proficient mice was statistically significant (P=0.0207) and consistent with what has been reported previously in terms of induction of G:C-->T:A mutation in a Pms2-deficient background. Pooling data from both genotypes, the increase in H-ras MF in 4-ABP-treated mice, as compared with control mice, did not reach the 95% confidence level of statistical significance (P=0.0606). The 4-ABP treatment caused a 1.76-fold and 1.38-fold increase in average H-ras MF in Pms2-proficient and Pms2-deficient mice, respectively. Furthermore, the levels of induced mutation in Pms2-proficient and Pms2-deficient mice were nearly identical (1.26x10(-5) and 1.30x10(-5), respectively). We conclude that Pms2-deficiency does not result in an amplification of the H-ras codon 61 CAA-->AAA mutational response induced by 4-ABP.

  20. Model - SEO - serious ovarian cancer | Center for Cancer Research

    Cancer.gov

    Genetically engineered mouse model Developed in house Genetic aberrations: Inactivation of Rb tumor suppression (via K18-T121 transgene) Tp53 loss or mutation (R172H) Brca1 or Brca2 loss Induction by injection of adenovirus expressing Cre recombinase under the ovrian bursa Pathology:

  1. Cloning, characterization, regulation, and function of dormancy-associated MADS-BOX genes from leafy spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are transcription factors that have been linked to endodormancy induction. The evergrowing mutation in peach, which renders it incapable of entering endodormancy, resulted from a deletion in a series of DAM genes (Bielenberg et al. 2008). Likewise, DAM genes ...

  2. Cloning, Characterization, Regulation, and Function of DORMANCY-ASSOCIATED MADS-BOX Genes from Leafy Spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are transcription factors that have been linked to endodormancy induction. The evergrowing mutation in peach, which renders it incapable of entering endodormancy, resulted from a deletion in a series of DAM genes (Bielenberg et al. 2008). Likewise, DAM genes ...

  3. Hibiscus plant named `Sahara Sunset` U.S. Plant Patent 21,765

    USDA-ARS?s Scientific Manuscript database

    'Sahara Sunset' is a new and distinct cultivar of Hibiscus, botanically known as Hibiscus acetosella. The new Hibiscus was originated in Poplarville, Miss. and is a product of a mutation induction program. The parent of the present new cultivar is an unknown Hibiscus acetosella Wels. Ex Hiern seedli...

  4. Modulatory effects of metformin on mutagenicity and epithelial tumor incidence in doxorubicin-treated Drosophila melanogaster.

    PubMed

    Oliveira, Victor Constante; Constante, Sarah Alves Rodrigues; Orsolin, Priscila Capelari; Nepomuceno, Júlio César; de Rezende, Alexandre Azenha Alves; Spanó, Mário Antônio

    2017-08-01

    Metformin (MET) is an anti-diabetic drug used to prevent hepatic glucose release and increase tissue insulin sensitivity. Diabetic cancer patients are on additional therapy with anticancer drugs. Doxorubicin (DXR) is a cancer chemotherapeutic agent that interferes with the topoisomerase II enzyme and generates free radicals. MET (2.5, 5, 10, 25 or 50 mM) alone was examined for mutagenicity, recombinogenicity and carcinogenicity, and combined with DXR (0.4 mM) for antimutagenicity, antirecombinogenicity and anticarcinogenicity, using the Somatic Mutation and Recombination Test and the Test for Detecting Epithelial Tumor Clones in Drosophila melanogaster. MET alone did not induce mutation or recombination. Modulating effects of MET on DXR-induced DNA damage were observed at the highest concentrations. In the evaluation of carcinogenesis, MET alone did not induce tumors. When combined with DXR, MET also reduced the DXR-induced tumors at the highest concentrations. Therefore, in the present experimental conditions, MET alone did not present mutagenic/recombinogenic/carcinogenic effects, but it was able to modulate the effect of DXR in the induction of DNA damage and of tumors in D. melanogaster. It is believed that this modulating effect is mainly related to the antioxidant, anti-inflammatory and apoptotic effects of this drug, although such effects have not been directly evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Advances in radiation mutagenesis through studies on Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, H. J.

    The approximately linear relation between radiation dose and induced lethals, known for Drosophila spermatozoa, is now extended to spermatids. Data are included regarding oogonia. The linearity principle has been confirmed for minute structural changes in spermatozoa. The dependence of gross structural changes, as multi-hit events, on about the 1.5 power of the dose, long known for spermatozoa, is now extended to spermatids and late oocytes, for relatively short exposures. However, these stages unlike spermatozoa are found to allow union of broken chromosomes. Therefore, the frequencies are lower for more dispersed exposures of these stages, and the precise dose relation variesmore » with the timing. Part of the dominant and even recessive lethals induced in late oocytes follow the same frequency pattern and therefore are multi-hit events. Yet there is a much lower chance after oocytic than spermatozoan irradiation that two broken ends derived from different hits will unite, hence most such unions are nonreciprocal. The following is the order of decreasing radiation mutability of different stages found by ourselves and others: spermatids, spermatozoa in females, spermatozoa 0 to 1 day before ejaculation, earlier spermatozoa, late oocytes, gonia of either sex. Lethal frequencies for these stages range over approximately an order of magnitude, gross structural changes far more widely. Of potential usefulness is our extension of the principle of marked reduction of radiation mutagenesis by anoxia, known for spermatozoa in adult males, to those in pupal males and in females to spermatids and to oocytes. In spermatids this reduction is especially marked but the increase caused by substituting oxygen for air is less marked, perhaps because of enzymatic differences. In contrast, the induction of gross structural changes in oocytes, but not in spermatids, is markedly reduced by oxygen post-treatment; it is increased by dehydration. The efficacy of induction of structural changes by treatment of spermatozoa, whether with radiation or chemical mutagens, is correlated with the conditions of sperm utilization and egg production. Improving our perspective on radiation effects, some 800,000 offspring have been scored for spontaneous visible mutations of 13 specific loci. The average point-mutation rate was 0.5 to 1.0 per locus among 10/sup 5/ germ cells. Most mutations occurred in peri-fertilization stages. All loci studied mutated from one to nine times. Loci mutating oftener spontaneously also gave more radiation mutation, in other studies. Spectra of individual loci prove similar for spontaneous and induced mutation. Studies on back-mutations also showed similarity of spontaneous and radiation mutations. The doubling dose for back-mutations of forked induced in spermatozoa was several hundred roentgens, similar to that for direct point-mutations induced in gonia at diverse loci. Recent analyses of human mutational load lead to mutation-rate estimates like those earlier based on extrapolations from Drosophila, thus supporting the significance for man of the present studies. (auth)« less

  6. Space Radiation and its Associated Health Consequences

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2007-01-01

    During space travel, astronauts are exposed to energetic particles of a complex composition and energy distribution. For the same amount of absorbed dose, these particles can be much more effective than X- or gamma rays in the induction of biological effects, including cell inactivation, genetic mutations, cataracts, and cancer induction. Several of the biological consequences of space radiation exposure have already been observed in astronauts. This presentation will introduce the space radiation environment and discuss its associated health risks. Accurate assessment of the radiation risks and development of respective countermeasures are essential for the success of future exploration missions to the Moon and Mars.

  7. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    NASA Astrophysics Data System (ADS)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L. D.

    2012-02-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli ( E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  8. The STAT3 HIES mutation is a gain-of-function mutation that activates genes via AGG-element carrying promoters.

    PubMed

    Xu, Li; Ji, Jin-Jun; Le, Wangping; Xu, Yan S; Dou, Dandan; Pan, Jieli; Jiao, Yifeng; Zhong, Tianfei; Wu, Dehong; Wang, Yumei; Wen, Chengping; Xie, Guan-Qun; Yao, Feng; Zhao, Heng; Fan, Yong-Sheng; Chin, Y Eugene

    2015-10-15

    Cytokine or growth factor activated STAT3 undergoes multiple post-translational modifications, dimerization and translocation into nuclei, where it binds to serum-inducible element (SIE, 'TTC(N3)GAA')-bearing promoters to activate transcription. The STAT3 DNA binding domain (DBD, 320-494) mutation in hyper immunoglobulin E syndrome (HIES), called the HIES mutation (R382Q, R382W or V463Δ), which elevates IgE synthesis, inhibits SIE binding activity and sensitizes genes such as TNF-α for expression. However, the mechanism by which the HIES mutation sensitizes STAT3 in gene induction remains elusive. Here, we report that STAT3 binds directly to the AGG-element with the consensus sequence 'AGG(N3)AGG'. Surprisingly, the helical N-terminal region (1-355), rather than the canonical STAT3 DBD, is responsible for AGG-element binding. The HIES mutation markedly enhances STAT3 AGG-element binding and AGG-promoter activation activity. Thus, STAT3 is a dual specificity transcription factor that promotes gene expression not only via SIE- but also AGG-promoter activity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Ascorbate, added after irradiation, reduces the mutant yield and alters the spectrum of CD59- mutations in A(L) cells irradiated with high LET carbon ions

    NASA Technical Reports Server (NTRS)

    Ueno, Akiko; Vannais, Diane; Lenarczyk, Marek; Waldren, Charles A.; Chatterjee, A. (Principal Investigator)

    2002-01-01

    It has been reported that X-ray induced HPRT- mutation in cultured human cells is prevented by ascorbate added after irradiation. Mutation extinction is attributed to neutralization by ascorbate, of radiation-induced long-lived radicals (LLR) with half-lives of several hours. We here show that post-irradiation treatment with ascorbate (5 mM added 30 min after radiation) reduces, but does not eliminate, the induction of CD59- mutants in human-hamster hybrid A(L) cells exposed to high-LET carbon ions (LET of 100 KeV/microm). RibCys, [2(R,S)-D-ribo-1',2',3',4'-Tetrahydroxybutyl]-thiazolidene-4(R)-ca riboxylic acid] (4 mM) gave a similar but lesser effect. The lethality of the carbon ions was not altered by these chemicals. Preliminary data are presented that ascorbate also alters the spectrum of CD59- mutations induced by the carbon beam, mainly by reducing the incidence of small mutations and mutants displaying transmissible genomic instability (TGI), while large mutations are unaffected. Our results suggest that LLR are important in initiating TGI.

  10. The timing of UV mutagenesis in yeast: a pedigree analysis of induced recessive mutation.

    PubMed

    James, A P; Kilbey, B J

    1977-10-01

    The mechanism of UV-induced mutation in eukaryotes was studied in individual yeast cells by a procedure that combined pedigree analysis and tetrad analysis. The technique involved the induction of recessive lethals and semilethals in G1 diploid cells. Induced frequencies were 25 and 61 percent at survival levels of 90 and 77 percent, respectively. No evidence of gross chromosome aberrations was detected. Recessive mutations that affect only one strand or that affect both strands of the DNA molecule are induced much at random among a population of cells, and both types can occur within the same cell. However, the data confirm that two-strand mutations are in the majority after a low level of irradiation. The simplest explanation involves a mechanism whereby most mutations are fixed in both strands prior to the first round of post-irradiation DNA replication. The recessive mutational consequences of irradiation are exhausted at the conclusion of the first post-irradiation cell division, although dominant-lethal sectoring continues at a high level through the second post-irradiation division. It is concluded that pyrimidine dimers that persist to the second round of DNA replication are rare or ineffective.

  11. MicroRNA-Mediated Myostatin Silencing in Caprine Fetal Fibroblasts

    PubMed Central

    Zhong, Bushuai; Zhang, Yanli; Yan, Yibo; Wang, Ziyu; Ying, Shijia; Huang, Mingrui; Wang, Feng

    2014-01-01

    Myostatin functions as a negative regulator of skeletal muscle growth by suppressing proliferation and differentiation of myoblasts. Dysfunction of the myostatin gene, either due to natural mutation or genetic manipulations such as knockout or knockdown, has been reported to increase muscle mass in mammalian species. RNA interference (RNAi) mediated by microRNAs (miRNAs) is a promising method for gene knockdown studies. In the present study, transient and stable silencing of the myostatin gene in caprine fetal fibroblasts (CFF) was evaluated using the two most effective constructs selected from four different miRNA expression constructs screened in 293FT cells. Using these two miRNA constructs, we achieved up to 84% silencing of myostatin mRNA in transiently transfected CFF cells and up to 31% silencing in stably transfected CFF cells. Moreover, off-target effects due to induction of interferon (IFN) response genes, such as interferon beta (IFN-β) and 2′-5′-oligoadenylate synthetase 2 (OAS2), were markedly fewer in stably transfected CFF cells than in transiently transfected cells. Stable expression of anti-myostatin miRNA with minimal induction of interferon shows great promise for increasing muscle mass in transgenic goats. PMID:25244645

  12. Preliminary study of effects of military obscurant smokes on flora and fauna during field and laboratory exposures. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, D.J.; Lower, W.R.; Kapila, S.

    1986-12-01

    Since continued routine use of obscurant smokes could be detrimental to the native flora and fauna of training sites, a preliminary biological and chemical study of smokes was conducted to determine whether tests could be developed to demonstrate measurable changes in organisms exposed to smokes and to evaluate whether short exposures to smokes produced measurable changes in the organisms tested. Fog oil, hexachloroethane, and tank diesel smokes were tested. Tradescantia clones were examined for mutagenic effects indicated by micronuclei induction in developing pollen and pink somatic mutations in stamen hairs. Photosynthetic perturbations were measured in Tradescantia and Ambrosia dumosa usingmore » variable fluorescence induction. Animals were examined for sister chromatid exchanges and chromosome aberrations. It was found that all of the smokes tested exerted varying degrees of physiological and mutagenic effects in one or several of the assay systems at one or more of the exposure distances. These studies indicate that exposed ecological systems, or at least components of these systems, are at a higher risk than are control organisms for several types of damage attributed to obscurant smoke exposure.« less

  13. Protein Profiling Identifies mTOR Pathway Modulation and Cytostatic Effects of Pim Kinase Inhibitor, AZD1208, in Acute Myeloid Leukemia

    PubMed Central

    Chen, Lisa S.; Yang, Ji-Yeon; Liang, Han; Cortes, Jorge E.; Gandhi, Varsha

    2017-01-01

    Pim kinases phosphorylate and regulate a number of key AML cell survival proteins, and Pim inhibitors have recently entered clinical trial for hematological malignancies. AZD1208 is a small molecule pan-Pim kinase inhibitor and AZD1208 treatment resulted in growth inhibition and cell size reduction in AML cell lines including FLT3-WT (OCI-AML-3, KG-1a, MOLM-16) and FLT3-ITD mutated (MOLM-13, MV-4-11). There was limited apoptosis induction (<10% increase) in the AML cell lines evaluated with up to 3 μM AZD1208 for 24h, suggesting that growth inhibition is not through apoptosis induction. Using reverse phase protein array (RPPA) and immunoblot analysis, we identified that AZD1208 resulted in suppression of mTOR signaling, including inhibition of protein phosphorylation of mTOR(Ser2448), p70S6K(Thr389), S6(Ser235/236) and 4E-BP1(Ser65). Consistent with mTOR inhibition, there was also a reduction in protein synthesis that correlated with cell size reduction and growth inhibition with AZD1208; our study provide insights into the mechanism of AZD1208. PMID:27054578

  14. Translational read-through of a nonsense mutation causing Bartter syndrome.

    PubMed

    Cho, Hee Yeon; Lee, Beom Hee; Cheong, Hae Il

    2013-06-01

    Bartter syndrome (BS) is classified into 5 genotypes according to underlying mutant genes and BS III is caused by loss-of-function mutations in the CLCNKB gene encoding for basolateral ClC-Kb. BS III is the most common genotype in Korean patients with BS and W610X is the most common CLCNKB mutation in Korean BS III. In this study, we tested the hypothesis that the CLCNKB W610X mutation can be rescued in vitro using aminoglycoside antibiotics, which are known to induce translational read-through of a nonsense mutation. The CLCNKB cDNA was cloned into a eukaryotic expression vector and the W610X nonsense mutation was generated by site-directed mutagenesis. Cultured polarized MDCK cells were transfected with the vectors, and the read-through was induced using an aminoglycoside derivative, G418. Cellular expression of the target protein was monitored via immunohistochemistry. While cells transfected with the mutant CLCNKB failed to express ClC-Kb, G418 treatment of the cells induced the full-length protein expression, which was localized to the basolateral plasma membranes. It is demonstrated that the W610X mutation in CLCNKB can be a good candidate for trial of translational read-through induction as a therapeutic modality.

  15. No correlation between germline mutation at repeat DNA and meiotic crossover in male mice exposed to X-rays or cisplatin.

    PubMed

    Barber, R; Plumb, M; Smith, A G; Cesar, C E; Boulton, E; Jeffreys, A J; Dubrova, Y E

    2000-12-20

    To test the hypothesis that mouse germline expanded simple tandem repeat (ESTR) mutations are associated with recombination events during spermatogenesis, crossover frequencies were compared with germline mutation rates at ESTR loci in male mice acutely exposed to 1Gy of X-rays or to 10mg/kg of the anticancer drug cisplatin. Ionising radiation resulted in a highly significant 2.7-3.6-fold increase in ESTR mutation rate in males mated 4, 5 and 6 weeks after exposure, but not 3 weeks after exposure. In contrast, irradiation had no effect on meiotic crossover frequencies assayed on six chromosomes using 25 polymorphic microsatellite loci spaced at approximately 20cM intervals and covering 421cM of the mouse genome. Paternal exposure to cisplatin did not affect either ESTR mutation rates or crossover frequencies, despite a report that cisplatin can increase crossover frequency in mice. Correlation analysis did not reveal any associations between the paternal ESTR mutation rate and crossover frequency in unexposed males and in those exposed to X-rays or cisplatin. This study does not, therefore, support the hypothesis that mutation induction at mouse ESTR loci results from a general genome-wide increase in meiotic recombination rate.

  16. A Novel NHERF1 Mutation in Human Breast Cancer and Effects on Malignant Progression.

    PubMed

    Yang, Xiaomei; Du, Guifang; Yu, Zhen; Si, Yang; Martin, Tracey A; He, Junqi; Cheng, Shan; Jiang, Wen G

    2017-01-01

    Na + /H + exchanger regulatory factor 1 (NHERF1) has been reported to interact with post-synaptic density protein/Drosophila disc large tumour suppressor/zonula occludens 1 protein (PDZ) binding proteins by its two PDZ domains. These associations have effects on cellular signal transductions. NHERF1 has also been indicated as a cancer-related gene in several solid tumour types. We identified a novel mutation (A190D), of the PDZ2 domain of NHERF1 in breast cancer tissues. NHERF1 A190D mutation abolished NHERF1 modulation of proliferation and migration. In this study, we found that NHERF1 A190D mutation increased nuclear localisation of the protein compared to wild-type NHERF1. It has been reported that YES-associated protein (YAP) interacts with NHERF1. Here we found that NHERF1 A190D mutation increased the binding affinity between NHERF1 and YAP, which inhibited the phosphorylation of YAP. These data suggest that wild-type NHERF1 acts as a tumour suppressor, while NHERF1 A190D mutation abolishes the tumour-suppressive effect in cancer cells, due to A190D mutation-mediated nuclear NHERF1 translocation and induction of YAP phosphorylation. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Neutron Diffraction Studies of Fluid Bilayers with Transmembrane Proteins: Structural Consequences of the Achondroplasia Mutation

    PubMed Central

    Han, Xue; Mihailescu, Mihaela; Hristova, Kalina

    2006-01-01

    Achondroplasia, the most common form of human dwarfism, is due to a G380R mutation in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) in >97% of the studied cases. While the molecular mechanism of pathology induction is under debate, the structural consequences of the mutation have not been studied. Here we use neutron diffraction to determine the disposition of FGFR3 transmembrane domain in fluid lipid bilayers, and investigate whether the G380R mutation affects the topology of the protein in the bilayer. Our results demonstrate that, in a model system, the G380R mutation induces a shift in the segment that is embedded in the membrane. The center of the hydrocarbon core-embedded segment in the mutant is close to the midpoint between R380 and R397, supporting previous measurements of arginine insertion energetics into the endoplasmic reticulum. The presented results further our knowledge about basic amino-acid insertion into bilayers, and may lead to new insights into the mechanism of pathogenesis in achondroplasia. PMID:16950849

  18. Mouse mutants from chemically mutagenized embryonic stem cells

    PubMed Central

    Munroe, Robert J.; Bergstrom, Rebecca A.; Zheng, Qing Yin; Libby, Brian; Smith, Richard; John, Simon W.M.; Schimenti, Kerry J.; Browning, Victoria L.; Schimenti, John C.

    2010-01-01

    The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain1 and interlocus2 variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chi-maeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives. PMID:10700192

  19. Mutagenesis during plant responses to UVB radiation.

    PubMed

    Holá, M; Vágnerová, R; Angelis, K J

    2015-08-01

    We tested an idea that induced mutagenesis due to unrepaired DNA lesions, here the UV photoproducts, underlies the impact of UVB irradiation on plant phenotype. For this purpose we used protonemal culture of the moss Physcomitrella patens with 50% of apical cells, which mimics actively growing tissue, the most vulnerable stage for the induction of mutations. We measured the UVB mutation rate of various moss lines with defects in DNA repair (pplig4, ppku70, pprad50, ppmre11), and in selected clones resistant to 2-Fluoroadenine, which were mutated in the adenosine phosphotrasferase gene (APT), we analysed induced mutations by sequencing. In parallel we followed DNA break repair and removal of cyclobutane pyrimidine dimers with a half-life τ = 4 h 14 min determined by comet assay combined with UV dimer specific T4 endonuclease V. We show that UVB induces massive, sequence specific, error-prone bypass repair that is responsible for a high mutation rate owing to relatively slow, though error-free, removal of photoproducts by nucleotide excision repair (NER). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. EGFR-TKI-induced HSP70 degradation and BER suppression facilitate the occurrence of the EGFR T790 M resistant mutation in lung cancer cells.

    PubMed

    Cao, Xiang; Zhou, Yi; Sun, Hongfang; Xu, Miao; Bi, Xiaowen; Zhao, Zhihui; Shen, Binghui; Wan, Fengyi; Hong, Zhuan; Lan, Lei; Luo, Lan; Guo, Zhigang; Yin, Zhimin

    2018-06-28

    Non-small cell lung cancer (NSCLC) patients harboring EGFR-activating mutations initially respond to EGFR tyrosine kinase inhibitors (EGFR-TKIs) and have shown favorable outcomes. However, acquired drug resistance to EGFR-TKIs develops in almost all patients mainly due to the EGFR T790 M mutation. Here, we show that treatment with low-dose EGFR-TKI results in the emergence of the EGFR T790 M mutation and in the reduction of HSP70 protein levels in HCC827 cells. Erlotinib treatment inhibits HSP70 phosphorylation at tyrosine 41 and increases HSP70 ubiquitination, resulting in HSP70 degradation. We show that EGFR-TKI treatment causes increased DNA damage and enhanced gene mutation rates, which are secondary to the EGFR-TKI-induced reduction of HSP70 protein. Importantly, HSP70 overexpression delays the occurrence of Erlotinib-induced EGFR T790 M mutation. We further demonstrate that HSP70 interacts with multiple enzymes in the base excision repair (BER) pathway and promotes not only the efficiency but also the fidelity of BER. Collectively, our findings show that EGFR-TKI treatment facilitates gene mutation and the emergence of EGFR T790 M secondary mutation by the attenuation of BER via induction of HSP70 protein degradation. Copyright © 2018. Published by Elsevier B.V.

  1. P-glycoprotein expression in Ehrlich ascites tumour cells after in vitro and in vivo selection with daunorubicin.

    PubMed Central

    Nielsen, D.; Eriksen, J.; Maare, C.; Jakobsen, A. H.; Skovsgaard, T.

    1998-01-01

    Fluctuation analysis experiments were performed to assess whether selection or induction determines expression of P-glycoprotein and resistance in the murine Ehrlich ascites tumour cell line (EHR2) after exposure to daunorubicin. Thirteen expanded populations of EHR2 cells were exposed to daunorubicin 7.5 x 10(-9) M or 10(-8) M for 2 weeks. Surviving clones were scored and propagated. Only clones exposed to daunorubicin 7.5 x 10(-9) M could be expanded for investigation. Drug resistance was assessed by the tetrazolium dye (MTT) cytotoxicity assay. Western blot was used for determination of P-glycoprotein. Compared with EHR2, the variant cells were 2.5- to 5.2-fold resistant to daunorubicin (mean 3.6-fold). P-glycoprotein was significantly increased in 11 of 25 clones (44%). Analysis of variance supported the hypothesis that spontaneous mutations conferred drug resistance in EHR2 cells exposed to daunorubicin 7.5 x 10(-9) M. At this level (5 log cell killing) of drug exposure, the mutation rate was estimated at 4.1 x 10(-6) per cell generation. In contrast, induction seemed to determine resistance in EHR2 cells in vitro exposed to daunorubicin 10(-8) M. The revertant EHR2/0.8/R was treated in vivo with daunorubicin for 24 h. After treatment, P-glycoprotein increased in EHR2/0.8/R (sevenfold) and the cell line developed resistance to daunorubicin (12-fold), suggesting that in EHR2/0.8/R the mdr1 gene was activated by induction. In conclusion, our study demonstrates that P-glycoprotein expression and daunorubicin resistance are primarily acquired by selection of spontaneously arising mutants. However, under certain conditions the mdr1 gene may be activated by induction. PMID:9820176

  2. Heme Oxygenase-1 Counteracts Contrast Media-Induced Endothelial Cell Dysfunction

    PubMed Central

    Chang, Chao-Fu; Liu, Xiao-Ming; Peyton, Kelly J.; Durante, William

    2013-01-01

    Endothelial cell (EC) dysfunction is involved in the pathogenesis of contrast-induced acute kidney injury, which is a major adverse event following coronary angiography. In this study, we evaluated the effect of contrast media (CM) on human EC proliferation, migration, and inflammation, and determined if heme oxygenase-1 (HO-1) influences the biological actions of CM. We found that three distinct CM, including high-osmolar (diatrizoate), low-osmolar (iopamidol), and iso-osmolar (iodixanol), stimulated the expression of HO-1 protein and mRNA. The induction of HO-1 was associated with an increase in NF-E2-related factor-2 (Nrf2) activity and reactive oxygen species (ROS). CM also stimulated HO-1 promoter activity and this was prevented by mutating the antioxidant responsive element or by overexpressing dominant-negative Nrf2. In addition, the CM-mediated induction of HO-1 and activation of Nrf2 was abolished by acetylcysteine. Finally, CM inhibited the proliferation and migration of ECs and stimulated the expression of intercellular adhesion molecule-1 and the adhesion of monocytes on ECs. Inhibition or silencing of HO-1 exacerbated the anti-proliferative and inflammatory actions of CM but had no effect on the anti-migratory effect. Thus, induction of HO-1 via the ROS-Nrf2 pathway counteracts the anti-proliferative and inflammatory actions of CM. Therapeutic approaches targeting HO-1 may provide a novel approach in preventing CM-induced endothelial and organ dysfunction. PMID:24239896

  3. Propofol Induction's Effect on Cardiac Function

    ClinicalTrials.gov

    2015-03-31

    This Study Was Focused to Evaluate Feasibility of Doppler Tissue Monitoring During the Induction Anesthesia,; and Evaluate Routine Propofol Induction's Effect on Myocardial Tissue Motion, Using Non-invasive Doppler Tissue and 2D Speckle Tracking Imaging.; This is the First Study, to Our Knowledge, Which Has Evaluated the Possible Impact of Propofol Induction on LV Function.

  4. Prognostic impact of isocitrate dehydrogenase enzyme isoforms 1 and 2 mutations in acute myeloid leukemia: a study by the Acute Leukemia French Association group.

    PubMed

    Boissel, Nicolas; Nibourel, Olivier; Renneville, Aline; Gardin, Claude; Reman, Oumedaly; Contentin, Nathalie; Bordessoule, Dominique; Pautas, Cécile; de Revel, Thierry; Quesnel, Bruno; Huchette, Pascal; Philippe, Nathalie; Geffroy, Sandrine; Terre, Christine; Thomas, Xavier; Castaigne, Sylvie; Dombret, Hervé; Preudhomme, Claude

    2010-08-10

    Recently, whole-genome sequencing in acute myeloid leukemia (AML) identified recurrent isocitrate dehydrogenase enzyme isoform (IDH1) mutations (IDH1m), previously reported to be involved in gliomas as well as IDH2 mutations (IDH2m). The prognosis of both IDH1m and IDH2m in AML remains unclear. The prevalence and the prognostic impact of R132 IDH1 and R172 IDH2 mutations were evaluated in a cohort of 520 adults with AML homogeneously treated in the French Acute Leukemia French Association (ALFA) -9801 and -9802 trials. The prevalence of IDH1m and IDH2m was 9.6% and 3.0%, respectively, mostly associated with normal cytogenetics (CN). In patients with CN-AML, IDH1m were associated with NPM1m (P = .008), but exclusive of CEBPAm (P = .03). In contrary, no other mutations were detected in IDH2m patients. In CN-AML patients, IDH1m were found in 19% of favorable genotype ([NPM1m or CEBPAm] without fms-related tyrosine kinase 3 [FLT3] internal tandem duplication [ITD]) and were associated with a higher risk of relapse (RR) and a shorter overall survival (OS). Favorable genotype in CN-AML could thus be defined by the association of NPM1m or CEBPAm with neither FLT3-ITD nor IDH1m. In IDH2m CN-AML patients, we observed a higher risk of induction failure, a higher RR and a shorter OS. In multivariate analysis, age, WBC count, the four-gene favorable genotype and IDH2m were independently associated with a higher RR and a shorter OS. Contrarily to what is reported in gliomas, IDH1m and IDH2m in AML are associated with a poor prognosis. Screening of IDH1m could help to identify high-risk patients within the subset of CN-AML with a favorable genotype.

  5. Antigen-specific CD8{sup +} T cells induced by the ubiquitin fusion degradation pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imai, Takashi; Duan Xuefeng; Hisaeda, Hajime

    We have developed a DNA vaccine encoding a fusion protein of ubiquitin (Ub) and target proteins at the N-terminus for effective induction of antigen-specific CD8{sup +} T cells. A series of expression plasmids encoding a model antigen, ovalbumin (OVA), fused with mutated Ub, was constructed. Western blotting analyses using COS7 cells transfected with these plasmids revealed that there were three types of amino acid causing different binding capacities between Ub and OVA. Natural Ub with a C-terminal glycine readily dissociated from OVA; on the other hand, artificially mutated Ub, the C-terminal amino acid of which had been exchanged to valinemore » or arginine, stably united with the polypeptide, while Ub with a C-terminal alanine partially dissociated. The ability of DNA vaccination to induce OVA-specific CD8{sup +} T cells closely correlated with the stability of Ub fusion to OVA. Our strategy could be used to optimize the effect of genetic vaccines on the induction of CD8{sup +} T cells.« less

  6. Pharmacogenetics and induction/consolidation therapy toxicities in acute lymphoblastic leukemia patients treated with AIEOP-BFM ALL 2000 protocol.

    PubMed

    Franca, R; Rebora, P; Bertorello, N; Fagioli, F; Conter, V; Biondi, A; Colombini, A; Micalizzi, C; Zecca, M; Parasole, R; Petruzziello, F; Basso, G; Putti, M C; Locatelli, F; d'Adamo, P; Valsecchi, M G; Decorti, G; Rabusin, M

    2017-01-01

    Drug-related toxicities represent an important clinical concern in chemotherapy, genetic variants could help tailoring treatment to patient. A pharmacogenetic multicentric study was performed on 508 pediatric acute lymphoblastic leukemia patients treated with AIEOP-BFM 2000 protocol: 28 variants were genotyped by VeraCode and Taqman technologies, deletions of GST-M1 and GST-T1 by multiplex PCR. Toxicities were derived from a central database: 251 patients (49.4%) experienced at least one gastrointestinal (GI) or hepatic (HEP) or neurological (NEU) grade III/IV episode during the remission induction phase: GI occurred in 63 patients (12.4%); HEP in 204 (40.2%) and NEU in 44 (8.7%). Logistic regression model adjusted for sex, risk and treatment phase revealed that ITPA rs1127354 homozygous mutated patients showed an increased risk of severe GI and NEU. ABCC1 rs246240 and ADORA2A rs2236624 homozygous mutated genotypes were associated to NEU and HEP, respectively. These three variants could be putative predictive markers for chemotherapy-related toxicities in AIEOP-BFM protocols.

  7. The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA

    PubMed Central

    Mannion, Niamh M.; Greenwood, Sam M.; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P.; McLaughlin, Paul J.; Jantsch, Michael F.; Dorin, Julia; Adams, Ian R.; Scadden, A.D.J.; Öhman, Marie; Keegan, Liam P.; O’Connell, Mary A.

    2014-01-01

    Summary The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. PMID:25456137

  8. EMT and induction of miR-21 mediate metastasis development in Trp53-deficient tumours

    PubMed Central

    Bornachea, Olga; Santos, Mirentxu; Martínez-Cruz, Ana Belén; García-Escudero, Ramón; Dueñas, Marta; Costa, Clotilde; Segrelles, Carmen; Lorz, Corina; Buitrago, Agueda; Saiz-Ladera, Cristina; Agirre, Xabier; Grande, Teresa; Paradela, Beatriz; Maraver, Antonio; Ariza, José M.; Prosper, Felipe; Serrano, Manuel; Sánchez-Céspedes, Montse; Paramio, Jesús M.

    2012-01-01

    Missense mutations in TP53 gene promote metastasis in human tumours. However, little is known about the complete loss of function of p53 in tumour metastasis. Here we show that squamous cell carcinomas generated by the specific ablation of Trp53 gene in mouse epidermis are highly metastatic. Biochemical and genome-wide mRNA and miRNA analyses demonstrated that metastases are associated with the early induction of epithelial-mesenchymal transition (EMT) and deregulated miRNA expression in primary tumours. Increased expression of miR-21 was observed in undifferentiated, prometastatic mouse tumours and in human tumours characterized by p53 mutations and distant metastasis. The augmented expression of miR-21, mediated by active mTOR and Stat3 signalling, conferred increased invasive properties to mouse keratinocytes in vitro and in vivo, whereas blockade of miR-21 in a metastatic spindle cell line inhibits metastasis development. Collectively these data identify novel molecular mechanisms leading to metastasis in vivo originated by p53 loss in epithelia. PMID:22666537

  9. Rab3-GAP controls the progression of synaptic homeostasis at a late stage of vesicle release.

    PubMed

    Müller, Martin; Pym, Edward C G; Tong, Amy; Davis, Graeme W

    2011-02-24

    Homeostatic signaling systems stabilize neural function through the modulation of neurotransmitter receptor abundance, ion channel density, and presynaptic neurotransmitter release. Molecular mechanisms that drive these changes are being unveiled. In theory, molecular mechanisms may also exist to oppose the induction or expression of homeostatic plasticity, but these mechanisms have yet to be explored. In an ongoing electrophysiology-based genetic screen, we have tested 162 new mutations for genes involved in homeostatic signaling at the Drosophila NMJ. This screen identified a mutation in the rab3-GAP gene. We show that Rab3-GAP is necessary for the induction and expression of synaptic homeostasis. We then provide evidence that Rab3-GAP relieves an opposing influence on homeostasis that is catalyzed by Rab3 and which is independent of any change in NMJ anatomy. These data define roles for Rab3-GAP and Rab3 in synaptic homeostasis and uncover a mechanism, acting at a late stage of vesicle release, that opposes the progression of homeostatic plasticity. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA.

    PubMed

    Mannion, Niamh M; Greenwood, Sam M; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P; McLaughlin, Paul J; Jantsch, Michael F; Dorin, Julia; Adams, Ian R; Scadden, A D J; Ohman, Marie; Keegan, Liam P; O'Connell, Mary A

    2014-11-20

    The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. METABOLISM, GENOTOXICITY, AND CARCINOGENICITY OF COMFREY

    PubMed Central

    Mei, Nan; Guo, Lei; Fu, Peter P.; Fuscoe, James C.; Luan, Yang; Chen, Tao

    2018-01-01

    Comfrey has been consumed by humans as a vegetable and a tea and used as an herbal medicine for more than 2000 years. Comfrey, however, produces hepatotoxicity in livestock and humans and carcinogenicity in experimental animals. Comfrey contains as many as 14 pyrrolizidine alkaloids (PA), including 7-acetylintermedine, 7-acetyllycopsamine, echimidine, intermedine, lasiocarpine, lycopsamine, myoscorpine, symlandine, symphytine, and symviridine. The mechanisms underlying comfrey-induced genotoxicity and carcinogenicity are still not fully understood. The available evidence suggests that the active metabolites of PA in comfrey interact with DNA in liver endothelial cells and hepatocytes, resulting in DNA damage, mutation induction, and cancer development. Genotoxicities attributed to comfrey and riddelliine (a representative genotoxic PA and a proven rodent mutagen and carcinogen) are discussed in this review. Both of these compounds induced similar profiles of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts and similar mutation spectra. Further, the two agents share common mechanisms of drug metabolism and carcinogenesis. Overall, comfrey is mutagenic in liver, and PA contained in comfrey appear to be responsible for comfrey-induced toxicity and tumor induction. PMID:21170807

  12. The IMD innate immunity pathway of Drosophila influences somatic sex determination via regulation of the Doa locus.

    PubMed

    Zhao, Yunpo; Cocco, Claudia; Domenichini, Severine; Samson, Marie-Laure; Rabinow, Leonard

    2015-11-15

    The IMD pathway induces the innate immune response to infection by gram-negative bacteria. We demonstrate strong female-to-male sex transformations in double mutants of the IMD pathway in combination with Doa alleles. Doa encodes a protein kinase playing a central role in somatic sex determination through its regulation of alternative splicing of dsx transcripts. Transcripts encoding two specific Doa isoforms are reduced in Rel null mutant females, supporting our genetic observations. A role for the IMD pathway in somatic sex determination is further supported by the induction of female-to-male sex transformations by Dredd mutations in sensitized genetic backgrounds. In contrast, mutations in either dorsal or Dif, the two other NF-κB paralogues of Drosophila, display no effects on sex determination, demonstrating the specificity of IMD signaling. Our results reveal a novel role for the innate immune IMD signaling pathway in the regulation of somatic sex determination in addition to its role in response to microbial infection, demonstrating its effects on alternative splicing through induction of a crucial protein kinase. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Quantitative interpretation of heavy ion effects: Comparison of different systems and endpoints

    NASA Astrophysics Data System (ADS)

    Kiefer, J.

    For a quantitative interpretation of biological heavy ion action the following parameters have to be taken into account: variations of energy depositions in microscopical sites, the dependence of primary lesion formation on local energy density and changes in repairability. They can be studied in objects of different size and with different sensitivities. Results on survival and mutation induction in yeast and in mammalian cells will be compared with theoretical predictions. It is shown that shouldered survival curves of diploid yeast can be adequately described if the final slope is adjusted according to the varying production of primary lesions. This is not the case for mammalian cells where the experiments show a rapid loss of the shoulder with LET, contrary to theoretical expectations. This behaviour is interpreted to mean that the repairability of heavy ion lesions is different in the two systems. Mutation induction is theoretically expected to decrease with higher LET. This is found in yeast but not in mammalian cells where it actually increases. These results suggest a higher rate of misrepair in mammalian cells.

  14. NORF5/HUG1 is a component of the MEC1-mediated checkpoint response to DNA damage and replication arrest in Saccharomyces cerevisiae.

    PubMed

    Basrai, M A; Velculescu, V E; Kinzler, K W; Hieter, P

    1999-10-01

    Analysis of global gene expression in Saccharomyces cerevisiae by the serial analysis of gene expression technique has permitted the identification of at least 302 previously unidentified transcripts from nonannotated open reading frames (NORFs). Transcription of one of these, NORF5/HUG1 (hydroxyurea and UV and gamma radiation induced), is induced by DNA damage, and this induction requires MEC1, a homolog of the ataxia telangiectasia mutated (ATM) gene. DNA damage-specific induction of HUG1, which is independent of the cell cycle stage, is due to the alleviation of repression by the Crt1p-Ssn6p-Tup1p complex. Overexpression of HUG1 is lethal in combination with a mec1 mutation in the presence of DNA damage or replication arrest, whereas a deletion of HUG1 rescues the lethality due to a mec1 null allele. HUG1 is the first example of a NORF with important biological functional properties and defines a novel component of the MEC1 checkpoint pathway.

  15. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction

    PubMed Central

    Akizu, Naiara; Cantagrel, Vincent; Zaki, Maha S.; Al-Gazali, Lihadh; Wang, Xin; Rosti, Rasim Ozgur; Dikoglu, Esra; Gelot, Antoinette Bernabe; Rosti, Basak; Vaux, Keith K.; Scott, Eric M.; Silhavy, Jennifer L.; Schroth, Jana; Copeland, Brett; Schaffer, Ashleigh E.; Gordts, Philip; Esko, Jeffrey D.; Buschman, Matthew D.; Fields, Seth J.; Napolitano, Gennaro; Ozgul, R. Koksal; Sagiroglu, Mahmut Samil; Azam, Matloob; Ismail, Samira; Aglan, Mona; Selim, Laila; Gamal, Iman; Hadi, Sawsan Abdel; El Badawy, Amera; Sadek, Abdelrahim A.; Mojahedi, Faezeh; Kayserili, Hulya; Masri, Amira; Bastaki, Laila; Temtamy, Samia; Müller, Ulrich; Desguerre, Isabelle; Casanova, Jean-Laurent; Dursun, Ali; Gunel, Murat; Gabriel, Stacey B.; de Lonlay, Pascale; Gleeson, Joseph G.

    2015-01-01

    Pediatric-onset ataxias often present clinically with developmental delay and intellectual disability, with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe a novel clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy together with ataxia, coarsened facial features and intellectual disability, due to truncating mutations in sorting nexin 14 (SNX14), encoding a ubiquitously expressed modular PX-domain-containing sorting factor. We found SNX14 localized to lysosomes, and associated with phosphatidyl-inositol (3,5)P2, a key component of late endosomes/lysosomes. Patient cells showed engorged lysosomes and slower autophagosome clearance rate upon starvation induction. Zebrafish morphants showed dramatic loss of cerebellar parenchyma, accumulated autophagosomes, and activation of apoptosis. Our results suggest a unique ataxia syndrome due to biallelic SNX14 mutations, leading to lysosome-autophagosome dysfunction. PMID:25848753

  16. RADIATION-INDUCED MUTATIONS FOR STEM RUST RESISTANCE IN OATS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konzak, C.F.

    1959-01-01

    Stem rust rcsistant viriants from earlier experiments on the induction or resistance in oats by radiation were found to result from natural field hybridization. Recent controlled experiments did, however, yield new variants at a low frequency in one instance. and no variants in another. Both experiments included over 3,000 lines from irradiated seeds. One previously unknown type of rust resistance reaction was obtained in a mutant plant. This mutant shows a temperature sensitive response for resistance to race 7A of Puccinia graminis avenae. It was suggested that some, as yet unknown, mcdifying factors mav limit the development of induced changesmore » into mutations. (auth)« less

  17. Antitumor Activity and Induction of TP53-Dependent Apoptosis toward Ovarian Clear Cell Adenocarcinoma by the Dual PI3K/mTOR Inhibitor DS-7423

    PubMed Central

    Kashiyama, Tomoko; Oda, Katsutoshi; Ikeda, Yuji; Shiose, Yoshinobu; Hirota, Yasuhide; Inaba, Kanako; Makii, Chinami; Kurikawa, Reiko; Miyasaka, Aki; Koso, Takahiro; Fukuda, Tomohiko; Tanikawa, Michihiro; Shoji, Keiko; Sone, Kenbun; Arimoto, Takahide; Wada-Hiraike, Osamu; Kawana, Kei; Nakagawa, Shunsuke; Matsuda, Koichi; McCormick, Frank; Aburatani, Hiroyuki; Yano, Tetsu; Osuga, Yutaka; Fujii, Tomoyuki

    2014-01-01

    DS-7423, a novel, small-molecule dual inhibitor of phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR), is currently in phase I clinical trials for solid tumors. Although DS-7423 potently inhibits PI3Kα (IC50 = 15.6 nM) and mTOR (IC50 = 34.9 nM), it also inhibits other isoforms of class I PI3K (IC50 values: PI3Kβ = 1,143 nM; PI3Kγ = 249 nM; PI3Kδ = 262 nM). The PI3K/mTOR pathway is frequently activated in ovarian clear cell adenocarcinomas (OCCA) through various mutations that activate PI3K-AKT signaling. Here, we describe the anti-tumor effect of DS-7423 on a panel of nine OCCA cell lines. IC50 values for DS-7423 were <75 nM in all the lines, regardless of the mutational status of PIK3CA. In mouse xenograft models, DS-7423 suppressed the tumor growth of OCCA in a dose-dependent manner. Flow cytometry analysis revealed a decrease in S-phase cell populations in all the cell lines and an increase in sub-G1 cell populations following treatment with DS-7423 in six of the nine OCCA cell lines tested. DS-7423-mediated apoptosis was induced more effectively in the six cell lines without TP53 mutations than in the three cell lines with TP53 mutations. Concomitantly with the decreased phosphorylation level of MDM2 (mouse double minute 2 homolog), the level of phosphorylation of TP53 at Ser46 was increased by DS-7423 in the six cell lines with wild-type TP53, with induction of genes that mediate TP53-dependent apoptosis, including p53AIP1 and PUMA at 39 nM or higher doses. Our data suggest that the dual PI3K/mTOR inhibitor DS-7423 may constitute a promising molecular targeted therapy for OCCA, and that its antitumor effect might be partly obtained by induction of TP53-dependent apoptosis in TP53 wild-type OCCAs. PMID:24504419

  18. Disruption of Transcriptional Coactivator Sub1 Leads to Genome-Wide Re-distribution of Clustered Mutations Induced by APOBEC in Active Yeast Genes

    PubMed Central

    Dhar, Alok; Polev, Dmitrii E.; Masharsky, Alexey E.; Rogozin, Igor B.; Pavlov, Youri I.

    2015-01-01

    Mutations in genomes of species are frequently distributed non-randomly, resulting in mutation clusters, including recently discovered kataegis in tumors. DNA editing deaminases play the prominent role in the etiology of these mutations. To gain insight into the enigmatic mechanisms of localized hypermutagenesis that lead to cluster formation, we analyzed the mutational single nucleotide variations (SNV) data obtained by whole-genome sequencing of drug-resistant mutants induced in yeast diploids by AID/APOBEC deaminase and base analog 6-HAP. Deaminase from sea lamprey, PmCDA1, induced robust clusters, while 6-HAP induced a few weak ones. We found that PmCDA1, AID, and APOBEC1 deaminases preferentially mutate the beginning of the actively transcribed genes. Inactivation of transcription initiation factor Sub1 strongly reduced deaminase-induced can1 mutation frequency, but, surprisingly, did not decrease the total SNV load in genomes. However, the SNVs in the genomes of the sub1 clones were re-distributed, and the effect of mutation clustering in the regions of transcription initiation was even more pronounced. At the same time, the mutation density in the protein-coding regions was reduced, resulting in the decrease of phenotypically detected mutants. We propose that the induction of clustered mutations by deaminases involves: a) the exposure of ssDNA strands during transcription and loss of protection of ssDNA due to the depletion of ssDNA-binding proteins, such as Sub1, and b) attainment of conditions favorable for APOBEC action in subpopulation of cells, leading to enzymatic deamination within the currently expressed genes. This model is applicable to both the initial and the later stages of oncogenic transformation and explains variations in the distribution of mutations and kataegis events in different tumor cells. PMID:25941824

  19. Genetic predictors of MEK dependence in non-small cell lung cancer.

    PubMed

    Pratilas, Christine A; Hanrahan, Aphrothiti J; Halilovic, Ensar; Persaud, Yogindra; Soh, Junichi; Chitale, Dhananjay; Shigematsu, Hisayuki; Yamamoto, Hiromasa; Sawai, Ayana; Janakiraman, Manickam; Taylor, Barry S; Pao, William; Toyooka, Shinichi; Ladanyi, Marc; Gazdar, Adi; Rosen, Neal; Solit, David B

    2008-11-15

    Hyperactivated extracellular signal-regulated kinase (ERK) signaling is common in human cancer and is often the result of activating mutations in BRAF, RAS, and upstream receptor tyrosine kinases. To characterize the mitogen-activated protein kinase/ERK kinase (MEK)/ERK dependence of lung cancers harboring BRAF kinase domain mutations, we screened a large panel of human lung cancer cell lines (n = 87) and tumors (n = 916) for BRAF mutations. We found that non-small cell lung cancers (NSCLC) cells with both V600E and non-V600E BRAF mutations were selectively sensitive to MEK inhibition compared with those harboring mutations in epidermal growth factor receptor (EGFR), KRAS, or ALK and ROS kinase fusions. Supporting its classification as a "driver" mutation in the cells in which it is expressed, MEK inhibition in (V600E)BRAF NSCLC cells led to substantial induction of apoptosis, comparable with that seen with EGFR kinase inhibition in EGFR mutant NSCLC models. Despite high basal ERK phosphorylation, EGFR mutant cells were uniformly resistant to MEK inhibition. Conversely, BRAF mutant cell lines were resistant to EGFR inhibition. These data, together with the nonoverlapping pattern of EGFR and BRAF mutations in human lung cancer, suggest that these lesions define distinct clinical entities whose treatment should be guided by prospective real-time genotyping. To facilitate such an effort, we developed a mass spectrometry-based genotyping method for the detection of hotspot mutations in BRAF, KRAS, and EGFR. Using this assay, we confirmed that BRAF mutations can be identified in a minority of NSCLC tumors and that patients whose tumors harbor BRAF mutations have a distinct clinical profile compared with those whose tumors harbor kinase domain mutations in EGFR.

  20. R132H Mutation in IDH1 Gene is Associated with Increased Tumor HIF1-Alpha and Serum VEGF Levels in Primary Glioblastoma Multiforme.

    PubMed

    Yalaza, Cem; Ak, Handan; Cagli, Mehmet Sedat; Ozgiray, Erkin; Atay, Sevcan; Aydin, Hikmet Hakan

    2017-05-01

    Glioblastoma multiforme (GBM) is the most common form of primary brain tumors. Although mutations in isocitrate dehydrogenase-1 (IDH1) have been identified in a number of cancers, their role in tumor development has not been fully elucidated. In this study, we aimed to investigate the association between IDH1 mutations, tumor tissue HIF-1 alpha, and serum VEGF levels in patients with primary GBM for the first time. 32 patients (mean age, years: 58±14.0) diagnosed with primary glioblastoma multiforme were screened for IDH1 mutations (R132H, R132S, R132C and R132L) by direct sequencing. Serum VEGF and tumor tissue HIF1-alpha levels were measured by enzyme-linked immunosorbent assay. Associations between categoric variables were determined using chi-square tests. Differences between two groups were compared with t test for continuous variables. Six percent of patients were found to be heterozygous for R132H mutation. Tumor HIF1-alpha and serum VEGF levels were found to be significantly increased in IDH1 -mutated tumor tissues ( p <0.0001 and p =0.0454, respectively). Our results suggest that mutated IDH1 may contribute to carcinogenesis via induction of HIF-1 alpha pathway in primary GBM. © 2017 by the Association of Clinical Scientists, Inc.

  1. ADDITIVITY OF IN VIVO MUTATION INDUCTION BY CUMULATIVE EXPOSURES TO BENZO[A]PYRENE OR DIBENZO[A,L]PYRENE

    EPA Science Inventory

    Dibenzo[a,l]pyrene (DB[a,l]P) and benzo[a]pyrene (B[a]P) are polycyclic aromatic hydrocarbons (PAH) found in cigarette smoke condensate, coal combustion processes and in some environmental pollutants. In this study, we investigated the effect of dosing regimen on the mutagenicity...

  2. Loss of floral repressor function adapts rice to higher latitudes in Europe

    PubMed Central

    Gómez-Ariza, Jorge; Galbiati, Francesca; Goretti, Daniela; Brambilla, Vittoria; Shrestha, Roshi; Pappolla, Andrea; Courtois, Brigitte; Fornara, Fabio

    2015-01-01

    The capacity to discriminate variations in day length allows plants to align flowering with the most favourable season of the year. This capacity has been altered by artificial selection when cultivated varieties became adapted to environments different from those of initial domestication. Rice flowering is promoted by short days when HEADING DATE 1 (Hd1) and EARLY HEADING DATE 1 (Ehd1) induce the expression of florigenic proteins encoded by HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1). Repressors of flowering antagonize such induction under long days, maintaining vegetative growth and delaying flowering. To what extent artificial selection of long day repressor loci has contributed to expand rice cultivation to Europe is currently unclear. This study demonstrates that European varieties activate both Hd3a and RFT1 expression regardless of day length and their induction is caused by loss-of-function mutations at major long day floral repressors. However, their contribution to flowering time control varies between locations. Pyramiding of mutations is frequently observed in European germplasm, but single mutations are sufficient to adapt rice to flower at higher latitudes. Expression of Ehd1 is increased in varieties showing reduced or null Hd1 expression under natural long days, as well as in single hd1 mutants in isogenic backgrounds. These data indicate that loss of repressor genes has been a key strategy to expand rice cultivation to Europe, and that Ehd1 is a central node integrating floral repressive signals. PMID:25732533

  3. Classification of TP53 mutations and HPV predict survival in advanced larynx cancer.

    PubMed

    Scheel, Adam; Bellile, Emily; McHugh, Jonathan B; Walline, Heather M; Prince, Mark E; Urba, Susan; Wolf, Gregory T; Eisbruch, Avraham; Worden, Francis; Carey, Thomas E; Bradford, Carol

    2016-09-01

    Assess tumor suppressor p53 (TP53) functional mutations in the context of other biomarkers in advanced larynx cancer. Prospective analysis of pretreatment tumor TP53, human papillomavirus (HPV), Bcl-xL, and cyclin D1 status in stage III and IV larynx cancer patients in a clinical trial. TP53 exons 4 through 9 from 58 tumors were sequenced. Mutations were grouped using three classifications based on their expected function. Each functional group was analyzed for response to induction chemotherapy, time to surgery, survival, HPV status, p16INK4a, Bcl-xl, and cyclin D1 expression. TP53 mutations were found in 22 of 58 (37.9%) patients with advanced larynx cancer, including missense mutations in 13 of 58 (22.4%) patients, nonsense mutations in four of 58 (6.9%), and deletions in five of 58 (8.6%). High-risk HPV was found in 20 of 52 (38.5%) tumors. A classification based on Evolutionary Action score of p53 (EAp53) distinguished missense mutations with high risk for decreased survival from low-risk mutations (P = 0.0315). A model including this TP53 classification, HPV status, cyclin D1, and Bcl-xL staining significantly predicts survival (P = 0.0017). EAp53 functional classification of TP53 mutants and biomarkers predict survival in advanced larynx cancer. NA. Laryngoscope, 126:E292-E299, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  4. Frequency and type of inheritable mutations induced by γ rays in rice as revealed by whole genome sequencing.

    PubMed

    Li, Shan; Zheng, Yun-Chao; Cui, Hai-Rui; Fu, Hao-Wei; Shu, Qing-Yao; Huang, Jian-Zhong

    Mutation breeding is based on the induction of genetic variations; hence knowledge of the frequency and type of induced mutations is of paramount importance for the design and implementation of a mutation breeding program. Although γ ray irradiation has been widely used since the 1960s in the breeding of about 200 economically important plant species, molecular elucidation of its genetic effects has so far been achieved largely by analysis of target genes or genomic regions. In the present study, the whole genomes of six γ-irradiated M 2 rice plants were sequenced; a total of 144-188 million high-quality (Q>20) reads were generated for each M 2 plant, resulting in genome coverage of >45 times for each plant. Single base substitution (SBS) and short insertion/deletion (Indel) mutations were detected at the average frequency of 7.5×10 -6 -9.8×10 -6 in the six M 2 rice plants (SBS being about 4 times more frequent than Indels). Structural and copy number variations, though less frequent than SBS and Indel, were also identified and validated. The mutations were scattered in all genomic regions across 12 rice chromosomes without apparent hotspots. The present study is the first genome-wide single-nucleotide resolution study on the feature and frequency of γ irradiation-induced mutations in a seed propagated crop; the findings are of practical importance for mutation breeding of rice and other crop species.

