Science.gov

Sample records for mutation involves b

  1. Aberrant splicing of genes involved in haemoglobin synthesis and impaired terminal erythroid maturation in SF3B1 mutated refractory anaemia with ring sideroblasts.

    PubMed

    Conte, Simona; Katayama, Shintaro; Vesterlund, Liselotte; Karimi, Mohsen; Dimitriou, Marios; Jansson, Monika; Mortera-Blanco, Teresa; Unneberg, Per; Papaemmanuil, Elli; Sander, Birgitta; Skoog, Tiina; Campbell, Peter; Walfridsson, Julian; Kere, Juha; Hellström-Lindberg, Eva

    2015-11-01

    Refractory anaemia with ring sideroblasts (RARS) is distinguished by hyperplastic inefficient erythropoiesis, aberrant mitochondrial ferritin accumulation and anaemia. Heterozygous mutations in the spliceosome gene SF3B1 are found in a majority of RARS cases. To explore the link between SF3B1 mutations and anaemia, we studied mutated RARS CD34(+) marrow cells with regard to transcriptome sequencing, splice patterns and mutational allele burden during erythroid differentiation. Transcriptome profiling during early erythroid differentiation revealed a marked up-regulation of genes involved in haemoglobin synthesis and in the oxidative phosphorylation process, and down-regulation of mitochondrial ABC transporters compared to normal bone marrow. Moreover, mis-splicing of genes involved in transcription regulation, particularly haemoglobin synthesis, was confirmed, indicating a compromised haemoglobinization during RARS erythropoiesis. In order to define the phase during which erythroid maturation of SF3B1 mutated cells is most affected, we assessed allele burden during erythroid differentiation in vitro and in vivo and found that SF3B1 mutated erythroblasts showed stable expansion until late erythroblast stage but that terminal maturation to reticulocytes was significantly reduced. In conclusion, SF3B1 mutated RARS progenitors display impaired splicing with potential downstream consequences for genes of key importance for haemoglobin synthesis and terminal erythroid differentiation.

  2. Measurements of mutation rates in B lymphocytes.

    PubMed

    Wabl, M; Jäck, H M; Meyer, J; Beck-Engeser, G; von Borstel, R C; Steinberg, C M

    1987-04-01

    It is established that somatic mutation is an important source of antibody diversity in vivo. It is also established that Igh-V gene segments are hypermutable in vitro. This is not a completely satisfactory situation. While there is no reason to believe that Igh-V genes are not hypermutable in vivo as well, direct experimental evidence is lacking. Perhaps experiments with transgenic mice will soon fill this gap. It is not so clear how much higher than normal the rate of hypermutation is. As far as we are aware, there are no direct measurements of mutation rates per base pair per cell generation in mammals, certainly not for lymphocyte cell lines. For a variety of reasons, it is difficult to measure very low mutation rates. The general consensus is that the normal rate should be somewhere between 10(-10) and 10(-12) mutations per base pair per cell generation. Therefore, an experiment designed to directly determine a rate using the compartmentalization test would involve hundreds of cultures, each containing at least 10(9) cells. It is not a trivial problem to find one or a few mutants among so many cells. It is simple to study mutation to resistance to a drug, for example, ouabain or azaguanine, but, as we discussed, there are technical and conceptual pitfalls. The vast excess of dead cells influences the growth of a few mutant cells, particularly in lymphocyte cell lines. Even if this problem could be solved, the mutation rate so obtained would be "per gene(s)" and not "per base pair". The problems associated with cytotoxic agents can be avoided by immunofluorescence methods in conjunction with selective cloning or cell sorting. Using these techniques, we have carried out extensive experiments to determine whether the immunoglobulin mutator system acts, at least partially, on genetic elements other than those in or near the heavy chain variable region gene segment. For an opal termination codon in a heavy chain constant region gene segment, the rate of reversion

  3. Analysis of mutational signatures in exomes from B-cell lymphoma cell lines suggest APOBEC3 family members to be involved in the pathogenesis of primary effusion lymphoma

    SciTech Connect

    Wagener, R.; Alexandrov, L. B.; Montesinos-Rongen, M.; Schlesner, M.; Haake, A.; Drexler, H. G.; Richter, J.; Bignell, G. R.; McDermott, U.; Siebert, R.

    2015-02-04

    Here, primary effusion lymphoma (PEL) is a rare large B-cell neoplasm particularly affecting immunodeficient hosts with an increased incidence in young or middle-aged males infected with the HIV.1 The clinical outcome of patients with PEL is unfavorable with a median survival of <6 months.1 PEL has been closely associated with human herpes virus 8 (HHV8, previously called Kaposi sarcoma herpesvirus) infection.1 In some cases a coinfection of HHV8 with the Epstein–Barr Virus (EBV) has been described.1 HHV8 encodes various genes homologous to cellular genes that have proliferative and anti-apoptotic functions.2 Although HHV8 is supposed to be a major driver of PEL, it alone is not sufficient for a full-blown lymphomagenesis.2 PEL usually shows complex karyotypes with many chromosomal aberrations.3 This chromosomal complexity might be driven by the viral infection and lead to genetic alterations cooperating with HHV8 in PEL lymphomagenesis.4

  4. Analysis of mutational signatures in exomes from B-cell lymphoma cell lines suggest APOBEC3 family members to be involved in the pathogenesis of primary effusion lymphoma

    DOE PAGESBeta

    Wagener, R.; Alexandrov, L. B.; Montesinos-Rongen, M.; Schlesner, M.; Haake, A.; Drexler, H. G.; Richter, J.; Bignell, G. R.; McDermott, U.; Siebert, R.

    2015-02-04

    Here, primary effusion lymphoma (PEL) is a rare large B-cell neoplasm particularly affecting immunodeficient hosts with an increased incidence in young or middle-aged males infected with the HIV.1 The clinical outcome of patients with PEL is unfavorable with a median survival of <6 months.1 PEL has been closely associated with human herpes virus 8 (HHV8, previously called Kaposi sarcoma herpesvirus) infection.1 In some cases a coinfection of HHV8 with the Epstein–Barr Virus (EBV) has been described.1 HHV8 encodes various genes homologous to cellular genes that have proliferative and anti-apoptotic functions.2 Although HHV8 is supposed to be a major driver ofmore » PEL, it alone is not sufficient for a full-blown lymphomagenesis.2 PEL usually shows complex karyotypes with many chromosomal aberrations.3 This chromosomal complexity might be driven by the viral infection and lead to genetic alterations cooperating with HHV8 in PEL lymphomagenesis.4« less

  5. B Decays Involving Light Mesons

    NASA Astrophysics Data System (ADS)

    Eschrich, Ivo Gough

    Recent BABAR results for decays of B-mesons to combinations of non-charm mesons are presented. This includes B decays to two vector mesons, B → η‧(π, K, ρ) modes, and a comprehensive Dalitz Plot analysis of B → KKK decays.

  6. B Decays Involving Light Mesons

    SciTech Connect

    Eschrich, Ivo Gough; /UC, Irvine

    2007-01-09

    Recent BABAR results for decays of B-mesons to combinations of non-charm mesons are presented. This includes B decays to two vector mesons, B {yields} {eta}{prime}({pi}, K, {rho}) modes, and a comprehensive Dalitz Plot analysis of B {yields} KKK decays.

  7. Mutation in FAM134B causing severe hereditary sensory neuropathy

    PubMed Central

    Murphy, Sinead M; Davidson, Gabrielle L; Brandner, Sebastian; Houlden, Henry; Reilly, Mary M

    2013-01-01

    The hereditary sensory and autonomic neuropathies (HSAN) are rare inherited neuropathies presenting with sensory loss and complications, including ulcers, infections, osteomyelitis and amputations. Usually, sensory symptoms predominate although motor involvement can occur. Autonomic features may be minimal (then hereditary sensory neuropathy, HSN, is preferred). HSAN has been classified into five subtypes depending on clinical presentation.1 Hereditary sensory and autonomic neuropathy II (HSANII or HSNII) is an early onset, autosomal recessive sensory neuropathy with ulcero-mutilating complications due to mutations in the HSN2 isoform of the WNK1 gene.2 Recently, a similar phenotype was described in a Saudi-Arabian family, and a homozygous nonsense mutation found in a new gene, FAM134B (family with sequence similarity 134, member B), encoding a newly identified Golgi protein. The index case in this family was initially thought to have leprosy. Three additional families (out of 75 patients) with similar phenotypes were found to have homozygous loss of function mutations in FAM134B.3 Here, we report the clinical and pathological findings in a further patient with HSNII due to a homozygous mutation in FAM134B. PMID:21115472

  8. Chromosomal mutations involved in antibiotic resistance in Staphylococcus aureus.

    PubMed

    Espedido, Bjorn A; Gosbell, Iain B

    2012-01-01

    Staphylococcus aureus is an important pathogen involved in infections in both the community and hospital setting. Strains that are resistant to multiple classes of antibiotics, particularly methicillin-resistant strains (MRSA), are prevalent in nosocomial infections and are associated with high morbidity and mortality rates. Such antibiotic-resistant strains limit the therapeutic options and place a burden on the health care system. In the hospital setting, horizontal gene transfer plays an important role in disseminating antibiotic resistant determinants among S. aureus. However, resistance to all known classes of antibiotics have been attributed to genes found within the S. aureus chromosome or to due to mutation as a result of selection pressure. Spontaneous mutations, in particular, are pivotal in the emergence of novel resistances. Consequently, newer drugs with better activity and/or antibacterial agents with novel targets need to be developed to combat and control the further spread of antibiotic resistance.

  9. Rare SF3B1 R625 mutations in cutaneous melanoma.

    PubMed

    Kong, Yong; Krauthammer, Michael; Halaban, Ruth

    2014-08-01

    RNA splicing is the cellular process that has only recently been found to be an important target for various cancers. Among the spliceosome genes that are involved in cancers, SF3B1 is most frequently mutated. Recurrent mutation in codon 625 has been found in uveal melanoma, but this mutation has not been identified in cutaneous melanoma. We used whole-exome sequencing to explore the mutational landscape of 295 melanoma samples, 231 of which are cutaneous melanoma. Among these cutaneous melanoma samples, we found two samples with R625 mutation in SF3B1 gene. The results were validated by Sanger sequencing. We conclude that SF3B1 R625 mutation does occur in cutaneous melanoma, although with a low frequency (∼1%).

  10. Novel mutations in PDE6B causing human retinitis pigmentosa

    PubMed Central

    Cheng, Lu-Lu; Han, Ru-Yi; Yang, Fa-Yu; Yu, Xin-Ping; Xu, Jin-Ling; Min, Qing-Jie; Tian, Jie; Ge, Xiang-Lian; Zheng, Si-Si; Lin, Ye-Wen; Zheng, Yi-Han; Qu, Jia; Gu, Feng

    2016-01-01

    AIM To identify the genetic defects of a Chinese patient with sporadic retinitis pigmentosa (RP). METHODS Ophthalmologic examinations were performed on the sporadic RP patient, 144 genes associated with retinal diseases were scanned with capture next generation sequencing (CNGS) approach. Two heterozygous mutations in PDE6B were confirmed in the pedigree by Sanger sequencing subsequently. The carrier frequency of PDE6B mutations of reported PDE6B mutations based on the available two public exome databases (1000 Genomes Project and ESP6500 Genomes Project) and one in-house exome database was investigated. RESULTS We identified compound heterozygosity of two novel nonsense mutations c.1133G>A (p.W378X) and c.2395C>T (p.R799X) in PDE6B, one reported causative gene for RP. Neither of the two mutations in our study was presented in three exome databases. Two mutations (p.R74C and p.T604I) in PDE6B have relatively high frequencies in the ESP6500 and in-house databases, respectively, while no common dominant mutation in each of the database or across all databases. CONCLUSION We demonstrates that compound heterozygosity of two novel nonsense mutations in PDE6B could lead to RP. These results collectively point to enormous potential of next-generation sequencing in determining the genetic etiology of RP and how various mutations in PDE6B contribute to the genetic heterogeneity of RP. PMID:27588261

  11. Mutations in human lymphocytes commonly involve gene duplication and resemble those seen in cancer cells

    SciTech Connect

    Turner, D.R.; Grist, S.A.; Janatipour, M.; Morley, A.A.

    1988-05-01

    Mutations in human lymphocytes are commonly due to gene deletion. To investigate the mechanism of deletion for autosomal genes, the authors immunoselected lymphocytes mutated at the HLA-A locus and clones them for molecular analysis. Of 36 mutant clones that showed deletion of the selected HLA-A allele, 8 had resulted from a simple gene deletion, whereas 28 had resulted from a more complex mutational event involving reduplication of the nonselected HLA-A allele as indicated by hybridization intensity on Southern blots. In 3 of the 28 clones, retention of heterozygosity at the HLA-B locus indicated that the reduplication was due to recombination between the two chromosomes 6; but in the remaining 25 clones, distinction could not be made between recombination and chromosome reduplication. The results indicate that mutations in normal somatic cells frequently result in hemizygosity or homozygosity at gene loci and, thereby, resemble the mutations thought to be important in the etiology of various forms of cancer.

  12. Distal hereditary motor neuropathy type 7B with Dynactin 1 mutation.

    PubMed

    Hwang, Sun Hee; Kim, Eun Ja; Hong, Young Bin; Joo, Jaesoon; Kim, Sung Min; Nam, Soo Hyun; Hong, Hyun Dae; Kim, Seung Hyun; Oh, Kiwook; Lim, Jeong-Geun; Cho, Jeong Hee; Chung, Ki Wha; Choi, Byung-Ok

    2016-10-01

    Mutations in the Dynactin 1 (DCTN1) gene have been demonstrated to result in various neurodegenerative diseases, including distal hereditary motor neuropathy type 7B (dHMN7B), Perry syndrome, amyotrophic lateral sclerosis and amyotrophic lateral sclerosis‑frontotemporal dementia. However, since the first dHMN7B patient with a DCTN1 mutation was described in 2003, to the best of our knowledge no further cases have been reported. In the present study, the DCTN1 p.G59S mutation was identified in two unrelated families from a total of 24 Korean families with dHMN, by whole exome sequencing. Codon 59 appears to be the mutational hot spot in the DCTN1 gene, as all described dHMN7B patients to date have harbored an identical p.G59S mutation. The families of the present study with the DCTN1 mutation had a milder disease with a later onset compared with the previously described patients. No affected family members exhibited facial muscle weakness or bulbar involvement. One family member demonstrated vocal cord palsy as the initial sign of disease; however, in the other family hand muscle weakness was the first major symptom. No affected patients demonstrated sensory loss or upper motor neuron involvements. Although this is only the second report of dHMN7B resulting from a DCTN1 mutation, the frequency of the DCTN1 mutation was not low in the Korean population examined, and clinical heterogeneities were observed in patients with the DCTN1 mutation. Therefore, it may be beneficial to screen all dHMN patients for the DCTN1 mutation.

  13. Distal hereditary motor neuropathy type 7B with Dynactin 1 mutation.

    PubMed

    Hwang, Sun Hee; Kim, Eun Ja; Hong, Young Bin; Joo, Jaesoon; Kim, Sung Min; Nam, Soo Hyun; Hong, Hyun Dae; Kim, Seung Hyun; Oh, Kiwook; Lim, Jeong-Geun; Cho, Jeong Hee; Chung, Ki Wha; Choi, Byung-Ok

    2016-10-01

    Mutations in the Dynactin 1 (DCTN1) gene have been demonstrated to result in various neurodegenerative diseases, including distal hereditary motor neuropathy type 7B (dHMN7B), Perry syndrome, amyotrophic lateral sclerosis and amyotrophic lateral sclerosis‑frontotemporal dementia. However, since the first dHMN7B patient with a DCTN1 mutation was described in 2003, to the best of our knowledge no further cases have been reported. In the present study, the DCTN1 p.G59S mutation was identified in two unrelated families from a total of 24 Korean families with dHMN, by whole exome sequencing. Codon 59 appears to be the mutational hot spot in the DCTN1 gene, as all described dHMN7B patients to date have harbored an identical p.G59S mutation. The families of the present study with the DCTN1 mutation had a milder disease with a later onset compared with the previously described patients. No affected family members exhibited facial muscle weakness or bulbar involvement. One family member demonstrated vocal cord palsy as the initial sign of disease; however, in the other family hand muscle weakness was the first major symptom. No affected patients demonstrated sensory loss or upper motor neuron involvements. Although this is only the second report of dHMN7B resulting from a DCTN1 mutation, the frequency of the DCTN1 mutation was not low in the Korean population examined, and clinical heterogeneities were observed in patients with the DCTN1 mutation. Therefore, it may be beneficial to screen all dHMN patients for the DCTN1 mutation. PMID:27573046

  14. Congenital B cell lymphocytosis explained by novel germline CARD11 mutations

    PubMed Central

    Xiao, Wenming; Stinson, Jeffrey R.; Lu, Wei; Chaigne-Delalande, Benjamin; Zheng, Lixin; Pittaluga, Stefania; Matthews, Helen F.; Schmitz, Roland; Jhavar, Sameer; Kuchen, Stefan; Kardava, Lela; Wang, Wei; Lamborn, Ian T.; Jing, Huie; Raffeld, Mark; Moir, Susan; Fleisher, Thomas A.; Staudt, Louis M.; Su, Helen C.

    2012-01-01

    Nuclear factor-κB (NF-κB) controls genes involved in normal lymphocyte functions, but constitutive NF-κB activation is often associated with B cell malignancy. Using high-throughput whole transcriptome sequencing, we investigated a unique family with hereditary polyclonal B cell lymphocytosis. We found a novel germline heterozygous missense mutation (E127G) in affected patients in the gene encoding CARD11, a scaffolding protein required for antigen receptor (AgR)–induced NF-κB activation in both B and T lymphocytes. We subsequently identified a second germline mutation (G116S) in an unrelated, phenotypically similar patient, confirming mutations in CARD11 drive disease. Like somatic, gain-of-function CARD11 mutations described in B cell lymphoma, these germline CARD11 mutants spontaneously aggregate and drive constitutive NF-κB activation. However, these CARD11 mutants rendered patient T cells less responsive to AgR-induced activation. By reexamining this rare genetic disorder first reported four decades ago, our findings provide new insight into why activating CARD11 mutations may induce B cell expansion and preferentially predispose to B cell malignancy without dramatically perturbing T cell homeostasis. PMID:23129749

  15. Congenital B cell lymphocytosis explained by novel germline CARD11 mutations.

    PubMed

    Snow, Andrew L; Xiao, Wenming; Stinson, Jeffrey R; Lu, Wei; Chaigne-Delalande, Benjamin; Zheng, Lixin; Pittaluga, Stefania; Matthews, Helen F; Schmitz, Roland; Jhavar, Sameer; Kuchen, Stefan; Kardava, Lela; Wang, Wei; Lamborn, Ian T; Jing, Huie; Raffeld, Mark; Moir, Susan; Fleisher, Thomas A; Staudt, Louis M; Su, Helen C; Lenardo, Michael J

    2012-11-19

    Nuclear factor-κB (NF-κB) controls genes involved in normal lymphocyte functions, but constitutive NF-κB activation is often associated with B cell malignancy. Using high-throughput whole transcriptome sequencing, we investigated a unique family with hereditary polyclonal B cell lymphocytosis. We found a novel germline heterozygous missense mutation (E127G) in affected patients in the gene encoding CARD11, a scaffolding protein required for antigen receptor (AgR)-induced NF-κB activation in both B and T lymphocytes. We subsequently identified a second germline mutation (G116S) in an unrelated, phenotypically similar patient, confirming mutations in CARD11 drive disease. Like somatic, gain-of-function CARD11 mutations described in B cell lymphoma, these germline CARD11 mutants spontaneously aggregate and drive constitutive NF-κB activation. However, these CARD11 mutants rendered patient T cells less responsive to AgR-induced activation. By reexamining this rare genetic disorder first reported four decades ago, our findings provide new insight into why activating CARD11 mutations may induce B cell expansion and preferentially predispose to B cell malignancy without dramatically perturbing T cell homeostasis.

  16. Two novel mutations involved in hereditary tyrosinemia type I

    SciTech Connect

    St-Louis, M.; Poudrier, J.; Phaneuf, D.

    1994-09-01

    The deficiency of fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolic pathway is the cause of hereditary tyrosinemia type I (HT1), an autosomal recessive disease. The disease has been reported worldwide. The incidence is much higher in two clusters: the Saguenay- Lac St-Jean region (Quebec, Canada) and in Scandinavia. Seven mutations have been reported in the last two years. Here we describe two new missense mutations identified by direct sequencing of PCR products in two HT1 patients, a Norwegian (patient No. 1) and a French-Canadian (patient No. 2). The first mutation consists of a G to A transition at position 337 of the FAH gene which predicts a change from glycine to serine (G337S). The second mutation is an A to G transition at position 381 which predicts a change from arginine to glycine (R381G). Patient No. 1 seems heterozygous for the G337S mutation and for a splice mutation (IVS12+5G{r_arrow}A) which was previously described. Patient No. 2 was also found heterozygous for the R381G mutation and for a rare nonsense mutation (E357X) already reported. In vitro transcription and translation were performed on mutant cDNA to demonstrate the responsibility of these two mutations in causing the decreased amount of FAH detected by Western blot analysis.

  17. Phenotypic Involvement in Females with the FMR1 Gene Mutation.

    ERIC Educational Resources Information Center

    Riddle, J. E.; Cheema, A.; Sobesky, W. E.; Gardner, S. C.; Taylor, A. K.; Pennington, B. F.; Hagerman, R. J.

    1998-01-01

    A study investigated phenotypic effects seen in 114 females with premutation and 41 females (ages 18-58) with full Fragile X mental retardation gene mutation. Those with the full mutation had a greater incidence of hand-flapping, eye contact problems, special education help for reading and math, and grade retention. (Author/CR)

  18. SF3B1 mutations constitute a novel therapeutic target in breast cancer

    PubMed Central

    Maguire, Sarah L; Leonidou, Andri; Wai, Patty; Marchiò, Caterina; Ng, Charlotte KY; Sapino, Anna; Salomon, Anne-Vincent; Reis-Filho, Jorge S; Weigelt, Britta; Natrajan, Rachael C

    2015-01-01

    Mutations in genes encoding proteins involved in RNA splicing have been found to occur at relatively high frequencies in several tumour types including myelodysplastic syndromes, chronic lymphocytic leukaemia, uveal melanoma, and pancreatic cancer, and at lower frequencies in breast cancer. To investigate whether dysfunction in RNA splicing is implicated in the pathogenesis of breast cancer, we performed a re-analysis of published exome and whole genome sequencing data. This analysis revealed that mutations in spliceosomal component genes occurred in 5.6% of unselected breast cancers, including hotspot mutations in the SF3B1 gene, which were found in 1.8% of unselected breast cancers. SF3B1 mutations were significantly associated with ER-positive disease, AKT1 mutations, and distinct copy number alterations. Additional profiling of hotspot mutations in a panel of special histological subtypes of breast cancer showed that 16% and 6% of papillary and mucinous carcinomas of the breast harboured the SF3B1 K700E mutation. RNA sequencing identified differentially spliced events expressed in tumours with SF3B1 mutations including the protein coding genes TMEM14C, RPL31, DYNL11, UQCC, and ABCC5, and the long non-coding RNA CRNDE. Moreover, SF3B1 mutant cell lines were found to be sensitive to the SF3b complex inhibitor spliceostatin A and treatment resulted in perturbation of the splicing signature. Albeit rare, SF3B1 mutations result in alternative splicing events, and may constitute drivers and a novel therapeutic target in a subset of breast cancers. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:25424858

  19. Mutations of TFAP2B in congenital heart disease patients in Mysore, South India

    PubMed Central

    Lingaiah, Kusuma; Sosalagere, Dinesh M.; Mysore, Savitha R.; Krishnamurthy, B.; Narayanappa, Doddaiah; Nallur, Ramachandra B.

    2011-01-01

    Background & objectives: Cardiac malformations in the young constitute a major portion of clinically significant birth defects. Congenital heart disease (CHD) is a common congenital cardiac birth defect, affecting nearly 1 per cent of all live births. Patent ductus arteriosus (PDA) is clinically significant foetal circulation anomaly, second most common form of CHD which constitutes approximately 10 per cent of total CHDs. The study aimed to screen for TFAP2B mutations in CHD patients of Mysore. Methods: With informed consent, 100 clinically diagnosed CHD patients and 50 healthy controls in Mysore, south India, were recruited for the analysis of screening of mutations. MassARRAY analysis of 5 prominent mutations of TFAP2B was performed. Results: The analysis did not show any of the five mutations of TFAP2B screened by massARRAY in patients and controls, indicating that these mutations were not involved in the manifestation of CHD in the patients at Mysore, south India. Interpretation & Conclusions: The findings suggest the lack of involvement of known mutations of TFAP2B with syndromic or nonsyndromic CHDs in Mysore patients. PMID:22199100

  20. Recurrent mutations of the STAT6 DNA binding domain in primary mediastinal B-cell lymphoma.

    PubMed

    Ritz, Olga; Guiter, Chrystelle; Castellano, Flavia; Dorsch, Karola; Melzner, Julia; Jais, Jean-Philippe; Dubois, Gwendoline; Gaulard, Philippe; Möller, Peter; Leroy, Karen

    2009-08-01

    Primary mediastinal B-cell lymphoma (PMBL) is a separate entity of aggressive B-cell lymphoma, characterized by a constitutive activation of janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, also observed in Hodgkin lymphoma. Although many cancers exhibit constitutive JAK-STAT pathway activation, mutations of STAT genes have not been reported in neoplasms. Here, we show that MedB-1 PMBL-derived and L1236 Hodgkin-derived cell lines and 20 of 55 (36%) PMBL cases harbor heterozygous missense mutations in STAT6 DNA binding domain, whereas no mutation was found in 25 diffuse large B-cell lymphoma samples. In 3 cases, somatic origin was indicated by the absence of the mutations in the nontumoral tissue. The pattern of STAT6 mutations was different from the classical features of somatic hypermutations. The mutant STAT6 proteins showed a decreased DNA binding ability in transfected HEK cells, but no decrease in expression of STAT6 canonical target genes was observed in PMBL cases with a mutated STAT6 gene. Although the oncogenic properties of STAT6 mutant proteins remain to be determined, their recurrent selection in PMBL strongly argues for their involvement in the pathogenesis of this aggressive B-cell lymphoma. PMID:19423726

  1. Structural and functional consequences of succinate dehydrogenase subunit B mutations.

    PubMed

    Kim, E; Rath, E M; Tsang, V H M; Duff, A P; Robinson, B G; Church, W B; Benn, D E; Dwight, T; Clifton-Bligh, R J

    2015-06-01

    Mitochondrial dysfunction, due to mutations of the gene encoding succinate dehydrogenase (SDH), has been implicated in the development of adrenal phaeochromocytomas, sympathetic and parasympathetic paragangliomas, renal cell carcinomas, gastrointestinal stromal tumours and more recently pituitary tumours. Underlying mechanisms behind germline SDH subunit B (SDHB) mutations and their associated risk of disease are not clear. To investigate genotype-phenotype correlation of SDH subunit B (SDHB) variants, a homology model for human SDH was developed from a crystallographic structure. SDHB mutations were mapped, and biochemical effects of these mutations were predicted in silico. Results of structural modelling indicated that many mutations within SDHB are predicted to cause either failure of functional SDHB expression (p.Arg27*, p.Arg90*, c.88delC and c.311delAinsGG), or disruption of the electron path (p.Cys101Tyr, p.Pro197Arg and p.Arg242His). GFP-tagged WT SDHB and mutant SDHB constructs were transfected (HEK293) to determine biological outcomes of these mutants in vitro. According to in silico predictions, specific SDHB mutations resulted in impaired mitochondrial localisation and/or SDH enzymatic activity. These results indicated strong genotype-functional correlation for SDHB variants. This study reveals new insights into the effects of SDHB mutations and the power of structural modelling in predicting biological consequences. We predict that our functional assessment of SDHB mutations will serve to better define specific consequences for SDH activity as well as to provide a much needed assay to distinguish pathogenic mutations from benign variants. PMID:25972245

  2. Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development.

    PubMed

    Mito, Takayuki; Kikkawa, Yoshiaki; Shimizu, Akinori; Hashizume, Osamu; Katada, Shun; Imanishi, Hirotake; Ota, Azusa; Kato, Yukina; Nakada, Kazuto; Hayashi, Jun-Ichi

    2013-01-01

    Mitochondrial DNA (mtDNA) mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia) due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA) also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J) nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ(0)) mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.

  3. Mutation assays involving blood cells that metabolize toxic substances

    DOEpatents

    Crespi, Charles L.; Thilly, William G.

    1985-01-01

    A line of human blood cells which have high levels of oxidative activity (such as oxygenase, oxidase, peroxidase, and hydroxylase activity) is disclosed. Such cells grow in suspension culture, and are useful to determine the mutagenicity of xenobiotic substances that are metabolized into toxic or mutagenic substances. Mutation assays using these cells, and other cells with similar characteristics, are also disclosed.

  4. Clinical features and a mutation with late onset of limb girdle muscular dystrophy 2B

    PubMed Central

    Takahashi, Toshiaki; Aoki, Masashi; Suzuki, Naoki; Tateyama, Maki; Yaginuma, Chikako; Sato, Hitomi; Hayasaka, Miho; Sugawara, Hitomi; Ito, Mariko; Abe-Kondo, Emi; Shimakura, Naoko; Ibi, Tohru; Kuru, Satoshi; Wakayama, Tadashi; Sobue, Gen; Fujii, Naoki; Saito, Toshio; Matsumura, Tsuyoshi; Funakawa, Itaru; Mukai, Eiichiro; Kawanami, Toru; Morita, Mitsuya; Yamazaki, Mineo; Hasegawa, Takashi; Shimizu, Jun; Tsuji, Shoji; Kuzuhara, Shigeki; Tanaka, Hiroyasu; Yoshioka, Masaru; Konno, Hidehiko; Onodera, Hiroshi; Itoyama, Yasuto

    2013-01-01

    Objective and methods Dysferlin encoded by DYSF deficiency leads to two main phenotypes, limb girdle muscular dystrophy (LGMD) 2B and Miyoshi myopathy. To reveal in detail the mutational and clinical features of LGMD2B in Japan, we observed 40 Japanese patients in 36 families with LGMD2B in whom dysferlin mutations were confirmed. Results and conclusions Three mutations (c.1566C>G, c.2997G>T and c.4497delT) were relatively more prevalent. The c.2997G>T mutation was associated with late onset, proximal dominant forms of dysferlinopathy, a high probability that muscle weakness started in an upper limb and lower serum creatine kinase (CK) levels. The clinical features of LGMD2B are as follows: (1) onset in the late teens or early adulthood, except patients homozygous for the c.2997G>T mutation; (2) lower limb weakness at onset; (3) distal change of lower limbs on muscle CT at an early stage; (4) impairment of lumbar erector spinal muscles on muscle CT at an early stage; (5) predominant involvement of proximal upper limbs; (6) preservation of function of the hands at late stage; (7) preservation of strength in neck muscles at late stage; (8) lack of facial weakness or dysphagia; (9) avoidance of scoliosis; (10) hyper-Ckaemia; (11) preservation of cardiac function; and (12) a tendency for respiratory function to decline with disease duration. It is important that the late onset phenotype is found with prevalent mutations. PMID:23243261

  5. Involvement of and Interaction between WNT10A and EDA Mutations in Tooth Agenesis Cases in the Chinese Population

    PubMed Central

    Feng, Hailan; Qu, Hong; Song, Shujuan; Bai, Baojing; Zhang, Zhenting

    2013-01-01

    Background Dental agenesis is the most common, often heritable, developmental anomaly in humans. Although WNT10A gene mutations are known to cause rare syndromes associated with tooth agenesis, including onycho-odontodermal dysplasia (OODD), Schöpf-Schulz-Passarge syndrome (SSPS), hypohidrotic ectodermal dysplasia (HED), and more than half of the cases of isolated oligodontia recently, the genotype-phenotype correlations and the mode of inheritance of WNT10A mutations remain unclear. The phenotypic expression with WNT10A mutations shows a high degree of variability, suggesting that other genes might function with WNT10A in regulating ectodermal organ development. Moreover, the involvement of mutations in other genes, such as EDA, which is also associated with HED and isolated tooth agenesis, is not clear. Therefore, we hypothesized that EDA mutations interact with WNT10A mutations to play a role in tooth agenesis. Additionally, EDA, EDAR, and EDARADD encode signaling molecules in the Eda/Edar/NF-κB signaling pathways, we also checked EDAR and EDARADD in this study. Methods WNT10A, EDA, EDAR and EDARADD were sequenced in 88 patients with isolated oligodontia and 26 patients with syndromic tooth agenesis. The structure of two mutated WNT10A and two mutated EDA proteins was analyzed. Results Digenic mutations of both WNT10A and EDA were identified in 2 of 88 (2.27%) isolated oligodontia cases and 4 of 26 (15.38%) syndromic tooth agenesis cases. No mutation in EDAR or EDARADD gene was found. Conclusions WNT10A and EDA digenic mutations could result in oligodontia and syndromic tooth agenesis in the Chinese population. Moreover, our results will greatly expand the genotypic spectrum of tooth agenesis. PMID:24312213

  6. Coxsackievirus B3 mutator strains are attenuated in vivo.

    PubMed

    Gnädig, Nina F; Beaucourt, Stéphanie; Campagnola, Grace; Bordería, Antonio V; Sanz-Ramos, Marta; Gong, Peng; Blanc, Hervé; Peersen, Olve B; Vignuzzi, Marco

    2012-08-21

    Based on structural data of the RNA-dependent RNA polymerase, rational targeting of key residues, and screens for Coxsackievirus B3 fidelity variants, we isolated nine polymerase variants with mutator phenotypes, which allowed us to probe the effects of lowering fidelity on virus replication, mutability, and in vivo fitness. These mutator strains generate higher mutation frequencies than WT virus and are more sensitive to mutagenic treatments, and their purified polymerases present lower-fidelity profiles in an in vitro incorporation assay. Whereas these strains replicate with WT-like kinetics in tissue culture, in vivo infections reveal a strong correlation between mutation frequency and fitness. Variants with the highest mutation frequencies are less fit in vivo and fail to productively infect important target organs, such as the heart or pancreas. Furthermore, whereas WT virus is readily detectable in target organs 30 d after infection, some variants fail to successfully establish persistent infections. Our results show that, although mutator strains are sufficiently fit when grown in large population size, their fitness is greatly impacted when subjected to severe bottlenecking, which would occur during in vivo infection. The data indicate that, although RNA viruses have extreme mutation frequencies to maximize adaptability, nature has fine-tuned replication fidelity. Our work forges ground in showing that the mutability of RNA viruses does have an upper limit, where larger than natural genetic diversity is deleterious to virus survival.

  7. Mutation assays involving blood cells that metabolize toxic substances

    DOEpatents

    Crespi, C.L.; Thilly, W.G.

    1999-08-10

    The present invention pertains to a line of human blood cells which have high levels of oxidative activity (such as oxygenase, oxidase, peroxidase, and hydroxylase activity). Such cells grow in suspension culture, and are useful to determine the mutagenicity of xenobiotic substances that are metabolized into toxic or mutagenic substances. The invention also includes mutation assays using these cells, and other cells with similar characteristics. 3 figs.

  8. Mutation assays involving blood cells that metabolize toxic substances

    DOEpatents

    Crespi, Charles L.; Thilly, William G.

    1999-01-01

    The present invention pertains to a line of human blood cells which have high levels of oxidative activity (such as oxygenase, oxidase, peroxidase, and hydroxylase activity). Such cells grow in suspension culture, and are useful to determine the mutagenicity of xenobiotic substances that are metabolized into toxic or mutagenic substances. The invention also includes mutation assays using these cells, and other cells with similar characteristics.

  9. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage

    PubMed Central

    Alsafadi, Samar; Houy, Alexandre; Battistella, Aude; Popova, Tatiana; Wassef, Michel; Henry, Emilie; Tirode, Franck; Constantinou, Angelos; Piperno-Neumann, Sophie; Roman-Roman, Sergio; Dutertre, Martin; Stern, Marc-Henri

    2016-01-01

    Hotspot mutations in the spliceosome gene SF3B1 are reported in ∼20% of uveal melanomas. SF3B1 is involved in 3′-splice site (3′ss) recognition during RNA splicing; however, the molecular mechanisms of its mutation have remained unclear. Here we show, using RNA-Seq analyses of uveal melanoma, that the SF3B1R625/K666 mutation results in deregulated splicing at a subset of junctions, mostly by the use of alternative 3′ss. Modelling the differential junctions in SF3B1WT and SF3B1R625/K666 cell lines demonstrates that the deregulated splice pattern strictly depends on SF3B1 status and on the 3'ss-sequence context. SF3B1WT knockdown or overexpression do not reproduce the SF3B1R625/K666 splice pattern, qualifying SF3B1R625/K666 as change-of-function mutants. Mutagenesis of predicted branchpoints reveals that the SF3B1R625/K666-promoted splice pattern is a direct result of alternative branchpoint usage. Altogether, this study provides a better understanding of the mechanisms underlying splicing alterations induced by mutant SF3B1 in cancer, and reveals a role for alternative branchpoints in disease. PMID:26842708

  10. Mutations in sfdA and sfdB suppress multiple developmental mutations in Aspergillus nidulans.

    PubMed Central

    Kellner, Ellen M; Adams, Thomas H

    2002-01-01

    Conidiophore morphogenesis in Aspergillus nidulans occurs in response to developmental signals that result in the activation of brlA, a well-characterized gene that encodes a transcription factor that is central to asexual development. Loss-of-function mutations in flbD and other fluffy loci have previously been shown to result in delayed development and reduced expression of brlA. flbD message is detectable during both hyphal growth and conidiation, and its gene product is similar to the Myb family of transcription factors. To further understand the regulatory pathway to brlA activation and conidiation, we isolated suppressor mutations that rescued development in strains with a flbD null allele. We describe here two new loci, designated sfdA and sfdB for suppressors of flbD, that bypass the requirement of flbD for development. sfd mutant alleles were found to restore developmental timing and brlA expression to strains with flbD deletions. In addition, sfd mutations suppress the developmental defects in strains harboring loss-of-function mutations in fluG, flbA, flbB, flbC, and flbE. All alleles of sfdA and sfdB that we have isolated are recessive to their wild-type alleles in diploids. Strains with mutant sfd alleles in otherwise developmentally wild-type backgrounds have reduced growth phenotypes and develop conidiophores in submerged cultures. PMID:11805053

  11. Hepatitis B virus genetic mutations and evolution in liver diseases.

    PubMed

    Shen, Tao; Yan, Xin-Min

    2014-05-14

    Hepatitis B virus (HBV) belongs to the genus Orthohepadnavirus of the Hepadnaviridae family and is approximately 3.2 kb in length. Owing to a lack of proofreading capacity during reverse transcription and a high replication rate, HBV exhibits as quasispecies. To detect the genetic mutations of HBV, many methods with different sensitivities and throughputs were developed. According to documentary records, HBV mutation and evolution were important vial parameters in predicting disease progression and therapeutic outcome. In this review, we separately discussed the correlation between HBV genomic mutations in four open reading frames and liver disease progression. Since some of the results were controversial from different laboratories, it remains to be seen whether functional analyses will confirm their role in modifying the course of infection.

  12. ACVR1B (ALK4, activin receptor type 1B) gene mutations in pancreatic carcinoma

    PubMed Central

    Su, Gloria H.; Bansal, Ravi; Murphy, Kathleen M.; Montgomery, Elizabeth; Yeo, Charles J.; Hruban, Ralph H.; Kern, Scott E.

    2001-01-01

    DPC4 is known to mediate signals initiated by type β transforming growth factor (TGFβ) as well as by other TGFβ superfamily ligands such as activin and BMP (bone morphogenic proteins), but mutational surveys of such non-TGFβ receptors have been negative to date. Here we describe the gene structure and novel somatic mutations of the activin type I receptor, ACVR1B, in pancreatic cancer. ACVR1B has not been described previously as a mutated tumor-suppressor gene. PMID:11248065

  13. Different patterns of bcl-6 and p53 gene mutations in tonsillar B cells indicate separate mutational mechanisms.

    PubMed

    Yavuz, Akif S; Monson, Nancy L; Yavuz, Sule; Grammer, Amrie C; Longo, Nancy; Girschick, Hermann J; Lipsky, Peter E

    2002-11-01

    Mutations within the 5'-non-coding region of the bcl-6 gene can occur in lymphomas that originate from germinal centers (GCs), as well as in normal memory and GC B cells. Mutations in the p53 gene occur in 50% of human cancers. Since both bcl-6 and p53 can be mutated in certain circumstances, we investigated the accumulation of mutations in these genes in individual tonsillar B and T cells to determine whether the mutations exhibited a pattern anticipated from the B-cell hypermutation machinery. In tonsillar GC B cells, the overall mutational frequencies in the 5'-non-coding region of the bcl-6 gene was 0.85 x 10(-3)/bp. In contrast, there were no mutations in a region 2.8 kb downstream of the promoter. RGYW (purine, guanine, pyrimidine, A/T) targeting and a significantly lower mutational frequency in nai;ve B and GC founder B cells compared with GC B cells suggested that a similar mutator mechanism was active on Ig genes and this non-Ig gene. The mutational frequency in the exon-7-region of p53 was similar in the GC, memory and nai;ve B-cell subsets (1.02 x 10(-3) to 1.25 x 10(-3)/bp). RGYW/WRCY motifs were not targeted preferentially in the p53 gene. Moreover, a comparable mutational frequency of p53 was noted in tonsillar B and T cells. Hence, mutations in p53 do not appear to be the result of the B-cell hypermutational mechanism.

  14. Clinical implications of hepatitis B virus mutations: Recent advances

    PubMed Central

    Lazarevic, Ivana

    2014-01-01

    Hepatitis B virus (HBV) infection is a major cause of acute and chronic hepatitis, and of its long-term complications. It is the most variable among DNA viruses, mostly because of its unique life cycle which includes the activity of error-prone enzyme, reverse transcriptase, and the very high virion production per day. In last two decades, numerous research studies have shown that the speed of disease progression, reliability of diagnostic methods and the success of antiviral therapy and immunization are all influenced by genetic variability of this virus. It was shown that mutations in specific regions of HBV genome could be responsible for unwanted clinical outcomes or evasion of detection by diagnostic tools, thus making the monitoring for these mutations a necessity in proper evaluation of patients. The success of the vaccination programs has now been challenged by the discovery of mutant viruses showing amino acid substitutions in hepatitis B surface antigen (HBsAg), which may lead to evasion of vaccine-induced immunity. However, the emergence of these mutations has not yet raised concern since it was shown that they develop slowly. Investigations of HBV genetic variability and clinical implications of specific mutations have resulted in significant advances over the past decade, particularly in regard to management of resistance to antiviral drugs. In the era of drugs with high genetic barrier for resistance, on-going monitoring for possible resistance is still essential since prolonged therapy is often necessary. Understanding the frequencies and clinical implications of viral mutations may contribute to improvement of diagnostic procedures, more proper planning of immunization programs and creating the most efficient therapeutic protocols. PMID:24976703

  15. The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations

    PubMed Central

    Howe, J; Sayed, M; Ahmed, A; Ringold, J; Larsen-Haidle, J; Merg, A; Mitros, F; Vaccaro, C; Petersen, G; Giardiello, F; Tinley, S; Aaltonen, L; Lynch, H

    2004-01-01

    Background: Juvenile polyposis (JP) is an autosomal dominant syndrome predisposing to colorectal and gastric cancer. We have identified mutations in two genes causing JP, MADH4 and bone morphogenetic protein receptor 1A (BMPR1A): both are involved in bone morphogenetic protein (BMP) mediated signalling and are members of the TGF-ß superfamily. This study determined the prevalence of mutations in MADH4 and BMPR1A, as well as three other BMP/activin pathway candidate genes in a large number of JP patients. Methods: DNA was extracted from the blood of JP patients and used for PCR amplification of each exon of these five genes, using primers flanking each intron–exon boundary. Mutations were determined by comparison to wild type sequences using sequence analysis software. A total of 77 JP cases were sequenced for mutations in the MADH4, BMPR1A, BMPR1B, BMPR2, and/or ACVR1 (activin A receptor) genes. The latter three genes were analysed when MADH4 and BMPR1A sequencing found no mutations. Results: Germline MADH4 mutations were found in 14 cases (18.2%) and BMPR1A mutations in 16 cases (20.8%). No mutations were found in BMPR1B, BMPR2, or ACVR1 in 32 MADH4 and BMPR1A mutation negative cases. Discussion: In the largest series of JP patients reported to date, the prevalence of germline MADH4 and BMPR1A mutations is approximately 20% for each gene. Since mutations were not found in more than half the JP patients, either additional genes predisposing to JP remain to be discovered, or alternate means of inactivation of the two known genes are responsible for these JP cases. PMID:15235019

  16. Regulation of AID, the B-cell genome mutator.

    PubMed

    Keim, Celia; Kazadi, David; Rothschild, Gerson; Basu, Uttiya

    2013-01-01

    The mechanisms by which B cells somatically engineer their genomes to generate the vast diversity of antibodies required to challenge the nearly infinite number of antigens that immune systems encounter are of tremendous clinical and academic interest. The DNA cytidine deaminase activation-induced deaminase (AID) catalyzes two of these mechanisms: class switch recombination (CSR) and somatic hypermutation (SHM). Recent discoveries indicate a significant promiscuous targeting of this B-cell mutator enzyme genome-wide. Here we discuss the various regulatory elements that control AID activity and prevent AID from inducing genomic instability and thereby initiating oncogenesis.