  5. The risk of gastric cancer in carriers of CHEK2 mutations.

    PubMed

    Teodorczyk, Urszula; Cybulski, Cezary; Wokołorczyk, Dominika; Jakubowska, Anna; Starzyńska, Teresa; Lawniczak, Małgorzata; Domagała, Paweł; Ferenc, Katarzyna; Marlicz, Krzysztof; Banaszkiewicz, Zbigniew; Wiśniowski, Rafał; Narod, Steven A; Lubiński, Jan

    2013-09-01

    CHEK2 is a tumor suppressor gene whose functions are central to the induction of cell cycle arrest and apoptosis following DNA damage. Mutations in CHEK2 have been associated with cancers at many sites, including breast and prostate cancers, but the relationship between CHEK2 and gastric cancer has not been extensively studied. In Poland, there are four known founder alleles of CHEK2; three alleles are protein truncating (1100delC, IVS2G>A, del5395) and the other is a missense variant (I157T). We examined the frequencies of four Polish founder mutations in the CHEK2 gene in 658 unselected gastric cancer patients, in 154 familial gastric cancer patients and in 8,302 controls. A CHEK2 mutation was seen in 57 of 658 (8.7 %) unselected patients with gastric cancer compared to 480 of 8,302 (5.8 %) controls (OR 1.6, p = 0.004). A CHEK2 mutation was present in 19 of 154 (12.3 %) familial cases (OR = 2.3, p = 0.001). The odds ratio for early onset (<50 years) gastric cancer was higher (2.1, p = 0.01), than for cases diagnosed at age of 50 or above (OR 1.4, p = 0.05). Truncating mutations of CHEK2 were associated with higher risk (OR = 2.1, p = 0.02) than the missense mutation I157T (OR = 1.4, p = 0.04). CHEK2 mutations predispose to gastric cancer, in particular to young-onset cases.

  6. Lactobacillus casei 64H Contains a Phosphoenolpyruvate-Dependent Phosphotransferase System for Uptake of Galactose, as Confirmed by Analysis of ptsH and Different gal Mutants

    PubMed Central

    Bettenbrock, Katja; Siebers, Ulrike; Ehrenreich, Petra; Alpert, Carl-Alfred

    1999-01-01

    Galactose metabolism in Lactobacillus casei 64H was analyzed by genetic and biochemical methods. Mutants with defects in ptsH, galK, or the tagatose 6-phosphate pathway were isolated either by positive selection using 2-deoxyglucose or 2-deoxygalactose or by an enrichment procedure with streptozotocin. ptsH mutations abolish growth on lactose, cellobiose, N-acetylglucosamine, mannose, fructose, mannitol, glucitol, and ribitol, while growth on galactose continues at a reduced rate. Growth on galactose is also reduced, but not abolished, in galK mutants. A mutation in galK in combination with a mutation in the tagatose 6-phosphate pathway results in sensitivity to galactose and lactose, while a galK mutation in combination with a mutation in ptsH completely abolishes galactose metabolism. Transport assays, in vitro phosphorylation assays, and thin-layer chromatography of intermediates of galactose metabolism also indicate the functioning of a permease/Leloir pathway and a phosphoenolpyruvate-dependent phosphotransferase system (PTS)/tagatose 6-phosphate pathway. The galactose-PTS is induced by growth on either galactose or lactose, but the induction kinetics for the two substrates are different. PMID:9864334

  7. A murine model of autosomal dominant neurohypophyseal diabetes insipidus reveals progressive loss of vasopressin-producing neurons

    PubMed Central

    Russell, Theron A.; Ito, Masafumi; Ito, Mika; Yu, Richard N.; Martinson, Fred A.; Weiss, Jeffrey; Jameson, J. Larry

    2003-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder caused by mutations in the arginine vasopressin (AVP) precursor. The pathogenesis of FNDI is proposed to involve mutant protein–induced loss of AVP-producing neurons. We established murine knock-in models of two different naturally occurring human mutations that cause FNDI. A mutation in the AVP signal sequence [A(–1)T] is associated with a relatively mild phenotype or delayed presentation in humans. This mutation caused no apparent phenotype in mice. In contrast, heterozygous mice expressing a mutation that truncates the AVP precursor (C67X) exhibited polyuria and polydipsia by 2 months of age and these features of DI progressively worsened with age. Studies of the paraventricular and supraoptic nuclei revealed induction of the chaperone protein BiP and progressive loss of AVP-producing neurons relative to oxytocin-producing neurons. In addition, Avp gene products were not detected in the neuronal projections, suggesting retention of WT and mutant AVP precursors within the cell bodies. In summary, this murine model of FNDI recapitulates many features of the human disorder and demonstrates that expression of the mutant AVP precursor leads to progressive neuronal cell loss. PMID:14660745

  8. a/alpha-specific effect on the mms3 mutation on ultraviolet mutagenesis in Saccharomyces cerevisiae.

    PubMed

    Martin, P; Prakash, L; Prakash, S

    1981-05-01

    A new gene involved in error-prone repair of ultraviolet (UV) damage has been identified in Saccharomyces cerevisiae by the mms3-1 mutation. UV-induced reversion is reduced in diploids that are homozygous for mms3-1, only if they are also heterozygous (MATa/MAT alpha) at the mating type locus. The mms3-1 mutation has no effect on UV-induced reversion either in haploids or MATa/MATa or MAT alpha/MAT alpha diploids. The mutation confers sensitivity to UV and methyl methane sulfonate in both haploids and diploids. Even though mutation induction by UV is restored to wild-type levels in MATa/MATa mms3-1/mms3-1 or MAT alpha/MAT alpha mms3-1/mms3-1 diploids, such strains still retain sensitivity to the lethal effects of UV. Survival after UV irradiation in mms3-1 rad double mutant combinations indicates that mms3-1 is epistatic to rad6-1 whereas non-epistatic interactions are observed with rad3 and rad52 mutants. When present in the homozygous state in MATa/MAT alpha his1-1/his1-315 heteroallelic diploids, mms3-1 was found to lower UV-induced mitotic recombination.

  9. Effect of 60-Hz magnetic fields on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae.

    PubMed

    Ager, D D; Radul, J A

    1992-12-01

    The purpose of this study was to examine the effect of extremely low frequency (ELF) magnetic fields on the induction of genetic damage. In general, mutational studies involving ELF magnetic fields have proven negative. However, studies examining sister-chromatid exchange and chromosome aberrations have yielded conflicting results. In this study, we have examined whether 60-Hz magnetic fields are capable of inducing mutation or mitotic recombination in the yeast Saccharomyces cerevisiae. In addition we determined whether magnetic fields were capable of altering the genetic response of S. cerevisiae to UV (254 nm). We measured the frequencies of induced mutation, gene conversion and reciprocal mitotic crossing-over for exposures to magnetic fields alone (1 mT) or in combination with various UV exposures (2-50 J/m2). These experiments were performed using a repair-proficient strain (RAD+), as well as a strain of yeast (rad3) which is incapable of excising UV-induced thymine dimers. Magnetic field exposures did not induce mutation, gene conversion or reciprocal mitotic crossing-over in either of these strains, nor did the fields influence the frequencies of UV-induced genetic events.

  10. OutKnocker: a web tool for rapid and simple genotyping of designer nuclease edited cell lines.

    PubMed

    Schmid-Burgk, Jonathan L; Schmidt, Tobias; Gaidt, Moritz M; Pelka, Karin; Latz, Eicke; Ebert, Thomas S; Hornung, Veit

    2014-10-01

    The application of designer nucleases allows the induction of DNA double-strand breaks (DSBs) at user-defined genomic loci. Due to imperfect DNA repair mechanisms, DSBs can lead to alterations in the genomic architecture, such as the disruption of the reading frame of a critical exon. This can be exploited to generate somatic knockout cell lines. While high genome editing activities can be achieved in various cellular systems, obtaining cell clones that contain all-allelic frameshift mutations at the target locus of interest remains a laborious task. To this end, we have developed an easy-to-follow deep sequencing workflow and the evaluation tool OutKnocker (www.OutKnocker.org), which allows convenient, reliable, and cost-effective identification of knockout cell lines. © 2014 Schmid-Burgk et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Comparison of kinetics, toxicity, oligomers formation and membrane binding capacity of α-synuclein familial mutations at A53 site including newly discovered A53V mutation.

    PubMed

    Mohite, Ganesh M; Kumar, Rakesh; Panigrahi, Rajlaxmi; Navalkar, Ambuja; Singh, Nitu; Datta, Debalina; Mehra, Surabhi; Ray, Soumik; Gadhe, Laxmikant G; Das, Subhadeep; Singh, Namrata; Chatterjee, Debdeep; Kumar, Ashutosh; Maji, Samir K

    2018-05-17

    The involvement of α-synuclein (α-Syn) amyloid formation in Parkinson's disease (PD) pathogenesis is supported by the discovery of α-Syn gene (SNCA) mutations linked with familial PD, which are known to modulate the oligomerization and aggregation of α-Syn. Recently, the A53V mutation has been discovered, which leads to the late-onset PD. In the present study, we characterized for the first time the biophysical properties including the aggregation propensities, toxicity of aggregated species and membrane binding capability of A53V along with all familial mutations at A53 position. Present data suggest that A53V accelerate fibrillation of α-Syn without affecting the overall morphology and cytotoxicity of fibrils compared to wild-type protein. The aggregation propensity for A53 mutants is found to be; A53T>A53V>WT>A53E. Further, time course aggregation study reveals that A53V mutant promotes early oligomerization similar to A53T mutation. It promotes the highest amount of oligomer formation immediate after dissolution, which are cytotoxic. Although in the presence of membrane-mimicking environments, A53V mutation showed similar extent of helix-induction capacity as of WT protein, however, it exhibited lesser binding to lipid vesicle. The NMR study revealed unique chemical shift perturbation by A53V mutation com-pared to other mutations at A53 site. The present study might help to establish the disease-causing mechanism of A53V in PD pathology.

  12. A common co-morbidity modulates disease expression and treatment efficacy in inherited cardiac sodium channelopathy.

    PubMed

    Rivaud, Mathilde R; Jansen, John A; Postema, Pieter G; Nannenberg, Eline A; Mizusawa, Yuka; van der Nagel, Roel; Wolswinkel, Rianne; van der Made, Ingeborg; Marchal, Gerard A; Rajamani, Sridharan; Belardinelli, Luiz; van Tintelen, J Peter; Tanck, Michael W T; van der Wal, Allard C; de Bakker, Jacques M T; van Rijen, Harold V; Creemers, Esther E; Wilde, Arthur A M; van den Berg, Maarten P; van Veen, Toon A B; Bezzina, Connie R; Remme, Carol Ann

    2018-04-27

    Management of patients with inherited cardiac ion channelopathy is hindered by variability in disease severity and sudden cardiac death (SCD) risk. Here, we investigated the modulatory role of hypertrophy on arrhythmia and SCD risk in sodium channelopathy. Follow-up data was collected from 164 individuals positive for the SCN5A-1795insD founder mutation and 247 mutation-negative relatives. A total of 38 (obligate) mutation-positive patients died suddenly or suffered life-threatening ventricular arrhythmia. Of these, 18 were aged >40 years, a high proportion of which had a clinical diagnosis of hypertension and/or cardiac hypertrophy. While pacemaker implantation was highly protective in preventing bradycardia-related SCD in young mutation-positive patients, seven of them aged >40 experienced life-threatening arrhythmic events despite pacemaker treatment. Of these, six had a diagnosis of hypertension/hypertrophy, pointing to a modulatory role of this co-morbidity. Induction of hypertrophy in adult mice carrying the homologous mutation (Scn5a1798insD/+) caused SCD and excessive conduction disturbances, confirming a modulatory effect of hypertrophy in the setting of the mutation. The deleterious effects of the interaction between hypertrophy and the mutation were prevented by genetically impairing the pro-hypertrophic response and by pharmacological inhibition of the enhanced late sodium current associated with the mutation. This study provides the first evidence for a modulatory effect of co-existing cardiac hypertrophy on arrhythmia risk and treatment efficacy in inherited sodium channelopathy. Our findings emphasize the need for continued assessment and rigorous treatment of this co-morbidity in SCN5A mutation-positive individuals.

  13. Medulloblastoma in a toddler with Gorlin syndrome.

    PubMed

    Al-Rahawan, Mohamad G; Trevino, Sorleen; Jacob, Roy; Murray, Jeffrey C; Al-Rahawan, Mohamad M

    2018-04-01

    Gorlin syndrome (GS) is a rare hereditary multisystem disorder caused by mutations in PTCH1, PTCH2 , or SUFU . It is characterized by multiple anomalies and an increased risk of developing various tumors. Basal cell carcinoma is most common, and medulloblastoma (MB) is especially frequent in patients with SUFU mutations. MB treatment often includes radiation therapy in patients older than 3 years; however, such treatment is very toxic to patients with GS. Most reported cases of MB in patients with GS present after GS is diagnosed. We report a male toddler with multicentric posterior fossa tumor and calcifications along the falx cerebri, suggesting MB and GS. Pathology revealed nodular MB. His testing confirmed a germline SUFU mutation. His tumor resolved with three induction cycles of chemotherapy, but he died of respiratory failure due to infection at 20 months of age. Overlooking calcifications along the falx cerebri in children with MB can induce significant morbidity.

  14. Damage-induced ectopic recombination in the yeast Saccharomyces cerevisiae.

    PubMed

    Kupiec, M; Steinlauf, R

    1997-06-09

    Mitotic recombination in the yeast Saccharomyces cerevisiae is induced when cells are irradiated with UV or X-rays, reflecting the efficient repair of damage by recombinational repair mechanisms. We have used multiply marked haploid strains that allow the simultaneous detection of several types of ectopic recombination events. We show that inter-chromosomal ectopic conversion of lys2 heteroalleles and, to a lesser extent, direct repeat recombination (DRR) between non-tandem repeats, are increased by DNA-damaging agents; in contrast, ectopic recombination of the naturally occurring Ty element is not induced. We have tested several hypotheses that could explain the preferential lack of induction of Ty recombination by DNA-damaging agents. We have found that the lack of induction cannot be explained by a cell cycle control or by an effect of the mating-type genes. We also found no role for the flanking long terminal repeats (LTRs) of the Ty in preventing the induction. Ectopic conversion, DRR, and forward mutation of artificial repeats show different kinetics of induction at various positions of the cell cycle, reflecting different mechanisms of recombination. We discuss the mechanistic and evolutionary aspects of these results.

  15. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana.

    PubMed

    Kazama, Yusuke; Hirano, Tomonari; Saito, Hiroyuki; Liu, Yang; Ohbu, Sumie; Hayashi, Yoriko; Abe, Tomoko

    2011-11-15

    Heavy-ion mutagenesis is recognised as a powerful technology to generate new mutants, especially in higher plants. Heavy-ion beams show high linear energy transfer (LET) and thus more effectively induce DNA double-strand breaks than other mutagenic techniques. Previously, we determined the most effective heavy-ion LET (LETmax: 30.0 keV μm(-1)) for Arabidopsis mutagenesis by analysing the effect of LET on mutation induction. However, the molecular structure of mutated DNA induced by heavy ions with LETmax remains unclear. Knowledge of the structure of mutated DNA will contribute to the effective exploitation of heavy-ion beam mutagenesis. Dry Arabidopsis thaliana seeds were irradiated with carbon (C) ions with LETmax at a dose of 400 Gy and with LET of 22.5 keV μm(-1) at doses of 250 Gy or 450 Gy. The effects on mutation frequency and alteration of DNA structure were compared. To characterise the structure of mutated DNA, we screened the well-characterised mutants elongated hypocotyls (hy) and glabrous (gl) and identified mutated DNA among the resulting mutants by high-resolution melting curve, PCR and sequencing analyses. The mutation frequency induced by C ions with LETmax was two-fold higher than that with 22.5 keV μm(-1) and similar to the mutation frequency previously induced by ethyl methane sulfonate. We identified the structure of 22 mutated DNAs. Over 80% of the mutations caused by C ions with both LETs were base substitutions or deletions/insertions of less than 100 bp. The other mutations involved large rearrangements. The C ions with LETmax showed high mutation efficiency and predominantly induced base substitutions or small deletions/insertions, most of which were null mutations. These small alterations can be determined by single-nucleotide polymorphism (SNP) detection systems. Therefore, C ions with LETmax might be useful as a highly efficient reverse genetic system in conjunction with SNP detection systems, and will be beneficial for forward genetics and plant breeding.

  16. DNMT3A mutations in Chinese childhood acute myeloid leukemia.

    PubMed

    Li, Weijing; Cui, Lei; Gao, Chao; Liu, Shuguang; Zhao, Xiaoxi; Zhang, Ruidong; Zheng, Huyong; Wu, Minyuan; Li, Zhigang

    2017-08-01

    DNA methyltransferase 3A (DNMT3A) mutations have been found in approximately 20% of adult acute myeloid leukemia (AML) patients and in 0% to 1.4% of children with AML, and the hotspots of mutations are mainly located in the catalytic methyltransferase domain, hereinto, mutation R882 accounts for 60%. Although the negative effect of DNMT3A on treatment outcome is well known, the prognostic significance of other DNMT3A mutations in AML is still unclear. Here, we tried to determine the incidence and prognostic significance of DNMT3A mutations in a large cohort in Chinese childhood AML. We detected the mutations in DNMT3A exon 23 by polymerase chain reaction and direct sequencing in 342 children with AML (0-16 years old) from January 2005 to June 2013, treated on BCH-2003 AML protocol. The correlation of DNMT3A mutations with clinical characteristics, fusion genes, other molecular anomalies (FLT3 internal tandem duplication [FLT3-ITD], Nucleophosmin 1, C-KIT (KIT proto-oncogene receptor tyrosine kinase), and Wilms tumor 1 mutations), and treatment outcome were analyzed. DNMT3A mutations were detected in 4 out of 342 (1.2%) patients. Two patients were PML-RARA positive and 1 patient was FLT3-ITD positive. The mutations in coding sequences included S892S, V912A, R885G, and Q886R. Furthermore, there was 1 intronic mutation (c.2739+55A>C) found in 1 patient. No association of DNMT3A mutations with common clinical features was found. Two patients with DNMT3A mutations died of relapse or complications during treatment. One patient gave up treatment due to remission induction failure in day 33. Only 1 patient achieved continuous complete remission. DNMT3A mutations were rare in Chinese children with AML including PML-RARA positive APL. The mutation positions were different from the hotspots reported in adult AML. DNMT3A mutations may have adverse impact on prognosis of children with AML.

  17. Arresting a Torsin ATPase Reshapes the Endoplasmic Reticulum*

    PubMed Central

    Rose, April E.; Zhao, Chenguang; Turner, Elizabeth M.; Steyer, Anna M.; Schlieker, Christian

    2014-01-01

    Torsins are membrane-tethered AAA+ ATPases residing in the nuclear envelope (NE) and endoplasmic reticulum (ER). Here, we show that the induction of a conditional, dominant-negative TorsinB variant provokes a profound reorganization of the endomembrane system into foci containing double membrane structures that are derived from the ER. These double-membrane sinusoidal structures are formed by compressing the ER lumen to a constant width of 15 nm, and are highly enriched in the ATPase activator LULL1. Further, we define an important role for a highly conserved aromatic motif at the C terminus of Torsins. Mutations in this motif perturb LULL1 binding, reduce ATPase activity, and profoundly limit the induction of sinusoidal structures. PMID:24275647

  18. The effect of DNA replication on mutation of the Saccharomyces cerevisiae CDC8 gene.

    PubMed

    Zaborowska, D; Zuk, J

    1990-04-01

    Incubation in YPD medium under permissive conditions when DNA replication is going on, strongly stimulates the induction of cdc+ colonies of UV-irradiated cells of yeast strains HB23 (cdc8-1/cdc8-3), HB26 (cdc8-3/cdc8-3) and HB7 (cdc8-1/cdc8-1). Inhibition of DNA replication by hydroxyurea, araCMP, cycloheximide or caffeine or else by incubation in phosphate buffer pH 7.0, abolishes this stimulation. Thus the replication of DNA is strongly correlated with the high induction of cdc+ colonies by UV irradiation. It is postulated that these UV-induced cdc+ colonies arise as the result infidelity in DNA replication.

  19. Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells

    PubMed Central

    Brachmann, Saskia M.; Hofmann, Irmgard; Schnell, Christian; Fritsch, Christine; Wee, Susan; Lane, Heidi; Wang, Shaowen; Garcia-Echeverria, Carlos; Maira, Sauveur-Michel

    2009-01-01

    NVP-BEZ235 is a dual PI3K/mTOR inhibitor currently in phase I clinical trials. We profiled this compound against a panel of breast tumor cell lines to identify the patient populations that would benefit from such treatment. In this setting, NVP-BEZ235 selectively induced cell death in cell lines presenting either HER2 amplification and/or PIK3CA mutation, but not in cell lines with PTEN loss of function or KRAS mutations, for which resistance could be attributed, in part to ERK pathway activity. An in depth analysis of death markers revealed that the cell death observed upon NVP-BEZ235 treatment could be recapitulated with other PI3K inhibitors and that this event is linked to active PARP cleavage indicative of an apoptotic process. Moreover, the effect seemed to be partly independent of the caspase-9 executioner and mitochondrial activated caspases, suggesting an alternate route for apoptosis induction by PI3K inhibitors. Overall, this study will provide guidance for patient stratification for forthcoming breast cancer phase II trials for NVP-BEZ235. PMID:20007781

  20. Interpretation of mutation induction by accelerated heavy ions in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubek, S.; Ryznar, L.; Horneck, G.

    In this report, a quantitative interpretation of mutation induction cross sections by heavy charged particles in bacterial cells is presented. The approach is based on the calculation of the fraction of energy deposited by indirect hits in the sensitive structure. In these events the particle does not pass through the sensitive volume, but this region is hit by {delta} rays. Four track structure models, developed by Katz, Chatterjee et al, Kiefer and Straaten and Kudryashov et al., respectively, were used for the calculations. With the latter two models, very good agreement of the calculations with experimental results on mutagenesis inmore » bacteria was obtained. Depending on the linear energy transfer (LET{infinity}) of the particles, two different modes of mutagenic action of heavy ions are distinguished: {open_quotes}{delta}-ray mutagenesis,{close_quotes} which is related to those radiation qualities that preferentially kill the cells in direct hits (LET{infinity} {ge} 100 keV/{mu}m), and {open_quotes}track core mutagenesis,{close_quotes} which arises from direct hits and is observed for lighter ions or ions with high energy (LET{infinity} {le} 100 keV/{mu}m). 37 refs., 6 figs., 1 tab.« less

  1. Delayed Induction of Human NTE (PNPLA6) Rescues Neurodegeneration and Mobility Defects of Drosophila swiss cheese (sws) Mutants.

    PubMed

    Sujkowski, Alyson; Rainier, Shirley; Fink, John K; Wessells, Robert J

    2015-01-01

    Human PNPLA6 gene encodes Neuropathy Target Esterase protein (NTE). PNPLA6 gene mutations cause hereditary spastic paraplegia (SPG39 HSP), Gordon-Holmes syndrome, Boucher-Neuhäuser syndromes, Laurence-Moon syndrome, and Oliver-McFarlane syndrome. Mutations in the Drosophila NTE homolog swiss cheese (sws) cause early-onset, progressive behavioral defects and neurodegeneration characterized by vacuole formation. We investigated sws5 flies and show for the first time that this allele causes progressive vacuolar formation in the brain and progressive deterioration of negative geotaxis speed and endurance. We demonstrate that inducible, neuron-specific expression of full-length human wildtype NTE reduces vacuole formation and substantially rescues mobility. Indeed, neuron-specific expression of wildtype human NTE is capable of rescuing mobility defects after 10 days of adult life at 29°C, when significant degeneration has already occurred, and significantly extends longevity of mutants at 25°C. These results raise the exciting possibility that late induction of NTE function may reduce or ameliorate neurodegeneration in humans even after symptoms begin. In addition, these results highlight the utility of negative geotaxis endurance as a new assay for longitudinal tracking of degenerative phenotypes in Drosophila.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Hiroaki

    Mating pheromones, a- and {alpha}-factors, arrest the division of cells of opposite mating types, {alpha} and a cells, respectively. The author has isolated a sterile mutant of Saccharomyces cerevisiae using EMS that is defective in division arrest in response to {alpha}-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18, and dac1). Although dac2 cells had no phenotype in the absence ofmore » pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation.« less

  3. [Mechanism of mutant induction in the ade2 gene of diploid Saccharomyces cerevisiae yeasts by ultraviolet rays].

    PubMed

    Gordenin, D A; Inge-Vechtomov, S G

    1981-01-01

    Ultraviolet light (UV) at 3000 ergs/mm-2 induces ade2 mutants with a frequency about 10(-4) in wild-type haploid strains of yeast and about 10(-5) in diploid wild-type strains. UV irradiation effectively induced mitotic segregation of ade2 in the heterozygous diploid (the frequency of segregation is 6%). Interallelic complementation and localization spectra are similar for mutations induced both in haploids and diploids. The occurrence of ade2 mutants in diploids correlated with mitotic segregation of the marker his8 which is situated in the same arm of XY chromosome as ade2 is, distal to the centromere. Our data about the frequency of ade2 mutants in diploids and haploids, the frequency of ade2 mitotic segregation, mitotic segregation of other markers and genetic characteristics of ade2 mutations confirm the suggestion that the major mechanism of diploid ade2 mutants appearance is mutation in one of the two ADE2 alleles and consequent mitotic homozygotisation of mutation as a result of mitotic crossingover between ade2 and the centromere.

  4. Flow cytometric detection of Pig-A mutant red blood cells using an erythroid-specific antibody: application of the method for evaluating the in vivo genotoxicity of methylphenidate in adolescent rats.

    PubMed

    Dobrovolsky, Vasily N; Boctor, Sherin Y; Twaddle, Nathan C; Doerge, Daniel R; Bishop, Michelle E; Manjanatha, Mugimane G; Kimoto, Takafumi; Miura, Daishiro; Heflich, Robert H; Ferguson, Sherry A

    2010-03-01

    A modified flow cytometry assay for Pig-A mutant rat red blood cells (RBCs) was developed using an antibody that positively identifies rat RBCs (monoclonal antibody HIS49). The assay was used in conjunction with a flow cytometric micronucleus (MN) assay to evaluate gene mutation and clastogenicity/aneugenicity in adolescent male and female rats treated with methylphenidate hydrochloride (MPH). Sprague-Dawley rats were treated orally with 3 mg/kg MPH (70/sex) or water (40/sex) 3 x /day on postnatal days (PNDs) 29-50. Eight additional rats (4/sex) were injected i.p. with N-ethyl-N-nitrosourea (ENU) on PND 28. Blood was collected on PNDs 29, 50, and 90, and used for determining serum MPH levels and/or conducting genotoxicity assays. On the first and last days of MPH treatment (PNDs 29 and 50), serum MPH levels averaged 21 pg/microl, well within the clinical treatment range. Relative to our previously published method (Miura et al. [2008]; Environ Mol Mutagen 49: 614-629), the HIS49 Pig-A mutation assay significantly reduced the background RBC mutant frequency; in the experiments with ENU-treated rats, the modification increased the overall sensitivity of the assay 2-3 fold. Even with the increased assay sensitivity, the 21 consecutive days of MPH treatment produced no evidence of Pig-A mutation induction (measured at PND 90); in addition, MPH treatment did not increase MN frequency (measured at PND 50). These results support the consensus view that the genotoxicity of MPH in pediatric patients reported earlier (El-Zein et al. [2005]: Cancer Lett 230: 284-291) cannot be reproduced in animal models, suggesting that MPH at clinically relevant levels may be nongenotoxic in humans. Published 2009 by Wiley-Liss, Inc.

  5. Recurrent De Novo Mutations Disturbing the GTP/GDP Binding Pocket of RAB11B Cause Intellectual Disability and a Distinctive Brain Phenotype.

    PubMed

    Lamers, Ideke J C; Reijnders, Margot R F; Venselaar, Hanka; Kraus, Alison; Jansen, Sandra; de Vries, Bert B A; Houge, Gunnar; Gradek, Gyri Aasland; Seo, Jieun; Choi, Murim; Chae, Jong-Hee; van der Burgt, Ineke; Pfundt, Rolph; Letteboer, Stef J F; van Beersum, Sylvia E C; Dusseljee, Simone; Brunner, Han G; Doherty, Dan; Kleefstra, Tjitske; Roepman, Ronald

    2017-11-02

    The Rab GTPase family comprises ∼70 GTP-binding proteins, functioning in vesicle formation, transport and fusion. They are activated by a conformational change induced by GTP-binding, allowing interactions with downstream effectors. Here, we report five individuals with two recurrent de novo missense mutations in RAB11B; c.64G>A; p.Val22Met in three individuals and c.202G>A; p.Ala68Thr in two individuals. An overlapping neurodevelopmental phenotype, including severe intellectual disability with absent speech, epilepsy, and hypotonia was observed in all affected individuals. Additionally, visual problems, musculoskeletal abnormalities, and microcephaly were present in the majority of cases. Re-evaluation of brain MRI images of four individuals showed a shared distinct brain phenotype, consisting of abnormal white matter (severely decreased volume and abnormal signal), thin corpus callosum, cerebellar vermis hypoplasia, optic nerve hypoplasia and mild ventriculomegaly. To compare the effects of both variants with known inactive GDP- and active GTP-bound RAB11B mutants, we modeled the variants on the three-dimensional protein structure and performed subcellular localization studies. We predicted that both variants alter the GTP/GDP binding pocket and show that they both have localization patterns similar to inactive RAB11B. Evaluation of their influence on the affinity of RAB11B to a series of binary interactors, both effectors and guanine nucleotide exchange factors (GEFs), showed induction of RAB11B binding to the GEF SH3BP5, again similar to inactive RAB11B. In conclusion, we report two recurrent dominant mutations in RAB11B leading to a neurodevelopmental syndrome, likely caused by altered GDP/GTP binding that inactivate the protein and induce GEF binding and protein mislocalization. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  6. Engineering Signal Peptides for Enhanced Protein Secretion from Lactococcus lactis

    PubMed Central

    Ng, Daphne T. W.

    2013-01-01

    Lactococcus lactis is an attractive vehicle for biotechnological production of proteins and clinical delivery of therapeutics. In many such applications using this host, it is desirable to maximize secretion of recombinant proteins into the extracellular space, which is typically achieved by using the native signal peptide from a major secreted lactococcal protein, Usp45. In order to further increase protein secretion from L. lactis, inherent limitations of the Usp45 signal peptide (Usp45sp) must be elucidated. Here, we performed extensive mutagenesis on Usp45sp to probe the effects of both the mRNA sequence (silent mutations) and the peptide sequence (amino acid substitutions) on secretion. We screened signal peptides based on their resulting secretion levels of Staphylococcus aureus nuclease and further evaluated them for secretion of Bacillus subtilis α-amylase. Silent mutations alone gave an increase of up to 16% in the secretion of α-amylase through a mechanism consistent with relaxed mRNA folding around the ribosome binding site and enhanced translation. Targeted amino acid mutagenesis in Usp45sp, combined with additional silent mutations from the best clone in the initial screen, yielded an increase of up to 51% in maximum secretion of α-amylase while maintaining secretion at lower induction levels. The best sequence from our screen preserves the tripartite structure of the native signal peptide but increases the positive charge of the n-region. Our study presents the first example of an engineered L. lactis signal peptide with a higher secretion yield than Usp45sp and, more generally, provides strategies for further enhancing protein secretion in bacterial hosts. PMID:23124224

  7. Engineering signal peptides for enhanced protein secretion from Lactococcus lactis.

    PubMed

    Ng, Daphne T W; Sarkar, Casim A

    2013-01-01

    Lactococcus lactis is an attractive vehicle for biotechnological production of proteins and clinical delivery of therapeutics. In many such applications using this host, it is desirable to maximize secretion of recombinant proteins into the extracellular space, which is typically achieved by using the native signal peptide from a major secreted lactococcal protein, Usp45. In order to further increase protein secretion from L. lactis, inherent limitations of the Usp45 signal peptide (Usp45sp) must be elucidated. Here, we performed extensive mutagenesis on Usp45sp to probe the effects of both the mRNA sequence (silent mutations) and the peptide sequence (amino acid substitutions) on secretion. We screened signal peptides based on their resulting secretion levels of Staphylococcus aureus nuclease and further evaluated them for secretion of Bacillus subtilis α-amylase. Silent mutations alone gave an increase of up to 16% in the secretion of α-amylase through a mechanism consistent with relaxed mRNA folding around the ribosome binding site and enhanced translation. Targeted amino acid mutagenesis in Usp45sp, combined with additional silent mutations from the best clone in the initial screen, yielded an increase of up to 51% in maximum secretion of α-amylase while maintaining secretion at lower induction levels. The best sequence from our screen preserves the tripartite structure of the native signal peptide but increases the positive charge of the n-region. Our study presents the first example of an engineered L. lactis signal peptide with a higher secretion yield than Usp45sp and, more generally, provides strategies for further enhancing protein secretion in bacterial hosts.

  8. Introduction of translation stop codons into the viral glycoprotein gene in a fish DNA vaccine eliminates induction of protective immunity

    USGS Publications Warehouse

    Garver, K.A.; Conway, C.M.; Kurath, G.

    2006-01-01

    A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was mutated to introduce two stop codons to prevent glycoprotein translation while maintaining the plasmid DNA integrity and RNA transcription ability. The mutated plasmid vaccine, denoted pIHNw-G2stop, when injected intramuscularly into fish at high doses, lacked detectable glycoprotein expression in the injection site muscle, and did not provide protection against lethal virus challenge 7 days post-vaccination. These results suggest that the G-protein itself is required to stimulate the early protective antiviral response observed after vaccination with the nonmutated parental DNA vaccine. ?? Springer Science+Business Media, Inc. 2006.

  9. Introduction of translation stop condons into the viral glycoprotein gene in a fish DNA vaccine eliminates induction of protective immunity

    USGS Publications Warehouse

    Garver, Kyle A.; Conway, Carla M.; Kurath, Gael

    2006-01-01

    A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was mutated to introduce two stop codons to prevent glycoprotein translation while maintaining the plasmid DNA integrity and RNA transcription ability. The mutated plasmid vaccine, denoted pIHNw-G2stop, when injected intramuscularly into fish at high doses, lacked detectable glycoprotein expression in the injection site muscle, and did not provide protection against lethal virus challenge 7 days post-vaccination. These results suggest that the G-protein itself is required to stimulate the early protective antiviral response observed after vaccination with the nonmutated parental DNA vaccine.

  10. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase.

    PubMed

    Selak, Mary A; Armour, Sean M; MacKenzie, Elaine D; Boulahbel, Houda; Watson, David G; Mansfield, Kyle D; Pan, Yi; Simon, M Celeste; Thompson, Craig B; Gottlieb, Eyal

    2005-01-01

    Several mitochondrial proteins are tumor suppressors. These include succinate dehydrogenase (SDH) and fumarate hydratase, both enzymes of the tricarboxylic acid (TCA) cycle. However, to date, the mechanisms by which defects in the TCA cycle contribute to tumor formation have not been elucidated. Here we describe a mitochondrion-to-cytosol signaling pathway that links mitochondrial dysfunction to oncogenic events: succinate, which accumulates as a result of SDH inhibition, inhibits HIF-alpha prolyl hydroxylases in the cytosol, leading to stabilization and activation of HIF-1alpha. These results suggest a mechanistic link between SDH mutations and HIF-1alpha induction, providing an explanation for the highly vascular tumors that develop in the absence of VHL mutations.

  11. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations

    PubMed Central

    Jeremiah, Nadia; Neven, Bénédicte; Gentili, Matteo; Callebaut, Isabelle; Maschalidi, Sophia; Stolzenberg, Marie-Claude; Goudin, Nicolas; Frémond, Marie-Louis; Nitschke, Patrick; Molina, Thierry J.; Blanche, Stéphane; Picard, Capucine; Rice, Gillian I.; Crow, Yanick J.; Manel, Nicolas; Fischer, Alain; Bader-Meunier, Brigitte; Rieux-Laucat, Frédéric

    2014-01-01

    Innate immunity to viral infection involves induction of the type I IFN response; however, dysfunctional regulation of this pathway leads to inappropriate inflammation. Here, we evaluated a nonconsanguineous family of mixed European descent, with 4 members affected by systemic inflammatory and autoimmune conditions, including lupus, with variable clinical expression. We identified a germline dominant gain-of-function mutation in TMEM173, which encodes stimulator of type I IFN gene (STING), in the affected individuals. STING is a key signaling molecule in cytosolic DNA-sensing pathways, and STING activation normally requires dimerization, which is induced by 2′3′ cyclic GMP-AMP (cGAMP) produced by the cGAMP synthase in response to cytosolic DNA. Structural modeling supported constitutive activation of the mutant STING protein based on stabilized dimerization. In agreement with the model predictions, we found that the STING mutant spontaneously localizes in the Golgi of patient fibroblasts and is constitutively active in the absence of exogenous 2′3′-cGAMP in vitro. Accordingly, we observed elevated serum IFN activity and a type I IFN signature in peripheral blood from affected family members. These findings highlight the key role of STING in activating both the innate and adaptive immune responses and implicate aberrant STING activation in features of human lupus. PMID:25401470

  12. Functional sites of the Ada regulatory protein of Escherichia coli. Analysis by amino acid substitutions.

    PubMed

    Takano, K; Nakabeppu, Y; Sekiguchi, M

    1988-05-20

    Specific cysteine residues at possible methyl acceptor sites of the Ada protein of Escherichia coli were converted to other amino acids by site-directed mutagenesis of the cloned ada gene of E. coli. Ada protein with the cysteine residue at 321 replaced by alanine was capable of accepting the methyl group from the methylphosphotriester but not from O6-methylguanine or O4-methylthymine of alkylated DNA, whereas the protein with alanine at position 69 accepted the methyl group from the methylated bases but not from the methylphosphotriester. These two mutants were used to elucidate the biological significance of repair of the two types of alkylation lesions. Introduction of the ada gene with the Ala69 mutation into an ada- cell rendered the cell more resistant to alkylating agents with respect to both killing and induction of mutations, but the gene with the Ala321 mutation exhibited no such activity. Replacement of the cysteine residue at position 69, but not at position 321, abolished the ability of Ada protein to promote transcription of both ada and alkA genes in vitro. These results are compatible with the idea that methylation of the cysteine residue at position 69 renders Ada protein active as a transcriptional regulator, whilst the cysteine residue at position 321 is responsible for repair of pre-mutagenic and lethal lesions in DNA. The actions of mutant Ada proteins on the ada and alkA promoters in vivo were investigated using an artificially composed gene expression system. When the ada gene with the Ala69 mutation was introduced into the cell, there was little induction of expression of either the ada or the alkA genes, even after treatment with an alkylating agent, in agreement with the data obtained from studies in vitro. With the Ala321 mutation, however, a considerable degree of ada gene expression occurred without adaptive treatment. The latter finding suggests that the cysteine residue at position 321, which is located near the C terminus of the Ada protein, is involved in regulating activity, as the transcriptional activator.

  13. Tissue-specific in vivo genetic toxicity of nine polycyclic aromatic hydrocarbons assessed using the Muta™Mouse transgenic rodent assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Alexandra S., E-mail: alexandra.long@hc-sc.gc.ca; Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON; Lemieux, Christine L.

    Test batteries to screen chemicals for mutagenic hazard include several endpoints regarded as effective for detecting genotoxic carcinogens. Traditional in vivo methods primarily examine clastogenic endpoints in haematopoietic tissues. Although this approach is effective for identifying systemically distributed clastogens, some mutagens may not induce clastogenic effects; moreover, genotoxic effects may be restricted to the site of contact and/or related tissues. An OECD test guideline for transgenic rodent (TGR) gene mutation assays was released in 2011, and the TGR assays permit assessment of mutagenicity in any tissue. This study assessed the responses of two genotoxicity endpoints following sub-chronic oral exposures ofmore » male Muta™Mouse to 9 carcinogenic polycyclic aromatic hydrocarbons (PAHs). Clastogenicity was assessed via induction of micronuclei in peripheral blood, and mutagenicity via induction of lacZ transgene mutations in bone marrow, glandular stomach, small intestine, liver, and lung. Additionally, the presence of bulky PAH-DNA adducts was examined. Five of the 9 PAHs elicited positive results across all endpoints in at least one tissue, and no PAHs were negative or equivocal across all endpoints. All PAHs were positive for lacZ mutations in at least one tissue (sensitivity = 100%), and for 8 PAHs, one or more initial sites of chemical contact (i.e., glandular stomach, liver, small intestine) yielded a greater response than bone marrow. Five PAHs were positive in the micronucleus assay (sensitivity = 56%). Furthermore, all PAHs produced DNA adducts in at least one tissue. The results demonstrate the utility of the TGR assay for mutagenicity assessment, especially for compounds that may not be systemically distributed. - Highlights: • The Muta™Mouse is a reliable tool for in vivo mutagenicity assessment of PAHs. • All 9 PAHs induced lacZ transgene mutations in small intestine. • Only 5 of 9 PAHs induced lacZ mutations and micronuclei in haematopoietic tissue. • Tissue-specific results are likely related to metabolism, repair, and proliferation. • For oral exposures, it is important to examine effects at the site-of-contact.« less

  14. The clustered regularly interspaced short palindromic repeats/associated proteins system for the induction of gene mutations and phenotypic changes in Bombyx mori.

    PubMed

    Song, Jia; Che, Jiaqian; You, Zhengying; Ye, Xiaogang; Li, Jisheng; Ye, Lupeng; Zhang, Yuyu; Qian, Qiujie; Zhong, Boxiong

    2016-12-01

    To probe the general phenomena of gene mutations, Bombyx mori, the lepidopterous model organism, was chosen as the experimental model. To easily detect phenotypic variations, the piggyBac system was utilized to introduce two marker genes into the silkworm, and 23.4% transposition efficiency aided in easily breeding a new strain for the entire experiment. Then, the clustered regularly interspaced short palindromic repeats/an associated protein (Cas9) system was utilized. The results showed that the Cas9 system can induce efficient gene mutations and the base changes could be detected since the G 0 individuals in B. mori; and that the mutation rates on different target sites were diverse. Next, the gRNA2-targeted site that generated higher mutation rate was chosen, and the experimental results were enumerated. First, the mutation proportion in G 1 generation was 30.1%, and some gene mutations were not inherited from the G 0 generation; second, occasionally, base substitutions did not lead to variation in the amino-acid sequence, which decreased the efficiency of phenotypic changes compared with that of genotypic changes. These results laid the foundation for better use of the Cas9 system in silkworm gene editing. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. [Evaluation of performance of five bioinformatics software for the prediction of missense mutations].

    PubMed

    Chen, Qianting; Dai, Congling; Zhang, Qianjun; Du, Juan; Li, Wen

    2016-10-01

    To study the prediction performance evaluation with five kinds of bioinformatics software (SIFT, PolyPhen2, MutationTaster, Provean, MutationAssessor). From own database for genetic mutations collected over the past five years, Chinese literature database, Human Gene Mutation Database, and dbSNP, 121 missense mutations confirmed by functional studies, and 121 missense mutations suspected to be pathogenic by pedigree analysis were used as positive gold standard, while 242 missense mutations with minor allele frequency (MAF)>5% in dominant hereditary diseases were used as negative gold standard. The selected mutations were predicted with the five software. Based on the results, the performance of the five software was evaluated for their sensitivity, specificity, positive predict value, false positive rate, negative predict value, false negative rate, false discovery rate, accuracy, and receiver operating characteristic curve (ROC). In terms of sensitivity, negative predictive value and false negative rate, the rank was MutationTaster, PolyPhen2, Provean, SIFT, and MutationAssessor. For specificity and false positive rate, the rank was MutationTaster, Provean, MutationAssessor, SIFT, and PolyPhen2. For positive predict value and false discovery rate, the rank was MutationTaster, Provean, MutationAssessor, PolyPhen2, and SIFT. For area under the ROC curve (AUC) and accuracy, the rank was MutationTaster, Provean, PolyPhen2, MutationAssessor, and SIFT. The prediction performance of software may be different when using different parameters. Among the five software, MutationTaster has the best prediction performance.

  16. Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia

    PubMed Central

    Oshima, Koichi; Khiabanian, Hossein; da Silva-Almeida, Ana C.; Tzoneva, Gannie; Abate, Francesco; Ambesi-Impiombato, Alberto; Sanchez-Martin, Marta; Carpenter, Zachary; Penson, Alex; Perez-Garcia, Arianne; Eckert, Cornelia; Nicolas, Concepción; Balbin, Milagros; Sulis, Maria Luisa; Kato, Motohiro; Koh, Katsuyoshi; Paganin, Maddalena; Basso, Giuseppe; Gastier-Foster, Julie M.; Devidas, Meenakshi; Loh, Mignon L.; Kirschner-Schwabe, Renate; Palomero, Teresa; Rabadan, Raul; Ferrando, Adolfo A.

    2016-01-01

    Although multiagent combination chemotherapy is curative in a significant fraction of childhood acute lymphoblastic leukemia (ALL) patients, 20% of cases relapse and most die because of chemorefractory disease. Here we used whole-exome and whole-genome sequencing to analyze the mutational landscape at relapse in pediatric ALL cases. These analyses identified numerous relapse-associated mutated genes intertwined in chemotherapy resistance-related protein complexes. In this context, RAS-MAPK pathway-activating mutations in the neuroblastoma RAS viral oncogene homolog (NRAS), kirsten rat sarcoma viral oncogene homolog (KRAS), and protein tyrosine phosphatase, nonreceptor type 11 (PTPN11) genes were present in 24 of 55 (44%) cases in our series. Interestingly, some leukemias showed retention or emergence of RAS mutant clones at relapse, whereas in others RAS mutant clones present at diagnosis were replaced by RAS wild-type populations, supporting a role for both positive and negative selection evolutionary pressures in clonal evolution of RAS-mutant leukemia. Consistently, functional dissection of mouse and human wild-type and mutant RAS isogenic leukemia cells demonstrated induction of methotrexate resistance but also improved the response to vincristine in mutant RAS-expressing lymphoblasts. These results highlight the central role of chemotherapy-driven selection as a central mechanism of leukemia clonal evolution in relapsed ALL, and demonstrate a previously unrecognized dual role of RAS mutations as drivers of both sensitivity and resistance to chemotherapy. PMID:27655895

  17. A novel heterozygous intronic mutation in POU1F1 is associated with combined pituitary hormone deficiency.

    PubMed

    Takagi, Masaki; Kamasaki, Hotaka; Yagi, Hiroko; Fukuzawa, Ryuji; Narumi, Satoshi; Hasegawa, Tomonobu

    2017-02-27

    POU class 1 homeobox 1 (POU1F1) regulates pituitary cell-specific gene expression of somatotropes, lactotropes, and thyrotropes. In humans, two POU1F1 isoforms (long and short isoform), which are generated by the alternative use of the splice acceptor site for exon 2, have been identified. To date, more than 30 POU1F1 mutations in patients with combined pituitary hormone deficiency (CPHD) have been described. All POU1F1 variants reported to date affect both the short and long isoforms of the POU1F1 protein; therefore, it is unclear at present whether a decrease in the function of only one of these two isoforms is sufficient for disease onset in humans. Here, we described a sibling case of CPHD carrying a heterozygous mutation in intron 1 of POU1F1. In vitro experiments showed that this mutation resulted in exon 2-skipping of only in the short isoform of POU1F1, while the long isoform remained intact. This result strongly suggests the possibility, for the first time, that isolated mutations in the short isoform of POU1F1 could be sufficient for induction of POU1F1-related CPHD. This finding improves our understanding of the molecular mechanisms, and developmental course associated with mutations in POU1F1.

  18. Identification of MPL R102P Mutation in Hereditary Thrombocytosis.

    PubMed

    Bellanné-Chantelot, Christine; Mosca, Matthieu; Marty, Caroline; Favier, Rémi; Vainchenker, William; Plo, Isabelle

    2017-01-01

    The molecular basis of hereditary thrombocytosis is germline mutations affecting the thrombopoietin (TPO)/TPO receptor (MPL)/JAK2 signaling axis. Here, we report one family presenting two cases with a mild thrombocytosis. By sequencing JAK2 and MPL coding exons, we identified a germline MPL R102P heterozygous mutation in the proband and his daughter. Concomitantly, we detected high TPO levels in the serum of these two patients. The mutation was not found in three other unaffected cases from the family except in another proband's daughter who did not present thrombocytosis but had a high TPO level. The MPL R102P mutation was first described in congenital amegakaryocytic thrombocytopenia in a homozygous state with a loss-of-function activity. It was previously shown that MPL R102P was blocked in the endoplasmic reticulum without being able to translocate to the plasma membrane. Thus, this case report identifies for the first time that MPL R102P mutation can differently impact megakaryopoiesis: thrombocytosis or thrombocytopenia depending on the presence of the heterozygous or homozygous state, respectively. The paradoxical effect associated with heterozygous MPL R102P may be due to subnormal cell-surface expression of wild-type MPL in platelets inducing a defective TPO clearance. As a consequence, increased TPO levels may activate megakaryocyte progenitors that express a lower, but still sufficient level of MPL for the induction of proliferation.

  19. Functional repair of p53 mutation in colorectal cancer cells using trans-splicing.

    PubMed

    He, Xingxing; Liao, Jiazhi; Liu, Fang; Yan, Junwei; Yan, Jingjun; Shang, Haitao; Dou, Qian; Chang, Ying; Lin, Jusheng; Song, Yuhu

    2015-02-10

    Mutation in the p53 gene is arguably the most frequent type of gene-specific alterations in human cancers. Current p53-based gene therapy contains the administration of wt-p53 or the suppression of mutant p53 expression in p53-defective cancer cells. . We hypothesized that trans-splicing could be exploited as a tool for the correction of mutant p53 transcripts in p53-mutated human colorectal cancer (CRC) cells. In this study, the plasmids encoding p53 pre-trans-splicing molecules (PTM) were transfected into human CRC cells carrying p53 mutation. The plasmids carrying p53-PTM repaired mutant p53 transcripts in p53-mutated CRC cells, which resulted in a reduction in mutant p53 transcripts and an induction of wt-p53 simultaneously. Intratumoral administration of adenovirus vectors carrying p53 trans-splicing cassettes suppressed the growth of tumor xenografts. Repair of mutant p53 transcripts by trans-splicing induced cell-cycle arrest and apoptosis in p53-defective colorectal cancer cells in vitro and in vivo. In conclusion, the present study demonstrated for the first time that trans-splicing was exploited as a strategy for the repair of mutant p53 transcripts, which revealed that trans-splicing would be developed as a new therapeutic approach for human colorectal cancers carrying p53 mutation.

  20. The PSO4 gene is responsible for an error-prone recombinational DNA repair pathway in Saccharomyces cerevisiae.

    PubMed

    de Andrade, H H; Marques, E K; Schenberg, A C; Henriques, J A

    1989-06-01

    The induction of mitotic gene conversion and crossing-over in Saccharomyces cerevisiae diploid cells homozygous for the pso4-1 mutation was examined in comparison to the corresponding wild-type strain. The pso4-1 mutant strain was found to be completely blocked in mitotic recombination induced by photoaddition of mono- and bifunctional psoralen derivatives as well as by mono- (HN1) and bifunctional (HN2) nitrogen mustards or 254 nm UV radiation in both stationary and exponential phases of growth. Concerning the lethal effect, diploids homozygous for the pso4-1 mutation are more sensitive to all agents tested in any growth phase. However, this effect is more pronounced in the G2 phase of the cell cycle. These results imply that the ploidy effect and the resistance of budding cells are under the control of the PSO4 gene. On the other hand, the pso4-1 mutant is mutationally defective for all agents used. Therefore, the pso4-1 mutant has a generalized block in both recombination and mutation ability. This indicates that the PSO4 gene is involved in an error-prone repair pathway which relies on a recombinational mechanism, strongly suggesting an analogy between the pso4-1 mutation and the RecA or LexA mutation of Escherichia coli.

  1. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics.

    PubMed

    Sasaki, Masato; Knobbe, Christiane B; Munger, Joshua C; Lind, Evan F; Brenner, Dirk; Brüstle, Anne; Harris, Isaac S; Holmes, Roxanne; Wakeham, Andrew; Haight, Jillian; You-Ten, Annick; Li, Wanda Y; Schalm, Stefanie; Su, Shinsan M; Virtanen, Carl; Reifenberger, Guido; Ohashi, Pamela S; Barber, Dwayne L; Figueroa, Maria E; Melnick, Ari; Zúñiga-Pflücker, Juan-Carlos; Mak, Tak W

    2012-08-30

    Mutations in the IDH1 and IDH2 genes encoding isocitrate dehydrogenases are frequently found in human glioblastomas and cytogenetically normal acute myeloid leukaemias (AML). These alterations are gain-of-function mutations in that they drive the synthesis of the ‘oncometabolite’ R-2-hydroxyglutarate (2HG). It remains unclear how IDH1 and IDH2 mutations modify myeloid cell development and promote leukaemogenesis. Here we report the characterization of conditional knock-in (KI) mice in which the most common IDH1 mutation, IDH1(R132H), is inserted into the endogenous murine Idh1 locus and is expressed in all haematopoietic cells (Vav-KI mice) or specifically in cells of the myeloid lineage (LysM-KI mice). These mutants show increased numbers of early haematopoietic progenitors and develop splenomegaly and anaemia with extramedullary haematopoiesis, suggesting a dysfunctional bone marrow niche. Furthermore, LysM-KI cells have hypermethylated histones and changes to DNA methylation similar to those observed in human IDH1- or IDH2-mutant AML. To our knowledge, our study is the first to describe the generation and characterization of conditional IDH1(R132H)-KI mice, and also the first report to demonstrate the induction of a leukaemic DNA methylation signature in a mouse model. Our report thus sheds light on the mechanistic links between IDH1 mutation and human AML.

  2. Comprehensive mutational profiling of core binding factor acute myeloid leukemia

    PubMed Central

    Duployez, Nicolas; Marceau-Renaut, Alice; Boissel, Nicolas; Petit, Arnaud; Bucci, Maxime; Geffroy, Sandrine; Lapillonne, Hélène; Renneville, Aline; Ragu, Christine; Figeac, Martin; Celli-Lebras, Karine; Lacombe, Catherine; Micol, Jean-Baptiste; Abdel-Wahab, Omar; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric

    2016-01-01

    Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML. PMID:26980726

  3. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  4. Prophage Induction Is Enhanced and Required for Renal Disease and Lethality in an EHEC Mouse Model

    PubMed Central

    Reynolds, Jared L.; Alteri, Christopher J.; Skinner, Katherine G.; Friedman, Jonathan H.; Eaton, Kathryn A.; Friedman, David I.

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC), particularly serotype O157:H7, causes hemorrhagic colitis, hemolytic uremic syndrome, and even death. In vitro studies showed that Shiga toxin 2 (Stx2), the primary virulence factor expressed by EDL933 (an O157:H7 strain), is encoded by the 933W prophage. And the bacterial subpopulation in which the 933W prophage is induced is the producer of Stx2. Using the germ-free mouse, we show the essential role 933W induction plays in the virulence of EDL933 infection. An EDL933 derivative with a single mutation in its 933W prophage, resulting specifically in that phage being uninducible, colonizes the intestines, but fails to cause any of the pathological changes seen with the parent strain. Hence, induction of the 933W prophage is the primary event leading to disease from EDL933 infection. We constructed a derivative of EDL933, SIVET, with a biosensor that specifically measures induction of the 933W prophage. Using this biosensor to measure 933W induction in germ-free mice, we found an increase three logs greater than was expected from in vitro results. Since the induced population produces and releases Stx2, this result indicates that an activity in the intestine increases Stx2 production. PMID:23555250

  5. Function of the two Xenopus smad4s in early frog development.

    PubMed

    Chang, Chenbei; Brivanlou, Ali H; Harland, Richard M

    2006-10-13

    Signals from the transforming growth factor beta family members are transmitted in the cell through specific receptor-activated Smads and a common partner Smad4. Two Smad4 genes (alpha and beta/10, or smad4 and smad4.2) have been isolated from Xenopus, and conflicting data are reported for Smad4beta/10 actions in mesodermal and neural induction. To further understand the functions of the Smad4s in early frog development, we analyzed their activities in detail. We report that Smad10 is a mutant form of Smad4beta that harbors a missense mutation of a conserved arginine to histidine in the MH1 domain. The mutation results in enhanced association of Smad10 with the nuclear transcription corepressor Ski and leads to its neural inducing activity through inhibition of bone morphogenetic protein (BMP) signaling. In contrast to Smad10, both Smad4alpha and Smad4beta enhanced BMP signals in ectodermal explants. Using antisense morpholino oligonucleotides (MOs) to knockdown endogenous Smad4 protein levels, we discovered that Smad4beta was required for both activin- and BMP-mediated mesodermal induction in animal caps, whereas Smad4alpha affected only the BMP signals. Neither Smad4 was involved directly in neural induction. Expression of Smad4beta-MO in early frog embryos resulted in reduction of mesodermal markers and defects in axial structures, which were rescued by either Smad4alpha or Smad4beta. Smad4alpha-MO induced only minor deficiency at late stages. As Smad4beta, but not Smad4alpha, is expressed at high levels maternally and during early gastrulation, our data suggest that although Smad4alpha and Smad4beta may have similar activities, they are differentially utilized during frog embryogenesis, with only Smad4beta being essential for mesoderm induction.

  6. Fasting boosts sensitivity of human skin melanoma to cisplatin-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antunes, Fernanda; Corazzari, Marco; National Institute for Infectious Diseases IRCCS “Lazzaro Spallanzani”

    Melanoma is one of leading cause of tumor death worldwide. Anti-cancer strategy includes combination of different chemo-therapeutic agents as well as radiation; however these treatments have limited efficacy and induce significant toxic effects on healthy cells. One of most promising novel therapeutic approach to cancer therapy is the combination of anti-cancer drugs with calorie restriction. Here we investigated the effect Cisplatin (CDDP), one of the most potent chemotherapeutic agent used to treat tumors, in association with fasting in wild type and mutated BRAF{sup V600E} melanoma cell lines. Here we show that nutrient deprivation can consistently enhance the sensitivity of tumormore » cells to cell death induction by CDDP, also of those malignancies particularly resistant to any treatment, such as oncogenic BRAF melanomas. Mechanistic studies revealed that the combined therapy induced cell death is characterized by ROS accumulation and ATF4 in the absence of ER-stress. In addition, we show that autophagy is not involved in the enhanced sensitivity of melanoma cells to combined CDDP/EBSS-induced apoptosis. While, the exposure to 2-DG further enhanced the apoptotic rate observed in SK Mel 28 cells upon treatment with both CDDP and EBSS. - Highlights: • Calorie restriction associated to chemo-therapeutic drugs enhance cell death induction in many resistant malignancies • Cisplatin in association with starvation significantly increases cell death also in those high resistant melanoma cells bearing BRAF mutations • Combined treatment also including 2-DG results in similar cell death levels in both wild type and mutated BRAF cells.« less

  7. Depletion of pro-oncogenic RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated pancreatic cancer Panc-1 cells through the induction of pro-apoptotic TAp63.

    PubMed

    Ozaki, Toshinori; Nakamura, Mizuyo; Ogata, Takehiro; Sang, Meijie; Yoda, Hiroyuki; Hiraoka, Kiriko; Sang, Meixiang; Shimozato, Osamu

    2016-11-01

    Recently, we have described that siRNA-mediated silencing of runt-related transcription factor 2 (RUNX2) improves anti-cancer drug gemcitabine (GEM) sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the augmentation of p53 family TAp63-dependent cell death pathway. In this manuscript, we have extended our study to p53-mutated human pancreatic cancer Panc-1 cells. According to our present results, knockdown of mutant p53 alone had a marginal effect on GEM-mediated cell death of Panc-1 cells. We then sought to deplete RUNX2 using siRNA in Panc-1 cells and examined its effect on GEM sensitivity. Under our experimental conditions, RUNX2 knockdown caused a significant enhancement of GEM sensitivity of Panc-1 cells. Notably, GEM-mediated induction of TAp63 but not of TAp73 was further stimulated in RUNX2-depleted Panc-1 cells, indicating that, like AsPC-1 cells, TAp63 might play a pivotal role in the regulation of GEM sensitivity of Panc-1 cells. Consistent with this notion, forced expression of TAp63α in Panc-1 cells promoted cell cycle arrest and/or cell death, and massively increased luciferase activities driven by TAp63-target gene promoters such as p21WAF1 and NOXA. In addition, immunoprecipitation experiments indicated that RUNX2 forms a complex with TAp63 in Panc-1 cells. Taken together, our current observations strongly suggest that depletion of RUNX2 enhances the cytotoxic effect of GEM on p53-mutated Panc-1 cells through the stimulation of TAp63-dependent cell death pathway even in the presence of a large amount of pro-oncogenic mutant p53, and might provide an attractive strategy to treat pancreatic cancer patients with p53 mutations.

  8. Depletion of pro-oncogenic RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated pancreatic cancer Panc-1 cells through the induction of pro-apoptotic TAp63

    PubMed Central

    Ozaki, Toshinori; Nakamura, Mizuyo; Ogata, Takehiro; Sang, Meijie; Yoda, Hiroyuki; Hiraoka, Kiriko; Sang, Meixiang; Shimozato, Osamu

    2016-01-01

    Recently, we have described that siRNA-mediated silencing of runt-related transcription factor 2 (RUNX2) improves anti-cancer drug gemcitabine (GEM) sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the augmentation of p53 family TAp63-dependent cell death pathway. In this manuscript, we have extended our study to p53-mutated human pancreatic cancer Panc-1 cells. According to our present results, knockdown of mutant p53 alone had a marginal effect on GEM-mediated cell death of Panc-1 cells. We then sought to deplete RUNX2 using siRNA in Panc-1 cells and examined its effect on GEM sensitivity. Under our experimental conditions, RUNX2 knockdown caused a significant enhancement of GEM sensitivity of Panc-1 cells. Notably, GEM-mediated induction of TAp63 but not of TAp73 was further stimulated in RUNX2-depleted Panc-1 cells, indicating that, like AsPC-1 cells, TAp63 might play a pivotal role in the regulation of GEM sensitivity of Panc-1 cells. Consistent with this notion, forced expression of TAp63α in Panc-1 cells promoted cell cycle arrest and/or cell death, and massively increased luciferase activities driven by TAp63-target gene promoters such as p21WAF1 and NOXA. In addition, immunoprecipitation experiments indicated that RUNX2 forms a complex with TAp63 in Panc-1 cells. Taken together, our current observations strongly suggest that depletion of RUNX2 enhances the cytotoxic effect of GEM on p53-mutated Panc-1 cells through the stimulation of TAp63-dependent cell death pathway even in the presence of a large amount of pro-oncogenic mutant p53, and might provide an attractive strategy to treat pancreatic cancer patients with p53 mutations. PMID:27713122

  9. Dissociation of tsl-tif-Induced Filamentation and recA Protein Synthesis in Escherichia coli K-12

    PubMed Central

    Huisman, Olivier; D'Ari, Richard; George, Jacqueline

    1980-01-01

    In Escherichia coli, expression of the tif-1 mutation (in the recA gene) induces the “SOS response” at 40°C, including massive synthesis of the recA(tif) protein, cell filamentation, appearance of new repair and mutagenic activities, and prophage induction. Expression of the tsl-1 mutation (in the lexA gene) induces massive synthesis of the recA protein and cell filamentation at 42°C, although other SOS functions are not induced. In this paper we show that the septation inhibition induced in tif and tsl strains at 42°C is not due to the presence of a high concentration of recA protein since (i) no recA mutants (≤10−8) were isolated among thermoresistant nonfilamenting revertants of a tif-1 tsl-1 strain, (ii) in a tsl-1 zab-53 strain, only the low basal level of recA protein was synthesized at 42°C, yet cell division was inhibited, and (iii) in a tsl-1 recA99 (amber) strain, no recA protein could be detected at 42°C, yet cell division was inhibited. Among suppressors of tsl-tif-induced lethality are mutations at a locus which we call infB, located in the 66- to 83-min region. The infB1 mutation confers a highly pleiotropic phenotype, which is suggestive of a regulatory defect; it suppressed tsl-tif-induced filamentation but not recA protein synthesis, it did not suppress ultraviolet-induced filamentation (in a lon derivative), and it reduced but did not abolish tif-mediated induction of λ prophage and bacterial mutagenesis. The dissociation of tsl-tif-induced septation inhibition and recA protein synthesis in the tif-1 tsl-1 infB1 strain suggests that the control of SOS filamentation may not be strictly identical to the control of recA protein synthesis. Images PMID:6445897

  10. NS1 Protein Mutation I64T Affects Interferon Responses and Virulence of Circulating H3N2 Human Influenza A Viruses

    PubMed Central

    DeDiego, Marta L.; Nogales, Aitor; Lambert-Emo, Kris; Martinez-Sobrido, Luis

    2016-01-01

    ABSTRACT Influenza NS1 protein is the main viral protein counteracting host innate immune responses, allowing the virus to efficiently replicate in interferon (IFN)-competent systems. In this study, we analyzed NS1 protein variability within influenza A (IAV) H3N2 viruses infecting humans during the 2012-2013 season. We also evaluated the impact of the mutations on the ability of NS1 proteins to inhibit host innate immune responses and general gene expression. Surprisingly, a previously unidentified mutation in the double-stranded RNA (dsRNA)-binding domain (I64T) decreased NS1-mediated general inhibition of host protein synthesis by decreasing its interaction with cleavage and polyadenylation specificity factor 30 (CPSF30), leading to increased innate immune responses after viral infection. Notably, a recombinant A/Puerto Rico/8/34 H1N1 virus encoding the H3N2 NS1-T64 protein was highly attenuated in mice, most likely because of its ability to induce higher antiviral IFN responses at early times after infection and because this virus is highly sensitive to the IFN-induced antiviral state. Interestingly, using peripheral blood mononuclear cells (PBMCs) collected at the acute visit (2 to 3 days after infection), we show that the subject infected with the NS1-T64 attenuated virus has diminished responses to interferon and to interferon induction, suggesting why this subject could be infected with this highly IFN-sensitive virus. These data demonstrate the importance of influenza virus surveillance in identifying new mutations in the NS1 protein, affecting its ability to inhibit innate immune responses and, as a consequence, the pathogenicity of the virus. IMPORTANCE Influenza A and B viruses are one of the most common causes of respiratory infections in humans, causing 1 billion infections and between 300,000 and 500,000 deaths annually. Influenza virus surveillance to identify new mutations in the NS1 protein affecting innate immune responses and, as a consequence, the pathogenicity of the circulating viruses is highly relevant. Here, we analyzed amino acid variability in the NS1 proteins from human seasonal viruses and the effect of the mutations in innate immune responses and virus pathogenesis. A previously unidentified mutation in the dsRNA-binding domain decreased NS1-mediated general inhibition of host protein synthesis and the interaction of the protein with CPSF30. This mutation led to increased innate immune responses after viral infection, augmented IFN sensitivity, and virus attenuation in mice. Interestingly, using PBMCs, the subject infected with the virus encoding the attenuating mutation induced decreased antiviral responses, suggesting why this subject could be infected with this virus. PMID:27535054

  11. NS1 Protein Mutation I64T Affects Interferon Responses and Virulence of Circulating H3N2 Human Influenza A Viruses.

    PubMed

    DeDiego, Marta L; Nogales, Aitor; Lambert-Emo, Kris; Martinez-Sobrido, Luis; Topham, David J

    2016-11-01

    Influenza NS1 protein is the main viral protein counteracting host innate immune responses, allowing the virus to efficiently replicate in interferon (IFN)-competent systems. In this study, we analyzed NS1 protein variability within influenza A (IAV) H3N2 viruses infecting humans during the 2012-2013 season. We also evaluated the impact of the mutations on the ability of NS1 proteins to inhibit host innate immune responses and general gene expression. Surprisingly, a previously unidentified mutation in the double-stranded RNA (dsRNA)-binding domain (I64T) decreased NS1-mediated general inhibition of host protein synthesis by decreasing its interaction with cleavage and polyadenylation specificity factor 30 (CPSF30), leading to increased innate immune responses after viral infection. Notably, a recombinant A/Puerto Rico/8/34 H1N1 virus encoding the H3N2 NS1-T64 protein was highly attenuated in mice, most likely because of its ability to induce higher antiviral IFN responses at early times after infection and because this virus is highly sensitive to the IFN-induced antiviral state. Interestingly, using peripheral blood mononuclear cells (PBMCs) collected at the acute visit (2 to 3 days after infection), we show that the subject infected with the NS1-T64 attenuated virus has diminished responses to interferon and to interferon induction, suggesting why this subject could be infected with this highly IFN-sensitive virus. These data demonstrate the importance of influenza virus surveillance in identifying new mutations in the NS1 protein, affecting its ability to inhibit innate immune responses and, as a consequence, the pathogenicity of the virus. Influenza A and B viruses are one of the most common causes of respiratory infections in humans, causing 1 billion infections and between 300,000 and 500,000 deaths annually. Influenza virus surveillance to identify new mutations in the NS1 protein affecting innate immune responses and, as a consequence, the pathogenicity of the circulating viruses is highly relevant. Here, we analyzed amino acid variability in the NS1 proteins from human seasonal viruses and the effect of the mutations in innate immune responses and virus pathogenesis. A previously unidentified mutation in the dsRNA-binding domain decreased NS1-mediated general inhibition of host protein synthesis and the interaction of the protein with CPSF30. This mutation led to increased innate immune responses after viral infection, augmented IFN sensitivity, and virus attenuation in mice. Interestingly, using PBMCs, the subject infected with the virus encoding the attenuating mutation induced decreased antiviral responses, suggesting why this subject could be infected with this virus. Copyright © 2016 DeDiego et al.

  12. Evaluation of the in vivo genotoxicity of Allura Red AC (Food Red No. 40).

    PubMed

    Honma, Masamitsu

    2015-10-01

    Allura Red AC (Food Red No. 40) is a red azo dye that is used for food coloring in beverage and confectionary products. However, its genotoxic properties remain controversial. To clarify the in vivo genotoxicity, we treated mice with Allura Red AC and investigated the induction of DNA damage (liver, glandular stomach), clastogenicity/anuegenicity (bone marrow), and mutagenicity (liver, glandular stomach) using Comet assays, micronucleus tests, and transgenic gene mutation assays, respectively. All studies were conducted in accordance with the Organization for Economic Co-operation and Development (OECD) guideline. Although Allura Red AC was administered up to the maximum doses recommended by the OECD guideline, no genotoxic effect was observed in any of the genotoxic endpoints. These data clearly show no evidence of in vivo genotoxic potential of Allura Red AC administered up to the maximum doses in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Antigenotoxic potential of certain dietary constituents.

    PubMed

    Shukla, Yogeshwer; Arora, Annu; Taneja, Pankaj

    2003-01-01

    The human diet contains a variety of compounds that exhibit chemopreventive effects towards an array of xenobiotics. In the present study, the antigenotoxic potential of selected dietary constituents including Diallyl sulfide (DAS), Indole-3-carbinol (I3C), Curcumin (CUR), and Black tea polyphenols (BTP) has been evaluated in the Salmonella typhimurium reverse mutation and mammalian in vivo cytogenetic assays. In addition, the anticlastogenic effect of the above dietary constituents was identified towards Benzo(a)pyrene (BaP) and cyclophosphamide- (CP) induced cytogenetic damage in mouse bone marrow cells. The induction of BaP and CP induced chromosomal aberrations, micronuclei formation, and sister chromatid exchanges (SCEs) were found to be inhibited in a dose-dependent manner by DAS, I3C, CUR, and BTP. Thus the study reveals the antimutagenic potential of these dietary compounds towards BaP- and CP-induced genotoxicity in microbial and mammalian test systems. Copyright 2003 Wiley-Liss, Inc.

  14. A randomized assessment of adding the kinase inhibitor lestaurtinib to first-line chemotherapy for FLT3-mutated AML.

    PubMed

    Knapper, Steven; Russell, Nigel; Gilkes, Amanda; Hills, Robert K; Gale, Rosemary E; Cavenagh, James D; Jones, Gail; Kjeldsen, Lars; Grunwald, Michael R; Thomas, Ian; Konig, Heiko; Levis, Mark J; Burnett, Alan K

    2017-03-02

    The clinical benefit of adding FMS-like tyrosine kinase-3 (FLT3)-directed small molecule therapy to standard first-line treatment of acute myeloid leukemia (AML) has not yet been established. As part of the UK AML15 and AML17 trials, patients with previously untreated AML and confirmed FLT3-activating mutations, mostly younger than 60 years, were randomly assigned either to receive oral lestaurtinib (CEP701) or not after each of 4 cycles of induction and consolidation chemotherapy. Lestaurtinib was commenced 2 days after completing chemotherapy and administered in cycles of up to 28 days. The trials ran consecutively. Primary endpoints were overall survival in AML15 and relapse-free survival in AML17; outcome data were meta-analyzed. Five hundred patients were randomly assigned between lestaurtinib and control: 74% had FLT3 -internal tandem duplication mutations, 23% FLT3 -tyrosine kinase domain point mutations, and 2% both types. No significant differences were seen in either 5-year overall survival (lestaurtinib 46% vs control 45%; hazard ratio, 0.90; 95% CI 0.70-1.15; P = .3) or 5-year relapse-free survival (40% vs 36%; hazard ratio, 0.88; 95% CI 0.69-1.12; P = .3). Exploratory subgroup analysis suggested survival benefit with lestaurtinib in patients receiving concomitant azole antifungal prophylaxis and gemtuzumab ozogamicin with the first course of chemotherapy. Correlative studies included analysis of in vivo FLT3 inhibition by plasma inhibitory activity assay and indicated improved overall survival and significantly reduced rates of relapse in lestaurtinib-treated patients who achieved sustained greater than 85% FLT3 inhibition. In conclusion, combining lestaurtinib with intensive chemotherapy proved feasible in younger patients with newly diagnosed FLT3 -mutated AML, but yielded no overall clinical benefit. The improved clinical outcomes seen in patients achieving sustained FLT3 inhibition encourage continued evaluation of FLT3-directed therapy alongside front-line AML treatment. The UK AML15 and AML17 trials are registered at www.isrctn.com/ISRCTN17161961 and www.isrctn.com/ISRCTN55675535 respectively. © 2017 by The American Society of Hematology.

  15. Clinical utility of anti-p53 auto-antibody: systematic review and focus on colorectal cancer.

    PubMed

    Suppiah, Aravind; Greenman, John

    2013-08-07

    Mutation of the p53 gene is a key event in the carcinogenesis of many different types of tumours. These can occur throughout the length of the p53 gene. Anti-p53 auto-antibodies are commonly produced in response to these p53 mutations. This review firstly describes the various mechanisms of p53 dysfunction and their association with subsequent carcinogenesis. Following this, the mechanisms of induction of anti-p53 auto-antibody production are shown, with various hypotheses for the discrepancies between the presence of p53 mutation and the presence/absence of anti-p53 auto-antibodies. A systematic review was performed with a descriptive summary of key findings of each anti-p53 auto-antibody study in all cancers published in the last 30 years. Using this, the cumulative frequency of anti-p53 auto-antibody in each cancer type is calculated and then compared with the incidence of p53 mutation in each cancer to provide the largest sample calculation and correlation between mutation and anti-p53 auto-antibody published to date. Finally, the review focuses on the data of anti-p53 auto-antibody in colorectal cancer studies, and discusses future strategies including the potentially promising role using anti-p53 auto-antibody presence in screening and surveillance.

  16. Single d(ApG)/cis-diamminedichloroplatinum(II) adduct-induced mutagenesis in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnouf, D.; Fuchs, R.P.P.; Gauthier, C.

    1990-08-01

    The mutation spectrum induced by the widely used antitumor drug cis-diamminedichloroplatinum(II) (cis-DDP) showed that cisDDP(d(ApG)) adducts, although they account for only 25% of the lesions formed are {approx}5 times more mutagenic than the major GG adduct. The authors report the construction of vectors bearing a single cisDDP(d(ApG)) lesion and their use in mutagenesis experiments in Escherichia coli. The mutagenic processing of the lesion is found to depend strictly on induction of the SOS system of the bacterial host cells. In SOS-induced cells, mutation frequencies of 1-2% were detected. All these mutations are targeted to the 5{prime} base of the adduct.more » Single A {yields} T transversions are mainly observed (80%), whereas A {yields} G transitions account for 10% of the total mutations. Tandem base-pair substitutions involving the adenine residue and the thymine residue immediately 5{prime} to the adduct occur at a comparable frequency (10%). No selective loss of the strand bearing the platinum adduct was seen, suggesting that, in vivo, cisDDP(d(ApG)) adducts are not blocking lesions. The high mutation specificity of cisDDP-(d(ApG))-induced mutagenesis is discussed in relation to structural data.« less

  17. neu mutation in schwannomas induced transplacentally in Syrian golden hamsters by N-nitrosoethylurea: high incidence but low allelic representation.

    PubMed

    Buzard, G S; Enomoto, T; Hongyo, T; Perantoni, A O; Diwan, B A; Devor, D E; Reed, C D; Dove, L F; Rice, J M

    1999-10-01

    Peripheral nerve tumors (PNT) and melanomas induced transplacentally on day 14 of gestation in Syrian golden hamsters by N-nitrosoethylurea were analyzed for activated oncogenes by the NIH 3T3 transfection assay, and for mutations in the neu oncogene by direct sequencing, allele-specific oligonucleotide hybridization, MnlI restriction-fragment-length polymorphism, single-strand conformation polymorphism, and mismatch amplification mutation assays. All (67/67) of the PNT, but none of the melanomas, contained a somatic missense T --> A transversion within the neu oncogene transmembrane domain at a site corresponding to that which also occurs in rat schwannomas transplacentally induced by N-nitrosoethylurea. In only 2 of the 67 individual hamster PNT did the majority of tumor cells appear to carry the mutant neu allele, in contrast to comparable rat schwannomas in which it overwhelmingly predominates. The low fraction of hamster tumor cells carrying the mutation was stable through multiple transplantation passages. In the hamster, as in the rat, specific point-mutational activation of the neu oncogene thus constitutes the major pathway for induction of PNT by transplacental exposure to an alkylating agent, but the low allelic representation of mutant neu in hamster PNT suggests a significant difference in mechanism by which the mutant oncogene acts in this species.

  18. tif-dependent induction of colicin E1, prophage lambda, and filamentation in Escherichia coli K-12.

    PubMed

    Tessman, E S; Peterson, P K

    1980-09-01

    To help understand how the tif-1 mutation of the recA gene of Escherichia coli confers adenine activability on the recA protein, we used the fact that cytidine plus guanosine inhibits induction of prophage lambda and cell filamentation in a tif-1 mutant, and that adenine reverses this inhibition. We varied the amount of adenine in agar plates containing a fixed amount of cytidine and scored for survivors of three different tif-dependent lethal induction processes. Much more adenine was required for cell killing when cytidine was present than when it was absent. Therefore adenine does not override cytidine inhibition, but instead appears to compete with it for a site of action which may be on the recA protein. The competition is not at the cell transport level. Our results lead to a model in which the tif form of the recA protein is an allosteric enzyme that binds both negative and positive modulators. By varying the adenine-cytidine ratio of the medium it is possible to control the degree of induction in a tif-1 cell. For the three different tif-dependent inductions studied here, least adenine was required for lambda induction and most for lethal filamentation, presumably reflecting requirements for different amounts of activated recA protein in each process. Varying the adenine-cytidine ratio revealed two stable intermediate stages in lambda induction, as well as a stage of colicin E1 induction in which the cells produced colicin without cell death. The rate of filament formation could be similarly controlled. Experiments with tif (ColE1, lambda) gave evidence of a competition between colicin repressor and lambda repressor for activated recA protein.

  19. Different thresholds of ZEB1 are required for Ras-mediated tumour initiation and metastasis.

    PubMed

    Liu, Yongqing; Lu, Xiaoqin; Huang, Li; Wang, Wei; Jiang, Guomin; Dean, Kevin C; Clem, Brian; Telang, Sucheta; Jenson, Alfred B; Cuatrecasas, Miriam; Chesney, Jason; Darling, Douglas S; Postigo, Antonio; Dean, Douglas C

    2014-12-01

    Ras pathway mutation is frequent in carcinomas where it induces expression of the transcriptional repressor ZEB1. Although ZEB1 is classically linked to epithelial-mesenchymal transition and tumour metastasis, it has an emerging second role in generation of cancer-initiating cells. Here we show that Ras induction of ZEB1 is required for tumour initiation in a lung cancer model, and we link this function to repression Pten, whose loss is critical for emergence of cancer-initiating cells. These two roles for ZEB1 in tumour progression can be distinguished by their requirement for different levels of ZEB1. A lower threshold of ZEB1 is sufficient for cancer initiation, whereas further induction is necessary for tumour metastasis.

  20. Improved Spacecraft Materials for Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Shinn, J. L.; Singleterry, R. C.; Tai, H.; Thibeault, S. A.; Simonsen, L. C.; Cucinotta, F. A.; Miller, J.

    1999-01-01

    In the execution of this proposal, we will first examine current and developing spacecraft materials and evaluate their ability to attenuate adverse biological mutational events in mammalian cell systems and reduce the rate of cancer induction in mice harderian glands as a measure of their protective qualities. The HZETRN code system will be used to generate a database on GCR attenuation in each material. If a third year of funding is granted, the most promising and mission-specific materials will be used to study the impact on mission cost for a typical Mars mission scenario as was planned in our original two year proposal at the original funding level. The most promising candidate materials will be further tested as to their transmission characteristics in Fe and Si ion beams to evaluate the accuracy of the HZETRN transmission factors. Materials deemed critical to mission success may also require testing as well as materials developed by industry for their radiation protective qualities (e.g., Physical Sciences Inc.) A study will be made of designing polymeric materials and composite materials with improved radiation shielding properties as well as the possible improvement of mission-specific materials.

  1. DNA strand breaks signal the induction of DNA double-strand break repair in Saccharomyces cerevisiae.

    PubMed

    Singh, Rakesh Kumar; Krishna, Malini

    2005-12-01

    Genotoxic stress induces a checkpoint signaling cascade to generate a stress response. Saccharomyces cerevisiae shows an altered radiation response under different type of stress. Although the induction of repair has been implicated in enhanced survival after exposure to the challenging stress, the nature of the signal remains poorly understood. This study demonstrates that low doses of gamma radiation and bleomycin induce RAD52-dependent recombination repair pathway in the wild-type strain D-261. Prior exposure of cells to DNA-damaging agents (gamma radiation or bleomycin) equips them better for the subsequent damage caused by challenging doses. However, exposure to UV light, which does not cause strand breaks, was ineffective. This was confirmed by PFGE studies. This indicates that the strand breaks probably serve as the signal for induction of the recombination repair pathway while pyrimidine dimers do not. The nature of the induced repair was investigated by mutation scoring in special strain D-7, which showed that the induced repair is essentially error free.

  2. Mutations in HAMP and HJV genes and their impact on expression of clinical hemochromatosis in a cohort of 100 Spanish patients homozygous for the C282Y mutation of HFE gene.

    PubMed

    Altès, Albert; Bach, Vanessa; Ruiz, Angels; Esteve, Anna; Felez, Jordi; Remacha, Angel F; Sardà, M Pilar; Baiget, Montserrat

    2009-10-01

    Most hereditary hemochromatosis (HH) patients are homozygous for the C282Y mutation of the HFE gene. Nevertheless, penetrance of the disease is very variable. In some patients, penetrance can be mediated by concomitant mutations in other iron master genes. We evaluated the clinical impact of hepcidin (HAMP) and hemojuvelin mutations in a cohort of 100 Spanish patients homozygous for the C282Y mutation of the HFE gene. HAMP and hemojuvelin mutations were evaluated in all patients by bidirectional direct cycle sequencing. Phenotype-genotype interactions were evaluated. A heterozygous mutation of the HAMP gene (G71D) was found in only one out of 100 cases. Following, we performed a study of several members of that family, and we observed several members had a digenic inheritance of the C282Y mutation of the HFE gene and the G71D mutation of the HAMP gene. This mutation in the HAMP gene did not modify the phenotype of the individuals who were homozygous for the C282Y mutation. One other patient presented a new polymorphism in the hemojuvelin gene, without consequences in iron load or clinical course of the disease. In conclusion, HAMP and hemojuvelin mutations are rare among Spanish HH patients, and their impact in this population is not significant.

  3. BimS-induced apoptosis requires mitochondrial localization but not interaction with anti-apoptotic Bcl-2 proteins.

    PubMed

    Weber, Arnim; Paschen, Stefan A; Heger, Klaus; Wilfling, Florian; Frankenberg, Tobias; Bauerschmitt, Heike; Seiffert, Barbara M; Kirschnek, Susanne; Wagner, Hermann; Häcker, Georg

    2007-05-21

    Release of apoptogenic proteins such as cytochrome c from mitochondria is regulated by pro- and anti-apoptotic Bcl-2 family proteins, with pro-apoptotic BH3-only proteins activating Bax and Bak. Current models assume that apoptosis induction occurs via the binding and inactivation of anti-apoptotic Bcl-2 proteins by BH3-only proteins or by direct binding to Bax. Here, we analyze apoptosis induction by the BH3-only protein Bim(S). Regulated expression of Bim(S) in epithelial cells was followed by its rapid mitochondrial translocation and mitochondrial membrane insertion in the absence of detectable binding to anti-apoptotic Bcl-2 proteins. This caused mitochondrial recruitment and activation of Bax and apoptosis. Mutational analysis of Bim(S) showed that mitochondrial targeting, but not binding to Bcl-2 or Mcl-1, was required for apoptosis induction. In yeast, Bim(S) enhanced the killing activity of Bax in the absence of anti-apoptotic Bcl-2 proteins. Thus, cell death induction by a BH3-only protein can occur through a process that is independent of anti-apoptotic Bcl-2 proteins but requires mitochondrial targeting.

  4. Prognostic significance of FLT3 internal tandem repeat in patients with de novo acute myeloid leukemia treated with reinforced courses of chemotherapy.

    PubMed

    Boissel, N; Cayuela, J M; Preudhomme, C; Thomas, X; Grardel, N; Fund, X; Tigaud, I; Raffoux, E; Rousselot, P; Sigaux, F; Degos, L; Castaigne, S; Fenaux, P; Dombret, H

    2002-09-01

    FLT3 internal tandem duplications (FLT3-ITDs) are present in nearly 25% of patients with AML and have been associated with poor response to conventional therapy and poor outcome. We retrospectively evaluated the effect of reinforced courses of chemotherapy on the prognostic value of FLT3-ITDs in 159 AML patients prospectively enrolled in the ALFA-9000 trial, which randomly compared three reinforced induction regimens (standard 3+7 including high-dose daunorubicin, double induction, and timed-sequential therapy). FLT3-ITD was present in 40/159 (25%) blast samples and associated with high WBC (P = 0.002) and cytogenetics (P < 0.001) with a higher incidence (35%) in patients with a normal karyotype. There was no difference in CR rate between FLT3-wt and FLT3-ITD patients (80% vs 78%). Relapse-free survival (RFS) was similar in both groups (5-year RFS, 33% vs 32%; P = 0.41), even after adjustment for age, sex, WBC, cytogenetics, and treatment arm. A trend to a worse survival was observed in the FLT3-ITD group (estimated 5-year OS, 23% vs 37%; P = 0.09), mainly in patients with a normal karyotype. This was associated with a dramatic outcome in relapsing FLT3-ITD patients (estimated 3-year post-relapse survival, 0% vs 27%; P = 0.04). These results suggest that the bad prognosis associated with FLT3-ITDs in AML might be partly overcome using reinforced chemotherapy. Early detection of FLT3 mutations might thus be useful to intensify induction as well as post-remission therapy in FLT3-ITD patients.

  5. Induction of rice mutations by high hydrostatic pressure.

    PubMed

    Zhang, Wei; Liu, Xuncheng; Zheng, Feng; Zeng, Songjun; Wu, Kunlin; da Silva, Jaime A Teixeira; Duan, Jun

    2013-09-01

    High hydrostatic pressure (HHP) is an extreme thermo-physical factor that affects the synthesis of DNA, RNA and proteins and induces mutagenesis in microorganisms. Our previous studies showed that exposure to 25-100 MPa HHP for 12 h retarded the germination and affected the viability of rice (Oryza sativa L.) seeds, increased the tolerance of rice plants to cold stress and altered gene expression patterns in germinating rice seeds. However, the mutagenic effect of HHP on rice remains unknown. In this study, exposure to 25, 50, 75 or 100 MPa for 12 h HHP could efficiently induce variation in rice plants. Furthermore, presoaking time and HHP strength during HHP treatment affected the efficiency of mutation. In addition, the Comet assay revealed that exposure to 25-100 MPa HHP for 12 h induced DNA strand breakage in germinating seeds and may have been the source of mutations. Our results suggest that HHP is a promising physical mutagen in rice breeding. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Microhomology-mediated end joining induces hypermutagenesis at breakpoint junctions

    PubMed Central

    Li, Fuyang; Villarreal, Diana; Shim, Jae Hoon; Myung, Kyungjae; Shim, Eun Yong; Lee, Sang Eun

    2017-01-01

    Microhomology (MH) flanking a DNA double-strand break (DSB) drives chromosomal rearrangements but its role in mutagenesis has not yet been analyzed. Here we determined the mutation frequency of a URA3 reporter gene placed at multiple locations distal to a DSB, which is flanked by different sizes (15-, 18-, or 203-bp) of direct repeat sequences for efficient repair in budding yeast. Induction of a DSB accumulates mutations in the reporter gene situated up to 14-kb distal to the 15-bp MH, but more modestly to those carrying 18- and 203-bp or no homology. Increased mutagenesis in MH-mediated end joining (MMEJ) appears coupled to its slower repair kinetics and the extensive resection occurring at flanking DNA. Chromosomal translocations via MMEJ also elevate mutagenesis of the flanking DNA sequences 7.1 kb distal to the breakpoint junction as compared to those without MH. The results suggest that MMEJ could destabilize genomes by triggering structural alterations and increasing mutation burden. PMID:28419093

  7. Identification of a nonsense mutation in the granulocyte-colony-stimulating factor receptor in severe congenital neutropenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, F.; Loewenberg, B.; Hoefsloot, L.H.

    Severe congenital neutropenia (Kostmann syndrome) is characterized by profound absolute neutropenia and a maturation arrest of marrow progenitor cells at the promyelocyte-myelocyte stage. Marrow cells from such patients frequently display a reduced responsiveness to granulocyte-colony-stimulating factor (G-CSF). G-CSF binds to and activates a specific receptor which transduces signals critical for the proliferation and maturation of granulocytic progenitor cells. Here the authors report the identification of a somatic point mutation in one allele of the G-CSF receptor gene in a patient with severe congenital neutropenia. The mutation results in a cytoplasmic truncation of the receptor. When expressed in murine myeloid cells,more » the mutant receptor transduced a strong growth signal but, in contrast to the wild-type G-CSF receptor, was defective in maturation induction. This mutant receptor chain may act in a dominant negative manner to block granulocytic maturation. 40 refs., figs., 2 tabs.« less

  8. RecA Inhibitors Potentiate Antibiotic Activity and Block Evolution of Antibiotic Resistance.

    PubMed

    Alam, Md Kausar; Alhhazmi, Areej; DeCoteau, John F; Luo, Yu; Geyer, C Ronald

    2016-03-17

    Antibiotic resistance arises from the maintenance of resistance mutations or genes acquired from the acquisition of adaptive de novo mutations or the transfer of resistance genes. Antibiotic resistance is acquired in response to antibiotic therapy by activating SOS-mediated DNA repair and mutagenesis and horizontal gene transfer pathways. Initiation of the SOS pathway promotes activation of RecA, inactivation of LexA repressor, and induction of SOS genes. Here, we have identified and characterized phthalocyanine tetrasulfonic acid RecA inhibitors that block antibiotic-induced activation of the SOS response. These inhibitors potentiate the activity of bactericidal antibiotics, including members of the quinolone, β-lactam, and aminoglycoside families in both Gram-negative and Gram-positive bacteria. They reduce the ability of bacteria to acquire antibiotic resistance mutations and to transfer mobile genetic elements conferring resistance. This study highlights the advantage of including RecA inhibitors in bactericidal antibiotic therapies and provides a new strategy for prolonging antibiotic shelf life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Bifunctional role of leucine 300 of firefly luciferase in structural rigidity.

    PubMed

    Yousefi, Farzad; Ataei, Farangis; Mortazavi, Mojtaba; Hosseinkhani, Saman

    2017-08-01

    Firefly luciferase is susceptible to thermal inactivation, thereby its intracellular half-life decreased. Previous reports indicated that L 300 R mutation (LRR mutant) in E 354 R/Arg 356 double mutant (ERR mutant) from Lampyris turkestanicus luciferase has increased its thermal stability and rigidity through induction of some ionic bonds with Asp 270 and 271. Disruption of the deduced ionic bonds in an ultra-rigid mutant of firefly luciferase did not reverse the flexibility of the protein. In this study, we investigated the effects of this residue to find the truth behind an extraordinary increase in thermal stability and rigidity of luciferase after replacement of leucine 300 by arginine based on previous reports. For this purpose, L 300 R, L 300 K and L 300 E mutations were performed to compare the effects of these mutations on the native firefly luciferase. In spite of increase of intrinsic fluorescence of the mutants a slight increase in thermostability and retention of kinetic properties was observed. Based on our results, we can conclude that L 300 R mutation in LRR mutant accompanying with alteration in a flexible loop (352-359) increased thermostability and rigidity of luciferase. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Application of a multi-channel microfluidic chip on the simultaneous detection of DNAs by using microbead-quantum dots.

    PubMed

    Le, Ngoc Tam; Kim, Jong Sung

    2014-12-01

    Several researches have shown that cancer is caused by genetic mutations especially in genes involved in cell growth and regulation. Ras family members are frequently found in their mutated, oncogenic forms in human tumors. Mutant RAS proteins are constitutively active, owing to reduce intrinsic GTPase activity and insensitivity to GTPase-activating protein (GAPs). In total, activating mutations in the RAS genes occur in approximately 20% of all human cancers, mainly in codon 12, 13 or 61. Activating mutations in the NRAS gene not only result in the reduction of intrinsic GTPase activity but also in the induction of resistance against molecules inducing such activity. In this paper, we reported a rapid, simple and portable method for detecting the mutant types of NRAS genes codon 12 and 61 simultaneously by using bead-quantum dots (QDs) based multi-channel microfluidic chip. Probe DNAs are conjugated to bead-QDs and packed in the pillars of channels in the microfluidic chip. After injection of target DNAs and intercalating dyes, the fluorescence quenching of QDs by intercalating dye was observed due to FRET phenomena. The platform can be effortlessly applied in other biological and clinical areas.

  11. X-ray induced dominant lethal mutations in mature and immature oocytes of guinea-pigs and golden hamsters.

    PubMed

    Cox, B D; Lyon, M F

    1975-06-01

    The induction of dominant lethal mutations by doses of 100-400 rad X-rays in oocytes of the guinea-pig and golden hamster was studied using criteria of embryonic mortality. For both species higher yields were obtained from mature than from immature oocytes, in contrast to results for the mouse. Data on fertility indicated that in the golden hamster, as in the mouse, immature oocytes were more sensitive to killing by X-rays than mature oocytes but that the converse was true in the guinea-pig. The dose-response relationship for mutation to dominant lethals in pre-ovulatory oocytes of guinea-pig and golden hamsters was linear, both when based on pre- and post-implantation loss and when on post-implantation loss only. The rate per unit dose was higher for the golden hamster, and the old golden hamsters were possibly slightly more sensitive than young ones. The mutation rate data for mature oocytes of the mouse, using post-implantation loss alone, also fitted a linear dose-response relationship, except that the rate per unit dose was lower than for the other two species.

  12. The mechanism of untargeted mutagenesis in UV-irradiated yeast.

    PubMed

    Lawrence, C W; Christensen, R B

    1982-01-01

    The SOS error-prone repair hypothesis proposes that untargeted and targeted mutations in E. coli both result from the inhibition of polymerase functions that normally maintain fidelity, and that this is a necessary precondition for translesion synthesis. Using mating experiments with excision deficient strains of Bakers' yeast, Saccharomyces cerevisiae, we find that up to 40% of cycl-91 revertants induced by UV are untargeted, showing that a reduction in fidelity is also found in irradiated cells of this organism. We are, however, unable to detect the induction or activation of any diffusible factor capable of inhibiting fidelity, and therefore suggest that untargeted and targeted mutations are the consequence of largely different processes. We propose that these observations are best explained in terms of a limited fidelity model. Untargeted mutations are thought to result from the limited capacity of processes which normally maintain fidelity, which are active during replication on both irradiated and unirradiated templates. Even moderate UV fluences saturate this capacity, leading to competition for the limited resource. Targeted mutations are believed to result from the limited, though far from negligible, capacity of lesions like pyrimidine dimers to form Watson-Crick base pairs.

  13. Theodore E. Woodward Award: The Evolution of Obesity: Insights from the Mid- Miocene

    PubMed Central

    Johnson, Richard J.; Andrews, Peter; Benner, Steven A.; Oliver, William

    2010-01-01

    All humans are double knockouts. Humans lack the ability to synthesize vitamin C due to a mutation in L-gulono-lactone oxidase that occurred during the late Eocene, and humans have higher serum uric acid levels due to a mutation in uricase that occurred in the mid Miocene. In this paper we review the hypothesis that these mutations have in common the induction of oxidative stress that may have had prosurvival effects to enhance the effects of fructose to increase fat stores. Fructose was the primary nutrient in fruit which was the main staple of early primates, but this food likely became less available during the global cooling that occurred at the time of these mutations. However, in today's society, the intake of fructose, primarily in the form of added sugars, has skyrocketed, while the intake of natural fruits high in vitamin C has fallen. We suggest that it is the interaction of these genetic changes with diet that is responsible for the obesity epidemic today. Hence, we propose that Neel's thrifty gene hypothesis is supported by these new insights into the mechanisms regulating fructose metabolism. PMID:20697570

  14. Cell Cycle Reprogramming for PI3K Inhibition Overrides Relapse-Specific C481S BTK Mutation Revealed by Longitudinal Functional Genomics in Mantle Cell Lymphoma

    PubMed Central

    Chiron, David; Di Liberto, Maurizio; Martin, Peter; Huang, Xiangao; Sharman, Jeff; Blecua, Pedro; Mathew, Susan; Vijay, Priyanka; Eng, Ken; Ali, Siraj; Johnson, Amy; Chang, Betty; Ely, Scott; Elemento, Olivier; Mason, Christopher E.; Leonard, John P.; Chen-Kiang, Selina

    2014-01-01

    Despite the unprecedented clinical activity of the Bruton’s tyrosine kinase inhibitor ibrutinib in MCL, acquired-resistance is common. By longitudinal integrative whole-exome and whole-transcriptome sequencing and targeted sequencing, we identified the first relapse-specific C481S mutation at the ibrutinib-binding site of BTK in MCL cells at progression following a durable response. This mutation enhanced BTK and AKT activation and tissue-specific proliferation of resistant MCL cells driven by CDK4 activation. It was absent, however, in patients with primary-resistance or progression following transient response to ibrutinib, suggesting alternative mechanisms of resistance. Through synergistic induction of PIK3IP1 and inhibition of PI3K-AKT activation, prolonged early G1 arrest induced by PD 0332991 (palbociclib) inhibition of CDK4 sensitized resistant lymphoma cells to ibrutinib killing when BTK was unmutated, and to PI3K inhibitors independent of C481S mutation. These data identify a genomic basis for acquired-ibrutinib resistance in MCL and suggest a strategy to override both primary- and acquired-ibrutinib resistance. PMID:25082755

  15. Children's and Adults' Evaluation of Their Own Inductive Inferences, Deductive Inferences, and Guesses

    ERIC Educational Resources Information Center

    Pillow, Bradford H.; Pearson, RaeAnne M.

    2009-01-01

    Adults' and kindergarten through fourth-grade children's evaluations and explanations of inductive inferences, deductive inferences, and guesses were assessed. Beginning in kindergarten, participants rated deductions as more certain than weak inductions or guesses. Beginning in third grade, deductions were rated as more certain than strong…

  16. New-Teacher Induction 2.0

    ERIC Educational Resources Information Center

    Taranto, Greg

    2011-01-01

    The purpose of this program evaluation study was to design, implement, and evaluate the effectiveness of incorporating an online learning community as part of a comprehensive new-teacher induction program. The researcher, who serves as the middle school principal and new induction coordinator for the school district, used a mixed-method approach…

  17. Potential of Targeting PDE1C/2A for Suppressing Metastatic Ovarian Cancers

    DTIC Science & Technology

    2015-09-01

    HGSOC), are marked by profound chromosomal aberrations (gene amplification and loss) rather than recurrent somatic mutations [2-4...forced expression resulted in the induction of vimentin and disappearance of E-cadherin in these cells (Figure 1e). Moreover, these cells became...dramatic increase in the abundance of E-cadherin and disappearance of vimentin in both lines (Figure 5b). In addition, mesenchymal morphology of OVCAR5

  18. THE USE OF RADIATION-INDUCED MUTATIONS IN CROP BREEDING IN LATIN AMERICA AND SOME BIOLOGICAL EFFECTS OF RADIATION IN COFFEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moh, C.C.

    1962-07-01

    Results are summarized from a study on the genetic effects of radiation in coffee as observed in R/sub 1/ plants grown from seeds exposed to x radiation, gamma radiation, or thermal neutrons. A high frequency of morphological mutants was observed in the young plants. Possible reaction mechanisms involved in the induction of the mutants are discussed. (C.H.)

  19. Genotoxicity assessment of nanomaterials: recommendations on best practices, assays and methods.

    PubMed

    Elespuru, Rosalie; Pfuhler, Stefan; Aardema, Marilyn; Chen, Tao; Doak, Shareen H; Doherty, Ann; Farabaugh, Christopher S; Kenny, Julia; Manjanatha, Mugimane; Mahadevan, Brinda; Moore, Martha M; Ouédraogo, Gladys; Stankowski, Leon F; Tanir, Jennifer Y

    2018-04-26

    Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays). The analysis found a great diversity of tests and systems used for in vitro assays; many did not meet criteria for a valid test, and/or did not use validated cells and methods in the Organization for Economic Co-operation and Development Test Guidelines, and so these results could not be interpreted. In vivo assays were less common but better performed. It was not possible to develop conclusions on test system agreement, NM activity, or mechanism of action. However, the limited responses observed for most NMs were consistent with indirect genotoxic effects, rather than direct interaction of NMs with DNA. We propose a revised genotoxicity test battery for NMs that includes in vitro mammalian cell mutagenicity and clastogenicity assessments; in vivo assessments would be added only if warranted by information on specific organ exposure or sequestration of NMs. The bacterial assays are generally uninformative for NMs due to limited particle uptake and possible lack of mechanistic relevance, and are thus omitted in our recommended test battery for NM assessment. Recommendations include NM characterization in the test medium, verification of uptake into target cells, and limited assay-specific methods alterations to avoid interference with uptake or endpoint analysis. These recommendations are summarized in a Roadmap guideline for testing.

  20. Frozen human cells can record radiation damage accumulated during space flight: mutation induction and radioadaptation.

    PubMed

    Yatagai, Fumio; Honma, Masamitsu; Takahashi, Akihisa; Omori, Katsunori; Suzuki, Hiromi; Shimazu, Toru; Seki, Masaya; Hashizume, Toko; Ukai, Akiko; Sugasawa, Kaoru; Abe, Tomoko; Dohmae, Naoshi; Enomoto, Shuichi; Ohnishi, Takeo; Gordon, Alasdair; Ishioka, Noriaki

    2011-03-01

    To estimate the space-radiation effects separately from other space-environmental effects such as microgravity, frozen human lymphoblastoid TK6 cells were sent to the "Kibo" module of the International Space Station (ISS), preserved under frozen condition during the mission and finally recovered to Earth (after a total of 134 days flight, 72 mSv). Biological assays were performed on the cells recovered to Earth. We observed a tendency of increase (2.3-fold) in thymidine kinase deficient (TK(-)) mutations over the ground control. Loss of heterozygosity (LOH) analysis on the mutants also demonstrated a tendency of increase in proportion of the large deletion (beyond the TK locus) events, 6/41 in the in-flight samples and 1/17 in the ground control. Furthermore, in-flight samples exhibited 48% of the ground-control level in TK(-) mutation frequency upon exposure to a subsequent 2 Gy dose of X-rays, suggesting a tendency of radioadaptation when compared with the ground-control samples. The tendency of radioadaptation was also supported by the post-flight assays on DNA double-strand break repair: a 1.8- and 1.7-fold higher efficiency of in-flight samples compared to ground control via non-homologous end-joining and homologous recombination, respectively. These observations suggest that this system can be used as a biodosimeter, because DNA damage generated by space radiation is considered to be accumulated in the cells preserved frozen during the mission, Furthermore, this system is also suggested to be applicable for evaluating various cellular responses to low-dose space radiation, providing a better understanding of biological space-radiation effects as well as estimation of health influences of future space explores. © Springer-Verlag 2010

  1. Recombinant human parainfluenza virus type 2 with mutations in V that permit cellular interferon signaling are not attenuated in non-human primates

    PubMed Central

    Schaap-Nutt, Anne; D’Angelo, Christopher; Amaro-Carambot, Emerito; Nolan, Sheila M.; Davis, Stephanie; Wise, Shenelle-Marie; Higgins, Caraline; Bradley, Konrad; Kim, Olivia; Mayor, Reina; Skiadopoulos, Mario H.; Collins, Peter L.; Murphy, Brian R.; Schmidt, Alexander C.

    2010-01-01

    The HPIV2 V protein inhibits type I interferon (IFN) induction and signaling. To manipulate the V protein, whose coding sequence overlaps that of the polymerase-associated phosphoprotein (P), without altering the P protein, we generated an HPIV2 virus in which P and V are expressed from separate genes (rHPIV2-P+V). rHPIV2-P+V replicated like HPIV2-WT in vitro and in non-human primates. HPIV2-P+V was modified by introducing two separate mutations into the V protein to create rHPIV2-L101E/L102E and rHPIV2-Δ122–127. In contrast to HPIV2-WT, both mutant viruses were unable to degrade STAT2, leaving virus-infected cells susceptible to IFN. Neither mutant, nor HPIV2-WT, induced significant amounts of IFN-β in infected cells. Surprisingly, neither rHPIV2-L101E/L102E nor rHPIV2-Δ122–127 was attenuated in two species of non-human primates. This indicates that loss of HPIV2's ability to inhibit IFN signaling is insufficient to attenuate virus replication in vivo as long as IFN induction is still inhibited. PMID:20667570

  2. Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia

    PubMed Central

    Parkin, Brian; Ouillette, Peter; Li, Yifeng; Keller, Jennifer; Lam, Cindy; Roulston, Diane; Li, Cheng; Shedden, Kerby

    2013-01-01

    The frequent occurrence of persistent or relapsed disease after induction chemotherapy in AML necessitates a better understanding of the clonal relationship of AML in various disease phases. In this study, we used SNP 6.0 array-based genomic profiling of acquired copy number aberrations (aCNA) and copy neutral LOH (cnLOH) together with sequence analysis of recurrently mutated genes to characterize paired AML genomes. We analyzed 28 AML sample pairs from patients who achieved complete remission with chemotherapy and subsequently relapsed and 11 sample pairs from patients with persistent disease after induction chemotherapy. Through review of aCNA/cnLOH and gene mutation profiles in informative cases, we demonstrate that relapsed AML invariably represents re-emergence or evolution of a founder clone. Furthermore, all individual aCNA or cnLOH detected at presentation persisted at relapse indicating that this lesion type is proximally involved in AML evolution. Analysis of informative paired persistent AML disease samples uncovered cases with 2 coexisting dominant clones of which at least one was chemotherapy sensitive and one resistant, respectively. These data support the conclusion that incomplete eradication of AML founder clones rather than stochastic emergence of fully unrelated novel clones underlies AML relapse and persistence with direct implications for clinical AML research. PMID:23175688

  3. Androgen receptor (AR) suppresses miRNA-145 to promote renal cell carcinoma (RCC) progression independent of VHL status

    PubMed Central

    Chen, Yuan; Sun, Yin; Rao, Qun; Xu, Hua; Li, Lei; Chang, Chawnshang

    2015-01-01

    Mutational inactivation of the VHL tumor suppressor plays key roles in the development of renal cell carcinoma (RCC), and mutated VHL-mediated VEGF induction has become the main target for the current RCC therapy. Here we identified a signal pathway of VEGF induction by androgen receptor (AR)/miRNA-145 as a new target to suppress RCC progression. Mechanism dissection revealed that AR might function through binding to the androgen receptor element (ARE) located on the promoter region of miRNA-145 to suppress p53's ability to induce expression of miRNA-145 that normally suppresses expression of HIF2α/VEGF/MMP9/CCND1. Suppressing AR with AR-shRNA or introducing exogenous miRNA-145 mimic can attenuate RCC progression independent of VHL status. MiR-145 mimic in preclinical RCC orthotopic xenograft mouse model revealed its efficacy in suppression of RCC progression. These results together identified signals by AR-suppressed miRNA-145 as a key player in the RCC progression via regulating HIF2α/VEGF/MMP9/CCND1 expression levels. Blockade of the newly identified signal by AR inhibition or miRNA-145 mimics has promising therapeutic benefit to suppress RCC progression. PMID:26304926

  4. Caenorhabditis elegans vulval cell fate patterning

    NASA Astrophysics Data System (ADS)

    Félix, Marie-Anne

    2012-08-01

    The spatial patterning of three cell fates in a row of competent cells is exemplified by vulva development in the nematode Caenorhabditis elegans. The intercellular signaling network that underlies fate specification is well understood, yet quantitative aspects remain to be elucidated. Quantitative models of the network allow us to test the effect of parameter variation on the cell fate pattern output. Among the parameter sets that allow us to reach the wild-type pattern, two general developmental patterning mechanisms of the three fates can be found: sequential inductions and morphogen-based induction, the former being more robust to parameter variation. Experimentally, the vulval cell fate pattern is robust to stochastic and environmental challenges, and minor variants can be detected. The exception is the fate of the anterior cell, P3.p, which is sensitive to stochastic variation and spontaneous mutation, and is also evolving the fastest. Other vulval precursor cell fates can be affected by mutation, yet little natural variation can be found, suggesting stabilizing selection. Despite this fate pattern conservation, different Caenorhabditis species respond differently to perturbations of the system. In the quantitative models, different parameter sets can reconstitute their response to perturbation, suggesting that network variation among Caenorhabditis species may be quantitative. Network rewiring likely occurred at longer evolutionary scales.

  5. New investigations into the genotoxicity of cobalt compounds and their impact on overall assessment of genotoxic risk.

    PubMed

    Kirkland, David; Brock, Tom; Haddouk, Hasnaà; Hargeaves, Victoria; Lloyd, Melvyn; Mc Garry, Sarah; Proudlock, Raymond; Sarlang, Séverine; Sewald, Katherina; Sire, Guillaume; Sokolowski, Andrea; Ziemann, Christina

    2015-10-01

    The genotoxicity of cobalt metal and cobalt compounds has been widely studied. Several publications show induction of chromosomal aberrations, micronuclei or DNA damage in mammalian cells in vitro in the absence of S9. Mixed results were seen in gene mutation studies in bacteria and mammalian cells in vitro, and in chromosomal aberration or micronucleus assays in vivo. To resolve these inconsistencies, new studies were performed with soluble and poorly soluble cobalt compounds according to OECD-recommended protocols. Induction of chromosomal damage was confirmed in vitro, but data suggest this may be due to oxidative stress. No biologically significant mutagenic responses were obtained in bacteria, Tk(+/-) or Hprt mutation tests. Negative results were also obtained for chromosomal aberrations (in bone marrow and spermatogonia) and micronuclei at maximum tolerated doses in vivo. Poorly soluble cobalt compounds do not appear to be genotoxic. Soluble compounds do induce some DNA and chromosomal damage in vitro, probably due to reactive oxygen. The absence of chromosome damage in robust GLP studies in vivo suggests that effective protective processes are sufficient to prevent oxidative DNA damage in whole mammals. Overall, there is no evidence of genetic toxicity with relevance for humans of cobalt substances and cobalt metal. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Mutations Preventing Regulated Exon Skipping in MET Cause Osteofibrous Dysplasia

    PubMed Central

    Gray, Mary J.; Kannu, Peter; Sharma, Swarkar; Neyt, Christine; Zhang, Dongping; Paria, Nandina; Daniel, Philip B.; Whetstone, Heather; Sprenger, Hans-Georg; Hammerschmidt, Philipp; Weng, Angela; Dupuis, Lucie; Jobling, Rebekah; Mendoza-Londono, Roberto; Dray, Michael; Su, Peiqiang; Wilson, Megan J.; Kapur, Raj P.; McCarthy, Edward F.; Alman, Benjamin A.; Howard, Andrew; Somers, Gino R.; Marshall, Christian R.; Manners, Simon; Flanagan, Adrienne M.; Rathjen, Karl E.; Karol, Lori A.; Crawford, Haemish; Markie, David M.; Rios, Jonathan J.; Wise, Carol A.; Robertson, Stephen P.