  17. B-Raf mutation: a key player in molecular biology of cancer.

    PubMed

    Rahman, M A; Salajegheh, A; Smith, R A; Lam, A K-Y

    2013-12-01

    B-Raf is one of the more commonly mutated proto-oncogenes implicated in the development of cancers. In this review, we consider the mechanisms and clinical impacts of B-Raf mutations in cancer and discuss the implications for the patient in melanoma, thyroid cancer and colorectal cancer, where B-Raf mutations are particularly common.

  18. B-cell lymphoma mutations: improving diagnostics and enabling targeted therapies

    PubMed Central

    Vaqué, José P.; Martínez, Nerea; Batlle-López, Ana; Pérez, Cristina; Montes-Moreno, Santiago; Sánchez-Beato, Margarita; Piris, Miguel A.

    2014-01-01

    B-cell lymphomas comprise an increasing number of clinicopathological entities whose characterization has historically been based mainly on histopathological features. In recent decades, the analysis of chromosomal aberrations as well as gene and miRNA expression profile studies have helped distinguish particular tumor types and also enabled the detection of a number of targets with therapeutic implications, such as those activated downstream of the B-cell receptor. Our ability to identify the mechanisms involved in B-cell lymphoma pathogenesis has been boosted recently through the use of Next Generation Sequencing techniques in the analysis of human cancer. This work summarizes the recent findings in the molecular pathogenesis of B-cell neoplasms with special focus on those clinically relevant somatic mutations with the potential to be explored as candidates for the development of new targeted therapies. Our work includes a comparison between the mutational indexes and ranges observed in B-cell lymphomas and also with other solid tumors and describes the most striking mutational data for the major B-cell neoplasms. This review describes a highly dynamic field that currently offers many opportunities for personalized therapy, although there is still much to be gained from the further molecular characterization of these clinicopathological entities. PMID:24497559

  19. Involvement of Escherichia coli DNA polymerase II in response to oxidative damage and adaptive mutation.

    PubMed Central

    Escarceller, M; Hicks, J; Gudmundsson, G; Trump, G; Touati, D; Lovett, S; Foster, P L; McEntee, K; Goodman, M F

    1994-01-01

    DNA polymerase II (Pol II) is regulated as part of the SOS response to DNA damage in Escherichia coli. We examined the participation of Pol II in the response to oxidative damage, adaptive mutation, and recombination. Cells lacking Pol II activity (polB delta 1 mutants) exhibited 5- to 10-fold-greater sensitivity to mode 1 killing by H2O2 compared with isogenic polB+ cells. Survival decreased by about 15-fold when polB mutants containing defective superoxide dismutase genes, sodA and sodB, were compared with polB+ sodA sodB mutants. Resistance to peroxide killing was restored following P1 transduction of polB cells to polB+ or by conjugation of polB cells with an F' plasmid carrying a copy of polB+. The rate at which Lac+ mutations arose in Lac- cells subjected to selection for lactose utilization, a phenomenon known as adaptive mutation, was increased threefold in polB backgrounds and returned to wild-type rates when polB cells were transduced to polB+. Following multiple passages of polB cells or prolonged starvation, a progressive loss of sensitivity to killing by peroxide was observed, suggesting that second-site suppressor mutations may be occurring with relatively high frequencies. The presence of suppressor mutations may account for the apparent lack of a mutant phenotype in earlier studies. A well-established polB strain, a dinA Mu d(Apr lac) fusion (GW1010), exhibited wild-type (Pol II+) sensitivity to killing by peroxide, consistent with the accumulation of second-site suppressor mutations. A high titer anti-Pol II polyclonal antibody was used to screen for the presence of Pol II in other bacteria and in the yeast Saccharomyces cerevisiae. Cross-reacting material was found in all gram-negative strains tested but was not detected in gram-positive strains or in S. cerevisiae. Induction of Pol II by nalidixic acid was observed in E. coli K-12, B, and C, in Shigella flexneri, and in Salmonella typhimurium. Images PMID:7928992

  20. STAT5B mutations in heterozygous state have negative impact on height: another clue in human stature heritability

    PubMed Central

    Scalco, Renata C; Hwa, Vivian; Domené, Horacio M.; Jasper, Héctor G.; Belgorosky, Alicia; Marino, Roxana; Pereira, Alberto M.; Tonelli, Carlos A.; Wit, Jan M.; Rosenfeld, Ron G.; Jorge, Alexander A.L.

    2016-01-01

    Context and objective Growth hormone insensitivity with immune dysfunction caused by signal transducer and activator of transcription 5B (STAT5B) mutations is an autosomal recessive condition. Heterozygous mutations in other genes involved in growth regulation were previously associated with a mild height reduction. Our objective was to assess for the first time the phenotype of heterozygous STAT5B mutations. Methods We genotyped and performed clinical and laboratorial evaluations in 52 relatives of 2 previously described Brazilian brothers with homozygous STAT5B c.424_427del mutation (21 heterozygous). Additionally, we obtained height data and genotype from 1,104 adult control individuals from the same region in Brazil and identified 5 additional families harboring the same mutation (18 individuals, 11 heterozygous). Furthermore, we gathered the available height data from first-degree relatives of patients with homozygous STAT5B mutations (17 individuals from 7 families). Data from heterozygous individuals and non-carriers were compared. Results Individuals carrying heterozygous STAT5B c.424_427del mutation were 0.6 SDS shorter than their non-carrier relatives (p= 0.009). Heterozygous subjects also had significantly lower SDS for serum concentrations of IGF-1 (p=0.028) and IGFBP-3 (p=0.02) than their non-carrier relatives. The 17 heterozygous first-degree relatives of patients carrying homozygous STAT5B mutations had an average height SDS of −1.4 ± 0.8 when compared with population-matched controls (p < 0.001). Conclusions STAT5B mutations in heterozygous state have a significant negative impact on height (approximately 3.9 cm). This effect is milder than the effect seen in the homozygous state, with height usually within the normal range. Our results support the hypothesis that heterozygosity of rare pathogenic variants contributes to normal height heritability. PMID:26034074

  1. Hepatitis C virus nonstructural protein 5B is involved in virus morphogenesis.

    PubMed

    Gouklani, Hamed; Bull, Rowena A; Beyer, Claudia; Coulibaly, Fasséli; Gowans, Eric J; Drummer, Heidi E; Netter, Hans J; White, Peter A; Haqshenas, Gholamreza

    2012-05-01

    The p7 protein of hepatitis C virus (HCV) is a viroporin that is dispensable for viral genome replication but plays a critical role in virus morphogenesis. In this study, we generated a JFH1-based intergenotypic chimeric genome that encoded a heterologous genotype 1b (GT1b) p7. The parental intergenotypic chimeric genome was nonviable in human hepatoma cells, and infectious chimeric virions were produced only when cells transfected with the chimeric genomes were passaged several times. Sequence analysis of the entire polyprotein-coding region of the recovered chimeric virus revealed one predominant amino acid substitution in nonstructural protein 2 (NS2), T23N, and one in NS5B, K151R. Forward genetic analysis demonstrated that each of these mutations per se restored the infectivity of the parental chimeric genome, suggesting that interactions between p7, NS2, and NS5B were required for virion assembly/maturation. p7 and NS5B colocalized in cellular compartments, and the NS5B mutation did not affect the colocalization pattern. The NS5B K151R mutation neither increased viral RNA replication in human hepatoma cells nor altered the polymerase activity of NS5B in an in vitro assay. In conclusion, this study suggests that HCV NS5B is involved in virus morphogenesis.

  2. Loss of B Cells in Patients with Heterozygous Mutations in IKAROS

    PubMed Central

    Cunningham-Rundles, C.; Reichenbach, J.; Stray-Pedersen, A.; Gelfand, E.W.; Maffucci, P.; Pierce, K.R.; Abbott, J.K.; Voelkerding, K.V.; South, S.T.; Augustine, N.H.; Bush, J.S.; Dolen, W.K.; Wray, B.B.; Itan, Y.; Cobat, A.; Sorte, H.S.; Ganesan, S.; Prader, S.; Martins, T.B.; Lawrence, M.G.; Orange, J.S.; Calvo, K.R.; Niemela, J.E.; Casanova, J.-L.; Fleisher, T.A.; Hill, H.R.; Kumánovics, A.

    2016-01-01

    BACKGROUND Common variable immunodeficiency (CVID) is characterized by late-onset hypogammaglobulinemia in the absence of predisposing factors. The genetic cause is unknown in the majority of cases, and less than 10% of patients have a family history of the disease. Most patients have normal numbers of B cells but lack plasma cells. METHODS We used whole-exome sequencing and array-based comparative genomic hybridization to evaluate a subset of patients with CVID and low B-cell numbers. Mutant proteins were analyzed for DNA binding with the use of an electrophoretic mobility-shift assay (EMSA) and confocal microscopy. Flow cytometry was used to analyze peripheral-blood lymphocytes and bone marrow aspirates. RESULTS Six different heterozygous mutations in IKZF1, the gene encoding the transcription factor IKAROS, were identified in 29 persons from six families. In two families, the mutation was a de novo event in the proband. All the mutations, four amino acid substitutions, an intragenic deletion, and a 4.7-Mb multigene deletion involved the DNA-binding domain of IKAROS. The proteins bearing missense mutations failed to bind target DNA sequences on EMSA and confocal microscopy; however, they did not inhibit the binding of wild-type IKAROS. Studies in family members showed progressive loss of B cells and serum immunoglobulins. Bone marrow aspirates in two patients had markedly decreased early B-cell precursors, but plasma cells were present. Acute lymphoblastic leukemia developed in 2 of the 29 patients. CONCLUSIONS Heterozygous mutations in the transcription factor IKAROS caused an autosomal dominant form of CVID that is associated with a striking decrease in B-cell numbers. (Funded by the National Institutes of Health and others.) PMID:26981933

  3. Signature mutations from B. subtilis spores exposed to radiations and simulated space environments

    NASA Astrophysics Data System (ADS)

    Munakata, , Nobuo; Natsume, Toshiyuki; Konishi, Teruaki; Hieda, Kotaro; Panitz, Corinna; Horneck, Gerda

    Rifampicin-resistant mutants were collected from the spores of three B. subtilis strains, HA101 (HA, repair proficient), TKJ6312 (US, UV-repair defective) and TKJ6412 (RF, recombination deficient) grown after exposure to various radiations and simulated space environments. All of 563 mutations analyzed carried sequence changes in the N-terminal region of the rpoB gene cod-ing for the subunit β of RNA polymerase II and belonged to 56 alleles. (1) Most of spontaneous mutants from the three strains belonged to 13 single-base substitution (SBS) alleles, exceptions (<2%) being one 3 bp insertion and one tandem double substitution (TDS). (2) About 6 % and 16 % of the mutations from the HA and RF spores, respectively, exposed to ionizing radiations were complex mutations including multiple-base substitutions, insertions and deletions. Several TDS and non-tandem double substitutions (NTDS), and 3, 6, 9 and one 30 bp deletions seem to provide signatures of the exposure to ionizing radiations. (3) Except one TDS from US and one NTDS from HA spores, UV or solar exposure seemed not to leave unique footprints. (4) In space simulation experiments, the only conditions involving high vacuum consistently increased the mutation frequency, and exhibited high occurrences (>50%) of TDS. In HA spores, the al-lele r201 (CA to TT at 1460) was the most frequent, while in US spores, another allele r210 (TC to AA at 1404) was the most frequent. In conclusion, some of the conditions encountered in space environments, such as space vacuum and ionizing radiations, could produce unique mutational signatures in the rpoB gene of B. subtilis spores.

  4. Two Japanese CADASIL families exhibiting Notch3 mutation R75P not involving cysteine residue.

    PubMed

    Mizuno, Toshiki; Muranishi, Manabu; Torugun, Torusunjian; Tango, Hiromi; Nagakane, Yoshinari; Kudeken, Tukasa; Kawase, Yuji; Kawabe, Kiyokazu; Oshima, Fumiko; Yaoi, Takeshi; Itoh, Kyoko; Fushiki, Shinji; Nakagawa, Masanori

    2008-01-01

    Most previously reported mutations in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) result in an odd number of cysteine residues within the epidermal growth factor (EGF)-like repeats in Notch3. We report here R75P mutation in two Japanese CADASIL families not directly involving cysteine residues located within the first EGF-like repeats. Probands in both families had repeated episodes of stroke, depression, dementia as well as T2 high-intensity lesions in the basal ganglia and periventricular white matter, but fewer white matter lesions in the temporal pole on MRI. These families provide new insights into the diagnosis and pathomechanisms of CADASIL. PMID:19043263

  5. HBx Gene Mutations in Hepatitis B Virus and Hepatocellular Carcinoma

    PubMed Central

    Mathew M, Anumol; Kurian, Sumitha C; Varghese, Atul Philip; Oommen, Seema; G, Manoj

    2014-01-01

    Hepatocellular carcinoma (HCC) is one of the most prevalent cancers which are found in many Asian and African countries. There are several risk factors that may develop to HCC. Along with several other factors contributing to HCC, hepatitis B virus (HBV) infection also accounts for a major cause. HBV infection represents a major health problem worldwide. Among all of HBV genes, HBx is believed to play a prominent role in carcinogenesis, although the actual mechanism is not yet fully understood. The HBx gene of HBV is the most common open reading frame that may undergo mutations and may develop into HCC. This review summarizes the current knowledge about the most important roles of HBx gene that may lead to the development of HCC.

  6. A family of oculofaciocardiodental syndrome (OFCD) with a novel BCOR mutation and genomic rearrangements involving NHS.

    PubMed

    Kondo, Yukiko; Saitsu, Hirotomo; Miyamoto, Toshinobu; Nishiyama, Kiyomi; Tsurusaki, Yoshinori; Doi, Hiroshi; Miyake, Noriko; Ryoo, Na-Kyung; Kim, Jeong Hun; Yu, Young Suk; Matsumoto, Naomichi

    2012-03-01

    Oculofaciocardiodental syndrome (OFCD) is an X-linked dominant disorder associated with male lethality, presenting with congenital cataract, dysmorphic face, dental abnormalities and septal heart defects. Mutations in BCOR (encoding BCL-6-interacting corepressor) cause OFCD. Here, we report on a Korean family with common features of OFCD including bilateral 2nd-3rd toe syndactyly and septal heart defects in three affected females (mother and two daughters). Through the mutation screening and copy number analysis using genomic microarray, we identified a novel heterozygous mutation, c.888delG, in the BCOR gene and two interstitial microduplications at Xp22.2-22.13 and Xp21.3 in all the three affected females. The BCOR mutation may lead to a premature stop codon (p.N297IfsX80). The duplication at Xp22.2-22.13 involved the NHS gene causative for Nance-Horan syndrome, which is an X-linked disorder showing similar clinical features with OFCD in affected males, and in carrier females with milder presentation. Considering the presence of bilateral 2nd-3rd toe syndactyly and septal heart defects, which is unique to OFCD, the mutation in BCOR is likely to be the major determinant for the phenotypes in this family. PMID:22301464

  7. MEF2B mutations lead to deregulated expression of the BCL6 oncogene in Diffuse Large B cell Lymphoma

    PubMed Central

    Ying, Carol Y.; Dominguez-Sola, David; Fabi, Melissa; Lorenz, Ivo C.; Hussein, Shafinaz; Bansal, Mukesh; Califano, Andrea; Pasqualucci, Laura; Basso, Katia; Dalla-Favera, Riccardo

    2014-01-01

    The MEF2B gene encodes a transcriptional activator and is found mutated in ∼11% of diffuse large B cell lymphomas (DLBCLs) and ∼12% of follicular lymphomas. Here, we show that MEF2B directly activates the transcription of the proto-oncogene BCL6 in normal germinal-center B cells and is required for DLBCL proliferation. MEF2B mutations enhance MEF2B transcriptional activity either by disrupting its interaction with the co-repressor CABIN1, or by rendering it insensitive to phosphorylation- and sumoylation-mediated inhibitory signaling events. Consequently, Bcl-6 transcriptional activity is deregulated in DLBCL harboring MEF2B mutations. Thus, somatic mutations of MEF2B may contribute to lymphomagenesis by deregulating the expression of the BCL6 oncogene, and MEF2B may represent an alternative target to block Bcl-6 activity in DLBCLs. PMID:23974956

  8. Germ-line origins of mutation in families with hemophilia B: the sex ratio varies with the type of mutation.

    PubMed Central

    Ketterling, R P; Vielhaber, E; Bottema, C D; Schaid, D J; Cohen, M P; Sexauer, C L; Sommer, S S

    1993-01-01

    Previous epidemiological and biochemical studies have generated conflicting estimates of the sex ratio of mutation. Direct genomic sequencing in combination with haplotype analysis extends previous analyses by allowing the precise mutation to be determined in a given family. From analysis of the factor IX gene of 260 consecutive families with hemophilia B, we report the germ-line origin of mutation in 25 families. When combined with 14 origins of mutation reported by others and with 4 origins previously reported by us, a total of 25 occur in the female germ line, and 18 occur in the male germ line. The excess of germ-line origins in females does not imply an overall excess mutation rate per base pair in the female germ line. Bayesian analysis of the data indicates that the sex ratio varies with the type of mutation. The aggregate of single-base substitutions shows a male predominance of germ-line mutations (P < .002). The maximum-likelihood estimate of the male predominance is 3.5-fold. Of the single-base substitutions, transitions at the dinucleotide CpG show the largest male predominance (11-fold). In contrast to single-base substitutions, deletions display a sex ratio of unity. Analysis of the parental age at transmission of a new mutation suggests that germ-line mutations are associated with a small increase in parental age in females but little, if any, increase in males. Although direct genomic sequencing offers a general method for defining the origin of mutation in specific families, accurate estimates of the sex ratios of different mutational classes require large sample sizes and careful correction for multiple biases of ascertainment. The biases in the present data result in an underestimate of the enhancement of mutation in males. PMID:8434583

  9. Identification of Novel FAM134B (JK1) Mutations in Oesophageal Squamous Cell Carcinoma

    PubMed Central

    Haque, Md. Hakimul; Gopalan, Vinod; Chan, Kwok-wah; Shiddiky, Muhammad J. A.; Smith, Robert Anthony; Lam, Alfred King-yin

    2016-01-01

    Mutation of FAM134B (Family with Sequence Similarity 134, Member B) leading to loss of function of its encoded Golgi protein and has been reported induce apoptosis in neurological disorders. FAM134B mutation is still unexplored in cancer. Herein, we studied the DNA copy number variation and novel mutation sites of FAM134B in a large cohort of freshly collected oesophageal squamous cell carcinoma (ESCC) tissue samples. In ESCC tissues, 37% (38/102) showed increased FAM134B DNA copies whereas 35% (36/102) showed loss of FAM134B copies relative to matched non-cancer tissues. Novel mutations were detected in exons 4, 5, 7, 9 as well as introns 2, 4-8 of FAM134B via HRM (High-Resolution Melt) and Sanger sequencing analysis. Overall, thirty-seven FAM134B mutations were noted in which most (31/37) mutations were homozygous. FAM134B mutations were detected in all the cases with metastatic ESCC in the lymph node tested and in 14% (8/57) of the primary ESCC. Genetic alteration of FAM134B is a frequent event in the progression of ESCCs. These findings imply that mutation might be the major driving source of FAM134B genetic modulation in ESCCs. PMID:27373372

  10. Identification of Novel FAM134B (JK1) Mutations in Oesophageal Squamous Cell Carcinoma.

    PubMed

    Haque, Md Hakimul; Gopalan, Vinod; Chan, Kwok-Wah; Shiddiky, Muhammad J A; Smith, Robert Anthony; Lam, Alfred King-Yin

    2016-01-01

    Mutation of FAM134B (Family with Sequence Similarity 134, Member B) leading to loss of function of its encoded Golgi protein and has been reported induce apoptosis in neurological disorders. FAM134B mutation is still unexplored in cancer. Herein, we studied the DNA copy number variation and novel mutation sites of FAM134B in a large cohort of freshly collected oesophageal squamous cell carcinoma (ESCC) tissue samples. In ESCC tissues, 37% (38/102) showed increased FAM134B DNA copies whereas 35% (36/102) showed loss of FAM134B copies relative to matched non-cancer tissues. Novel mutations were detected in exons 4, 5, 7, 9 as well as introns 2, 4-8 of FAM134B via HRM (High-Resolution Melt) and Sanger sequencing analysis. Overall, thirty-seven FAM134B mutations were noted in which most (31/37) mutations were homozygous. FAM134B mutations were detected in all the cases with metastatic ESCC in the lymph node tested and in 14% (8/57) of the primary ESCC. Genetic alteration of FAM134B is a frequent event in the progression of ESCCs. These findings imply that mutation might be the major driving source of FAM134B genetic modulation in ESCCs. PMID:27373372

  11. Involvement of B cells in non-infectious uveitis

    PubMed Central

    Smith, Justine R; Stempel, Andrew J; Bharadwaj, Arpita; Appukuttan, Binoy

    2016-01-01

    Non-infectious uveitis—or intraocular inflammatory disease—causes substantial visual morbidity and reduced quality of life amongst affected individuals. To date, research of pathogenic mechanisms has largely been focused on processes involving T lymphocyte and/or myeloid leukocyte populations. Involvement of B lymphocytes has received relatively little attention. In contrast, B-cell pathobiology is a major field within general immunological research, and large clinical trials have showed that treatments targeting B cells are highly effective for multiple systemic inflammatory diseases. B cells, including the terminally differentiated plasma cell that produces antibody, are found in the human eye in different forms of non-infectious uveitis; in some cases, these cells outnumber other leukocyte subsets. Recent case reports and small case series suggest that B-cell blockade may be therapeutic for patients with non-infectious uveitis. As well as secretion of antibody, B cells may promote intraocular inflammation by presentation of antigen to T cells, production of multiple inflammatory cytokines and support of T-cell survival. B cells may also perform various immunomodulatory activities within the eye. This translational review summarizes the evidence for B-cell involvement in non-infectious uveitis, and considers the potential contributions of B cells to the development and control of the disease. Manipulations of B cells and/or their products are promising new approaches to the treatment of non-infectious uveitis. PMID:26962453

  12. Impact of HLA-B*81-associated mutations in HIV-1 Gag on viral replication capacity.

    PubMed

    Wright, Jaclyn K; Naidoo, Vanessa L; Brumme, Zabrina L; Prince, Jessica L; Claiborne, Daniel T; Goulder, Philip J R; Brockman, Mark A; Hunter, Eric; Ndung'u, Thumbi

    2012-03-01

    HIV-1 attenuation resulting from immune escape mutations selected in Gag may contribute to slower disease progression in HIV-1-infected individuals expressing certain HLA class I alleles. We previously showed that the protective allele HLA-B*81 and the HLA-B*81-selected Gag T186S mutation are strongly associated with a lower viral replication capacity of recombinant viruses encoding Gag-protease derived from individuals chronically infected with HIV-1 subtype C. In the present study, we directly tested the effect of this mutation on viral replication capacity. In addition, we investigated potential compensatory effects of various polymorphisms, including other HLA-B*81-associated mutations that significantly covary with the T186S mutation. Mutations were introduced into a reference subtype B backbone and into patient-derived subtype C sequences in subtype B and C backbones by site-directed mutagenesis. The exponential-phase growth of mutant and wild-type viruses was assayed by flow cytometry of a green fluorescent protein reporter T cell line or by measurement of HIV-1 reverse transcriptase activity in culture supernatants. Engineering of the T186S mutation alone into all patient-derived subtype C sequences failed to yield replication-competent viruses, while in the subtype B sequence, the T186S mutation resulted in impaired replication capacity. Only the T186S mutation in combination with the T190I mutation yielded replication-competent viruses for all virus backbones tested; however, these constructs replicated slower than the wild type, suggesting that only partial compensation is mediated by the T190I mutation. Constructs encoding the T186S mutation in combination with other putative compensatory mutations were attenuated or defective. These results suggest that the T186S mutation is deleterious to HIV-1 subtype C replication and likely requires complex compensatory pathways, which may contribute to the clinical benefit associated with HLA-B*81. PMID:22238317

  13. Gene Mutation Profiles in Primary Diffuse Large B Cell Lymphoma of Central Nervous System: Next Generation Sequencing Analyses.

    PubMed

    Todorovic Balint, Milena; Jelicic, Jelena; Mihaljevic, Biljana; Kostic, Jelena; Stanic, Bojana; Balint, Bela; Pejanovic, Nadja; Lucic, Bojana; Tosic, Natasa; Marjanovic, Irena; Stojiljkovic, Maja; Karan-Djurasevic, Teodora; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Raicevic, Sava; Bila, Jelena; Antic, Darko; Andjelic, Bosko; Pavlovic, Sonja

    2016-01-01

    The existence of a potential primary central nervous system lymphoma-specific genomic signature that differs from the systemic form of diffuse large B cell lymphoma (DLBCL) has been suggested, but is still controversial. We investigated 19 patients with primary DLBCL of central nervous system (DLBCL CNS) using the TruSeq Amplicon Cancer Panel (TSACP) for 48 cancer-related genes. Next generation sequencing (NGS) analyses have revealed that over 80% of potentially protein-changing mutations were located in eight genes (CTNNB1, PIK3CA, PTEN, ATM, KRAS, PTPN11, TP53 and JAK3), pointing to the potential role of these genes in lymphomagenesis. TP53 was the only gene harboring mutations in all 19 patients. In addition, the presence of mutated TP53 and ATM genes correlated with a higher total number of mutations in other analyzed genes. Furthermore, the presence of mutated ATM correlated with poorer event-free survival (EFS) (p = 0.036). The presence of the mutated SMO gene correlated with earlier disease relapse (p = 0.023), inferior event-free survival (p = 0.011) and overall survival (OS) (p = 0.017), while mutations in the PTEN gene were associated with inferior OS (p = 0.048). Our findings suggest that the TP53 and ATM genes could be involved in the molecular pathophysiology of primary DLBCL CNS, whereas mutations in the PTEN and SMO genes could affect survival regardless of the initial treatment approach. PMID:27164089

  14. Gene Mutation Profiles in Primary Diffuse Large B Cell Lymphoma of Central Nervous System: Next Generation Sequencing Analyses

    PubMed Central

    Todorovic Balint, Milena; Jelicic, Jelena; Mihaljevic, Biljana; Kostic, Jelena; Stanic, Bojana; Balint, Bela; Pejanovic, Nadja; Lucic, Bojana; Tosic, Natasa; Marjanovic, Irena; Stojiljkovic, Maja; Karan-Djurasevic, Teodora; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Raicevic, Sava; Bila, Jelena; Antic, Darko; Andjelic, Bosko; Pavlovic, Sonja

    2016-01-01

    The existence of a potential primary central nervous system lymphoma-specific genomic signature that differs from the systemic form of diffuse large B cell lymphoma (DLBCL) has been suggested, but is still controversial. We investigated 19 patients with primary DLBCL of central nervous system (DLBCL CNS) using the TruSeq Amplicon Cancer Panel (TSACP) for 48 cancer-related genes. Next generation sequencing (NGS) analyses have revealed that over 80% of potentially protein-changing mutations were located in eight genes (CTNNB1, PIK3CA, PTEN, ATM, KRAS, PTPN11, TP53 and JAK3), pointing to the potential role of these genes in lymphomagenesis. TP53 was the only gene harboring mutations in all 19 patients. In addition, the presence of mutated TP53 and ATM genes correlated with a higher total number of mutations in other analyzed genes. Furthermore, the presence of mutated ATM correlated with poorer event-free survival (EFS) (p = 0.036). The presence of the mutated SMO gene correlated with earlier disease relapse (p = 0.023), inferior event-free survival (p = 0.011) and overall survival (OS) (p = 0.017), while mutations in the PTEN gene were associated with inferior OS (p = 0.048). Our findings suggest that the TP53 and ATM genes could be involved in the molecular pathophysiology of primary DLBCL CNS, whereas mutations in the PTEN and SMO genes could affect survival regardless of the initial treatment approach. PMID:27164089

  15. Defective mutations within the translocation domain of Clostridium difficile toxin B impair disease pathogenesis.

    PubMed

    Hamza, Therwa; Zhang, Zhifen; Melnyk, Roman A; Feng, Hanping

    2016-02-01

    The Clostridium difficile toxin B is one of the main virulence factors and plays an important role in the pathogenesis of C. difficile infection (CDI). We recently revealed crucial residues in the translocation domain of TcdB for the pore formation and toxin translocation. In this study, we investigated the effects of mutating a critical site involved in pore formation, Leu-1106, to residues that differ in size and polarity (Phe, Ala, Cys, Asp). We observed a broad range of effects on TcdB function in vitro consistent with the role of this site in pore formation and translocation. We show that mice challenged systemically with a lethal dose (LD100) of the most defective mutant (L1106K) showed no symptoms of disease highlighting the importance of this residue and the translocation domain in disease pathogenesis. These findings offer insights into the structure function of the toxin translocation pore, and inform novel therapeutic strategies against CDI.

  16. The dominant mutation Suppressor of black indicates that de novo pyrimidine biosynthesis is involved in the Drosophila tan pigmentation pathway.

    PubMed

    Piskur, J; Kolbak, D; Søndergaard, L; Pedersen, M B

    1993-11-01

    A deficiency in the production of beta-alanine causes the black (b) phenotype of Drosophila melanogaster. This phenotype is normalized by a semi-dominant mutant gene Su(b) shown previously to be located adjacent to or within the rudimentary (r) locus. The r gene codes for three enzyme activities involved in de novo pyrimidine biosynthesis. Pyrimidines are known to give rise to beta-alanine. However, until recently it has been unclear whether de novo pyrimidine biosynthesis is directly coupled to beta-alanine synthesis during the tanning process. In this report we show that flies carrying Su(b) can exhibit an additional phenotype, resistance to toxic pyrimidine analogs (5-fluorouracil, 6-azathymine and 6-azauracil). Our interpretation of this observation is that the pyrimidine pool is elevated in the mutant flies. However, enzyme assays indicate that r enzyme activities are not increased in Su(b) flies. Genetic mapping of the Su(b) gene now places the mutation within the r gene, possibly in the carbamyl phosphate synthetase (CPSase) domain. The kinetics of CPSase activity in crude extracts has been studied in the presence of uridine triphosphate (UTP). While CPSase from wild-type flies was strongly inhibited by the end-product, UTP, CPSase from Su(b) was inhibited to a lesser extent. We propose that diminished end-product inhibition of de novo pyrimidine biosynthesis in Su(b) flies increases available pyrimidine and consequently the beta-alanine pool. Normalization of the black phenotype results.

  17. Rapid sensitive analysis of IDH1 mutation in lower-grade gliomas by automated genetic typing involving a quenching probe.

    PubMed

    Kurimoto, Michihiro; Suzuki, Hiromichi; Aoki, Kosuke; Ohka, Fumiharu; Kondo, Goro; Motomura, Kazuya; Iijima, Kentaro; Yamamichi, Akane; Ranjit, Melissa; Wakabayashi, Toshihiko; Kimura, Shinya; Natsume, Atsushi

    2016-01-01

    The authors recently found that 80% of lower-grade gliomas (LGGs) harbored a mutation in IDH1. Intraoperative detection of the mutated IDH1 helps not only differentiate LGGs from other type of brain tumors, but determine the resection border. In the current study, the authors have applied an automated genetic typing involving a quenching probe to detect the mutated IDH1. If tumor cells with the mutated IDH1 contained 10% or more in the mixture of normal and tumor cells, the device could detect it sensitively. The intraoperative assessment of IDH1 mutation is useful in brain tumor surgeries.

  18. A ΔdinB mutation that sensitizes Escherichia coli to the lethal effects of UV and X-radiation

    PubMed Central

    Lee, Mei-Chong W.; Franco, Magdalena; Vargas, Doris M.; Hudman, Deborah A.; White, Steven J.; Fowler, Robert G.; Sargentini, Neil J.

    2014-01-01

    The DinB (PolIV) protein of Escherichia coli participates in several cellular functions. We investigated a dinB mutation, Δ(dinB-yafN)883(::kan) [referred to as ΔdinB883], which strongly sensitized E. coli cells to both UV- and X-radiation killing. Earlier reports indicated dinB mutations had no obvious effect on UV radiation sensitivity which we confirmed by showing that normal UV radiation sensitivity is conferred by the ΔdinB749 allele. Compared to a wild-type strain, the ΔdinB883 mutant was most sensitive (160-fold) in early to mid-logarithmic growth phase and much less sensitive (twofold) in late log or stationary phases, thus showing a growth phase-dependence for UV radiation sensitivity. This sensitizing effect of ΔdinB883 is assumed to be completely dependent upon the presence of UmuDC protein; since the ΔdinB883 mutation did not sensitize the ΔumuDC strain to UV radiation killing throughout log phase and early stationary phase growth. The DNA damage checkpoint activity of UmuDC was clearly affected by ΔdinB883 as shown by testing a umuC104 ΔdinB883 double-mutant. The sensitivities of the ΔumuDC strain and the ΔdinB883 ΔumuDC double-mutant strain were significantly greater than for the ΔdinB883 strain, suggesting that the ΔdinB883 allele only partially suppresses UmuDC activity. The ΔdinB883 mutation partially sensitized (fivefold) uvrA and uvrB strains to UV radiation, but did not sensitize a ΔrecA strain. A comparison of the DNA sequences of the ΔdinB883 allele with the sequences of the Δ(dinB-yafN)882(::kan) and ΔdinB749 alleles, which do not sensitize cells to UV radiation, revealed ΔdinB883 is likely a “gain-of-function” mutation. The ΔdinB883 allele encodes the first 54 amino acids of wild-type DinB followed by 29 predicted residues resulting from the continuation of the dinB reading frame into an adjacent insertion fragment. The resulting polypeptide is proposed to interfere directly or indirectly with UmuDC function

  19. Distinct phenotype of a Wilson disease mutation reveals a novel trafficking determinant in the copper transporter ATP7B

    PubMed Central

    Braiterman, Lelita T.; Murthy, Amrutha; Jayakanthan, Samuel; Nyasae, Lydia; Tzeng, Eric; Gromadzka, Grazyna; Woolf, Thomas B.; Lutsenko, Svetlana; Hubbard, Ann L.

    2014-01-01

    Wilson disease (WD) is a monogenic autosomal-recessive disorder of copper accumulation that leads to liver failure and/or neurological deficits. WD is caused by mutations in ATP7B, a transporter that loads Cu(I) onto newly synthesized cupro-enzymes in the trans-Golgi network (TGN) and exports excess copper out of cells by trafficking from the TGN to the plasma membrane. To date, most WD mutations have been shown to disrupt ATP7B activity and/or stability. Using a multidisciplinary approach, including clinical analysis of patients, cell-based assays, and computational studies, we characterized a patient mutation, ATP7BS653Y, which is stable, does not disrupt Cu(I) transport, yet renders the protein unable to exit the TGN. Bulky or charged substitutions at position 653 mimic the phenotype of the patient mutation. Molecular modeling and dynamic simulation suggest that the S653Y mutation induces local distortions within the transmembrane (TM) domain 1 and alter TM1 interaction with TM2. S653Y abolishes the trafficking-stimulating effects of a secondary mutation in the N-terminal apical targeting domain. This result indicates a role for TM1/TM2 in regulating conformations of cytosolic domains involved in ATP7B trafficking. Taken together, our experiments revealed an unexpected role for TM1/TM2 in copper-regulated trafficking of ATP7B and defined a unique class of WD mutants that are transport-competent but trafficking-defective. Understanding the precise consequences of WD-causing mutations will facilitate the development of advanced mutation-specific therapies. PMID:24706876

  20. Identification of a Mutation in FGF23 Involved in Mandibular Prognathism

    PubMed Central

    Chen, Fengshan; Li, Qin; Gu, Mingliang; Li, Xin; Yu, Jun; Zhang, Yong-Biao

    2015-01-01

    Mandibular prognathism (MP) is a severe maxillofacial disorder with undetermined genetic background. We collected a Chinese pedigree with MP which involved in 23 living members of 4 generations. Genome-wide linkage analysis were carried out to obtain the information in this family and a new MP-susceptibility locus, 12pter-p12.3 was identified. Whole-exome sequencing identified a novel heterozygous mutation in fibroblast growth factor (FGF) 23 (; p.A12D) which well segregated with MP in this pedigree within the locus. The mutation was also detected in 3 cases out of 65 sporadic MP patients, but not in any of the 342 control subjects. The p.A12D mutation may disrupt signal peptide function and inhibit secretory in FGF23. Furthermore, mutant FGF23 was overexpressed in 293T cells, increased cytoplasmic accumulation was observed compared with the wild type. We have discovered that c.35C>A mutation in FGF23 strongly associated with MP, which expand our understanding of the genetic contribution to MP pathogenesis. PMID:26059428

  1. Nonsense mutation in the regulatory gene ETH2 involved in methionine biosynthesis in Saccharomyces cervisiae.

    PubMed

    Masselot, M; Robichon-Szulmajster, H

    1972-08-01

    Ethionine-resistant mutants, mapping at the locus eth2-the product of which is involved in pleiotropic regulation of methionine biosynthesis-have been isolated in a strain carrying five ochre nonsense mutations. Selection for nonsense suppressors in such a strain led to characterization of several allele-specific but gene non-specific suppressors which are active on the recessive heteroallele eth2-2 (resulting in partial recovery of sensitivity toward ethionine) as well as on the five other suppressible alleles. Two of these suppressors are unlinked to the eth2 gene and either dominant or semi-dominant. It is concluded that the mutation eth2-2 resulted in a nonsense codon. Enzyme studies indicate that this mutation results in a complete absence of an active product of gene eth2, in contrast with the effect of a former mutation eth2-1 which was interpreted as leading to a modified product of this gene (Cherest, Surdin-Kerjan and de Robichon-Szulmajster 1971). This conclusion is based on the absence of repressibility of methionine group I enzymes and the observation that in a heteroallelic diploid, eth2-1 expression is not masked by eth2-2. The nonsense suppressors studied lead to at least partial recovery of repressibility of methionine group I enzymes. All these results support the idea that the product of gene ETH2 is an aporepressor protein. PMID:4560067

  2. Multi-systemic involvement in NGLY1-related disorder caused by two novel mutations.

    PubMed

    Heeley, Jennifer; Shinawi, Marwan

    2015-04-01

    NGLY1-related disorder is a newly described autosomal recessive condition characterized by neurological, hepatic, ophthalmological findings and associated with dysmorphic features, constipation and scoliosis. It is caused by mutations in NGLY1, which encodes an enzyme, N-glycanase 1, involved in deglycosylation of glycoproteins, an essential step in the endoplasmic reticulum-associated degradation (ERAD) pathway. The disorder has been described in eight patients. We investigated the molecular basis and phenotype of NGLY1-related disorder in an additional patient. The proband is a 14-year-old who presented in early infancy with profound hypotonia and elevated transaminases. Liver biopsy showed lipid accumulation with dilated endoplasmic reticulum. He exhibited global developmental delay, acquired microcephaly, seizures, involuntary body movements, muscle atrophy, absent reflexes, and poor growth. He had multiple procedures for lacrimal duct stenosis and strabismus and had intractable blepharitis. He had severe osteopenia and persistent hypocholesterolemia. Whole exome sequencing revealed two novel variants in NGLY1: a truncating mutation, c.347C > G (p.S116X), and a splicing mutation, c.881 + 5G (p.IVS5 + 5G>T), predicted to abolish the splice donor site of exon 5. This study, along with previously reported cases, suggests that mutations in NGLY1 cause a recognizable phenotype and targeted sequencing should be considered in patients with typical presentation. This study expands the molecular spectrum of NGLY1-related condition and suggests that osteopenia and hypocholesterolemia may be part of the phenotype. PMID:25707956

  3. Analysis and application of ATP7B gene mutations in 35 patients with hepatolenticular degeneration.

    PubMed

    Zong, Y N; Kong, X D

    2015-01-01

    We investigated the genetic mutations involved in Wilson's disease to improve prenatal genetic diagnosis and presymptomatic diagnosis. The polymerase chain reaction (PCR) was used to amplify the exons and exon-intron boundaries of the ATP7B gene in 35 Wilson's disease pedigrees. The PCR products were further analyzed by Sanger sequencing. Prenatal genetic diagnoses were performed by chorionic villus sampling after the genotypes of parents of the probands were identified. The overall mutation detection frequency was 92.9%. A total of 24 distinct mutations were detected, seven of which are novel: A1291T (c.3871G>A), c.2593_2594insGTCA, c.2790_2792delCAT, c.3661_3663delGGG, c.3700delG, c.4094_4097delCTGT, and IVS6+1G>A. Three mutations, R778L (c.2333G>T) (45.7%), A874V (c.2621C>T) (7.1%), and P992L (c.2975C>T) (7.1%) are relatively frequent. Two presymptomatic patients were detected through familial screening, and they began taking medicine after diagnosis. Of the subjects with Wilson's disease pedigrees who had received a prenatal genetic diagnosis, three fetuses were normal and one was a carrier. Twenty-four distinct mutations were identified, and our knowledge of the population genetics of Wilson's disease in China has therefore improved. For pedigrees with the Wilson's disease, genetic counseling, prenatal diagnosis, and presymptomatic diagnosis by Sanger sequencing and haplotype analysis are feasible. PMID:26782526

  4. Mutational analysis of the myelin protein zero (MPZ) gene associated with Charcot-Marie-Tooth neuropathy type 1B

    SciTech Connect

    Roa, B.B.; Warner, L.E.; Lupski, J.R.

    1994-09-01

    The MPZ gene that maps to chromosome 1q22q23 encodes myelin protein zero, which is the most abundant peripheral nerve myelin protein that functions as a homophilic adhesion molecule in myelin compaction. Association of the MPZ gene with the dysmyelinating peripheral neuropathies Charcot-Marie-Tooth disease type 1B (CMT1B) and the more severe Dejerine-Sottas syndrome (DSS) was previously demonstrated by MPZ mutations identified in CMT1B and in rare DSS patients. In this study, the coding region of the MPZ gene was screened for mutations in a cohort of 74 unrelated patients with either CMT type 1 or DSS who do not carry the most common CMT1-associated molecular lesion of a 1.5 Mb DNA duplication on 17p11.2-p12. Heteroduplex analysis detected base mismatches in ten patients that were distributed over three exons of MPZ. Direct sequencing of PCR-amplified genomic DNA identified a de novo MPZ mutation associated with CMT1B that predicts an Ile(135)Thr substitution. This finding further confirms the role of MPZ in the CMT1B disease process. In addition, two polymorphisms were identified within the Gly(200) and Ser(228) codons that do not alter the respective amino acid residues. A fourth base mismatch in MPZ exon 3 detected by heteroduplex analysis is currently being characterized by direct sequence determination. Previously, four unrelated patients in this same cohort were found to have unique point mutations in the coding region of the PMP22 gene. The collective findings on CMT1 point mutations could suggest that regulatory region mutations, and possibly mutations in CMT gene(s) apart from the MPZ, PMP22 and Cx32 genes identified thus far, may prove to be significant for a number of CMT1 cases that do not involve DNA duplication.

  5. [Mutational Analysis of Hemophilia B in Russia: Molecular-Genetic Study].

    PubMed

    Surin, V L; Demidova, E Yu; Selivanova, D S; Luchinina, Yu A; Salomashkina, V V; Pshenichnikova, O S; Likhacheva, E A

    2016-04-01

    Hemophilia B is a hereditary X-linked coagulation disorder. This pathology is caused by various defects in the factor IX gene, which is, being about 34 kb long and consisting of eight exons, localized in the Xq27 locus of the. X-chromosome long arm. Mutations were revealed in 56 unrelated patients with hemophilia B in this study by using direct sequencing of factor IX gene functionally important fragments. Forty-six mutations were found with prevailing missense mutations (n = 30). The rest of the mutations were nonsense (n = 4) and splicing (n = 4) mutations, large deletions (n = 3), microdeletions (n = 2), microinsertions (n = 2), and promoter mutations (n = 1). Eleven of 46 mutations were previously unknown for human populations.