    2015-01-01

    The periosteum contributes to bone repair and maintenance of cortical bone mass. In contrast to the understanding of bone development within the epiphyseal growth plate, factors that regulate periosteal osteogenesis have not been studied as intensively. Osteofibrous dysplasia (OFD) is a congenital disorder of osteogenesis and is typically sporadic and characterized by radiolucent lesions affecting the cortical bone immediately under the periosteum of the tibia and fibula. We identified germline mutations in MET, encoding a receptor tyrosine kinase, that segregate with an autosomal-dominant form of OFD in three families and a mutation in a fourth affected subject from a simplex family and with bilateral disease. Mutations identified in all families with dominant inheritance and in the one simplex subject with bilateral disease abolished the splice inclusion of exon 14 in MET transcripts, which resulted in a MET receptor (METΔ14) lacking a cytoplasmic juxtamembrane domain. Splice exclusion of this domain occurs during normal embryonic development, and forced induction of this exon-exclusion event retarded osteoblastic differentiation in vitro and inhibited bone-matrix mineralization. In an additional subject with unilateral OFD, we identified a somatic MET mutation, also affecting exon 14, that substituted a tyrosine residue critical for MET receptor turnover and, as in the case of the METΔ14 mutations, had a stabilizing effect on the mature protein. Taken together, these data show that aberrant MET regulation via the juxtamembrane domain subverts core MET receptor functions that regulate osteogenesis within cortical diaphyseal bone. PMID:26637977

  7. Mutational analysis of GALT gene in Greek patients with galactosaemia: identification of two novel mutations and clinical evaluation.

    PubMed

    Schulpis, Kleopatra H; Thodi, Georgia; Iakovou, Konstantinos; Chatzidaki, Maria; Dotsikas, Yannis; Molou, Elina; Triantafylli, Olga; Loukas, Yannis L

    2017-10-01

    Classical galactosaemia is an inborn error of metabolism due to the deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). The aim of the study was to identify the underlying mutations in Greek patients with GALT deficiency and evaluate their psychomotor and speech development. Patients with GALT deficiency (n = 17) were picked up through neonatal screening. Mutational analysis was conducted via Sanger sequencing, while in silico analysis was used in the cases of novel missense mutations. Psychomotor speech development tests were utilized for the clinical evaluation of the patients. Eleven different mutations in the GALT gene were detected in the patient cohort, including two novel ones. The most frequent mutation was p.Q188R (c.563 A > G). As for the novel mutations, p.M298I (c.894 G > A) was identified in four out of 32 independent alleles, while p.P115S (c.343 C > T) was identified once. Psychomotor evaluation revealed that most of the patients were found in the borderline area (Peabody test), while only two had speech delay problems. The WISK test revealed three patients at borderline limits and two were at lower than normal limits. The mutational spectrum of the GALT gene in Greek patients is presented for the first time. The mutation p.Q188R is the most frequent among Greek patients. Two novel mutations were identified and their potential pathogenicity was estimated. Regarding the phenotypic characteristics, psychomotor disturbances and speech delay were mainly observed among GALT-deficient patients.

  8. Mutagenic effect of freezing on mitochondrial DNA of Saccharomyces cerevisiae.

    PubMed

    Stoycheva, T; Venkov, P; Tsvetkov, Ts

    2007-06-01

    Although suggested in some studies, the mutagenic effect of freezing has not been proved by induction and isolation of mutants. Using a well-defined genetic model, we supply in this communication evidence for the mutagenic effect of freezing on mitochondrial DNA (mtDNA) of the yeast Saccharomyces cerevisiae. The cooling for 2 h at +4 degrees C, followed by freezing for 1 h at -10 degrees C and 16 h at -20 degrees C resulted in induction of respiratory mutations. The immediate freezing in liquid nitrogen was without mutagenic effect. The study of the stepwise procedure showed that the induction of respiratory mutants takes place during the freezing at -10 and -20 degrees C of cells pre-cooled at +4 degrees C. The genetic crosses of freeze-induced mutants evidenced their mitochondrial rho- origin. The freeze-induced rho- mutants are most likely free of simultaneous nuclear mutations. The extracellular presence of cryoprotectants did not prevent the mutagenic effect of freezing while accumulation of cryoprotectors inside cells completely escaped mtDNA from cryodamage. Although the results obtained favor the notion that the mutagenic effect of freezing on yeast mtDNA is due to formation and growth of intracellular ice crystals, other reasons, such as impairment of mtDNA replication or elevated levels of ROS production are discussed as possible explanations of the mutagenic effect of freezing. It is concluded that: (i) freezing can be used as a method for isolation of mitochondrial mutants in S. cerevisiae and (ii) given the substantial development in cryopreservation of cells and tissues, special precautions should be made to avoid mtDNA damage during the cryopreservation procedures.

  9. Mutagenic effect of freezing on nuclear DNA of Saccharomyces cerevisiae.

    PubMed

    Todorova, T; Pesheva, M; Stamenova, R; Dimitrov, M; Venkov, P

    2012-05-01

    Although fragmentation of DNA has been observed in cells undergoing freezing procedures, a mutagenic effect of sub-zero temperature treatment has not been proved by induction and isolation of mutants in nuclear DNA (nDNA). In this communication we supply evidence for mutagenicity of freezing on nDNA of Saccharomyces cerevisiae cells. In the absence of cryoprotectors, cooling for 2 h at +4°C and freezing for 1 h at -10°C and 16 h at -20°C, with a cooling rate of 3°C/min, resulted in induction of frame-shift and reverse mutations in microsatellite and coding regions of nDNA. The sub-zero temperature exposure also has a strong recombinogenic effect, evidenced by induction of gene-conversion and crossing-over events. Freezing induces mutations and enhances recombination with a frequency equal to or higher than that of methylmethanesulphonate at comparable survival rates. The signals for the appearance of nDNA lesions induced by freezing are detected and transduced by the DNA damage pathway. Extracellular cryoprotectors did not prevent the mutagenic effect of freezing, while accumulation of trehalose inside cells reduced nDNA cryodamage. Freezing of cells is accompanied by generation of high ROS levels, and the oxidative stress raised during the freeze-thaw process is the most likely reason for the DNA damaging effect. Experiments with mitochondrial rho⁻ mutants or scavengers of ROS indicated that mutagenic and recombinogenic effects of sub-zero temperatures can be decreased but not eliminated by reduction of ROS level. The complete protection against cryodamage in nDNA required simultaneous usage of intracellular cryoprotector and ROS scavenger during the freeze-thaw process. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae.

    PubMed

    Bakkali, F; Averbeck, S; Averbeck, D; Zhiri, A; Idaomar, M

    2005-08-01

    In order to get an insight into the possible genotoxicity of essential oils (EOs) used in traditional pharmacological applications we tested five different oils extracted from the medicinal plants Origanum compactum, Coriandrum sativum, Artemisia herba alba, Cinnamomum camphora (Ravintsara aromatica) and Helichrysum italicum (Calendula officinalis) for genotoxic effects using the yeast Saccharomyces cerevisiae. Clear cytotoxic effects were observed in the diploid yeast strain D7, with the cells being more sensitive to EOs in exponential than in stationary growth phase. The cytotoxicity decreased in the following order: Origanum compactum>Coriandrum sativum>Artemisia herba alba>Cinnamomum camphora>Helichrysum italicum. In the same order, all EOs, except that derived from Helichrysum italicum, clearly induced cytoplasmic petite mutations indicating damage to mitochondrial DNA. However, no nuclear genetic events such as point mutations or mitotic intragenic or intergenic recombination were induced. The capacity of EOs to induce nuclear DNA damage-responsive genes was tested using suitable Lac-Z fusion strains for RNR3 and RAD51, which are genes involved in DNA metabolism and DNA repair, respectively. At equitoxic doses, all EOs demonstrated significant gene induction, approximately the same as that caused by hydrogen peroxide, but much lower than that caused by methyl methanesulfonate (MMS). EOs affect mitochondrial structure and function and can stimulate the transcriptional expression of DNA damage-responsive genes. The induction of mitochondrial damage by EOs appears to be closely linked to overall cellular cytotoxicity and appears to mask the occurrence of nuclear genetic events. EO-induced cytotoxicity involves oxidative stress, as is evident from the protection observed in the presence of ROS inhibitors such as glutathione, catalase or the iron-chelating agent deferoxamine.

  11. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  12. Glucocorticoid-mediated Period2 induction delays the phase of circadian rhythm

    PubMed Central

    Cheon, Solmi; Park, Noheon; Cho, Sehyung; Kim, Kyungjin

    2013-01-01

    Glucocorticoid (GC) signaling synchronizes the circadian rhythm of individual peripheral cells and induces the expression of circadian genes, including Period1 (Per1) and Period2 (Per2). However, no GC response element (GRE) has been reported in the Per2 promoter region. Here we report the molecular mechanisms of Per2 induction by GC signaling and its relevance to the regulation of circadian timing. We found that GC prominently induced Per2 expression and delayed the circadian phase. The overlapping GRE and E-box (GE2) region in the proximal Per2 promoter was responsible for GC-mediated Per2 induction. The GRE in the Per2 promoter was unique in that brain and muscle ARNT-like protein-1 (BMAL1) was essential for GC-induced Per2 expression, whereas other GRE-containing promoters, such as Per1 and mouse mammary tumor virus, responded to dexamethasone in the absence of BMAL1. This specialized regulatory mechanism was mediated by BMAL1-dependent binding of the GC receptor to GRE in Per2 promoter. When Per2 induction was abrogated by the mutation of the GRE or E-box, the circadian oscillation phase failed to be delayed compared with that of the wild-type. Therefore, the current study demonstrates that the rapid Per2 induction mediated by GC is crucial for delaying the circadian rhythm. PMID:23620290

  13. The Skn7 Response Regulator of Saccharomyces cerevisiae Interacts with Hsf1 In Vivo and Is Required for the Induction of Heat Shock Genes by Oxidative Stress

    PubMed Central

    Raitt, Desmond C.; Johnson, Anthony L.; Erkine, Alexander M.; Makino, Kozo; Morgan, Brian; Gross, David S.; Johnston, Leland H.

    2000-01-01

    The Skn7 response regulator has previously been shown to play a role in the induction of stress-responsive genes in yeast, e.g., in the induction of the thioredoxin gene in response to hydrogen peroxide. The yeast Heat Shock Factor, Hsf1, is central to the induction of another set of stress-inducible genes, namely the heat shock genes. These two regulatory trans-activators, Hsf1 and Skn7, share certain structural homologies, particularly in their DNA-binding domains and the presence of adjacent regions of coiled-coil structure, which are known to mediate protein–protein interactions. Here, we provide evidence that Hsf1 and Skn7 interact in vitro and in vivo and we show that Skn7 can bind to the same regulatory sequences as Hsf1, namely heat shock elements. Furthermore, we demonstrate that a strain deleted for the SKN7 gene and containing a temperature-sensitive mutation in Hsf1 is hypersensitive to oxidative stress. Our data suggest that Skn7 and Hsf1 cooperate to achieve maximal induction of heat shock genes in response specifically to oxidative stress. We further show that, like Hsf1, Skn7 can interact with itself and is localized to the nucleus under normal growth conditions as well as during oxidative stress. PMID:10888672

  14. Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology.

    PubMed

    Jones, Jennifer E; Long, Kristin M; Whitmore, Alan C; Sanders, Wes; Thurlow, Lance R; Brown, Julia A; Morrison, Clayton R; Vincent, Heather; Peck, Kayla M; Browning, Christian; Moorman, Nathaniel; Lim, Jean K; Heise, Mark T

    2017-11-14

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4 + T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes significant outbreaks of viral arthralgia. Studies with CHIKV and other alphaviruses demonstrated that the opal termination codon within nsP3 is highly conserved. However, some strains of CHIKV and other alphaviruses contain mutations in the opal termination codon. These mutations alter the virulence of related alphaviruses in mammalian and mosquito hosts. Here, we report that a clinical isolate of a CHIKV strain from the recent outbreak in the Caribbean islands contains a mixture of viruses encoding either the opal termination codon or an arginine mutation. Mutating the opal stop codon to an arginine residue attenuates CHIKV-induced disease in a mouse model. Compared to infection with the opal-containing parental virus, infection with the arginine mutant causes limited swelling and inflammation, as well as dampened recruitment of immune mediators of pathology, including CD4 + T cells and NK cells. We propose that the opal termination codon plays an essential role in the induction of severe CHIKV disease. Copyright © 2017 Jones et al.

  15. High Relative Biologic Effectiveness of Carbon Ion Radiation on Induction of Rat Mammary Carcinoma and its Lack of H-ras and Tp53 Mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Kakinuma, Shizuko

    2007-09-01

    Purpose: The high relative biologic effectiveness (RBE) of high-linear energy transfer (LET) heavy-ion radiation has enabled powerful radiotherapy. The potential risk of later onset of secondary cancers, however, has not been adequately studied. We undertook the present study to clarify the RBE of therapeutic carbon ion radiation and molecular changes that occur in the rat mammary cancer model. Methods and Materials: We observed 7-8-week-old rats (ACI, F344, Wistar, and Sprague-Dawley) until 1 year of age after irradiation (0.05-2 Gy) with either 290 MeV/u carbon ions with a spread out Bragg peak (LET 40-90 keV/{mu}m) generated from the Heavy-Ion Medical Acceleratormore » in Chiba or {sup 137}Cs {gamma}-rays. Results: Carbon ions significantly induced mammary carcinomas in Sprague-Dawley rats but less so in other strains. The dose-effect relationship for carcinoma incidence in the Sprague-Dawley rats was concave downward, providing an RBE of 2 at a typical therapeutic dose per fraction. In contrast, {approx}10 should be considered for radiation protection at low doses. Immunohistochemically, 14 of 18 carcinomas were positive for estrogen receptor {alpha}. All carcinomas examined were free of common H-ras and Tp53 mutations. Importantly, lung metastasis (7%) was characteristic of carbon ion-irradiated rats. Conclusions: We found clear genetic variability in the susceptibility to carbon ion-induced mammary carcinomas. The high RBE for carbon ion radiation further supports the importance of precise dose localization in radiotherapy. Common point mutations in H-ras and Tp53 were not involved in carbon ion induction of rat mammary carcinomas.« less

  16. High relative biologic effectiveness of carbon ion radiation on induction of rat mammary carcinoma and its lack of H-ras and Tp53 mutations.

    PubMed

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Kakinuma, Shizuko; Hatano, Yukiko; Ohmachi, Yasushi; Yoshinaga, Shinji; Kawano, Akihiro; Maekawa, Akihiko; Shimada, Yoshiya

    2007-09-01

    The high relative biologic effectiveness (RBE) of high-linear energy transfer (LET) heavy-ion radiation has enabled powerful radiotherapy. The potential risk of later onset of secondary cancers, however, has not been adequately studied. We undertook the present study to clarify the RBE of therapeutic carbon ion radiation and molecular changes that occur in the rat mammary cancer model. We observed 7-8-week-old rats (ACI, F344, Wistar, and Sprague-Dawley) until 1 year of age after irradiation (0.05-2 Gy) with either 290 MeV/u carbon ions with a spread out Bragg peak (LET 40-90 keV/mum) generated from the Heavy-Ion Medical Accelerator in Chiba or (137)Cs gamma-rays. Carbon ions significantly induced mammary carcinomas in Sprague-Dawley rats but less so in other strains. The dose-effect relationship for carcinoma incidence in the Sprague-Dawley rats was concave downward, providing an RBE of 2 at a typical therapeutic dose per fraction. In contrast, approximately 10 should be considered for radiation protection at low doses. Immunohistochemically, 14 of 18 carcinomas were positive for estrogen receptor alpha. All carcinomas examined were free of common H-ras and Tp53 mutations. Importantly, lung metastasis (7%) was characteristic of carbon ion-irradiated rats. We found clear genetic variability in the susceptibility to carbon ion-induced mammary carcinomas. The high RBE for carbon ion radiation further supports the importance of precise dose localization in radiotherapy. Common point mutations in H-ras and Tp53 were not involved in carbon ion induction of rat mammary carcinomas.

  17. Seeking the General Explanation: A Test of Inductive Activities for Learning and Transfer

    ERIC Educational Resources Information Center

    Shemwell, Jonathan T.; Chase, Catherine C.; Schwartz, Daniel L.

    2015-01-01

    Evaluating the relation between evidence and theory should be a central activity for science learners. Evaluation comprises both hypothetico-deductive analysis, where theory precedes evidence, and inductive synthesis, where theory emerges from evidence. There is mounting evidence that induction is an especially good way to help learners grasp the…

  18. An exposure-response analysis based on rifampin suggests CYP3A4 induction is driven by AUC: an in vitro investigation.

    PubMed

    Chang, Cheng; Yang, Xin; Fahmi, Odette A; Riccardi, Keith A; Di, Li; Obach, R Scott

    2017-08-01

    1. Induction is an important mechanism contributing to drug-drug interactions. It is most commonly evaluated in the human hepatocyte assay over 48-h or 72-h incubation period. However, whether the overall exposure (i.e. Area Under the Curve (AUC) or C ave ) or maximum exposure (i.e. C max ) of the inducer is responsible for the magnitude of subsequent induction has not been thoroughly investigated. Additionally, in vitro induction assays are typically treated as static systems, which could lead to inaccurate induction potency estimation. Hence, European Medicines Agency (EMA) guidance now specifies quantitation of drug levels in the incubation. 2. This work treated the typical in vitro evaluation of rifampin induction as an in vivo system by generating various target engagement profiles, measuring free rifampin concentration over 3 d of incubation and evaluating the impact of these factors on final induction response. 3. This rifampin-based analysis demonstrates that the induction process is driven by time-averaged target engagement (i.e. AUC-driven). Additionally, depletion of rifampin in the incubation medium over 3 d as well as non-specific/specific binding were observed. 4. These findings should help aid the discovery of clinical candidates with minimal induction liability and further expand our knowledge in the quantitative translatability of in vitro induction assays.

  19. Clinical utility of anti-p53 auto-antibody: Systematic review and focus on colorectal cancer

    PubMed Central

    Suppiah, Aravind; Greenman, John

    2013-01-01

    Mutation of the p53 gene is a key event in the carcinogenesis of many different types of tumours. These can occur throughout the length of the p53 gene. Anti-p53 auto-antibodies are commonly produced in response to these p53 mutations. This review firstly describes the various mechanisms of p53 dysfunction and their association with subsequent carcinogenesis. Following this, the mechanisms of induction of anti-p53 auto-antibody production are shown, with various hypotheses for the discrepancies between the presence of p53 mutation and the presence/absence of anti-p53 auto-antibodies. A systematic review was performed with a descriptive summary of key findings of each anti-p53 auto-antibody study in all cancers published in the last 30 years. Using this, the cumulative frequency of anti-p53 auto-antibody in each cancer type is calculated and then compared with the incidence of p53 mutation in each cancer to provide the largest sample calculation and correlation between mutation and anti-p53 auto-antibody published to date. Finally, the review focuses on the data of anti-p53 auto-antibody in colorectal cancer studies, and discusses future strategies including the potentially promising role using anti-p53 auto-antibody presence in screening and surveillance. PMID:23922463

  20. CREBBP knockdown enhances RAS/RAF/MEK/ERK signaling in Ras pathway mutated acute lymphoblastic leukemia but does not modulate chemotherapeutic response.

    PubMed

    Dixon, Zach A; Nicholson, Lindsay; Zeppetzauer, Martin; Matheson, Elizabeth; Sinclair, Paul; Harrison, Christine J; Irving, Julie A E

    2017-04-01

    Relapsed acute lymphoblastic leukemia is the most common cause of cancer-related mortality in young people and new therapeutic strategies are needed to improve outcome. Recent studies have shown that heterozygous inactivating mutations in the histone acetyl transferase, CREBBP , are particularly frequent in relapsed childhood acute lymphoblastic leukemia and associated with a hyperdiploid karyotype and KRAS mutations. To study the functional impact of CREBBP haploinsufficiency in acute lymphoblastic leukemia, RNA interference was used to knock down expression of CREBBP in acute lymphoblastic leukemia cell lines and various primagraft acute lymphoblastic leukemia cells. We demonstrate that attenuation of CREBBP results in reduced acetylation of histone 3 lysine 18, but has no significant impact on cAMP-dependent target gene expression. Impaired induction of glucocorticoid receptor targets was only seen in 1 of 4 CREBBP knockdown models, and there was no significant difference in glucocorticoid-induced apoptosis, sensitivity to other acute lymphoblastic leukemia chemotherapeutics or histone deacetylase inhibitors. Importantly, we show that CREBBP directly acetylates KRAS and that CREBBP knockdown enhances signaling of the RAS/RAF/MEK/ERK pathway in Ras pathway mutated acute lymphoblastic leukemia cells, which are still sensitive to MEK inhibitors. Thus, CREBBP mutations might assist in enhancing oncogenic RAS signaling in acute lymphoblastic leukemia but do not alter response to MEK inhibitors. Copyright© Ferrata Storti Foundation.

  1. Mutation of a Short Variable Region in HCpro Protein of Potato virus A Affects Interactions with a Microtubule-Associated Protein and Induces Necrotic Responses in Tobacco.

    PubMed

    Haikonen, Tuuli; Rajamäki, Minna-Liisa; Tian, Yan-Ping; Valkonen, Jari P T

    2013-07-01

    Helper component proteinase (HCpro) is a multifunctional protein of potyviruses (genus Potyvirus). HCpro of Potato virus A (PVA) interacts with the microtubule-associated protein HIP2 in host cells, and depletion of HIP2 reduces virus accumulation. This study shows that HCpro of Potato virus Y and Tobacco etch virus also interact with HIP2. The C-proximal portion of PVA HCpro determines the interaction with HIP2 and was found to contain a stretch of six residues comprising a highly variable region (HVR) in potyviruses. Mutations in HVR reduced PVA accumulation in tobacco plants and induced necrotic symptoms novel to PVA. Microarray and quantitative reverse transcription polymerase chain reaction analyses revealed induction of many defense-related genes including ethylene- and jasmonic acid-inducible pathways in systemically infected leaves at necrosis onset. Salicylic acid-mediated signaling was dispensable for the response. Genes related to microtubule functions were down-regulated. Structural modeling of HCpro suggested that all mutations in HVR caused conformational changes in adjacent regions containing functionally important motifs conserved in potyviruses. Those mutations, which also caused conformational changes in HVR, led to the greatest reduction of fitness. Our results implicate HVR in the regulation of HCpro conformation and virus-host interactions and suggest that mutation of HVR induces host defense.

  2. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures.

    PubMed

    Guo, Yan; Xiong, Liming; Ishitani, Manabu; Zhu, Jian-Kang

    2002-05-28

    Low temperature regulates gene expression in bacteria, yeast, and animals as well as in plants. However, the signal transduction cascades mediating the low temperature responses are not well understood in any organism. To identify components in low temperature signaling genetically, we isolated Arabidopsis thaliana mutants in which cold-responsive genes are no longer induced by low temperatures. One of these mutations, los1-1, specifically blocks low temperature-induced transcription of cold-responsive genes. Surprisingly, cold-induced expression of the early response transcriptional activators, C-repeat/dehydration responsive element binding factors (CBF/DREB1s), is enhanced by the los1-1 mutation. The los1-1 mutation also reduces the capacity of plants to develop freezing tolerance but does not impair the vernalization response. Genetic analysis indicated that los1-1 is a recessive mutation in a single nuclear gene. The LOS1 gene encodes a translation elongation factor 2-like protein. Protein labeling studies show that new protein synthesis is blocked in los1-1 mutant plants specifically in the cold. These results reveal a critical role of new protein synthesis in the proper transduction of low temperature signals. Our results also suggest that cold-induced transcription of CBF/DREB1s is feedback inhibited by their gene products or by products of their downstream target genes.

  3. A Novel N14Y Mutation in Connexin26 in Keratitis-Ichthyosis-Deafness Syndrome

    PubMed Central

    Arita, Ken; Akiyama, Masashi; Aizawa, Tomoyasu; Umetsu, Yoshitaka; Segawa, Ikuo; Goto, Maki; Sawamura, Daisuke; Demura, Makoto; Kawano, Keiichi; Shimizu, Hiroshi

    2006-01-01

    Connexins (Cxs) are transmembranous proteins that connect adjacent cells via channels known as gap junctions. The N-terminal 21 amino acids of Cx26 are located at the cytoplasmic side of the channel pore and are thought to be essential for the regulation of channel selectivity. We have found a novel mutation, N14Y, in the N-terminal domain of Cx26 in a case of keratitis-ichthyosis-deafness syndrome. Reduced gap junctional intercellular communication was observed in the patient’s keratinocytes by the dye transfer assay using scrape-loading methods. The effect of this mutation on molecular structure was investigated using synthetic N-terminal peptides from both wild-type and mutated Cx26. Two-dimensional 1H nuclear magnetic resonance and circular dichroism measurements demonstrated that the secondary structures of these two model peptides are similar to each other. However, several novel nuclear Overhauser effect signals appeared in the N14Y mutant, and the secondary structure of the mutant peptide was more susceptible to induction of 2,2,2-trifluoroethanol than wild type. Thus, it is likely that the N14Y mutation induces a change in local structural flexibility of the N-terminal domain, which is important for exerting the activity of the channel function, resulting in impaired gap junctional intercellular communication. PMID:16877344

  4. Clinical evaluation and mutational analysis of GALK and GALE genes in patients with galactosemia in Greece: one novel mutation and two rare cases.

    PubMed

    Schulpis, Kleopatra H; Thodi, Georgia; Iakovou, Konstantinos; Chatzidaki, Maria; Dotsikas, Yannis; Molou, Elina; Triantafylli, Olga; Loukas, Yannis L

    2017-07-26

    Deficiencies of galactokinase (GALK) and UDP-epimerase (GALE) are implicated with galactose metabolic disorders. The aim of the study was the identification of mutations in GALK and GALE genes and clinical evaluation of patients. Five patients with GALK and five with GALE deficiency were picked up via the Neonatal Screening Program. Additionally, two females, 4 years old, were referred with late diagnosed galactosemia, as rare cases. Mutational analysis was conducted via Sanger sequencing, while in silico analysis tools were utilized for the novel mutation. Psychomotor and speech development tests were performed, as well. The mutation p.Pro28Thr was identified in both alleles in GALK-deficient patients of Roma (gypsy) origin, whereas the novel p.Asn39Ser was detected in two non-Roma patients. In GALE-deficient patients benign and/or likely benign mutations were found. Psychomotor and speech delay were determined in the Roma GALK patients. In each of the late diagnosed females, four mutations were identified in all galactosemia-related genes. The mutational spectrums of GALE- and GALK-deficient patients in Greece are presented for the first time along with a clinical evaluation. Mutational analysis in all galactosemia-related genes of symptomatic patients is highly recommended for future cases.

  5. Radiation effects in Caenorhabditis elegans - Mutagenesis by high and low LET ionizing radiation

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Schubert, Wayne W.; Marshall, Tamara M.; Benton, Eric R.; Benton, Eugene V.

    1989-01-01

    The nematode C. elegans was used to measure the effectiveness of high-energy ionized particles in the induction of three types of genetic lesions. Recessive lethal mutations in a 40-map unit autosomal region, sterility, and X-chromosome nondisjunction or damage were investigated. Induction rates were measured as a function of linear energy transfer, LET(infinity), for nine ions of atomic nunmber 1-57 accelerated at the BEVALAC accelerator. Linear kinetics were observed for all three types of lesions within the dose/fluence ranges tested and were found to vary strongly as a function of particle LET(infinity). Relative biological effectiveness (RBE) values of up to 4.2 were measured, and action cross sections were calculated and compared to mutagenic responses in other systems.

  6. Comprehensive mutational profiling of core binding factor acute myeloid leukemia.

    PubMed

    Duployez, Nicolas; Marceau-Renaut, Alice; Boissel, Nicolas; Petit, Arnaud; Bucci, Maxime; Geffroy, Sandrine; Lapillonne, Hélène; Renneville, Aline; Ragu, Christine; Figeac, Martin; Celli-Lebras, Karine; Lacombe, Catherine; Micol, Jean-Baptiste; Abdel-Wahab, Omar; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude

    2016-05-19

    Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML. © 2016 by The American Society of Hematology.

  7. [The receptor theory of atherosclerosis].

    PubMed

    Likhoded, V G; Bondarenko, V M; Gintsburg, A L

    2010-01-01

    Lipopolysaccharides of Gram-negative bacteria can interact with Toll-like receptor 4 (TLR4) and induce atheroma formation. The risk of atherosclerosis is decreased in case of TLR4 mutation. Other bacterial ligands and endogenous ligands of TLRs can also be involved in induction of atherogenesis. The general concept of atherosclerosis pathogentsis is presented. According to this concept atherogenesis can be initiated by some reactions resulting from interaction of exogenous and endogenous microbial ligands with Toll-like receptors.

  8. Minisatellite and Hprt mutations in V79 cells irradiated with helium ions and gamma rays.

    PubMed

    Cherubinit, R; Canova, S; Favaretto, S; Bruna, V; Battivelli, P; Celotti, L

    2002-09-01

    To evaluate and compare cytotoxic and mutational effects of graded doses of gamma-rays and 4He++ ions at different LET values (nominally 80 and 123 keV/microm) in V79 cells. 4He++ ion beams at 80 and 123 keV/microm were supplied by the 7 MV Van de Graaff CN accelerator of the INFN-LNL in the dose range 0.3 2.4 Gy at a dose rate of 1 Gy/min. Gamma-irradiation was performed by the 60Co 'gamma beam' of CNR-FRAE (at the INFN-LNL) in the dose range 0.5 6.0 Gy at a dose rate of 1 Gy/min. After irradiation, the cells were seeded to measure surviving fraction (SF) and mutant frequency (MF) at the Hprt locus on the basis of 6-thioguanine resistance. Alterations at minisatellite sequences (MS) of clones derived from irradiated and unirradiated cells were detected by Southern blot analysis using a multi-locus probe (DNA fingerprinting). Survival data from 4He++ irradiation at two LET values (80 and 123 keV/microm) yielded similar results: alpha = (1.08 +/- 0.04)/Gy and (0.90 +/- 0.03)/Gy, respectively. The best fit for mutant induction at the Hprt locus after 80keV/microm 4He++ was a linear function of the dose in the dose-interval 0-1.5 Gy: alpha= (47.77 +/- 16.01) x 10(-6)/Gy. The best fit for mutant induction after 123 keV/microm 4He++ in the dose-interval 0-1.2 Gv was a linear-quadratic function: alpha=(86.01 +/- 13.80) x 10(-6)/Gy; beta = (42.87 +/- 11.03) x 10(-6)/Gy2. For gamma-irradiation, the best fit of Hprt mutation data gave: alpha = (4.14+2.67)x 10(-6)/Gy: beta = (0.63 +/- 0.86) x 10(-6)/Gy2. The best fitting of MS alteration data with linear-quadratic or linear relationships gave: for gamma-rays, alpha = 0.56 mutants/Gy and beta = 0.52 mutants/Gy2; for 80 keV/microm 4He++, alpha = 3.70 mutants/Gy and beta = 9.00 mutants/Gy2; for 123keV/microm 4He++, alpha = 4.36 mutants/Gy. The results reported here confirmed the higher cytotoxic and mutagenic effects of helium ions in comparison with gamma-irradiation and the ability of DNA fingerprint analysis to investigate DNA damage induced by different ionizing radiations. The results of the mutagenic effects measured by the two tests are in agreement.

  9. Treatment strategies in colorectal cancer patients with initially unresectable liver-only metastases, a study protocol of the randomised phase 3 CAIRO5 study of the Dutch Colorectal Cancer Group (DCCG).

    PubMed

    Huiskens, Joost; van Gulik, Thomas M; van Lienden, Krijn P; Engelbrecht, Marc R W; Meijer, Gerrit A; van Grieken, Nicole C T; Schriek, Jonne; Keijser, Astrid; Mol, Linda; Molenaar, I Quintus; Verhoef, Cornelis; de Jong, Koert P; Dejong, Kees H C; Kazemier, Geert; Ruers, Theo M; de Wilt, Johanus H W; van Tinteren, Harm; Punt, Cornelis J A

    2015-05-06

    Colorectal cancer patients with unresectable liver-only metastases may be cured after downsizing of metastases by neoadjuvant systemic therapy. However, the optimal neoadjuvant induction regimen has not been defined, and the lack of consensus on criteria for (un)resectability complicates the interpretation of published results. CAIRO5 is a multicentre, randomised, phase 3 clinical study. Colorectal cancer patients with initially unresectable liver-only metastases are eligible, and will not be selected for potential resectability. The (un)resectability status is prospectively assessed by a central panel consisting of at least one radiologist and three liver surgeons, according to predefined criteria. Tumours of included patients will be tested for RAS mutation status. Patients with RAS wild type tumours will be treated with doublet chemotherapy (FOLFOX or FOLFIRI) and randomised between the addition of either bevacizumab or panitumumab, and patients with RAS mutant tumours will be randomised between doublet chemotherapy (FOLFOX or FOLFIRI) plus bevacizumab or triple chemotherapy (FOLFOXIRI) plus bevacizumab. Radiological evaluation to assess conversion to resectability will be performed by the central panel, at an interval of two months. The primary study endpoint is median progression-free survival. Secondary endpoints are the R0/1 resection rate, median overall survival, response rate, toxicity, pathological response of resected lesions, postoperative morbidity, and correlation of baseline and follow-up evaluation with respect to outcomes by the central panel. CAIRO5 is a prospective multicentre trial that investigates the optimal systemic induction therapy for patients with initially unresectable, liver-only colorectal cancer metastases. CAIRO 5 is registered at European Clinical Trials Database (EudraCT) (2013-005435-24). CAIRO 5 is registered at ClinicalTrials.gov: NCT02162563 , June 10, 2014.

  10. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome.

    PubMed

    Garrity, Deborah M; Childs, Sarah; Fishman, Mark C

    2002-10-01

    Holt-Oram syndrome is one of the autosomal dominant human "heart-hand" disorders, with a combination of upper limb malformations and cardiac defects. Holt-Oram syndrome is caused by mutations in the TBX5 gene, a member of a large family of T-box transcription factors that play important roles in cell-type specification and morphogenesis. In a screen for mutations affecting zebrafish cardiac function, we isolated the recessive lethal mutant heartstrings, which lacks pectoral fins and exhibits severe cardiac dysfunction, beginning with a slow heart rate and progressing to a stretched, non-functional heart. We mapped and cloned the heartstrings mutation and find it to encode the zebrafish ortholog of the TBX5 gene. The heartstrings mutation causes premature termination at amino acid 316. Homozygous mutant embryos never develop pectoral fin buds and do not express several markers of early fin differentiation. The total absence of any fin bud differentiation distinguishes heartstrings from most other mutations that affect zebrafish fin development, suggesting that Tbx5 functions very early in the pectoral fin induction pathway. Moderate reduction of Tbx5 by morpholino causes fin malformations, revealing an additional early requirement for Tbx5 in coordinating the axes of fin outgrowth. The heart of heartstrings mutant embryos appears to form and function normally through the early heart tube stage, manifesting only a slight bradycardia compared with wild-type siblings. However, the heart fails to loop and then progressively deteriorates, a process affecting the ventricle as well as the atrium. Relative to mammals, fish require lower levels of Tbx5 to produce malformed appendages and display whole-heart rather than atrial-predominant cardiac defects. However, the syndromic deficiencies of tbx5 mutation are remarkably well retained between fish and mammals.

  11. Nucleotide excision repair and recombination are engaged in repair of trans-4-hydroxy-2-nonenal adducts to DNA bases in Escherichia coli.

    PubMed

    Janowska, Beata; Komisarski, Marek; Prorok, Paulina; Sokołowska, Beata; Kuśmierek, Jarosław; Janion, Celina; Tudek, Barbara

    2009-09-23

    One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48% of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA(-) strain were G:C --> T:A transversions, occurring within the sequence which in recA(+) strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C --> A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.

  12. Nucleotide excision repair and recombination are engaged in repair of trans-4-hydroxy-2-nonenal adducts to DNA bases in Escherichia coli

    PubMed Central

    Janowska, Beata; Komisarski, Marek; Prorok, Paulina; Sokołowska, Beata; Kuśmierek, Jarosław; Janion, Celina; Tudek, Barbara

    2009-01-01

    One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations. PMID:19834545

  13. The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum).

    PubMed

    Shaw, Lindsay M; Turner, Adrian S; Laurie, David A

    2012-07-01

    Flowering time is a trait that has been extensively altered during wheat domestication, enabling it to be highly productive in diverse environments and providing a rich source of variation for studying adaptation mechanisms. Hexaploid wheat is ancestrally a long-day plant, but many environments require varieties with photoperiod insensitivity (PI) that can flower in short days. PI results from mutations in the Ppd-1 gene on the A, B or D genomes, with individual mutations conferring different degrees of earliness. The basis of this is poorly understood. Using a common genetic background, the effects of A, B and D genome PI mutations on genes of the circadian clock and photoperiod pathway were studied using genome-specific expression assays. Ppd-1 PI mutations did not affect the clock or immediate clock outputs, but affected TaCO1 and TaFT1, with a reduction in TaCO1 expression as TaFT1 expression increased. Therefore, although Ppd-1 is related to PRR genes of the Arabidopsis circadian clock, Ppd-1 affects flowering by an alternative route, most likely by upregulating TaFT1 with a feedback effect that reduces TaCO1 expression. Individual genes in the circadian clock and photoperiod pathway were predominantly expressed from one genome, and there was no genome specificity in Ppd-1 action. Lines combining PI mutations on two or three genomes had enhanced earliness with higher levels, but not earlier induction, of TaFT1, showing that there is a direct quantitative relationship between Ppd-1 mutations, TaFT1 expression and flowering. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  14. Integrin alphaIIb-subunit cytoplasmic domain mutations demonstrate a requirement for tyrosine phosphorylation of beta3-subunits in actin cytoskeletal organization.

    PubMed

    Yamodo, Innocent H; Blystone, Scott D

    2004-01-01

    Using truncated or mutated alphaIIb integrin cytoplasmic domains fused to the alphaV extracellular domain and expressed with the beta3 integrin subunit, we demonstrate that the double mutation of proline residues 998 and 999 to alanine (PP998/999AA), previously shown to disturb the C-terminal conformation of the alphaIIb integrin cytoplasmic domain, prevents tyrosine phosphorylation of beta3 integrin induced by Arg-Gly-Asp peptide ligation. This mutation also inhibits integrin mediated actin assembly and cell adhesion to vitronectin. In contrast, progressive truncation of the alphaIIb-subunit cytoplasmic domain did not reproduce these effects. Interestingly, the PP998/999AA mutations of alphaIIb did not affect beta3 tyrosine phosphorylation, cell adhesion, or actin polymerization induced by manganese. Exogenous addition of manganese was sufficient to rescue beta3 phosphorylation, cell adhesion, and actin assembly in cells expressing the PP998/999AA mutation when presented with a vitronectin substrate. Further, induction of the high affinity conformation of this mutant beta3 integrin by incubation with either Arg-Gly-Asp peptide or exogenous manganese was equivalent. These results suggest that the extracellular structure of beta3 integrins in the high affinity conformation is not directly related to the structure of the cytoplasmic face of the integrin. Moreover, the requirement for beta3 phosphorylation is demonstrated without mutation of the beta3 subunit. In support of our previous hypothesis of a role for beta3 phosphorylation in adhesion, these studies demonstrate a strong correlation between beta3 tyrosine phosphorylation and assembly of a cytoskeleton competent to support firm cell adhesion.

  15. Evaluating the genotoxicity of topoisomerase-targeted antibiotics

    PubMed Central

    Smart, Daniel J.; Lynch, Anthony M.

    2012-01-01

    Antibiotics like fluoroquinolones (FQs) that target bacterial type II topoisomerases pose a potential genotoxic risk due to interactions with mammalian topoisomerase II (TOPO II) counterparts. Inhibition of TOPO II can lead to the generation of clastogenic DNA double-strand breaks (DSBs) that can in turn manifest in mutagenesis. Thus, methods that allow early identification of drugs that present the greatest hazard are warranted. A rapid, medium-throughput and predictive genotoxicity screen that can be applied to bacterial type II topoisomerase inhibitors is described herein. Maximal induction of the DSB biomarker serine139-phosphorylated histone H2AX (γH2AX) in L5178Y cells was quantified via flow cytometry and correlated with data derived from the mouse lymphoma screen (MLS), a default assay used to rank genotoxic potential. When applied to a class of novel bacterial type II topoisomerase inhibitors (NBTIs) in lead-optimisation, maximal γH2AX induction >1.4-fold (relative to controls) identified 22/27 NBTIs that induced >6-fold relative mutation frequency (MF) in MLS. Moreover, response signatures comprising of γH2AX induction and G2M cell cycle arrest elucidated using this approach suggested that these NBTIs, primarily of the H class, operated via a TOPO II poison-like mechanism of action (MoA) similar to FQs. NBTIs that induced ≤6-fold relative MF, which were mainly A class-derived, had less impact on γH2AX (≤1.4-fold) and also evoked G1 arrest, indicating that their cytotoxic effects were likely mediated through a non-poison MoA. Concordance between assays was 86% (54/63) when 1.4- and 6-fold ‘cut offs’ were applied. These findings were corroborated through inspection of human TOPO IIα IC50 data as NBTIs exhibiting equivalent inhibitory capacities had differing genotoxic potencies. Deployed in an early screening capacity, the γH2AX by flow assay coupled with structure–activity relationship evaluation can provide insight into MoA and impact medicinal chemistry efforts, ultimately leading to the production of inherently safer molecules. PMID:22155972

  16. The neurophysiological features of myoclonus-dystonia and differentiation from other dystonias.

    PubMed

    Popa, Traian; Milani, Paolo; Richard, Aliénor; Hubsch, Cécile; Brochard, Vanessa; Tranchant, Christine; Sadnicka, Anna; Rothwell, John; Vidailhet, Marie; Meunier, Sabine; Roze, Emmanuel

    2014-05-01

    Myoclonus-dystonia (M-D) is a clinical syndrome characterized by a combination of myoclonic jerks and mild to moderate dystonia. The syndrome is related to ε-sarcoglycan (SGCE) gene mutations in about half the typical cases. Whether the M-D phenotype reflects a primary dysfunction of the cerebellothalamocortical pathway or of the striatopallidothalamocortical pathway is unclear. The exact role of an additional cortical dysfunction in the pathogenesis of M-D is also unknown. To clarify the neurophysiological features of M-D and discuss whether M-D due to SGCE deficiency differs from other primary dystonias. We studied a referred sample of 12 patients with M-D (mean [SD] age, 28.8 [6.2] years; age range, 19-38 years; 5 women) belonging to 11 unrelated families with a proven mutation or deletion of the SGCE gene and a group of 12 age- and sex-matched healthy control individuals. Every participant underwent 3 sessions exploring the excitability of the primary motor cortex, the response of the primary motor cortex to a plasticity-inducing protocol, and the cerebellar-dependent eye-blink classic conditioning (EBCC). The clinical evaluation of patients included the Unified Myoclonus Rating Scale and Burke-Fahn-Marsden Dystonia Rating Scale. Myoclonus-dystonia with a proven SGCE mutation. We measured resting and active motor thresholds, and short-interval intracortical inhibition and facilitation. The plasticity of the motor cortex was evaluated before and for 30 minutes after 600 pulses of rapid paired associative stimulation. The cerebellar functioning was evaluated with the number of conditioned responses during the 6 blocks of EBCC and 1 extinction block. All data were compared between the 2 groups. For patients, correlations were explored between electrophysiological data and clinical scores. We found lower membrane excitability of the corticocortical axons and normal intracortical γ-aminobutyric acid inhibition in contrast with what has been described in other forms of primary dystonia. Myoclonus-dystonia patients also shared some common pathophysiological features of dystonia, including enhanced responsiveness of the motor cortex to plasticity induction and abnormal response to cerebellar conditioning as tested by EBCC. Specific underlying dysfunctions are associated with the very particular clinical phenotype of M-D and make it a unique entity that stands apart from other primary dystonias.

  17. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy

    PubMed Central

    Di Fiore, F; Blanchard, F; Charbonnier, F; Le Pessot, F; Lamy, A; Galais, M P; Bastit, L; Killian, A; Sesboüé, R; Tuech, J J; Queuniet, A M; Paillot, B; Sabourin, J C; Michot, F; Michel, P; Frebourg, T

    2007-01-01

    The predictive value of KRAS mutation in metastatic colorectal cancer (MCRC) patients treated with cetuximab plus chemotherapy has recently been suggested. In our study, 59 patients with a chemotherapy-refractory MCRC treated with cetuximab plus chemotherapy were included and clinical response was evaluated according to response evaluation criteria in solid tumours (RECIST). Tumours were screened for KRAS mutations using first direct sequencing, then two sensitive methods based on SNaPshot and PCR-ligase chain reaction (LCR) assays. Clinical response was evaluated according to gene mutations using the Fisher exact test. Times to progression (TTP) were calculated using the Kaplan–Meier method and compared with log-rank test. A KRAS mutation was detected in 22 out of 59 tumours and, in six cases, was missed by sequencing analysis but detected using the SNaPshot and PCR-LCR assays. Remarkably, no KRAS mutation was found in the 12 patients with clinical response. KRAS mutation was associated with disease progression (P=0.0005) and TTP was significantly decreased in mutated KRAS patients (3 vs 5.5 months, P=0.015). Our study confirms that KRAS mutation is highly predictive of a non-response to cetuximab plus chemotherapy in MCRC and highlights the need to use sensitive molecular methods, such as SNaPshot or PCR-LCR assays, to ensure an efficient mutation detection. PMID:17375050

  18. Hepatic autophagy contributes to the metabolic response to dietary protein restriction.

    PubMed

    Henagan, Tara M; Laeger, Thomas; Navard, Alexandra M; Albarado, Diana; Noland, Robert C; Stadler, Krisztian; Elks, Carrie M; Burk, David; Morrison, Christopher D

    2016-06-01

    Autophagy is an essential cellular response which acts to release stored cellular substrates during nutrient restriction, and particularly plays a key role in the cellular response to amino acid restriction. However, there has been limited work testing whether the induction of autophagy is required for adaptive metabolic responses to dietary protein restriction in the whole animal. Here, we found that moderate dietary protein restriction led to a series of metabolic changes in rats, including increases in food intake and energy expenditure, the downregulation of hepatic fatty acid synthesis gene expression and reduced markers of hepatic mitochondrial number. Importantly, these effects were also associated with an induction of hepatic autophagy. To determine if the induction of autophagy contributes to these metabolic effects, we tested the metabolic response to dietary protein restriction in BCL2-AAA mice, which bear a genetic mutation that impairs autophagy induction. Interestingly, BCL2-AAA mice exhibit exaggerated responses in terms of both food intake and energy expenditure, whereas the effects of protein restriction on hepatic metabolism were significantly blunted. These data demonstrate that restriction of dietary protein is sufficient to trigger hepatic autophagy, and that disruption of autophagy significantly alters both hepatic and whole animal metabolic response to dietary protein restriction. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Wavelength-dependent ultraviolet induction of cyclobutane pyrimidine dimers in the human cornea.

    PubMed

    Mallet, Justin D; Rochette, Patrick J

    2013-08-01

    Exposition to ultraviolet (UV) light is involved in the initiation and the progression of skin cancer. The genotoxicity of UV light is mainly attributed to the induction of cyclobutane pyrimidine dimers (CPDs), the most abundant DNA damage generated by all UV types (UVA, B and C). The human cornea is also exposed to the harmful UV radiations, but no UV-related neoplasm has been reported in this ocular structure. The probability that a specific DNA damage leads to a mutation and eventually to cellular transformation is influenced by its formation frequency. To shed light on the genotoxic effect of sunlight in the human eye, we have analyzed CPD induction in the cornea and the iris following irradiation of ex vivo human eyes with UVA, B or C. The extent of CPD induction was used to establish the penetrance of the different UV types in the human cornea. We show that UVB- and UVC-induced CPDs are concentrated in the corneal epithelium and do not penetrate deeply beyond this corneal layer. On the other hand, UVA wavelengths penetrate deeper and induce CPDs in the entire cornea and in the first layers of the iris. Taken together, our results are undoubtedly an important step towards better understanding the consequences of UV exposure to the human eye.

  20. Wnt signaling induces vulva development in the nematode Pristionchus pacificus.

    PubMed

    Tian, Huiyu; Schlager, Benjamin; Xiao, Hua; Sommer, Ralf J

    2008-01-22

    The Caenorhabditis elegans vulva is induced by a member of the epidermal growth factor (EGF) family that is expressed in the gonadal anchor cell, representing a prime example of signaling processes in animal development. Comparative studies indicated that vulva induction has changed rapidly during evolution. However, nothing was known about the molecular mechanisms underlying these differences. By analyzing deletion mutants in five Wnt pathway genes, we show that Wnt signaling induces vulva formation in Pristionchus pacificus. A Ppa-bar-1/beta-catenin deletion is completely vulvaless. Several Wnt ligands and receptors act redundantly in vulva induction, and Ppa-egl-20/Wnt; Ppa-mom-2/Wnt; Ppa-lin-18/Ryk triple mutants are strongly vulvaless. Wnt ligands are differentially expressed in the somatic gonad, the anchor cell, and the posterior body region, respectively. In contrast, previous studies indicated that Ppa-lin-17, one of the Frizzled-type receptors, has a negative role in vulva formation. We found that mutations in Ppa-bar-1 and Ppa-egl-20 suppress the phenotype of Ppa-lin-17. Thus, an unexpected complexity of Wnt signaling is involved in vulva induction and vulva repression in P. pacificus. This study provides the first molecular identification of the inductive vulva signal in a nematode other than Caenorhabditis.

  1. Genetic effects of HZE and cosmic radiation (L-9)

    NASA Technical Reports Server (NTRS)

    Ikenaga, Mituo

    1993-01-01

    The purpose of our experiment is to detect mutations in Drosophila possibly induced by space radiation during the SL-J mission, so that we will be able to obtain basic information about 'the genetic (mutational) risk of space radiation' which can be used to estimate human risk of cancer induction by space flight. As an example of somatic mutation, we will analyze morphological changes in hair growing on the surface of the wing of an adult fly. A piece of wing consists of about 30 thousand wing cells and in the wild type Drosophila a long single piece of hair is growing on the surface of each wing cell. When Drosophila is exposed to radiation as its early stage of development, such as embryonic stage or larval (maggot) stage, some mutations will appear in the wing hair of the adult fly with a certain low frequency, depending on the radiation dose. Among the mutations, the most frequent one is a change in the number of hairs per cell, that is, usually three or more hairs are coming out from a single wing cell. In the actual SL-J flight, we will install thousands of Drosophila larvae (maggots) into the Space Shuttle Discovery and expose them to space radiation during the 7-day mission. Immediately after the re-entry to the ground, these larvae are expected to develop (emerge) into adult flies. Then the wings will be fixed by ethylalcohol and permanent samples will be prepared. Finally, we will analyze the wing samples microscopically in order to detect mutations.

  2. Saccharomyces cerevisiae mutants with enhanced induced mutation and altered mitotic gene conversion.

    PubMed

    Ivanov, E L; Kovaltzova, S V; Korolev, V G

    1989-08-01

    We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.

  3. Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42.

    PubMed

    Ivanova, Kira A; Tsyganova, Anna V; Brewin, Nicholas J; Tikhonovich, Igor A; Tsyganov, Viktor E

    2015-11-01

    Rhizobia are able to establish a beneficial interaction with legumes by forming a new organ, called the symbiotic root nodule, which is a unique ecological niche for rhizobial nitrogen fixation. Rhizobial infection has many similarities with pathogenic infection and induction of defence responses accompanies both interactions, but defence responses are induced to a lesser extent during rhizobial infection. However, strong defence responses may result from incompatible interactions between legumes and rhizobia due to a mutation in either macro- or microsymbiont. The aim of this research was to analyse different plant defence reactions in response to Rhizobium infection for several pea (Pisum sativum) mutants that result in ineffective symbiosis. Pea mutants were examined by histochemical and immunocytochemical analyses, light, fluorescence and transmission electron microscopy and quantitative real-time PCR gene expression analysis. It was observed that mutations in pea symbiotic genes sym33 (PsIPD3/PsCYCLOPS encoding a transcriptional factor) and sym40 (PsEFD encoding a putative negative regulator of the cytokinin response) led to suberin depositions in ineffective nodules, and in the sym42 there were callose depositions in infection thread (IT) and host cell walls. The increase in deposition of unesterified pectin in IT walls was observed for mutants in the sym33 and sym42; for mutant in the sym42, unesterified pectin was also found around degrading bacteroids. In mutants in the genes sym33 and sym40, an increase in the expression level of a gene encoding peroxidase was observed. In the genes sym40 and sym42, an increase in the expression levels of genes encoding a marker of hypersensitive reaction and PR10 protein was demonstrated. Thus, a range of plant defence responses like suberisation, callose and unesterified pectin deposition as well as activation of defence genes can be triggered by different pea single mutations that cause perception of an otherwise beneficial strain of Rhizobium as a pathogen.

  4. Mutation Spectrum and Phenotypic Features in Noonan Syndrome with PTPN11 Mutations: Definition of Two Novel Mutations.

    PubMed

    Atik, Tahir; Aykut, Ayca; Hazan, Filiz; Onay, Huseyin; Goksen, Damla; Darcan, Sukran; Tukun, Ajlan; Ozkinay, Ferda

    2016-06-01

    To evaluate the spectrum of PTPN11 gene mutations in Noonan syndrome patients and to study the genotype-phenotype associations. In this study, twenty Noonan syndrome patients with PTPN11 mutations were included. The patients underwent a detailed clinical and physical evaluation. To identify inherited cases, parents of all mutation positive patients were analyzed. Thirteen different PTPN11 mutations, two of them being novel, were detected in the study group. These mutations included eleven missense mutations: p.G60A, p.D61N, p.Y62D, p.Y63C, p.E69Q, p.Q79R, p.Y279C,p.N308D, p.N308S, p.M504V, p.Q510R and two novel missense mutations: p.I56V and p.I282M. The frequency of cardiac abnormalities and short stature were found to be 80 % and 80 %, respectively. Mental retardation was not observed in patients having exon 8 mutations. No significant correlations were detected between other phenotypic features and genotypes. By identifying genotype-phenotype correlations, this study provides information on phenotypes observed in NS patients with different PTPN11 mutations.

  5. Differential Radiosensitivity Phenotypes of DNA-PKcs Mutations Affecting NHEJ and HRR Systems following Irradiation with Gamma-Rays or Very Low Fluences of Alpha Particles

    PubMed Central

    Little, John B.; Kato, Takamitsu A.; Shih, Hung-Ying; Xie, Xian-Jin; Wilson Jr., Paul F.; Brogan, John R.; Kurimasa, Akihiro; Chen, David J.; Bedford, Joel S.; Chen, Benjamin P. C.

    2014-01-01

    We have examined cell-cycle dependence of chromosomal aberration induction and cell killing after high or low dose-rate γ irradiation in cells bearing DNA-PKcs mutations in the S2056 cluster, the T2609 cluster, or the kinase domain. We also compared sister chromatid exchanges (SCE) production by very low fluences of α-particles in DNA-PKcs mutant cells, and in homologous recombination repair (HRR) mutant cells including Rad51C, Rad51D, and Fancg/xrcc9. Generally, chromosomal aberrations and cell killing by γ-rays were similarly affected by mutations in DNA-PKcs, and these mutant cells were more sensitive in G1 than in S/G2 phase. In G1-irradiated DNA-PKcs mutant cells, both chromosome- and chromatid-type breaks and exchanges were in excess than wild-type cells. For cells irradiated in late S/G2 phase, mutant cells showed very high yields of chromatid breaks compared to wild-type cells. Few exchanges were seen in DNA-PKcs-null, Ku80-null, or DNA-PKcs kinase dead mutants, but exchanges in excess were detected in the S2506 or T2609 cluster mutants. SCE induction by very low doses of α-particles is resulted from bystander effects in cells not traversed by α-particles. SCE seen in wild-type cells was completely abolished in Rad51C- or Rad51D-deficient cells, but near normal in Fancg/xrcc9 cells. In marked contrast, very high levels of SCEs were observed in DNA-PKcs-null, DNA-PKcs kinase-dead and Ku80-null mutants. SCE induction was also abolished in T2609 cluster mutant cells, but was only slightly reduced in the S2056 cluster mutant cells. Since both non-homologous end-joining (NHEJ) and HRR systems utilize initial DNA lesions as a substrate, these results suggest the possibility of a competitive interference phenomenon operating between NHEJ and at least the Rad51C/D components of HRR; the level of interaction between damaged DNA and a particular DNA-PK component may determine the level of interaction of such DNA with a relevant HRR component. PMID:24714417

  6. Transgenic HFE-dependent induction of hepcidin in mice does not require transferrin receptor-2.

    PubMed

    Schmidt, Paul J; Fleming, Mark D

    2012-06-01

    Hereditary hemochomatosis (HH) is caused by mutations in several genes, including HFE and transferrin receptor-2 (TFR2). Loss of either protein decreases expression of the iron regulatory hormone hepcidin by the liver, leading to inappropriately high iron uptake from the diet, and resulting in systemic iron overload. In tissue culture, overexpressed HFE and TFR2 physically interact. Hepatocellular overexpression of Hfe in vivo increases hepcidin expression, despite an associated decrease in Tfr2. On this basis, we hypothesized that Tfr2 would not be required for Hfe-dependent up-regulation of hepcidin. We show that hepatocellular overexpression of Hfe in Tfr2(Y245X/Y245X) mice leads to hepcidin induction eventuating in iron deficiency and a hypochromic, microcytic anemia. Furthermore, coimmunoprecipitation studies using liver lysates did not provide evidence for physical interaction between Hfe and Tfr2 in vivo. In conclusion, we demonstrate that Tfr2 is not essential for Hfe-mediated induction of hepcidin expression, supporting the possibility that TFR2 may regulate iron metabolism in an HFE-independent manner. Copyright © 2012 Wiley Periodicals, Inc.

  7. Transgenic HFE-dependent induction of hepcidin in mice does not require transferrin receptor-2

    PubMed Central

    Schmidt, Paul J.; Fleming, Mark D.

    2012-01-01

    Hereditary hemochomatosis (HH) is caused by mutations in several genes, including HFE and transferrin receptor-2 (TFR2). Loss of either protein decreases expression of the iron regulatory hormone hepcidin by the liver, leading to inappropriately high iron uptake from the diet, and resulting in systemic iron overload. In tissue culture, overexpressed HFE and TFR2 physically interact. Hepatocellular overexpression of Hfe in vivo increases hepcidin expression, despite an associated decrease in Tfr2. On this basis, we hypothesized that Tfr2 would not be required for Hfe-dependent up-regulation of hepcidin. We show that hepatocellular overexpression of Hfe in Tfr2Y245X/Y245X mice leads to hepcidin induction eventuating in iron deficiency and a hypochromic, microcytic anemia. Furthermore, co-immunoprecipitation studies using liver lysates did not provide evidence for physical interaction between Hfe and Tfr2 in vivo. In conclusion, we demonstrate that Tfr2 is not essential for Hfe-mediated induction of hepcidin expression, supporting the possibility that TFR2 may regulate iron metabolism in an HFE-independent manner. PMID:22460705

  8. A review of the genotoxicity of trimethylolpropane triacrylate (TMPTA).

    PubMed

    Kirkland, David; Fowler, Paul

    2018-04-01

    Trimethylolpropane triacrylate (TMPTA) is a trifunctional acrylate monomer which polymerizes rapidly when exposed to sources of free radicals. It is widely used as a reactive diluent and polymer building block in the formulation of overprint varnishes, inks and a variety of wood, plastic and metal coatings. TMPTA has been tested in a range of in vitro and in vivo genotoxicity tests. There is no clear evidence of induction of gene mutations by TMPTA in bacteria or mammalian cells in vitro, but there is evidence of clastogenicity from induction of small colony tk mutants in the mouse lymphoma assay, and also induction of micronuclei and chromosomal aberrations. However, TMPTA was negative in bone marrow or blood micronucleus tests in vivo following oral or repeated dermal application, and did not induce comets in bone marrow or liver of mice following intravenous administration, which would have achieved plasma (and therefore tissue) concentrations estimated to exceed those inducing clastogenic effects in vitro. It is concluded that TMPTA is not genotoxic in vivo. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Mitochondrial DNA mutations and cognition: a case-series report.

    PubMed

    Inczedy-Farkas, Gabriella; Trampush, Joey W; Perczel Forintos, Dora; Beech, Danielle; Andrejkovics, Monika; Varga, Zsofia; Remenyi, Viktoria; Bereznai, Benjamin; Gal, Aniko; Molnar, Maria Judit

    2014-06-01

    Mutations in the mitochondrial genome can impair normal metabolic function in the central nervous system (CNS) where cellular energy demand is high. Primary mitochondrial DNA (mtDNA) mutations have been linked to several mitochondrial disorders that have comorbid psychiatric, neurologic, and cognitive sequelae. Here, we present a series of cases with primary mtDNA mutations who were genotyped and evaluated across a common neuropsychological battery. Nineteen patients with mtDNA mutations were genotyped and clinically and cognitively evaluated. Pronounced deficits in nonverbal/visuoperceptual reasoning, verbal recall, semantic word generativity, and processing speed were evident and consistent with a "mitochondrial dementia" that has been posited. However, variation in cognitive performance was noteworthy, suggesting that the phenotypic landscape of cognition linked to primary mtDNA mutations is heterogeneous. Our patients with mtDNA mutations evidenced cognitive deficits quite similar to those commonly seen in Alzheimer's disease and could have clinical relevance to the evaluation of dementia. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Genetic analyses of bone morphogenetic protein 2, 4 and 7 in congenital combined pituitary hormone deficiency.

    PubMed

    Breitfeld, Jana; Martens, Susanne; Klammt, Jürgen; Schlicke, Marina; Pfäffle, Roland; Krause, Kerstin; Weidle, Kerstin; Schleinitz, Dorit; Stumvoll, Michael; Führer, Dagmar; Kovacs, Peter; Tönjes, Anke

    2013-12-01

    The complex process of development of the pituitary gland is regulated by a number of signalling molecules and transcription factors. Mutations in these factors have been identified in rare cases of congenital hypopituitarism but for most subjects with combined pituitary hormone deficiency (CPHD) genetic causes are unknown. Bone morphogenetic proteins (BMPs) affect induction and growth of the pituitary primordium and thus represent plausible candidates for mutational screening of patients with CPHD. We sequenced BMP2, 4 and 7 in 19 subjects with CPHD. For validation purposes, novel genetic variants were genotyped in 1046 healthy subjects. Additionally, potential functional relevance for most promising variants has been assessed by phylogenetic analyses and prediction of effects on protein structure. Sequencing revealed two novel variants and confirmed 30 previously known polymorphisms and mutations in BMP2, 4 and 7. Although phylogenetic analyses indicated that these variants map within strongly conserved gene regions, there was no direct support for their impact on protein structure when applying predictive bioinformatics tools. A mutation in the BMP4 coding region resulting in an amino acid exchange (p.Arg300Pro) appeared most interesting among the identified variants. Further functional analyses are required to ultimately map the relevance of these novel variants in CPHD.

  11. Genetic analyses of bone morphogenetic protein 2, 4 and 7 in congenital combined pituitary hormone deficiency

    PubMed Central

    2013-01-01

    Background The complex process of development of the pituitary gland is regulated by a number of signalling molecules and transcription factors. Mutations in these factors have been identified in rare cases of congenital hypopituitarism but for most subjects with combined pituitary hormone deficiency (CPHD) genetic causes are unknown. Bone morphogenetic proteins (BMPs) affect induction and growth of the pituitary primordium and thus represent plausible candidates for mutational screening of patients with CPHD. Methods We sequenced BMP2, 4 and 7 in 19 subjects with CPHD. For validation purposes, novel genetic variants were genotyped in 1046 healthy subjects. Additionally, potential functional relevance for most promising variants has been assessed by phylogenetic analyses and prediction of effects on protein structure. Results Sequencing revealed two novel variants and confirmed 30 previously known polymorphisms and mutations in BMP2, 4 and 7. Although phylogenetic analyses indicated that these variants map within strongly conserved gene regions, there was no direct support for their impact on protein structure when applying predictive bioinformatics tools. Conclusions A mutation in the BMP4 coding region resulting in an amino acid exchange (p.Arg300Pro) appeared most interesting among the identified variants. Further functional analyses are required to ultimately map the relevance of these novel variants in CPHD. PMID:24289245

  12. Mixed adenoneuroendocrine carcinoma of the colon: molecular pathogenesis and treatment.

    PubMed

    Vanacker, Leen; Smeets, Dominiek; Hoorens, Anne; Teugels, Erik; Algaba, Roberto; Dehou, Marie Françoise; De Becker, Ann; Lambrechts, Diether; De Greve, Jacques

    2014-10-01

    We report a case of a mixed adenoneuroendocrine carcinoma developed in a colorectal adenocarcinoma with lymph node and liver metastases exclusively emanating from the neuroendocrine carcinoma component. The patient underwent right hemicolectomy and postoperatively received chemotherapy with cisplatin and etoposide and subsequent high-dose induction chemotherapy, followed by autologous stem cell transplantation. Following this treatment, there was a complete remission. Currently, thirty months after treatment, the patient is in unmaintained complete remission. Comparative exome sequencing of germline DNA and DNA from the two separate malignant components revealed six somatic changes in cancer consensus genes. Both components shared somatic mutations in Adenomatous polyposis coli (APC), Kirsten rat sarcoma viral oncogene homolog (KRAS), B-cell CLL/lymphoma 9 (BCL9) and Forkhead Box P1 (FOXP1) genes. Mutation in SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (SMARCA4) was only found in the neuroendocrine carcinoma component. The finding of several identical somatic mutations in both components supports a clonal relationship between the neuroendocrine carcinoma and the adenocarcinoma. We suggest that a mutation in SMARCA4 could be responsible for the transformation of the adenocarcinoma component into the neuroendocrine phenotype. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Lack of chemically induced mutation in repair-deficient mutants of yeast.

    PubMed

    Prakash, L

    1974-12-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), beta-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents.

  14. BRAF-mutated cells activate GCN2-mediated integrated stress response as a cytoprotective mechanism in response to vemurafenib.

    PubMed

    Nagasawa, Ikuko; Kunimasa, Kazuhiro; Tsukahara, Satomi; Tomida, Akihiro

    2017-01-22

    In BRAF-mutated melanoma cells, the BRAF inhibitor, vemurafenib, induces phosphorylation of eukaryotic initiation factor 2α (eIF2α) and subsequent induction of activating transcription factor 4 (ATF4), the central regulation node of the integrated stress response (ISR). While the ISR supports cellular adaptation to various stresses, the role of vemurafenib-triggered ISR has not been fully characterized. Here, we showed that in response to vemurafenib, BRAF-mutated melanoma and colorectal cancer cells rapidly induced the ISR as a cytoprotective mechanism through activation of general control nonderepressible 2 (GCN2), an eIF2α kinase sensing amino acid levels. The vemurafenib-triggered ISR, an event independent of downstream MEK inhibition, was specifically prevented by silencing GCN2, but not other eIF2α kinases, including protein kinase-like endoplasmic reticulum kinase, which transmits endoplasmic reticulum (ER) stress. Consistently, the ER stress gatekeeper, GRP78, was not induced by vemurafenib. Interestingly, ATF4 silencing by siRNA rendered BRAF-mutated melanoma cells sensitive to vemurafenib. Thus, the GCN2-mediated ISR can promote cellular adaptation to vemurafenib-induced stress, providing an insight into the development of drug resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Replication and Adaptive Mutations of Low Pathogenic Avian Influenza Viruses in Tracheal Organ Cultures of Different Avian Species

    PubMed Central

    Petersen, Henning; Matrosovich, Mikhail; Pleschka, Stephan; Rautenschlein, Silke

    2012-01-01

    Transmission of avian influenza viruses (AIV) between different avian species may require genome mutations that allow efficient virus replication in a new species and could increase virulence. To study the role of domestic poultry in the evolution of AIV we compared replication of low pathogenic (LP) AIV of subtypes H9N2, H7N7 and H6N8 in tracheal organ cultures (TOC) and primary embryo fibroblast cultures of chicken, turkey, Pekin duck and homing pigeon. Virus strain-dependent and avian species-related differences between LPAIV were observed in growth kinetics and induction of ciliostasis in TOC. In particular, our data demonstrate high susceptibility to LPAIV of turkey TOC contrasted with low susceptibility of homing pigeon TOC. Serial virus passages in the cells of heterologous host species resulted in adaptive mutations in the AIV genome, especially in the receptor-binding site and protease cleavage site of the hemagglutinin. Our data highlight differences in susceptibility of different birds to AIV viruses and emphasizes potential role of poultry in the emergence of new virus variants. PMID:22912693

  16. Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast.

    PubMed Central

    Kuchin, S; Yeghiayan, P; Carlson, M

    1995-01-01

    The SSN3 and SSN8 genes of Saccharomyces cerevisiae were identified by mutations that suppress a defect in SNF1, a protein kinase required for release from glucose repression. Mutations in SSN3 and SSN8 also act synergistically with a mutation of the MIG1 repressor protein to relieve glucose repression. We have cloned the SSN3 and SSN8 genes. SSN3 encodes a cyclin-dependent protein kinase (cdk) homolog and is identical to UME5. SSN8 encodes a cyclin homolog 35% identical to human cyclin C. SSN3 and SSN8 fusion proteins interact in the two-hybrid system and coimmunoprecipitate from yeast cell extracts. Using an immune complex assay, we detected protein kinase activity that depends on both SSN3 and SSN8. Thus, the two SSN proteins are likely to function as a cdk-cyclin pair. Genetic analysis indicates that the SSN3-SSN8 complex contributes to transcriptional repression of diversely regulated genes and also affects induction of the GAL1 promoter. Images Fig. 3 Fig. 4 Fig. 5 PMID:7732022

  17. Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer.

    PubMed Central

    Siegel, P M; Ryan, E D; Cardiff, R D; Muller, W J

    1999-01-01

    To assess the importance of Neu activation during mammary tumorigenesis, altered receptors harboring in-frame deletions within the extracellular domain were expressed in transgenic mice. Females from several independent lines develop multiple mammary tumors that frequently metastasize to the lung. Tumor progression in these strains was associated with elevated levels of tyrosine-phosphorylated Neu and ErbB-3. Consistent with these observations, a survey of primary human breast tumors revealed frequent co-expression of both erbB-2 and erbB-3 transcripts. The ability of altered Neu receptors to induce mammary tumorigenesis in transgenic mice prompted us to examine whether similar mutations occurred in ErbB-2 during human breast cancer progression. Interestingly, an alternatively spliced form of erbB-2, closely resembling spontaneous activated forms of neu, was detected in human breast tumors. The ErbB-2 receptor encoded by this novel transcript harbors an in-frame deletion of 16 amino acids in the extracellular domain and can transform Rat-1 fibroblasts. Together, these observations argue that co-expression of ErbB-2 and ErbB-3 may play a critical role in the induction of human breast tumors, and raise the possibility that activating mutations in the ErbB-2 receptor may also contribute to this process. PMID:10205169

  18. Oncogenic JAK2V617F requires an intact SH2-like domain for constitutive activation and induction of a myeloproliferative disease in mice.

    PubMed

    Gorantla, Sivahari P; Dechow, Tobias N; Grundler, Rebekka; Illert, Anna Lena; Zum Büschenfelde, Christian Meyer; Kremer, Marcus; Peschel, Christian; Duyster, Justus

    2010-11-25

    The oncogenic JAK2V617F mutation is found in myeloproliferative neoplasms (MPNs) and is believed to be critical for leukemogenesis. Here we show that JAK2V617F requires an intact SH2 domain for constitutive activation of downstream signaling pathways. In addition, there is a strict requirement of cytokine receptor expression for the activation of this oncogene. Further analysis showed that the SH2 domain mutation did not interfere with JAK2 membrane distribution. However, coimmunoprecipitated experiments revealed a role for the SH2 domain in the aggregation and cross-phosphorylation of JAK2V617F at the cell membrane. Forced overexpression of cytokine receptors could rescue the JAK2V617F SH2 mutant supporting a critical role of JAK2V617F abundance for constitutive activation. However, under physiologic cytokine receptor expression the SH2 domain is absolutely necessary for oncogenic JAK2V617F activation. This is demonstrated in a bone marrow transplantation model, in which an intact SH2 domain in JAK2V617F is required for the induction of an MPN-like disease. Thus, our results points to an indispensable role of the SH2 domain in JAK2V617F-induced MPNs.

  19. Defining the role of tyrosine kinase inhibitors in early stage non-small cell lung cancer.

    PubMed

    Lampaki, Sofia; Lazaridis, George; Zarogoulidis, Konstantinos; Kioumis, Ioannis; Papaiwannou, Antonis; Tsirgogianni, Katerina; Karavergou, Anastasia; Tsiouda, Theodora; Karavasilis, Vasilis; Yarmus, Lonny; Darwiche, Kaid; Freitag, Lutz; Sakkas, Antonios; Kantzeli, Angeliki; Baka, Sofia; Hohenforst-Schmidt, Wolfgang; Zarogoulidis, Paul

    2015-01-01

    Historical, the non-small cell lung cancer (NSCLC) was as a united disease entity and the chemotherapy to the metastatic cancer had limited results. Recent studies for the metastatic non-small cell lung cancer led to the ascertainment that the NSCLC does not constitute exclusively a disease entity, but different neoplasms guided from different molecular paths, different biological behavior and at extension requires different confrontation. Thus the new direction for the therapeutic approach of NSCLC is henceforth the most individualized approach based on the activated molecular paths of tumor. Distinct subtypes of NSCLC are driven by a specific genetic alteration, like EGFR, ALK, ROS1 or BRAF mutations, and these genetic alterations are sensitized to the inhibition of specific oncogenic pathways. The benefit from the use of tyrosine kinase inhibitors in patients with EGFR mutations it was confirmed by six randomized studies of phase III that investigated the role of gefitinib, erlotinib and afatinib. In these studies the response rates vary in the impressive percentages from 55% to 86% and were connected with a remarkable median progression free survival of approximately 8 to 13 months, and with better quality of life compared to that of chemotherapy. In early stages NSCLC is needed the individualization of systemic treatment in order to reduce toxicity that is observed in the classic chemotherapy and to impact outcome. The role of EGFR TKI's has been evaluated in the adjuvant chemotherapy in early stage resected NSCLC. The data from these studies suggest that adjuvant TKI therapy might not increase the overall survival, but delay the recurrences. Prospective trials restricted to EGFR or ALK driven NSCLC subsets potentially offering the opportunity for a definitive answer in early disease adjuvant setting (ALCHEMIST) or as induction treatment before stage III chemo-radiotherapy (RTOG 1210/Alliance 31101), are ongoing. Ongoing prospective trials may offer the opportunity for a definitive answer of the role of tyrosine kinase inhibitors in induction treatment before chemo-radiotherapy or in early disease adjuvant therapy.

  20. Inhibition of BET bromodomain-dependent XIAP and FLIP expression sensitizes KRAS-mutated NSCLC to pro-apoptotic agents

    PubMed Central

    Klingbeil, Olaf; Lesche, Ralf; Gelato, Kathy A; Haendler, Bernard; Lejeune, Pascale

    2016-01-01

    Non-small cell lung cancer (NSCLC) has the highest incidence of cancer-related death worldwide and a high medical need for more effective therapies. Small-molecule inhibitors of the bromodomain and extra terminal domain (BET) family such as JQ1, I-BET762 and OTX-015 are active in a wide range of different cancer types, including lung cancer. Although their activity on oncogene expression such as c-Myc has been addressed in many studies, the effects of BET inhibition on the apoptotic pathway remain largely unknown. Here we evaluated the activity of BET bromodomain inhibitors on cell cycle distribution and on components of the apoptosis response. Using a panel of 12 KRAS-mutated NSCLC models, we found that cell lines responsive to BET inhibitors underwent apoptosis and reduced their S-phase population, concomitant with downregulation of c-Myc expression. Conversely, ectopic c-Myc overexpression rescued the anti-proliferative effect of JQ1. In the H1373 xenograft model, treatment with JQ1 significantly reduced tumor growth and downregulated the expression of c-Myc. The effects of BET inhibition on the expression of 370 genes involved in apoptosis were compared in sensitive and resistant cells and we found the expression of the two key apoptosis regulators FLIP and XIAP to be highly BET dependent. Consistent with this, combination treatment of JQ1 with the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or the pro-apoptotic chemotherapeutic agent cisplatin enhanced induction of apoptosis in both BET inhibitor sensitive and resistant cells. Further we showed that combination of JQ1 with cisplatin led to significantly improved anti-tumor efficacy in A549 tumor-bearing mice. Altogether, these results show that the identification of BET-dependent genes provides guidance for the choice of drug combinations in cancer treatment. They also demonstrate that BET inhibition primes NSCLC cells for induction of apoptosis and that a combination with pro-apoptotic compounds represents a valuable strategy to overcome treatment resistance. PMID:27607580

  1. [Radiation Anticarcinogenesis by Thiazolidine Pro-drug

    NASA Technical Reports Server (NTRS)

    Warters, Raymond L.; Roberts, Jeanette C.; Fain, Heidi

    1999-01-01

    The original goal of this work was to determine the capacity of selected aminothiols to modulate radiation induced cytotoxicity, mutagenesis and carcinogenesis in a human mammary epithelial cell line. The conclusions from this work are that WR-1065 is the "gold standard" for protection against radiation induced cytotoxicity, mutagenesis and carcinogenesis. While a potent radiation protector, WR-1065 is cytotoxic in vitro and in vivo. Our rationale for a study of the thiazolidine pro-drugs was that these compounds are neither toxic in vitro or in vivo. The results obtained during this funding period indicate that the thiazolidine pro-drugs are as potent as WR-1065 as protectors against radiation induced mutation induction, and thus presumably against radiation induced carcinogenesis. Our results indicate that the thiazolidine prodrugs are excellent candidates to test as non-toxic anticarcinogens for protecting astronauts from cancer induction during space travel.

  2. Genetic dissimilarity of putative gamma-ray-induced 'Preciosa-AAAB-Pome type' banana (Musa sp) mutants based on multivariate statistical analysis.

    PubMed

    Pestana, R K N; Amorim, E P; Ferreira, C F; Amorim, V B O; Oliveira, L S; Ledo, C A S; Silva, S O

    2011-10-25

    Bananas are among the most important fruit crops worldwide, being cultivated in more than 120 countries, mainly by small-scale producers. However, short-stature high-yielding bananas presenting good agronomic characteristics are hard to find. Consequently, wind continues to damage a great number of plantations each year, leading to lodging of plants and bunch loss. Development of new cultivars through conventional genetic breeding methods is hindered by female sterility and the low number of seeds. Mutation induction seems to have great potential for the development of new cultivars. We evaluated genetic dissimilarity among putative 'Preciosa' banana mutants generated by gamma-ray irradiation, using morphoagronomic characteristics and ISSR markers. The genetic distances between the putative 'Preciosa' mutants varied from 0.21 to 0.66, with a cophenetic correlation coefficient of 0.8064. We found good variability after irradiation of 'Preciosa' bananas; this procedure could be useful for banana breeding programs aimed at developing short-stature varieties with good agronomic characteristics.

  3. Memantine inhibits β-amyloid aggregation and disassembles preformed β-amyloid aggregates.

    PubMed

    Takahashi-Ito, Kaori; Makino, Mitsuhiro; Okado, Keiko; Tomita, Taisuke

    2017-11-04

    Memantine, an uncompetitive glutamatergic N-methyl-d-aspartate (NMDA) receptor antagonist, is widely used as a medication for the treatment of Alzheimer's disease (AD). We previously reported that chronic treatment of AD with memantine reduces the amount of insoluble β-amyloid (Aβ) and soluble Aβ oligomers in animal models of AD. The mechanisms by which memantine reduces Aβ levels in the brain were evaluated by determining the effect of memantine on Aβ aggregation using thioflavin T and transmission electron microscopy. Memantine inhibited the formation of Aβ(1-42) aggregates in a concentration-dependent manner, whereas amantadine, a structurally similar compound, did not affect Aβ aggregation at the same concentrations. Furthermore, memantine inhibited the formation of different types of Aβ aggregates, including Aβs carrying familial AD mutations, and disaggregated preformed Aβ(1-42) fibrils. These results suggest that the inhibition of Aβ aggregation and induction of Aβ disaggregation may be involved in the mechanisms by which memantine reduces Aβ deposition in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. IWGT report on quantitative approaches to genotoxicity risk ...

    EPA Pesticide Factsheets

    This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose–response analysis of genetic toxicology data, the existence and appropriate evaluation of threshold responses, and methods to analyze exposure-response relationships and derive points of departure (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species. Recommendations include the selection of appropriate genetic endpoints and target tissues, uncertainty factors and extrapolation methods to be considered, the importance and use of information on mode of action, toxicokinetics, metabolism, and exposure biomarkers when using quantitative exposure-response data to determine acceptable exposure levels in human populations or to assess the risk associated with known or anticipated exposures. The empirical relationship between genetic damage (mutation and chromosomal aberration) and cancer in animal models was also examined. It was concluded that there is a general correlation between cancer induction and mutagenic and/or clast

  5. Inductive Reasoning and Writing

    ERIC Educational Resources Information Center

    Rooks, Clay; Boyd, Robert

    2003-01-01

    Induction, properly understood, is not merely a game, nor is it a gimmick, nor is it an artificial way of explaining an element of reasoning. Proper understanding of inductive reasoning--and the various types of reasoning that the authors term inductive--enables the student to evaluate critically other people's writing and enhances the composition…

  6. DHPLC technology for high-throughput detection of mutations in a durum wheat TILLING population.

    PubMed

    Colasuonno, Pasqualina; Incerti, Ornella; Lozito, Maria Luisa; Simeone, Rosanna; Gadaleta, Agata; Blanco, Antonio

    2016-02-17

    Durum wheat (Triticum turgidum L.) is a cereal crop widely grown in the Mediterranean regions; the amber grain is mainly used for the production of pasta, couscous and typical breads. Single nucleotide polymorphism (SNP) detection technologies and high-throughput mutation induction represent a new challenge in wheat breeding to identify allelic variation in large populations. The TILLING strategy makes use of traditional chemical mutagenesis followed by screening for single base mismatches to identify novel mutant loci. Although TILLING has been combined to several sensitive pre-screening methods for SNP analysis, most rely on expensive equipment. Recently, a new low cost and time saving DHPLC protocol has been used in molecular human diagnostic to detect unknown mutations. In this work, we developed a new durum wheat TILLING population (cv. Marco Aurelio) using 0.70-0.85% ethyl methane sulfonate (EMS). To investigate the efficiency of the mutagenic treatments, a pilot screening was carried out on 1,140 mutant lines focusing on two target genes (Lycopene epsilon-cyclase, ε-LCY, and Lycopene beta-cyclase, β-LCY) involved in carotenoid metabolism in wheat grains. We simplify the heteroduplex detection by two low cost methods: the enzymatic cleavage (CelI)/agarose gel technique and the denaturing high-performance liquid chromatography (DHPLC). The CelI/agarose gel approach allowed us to identify 31 mutations, whereas the DHPLC procedure detected a total of 46 mutations for both genes. All detected mutations were confirmed by direct sequencing. The estimated overall mutation frequency for the pilot assay by the DHPLC methodology resulted to be of 1/77 kb, representing a high probability to detect interesting mutations in the target genes. We demonstrated the applicability and efficiency of a new strategy for the detection of induced variability. We produced and characterized a new durum wheat TILLING population useful for a better understanding of key gene functions. The availability of this tool together with TILLING technique will expand the polymorphisms in candidate genes of agronomically important traits in wheat.

  7. Autosomal recessive progressive myoclonus epilepsy due to impaired ceramide synthesis.

    PubMed

    Ferlazzo, Edoardo; Striano, Pasquale; Italiano, Domenico; Calarese, Tiziana; Gasparini, Sara; Vanni, Nicola; Fruscione, Floriana; Genton, Pierre; Zara, Federico

    2016-09-01

    Autosomal recessive progressive myoclonus epilepsy due to impaired ceramide synthesis is an extremely rare condition, so far reported in a single family of Algerian origin presenting an unusual, severe form of progressive myoclonus epilepsy characterized by myoclonus, generalized tonic-clonic seizures and moderate to severe cognitive impairment, with probable autosomal recessive inheritance. Disease onset was between 6 and 16 years of age. Genetic study allowed to identify a homozygous nonsynonymous mutation in CERS1, the gene encoding ceramide synthase 1, a transmembrane protein of the endoplasmic reticulum (ER), catalyzes the biosynthesis of C18-ceramides. The mutation decreased C18-ceramide levels. In addition, downregulation of CerS1 in neuroblastoma cell line showed activation of ER stress response and induction of proapoptotic pathways. This observation demonstrates that impairment of ceramide biosynthesis underlies neurodegeneration in humans.

  8. Induction and characterization of morphologic mutants in a natural Saccharomyces cerevisiae strain.

    PubMed

    Barberio, Claudia; Bianchi, Lucia; Pinzauti, Francesca; Lodi, Tiziana; Ferrero, Iliana; Polsinelli, Mario; Casalone, Enrico

    2007-02-01

    Saccharomyces cerevisiae is a good model with which to study the effects of morphologic differentiation on the ecological behaviour of fungi. In this work, 33 morphologic mutants of a natural strain of S. cerevisiae, obtained with UV mutagenesis, were selected for their streak shape and cell shape on rich medium. Two of them, showing both high sporulation proficiency and constitutive pseudohyphal growth, were analysed from a genetic and physiologic point of view. Each mutant carries a recessive monogenic mutation, and the two mutations reside in unlinked genes. Flocculation ability and responsiveness to different stimuli distinguished the two mutants. Growth at 37 degrees C affected the cell but not the colony morphology, suggesting that these two phenotypes are regulated differently. The effect of ethidium bromide, which affects mitochondrial DNA replication, suggested a possible "retrograde action" of mitochondria in pseudohyphal growth.

  9. A decrease in ubiquitination and resulting prolonged life-span of KIT underlies the KIT overexpression-mediated imatinib resistance of KIT mutation-driven canine mast cell tumor cells.

    PubMed

    Kobayashi, Masato; Kuroki, Shiori; Kurita, Sena; Miyamoto, Ryo; Tani, Hiroyuki; Tamura, Kyoichi; Bonkobara, Makoto

    2017-10-01

    Overexpression of KIT is one of the mechanisms that contributes to imatinib resistance in KIT mutation-driven tumors. Here, the mechanism underlying this overexpression of KIT was investigated using an imatinib-sensitive canine mast cell tumor (MCT) line CoMS, which has an activating mutation in KIT exon 11. A KIT-overexpressing imatinib-resistant subline, rCoMS1, was generated from CoMS cells by their continuous exposure to increasing concentrations of imatinib. Neither a secondary mutation nor upregulated transcription of KIT was detected in rCoMS1 cells. A decrease in KIT ubiquitination, a prolonged KIT life-span, and KIT overexpression were found in rCoMS1 cells. These events were suppressed by withdrawal of imatinib and were re-induced by re‑treatment with imatinib. These findings suggest that imatinib elicited overexpression of KIT via suppression of its ubiquitination. These results also indicated that imatinib-induced overexpression of KIT in rCoMS1 cells was not a permanently acquired feature but was a reversible response of the cells. Moreover, the pan deubiquitinating enzyme inhibitor PR619 prevented imatinib induction of KIT overexpression, suggesting that the imatinib-induced decrease in KIT ubiquitination could be mediated by upregulation and/or activation of deubiquitinating enzyme(s). It may be possible that a similar mechanism of KIT overexpression underlies the acquisition of imatinib resistance in some human tumors that are driven by KIT mutation.

  10. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures

    PubMed Central

    Guo, Yan; Xiong, Liming; Ishitani, Manabu; Zhu, Jian-Kang

    2002-01-01

    Low temperature regulates gene expression in bacteria, yeast, and animals as well as in plants. However, the signal transduction cascades mediating the low temperature responses are not well understood in any organism. To identify components in low temperature signaling genetically, we isolated Arabidopsis thaliana mutants in which cold-responsive genes are no longer induced by low temperatures. One of these mutations, los1–1, specifically blocks low temperature-induced transcription of cold-responsive genes. Surprisingly, cold-induced expression of the early response transcriptional activators, C-repeat/dehydration responsive element binding factors (CBF/DREB1s), is enhanced by the los1–1 mutation. The los1–1 mutation also reduces the capacity of plants to develop freezing tolerance but does not impair the vernalization response. Genetic analysis indicated that los1–1 is a recessive mutation in a single nuclear gene. The LOS1 gene encodes a translation elongation factor 2-like protein. Protein labeling studies show that new protein synthesis is blocked in los1–1 mutant plants specifically in the cold. These results reveal a critical role of new protein synthesis in the proper transduction of low temperature signals. Our results also suggest that cold-induced transcription of CBF/DREB1s is feedback inhibited by their gene products or by products of their downstream target genes. PMID:12032361

  11. In Hyperthermia Increased ERK and WNT Signaling Suppress Colorectal Cancer Cell Growth

    PubMed Central

    Bordonaro, Michael; Shirasawa, Senji; Lazarova, Darina L.

    2016-01-01

    Although neoplastic cells exhibit relatively higher sensitivity to hyperthermia than normal cells, hyperthermia has had variable success as an anti-cancer therapy. This variable outcome might be due to the fact that cancer cells themselves have differential degrees of sensitivity to high temperature. We hypothesized that the varying sensitivity of colorectal cancer (CRC) cells to hyperthermia depends upon the differential induction of survival pathways. Screening of such pathways revealed that Extracellular Signal-Regulated Kinase (ERK) signaling is augmented by hyperthermia, and the extent of this modulation correlates with the mutation status of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS). Through clonal growth assays, apoptotic analyses and transcription reporter assays of CRC cells that differ only in KRAS mutation status we established that mutant KRAS cells are more sensitive to hyperthermia, as they exhibit sustained ERK signaling hyperactivation and increased Wingless/Integrated (WNT)/beta-catenin signaling. We propose that whereas increased levels of WNT and ERK signaling and a positive feedback between the two pathways is a major obstacle in anti-cancer therapy today, under hyperthermia the hyperinduction of the pathways and their positive crosstalk contribute to CRC cell death. Ascertaining the causative association between types of mutations and hyperthermia sensitivity may allow for a mutation profile-guided application of hyperthermia as an anti-cancer therapy. Since KRAS and WNT signaling mutations are prevalent in CRC, our results suggest that hyperthermia-based therapy might benefit a significant number, but not all, CRC patients. PMID:27187477

  12. An initiation-promotion model of tumour prevalence from high-charge and energy radiations

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.

    1994-01-01

    A repair/misrepair kinetic model for multiple radiation-induced lesions (mutation inactivation) is coupled to a two-mutation model of initiation-promotion in tissue to provide a parametric description of tumour prevalence in the mouse Harderian gland from high-energy and charge radiations. Track-structure effects are considered using an action-cross section model. Dose-response curves are described for gamma rays and relativistic ions, and good agreement with experiment is found. The effects of nuclear fragmentation are also considered for high-energy proton and alpha-particle exposures. The model described provides a parametric description of age-dependent cancer induction for a wide range of radiation fields. Radiosensitivity parameters found in the model for an initiation mutation (sigma 0 = 7.6 x 10(-10) cm2 and D0 = 148.0 Gy) are somewhat different than previously observed for neoplastic transformation of C3H10T1/2 cell cultures (sigma 0 = 0.7 x 10(-10) cm2 and D0 = 117.0 Gy). We consider the two hypotheses that radiation acts solely as an initiator or as both initiator and promoter and make model calculations for fractionation exposures from gamma rays and relativistic Fe ions. For fractionated Fe exposures, an inverse-dose-rate effect is provided by a promotion hypothesis with an increase of 30% or more, dependent on the dose level and fractionation schedule, using a mutation rate for promotion similar to that of single-gene mutations.

  13. PSO4: a novel gene involved in error-prone repair in Saccharomyces cerevisiae.

    PubMed

    Henriques, J A; Vicente, E J; Leandro da Silva, K V; Schenberg, A C

    1989-09-01

    The haploid xs9 mutant, originally selected for on the basis of a slight sensitivity to the lethal effect of X-rays, was found to be extremely sensitive to inactivation by 8-methoxypsoralen (8MOP) photoaddition, especially when cells are treated in the G2 phase of the cell cycle. As the xs9 mutation showed no allelism with any of the 3 known pso mutations, it was now given the name of pso4-1. Regarding inactivation, the pso4-1 mutant is also sensitive to mono- (HN1) or bi-functional (HN2) nitrogen mustards, it is slightly sensitive to 254 nm UV radiation (UV), and shows nearly normal sensitivity to 3-carbethoxypsoralen (3-CPs) photoaddition or methyl methanesulfonate (MMS). Regarding mutagenesis, the pso4-1 mutation completely blocks reverse and forward mutations induced by either 8MOP or 3CPs photoaddition, or by gamma-rays. In the cases of UV, HN1, HN2 or MMS treatments, while reversion induction is still completely abolished, forward mutagenesis is only partially inhibited for UV, HN1, or MMS, and it is unaffected for HN2. Besides severely inhibiting induced mutagenesis, the pso4-1 mutation was found to be semi-dominant, to block sporulation, to abolish the diploid resistance effect, and to block induced mitotic recombination, which indicates that the PSO4 gene is involved in a recombinational pathway of error-prone repair, comparable to the E. coli SOS repair pathway.

  14. TBECH, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane, alters androgen receptor regulation in response to mutations associated with prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharlyngdoh, Joubert Banjop; Asnake, Solomon; Prad

    Point mutations in the AR ligand-binding domain (LBD) can result in altered AR structures leading to changes of ligand specificity and functions. AR mutations associated to prostate cancer (PCa) have been shown to result in receptor activation by non-androgenic substances and anti-androgenic drugs. Two AR mutations known to alter the function of anti-androgens are the AR{sub T877A} mutation, which is frequently detected mutation in PCa tumors and the AR{sub W741C} that is rare and has been derived in vitro following exposure of cells to the anti-androgen bicalutamide. AR activation by non-androgenic environmental substances has been suggested to affect PCa progression.more » In the present study we investigated the effect of AR mutations (AR{sub W741C} and AR{sub T877A}) on the transcriptional activation following exposure of cells to an androgenic brominated flame retardant, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH, also named DBE-DBCH). The AR mutations resulted in higher interaction energies and increased transcriptional activation in response to TBECH diastereomer exposures. The AR{sub T877A} mutation rendered AR highly responsive to low levels of DHT and TBECH and led to increased AR nuclear translocation. Gene expression analysis showed a stronger induction of AR target genes in LNCaP cells (AR{sub T877A}) compared to T-47D cells (AR{sub WT}) following TBECH exposure. Furthermore, AR knockdown experiments confirmed the AR dependency of these responses. The higher sensitivity of AR{sub T877A} and AR{sub W741C} to low levels of TBECH suggests that cells with these AR mutations are more susceptible to androgenic endocrine disrupters. - Highlights: • TBECH, is an endocrine disrupting compound that differ in activity depending on AR structure and sequence. • TBECH interaction with the human AR-LBD containing the mutations W741C and T877A is increased compared to the wild type receptor • The mutations, W741C and T877A, are more potent than the wild type receptor at inducing AR nuclear translocation and transcriptional activation following TBECH exposure. • TBECH mediates action on androgen response genes via AR signaling.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrobek, Andrew J.; Mulvihill, John J.; Wassom, John S.

    Although numerous germ-cell mutagens have been identified inanimal model systems, to date, no human germ-cell mutagens have beenconfirmed. Because the genomic integrity of our germ cells is essentialfor the continuation of the human species, a resolution of this enduringconundrum is needed. To facilitate such a resolution, we organized aworkshop at The Jackson Laboratory in Bar Harbor, Maine on September28-30, 2004. This interactive workshop brought together scientists from awide range of disciplines to assess the applicability of emergingmolecular methods for genomic analysis to the field of human germ-cellmutagenesis. Participants recommended that focused, coordinated humangerm-cell mutation studies be conducted in relation tomore » important societalexposures. Because cancer survivors represent a unique cohort withwell-defined exposures, there was a consensus that studies should bedesigned to assess the mutational impact on children born to parents whohad received certain types of mutagenic cancer chemotherapy prior toconceiving their children. Within this high-risk cohort, parents andchildren could be evaluated for inherited changes in (a) gene sequencesand chromosomal structure, (b) repeat sequences and minisatelliteregions, and (c) global gene expression and chromatin. Participants alsorecommended studies to examine trans-generational effects in humansinvolving mechanisms such as changes in imprinting and methylationpatterns, expansion of nucleotide repeats, or induction of mitochondrialDNA mutations. Workshop participants advocated establishment of abio-bank of human tissue samples that could be used to conduct amultiple-endpoint, comprehensive, and collaborative effort to detectexposure-induced heritable alterations in the human genome. Appropriateanimal models of human germ-cell mutagenes is should be used in parallelwith human studies to provide insights into the mechanisms of mammaliangerm-cell mutagenesis. Finally, participants recommended that scientificspecialty groups be convened to address specific questions regarding thepotential germ-cell mutagenicity of environmental, occupational, andlifestyle exposures. Strong support from relevant funding agencies andengagement of scientists outside the fields of genomics and germ-cellmutagenesis will be required to launch a full-scale assault on some ofthe most pressing and enduring questions in environmental mutagenesis: Dohuman germ-cell mutagens exist, what risk do they pose to futuregenerations, and are some parents at higher risk than others foracquiring and transmitting germ-cell mutations?« less

  16. The granulocyte-macrophage colony-stimulating factor promoter cis-acting element CLE0 mediates induction signals in T cells and is recognized by factors related to AP1 and NFAT.

    PubMed Central

    Masuda, E S; Tokumitsu, H; Tsuboi, A; Shlomai, J; Hung, P; Arai, K; Arai, N

    1993-01-01

    Expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene in T cells is activated by the combination of phorbol ester (phorbol myristate acetate) and calcium ionophore (A23187), which mimic antigen stimulation through the T-cell receptor. We have previously shown that a fragment containing bp -95 to +27 of the mouse GM-CSF promoter can confer inducibility to reporter genes in the human Jurkat T-cell line. Here we use an in vitro transcription system to demonstrate that a cis-acting element (positions -54 to -40), referred to as CLE0, is a target for the induction signals. We observed induction with templates containing intact CLE0 but not with templates with deleted or mutated CLE0. We also observed that two distinct signals were required for the stimulation through CLE0, since only extracts from cells treated with both phorbol myristate acetate and A23187 supported optimal induction. Stimulation probably was mediated by CLE0-binding proteins because depletion of these proteins specifically reduced GM-CSF transcription. One of the binding factors possessed biochemical and immunological features identical to those of the transcription factor AP1. Another factor resembled the T-cell-specific factor NFAT. The characteristics of these two factors are consistent with their involvement in GM-CSF induction. The presence of CLE0-like elements in the promoters of interleukin-3 (IL-3), IL-4, IL-5, GM-CSF, and NFAT sites in the IL-2 promoter suggests that the factors we detected, or related factors that recognize these sites, may account for the coordinate induction of these genes during T-cell activation. Images PMID:8246960

  17. The Induction Program--Teachers' Experience after Five Years of Practice

    ERIC Educational Resources Information Center

    Eisenschmidt, Eve; Oder, Tuuli; Reiska, Epp

    2013-01-01

    The induction program to provide support for novice teachers was introduced into teacher education in Estonia in 2004. The teachers who participated in the first program have now been working for several years. To evaluate the effectiveness of induction activities, we explored how mentoring and an induction program influence teachers' opinions…

  18. Mutagenicity and Potential Carcinogenicity of Thiopurine Treatment in Patients with Inflammatory Bowel Disease

    PubMed Central

    Nguyen, Truc; Vacek, Pamela M.; O’Neill, Patrick; Colletti, Richard B.; Finette, Barry A.

    2009-01-01

    The thiopurines, azathioprine and 6-mercaptopurine, are effective immune-modulators and cytotoxic agents extensively used in the treatment of autoimmune diseases, graft rejection, and cancer. There is compelling epidemiologic evidence that thiopurine treatment increases the risk for a variety of tumors by mechanisms that are unclear. We investigated the in vivo mutagenicity of long-term thiopurine treatment by determining the frequency and spectra of somatic mutation events at the HPRT locus in peripheral T lymphocytes as well as the prevalence of mutant clonal proliferation in a cross-sectional analysis of data from 119 children and adults with inflammatory bowel disease (IBD). Analyses of variance and regression were performed to assess relationships among the frequency and spectra of HPRT mutations with disease, duration of illness, duration of treatment and total therapeutic dose of azathioprine and 6-mercaptopurine. We observed a significant increase in the frequency of somatic mutations in 56 subjects treated with thiopurines for IBD compared to 63 subjects not treated with thiopurines. This increase was related to both total dose (p<0.001) and duration of treatment (p<0.001). Comparative mutation spectra analysis of 1,020 mutant isolates revealed a significant increase in the proportion of all transitions (p <0.001), in particular G:C to A:T transitions (p<0.001). Combined analyses of two signatures for mutant clonality, HPRT mutation and TCRβ CDR3 region unique gene sequence also demonstrated a significant thiopurine-dependent increase in mutant cell clonal proliferation (p<0.001). These findings provide in vivo evidence for mutation induction as a potential carcinogenic mechanism associated with chronic thiopurine intervention. PMID:19706768

  19. Enhanced breast cancer progression by mutant p53 is inhibited by the circular RNA circ-Ccnb1.

    PubMed

    Fang, Ling; Du, William W; Lyu, Juanjuan; Dong, Jun; Zhang, Chao; Yang, Weining; He, Alina; Kwok, Yat Sze Sheila; Ma, Jian; Wu, Nan; Li, Feiya; Awan, Faryal Mehwish; He, Chengyan; Yang, Bing L; Peng, Chun; MacKay, Helen J; Yee, Albert J; Yang, Burton B

    2018-05-23

    TP53 mutations occur in many different types of cancers that produce mutant p53 proteins. The mutant p53 proteins have lost wild-type p53 activity and gained new functions that contribute to malignant tumor progression. Different p53 mutations create distinct profiles in loss of wild-type p53 activity and gain of functions. Targeting the consequences generated by the great number of p53 mutations would be extremely complex. Therefore, in this study we used a workaround and took advantage of the fact that mutant p53 cannot bind H2AX. Using this, we developed a new approach to repress the acquisition of mutant p53 functions. We show here that the delivery of a circular RNA circ-Ccnb1 inhibited the function of three p53 mutations. By microarray analysis and real-time PCR, we detected decreased circ-Ccnb1 expression levels in patients bearing breast carcinoma. Ectopic delivery of circ-Ccnb1 inhibited tumor growth and extended mouse viability. Using proteomics, we found that circ-Ccnb1 precipitated p53 in p53 wild-type cells, but instead precipitated Bclaf1 in p53 mutant cells. Further experiments showed that H2AX serves as a bridge, linking the interaction of circ-Ccnb1 and wild-type p53, thus allowing Bclaf1 to bind Bcl2 resulting in cell survival. In the p53 mutant cells, circ-Ccnb1 formed a complex with H2AX and Bclaf1, resulting in the induction of cell death. We found that this occurred in three p53 mutations. These results shed light on the possible development of new approaches to inhibit the malignancy of p53 mutations.

  20. PROTEIN KINASE C δ IS A THERAPEUTIC TARGET IN MALIGNANT MELANOMA WITH NRAS MUTATION

    PubMed Central

    Takashima, Asami; English, Brandon; Chen, Zhihong; Cao, Juxiang; Cui, Rutao; Williams, Robert M.; Faller, Douglas V.

    2014-01-01

    NRAS is the second most frequently mutated gene in melanoma. Previous reports have demonstrated the sensitivity of cancer cell lines carrying KRAS mutations to apoptosis initiated by inhibition of protein kinase C delta (PKCδ). Here, we report that PKCδ inhibition is cytotoxic in melanomas with primary NRAS mutations. Novel small-molecule inhibitors of PKCδ were designed as chimeric hybrids of two naturally-occurring PKCδ inhibitors, staurosporine and rottlerin. The specific hypothesis interrogated and validated is that combining two domains of two naturally-occurring PKCδ inhibitors into a chimeric or hybrid structure retains biochemical and biological activity, and improves PKCδ isozyme selectivity. We have devised a potentially general synthetic protocol to make these chimeric species using Molander trifluorborate coupling chemistry. Inhibition of PKCδ, by siRNA or small molecule inhibitors, suppressed the growth of multiple melanoma cell lines carrying NRAS mutations, mediated via caspase-dependent apoptosis. Following PKCδ inhibition, the stress-responsive JNK pathway was activated, leading to the activation of H2AX. Consistent with recent reports on the apoptotic role of phospho-H2AX, knockdown of H2AX prior to PKCδ inhibition mitigated the induction of caspase-dependent apoptosis. Furthermore, PKCδ inhibition effectively induced cytotoxicity in BRAF-mutant melanoma cell lines that had evolved resistance to a BRAF inhibitor, suggesting the potential clinical application of targeting PKCδ in patients who have relapsed following treatment with BRAF inhibitors. Taken together, the present work demonstrates that inhibition of PKCδ by novel small molecule inhibitors causes caspase-dependent apoptosis mediated via the JNK-H2AX pathway in melanomas with NRAS mutations or BRAF inhibitor-resistance. PMID:24506253

  1. [Genetic control of mitotic crossing-over in yeasts. III. Induction by 8-methoxypsoralen and long-wave UV irradiation (lambda=365 nm)].

    PubMed

    Fedorova, I V; Marfin, S V

    1982-02-01

    The lethal effect of 8-methoxypsoralen (8-MOP) plus 365 nm light has been studied in haploid radiosensitive strains of Saccharomyces cerevisiae. The diploid of wild type and the diploid homozygous for the rad2 mutation (this mutation blocks the excision of UV-induced pyrimidine dimers) were more resistant to the lethal effect of 8-MOP plus 365 nm light than the haploid of wild type and rad2 haploid, respectively. The diploid homozygous for rad54 mutation (the mutation blocks the repair of double-strand breaks in DNA) was more sensitive than haploid rad54. The method of repeated irradiation allowed to study the capacity of radiosensitive diploids to remove monoadducts induced by 8-MOP in DNA. This process was very effective in diploids of wild type and in the rad54 rad54 diploid, while the rad2 rad2 diploid was characterized by nearly complete absence of monoadduct excision. The study of mitotic crossing over and mitotic segregation in yeast diploids, containing a pair of complementing alleles of the ade2 gene (red/pink) has shown a very high recombinogenic effect of 8-MOP plus 365 nm light. The rad2 mutation slightly increased the frequency of mitotic segregation and mitotic crossing over. The rad54 mutation decreased the frequency of mitotic segregation and entirely suppressed mitotic crossing over. The method of repeated irradiation showed that the cross-links, but not monoadducts, are the main cause of high recombinogenic effect of 8-MOP plus 365 nm light. The possible participation of different repair systems in recombinational processes induced by 8-MOP in yeast cells is discussed.

  2. INDUCTION OF CYP1A1 AD CYP1B1 AND FORMATION OF DNA ADDUCTS IN C57BL/6, BALB/C, AND F1 MICE FOLLOWING IN UTERO EXPOSURE TO 3-METHYLCHOLANTHRENE

    EPA Science Inventory

    Fetal mice are more sensitive to chemical carcinogens than are adults. Previous studies from our laboratory demonstrated differences in the mutational spectrum induced in the Ki-ras gene from lung tumors isolated from [D2 x B6D2F1]F2 mice and Balb/c mice treated in utero with 3�m...

  3. The Role of U2AF1 Mutations in the Pathogenesis of Myelodysplastic Syndromes

    DTIC Science & Technology

    2016-12-01

    U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for public release...ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S...induction, U2AF1(S34F) mice have reduced WBCs, increased hematopoietic stem /progenitor cells, and increased HSC cell cycling compared to U2AF1(WT) mice

  4. Cleavage/Repair and Signal Transduction Pathways in Irradiated Breast Tumor Cells

    DTIC Science & Technology

    2000-09-01

    Pharmacology 51: 931-940, 1996. Freemerman,AJ, Vrana J, Tombes RM, Jiang H, Chellepan SP, Fisher PB and Grant S. Effects of antisense p21 (Wafl/CIP1...gene. Mutat. Res. 403, 171-175. Vrana JA, Decker RH, Johnson CR, Wang Z, Jarvis WD, Richon VM, Ehinger M, Fisher PB and Grant S. Induction of apoptosis...centri- blue dye and trypan blue negative cells were counted fuged, washed with PBS and lysed using 100-2001il under phase contrast microscopy. of lysis

  5. Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times

    NASA Technical Reports Server (NTRS)

    Slack, M. W.

    1977-01-01

    Shock tube experiments measured hydrogen-air induction times near the second explosion limit. By matching these experimental results with numerically predicted induction times, the rate coefficient for the reaction H + O2 + M = HO2 + M was evaluated as k-sub 4,N2 = 3.3 (plus or minus .6) x 10 to the 15 cm to the 6th/sq mole/s.

  6. Spectrum of mutations in homozygous familial hypercholesterolemia in India, with four novel mutations.

    PubMed

    Setia, Nitika; Saxena, Renu; Arora, Anjali; Verma, Ishwar C

    2016-12-01

    Homozygous familial hypercholesterolemia (FH) is a rare but serious, inherited disorder of lipid metabolism characterized by very high total and LDL cholesterol levels from birth. It presents as cutaneous and tendon xanthomas since childhood, with or without cardiac involvement. FH is commonly caused by mutations in three genes, i.e. LDL receptor (LDLR), apolipoprotein B (ApoB) and PCSK9. We aimed to determine the spectrum of mutations in cases of homozygous FH in Asian Indians and evaluate if there was any similarity to the mutations observed in Caucasians. Sixteen homozygous FH subjects from eleven families were analyzed for mutations by Sanger sequencing. Large rearrangements in LDLR gene were evaluated by multiplex ligation probe dependent amplification (MLPA) technique. Ten mutations were observed in LDLR gene, of which four mutations were novel. No mutation was detected in ApoB gene and common PCSK9 mutation (p.D374Y). Fourteen cases had homozygous mutations; one had compound heterozygous mutation, while no mutation was detected in one clinically homozygous case. We report an interesting "Triple hit" case with features of homozygous FH. The spectrum of mutations in the Asian Indian population is quite heterogeneous. Of the mutations identified, 40% were novel. No mutation was observed in exons 3, 9 and 14 of LDLR gene, which are considered to be hot spots in studies done on Asian Indians in South Africa. Early detection followed by aggressive therapy, and cascade screening of extended families has been initiated to reduce the morbidity and mortality in these patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Children's Evaluative Categories and Inductive Inferences within the Domain of Food

    ERIC Educational Resources Information Center

    Nguyen, Simone P.