  6. Defective roles of ATP7B missense mutations in cellular copper tolerance and copper excretion.

    PubMed

    Zhu, Min; Dong, Yi; Ni, Wang; Wu, Zhi-Ying

    2015-07-01

    Wilson's disease (WD) is a hereditary disorder of copper metabolism resulting from mutations within ATP7B. Clinical investigations showed that ATP7B missense mutations cause a wide variety of symptoms in WD patients, which implies that those mutations might affect ATP7B function in a number of ways and each would have deleterious consequences on normal copper distribution and lead to WD. Nonetheless, it is still unknown about the influences of those mutations on ATP7B function of increasing copper excretion and enhancing cellular copper tolerance. Here we established the stable expression cell lines of wild-type (WT) ATP7B and its four missense mutants (R778L, R919G, T935M and P992L), tested cellular copper tolerance and copper excretion using those cell lines, and also observed cellular distribution of WT ATP7B proteins and those mutants in transiently transfected cells. We found that extrinsic expressing WT ATP7B reduced CuCl2-induced copper accumulation and enhanced cellular copper tolerance by accelerating copper excretion, which was selectively compromised by R778L and P992L mutations. Further investigation showed that R778L mutation disrupted the subcellular localization and trafficking of ATP7B proteins, whereas P992L mutation only affected the trafficking of ATP7B. This indicates that ATP7B missense mutants have distinct effects on cellular copper tolerance.

  7. Mutations in JMJD1C are involved in Rett syndrome and intellectual disability

    PubMed Central

    Sáez, Mauricio A.; Fernández-Rodríguez, Juana; Moutinho, Catia; Sanchez-Mut, Jose V.; Gomez, Antonio; Vidal, Enrique; Petazzi, Paolo; Szczesna, Karolina; Lopez-Serra, Paula; Lucariello, Mario; Lorden, Patricia; Delgado-Morales, Raul; de la Caridad, Olga J.; Huertas, Dori; Gelpí, Josep L.; Orozco, Modesto; López-Doriga, Adriana; Milà, Montserrat; Perez-Jurado, Luís A.; Pineda, Mercedes; Armstrong, Judith; Lázaro, Conxi; Esteller, Manel

    2016-01-01

    Purpose: Autism spectrum disorders are associated with defects in social response and communication that often occur in the context of intellectual disability. Rett syndrome is one example in which epilepsy, motor impairment, and motor disturbance may co-occur. Mutations in histone demethylases are known to occur in several of these syndromes. Herein, we aimed to identify whether mutations in the candidate histone demethylase JMJD1C (jumonji domain containing 1C) are implicated in these disorders. Genet Med 18 1, 378–385. Methods: We performed the mutational and functional analysis of JMJD1C in 215 cases of autism spectrum disorders, intellectual disability, and Rett syndrome without a known genetic defect. Genet Med 18 1, 378–385. Results: We found seven JMJD1C variants that were not present in any control sample (~ 6,000) and caused an amino acid change involving a different functional group. From these, two de novo JMJD1C germline mutations were identified in a case of Rett syndrome and in a patient with intellectual disability. The functional study of the JMJD1C mutant Rett syndrome patient demonstrated that the altered protein had abnormal subcellular localization, diminished activity to demethylate the DNA damage-response protein MDC1, and reduced binding to MECP2. We confirmed that JMJD1C protein is widely expressed in brain regions and that its depletion compromises dendritic activity. Genet Med 18 1, 378–385. Conclusions: Our findings indicate that mutations in JMJD1C contribute to the development of Rett syndrome and intellectual disability. Genet Med 18 1, 378–385. PMID:26181491

  8. Germline Mutations in NFKB2 Implicate the Noncanonical NF-κB Pathway in the Pathogenesis of Common Variable Immunodeficiency

    PubMed Central

    Chen, Karin; Coonrod, Emily M.; Kumánovics, Attila; Franks, Zechariah F.; Durtschi, Jacob D.; Margraf, Rebecca L.; Wu, Wilfred; Heikal, Nahla M.; Augustine, Nancy H.; Ridge, Perry G.; Hill, Harry R.; Jorde, Lynn B.; Weyrich, Andrew S.; Zimmerman, Guy A.; Gundlapalli, Adi V.; Bohnsack, John F.; Voelkerding, Karl V.

    2013-01-01

    Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by antibody deficiency, poor humoral response to antigens, and recurrent infections. To investigate the molecular cause of CVID, we carried out exome sequence analysis of a family diagnosed with CVID and identified a heterozygous frameshift mutation, c.2564delA (p.Lys855Serfs∗7), in NFKB2 affecting the C terminus of NF-κB2 (also known as p100/p52 or p100/p49). Subsequent screening of NFKB2 in 33 unrelated CVID-affected individuals uncovered a second heterozygous nonsense mutation, c.2557C>T (p.Arg853∗), in one simplex case. Affected individuals in both families presented with an unusual combination of childhood-onset hypogammaglobulinemia with recurrent infections, autoimmune features, and adrenal insufficiency. NF-κB2 is the principal protein involved in the noncanonical NF-κB pathway, is evolutionarily conserved, and functions in peripheral lymphoid organ development, B cell development, and antibody production. In addition, Nfkb2 mouse models demonstrate a CVID-like phenotype with hypogammaglobulinemia and poor humoral response to antigens. Immunoblot analysis and immunofluorescence microscopy of transformed B cells from affected individuals show that the NFKB2 mutations affect phosphorylation and proteasomal processing of p100 and, ultimately, p52 nuclear translocation. These findings describe germline mutations in NFKB2 and establish the noncanonical NF-κB signaling pathway as a genetic etiology for this primary immunodeficiency syndrome. PMID:24140114

  9. Complete Genome Sequence of the Strong Mutator Salmonella enterica subsp. enterica Serotype Heidelberg Strain B182

    PubMed Central

    Le Bars, Hervé; Bousarghin, Latifa; Bonnaure-Mallet, Martine; Jolivet-Gougeon, Anne

    2012-01-01

    In bacteria, normal mutation frequencies are mostly around 10−10 per base pair. However, there exists natural isolates, called “mutators,” that exhibit permanent mutation occurrences up to 1,000-fold greater than usual. As mutations play essential roles, particularly in the evolution of antibiotic resistance, bacteria showing elevated mutation rates could have an important responsibility in the emergence of antibiotic resistance, especially in the clinical background. In this announcement, we report the first complete genome sequence of the Salmonella enterica subsp. enterica serotype Heidelberg B182 mutator strain, isolated from bovine feces (France), which consists of a 4,750,465-bp circular chromosome (cB182_4750; GC, 52.2%) and one circular plasmid of 37,581 bp (pB182_37; GC, 42.8%). PMID:22689230

  10. B-RAF mutations are a rare event in pituitary adenomas.

    PubMed

    De Martino, I; Fedele, M; Palmieri, D; Visone, R; Cappabianca, P; Wierinckx, A; Trouillas, J; Fusco, A

    2007-01-01

    Pituitary tumors are a relatively common neoplasia whose pathogenesis is still largely unknown. Recent studies have revealed frequent activating mutations of the gene for B-RAF, an effector of Ras protein in the mitogen-activated protein kinase pathway, in several malignancies, including melanoma, thyroid, colorectal and ovarian cancer. However, analyses of B-RAF mutations in pituitary tumors have not been reported so far. Therefore, in the present study we have investigated the presence of the B-RAF mutations, by polymerase chain reaction (PCR) amplification of the hot spot exons 11 and 15, followed by direct sequencing, in 50 human pituitary adenomas, including 25 NFPA and 25 secreting adenomas (10 GH, 5 PRL, 6 LH and/or FSH, 4 GH/PRL). We found only one V600E mutation in a NFPA sample, suggesting that B-RAF mutations are a rare event in pituitary tumorigenesis. PMID:17318013

  11. Telomerase reverse transcriptase promoter mutations in hepatitis B virus-associated hepatocellular carcinoma.

    PubMed

    Yang, Xunjun; Guo, Xiuchan; Chen, Yao; Chen, Guorong; Ma, Yin; Huang, Kate; Zhang, Yuning; Zhao, Qiongya; Winkler, Cheryl A; An, Ping; Lyu, Jianxin

    2016-05-10

    Telomerase reverse transcriptase (TERT) promoter mutations are among the most frequent noncoding somatic mutations in multiple cancers, including hepatocellular carcinoma (HCC). The clinical and pathological implications of TERT promoter mutations in hepatitis B virus (HBV)-associated HCC have not been resolved. To investigate TERT promoter mutations, protein expression, and their clinical-pathological implications, we sequenced the TERT promoter region for hotspot mutations in HCC tissues and performed immunostaining for TERT protein expression from HBV-associated HCC in Chinese patients. Of 276 HCC tumor DNA samples sequenced, 85 (31%) carried TERT promoter mutations. TERT promoter mutations were more frequent in those with low α-fetoprotein (AFP) serum levels (p = 0.03), advanced age (p = 0.04), and in those lacking HCC family history (p = 0.02), but were not correlated with HCC stages and grades. TERT protein levels were higher in HCC (n = 28) compared to normal liver tissues (n = 8) (p =0.001), but did not differ between mutated and non-mutated tumor tissues. In conclusion, TERT promoter mutations are common somatic mutations in HCC of Han Chinese with HBV infection. Detection of TERT promoter mutations in those with low levels of AFP may aid diagnosis of HCC with atypical presentation. PMID:27056898

  12. Telomerase reverse transcriptase promoter mutations in hepatitis B virus-associated hepatocellular carcinoma

    PubMed Central

    Yang, Xunjun; Guo, Xiuchan; Chen, Yao; Chen, Guorong; Ma, Yin; Huang, Kate; Zhang, Yuning; Zhao, Qiongya; Winkler, Cheryl A.; An, Ping; Lyu, Jianxin

    2016-01-01

    Telomerase reverse transcriptase (TERT) promoter mutations are among the most frequent noncoding somatic mutations in multiple cancers, including hepatocellular carcinoma (HCC). The clinical and pathological implications of TERT promoter mutations in hepatitis B virus (HBV)-associated HCC have not been resolved. To investigate TERT promoter mutations, protein expression, and their clinical-pathological implications, we sequenced the TERT promoter region for hotspot mutations in HCC tissues and performed immunostaining for TERT protein expression from HBV-associated HCC in Chinese patients. Of 276 HCC tumor DNA samples sequenced, 85 (31%) carried TERT promoter mutations. TERT promoter mutations were more frequent in those with low α-fetoprotein (AFP) serum levels (p = 0.03), advanced age (p = 0.04), and in those lacking HCC family history (p = 0.02), but were not correlated with HCC stages and grades. TERT protein levels were higher in HCC (n = 28) compared to normal liver tissues (n = 8) (p =0.001), but did not differ between mutated and non-mutated tumor tissues. In conclusion, TERT promoter mutations are common somatic mutations in HCC of Han Chinese with HBV infection. Detection of TERT promoter mutations in those with low levels of AFP may aid diagnosis of HCC with atypical presentation. PMID:27056898

  13. Modeling SF3B1 Mutations in Cancer: Advances, Challenges, and Opportunities.

    PubMed

    Inoue, Daichi; Abdel-Wahab, Omar

    2016-09-12

    In this issue of Cancer Cell, Obeng et al. identify the consequences of expressing the most common mutation in the spliceosomal gene SF3B1 on hematopoiesis. The knockin mouse model described represents a valuable tool to dissect the effects of SF3B1 mutations on transformation, splicing, and less well-characterized functions of SF3B1. PMID:27622329

  14. General method for fine mapping of the Escherichia coli K-12 lamB gene: localization of missense mutations affecting bacteriophage lambda adsorption.

    PubMed Central

    Hofnung, M; Lepouce, E; Braun-Breton, C

    1981-01-01

    lamB is the structural gene for the bacteriophage lambda receptor, a multifunctional protein located in the outer membrane of Escherichia coli K-12. We present a method for deletion mapping of any lamB mutations with a recognizable pheno-type. This method involves a transducing phage constructed by in vitro recombination which can also be used for complementation, deoxyribonucleic acid sequence, and in vitro protein synthesis studies with the mutated lamB gene. Using this method, we mapped 18 lamB missense mutations which confer resistance to phage lambda h+ (wild-type host range). The main results were the following. (i) None of the 18 mutations was located in the first 4 deletion intervals out of the 11 of the genetic map. (ii) These mutations were clustered according to their phenotype as follows. (a) Class I mutations, which allow growth of lambda h and lambda hh* (one-step and two-step host range mutants of lambda, respectively), were located in three regions--three in interval V, four in interval VIII-IX, and three in interval X-XI. Only the last three mutations still allowed growth of phage K10 which also uses the lambda receptor, and two of them still allowed reversible binding of lambda h+. (b) All seven class II mutations allowed only growth of lambda hh* and mapped in interval V. These results are discussed in the frame of a genetic approach to the functional topology of the lambda receptor. PMID:6458595

  15. Characterization of an islet carboxypeptidase B involved in prohormone processing.

    PubMed

    Mackin, R B; Noe, B D

    1987-02-01

    An islet carboxypeptidase B-like enzyme (CP B) has been identified and characterized in secretory granules of anglerfish islets. By employing several different column chromatography methods (gel filtration, ion exchange, and hydroxylapatite), it was determined that the islet secretory granules contained only one detectable CP B. This enzyme is present in both secretory granule- and microsome-enriched subcellular fractions and is membrane associated at pH 5.2. The specific activity of the islet CP B was approximately 4-fold higher in the secretory granule- and microsome-enriched subcellular fractions than in the lysosome-enriched fraction. It is a metallo-enzyme that is stimulated by Co++, and has a pH optimum in the range of 5.2-6.2. The isoelectric point of the islet CP B is at pH 4.9. The enzyme is a glycoprotein and has an approximate molecular size of Mr 30,000 by gel filtration. The substrate analogs guanidinoethylmercaptosuccinic acid, guanidinopropylsuccinic acid, and aminopropylmercaptosuccinic acid competitively inhibited the islet CP B with inhibition constant (Ki) values of 23, 21, and 230 nM, respectively. In experiments employing purified prohormone substrates it was demonstrated that the action of a CP B-like enzyme was required for the complete processing of anglerfish proinsulin and prosomatostatin-II. These results indicate that the anglerfish islet CP B is involved in prohormone processing and has properties which are very similar to those of enkephalin convertase. PMID:3542502

  16. Mutation Processes in 293-Based Clones Overexpressing the DNA Cytosine Deaminase APOBEC3B

    PubMed Central

    Quist, Jelmar S.; Temiz, Nuri A.; Tutt, Andrew N. J.; Grigoriadis, Anita; Harris, Reuben S.

    2016-01-01

    Molecular, cellular, and clinical studies have combined to demonstrate a contribution from the DNA cytosine deaminase APOBEC3B (A3B) to the overall mutation load in breast, head/neck, lung, bladder, cervical, ovarian, and other cancer types. However, the complete landscape of mutations attributable to this enzyme has yet to be determined in a controlled human cell system. We report a conditional and isogenic system for A3B induction, genomic DNA deamination, and mutagenesis. Human 293-derived cells were engineered to express doxycycline-inducible A3B-eGFP or eGFP constructs. Cells were subjected to 10 rounds of A3B-eGFP exposure that each caused 80–90% cell death. Control pools were subjected to parallel rounds of non-toxic eGFP exposure, and dilutions were done each round to mimic A3B-eGFP induced population fluctuations. Targeted sequencing of portions of TP53 and MYC demonstrated greater mutation accumulation in the A3B-eGFP exposed pools. Clones were generated and microarray analyses were used to identify those with the greatest number of SNP alterations for whole genome sequencing. A3B-eGFP exposed clones showed global increases in C-to-T transition mutations, enrichments for cytosine mutations within A3B-preferred trinucleotide motifs, and more copy number aberrations. Surprisingly, both control and A3B-eGFP clones also elicited strong mutator phenotypes characteristic of defective mismatch repair. Despite this additional mutational process, the 293-based system characterized here still yielded a genome-wide view of A3B-catalyzed mutagenesis in human cells and a system for additional studies on the compounded effects of simultaneous mutation mechanisms in cancer cells. PMID:27163364

  17. Evidence of a wide spectrum of cardiac involvement due to ACAD9 mutations: Report on nine patients.

    PubMed

    Dewulf, Joseph P; Barrea, Catherine; Vincent, Marie-Françoise; De Laet, Corinne; Van Coster, Rudy; Seneca, Sara; Marie, Sandrine; Nassogne, Marie-Cécile

    2016-07-01

    Acyl-CoA dehydrogenase 9 (ACAD9) is a mitochondrial protein involved in oxidative phosphorylation complex I biogenesis. This protein also exhibits acyl-CoA dehydrogenase (ACAD) activity. ACAD9-mutated patients have been reported to suffer from primarily heart, muscle, liver, and nervous system disorders. ACAD9 mutation is suspected in cases of elevated lactic acid levels combined with complex I deficiency, and confirmed by ACAD9 gene analysis. At least 18 ACAD9-mutated patients have previously been reported, usually displaying severe cardiac involvement. We retrospectively studied nine additional patients from three unrelated families with a wide spectrum of cardiac involvement between the families as well as the patients from the same families. All patients exhibited elevated lactate levels. Deleterious ACAD9 mutations were identified in all patients except one for whom it was not possible to recover DNA. To our knowledge, this is one of the first reports on isolated mild ventricular hypertrophy due to ACAD9 mutation in a family with moderate symptoms during adolescence. This report also confirms that dilated cardiomyopathy may occur in conjunction with ACAD9 mutation and that some patients may respond clinically to riboflavin treatment. Of note, several patients suffered from patent ductus arteriosus (PDA), with one exhibiting a complex congenital heart defect. It is yet unknown whether these cardiac manifestations were related to ACAD9 mutation. In conclusion, this disorder should be suspected in the presence of lactic acidosis, complex I deficiency, and any cardiac involvement, even mild. PMID:27233227

  18. Evidence of a wide spectrum of cardiac involvement due to ACAD9 mutations: Report on nine patients.

    PubMed

    Dewulf, Joseph P; Barrea, Catherine; Vincent, Marie-Françoise; De Laet, Corinne; Van Coster, Rudy; Seneca, Sara; Marie, Sandrine; Nassogne, Marie-Cécile

    2016-07-01

    Acyl-CoA dehydrogenase 9 (ACAD9) is a mitochondrial protein involved in oxidative phosphorylation complex I biogenesis. This protein also exhibits acyl-CoA dehydrogenase (ACAD) activity. ACAD9-mutated patients have been reported to suffer from primarily heart, muscle, liver, and nervous system disorders. ACAD9 mutation is suspected in cases of elevated lactic acid levels combined with complex I deficiency, and confirmed by ACAD9 gene analysis. At least 18 ACAD9-mutated patients have previously been reported, usually displaying severe cardiac involvement. We retrospectively studied nine additional patients from three unrelated families with a wide spectrum of cardiac involvement between the families as well as the patients from the same families. All patients exhibited elevated lactate levels. Deleterious ACAD9 mutations were identified in all patients except one for whom it was not possible to recover DNA. To our knowledge, this is one of the first reports on isolated mild ventricular hypertrophy due to ACAD9 mutation in a family with moderate symptoms during adolescence. This report also confirms that dilated cardiomyopathy may occur in conjunction with ACAD9 mutation and that some patients may respond clinically to riboflavin treatment. Of note, several patients suffered from patent ductus arteriosus (PDA), with one exhibiting a complex congenital heart defect. It is yet unknown whether these cardiac manifestations were related to ACAD9 mutation. In conclusion, this disorder should be suspected in the presence of lactic acidosis, complex I deficiency, and any cardiac involvement, even mild.

  19. Autosomal-dominant striatal degeneration is caused by a mutation in the phosphodiesterase 8B gene.

    PubMed

    Appenzeller, Silke; Schirmacher, Anja; Halfter, Hartmut; Bäumer, Sebastian; Pendziwiat, Manuela; Timmerman, Vincent; De Jonghe, Peter; Fekete, Klára; Stögbauer, Florian; Lüdemann, Peter; Hund, Margret; Quabius, Elgar Susanne; Ringelstein, E Bernd; Kuhlenbäumer, Gregor

    2010-01-01

    Autosomal-dominant striatal degeneration (ADSD) is an autosomal-dominant movement disorder affecting the striatal part of the basal ganglia. ADSD is characterized by bradykinesia, dysarthria, and muscle rigidity. These symptoms resemble idiopathic Parkinson disease, but tremor is not present. Using genetic linkage analysis, we have mapped the causative genetic defect to a 3.25 megabase candidate region on chromosome 5q13.3-q14.1. A maximum LOD score of 4.1 (Theta = 0) was obtained at marker D5S1962. Here we show that ADSD is caused by a complex frameshift mutation (c.94G>C+c.95delT) in the phosphodiesterase 8B (PDE8B) gene, which results in a loss of enzymatic phosphodiesterase activity. We found that PDE8B is highly expressed in the brain, especially in the putamen, which is affected by ADSD. PDE8B degrades cyclic AMP, a second messenger implied in dopamine signaling. Dopamine is one of the main neurotransmitters involved in movement control and is deficient in Parkinson disease. We believe that the functional analysis of PDE8B will help to further elucidate the pathomechanism of ADSD as well as contribute to a better understanding of movement disorders.

  20. Autosomal-Dominant Striatal Degeneration Is Caused by a Mutation in the Phosphodiesterase 8B Gene

    PubMed Central

    Appenzeller, Silke; Schirmacher, Anja; Halfter, Hartmut; Bäumer, Sebastian; Pendziwiat, Manuela; Timmerman, Vincent; De Jonghe, Peter; Fekete, Klára; Stögbauer, Florian; Lüdemann, Peter; Hund, Margret; Quabius, Elgar Susanne; Ringelstein, E. Bernd; Kuhlenbäumer, Gregor

    2010-01-01

    Autosomal-dominant striatal degeneration (ADSD) is an autosomal-dominant movement disorder affecting the striatal part of the basal ganglia. ADSD is characterized by bradykinesia, dysarthria, and muscle rigidity. These symptoms resemble idiopathic Parkinson disease, but tremor is not present. Using genetic linkage analysis, we have mapped the causative genetic defect to a 3.25 megabase candidate region on chromosome 5q13.3-q14.1. A maximum LOD score of 4.1 (Θ = 0) was obtained at marker D5S1962. Here we show that ADSD is caused by a complex frameshift mutation (c.94G>C+c.95delT) in the phosphodiesterase 8B (PDE8B) gene, which results in a loss of enzymatic phosphodiesterase activity. We found that PDE8B is highly expressed in the brain, especially in the putamen, which is affected by ADSD. PDE8B degrades cyclic AMP, a second messenger implied in dopamine signaling. Dopamine is one of the main neurotransmitters involved in movement control and is deficient in Parkinson disease. We believe that the functional analysis of PDE8B will help to further elucidate the pathomechanism of ADSD as well as contribute to a better understanding of movement disorders. PMID:20085714

  1. Antigenic variation (mar mutations) in herpes simplex virus glycoprotein B can induce temperature-dependent alterations in gB processing and virus production.

    PubMed Central

    Marlin, S D; Highlander, S L; Holland, T C; Levine, M; Glorioso, J C

    1986-01-01

    Monoclonal antibody-resistant (mar) mutants altered in the antigenic structure of glycoprotein B (gB) of herpes simplex virus type 1, strain KOS-321, were selected by neutralization with each of six independently derived gB-specific monoclonal antibodies. Analysis of the reactivity patterns of these mar mutants with a panel of 16 virus-neutralizing monoclonal antibodies identified at least five nonoverlapping epitopes on this antigen, designated groups I through V. Multiple mar mutations were also introduced into the gB structural gene by recombination and sequential antibody selection to produce a set of mar mutants with double, triple, and quadruple epitope alterations. Group II (B2) and group III (B4) antibodies were used to select the corresponding mutants, mar B2.1 and mar B4.1, which in addition to carrying the mar phenotype were temperature sensitive (ts) for processing of the major partially glycosylated precursor of gB, pgB (Mr = 107,000), to mature gB (Mr = 126,000) and showed reduced levels of gB on the cell surface at high temperature (39 degrees C). These mutants were not, however, ts for production of infectious progeny. A recombinant virus, mar B2/4.1, carrying both of these alterations was ts for virus production and failed to produce and transport any detectable mature gB to the cell surface at 39 degrees C. Rather, pgB accumulated in the infected cell. Revertants of the ts phenotype, isolated from virus plaques at 39 degrees C, regained the B2 but not the B4 epitope and were phenotypically indistinguishable from the mar B4.1 parent. Finally, it was shown that group II (B5) and group III (B4) antibodies failed to immunoprecipitate pgB (39 degrees C) produced by ts gB mutants of herpes simplex virus type 1 which were not selected with monoclonal antibodies. Taken together, our findings indicate that (i) mar mutations can alter antigenic as well as other functional domains of gB, namely, the domain(s) involved in processing and infectivity, and (ii

  2. Analysis of FOXO1 mutations in diffuse large B-cell lymphoma | Office of Cancer Genomics

    Cancer.gov

    Abstract: Diffuse large B-cell lymphoma (DLBCL) accounts for 30% to 40% of newly diagnosed lymphomas and has an overall cure rate of approximately 60%. Previously, we observed FOXO1 mutations in non-Hodgkin lymphoma patient samples. To explore the effects of FOXO1 mutations, we assessed FOXO1 status in 279 DLBCL patient samples and 22 DLBCL-derived cell lines.

  3. Mutation S233L in the 1B domain of keratin 1 causes epidermolytic palmoplantar keratoderma with "tonotubular" keratin.

    PubMed

    Terron-Kwiatkowski, Ana; van Steensel, Maurice A M; van Geel, Michel; Lane, E Birgitte; McLean, W H Irwin; Steijlen, Peter M

    2006-03-01

    Epidermolytic palmoplantar keratoderma (EPPK) is an autosomal dominant genodermatosis characterized by epidermolytic hyperkeratosis restricted to the palm and sole epidermis. The disorder is normally associated with dominant-negative mutations in the keratin 9 (K9) gene; however, a small number of cases have been reported where causative mutations were identified in the K1 gene. Here, we present two unrelated Dutch EPPK families with striking ultrastructural findings: tubular keratin structures in the cytoplasm of suprabasal cells. Similar structures were reported previously in a German EPPK family and were termed "tonotubular" keratin. After excluding the involvement of the K9 gene by complete sequencing, we identified a novel mutation, S233L, at the beginning of the 1B domain of K1 in both families. Protein expression studies in cultured cells indicated pathogenicity of this mutation. This is the first report of a genetic defect in this domain of K1. The unusual gain-of-function mutation points to a subtle role of the 1B domain in mediating filament-filament interactions with regular periodicity.

  4. Mutations in pre-core and basic core promoter regions of hepatitis B virus in chronic hepatitis B patients

    PubMed Central

    Wang, Xiao-Ling; Ren, Jian-Ping; Wang, Xue-Qing; Wang, Xiao-Hong; Yang, Shao-Fang; Xiong, Yi

    2016-01-01

    AIM: To investigate the frequency of mutations in pre-core (pre-C) and basic core promoter (BCP) regions of hepatitis B virus (HBV) from Shanxi Province, and the association between mutations and disease related indexes. METHODS: One hundred chronic hepatitis B patients treated at Shanxi Province Hospital of Traditional Chinese Medicine were included in this study. PCR-reverse dot blot hybridization and mismatch amplification mutation assay (MAMA)-PCR were used to detect the mutations in the HBV pre-C and BCP regions. HBV DNA content and liver function were compared between patients with mutant HBV pre-C and BCP loci and those with wild-type loci. The consistency between PCR-reverse dot blot hybridization and MAMA-PCR for detecting mutations in the HBV pre-C and BCP regions was assessed. RESULTS: Of the 100 serum samples detected, 9.38% had single mutations in the pre-C region, 29.17% had single mutations in the BCP region, 41.67% had mutations in both BCP and pre-C regions, and 19.79% had wild-type loci. The rates of BCP and pre-C mutations were 65.7% and 34.3%, respectively, in hepatitis B e antigen (HBeAg) positive patients, and 84.6% and 96.2%, respectively, in HBeAg negative patients. The rate of pre-C mutations was significantly higher in HBeAg negative patients than in HBeAg positive patients (χ2 = 26.62, P = 0.00), but there was no significant difference in the distribution of mutations in the BCP region between HBeAg positive and negative patients (χ2 = 2.43, P = 0.12). The presence of mutations in the pre-C (Wilcoxon W = 1802.5, P = 0.00) and BCP regions (Wilcoxon W = 2906.5, P = 0.00) was more common in patients with low HBV DNA content. Both AST and GGT were significantly higher in patients with mutant pre-C and BCP loci than in those with wild-type loci (P < 0.05). PCR-reverse dot blot hybridization and MAMA-PCR for detection of mutations in the BCP and pre-C regions had good consistency, and the Kappa values obtained were 0.91 and 0.58, respectively

  5. Mutational analysis of ATP7B in Chinese Wilson disease patients.

    PubMed

    Hua, Rui; Hua, Fang; Jiao, Yonggeng; Pan, Yu; Yang, Xu; Peng, Shanshan; Niu, Junqi

    2016-01-01

    Wilson Disease (WD) is an inborn error of copper metabolism inherited in an autosomal recessive manner caused by the mutations in the P-type ATPase gene (ATP7B). In this study, we screen and detect the mutations of the ATP7B gene in unrelated Chinese WD patients. A total of 68 individuals from ten provinces of China with WD were recruited. Of them, 43 were males and 25 were females, and their onset ages were from 1 to 48 years with a median onset age of 22.2 years. All the exons and exon/intron boundaries of ATP7B gene of the patients were sequenced and aligned to the referred ATP7B gene sequence. The results suggested that 66 of the 68 patents carried with at least one mutation and 48 different mutations were identified including 34 missense, one synonymous, two nonsense, two splicing, and nine frameshift mutations (five insertion and four deletion). Among these mutations, c.2333G>T, c.2310C>G, c.2975C>T, and c.3443T>C were the most prevalent mutants and c.2310C>G always linked with c.2333G>T. The eighth, 11(th), and 18(th) exons carried more mutations (6/48, 5/48, and 5/48, respectively) than others. After comparing with the mutations reported previously, 22 out of the 48 mutations were identified as novel mutations. A popular algorithm, Polyphen-2, was used to predict the effects of the amino-acid substitution due to the mutations on the structure and function of ATP7B function and the predicted results indicated that all the missense mutations were unfavorable except c.121A>G and c.748G>A. Phenotype/genotype correlation analysis suggested that the patients with c.2975C>T or c.3809A>G often presented WD features before 12 years old while the patients with c.3443T>C almost presented WD after 12 years old. This is the first time to identify the common mutations contributing to early onset age in Chinese WD patients. Our study will broaden our knowledge about ATP7B mutations in WD patients.

  6. Mutational analysis of ATP7B in Chinese Wilson disease patients.

    PubMed

    Hua, Rui; Hua, Fang; Jiao, Yonggeng; Pan, Yu; Yang, Xu; Peng, Shanshan; Niu, Junqi

    2016-01-01

    Wilson Disease (WD) is an inborn error of copper metabolism inherited in an autosomal recessive manner caused by the mutations in the P-type ATPase gene (ATP7B). In this study, we screen and detect the mutations of the ATP7B gene in unrelated Chinese WD patients. A total of 68 individuals from ten provinces of China with WD were recruited. Of them, 43 were males and 25 were females, and their onset ages were from 1 to 48 years with a median onset age of 22.2 years. All the exons and exon/intron boundaries of ATP7B gene of the patients were sequenced and aligned to the referred ATP7B gene sequence. The results suggested that 66 of the 68 patents carried with at least one mutation and 48 different mutations were identified including 34 missense, one synonymous, two nonsense, two splicing, and nine frameshift mutations (five insertion and four deletion). Among these mutations, c.2333G>T, c.2310C>G, c.2975C>T, and c.3443T>C were the most prevalent mutants and c.2310C>G always linked with c.2333G>T. The eighth, 11(th), and 18(th) exons carried more mutations (6/48, 5/48, and 5/48, respectively) than others. After comparing with the mutations reported previously, 22 out of the 48 mutations were identified as novel mutations. A popular algorithm, Polyphen-2, was used to predict the effects of the amino-acid substitution due to the mutations on the structure and function of ATP7B function and the predicted results indicated that all the missense mutations were unfavorable except c.121A>G and c.748G>A. Phenotype/genotype correlation analysis suggested that the patients with c.2975C>T or c.3809A>G often presented WD features before 12 years old while the patients with c.3443T>C almost presented WD after 12 years old. This is the first time to identify the common mutations contributing to early onset age in Chinese WD patients. Our study will broaden our knowledge about ATP7B mutations in WD patients. PMID:27398169

  7. Mutational analysis of ATP7B in Chinese Wilson disease patients

    PubMed Central

    Hua, Rui; Hua, Fang; Jiao, Yonggeng; Pan, Yu; Yang, Xu; Peng, Shanshan; Niu, Junqi

    2016-01-01

    Wilson Disease (WD) is an inborn error of copper metabolism inherited in an autosomal recessive manner caused by the mutations in the P-type ATPase gene (ATP7B). In this study, we screen and detect the mutations of the ATP7B gene in unrelated Chinese WD patients. A total of 68 individuals from ten provinces of China with WD were recruited. Of them, 43 were males and 25 were females, and their onset ages were from 1 to 48 years with a median onset age of 22.2 years. All the exons and exon/intron boundaries of ATP7B gene of the patients were sequenced and aligned to the referred ATP7B gene sequence. The results suggested that 66 of the 68 patents carried with at least one mutation and 48 different mutations were identified including 34 missense, one synonymous, two nonsense, two splicing, and nine frameshift mutations (five insertion and four deletion). Among these mutations, c.2333G>T, c.2310C>G, c.2975C>T, and c.3443T>C were the most prevalent mutants and c.2310C>G always linked with c.2333G>T. The eighth, 11th, and 18th exons carried more mutations (6/48, 5/48, and 5/48, respectively) than others. After comparing with the mutations reported previously, 22 out of the 48 mutations were identified as novel mutations. A popular algorithm, Polyphen-2, was used to predict the effects of the amino-acid substitution due to the mutations on the structure and function of ATP7B function and the predicted results indicated that all the missense mutations were unfavorable except c.121A>G and c.748G>A. Phenotype/genotype correlation analysis suggested that the patients with c.2975C>T or c.3809A>G often presented WD features before 12 years old while the patients with c.3443T>C almost presented WD after 12 years old. This is the first time to identify the common mutations contributing to early onset age in Chinese WD patients. Our study will broaden our knowledge about ATP7B mutations in WD patients. PMID:27398169

  8. Homozygous missense and nonsense mutations in BMPR1B cause acromesomelic chondrodysplasia-type Grebe.

    PubMed

    Graul-Neumann, Luitgard M; Deichsel, Alexandra; Wille, Ulrike; Kakar, Naseebullah; Koll, Randi; Bassir, Christian; Ahmad, Jamil; Cormier-Daire, Valerie; Mundlos, Stefan; Kubisch, Christian; Borck, Guntram; Klopocki, Eva; Mueller, Thomas D; Doelken, Sandra C; Seemann, Petra

    2014-06-01

    Acromesomelic chondrodysplasias (ACDs) are characterized by disproportionate shortening of the appendicular skeleton, predominantly affecting the middle (forearms and forelegs) and distal segments (hands and feet). Here, we present two consanguineous families with missense (c.157T>C, p.(C53R)) or nonsense (c.657G>A, p.(W219*)) mutations in BMPR1B. Homozygous affected individuals show clinical and radiographic findings consistent with ACD-type Grebe. Functional analysis of the missense mutation C53R revealed that the mutated receptor was partially located at the cell membrane. In contrast to the wild-type receptor, C53R mutation hindered the activation of the receptor by its ligand GDF5, as shown by reporter gene assay. Further, overexpression of the C53R mutation in an in vitro chondrogenesis assay showed no effect on cell differentiation, indicating a loss of function. The nonsense mutation (c.657G>A, p.(W219*)) introduces a premature stop codon, which is predicted to be subject to nonsense-mediated mRNA decay, causing reduced protein translation of the mutant allele. A loss-of-function effect of both mutations causing recessive ACD-type Grebe is further supported by the mild brachydactyly or even non-penetrance of these mutations observed in the heterozygous parents. In contrast, dominant-negative BMPR1B mutations described previously are associated with autosomal-dominant brachydactyly-type A2. PMID:24129431

  9. Catalysis of Methyl Group Transfers Involving Tetrahydrofolate and B12

    PubMed Central

    Ragsdale, Stephen W.

    2011-01-01

    This review focuses on the reaction mechanism of enzymes that use B12 and tetrahydrofolate (THF) to catalyze methyl group transfers. It also covers the related reactions that use B12 and tetrahydromethanopterin (THMPT), which is a THF analog used by archaea. In the past decade, our understanding of the mechanisms of these enzymes has increased greatly because the crystal structures for three classes of B12-dependent methyltransferases have become available and because biophysical and kinetic studies have elucidated the intermediates involved in catalysis. These steps include binding of the cofactors and substrates, activation of the methyl donors and acceptors, the methyl transfer reaction itself, and product dissociation. Activation of the methyl donor in one class of methyltransferases is achieved by an unexpected proton transfer mechanism. The cobalt (Co) ion within the B12 macrocycle must be in the Co(I) oxidation state to serve as a nucleophile in the methyl transfer reaction. Recent studies have uncovered important principles that control how this highly reducing active state of B12 is generated and maintained. PMID:18804699

  10. Navajo microvillous inclusion disease is due to a mutation in MYO5B.

    PubMed

    Erickson, Robert P; Larson-Thomé, Katherine; Valenzuela, Robert K; Whitaker, Stacia E; Shub, Mitchell D

    2008-12-15

    Microvillous Inclusion Disease (MID) is a rare, autosomal recessive gastrointestinal disease of increased frequency among the Navajos. Previous work has shown a deficiency of RAB8 in one Japanese patient, while homozygous mutations in MYO5B were found in 7 of 10 mostly Middle Eastern families. We have identified a shared homozygous mutation in MYO5B in seven affected Navajos with the expected heterozygosity in five parents. We have developed a simple restriction enzyme based assay that allows for rapid screening for this mutation. PMID:19006234

  11. Somatic overgrowth associated with homozygous mutations in both MAN1B1 and SEC23A

    PubMed Central

    Gupta, Swati; Fahiminiya, Somayyeh; Wang, Tracy; Dempsey Nunez, Laura; Rosenblatt, David S.; Gibson, William T.; Gilfix, Brian; Bergeron, John J. M.; Jerome-Majewska, Loydie A.

    2016-01-01

    Using whole-exome sequencing, we identified homozygous mutations in two unlinked genes, SEC23A c.1200G>C (p.M400I) and MAN1B1 c.1000C>T (p.R334C), associated with congenital birth defects in two patients from a consanguineous family. Patients presented with carbohydrate-deficient transferrin, tall stature, obesity, macrocephaly, and maloccluded teeth. The parents were healthy heterozygous carriers for both mutations and an unaffected sibling with tall stature carried the heterozygous mutation in SEC23A only. Mutations in SEC23A are responsible for craniolenticosultura dysplasia (CLSD). CLSD patients are short, have late-closing fontanels, and have reduced procollagen (pro-COL1A1) secretion because of abnormal pro-COL1A1 retention in the endoplasmic reticulum (ER). The mutation we identified in MAN1B1 was previously associated with reduced MAN1B1 protein and congenital disorders of glycosylation (CDG). CDG patients are also short, are obese, and have abnormal glycan remodeling. Molecular analysis of fibroblasts from the family revealed normal levels of SEC23A in all cells and reduced levels of MAN1B1 in cells with heterozygous or homozygous mutations in SEC23A and MAN1B1. Secretion of pro-COL1A1 was increased in fibroblasts from the siblings and patients, and pro-COL1A1 was retained in Golgi of heterozygous and homozygous mutant cells, although intracellular pro-COL1A1 was increased in patient fibroblasts only. We postulate that increased pro-COL1A1 secretion is responsible for tall stature in these patients and an unaffected sibling, and not previously discovered in patients with mutations in either SEC23A or MAN1B1. The patients in this study share biochemical and cellular characteristics consistent with mutations in MAN1B1 and SEC23A, indicating a digenic disease. PMID:27148587

  12. Somatic overgrowth associated with homozygous mutations in both MAN1B1 and SEC23A.

    PubMed

    Gupta, Swati; Fahiminiya, Somayyeh; Wang, Tracy; Dempsey Nunez, Laura; Rosenblatt, David S; Gibson, William T; Gilfix, Brian; Bergeron, John J M; Jerome-Majewska, Loydie A

    2016-05-01

    Using whole-exome sequencing, we identified homozygous mutations in two unlinked genes, SEC23A c.1200G>C (p.M400I) and MAN1B1 c.1000C>T (p.R334C), associated with congenital birth defects in two patients from a consanguineous family. Patients presented with carbohydrate-deficient transferrin, tall stature, obesity, macrocephaly, and maloccluded teeth. The parents were healthy heterozygous carriers for both mutations and an unaffected sibling with tall stature carried the heterozygous mutation in SEC23A only. Mutations in SEC23A are responsible for craniolenticosultura dysplasia (CLSD). CLSD patients are short, have late-closing fontanels, and have reduced procollagen (pro-COL1A1) secretion because of abnormal pro-COL1A1 retention in the endoplasmic reticulum (ER). The mutation we identified in MAN1B1 was previously associated with reduced MAN1B1 protein and congenital disorders of glycosylation (CDG). CDG patients are also short, are obese, and have abnormal glycan remodeling. Molecular analysis of fibroblasts from the family revealed normal levels of SEC23A in all cells and reduced levels of MAN1B1 in cells with heterozygous or homozygous mutations in SEC23A and MAN1B1. Secretion of pro-COL1A1 was increased in fibroblasts from the siblings and patients, and pro-COL1A1 was retained in Golgi of heterozygous and homozygous mutant cells, although intracellular pro-COL1A1 was increased in patient fibroblasts only. We postulate that increased pro-COL1A1 secretion is responsible for tall stature in these patients and an unaffected sibling, and not previously discovered in patients with mutations in either SEC23A or MAN1B1. The patients in this study share biochemical and cellular characteristics consistent with mutations in MAN1B1 and SEC23A, indicating a digenic disease. PMID:27148587

  13. Low prevalence of hepatitis B virus pre-S deletion mutation in Indonesia.

    PubMed

    Utama, Andi; Siburian, Marlinang Diarta; Fanany, Ismail; Intan, Mariana Destila Bayu; Dhenni, Rama; Kurniasih, Tri Shinta; Lelosutan, Syafruddin A R; Achwan, Wenny Astuti; Arnelis; Lukito, Benyamin; Yusuf, Irawan; Lesmana, Laurentius Adrianus; Sulaiman, Ali; Tai, Susan

    2011-10-01

    The molecular epidemiological study of hepatitis B virus (HBV) in Indonesia is still limited. This study was aimed to identify the prevalence of HBV pre-S deletion/insertion mutations, and to assess the association of pre-S deletion mutation with liver disease progression in Indonesia. Pre-S mutations were identified by direct sequencing. Of the 265 subjects, 32 samples (12.1%) harbored pre-S deletion/insertion mutations. The prevalence of those pre-S mutations was 2.7% (2/75), 12.9% (8/62), 16.7% (11/66), and 17.7% (11/62) in asymptomatic carrier, chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma groups, respectively. Statistical analysis showed significant difference among them (P = 0.024). In HBV genotype B (HBV/B), pre-S1, pre-S1/S2, and pre-S2 deletion mutations were detected respectively in 3 (17.6%), 4 (23.5%), and 9 (52.9%) of 17 samples. On the other hand, in HBV/C, 12 of 15 samples (80.0%) showed a pre-S2 deletion mutation, and only 2 samples (13.3%) demonstrated a pre-S1/S2 deletion mutation. These results suggest that in HBV/B deletion mutation tends to occur in pre-S1 or pre-S1/S2 region, while in HBV/C the deletion mutation usually occurs in the pre-S2 region. Analysis of complete genome of four viruses confirmed that 3 isolates were classified into HBV/B3, and 1 isolate was HBV/C1. However, SimPlot and BootScan analyses showed that isolate 08.10.002 was an intragenotypic recombinant between HBV/B3 and HBV/B4. As conclusion, the prevalence of HBV pre-S mutations was relatively low in Indonesian patients compared to those from Taiwan, Japan, and other Asian countries. There was a weak association between pre-S deletion mutation and progressive liver disease.

  14. Analysis of HBV genotype, drug resistant mutations, and pre-core/basal core promoter mutations in Korean patients with acute hepatitis B.

    PubMed

    Lee, Jong Ho; Hong, Sun Pyo; Jang, Eun Sun; Park, Sang Jong; Hwang, Seong Gyu; Kang, Sook-Kyoung; Jeong, Sook-Hyang

    2015-06-01

    Acute hepatitis B, caused by hepatitis B virus (HBV) strains with drug resistant mutations or pre-core/basal core promoter (PC/BCP) mutations, is a public health concern, because this infection is often associated with poor disease outcome or difficulty in therapeutic choice. The HBV genotype, the prevalence of drug resistant mutations, and PC/BCP mutations in Korean patients with acute hepatitis B were studied. From 2006 to 2008, 36 patients with acute hepatitis B were enrolled prospectively in four general hospitals. Among them, 20 showed detectable HBV DNA (median value was 4.8 log copies/mL). HBV genotyping and analysis of HBV mutations that conferred resistance against lamivudine, adefovir, or entecavir and of PC/BCP mutations were performed using highly sensitive restriction fragment mass polymorphism (RFMP) analysis. All 20 patients were infected with HBV genotype C, which causes almost all cases of chronic hepatitis B in Korea. No patient showed mutations that conferred resistance against lamivudine (L180M, M204V/I), adefovir (A181T, N236S), or entecavir (I169M, A184T/V, S202I/G, M250V/I/L). However, four patients had BCP mutations, and two had PC mutations. Platelet counts were significantly lower in the four patients with PC/BCP mutations compared to those with wild type. In this study, all acute hepatitis B patients had genotype C HBV strains with no drug resistant mutations. However, 20% showed PC/BCP mutations. This highlights the need for further study on the significance of PC/BCP mutations.