    2008-01-01

    Evaluative categories include items that share the same value-laden assessment. Given that these categories have not been examined extensively within the child concepts literature, the present research explored evaluative categorization and induction within the domain of food as a test case. Specifically, two studies examined the categories of…

  8. How to heat up from the cold: examining the preconditions for (unconscious) mood effects.

    PubMed

    Ruys, Kirsten I; Stapel, Diederik A

    2008-05-01

    What are the necessary preconditions to make people feel good or bad? In this research, the authors aimed to uncover the bare essentials of mood induction. Several induction techniques exist, and most of these techniques demand a relatively high amount of cognitive capacity. Moreover, to be effective, most techniques require conscious awareness. The authors proposed that the common and defining element in all effective mood induction techniques is the dominating salience of evaluative tone over descriptive meaning. This evaluative-tone hypothesis was tested in two paradigms in which the evaluative meaning of the "primed" concept was more salient than its descriptive meaning (i.e., when subliminal stimulus exposure was so short that mainly the evaluative meaning was activated [see D. A. Stapel, W. Koomen, & K. I. Ruys, 2002] and when the primed concepts were sufficiently extreme such that evaluative meaning always dominated descriptive meaning). Explicit and implicit mood measures showed that the activation of a dominating evaluative tone affected people's mood states. Implications of these findings for theories on unconscious mood induction are discussed. (c) 2008 APA, all rights reserved

  9. E2F1 somatic mutation within miRNA target site impairs gene regulation in colorectal cancer.

    PubMed

    Lopes-Ramos, Camila M; Barros, Bruna P; Koyama, Fernanda C; Carpinetti, Paola A; Pezuk, Julia; Doimo, Nayara T S; Habr-Gama, Angelita; Perez, Rodrigo O; Parmigiani, Raphael B

    2017-01-01

    Genetic studies have largely concentrated on the impact of somatic mutations found in coding regions, and have neglected mutations outside of these. However, 3' untranslated regions (3' UTR) mutations can also disrupt or create miRNA target sites, and trigger oncogene activation or tumor suppressor inactivation. We used next-generation sequencing to widely screen for genetic alterations within predicted miRNA target sites of oncogenes associated with colorectal cancer, and evaluated the functional impact of a new somatic mutation. Target sequencing of 47 genes was performed for 29 primary colorectal tumor samples. For 71 independent samples, Sanger methodology was used to screen for E2F1 mutations in miRNA predicted target sites, and the functional impact of these mutations was evaluated by luciferase reporter assays. We identified germline and somatic alterations in E2F1. Of the 100 samples evaluated, 3 had germline alterations at the MIR205-5p target site, while one had a somatic mutation at MIR136-5p target site. E2F1 gene expression was similar between normal and tumor tissues bearing the germline alteration; however, expression was increased 4-fold in tumor tissue that harbored a somatic mutation compared to that in normal tissue. Luciferase reporter assays revealed both germline and somatic alterations increased E2F1 activity relative to wild-type E2F1. We demonstrated that somatic mutation within E2F1:MIR136-5p target site impairs miRNA-mediated regulation and leads to increased gene activity. We conclude that somatic mutations that disrupt miRNA target sites have the potential to impact gene regulation, highlighting an important mechanism of oncogene activation.

  10. A molecular and clinical study of Larsen syndrome caused by mutations in FLNB.

    PubMed

    Bicknell, Louise S; Farrington-Rock, Claire; Shafeghati, Yousef; Rump, Patrick; Alanay, Yasemin; Alembik, Yves; Al-Madani, Navid; Firth, Helen; Karimi-Nejad, Mohammad Hassan; Kim, Chong Ae; Leask, Kathryn; Maisenbacher, Melissa; Moran, Ellen; Pappas, John G; Prontera, Paolo; de Ravel, Thomy; Fryns, Jean-Pierre; Sweeney, Elizabeth; Fryer, Alan; Unger, Sheila; Wilson, L C; Lachman, Ralph S; Rimoin, David L; Cohn, Daniel H; Krakow, Deborah; Robertson, Stephen P

    2007-02-01

    Larsen syndrome is an autosomal dominant osteochondrodysplasia characterised by large-joint dislocations and craniofacial anomalies. Recently, Larsen syndrome was shown to be caused by missense mutations or small inframe deletions in FLNB, encoding the cytoskeletal protein filamin B. To further delineate the molecular causes of Larsen syndrome, 20 probands with Larsen syndrome together with their affected relatives were evaluated for mutations in FLNB and their phenotypes studied. Probands were screened for mutations in FLNB using a combination of denaturing high-performance liquid chromatography, direct sequencing and restriction endonuclease digestion. Clinical and radiographical features of the patients were evaluated. The clinical signs most frequently associated with a FLNB mutation are the presence of supernumerary carpal and tarsal bones and short, broad, spatulate distal phalanges, particularly of the thumb. All individuals with Larsen syndrome-associated FLNB mutations are heterozygous for either missense or small inframe deletions. Three mutations are recurrent, with one mutation, 5071G-->A, observed in 6 of 20 subjects. The distribution of mutations within the FLNB gene is non-random, with clusters of mutations leading to substitutions in the actin-binding domain and filamin repeats 13-17 being the most common cause of Larsen syndrome. These findings collectively define autosomal dominant Larsen syndrome and demonstrate clustering of causative mutations in FLNB.

  11. Molecular evaluation of PIK3CA gene mutation in breast cancer: determination of frequency, distribution pattern and its association with clinicopathological findings in Indian patients.

    PubMed

    Ahmad, Firoz; Badwe, Anuya; Verma, Geeta; Bhatia, Simi; Das, Bibhu Ranjan

    2016-07-01

    Somatic mutations in the PIK3CA gene are common in breast cancer and represent a clinically useful marker for prognosis and therapeutic target. Activating mutations in the PI3K p110 catalytic subunit (PIK3CA) have been identified in 18-40 % of breast carcinomas. In this study, we evaluated PIK3CA mutation in 185 Indian breast cancer patients by direct DNA sequencing. PIK3CA mutations were observed in 23.2 % (43/185) of breast tumor samples. PIK3CA mutations were more frequent exon 30 (76.8 %) than in exon 9 (23.2 %). Mutations were mostly clustered within two hotspot region between nucleotides 1624 and 1636 or between 3129 and 3140. Sequencing analysis revealed four different missense mutations at codon 542 and 545 (E542K, E545K, E545A and E545G) in the helical domain and two different amino acid substitutions at codon 1047 (H1047R and H1047L) in the kinase domain. None of the cases harbored concomitant mutations at multiple codons. PIK3CA mutations were more frequent in older patients, smaller size tumors, ductal carcinomas, grade II tumors, lymph node-positive tumors and non-DCIS tumors; however, none of the differences were significant. In addition, PIK3CA mutations were common in ER+, PR+ and HER2+ cases (30 %), and a comparatively low frequency were noted in triple-negative tumors (13.6 %). In conclusion, to our knowledge, this is the largest study to evaluate the PIK3CA mutation in Indian breast cancer patients. The frequency and distribution pattern of PIK3CA mutations is similar to global reports. Furthermore, identification of molecular markers has unique strengths and can provide insights into the pathogenic process of breast carcinomas.

  12. Role of damage-specific DNA polymerases in M13 phage mutagenesis induced by a major lipid peroxidation product trans-4-hydroxy-2-nonenal.

    PubMed

    Janowska, Beata; Kurpios-Piec, Dagmara; Prorok, Paulina; Szparecki, Grzegorz; Komisarski, Marek; Kowalczyk, Paweł; Janion, Celina; Tudek, Barbara

    2012-01-03

    One of the major lipid peroxidation products trans-4-hydroxy-2-nonenal (HNE), forms cyclic propano- or ethenoadducts bearing six- or seven-carbon atom side chains to G>C≫A>T. To specify the role of SOS DNA polymerases in HNE-induced mutations, we tested survival and mutation spectra in the lacZα gene of M13mp18 phage, whose DNA was treated in vitro with HNE, and which was grown in uvrA(-)Escherichia coli strains, carrying one, two or all three SOS DNA polymerases. When Pol IV was the only DNA SOS polymerase in the bacterial host, survival of HNE-treated M13 DNA was similar to, but mutation frequency was lower than in the strain containing all SOS DNA polymerases. When only Pol II or Pol V were present in host bacteria, phage survival decreased dramatically. Simultaneously, mutation frequency was substantially increased, but exclusively in the strain carrying only Pol V, suggesting that induction of mutations by HNE is mainly dependent on Pol V. To determine the role of Pol II and Pol IV in HNE induced mutagenesis, Pol II or Pol IV were expressed together with Pol V. This resulted in decrease of mutation frequency, suggesting that both enzymes can compete with Pol V, and bypass HNE-DNA adducts in an error-free manner. However, HNE-DNA adducts were easily bypassed by Pol IV and only infrequently by Pol II. Mutation spectrum established for strains expressing only Pol V, showed that in uvrA(-) bacteria the frequency of base substitutions and recombination increased in relation to NER proficient strains, particularly mutations at adenine sites. Among base substitutions A:T→C:G, A:T→G:C, G:C→A:T and G:C→T:A prevailed. The results suggest that Pol V can infrequently bypass HNE-DNA adducts inducing mutations at G, C and A sites, while bypass by Pol IV and Pol II is error-free, but for Pol II infrequent. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Endocrine evaluation of children with and without Shwachman-Bodian-Diamond syndrome gene mutations and Shwachman-Diamond syndrome.

    PubMed

    Myers, Kasiani C; Rose, Susan R; Rutter, Meilan M; Mehta, Parinda A; Khoury, Jane C; Cole, Theresa; Harris, Richard E

    2013-06-01

    To characterize the endocrine phenotype of patients with Shwachman-Diamond syndrome (SDS). Clinically indicated endocrine screening data from 43 patients with SDS or SDS-like presentation were analyzed according to sex, age, and genetic testing. In addition to 25 patients with biallelic Shwachman-Bodian-Diamond syndrome (SBDS) gene mutations, we evaluated 18 patients with cytopenias who were receiving pancreatic enzyme replacement but were without SBDS mutation. We performed a retrospective review of growth records and clinically indicated endocrine evaluations. Of patients with SBDS mutations, 2 had low stimulated growth hormone levels, 2 had mildly elevated thyrotropin levels, 5 had abnormal glucose levels, and 1 had an elevated follicle-stimulating hormone level (post transplantation). In contrast, 1 patient without SBDS mutations had postprandial hyperglycemia and 3 had mildly low free thyroxine levels without short stature. Endocrine abnormalities were identified in 19% of short patients and 26% of the whole group. Of patients with SBDS mutations, 56% had a height expressed in SD units from the mean for age and sex of <-1.8, in contrast to only 12% of patients without SBDS mutations (38% of the whole group). Body mass index z score was significantly greater in the group with SBDS mutations (P<.001). Although short stature was more common in patients with SBDS mutations, no consistent endocrine phenotype was observed in patients with SDS regardless of genetic testing. Copyright © 2013 Mosby, Inc. All rights reserved.

  14. Children's Evaluation of the Certainty of Another Person's Inductive Inferences and Guesses

    ERIC Educational Resources Information Center

    Pillow, Bradford H.; Pearson, RaeAnne M.

    2012-01-01

    In three studies, 5-10-year-old children and an adult comparison group judged another's certainty in making inductive inferences and guesses. Participants observed a puppet make strong inductions, weak inductions, and guesses. Participants either had no information about the correctness of the puppet's conclusion, knew that the puppet was correct,…

  15. Radiosensitization of HNSCC cells by EGFR inhibition depends on the induction of cell cycle arrests

    PubMed Central

    Kriegs, Malte; Kasten-Pisula, Ulla; Riepen, Britta; Hoffer, Konstantin; Struve, Nina; Myllynen, Laura; Braig, Friederike; Binder, Mascha; Rieckmann, Thorsten; Grénman, Reidar; Petersen, Cordula; Dikomey, Ekkehard; Rothkamm, Kai

    2016-01-01

    The increase in cellular radiosensitivity by EGF receptor (EGFR) inhibition has been shown to be attributable to the induction of a G1-arrest in p53-proficient cells. Because EGFR targeting in combination with radiotherapy is used to treat head and neck squamous cell carcinomas (HNSCC) which are predominantly p53 mutated, we tested the effects of EGFR targeting on cellular radiosensitivity, proliferation, apoptosis, DNA repair and cell cycle control using a large panel of HNSCC cell lines. In these experiments EGFR targeting inhibited signal transduction, blocked proliferation and induced radiosensitization but only in some cell lines and only under normal (pre-plating) conditions. This sensitization was not associated with impaired DNA repair (53BP1 foci) or induction of apoptosis. However, it was associated with the induction of a lasting G2-arrest. Both, the radiosensitization and the G2-arrest were abrogated if the cells were re-stimulated (delayed plating) with actually no radiosensitization being detectable in any of the 14 tested cell lines. Therefore we conclude that EGFR targeting can induce a reversible G2 arrest in p53 deficient HNSCC cells, which does not consequently result in a robust cellular radiosensitization. Together with recent animal and clinical studies our data indicate that EGFR inhibition is no effective strategy to increase the radiosensitivity of HNSCC cells. PMID:27281611

  16. Children's and adults' evaluation of the certainty of deductive inferences, inductive inferences, and guesses.

    PubMed

    Pillow, Bradford H

    2002-01-01

    Two experiments investigated kindergarten through fourth-grade children's and adults' (N = 128) ability to (1) evaluate the certainty of deductive inferences, inductive inferences, and guesses; and (2) explain the origins of inferential knowledge. When judging their own cognitive state, children in first grade and older rated deductive inferences as more certain than guesses; but when judging another person's knowledge, children did not distinguish valid inferences from invalid inferences and guesses until fourth grade. By third grade, children differentiated their own deductive inferences from inductive inferences and guesses, but only adults both differentiated deductive inferences from inductive inferences and differentiated inductive inferences from guesses. Children's recognition of their own inferences may contribute to the development of knowledge about cognitive processes, scientific reasoning, and a constructivist epistemology.

  17. IgA Function in Relation to the Intestinal Microbiota.

    PubMed

    Macpherson, Andrew J; Yilmaz, Bahtiyar; Limenitakis, Julien P; Ganal-Vonarburg, Stephanie C

    2018-04-26

    IgA is the dominant immunoglobulin isotype produced in mammals, largely secreted across the intestinal mucosal surface. Although induction of IgA has been a hallmark feature of microbiota colonization following colonization in germ-free animals, until recently appreciation of the function of IgA in host-microbial mutualism has depended mainly on indirect evidence of alterations in microbiota composition or penetration of microbes in the absence of somatic mutations in IgA (or compensatory IgM). Highly parallel sequencing techniques that enable high-resolution analysis of either microbial consortia or IgA sequence diversity are now giving us new perspectives on selective targeting of microbial taxa and the trajectory of IgA diversification according to induction mechanisms, between different individuals and over time. The prospects are to link the range of diversified IgA clonotypes to specific antigenic functions in modulating the microbiota composition, position and metabolism to ensure host mutualism.

  18. Induction patterns of structural mutations in barley leaf meristem upon the combined action of ionizing radiation and heavy metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geras`kin, S.A.; Dikarev, V.G.; Udalova, A.A.

    1995-07-01

    Environmental protection requires the development of principles, universal methods, and quantitative criteria for estimating the ecological risk of the combined effects of various factors on natural ecosystems. The combined action of these factors may induce complex multidirectional processes, e.g., the induction and inhibition of separation systems that result in a broad spectrum of cell responses (from antagonism to synergism), depending on the relative involvement of the factors. This was confirmed by numerous examples of nonlinear responses of biological systems to alterations in the order and level of damaging agents, as well as in the duration of their action. For thismore » reason, the response of a biological system to the combined action of various damaging factors cannot be predicted from the data on the separate action of factors. 7 refs., 3 figs., 2 tabs.« less

  19. Blocking by the carcinogen, L-ethionine, of SOS functions in a tif-1 mutant of Escherichia coli B/r.

    PubMed

    Wiesner, R; Troll, W

    1981-11-01

    In Escherichia coli, DNA damage by carcinogenic agents results in the coordinate expression of a diversity of functions (SOS functions), many of which are thermally inducible without any damage to DNA in a tif-1 mutant. These include prophage induction, filamentous growth, and an error-prone DNA repair activity, which is responsible for ultraviolet-induced mutagenesis. Ethionine causes hepatic carcinoma in rats after prolonged feeding but is not a mutagen in the Ames test. The present study shows that 10 mM ethionine prevents the thermal induction of lambda-prophage in a tif-1 derivative of E. coli. The enhancement of mutation, which normally occurs at high temperature after a low dose of ultraviolet light, is also blocked by ethionine. Ethionine does not block, to any appreciable extent, the incorporation of radioactive precursors into RNA, DNA, or protein.

  20. CRISPR-Cas9; an efficient tool for precise plant genome editing.

    PubMed

    Islam, Waqar

    2018-06-01

    Efficient plant genome editing is dependent upon induction of double stranded DNA breaks (DSBs) through site specified nucleases. These DSBs initiate the process of DNA repair which can either base upon homologous recombination (HR) or non-homologous end jointing (NHEJ). Recently, CRISPR-Cas9 mechanism got highlighted as revolutionizing genetic tool due to its simpler frame work along with the broad range of adaptability and applications. So, in this review, I have tried to sum up the application of this biotechnological tool in plant genome editing. Furthermore, I have tried to explain successful adaptation of CRISPR in various plant species where it is used for the successful generation of stable mutations in a steadily growing number of species through NHEJ. The review also sheds light upon other biotechnological approaches relying upon single DNA lesion induction such as genomic deletion or pair wise nickases for evasion of offsite effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Fas/CD95 prevents autoimmunity independently of lipid raft localization and efficient apoptosis induction

    PubMed Central

    Cruz, Anthony C.; Ramaswamy, Madhu; Ouyang, Claudia; Klebanoff, Christopher A.; Sengupta, Prabuddha; Yamamoto, Tori N.; Meylan, Françoise; Thomas, Stacy K.; Richoz, Nathan; Eil, Robert; Price, Susan; Casellas, Rafael; Rao, V. Koneti; Lippincott-Schwartz, Jennifer; Restifo, Nicholas P.; Siegel, Richard M.

    2016-01-01

    Mutations affecting the apoptosis-inducing function of the Fas/CD95 TNF-family receptor result in autoimmune and lymphoproliferative disease. However, Fas can also costimulate T-cell activation and promote tumour cell growth and metastasis. Palmitoylation at a membrane proximal cysteine residue enables Fas to localize to lipid raft microdomains and induce apoptosis in cell lines. Here, we show that a palmitoylation-defective Fas C194V mutant is defective in inducing apoptosis in primary mouse T cells, B cells and dendritic cells, while retaining the ability to enhance naive T-cell differentiation. Despite inability to efficiently induce cell death, the Fas C194V receptor prevents the lymphoaccumulation and autoimmunity that develops in Fas-deficient mice. These findings indicate that induction of apoptosis through Fas is dependent on receptor palmitoylation in primary immune cells, and Fas may prevent autoimmunity by mechanisms other than inducing apoptosis. PMID:28008916

  2. Inactivation, DNA double strand break induction and their rejoining in bacterial cells irradiated with heavy ions

    NASA Technical Reports Server (NTRS)

    Schaefer, M.; Zimmermann, H.; Schmitz, C.

    1994-01-01

    Besides inactivation one of the major interests in our experiments is to study the primary damage in the DNA double strand breaks (DSB) after heavy ion irradiation. These damages lead not only to cell death but also under repair activities to mutations. In further experiments we have investigated the inactivation with two different strains of Deinococcus radiodurans (R1, Rec 30) and the induction of DSB as well as the rejoining of DSB in stationary cells of E. coli (strain B/r) irradiated with radiations of different quality. In the latter case irradiations were done so that the cell survival was roughly at the same level. We measured the DSB using the pulse field gelelectrophoresis which allows to separate between intact (circular) and damaged (linear) DNA. The irradiated cells were transferred to NB medium and incubated for different times to allow rejoining.

  3. Gamma greenhouse: A chronic facility for crops improvement and agrobiotechnology

    NASA Astrophysics Data System (ADS)

    Azhar, M.; Ahsanulkhaliqin, A. W.

    2014-02-01

    Gamma irradiation is one of the most common procedures in plant mutagenesis and agrobiotechnology activities. The procedures consist of chronic and acute gamma radiation. Generally, 60Co and 137Cs are gamma radiation sources for radiation processing with relatively high energy (half-life 5.27 years for 60Co and 30.1 years for 137Cs). The energy associated with gamma radiation is high enough to break the molecular bonds and ionize atoms without affecting structure of the atomic nucleus (avoiding induction of radioactivity). The Gamma Green House (GGH) is the only chronic irradiation facility in Malaysia, located at Malaysian Nuclear Agency (Nuclear Malaysia). GGH is used for induction of mutation in plants and other biological samples at low dose radiation over period of time depending on the nature and sensitivity of the plant species. The GGH consist of circular green house with 30 meters radius, control room and irradiator with interlock system. The irradiator produces low dose gamma radiation derived from Caesium-137 radioactive source. The biological samples can be exposed to low dose radiation in days, weeks, months or years. The current irradiation rate for GGH is 2.67 Gy/hr at 1 meter from the source. Chronic gamma irradiation produces a wider mutation spectrum and useful for minimizing radiation damages towards obtaining new improved traits for research and commercial values. The prospect of the gamma greenhouse is its uses in research, educations and services on induced mutation techniques for the improvement of plant varieties and microbes. In generating awareness and attract users to the facility, Nuclear Malaysia provides wide range of irradiation services for plant species and mutagenesis consultancies to academicians, students scientists, and plant breeders, from local universities, other research institutes, and growers. Charges for irradiation and consultancy services are at nominal rates. The utilization activities of the gamma greenhouse mainly cover Research and Development, Research Collaboration, Exchange of Information, Irradiation Services, Training Programs, Education, Exchange of Scientists and Seminars/ Conferences.

  4. NTP technical report on the toxicity studies of Castor Oil (CAS No. 8001-79-4) in F344/N Rats and B6C3F1 Mice (Dosed Feed Studies).

    PubMed

    Irwin, R

    1992-03-01

    Castor oil is a natural oil derived from the seeds of the castor bean, Ricinus communis. It is comprised largely of triglycerides with a high ricinolin content. Toxicity studies with castor oil were performed by incorporating the material at concentrations as high as 10% in diets given to F344/N rats and B6C3F1 mice of both sexes for 13 weeks. Genetic toxicity studies also were performed and were negative for mutation induction in Salmonella typhimurium, for induction of sister chromatid exchanges or chromosomal aberrations in Chinese hamster ovary cells, and for induction of micronuclei in the peripheral blood erythrocytes of mice evaluated at the end of the 13-week studies. Exposure to castor oil at dietary concentrations as high as 10% in 13-week studies did not affect survival or body weight gains of rats or mice (10 per sex and dose). There were no biologically significant effects noted in hematologic analyses in rats. Mild increases in total bile acids and in serum alkaline phosphatase were noted at various times during the studies in rats receiving the higher dietary concentrations of castor oil. Liver weights were increased in male rats receiving the 10% dietary concentration and in male and female mice receiving diets containing 5% or 10% castor oil. However, there were no histopathologic lesions associated with these liver changes, nor were there any compound-related morphologic changes in any organ in rats or mice. No significant changes were noted in a screening for male reproductive endpoints, including sperm count and motility, and no changes were observed in the length of estrous cycles of rats or mice given diets containing castor oil. Thus, no significant adverse effects of castor oil administration were noted in these studies. Synonyms: Ricinus Oil, oil of Palma Christi, tangantangan oil, phorboyl, Neoloid.

  5. Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor.

    PubMed

    Ryan, J J; McReynolds, L J; Keegan, A; Wang, L H; Garfein, E; Rothman, P; Nelms, K; Paul, W E

    1996-02-01

    IL-4 causes hematopoietic cells to proliferate and express a series of genes, including CD23. We examined whether IL-4-mediated growth, as measured by 4PS phosphorylation, and gene induction were similarly controlled. Studies of M12.4.1 cells expressing human IL-4R truncation mutants indicated that the region between amino acids 557-657 is necessary for full gene expression, which correlated with Stat6 DNA binding activity. This region was not required for 4PS phosphorylation. Tyrosine-to-phenylalanine mutations in the interval between amino acids 557-657 revealed that as long as one tyrosine remained unmutated, CD23 was fully induced. When all three tyrosines were mutated, the receptor was unable to induce CD23. The results indicate that growth regulation and gene expression are principally controlled by distinct regions of IL-4R.

  6. The trehalose utilization gene thuA ortholog in Mesorhizobium loti does not influence competitiveness for nodulation on Lotus spp.

    PubMed

    Ampomah, Osei Yaw; Jensen, John Beck

    2014-03-01

    Competitiveness for nodulation is a desirable trait in rhizobia strains used as inoculant. In Sinorhizobium meliloti 1021 mutation in either of the trehalose utilization genes thuA or thuB influences its competitiveness for root colonization and nodule occupancy depending on the interacting host. We have therefore investigated whether mutation in the thuA ortholog in Mesorhizobium loti MAFF303099 also leads to a similar competitive phenotype on its hosts. The results show that M. loti thuA mutant Ml7023 was symbiotically effective and was as competitive as the wild type in colonization and nodule occupancy on Lotus corniculatus and Lotus japonicus. The thuA gene in M. loti was not induced during root colonization or in the infection threads unlike in S. meliloti, despite its induction by trehalose and high osmolarity in in vitro assays.

  7. Halogen-Enriched Fragment Libraries as Leads for Drug Rescue of Mutant p53

    PubMed Central

    2012-01-01

    The destabilizing p53 cancer mutation Y220C creates a druggable surface crevice. We developed a strategy exploiting halogen bonding for lead discovery to stabilize the mutant with small molecules. We designed halogen-enriched fragment libraries (HEFLibs) as starting points to complement classical approaches. From screening of HEFLibs and subsequent structure-guided design, we developed substituted 2-(aminomethyl)-4-ethynyl-6-iodophenols as p53-Y220C stabilizers. Crystal structures of their complexes highlight two key features: (i) a central scaffold with a robust binding mode anchored by halogen bonding of an iodine with a main-chain carbonyl and (ii) an acetylene linker, enabling the targeting of an additional subsite in the crevice. The best binders showed induction of apoptosis in a human cancer cell line with homozygous Y220C mutation. Our structural and biophysical data suggest a more widespread applicability of HEFLibs in drug discovery. PMID:22439615

  8. Evaluation of digital PCR for detecting low-level EGFR mutations in advanced lung adenocarcinoma patients: a cross-platform comparison study

    PubMed Central

    Liu, Bing; Li, Lei; Huang, Lixia; Li, Shaoli; Rao, Guanhua; Yu, Yang; Zhou, Yanbin

    2017-01-01

    Emerging evidence has indicated that circulating tumor DNA (ctDNA) from plasma could be used to analyze EGFR mutation status for NSCLC patients; however, due to the low level of ctDNA in plasma, highly sensitive approaches are required to detect low frequency mutations. In addition, the cutoff for the mutation abundance that can be detected in tumor tissue but cannot be detected in matched ctDNA is still unknown. To assess a highly sensitive method, we evaluated the use of digital PCR in the detection of EGFR mutations in tumor tissue from 47 advanced lung adenocarcinoma patients through comparison with NGS and ARMS. We determined the degree of concordance between tumor tissue DNA and paired ctDNA and analyzed the mutation abundance relationship between them. Digital PCR and Proton had a high sensitivity (96.00% vs. 100%) compared with that of ARMS in the detection of mutations in tumor tissue. Digital PCR outperformed Proton in identifying more low abundance mutations. The ctDNA detection rate of digital PCR was 87.50% in paired tumor tissue with a mutation abundance above 5% and 7.59% in paired tumor tissue with a mutation abundance below 5%. When the DNA mutation abundance of tumor tissue was above 3.81%, it could identify mutations in paired ctDNA with a high sensitivity. Digital PCR will help identify alternative methods for detecting low abundance mutations in tumor tissue DNA and plasma ctDNA. PMID:28978074

  9. Identification of a novel mutation in the FGFR3 gene in a Chinese family with Hypochondroplasia.

    PubMed

    Chen, Jing; Yang, Jiangfei; Zhao, Suzhou; Ying, Hui; Li, Guimei; Xu, Chao

    2018-01-30

    Hypochondroplasia (HCH; OMIM 146000) is a common autosomal dominant skeletal dysplasia characterized by disproportionate short stature, short extremities, relative macrocephaly, and lumbar lordosis. Because of its clinical and genetic heterogeneity, gene mutational analysis is particularly important in diagnosis and the phenotypes may be ameliorated if diagnosed early. In this study, we examined a Chinese family with HCH, performed an inductive analysis of their clinical features and radiographic results, and applied targeted exome sequencing (TES) technology to perform a molecular diagnosis. The proband and his mother all presented disproportionate short stature, short, stubby extremities, unchanged interpedicular distances from L1-L5, and short iliac bones, with a 'fish mouth-shaped' sciatic notch. The mother received induced abortion recently because an ultrasound showed short femur length of her fetus at 24-week gestation. Eventually, a novel heterozygous mutation (c.1145G>A) in FGFR3 was identified by TES in the proband, his mother, and her fetus; this causes the substitution of glycine with aspartic acid in codon 382. In this study, we diagnosed a Chinese pedigree with HCH based on clinical data, radiographic features, and genetic testing results. Our results extend the genetic mutation spectrum of FGFR3 and demonstrate that TES is an effective method for the diagnosis of skeletal dysplasia in clinical practices. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research.

    PubMed

    Tetteh, Paul W; Kretzschmar, Kai; Begthel, Harry; van den Born, Maaike; Korving, Jeroen; Morsink, Folkert; Farin, Henner; van Es, Johan H; Offerhaus, G Johan A; Clevers, Hans

    2016-10-18

    Current mouse models for colorectal cancer often differ significantly from human colon cancer, being largely restricted to the small intestine. Here, we aim to develop a colon-specific inducible mouse model that can faithfully recapitulate human colon cancer initiation and progression. Carbonic anhydrase I (Car1) is a gene expressed uniquely in colonic epithelial cells. We generated a colon-specific inducible Car1 CreER knock-in (KI) mouse with broad Cre activity in epithelial cells of the proximal colon and cecum. Deletion of the tumor suppressor gene Apc using the Car1 CreER KI caused tumor formation in the cecum but did not yield adenomas in the proximal colon. Mutation of both Apc and Kras yielded microadenomas in both the cecum and the proximal colon, which progressed to macroadenomas with significant morbidity. Aggressive carcinomas with some invasion into lymph nodes developed upon combined induction of oncogenic mutations of Apc, Kras, p53, and Smad4 Importantly, no adenomas were observed in the small intestine. Additionally, we observed tumors from differentiated Car1-expressing cells with Apc/Kras mutations, suggesting that a top-down model of intestinal tumorigenesis can occur with multiple mutations. Our results establish the Car1 CreER KI as a valuable mouse model to study colon-specific tumorigenesis and metastasis as well as cancer-cell-of-origin questions.

  11. Mutant quantity and quality in mammalian cells (AL) exposed to cesium-137 gamma radiation: effect of caffeine

    NASA Technical Reports Server (NTRS)

    McGuinness, S. M.; Shibuya, M. L.; Ueno, A. M.; Vannais, D. B.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    We examined the effect of caffeine (1,3,7-trimethylxanthine) on the quantity and quality of mutations in cultured mammalian AL human-hamster hybrid cells exposed to 137Cs gamma radiation. At a dose (1.5 mg/ml for 16 h) that reduced the plating efficiency (PE) by 20%, caffeine was not itself a significant mutagen, but it increased by approximately twofold the slope of the dose-response curve for induction of S1- mutants by 137Cs gamma radiation. Molecular analysis of 235 S1- mutants using a series of DNA probes mapped to the human chromosome 11 in the AL hybrid cells revealed that 73 to 85% of the mutations in unexposed cells and in cells treated with caffeine alone, 137Cs gamma rays alone or 137Cs gamma rays plus caffeine were large deletions involving millions of base pairs of DNA. Most of these deletions were contiguous with the region of the MIC1 gene at 11p13 that encodes the S1 cell surface antigen. In other mutants that had suffered multiple marker loss, the deletions were intermittent along chromosome 11. These "complex" mutations were rare for 137Cs gamma irradiation (1/63 = 1.5%) but relatively prevalent (23-50%) for other exposure conditions. Thus caffeine appears to alter both the quantity and quality of mutations induced by 137Cs gamma irradiation.

  12. Mutational status of EGFR and KIT in thymoma and thymic carcinoma.

    PubMed

    Yoh, Kiyotaka; Nishiwaki, Yutaka; Ishii, Genichiro; Goto, Koichi; Kubota, Kaoru; Ohmatsu, Hironobu; Niho, Seiji; Nagai, Kanji; Saijo, Nagahiro

    2008-12-01

    This study was conducted to evaluate the prevalence of EGFR and KIT mutations in thymomas and thymic carcinomas as a means of exploring the potential for molecularly targeted therapy with tyrosine kinase inhibitors. Genomic DNA was isolated from 41 paraffin-embedded tumor samples obtained from 24 thymomas and 17 thymic carcinomas. EGFR exons 18, 19, and 21, and KIT exons 9, 11, 13, and 17, were analyzed for mutations by PCR and direct sequencing. Protein expression of EGFR and KIT was evaluated immunohistochemically. EGFR mutations were detected in 2 of 20 thymomas, but not in any of the thymic carcinomas. All of the EGFR mutations detected were missense mutations (L858R and G863D) in exon 21. EGFR protein was expressed in 71% of the thymomas and 53% of the thymic carcinomas. The mutational analysis of KIT revealed only a missense mutation (L576P) in exon 11 of one thymic carcinoma. KIT protein was expressed in 88% of the thymic carcinomas and 0% of the thymomas. The results of this study indicate that EGFR and KIT mutations in thymomas and thymic carcinomas are rare, but that many of the tumors express EGFR or KIT protein.

  13. Virulence of Mycobacterium tuberculosis after Acquisition of Isoniazid Resistance: Individual Nature of katG Mutants and the Possible Role of AhpC.

    PubMed

    Nieto R, Luisa Maria; Mehaffy, Carolina; Creissen, Elizabeth; Troudt, JoLynn; Troy, Amber; Bielefeldt-Ohmann, Helle; Burgos, Marcos; Izzo, Angelo; Dobos, Karen M

    2016-01-01

    In the last decade, there were 10 million new tuberculosis cases per year globally. Around 9.5% of these cases were caused by isoniazid resistant (INHr) Mycobacterium tuberculosis (Mtb) strains. Although isoniazid resistance in Mtb is multigenic, mutations in the catalase-peroxidase (katG) gene predominate among the INHr strains. The effect of these drug-resistance-conferring mutations on Mtb fitness and virulence is variable. Here, we assessed differences in bacterial growth, immune response and pathology induced by Mtb strains harboring mutations at the N-terminus of the katG gene. We studied one laboratory and one clinically isolated Mtb clonal pair from different genetic lineages. The INHr strain in each pair had one and two katG mutations with significantly reduced levels of the enzyme and peroxidase activity. Both strains share the V1A mutation, while the double mutant clinical INHr had also the novel E3V katG mutation. Four groups of C57BL/6 mice were infected with one of the Mtb strains previously described. We observed a strong reduction in virulence (reduced bacterial growth), lower induction of proinflammatory cytokines and significantly reduced pathology scores in mice infected with the clinical INHr strain compared to the infection caused by its INHs progenitor strain. On the other hand, there was a subtle reduction of bacteria growth without differences in the pathology scores in mice infected with the laboratory INHr strain. Our results also showed distinct alkyl-hydroperoxidase C (AhpC) levels in the katG mutant strains, which could explain the difference in the virulence profile observed. The difference in the AhpC levels between clonal strains was not related to a genetic defect in the gene or its promoter. Cumulatively, our results indicate that the virulence, pathology and fitness of INHr strains could be negatively affected by multiple mutations in katG, lack of the peroxidase activity and reduced AhpC levels.

  14. PAPSS2 Deficiency Causes Androgen Excess via Impaired DHEA Sulfation—In Vitro and in Vivo Studies in a Family Harboring Two Novel PAPSS2 Mutations

    PubMed Central

    Oostdijk, Wilma; Idkowiak, Jan; Mueller, Jonathan W.; House, Philip J.; Taylor, Angela E.; O'Reilly, Michael W.; Hughes, Beverly A.; de Vries, Martine C.; Kant, Sarina G.; Santen, Gijs W. E.; Verkerk, Annemieke J. M. H.; Uitterlinden, André G.; Wit, Jan M.; Losekoot, Monique

    2015-01-01

    Context: PAPSS2 (PAPS synthase 2) provides the universal sulfate donor PAPS (3′-phospho-adenosine-5′-phosphosulfate) to all human sulfotransferases, including SULT2A1, responsible for sulfation of the crucial androgen precursor dehydroepiandrosterone (DHEA). Impaired DHEA sulfation is thought to increase the conversion of DHEA toward active androgens, a proposition supported by the previous report of a girl with inactivating PAPSS2 mutations who presented with low serum DHEA sulfate and androgen excess, clinically manifesting with premature pubarche and early-onset polycystic ovary syndrome. Patients and Methods: We investigated a family harboring two novel PAPSS2 mutations, including two compound heterozygous brothers presenting with disproportionate short stature, low serum DHEA sulfate, but normal serum androgens. Patients and parents underwent a DHEA challenge test comprising frequent blood sampling and urine collection before and after 100 mg DHEA orally, with subsequent analysis of DHEA sulfation and androgen metabolism by mass spectrometry. The functional impact of the mutations was investigated in silico and in vitro. Results: We identified a novel PAPSS2 frameshift mutation, c.1371del, p.W462Cfs*3, resulting in complete disruption, and a novel missense mutation, c.809G>A, p.G270D, causing partial disruption of DHEA sulfation. Both patients and their mother, who was heterozygous for p.W462Cfs*3, showed increased 5α-reductase activity at baseline and significantly increased production of active androgens after DHEA intake. The mother had a history of oligomenorrhea and chronic anovulation that required clomiphene for ovulation induction. Conclusions: We provide direct in vivo evidence for the significant functional impact of mutant PAPSS2 on DHEA sulfation and androgen activation. Heterozygosity for PAPSS2 mutations can be associated with a phenotype resembling polycystic ovary syndrome. PMID:25594860

  15. Comparative analysis of cell killing and autosomal mutation in mouse kidney epithelium exposed to 1 GeV protons in vitro or in vivo.

    PubMed

    Kronenberg, Amy; Gauny, Stacey; Kwoh, Ely; Grossi, Gianfranco; Dan, Cristian; Grygoryev, Dmytro; Lasarev, Michael; Turker, Mitchell S

    2013-05-01

    Human exposure to high-energy protons occurs in space flight scenarios or, where necessary, during radiotherapy for cancer or benign conditions. However, few studies have assessed the mutagenic effectiveness of high-energy protons, which may contribute to cancer risk. Mutations cause cancer and most cancer-associated mutations occur at autosomal loci. This study addresses the cytotoxic and mutagenic effects of 1 GeV protons in mouse kidney epithelium. Mutant fractions were measured for an endogenous autosomal locus (Aprt) that detects all types of mutagenic events. Results for kidneys irradiated in vivo are compared with the results for kidney cells from the same strain exposed in vitro. The results demonstrate dose-dependent cell killing in vitro and for cells explanted 3-4 months postirradiation in vivo. Incubation in vivo for longer periods (8-9 months) further attenuates proton-induced cell killing. Protons are mutagenic to cells in vitro and for in vivo irradiated kidneys. The dose-response for Aprt mutation is curvilinear after in vitro or in vivo exposure, bending upward at the higher doses. While the absolute mutant fractions are higher in vivo, the fold-increase over background is similar for both in vitro and in situ exposures. Results are also presented for a limited study on the effect of dose fractionation on the induction of Aprt mutations in kidney epithelial cells. Dose-fractionation reduces the fraction of proton-induced Aprt mutants in vitro and in vivo and also results in less cell killing. Taken together, the mutation burden in the epithelium is slightly reduced by dose-fractionation. Autosomal mutations accumulated during clinical exposure to high-energy protons may contribute to the risk of treatment-associated neoplasms, thereby highlighting the need for rigorous treatment planning to reduce the dose to normal tissues. For low dose exposures that occur during most space flight scenarios, the mutagenic effects of protons appear to be modest.

  16. Inductive reasoning 2.0.

    PubMed

    Hayes, Brett K; Heit, Evan

    2018-05-01

    Inductive reasoning entails using existing knowledge to make predictions about novel cases. The first part of this review summarizes key inductive phenomena and critically evaluates theories of induction. We highlight recent theoretical advances, with a special emphasis on the structured statistical approach, the importance of sampling assumptions in Bayesian models, and connectionist modeling. A number of new research directions in this field are identified including comparisons of inductive and deductive reasoning, the identification of common core processes in induction and memory tasks and induction involving category uncertainty. The implications of induction research for areas as diverse as complex decision-making and fear generalization are discussed. This article is categorized under: Psychology > Reasoning and Decision Making Psychology > Learning. © 2017 Wiley Periodicals, Inc.

  17. Selfish prion of Rnq1 mutant in yeast.

    PubMed

    Kurahashi, Hiroshi; Shibata, Shoichiro; Ishiwata, Masao; Nakamura, Yoshikazu

    2009-05-01

    [PIN(+)] is a prion form of Rnq1 in Saccharomyces cerevisiae and is necessary for the de novo induction of a second prion, [PSI(+)]. We previously isolated a truncated form of Rnq1, named Rnq1Delta100, as a [PSI(+)]-eliminating factor in S. cerevisiae. Rnq1Delta100 deletes the N-terminal non-prion domain of Rnq1, and eliminates [PSI(+)] in [PIN(+)] yeast. Here we found that [PIN(+)] is transmissible to Rnq1Delta100 in the absence of full-length Rnq1, forming a novel prion variant [RNQ1Delta100(+)]. [RNQ1Delta100(+)] has similar [PIN(+)] properties as it stimulates the de novo induction of [PSI(+)] and is eliminated by the null hsp104Delta mutation, but not by Hsp104 overproduction. In contrast, [RNQ1Delta100(+)] inherits the inhibitory activity and hampers the maintenance of [PSI(+)] though less efficiently than [PIN(+)] made of Rnq1-Rnq1Delta100 co-aggregates. Interestingly, [RNQ1Delta100(+)] prion was eliminated by de novo [PSI(+)] induction. Thus, the [RNQ1Delta100(+)] prion demonstrates selfish activity to eliminate a heterologous prion in S. cerevisiae, showing the first instance of a selfish prion variant in living organisms.

  18. Pharmacological activation of a novel p53-dependent S-phase checkpoint involving CHK-1

    PubMed Central

    Ahmed, A; Yang, J; Maya-Mendoza, A; Jackson, D A; Ashcroft, M

    2011-01-01

    We have recently shown that induction of the p53 tumour suppressor protein by the small-molecule RITA (reactivation of p53 and induction of tumour cell apoptosis; 2,5-bis(5-hydroxymethyl-2-thienyl)furan) inhibits hypoxia-inducible factor-1α and vascular endothelial growth factor expression in vivo and induces p53-dependent tumour cell apoptosis in normoxia and hypoxia. Here, we demonstrate that RITA activates the canonical ataxia telangiectasia mutated/ataxia telangiectasia and Rad3-related DNA damage response pathway. Interestingly, phosphorylation of checkpoint kinase (CHK)-1 induced in response to RITA was influenced by p53 status. We found that induction of p53, phosphorylated CHK-1 and γH2AX proteins was significantly increased in S-phase. Furthermore, we found that RITA stalled replication fork elongation, prolonged S-phase progression and induced DNA damage in p53 positive cells. Although CHK-1 knockdown did not significantly affect p53-dependent DNA damage or apoptosis induced by RITA, it did block the ability for DNA integrity to be maintained during the immediate response to RITA. These data reveal the existence of a novel p53-dependent S-phase DNA maintenance checkpoint involving CHK-1. PMID:21593792

  19. Targeting Bcl-2 stability to sensitize cells harboring oncogenic ras.

    PubMed

    Peng, Bo; Ganapathy, Suthakar; Shen, Ling; Huang, Junchi; Yi, Bo; Zhou, Xiaodong; Dai, Wei; Chen, Changyan

    2015-09-08

    The pro-survival factor Bcl-2 and its family members are critical determinants of the threshold of the susceptibility of cells to apoptosis. Studies are shown that cells harboring an oncogenic ras were extremely sensitive to the inhibition of protein kinase C (PKC) and Bcl-2 could antagonize this apoptotic process. However, it remains unrevealed how Bcl-2 is being regulated in this apoptotic process. In this study, we investigate the role of Bcl-2 stability in sensitizing the cells harboring oncogenic K-ras to apoptosis triggered by PKC inhibitor GO6976. We demonstrated that Bcl-2 in Swiss3T3 cells ectopically expressing or murine lung cancer LKR cells harboring K-ras rapidly underwent ubiquitin-dependent proteasome pathway after the treatment of GO6976, accompanied with induction of apoptosis. In this process, Bcl-2 formed the complex with Keap-1 and Cul3. The mutation of serine-17 and deletion of BH-2 or 4 was required for Bcl-2 ubiquitination and degradation, which elevate the signal threshold for the induction of apoptosis in the cells following PKC inhibition. Thus, Bcl-2 appears an attractive target for the induction of apoptosis by PKC inhibition in cancer cells expressing oncogenic K-ras.

  20. ACY-1215 accelerates vemurafenib induced cell death of BRAF-mutant melanoma cells via induction of ER stress and inhibition of ERK activation.

    PubMed

    Peng, Ueihuei; Wang, Zhihao; Pei, Sa; Ou, Yunchao; Hu, Pengchao; Liu, Wanhong; Song, Jiquan

    2017-02-01

    BRAFV600E mutation is found in ~50% of melanoma patients and BRAFV600E kinase activity inhibitor, vemurafenib, has achieved a remarkable clinical response rate. However, most patients treated with vemurafenib eventually develop resistance. Overcoming primary and secondary resistance to selective BRAF inhibitors remains one of the most critically compelling challenges for these patients. HDAC6 has been shown to confer resistance to chemotherapy in several types of cancer. Few studies focused on the role of HDAC6 in vemurafenib resistance. Here we showed that overexpression of HDAC6 confers resistance to vemurafenib in BRAF-mutant A375 cells. ACY-1215, a selective HDAC6 inhibitor, inhibits the proliferation and induces the apoptosis of A375 cells. Moreover, ACY-1215 sensitizes A375 cells to vemurafenib induced cell proliferation inhibition and apoptosis induction, which occur partly through induction of endoplasmic reticulum (ER) stress and inactivation of extracellular signal-regulated kinase (ERK). Taken together, our results suggest that the inhibition of HDAC6 may be a promising strategy for the treatment of melanoma and overcoming resistance to vemurafenib.

  1. POLE somatic mutations in advanced colorectal cancer.

    PubMed

    Guerra, Joana; Pinto, Carla; Pinto, Diana; Pinheiro, Manuela; Silva, Romina; Peixoto, Ana; Rocha, Patrícia; Veiga, Isabel; Santos, Catarina; Santos, Rui; Cabreira, Verónica; Lopes, Paula; Henrique, Rui; Teixeira, Manuel R

    2017-12-01

    Despite all the knowledge already gathered, the picture of somatic genetic changes in colorectal tumorigenesis is far from complete. Recently, germline and somatic mutations in the exonuclease domain of polymerase epsilon, catalytic subunit (POLE) gene have been reported in a small subset of microsatellite-stable and hypermutated colorectal carcinomas (CRCs), affecting the proofreading activity of the enzyme and leading to misincorporation of bases during DNA replication. To evaluate the role of POLE mutations in colorectal carcinogenesis, namely in advanced CRC, we searched for somatic mutations by Sanger sequencing in tumor DNA samples from 307 cases. Microsatellite instability and mutation analyses of a panel of oncogenes were performed in the tumors harboring POLE mutations. Three heterozygous mutations were found in two tumors, the c.857C>G, p.Pro286Arg, the c.901G>A, p.Asp301Asn, and the c.1376C>T, p.Ser459Phe. Of the POLE-mutated CRCs, one tumor was microsatellite-stable and the other had low microsatellite instability, whereas KRAS and PIK3CA mutations were found in one tumor each. We conclude that POLE somatic mutations exist but are rare in advanced CRC, with further larger studies being necessary to evaluate its biological and clinical implications. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  2. DNA damage on nano- and micrometer scales impacts dicentric induction: computer modelling of ion microbeam experiments

    NASA Astrophysics Data System (ADS)

    Friedland, Werner; Kundrat, Pavel; Schmitt, Elke

    2016-07-01

    Detailed understanding of the enhanced relative biological effectiveness (RBE) of ions, in particular at high linear energy transfer (LET) values, is needed to fully explore the radiation risk of manned space missions. It is generally accepted that the enhanced RBE of high-LET particles results from the DNA lesion patterns, in particular DNA double-strand breaks (DSB), due to the spatial clustering of energy deposits around their trajectories. In conventional experiments on biological effects of radiation types of diverse quality, however, clustering of energy deposition events on nanometer scale that is relevant for the induction and local complexity of DSB is inherently interlinked with regional (sub-)micrometer-scale DSB clustering along the particle tracks. Due to this limitation, the role of both (nano- and micrometer) scales on the induction of diverse biological endpoints cannot be frankly separated. To address this issue in a unique way, experiments at the ion microbeam SNAKE [1] and corresponding track-structure based model calculations of DSB induction and subsequent repair with the biophysical code PARTRAC [2] have been performed. In the experiments, hybrid human-hamster A_{L} cells were irradiated with 20 MeV (2.6 keV/μm) protons, 45 MeV (60 keV/μm) lithium ions or 55 MeV (310 keV/μm) carbon ions. The ions were either quasi-homogeneously distributed or focused to 0.5 x 1 μm^{2} spots on regular matrix patterns of 5.4 μm, 7.6 μm and 10.6 μm grid size, with pre-defined particle numbers per spot so as to deposit a mean dose of 1.7 Gy for all irradiation patterns. As expected, the induction of dicentrics by homogeneous irradiation increased with LET: lithium and carbon ions induced about two- and four-fold higher yields of dicentrics than protons. The induction of dicentrics is, however, affected by µm-scale, too: focusing 20 lithium ions or 451 protons per spot on a 10.6 μm grid induced two or three times more dicentrics, respectively, than a quasi-homogenous irradiation with these particles [3]. PARTRAC calculations of initial DNA damage showed that the sub-micrometer beam focusing of the ions in these experiments affects neither DSB yields nor local DSB complexity, but considerably enhances the formation of DSB fragments of 10 - 1000 kbp size [4], corresponding to DSB pairs in about 100 - 500 nm distance. Thus, the substantial impact of ion focusing on dicentric induction points out that nanoscale DNA damage clustering can explain only partly the increased RBE of high LET radiation regarding dicentric induction. The measured trends for dicentric induction as a function of grid size (or particle number per spot) were largely reproduced by the calculated induction of total chromosomal aberrations, whereas the calculation of dicentrics yielded apparent discrepancies, such as an overestimation of the focusing effect for protons and of the yield for quasi-homogeneous lithium ions [3]. Since this incongruity was found to be rather robust against model parameter variations, a more basic review of the chromosomal aberration model with in-depth testing of several hypotheses on the origin of misrejoining events of DNA ends has been started considering the reported experimental findings. The results of ongoing parameter studies will be presented at the meeting. Acknowledgement. This work was supported by the German Federal Ministry of Education and Research (Project 'LET-Verbund', Funding no. 02NUK031C). References [1] Schmid et al. 2012 Phys. Med. Biol. 57, 5889-5907 [2] Friedland et al. 2011 Mutat. Res. 711, 28-40 [3] Schmid et al. 2015 Mutat. Res. 793, 30-40 [4] Friedland et al. 2015 Radiat. Prot. Dosim. 166, 34-37

  3. Mutagenesis in human cells with accelerated H and Fe ions

    NASA Technical Reports Server (NTRS)

    Kronenberg, Amy

    1994-01-01

    The overall goals of this research were to determine the risks of mutation induction and the spectra of mutations induced by energetic protons and iron ions at two loci in human lymphoid cells. During the three year grant period the research has focused in three major areas: (1) the acquisition of sufficient statistics for human TK6 cell mutation experiments using Fe ions (400 MeV/amu), Fe ions (600 MeV/amu) and protons (250 MeV/amu); (2) collection of thymidine kinase- deficient (tk) mutants or hypoxanthine phosphoribosyltransferase deficient (hprt) mutants induced by either Fe 400 MeV/amu, Fe 600 MeV/amu, or H 250 MeV/amu for subsequent molecular analysis; and (3) molecular characterization of mutants isolated after exposure to Fe ions (600 MeV/amu). As a result of the shutdown of the BEVALAC heavy ion accelerator in December 1992, efforts were rearranged somewhat in time to complete our dose-response studies and to complete mutant collections in particular for the Fe ion beams prior to the shutdown. These goals have been achieved. A major effort was placed on collection, re-screening, and archiving of 3 different series of mutants for the various particle beam exposures: tk-ng mutants, tk-sg mutants, and hprt-deficient mutants. Where possible, groups of mutants were isolated for several particle fluences. Comparative analysis of mutation spectra has occured with characterization of the mutation spectrum for hprt-deficient mutants obtained after exposure of TK6 cells to Fe ions (600 MeV/amu) and a series of spontaneous mutants.

  4. Evaluation of point mutations in dystrophin gene in Iranian Duchenne and Becker muscular dystrophy patients: introducing three novel variants.

    PubMed

    Haghshenas, Maryam; Akbari, Mohammad Taghi; Karizi, Shohreh Zare; Deilamani, Faravareh Khordadpoor; Nafissi, Shahriar; Salehi, Zivar

    2016-06-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50-79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.

  5. SHOX mutations in idiopathic short stature and Leri-Weill dyschondrosteosis: frequency and phenotypic variability.

    PubMed

    Jorge, Alexander A L; Souza, Silvia C; Nishi, Miriam Y; Billerbeck, Ana E; Libório, Débora C C; Kim, Chong A; Arnhold, Ivo J P; Mendonca, Berenice B

    2007-01-01

    The frequency of SHOX mutations in children with idiopathic short stature (ISS) has been found to be variable. We analysed the SHOX gene in children with ISS and Leri-Weill dyschondrosteosis (LWD) and evaluated the phenotypic variability in patients harbouring SHOX mutations. Sixty-three ISS, nine LWD children and 21 affected relatives. SHOX gene deletion was evaluated by fluorescence in situ hybridization (FISH), Southern blotting and segregation study of polymorphic marker. Point mutations were assessed by direct DNA sequencing. None of the ISS patients presented SHOX deletions, but two (3.2%) presented heterozygous point mutations, including the novel R147H mutation. However, when ISS patients were selected by sitting height : height ratio (SH/H) for age > 2 SD, mutation frequency detection increased to 22%. Eight (89%) LWD patients had SHOX deletions, but none had point mutations. Analysis of the other relatives in the families carrying SHOX mutations identified 14 children and 17 adult patients. A broad phenotypic variability was observed in all families regarding short stature severity and Madelung deformities. However, the presence of disproportional height, assessed by SH/H, was observed in all children and 82% of adult patients, being the most common feature in our patients with SHOX mutations. Patients with SHOX mutations present a broad phenotypic variability. SHOX mutations are very frequent in LWD (89%), in opposition to ISS (3.2%) in our cohort. The use of SH/H SDS as a selection criterion increases the frequency of SHOX mutation detection to 22% and should be used for selecting ISS children to undergo SHOX mutation molecular studies.