  15. Factor IX gene mutations in haemophilia B: a New Zealand population-based study.

    PubMed

    VAN DE Water, N S; Williams, R; Berry, E W; Ockelford, P A; Browett, P J

    1996-01-01

    Haemophilia B (Christmas disease) is an X-linked bleeding disorder resulting from an inherited deficiency of coagulation factor IX activity. Due to the heterogeneity of mutations within the factor IX gene there is a marked clinical variability in disease severity. By applying techniques of mutational analysis and direct sequencing of PCR products it is now potentially possible to determine the pathogenic gene defect in entire haemophilia B populations. We report here characterization of the factor IX gene defect in all the haemophilia B patients in New Zealand as part of a nationwide approach towards providing efficient and cost-effective haemophilia B genetic counselling services for these families. Twenty-six different mutations were identified in 32 unrelated haemophilia B families. Three defects at nucleotide positions +8,6659 and 17696 are novel mutations which have not been reported by other laboratories. A PCR-based diagnostic screening test for direct mutational analysis could be performed in most cases; 17 of the 26 mutations altered a restriction enzyme recognition sequence and, with the exception of the total gene deletion, base changes not affecting a restriction enzyme site could be detected by allele-specific PCR.

  16. Occurrence and new mutations involved in rifampicin-resistant Propionibacterium acnes strains isolated from biofilm or device-related infections.

    PubMed

    Furustrand Tafin, Ulrika; Aubin, Guillaume Ghislain; Eich, Gerhard; Trampuz, Andrej; Corvec, Stéphane

    2015-08-01

    We described for the first time the amino acid substitutions conferring rifampicin resistance in eight Propionibacterium acnes strains isolated from patients with biofilm or device-related infections. We identified different mutations in cluster I and one mutation, never reported, in cluster II of the rpoB gene (I480V) associated with the most frequent one in cluster I (S442L). Half of the patients previously received treatment with rifampicin. PMID:25999299

  17. SOCS1 Mutation Subtypes Predict Divergent Outcomes in Diffuse Large B-Cell Lymphoma (DLBCL) Patients

    PubMed Central

    Kohler, Christian W.; Bentink, Stefan; Kreuz, Markus; Melzner, Ingo; Ritz, Olga; Trümper, Lorenz; Loeffler, Markus; Spang, Rainer; Möller, Peter

    2013-01-01

    Suppressor of cytokine signaling 1 (SOCS1) is frequently mutated in primary mediastinal and diffuse large B-cell lymphomas (DLBCL). Currently, the prognostic relevance of these mutations in DLBCL is unknown. To evaluate the value of the SOCS1 mutation status as a prognostic biomarker in DLBCL patients, we performed full-length SOCS1 sequencing in tumors of 154 comprehensively characterized DLBCL patients. We identified 90 SOCS1 mutations in 16% of lymphomas. With respect to molecular consequences of mutations, we defined two distinct subtypes: those with truncating (major) and those with non-truncating mutations (minor), respectively. The SOCS1 mutated subgroup or the minor/major subtypes cannot be predicted on clinical grounds; however, assignment of four established gene-expression profile-based classifiers revealed significant associations of SOCS1 major cases with germinal center and specific pathway activation pattern signatures. Above all, SOCS1 major cases have an excellent overall survival, even better than the GCB-like subgroup. SOCS1 minor cases had a dismal survival, even worse than the ABC gene signature group. The SOCS1 mutation subsets retained prognostic significance in uni- and multivariate analyses. Together our data indicate that assessment of the SOCS1 mutation status is a single gene prognostic biomarker in DLBCL. PMID:23296022

  18. Detection of K-ras oncogene mutations & DNA adducts in the lungs of strain A/J mice exposed to benzo[b]fluoranthene (B[b]F)

    SciTech Connect

    Abu-Shakra, A.; Roop, B.C.; Nelson, G.

    1995-11-01

    The polycyclic aromatic hydrocarbon benzo[b]fluoranthene (B[b]F) has been shown in our laboratories to induce adenomas in strain A/J mouse lungs using i.p. doses above 50 mg/kg body weight. B[b]F appears to be less potent than benzo[a]pyrene on a mg/kg basis in this tumor model. We measured the formation of B[b]F-DNA adducts in mice exposed to B[b]F after 1-21 days and analyzed B[b]F-induced tumors for K-ras oncogene mutations approximately 8 months later. The major B[b]F-DNA adduct comigrated with an adduct seen after application of 5-hydroxy-B[b]F-9,10-dihydrodiol-11,12-oxide to mouse skin. Tumor DNA was extracted and amplified by the polymerase chain reaction (PCR) using primers flanking the 111 bp region of exon 1. Samples were sequenced using the dideoxy method; those samples that failed to show a clear sequence after repetitive sequencing were subjected to single stranded conformation polymorphism analysis (SSCP). B[b]F-induced tumors with K-ras mutations in codon 12, had the following distribution: GGT {yields}GTT, 50%; GGT{yields}TGT, 40%; GGT{yields} 10%. Further characterization of these mutations and their relationship to B[b]F-DNA adducts is in progress

  19. Mitochondrial 12S rRNA A827G mutation is involved in the genetic susceptibility to aminoglycoside ototoxicity

    SciTech Connect

    Xing Guangqian; Chen Zhibin; Wei Qinjun; Tian Huiqin; Li Xiaolu; Zhou Aidong; Bu Xingkuan; Cao Xin . E-mail: caoxin@njmu.edu.cn

    2006-08-11

    We have analyzed the clinical and molecular characterization of a Chinese family with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluations revealed that only those family members who had a history of exposure to aminoglycoside antibiotics subsequently developed hearing loss, suggesting mitochondrial genome involvement. Sequence analysis of the mitochondrial 12S rRNA and tRNA{sup Ser(UCN)} genes led to the identification of a homoplasmic A827G mutation in all maternal relatives, a mutation that was identified previously in a few sporadic patients and in another Chinese family with non-syndromic deafness. The pathogenicity of the A827G mutation is strongly supported by the occurrence of the same mutation in two independent families and several genetically unrelated subjects. The A827G mutation is located at the A-site of the mitochondrial 12S rRNA gene which is highly conserved in mammals. It is possible that the alteration of the tertiary or quaternary structure of this rRNA by the A827G mutation may lead to mitochondrial dysfunction, thereby playing a role in the pathogenesis of hearing loss and aminoglycoside hypersensitivity. However, incomplete penetrance of hearing impairment indicates that the A827G mutation itself is not sufficient to produce clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Indeed, aminoglycosides may contribute to the phenotypic manifestation of the A827G mutation in this family. In contrast with the congenital or early-onset hearing impairment in another Chinese family carrying the A827G mutation, three patients in this pedigree developed hearing loss only after use of aminoglycosides. This discrepancy likely reflects the difference of genetic backgrounds, either mitochondrial haplotypes or nuclear modifier genes, between two families.

  20. Burkitt's lymphoma is a malignancy of mature B cells expressing somatically mutated V region genes.

    PubMed Central

    Klein, U.; Klein, G.; Ehlin-Henriksson, B.; Rajewsky, K.; Küppers, R.

    1995-01-01

    BACKGROUND: The developmental stage from which stems the malignant B cell population in Burkitt's lymphoma (BL) is unclear. An approach to answering this question is provided by the sequence analysis of rear-ranged immunoglobulin (Ig) variable region (V) genes from BL for evidence of somatic mutations, together with a phenotypic characterization. As somatic hypermutation of Ig V region genes occurs in germinal center B cells, somatically mutated Ig genes are found in germinal center B cells and their descendents. MATERIALS AND METHODS: Rearranged V kappa region genes from 10 kappa-expressing sporadic and endemic BL-derived cell lines (9 IgM and 1 IgG positive) and three kappa-expressing endemic BL biopsy specimens were amplified by polymerase chain reaction and sequenced. In addition, VH region gene sequences from these cell lines were determined. RESULTS: All BL cell lines and the three biopsy specimens carried somatically mutated V region genes. The average mutation frequency of rearranged V kappa genes from eight BL cell lines established from sporadic BL was 1.8%. A higher frequency (6%) was found in five endemic cases (three biopsy specimens and two BL cell lines). CONCLUSIONS: The detection of somatic mutations in the rearranged V region genes suggests that both sporadic and endemic BL represent a B-cell malignancy originating from germinal center B cells or their descendants. Interestingly, the mutation frequency detected in sporadic BL is in a range similar to that characteristic for IgM-expressing B cells in the human peripheral blood and for mu chain-expressing germinal center B cells, whereas the mutation frequency found in endemic BL is significantly higher. PMID:8529116

  1. Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma

    PubMed Central

    Asmar, Fazila; Punj, Vasu; Christensen, Jesper; Pedersen, Marianne T.; Pedersen, Anja; Nielsen, Anders B.; Hother, Christoffer; Ralfkiaer, Ulrik; Brown, Peter; Ralfkiaer, Elisabeth; Helin, Kristian; Grønbæk, Kirsten

    2013-01-01

    The discovery that the Ten-Eleven Translocation (TET) hydroxylases cause DNA demethylation has fundamentally changed the notion of how DNA methylation is regulated. Clonal analysis of the hematopoetic stem cell compartment suggests that TET2 mutations can be early events in hematologic cancers and recent investigations have shown TET2 mutations in diffuse large B-cell lymphoma. However, the detection rates and the types of TET2 mutations vary, and the relation to global methylation patterns has not been investigated. Here, we show TET2 mutations in 12 of 100 diffuse large B-cell lymphomas with 7% carrying loss-of-function and 5% carrying missense mutations. Genome-wide methylation profiling using 450K Illumina arrays identified 315 differentially methylated genes between TET2 mutated and TET2 wild-type cases. TET2 mutations are primarily associated with hypermethylation within CpG islands (70%; P<0.0001), and at CpG-rich promoters (60%; P<0.0001) of genes involved in hematopoietic differentiation and cellular development. Hypermethylated loci in TET2 mutated samples overlap with the bivalent (H3K27me3/H3K4me3) silencing mark in human embryonic stem cells (P=1.5×10−30). Surprisingly, gene expression profiling showed that only 11% of the hypermethylated genes were down-regulated, among which there were several genes previously suggested to be tumor suppressors. A meta-analysis suggested that the 35 hypermethylated and down-regulated genes are associated with the activated B-cell-like type of diffuse large B-cell lymphoma in other studies. In conclusion, our data suggest that TET2 mutations may cause aberrant methylation mainly of genes involved in hematopoietic development, which are silenced but poised for activation in human embryonic stem cells. PMID:23831920

  2. Mutation screening of GRIN2B in schizophrenia and autism spectrum disorder in a Japanese population

    PubMed Central

    Takasaki, Yuto; Koide, Takayoshi; Wang, Chenyao; Kimura, Hiroki; Xing, Jingrui; Kushima, Itaru; Ishizuka, Kanako; Mori, Daisuke; Sekiguchi, Mariko; Ikeda, Masashi; Aizawa, Miki; Tsurumaru, Naoko; Iwayama, Yoshimi; Yoshimi, Akira; Arioka, Yuko; Yoshida, Mami; Noma, Hiromi; Oya-Ito, Tomoko; Nakamura, Yukako; Kunimoto, Shohko; Aleksic, Branko; Uno, Yota; Okada, Takashi; Ujike, Hiroshi; Egawa, Jun; Kuwabara, Hitoshi; Someya, Toshiyuki; Yoshikawa, Takeo; Iwata, Nakao; Ozaki, Norio

    2016-01-01

    N-methyl-d-aspartate receptors (NMDARs) play a critical role in excitatory synaptic transmission and plasticity in the central nervous systems. Recent genetics studies in schizophrenia (SCZ) show that SCZ is susceptible to NMDARs and the NMDAR signaling complex. In autism spectrum disorder (ASD), several studies report dysregulation of NMDARs as a risk factor for ASD. To further examine the association between NMDARs and SCZ/ASD development, we conducted a mutation screening study of GRIN2B which encodes NR2B subunit of NMDARs, to identify rare mutations that potentially cause diseases, in SCZ and ASD patients (n = 574 and 152, respectively). This was followed by an association study in a large sample set of SCZ, ASD, and normal healthy controls (n = 4145, 381, and 4432, respectively). We identified five rare missense mutations through the mutation screening of GRIN2B. Although no statistically significant association between any single mutation and SCZ or ASD was found, one of its variant, K1292R, is found only in the patient group. To further examine the association between mutations in GRIN2B and SCZ/ASD development, a larger sample size and functional experiments are needed. PMID:27616045

  3. Mutation screening of GRIN2B in schizophrenia and autism spectrum disorder in a Japanese population.

    PubMed

    Takasaki, Yuto; Koide, Takayoshi; Wang, Chenyao; Kimura, Hiroki; Xing, Jingrui; Kushima, Itaru; Ishizuka, Kanako; Mori, Daisuke; Sekiguchi, Mariko; Ikeda, Masashi; Aizawa, Miki; Tsurumaru, Naoko; Iwayama, Yoshimi; Yoshimi, Akira; Arioka, Yuko; Yoshida, Mami; Noma, Hiromi; Oya-Ito, Tomoko; Nakamura, Yukako; Kunimoto, Shohko; Aleksic, Branko; Uno, Yota; Okada, Takashi; Ujike, Hiroshi; Egawa, Jun; Kuwabara, Hitoshi; Someya, Toshiyuki; Yoshikawa, Takeo; Iwata, Nakao; Ozaki, Norio

    2016-01-01

    N-methyl-d-aspartate receptors (NMDARs) play a critical role in excitatory synaptic transmission and plasticity in the central nervous systems. Recent genetics studies in schizophrenia (SCZ) show that SCZ is susceptible to NMDARs and the NMDAR signaling complex. In autism spectrum disorder (ASD), several studies report dysregulation of NMDARs as a risk factor for ASD. To further examine the association between NMDARs and SCZ/ASD development, we conducted a mutation screening study of GRIN2B which encodes NR2B subunit of NMDARs, to identify rare mutations that potentially cause diseases, in SCZ and ASD patients (n = 574 and 152, respectively). This was followed by an association study in a large sample set of SCZ, ASD, and normal healthy controls (n = 4145, 381, and 4432, respectively). We identified five rare missense mutations through the mutation screening of GRIN2B. Although no statistically significant association between any single mutation and SCZ or ASD was found, one of its variant, K1292R, is found only in the patient group. To further examine the association between mutations in GRIN2B and SCZ/ASD development, a larger sample size and functional experiments are needed. PMID:27616045

  4. Understanding Amino Acid Mutations in Hepatitis B Virus Proteins for Rational Design of Vaccines and Drugs.

    PubMed

    Shen, Ke; Shen, Li; Wang, Jing; Jiang, Zhi; Shen, Bairong

    2015-01-01

    The hepatitis B virus (HBV) genome encodes four proteins, i.e., DNA polymerase, surface protein, X, and core proteins. HBV undergoes different selective pressures for drug resistance and immune/vaccine escape and mutations are common for the HBV proteins. We here collected all the reported amino acid mutations happened in these four HBV proteins and studied their patterns. The relationship between the mutations and epitopic functions are investigated with bioinformatics tools, based on their sequence information. Some interesting results are observed for the mutation patterns, such as we found the serine and threonine are both for frequently mutated residues and mutant residues, while the tryptophan and methionine have low mutability. The results provide important information for the understanding of the molecular mechanism of virus evolution and therefore will facilitate the future rational design of HBV vaccines or drugs.

  5. Mutation spectrum of CYP1B1 in North Indian congenital glaucoma patients

    PubMed Central

    Tanwar, Mukesh; Dada, Tanuj; Sihota, Ramanjit; Das, Taposh K.; Yadav, Usha

    2009-01-01

    Purpose Mutations in Cytochrome P450 (CYP1B1) are a predominant cause of congenital glaucoma. This study was planned with the aim to identify the mutation profile of CYP1B1 in North Indian primary congenital glaucoma (PCG) patients. Methods After ethical clearance, 50 congenital glaucoma patients and 50 ethnically matched controls were recruited in this study. Genomic DNA was isolated from the blood and trabecular meshwork, and CYP1B1 was screened for the six most prevalent mutations (termination at 223 [Ter@223], Gly61Glu, Pro193Leu, Glu229Lys, Arg368His, and Arg390Cys) by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). DNA sequencing was done to identify other mutations and for confirmation of RFLP positive samples. Results On PCR-RFLP, 21/50 cases (42%) were found positive for one or more of these mutations. However, on sequencing, we found that 23/50 (46%) harbored the CYPIB1 mutations. Ter@223 was found in 18%, p.R390H in 16%, and p.R368H in 8% of cases. Three novel mutations, p.L24R, p.F190L, and p.G329D, were identified by DNA sequencing. Leucine, phenylalanine, and glycine are conserved at the 24th, 190th, and 329th position in the CYP1B1 protein in different species, suggestive of important functions at these loci. Ter@223 was found to be the most prevalent mutation in our patients while p.R368H was most prevalent in southern India. The difference in frequency and mutation profile may be due to the heterogeneous Indian population. Pathogenic CYP1B1 mutations impair anterior chamber development and differentiation by blocking the aqueous outflow and raising intraocular pressure (IOP). Conclusions Three novel mutations were identified in this study. Studies of pathogenic sequence variants in CYP1B1 in different populations may contribute to a better understanding of the disease pathogenesis. This may lead to the development of novel therapeutic approaches in the near future. PMID:19536304

  6. Complex molecular genetic abnormalities involving three or more genetic mutations are important prognostic factors for acute myeloid leukemia.

    PubMed

    Wakita, S; Yamaguchi, H; Ueki, T; Usuki, K; Kurosawa, S; Kobayashi, Y; Kawata, E; Tajika, K; Gomi, S; Koizumi, M; Fujiwara, Y; Yui, S; Fukunaga, K; Ryotokuji, T; Hirakawa, T; Arai, K; Kitano, T; Kosaka, F; Tamai, H; Nakayama, K; Fukuda, T; Inokuchi, K

    2016-03-01

    We conducted a comprehensive analysis of 28 recurrently mutated genes in acute myeloid leukemia (AML) in 271 patients with de novo AML. Co-mutations were frequently detected in the intermediate cytogenetic risk group, at an average of 2.76 co-mutations per patient. When assessing the prognostic impact of these co-mutations in the intermediate cytogenetic risk group, overall survival (OS) was found to be significantly shorter (P=0.0006) and cumulative incidence of relapse (CIR) significantly higher (P=0.0052) in patients with complex molecular genetic abnormalities (CMGAs) involving three or more mutations. This trend was marked even among patients aged ⩽65 years who were also FLT3-ITD (FMS-like tyrosine kinase 3 internal tandem duplications)-negative (OS: P=0.0010; CIR: P=0.1800). Moreover, the multivariate analysis revealed that CMGA positivity was an independent prognostic factor associated with OS (P=0.0007). In stratification based on FLT3-ITD and CEBPA status and 'simplified analysis of co-mutations' using seven genes that featured frequently in CMGAs, CMGA positivity retained its prognostic value in transplantation-aged patients of the intermediate cytogenetic risk group (OS: P=0.0002. CIR: P<0.0001). In conclusion, CMGAs in AML were found to be strong independent adverse prognostic factors and simplified co-mutation analysis to have clinical usefulness and applicability.

  7. CYP1B1 gene mutations causing primary congenital glaucoma in Tunisia.

    PubMed

    Bouyacoub, Yosra; Ben Yahia, Salim; Abroug, Nesrine; Kahloun, Rim; Kefi, Rym; Khairallah, Moncef; Abdelhak, Sonia

    2014-07-01

    Primary congenital glaucoma (PCG) is responsible for a significant proportion of childhood blindness in Tunisia. Early prevention based on genetic diagnosis is therefore required. This study sought to determine the frequency of CYP1B1 (cytochrome P450, family 1, subfamily B, polypeptide 1) mutations in 18 PCG patients, recruited from Central and Southern of Tunisia. Genomic DNA was extracted and the coding regions of CYP1B1 were analysed by direct sequencing. A phylogenetic network of CYP1B1 haplotypes was drawn using the median-joining algorithm. Sequence analysis revealed a "tetra-allelic mutation" (two novel mutations, p.F231I and p.P437A in the homozygous state) in one patient. The healthy members of his family carried those variations on the same allele. Two previously described mutations p.G61E and c.535delG were also identified in the homozygous state in seven and two probands, respectively. Seven single-nucleotide polymorphisms were identified and used to generate haplotypes. Our results showed that the CYP1B1 mutations were present in 55% of Tunisian PCG patients' alleles. Haplotype analysis allowed us to define the proto-haplotype and to confirm historical migratory flows. Establishment of PCG genetic aetiology in Tunisia will improve genetic diagnosis and counselling.

  8. Missense mutation of the cholecystokinin B receptor gene: Lack of association with panic disorder

    SciTech Connect

    Kato, Tadafumi; Wang, Zhe Wu; Crowe, R.R.; Zoega, T.

    1996-07-26

    Cholecystokinin tetrapeptide (CCK{sub 4}) is known to induce panic attacks in patients with panic disorder at a lower dose than in normal controls. Therefore, the cholecystokinin B (CCK{sub B}) receptor gene is a candidate gene for panic disorder. We searched for mutations in the CCK{sub B} gene in 22 probands of panic disorder pedigrees, using single-strand conformation polymorphism (SSCP) analysis. Two polymorphisms were detected. A polymorphism in an intron (2491 C{yields}A) between exons 4 and 5 was observed in 10 of 22 probands. A missense mutation in the extracellular loop of exon 2 (1550 G{yields}A, Val{sup 125}{yields}Ile) was found in only one proband. This mutation was also examined in additional 34 unrelated patients with panic disorder and 112 controls. The prevalence rate of this mutation was 8.8% in patients with panic disorder (3/34) and 4.4% in controls (5/112). The mutation did not segregate with panic disorder in two families where this could be tested. These results suggest no pathophysiological significance of this mutation in panic disorder. 21 refs., 4 figs., 1 tab.

  9. Clinical spectrum of 4H leukodystrophy caused by POLR3A and POLR3B mutations

    PubMed Central

    Vanderver, Adeline; van Spaendonk, Rosalina M.L.; Schiffmann, Raphael; Brais, Bernard; Bugiani, Marianna; Sistermans, Erik; Catsman-Berrevoets, Coriene; Kros, Johan M.; Pinto, Pedro Soares; Pohl, Daniela; Tirupathi, Sandya; Strømme, Petter; de Grauw, Ton; Fribourg, Sébastien; Demos, Michelle; Pizzino, Amy; Naidu, Sakkubai; Guerrero, Kether; van der Knaap, Marjo S.; Bernard, Geneviève

    2014-01-01

    Objective: To study the clinical and radiologic spectrum and genotype–phenotype correlation of 4H (hypomyelination, hypodontia, hypogonadotropic hypogonadism) leukodystrophy caused by mutations in POLR3A or POLR3B. Methods: We performed a multinational cross-sectional observational study of the clinical, radiologic, and molecular characteristics of 105 mutation-proven cases. Results: The majority of patients presented before 6 years with gross motor delay or regression. Ten percent had an onset beyond 10 years. The disease course was milder in patients with POLR3B than in patients with POLR3A mutations. Other than the typical neurologic, dental, and endocrine features, myopia was seen in almost all and short stature in 50%. Dental and hormonal findings were not invariably present. Mutations in POLR3A and POLR3B were distributed throughout the genes. Except for French Canadian patients, patients from European backgrounds were more likely to have POLR3B mutations than other populations. Most patients carried the common c.1568T>A POLR3B mutation on one allele, homozygosity for which causes a mild phenotype. Systematic MRI review revealed that the combination of hypomyelination with relative T2 hypointensity of the ventrolateral thalamus, optic radiation, globus pallidus, and dentate nucleus, cerebellar atrophy, and thinning of the corpus callosum suggests the diagnosis. Conclusions: 4H is a well-recognizable clinical entity if all features are present. Mutations in POLR3A are associated with a more severe clinical course. MRI characteristics are helpful in addressing the diagnosis, especially if patients lack the cardinal non-neurologic features. PMID:25339210

  10. Association between clinical features and YMDD mutations in patients with chronic hepatitis B following lamivudine therapy

    PubMed Central

    Ma, Ying; Yuan, Yujun; Ma, Xianglin; Tang, Boru; Hu, Ximei; Feng, Juan; Tian, Li; Ji, Yaohua; Dou, Xiaoguang

    2016-01-01

    The aim of the present study was to investigate the correlation between feature and genotype with regard to the tyrosine-methionine-aspartate-aspartate (YMDD) mutation in chronic hepatitis B patients after lamivudine (LAM) therapy. A total of 30 patients with chronic hepatitis B were recruited, who underwent one year of LAM therapy. The patients' alanine aminotransferase (ALT) level and hepatitis B envelope antigen (HBeAg) seroconversion were evaluated, hepatitis B virus (HBV) DNA was genotyped using a new genotyping method and YMDD mutations were analyzed prior to treatment and at 6 and 12 months after LAM treatment. Furthermore, the secondary protein structure of the HBV DNA polymerase gene (P gene) was analyzed. Following treatment, the results suggested that LAM therapy improved ALT normalization. There was no correlation between clinical effects and ALT level before treatment. After 12 months treatment, the rate of HBeAg loss increased and the rate of HBeAg seroconversion decreased linearly with the rise of baseline ALT level. While ALT normalization and HBeAg seroconversion were highest in patients with HBV genotype B, HBeAg loss and HBVDNA loss were highest in those with genotype C. The effect was predominant in genotype D. No YMDD mutations were identified prior to 6 months of LAM therapy. The rate of YMDD mutations after 12 months LAM therapy was 12.12%. Two patients with rtM204V + rtL180M belonged to genotype C and another patient with rtL180M alone belonged to genotype D. The turn of secondary protein structure of P gene changed to β sheet when a rtM204V mutation occurred, and no change of secondary protein structure was associated with the rtL180M mutation. Thus, the present results indicate that one year of LAM therapy is able to improve ALT normalization. Long-term LAM therapy may induce YMDD mutation and drug resistance. PMID:27446286

  11. Biallelic Mutations in the Autophagy Regulator DRAM2 Cause Retinal Dystrophy with Early Macular Involvement

    PubMed Central

    El-Asrag, Mohammed E.; Sergouniotis, Panagiotis I.; McKibbin, Martin; Plagnol, Vincent; Sheridan, Eamonn; Waseem, Naushin; Abdelhamed, Zakia; McKeefry, Declan; Van Schil, Kristof; Poulter, James A.; Black, Graeme; Hall, Georgina; Ingram, Stuart; Gillespie, Rachel; Ramsden, Simon; Manson, Forbes; Hardcastle, Alison; Michaelides, Michel; Cheetham, Michael; Arno, Gavin; Thomas, Niclas; Bhattacharya, Shomi; Moore, Tony; Nemeth, Andrea; Downes, Susan; Lise, Stefano; Lord, Emma; Johnson, Colin A.; Carr, Ian M.; Leroy, Bart P.; De Baere, Elfride; Inglehearn, Chris F.; Webster, Andrew R.; Toomes, Carmel; Ali, Manir

    2015-01-01

    Retinal dystrophies are an overlapping group of genetically heterogeneous conditions resulting from mutations in more than 250 genes. Here we describe five families affected by an adult-onset retinal dystrophy with early macular involvement and associated central visual loss in the third or fourth decade of life. Affected individuals were found to harbor disease-causing variants in DRAM2 (DNA-damage regulated autophagy modulator protein 2). Homozygosity mapping and exome sequencing in a large, consanguineous British family of Pakistani origin revealed a homozygous frameshift variant (c.140delG [p.Gly47Valfs∗3]) in nine affected family members. Sanger sequencing of DRAM2 in 322 unrelated probands with retinal dystrophy revealed one European subject with compound heterozygous DRAM2 changes (c.494G>A [p.Trp165∗] and c.131G>A [p.Ser44Asn]). Inspection of previously generated exome sequencing data in unsolved retinal dystrophy cases identified a homozygous variant in an individual of Indian origin (c.64_66del [p.Ala22del]). Independently, a gene-based case-control association study was conducted via an exome sequencing dataset of 18 phenotypically similar case subjects and 1,917 control subjects. Using a recessive model and a binomial test for rare, presumed biallelic, variants, we found DRAM2 to be the most statistically enriched gene; one subject was a homozygote (c.362A>T [p.His121Leu]) and another a compound heterozygote (c.79T>C [p.Tyr27His] and c.217_225del [p.Val73_Tyr75del]). DRAM2 encodes a transmembrane lysosomal protein thought to play a role in the initiation of autophagy. Immunohistochemical analysis showed DRAM2 localization to photoreceptor inner segments and to the apical surface of retinal pigment epithelial cells where it might be involved in the process of photoreceptor renewal and recycling to preserve visual function. PMID:25983245

  12. A novel mutation of the HNF1B gene associated with hypoplastic glomerulocystic kidney disease and neonatal renal failure: a case report and mutation update.

    PubMed

    Alvelos, Maria Inês; Rodrigues, Magda; Lobo, Luísa; Medeira, Ana; Sousa, Ana Berta; Simão, Carla; Lemos, Manuel Carlos

    2015-02-01

    Hepatocyte nuclear factor 1 beta (HNF1B) plays an important role in embryonic development, namely in the kidney, pancreas, liver, genital tract, and gut. Heterozygous germline mutations of HNF1B are associated with the renal cysts and diabetes syndrome (RCAD). Affected individuals may present a variety of renal developmental abnormalities and/or maturity-onset diabetes of the young (MODY). A Portuguese 19-month-old male infant was evaluated due to hypoplastic glomerulocystic kidney disease and renal dysfunction diagnosed in the neonatal period that progressed to stage 5 chronic renal disease during the first year of life. His mother was diagnosed with a solitary hypoplastic microcystic left kidney at age 20, with stage 2 chronic renal disease established at age 35, and presented bicornuate uterus, pancreatic atrophy, and gestational diabetes. DNA sequence analysis of HNF1B revealed a novel germline frameshift insertion (c.110_111insC or c.110dupC) in both the child and the mother. A review of the literature revealed a total of 106 different HNF1B mutations, in 236 mutation-positive families, comprising gross deletions (34%), missense mutations (31%), frameshift deletions or insertions (15%), nonsense mutations (11%), and splice-site mutations (8%). The study of this family with an unusual presentation of hypoplastic glomerulocystic kidney disease with neonatal renal dysfunction identified a previously unreported mutation of the HNF1B gene, thereby expanding the spectrum of known mutations associated with renal developmental disorders. PMID:25700310

  13. An Agrobacterium VirB10 mutation conferring a type IV secretion system gating defect.

    PubMed

    Banta, Lois M; Kerr, Jennifer E; Cascales, Eric; Giuliano, Meghan E; Bailey, Megan E; McKay, Cedar; Chandran, Vidya; Waksman, Gabriel; Christie, Peter J

    2011-05-01

    Agrobacterium VirB7, VirB9, and VirB10 form a "core complex" during biogenesis of the VirB/VirD4 type IV secretion system (T4SS). VirB10 spans the cell envelope and, in response to sensing of ATP energy consumption by the VirB/D4 ATPases, undergoes a conformational change required for DNA transfer across the outer membrane (OM). Here, we tested a model in which VirB10 regulates substrate passage by screening for mutations that allow for unregulated release of the VirE2 secretion substrate to the cell surface independently of target cell contact. One mutation, G272R, conferred VirE2 release and also rendered VirB10 conformationally insensitive to cellular ATP depletion. Strikingly, G272R did not affect substrate transfer to target cells (Tra(+)) but did block pilus production (Pil(-)). The G272R mutant strain displayed enhanced sensitivity to vancomycin and SDS but did not nonspecifically release periplasmic proteins or VirE2 truncated of its secretion signal. G272 is highly conserved among VirB10 homologs, including pKM101 TraF, and in the TraF X-ray structure the corresponding Gly residue is positioned near an α-helical domain termed the antenna projection (AP), which is implicated in formation of the OM pore. A partial AP deletion mutation (ΔAP) also confers a Tra(+) Pil(-) phenotype; however, this mutation did not allow VirE2 surface exposure but instead allowed the release of pilin monomers or short oligomers to the milieu. We propose that (i) G272R disrupts a gating mechanism in the core chamber that regulates substrate passage across the OM and (ii) the G272R and ΔAP mutations block pilus production at distinct steps of the pilus biogenesis pathway. PMID:21421757

  14. Mutations associated with occult hepatitis B in HIV-positive South Africans.

    PubMed

    Powell, Eleanor A; Gededzha, Maemu P; Rentz, Michael; Rakgole, Nare J; Selabe, Selokela G; Seleise, Tebogo A; Mphahlele, M Jeffrey; Blackard, Jason T

    2015-03-01

    Occult hepatitis B is characterized by the absence of hepatitis B surface antigen (HBsAg) but the presence of HBV DNA. Because diagnosis of hepatitis B virus (HBV) typically includes HBsAg detection, occult HBV remains largely undiagnosed. Occult HBV is associated with increased risk of hepatocellular carcinoma, reactivation to chronic HBV during immune suppression, and transmission during blood transfusion and liver transplant. The mechanisms leading to occult HBV infection are unclear, although viral mutations are likely a significant factor. In this study, sera from 394 HIV-positive South Africans were tested for HBV DNA and HBsAg. For patients with detectable HBV DNA, the overlapping surface and polymerase open reading frames (ORFs) were sequenced. Occult-associated mutations-those mutations found exclusively in individuals with occult HBV infection but not in individuals with chronic HBV infection from the same cohort or GenBank references-were identified. Ninety patients (22.8%) had detectable HBV DNA. Of these, 37 had detectable HBsAg, while 53 lacked detectable surface antigen. The surface and polymerase ORFs were cloned successfully for 19 patients with chronic HBV and 30 patients with occult HBV. In total, 235 occult-associated mutations were identified. Ten occult-associated mutations were identified in more than one patient. Additionally, 15 amino acid positions had two distinct occult-associated mutations at the same residue. Occult-associated mutations were common and present in all regions of the surface and polymerase ORFs. Further study is underway to determine the effects of these mutations on viral replication and surface antigen expression in vitro.

  15. Mutational analysis of the DTDST gene in a fetus with achondrogenesis type 1B.

    PubMed

    Cai, G; Nakayama, M; Hiraki, Y; Ozono, K

    1998-06-16

    We describe a diastrophic dysplasia (DTDST) gene mutation in a Japanese male fetus with achondrogenesis type 1B and his relatives. Diagnosis in the fetus was based on roentgenographic data and pathological findings of bones and cartilage. Nucleotide sequencing of the DTDST gene demonstrated that the fetus was homozygous for both delVal340 and Thr689Ser and his parents and a healthy brother were heterozygous for the mutations. The former mutation was reported previously in patients with achondrogenesis type 1B, and the latter was detected in 5 alleles of 26 healthy Japanese individuals. These data suggest that delVal340 is associated with achondrogenesis type 1B in the Japanese, whereas a serine to threonine substitution is most likely polymorphic. PMID:9637425

  16. Characterization and Structural Analysis of Novel Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase Involved in the Regulation of Resistance to Nonnucleoside Inhibitors▿

    PubMed Central

    Ceccherini-Silberstein, Francesca; Svicher, Valentina; Sing, Tobias; Artese, Anna; Santoro, Maria Mercedes; Forbici, Federica; Bertoli, Ada; Alcaro, Stefano; Palamara, Guido; d'Arminio Monforte , Antonella; Balzarini, Jan; Antinori , Andrea; Lengauer, Thomas; Perno, Carlo Federico

    2007-01-01

    Resistance to antivirals is a complex and dynamic phenomenon that involves more mutations than are currently known. Here, we characterize 10 additional mutations (L74V, K101Q, I135M/T, V179I, H221Y, K223E/Q, and L228H/R) in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase which are involved in the regulation of resistance to nonnucleoside reverse transcriptase inhibitors (NNRTIs). These mutations are strongly associated with NNRTI failure and strongly correlate with the classical NNRTI resistance mutations in a data set of 1,904 HIV-1 B-subtype pol sequences from 758 drug-naïve patients, 592 nucleoside reverse transcriptase inhibitor (NRTI)-treated but NNRTI-naïve patients, and 554 patients treated with both NRTIs and NNRTIs. In particular, L74V and H221Y, positively correlated with Y181C, were associated with an increase in Y181C-mediated resistance to nevirapine, while I135M/T mutations, positively correlated with K103N, were associated with an increase in K103N-mediated resistance to efavirenz. In addition, the presence of the I135T polymorphism in NNRTI-naïve patients significantly correlated with the appearance of K103N in cases of NNRTI failure, suggesting that I135T may represent a crucial determinant of NNRTI resistance evolution. Molecular dynamics simulations show that I135T can contribute to the stabilization of the K103N-induced closure of the NNRTI binding pocket by reducing the distance and increasing the number of hydrogen bonds between 103N and 188Y. H221Y also showed negative correlations with type 2 thymidine analogue mutations (TAM2s); its copresence with the TAM2s was associated with a higher level of zidovudine susceptibility. Our study reinforces the complexity of NNRTI resistance and the significant interplay between NRTI- and NNRTI-selected mutations. Mutations beyond those currently known to confer resistance should be considered for a better prediction of clinical response to reverse transcriptase inhibitors and for the

  17. Genetic and proteomic characterization of rpoB mutations and their effect on nematicidal activity in Photorhabdus luminescens LN2.

    PubMed

    Qiu, Xuehong; Yan, Xun; Liu, Mingxing; Han, Richou

    2012-01-01

    Rifampin resistant (Rif(R)) mutants of the insect pathogenic bacterium Photorhabdus luminescens LN2 from entomopathogenic nematode Heterorhabditis indica LN2 were genetically and proteomically characterized. The Rif(R) mutants showed typical phase one characters of Photorhabdus bacteria, and insecticidal activity against Galleria mellonella larvae, but surprisingly influenced their nematicidal activity against axenic infective juveniles (IJs) of H. bacteriophora H06, an incompatible nematode host. 13 out of 34 Rif(R) mutants lost their nematicidal activity against H06 IJs but supported the reproduction of H06 nematodes. 7 nematicidal-producing and 7 non-nematicidal-producing Rif(R) mutants were respectively selected for rpoB sequence analysis. rpoB mutations were found in all 14 Rif(R) mutants. The rpoB (P564L) mutation was found in all 7 mutants which produced nematicidal activity against H06 nematodes, but not in the mutants which supported H06 nematode production. Allelic exchange assays confirmed that the Rif-resistance and the impact on nematicidal activity of LN2 bacteria were conferred by rpoB mutation(s). The non-nematicidal-producing Rif(R) mutant was unable to colonize in the intestines of H06 IJs, but able to colonize in the intestines of its indigenous LN2 IJs. Proteomic analysis revealed different protein expression between wild-type strain and Rif(R) mutants, or between nematicidal-producing and non nematicidal-producing mutants. At least 7 putative proteins including DsbA, HlpA, RhlE, RplC, NamB (a protein from T3SS), and 2 hypothetical proteins (similar to unknown protein YgdH and YggE of Escherichia coli respectively) were probably involved in the nematicidal activity of LN2 bacteria against H06 nematodes. This hypothesis was further confirmed by creating insertion-deletion mutants of three selected corresponding genes (the downregulated rhlE and namB, and upregulated dsbA). These results indicate that the rpoB mutations greatly influence the

  18. Genetic and Proteomic Characterization of rpoB Mutations and Their Effect on Nematicidal Activity in Photorhabdus luminescens LN2

    PubMed Central

    Qiu, Xuehong; Yan, Xun; Liu, Mingxing; Han, Richou

    2012-01-01

    Rifampin resistant (RifR) mutants of the insect pathogenic bacterium Photorhabdus luminescens LN2 from entomopathogenic nematode Heterorhabditis indica LN2 were genetically and proteomically characterized. The RifR mutants showed typical phase one characters of Photorhabdus bacteria, and insecticidal activity against Galleria mellonella larvae, but surprisingly influenced their nematicidal activity against axenic infective juveniles (IJs) of H. bacteriophora H06, an incompatible nematode host. 13 out of 34 RifR mutants lost their nematicidal activity against H06 IJs but supported the reproduction of H06 nematodes. 7 nematicidal-producing and 7 non-nematicidal-producing RifR mutants were respectively selected for rpoB sequence analysis. rpoB mutations were found in all 14 RifR mutants. The rpoB (P564L) mutation was found in all 7 mutants which produced nematicidal activity against H06 nematodes, but not in the mutants which supported H06 nematode production. Allelic exchange assays confirmed that the Rif-resistance and the impact on nematicidal activity of LN2 bacteria were conferred by rpoB mutation(s). The non-nematicidal-producing RifR mutant was unable to colonize in the intestines of H06 IJs, but able to colonize in the intestines of its indigenous LN2 IJs. Proteomic analysis revealed different protein expression between wild-type strain and RifR mutants, or between nematicidal-producing and non nematicidal-producing mutants. At least 7 putative proteins including DsbA, HlpA, RhlE, RplC, NamB (a protein from T3SS), and 2 hypothetical proteins (similar to unknown protein YgdH and YggE of Escherichia coli respectively) were probably involved in the nematicidal activity of LN2 bacteria against H06 nematodes. This hypothesis was further confirmed by creating insertion-deletion mutants of three selected corresponding genes (the downregulated rhlE and namB, and upregualted dsbA). These results indicate that the rpoB mutations greatly influence the symbiotic

  19. Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis isolates in Sichuan, China and the association between Beijing-lineage and dual-mutation in gidB.

    PubMed

    Sun, Honghu; Zhang, Congcong; Xiang, Ling; Pi, Rui; Guo, Zhen; Zheng, Chao; Li, Song; Zhao, Yuding; Tang, Ke; Luo, Mei; Rastogi, Nalin; Li, Yuqing; Sun, Qun

    2016-01-01

    Mutations in rpsL, rrs, and gidB are well linked to streptomycin (STR) resistance, some of which are suggested to be potentially associated with Mycobacterium tuberculosis genotypic lineages in certain geographic regions. In this study, we aimed to investigate the mutation characteristics of streptomycin resistance and the relationship between the polymorphism of drug-resistant genes and the lineage of M. tuberculosis isolates in Sichuan, China. A total of 227 M. tuberculosis clinical isolates, including 180 STR-resistant and 47 pan-susceptible isolates, were analyzed for presence of mutations in the rpsL, rrs and gidB loci. Mutation K43R in rpsL was strongly associated with high-level streptomycin resistance (P < 0.01), while mutations in rrs and gidB potentially contributed to low-level resistance (P < 0.05). No general association was exhibited between STR resistance and Beijing genotype, however, in STR-resistant strains, Beijing genotype was significantly correlated with high-level STR resistance, as well as the rpsL mutation K43R (P < 0.01), indicating that Beijing genotype has an evolutionary advantage under streptomycin pressure. Notably, in all isolates of Beijing genotype, a dual mutation E92D (a276c) and A205A (a615g) in gidB was detected, suggesting a highly significant association between this dual mutation and Beijing genotype.

  20. Molecular basis of the attenuated phenotype of human APOBEC3B DNA mutator enzyme.

    PubMed

    Caval, Vincent; Bouzidi, Mohamed S; Suspène, Rodolphe; Laude, Hélène; Dumargne, Marie-Charlotte; Bashamboo, Anu; Krey, Thomas; Vartanian, Jean-Pierre; Wain-Hobson, Simon

    2015-10-30

    The human APOBEC3A and APOBEC3B genes (A3A and A3B) encode DNA mutator enzymes that deaminate cytidine and 5-methylcytidine residues in single-stranded DNA (ssDNA). They are important sources of mutations in many cancer genomes which show a preponderance of CG->TA transitions. Although both enzymes can hypermutate chromosomal DNA in an experimental setting, only A3A can induce double strand DNA breaks, even though the catalytic domains of A3B and A3A differ by only 9% at the protein level. Accordingly we sought the molecular basis underlying A3B attenuation through the generation of A3A-A3B chimeras and mutants. It transpires that the N-terminal domain facilitates A3B activity while a handful of substitutions in the catalytic C-terminal domain impacting ssDNA binding serve to attenuate A3B compared to A3A. Interestingly, functional attenuation is also observed for the rhesus monkey rhA3B enzyme compared to rhA3A indicating that this genotoxic dichotomy has been selected for and maintained for some 38 million years. Expression of all human ssDNA cytidine deaminase genes is absent in mature sperm indicating they contribute to somatic mutation and cancer but not human diversity.