  6. AIP mutations in Brazilian patients with sporadic pituitary adenomas: a single-center evaluation

    PubMed Central

    Kasuki, Leandro; de Azeredo Lima, Carlos Henrique; Ogino, Liana; Camacho, Aline H S; Chimelli, Leila; Korbonits, Márta

    2017-01-01

    Aryl hydrocarbon receptor-interacting protein (AIP) gene mutations (AIPmut) are the most frequent germline mutations found in apparently sporadic pituitary adenomas (SPA). Our aim was to evaluate the frequency of AIPmut among young Brazilian patients with SPA. We performed an observational cohort study between 2013 and 2016 in a single referral center. AIPmut screening was carried out in 132 SPA patients with macroadenomas diagnosed up to 40 years or in adenomas of any size diagnosed until 18 years of age. Twelve tumor samples were also analyzed. Leukocyte DNA and tumor tissue DNA were sequenced for the entire AIP-coding region for evaluation of mutations. Eleven (8.3%) of the 132 patients had AIPmut, comprising 9/74 (12%) somatotropinomas, 1/38 (2.6%) prolactinoma, 1/10 (10%) corticotropinoma and no non-functioning adenomas. In pediatric patients (≤18 years), AIPmut frequency was 13.3% (2/15). Out of the 5 patients with gigantism, two had AIPmut, both truncating mutations. The Y268* mutation was described in Brazilian patients and the K273Rfs*30 mutation is a novel mutation in our patient. No somatic AIP mutations were found in the 12 tumor samples. A tumor sample from an acromegaly patient harboring the A299V AIPmut showed loss of heterozygosity. In conclusion, AIPmut frequency in SPA Brazilian patients is similar to other populations. Our study identified two mutations exclusively found in Brazilians and also shows, for the first time, loss of heterozygosity in tumor DNA from an acromegaly patient harboring the A299V AIPmut. Our findings corroborate previous observations that AIPmut screening should be performed in young patients with SPA. PMID:29074612

  7. The importance of mRNA structure in determining the pathogenicity of synonymous and non-synonymous mutations in haemophilia

    PubMed Central

    Hamasaki-Katagiri, Nobuko; Lin, Brian C.; Simon, Jonathan; Hunt, Ryan C.; Schiller, Tal; Russek-Cohen, Estelle; Komar, Anton A.; Bar, Haim; Kimchi-Sarfaty, Chava

    2016-01-01

    Introduction Mutational analysis is commonly used to support the diagnosis and management of haemophilia. This has allowed for the generation of large mutation databases which provide unparalleled insight into genotype-phenotype relationships. Haemophilia is associated with inversions, deletions, insertions, nonsense and missense mutations. Both synonymous and non-synonymous mutations influence the base pairing of messenger RNA (mRNA), which can alter mRNA structure, cellular half-life and ribosome processivity/elongation. However, the role of mRNA structure in determining the pathogenicity of point mutations in haemophilia has not been evaluated. Aim To evaluate mRNA thermodynamic stability and associated RNA prediction software as a means to distinguish between neutral and disease-associated mutations in haemophilia. Methods Five mRNA structure prediction software programs were used to assess the thermodynamic stability of mRNA fragments carrying neutral vs. disease-associated and synonymous vs. non-synonymous point mutations in F8, F9 and a third X-linked gene, DMD (dystrophin). Results In F8 and DMD, disease-associated mutations tend to occur in more structurally stable mRNA regions, represented by lower MFE (minimum free energy) levels. In comparing multiple software packages for mRNA structure prediction, a 101–151 nucleotide fragment length appears to be a feasible range for structuring future studies. Conclusion mRNA thermodynamic stability is one predictive characteristic, which when combined with other RNA and protein features, may offer significant insight when screening sequencing data for novel disease-associated mutations. Our results also suggest potential utility in evaluating the mRNA thermodynamic stability profile of a gene when determining the viability of interchanging codons for biological and therapeutic applications. PMID:27933712

  8. LhnR and upstream operon LhnABC in Agrobacterium vitis regulate the induction of tobacco hypersensitive responses, grape necrosis and swarming motility.

    PubMed

    Zheng, Desen; Hao, Guixia; Cursino, Luciana; Zhang, Hongsheng; Burr, Thomas J

    2012-09-01

    The characterization of Tn5 transposon insertional mutants of Agrobacterium vitis strain F2/5 revealed a gene encoding a predicted LysR-type transcriptional regulator, lhnR (for 'LysR-type regulator associated with HR and necrosis'), and an immediate upstream operon consisting of three open reading frames (lhnABC) required for swarming motility, surfactant production and the induction of a hypersensitive response (HR) on tobacco and necrosis on grape. The operon lhnABC is unique to A. vitis among the sequenced members in Rhizobiaceae. Mutagenesis of lhnR and lhnABC by gene disruption and complementation of ΔlhnR and ΔlhnABC confirmed their roles in the expression of these phenotypes. Mutation of lhnR resulted in complete loss of HR, swarming motility, surfactant production and reduced necrosis, whereas mutation of lhnABC resulted in loss of swarming motility, delayed and reduced HR development and reduced surfactant production and necrosis. The data from promoter-green fluorescent protein (gfp) fusions showed that lhnR suppresses the expression of lhnABC and negatively autoregulates its own expression. It was also shown that lhnABC negatively affects its own expression and positively affects the transcription of lhnR. lhnR and lhnABC constitute a regulatory circuit that coordinates the transcription level of lhnR, resulting in the expression of swarming, surfactant, HR and necrosis phenotypes. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  9. I-SceI-Induced Gene Replacement at a Natural Locus in Embryonic Stem Cells

    PubMed Central

    Cohen-Tannoudji, Michel; Robine, Sylvie; Choulika, André; Pinto, Daniel; El Marjou, Fatima; Babinet, Charles; Louvard, Daniel; Jaisser, Frédéric

    1998-01-01

    Gene targeting is a very powerful tool for studying mammalian development and physiology and for creating models of human diseases. In many instances, however, it is desirable to study different modifications of a target gene, but this is limited by the generally low frequency of homologous recombination in mammalian cells. We have developed a novel gene-targeting strategy in mouse embryonic stem cells that is based on the induction of endogenous gap repair processes at a defined location within the genome by induction of a double-strand break (DSB) in the gene to be mutated. This strategy was used to knock in an NH2-ezrin mutant in the villin gene, which encodes an actin-binding protein expressed in the brush border of the intestine and the kidney. To induce the DSB, an I-SceI yeast meganuclease restriction site was first introduced by gene targeting to the villin gene, followed by transient expression of I-SceI. The repair of the ensuing DSB was achieved with high efficiency (6 × 10−6) by a repair shuttle vector sharing only a 2.8-kb region of homology with the villin gene and no negative selection marker. Compared to conventional gene-targeting experiments at the villin locus, this represents a 100-fold stimulation of gene-targeting frequency, notwithstanding a much lower length of homology. This strategy will be very helpful in facilitating the targeted introduction of several types of mutations within a gene of interest. PMID:9488460

  10. Fbxw7-associated drug resistance is reversed by induction of terminal differentiation in murine intestinal organoid culture

    PubMed Central

    Lorenzi, Federica; Babaei-Jadidi, Roya; Sheard, Jonathan; Spencer-Dene, Bradley; Nateri, Abdolrahman S

    2016-01-01

    Colorectal cancer (CRC) is one of the top three cancer-related causes of death worldwide. FBXW7 is a known tumor-suppressor gene, commonly mutated in CRC and in a variety of other epithelial tumors. Low expression of FBXW7 is also associated with poor prognosis. Loss of FBXW7 sensitizes cancer cells to certain drugs, while making them more resistant to other types of chemotherapies. However, is not fully understood how epithelial cells within normal gut and primary tumors respond to potential cancer therapeutics. We have studied genetically engineered mice in which the fbxw7 gene is conditionally knocked-out in the intestine (fbxw7∆G). To further investigate the mechanism of Fbxw7-action, we grew intestinal crypts from floxed-fbxw7 (fbxw7fl/fl) and fbxw7ΔG mice, in a Matrigel-based organoid (mini-gut) culture. The fbxw7ΔG organoids exhibited rapid budding events in the crypt region. Furthermore, to test organoids for drug response, we exposed day 3 intestinal organoids from fbxw7fl/fl and fbxw7∆G mice, to various concentrations of 5-fluorouracil (5-FU) for 72 hours. 5-FU triggers phenotypic differences in organoids including changing shape, survival, resistance, and death. 5-FU however, rescues the drug-resistance phenotype of fbxw7ΔG through the induction of terminal differentiation. Our results support the hypothesis that a differentiating therapy successfully targets FBXW7-mutated CRC cells. PMID:27110583

  11. A universal method for the mutational analysis of K-ras and p53 gene in non-small-cell lung cancer using formalin-fixed paraffin-embedded tissue.

    PubMed

    Sarkar, F H; Valdivieso, M; Borders, J; Yao, K L; Raval, M M; Madan, S K; Sreepathi, P; Shimoyama, R; Steiger, Z; Visscher, D W

    1995-12-01

    The p53 tumor suppressor gene has been found to be altered in almost all human solid tumors, whereas K-ras gene mutations have been observed in a limited number of human cancers (adenocarcinoma of colon, pancreas, and lung). Studies of mutational inactivation for both genes in the same patient's sample on non-small-cell lung cancer have been limited. In an effort to perform such an analysis, we developed and compared methods (for the mutational detection of p53 and K-ras gene) that represent a modified and universal protocol, in terms of DNA extraction, polymerase chain reaction (PCR) amplification, and nonradioisotopic PCR-single-strand conformation polymorphism (PCR-SSCP) analysis, which is readily applicable to either formalin-fixed, paraffin-embedded tissues or frozen tumor specimens. We applied this method to the evaluation of p53 (exons 5-8) and K-ras (codon 12 and 13) gene mutations in 55 cases of non-small-cell lung cancer. The mutational status in the p53 gene was evaluated by radioisotopic PCR-SSCP and compared with PCR-SSCP utilizing our standardized nonradioisotopic detection system using a single 6-microns tissue section. The mutational patterns observed by PCR-SSCP were subsequently confirmed by PCR-DNA sequencing. The mutational status in the K-ras gene was similarly evaluated by PCR-SSCP, and the specific mutation was confirmed by Southern slot-blot hybridization using 32P-labeled sequence-specific oligonucleotide probes for codons 12 and 13. Mutational changes in K-ras (codon 12) were found in 10 of 55 (18%) of non-small-cell lung cancers. Whereas adenocarcinoma showed K-ras mutation in 33% of the cases at codon 12, only one mutation was found at codon 13. As expected, squamous cell carcinoma samples (25 cases) did not show K-ras mutations. Mutations at exons 5-8 of the p53 gene were documented in 19 of 55 (34.5%) cases. Ten of the 19 mutations were single nucleotide point mutations, leading to amino acid substitution. Six showed insertional mutation, and three showed deletion mutations. Only three samples showed mutations of both K-ras and p53 genes. We conclude that although K-ras and p53 gene mutations are frequent in non-small-cell lung cancer, mutations of both genes in the same patient's samples are not common. We also conclude that this universal nonradioisotopic method is superior to other similar methods and is readily applicable to the rapid screening of large numbers of formalin-fixed, paraffin-embedded or frozen samples for the mutational analysis of multiple genes.

  12. Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media.

    PubMed

    Chang, Chia-Chieh; Chang, Kai-Chun; Tsai, Shang-Jye; Chang, Hao-Hueng; Lin, Chun-Pin

    2014-12-01

    Dental pulp stem cells (DPSCs) have been proposed as a promising source of stem cells in nerve regeneration due to their close embryonic origin and ease of harvest. The aim of this study was to evaluate the efficacy of dopaminergic and motor neuronal inductive media on transdifferentiation of human DPSCs (hDPSCs) into neuron-like cells. Isolation, cultivation, and identification of hDPSCs were performed with morphological analyses and flow cytometry. The proliferation potential of DPSCs was evaluated with an XTT [(2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide)] assay. Media for the induction of dopaminergic and spinal motor neuronal differentiation were prepared. The efficacy of neural induction was evaluated by detecting the expression of neuron cell-specific cell markers in DPSCs by immunocytochemistry and quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). In the XTT assay, there was a 2.6- or 2-fold decrease in DPSCs cultured in dopaminergic or motor neuronal inductive media, respectively. The proportions of βIII-tubulin (βIII-tub), glial fibrillary acidic protein (GFAP), and oligodendrocyte (O1)-positive cells were significantly higher in DPSCs cultured in both neuronal inductive media compared with those cultured in control media. Furthermore, hDPSC-derived dopaminergic and spinal motor neuron cells after induction expressed a higher density of neuron cell markers than those before induction. These findings suggest that in response to the neuronal inductive stimuli, a greater proportion of DPSCs stop proliferation and acquire a phenotype resembling mature neurons. Such neural crest-derived adult DPSCs may provide an alternative stem cell source for therapy-based treatments of neuronal disorders and injury. Copyright © 2014. Published by Elsevier B.V.

  13. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii

    DOE PAGES

    Ballottari, Matteo; Truong, Thuy B.; De Re, Eleonora; ...

    2016-01-27

    Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green alga Chlamydomonas reinhardtii. Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesis in vivo and in vitro for identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp 117,more » Glu 221, and Glu 224 were shown to be essential for LHCSR3-dependent NPQ induction in C. reinhardtii. Analysis of recombinant proteins carrying the same mutations refolded in vitro with pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide.« less

  14. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballottari, Matteo; Truong, Thuy B.; De Re, Eleonora

    Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green alga Chlamydomonas reinhardtii. Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesis in vivo and in vitro for identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp 117,more » Glu 221, and Glu 224 were shown to be essential for LHCSR3-dependent NPQ induction in C. reinhardtii. Analysis of recombinant proteins carrying the same mutations refolded in vitro with pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide.« less

  15. Anticancer potential of benzothiazolic derivative (E)-2-((2-(benzo[d]thiazol-2-yl)hydrazono)methyl)-4-nitrophenol against melanoma cells.

    PubMed

    Vasconcelos, Zanair Soares; Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; Dos Santos Barbosa, Gleyce; do Nascimento Pedrosa, Tatiana; Antony, Lucas Pio; de Arruda Cardoso Smith, Marília; de Lucas Chazin, Eliza; Vasconcelos, Thatyana Rocha Alves; Montenegro, Raquel Carvalho; de Vasconcellos, Marne Carvalho

    2018-08-01

    Malignant melanoma is an important type of cancer worldwide due to its aggressiveness and poor survival rate. Significant efforts to understand the biology of melanoma and approaches to treat the advanced disease are focused on targeted gene inhibitors. Frequently mutated genes, such as NRAS, B-RAF and TP53, significantly exceed the frequency of mutations of other genes, emphasizing their importance for future targeted therapies. Considering the antitumor activity of benzothiazolic derivatives, this study aimed to demonstrate the action of benzothiazolic (E)-2-((2-(benzo[d]thiazol-2-yl)hydrazono)methyl)-4-nitrophenol (AFN01) against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of its genetic alterations and mutations, such as the TP53, NRAS and B-RAF genes. The results presented here indicate that AFN01, as a significant cytostatic and cytotoxic drug due to its induction of DNA fragmentation, causes single and double DNA strand breaks, consequently inhibiting cell proliferation, migration and invasion by promoting apoptosis. Our data suggest that AFN01 might be considered as a future therapeutic option for managing melanoma. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii.

    PubMed

    Ballottari, Matteo; Truong, Thuy B; De Re, Eleonora; Erickson, Erika; Stella, Giulio R; Fleming, Graham R; Bassi, Roberto; Niyogi, Krishna K

    2016-04-01

    Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green algaChlamydomonas reinhardtii Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesisin vivoandin vitrofor identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp(117), Glu(221), and Glu(224)were shown to be essential for LHCSR3-dependent NPQ induction inC. reinhardtii Analysis of recombinant proteins carrying the same mutations refoldedin vitrowith pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Mutagenesis of Saccharomyces cerevisiae by sodium azide activated in barley.

    PubMed

    Velemínský, J; Silhánková, L; Smiovská, V; Gichner, T

    1979-07-01

    Concentrated dialysate of the extract prepared from barley seeds treated with sodium azide increased up to 100--200 times the frequency of forward mutations to cycloheximide resistance in the excision-deficient UV-sensitive heploid strain rad2-5 of Saccharomyces cerevisiae, when applied to growing cells in complete medium at pH 4.2. Only a slight increase of mutation frequency (less than 4 times) was found in the haploid RAD+ strain treated in the same way as well as in haploid RAD+ and rad2-5 strains treated directly by sodium azide. In contrast with the barley-activated sodium azide, UV irradiation was more effective in the induction of cycloheximide resistance in the RAD+ strain than in the RAD2-5 mutant. The dialysate from azide-treated barley seeds, applied at both pH 4.2 and pH 9, also significantly increased the frequency of locus-specific suppressor mutations to isoleucine independence and -- to a lesser extent -- reversions and/or gene conversions in the trp5 locus in growing cells of the diploid strain D7. The dialysate was also mutagenic in resting cells of strains D7 and rad2-5 but with lower effectiveness.

  18. Induction-related cost of patients with acute myeloid leukaemia in France.

    PubMed

    Nerich, Virginie; Lioure, Bruno; Rave, Maryline; Recher, Christian; Pigneux, Arnaud; Witz, Brigitte; Escoffre-Barbe, Martine; Moles, Marie-Pierre; Jourdan, Eric; Cahn, Jean Yves; Woronoff-Lemsi, Marie-Christine

    2011-04-01

    The economic profile of acute myeloid leukaemia (AML) is badly known. The few studies published on this disease are now relatively old and include small numbers of patients. The purpose of this retrospective study was to evaluate the induction-related cost of 500 patients included in the AML 2001 trial, and to determine the explanatory factors of cost. "Induction" patient's hospital stay from admission for "induction" to discharge after induction. The study was performed from the French Public Health insurance perspective, restrictive to hospital institution costs. The average management of a hospital stay for "induction" was evaluated according to the analytical accounting of Besançon University Teaching Hospital and the French public Diagnosis-Related Group database. Multiple linear regression was used to search for explanatory factors. Only direct medical costs were included: treatment and hospitalisation. Mean induction-related direct medical cost was estimated at €41,852 ± 6,037, with a mean length of hospital stay estimated at 36.2 ± 10.7 days. After adjustment for age, sex and performance status, only two explanatory factors were found: an additional induction course and salvage course increased induction-related cost by 38% (± 4) and 15% (± 1) respectively, in comparison to one induction. These explanatory factors were associated with a significant increase in the mean length of hospital stay: 45.8 ± 11.6 days for 2 inductions and 38.5 ± 15.5 if the patient had a salvage course, in comparison to 32.9 ± 7.7 for one induction (P < 10⁻⁴). This result is robust and was confirmed by sensitivity analysis. Consideration of economic constraints in health care is now a reality. Only the control of length of hospital stay may lead to a decrease in induction-related cost for patients with AML.

  19. Elective induction of labor.

    PubMed

    Moore, Lisa E; Rayburn, William F

    2006-09-01

    Induction of labor rates have more than doubled nationwide in the past 15 years. The increase in medically induced inductions was slower than the overall increase, suggesting that inductions for marginal or elective reasons rose more rapidly. Elective inductions seem to account for at least half of all inductions and 10% of all deliveries. Whether the experience of an elective induction is satisfactory to the patient, obstetrician, and intrapartum crew warrants more widespread attention. Cesarean rates are high for nulliparas undergoing an induction with an unfavorable cervix. Prospective studies are limited or nonexistent to recommend induction of labor for elective or marginal indications. Until more prospective work is performed, it will be difficult to evaluate the true impact of the elective induction of labor on population-wide cesarean delivery rates. Strategies for increased obstetrician awareness are proposed through practice guidelines and through clinical research trials.

  20. Measurable Residual Disease at Induction Redefines Partial Response in Acute Myeloid Leukemia and Stratifies Outcomes in Patients at Standard Risk Without NPM1 Mutations

    PubMed Central

    Freeman, Sylvie D.; Hills, Robert K.; Virgo, Paul; Khan, Naeem; Couzens, Steve; Dillon, Richard; Gilkes, Amanda; Upton, Laura; Nielsen, Ove Juul; Cavenagh, James D.; Jones, Gail; Khwaja, Asim; Cahalin, Paul; Thomas, Ian; Grimwade, David; Burnett, Alan K.; Russell, Nigel H.

    2018-01-01

    Purpose We investigated the effect on outcome of measurable or minimal residual disease (MRD) status after each induction course to evaluate the extent of its predictive value for acute myeloid leukemia (AML) risk groups, including NPM1 wild-type (wt) standard risk, when incorporated with other induction response criteria. Methods As part of the NCRI AML17 trial, 2,450 younger adult patients with AML or high-risk myelodysplastic syndrome had prospective multiparameter flow cytometric MRD (MFC-MRD) assessment. After course 1 (C1), responses were categorized as resistant disease (RD), partial remission (PR), and complete remission (CR) or complete remission with absolute neutrophil count < 1,000/µL or thrombocytopenia < 100,000/μL (CRi) by clinicians, with CR/CRi subdivided by MFC-MRD assay into MRD+ and MRD−. Patients without high-risk factors, including Flt3 internal tandem duplication wt/−NPM1-wt subgroup, received a second daunorubicin/cytosine arabinoside induction; course 2 (C2) was intensified for patients with high-risk factors. Results Survival outcomes from PR and MRD+ responses after C1 were similar, particularly for good- to standard-risk subgroups (5-year overall survival [OS], 27% RD v 46% PR v 51% MRD+ v 70% MRD−; P < .001). Adjusted analyses confirmed significant OS differences between C1 RD versus PR/MRD+ but not PR versus MRD+. CRi after C1 reduced OS in MRD+ (19% CRi v 45% CR; P = .001) patients, with a smaller effect after C2. The prognostic effect of C2 MFC-MRD status (relapse: hazard ratio [HR], 1.88 [95% CI, 1.50 to 2.36], P < .001; survival: HR, 1.77 [95% CI, 1.41 to 2.22], P < .001) remained significant when adjusting for C1 response. MRD positivity appeared less discriminatory in poor-risk patients by stratified analyses. For the NPM1-wt standard-risk subgroup, C2 MRD+ was significantly associated with poorer outcomes (OS, 33% v 63% MRD−, P = .003; relapse incidence, 89% when MRD+ ≥ 0.1%); transplant benefit was more apparent in patients with MRD+ (HR, 0.72; 95% CI, 0.31 to 1.69) than those with MRD− (HR, 1.68 [95% CI, 0.75 to 3.85]; P = .16 for interaction). Conclusion MFC-MRD can improve outcome stratification by extending the definition of partial response after first induction and may help predict NPM1-wt standard-risk patients with poor outcome who benefit from transplant in the first CR. PMID:29601212

  1. Maternal Acceptance: Its Contribution to Children's Favorable Perceptions of Discipline and Moral Identity.

    PubMed

    Patrick, Renee B; Gibbs, John C

    2016-01-01

    The authors examined the contribution of maternal acceptance or warmth to children's and adolescents' perceptions of discipline and formation of moral identity. The sample consisted of 93 male and female students from Grades 5, 8, and 10 and their mothers. Students completed measures pertaining to perceived maternal discipline practices and acceptance-rejection, as well as moral identity. A subsample of mothers reported on their accepting or rejecting actions toward their children. Children were more likely to feel accepted, if their mothers used inductive discipline (vs. power assertion and love withdrawal). Perceived acceptance was also related to more favorable discipline evaluations in certain respects. Specifically, inductive discipline recipients who felt accepted also evaluated induction as appropriate and responded to it with positive and guilt-related emotions. Power assertion was evaluated as appropriate among those children who did feel accepted. Finally, among inductive discipline recipients, those who felt accepted also reported higher moral identity.

  2. p53 sequence analysis predicts treatment response and outcome of patients with esophageal carcinoma.

    PubMed

    Ribeiro, U; Finkelstein, S D; Safatle-Ribeiro, A V; Landreneau, R J; Clarke, M R; Bakker, A; Swalsky, P A; Gooding, W E; Posner, M C

    1998-07-01

    The ability to predict biologic behavior and treatment responsiveness would be a valuable asset in the multimodality approach to esophageal carcinoma. The authors examined whether alterations of the p53 gene correlate with clinicopathologic parameters, response to preoperative chemotherapy/radiotherapy, and outcome in patients with esophageal carcinoma. METHODS. Histopathologic/genetic analysis of p53 was performed on formalin fixed, paraffin embedded tissues. Tissue sections were stained immunohistochemically for p53 protein followed by topographic genotyping comprised of polymerase chain reaction amplification and direct sequencing of p53 exons 5-8. All patients received induction chemotherapy (5-fluorouracil, cisplatin, and alpha-interferon) and concurrent external beam radiotherapy (4500 centigrays) followed by resection. p53 analysis performed on 42 tumors from patients with potentially resectable esophageal carcinoma revealed 25 of the 42 tumors (59.5%) to be p53 immunopositive; however, only 17 of the 42 tumors (40.5%) were proven to contain p53 point mutational damage in exons 8 (n=5), 5 (n=5), 7 (n=4), and 6 (n=3). Eight cases were weakly immunopositive and had no genotype mutation suggesting hyperexpression of normal wild-type p53. Genotyping also identified two immunonegative cases with deletion-type mutations (exons 5 and 6). Tissue samples collected before and after chemotherapy/radiotherapy exhibited fidelity in p53 mutational genotype in all cases. The presence of a p53 point mutation positively correlated with pTNM stage (P=0.003) and residual disease in the resected specimen (P=0.01). Moreover, survival of patients with p53 mutations was significantly lower than that of patients without mutations (overall survival of 21.6 months vs. 40 months; P=0.0038; and disease free survival of 14.1 months vs. 38 months; P=0.0004). Histopathologic/genetic analysis is a better determinant of p53 mutational damage than immunohistochemistry alone and can be used as a prognostic marker for esophageal carcinoma. p53 genotyping may define a subset of patients who respond to chemotherapy/radiotherapy and may predict who potentially benefits from multimodality therapy.

  3. Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer.

    PubMed

    Ikeda, Masato; Mitsuhashi, Satoshi; Tanaka, Kenji; Hayashi, Mikiro

    2009-03-01

    Toward the creation of a robust and efficient producer of L-arginine and L-citrulline (arginine/citrulline), we have performed reengineering of a Corynebacterium glutamicum strain by using genetic information of three classical producers. Sequence analysis of their arg operons identified three point mutations (argR123, argG92(up), and argG45) in one producer and one point mutation (argB26 or argB31) in each of the other two producers. Reconstitution of the former three mutations or of each argB mutation on a wild-type genome led to no production. Combined introduction of argB26 or argB31 with argR123 into a wild type gave rise to arginine/citrulline production. When argR123 was replaced by an argR-deleted mutation (Delta argR), the production was further increased. The best mutation set, Delta argR and argB26, was used to screen for the highest productivity in the backgrounds of different wild-type strains of C. glutamicum. This yielded a robust producer, RB, but the production was still one-third of that of the best classical producer. Transcriptome analysis revealed that the arg operon of the classical producer was much more highly upregulated than that of strain RB. Introduction of leuC456, a mutation derived from a classical L-lysine producer and provoking global induction of the amino acid biosynthesis genes, including the arg operon, into strain RB led to increased production but incurred retarded fermentation. On the other hand, replacement of the chromosomal argB by heterologous Escherichia coli argB, natively insensitive to arginine, caused a threefold-increased production without retardation, revealing that the limitation in strain RB was the activity of the argB product. To overcome this, in addition to argB26, the argB31 mutation was introduced into strain RB, which caused higher deregulation of the enzyme and resulted in dramatically increased production, like the strain with E. coli argB. This reconstructed strain displayed an enhanced performance, thus allowing significantly higher productivity of arginine/citrulline even at the suboptimal 38 degrees C.

  4. Global Analysis of the Evolution and Mechanism of Echinocandin Resistance in Candida glabrata

    PubMed Central

    Singh-Babak, Sheena D.; Babak, Tomas; Diezmann, Stephanie; Hill, Jessica A.; Xie, Jinglin Lucy; Chen, Ying-Lien; Poutanen, Susan M.; Rennie, Robert P.; Heitman, Joseph; Cowen, Leah E.

    2012-01-01

    The evolution of drug resistance has a profound impact on human health. Candida glabrata is a leading human fungal pathogen that can rapidly evolve resistance to echinocandins, which target cell wall biosynthesis and are front-line therapeutics for Candida infections. Here, we provide the first global analysis of mutations accompanying the evolution of fungal drug resistance in a human host utilizing a series of C. glabrata isolates that evolved echinocandin resistance in a patient treated with the echinocandin caspofungin for recurring bloodstream candidemia. Whole genome sequencing identified a mutation in the drug target, FKS2, accompanying a major resistance increase, and 8 additional non-synonymous mutations. The FKS2-T1987C mutation was sufficient for echinocandin resistance, and associated with a fitness cost that was mitigated with further evolution, observed in vitro and in a murine model of systemic candidemia. A CDC6-A511G(K171E) mutation acquired before FKS2-T1987C(S663P), conferred a small resistance increase. Elevated dosage of CDC55, which acquired a C463T(P155S) mutation after FKS2-T1987C(S663P), ameliorated fitness. To discover strategies to abrogate echinocandin resistance, we focused on the molecular chaperone Hsp90 and downstream effector calcineurin. Genetic or pharmacological compromise of Hsp90 or calcineurin function reduced basal tolerance and resistance. Hsp90 and calcineurin were required for caspofungin-dependent FKS2 induction, providing a mechanism governing echinocandin resistance. A mitochondrial respiration-defective petite mutant in the series revealed that the petite phenotype does not confer echinocandin resistance, but renders strains refractory to synergy between echinocandins and Hsp90 or calcineurin inhibitors. The kidneys of mice infected with the petite mutant were sterile, while those infected with the HSP90-repressible strain had reduced fungal burden. We provide the first global view of mutations accompanying the evolution of fungal drug resistance in a human host, implicate the premier compensatory mutation mitigating the cost of echinocandin resistance, and suggest a new mechanism of echinocandin resistance with broad therapeutic potential. PMID:22615574

  5. New Teacher Induction: A Program Evaluation

    ERIC Educational Resources Information Center

    Hunter, J. Warren

    2016-01-01

    The purpose of this qualitative program evaluation was to examine the impact a two-year new teacher induction program had on teachers' feelings of support, satisfaction, and self-efficacy. The program purports that higher feelings of support, satisfaction, and self-efficacy in teachers will lead to lower teacher attrition. In turn, research shows…

  6. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma.

    PubMed

    Kipp, Benjamin R; Voss, Jesse S; Kerr, Sarah E; Barr Fritcher, Emily G; Graham, Rondell P; Zhang, Lizhi; Highsmith, W Edward; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C

    2012-10-01

    Somatic mutations in isocitrate dehydrogenase 1 and 2 genes are common in gliomas and help stratify patients with brain cancer into histologic and molecular subtypes. However, these mutations are considered rare in other solid tumors. The aims of this study were to determine the frequency of isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma and to assess histopathologic differences between specimens with and without an isocitrate dehydrogenase mutation. We sequenced 94 formalin-fixed, paraffin-embedded cholangiocarcinoma (67 intrahepatic and 27 extrahepatic) assessing for isocitrate dehydrogenase 1 (codon 132) and isocitrate dehydrogenase 2 (codons 140 and 172) mutations. Multiple histopathologic characteristics were also evaluated and compared with isocitrate dehydrogenase 1/2 mutation status. Of the 94 evaluated specimens, 21 (22%) had a mutation including 14 isocitrate dehydrogenase 1 and 7 isocitrate dehydrogenase 2 mutations. Isocitrate dehydrogenase mutations were more frequently observed in intrahepatic cholangiocarcinoma than in extrahepatic cholangiocarcinoma (28% versus 7%, respectively; P = .030). The 14 isocitrate dehydrogenase 1 mutations were R132C (n = 9), R132S (n = 2), R132G (n = 2), and R132L (n = 1). The 7 isocitrate dehydrogenase 2 mutations were R172K (n = 5), R172M (n = 1), and R172G (n = 1). Isocitrate dehydrogenase mutations were more frequently observed in tumors with clear cell change (P < .001) and poorly differentiated histology (P = .012). The results of this study show for the first time that isocitrate dehydrogenase 1 and 2 genes are mutated in cholangiocarcinoma. The results of this study are encouraging because it identifies a new potential target for genotype-directed therapeutic trials and may represent a potential biomarker for earlier detection of cholangiocarcinoma in a subset of cases. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Clinical and Biologic Significance of MYC Genetic Mutations in De Novo Diffuse Large B-cell Lymphoma.

    PubMed

    Xu-Monette, Zijun Y; Deng, Qipan; Manyam, Ganiraju C; Tzankov, Alexander; Li, Ling; Xia, Yi; Wang, Xiao-Xiao; Zou, Dehui; Visco, Carlo; Dybkær, Karen; Li, Jun; Zhang, Li; Liang, Han; Montes-Moreno, Santiago; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L; Hsi, Eric D; Choi, William W L; van Krieken, J Han; Huh, Jooryung; Ponzoni, Maurilio; Ferreri, Andrés J M; Parsons, Ben M; Møller, Michael B; Wang, Sa A; Miranda, Roberto N; Piris, Miguel A; Winter, Jane N; Medeiros, L Jeffrey; Li, Yong; Young, Ken H

    2016-07-15

    MYC is a critical driver oncogene in many cancers, and its deregulation in the forms of translocation and overexpression has been implicated in lymphomagenesis and progression of diffuse large B-cell lymphoma (DLBCL). The MYC mutational profile and its roles in DLBCL are unknown. This study aims to determine the spectrum of MYC mutations in a large group of patients with DLBCL, and to evaluate the clinical significance of MYC mutations in patients with DLBCL treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) immunochemotherapy. We identified MYC mutations in 750 patients with DLBCL using Sanger sequencing and evaluated the prognostic significance in 602 R-CHOP-treated patients. The frequency of MYC mutations was 33.3% at the DNA level (mutations in either the coding sequence or the untranslated regions) and 16.1% at the protein level (nonsynonymous mutations). Most of the nonsynonymous mutations correlated with better survival outcomes; in contrast, T58 and F138 mutations (which were associated with MYC rearrangements), as well as several mutations occurred at the 3' untranslated region, correlated with significantly worse survival outcomes. However, these mutations occurred infrequently (only in approximately 2% of DLBCL). A germline SNP encoding the Myc-N11S variant (observed in 6.5% of the study cohort) was associated with significantly better patient survival, and resulted in reduced tumorigenecity in mouse xenografts. Various types of MYC gene mutations are present in DLBCL and show different impact on Myc function and clinical outcomes. Unlike MYC gene translocations and overexpression, most MYC gene mutations may not have a role in driving lymphomagenesis. Clin Cancer Res; 22(14); 3593-605. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. Novel USH2A mutations in Israeli patients with retinitis pigmentosa and Usher syndrome type 2.

    PubMed

    Kaiserman, Nadia; Obolensky, Alexey; Banin, Eyal; Sharon, Dror

    2007-02-01

    To identify USH2A mutations in Israeli patients with autosomal-recessive Usher syndrome type 2 (USH2) and retinitis pigmentosa (RP). Patients from 95 families with RP and 4 with USH2 were clinically evaluated. USH2A exons 2-72 were scanned for mutations using single-strand conformation and sequencing analyses. The frequency of novel missense changes was determined in patients and controls using restriction endonucleases. The analysis revealed 3 USH2A mutations, 2 of which are novel, in 2 families with USH2 and a large family (MOL0051) with both USH2 and RP. Compound heterozygotes for 2 null mutations (Thr80fs and Arg737stop) in MOL0051 suffered from USH2 while compound heterozygotes for 1 of the null mutations and a novel missense mutation (Gly4674Arg) had nonsyndromic RP. Our results support the involvement of USH2A in nonsyndromic RP and we report here of a second, novel, missense mutation in this gene causing autosomal-recessive RP. Possible involvement of USH2A should be considered in the molecular genetic evaluation of patients with autosomal-recessive RP. Understanding the mechanism by which different USH2A mutations cause either USH2 or RP may assist in the development of novel therapeutic approaches.

  9. Mutation frequency in 15 common cancer genes in high-risk head and neck squamous cell carcinoma.

    PubMed

    McBride, Sean M; Rothenberg, S Michael; Faquin, William C; Chan, Annie W; Clark, John R; Ellisen, Leif W; Wirth, Lori J

    2014-08-01

    With prior studies having looked at unselected cohorts, we sought to explore the mutational landscape in a high-risk group of head and neck squamous cell carcinoma (HNSCC) tumors. A multiplexed polymerase chain reaction (PCR) assay evaluating 68 loci in 15 genes was performed on 64 patients with high-risk HNSCC. Because of the frequent PIK3CA and AKT1 mutations in patients with oropharyngeal carcinoma, we evaluated the relationship between mutation status and both clinical/pathologic variables and tumor control in this subgroup. Seventeen of 64 patients harbored mutations in the assayed loci: 16% in PIK3CA, 9% in TP53, 2% in AKT1, and 2% in epidermal growth factor receptor (EGFR). The frequency of PIK3CA/AKT1 mutations in oropharyngeal and sinonasal primaries was increased compared to other primary sites (35% vs 6%; p = .005). There was no relationship between mutation status and overall survival (OS), disease-specific death, or progression in the oropharyngeal cohort. We identified frequent PIK3CA mutations in patients with high-risk HNSCC confined predominantly to the oropharyngeal and sinonasal subsites; for the first time, mutation in AKT1 has been identified in HNSCC. Copyright © 2014 Wiley Periodicals, Inc.

  10. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis.

    PubMed

    Zhang, Xue; Zhang, Chong; Zhou, Qian-Qian; Zhang, Xiao-Fei; Wang, Li-Yan; Chang, Hai-Bo; Li, He-Ping; Oda, Yoshimitsu; Xing, Xin-Hui

    2015-07-01

    DNA damage is the dominant source of mutation, which is the driving force of evolution. Therefore, it is important to quantitatively analyze the DNA damage caused by different mutagenesis methods, the subsequent mutation rates, and their relationship. Atmospheric and room temperature plasma (ARTP) mutagenesis has been used for the mutation breeding of more than 40 microorganisms. However, ARTP mutagenesis has not been quantitatively compared with conventional mutation methods. In this study, the umu test using a flow-cytometric analysis was developed to quantify the DNA damage in individual viable cells using Salmonella typhimurium NM2009 as the model strain and to determine the mutation rate. The newly developed method was used to evaluate four different mutagenesis systems: a new ARTP tool, ultraviolet radiation, 4-nitroquinoline-1-oxide (4-NQO), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The mutation rate was proportional to the corresponding SOS response induced by DNA damage. ARTP caused greater DNA damage to individual living cells than the other conventional mutagenesis methods, and the mutation rate was also higher. By quantitatively comparing the DNA damage and consequent mutation rate after different types of mutagenesis, we have shown that ARTP is a potentially powerful mutagenesis tool with which to improve the characteristics of microbial cell factories.

  11. An evaluation of germline mutations and reproductive impacts in fathead minnow (Pimephales promelas) exposed to contaminated sediment.

    PubMed

    Miller, Jason L; Sherry, Jim; Parrott, Joanne; Quinn, James S

    2018-06-18

    Polycyclic aromatic hydrocarbons (PAHs) have become ubiquitous in the aquatic environment. Some PAHs are mutagenic, potentially causing germline mutations in fish that inhabit PAH contaminated waters. We evaluated the effect of exposure to sediment-borne PAHs on reproduction and germline mutation rates in fathead minnows (Pimephales promelas). Exposure to the contaminated sediment had no significant impact on the reproductive endpoints measured in this study. Germline mutations rates at three microsatellite DNA loci were 1.69 × 10 -3 in fish exposed to PAH-contaminated sediment and 0.55 × 10 -3 in control fish, with zero mutations being observed in fish exposed to sediment from a reference site. While the difference in mutation rates between treatments was not statistically significant for the sample size used (15-19 families per treatment), the observed mutations rates enabled us to estimate the sample size required to detect a significant effect. To our knowledge, this is the first report of germline mutation rates in fathead minnow exposed to an environmental contaminant, providing baseline data for use in the design of future experiments. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  12. Clinical and histologic effects of intracardiac administration of propofol for induction of anesthesia in ball pythons (Python regius).

    PubMed

    McFadden, Michael S; Bennett, R Avery; Reavill, Drury R; Ragetly, Guillaume R; Clark-Price, Stuart C

    2011-09-15

    To assess the clinical differences between induction of anesthesia in ball pythons with intracardiac administration of propofol and induction with isoflurane in oxygen and to assess the histologic findings over time in hearts following intracardiac administration of propofol. Prospective randomized study. 30 hatchling ball pythons (Python regius). Anesthesia was induced with intracardiac administration of propofol (10 mg/kg [4.5 mg/lb]) in 18 ball pythons and with 5% isoflurane in oxygen in 12 ball pythons. Induction time, time of anesthesia, and recovery time were recorded. Hearts from snakes receiving intracardiac administration of propofol were evaluated histologically 3, 7, 14, 30, and 60 days following propofol administration. Induction time with intracardiac administration of propofol was significantly shorter than induction time with 5% isoflurane in oxygen. No significant differences were found in total anesthesia time. Recovery following intracardiac administration of propofol was significantly longer than recovery following induction of anesthesia with isoflurane in oxygen. Heart tissue evaluated histologically at 3, 7, and 14 days following intracardiac administration of propofol had mild inflammatory changes, and no histopathologic lesions were seen 30 and 60 days following propofol administration. Intracardiac injection of propofol in snakes is safe and provides a rapid induction of anesthesia but leads to prolonged recovery, compared with that following induction with isoflurane. Histopathologic lesions in heart tissues following intracardiac injection of propofol were mild and resolved after 14 days.

  13. Orphan missense mutations in the cystic fibrosis transmembrane conductance regulator: A three-step biological approach to establishing a correlation between genotype and phenotype.

    PubMed

    Fresquet, Fleur; Clement, Romain; Norez, Caroline; Sterlin, Adélaïde; Melin, Patricia; Becq, Frédéric; Kitzis, Alain; Thoreau, Vincent; Bilan, Frédéric

    2011-09-01

    More than 1860 mutations have been found within the human cystic fibrosis transmembrane conductance regulator (CFTR) gene sequence. These mutations can be classified according to their degree of severity in CF disease. Although the most common mutations are well characterized, few data are available for rare mutations. Thus, genetic counseling is particularly difficult when fetuses or patients with CF present these orphan variations. We describe a three-step in vitro assay that can evaluate rare missense CFTR mutation consequences to establish a correlation between genotype and phenotype. By using a green fluorescent protein-tagged CFTR construct, we expressed mutated proteins in COS-7 cells. CFTR trafficking was visualized by confocal microscopy, and the cellular localization of CFTR was determined using intracellular markers. We studied the CFTR maturation process using Western blot analysis and evaluated CFTR channel activity by automated iodide efflux assays. Of six rare mutations that we studied, five have been isolated in our laboratory. The cellular and functional impact that we observed in each case was compared with the clinical data concerning the patients in whom we encountered these mutations. In conclusion, we propose that performing this type of analysis for orphan CFTR missense mutations can improve CF genetic counseling. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  14. [Evaluation of the scales used to measure anxiety and child behaviour during the induction of anaesthesia. Literature review].

    PubMed

    Jerez, C; Lázaro, J J; Ullán, A M

    2016-02-01

    The assessment of children's anxiety during anaesthetic induction is useful to determine if pre-operative strategies have been effective in reducing anxiety. The aim of this study is to review the different tools used to evaluate child anxiety or behaviour during the induction of anaesthesia. The electronic databases with no date limits were reviewed in December 2013, with a second review repeated in September 2014. A data extraction template was applied to find the scales used in the articles. Eight observational scales were found. Six of them can only be used during induction of anaesthesia, and two of those could be applied at various perioperative times, before surgery and during induction of anaesthesia. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Development of Category-based Induction and Semantic Knowledge

    ERIC Educational Resources Information Center

    Fisher, Anna V.; Godwin, Karrie E.; Matlen, Bryan J.; Unger, Layla

    2015-01-01

    Category-based induction is a hallmark of mature cognition; however, little is known about its origins. This study evaluated the hypothesis that category-based induction is related to semantic development. Computational studies suggest that early on there is little differentiation among concepts, but learning and development lead to increased…

  16. Low-dose radiation attenuates chemical mutagenesis in vivo.

    PubMed

    Kakinuma, Shizuko; Yamauchi, Kazumi; Amasaki, Yoshiko; Nishimura, Mayumi; Shimada, Yoshiya

    2009-09-01

    The biological effects of low-dose radiation are not only of social concern but also of scientific interest. The radioadaptive response, which is defined as an increased radioresistance by prior exposure to low-dose radiation, has been extensively studied both in vitro and in vivo. Here we briefly review the radioadaptive response with respect to mutagenesis, survival rate, and carcinogenesis in vivo, and introduce our recent findings of cross adaptation in mouse thymic cells, that is, the suppressive effect of repeated low-dose radiation on mutation induction by the alkylating agent N-ethyl-N-nitrosourea.

  17. Differential Regulation of Protein- and Polysaccharide-Specific Ig Isotype Production In Vivo in Response to Intact Streptococcus pneumoniae

    DTIC Science & Technology

    2006-01-01

    IL-4-/- mice. A marked enhancement in the induction of pro-inflammatory cytokines was observed in the absence of IL- 10, relative to controls. IgG...that it was phenol-extractable. Immunization of wild-type mice with phenol-extracted PPS14 also resulted in a marked reduction in the IgG, although not...Thus, CBA/N (xid) mice [124], which have a loss-of-function point mutation in the Btk gene [125, 126] exhibit a marked reduction in peritoneal B-1a

  18. Identification and validation of nebulized aerosol devices for sputum induction

    PubMed Central

    Davidson, Warren J; Dennis, John; The, Stephanie; Litoski, Belinda; Pieron, Cora; Leigh, Richard

    2014-01-01

    Induced sputum cell count measurement has proven reliability for evaluating airway inflammation in patients with asthma and other airway diseases. Although the use of nebulizer devices for sputum induction is commonplace, they are generally labelled as single-patient devices by the manufacturer and, therefore, cannot be used for multiple patients in large clinical sputum induction programs due to infect ion-control requirements. Accordingly, this study investigated the aerosol characteristics of alternative devices that could be used in such programs. BACKGROUND: Induced sputum cell counts are a noninvasive and reliable method for evaluating the presence, type and degree of airway inflammation in patients with asthma. Currently, standard nebulizer devices used for sputum induction in multiple patients are labelled as single-patient devices by the manufacturer, which conflicts with infection prevention and control requirements. As such, these devices cannot feasibly be used in a clinical sputum induction program. Therefore, there is a need to identify alternative nebulizer devices that are either disposable or labelled for multi-patient use. OBJECTIVE: To apply validated rigorous, scientific testing methods to identify and validate commercially available nebulizer devices appropriate for use in a clinical sputum induction program. METHODS: Measurement of nebulized aerosol output and size for the selected nebulizer designs followed robust International Organization for Standardization methods. Sputum induction using two of these nebulizers was successfully performed on 10 healthy adult subjects. The cytotechnologist performing sputum cell counts was blinded to the type of nebulizer used. RESULTS: The studied nebulizers had variable aerosol outputs. The AeroNeb Solo (Aerogen, Ireland), Omron NE-U17 (Omron, Japan) and EASYneb II (Flaem Nuova, Italy) systems were found to have similar measurements of aerosol size. There was no significant difference in induced sputum cell results between the AeroNeb Solo and EASYneb II devices. DISCUSSION: There is a need for rigorous, scientific evaluation of nebulizer devices for clinical applications, including sputum induction, for measurement of cell counts. CONCLUSION: The present study was the most comprehensive analysis of different nebulizer devices for sputum induction to measure cell counts, and provides a framework for appropriate evaluation of nebulizer devices for induced sputum testing. PMID:24288700

  19. Metal(loid) levels in biological matrices from human populations exposed to mining contamination--Panasqueira Mine (Portugal).

    PubMed

    Coelho, Patrícia; Costa, Solange; Silva, Susana; Walter, Alan; Ranville, James; Sousa, Ana C A; Costa, Carla; Coelho, Marta; García-Lestón, Julia; Pastorinho, M Ramiro; Laffon, Blanca; Pásaro, Eduardo; Harrington, Chris; Taylor, Andrew; Teixeira, João Paulo

    2012-01-01

    Mining activities may affect the health of miners and communities living near mining sites, and these health effects may persist even when the mine is abandoned. During mining processes various toxic wastes are produced and released into the surrounding environment, resulting in contamination of air, drinking water, rivers, plants, and soils. In a geochemical sampling campaign undertaken in the Panasqueira Mine area of central Portugal, an anomalous distribution of several metals and arsenic (As) was identified in various environmental media. Several potentially harmful elements, including As, cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), and selenium (Se), were quantified in blood, urine, hair, and nails (toe and finger) from a group of individuals living near the Panasqueira Mine who were environmentally and occupationally exposed. A group with similar demographic characteristics without known exposure to mining activities was also compared. Genotoxicity was evaluated by means of T-cell receptor (TCR) mutation assay, and percentages of different lymphocyte subsets were selected as immunotoxicity biomarkers. Inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis showed elevated levels of As, Cd, Cr, Mn, and Pb in all biological samples taken from populations living close to the mine compared to controls. Genotoxic and immunotoxic differences were also observed. The results provide evidence of an elevated potential risk to the health of populations, with environmental and occupational exposures resulting from mining activities. Further, the results emphasize the need to implement preventive measures, remediation, and rehabilitation plans for the region.

  20. Activation of cAMP-dependent signaling pathway induces mouse organic anion transporting polypeptide 2 expression.

    PubMed

    Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D

    2007-04-01

    Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.

  1. Npro of classical swine fever virus contributes to pathogenicity in pigs by preventing type I interferon induction at local replication sites.

    PubMed

    Tamura, Tomokazu; Nagashima, Naofumi; Ruggli, Nicolas; Summerfield, Artur; Kida, Hiroshi; Sakoda, Yoshihiro

    2014-04-17

    Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious disease of pigs. The viral protein Npro of CSFV interferes with alpha- and beta-interferon (IFN-α/β) induction by promoting the degradation of interferon regulatory factor 3 (IRF3). During the establishment of the live attenuated CSF vaccine strain GPE-, Npro acquired a mutation that abolished its capacity to bind and degrade IRF3, rendering it unable to prevent IFN-α/β induction. In a previous study, we showed that the GPE- vaccine virus became pathogenic after forced serial passages in pigs, which was attributed to the amino acid substitutions T830A in the viral proteins E2 and V2475A and A2563V in NS4B. Interestingly, during the re-adaptation of the GPE- vaccine virus in pigs, the IRF3-degrading function of Npro was not recovered. Therefore, we examined whether restoring the ability of Npro to block IFN-α/β induction of both the avirulent and moderately virulent GPE--derived virus would enhance pathogenicity in pigs. Viruses carrying the N136D substitution in Npro regained the ability to degrade IRF3 and suppress IFN-α/β induction in vitro. In pigs, functional Npro significantly reduced the local IFN-α mRNA expression in lymphoid organs while it increased quantities of IFN-α/β in the circulation, and enhanced pathogenicity of the moderately virulent virus. In conclusion, the present study demonstrates that functional Npro influences the innate immune response at local sites of virus replication in pigs and contributes to pathogenicity of CSFV in synergy with viral replication.

  2. MUFFINN: cancer gene discovery via network analysis of somatic mutation data.

    PubMed

    Cho, Ara; Shim, Jung Eun; Kim, Eiru; Supek, Fran; Lehner, Ben; Lee, Insuk

    2016-06-23

    A major challenge for distinguishing cancer-causing driver mutations from inconsequential passenger mutations is the long-tail of infrequently mutated genes in cancer genomes. Here, we present and evaluate a method for prioritizing cancer genes accounting not only for mutations in individual genes but also in their neighbors in functional networks, MUFFINN (MUtations For Functional Impact on Network Neighbors). This pathway-centric method shows high sensitivity compared with gene-centric analyses of mutation data. Notably, only a marginal decrease in performance is observed when using 10 % of TCGA patient samples, suggesting the method may potentiate cancer genome projects with small patient populations.

  3. Mutations of the Norrie gene in Korean ROP infants.

    PubMed

    Kim, Jeong Hun; Yu, Young Suk; Kim, Jiyeon; Park, Seong Sup

    2002-12-01

    The present study was conducted to evaluate if there is a Norrie disease gene (ND gene) mutation involved in the retinopathy of prematurity (ROP), and to identify the possibility of a genetic abnormality that may be linked to the presence of ROP. Nineteen premature Korean infants, with a low birth weight (1500 g or less) or low gestational age (32 weeks or less), were included in the study. Eighteen infants had ROP, and the other did not. Genomic DNA was isolated from the peripheral blood leukocytes of these patients, and all three exons and their flanking areas, all known ND gene mutations regions, were evaluated following amplification by a polymerase chain reaction, but no ND gene mutations were detected. Any disagreement between the relationship of ROP to the ND gene mutation will need to be clarified by further investigation.

  4. The genetic spectrum and the evaluation of CADASIL screening scale in Chinese patients with NOTCH3 mutations.

    PubMed

    Liu, Xiao; Zuo, Yuehuan; Sun, Wei; Zhang, Wei; Lv, He; Huang, Yining; Xiao, Jiangxi; Yuan, Yun; Wang, Zhaoxia

    2015-07-15

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited small artery disease caused by NOTCH3 gene mutation. Here we report clinical, pathological and genetic profiles of 29 newly-diagnosed CADASIL patients, evaluation of the CADASIL scale in Chinese CADASIL patients, and reanalysis of all reported mainland Chinese patients with identified NOTCH3 gene mutation. We found two novel mutations (p.C134G and p.C291Y) and 13 reported NOTCH3 mutations in the newly-diagnosed group. CADASIL scale score was less than the cutoff score in 19 of 53 Chinese patients with NOTCH3 mutation, generating only a sensitivity of 64.1%. At the time of study, the total number of genetically confirmed CADASIL cases reached 158 from 97 unrelated mainland Chinese families, with 9/97 (9.3%) sporadic patients. The NOTCH3 gene mutation profile showed 43 mutations, with hotspots in exon 4, followed by exon 3. The considerable variability in onset age and CADASIL scale score in patients carrying the same NOTCH3 missense mutation suggested no obvious phenotype-genotype correlation. In conclusion, we report two novel mutations which expand the NOTCH3 mutational spectrum. Exons 4 and 3 are hotspots in mainland Chinese patients with NOTCH3 mutation. The low sensitivity of CADASIL scale in our patients group indicated that the CADASIL scale should be refined according to the clinical characteristics of Chinese CADASIL patients when used in Chinese populations. Copyright © 2015. Published by Elsevier B.V.

  5. Analysis of human MutS homolog 2 missense mutations in patients with colorectal cancer.

    PubMed

    Zhang, Xiaomei; Chen, Senqing; Yu, Jun; Zhang, Yuanying; Lv, Min; Zhu, Ming

    2018-05-01

    Germline mutations of DNA mismatch repair gene human MutS homolog 2 ( hMSH2 ) are associated with hereditary nonpolyposis colorectal cancer (HNPCC). A total of one-third of these mutations are missense mutations. Several hMSH2 missense mutations have been identified in patients in East Asia, although their function has not been evaluated. In the present study, the role of ten hMSH2 missense mutations in the pathogenesis of colorectal cancer was examined. The hMSH2/hMSH6 protein interaction system was established using yeast two-hybrid screening. Next, the missense mutations were analyzed for their ability to affect the protein interaction of hMSH2 with its partner hMSH6. Additionally, the Sorting Intolerant from Tolerant tool was applied to predict the effects of different amino acid substitutions. The results demonstrated that certain hMSH2 mutations (L173R and C199R) caused a significant functional change in the human hMutSα complex and were identified to be pathological mutations. The Y408C, D603Y, P696L and S703Y mutations partially affected interaction and partly affected the function of hMSH2. The remaining four variants, T8M, I169V, A370T and Q419K, may be non-functional polymorphisms or could affect protein function through other molecular mechanisms. The present study evaluated the functional consequences of previously unknown missense mutations in hMSH2 , and may contribute to improved clinical diagnosis and mutation screening of HNPCC.