  1. Molecular basis of the attenuated phenotype of human APOBEC3B DNA mutator enzyme

    PubMed Central

    Caval, Vincent; Bouzidi, Mohamed S.; Suspène, Rodolphe; Laude, Hélène; Dumargne, Marie-Charlotte; Bashamboo, Anu; Krey, Thomas; Vartanian, Jean-Pierre; Wain-Hobson, Simon

    2015-01-01

    The human APOBEC3A and APOBEC3B genes (A3A and A3B) encode DNA mutator enzymes that deaminate cytidine and 5-methylcytidine residues in single-stranded DNA (ssDNA). They are important sources of mutations in many cancer genomes which show a preponderance of CG->TA transitions. Although both enzymes can hypermutate chromosomal DNA in an experimental setting, only A3A can induce double strand DNA breaks, even though the catalytic domains of A3B and A3A differ by only 9% at the protein level. Accordingly we sought the molecular basis underlying A3B attenuation through the generation of A3A-A3B chimeras and mutants. It transpires that the N-terminal domain facilitates A3B activity while a handful of substitutions in the catalytic C-terminal domain impacting ssDNA binding serve to attenuate A3B compared to A3A. Interestingly, functional attenuation is also observed for the rhesus monkey rhA3B enzyme compared to rhA3A indicating that this genotoxic dichotomy has been selected for and maintained for some 38 million years. Expression of all human ssDNA cytidine deaminase genes is absent in mature sperm indicating they contribute to somatic mutation and cancer but not human diversity. PMID:26384561

  2. Human molybdopterin synthase gene: genomic structure and mutations in molybdenum cofactor deficiency type B.

    PubMed Central

    Reiss, J; Dorche, C; Stallmeyer, B; Mendel, R R; Cohen, N; Zabot, M T

    1999-01-01

    Biosynthesis of the molybdenum cofactor (MoCo) can be divided into (1) the formation of a precursor and (2) the latter's subsequent conversion, by molybdopterin synthase, into the organic moiety of MoCo. These two steps are reflected by the complementation groups A and B and the two formally distinguished types of MoCo deficiency that have an identical phenotype. Both types of MoCo deficiency result in a pleiotropic loss of all molybdoenzyme activities and cause severe neurological damage. MOCS1 is defective in patients with group A deficiency and has been shown to encode two enzymes for early synthesis via a bicistronic transcript with two consecutive open reading frames (ORFs). MOCS2 encodes the small and large subunits of molybdopterin synthase via a single transcript with two overlapping reading frames. This gene was mapped to 5q and comprises seven exons. The coding sequence and all splice site-junction sequences were screened for mutations, in MoCo-deficient patients in whom a previous search for MOCS1 mutations had been negative. In seven of the eight patients whom we investigated, we identified MOCS2 mutations that, by their nature, are most likely responsible for the deficiency. Three different frameshift mutations were observed, with one of them found on 7 of 14 identified alleles. Furthermore, a start-codon mutation and a missense mutation of a highly conserved amino acid residue were found. The locations of the mutations confirm the functional role of both ORFs. One of the patients with identified MOCS2 mutations had been classified as type B, in complementation studies. These findings support the hypothetical mechanism, for both forms of MoCo deficiency, that formerly had been established by cell-culture experiments. PMID:10053004

  3. APOBEC3B: pathological consequences of an innate immune DNA mutator.

    PubMed

    Burns, Michael B; Leonard, Brandon; Harris, Reuben S

    2015-01-01

    Cancer is a disease that results from alterations in the cellular genome. Several recent studies have identified mutational signatures that implicate a variety of mutagenic processes in cancer, a major one of which is explained by the enzymatic activity of the DNA cytosine deaminase, APOBEC3B. As a deaminase, APOBEC3B converts cytosines to uracils in single-stranded DNA. Failure to properly repair these uracil lesions can result in a diverse array of mutations. For instance, DNA uracils can template the insertion of complementary adenines leading to C-to-T transition mutations. DNA uracils can also be converted into abasic sites that, depending upon the DNA polymerase recruited to bypass this lesion in the template strand, can lead to adenine insertion and C-to-T mutations as well as cytosine insertion and C-to-G transversion mutations. Finally, DNA uracils can also be converted into DNA breaks that may precipitate some types of larger chromosomal aberrations observed in cancer. These studies cumulatively demonstrate that APOBEC3B is a major source of genetic heterogeneity in several human cancers and, as such, this enzyme may prove to be a critical diagnostic and therapeutic target.

  4. Mutations in the PDE6B gene in autosomal recessive retinitis pigmentosa

    SciTech Connect

    Danciger, M.; Blaney, J.; Gao, Y.Q.; Zhao, D.Y.

    1995-11-01

    We have studied 24 small families with presumed autosomal recessive inheritance of retinitis pigmentosa by a combination of haplotype analysis and exon screening. Initial analysis of the families was made with a dinucleotide repeat polymorphism adjacent to the gene for rod cGMP-phosphodiesterase (PDE6B). This was followed by denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism electrophoresis (SSCPE) of the 22 exons and a portion of the 5{prime} untranslated region of the PDE6B gene in the probands of each family in which the PDE6B locus could not be ruled out from segregating with disease. Two probands were found with compound heterozygous mutations: Gly576Asp and His620(1-bp del) mutations were present in one proband, and a Lys706X null mutation and an AG to AT splice acceptor site mutation in intron 2 were present in the other. Only the affecteds of each of the two families carried both corresponding mutations. 29 refs., 3 figs., 1 tab.

  5. Mutations in COX7B cause microphthalmia with linear skin lesions, an unconventional mitochondrial disease.

    PubMed

    Indrieri, Alessia; van Rahden, Vanessa Alexandra; Tiranti, Valeria; Morleo, Manuela; Iaconis, Daniela; Tammaro, Roberta; D'Amato, Ilaria; Conte, Ivan; Maystadt, Isabelle; Demuth, Stephanie; Zvulunov, Alex; Kutsche, Kerstin; Zeviani, Massimo; Franco, Brunella

    2012-11-01

    Microphthalmia with linear skin lesions (MLS) is an X-linked dominant male-lethal disorder associated with mutations in holocytochrome c-type synthase (HCCS), which encodes a crucial player of the mitochondrial respiratory chain (MRC). Unlike other mitochondrial diseases, MLS is characterized by a well-recognizable neurodevelopmental phenotype. Interestingly, not all clinically diagnosed MLS cases have mutations in HCCS, thus suggesting genetic heterogeneity for this disorder. Among the possible candidates, we analyzed the X-linked COX7B and found deleterious de novo mutations in two simplex cases and a nonsense mutation, which segregates with the disease, in a familial case. COX7B encodes a poorly characterized structural subunit of cytochrome c oxidase (COX), the MRC complex IV. We demonstrated that COX7B is indispensable for COX assembly, COX activity, and mitochondrial respiration. Downregulation of the COX7B ortholog (cox7B) in medaka (Oryzias latipes) resulted in microcephaly and microphthalmia that recapitulated the MLS phenotype and demonstrated an essential function of complex IV activity in vertebrate CNS development. Our results indicate an evolutionary conserved role of the MRC complexes III and IV for the proper development of the CNS in vertebrates and uncover a group of mitochondrial diseases hallmarked by a developmental phenotype.

  6. Proteomic Analysis Reveals a Novel Mutator S (MutS) Partner Involved in Mismatch Repair Pathway.

    PubMed

    Chen, Zhen; Tran, Mykim; Tang, Mengfan; Wang, Wenqi; Gong, Zihua; Chen, Junjie

    2016-04-01

    The mismatch repair (MMR) family is a highly conserved group of proteins that function in correcting base-base and insertion-deletion mismatches generated during DNA replication. Disruption of this process results in characteristic microsatellite instability (MSI), repair defects, and susceptibility to cancer. However, a significant fraction of MSI-positive cancers express MMR genes at normal levels and do not carry detectable mutation in known MMR genes, suggesting that additional factors and/or mechanisms may exist to explain these MSI phenotypes in patients. To systematically investigate the MMR pathway, we conducted a proteomic analysis and identified MMR-associated protein complexes using tandem-affinity purification coupled with mass spectrometry (TAP-MS) method. The mass spectrometry data have been deposited to the ProteomeXchange with identifier PXD003014 and DOI 10.6019/PXD003014. We identified 230 high-confidence candidate interaction proteins (HCIPs). We subsequently focused on MSH2, an essential component of the MMR pathway and uncovered a novel MSH2-binding partner, WDHD1. We further demonstrated that WDHD1 forms a stable complex with MSH2 and MSH3 or MSH6,i.e.the MutS complexes. The specific MSH2/WDHD1 interaction is mediated by the second lever domain of MSH2 and Ala(1123)site of WDHD1. Moreover, we showed that, just like MSH2-deficient cells, depletion of WDHD1 also led to 6-thioguanine (6-TG) resistance, indicating that WDHD1 likely contributes to the MMR pathway. Taken together, our study uncovers new components involved in the MMR pathway, which provides candidate genes that may be responsible for the development of MSI-positive cancers.

  7. Optimization of Polymyxin B in Combination with Doripenem To Combat Mutator Pseudomonas aeruginosa.

    PubMed

    Ly, Neang S; Bulman, Zackery P; Bulitta, Jürgen B; Baron, Christopher; Rao, Gauri G; Holden, Patricia N; Li, Jian; Sutton, Mark D; Tsuji, Brian T

    2016-05-01

    Development of spontaneous mutations in Pseudomonas aeruginosa has been associated with antibiotic failure, leading to high rates of morbidity and mortality. Our objective was to evaluate the pharmacodynamics of polymyxin B combinations against rapidly evolving P. aeruginosa mutator strains and to characterize the time course of bacterial killing and resistance via mechanism-based mathematical models. Polymyxin B or doripenem alone and in combination were evaluated against six P. aeruginosa strains: wild-type PAO1, mismatch repair (MMR)-deficient (mutS and mutL) strains, and 7,8-dihydro-8-oxo-deoxyguanosine system (GO) base excision repair (BER)-deficient (mutM, mutT, and mutY) strains over 48 h. Pharmacodynamic modeling was performed using S-ADAPT and facilitated by SADAPT-TRAN. Mutator strains displayed higher mutation frequencies than the wild type (>600-fold). Exposure to monotherapy was followed by regrowth, even at high polymyxin B concentrations of up to 16 mg/liter. Polymyxin B and doripenem combinations displayed enhanced killing activity against all strains where complete eradication was achieved for polymyxin B concentrations of >4 mg/liter and doripenem concentrations of 8 mg/liter. Modeling suggested that the proportion of preexisting polymyxin B-resistant subpopulations influenced the pharmacodynamic profiles for each strain uniquely (fraction of resistance values are -8.81 log10 for the wild type, -4.71 for the mutS mutant, and -7.40 log10 for the mutM mutant). Our findings provide insight into the optimization of polymyxin B and doripenem combinations against P. aeruginosa mutator strains.

  8. Optimization of Polymyxin B in Combination with Doripenem To Combat Mutator Pseudomonas aeruginosa

    PubMed Central

    Bulman, Zackery P.; Bulitta, Jürgen B.; Baron, Christopher; Rao, Gauri G.; Holden, Patricia N.; Li, Jian; Sutton, Mark D.

    2016-01-01

    Development of spontaneous mutations in Pseudomonas aeruginosa has been associated with antibiotic failure, leading to high rates of morbidity and mortality. Our objective was to evaluate the pharmacodynamics of polymyxin B combinations against rapidly evolving P. aeruginosa mutator strains and to characterize the time course of bacterial killing and resistance via mechanism-based mathematical models. Polymyxin B or doripenem alone and in combination were evaluated against six P. aeruginosa strains: wild-type PAO1, mismatch repair (MMR)-deficient (mutS and mutL) strains, and 7,8-dihydro-8-oxo-deoxyguanosine system (GO) base excision repair (BER)-deficient (mutM, mutT, and mutY) strains over 48 h. Pharmacodynamic modeling was performed using S-ADAPT and facilitated by SADAPT-TRAN. Mutator strains displayed higher mutation frequencies than the wild type (>600-fold). Exposure to monotherapy was followed by regrowth, even at high polymyxin B concentrations of up to 16 mg/liter. Polymyxin B and doripenem combinations displayed enhanced killing activity against all strains where complete eradication was achieved for polymyxin B concentrations of >4 mg/liter and doripenem concentrations of 8 mg/liter. Modeling suggested that the proportion of preexisting polymyxin B-resistant subpopulations influenced the pharmacodynamic profiles for each strain uniquely (fraction of resistance values are −8.81 log10 for the wild type, −4.71 for the mutS mutant, and −7.40 log10 for the mutM mutant). Our findings provide insight into the optimization of polymyxin B and doripenem combinations against P. aeruginosa mutator strains. PMID:26926641

  9. Mutations Associated With Occult Hepatitis B in HIV-Positive South Africans

    PubMed Central

    Powell, Eleanor A.; Gededzha, Maemu P.; Rentz, Michael; Rakgole, Nare J.; Selabe, Selokela G.; Seleise, Tebogo A.; Mphahlele, M. Jeffrey; Blackard, Jason T.

    2015-01-01

    Occult hepatitis B is characterized by the absence of hepatitis B surface antigen (HBsAg) but the presence of HBV DNA. Because diagnosis of hepatitis B virus (HBV) typically includes HBsAg detection, occult HBV remains largely undiagnosed. Occult HBV is associated with increased risk of hepatocellular carcinoma, reactivation to chronic HBV during immune suppression, and transmission during blood transfusion and liver transplant. The mechanisms leading to occult HBV infection are unclear, although viral mutations are likely a significant factor. In this study, sera from 394 HIV-positive South Africans were tested for HBV DNA and HBsAg. For patients with detectable HBV DNA, the overlapping surface and polymerase open reading frames (ORFs) were sequenced. Occult-associated mutations—those mutations found exclusively in individuals with occult HBV infection but not in individuals with chronic HBV infection from the same cohort or GenBank references—were identified. Ninety patients (22.8%) had detectable HBV DNA. Of these, 37 had detectable HBsAg, while 53 lacked detectable surface antigen. The surface and polymerase ORFs were cloned successfully for 19 patients with chronic HBV and 30 patients with occult HBV. In total, 235 occult-associated mutations were identified. Ten occult-associated mutations were identified in more than one patient. Additionally, 15 amino acid positions had two distinct occult-associated mutations at the same residue. Occult-associated mutations were common and present in all regions of the surface and polymerase ORFs. Further study is underway to determine the effects of these mutations on viral replication and surface antigen expression in vitro. PMID:25164924

  10. New AP4B1 mutation in an African-American child associated with intellectual disability

    PubMed Central

    Lamichhane, Dronacharya

    2013-01-01

    Prevalence of intellectual disability (ID) varies from 1–3%. Genetic causes of ID are being increasingly recognized. Although multiple mutations have been identified as a cause of syndromic ID, the genetic etiology of non-syndromic ID is poorly understood. However, more than 100 loci have been mapped that are associated with non-syndromic ID. There have been a couple of reports of AP4B1 gene mutation causing severe intellectual disability, absent speech, shy character, stereotypic laughter, muscular hypotonia that progressed to spastic paraplegia, microcephaly, foot deformity, decreased muscle mass of the lower limbs, inability to walk, and growth retardation. They had structural brain abnormalities and seizures. The reported cases were from Arab families where consanguineous marriage is common. We encountered an African-American child who presented first at the age of 24 mo with language difficulties and was subsequently found to have moderate to severe intellectual disability by standardized tests. Shortly, he started to have seizures and problems with ambulation. Although he was hypotonic at the time of presentation, legs slowly became spastic at the age of 4 yr. After a thorough work up, he was found to have heterozygous mutation in the AP4B1 gene along with another missense mutation in the same gene. There has been no report of mutation in this gene in the North American population. Although AP4B1 typically is said to be an autosomal recessive disease-causing gene, our case is different in the sense that there are two mutations in the same gene one of which has never been reported before and co-exists with a known disease causing mutation. Yet, the phenotype of the case closely resembles those published previously. PMID:27625858

  11. New AP4B1 mutation in an African-American child associated with intellectual disability.

    PubMed

    Lamichhane, Dronacharya

    2013-12-01

    Prevalence of intellectual disability (ID) varies from 1-3%. Genetic causes of ID are being increasingly recognized. Although multiple mutations have been identified as a cause of syndromic ID, the genetic etiology of non-syndromic ID is poorly understood. However, more than 100 loci have been mapped that are associated with non-syndromic ID. There have been a couple of reports of AP4B1 gene mutation causing severe intellectual disability, absent speech, shy character, stereotypic laughter, muscular hypotonia that progressed to spastic paraplegia, microcephaly, foot deformity, decreased muscle mass of the lower limbs, inability to walk, and growth retardation. They had structural brain abnormalities and seizures. The reported cases were from Arab families where consanguineous marriage is common. We encountered an African-American child who presented first at the age of 24 mo with language difficulties and was subsequently found to have moderate to severe intellectual disability by standardized tests. Shortly, he started to have seizures and problems with ambulation. Although he was hypotonic at the time of presentation, legs slowly became spastic at the age of 4 yr. After a thorough work up, he was found to have heterozygous mutation in the AP4B1 gene along with another missense mutation in the same gene. There has been no report of mutation in this gene in the North American population. Although AP4B1 typically is said to be an autosomal recessive disease-causing gene, our case is different in the sense that there are two mutations in the same gene one of which has never been reported before and co-exists with a known disease causing mutation. Yet, the phenotype of the case closely resembles those published previously. PMID:27625858

  12. Mutation analysis and characterization of HSD17B2 sequence variants in breast cancer cases from French Canadian families with high risk of breast and ovarian cancer.

    PubMed

    Plourde, Marie; Manhes, Caroline; Leblanc, Gilles; Durocher, Francine; Dumont, Martine; Sinilnikova, Olga; Simard, Jacques

    2008-04-01

    Estrogen exposure is a risk factor for breast cancer. Given that HSD17B2 gene encodes an enzyme that catalyses estradiol inactivation, it appears as a good candidate breast cancer susceptibility gene. This study was designed to screen for HSD17B2 germline mutations potentially involved in breast cancer predisposition. Our re-sequencing analysis did not identify any deleterious germline mutations, and therefore mutations in HSD17B2 do not explain the clustering of breast cancer cases in non-BRCA1/2 high-risk French Canadian families. However, six sequence variants were identified, including two novel missense variants. Expression assays revealed that p.Ala111Asp and p.Gly160Arg did not alter the catalytic properties of 17beta-hydroxysteroid dehydrogenase type 2 enzyme, although p.Ala111Asp appears to affect protein stability resulting in significant decreases in the protein levels, providing valuable information on structure-function relationship.

  13. Variations and mutations in the hepatitis B virus genome and their associations with clinical characteristics

    PubMed Central

    Yano, Yoshihiko; Azuma, Takeshi; Hayashi, Yoshitake

    2015-01-01

    Hepatitis B virus (HBV) infection is major global issue, because chronic HBV infection is strongly associated with liver cancer. HBV spread worldwide with various mutations and variations. This variability, called quasispecies, is derived from no proof-reading capacity of viral reverse transcriptase. So far, thousands of studies reported that the variety of genome is closely related to the geographic distribution and clinical characteristics. Recent technological advances including capillary sequencer and next generation sequencer have made in easier to analyze mutations. The variety of HBV genome is related to not only antigenicity of HBs-antigen but also resistance to antiviral therapies. Understanding of these variations is important for the development of diagnostic tools and the appropriate therapy for chronic hepatitis B. In this review, recent publications in relation to HBV mutations and variations are updated and summarized. PMID:25848482

  14. Variations and mutations in the hepatitis B virus genome and their associations with clinical characteristics.

    PubMed

    Yano, Yoshihiko; Azuma, Takeshi; Hayashi, Yoshitake

    2015-03-27

    Hepatitis B virus (HBV) infection is major global issue, because chronic HBV infection is strongly associated with liver cancer. HBV spread worldwide with various mutations and variations. This variability, called quasispecies, is derived from no proof-reading capacity of viral reverse transcriptase. So far, thousands of studies reported that the variety of genome is closely related to the geographic distribution and clinical characteristics. Recent technological advances including capillary sequencer and next generation sequencer have made in easier to analyze mutations. The variety of HBV genome is related to not only antigenicity of HBs-antigen but also resistance to antiviral therapies. Understanding of these variations is important for the development of diagnostic tools and the appropriate therapy for chronic hepatitis B. In this review, recent publications in relation to HBV mutations and variations are updated and summarized.

  15. Regulation of the nitrate reductase operon: effect of mutations in chlA, B, D and E genes.

    PubMed

    Pascal, M C; Burini, J F; Ratouchniak, J; Chippaux, M

    1982-01-01

    Introduction of chlA, B or E mutant alleles into strains carrying fusions between the lac structural genes and the promoter of the nitrate reductase operon led to the partial or total constitutive expression of the fusion. Presence of chlD mutated alleles in the same strains did not result in constitutive expression of the fusion and allowed full induction by nitrate only in the presence of molybdenum. It is proposed that the molybdenum cofactor, Mo-X, of the nitrate reductase is also corepressor of the operon. The chlA, B and E genes would be involved in the biosynthesis of the X-moity. Mutations in these genes would give an altered X-moity which still binds to molybdenum but leads to a less efficient repressor complex; chlD gene would code for an enzyme inserting molybdenum in the X-moity of the cofactor. Mutations in chlD give an empty cofactor leading to a complex which permanently represses the operon unless molybdenum is added. PMID:6757667

  16. Congenital Recessive Methemoglobinemia Revealed in Adulthood: Description of a New Mutation in Cytochrome b5 Reductase Gene.

    PubMed

    Forestier, Alexandra; Pissard, Serge; Cretet, Justine; Mambie, Adeline; Pascal, Laurent; Cliquennois, Manuel; Cambier, Nathalie; Rose, Christian

    2015-01-01

    Methemoglobinemia can be acquired (oxidizing drugs or chemicals products) or inherited either by mutations affecting globin chains [M hemoglobins (M Hbs)] or by defects in the enzymatic system involved in the reduction of spontaneous Hb oxidation: nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase. It is encoded by the CYB5R3 gene: there are two phenotypes of autosomal recessive congenital methemoglobinemia, in type II CYB5R deficiency is generalized and affects all cells, leading to an early onset, whereas in type I, the enzyme deficiency is restricted to erythrocytes, usually discovered in infancy but not exclusively. We report a new case of methemoglobinemia discovered in a patient from Bahrain who exhibited an unknown dyspnea at the age of 37 years without trigger events or oxidizing products. We discovered a new mutation in the CYB5R3 gene: exon 9, codon 266 (delGAG) (GLU) (CYB5R3: c.726_729delGAG) in the homozygous state. Appearance of methemoglobinemia in an adult usually suggests an acquired cause but our case illustrated that it could also reveal a type I mutation of cytochrome b5 reductase. PMID:26291966

  17. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance.

    PubMed

    Walsh, S B; Dolden, T A; Moores, G D; Kristensen, M; Lewis, T; Devonshire, A L; Williamson, M S

    2001-10-01

    Acetylcholinesterase (AChE) insensitive to organophosphate and carbamate insecticides has been identified as a major resistance mechanism in numerous arthropod species. However, the associated genetic changes have been reported in the AChE genes from only three insect species; their role in conferring insecticide insensitivity has been confirmed, using functional expression, only for those in Drosophila melanogaster. The housefly, Musca domestica, was one of the first insects shown to have this mechanism; here we report the occurrence of five mutations (Val-180-->Leu, Gly-262-->Ala, Gly-262-->Val, Phe-327-->Tyr and Gly-365-->Ala) in the AChE gene of this species that, either singly or in combination, confer different spectra of insecticide resistance. The baculovirus expression of wild-type and mutated housefly AChE proteins has confirmed that the mutations each confer relatively modest levels of insecticide insensitivity except the novel Gly-262-->Val mutation, which results in much stronger resistance (up to 100-fold) to certain compounds. In all cases the effects of mutation combinations are additive. The mutations introduce amino acid substitutions that are larger than the corresponding wild-type residues and are located within the active site of the enzyme, close to the catalytic triad. The likely influence of these substitutions on the accessibility of the different types of inhibitor and the orientation of key catalytic residues are discussed in the light of the three-dimensional structures of the AChE protein from Torpedo californica and D. melanogaster. PMID:11563981

  18. A recurrent dominant negative E47 mutation causes agammaglobulinemia and BCR(-) B cells.

    PubMed

    Boisson, Bertrand; Wang, Yong-Dong; Bosompem, Amma; Ma, Cindy S; Lim, Annick; Kochetkov, Tatiana; Tangye, Stuart G; Casanova, Jean-Laurent; Conley, Mary Ellen

    2013-11-01

    Approximately 90% of patients with isolated agammaglobulinemia and failure of B cell development have mutations in genes required for signaling through the pre–B cell and B cell receptors. The nature of the gene defect in the majority of remaining patients is unknown. We recently identified 4 patients with agammaglobulinemia and markedly decreased numbers of peripheral B cells. The B cells that could be detected had an unusual phenotype characterized by the increased expression of CD19 but the absence of a B cell receptor. Genetic studies demonstrated that all 4 patients had the exact same de novo mutation in the broadly expressed transcription factor E47. The mutant protein (E555K) was stable in patient-derived EBV-transformed cell lines and cell lines transfected with expression vectors. E555K in the transfected cells localized normally to the nucleus and resulted in a dominant negative effect when bound to DNA as a homodimer with wild-type E47. Mutant E47 did permit DNA binding by a tissue-specific heterodimeric DNA-binding partner, myogenic differentiation 1 (MYOD). These findings document a mutational hot-spot in E47 and represent an autosomal dominant form of agammaglobulinemia. Further, they indicate that E47 plays a critical role in enforcing the block in development of B cell precursors that lack functional antigen receptors. PMID:24216514

  19. Carrier Frequency of CYP1B1 Mutations in the United States (An American Ophthalmological Society Thesis)

    PubMed Central

    Wiggs, Janey L.; Langgurth, Anne M.; Allen, Keri F.

    2014-01-01

    Purpose: CYP1B1 mutations cause autosomal recessive congenital glaucoma. Disease risk assessment for families with CYP1B1 mutations requires knowledge of the population mutation carrier frequency. The purpose of this study is to determine the CYP1B1 mutation carrier frequency in clinically normal individuals residing in the United States. Because CYP1B1 mutations can exhibit variable expressivity, we hypothesize that the mutation carrier frequency is higher than expected. Methods: Two hundred fifty individuals without glaucoma or a family history of glaucoma were enrolled. CYP1B1 mutations were identified by DNA sequencing, and pathogenicity was estimated by PolyPhen-2 or a previous report of disease causality. Results: Based on the disease frequency (1 in 10,000) and prevalence of CYP1B1-related congenital glaucoma (15% to 20%), the frequency of CYP1B1-related congenital glaucoma in the United States is approximately 1 in 50,000. Assuming Hardy-Weinberg equilibrium, the expected CYP1B1 mutation carrier frequency would be 1 in 112, or 0.89%. Among the 250 study participants, 11 (4.4%) are carriers of a single pathogenic mutation, representing a carrier frequency of 1 in 22, which is 5.1 times the expected frequency. A higher-than-expected carrier frequency (1 in 33, 3.0%) was also observed in 4300 white individuals sequenced by the National Heart Lung and Blood Institute Exome Sequencing Project. Conclusions: Our results show that the CYP1B1 mutation carrier frequency in the US population is between 1 in 22 and 1 in 33, which is 5.1 to 3.4 times the expected frequency. These results suggest that more individuals than expected are carriers of a deleterious CYP1B1 mutation, and that the prevalence of CYP1B1-related disease may be higher than expected. PMID:25646030

  20. The prevalence of mutations in the major hydrophilic region of the surface antigen of hepatitis B virus varies with subgenotype.

    PubMed

    Wang, X Y; Harrison, T J; He, X; Chen, Q Y; Li, G J; Liu, M H; Li, H; Yang, J Y; Fang, Z L

    2015-12-01

    Mutations in the major hydrophilic region (MHR) of the surface antigen of hepatitis B virus (HBV) may result in vaccine escape, failure of immunotherapy and antiviral resistance. These mutants may be transmitted and constitute a public health threat. We aimed to determine the prevalence of MHR mutations of HBV in areas of high endemicity in Guangxi, China. HBV surface gene was analysed from 278 HBsAg-positive asymptomatic individuals recruited from Guangxi using cluster sampling. Three genotypes, B, C and I, were identified. The overall prevalence of MHR mutations is 17·6%. The prevalence of MHR mutations in genotype B (15·1%) is not significantly different from that in genotype C (16·4%). However, the prevalence in subgenotype C5 (31·1%) is significantly higher than in subgenotype C2 (13·0%) (χ 2 = 6·997, P < 0·05). The prevalence of escape mutations and overlapping polymerase substitutions in subgenotype C5 is significantly higher than in subgenotypes B2 and C2. In total, 7·9% of MHR mutants are escape mutations and 72·1% of MHR mutations produced amino-acid changes in the overlapping polymerase, including resistance mutations to entecavir. Our results suggest that the prevalence of MHR mutations varies with subgenotype. The prevalence of escape mutations and polymerase mutations may be associated with subgenotype.

  1. PMCA4 (ATP2B4) Mutation in Familial Spastic Paraplegia

    PubMed Central

    Tse, Zero Ho-Man; Kung, Michelle Hiu-Wai; Sham, Pak-Chung; Ho, Shu-Leong

    2014-01-01

    Familial spastic paraplegia (FSP) is a heterogeneous group of disorders characterized primarily by progressive lower limb spasticity and weakness. More than 50 disease loci have been described with different modes of inheritance. In this study, we identified a novel missense mutation (c.803G>A, p.R268Q) in the plasma membrane calcium ATPase (PMCA4, or ATP2B4) gene in a Chinese family with autosomal dominant FSP using whole-exome sequencing and confirmed with Sanger sequencing. This mutation co-segregated with the phenotype in the six family members studied and is predicted to be pathogenic when multiple deleteriousness predictions were combined. This novel R268Q mutation was not present in over 7,000 subjects in public databases, and over 1,000 Han Chinese in our database. Prediction of potential functional consequence of R268Q mutation on PMCA4 by computational modeling revealed that this mutation is located in protein aggregation-prone segment susceptible to protein misfolding. Analysis for thermodynamic protein stability indicated that this mutation destabilizes the PMCA4 protein structure with higher folding free energy. As PMCA4 functions to maintain neuronal calcium homeostasis, our result showed that calcium dysregulation may be associated with the pathogenesis of FSP. PMID:25119969

  2. Lamivudine/Adefovir Treatment Increases the Rate of Spontaneous Mutation of Hepatitis B Virus in Patients

    PubMed Central

    Pereira-Gómez, Marianoel; Bou, Juan-Vicente; Andreu, Iván; Sanjuán, Rafael

    2016-01-01

    The high levels of genetic diversity shown by hepatitis B virus (HBV) are commonly attributed to the low fidelity of its polymerase. However, the rate of spontaneous mutation of human HBV in vivo is currently unknown. Here, based on the evolutionary principle that the population frequency of lethal mutations equals the rate at which they are produced, we have estimated the mutation rate of HBV in vivo by scoring premature stop codons in 621 publicly available, full-length, molecular clone sequences derived from patients. This yielded an estimate of 8.7 × 10−5 spontaneous mutations per nucleotide per cell infection in untreated patients, which should be taken as an upper limit estimate because PCR errors and/or lack of effective lethality may inflate observed mutation frequencies. We found that, in patients undergoing lamivudine/adefovir treatment, the HBV mutation rate was elevated by more than sixfold, revealing a mutagenic effect of this treatment. Genome-wide analysis of single-nucleotide polymorphisms indicated that lamivudine/adefovir treatment increases the fraction of A/T-to-G/C base substitutions, consistent with recent work showing similar effects of lamivudine in cellular DNA. Based on these data, the rate at which HBV produces new genetic variants in treated patients is similar to or even higher than in RNA viruses. PMID:27649318

  3. Lamivudine/Adefovir Treatment Increases the Rate of Spontaneous Mutation of Hepatitis B Virus in Patients.

    PubMed

    Pereira-Gómez, Marianoel; Bou, Juan-Vicente; Andreu, Iván; Sanjuán, Rafael

    2016-01-01

    The high levels of genetic diversity shown by hepatitis B virus (HBV) are commonly attributed to the low fidelity of its polymerase. However, the rate of spontaneous mutation of human HBV in vivo is currently unknown. Here, based on the evolutionary principle that the population frequency of lethal mutations equals the rate at which they are produced, we have estimated the mutation rate of HBV in vivo by scoring premature stop codons in 621 publicly available, full-length, molecular clone sequences derived from patients. This yielded an estimate of 8.7 × 10-5 spontaneous mutations per nucleotide per cell infection in untreated patients, which should be taken as an upper limit estimate because PCR errors and/or lack of effective lethality may inflate observed mutation frequencies. We found that, in patients undergoing lamivudine/adefovir treatment, the HBV mutation rate was elevated by more than sixfold, revealing a mutagenic effect of this treatment. Genome-wide analysis of single-nucleotide polymorphisms indicated that lamivudine/adefovir treatment increases the fraction of A/T-to-G/C base substitutions, consistent with recent work showing similar effects of lamivudine in cellular DNA. Based on these data, the rate at which HBV produces new genetic variants in treated patients is similar to or even higher than in RNA viruses. PMID:27649318

  4. FosB null mutant mice show enhanced methamphetamine neurotoxicity: potential involvement of FosB in intracellular feedback signaling and astroglial function.

    PubMed

    Kuroda, Kumi O; Ornthanalai, Veravej G; Kato, Tadafumi; Murphy, Niall P

    2010-02-01

    Previous studies show that (1) two members of fos family transcription factors, c-Fos and FosB, are induced in frontal brain regions by methamphetamine; (2) null mutation of c-Fos exacerbates methamphetamine-induced neurotoxicity; and (3) null mutation of FosB enhances behavioral responses to cocaine. Here we sought a role of FosB in responses to methamphetamine by studying FosB null mutant (-/-) mice. After a 10 mg/kg methamphetamine injection, FosB(-/-) mice were more prone to self-injury. Concomitantly, the intracellular feedback regulators of Sprouty and Rad-Gem-Kir (RGK) family transcripts had lower expression profiles in the frontoparietal cortex and striatum of the FosB(-/-) mice. Three days after administration of four 10 mg/kg methamphetamine injections, the frontoparietal cortex and striatum of FosB(-/-) mice contained more degenerated neurons as determined by Fluoro-Jade B staining. The abundance of the small neutral amino acids, serine, alanine, and glycine, was lower and/or was poorly induced after methamphetamine administration in the frontoparietal cortex and striatum of FosB(-/-) mice. In addition, methamphetamine-treated FosB(-/-) frontoparietal and piriform cortices showed more extravasation of immunoglobulin, which is indicative of blood-brain barrier dysfunction. Methamphetamine-induced hyperthermia, brain dopamine content, and loss of tyrosine hydroxylase immunoreactivity in the striatum, however, were not different between genotypes. These data indicate that FosB is involved in thermoregulation-independent protective functions against methamphetamine neurotoxicity in postsynaptic neurons. Our findings suggest two possible mechanisms of FosB-mediated neuroprotection: one is induction of negative feedback regulation within postsynaptic neurons through Sprouty and RGK. Another is supporting astroglial function such as maintenance of the blood-brain barrier, and metabolism of serine and glycine, which are important glial modulators of nerve cells

  5. Diversity and Convergence of Sodium Channel Mutations Involved in Resistance to Pyrethroids

    PubMed Central

    Rinkevich, Frank D.; Du, Yuzhe; Dong, Ke

    2013-01-01

    Pyrethroid insecticides target voltage-gated sodium channels, which are critical for electrical signaling in the nervous system. The intensive use of pyrethroids in controlling arthropod pests and disease vectors has led to many instances of pyrethroid resistance around the globe. In the past two decades, studies have identified a large number of sodium channel mutations that are associated with resistance to pyrethroids. The purpose of this review is to summarize both common and unique sodium channel mutations that have been identified in arthropod pests of importance to agriculture or human health. Identification of these mutations provides valuable molecular markers for resistance monitoring in the field and helped the discovery of the elusive pyrethroid receptor site(s) on the sodium channel. PMID:24019556

  6. Mutation of fibulin-1 causes a novel syndrome involving the central nervous system and connective tissues.

    PubMed

    Bohlega, Saeed; Al-Ajlan, Huda; Al-Saif, Amr

    2014-05-01

    Fibulin-1 is an extracellular matrix protein that has an important role in the structure of elastic fibers and basement membranes of various tissues. Using homozygosity mapping and exome sequencing, we discovered a missense mutation, p.(Cys397Phe), in fibulin-1 in three patients from a consanguineous family presented with a novel syndrome of syndactyly, undescended testes, delayed motor milestones, mental retardation and signs of brain atrophy. The mutation discovered segregated with the phenotype and was not found in 374 population-matched alleles. The affected cysteine is highly conserved across vertebrates and its mutation is predicted to abolish a disulfide bond that defines the tertiary structure of fibulin-1. Our findings emphasize the crucial role fibulin-1 has in development of the central nervous system and various connective tissues.

  7. Expanding the clinical spectrum of B4GALT7 deficiency: homozygous p.R270C mutation with founder effect causes Larsen of Reunion Island syndrome.

    PubMed

    Cartault, François; Munier, Patrick; Jacquemont, Marie-Line; Vellayoudom, Jeannine; Doray, Bérénice; Payet, Christine; Randrianaivo, Hanitra; Laville, Jean-Marc; Munnich, Arnold; Cormier-Daire, Valérie

    2015-01-01

    First described as a variant of Larsen syndrome in Reunion Island (LRS) in the southern Indian Ocean, 'Larsen of Reunion Island syndrome' is characterized by dwarfism, hyperlaxity, multiple dislocations and distinctive facial features. It overlaps with Desbuquois dysplasia, Larsen syndrome and spondyloepiphyseal dysplasia with dislocations ascribed to CANT1, FLNB and CHST3 mutations, respectively. We collected the samples of 22 LRS cases. After exclusion of CANT1, FLNB and CHST3 genes, an exome sequencing was performed in two affected second cousins and one unaffected sister. We identified a homozygous missense mutation in B4GALT7, NM_007255.2: c.808C>T p.(Arg270Cys) named p.R270C, in the two affected cases, not present in the unaffected sister. The same homozygous mutation was subsequently identified in the remaining 20 LRS cases. Our findings demonstrate that B4GALT7 is the causative gene for LRS. The identification of a unique homozygous mutation argues in favor of a founder effect. B4GALT7 encodes a galactosyltransferase, required for the initiation of glycoaminoglycan side chain synthesis of proteoglycans. This study expands the phenotypic spectrum of B4GALT7 mutations, initially described as responsible for the progeroid variant of Ehlers-Danlos syndrome. It further supports a common physiopathological basis involving proteoglycan synthesis in skeletal disorders with dislocations. PMID:24755949

  8. Expanding the clinical spectrum of B4GALT7 deficiency: homozygous p.R270C mutation with founder effect causes Larsen of Reunion Island syndrome

    PubMed Central

    Cartault, François; Munier, Patrick; Jacquemont, Marie-Line; Vellayoudom, Jeannine; Doray, Bérénice; Payet, Christine; Randrianaivo, Hanitra; Laville, Jean-Marc; Munnich, Arnold; Cormier-Daire, Valérie

    2015-01-01

    First described as a variant of Larsen syndrome in Reunion Island (LRS) in the southern Indian Ocean, ‘Larsen of Reunion Island syndrome' is characterized by dwarfism, hyperlaxity, multiple dislocations and distinctive facial features. It overlaps with Desbuquois dysplasia, Larsen syndrome and spondyloepiphyseal dysplasia with dislocations ascribed to CANT1, FLNB and CHST3 mutations, respectively. We collected the samples of 22 LRS cases. After exclusion of CANT1, FLNB and CHST3 genes, an exome sequencing was performed in two affected second cousins and one unaffected sister. We identified a homozygous missense mutation in B4GALT7, NM_007255.2: c.808C>T p.(Arg270Cys) named p.R270C, in the two affected cases, not present in the unaffected sister. The same homozygous mutation was subsequently identified in the remaining 20 LRS cases. Our findings demonstrate that B4GALT7 is the causative gene for LRS. The identification of a unique homozygous mutation argues in favor of a founder effect. B4GALT7 encodes a galactosyltransferase, required for the initiation of glycoaminoglycan side chain synthesis of proteoglycans. This study expands the phenotypic spectrum of B4GALT7 mutations, initially described as responsible for the progeroid variant of Ehlers–Danlos syndrome. It further supports a common physiopathological basis involving proteoglycan synthesis in skeletal disorders with dislocations. PMID:24755949

  9. Apolipoprotein B-100 containing lipoprotein metabolism in subjects with lipoprotein lipase gene mutations (106/120)

    PubMed Central

    Ooi, Esther M M; Russell, Betsy S; Olson, Eric; Sun, Sam Z; Diffenderfer, Margaret R; Lichtenstein, Alice H; Keilson, Leonard; Barrett, P Hugh R; Schaefer, Ernst J; Sprecher, Dennis L

    2012-01-01

    Objective We investigated the impact of lipoprotein lipase (LPL) gene mutations on apolipoprotein (apo) B-100 metabolism. Methods and Results We studied 3 subjects with familial LPL deficiency (FLD), 14 subjects heterozygous for the LPL gene mutations, Gly188Glu, Trp64Stop and Ile194Thr, and 10 control subjects. Very-low density lipoprotein (VLDL), intermediate-density lipoprotein (IDL) and low-density lipoprotein (LDL)-apoB-100 kinetics were determined in the fed state using stable isotope methods and compartmental modeling. Compared with controls, FLD had markedly elevated plasma triglycerides and lower VLDL-apoB-100 fractional catabolic rate (FCR), IDL-apoB-100 FCR, VLDL-to-IDL conversion and VLDL-apoB-100 production rate (PR) (p<0.01). Compared with controls, Gly188Glu had higher plasma triglyceride, VLDL- and IDL-apoB-100 concentrations, and lower VLDL- and IDL-apoB-100 FCR (p<0.05). Plasma triglycerides were not different but IDL-apoB-100 concentration and PR, and VLDL-to-IDL conversion were lower in Trp64Stop compared with controls (p<0.05). No differences between controls and Ile194Thr were observed. Conclusions Our results confirm that hypertriglyceridemia is a key feature of familial LPL deficiency. This is due to impaired VLDL- and IDL-apoB-100 catabolism and VLDL-to-IDL conversion. Single allele mutations of the LPL gene result in modest to elevated plasma triglycerides. The changes in plasma triglycerides and apoB-100 kinetics are attributable to the effects of the LPL genotype. PMID:22095987

  10. Further defining the phenotypic spectrum of B4GALT7 mutations.

    PubMed

    Salter, Claire G; Davies, Justin H; Moon, Rebecca J; Fairhurst, Joanna; Bunyan, David; Foulds, Nicola

    2016-06-01

    Proteoglycans are components of the extracellular matrix with diverse biological functions. Defects in proteoglycan synthesis have been linked to several human diseases with common features of short stature, hypermobility, joint dislocations, and skeletal dysplasia. B4GALT7 encodes galactosyltransferase-I that catalyzes the addition of a galactose moiety to a xylosyl group in the tetrasaccharide linker of proteoglycans. Mutations in this gene have been associated with the rare progeroid form of Ehlers Danlos syndrome and in addition more recently found to underlie Larsen of Reunion Island syndrome. Nine individuals have been reported with a diagnosis of the progeroid form of Ehlers Danlos syndrome, four of whom have had molecular characterization showing homozygous or compound heterozygous mutations in B4GALT7. We report two newly described patients with compound heterozygous mutations in B4GALT7, and show that the six individuals with confirmed mutations do not have the progeroid features described in the original five patients with a clinical diagnosis of the progeroid form of Ehlers Danlos syndrome. We suggest that galactosyltransferase-I deficiency does not cause the progeroid form of Ehlers Danlos syndrome, but instead results in a clinically recognizable syndrome comprising short stature, joint hypermobility, radioulnar synostosis, and severe hypermetropia. This group of syndromic patients are on a phenotypic spectrum with individuals who have Larsen of Reunion Island syndrome, although the key features of osteopenia, fractures and hypermetropia have not been reported in patients from Reunion Island. © 2016 Wiley Periodicals, Inc.

  11. Novel CYP1B1 mutations in consanguineous Pakistani families with primary congenital glaucoma

    PubMed Central

    Firasat, Sabika; Khan, Shaheen N.

    2008-01-01

    Purpose To identify the disease-causing mutations in three consanguineous Pakistani families with multiple members affected by primary congenital glaucoma. Methods Blood samples were collected, and DNA was extracted. Linkage analysis for reported primary congenital glaucoma loci was performed using closely spaced polymorphic microsatellite markers on genomic DNA from affected and unaffected family members. All coding exons, the exon-intron boundaries, and the 5′ untranslated region of CYP1B1 were sequenced. Results The alleles of chromosome 2p markers segregate with the disease phenotype in all three families with positive LOD scores. The sequencing results identified three novel mutations (L177R, L487P, and D374E) and one previously reported mutation (E229K) in CYP1B1 that segregate with the disease phenotype in their respective families. None of these sequence variations were present in 96 ethnically matched control samples. Conclusions These results strongly suggest that missense mutations in CYP1B1 are most likely to be responsible for primary congenital glaucoma in these families. PMID:18989382

  12. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome

    PubMed Central

    de Jorge, Elena Goicoechea; Harris, Claire L.; Esparza-Gordillo, Jorge; Carreras, Luis; Arranz, Elena Aller; Garrido, Cynthia Abarrategui; López-Trascasa, Margarita; Sánchez-Corral, Pilar; Morgan, B. Paul; de Córdoba, Santiago Rodríguez

    2007-01-01

    Hemolytic uremic syndrome (HUS) is an important cause of acute renal failure in children. Mutations in one or more genes encoding complement-regulatory proteins have been reported in approximately one-third of nondiarrheal, atypical HUS (aHUS) patients, suggesting a defect in the protection of cell surfaces against complement activation in susceptible individuals. Here, we identified a subgroup of aHUS patients showing persistent activation of the complement alternative pathway and found within this subgroup two families with mutations in the gene encoding factor B (BF), a zymogen that carries the catalytic site of the complement alternative pathway convertase (C3bBb). Functional analyses demonstrated that F286L and K323E aHUS-associated BF mutations are gain-of-function mutations that result in enhanced formation of the C3bBb convertase or increased resistance to inactivation by complement regulators. These data expand our understanding of the genetic factors conferring predisposition to aHUS, demonstrate the critical role of the alternative complement pathway in the pathogenesis of aHUS, and provide support for the use of complement-inhibition therapies to prevent or reduce tissue damage caused by dysregulated complement activation. PMID:17182750

  13. Further defining the phenotypic spectrum of B4GALT7 mutations.

    PubMed

    Salter, Claire G; Davies, Justin H; Moon, Rebecca J; Fairhurst, Joanna; Bunyan, David; Foulds, Nicola

    2016-06-01

    Proteoglycans are components of the extracellular matrix with diverse biological functions. Defects in proteoglycan synthesis have been linked to several human diseases with common features of short stature, hypermobility, joint dislocations, and skeletal dysplasia. B4GALT7 encodes galactosyltransferase-I that catalyzes the addition of a galactose moiety to a xylosyl group in the tetrasaccharide linker of proteoglycans. Mutations in this gene have been associated with the rare progeroid form of Ehlers Danlos syndrome and in addition more recently found to underlie Larsen of Reunion Island syndrome. Nine individuals have been reported with a diagnosis of the progeroid form of Ehlers Danlos syndrome, four of whom have had molecular characterization showing homozygous or compound heterozygous mutations in B4GALT7. We report two newly described patients with compound heterozygous mutations in B4GALT7, and show that the six individuals with confirmed mutations do not have the progeroid features described in the original five patients with a clinical diagnosis of the progeroid form of Ehlers Danlos syndrome. We suggest that galactosyltransferase-I deficiency does not cause the progeroid form of Ehlers Danlos syndrome, but instead results in a clinically recognizable syndrome comprising short stature, joint hypermobility, radioulnar synostosis, and severe hypermetropia. This group of syndromic patients are on a phenotypic spectrum with individuals who have Larsen of Reunion Island syndrome, although the key features of osteopenia, fractures and hypermetropia have not been reported in patients from Reunion Island. © 2016 Wiley Periodicals, Inc. PMID:26940150

  14. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers

    PubMed Central

    Finch, N.; Carrasquillo, M.M.; Baker, M.; Rutherford, N.J.; Coppola, G.; DeJesus-Hernandez, M.; Crook, R.; Hunter, T.; Ghidoni, R.; Benussi, L.; Crook, J.; Finger, E.; Hantanpaa, K.J.; Karydas, A.M.; Sengdy, P.; Gonzalez, J.; Seeley, W.W.; Johnson, N.; Beach, T.G.; Mesulam, M.; Forloni, G.; Kertesz, A.; Knopman, D.S.; Uitti, R.; White, C.L.; Caselli, R.; Lippa, C.; Bigio, E.H.; Wszolek, Z.K.; Binetti, G.; Mackenzie, I.R.; Miller, B.L.; Boeve, B.F.; Younkin, S.G.; Dickson, D.W.; Petersen, R.C.; Graff-Radford, N.R.; Geschwind, D.H.

    2011-01-01

    Objectives: To determine whether TMEM106B single nucleotide polymorphisms (SNPs) are associated with frontotemporal lobar degeneration (FTLD) in patients with and without mutations in progranulin (GRN) and to determine whether TMEM106B modulates GRN expression. Methods: We performed a case-control study of 3 SNPs in TMEM106B in 482 patients with clinical and 80 patients with pathologic FTLD–TAR DNA-binding protein 43 without GRN mutations, 78 patients with FTLD with GRN mutations, and 822 controls. Association analysis of TMEM106B with GRN plasma levels was performed in 1,013 controls and TMEM106B and GRN mRNA expression levels were correlated in peripheral blood samples from 33 patients with FTLD and 150 controls. Results: In our complete FTLD patient cohort, nominal significance was identified for 2 TMEM106B SNPs (top SNP rs1990622, pallelic = 0.036). However, the most significant association with risk of FTLD was observed in the subgroup of GRN mutation carriers compared to controls (corrected pallelic = 0.0009), where there was a highly significant decrease in the frequency of homozygote carriers of the minor alleles of all TMEM106B SNPs (top SNP rs1990622, CC genotype frequency 2.6% vs 19.1%, corrected precessive = 0.009). We further identified a significant association of TMEM106B SNPs with plasma GRN levels in controls (top SNP rs1990622, corrected p = 0.002) and in peripheral blood samples a highly significant correlation was observed between TMEM106B and GRN mRNA expression in patients with FTLD (r = −0.63, p = 7.7 × 10−5) and controls (r = −0.49, p = 2.2 × 10−10). Conclusions: In our study, TMEM106B SNPs significantly reduced the disease penetrance in patients with GRN mutations, potentially by modulating GRN levels. These findings hold promise for the development of future protective therapies for FTLD. PMID:21178100

  15. RAB39B gene mutations are not linked to familial Parkinson’s disease in China

    PubMed Central

    Kang, Ji-feng; Luo, Yang; Tang, Bei-sha; Wan, Chang-min; Yang, Yang; Li, Kai; Liu, Zhen-hua; Sun, Qi-ying; Xu, Qian; Yan, Xin-xiang; Guo, Ji-feng

    2016-01-01

    Recently, RAB39B mutations were reported to be a causative factor in patients with Parkinson’s disease (PD). To validate the role of RAB39B in familial PD, a total of 195 subjects consisting of 108 PD families with autosomal-dominant (AD) inheritance and 87 PD families with autosomal-recessive (AR) inheritance in the Chinese Han population from mainland China were included in this study. We did not identify any variants in the coding region or the exon-intron boundaries of the gene by Sanger sequencing method in the DNA samples of 180 patients (100 with AD and 80 with AR). Furthermore, we did not find any variants in the RAB39B gene when Whole-exome sequencing (WES) was applied to DNA samples from 15 patients (8 with AD and 7 with AR) for further genetic analysis. Additionally, when quantitative real-time PCR was used to exclude large rearrangement variants in these patients, we found no dosage mutations in RAB39B gene. Our results suggest that RAB39B mutation is very rare in familial PD and may not be a major cause of familial PD in the Chinese Han Population. PMID:27694831

  16. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients.

    PubMed

    Jeromin, S; Weissmann, S; Haferlach, C; Dicker, F; Bayer, K; Grossmann, V; Alpermann, T; Roller, A; Kohlmann, A; Haferlach, T; Kern, W; Schnittger, S

    2014-01-01

    We analyzed a large cohort of 1160 untreated CLL patients for novel genetic markers (SF3B1, NOTCH1, FBXW7, MYD88, XPO1) in the context of molecular, immunophenotypic and cytogenetic data. NOTCH1 mutations (mut) (12.3%), SF3B1mut (9.0%) and TP53mut (7.1%) were more frequent than XPO1mut (3.4%), FBXW7mut (2.5%) and MYD88mut (1.5%). SF3B1mut, NOTCH1mut, TP53mut and XPO1mut were highly correlated to unmutated, whereas MYD88mut were associated with mutated IGHV status. Associations of diverse cytogenetic aberrations and mutations emerged: (1) SF3B1mut with del(11q), (2) NOTCH1mut and FBXW7mut with trisomy 12 and nearly exclusiveness of SF3B1mut, (3) MYD88mut with del(13q) sole and low frequencies of SF3B1mut, NOTCH1mut and FBXW7mut. In patients with normal karyotype only SF3B1mut were frequent, whereas NOTCH1mut rarely occurred. An adverse prognostic impact on time to treatment (TTT) and overall survival (OS) was observed for SF3B1mut, NOTCH1mut and TP53 disruption. In multivariate analyses SF3B1mut, IGHV mutational status and del(11q) were the only independent genetic markers for TTT, whereas for OS SF3B1mut, IGHV mutational status and TP53 disruption presented with significant impact. Finally, our data suggest that analysis of gene mutations refines the risk stratification of cytogenetic prognostic subgroups and confirms data of a recently proposed model integrating molecular and cytogenetic data. PMID:24113472

  17. Geographical profile of rpoB gene mutations in rifampicin resistant Mycobacterium tuberculosis isolates in Sri Lanka.

    PubMed

    Adikaram, Chamila Priyangani; Perera, Jennifer; Wijesundera, Sandhya Sulochana

    2012-10-01

    The nature and frequency of mutations in the rpoB gene of rifampicin (RIF) resistant Mycobacterium tuberculosis clinical isolates varies considerably between different geographical regions. The objective of the present study was the identification of rpoB gene mutations responsible for RIF resistance in M. tuberculosis isolates in Sri Lanka. Three regions of the rpoB gene of M. tuberculosis, one corresponding to a 437-bp region, including the rifampicin resistance-determining region (RRDR) and two other regions (1395 bp and 872 bp) spanning the RRDR, were polymerase chain reaction amplified, and were subjected to DNA sequencing. The two mutations found within the RRDR in the 31 RIF resistant strains isolated in this study were at codon 526 (n=15, 48.4%) CAC (His)→TAC (Tyr) and codon 531 (n=3, 9.7%) TCG (Ser)→TTG (Leu). A significant proportion (n=15, 48.3%) showed mutations spanning the RRDR, including two novel mutations at codon 626 (n=13, 41.9%) GAC (Asp)→GAG (Glu) and 184 (n=2, 6.4%) GAC (Asp)→GAT (Asp), a silent mutation. Two isolates revealed double mutations (codons 626+526 and 626+184). The presence of a high frequency of new mutations, and the different frequencies of the universally prevailing mutations, as reported here, emphasizes the need for expanding the geographical database of mutations for effective application of an rpoB-based diagnosis of multidrug resistant tuberculosis. PMID:22731859

  18. Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression

    PubMed Central

    Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D.; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario

    2016-01-01

    The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma. Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines. We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK. Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%. Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression. Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants. In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression. PMID:27009842

  19. Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression.

    PubMed

    Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario

    2016-04-19

    The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma.Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines.We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK.Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%.Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression.Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants.In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression. PMID:27009842

  20. Mutations, kataegis, and translocations in B lymphocytes: towards a mechanistic understanding of AID promiscuous activity

    PubMed Central

    Casellas, Rafael; Basu, Uttiya; Yewdell, William T.; Chaudhuri, Jayanta; Robbiani, Davide F.; Di Noia, Javier M.

    2016-01-01

    As B cells engage in the immune response they express the deaminase AID to initiate the hypermutation and recombination of immunoglobulin genes, which are crucial processes for the efficient recognition and disposal of pathogens, However, AID must be tightly controlled in B cells to minimize off-targeting mutations, which can drive chromosomal translocations and the development of B cell malignancies, such as lymphomas. Recent genomic and biochemical analyses have begun to unravel the crucial question of how AID-mediated deamination is targeted outside immunoglobulin genes. Here, we discuss the transcriptional and topological features that are emerging as key drivers of AID promiscuous activity. PMID:26898111

  1. Compensatory variances of drug-induced hepatitis B virus YMDD mutations.

    PubMed

    Cai, Ying; Wang, Ning; Wu, Xiaomei; Zheng, Kai; Li, Yan

    2016-01-01

    Although the drug-induced mutations of HBV have been ever documented, the evolutionary mechanism is still obscure. To deeply reveal molecular characters of HBV evolution under the special condition, here we made a comprehensive investigation of the molecular variation of the 3432 wild-type sequences and 439 YMDD variants from HBV genotype A, B, C and D, and evaluated the co-variant patterns and the frequency distribution in the different YMDD mutation types and genotypes, by using the naïve Bayes classification algorithm and the complete induction method based on the comparative sequence analysis. The data showed different compensatory changes followed by the rtM204I/V. Although occurrence of the YMDD mutation itself was not related to the HBV genotypes, the subsequence co-variant patterns were related to the YMDD variant types and HBV genotypes. From the hierarchy view, we clarified that historical mutations, drug-induced mutation and compensatory variances, and displayed an inter-conditioned relationship of amino acid variances during multiple evolutionary processes. This study extends the understanding of the polymorphism and fitness of viral protein. PMID:27588233

  2. Multiplex polymerase chain reaction analysis of UV-A- and UV-B-induced delayed and early mutations in V79 Chinese hamster cells.

    PubMed

    Dahle, Jostein; Noordhuis, Paul; Stokke, Trond; Svendsrud, Debbie Hege; Kvam, Egil

    2005-01-01

    We previously reported that approximately 10% of V79 Chinese hamster fibroblast populations clonally derived from single cells immediately after irradiation with either ultraviolet B (UV-B, 290-320 nm, mainly 311 nm) or ultraviolet A (UV-A, 320-400 nm, mainly 350-390 nm) radiation exhibit genomic instability. The instability is revealed by relatively high mutation frequencies in the hypoxanthine phosphoribosyl transferase (hprt) gene up to 23 cell generations after irradiation. These delayed mutant clones exhibited higher levels of oxidative stress than normal cells. Therefore, persistently increased oxidative stress has been proposed as a mechanism for UV-induced genomic instability. This study investigates whether this mechanism is reflected in the deletion spectrum of delayed mutant clones. Eighty-eight percent of the delayed mutant clones derived from UV-A-irradiated populations were found to have total deletion of the hprt gene. Correspondingly, 81% of UV-A-induced early mutations (i.e. detected shortly after irradiation) also had total deletions. Among delayed UV-B-induced mutant clones, 23% had total deletions and 8% had deletion of one exon, whereas all early UV-B events were either point mutations or small deletions or insertions. In conclusion, the multiplex polymerase chain reaction deletion screen showed that there were explicit differences in the occurrence of large gene alterations between early and delayed mutations induced by UV-B radiation. For UV-A radiation the deletion spectra were similar for delayed and early mutations. UV-A radiation is, in contrast to UV-B radiation, only weakly absorbed by DNA and probably induces mutation almost solely via production of reactive oxygen species. Therefore, the present results support the hypothesis that persistent increase in oxidative stress is involved in the mechanism of UV-induced genomic instability.

  3. Novel activating JAK2 mutation in a patient with Down syndrome and B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Malinge, Sebastien; Ben-Abdelali, Raouf; Settegrana, Catherine; Radford-Weiss, Isabelle; Debre, Marianne; Beldjord, Kheira; Macintyre, Elizabeth A; Villeval, Jean-Luc; Vainchenker, William; Berger, Roland; Bernard, Olivier A; Delabesse, Eric; Penard-Lacronique, Virginie

    2007-03-01

    Activation of tyrosine kinase genes is a frequent event in human hematologic malignancies. Because gene activation could be associated with gene dysregulation, we attempted to screen for activating gene mutation based on high-level gene expression. We focused our study on the Janus kinase 2 (JAK2) gene in 90 cases of acute leukemia. This strategy led to the identification of a novel JAK2-acquired mutation in a patient with Down syndrome (DS) with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This mutation involves a 5-amino acid deletion within the JH2 pseudokinase domain (JAK2DeltaIREED). Expression of JAK2DeltaIREED in Ba/F3 cells induced constitutive activation of the JAK-STAT pathway and growth factor-independent cell proliferation. These results highlight the JAK2 pseudokinase domain as an oncogenic hot spot and indicate that activation of the JAK-STAT pathway may contribute to lymphoid malignancies and hematologic disorders observed in children with DS.

  4. Mutations in core nucleotide sequence of hepatitis B virus correlate with fulminant and severe hepatitis.

    PubMed Central

    Ehata, T; Omata, M; Chuang, W L; Yokosuka, O; Ito, Y; Hosoda, K; Ohto, M

    1993-01-01

    Infection with hepatitis B virus leads to a wide spectrum of liver injury, including self-limited acute hepatitis, fulminant hepatitis, and chronic hepatitis with progression to cirrhosis or acute exacerbation to liver failure, as well as an asymptomatic chronic carrier state. Several studies have suggested that the hepatitis B core antigen could be an immunological target of cytotoxic T lymphocytes. To investigate the reason why the extreme immunological attack occurred in fulminant hepatitis and severe exacerbation patients, the entire precore and core region of hepatitis B virus DNA was sequenced in 24 subjects (5 fulminant, 10 severe fatal exacerbation, and 9 self-limited acute hepatitis patients). No significant change in the nucleotide sequence and deduced amino acid residue was noted in the nine self-limited acute hepatitis patients. In contrast, clustering changes in a small segment of 16 amino acids (codon 84-99 from the start of the core gene) in all seven adr subtype infected fulminant and severe exacerbation patients was found. A different segment with clustering substitutions (codon 48-60) was also found in seven of eight adw subtype infected fulminant and severe exacerbation patients. Of the 15 patients, 2 lacked precore stop mutation which was previously reported to be associated with fulminant hepatitis. These data suggest that these core regions with mutations may play an important role in the pathogenesis of hepatitis B viral disease, and such mutations are related to severe liver damage. Images PMID:8450049

  5. Rapid Detection of rpoB Gene Mutations Conferring Rifampin Resistance in Mycobacterium tuberculosis

    PubMed Central

    Ao, Wanyuan; Aldous, Stephen; Woodruff, Evelyn; Hicke, Brian; Rea, Larry; Kreiswirth, Barry

    2012-01-01

    Multidrug-resistant Mycobacterium tuberculosis strains are widespread and present a challenge to effective treatment of this infection. The need for a low-cost and rapid detection method for clinically relevant mutations in Mycobacterium tuberculosis that confer multidrug resistance is urgent, particularly for developing countries. We report here a novel test that detects the majority of clinically relevant mutations in the beta subunit of the RNA polymerase (rpoB) gene that confer resistance to rifampin (RIF), the treatment of choice for tuberculosis (TB). The test, termed TB ID/R, combines a novel target and temperature-dependent RNase H2-mediated cleavage of blocked DNA primers to initiate isothermal helicase-dependent amplification of a rpoB gene target sequence. Amplified products are detected by probes arrayed on a modified silicon chip that permits visible detection of both RIF-sensitive and RIF-resistant strains of M. tuberculosis. DNA templates of clinically relevant single-nucleotide mutations in the rpoB gene were created to validate the performance of the TB ID/R test. Except for one rare mutation, all mutations were unambiguously detected. Additionally, 11 RIF-sensitive and 25 RIF-resistant clinical isolates were tested by the TB ID/R test, and 35/36 samples were classified correctly (96.2%). This test is being configured in a low-cost test platform to provide rapid diagnosis and drug susceptibility information for TB in the point-of-care setting in the developing world, where the need is acute. PMID:22518852

  6. Mutations in the human CYP11B2 (aldosterone synthase) gene causing corticosterone methyloxidase II deficiency.

    PubMed Central

    Pascoe, L; Curnow, K M; Slutsker, L; Rösler, A; White, P C

    1992-01-01

    Corticosterone methyloxidase II (CMO-II) deficiency is an autosomal recessive disorder of aldosterone biosynthesis, characterized by an elevated ratio of 18-hydroxycorticosterone to aldosterone in serum. It is genetically linked to the CYP11B1 and CYP11B2 genes that, respectively, encode two cytochrome P450 isozymes, P450XIB1 and P450XIB2. Whereas P450XIB1 only catalyzes hydroxylation at position 11 beta of 11-deoxycorticosterone and 11-deoxycortisol, P450XIB2 catalyzes the synthesis of aldosterone from deoxycorticosterone, a process that successively requires hydroxylation at positions 11 beta and 18 and oxidation at position 18. To determine the molecular genetic basis of CMO-II deficiency, seven kindreds of Iranian-Jewish origin were studied in which members suffered from CMO-II deficiency. No mutations were found in the CYP11B1 genes, but two candidate mutations, R181W and V386A, were found in the CYP11B2 genes. When these mutations were individually introduced into CYP11B2 cDNA and expressed in cultured cells, R181W reduced 18-hydroxylase and abolished 18-oxidase activities but left 11 beta-hydroxylase activity intact, whereas V386A caused a small but consistent reduction in the production of 18-hydroxycorticosterone. All individuals affected with CMO-II deficiency were homozygous for both mutations, whereas eight asymptomatic subjects were homozygous for R181W alone and three were homozygous for V386A alone. These findings confirm that P450XIB2 is the major enzyme mediating oxidation at position 18 in the adrenal and suggest that a small amount of residual activity undetectable in in vitro assays is sufficient to synthesize normal amounts of aldosterone. Images PMID:1594605

  7. Germline Mutation in EXPH5 Implicates the Rab27B Effector Protein Slac2-b in Inherited Skin Fragility.

    PubMed

    McGrath, John A; Stone, Kristina L; Begum, Rumena; Simpson, Michael A; Dopping-Hepenstal, Patricia J; Liu, Lu; McMillan, James R; South, Andrew P; Pourreyron, Celine; McLean, W H Irwin; Martinez, Anna E; Mellerio, Jemima E; Parsons, Maddy

    2012-12-01

    The Rab GTPase Rab27B and one of its effector proteins, Slac2-b (also known as EXPH5, exophilin-5), have putative roles in intracellular vesicle trafficking but their relevance to human disease is not known. By using whole-exome sequencing, we identified a homozygous frameshift mutation in EXPH5 in three siblings with inherited skin fragility born to consanguineous Iraqi parents. All three individuals harbor the mutation c.5786delC (p.Pro1929Leufs(∗)8) in EXPH5, which truncates the 1,989 amino acid Slac2-b protein by 52 residues. The clinical features comprised generalized scale-crusts and occasional blisters, mostly induced by trauma, as well as mild diffuse pigmentary mottling on the trunk and proximal limbs. There was no increased bleeding tendency, no neurologic abnormalities, and no increased incidence of infection. Analysis of an affected person's skin showed loss of Slac2-b immunostaining (C-terminal antibody), disruption of keratinocyte adhesion within the lower epidermis, and an increased number of perinuclear vesicles. A role for Slac2-b in keratinocyte biology was supported by findings of cytoskeletal disruption (mainly keratin intermediate filaments) and decreased keratinocyte adhesion in both keratinocytes from an affected subject and after shRNA knockdown of Slac2-b in normal keratinocytes. Slac2-b was also shown to colocalize with Rab27B and β4 integrin to early adhesion initiation sites in spreading normal keratinocytes. Collectively, our findings identify an unexpected role for Slac2-b in inherited skin fragility and expand the clinical spectrum of human disorders of GTPase effector proteins.

  8. Mitochondrial Genetics of Chlamydomonas Reinhardtii: Resistance Mutations Marking the Cytochrome B Gene

    PubMed Central

    Bennoun, P.; Delosme, M.; Kuck, U.

    1991-01-01

    We describe the genetic and molecular analysis of the first non-Mendelian mutants of Chlamydomonas reinhardtii resistant to myxothiazol, an inhibitor of the respiratory cytochrome bc1 complex. Using a set of seven oligonucleotide probes, restriction fragments containing the mitochondrial cytochrome b (cyt b) gene from C. reinhardtii were isolated from a mitochondrial DNA library. This gene is located adjacent to the gene for subunit 4 of the mitochondrial NADH-dehydrogenase (ND4), near one end of the 15.8-kb linear mitochondrial genome of C. reinhardtii. The algal cytochrome b apoprotein contains 381 amino-acid residues and exhibits a sequence similarity of about 59% with other plant cytochrome b proteins. The cyt b gene from four myxothiazol resistant mutants of C. reinhardtii was amplified for DNA sequence analysis. In comparison to the wild-type strain, all mutants contain an identical point mutation in the cyt b gene, leading to a change of a phenylalanine codon to a leucine codon at amino acid position 129 of the cytochrome b protein. Segregation analysis in tetrads from reciprocal crosses of mutants with wild type shows a strict uniparental inheritance of this mutation from the mating type minus parent (UP(-)). However, mitochondrial markers from both parents are recovered in vegetative diploids in variable proportions from one experiment to the next for a given cross. On the average, a strong bias is seen for markers inherited from the mating type minus parent. PMID:2004707

  9. Mutation of POC1B in a severe syndromic retinal ciliopathy

    PubMed Central

    Beck, Bodo B.; Phillips, Jennifer B.; Bartram, Malte P.; Wegner, Jeremy; Thoenes, Michaela; Pannes, Andrea; Sampson, Josephina; Heller, Raoul; Göbel, Heike; Koerber, Friederike; Neugebauer, Antje; Hedergott, Andrea; Nürnberg, Gudrun; Nürnberg, Peter; Thiele, Holger; Altmüller, Janine; Toliat, Mohammad R.; Staubach, Simon; Boycott, Kym M.; Valente, Enza Maria; Janecke, Andreas R.; Eisenberger, Tobias; Bergmann, Carsten; Tebbe, Lars; Wang, Yang; Wu, Yundong; Fry, Andrew M.; Westerfield, Monte; Wolfrum, Uwe; Bolz, Hanno J.

    2014-01-01

    We describe a consanguineous Iraqi family with Leber congenital amaurosis (LCA), Joubert syndrome (JBTS), and polycystic kidney disease. Targeted NGS for excluding mutations in known LCA and JBTS genes, homozygosity mapping and whole-exome sequencing identified a homozygous missense variant, c.317G>C (p.Arg106Pro), in POC1B, a gene essential for ciliogenesis, basal body and centrosome integrity. In silico modeling suggested a requirement of p.Arg106 for formation of the third WD40 repeat and a protein interaction interface. In human and mouse retina, POC1B localized to the basal body and centriole adjacent to the connecting cilium of photoreceptors and in synapses of the outer plexiform layer. Knockdown of Poc1b in zebrafish caused cystic kidneys and retinal degeneration with shortened and reduced photoreceptor connecting cilia, compatible with the human syndromic ciliopathy. A recent study describes homozygosity for p.Arg106ProPOC1B in a family with non-syndromic cone-rod dystrophy. The phenotype associated with homozygous p.Arg106ProPOC1B may thus be highly variable, analogous to homozygous p.Leu710Ser in WDR19 causing either isolated retinitis pigmentosa or Jeune syndrome. Our study indicates that POC1B is required for retinal integrity, and we propose POC1B mutations as a probable cause for JBTS with severe polycystic kidney disease. PMID:25044745

  10. Cancer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3' Splice Site Selection through Use of a Different Branch Point.

    PubMed

    Darman, Rachel B; Seiler, Michael; Agrawal, Anant A; Lim, Kian H; Peng, Shouyong; Aird, Daniel; Bailey, Suzanna L; Bhavsar, Erica B; Chan, Betty; Colla, Simona; Corson, Laura; Feala, Jacob; Fekkes, Peter; Ichikawa, Kana; Keaney, Gregg F; Lee, Linda; Kumar, Pavan; Kunii, Kaiko; MacKenzie, Crystal; Matijevic, Mark; Mizui, Yoshiharu; Myint, Khin; Park, Eun Sun; Puyang, Xiaoling; Selvaraj, Anand; Thomas, Michael P; Tsai, Jennifer; Wang, John Y; Warmuth, Markus; Yang, Hui; Zhu, Ping; Garcia-Manero, Guillermo; Furman, Richard R; Yu, Lihua; Smith, Peter G; Buonamici, Silvia

    2015-11-01

    Recurrent mutations in the spliceosome are observed in several human cancers, but their functional and therapeutic significance remains elusive. SF3B1, the most frequently mutated component of the spliceosome in cancer, is involved in the recognition of the branch point sequence (BPS) during selection of the 3' splice site (ss) in RNA splicing. Here, we report that common and tumor-specific splicing aberrations are induced by SF3B1 mutations and establish aberrant 3' ss selection as the most frequent splicing defect. Strikingly, mutant SF3B1 utilizes a BPS that differs from that used by wild-type SF3B1 and requires the canonical 3' ss to enable aberrant splicing during the second step. Approximately 50% of the aberrantly spliced mRNAs are subjected to nonsense-mediated decay resulting in downregulation of gene and protein expression. These findings ascribe functional significance to the consequences of SF3B1 mutations in cancer. PMID:26565915

  11. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors.

    PubMed

    Sutton, Lesley-Ann; Young, Emma; Baliakas, Panagiotis; Hadzidimitriou, Anastasia; Moysiadis, Theodoros; Plevova, Karla; Rossi, Davide; Kminkova, Jana; Stalika, Evangelia; Pedersen, Lone Bredo; Malcikova, Jitka; Agathangelidis, Andreas; Davis, Zadie; Mansouri, Larry; Scarfò, Lydia; Boudjoghra, Myriam; Navarro, Alba; Muggen, Alice F; Yan, Xiao-Jie; Nguyen-Khac, Florence; Larrayoz, Marta; Panagiotidis, Panagiotis; Chiorazzi, Nicholas; Niemann, Carsten Utoft; Belessi, Chrysoula; Campo, Elias; Strefford, Jonathan C; Langerak, Anton W; Oscier, David; Gaidano, Gianluca; Pospisilova, Sarka; Davi, Frederic; Ghia, Paolo; Stamatopoulos, Kostas; Rosenquist, Richard

    2016-08-01

    We report on markedly different frequencies of genetic lesions within subsets of chronic lymphocytic leukemia patients carrying mutated or unmutated stereotyped B-cell receptor immunoglobulins in the largest cohort (n=565) studied for this purpose. By combining data on recurrent gene mutations (BIRC3, MYD88, NOTCH1, SF3B1 and TP53) and cytogenetic aberrations, we reveal a subset-biased acquisition of gene mutations. More specifically, the frequency of NOTCH1 mutations was found to be enriched in subsets expressing unmutated immunoglobulin genes, i.e. #1, #6, #8 and #59 (22-34%), often in association with trisomy 12, and was significantly different (P<0.001) to the frequency observed in subset #2 (4%, aggressive disease, variable somatic hypermutation status) and subset #4 (1%, indolent disease, mutated immunoglobulin genes). Interestingly, subsets harboring a high frequency of NOTCH1 mutations were found to carry few (if any) SF3B1 mutations. This starkly contrasts with subsets #2 and #3 where, despite their immunogenetic differences, SF3B1 mutations occurred in 45% and 46% of cases, respectively. In addition, mutations within TP53, whilst enriched in subset #1 (16%), were rare in subsets #2 and #8 (both 2%), despite all being clinically aggressive. All subsets were negative for MYD88 mutations, whereas BIRC3 mutations were infrequent. Collectively, this striking bias and skewed distribution of mutations and cytogenetic aberrations within specific chronic lymphocytic leukemia subsets implies that the mechanisms underlying clinical aggressiveness are not uniform, but rather support the existence of distinct genetic pathways of clonal evolution governed by a particular stereotyped B-cell receptor selecting a certain molecular lesion(s). PMID:27198719

  12. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors

    PubMed Central

    Sutton, Lesley-Ann; Young, Emma; Baliakas, Panagiotis; Hadzidimitriou, Anastasia; Moysiadis, Theodoros; Plevova, Karla; Rossi, Davide; Kminkova, Jana; Stalika, Evangelia; Pedersen, Lone Bredo; Malcikova, Jitka; Agathangelidis, Andreas; Davis, Zadie; Mansouri, Larry; Scarfò, Lydia; Boudjoghra, Myriam; Navarro, Alba; Muggen, Alice F.; Yan, Xiao-Jie; Nguyen-Khac, Florence; Larrayoz, Marta; Panagiotidis, Panagiotis; Chiorazzi, Nicholas; Niemann, Carsten Utoft; Belessi, Chrysoula; Campo, Elias; Strefford, Jonathan C.; Langerak, Anton W.; Oscier, David; Gaidano, Gianluca; Pospisilova, Sarka; Davi, Frederic; Ghia, Paolo; Stamatopoulos, Kostas; Rosenquist, Richard

    2016-01-01

    We report on markedly different frequencies of genetic lesions within subsets of chronic lymphocytic leukemia patients carrying mutated or unmutated stereotyped B-cell receptor immunoglobulins in the largest cohort (n=565) studied for this purpose. By combining data on recurrent gene mutations (BIRC3, MYD88, NOTCH1, SF3B1 and TP53) and cytogenetic aberrations, we reveal a subset-biased acquisition of gene mutations. More specifically, the frequency of NOTCH1 mutations was found to be enriched in subsets expressing unmutated immunoglobulin genes, i.e. #1, #6, #8 and #59 (22–34%), often in association with trisomy 12, and was significantly different (P<0.001) to the frequency observed in subset #2 (4%, aggressive disease, variable somatic hypermutation status) and subset #4 (1%, indolent disease, mutated immunoglobulin genes). Interestingly, subsets harboring a high frequency of NOTCH1 mutations were found to carry few (if any) SF3B1 mutations. This starkly contrasts with subsets #2 and #3 where, despite their immunogenetic differences, SF3B1 mutations occurred in 45% and 46% of cases, respectively. In addition, mutations within TP53, whilst enriched in subset #1 (16%), were rare in subsets #2 and #8 (both 2%), despite all being clinically aggressive. All subsets were negative for MYD88 mutations, whereas BIRC3 mutations were infrequent. Collectively, this striking bias and skewed distribution of mutations and cytogenetic aberrations within specific chronic lymphocytic leukemia subsets implies that the mechanisms underlying clinical aggressiveness are not uniform, but rather support the existence of distinct genetic pathways of clonal evolution governed by a particular stereotyped B-cell receptor selecting a certain molecular lesion(s). PMID:27198719

  13. Carrier and prenatal diagnostic strategy and newly identified mutations in Hungarian haemophilia A and B families.

    PubMed

    Bors, András; Andrikovics, Hajnalka; Illés, Zsuzsanna; Jáger, Rita; Kardos, Mária; Marosi, Anikó; Nemes, László; Tordai, Attila

    2015-03-01

    Deficiencies of blood coagulation factors VIII and IX (haemophilia A and haemophilia B) represent the most common inherited bleeding disorders with a wide range of causative mutations. Carrier and prenatal diagnostics are preferably performed by direct mutation detection; however, in certain situations, indirect family studies may also be useful. We aimed to utilize a combination of direct and indirect techniques for carrier and prenatal diagnostics in both haemophilias in a single national centre. Two hundred and eleven haemophilia A families were investigated by screening for inversions of introns 1 and 22, and by family studies using polymorphic markers. Twenty-eight haemophilia A and 39 haemophilia B families were investigated by Sanger-sequencing of the coding regions. Among severe haemophilia A families, frequencies of intron 22 and 1 inversions were 82 out of 145 (57%) and two out of 145 (1.4%). Sequencing of the entire coding region of the respective factor gene was performed and 12 (haemophilia A) and 5 (haemophilia B) previously unpublished disease-causing mutations were identified. For genetic markers used for haemophilia A indirect family testing, heterozygosity rates varied between 137 out of 327 [42% intragenic BclI restriction fragment length polymorphism (RFLP], 168 out of 254 (66% intragenic F8Civs13CA) and 202 out of 261 (77% extragenic DXS15CA) with a combined rate of 92% (intragenic markers) and 97% (all three markers). For male fetuses, prenatal diagnostics was provided to 43 haemophilia A families (n = 22 with direct mutation detection and n = 21 by indirect family testing) and to three haemophilia B families. The combination of direct and indirect molecular genetics approaches is a successful and cost-effective approach to provide carrier and prenatal diagnostics and risk assessment for inhibitor formation.

  14. New test for endothelin receptor type B (EDNRB) mutation genotyping in horses.

    PubMed

    Ayala-Valdovinos, Miguel Angel; Galindo-García, Jorge; Sánchez-Chiprés, David; Duifhuis-Rivera, Theodor

    2016-06-01

    Lethal white foal syndrome (LWFS) is an autosomal recessive disease of neonatal foals characterized by a white hair coat and a functional intestinal obstruction. Traditional techniques for identifying the dinucleotide mutation (TC→AG) of the endothelin receptor B gene (EDNRB) associated with LWFS are time-consuming. We developed a new technique based on mutagenically separated polymerase chain reaction (MS-PCR) for simple detection of the EDNRB genotype in horses.

  15. Anxiety and Methylenetetrahydrofolate Reductase Mutation Treated With S-Adenosyl Methionine and Methylated B Vitamins.

    PubMed

    Anderson, Shanna; Panka, Jacob; Rakobitsch, Robin; Tyre, Kaitlin; Pulliam, Kerry

    2016-04-01

    This case report highlights challenges faced in the clinical management of patients with methylenetetrahydrofolate reductase (MTHFR) gene mutations and the importance of precise dosage when recommending methylated B vitamins to compensate for deficiencies caused by the polymorphism or symptoms related to the polymorphism. It also underscores the importance of obtaining ongoing objective assessments of anxiety (eg, Patient Reported Outcomes Measurement Information System, or PROMIS) to help gauge patient response. PMID:27330489

  16. Reading-frame restoration with an apolipoprotein B gene frameshift mutation.

    PubMed Central

    Linton, M F; Pierotti, V; Young, S G

    1992-01-01

    We examined a mutant human apolipoprotein B (apoB) allele that causes hypobetalipoproteinemia and has a single cytosine deletion in exon 26. This frameshift mutation was associated with the synthesis of a truncated apoB protein of the predicted size; however, studies in human subjects and minigene expression studies in cultured cells indicated that the mutant allele also yielded a full-length apoB protein. The 1-base-pair deletion in the mutant apoB allele created a stretch of eight consecutive adenines. To understand the mechanism whereby the mutant apoB allele yielded a full-length apoB protein, the cDNA from cells transfected with the mutant apoB minigene expression vector was examined. Splicing of the mRNA was normal; however, 11% of the cDNA clones had an additional adenine within the stretch of eight adenines, yielding nine consecutive adenines. The insertion of the extra adenine, presumably during apoB gene transcription, is predicted to restore the correct apoB reading frame, thereby permitting the synthesis of a full-length apoB protein. Images PMID:1454832

  17. Employee Participation and Involvement. Background Paper No. 35b.

    ERIC Educational Resources Information Center

    Levine, David I.; Strauss, George

    Formal worker participation schemes, such as the quality circles and related employee involvement schemes that have been introduced in 75 percent of Fortune 500 companies, are likely to have a lasting impact on the way many organizations work. In a majority of empirical studies, direct participation is associated with at least a short-run…

  18. Analysis of the B-RafV600E mutation in cutaneous melanoma patients with occupational sun exposure.

    PubMed

    Candido, Saverio; Rapisarda, Venerando; Marconi, Andrea; Malaponte, Grazia; Bevelacqua, Valentina; Gangemi, Pietro; Scalisi, Aurora; McCubrey, James A; Maestro, Roberta; Spandidos, Demetrios A; Fenga, Concettina; Libra, Massimo

    2014-03-01

    Sun-exposure is one of the risk factors associated with the development of a cutaneous neoplasm. In melanoma, the Ras-Raf-MEK-ERK (MAPK) signaling pathway is constitutively activated through multiple mechanisms, including B-Raf mutation. It has been hypothesized that B-Raf mutations in melanocytic lesions arise from DNA damage induced by ultraviolet (UV) radiation. However, it is still discussed if B-Raf mutations are associated with melanoma patients exposed to the sun. Therefore, in the present study, the known B-RafV600E mutation was analysed in melanoma samples from 30 indoor and 38 outdoor workers. B-RafV600E mutation was detected in 52 and 73% of outdoor workers and indoor workers, respectively. Of note, this mutation was identified in 12 of 14 (85%) melanoma of the trunk diagnosed in indoor workers and in 9 of 19 (47%) samples from outdoor workers (p=0.03). By analyzing melanomas of other body sites, no statistical difference in the frequency of B-RafV600E mutation was identified between the groups of workers. It appears that the mutation detected among indoor workers may be associated with a recreational or intermittent exposure to the sun, as usually the trunk is a sun-protected body site. Overall, these data indicate that the B-RafV600E mutation detected in melanoma is not associated with a chronic exposure to the sun. Mutations detected in other genes may also contribute to melanoma development in the subset of patients exposed to UV radiation.

  19. Effective epitope identification employing phylogenetic, mutational variability, sequence entropy, and correlated mutation analysis targeting NS5B protein of hepatitis C virus: from bioinformatics to therapeutics.

    PubMed

    Meshram, Rohan J; Gacche, Rajesh N

    2015-08-01

    Hepatitis C virus (HCV) is considered as a foremost cause affecting numerous human liver-related disorders. An effective immuno-prophylactic measure (like stable vaccine) is still unavailable for HCV. We perform an in silico analysis of nonstructural protein 5B (NS5B) based CD4 and CD8 epitopes that might be implicated in improvement of treatment strategies for efficient vaccine development programs against HCV. Here, we report on effective utilization of knowledge obtained from multiple sequence alignment and phylogenetic analysis for investigation and evaluation of candidate epitopes that have enormous potential to be used in formulating proficient vaccine, embracing multiple strains prevalent among major geographical locations. Mutational variability data discussed herein focus on discriminating the region under active evolutionary pressure from those having lower mutational potential in existing experimentally verified epitopes, thus, providing a concrete framework for designing an effective peptide-based vaccine against HCV. Additionally, we measured entropy distribution in NS5B residues and pinpoint the positions in epitopes that are more susceptible to mutations and, thus, account for virus strategy to evade the host immune system. Findings from this study are expected to add more details on the sequence and structural aspects of NS5B protein, ultimately facilitating our understanding about the pathophysiology of HCV and assisting advance studies on the function of NS5B antigen on the epitope level. We also report on the mutational crosstalk between functionally important coevolving residues, using correlated mutation analysis, and identify networks of coupled mutations that represent pathways of allosteric communication inside and among NS5B thumb, finger, and palm domains. PMID:25727409

  20. Investigating the Impact of Asp181 Point Mutations on Interactions between PTP1B and Phosphotyrosine Substrate

    NASA Astrophysics Data System (ADS)

    Liu, Mengyuan; Wang, Lushan; Sun, Xun; Zhao, Xian

    2014-05-01

    Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling, which suggests that it is an attractive therapeutic target in type II diabetes and obesity. The aim of this research is to explore residues which interact with phosphotyrosine substrate can be affected by D181 point mutations and lead to increased substrate binding. To achieve this goal, molecular dynamics simulations were performed on wild type (WT) and two mutated PTP1B/substrate complexes. The cross-correlation and principal component analyses show that point mutations can affect the motions of some residues in the active site of PTP1B. Moreover, the hydrogen bond and energy decomposition analyses indicate that apart from residue 181, point mutations have influence on the interactions of substrate with several residues in the active site of PTP1B.

  1. Complement Factor B Mutations in Atypical Hemolytic Uremic Syndrome—Disease-Relevant or Benign?

    PubMed Central

    Marinozzi, Maria Chiara; Vergoz, Laura; Rybkine, Tania; Ngo, Stephanie; Bettoni, Serena; Pashov, Anastas; Cayla, Mathieu; Tabarin, Fanny; Jablonski, Mathieu; Hue, Christophe; Smith, Richard J.; Noris, Marina; Halbwachs-Mecarelli, Lise; Donadelli, Roberta; Fremeaux-Bacchi, Veronique

    2014-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a genetic ultrarare renal disease associated with overactivation of the alternative pathway of complement. Four gain-of-function mutations that form a hyperactive or deregulated C3 convertase have been identified in Factor B (FB) ligand binding sites. Here, we studied the functional consequences of 10 FB genetic changes recently identified from different aHUS cohorts. Using several tests for alternative C3 and C5 convertase formation and regulation, we identified two gain-of-function and potentially disease-relevant mutations that formed either an overactive convertase (M433I) or a convertase resistant to decay by FH (K298Q). One mutation (R178Q) produced a partially cleaved protein with no ligand binding or functional activity. Seven genetic changes led to near-normal or only slightly reduced ligand binding and functional activity compared with the most common polymorphism at position 7, R7. Notably, none of the algorithms used to predict the disease relevance of FB mutations agreed completely with the experimental data, suggesting that in silico approaches should be undertaken with caution. These data, combined with previously published results, suggest that 9 of 15 FB genetic changes identified in patients with aHUS are unrelated to disease pathogenesis. This study highlights that functional assessment of identified nucleotide changes in FB is mandatory to confirm disease association. PMID:24652797

  2. Functional characterization of new mutations in Wilson disease gene (ATP7B) using the yeast model.

    PubMed

    Papur, Ozlenen Simsek; Terzioglu, Orhan; Koc, Ahmet

    2015-01-01

    The Wilson disease gene, a copper transporting ATPase (Atp7b), is responsible for the sequestration of Cu into secretory vesicles, and this function is exhibited by the orthologous Ccc2p in the yeast. In this study, we aimed to characterize clinically relevant new mutations of human ATP7B (p.T788I, p.V1036I and p.R1038G-fsX83) in yeast lacking the CCC2 gene. Expression of human wild type ATP7B gene in ccc2Δ mutant yeast restored the growth deficiency and copper transport activity; however, expression of the mutant forms did not restore the copper transport functions and only partially supported the cell growth. Our data support that p.T788I, p.V1036I and p.R1038G-fsX83 mutations cause functional deficiency in ATP7B functions and suggest that these residues are important for normal ATP7B function.