  6. Adaptation of Candida albicans to Reactive Sulfur Species

    PubMed Central

    Chebaro, Yasmin; Lorenz, Michael; Fa, Alice; Zheng, Rui; Gustin, Michael

    2017-01-01

    Candida albicans is an opportunistic fungal pathogen that is highly resistant to different oxidative stresses. How reactive sulfur species (RSS) such as sulfite regulate gene expression and the role of the transcription factor Zcf2 and the sulfite exporter Ssu1 in such responses are not known. Here, we show that C. albicans specifically adapts to sulfite stress and that Zcf2 is required for that response as well as induction of genes predicted to remove sulfite from cells and to increase the intracellular amount of a subset of nitrogen metabolites. Analysis of mutants in the sulfate assimilation pathway show that sulfite conversion to sulfide accounts for part of sulfite toxicity and that Zcf2-dependent expression of the SSU1 sulfite exporter is induced by both sulfite and sulfide. Mutations in the SSU1 promoter that selectively inhibit induction by the reactive nitrogen species (RNS) nitrite, a previously reported activator of SSU1, support a model for C. albicans in which Cta4-dependent RNS induction and Zcf2-dependent RSS induction are mediated by parallel pathways, different from S. cerevisiae in which the transcription factor Fzf1 mediates responses to both RNS and RSS. Lastly, we found that endogenous sulfite production leads to an increase in resistance to exogenously added sulfite. These results demonstrate that C. albicans has a unique response to sulfite that differs from the general oxidative stress response, and that adaptation to internal and external sulfite is largely mediated by one transcription factor and one effector gene. PMID:28235888

  7. SOS, the formidable strategy of bacteria against aggressions.

    PubMed

    Baharoglu, Zeynep; Mazel, Didier

    2014-11-01

    The presence of an abnormal amount of single-stranded DNA in the bacterial cell constitutes a genotoxic alarm signal that induces the SOS response, a broad regulatory network found in most bacterial species to address DNA damage. The aim of this review was to point out that beyond being a repair process, SOS induction leads to a very strong but transient response to genotoxic stress, during which bacteria can rearrange and mutate their genome, induce several phenotypic changes through differential regulation of genes, and sometimes acquire characteristics that potentiate bacterial survival and adaptation to changing environments. We review here the causes and consequences of SOS induction, but also how this response can be modulated under various circumstances and how it is connected to the network of other important stress responses. In the first section, we review articles describing the induction of the SOS response at the molecular level. The second section discusses consequences of this induction in terms of DNA repair, changes in the genome and gene expression, and sharing of genomic information, with their effects on the bacteria's life and evolution. The third section is about the fine tuning of this response to fit with the bacteria's 'needs'. Finally, we discuss recent findings linking the SOS response to other stress responses. Under these perspectives, SOS can be perceived as a powerful bacterial strategy against aggressions. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Relationships between Respiration and Susceptibility to Azole Antifungals in Candida glabrata

    PubMed Central

    Brun, Sophie; Aubry, Christophe; Lima, Osana; Filmon, Robert; Bergès, Thierry; Chabasse, Dominique; Bouchara, Jean-Philippe

    2003-01-01

    Over the past two decades, the incidence of infections due to Candida glabrata, a yeast with intrinsic low susceptibility to azole antifungals, has increased markedly. Respiratory deficiency due to mutations in mitochondrial DNA (mtDNA) associated with resistance to azoles frequently occurs in vitro in this species. In order to specify the relationships between respiration and azole susceptibility, the effects of respiratory chain inhibitors on a wild-type isolate of C. glabrata were evaluated. Respiration of blastoconidia was immediately blocked after extemporaneous addition of potassium cyanide, whereas a 4-h preincubation was required for sodium azide. Antifungal susceptibility determined by a disk diffusion method on Casitone agar containing sodium azide showed a significant decrease in the susceptibility to azoles. Biweekly subculturing on Casitone agar supplemented with sodium azide was therefore performed. This resulted after 40 passages in the isolation of a respiration-deficient mutant, as suggested by its lack of growth on glycerol-containing agar. This respiratory deficiency was confirmed by flow cytometric analysis of blastoconidia stained with rhodamine 123 and by oxygraphy. Moreover, transmission electron microscopy and restriction endonuclease analysis of the mtDNA of mutant cells demonstrated the mitochondrial origin of the respiratory deficiency. Finally, this mutant exhibited cross-resistance to all the azoles tested. In conclusion, blockage of respiration in C. glabrata induces decreased susceptibility to azoles, culminating in azole resistance due to the deletion of mtDNA. This mechanism could explain the induction of petite mutations by azole antifungals which have been demonstrated to act directly on the mitochondrial respiratory chain. PMID:12604511

  9. Comparison of the efficacy of icotinib in patients with non-small-cell lung cancer according to the type of epidermal growth factor receptor mutation.

    PubMed

    Xue, Zhang Xiao; Wen, Wang Xiu; Zhuang, Yu; Hua, Zang Jian; Xia, Yang Ni

    2016-09-01

    Icotinib hydrochloride is a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with preclinical and clinical activity in non-small-cell lung cancer (NSCLC). Exon 19 deletion and L858R point mutation are the most commonly encountered EGFR mutations in NSCLC, and they predict improved clinical outcomes following treatment with icotinib. The objective of this study was to evaluate the differential clinical efficacy of icotinib in patients with exon 19 deletion or L858R point mutation of the EGFR gene. A total of 104 patients with advanced NSCLC, who harbored exon 19 deletion or L858R point mutation of EGFR and were treated with icotinib, were enrolled in this study. The tumor response and progression-free survival were evaluated. There were no significant differences between patients with EGFR exon 19 deletion and those with L858R point mutation who received treatment with icotinib.

  10. The Glyphosate-Based Herbicide Roundup Does not Elevate Genome-Wide Mutagenesis of Escherichia coli.

    PubMed

    Tincher, Clayton; Long, Hongan; Behringer, Megan; Walker, Noah; Lynch, Michael

    2017-10-05

    Mutations induced by pollutants may promote pathogen evolution, for example by accelerating mutations conferring antibiotic resistance. Generally, evaluating the genome-wide mutagenic effects of long-term sublethal pollutant exposure at single-nucleotide resolution is extremely difficult. To overcome this technical barrier, we use the mutation accumulation/whole-genome sequencing (MA/WGS) method as a mutagenicity test, to quantitatively evaluate genome-wide mutagenesis of Escherichia coli after long-term exposure to a wide gradient of the glyphosate-based herbicide (GBH) Roundup Concentrate Plus. The genome-wide mutation rate decreases as GBH concentration increases, suggesting that even long-term GBH exposure does not compromise the genome stability of bacteria. Copyright © 2017 Tincher et al.

  11. Analysis of TSC1 mutation spectrum in mucosal melanoma.

    PubMed

    Ma, Meng; Dai, Jie; Xu, Tianxiao; Yu, Sifan; Yu, Huan; Tang, Huan; Yan, Junya; Wu, Xiaowen; Yu, Jiayi; Chi, Zhihong; Si, Lu; Cui, Chuanliang; Sheng, Xinan; Kong, Yan; Guo, Jun

    2018-02-01

    Mucosal melanoma is a relatively rare subtype of melanoma for which no clearly established therapeutic strategy exists. The genes of the mTOR signalling pathway have drawn great attention as key targets for cancer treatment, including melanoma. In this study, we aimed to investigate the mutation status of the upstream mTOR regulator TSC1 and evaluated its correlation with the clinicopathological features of mucosal melanoma. We collected 91 mucosal melanoma samples for detecting TSC1 mutations. All the coding exons of TSC1 were amplified by PCR and subjected to Sanger sequencing. Expression level of TSC1 encoding protein (hamartin) was detected by immunohistochemistry. The activation of mTOR pathway was determined by evaluating the phosphorylation status of S6RP and 4E-BP1. The overall mutation frequency of TSC1 was found to be 17.6% (16/91 patients). TSC1 mutations were more inclined to occur in advanced mucosal melanoma (stages III and IV). In the 16 patients with TSC1 mutations, 14 different mutations were detected, affecting 11 different exons. TSC1 mutations were correlated with upregulation of S6RP phosphorylation but were unrelated to 4E-BP1 phosphorylation or hamartin expression. Mucosal melanoma patients with TSC1 mutations had a worse outcome than patients without TSC1 mutations (24.0 versus 34.0 months, P = 0.007). Our findings suggest that TSC1 mutations are frequent in mucosal melanoma. TSC1 mutations can activate the mTOR pathway through phospho-S6RP and might be a poor prognostic predictor of mucosal melanoma. Our data implicate the potential significance of TSC1 mutations for effective and specific drug therapy for mucosal melanoma.

  12. A Novel Assay for the Identification of NOTCH1 PEST Domain Mutations in Chronic Lymphocytic Leukemia

    PubMed Central

    Petroni, Roberta Cardoso; Muto, Nair Hideko; Sitnik, Roberta; de Carvalho, Flavia Pereira; Bacal, Nydia Strachman; Velloso, Elvira Deolinda Rodrigues Pereira; Oliveira, Gislaine Borba; Pinho, João Renato Rebello; Torres, Davi Coe; Mansur, Marcela Braga; Hassan, Rocio; Lorand-Metze, Irene Gyongyvér Heidemarie; Chiattone, Carlos Sérgio; Hamerschlak, Nelson; Mangueira, Cristovão Luis Pitangueira

    2016-01-01

    Aims. To develop a fast and robust DNA-based assay to detect insertions and deletions mutations in exon 34 that encodes the PEST domain of NOTCH1 in order to evaluate patients with chronic lymphocytic leukemia (CLL). Methods. We designed a multiplexed allele-specific polymerase chain reaction (PCR) combined with a fragment analysis assay to detect specifically the mutation c.7544_7545delCT and possibly other insertions and deletions in exon 34 of NOTCH1. Results. We evaluated our assay in peripheral blood samples from two cohorts of patients with CLL. The frequency of NOTCH1 mutations was 8.4% in the first cohort of 71 unselected CLL patients. We then evaluated a second cohort of 26 CLL patients with known cytogenetic abnormalities that were enriched for patients with trisomy 12. NOTCH1 mutations were detected in 43.7% of the patients with trisomy 12. Conclusions. We have developed a fast and robust assay combining allele-specific PCR and fragment analysis able to detect NOTCH1 PEST domain insertions and deletions. PMID:28074183

  13. Comparative study of titrated oral misoprostol solution and vaginal dinoprostone for labor induction at term pregnancy.

    PubMed

    Wang, Xiu; Yang, Aijun; Ma, Qingyong; Li, Xuelan; Qin, Li; He, Tongqiang

    2016-09-01

    To evaluate effectiveness and safety of titrated oral misoprostol solution (OMS) in comparison with vaginal dinoprostone for cervix ripening and labor induction in term pregnant women. A multicenter randomized controlled trial of women with term singleton pregnancy with indications for labor induction; 481 participants were allocated to receive titrated OMS with different doses by hourly administration according to the procedure or insert vaginal dinoprostone for cervix ripening and labor induction to compare maternal outcomes including indication of labor induction, mode of outcome of delivery, maternal morbidity, and neonatal outcomes between two groups for evaluating the efficacy and safety of titrated oral misoprostol induction. Proportion of delivery within 12 h of titrated oral misoprostol is significantly less than vaginal dinoprostone (p = 0.03), but no difference of total vaginal delivery rate (p = 0.93); the mean time of first treatment to vaginal delivery was longer in OMS group (21.3 ± 14.5 h) compared with the vaginal dinoprostone group (15.7 ± 9.6 h). Although the proportion of cesarean section between the two groups showed no statistically significant difference, OMS group showed significantly lower frequency of uterine hyperstimulation, hypertonus, partus precipitatus and non-reassuring fetal heart rate than dinoprostone group. Neonatal outcomes were similar evaluating from Apgar score and NICU admission. Our study also showed that labor induction of women with cervix Bishop score ≤3 needed increased dosage of misoprostol solution. Titrated OMS is as effective as vaginal dinoprostone in labor induction for term pregnant women, with safer effect for its lower rate of adverse effect for women.

  14. Accurate detection of low prevalence AKT1 E17K mutation in tissue or plasma from advanced cancer patients

    PubMed Central

    de Bruin, Elza C.; Whiteley, Jessica L.; Corcoran, Claire; Kirk, Pauline M.; Fox, Jayne C.; Armisen, Javier; Lindemann, Justin P. O.; Schiavon, Gaia; Ambrose, Helen J.; Kohlmann, Alexander

    2017-01-01

    Personalized healthcare relies on accurate companion diagnostic assays that enable the most appropriate treatment decision for cancer patients. Extensive assay validation prior to use in a clinical setting is essential for providing a reliable test result. This poses a challenge for low prevalence mutations with limited availability of appropriate clinical samples harboring the mutation. To enable prospective screening for the low prevalence AKT1 E17K mutation, we have developed and validated a competitive allele-specific TaqMan® PCR (castPCR™) assay for mutation detection in formalin-fixed paraffin-embedded (FFPE) tumor tissue. Analysis parameters of the castPCR™ assay were established using an FFPE DNA reference standard and its analytical performance was assessed using 338 breast cancer and gynecological cancer FFPE samples. With recent technical advances for minimally invasive mutation detection in circulating tumor DNA (ctDNA), we subsequently also evaluated the OncoBEAM™ assay to enable plasma specimens as additional diagnostic opportunity for AKT1 E17K mutation testing. The analysis performance of the OncoBEAM™ test was evaluated using a novel AKT1 E17K ctDNA reference standard consisting of sheared genomic DNA spiked into human plasma. Both assays are employed at centralized testing laboratories operating according to quality standards for prospective identification of the AKT1 E17K mutation in ER+ breast cancer patients in the context of a clinical trial evaluating the AKT inhibitor AZD5363 in combination with endocrine (fulvestrant) therapy. PMID:28472036

  15. Prevalence and Prognostic Impact of Wilms' Tumor 1 (WT1) Gene, Including SNP rs16754 in Cytogenetically Normal Acute Myeloblastic Leukemia (CN-AML): An Iranian Experience.

    PubMed

    Toogeh, Gholamreza; Ramzi, Mani; Faranoush, Mohammad; Amirizadeh, Naser; Haghpanah, Sezaneh; Moghadam, Mohammad; Cohan, Nader

    2016-03-01

    The aim of this study was to evaluate the effect of Wilms' tumor 1 (WT1) gene mutations in adult cytogenetically normal acute myeloblastic leukemia (CN-AML) patients on survival and clinical outcome. A total of 88 untreated Iranian adult patients with CN-AML were selected as a study group. Exons 7 (including the SNP rs16754), 8, and 9 as a WT1 gene hotspot region were evaluated by polymerase chain reaction and direct sequencing for detection of mutations. Response to treatment and clinical outcome including overall survival (OS) and disease-free survival (DFS) were evaluated according to WT1 gene mutational status. WT1 gene mutations were found in 12.5% of patients, most of which were found in exon 7. Complete remission was lower and relapse was higher in patients with WT1 gene mutation compared with WT1 gene wild type patients. OS and DFS was significantly lower in patients with WT1 gene mutation compared with patients with WT1 gene wild type (P < .001). Also, we did not find any significant effects of SNP rs16754 in exon 7 on clinical outcome and survival in patients with CN-AML. WT1 gene mutations are a predictor indicator of a poor prognosis factor in CN-AML patients. It is recommended that WT1 gene mutations be included in the molecular testing panel in order to better diagnose and confirm their prognostic significance for better management and treatment strategy. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Evaluation of a new commercial real-time PCR assay for diagnosis of Pneumocystis jirovecii pneumonia and identification of dihydropteroate synthase (DHPS) mutations.

    PubMed

    Montesinos, Isabel; Delforge, Marie-Luce; Ajjaham, Farida; Brancart, Françoise; Hites, Maya; Jacobs, Frederique; Denis, Olivier

    2017-01-01

    The PneumoGenius® real-time PCR assay is a new commercial multiplex real-time PCR method, which detects the Pneumocystis mitochondrial ribosomal large subunit (mtLSU) and two dihydropteroate synthase (DHPS) point mutations. To evaluate the clinical performance of this new real-time PCR assay we tested 120 extracted DNA samples from bronchoalveolar lavage specimens. These set of extracted DNA samples had already tested positive for Pneumocystis and patients had been classified in probable and unlikely PCP in a previous study. To evaluate de accuracy of the DHPS mutant's identification, an "in house" PCR and sequencing was performed. The sensitivity and specificity of PneumoGenius® PCR in discriminating between probable and unlikely Pneumocystis pneumonia (PCP) were 70% and 82% respectively. PneumoGenius® PCR was able to genotype more samples than "in house" DHPS PCR and sequencing. The same DHPS mutations were observed by both methods in four patients: two patients with a single mutation in position 171 (Pro57Ser) and two patients with a double mutation in position 165 (Thr55Ala) and in position 171 (Pro57Ser). A low rate of P. jirovecii (4.5%) harboring DHPS mutations was found, comparable to rates observed in other European countries. The PneumoGenius® real-time PCR is a suitable real-time PCR for PCP diagnosis and detection of DHPS mutants. The added value of DHPS mutation identification can assist in understanding the role of these mutations in prophylaxis failure or treatment outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Establishing high resolution melting analysis: method validation and evaluation for c-RET proto-oncogene mutation screening.

    PubMed

    Benej, Martin; Bendlova, Bela; Vaclavikova, Eliska; Poturnajova, Martina

    2011-10-06

    Reliable and effective primary screening of mutation carriers is the key condition for common diagnostic use. The objective of this study is to validate the method high resolution melting (HRM) analysis for routine primary mutation screening and accomplish its optimization, evaluation and validation. Due to their heterozygous nature, germline point mutations of c-RET proto-oncogene, associated to multiple endocrine neoplasia type 2 (MEN2), are suitable for HRM analysis. Early identification of mutation carriers has a major impact on patients' survival due to early onset of medullary thyroid carcinoma (MTC) and resistance to conventional therapy. The authors performed a series of validation assays according to International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines for validation of analytical procedures, along with appropriate design and optimization experiments. After validated evaluation of HRM, the method was utilized for primary screening of 28 pathogenic c-RET mutations distributed among nine exons of c-RET gene. Validation experiments confirm the repeatability, robustness, accuracy and reproducibility of HRM. All c-RET gene pathogenic variants were detected with no occurrence of false-positive/false-negative results. The data provide basic information about design, establishment and validation of HRM for primary screening of genetic variants in order to distinguish heterozygous point mutation carriers among the wild-type sequence carriers. HRM analysis is a powerful and reliable tool for rapid and cost-effective primary screening, e.g., of c-RET gene germline and/or sporadic mutations and can be used as a first line potential diagnostic tool.

  18. Structural impact analysis of missense SNPs present in the uroguanylin gene by long-term molecular dynamics simulations.

    PubMed

    Marcolino, Antonio C S; Porto, William F; Pires, Állan S; Franco, Octavio L; Alencar, Sérgio A

    2016-12-07

    The guanylate cyclase activator 2B, also known as uroguanylin, is part of the guanylin peptide family, which includes peptides such as guanylin and lymphoguanylin. The guanylin peptides could be related to sodium absorption inhibition and water secretion induction and their dysfunction may be related to various pathologies such as chronic renal failure, congestive heart failure and nephrotic syndrome. Besides, uroguanylin point mutations have been associated with essential hypertension. However, currently there are no studies on the impact of missense SNPs on uroguanylin structure. This study applied in silico SNP impact prediction tools to evaluate the impact of uroguanylin missense SNPs and to filter those considered as convergent deleterious, which were then further analyzed through long-term molecular dynamics simulations of 1μs of duration. The simulations suggested that all missense SNPs considered as convergent deleterious caused some kind of structural change to the uroguanylin peptide. Additionally, four of these SNPs were also shown to cause modifications in peptide flexibility, possibly resulting in functional changes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Induction of genetic changes in Saccharomyces cerevisiae by partial drying in air of constant relative humidity and by UV.

    PubMed

    Hieda, K

    1981-11-01

    It was investigated whether there was a critical degree of dryness for induction of genetic changes by drying. Saccharomyces cerevisiae cells were dried in air of 0, 33, 53 and 76% relative humidity (RH). The frequencies of mitotic recombination at ade2, of gene conversion at leu1, and of gene mutation at can1 were measured in X2447, XS1473 and S288C strains, respectively. After the cells had been dried at 0% RH for 4 h the frequencies of the genetic changes at ade2, leu1 and can1 were, respectively, 56, 7 and 3.5 times higher than each spontaneous frequency. Induction rates, defined as the frequencies of the induced genetic changes per unit time (1 h) of drying, were greatly decreased with increase in RH. Partial drying in air of 76% RH up to 4 and 8 h induced no genetic change at ade2 and leu1, respectively. It was concluded, therefore, that drying at a certain RH between 53 and 76% gave the critical degree of dryness of cells for the induction of the genetic changes. The water contents of cells (g water per g dry material) were 12% at 53% RH and 21% at 76% RH, whereas the water content of native cells was 212%. Removal of a large amount of cellular water had no effect on the induction of the genetic changes. UV sensitivity of partially dried cells of X2447 for the induction of the genetic change at ade2 drastically increased with decrease in RH between 76 and 53%. The drastic change in the UV sensitivity suggested that photochemical reactivity of DNA of chromosome XV, in which the ade2 locus is located, changed between 76 and 53% RH. It seems that the genetic changes were induced only in the low RH region where DNA in vivo had a different photochemical reactivity.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stairs, G. R.

    The production of pollen under conditions of chronic gamma irradiation was investigated for three oak species. Two chronically irradiated areas were studied: a low level (1 to 15r/day) area where trees had received varying amounts of radiation over a period of 11 years, and a second area receiving gamma radiation for about five months previous to the investigation. In the latter study dose levels ranged from lethal (45r/day) to a region of no detectable effect. In both areas pollen abortion showed a significant increase with increasing radiation exposure, although germinable pollen was produced at all survival levels examined. The germinatingmore » pollen tube length did not show a significant decrease in the irradiated material examined. In addition to cytological effects there was a marked deiny in floral phenology for both areas. Acute irradiation of male flower buds at different stages of meiosis, and of mature pollen were reported. The radiosensitivity of microsporogenesis was evaluated by cytological scoring at anaphase I, and by pollen abortion, germination, and tube lengih. Both the number of chromosome fragments/100 cells scored at anaphase I and pollen abortion showed a linear increase with an increase in radiation exposure. Pollen germination and tube length were less effected by radiation (based on a percent of unaborted grains). It was suggested that a range of 1 kr to 4 kr will be appropriate for irradiating male flower buds of oak to be utilized in a mutation breeding program. Contingent upon additional studies the range of radiation recommended for flower buds is also suggested for the induction of mutations in pollen. Pollen was found to be highly resistant to radiation when evaluated by germination and tube growth studies. No effect was found with irradiation of 100 kr; at 300 kr both germination and tube lengths were depressed. At these levels it is probable that germination is an expression of cytoplasmic growth and not of nuclear viability. No significant difference was found between responses of the two species for either chronic or acute irradiation. (auth)« less

  1. Physiological Levels of Pik3ca H1047R Mutation in the Mouse Mammary Gland Results in Ductal Hyperplasia and Formation of ERα-Positive Tumors

    PubMed Central

    Tikoo, Anjali; Roh, Vincent; Montgomery, Karen G.; Ivetac, Ivan; Waring, Paul; Pelzer, Rebecca; Hare, Lauren; Shackleton, Mark; Humbert, Patrick; Phillips, Wayne A.

    2012-01-01

    PIK3CA, the gene coding for the p110α subunit of phosphoinositide 3-kinase, is frequently mutated in a variety of human tumors including breast cancers. To better understand the role of mutant PIK3CA in the initiation and/or progression of breast cancer, we have generated mice with a conditional knock-in of the common activating mutation, Pik3caH1047R, into one allele of the endogenous gene in the mammary gland. These mice developed a ductal anaplasia and hyperplasia by 6 weeks of age characterized by multi-layering of the epithelial lining of the mammary ducts and expansion of the luminal progenitor (Lin−; CD29lo; CD24+; CD61+) cell population. The Pik3caH1047R expressing mice eventually develop mammary tumors with 100% penetrance but with a long latency (>12 months). This is significantly longer than has been reported for transgenic models where expression of the mutant Pik3ca is driven by an exogenous promoter. Histological analysis of the tumors formed revealed predominantly ERα-positive fibroadenomas, carcinosarcomas and sarcomas. In vitro induction of Pik3caH1047R in immortalized mammary epithelial cells also resulted in tumor formation when injected into the mammary fat pad of immunodeficient recipient mice. This novel model, which reproduces the scenario of a heterozygous somatic mutation occurring in the endogenous PIK3CA gene, will thus be a valuable tool for investigating the role of Pik3caH1047R mutation in mammary tumorigenesis both in vivo and in vitro. PMID:22666336

  2. HANAC Syndrome Col4a1 Mutation Causes Neonate Glomerular Hyperpermeability and Adult Glomerulocystic Kidney Disease

    PubMed Central

    Chen, Zhiyong; Migeon, Tiffany; Verpont, Marie-Christine; Zaidan, Mohamad; Sado, Yoshikazu; Kerjaschki, Dontscho; Ronco, Pierre

    2016-01-01

    Hereditary angiopathy, nephropathy, aneurysms, and muscle cramps (HANAC) syndrome is an autosomal dominant syndrome caused by mutations in COL4A1 that encodes the α1 chain of collagen IV, a major component of basement membranes. Patients present with cerebral small vessel disease, retinal tortuosity, muscle cramps, and kidney disease consisting of multiple renal cysts, chronic kidney failure, and sometimes hematuria. Mutations producing HANAC syndrome localize within the integrin binding site containing CB3[IV] fragment of the COL4A1 protein. To investigate the pathophysiology of HANAC syndrome, we generated mice harboring the Col4a1 p.Gly498Val mutation identified in a family with the syndrome. Col4a1 G498V mutation resulted in delayed glomerulogenesis and podocyte differentiation without reduction of nephron number, causing albuminuria and hematuria in newborns. The glomerular defects resolved within the first month, but glomerular cysts developed in 3-month-old mutant mice. Abnormal structure of Bowman’s capsule was associated with metalloproteinase induction and activation of the glomerular parietal epithelial cells that abnormally expressed CD44, α-SMA, ILK, and DDR1. Inflammatory infiltrates were observed around glomeruli and arterioles. Homozygous Col4a1 G498V mutant mice additionally showed dysmorphic papillae and urinary concentration defects. These results reveal a developmental role for the α1α1α2 collagen IV molecule in the embryonic glomerular basement membrane, affecting podocyte differentiation. The observed association between molecular alteration of the collagenous network in Bowman’s capsule of the mature kidney and activation of parietal epithelial cells, matrix remodeling, and inflammation may account for glomerular cyst development and CKD in patients with COL4A1-related disorders. PMID:26260163

  3. HANAC Syndrome Col4a1 Mutation Causes Neonate Glomerular Hyperpermeability and Adult Glomerulocystic Kidney Disease.

    PubMed

    Chen, Zhiyong; Migeon, Tiffany; Verpont, Marie-Christine; Zaidan, Mohamad; Sado, Yoshikazu; Kerjaschki, Dontscho; Ronco, Pierre; Plaisier, Emmanuelle

    2016-04-01

    Hereditary angiopathy, nephropathy, aneurysms, and muscle cramps (HANAC) syndrome is an autosomal dominant syndrome caused by mutations in COL4A1 that encodes the α1 chain of collagen IV, a major component of basement membranes. Patients present with cerebral small vessel disease, retinal tortuosity, muscle cramps, and kidney disease consisting of multiple renal cysts, chronic kidney failure, and sometimes hematuria. Mutations producing HANAC syndrome localize within the integrin binding site containing CB3[IV] fragment of the COL4A1 protein. To investigate the pathophysiology of HANAC syndrome, we generated mice harboring the Col4a1 p.Gly498Val mutation identified in a family with the syndrome. Col4a1 G498V mutation resulted in delayed glomerulogenesis and podocyte differentiation without reduction of nephron number, causing albuminuria and hematuria in newborns. The glomerular defects resolved within the first month, but glomerular cysts developed in 3-month-old mutant mice. Abnormal structure of Bowman's capsule was associated with metalloproteinase induction and activation of the glomerular parietal epithelial cells that abnormally expressed CD44,α-SMA, ILK, and DDR1. Inflammatory infiltrates were observed around glomeruli and arterioles. Homozygous Col4a1 G498V mutant mice additionally showed dysmorphic papillae and urinary concentration defects. These results reveal a developmental role for the α1α1α2 collagen IV molecule in the embryonic glomerular basement membrane, affecting podocyte differentiation. The observed association between molecular alteration of the collagenous network in Bowman's capsule of the mature kidney and activation of parietal epithelial cells, matrix remodeling, and inflammation may account for glomerular cyst development and CKD in patients with COL4A1-related disorders. Copyright © 2016 by the American Society of Nephrology.

  4. Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells.

    PubMed

    van Lidth de Jeude, J F; Meijer, B J; Wielenga, M C B; Spaan, C N; Baan, B; Rosekrans, S L; Meisner, S; Shen, Y H; Lee, A S; Paton, J C; Paton, A W; Muncan, V; van den Brink, G R; Heijmans, J

    2017-06-15

    Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc, which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both Apc and ER stress repressor chaperone Grp78 can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of Apc alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of Grp78. In these Apc-Grp78 double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that Apc-Grp78 double mutant stem cells had lost self-renewal capacity. Although in Apc-Grp78 double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of Apc mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.

  5. Induction of anti-melanoma CTL response using DC transfected with mutated mRNA encoding full-length Melan-A/MART-1 antigen with an A27L amino acid substitution.

    PubMed

    Abdel-Wahab, Zeinab; Kalady, Matthew F; Emani, Sirisha; Onaitis, Mark W; Abdel-Wahab, Omar I; Cisco, Robin; Wheless, Lee; Cheng, Tsung-Yen; Tyler, Douglas S; Pruitt, Scott K

    2003-08-01

    Modification of the parental immunodominant Melan-A/MART-1 peptide (MART-1(26-35)) by replacing the alanine with leucine (A27L) enhances its immunogenicity. Because of the reported advantages of RNA over peptides in DC vaccines, we sought to mutate the MART-1 gene to encode a full-length MART-1 antigen with an A27L amino acid substitution. Human DC were transfected with A27L-mutated MART-1 RNA (A27L RNA) or native MART-1 RNA, and then used to stimulate autologous T cells from a series of 8 HLA-A2+ volunteers. After three stimulations, all CTL induced with DC/A27L RNA exhibited more tetramer+ cells, and demonstrated stronger antigen-specific IFNgamma-secreting activity compared to CTL induced with DC/native RNA. A potent MART-1-specific, and predominantly class-I-restricted lysis was detected in most CTL induced with DC/A27L RNA, while native RNA-induced CTL showed minimal and non-specific lysis. HLA-A2+ DC and MART-1 negative/A2+ melanoma cells transfected with the A27L RNA were recognized and killed by MART-1-specific CTL, suggesting that these APC efficiently processed the A27L RNA and presented correct MART-1-specific epitope(s). In summary, introducing an A27L mutation into the MART-1 full-length mRNA sequence enhanced the immunogenicity of the encoded MART-1 Ag. The ease with which such a mutation can be made in RNA presents another potential advantage of using RNA for immunotherapy. Our results support considering this strategy for enhancing the immunogenicity of DC-based RNA vaccines.

  6. FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15

    PubMed Central

    Normatova, Makhliyo; Babaei-Jadidi, Roya; Tomlinson, Ian; Nateri, Abdolrahman S.

    2015-01-01

    FBXW7 mutations occur in a variety of human cancers including colorectal cancer (CRC). Elucidating its mechanism of action has become crucial for cancer therapy; however, it is also complicated by the fact that FBXW7 can influence many pathways due to its role as an E3-ubiquitin ligase in proteasome degradation. FBXW7 and TP53 are tumour suppressors intensively implicated in colorectal carcinogenesis. Deletion mutations in these two genes in animal models mark the progression from adenoma to carcinoma. Although still largely unknown, the last defense mechanism against CRC at the molecular level could be through a synergistic effect of the two genes. The underlying mechanism requires further investigation. In our laboratory, we have used a phospho-kinase profiler array to illustrate a potential molecular link between FBXW7 and p53 in CRC cells. In vitro and in vivo assessments demonstrated aberrant induction of phosphorylated p53 at Serine 15 [phospho-p53(Ser15)] in human FBXW7-deficient CRC cells as compared to their FBXW7-wild-type counterparts. FBXW7 loss in HCT116 cells promoted resistance to oxaliplatin. Immunoblotting data further confirmed that reduction of phospho-p53(Ser15) may contribute to the decreased efficacy of therapy in FBXW7-mutated CRC cells. The findings may suggest the applicability of phospho-p53(Ser15) as an indicative marker of FBXW7-mutations. Phospho-p53(Ser15) regulation by FBXW7 E3-ligase activity could provide important clues for understanding FBXW7 behavior in tumour progression and grounds for its clinical applicability thereafter. PMID:25860929

  7. Inhibition of the Growth of Papillary Thyroid Carcinoma Cells by CI-1040

    PubMed Central

    Henderson, Ying C.; Ahn, Soon-Hyun; Clayman, Gary L.

    2015-01-01

    Background Papillary thyroid carcinoma (PTC), the most common type of thyroid malignancy, usually possesses mutations, either RET/PTC rearrangement or BRAF mutation. Both mutations can activate the mitogen-activated protein kinase kinase/extracellular signal–related kinase signaling transduction pathway, which results in activation of transcription factors that regulate cellular proliferation, differentiation, and apoptosis. Objective To test the effects of CI-1040 (PD184352), a specific MEK1/2 inhibitor, on PTC cells carrying either an RET/PTC1 rearrangement or a BRAF mutation. Design The effects of CI-1040 on PTC cells were evaluated in vitro and in vivo. Main Outcome Measures The effects of CI-1040 on PTC cells were evaluated in vitro using a cell proliferation assay, cell cycle analysis, and immunoblotting. The antitumor effects of CI-1040 in vivo were evaluated in an orthotopic mouse model. Results The concentrations of CI-1040 needed to inhibit 50% cell growth were 0.052μM for PTC cells with a BRAF mutation and 1.1μM for PTC cells with the RET/PTC1 rearrangement. After 3 weeks of oral administration of CI-1040 (300 mg/kg/d) to mice with orthotopic tumor implants of PTC cells, the mean tumor volume of implants bearing the RET/PTC1 rearrangement (n=5) was reduced 47.5% compared with untreated mice (from 701.9 to 368.5 mm3), and the mean volume of implants with a BRAF mutation (n=8) was reduced 31.3% (from 297.3 to 204.2 mm3). Conclusions CI-1040 inhibits PTC cell growth in vitro and in vivo. Because RET/PTC rearrangements are unique to thyroid carcinomas and a high percentage of PTCs possess either mutation, these findings support the clinical evaluation of CI-1040 for patients with PTC. PMID:19380355

  8. Association of PHB 1630 C>T and MTHFR 677 C>T polymorphisms with breast and ovarian cancer risk in BRCA1/2 mutation carriers: results from a multicenter study

    PubMed Central

    Jakubowska, A; Rozkrut, D; Antoniou, A; Hamann, U; Scott, R J; McGuffog, L; Healy, S; Sinilnikova, O M; Rennert, G; Lejbkowicz, F; Flugelman, A; Andrulis, I L; Glendon, G; Ozcelik, H; Thomassen, M; Paligo, M; Aretini, P; Kantala, J; Aroer, B; von Wachenfeldt, A; Liljegren, A; Loman, N; Herbst, K; Kristoffersson, U; Rosenquist, R; Karlsson, P; Stenmark-Askmalm, M; Melin, B; Nathanson, K L; Domchek, S M; Byrski, T; Huzarski, T; Gronwald, J; Menkiszak, J; Cybulski, C; Serrano, P; Osorio, A; Cajal, T R; Tsitlaidou, M; Benítez, J; Gilbert, M; Rookus, M; Aalfs, C M; Kluijt, I; Boessenkool-Pape, J L; Meijers-Heijboer, H E J; Oosterwijk, J C; van Asperen, C J; Blok, M J; Nelen, M R; van den Ouweland, A M W; Seynaeve, C; van der Luijt, R B; Devilee, P; Easton, D F; Peock, S; Frost, D; Platte, R; Ellis, S D; Fineberg, E; Evans, D G; Lalloo, F; Eeles, R; Jacobs, C; Adlard, J; Davidson, R; Eccles, D; Cole, T; Cook, J; Godwin, A; Bove, B; Stoppa-Lyonnet, D; Caux-Moncoutier, V; Belotti, M; Tirapo, C; Mazoyer, S; Barjhoux, L; Boutry-Kryza, N; Pujol, P; Coupier, I; Peyrat, J-P; Vennin, P; Muller, D; Fricker, J-P; Venat-Bouvet, L; Johannsson, O Th; Isaacs, C; Schmutzler, R; Wappenschmidt, B; Meindl, A; Arnold, N; Varon-Mateeva, R; Niederacher, D; Sutter, C; Deissler, H; Preisler-Adams, S; Simard, J; Soucy, P; Durocher, F; Chenevix-Trench, G; Beesley, J; Chen, X; Rebbeck, T; Couch, F; Wang, X; Lindor, N; Fredericksen, Z; Pankratz, V S; Peterlongo, P; Bonanni, B; Fortuzzi, S; Peissel, B; Szabo, C; Mai, P L; Loud, J T; Lubinski, J

    2012-01-01

    Background: The variable penetrance of breast cancer in BRCA1/2 mutation carriers suggests that other genetic or environmental factors modify breast cancer risk. Two genes of special interest are prohibitin (PHB) and methylene-tetrahydrofolate reductase (MTHFR), both of which are important either directly or indirectly in maintaining genomic integrity. Methods: To evaluate the potential role of genetic variants within PHB and MTHFR in breast and ovarian cancer risk, 4102 BRCA1 and 2093 BRCA2 mutation carriers, and 6211 BRCA1 and 2902 BRCA2 carriers from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA) were genotyped for the PHB 1630 C>T (rs6917) polymorphism and the MTHFR 677 C>T (rs1801133) polymorphism, respectively. Results: There was no evidence of association between the PHB 1630 C>T and MTHFR 677 C>T polymorphisms with either disease for BRCA1 or BRCA2 mutation carriers when breast and ovarian cancer associations were evaluated separately. Analysis that evaluated associations for breast and ovarian cancer simultaneously showed some evidence that BRCA1 mutation carriers who had the rare homozygote genotype (TT) of the PHB 1630 C>T polymorphism were at increased risk of both breast and ovarian cancer (HR 1.50, 95%CI 1.10–2.04 and HR 2.16, 95%CI 1.24–3.76, respectively). However, there was no evidence of association under a multiplicative model for the effect of each minor allele. Conclusion: The PHB 1630TT genotype may modify breast and ovarian cancer risks in BRCA1 mutation carriers. This association need to be evaluated in larger series of BRCA1 mutation carriers. PMID:22669161

  9. Chromosomal aberrations and delays in cell progression induced by x-rays in Tradescantia clone 02 meristems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geard, C.R.

    1983-01-01

    In root meristems of Tradescantia clone 02 (developed by Sparrow and his colleagues for mutation studies), X-rays interfere with the progression of cells through the cell cycle and induce chromosomal aberrations in a dose-dependent manner consistent with linear-quadratic kinetics. Sequential mitotic cell accumulations after irradiation indicate that sensitivity to aberration induction is probably greatest in cells from late S to early G2, with chromatid interchanges the most frequent aberration type and all aberrations consistent with initiation from the interaction between two lesions. The ratio of the coefficients in the linear (..cap alpha..) and the quadratic (..beta..) terms (..cap alpha../..beta..) ismore » equal to the dose average of specific energy produced by individual particles in the site where interaction takes place. The ratio ..cap alpha../..beta.. for chromosomal aberrations is similar to that previously found for X-ray-induced mutation in Tradescantia stamen hairs, supporting the proposal that radiation-induced mutational events are due to chromosomal aberrations with interaction distances of about 1..mu..m. Abrahamson and co-workers have noted that both ..cap alpha../..beta.. ratios appear to be related to nuclear target size and are similar for chromosomal and mutational endpoints in the same organism. These findings support this concept; however, it is apparent that any situation which diminishes yield at high doses (e.g., mitotic delay) will probably affect the ..beta.. component. 23 references, 5 figures, 2 tables.« less

  10. Chromosomal aberrations and delays in cell progression induced by x-rays in Tradescantia clone 02 meristems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geard, C.R.

    1983-01-01

    In root meristems of Tradescantia clone 02 (developed by Sparrow and his colleagues for mutation studies), X-rays interfere with the progression of cells through the cell cycle and induce chromosomal aberrations in a dose-dependent manner consistent with linear-quadratic kinetics. Sequential mitotic cell accumulations after irradiation indicate that sensitivity to aberrration induction is probably greatest in cells from late S to early G2, with chromatid interchanges the most frequent aberration type and all aberrations consistent with intiation from the interaction between two lesions. The ratio of the coefficients in the linear (..cap alpha..) and the quadratic (..beta..) terms (..cap alpha../..beta..) ismore » equal to the dose average of specific energy produced by individual particles in the site where interaction takes place. The ratio ..cap alpha../..beta.. for chromosomal aberrations is similar to that previously found for X-ray-induced mutation in Tradescantia stamen hairs, supporting the proposal that radiation-induced mutational events are due to chromosomal aberrations with interaction distances of about 1 ..mu..m. Abrahmson and co-workers have noted that both ..cap alpha../..beta.. ratios appear to be related to nuclear target size and are similar for chromosomal and mutational endpoints in the same organism. These findings support this concept; however, it is apparent that any situation which diminishes yield at high doses (e.g., mitotic delay) will primarily affect the ..beta.. component, resulting in low assessments of interaction site diameters.« less

  11. IgVH gene analysis suggests that peritoneal B cells do not contribute to the gut immune system in man.

    PubMed

    Boursier, Laurent; Farstad, Inger Nina; Mellembakken, Jan Roar; Brandtzaeg, Per; Spencer, Jo

    2002-09-01

    The contribution of peritoneal B cells to the intestinal lamina propria plasma cell population is well documented in mice, but unknown in humans. We have analyzed immunoglobulin (Ig) genes of human peritoneal B cells, because such genes show distinctive characteristics in mucosal B cells, particularly highly mutated variable regions. Here, we report the characteristics of variable region genes used by IgM, IgA and IgG in peritoneal cells. We focused on the properties of IgV(H)4-34 to allow comparisons of like-with-like between different isotypes and cells from different immune compartments. We observed that the IgM genes were mostly unmutated, and that the mutated subset had less mutations than would be expected in a mucosal B cell population. Likewise, the IgV(H)4-34 genes used by IgA and IgG from peritoneal B cells had significantly lower numbers of mutations than observed in the mucosal counterparts. Other trends observed, while not reaching statistical significance, followed the trend of peripheral B cells. The peritoneal B cell population had more IgA1 than IgA2 sequences, and there was no dominance of J(H)4 in the IgA from peritoneum or spleen, in contrast to the mucosal sequences. Overall, this study suggested that human peritoneal B cell are either peripheral or mixed in origin; they are unlikely to represent an inductive compartment for the mucosal B cell system.

  12. The Diageotropica Gene Differentially Affects Auxin and Cytokinin Responses throughout Development in Tomato1

    PubMed Central

    Coenen, Catharina; Lomax, Terri L.

    1998-01-01

    The interactions between the plant hormones auxin and cytokinin throughout plant development are complex, and genetic investigations of the interdependency of auxin and cytokinin signaling have been limited. We have characterized the cytokinin sensitivity of the auxin-resistant diageotropica (dgt) mutant of tomato (Lycopersicon esculentum Mill.) in a range of auxin- and cytokinin-regulated responses. Intact, etiolated dgt seedlings showed cross-resistance to cytokinin with respect to root elongation, but cytokinin effects on hypocotyl growth and ethylene synthesis in these seedlings were not impaired by the dgt mutation. Seven-week-old, green wild-type and dgt plants were also equally sensitive to cytokinin with respect to shoot growth and hypocotyl and internode elongation. The effects of cytokinin and the dgt mutation on these processes appeared additive. In tissue culture organ regeneration from dgt hypocotyl explants showed reduced sensitivity to auxin but normal sensitivity to cytokinin, and the effects of cytokinin and the mutation were again additive. However, although callus induction from dgt hypocotyl explants required auxin and cytokinin, dgt calli did not show the typical concentration-dependent stimulation of growth by either auxin or cytokinin observed in wild-type calli. Cross-resistance of the dgt mutant to cytokinin thus was found to be limited to a small subset of auxin- and cytokinin-regulated growth processes affected by the dgt mutation, indicating that auxin and cytokinin regulate plant growth through both shared and separate signaling pathways. PMID:9576775

  13. Developmental plasticity and the origin of species differences

    PubMed Central

    West-Eberhard, Mary Jane

    2005-01-01

    Speciation is the origin of reproductive isolation and divergence between populations, according to the “biological species concept” of Mayr. Studies of reproductive isolation have dominated research on speciation, leaving the origin of species differences relatively poorly understood. Here, I argue that the origin of species differences, and of novel phenotypes in general, involves the reorganization of ancestral phenotypes (developmental recombination) followed by the genetic accommodation of change. Because selection acts on phenotypes, not directly on genotypes or genes, novel traits can originate by environmental induction as well as mutation, then undergo selection and genetic accommodation fueled by standing genetic variation or by subsequent mutation and genetic recombination. Insofar as phenotypic novelties arise from adaptive developmental plasticity, they are not “random” variants, because their initial form reflects adaptive responses with an evolutionary history, even though they are initiated by mutations or novel environmental factors that are random with respect to (future) adaptation. Change in trait frequency involves genetic accommodation of the threshold or liability for expression of a novel trait, a process that follows rather than directs phenotypic change. Contrary to common belief, environmentally initiated novelties may have greater evolutionary potential than mutationally induced ones. Thus, genes are probably more often followers than leaders in evolutionary change. Species differences can originate before reproductive isolation and contribute to the process of speciation itself. Therefore, the genetics of speciation can profit from studies of changes in gene expression as well as changes in gene frequency and genetic isolation. PMID:15851679

  14. Influence of anoxia on the induction of mutations by phenylalanine radicals during gamma-irradiation of plasmid DNA in aqueous solution.

    PubMed

    Kuipers, Gitta K; Slotman, Ben J; Reitsma-Wijker, Carola A; van Andel, Rob J; Poldervaart, Hester A; Lafleur, M Vincent M

    2004-12-21

    When DNA is irradiated in aqueous solution, most of the damage is inflicted by water-derived radicals. This is called the indirect effect of ionizing radiation. However in whole cells not only the primary formed water radicals play a role, because some cellular compounds form secondary radicals which can also damage DNA. It is known that the amino acid phenylalanine is able to react with water radicals, resulting in the production of secondary phenylalanine radicals which can damage and inactivate DNA. In a previous study the influence of the presence of phenylalanine during gamma-irradiation of DNA in aqueous solution under oxic conditions was studied. Under anoxic irradiation conditions different amounts and types of reactive water-derived radicals are formed compared to oxic conditions and also different phenylalanine radicals are formed. Therefore, this study examines the influence of the presence of phenylalanine under anoxic conditions on the gamma-radiation-induced mutation spectrum. The results indicate that phenylalanine radicals are damaging to DNA, but less effective compared to primary water radicals. On the mutational level, in the presence of phenylalanine radicals under anoxic conditions, the amount of mutations on G:C base pairs was significantly decreased as compared to oxic conditions. Furthermore, the results of this study indicate that nucleotide excision repair is involved in repair of both inactivating and mutagenic damage induced by phenylalanine radicals under anoxic conditions.

  15. Novel mutations in the cellular retinaldehyde-binding protein gene (RLBP1) associated with retinitis punctata albescens: evidence of interfamilial genetic heterogeneity and fundus changes in heterozygotes.

    PubMed

    Fishman, Gerald A; Roberts, Mary Flynn; Derlacki, Deborah J; Grimsby, Jonna L; Yamamoto, Hiroyuki; Sharon, Dror; Nishiguchi, Koji M; Dryja, Thaddeus P

    2004-01-01

    To evaluate the molecular genetic defects associated with retinitis punctata albescens (RPA) in 5 patients from 3 families with this disease. We examined 3 probands and 2 clinically affected relatives with RPA. Clinical examinations included best-corrected visual acuity, visual field testing, electroretinography, dilated fundus examination, and fundus photography. Leukocyte DNA was analyzed for mutations in the exons of the genes encoding cellular retinaldehyde-binding protein 1 (RLBP1), 11-cis-retinol dehydrogenase (RDH5), interphotoreceptor retinoid-binding protein (RBP3), and photoreceptor all-trans-retinol dehydrogenase (RDH8). Not all patients were evaluated for mutations in each gene. The exons were individually amplified and screened for mutations by single-stranded conformational polymorphism analysis or direct genomic sequencing. The 3 probands had similar clinical findings, including a history of poor night vision, the presence of punctate white deposits in the retina, and substantially reduced or absent rod responses on electroretinogram testing. One of the probands (patient 2:III:2) had 2 novel mutations in the RLBP1 gene (Arg151Trp and Gly31[2-base pair deletion], [GGA-->G-]). Segregation analysis showed that the 2 mutations were allelic and that the patient was a compound heterozygote. Both parents of the proband manifested round white deposits in the retina. The other 2 probands had no detected pathogenic mutations in RLBP1 or in the other 3 genes evaluated. The identification of novel RLBP1 mutations in 1 of our 3 probands, all with RPA, is further evidence of genetic (nonallelic) heterogeneity in this disease. The presence of round white deposits in the retina may be observed in those heterozygous for RLBP1. Clinical Relevance Patients with a clinical presentation of RPA can have genetically different mutations. Drusen-like lesions may be observed in heterozygotes in families with this disease and a mutation in RLBP1.

  16. Evaluation of CYP1A1 and CYP2B1/2 m-RNA induction in rat liver slices using the NanoString technology: a novel tool for drug discovery lead optimization.

    PubMed

    Palamanda, Jairam R; Kumari, Pramila; Murgolo, Nicholas; Benbow, Larry; Lin, Xinjie; Nomeir, Amin A

    2009-08-01

    Cytochrome P450 (CYP) induction in rodents and humans is considered a liability for new chemical entities (NCEs) in drug discovery. In particular, CYP1A1 and CYP2B1/2 have been associated with the induction of liver tumors in oncogenicity studies during safety evaluation studies of potential drugs. In our laboratory, real time PCR (Taqman) has been used to quantify the induction of rat hepatic CYP1A1 and CYP2B1/2 in precision -cut rat liver slices. A novel technology that does not require m-RNA isolation or RT-PCR, (developed by NanoString Technologies) has been investigated to quantify CYP1A1 and CYP2B1/2 induction in rat liver slices. Seventeen commercially available compounds were evaluated using both Taqman and NanoString technologies. Precision-cut rat liver slices were incubated with individual compounds for 24 hr at 37 degrees C in a humidified CO(2) incubator and CYP1A1 and CYP2B1/2 m-RNA were quantified. The results from the NanoString technology were similar to those of the Taqman(R) with a high degree of correlation for both CYP isoforms (r(2)>0.85). Therefore, NanoString provides an additional new technology to evaluate the induction of CYP1A1 and 2B1/2, as well as potentially other enzymes or transporters in rat liver slices.

  17. Ultrasound cervical length measurement in prediction of labor induction outcome.

    PubMed

    Kehila, M; Abouda, H S; Sahbi, K; Cheour, H; Chanoufi, M Badis

    2016-05-17

    Induction of labor is one of the most common procedures in modern obstetrics, with an incidence of approximately 20% of all deliveries. Not all of these inductions result in vaginal delivery; some lead to cesarean sections, either for emergency reasons or for failed induction. That's why, It seems necessary to outline strategies for the improvement of the success rate of induced deliveries. Traditionally, the identification of women in whom labor induction is more likely to be successful is based on the Bishop score. However, several studies have shown it to be subjective, with high variation and a poor predictor of the outcome of labor induction. Transvaginal sonography for cervical measurement can be a more objective criterion in assessing the success of labor induction. Many studies have been done recently to compare cervical measurement and Bishop Score in labor induction.This paper reviewed the literature that evaluated sonographic cervical length measurement to predict induction of labor outcome.

  18. Clinical implications of genomic profiles in metastatic breast cancer with a focus on TP53 and PIK3CA, the most frequently mutated genes.

    PubMed

    Kim, Ji-Yeon; Lee, Eunjin; Park, Kyunghee; Park, Woong-Yang; Jung, Hae Hyun; Ahn, Jin Seok; Im, Young-Hyuck; Park, Yeon Hee

    2017-04-25

    Breast cancer (BC) has been genetically profiled through large-scale genome analyses. However, the role and clinical implications of genetic alterations in metastatic BC (MBC) have not been evaluated. Therefore, we conducted whole-exome sequencing (WES) and RNA-Seq of 37 MBC samples and targeted deep sequencing of another 29 MBCs. We evaluated somatic mutations from WES and targeted sequencing and assessed gene expression and performed pathway analysis from RNA-Seq. In this analysis, PIK3CA was the most commonly mutated gene in estrogen receptor (ER)-positive BC, while in ER-negative BC, TP53 was the most commonly mutated gene (p = 0.018 and p < 0.001, respectively). TP53 stopgain/loss and frameshift mutation was related to low expression of TP53 in contrast nonsynonymous mutation was related to high expression. The impact of TP53 mutation on clinical outcome varied with regard to ER status. In ER-positive BCs, wild type TP53 had a better prognosis than mutated TP53 (median overall survival (OS) (wild type vs. mutated): 88.5 ± 54.4 vs. 32.6 ± 10.7 (months), p = 0.002). In contrast, mutated TP53 had a protective effect in ER-negative BCs (median OS: 0.10 vs. 32.6 ± 8.2, p = 0.026). However, PIK3CA mutation did not affect patient survival. In gene expression analysis, CALM1, a potential regulator of AKT, was highly expressed in PIK3CA-mutated BCs. In conclusion, mutation of TP53 was associated with expression status and affect clinical outcome according to ER status in MBC. Although mutation of PIK3CA was not related to survival in this study, mutation of PIK3CA altered the expression of other genes and pathways including CALM1 and may be a potential predictive marker of PI3K inhibitor effectiveness.

  19. Factors predicting labor induction success: a critical analysis.

    PubMed

    Crane, Joan M G

    2006-09-01

    Because of the risk of failed induction of labor, a variety of maternal and fetal factors as well as screening tests have been suggested to predict labor induction success. Certain characteristics of the woman (including parity, age, weight, height and body mass index), and of the fetus (including birth weight and gestational age) are associated with the success of labor induction; with parous, young women who are taller and lower weight having a higher rate of induction success. Fetuses with a lower birth weight or increased gestational age are also associated with increased induction success. The condition of the cervix at the start of induction is an important predictor, with the modified Bishop score being a widely used scoring system. The most important element of the Bishop score is dilatation. Other predictors, including transvaginal ultrasound (TVUS) and biochemical markers [including fetal fibronectin (fFN)] have been suggested. Meta-analyses of studies identified from MEDLINE, PubMed, and EMBASE and published from 1990 to October 2005 were performed evaluating the use of TVUS and fFN in predicting labor induction success in women at term with singleton gestations. Both TVUS and Bishop score predicted successful induction [likelihood ratio (LR)=1.82, 95% confidence interval (CI)=1.51-2.20 and LR=2.10, 95%CI=1.67-2.64, respectively]. As well, fFN and Bishop score predicted successful induction (LR=1.49, 95%CI=1.20-1.85, and LR=2.62, 95%CI=1.88-3.64, respectively). Although TVUS and fFN predicted successful labor induction, neither has been shown to be superior to Bishop score. Further research is needed to evaluate these potential predictors and insulin-like growth factor binding protein-1 (IGFBP-1), another potential biochemical marker.

  20. Comparison of plasma ctDNA and tissue/cytology-based techniques for the detection of EGFR mutation status in advanced NSCLC: Spanish data subset from ASSESS.

    PubMed

    Arriola, E; Paredes-Lario, A; García-Gomez, R; Diz-Tain, P; Constenla, M; García-Girón, C; Márquez, G; Reck, M; López-Vivanco, G

    2018-04-05

    The analysis of epidermal growth factor receptor (EGFR) mutations in many patients with advanced non-small-cell lung cancer (aNSCLC) has provided the opportunity for successful treatment with specific, targeted EGFR tyrosine kinase inhibitors. However, this therapeutic decision may be challenging when insufficient tumor tissue is available for EGFR mutation testing. Therefore, blood surrogate samples for EGFR mutation analysis have been suggested. Data were collected from the Spanish cohort of patients in the large, non-interventional, diagnostic ASSESS study (NCT01785888) evaluating the utility of circulating free tumor-derived DNA from plasma for EGFR mutation testing. The incidence of EGFR mutation in Spain and the level of concordance between matched tissue/cytology and plasma samples were evaluated. In a cohort of 154 eligible patients, EGFR mutations were identified in 15.1 and 11.0% of tumor and plasma samples, respectively. The most commonly used EGFR mutation testing method for the tumor tissue samples was the QIAGEN Therascreen ® EGFR RGQ PCR kit (52.1%). Fragment Length Analysis + PNA LNA Clamp was used for the plasma samples. The concordance rate for EGFR mutation status between the tissue/cytology and plasma samples was 88.8%; the sensitivity was 45.5%, and the specificity was 96.7%. The high concordance between the different DNA sources for EGFR mutation testing supports the use of plasma samples when tumor tissue is unavailable.

Top