  3. blue cheese Mutations Define a Novel, Conserved Gene Involved in Progressive Neural Degeneration

    PubMed Central

    Finley, Kim D.; Edeen, Philip T.; Cumming, Robert C.; Mardahl-Dumesnil, Michelle D.; Taylor, Barbara J.; Rodriguez, Maria H.; Hwang, Calvin E.; Benedetti, Michael; McKeown, Michael

    2007-01-01

    A common feature of many human neurodegenerative diseases is the accumulation of insoluble ubiquitin-containing protein aggregates in the CNS. Although Drosophila has been helpful in understanding several human neurodegenerative disorders, a loss-of-function mutation has not been identified that leads to insoluble CNS protein aggregates. The study of Drosophila mutations may identify unique components that are associated with human degenerative diseases. The Drosophila blue cheese (bchs) gene defines such a novel degenerative pathway. bchs mutants have a reduced adult life span with the age-dependent formation of protein aggregates throughout the neuropil of the CNS. These inclusions contain insoluble ubiquitinated proteins and amyloid precursor-like protein. Progressive loss of CNS size and morphology along with extensive neuronal apoptosis occurs in aged bchs mutants. BCHS protein is widely expressed in the cytoplasm of CNS neurons and is present over the entire length of axonal projections. BCHS is nearly 3500 amino acids in size, with the last 1000 amino acids consisting of three functional protein motifs implicated in vesicle transport and protein processing. This region along with previously unidentified proteins encoded in the human, mouse, and nematode genomes shows striking homology along the full length of the BCHS protein. The high degree of conservation between Drosophila and human bchs suggests that study of the functional pathway of BCHS and associated mutant phenotype may provide useful insights into human neurodegenerative disorders. PMID:12598614

  4. A recurrent synonymous KAT6B mutation causes Say-Barber-Biesecker/Young-Simpson syndrome by inducing aberrant splicing.

    PubMed

    Yilmaz, Rüstem; Beleza-Meireles, Ana; Price, Susan; Oliveira, Renata; Kubisch, Christian; Clayton-Smith, Jill; Szakszon, Katalin; Borck, Guntram

    2015-12-01

    Mutations of the histone acetyltransferase-encoding KAT6B gene cause the Say-Barber-Biesecker/Young-Simpson (SBBYS) type of blepharophimosis-"mental retardation" syndromes and the more severe genitopatellar syndrome. The SBBYS syndrome-causing mutations are clustered in the large exon 18 of KAT6B and almost exclusively lead to predicted protein truncation. An atypical KAT6B mutation, a de novo synonymous variant located in exon 16 (c.3147G>A, p.(Pro1049Pro)) was previously identified in three unrelated patients. This exonic mutation was predicted in silico to cause protein truncation through aberrant splicing. Here, we report three additional unrelated children with typical SBBYS syndrome and the KAT6B c.3147G>A mutation. We show on RNA derived from patient blood that the mutation indeed induces aberrant splicing through the use of a cryptic exonic splice acceptor site created by the sequence variant. Our results thus identify the synonymous variant c.3147G>A as a splice site mutation and a mutational hot spot in SBBYS syndrome.

  5. Case report: vitamin D-dependent rickets type 1 caused by a novel CYP27B1 mutation.

    PubMed

    Füchtbauer, Laila; Brusgaard, Klaus; Ledaal, Pål; Frost, Morten; Frederiksen, Anja L

    2015-12-01

    Vitamin D-dependent rickets type 1 VDDR-1 is a recessive inherited disorder with impaired activation of vitamin D, caused by mutations in CYP27B1. We present long-time follow-up of a case with a novel mutation including high-resolution peripheral quantitative computed tomography of the bone. Adequate treatment resulted in a normalized phenotype.

  6. Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing | Office of Cancer Genomics

    Cancer.gov

    Abstract: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous cancer comprising at least two molecular subtypes that differ in gene expression and distribution of mutations. Recently, application of genome/exome sequencing and RNA-seq to DLBCL has revealed numerous genes that are recurrent targets of somatic point mutation in this disease.

  7. Whole exome sequencing of relapsed/refractory patients expands the repertoire of somatic mutations in diffuse large B-cell lymphoma.

    PubMed

    Mareschal, Sylvain; Dubois, Sydney; Viailly, Pierre-Julien; Bertrand, Philippe; Bohers, Elodie; Maingonnat, Catherine; Jaïs, Jean-Philippe; Tesson, Bruno; Ruminy, Philippe; Peyrouze, Pauline; Copie-Bergman, Christiane; Fest, Thierry; Jo Molina, Thierry; Haioun, Corinne; Salles, Gilles; Tilly, Hervé; Lecroq, Thierry; Leroy, Karen; Jardin, Fabrice

    2016-03-01

    Despite the many efforts already spent to enumerate somatic mutations in diffuse large B-cell lymphoma (DLBCL), previous whole-genome and whole-exome studies conducted on patients of mixed outcomes failed at characterizing the 30% of patients who will relapse or resist current immunochemotherapies. To address this issue, we performed whole-exome sequencing of normal/tumoral DNA pairs in 14 relapsed/refractory (R/R) patients subclassified by full-transcriptome arrays (six activated B-cell like, three germinal center B-cell like, and five primary mediastinal B-cell lymphomas), from the LNH-03 LYSA clinical trial program. Aside from well-known DLBCL features, gene and pathway level recurrence analyses proposed several interesting leads including TBL1XR1 and activating mutations in IRF4 or in the insulin regulation pathway. Sequencing-based copy number analysis defined 23 short recurrently altered regions involving genes such as REL, CDKN2A, HYAL2, and TP53. Moreover, it highlighted mutations in genes such as GNA13, CARD11, MFHAS1, and PCLO as associated with secondary variant allele amplification events. The five primary mediastinal B-cell lymphomas (PMBL), while unexpected in a R/R cohort, showed a significantly higher mutation rate (P = 0.003) and provided many insights on this classical Hodgkin lymphoma related subtype. Novel genes such as XPO1, MFHAS1, and ITPKB were found particularly mutated, along with various cytokine-based signaling pathways. Among these analyses, somatic events in the NF-κB pathway were found preponderant in the three DLBCL subtypes, confirming its major implication in DLBCL aggressiveness and pinpointing several new candidate genes. PMID:26608593

  8. Genotypic Detection of rpoB and katG Gene Mutations Associated with Rifampicin and Isoniazid Resistance in Mycobacterium Tuberculosis Isolates: A Local Scenario (Kelantan)

    PubMed Central

    Ismail, Nurul-Ain; Ismail, Mohd Fazli; Noor, Siti Suraiya MD; Camalxaman, Siti Nazrina

    2016-01-01

    Background Drug resistant tuberculosis (DR-TB) remains a public health issue that is of major concern on a global scale. The characterisation of clinical isolates may provide key information regarding the underlying mechanisms of drug resistance, and helps to augment therapeutic options. This study aims to evaluate the frequency of gene mutations associated with Rifampicin (RIF) and Isoniazid (INH) resistance among nine clinical isolates. Methods A total of nine drug resistant Mycobacterium tuberculosis clinical isolates were screened for genetic mutations in rpoB and katusing polymerase chain reaction (PCR) amplification and DNA sequencing. Genotypic analysis was performed to detect the mutations in the sequence of the target genes. Results Our findings reveal that 80% of the isolates possess mutations at codon 119 (His119Tyr) and 135 (Arg135Trp and Ser135Leu) within the rpoB gene; and 70% possess mutations in the katG gene at codon 238 with amino acid change (Leu238Arg). Conclusion Findings from this study provide an overview of the current situation of RIF and INH resistance in a hospital Universiti Sains Malaysia (HUSM) located in Kelantan, Malaysia, which could facilitate molecular-based detection methods of drug-resistant strains. Further information regarding the molecular mechanisms involved in resistance in RR-/MDR-TB should be addressed in the near future. PMID:27540322

  9. Mutagenesis and chemical rescue indicate residues involved in beta-aspartyl-AMP formation by Escherichia coli asparagine synthetase B.

    PubMed

    Boehlein, S K; Walworth, E S; Richards, N G; Schuster, S M

    1997-05-01

    Site-directed mutagenesis and kinetic studies have been employed to identify amino acid residues involved in aspartate binding and transition state stabilization during the formation of beta-aspartyl-AMP in the reaction mechanism of Escherichia coli asparagine synthetase B (AS-B). Three conserved amino acids in the segment defined by residues 317-330 appear particularly crucial for enzymatic activity. For example, when Arg-325 is replaced by alanine or lysine, the resulting mutant enzymes possess no detectable asparagine synthetase activity. The catalytic activity of the R325A AS-B mutant can, however, be restored to about 1/6 of that of wild-type AS-B by the addition of guanidinium HCl (GdmHCl). Detailed kinetic analysis of the rescued activity suggests that Arg-325 is involved in stabilization of a pentacovalent intermediate leading to the formation beta-aspartyl-AMP. This rescue experiment is the second example in which the function of a critical arginine residue that has been substituted by mutagenesis is restored by GdmHCl. Mutation of Thr-322 and Thr-323 also produces enzymes with altered kinetic properties, suggesting that these threonines are involved in aspartate binding and/or stabilization of intermediates en route to beta-aspartyl-AMP. These experiments are the first to identify residues outside of the N-terminal glutamine amide transfer domain that have any functional role in asparagine synthesis.

  10. Analysis of hepatitis B virus genotyping and drug resistance gene mutations based on massively parallel sequencing.

    PubMed

    Han, Yingxin; Zhang, Yinxin; Mei, Yanhua; Wang, Yuqi; Liu, Tao; Guan, Yanfang; Tan, Deming; Liang, Yu; Yang, Ling; Yi, Xin

    2013-11-01

    Drug resistance to nucleoside analogs is a serious problem worldwide. Both drug resistance gene mutation detection and HBV genotyping are helpful for guiding clinical treatment. Total HBV DNA from 395 patients who were treated with single or multiple drugs including Lamivudine, Adefovir, Entecavir, Telbivudine, Tenofovir and Emtricitabine were sequenced using the HiSeq 2000 sequencing system and validated using the 3730 sequencing system. In addition, a mixed sample of HBV plasmid DNA was used to determine the cutoff value for HiSeq-sequencing, and 52 of the 395 samples were sequenced three times to evaluate the repeatability and stability of this technology. Of the 395 samples sequenced using both HiSeq and 3730 sequencing, the results from 346 were consistent, and the results from 49 were inconsistent. Among the 49 inconsistent results, 13 samples were detected as drug-resistance-positive using HiSeq but negative using 3730, and the other 36 samples showed a higher number of drug-resistance-positive gene mutations using HiSeq 2000 than using 3730. Gene mutations had an apparent frequency of 1% as assessed by the plasmid testing. Therefore, a 1% cutoff value was adopted. Furthermore, the experiment was repeated three times, and the same results were obtained in 49/52 samples using the HiSeq sequencing system. HiSeq sequencing can be used to analyze HBV gene mutations with high sensitivity, high fidelity, high throughput and automation and is a potential method for hepatitis B virus gene mutation detection and genotyping.

  11. Destabilization of the IFT-B cilia core complex due to mutations in IFT81 causes a Spectrum of Short-Rib Polydactyly Syndrome

    PubMed Central

    Duran, Ivan; Taylor, S. Paige; Zhang, Wenjuan; Martin, Jorge; Forlenza, Kimberly N.; Spiro, Rhonda P.; Nickerson, Deborah A.; Bamshad, Michael; Cohn, Daniel H.; Krakow, Deborah

    2016-01-01

    Short-rib polydactyly syndromes (SRPS) and Asphyxiating thoracic dystrophy (ATD) or Jeune Syndrome are recessively inherited skeletal ciliopathies characterized by profound skeletal abnormalities and are frequently associated with polydactyly and multiorgan system involvement. SRPS are produced by mutations in genes that participate in the formation and function of primary cilia and usually result from disruption of retrograde intraflagellar (IFT) transport of the cilium. Herein we describe a new spectrum of SRPS caused by mutations in the gene IFT81, a key component of the IFT-B complex essential for anterograde transport. In mutant chondrocytes, the mutations led to low levels of IFT81 and mutant cells produced elongated cilia, had altered hedgehog signaling, had increased post-translation modification of tubulin, and showed evidence of destabilization of additional anterograde transport complex components. These findings demonstrate the importance of IFT81 in the skeleton, its role in the anterograde transport complex, and expand the number of loci associated with SRPS. PMID:27666822

  12. Mutations of the human interferon alpha-2b (hIFNα-2b) gene in low-dose natural terrestrial ionizing radiation exposed dwellers.

    PubMed

    Shahid, Saman; Mahmood, Nasir; Chaudhry, Muhammad Nawaz; Ahmad, Nauman

    2015-12-01

    Natural terrestrial ionizing radiations emerge from uranium deposits and can impact human tissues by affecting DNA bases which constitute genes. Human interferon alpha-2b (hIFNα-2b) gene synthesizes a protein which exhibits anticancerous, immunomodulatory, anti-proliferative and antiviral properties. This research aimed to find out hIFNα-2b gene mutations for those residents who were chronically exposed to low-dose natural terrestrial ionizing radiations. The gene amplifications was done through PCR technique and gene mutations were identified by bioinformatics in order to conclude as to how mutations identified in hIFNα-2b gene sequences will lead to alterations in the hIFNα-2b protein in radiation exposed residents. The range of radiation dose exposure was 0.4383-4.55832 (mSv/y) for the selected radiation exposed locations which were having uranium mineralization. Mutations (24%) in hIFNα-2b gene shows that some of the radiation exposed inhabitants were having a modulated immune response. The CBC (Complete Blood Count) parameters: WBC (White Blood Cells), MCH (Mean Corpuscular Hemoglobin), MCHC (MCH Concentration) and PLT (Platelets) on average were below the normal range in 24% radiation exposed subjects who were having hIFNα-2b gene mutations. Immunomodulation is observed by the mixed trend of either lymphocytosis or lymphopenia and neutropenia or neutrophilia in the exposed population. Thus, a radioactive exposure from uranium can affect the immune system and can induce mutations.

  13. Differences in resistance mutations among HIV-1 non-subtype B infections: a systematic review of evidence (1996–2008)

    PubMed Central

    2009-01-01

    Ninety percent of HIV-1-infected people worldwide harbour non-subtype B variants of HIV-1. Yet knowledge of resistance mutations in non-B HIV-1 and their clinical relevance is limited. Although a few reviews, editorials and perspectives have been published alluding to this lack of data among non-B subtypes, no systematic review has been performed to date. With this in mind, we conducted a systematic review (1996–2008) of all published studies performed on the basis of non-subtype B HIV-1 infections treated with antiretroviral drugs that reported genotype resistance tests. Using an established search string, 50 studies were deemed relevant for this review. These studies reported genotyping data from non-B HIV-1 infections that had been treated with either reverse transcriptase inhibitors or protease inhibitors. While most major resistance mutations in subtype B were also found in non-B subtypes, a few novel mutations in non-B subtypes were recognized. The main differences are reflected in the discoveries that: (i) the non-nucleoside reverse transcriptase inhibitor resistance mutation, V106M, has been seen in subtype C and CRF01_AE, but not in subtype B, (ii) the protease inhibitor mutations L89I/V have been reported in C, F and G subtypes, but not in B, (iii) a nelfinavir selected non-D30N containing pathway predominated in CRF01_AE and CRF02_AG, while the emergence of D30N is favoured in subtypes B and D, (iv) studies on thymidine analog-treated subtype C infections from South Africa, Botswana and Malawi have reported a higher frequency of the K65R resistance mutation than that typically seen with subtype B. Additionally, some substitutions that seem to impact non-B viruses differentially are: reverse transcriptase mutations G196E, A98G/S, and V75M; and protease mutations M89I/V and I93L. Polymorphisms that were common in non-B subtypes and that may contribute to resistance tended to persist or become more frequent after drug exposure. Some, but not all, are

  14. Mutation of Oryza sativa CORONATINE INSENSITIVE 1b (OsCOI1b) delays leaf senescence.

    PubMed

    Lee, Sang-Hwa; Sakuraba, Yasuhito; Lee, Taeyoung; Kim, Kyu-Won; An, Gynheung; Lee, Han Yong; Paek, Nam-Chon

    2015-06-01

    Jasmonic acid (JA) functions in plant development, including senescence and immunity. Arabidopsis thaliana CORONATINE INSENSITIVE 1 encodes a JA receptor and functions in the JA-responsive signaling pathway. The Arabidopsis genome harbors a single COI gene, but the rice (Oryza sativa) genome harbors three COI homologs, OsCOI1a, OsCOI1b, and OsCOI2. Thus, it remains unclear whether each OsCOI has distinct, additive, synergistic, or redundant functions in development. Here, we use the oscoi1b-1 knockout mutants to show that OsCOI1b mainly affects leaf senescence under senescence-promoting conditions. oscoi1b-1 mutants stayed green during dark-induced and natural senescence, with substantial retention of chlorophylls and photosynthetic capacity. Furthermore, several senescence-associated genes were downregulated in oscoi1b-1 mutants, including homologs of Arabidopsis thaliana ETHYLENE INSENSITIVE 3 and ORESARA 1, important regulators of leaf senescence. These results suggest that crosstalk between JA signaling and ethylene signaling affects leaf senescence. The Arabidopsis coi1-1 plants containing 35S:OsCOI1a or 35S:OsCOI1b rescued the delayed leaf senescence during dark incubation, suggesting that both OsCOI1a and OsCOI1b are required for promoting leaf senescence in rice. oscoi1b-1 mutants showed significant decreases in spikelet fertility and grain weight, leading to severe reduction of grain yield, indicating that OsCOI1-mediated JA signaling affects spikelet fertility and grain filling.

  15. Investigation of Somatic GNAQ, GNA11, BAP1 and SF3B1 Mutations in Ophthalmic Melanocytomas

    PubMed Central

    Francis, Jasmine H.; Wiesner, Thomas; Milman, Tatyana; Won, Helen H.; Lin, Amy; Lee, Vivian; Albert, Daniel M.; Folberg, Robert; Berger, Michael F.; Char, Devron H.; Marr, Brian; Abramson, David H.

    2016-01-01

    Purpose The aim of this study was to use massively parallel DNA sequencing to identify GNAQ/11, BAP1 and SF3B1 mutations in ophthalmic melanocytoma. Procedures Six ophthalmic melanocytoma specimens (1 iridociliary and 5 optic nerve) were profiled for genomic alterations in GNAQ/11, BAP1 and SF3B1 using a custom deep sequencing assay. This assay uses solution phase hybridization-based exon capture and deep-coverage massively parallel DNA sequencing to interrogate all protein-coding exons and select introns. Results The only iridociliary melanocytoma showed a mutation in GNAQ but not in BAP1. Of the 2 optic-nerve melanocytomas that developed into melanoma, one had a GNAQ mutation and both a BAP1 mutation and monosomy 3. The remaining 3 optic-nerve melanocytomas did not reveal mutations in GNAQ/11 or BAP1. SF3B1 mutations were not detected in any specimen. Conclusions The presence of GNAQ mutation in some iridociliary and optic-nerve melanocytomas suggests a possible relationship between ophthalmic melanocytoma and other ophthalmic melanocytic neoplasms. BAP1 mutation may accompany the transformation of ophthalmic melanocytoma to melanoma. PMID:27239460

  16. A phenotype-driven ENU mutagenesis screen for the identification of dominant mutations involved in alcohol consumption.

    PubMed

    Pawlak, Cornelius R; Sanchis-Segura, Carles; Soewarto, Dian; Wagner, Sibylle; Hrabé de Angelis, Martin; Spanagel, Rainer

    2008-02-01

    The aim of this study was the application of a phenotype-driven N-ethyl-N-nitrosourea (ENU) mutagenesis screen in mice for the identification of dominant mutations involved in the regulation and modulation of alcohol-drinking behavior. The chemical mutagen ENU was utilized in the generation of 131 male ENU-mutant C57BL/6J mice (G0). These ENU-treated mice were paired with wild-type C57BL/6J mice to generate G1 and subsequent generations. In total, 3327 mice were generated. Starting with G1, mice were screened for voluntary oral self-administration of 10% (v/v) alcohol vs. water in a two-bottle paradigm. From these mice, after a total period of 5 weeks of drinking, 43 mutants fulfilled the criteria of an "alcohol phenotype," that is, high or low ethanol intake. They were then selected for breeding and tested in a "confirmation cross" (G2-G4) for inheritance. Although we did not establish stable high or low drinking lines, several results were obtained in the context of alcohol consumption. First, female mice drank more alcohol than their male counterparts. Second, the former demonstrated greater infertility. Third, all animals displayed relatively stable alcohol intake, although significantly different in two different laboratories. Finally, seasonal and monthly variability was observed, with the highest alcohol consumption occurring in spring and the lowest in autumn. In conclusion, it seems difficult to identify dominant mutations involved in the modulation or regulation of voluntary alcohol consumption via a phenotype-driven ENU mutagenesis screen. In accordance with the findings from knockout studies, we suggest that mainly recessive mutations contribute to an alcohol-drinking or alcohol-avoiding phenotype.

  17. Adult Onset of BRAFV600E-Mutated Langerhans Cell Histiocytosis with Cutaneous Involvement Successfully Diagnosed by Immunohistochemical Staining

    PubMed Central

    Tono, Hisayuki; Fujimura, Taku; Kakizaki, Aya; Furudate, Sadanori; Ishibashi, Masaya; Aiba, Setsuya

    2015-01-01

    Langerhans cell histiocytosis (LCH) is characterized by the clonal proliferation of Langerhans cells; it is categorized as a single-system disease with single or multifocal lesions, and as a multi-system disease with or without the risk of organ involvement. Although the skin is not categorized as a risk organ, the precise diagnosis of skin lesions is necessary to determine the protocol for the treatment of LCH. In this report, we describe a 28-year-old Japanese man with adult onset of BRAFV600E-mutated LCH with cutaneous involvement successfully diagnosed by immunohistochemical staining. Our report suggests that immunohistochemical staining for the BRAFV600E gene could be a diagnostic tool to determine the clinical type of LCH. PMID:26500535

  18. Different functional sensitivity to mutation at intersubunit interfaces involved in consecutive stages of foot-and-mouth disease virus assembly.

    PubMed

    Rincón, Verónica; Rodríguez-Huete, Alicia; Mateu, Mauricio G

    2015-09-01

    Small spherical viruses are paradigms of supramolecular self-assembly. Identifying the specific structural determinants for virus assembly provides guidelines to develop new antiviral drugs or engineer modified viral particles for medical or technological applications. However, very few systematic studies have been carried out so far to identify those chemical groups at interfaces between virus capsid subunits that are important for viral assembly and function. Foot-and-mouth disease virus (FMDV) and other picornaviruses are assembled in a stepwise process in which different protein-protein interfaces are formed: 5 protomeric subunits oligomerize to form a pentameric intermediate, and 12 of these stable pentameric building blocks associate to form a labile capsid. In this study, a systematic mutational analysis revealed that very few amino acid side chains involved in substantial interactions between protomers within each pentamer are individually required for virus infectivity. This result contrasts sharply with the previous finding that most amino acid side chains involved in interactions between pentamers during the next assembly step are individually required for infectivity. The dramatic difference in sensitivity to single mutations between the two types of protein-protein interfaces in FMDV is discussed in terms of possible structural strategies for achieving self-assembly and genome uncoating in the face of diverse selective constraints.

  19. The mitochondrial calcium uniporter is involved in mitochondrial calcium cycle dysfunction: Underlying mechanism of hypertension associated with mitochondrial tRNA(Ile) A4263G mutation.

    PubMed

    Chen, Xi; Zhang, Yu; Xu, Bin; Cai, Zhongqi; Wang, Lin; Tian, Jinwen; Liu, Yuqi; Li, Yang

    2016-09-01

    Recent studies have shown that the mitochondrial DNA mutations are involved in the pathogenesis of hypertension. Our previous study identified mitochondrial tRNA(Ile) A4263G mutation in a large Chinese Han family with maternally-inherited hypertension. This mutation may contribute to mitochondrial Ca(2+) cycling dysfuntion, but the mechanism is unclear. Lymphoblastoid cell lines were derived from hypertensive and normotensive individuals, either with or without tRNA(Ile) A4263G mutation. The mitochondrial calcium ([Ca(2+)]m) in cells from hypertensive subjects with the tRNA(Ile) A4263G mutation, was lower than in cells from normotension or hypertension without mutation, or normotension with mutation (P<0.05). Meanwhile, cytosolic calcium ([Ca(2+)]c) in hypertensive with mutation cells was higher than another three groups. After exposure to caffeine, which could increase the [Ca(2+)]c by activating ryanodine receptor on endoplasmic reticulum, [Ca(2+)]c/[Ca(2+)]m increased higher than in hypertensive with mutation cells from another three groups. Moreover, MCU expression was decreased in hypertensive with mutation cells compared with in another three groups (P<0.05). [Ca(2+)]c increased and [Ca(2+)]m decreased after treatment with Ru360 (an inhibitor of MCU) or an siRNA against MCU. In this study we found decreased MCU expression in hypertensive with mutation cells contributed to dysregulated Ca(2+) uptake into the mitochondria, and cytoplasmic Ca(2+) overload. This abnormality might be involved in the underlying mechanisms of maternally inherited hypertension in subjects carrying the mitochondrial tRNA(Ile) A4263G mutation. PMID:27471128

  20. DNA sequence and mutational analysis of genes involved in the production and resistance of the antibiotic peptide trifolitoxin.

    PubMed Central

    Breil, B T; Ludden, P W; Triplett, E W

    1993-01-01

    The 7.1-kb fragment of Rhizobium leguminosarum bv. trifolii T24 DNA which confers trifolitoxin production and resistance to nonproducing, sensitive Rhizobium strains (E. W. Triplett, M. J. Schink, and K. L. Noeldner, Mol. Plant-Microbe Interact. 2:202-208, 1989) was subcloned, sequenced, and mutagenized with a transcriptional fusion cassette. The sequence of this fragment revealed seven complete open reading frames, tfxABCDEFG, all transcribed in the same direction. TfxA has an 11-amino-acid carboxy terminus identical to the known amino acid sequence of the trifolitoxin backbone, DIGGSRXGCVA, where X is an UV-absorbing chromophore. This is evidence that trifolitoxin is synthesized ribosomally as a prepeptide that is posttranslationally modified to yield the active peptide. TfxB shows 27.6% identity with McbC, a protein required for the production of the ribosomally synthesized antibiotic microcin B17. Tn3GUS transcriptional fusion insertions in tfxA, tfxB, tfxD, or tfxF caused a nonproducing, trifolitoxin-resistant phenotype and confirmed the direction of transcription of these frames. No insertion mutations were found in tfxE or tfxG. Sequence analysis along with insertion and deletion mutation analysis suggest that (i) trifolitoxin is synthesized ribosomally from tfxA; (ii) tfxA, tfxE, and tfxG have their own promoters; (iii) TfxG is required for immunity; (iv) TfxB, TfxD, and TfxF are required for trifolitoxin production; and (v) the UV-absorbing chromophore is derived from glutamine. PMID:8509324

  1. CIT, a gene involved in neurogenic cytokinesis, is mutated in human primary microcephaly.

    PubMed

    Basit, Sulman; Al-Harbi, Khalid M; Alhijji, Sabri A M; Albalawi, Alia M; Alharby, Essa; Eldardear, Amr; Samman, Mohammed I

    2016-10-01

    Autosomal recessive primary microcephaly (MCPH) is a static neurodevelopmental disorder characterized by congenital small head circumference and non-progressive intellectual disability without additional severe brain malformations. MCPH is a genetically heterogeneous disorder. Sixteen genes (MCPH1-MCPH16) have been discovered so far, mutations thereof lead to autosomal recessive primary microcephaly. In a family, segregating MCPH in an autosomal recessive manner, genome-wide homozygosity mapping mapped a disease locus to 16.9-Mb region on chromosome 12q24.11-q24.32. Following this, exome sequencing in three affected individuals of the family discovered a splice site variant (c.753+3A>T) in citron kinase (CIT) gene, segregating with the disorder in the family. CIT co-localizes to the midbody ring during cytokinesis, and its loss of expression results in defects in neurogenic cytokinesis in both humans and mice. Splice site variant in CIT, identified in this study, is predicted to abolish splice donor site. cDNA sequence of an affected individual showed retention of an intron next to the splice donor site. The study, presented here, revealed the first variant in the CIT causing MCPH in the family. PMID:27519304

  2. Mutations in genes involved in nonsense mediated decay ameliorate the phenotype of sel-12 mutants with amber stop mutations in Caenorhabditis elegans

    PubMed Central

    Gontijo, Alisson M; Aubert, Sylvie; Roelens, Ingele; Lakowski, Bernard

    2009-01-01

    Background Presenilin proteins are part of a complex of proteins that can cleave many type I transmembrane proteins, including Notch Receptors and the Amyloid Precursor Protein, in the middle of the transmembrane domain. Dominant mutations in the human presenilin genes PS1 and PS2 lead to Familial Alzheimer's disease. Mutations in the Caenorhabditis elegans sel-12 presenilin gene cause a highly penetrant egg-laying defect due to reduction of signalling through the lin-12/Notch receptor. Mutations in six spr genes (for suppressor of presenilin) are known to strongly suppress sel-12. Mutations in most strong spr genes suppress sel-12 by de-repressing the transcription of the largely functionally equivalent hop-1 presenilin gene. However, how mutations in the spr-2 gene suppress sel-12 is unknown. Results We show that spr-2 mutations increase the levels of sel-12 transcripts with Premature translation Termination Codons (PTCs) in embryos and L1 larvae. mRNA transcripts from sel-12 alleles with PTCs undergo degradation by a process known as Nonsense Mediated Decay (NMD). However, spr-2 mutations do not appear to affect NMD. Mutations in the smg genes, which are required for NMD, can restore sel-12(PTC) transcript levels and ameliorate the phenotype of sel-12 mutants with amber PTCs. However, the phenotypic suppression of sel-12 by smg genes is nowhere near as strong as the effect of previously characterized spr mutations including spr-2. Consistent with this, we have identified only two mutations in smg genes among the more than 100 spr mutations recovered in genetic screens. Conclusion spr-2 mutations do not suppress sel-12 by affecting NMD of sel-12(PTC) transcripts and appear to have a novel mechanism of suppression. The fact that mutations in smg genes can ameliorate the phenotype of sel-12 alleles with amber PTCs suggests that some read-through of sel-12(amber) alleles occurs in smg backgrounds. PMID:19302704

  3. Complexity of the Class B Phenotype in Autosomal Dominant Retinitis Pigmentosa Due to Rhodopsin Mutations

    PubMed Central

    Jacobson, Samuel G.; McGuigan, David B.; Sumaroka, Alexander; Roman, Alejandro J.; Gruzensky, Michaela L.; Sheplock, Rebecca; Palma, Judy; Schwartz, Sharon B.; Aleman, Tomas S.; Cideciyan, Artur V.

    2016-01-01

    Purpose Previously, patients with RHO mutations and a class A phenotype were found to have severe early-onset loss of rod function, whereas patients with a class B phenotype retained rod function at least in certain retinal regions. Here class B patients were studied at different disease stages to understand the topographic details of the phenotype in preparation for therapies of this regionalized retinopathy. Methods A cohort of patients with RHO mutations and class B phenotype (n = 28; ages 10–80 years) were studied with rod and cone perimetry and optical coherence tomography (OCT). Results At least three components of the phenotype were identified in these cross-sectional studies. Patients could have hemifield dysfunction, pericentral loss of function, or a diffuse rod sensitivity loss across the visual field. Combinations of these different patterns were also found. Colocalized photoreceptor layer thicknesses were in agreement with the psychophysical results. Conclusions These disorders with regional retinal variation of severity require pre-evaluations before enrollment into clinical trials to seek answers to questions about where in the retina would be appropriate to deliver focal treatments, and, for retina-wide treatment strategies, where in the retina should be monitored for therapeutic efficacy (or safety). PMID:27654411

  4. Severe Undervirilisation in a 46,XY Case Due to a Novel Mutation in HSD17B3 Gene

    PubMed Central

    Alikaşifoğlu, Ayfer; Vurallı, Doğuş; Hiort, Olaf; Gönç, Nazlı; Özön, Alev; Kandemir, Nurgün

    2015-01-01

    17-β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) is an important enzyme involved in the final steps of androgen synthesis and is required for the development of normal male external genitalia. 46,XY individuals with deficiency of this enzyme present a wide clinical spectrum from a female appearance of the external genitalia through ambiguous genitalia to a predominantly male genitalia with micropenis or hypospadias. This paper reports a one-year-old 46,XY patient with 17β-HSD3 deficiency who presented with female external genitalia and bilaterally palpable gonads in the inguinal region. The low T/Δ4 ratio after human chorionic gonadotropin (hCG) stimulation suggested 17β-HSD3 deficiency. A homozygous mutation, c.761_762delAG, was determined at the intron 9/exon 10 splice site of the HSD17B3 gene. To the best of our knowledge, this mutation has not been reported thus far, but its localization and type would imply a complete disruption of the 17β-HSD3 which may explain the phenotype of our patient. PMID:26831562

  5. Hemolytic anemia as first presentation of Wilson's disease with uncommon ATP7B mutation.

    PubMed

    Ye, Xing-Nong; Mao, Li-Ping; Lou, Yin-Jun; Tong, Hong-Yan

    2015-01-01

    Wilson's disease (WD) is a rare inherited disorder of copper metabolism and the main manifestations are liver and brain disorders. Hemolytic anemia is an unusual complication of WD. We describe a 15-year-old girl who developed hemolytic anemia as the first manifestation of Wilson's disease. An Arg952Lys mutation was found in exon 12 of the ATP7B gene, which is uncommon among Chinese Han individuals. From this case and reviews, we can achieve a better understanding of WD. Besides, we may conclude that the probable diagnosis of WD should be considered in young patients with unexplained hemolytic anemia, especially in patients with hepatic and/or neurologic disorder.

  6. Hepatitis B and Hepatitis C Infection Biomarkers and TP53 Mutations in Hepatocellular Carcinomas from Colombia

    PubMed Central

    Navas, Maria-Cristina; Suarez, Iris; Carreño, Andrea; Uribe, Diego; Rios, Wilson Alfredo; Cortes-Mancera, Fabian; Martel, Ghyslaine; Vieco, Beatriz; Lozano, Diana; Jimenez, Carlos; Gouas, Doriane; Osorio, German; Hoyos, Sergio; Restrepo, Juan Carlos; Correa, Gonzalo; Jaramillo, Sergio; Lopez, Rocio; Bravo, Luis Eduardo; Arbelaez, Maria Patricia; Scoazec, Jean-Yves; Abedi-Ardekani, Behnoush; Santella, Regina M.; Chemin, Isabelle; Hainaut, Pierre

    2011-01-01

    Hepatocellular Carcinoma (HCC) is a leading cause of cancer-related death worldwide. Globally, the most important HCC risk factors are Hepatitis B Virus (HBV) and/or Hepatitis C Virus (HCV), chronic alcoholism, and dietary exposure to aflatoxins. We have described the epidemiological pattern of 202 HCC samples obtained from Colombian patients. Additionally we investigated HBV/HCV infections and TP53 mutations in 49 of these HCC cases. HBV biomarkers were detected in 58.1% of the cases; HBV genotypes F and D were characterized in three of the samples. The HCV biomarker was detected in 37% of the samples while HBV/HCV coinfection was found in 19.2%. Among TP53 mutations, 10.5% occur at the common aflatoxin mutation hotspot, codon 249. No data regarding chronic alcoholism was available from the cases. In conclusion, in this first study of HCC and biomarkers in a Colombian population, the main HCC risk factor was HBV infection. PMID:22114738

  7. Heterozygous mutations in HSD17B4 cause juvenile peroxisomal D-bifunctional protein deficiency

    PubMed Central

    Amor, David J.; Marsh, Ashley P.L.; Storey, Elsdon; Tankard, Rick; Gillies, Greta; Delatycki, Martin B.; Pope, Kate; Bromhead, Catherine; Leventer, Richard J.; Bahlo, Melanie

    2016-01-01

    Objective: To determine the genetic cause of slowly progressive cerebellar ataxia, sensorineural deafness, and hypergonadotropic hypogonadism in 5 patients from 3 different families. Methods: The patients comprised 2 sib pairs and 1 sporadic patient. Clinical assessment included history, physical examination, and brain MRI. Linkage analysis was performed separately on the 2 sets of sib pairs using single nucleotide polymorphism microarrays, followed by analysis of the intersection of the regions. Exome sequencing was performed on 1 affected patient with variant filtering and prioritization undertaken using these intersected regions. Results: Using a combination of sequencing technologies, we identified compound heterozygous mutations in HSD17B4 in all 5 affected patients. In all 3 families, peroxisomal D-bifunctional protein (DBP) deficiency was caused by compound heterozygosity for 1 nonsense/deletion mutation and 1 missense mutation. Conclusions: We describe 5 patients with juvenile DBP deficiency from 3 different families, bringing the total number of reported patients to 14, from 8 families. This report broadens and consolidates the phenotype associated with juvenile DBP deficiency. PMID:27790638

  8. X region mutations of hepatitis B virus related to clinical severity

    PubMed Central

    Kim, Hong; Lee, Seoung-Ae; Kim, Bum-Joon

    2016-01-01

    Chronic hepatitis B virus (HBV) infection remains a major health problem, with more than 240 million people chronically infected worldwide and potentially 650000 deaths per year due to advanced liver diseases including liver cirrhosis and hepatocellular carcinoma (HCC). HBV-X protein (HBx) contributes to the biology and pathogenesis of HBV via stimulating virus replication or altering host gene expression related to HCC. The HBV X region contains only 465 bp encoding the 16.5 kDa HBx protein, which also contains several critical cis-elements such as enhancer II, the core promoter and the microRNA-binding region. Thus, mutations in this region may affect not only the HBx open reading frame but also the overlapped cis-elements. Recently, several types of HBx mutations significantly associated with clinical severity have been described, although the functional mechanism in most of these cases remains unsolved. This review article will mainly focus on the HBx mutations proven to be significantly related to clinical severity via epidemiological studies. PMID:27350725

  9. X region mutations of hepatitis B virus related to clinical severity.

    PubMed

    Kim, Hong; Lee, Seoung-Ae; Kim, Bum-Joon

    2016-06-28

    Chronic hepatitis B virus (HBV) infection remains a major health problem, with more than 240 million people chronically infected worldwide and potentially 650000 deaths per year due to advanced liver diseases including liver cirrhosis and hepatocellular carcinoma (HCC). HBV-X protein (HBx) contributes to the biology and pathogenesis of HBV via stimulating virus replication or altering host gene expression related to HCC. The HBV X region contains only 465 bp encoding the 16.5 kDa HBx protein, which also contains several critical cis-elements such as enhancer II, the core promoter and the microRNA-binding region. Thus, mutations in this region may affect not only the HBx open reading frame but also the overlapped cis-elements. Recently, several types of HBx mutations significantly associated with clinical severity have been described, although the functional mechanism in most of these cases remains unsolved. This review article will mainly focus on the HBx mutations proven to be significantly related to clinical severity via epidemiological studies. PMID:27350725

  10. Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole.

    PubMed

    Kulich, Ivan; Pečenková, Tamara; Sekereš, Juraj; Smetana, Ondřej; Fendrych, Matyáš; Foissner, Ilse; Höftberger, Margit; Zárský, Viktor

    2013-11-01

    Autophagic transport to the vacuole represents an endomembrane trafficking route, which is widely used in plants, not only during stress situations, but also for vacuole biogenesis and during developmental processes. Here we report a role in autophagic membrane transport for EXO70B1--one of 23 paralogs of Arabidopsis EXO70 exocyst subunits. EXO70B1 positive compartments are internalized into the central vacuole and co-localize with autophagosomal marker ATG8f. This internalization is boosted by induction of autophagy. Loss of function (LOF) mutations in exo70B1 cause reduction of internalized autopagic bodies in the vacuole. Mutant plants also show ectopic hypersensitive response (HR) mediated by salicylic acid (SA) accumulation, increased nitrogen starvation susceptibility and anthocyanin accumulation defects. Anthocyanin accumulation defect persists in npr1x exo70B1 double mutants with SA signaling compromised, while ectopic HR is suppressed. EXO70B1 interacts with SEC5 and EXO84 and forms an exocyst subcomplex involved in autophagy-related, Golgi-independent membrane traffic to the vacuole. We show that EXO70B1 is functionally completely different from EXO70A1 exocyst subunit and adopted a specific role in autophagic transport.

  11. A mutation in arylsulfatase B gene causes mucopolysuccharidosis VI in rats

    SciTech Connect

    Kunieda, T.; Ikadai, H.; Desnick, R.J.

    1994-09-01

    Mucopolysuccharidosis (MPS) type VI comprises a group of autosomal recessive disorders caused by the deficiency of arylsulfatase B (ARSB) and subsequent lysosomal storage of glucosaminoglycans. We have identified a mutant rat strain that has remarkable similarites to human MPS VI. Recently, we have localized the autosomal recessive gene for the mutant phenotype on rat chromosome 2 by linkage analysis. The rat chromosome 2 is syntenic with the human and mouse chromosomes on which ARSB genes were assigned. Thus the mutant rats were expected to have a mutation in the ARSB gene. A normal rat liver cDNA library was screened using the cat ARSB cDNA as a probe, and clones which cover almost all of the complete ARSB open reading frame were isolated. The nucleotide sequence and amino acid sequence of the rat ARSB sequence showed 80% and 85% similarities with the human ARSB gene, respectively. The ARSB gene was assigned to rat chromosome 2 by using a rat-mouse hybrid cell panel, confirming the linkage analysis. Based on the nucleotide sequence of the normal rat ARSB gene, RT-PCR using liver RNA of the mutant rat was carried out to isolate the cDNA of the mutant rat ARSB gene. By sequencing several independent clones, the cDNA of the mutant rat was found to have a one base insertion at nucleotide 507, resulting in a frameshift mutation in the coding region of the rat ARSB gene, which introduces a stop codon in position 258 of the putative ARSB polypeptide. All affected MPS VI rats were homozygous for the mutant allele, while all phenotypically normal rats were heterozygous or homozygous for the wild type allele, indicating a perfect correspondence between the MPS VI phenotype and the genotype of the mutation. We conclude that the mutation in the ARSB gene is responsible for MPS VI in the rat, and that the mutant rat is an excellent model for study of human MPS VI pathogenesis and treatment.

  12. Detection of hepatitis B virus genotypic resistance mutations by coamplification at lower denaturation temperature-PCR coupled with sanger sequencing.

    PubMed

    Liu, Can; Lin, Jinpiao; Chen, Huijuan; Shang, Hongyan; Jiang, Ling; Chen, Jing; Ye, Yang; Yang, Bin; Ou, Qishui

    2014-08-01

    Mutations in the reverse transcriptase (rt) region of the DNA polymerase gene are the primary cause of hepatitis B virus (HBV) drug resistance. In this study, we established a novel method that couples coamplification at lower denaturation temperature (COLD)-PCR and Sanger sequencing, and we applied it to the detection of known and unknown HBV mutations. Primers were designed based on the common mutations in the HBV rt sequence at positions 180 to 215. The critical denaturation temperature (Tc) was established as a denaturing temperature for both fast and full COLD-PCR procedures. For single mutations, when a melting temperature (Tm)-reducing mutation occurred (e.g., C-G → T-A), the sensitivities of fast and full COLD-PCR for mutant detection were 1% and 2%, respectively; when the mutation caused no change in Tm (e.g., C-G → G-C) or raised Tm (e.g., T-A → C-G), only full COLD-PCR improved the sensitivity for mutant detection (2%). For combination mutations, the sensitivities of both full and fast COLD-PCR were increased to 0.5%. The limits of detection for fast and full COLD-PCR were 50 IU/ml and 100 IU/ml, respectively. In 30 chronic hepatitis B (CHB) cases, no mutations were detected by conventional PCR, whereas 18 mutations were successfully detected by COLD-PCR, including low-prevalence mutations (<10%), as confirmed by ultradeep pyrosequencing. In conclusion, COLD-PCR provides a highly sensitive, simple, inexpensive, and practical tool for significantly improving amplification efficacy and detecting low-level mutations in clinical CHB cases. PMID:24899029

  13. Isolation of rpoB Mutations Causing Rifampicin Resistance in Bacillus subtilis Spores Exposed to Simulated Martian Surface Conditions

    NASA Astrophysics Data System (ADS)

    Perkins, Amy E.; Schuerger, Andrew C.; Nicholson, Wayne L.

    2008-12-01

    Bacterial spores are considered prime candidates for Earth-to-Mars transport by natural processes and human spaceflight activities. Previous studies have shown that exposure of Bacillus subtilis spores to ultrahigh vacuum (UHV) characteristic of space both increased the spontaneous mutation rate and altered the spectrum of mutation in various marker genes; but, to date, mutagenesis studies have not been performed on spores exposed to milder low pressures encountered in the martian environment. Mutations to rifampicin-resistance (RifR) were isolated in B. subtilis spores exposed to simulated martian atmosphere (99.9% CO2, 710 Pa) for 21 days in a Mars Simulation Chamber (MSC) and compared to parallel Earth controls. Exposure in the MSC reduced spore viability by ˜67% compared to Earth controls, but this decrease was not statistically significant (P = 0.3321). The frequency of mutation to RifR was also not significantly increased in the MSC compared to Earth-exposed spores (P = 0.479). Forty-two and 51 RifR mutant spores were isolated from the MSC- and Earth-exposed controls, respectively. Nucleotide sequencing located the RifR mutations in the rpoB gene encoding the β subunit of RNA polymerase at residue V135F of the N-cluster and at residues Q469K/L, H482D/P/R/Y, and S487L in Cluster I. No mutations were found in rpoB Clusters II or III. Two new alleles, Q469L and H482D, previously unreported in B. subtilis rpoB, were isolated from spores exposed in the MSC; otherwise, only slight differences were observed in the spectra of spontaneous RifR mutations from spores exposed to Earth vs. the MSC. However, both spectra are distinctly different from RifR mutations previously reported arising from B. subtilis spores exposed to simulated space vacuum.

  14. Isolation of rpoB mutations causing rifampicin resistance in Bacillus subtilis spores exposed to simulated Martian surface conditions.

    PubMed

    Perkins, Amy E; Schuerger, Andrew C; Nicholson, Wayne L

    2008-12-01

    ABSTRACT Bacterial spores are considered prime candidates for Earth-to-Mars transport by natural processes and human spaceflight activities. Previous studies have shown that exposure of Bacillus subtilis spores to ultrahigh vacuum (UHV) characteristic of space both increased the spontaneous mutation rate and altered the spectrum of mutation in various marker genes; but, to date, mutagenesis studies have not been performed on spores exposed to milder low pressures encountered in the martian environment. Mutations to rifampicin-resistance (Rif(R)) were isolated in B. subtilis spores exposed to simulated martian atmosphere (99.9% CO(2), 710 Pa) for 21 days in a Mars Simulation Chamber (MSC) and compared to parallel Earth controls. Exposure in the MSC reduced spore viability by approximately 67% compared to Earth controls, but this decrease was not statistically significant (P = 0.3321). The frequency of mutation to Rif(R) was also not significantly increased in the MSC compared to Earth-exposed spores (P = 0.479). Forty-two and 51 Rif(R) mutant spores were isolated from the MSC- and Earth-exposed controls, respectively. Nucleotide sequencing located the Rif(R) mutations in the rpoB gene encoding the beta subunit of RNA polymerase at residue V135F of the N-cluster and at residues Q469K/L, H482D/P/R/Y, and S487L in Cluster I. No mutations were found in rpoB Clusters II or III. Two new alleles, Q469L and H482D, previously unreported in B. subtilis rpoB, were isolated from spores exposed in the MSC; otherwise, only slight differences were observed in the spectra of spontaneous Rif(R) mutations from spores exposed to Earth vs. the MSC. However, both spectra are distinctly different from Rif(R) mutations previously reported arising from B. subtilis spores exposed to simulated space vacuum.

  15. Mutations of the human interferon alpha-2b (hIFN-α2b) gene in occupationally protracted low dose radiation exposed personnel.

    PubMed

    Shahid, Saman; Mahmood, Nasir; Chaudhry, Muhammad Nawaz; Sheikh, Shaharyar; Ahmad, Nauman

    2015-05-01

    Ionizing radiations impact human tissues by affecting the DNA bases which constitute genes. Human interferon alpha 2b gene synthesizes a protein which is an important anticancerous, immunomodulatory, anti-proliferative and antiviral protein. This study was aimed to identify interferon alpha-2b mutations as a consequence of the use of occupational chronic low dose radiation by hospital radiation exposed workers. A molecular analysis was done in which DNAs were extracted from blood samples from radiology, radiotherapy and nuclear medicine workers. The gene was amplified through polymerase chain reaction and further genetic data from sequencing results analyzed by bioinformatics tools in order to determine as to how mutations in interferon alpha 2b sequences will lead to changes in human interferon alpha-2b protein. A total of 41% gene mutations was detected among all radiation exposed workers in which higher percentage (5.4%) of base insertion mutations and 14% frameshift mutations were found in radiology workers. The chronic use of low dose of radiations by occupational workers has a significant correlation with mutational effects on interferon alpha 2b gene, further evident by depressed interferon alpha levels in serum. This can lead to depressed immunity in radiation exposed workers. Hematological profiling of this group also showed hyperimmune response in the form of lymphocytosis.

  16. Convergent Evolution of Head Crests in Two Domesticated Columbids Is Associated with Different Missense Mutations in EphB2

    PubMed Central

    Vickrey, Anna I.; Domyan, Eric T.; Horvath, Martin P.; Shapiro, Michael D.

    2015-01-01

    Head crests are important display structures in wild bird species and are also common in domesticated lineages. Many breeds of domestic rock pigeon (Columba livia) have crests of reversed occipital feathers, and this recessive trait is associated with a nonsynonymous coding mutation in the intracellular kinase domain of EphB2 (Ephrin receptor B2). The domestic ringneck dove (Streptopelia risoria) also has a recessive crested morph with reversed occipital feathers, and interspecific crosses between crested doves and pigeons produce crested offspring, suggesting a similar genetic basis for this trait in both species. We therefore investigated EphB2 as a candidate for the head crest phenotype of ringneck doves and identified a nonsynonymous coding mutation in the intracellular kinase domain that is significantly associated with the crested morph. This mutation is over 100 amino acid positions away from the crest mutation found in rock pigeons, yet both mutations are predicted to negatively affect the function of ATP-binding pocket. Furthermore, bacterial toxicity assays suggest that “crest” mutations in both species severely impact kinase activity. We conclude that head crests are associated with different mutations in the same functional domain of the same gene in two different columbid species, thereby representing striking evolutionary convergence in morphology and molecules. PMID:26104009

  17. Mutation T318M in the CYP11B2 gene encoding P450c11AS (aldosterone synthase) causes corticosterone methyl oxidase II deficiency

    SciTech Connect

    Zhang, G.; Rodriguez, H.; Miller, W.L.

    1995-11-01

    Corticosterone methyl oxidase (CMO) deficiency refers to disorders of aldosterone synthesis due to mutations in the CYP11B2 gene encoding cytochrome P450c11AS, which is the adrenal aldosterone synthase. Type I CMO deficiency is associated with low concentrations of 18OH-corticosterone and aldosterone, due to severe mutations in P450c11AS, while type III CMO deficiency is associated with high concentrations of 18OH-corticosterone and low concentrations of aldosterone, due to less severe mutations of P450c11AS. A single type of mutation, compound homozygosity for R181W and V386A, has been reported as the cause of CMOII deficiency in an inbred population. We now report a patient with a typical clinical and hormonal picture of CMOII deficiency. Direct sequencing of patient and parent DNAs showed that the mother`s allele contributed R181W and the deletion/frameshift mutation {Delta}C372, while the father`s allele contributed T318M and V386A. These mutants were recreated in cDNA expression vectors singly and in the parental pairs, showing that neither allele contributed any measurable activity. This would suggest the patient should have CMOI deficiency. These studies suggest that other factors besides P450c11AS are involved in the genesis of the distinctive CMOI and CMOII phenotypes. 31 refs., 2 figs., 3 tabs.

  18. Identification of a GDF5 mutation in a Korean patient with brachydactyly type C without foot involvement.

    PubMed

    Seo, Soo Hyun; Park, Mi Jung; Kim, Shin-Hye; Kim, Ok-Hwa; Park, Seungman; Cho, Sung Im; Park, Sung Sup; Seong, Moon-Woo

    2013-03-01

    Brachydactyly type C (BDC) is characterized by shortening of the middle phalanges of the index, middle, and little fingers. Hyperphalangy of the index and middle finger and shortening of the first metacarpal can also be observed. BDC is a rare genetic condition associated with the GDF5 gene, and this condition has not been confirmed by genetic analysis so far in the Korean population. Herein, we present a case of a 6-yr-old girl diagnosed with BDC confirmed by molecular genetic analysis. The patient presented with shortening of the second and third digits of both hands. Sequence analysis of the GDF5 gene was performed and the pathogenic mutation, c.1312C>T (p.Arg438Cys), was identified. Interestingly, this mutation was previously described in a patient who presented with the absence of the middle phalanges in the second through fifth toes. However, our patient showed no involvement of the feet. Considering intrafamilial and interfamilial variability, molecular analysis of isolated brachydactyly is warranted to elucidate the genetic origin and establish a diagnosis.

  19. Mutational and Functional Analysis of the β-Carotene Ketolase Involved in the Production of Canthaxanthin and Astaxanthin

    PubMed Central

    Ye, Rick W.; Stead, Kristen J.; Yao, Henry; He, Hongxian

    2006-01-01

    Biosynthesis of the commercial carotenoids canthaxanthin and astaxanthin requires β-carotene ketolase. The functional importance of the conserved amino acid residues of this enzyme from Paracoccus sp. strain N81106 (formerly classified as Agrobacterium aurantiacum) was analyzed by alanine-scanning mutagenesis. Mutations in the three highly conserved histidine motifs involved in iron coordination abolished its ability to catalyze the formation of ketocarotenoids. This supports the hypothesis that the CrtW ketolase belongs to the family of iron-dependent integral membrane proteins. Most of the mutations generated at other highly conserved residues resulted in partial activity. All partially active mutants showed a higher amount of adonixanthin accumulation than did the wild type when expressed in Escherichia coli cells harboring the zeaxanthin biosynthetic gene cluster. Some of the partially active mutants also produced a significant amount of echinenone when expressed in cells producing β-carotene. In fact, expression of a mutant carrying D117A resulted in the accumulation of echinenone as the predominant carotenoid. These observations indicate that partial inactivation of the CrtW ketolase can often lead to the production of monoketolated intermediates. In order to improve the conversion rate of astaxanthin catalyzed by the CrtW ketolase, a color screening system was developed. Three randomly generated mutants, carrying L175M, M99V, and M99I, were identified to have improved activity. These mutants are potentially useful in pathway engineering for the production of astaxanthin. PMID:16957201

  20. Human mutations affect the epigenetic/bookmarking function of HNF1B

    PubMed Central

    Lerner, Jonathan; Bagattin, Alessia; Verdeguer, Francisco; Makinistoglu, Munevver P.; Garbay, Serge; Felix, Tristan; Heidet, Laurence; Pontoglio, Marco

    2016-01-01

    Bookmarking factors are transcriptional regulators involved in the mitotic transmission of epigenetic information via their ability to remain associated with mitotic chromatin. The mechanisms through which bookmarking factors bind to mitotic chromatin remain poorly understood. HNF1β is a bookmarking transcription factor that is frequently mutated in patients suffering from renal multicystic dysplasia and diabetes. Here, we show that HNF1β bookmarking activity is impaired by naturally occurring mutations found in patients. Interestingly, this defect in HNF1β mitotic chromatin association is rescued by an abrupt decrease in temperature. The rapid relocalization to mitotic chromatin is reversible and driven by a specific switch in DNA-binding ability of HNF1β mutants. Furthermore, we demonstrate that importin-β is involved in the maintenance of the mitotic retention of HNF1β, suggesting a functional link between the nuclear import system and the mitotic localization/translocation of bookmarking factors. Altogether, our studies have disclosed novel aspects on the mechanisms and the genetic programs that account for the mitotic association of HNF1β, a bookmarking factor that plays crucial roles in the epigenetic transmission of information through the cell cycle. PMID:27229139

  1. gyrA and gyrB mutations in ofloxacin-resistant Mycobacterium tuberculosis clinical isolates in Thailand.

    PubMed

    Pitaksajjakul, Pannamthip; Worakhunpiset, Suwalee; Chaiprasert, Angkana; Boonyasopun, Jirakarn; Ramasoota, Pongrama

    2011-09-01

    In order to identify mutations in gyrA and gyrB genes in 92 ofloxacin-resistant Mycobacterium tuberculosis (OFXr-MTB) clinical isolates collected from Siriraj Hospital, Mahidol University and Chest Disease Institute, Thailand. The quinolone resistance-determining regions (QRDR) of gyrA and gyrB in all 92 OFXr-MTB isolates were amplified using polymerase chain reaction and sequenced. There were 70 isolates with point mutations associated with ofloxacin resistance. In gyrA QRDR, 69 isolates had mutations in gyrA Gly88 (Ala/(75), Ala90 (Val), Ser91 (Pro) and Asp94 (Gly/Ala/His/Asn), the latter being the most common (42%). Only one isolate was found with mutation at position Asp495 (Asn). The other 22 isolates had no mutations in both gyrA and gyrB QRDR. Thus, point mutations in gyrA and gyrB QRDR were responsible for OFXr-MTB clinical isolates in Thailand. PMID:22299442

  2. Hepatitis B Virus Core Promoter Mutations in Patients With Chronic Hepatitis B and Hepatocellular Carcinoma in Bucharest, Romania

    PubMed Central

    Constantinescu, Ileana; Dinu, Andrei-Antoniu; Boscaiu, Voicu; Niculescu, Marius

    2014-01-01

    Background: Accurate and personalized molecular virological diagnosis of hepatitis B virus (HBV) infection is crucial for individualized selection of patients for antiviral therapy in Romania. Objectives: We aimed to investigate HBV mutations in Romanian patients with chronic HBV infection, also to match HBV genotypes with HBV mutations identified and clinical outcomes. Patients and Methods: This was a cross-sectional study. A total of 484 Romanian patients with chronic HBV infection and hepatocellular carcinoma (HCC) were investigated. This was performed in Fundeni Clinical Institute, Bucharest, Romania during January 2005 to August 2010. HBsAg positive patients with chronic HBV infection admitted to Fundeni Clinical Institute were randomly enrolled in the study. Analysis was performed in the Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Bucharest, Romania. Indirect diagnosis was performed with enhanced chemiluminescence method using Architect i2000SR and HBV-DNA was quantified with COBAS TaqMan HBV PCR. Direct sequencing of the PCR-products was performed with the PCR-product sequencing kit. HBV genotyping was performed with INNO-LiPA DR Amplification and INNO-LiPA HBV precore-core. Results: We detected two HBV genotypes; A (8.1%) and D (60.5%), and a mixture of genotypes A and D (31.4%) (P < 0.001). Basal core promoter (BCP) A1762T/G1764A and precore (PC) G1896A mutations were detected in these Romanian patients with chronic HBV infection. HBV chronic carriers had mainly genotype D (54.4%) and HBV WT (64.0%). BCP A1762T, G1764A and PC G1896A were significantly associated with HCC-tissue HBV sequencing (75.3%) (P < 0.001). PC G1896A alone was detected in HCC-serum HBV sequencing group (66.7%). Conclusions: Genotype D was the main genotype detected in Romanian patients with chronic HBV infection. Genotype D presented both BCP and PC mutations more frequently. PMID:25477976

  3. Primary Congenital Glaucoma and the Involvement of CYP1B1

    PubMed Central

    Kaur, Kiranpreet; Mandal, Anil K; Chakrabarti, Subhabrata

    2011-01-01

    Primary congenital glaucoma (PCG) is an autosomal recessive disorder in children due to the abnormal development of the trabecular meshwork and the anterior chamber angle. With an onset at birth to early infancy, PCG is highly prevalent in inbred populations and consanguinity is strongly associated with the disease. Gene mapping of PCG-affected families has identified three chromosomal loci, GLC3A, GLC3B and GLC3C, of which, the CYP1B1 gene on GLC3A harbors mutations in PCG. The mutation spectra of CYP1B1 vary widely across different populations but are well structured based on geographic and haplotype backgrounds. Structural and functional studies on CYP1B1 have suggested its potential role in the development and onset of glaucomatous symptoms. A new locus (GLC3D) harboring the LTBP2 gene has been characterized in developmental glaucoma but its role in classical cases of PCG is yet to be understood. In this review, we provide insight into PCG pathogenesis and the potential role of CYP1B1 in the disease phenotype. PMID:21572728

  4. Endovascular stenting for type B dissection involving a right-sided aortic arch

    PubMed Central

    Croccia, Maria Grazia; Levantino, Maurizio; Cioni, Roberto; Bortolotti, Uberto

    2012-01-01

    Endovascular stent-graft repair is emerging as the treatment of choice for complicated type B aortic dissection. In this report we describe a patient who presented with type B aortic dissection involving a right-sided aortic arch (RAA), a rare congenital vascular anomaly. The initial aggressive medical treatment proved unsuccessful due to false aneurysm expansion. Given the greater complexity of conventional surgical repair and the limited experience with this rare malformation, endovascular repair was preferred and successfully performed. We report the first case of endovascular repair of type B dissection involving RAA, confirming that endovascular treatment is technically feasible also when the dissection involves this unusual vascular malformation. PMID:22561295

  5. DNA CTG triplet repeats involved in dynamic mutations of neurologically related gene sequences form stable duplexes

    NASA Technical Reports Server (NTRS)

    Smith, G. K.; Jie, J.; Fox, G. E.; Gao, X.

    1995-01-01

    DNA triplet repeats, 5'-d(CTG)n and 5'-d(CAG)n, are present in genes which have been implicated in several neurodegenerative disorders. To investigate possible stable structures formed by these repeating sequences, we have examined d(CTG)n, d(CAG)n and d(CTG).d(CAG)n (n = 2 and 3) using NMR and UV optical spectroscopy. These studies reveal that single stranded (CTG)n (n > 2) forms stable, antiparallel helical duplexes, while the single stranded (CAG)n requires at least three repeating units to form a duplex. NMR and UV melting experiments show that the Tm increases in the order of [(CAG)3]2 < [(CTG)3]2 << (CAG)3.(CTG)3. The (CTG)3 duplex is stable and exhibits similar NMR spectra in solutions containing 0.1-4 M NaCl and at a pH range from 4.6 to 8.8. The (CTG)3 duplex, which contains multiple-T.T mismatches, displays many NMR spectral characteristics similar to those of B-form DNA. However, unique NOE and 1H-31P coupling patterns associated with the repetitive T.T mismatches in the CTG repeats are discerned. These results, in conjunction with recent in vitro studies suggest that longer CTG repeats may form hairpin structures, which can potentially cause interruption in replication, leading to dynamic expansion or deletion of triplet repeats.

  6. Rapid detection of drug-resistant mutations in hepatitis B virus by the PCR-Invader assay.

    PubMed

    Tadokoro, Kenichi; Suzuki, Fumitaka; Kobayashi, Mariko; Yamaguchi, Toshikazu; Nagano, Makoto; Egashira, Toru; Kumada, Hiromitsu

    2011-01-01

    Early detection of resistant mutations of hepatitis B virus (HBV) is important for patients on nucleos(t)ide analog therapy. An assay based on the PCR-Invader technology was developed to detect resistant mutations with high sensitivity. The assay specifically detects mutations at codons 180, 181, 184, 202, 204, and 250 of the HBV polymerase reverse transcriptase domain. These mutations result in resistance to lamivudine and entecavir. In mixtures of plasmids containing wild-type and resistant mutants, fold-over-zero values for resistant mutations were detected in 2% of the total. Seventy-five serum samples from patients, whose treatment had been switched from lamivudine to entecavir, were examined by the PCR-Invader assay and direct sequencing. The PCR-Invader assay detected all resistant mutations that were detected by direct sequencing and even detected the presence of mutants that direct sequencing could not. Cloning sequencing confirmed those mutations found by the PCR-Invader assay and not by direct sequencing. The PCR-Invader assay is a useful tool for the early detection of drug-resistant mutations. PMID:20950650

  7. Congenital adrenal hyperplasia due to 11-beta-hydroxylase deficiency: functional consequences of four CYP11B1 mutations

    PubMed Central

    Menabò, Soara; Polat, Seher; Baldazzi, Lilia; Kulle, Alexandra E; Holterhus, Paul-Martin; Grötzinger, Joachim; Fanelli, Flaminia; Balsamo, Antonio; Riepe, Felix G

    2014-01-01

    Congenital adrenal hyperplasia (CAH) is one of the most common autosomal recessive inherited endocrine disease. Steroid 11β-hydroxylase deficiency (11β-OHD) is the second most common form of CAH. The aim of the study was to study the functional consequences of three novel and one previously described CYP11B1 gene mutations (p.(Arg143Trp), p.(Ala306Val), p.(Glu310Lys) and p.(Arg332Gln)) detected in patients suffering from classical and non-classical 11β-OHD. Functional analyses were performed by using a HEK293 cell in vitro expression system comparing wild type (WT) with mutant 11β-hydroxylase activity. Mutant proteins were examined in silico to study their effect on the three-dimensional structure of the protein. Two mutations (p.(Ala306Val) and p.(Glu310Lys)) detected in patients with classical 11β-OHD showed a nearly complete loss of 11β-hydroxylase activity. The mutations p.(Arg143Trp) and p.(Arg332Gln) detected in patients with non-classical 11β-OHD showed a partial functional impairment with approximately 8% and 6% of WT activity, respectively. Functional mutation analysis allows the classification of novel CYP11B1 mutations as causes of classical and non-classical 11β-OHD. The detection of patients with non-classical phenotypes underscores the importance to screen patients with a phenotype comparable to non-classical 21-hydroxylase deficiency for mutations in the CYP11B1 gene in case of a negative analysis of the CYP21A2 gene. As CYP11B1 mutations are most often individual for a family, the in vitro analysis of novel mutations is essential for clinical and genetic counselling. PMID:24022297

  8. Age-related accumulation of Ig VH gene somatic mutations in peripheral B cells from aged humans

    PubMed Central

    CHONG, Y; IKEMATSU, H; YAMAJI, K; NISHIMURA, M; KASHIWAGI, S; HAYASHI, J

    2003-01-01

    To investigate age-related alterations in human humoral immunity, we analysed Ig heavy chain variable region genes expressed by peripheral B cells from young and aged individuals. Three hundred and twenty-seven cDNA sequences, 163 µ and 164 γ transcripts with VH5 family genes, were analysed for somatic hypermutation and VHDJH recombinational features. Unmutated and mutated µ transcripts were interpreted as being from naive and memory IgM B cells, respectively. In young and aged individuals, the percentages of naive IgM among total µ transcripts were 39% and 42%, respectively. D and JH segment usage in naive IgM from aged individuals was similar to that from young individuals. The mutational frequencies of memory IgM were similar in young and aged individuals. γ transcripts, which are regarded as being from memory IgG B cells, showed a significantly higher mutational frequency (7·6%) in aged than in young individuals (5·8%) (P < 0·01). These findings suggest that VHDJH recombinational diversity was preserved, but that the accumulation of somatic mutations in the IgG VH region was increased in aged humans. The accumulation of somatic mutations in IgG B cells during ageing may imply that an age-related alteration exists in the selection and/or maintenance of peripheral memory B cells. PMID:12823279

  9. Diffuse reticuloendothelial system involvement in type IV glycogen storage disease with a novel GBE1 mutation: a case report and review.

    PubMed

    Magoulas, Pilar L; El-Hattab, Ayman W; Roy, Angshumoy; Bali, Deeksha S; Finegold, Milton J; Craigen, William J

    2012-06-01

    Glycogen storage disease type IV is a rare autosomal recessive disorder of glycogen metabolism caused by mutations in the GBE1 gene that encodes the 1,4-alpha-glucan-branching enzyme 1. Its clinical presentation is variable, with the most common form presenting in early childhood with primary hepatic involvement. Histologic manifestations in glycogen storage disease type IV typically consist of intracytoplasmic non-membrane-bound inclusions containing abnormally branched glycogen (polyglucosan bodies) within hepatocytes and myocytes. We report a female infant with classic hepatic form of glycogen storage disease type IV who demonstrated diffuse reticuloendothelial system involvement with the spleen, bone marrow, and lymph nodes infiltrated by foamy histiocytes with intracytoplasmic polyglucosan deposits. Sequence analysis of the GBE1 gene revealed compound heterozygosity for a previously described frameshift mutation (c.1239delT) and a novel missense mutation (c.1279G>A) that is predicted to alter a conserved glycine residue. GBE enzyme analysis revealed no detectable activity. A review of the literature for glycogen storage disease type IV patients with characterized molecular defects and deficient enzyme activity reveals most GBE1 mutations to be missense mutations clustering in the catalytic enzyme domain. Individuals with the classic hepatic form of glycogen storage disease type IV tend to be compound heterozygotes for null and missense mutations. Although the extensive reticuloendothelial system involvement that was observed in our patient is not typical of glycogen storage disease type IV, it may be associated with severe enzymatic deficiency and a poor outcome.

  10. Mutation of isocitrate dehydrogenase 1 induces glioma cell proliferation via nuclear factor-κB activation in a hypoxia-inducible factor 1-α dependent manner.

    PubMed

    Wang, Guoliang; Sai, Ke; Gong, Fanghe; Yang, Qunying; Chen, Furong; Lin, Jian

    2014-05-01

    Recently, mutations of the isocitrate dehydrogenase (IDH) 1 gene, which specifically occur in the majority of low-grade and secondary high-grade gliomas, have drawn particular attention of neuro-oncologists. Mutations of the IDH1 gene have been proposed to have significant roles in the tumorigenesis, progression and prognosis of gliomas. However, the molecular mechanism of the role of IDH1 mutants in gliomagenesis remains to be elucidated. The present study, showed that forced expression of an IDH1 mutant, of which the 132th amino acid residue arginine is substituted by histidine (IDH1R132H), promoted cell proliferation in cultured cells, while wild-type IDH1 overexpression had no effect on cell proliferation. Consistent with previous studies, it was also observed that expression of hypoxia-inducible factor 1-α (HIF1-α) was upregulated in IDH1R132H expressing cells with the induction of vascular endothelial growth factor (VEGF) expression. However, knockdown of VEGF via small RNA interference had no significant influence on the cell proliferation induced by overexpression of IDH1R132H, implying that another signaling pathway may be involved. Next, forced expression of IDH1R132H was found to activate nuclear factor-κB (NF-κB), since the inhibitory IκB protein (IκBα) was highly phosphorylated and the NF-κB p65 subunit was translocated into the nucleus. Notably, knockdown of HIF1-α significantly blocked NF-κB activation, which was induced by the overexpression of IDH1 mutants. In addition, expression of IDH1 mutants markedly induced the NF-κB target gene expression, including cyclin D1 and E and c-myc, which were involved in the regulation of cell proliferation. In conclusion, it was demonstrated that the IDH1 mutant activated NF-κB in a HIF1-α‑dependent manner and was involved in the regulation of cell proliferation.

  11. Use of reporter genes to identify recessive trans-acting mutations specifically involved in the regulation of Aspergillus nidulans penicillin biosynthesis genes.

    PubMed Central

    Brakhage, A A; Van den Brulle, J

    1995-01-01

    Starting from three amino acid precursors, penicillin biosynthesis is catalyzed by three enzymes which are encoded by the following three genes: acvA (pcbAB), ipnA (pcbC), and aat (penDE). To identify trans-acting mutations which are specifically involved in the regulation of these secondary metabolism genes, a molecular approach was employed by using an Aspergillus nidulans strain (AXTII9) carrying acvA-uidA and ipnA-lacZ gene fusions integrated in double copies at the chromosomal argB gene. On minimal agar plates supplemented with X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside), colonies of such a strain stained blue, which is indicative of ipnA-lacZ expression. After mutagenesis with UV light, colonies were isolated on agar plates with lactose as the carbon source, which produced only a faint blue color or no color at all. Such mutants (named Prg for penicillin regulation) most likely were defective in trans-acting genes. Control experiments revealed that the mutants studied still carried the correct number of gene fusions. In a fermentation run, mutants Prg-1 and Prg-6 exhibited only 20 to 50% of the ipnA-lacZ expression of the wild-type strain and produced only 20 to 30% of the penicillin produced by the wild-type strain. Western blot (immunoblot) analysis showed that these mutants contained reduced amounts of ipnA gene product, i.e., isopenicillin N synthase. Both mutant Prg-1 and mutant Prg-6 also differed in acvA-uidA expression levels from the wild type. Segregation analysis indicated that for both mutants the Prg phenotype resulted from mutation of a single gene. Two different complementation groups, which were designated prgA1 and prgB1, were identified. However, the specific activity of the aat (penDE) gene product, i.e., acyl coenzyme A:6-aminopenicillanic acid acyltransferase, was essentially the same for the mutants as for the wild-type strain, implying that the last step of the penicillin biosynthetic pathway is not affected by the trans

  12. Multiple paragangliomas in a pregnant patient with a succinate dehydrogenase B mutation.

    PubMed

    Ganguly, Sonali; LeBeau, Shane; Pierce, Kim; Ramanathan, Ramesh; Salata, Rose

    2010-11-01

    In this case report, we document the clinical course, laboratory findings, and imaging findings of a 21-year-old pregnant woman with multiple paragangliomas due to a succinate dehydrogenase B (SDHB) mutation. We also review the literature on previously reported cases. The patient presented with nausea, palpitations, angina, and amenorrhea. Her blood pressure was 170/100 mm Hg and her beta-human chorionic gonadotropin was positive. Her blood pressure remained high despite phenoxybenzamine titration. A 24-hour urine analysis revealed elevated plasma metanephrines. Imaging was initially deferred due to early gestational age. After the patient terminated the pregnancy, magnetic resonance imaging revealed a left suprarenal mass, a mass at the aortic bifurcation, and a left periaortic mass. Her blood pressure was controlled on phenoxybenzamine and labetalol. The masses were excised. Pathology revealed paragangliomas. Genetic testing revealed mutation in the SDHB gene. One month later, her blood pressure was 122/86 mm Hg off of medication. Paraganglioma/pheochromocytoma should be suspected when hypertension occurs early in pregnancy. Genetic testing is important, as this may impact future offspring.

  13. DNA-PKcs Is Involved in Ig Class Switch Recombination in Human B Cells.

    PubMed

    Björkman, Andrea; Du, Likun; Felgentreff, Kerstin; Rosner, Cornelia; Pankaj Kamdar, Radhika; Kokaraki, Georgia; Matsumoto, Yoshihisa; Davies, E Graham; van der Burg, Mirjam; Notarangelo, Luigi D; Hammarström, Lennart; Pan-Hammarström, Qiang

    2015-12-15

    Nonhomologous end-joining (NHEJ) is one of the major DNA double-strand break repair pathways in mammalian cells and is required for both V(D)J recombination and class switch recombination (CSR), two Ig gene-diversification processes occurring during B cell development. DNA-dependent protein kinase, catalytic subunit (DNA-PKcs) is a component of the classical NHEJ machinery and has a critical function during V(D)J recombination. However, its role in CSR has been controversial. In this study, we examined the pattern of recombination junctions from in vivo-switched B cells from two DNA-PKcs-deficient patients. One of them harbored mutations that did not affect DNA-PKcs kinase activity but caused impaired Artemis activation; the second patient had mutations resulting in diminished DNA-PKcs protein expression and kinase activity. These results were compared with those from DNA-PKcs-deficient mouse B cells. A shift toward the microhomology-based alternative end-joining at the recombination junctions was observed in both human and mouse B cells, suggesting that the classical NHEJ pathway is impaired during CSR when DNA-PKcs is defective. Furthermore, cells from the second patient showed additional or more severe alterations in CSR and/or NHEJ, which may suggest that DNA-PKcs and/or its kinase activity have additional, Artemis-independent functions during these processes. PMID:26546606

  14. Role of embB Codon 306 Mutations in Mycobacterium tuberculosis Revisited: a Novel Association with Broad Drug Resistance and IS6110 Clustering Rather than Ethambutol Resistance

    PubMed Central

    Hazbón, Manzour Hernando; Bobadilla del Valle, Miriam; Guerrero, Marta Inírida; Varma-Basil, Mandira; Filliol, Ingrid; Cavatore, Magali; Colangeli, Roberto; Safi, Hassan; Billman-Jacobe, Helen; Lavender, Caroline; Fyfe, Janet; García-García, Lourdes; Davidow, Amy; Brimacombe, Michael; León, Clara Inés; Porras, Tania; Bose, Mridula; Chaves, Fernando; Eisenach, Kathleen D.; Sifuentes-Osornio, José; Ponce de León, Alfredo; Cave, M. Donald; Alland, David

    2005-01-01

    Mutations at position 306 of embB (embB306) have been proposed as a marker for ethambutol resistance in Mycobacterium tuberculosis; however, recent reports of embB306 mutations in ethambutol-susceptible isolates caused us to question the biological role of this mutation. We tested 1,020 clinical M. tuberculosis isolates with different drug susceptibility patterns and of different geographical origins for associations between embB306 mutations, drug resistance patterns, and major genetic group. One hundred isolates (10%) contained a mutation in embB306; however, only 55 of these mutants were ethambutol resistant. Mutations in embB306 could not be uniquely associated with any particular type of drug resistance and were found in all three major genetic groups. A striking association was observed between these mutations and resistance to any drug (P < 0.001), and the association between embB306 mutations and resistance to increasing numbers of drugs was highly significant (P < 0.001 for trend). We examined the association between embB306 mutations and IS6110 clustering (as a proxy for transmission) among all drug-resistant isolates. Mutations in embB306 were significantly associated with clustering by univariate analysis (odds ratio, 2.44; P = 0.004). In a multivariate model that also included mutations in katG315, katG463, gyrA95, and kasA269, only mutations in embB306 (odds ratio, 2.14; P = 0.008) and katG315 (odds ratio, 1.99; P = 0.015) were found to be independently associated with clustering. In conclusion, embB306 mutations do not cause classical ethambutol resistance but may predispose M. tuberculosis isolates to the development of resistance to increasing numbers of antibiotics and may increase the ability of drug-resistant isolates to be transmitted between subjects. PMID:16127055

  15. Understanding the Mechanism of Atovaquone Drug Resistance in Plasmodium falciparum Cytochrome b Mutation Y268S Using Computational Methods

    PubMed Central

    Varshney, Megha; Gupta, Shishir K.; Shukla, Yogeshwar; Gupta, Shailendra K.

    2014-01-01

    The rapid appearance of resistant malarial parasites after introduction of atovaquone (ATQ) drug has prompted the search for new drugs as even single point mutations in the active site of Cytochrome b protein can rapidly render ATQ ineffective. The presence of Y268 mutations in the Cytochrome b (Cyt b) protein is previously suggested to be responsible for the ATQ resistance in Plasmodium falciparum (P. falciparum). In this study, we examined the resistance mechanism against ATQ in P. falciparum through computational methods. Here, we reported a reliable protein model of Cyt bc1 complex containing Cyt b and the Iron-Sulphur Protein (ISP) of P. falciparum using composite modeling method by combining threading, ab initio modeling and atomic-level structure refinement approaches. The molecular dynamics simulations suggest that Y268S mutation causes ATQ resistance by reducing hydrophobic interactions between Cyt bc1 protein complex and ATQ. Moreover, the important histidine contact of ATQ with the ISP chain is also lost due to Y268S mutation. We noticed the induced mutation alters the arrangement of active site residues in a fashion that enforces ATQ to find its new stable binding site far away from the wild-type binding pocket. The MM-PBSA calculations also shows that the binding affinity of ATQ with Cyt bc1 complex is enough to hold it at this new site that ultimately leads to the ATQ resistance. PMID:25334024

  16. The Lamin B receptor is essential for cholesterol synthesis and perturbed by disease-causing mutations.

    PubMed

    Tsai, Pei-Ling; Zhao, Chenguang; Turner, Elizabeth; Schlieker, Christian

    2016-01-01

    Lamin B receptor (LBR) is a polytopic membrane protein residing in the inner nuclear membrane in association with the nuclear lamina. We demonstrate that human LBR is essential for cholesterol synthesis. LBR mutant derivatives implicated in Greenberg skeletal dysplasia or Pelger-Huët anomaly fail to rescue the cholesterol auxotrophy of a LBR-deficient human cell line, consistent with a loss-of-function mechanism for these congenital disorders. These disease-causing variants fall into two classes: point mutations in the sterol reductase domain perturb enzymatic activity by reducing the affinity for the essential cofactor NADPH, while LBR truncations render the mutant protein metabolically unstable, leading to its rapid degradation at the inner nuclear membrane. Thus, metabolically unstable LBR variants may serve as long-sought-after model substrates enabling previously impossible investigations of poorly understood protein turnover mechanisms at the inner nuclear membrane of higher eukaryotes. PMID:27336722

  17. Adhesion of Human B Cells to Germinal Centers in Vitro Involves VLA-4 and INCAM-110

    NASA Astrophysics Data System (ADS)

    Freedman, Arnold S.; Munro, J. Michael; Rice, G. Edgar; Bevilacqua, Michael P.; Morimoto, Chikao; McIntyre, Bradley W.; Rhynhart, Kurt; Pober, Jordan S.; Nadler, Lee M.

    1990-08-01

    Human B lymphocytes localize and differentiate within the microenvironment of lymphoid germinal centers. A frozen section binding assay was developed for the identification of those molecules involved in the adhesive interactions between B cells and lymphoid follicles. Activated human B cells and B cell lines were found to selectively adhere to germinal centers. The VLA-4 molecule on the lymphocyte and the adhesion molecule INCAM-110, expressed on follicular dendritic cells, supported this interaction. This cellular interaction model can be used for the study of how B cells differentiate.

  18. HSD10 disease: clinical consequences of mutations in the HSD17B10 gene.

    PubMed

    Zschocke, Johannes

    2012-01-01

    The HSD17B10 gene is located on chromosome Xp11.2 and codes for a multifunctional protein called 17β-hydroxysteroid dehydrogenase type 10 (HSD10). This protein catalyzes the 2-methyl-3-hydroxybutyryl-CoA dehydrogenation (MHBD) reaction in isoleucine metabolism and is an essential component of mitochondrial RNase P required for the processing of mtDNA transcripts. HSD10 is required for normal mitochondrial maintenance, and complete loss of HSD10 is incompatible with life. Mutations in the HSD17B10 gene have been reported in 19 families. The classical infantile form of what is best named HSD10 disease is characterized by a period of more or less normal development in the first 6-18 months of life. Some patients showed transient metabolic derangement in the neonatal period, with good clinical recovery but often persistent lactate elevation. Usually from age 6-18 months affected boys show a progressive neurodegenerative disease course in conjunction with retinopathy and cardiomyopathy leading to death at age 2-4 years or later. A more severe presentation in the neonatal period with little neurological development, severe progressive cardiomyopathy, and early death, is denoted neonatal form. Juvenile and atypical/asymptomatic forms of HSD10 disease have been recognized. Heterozygous females often show non-progressive developmental delay and intellectual disability but may also be clinically normal. The pathogenesis is poorly understood but is unrelated to MHBD function. Diagnosis is based on typical abnormalities in urinary organic acid analysis and molecular studies. The same de novo mutation p.R130C was found in over half of patient families; it is associated with the infantile disease form. There is no effective treatment. PMID:22127393

  19. Evolutionary pattern of mutation in the factor IX genes of great apes: How does it compare to the pattern of recent germline mutation in patients with hemophilia B?

    SciTech Connect

    Grouse, L.H.; Ketterling, R.P.; Sommer, S.S.

    1994-09-01

    Most mutations causing hemophilia B have arisen within the past 150 years. By correcting for multiple biases, the underlying rates of spontaneous germline mutation have been estimated in the factor IX gene. From these rates, an underlying pattern of mutation has emerged. To determine if this pattern compares to a underlying pattern found in the great apes, sequence changes were determined in intronic regions of the factor IX gene. The following species were studied: Gorilla gorilla, Pan troglodytes (chimpanzee), Pongo pygmacus (orangutan) and Homo sapiens. Intronic sequences at least 200 bp from a splice junction were randomly chosen, amplified by cross-species PCR, and sequenced. These regions are expected to be subject to little if any selective pressure. Early diverged species of Old World monkeys were also studied to help determine the direction of mutational changes. A total of 62 sequence changes were observed. Initial data suggest that the average pattern since evolution of the great apes has a paucity of transitions at CpG dinucleotides and an excess of microinsertions to microdeletions when compared to the pattern observed in humans during the past 150 years (p<.05). A larger study is in progress to confirm these results.

  20. A novel CYP27B1 mutation causes a feline vitamin D-dependent rickets type IA.

    PubMed

    Grahn, Robert A; Ellis, Melanie R; Grahn, Jennifer C; Lyons, Leslie A

    2012-08-01

    A 12-week-old domestic cat presented at a local veterinary clinic with hypocalcemia and skeletal abnormalities suggestive of rickets. Osteomalacia (rickets) is a disease caused by impaired bone mineralization leading to an increased prevalence of fractures and deformity. Described in a variety of species, rickets is most commonly caused by vitamin D or calcium deficiencies owing to both environmental and or genetic abnormalities. Vitamin D-dependent rickets type 1A (VDDR-1A) is a result of the enzymatic pathway defect caused by mutations in the 25-hydroxyvitamin D(3)-1-alpha-hydroxylase gene [cytochrome P27 B1 (CYP27B1)]. Calcitriol, the active form of vitamin D(3), regulates calcium homeostasis, which requires sufficient dietary calcium availability and correct hormonal function for proper bone growth and maintenance. Patient calcitriol concentrations were low while calcidiol levels were normal suggestive of VDDR-1A. The entire DNA coding sequencing of CYP27B1 was evaluated. The affected cat was wild type for previously identified VDDR-1A causative mutations. However, six novel mutations were identified, one of which was a nonsense mutation at G637T in exon 4. The exon 4 G637T nonsense mutation results in a premature protein truncation, changing a glutamic acid to a stop codon, E213X, likely causing the clinical presentation of rickets. The previously documented genetic mutation resulting in feline VDDR-1A rickets, as well as the case presented in this research, result from novel exon 4 CYP27B1 mutations, thus exon 4 should be the initial focus of future sequencing efforts.

  1. Characterization of a tonB mutation in Erwinia chrysanthemi 3937: TonB(Ech) is a member of the enterobacterial TonB family.

    PubMed

    Enard, C; Expert, D

    2000-08-01

    The pectinolytic enterobacterium Erwinia chrysanthemi 3937 causes a systemic disease in its natural host, the African violet (Saintpaulia: ionantha). It produces two structurally unrelated siderophores, chrysobactin and achromobactin. Chrysobactin makes a large contribution to invasive growth of the bacterium in its host. Insertion mutants of a chrysobactin-defective strain were constructed and screened on the universal CAS-agar medium used for siderophore detection. A set of mutants affected in the production of achromobactin were identified. This paper describes a mutant affected in the transport of all the ferrisiderophores used by the bacterium as iron sources. Molecular analysis revealed that the insertion mutation disrupts the tonB gene. The predicted Er. chrysanthemi TonB protein has a molecular mass of 27600 Da and shares 20-58% identity with the TonB proteins from 20 other bacterial species. The pathogenicity of the tonB mutant was assessed by inoculation of African violets. The impairment in the spread of symptoms was similar in the tonB mutant to that in chrysobactin-defective mutants. However, the pectinolytic activity, the major pathogenicity determinant in Er. chrysanthemi, appeared to be stimulated twofold in the tonB mutant. PMID:10931909

  2. Mutations in Human Interferon α2b Gene and Potential as Risk Factor Associated with Female Breast Cancer.

    PubMed

    Ahmed, Fayyaz; Mahmood, Nasir; Shahid, Saman; Hussain, Zahid; Ahmed, Ishtiaq; Jalal, Amir; Ijaz, Bushra; Shahid, Abubaker; Mujtaba, Ghulam; Mustafa, Tanveer

    2016-08-01

    The current study explored the potential links between breast cancer and human interferon α-2b (hIFNα-2b) gene mutations. The hIFNα-2b gene was amplified from breast cancer tumor tissue samples (N = 60) by polymerase chain reaction (PCR) and the products were subjected to gene sequencing. A total of 38 (63.3%) samples showed positive PCR amplification results. Several of these also exhibited frequent alterations (mutations) after 400 bp and, in particular, adenine was replaced by other bases. A total of 19 selected mutated amino acids were analyzed for local/general fold pattern changes. Human IFNα-2b receptor (IFNAR): ligand (hIFNα-2b protein) interactions through a Z-DOCK (3.0.2) server were also evaluated to assess the binding patterns of each ligand to receptor to induce Janus-Kinase-signal transducer and activator of transcription antiproliferative signal transduction pathway inside the cancer cells. Certain local structural and conformational changes were predicted to be induced by mutations in the ligand. The variant models of the hIFNα-2b displayed structural and conformational changes that signified that changes to hIFNα-2b may be a risk factor in addition to other known factors associated with onset/progression of female breast carcinoma. It was hoped that others might build upon the research in this study evaluating protein structural models with mutations and their consequent interactions with receptors in the development of potent immune therapeutic drugs for breast cancer that are based on recombinant hIFNα-2b. PMID:27403569

  3. A missense mutation in the ZFHX1B gene associated with an atypical Mowat-Wilson syndrome phenotype.

    PubMed

    Heinritz, Wolfram; Zweier, Christiane; Froster, Ursula G; Strenge, Sibylle; Kujat, Annegret; Syrbe, Steffen; Rauch, Anita; Schuster, Volker

    2006-06-01

    Mowat-Wilson syndrome (MWS) is a rare mental retardation-multiple congenital anomalies syndrome associated with typical facial dysmorphism. Patients can show a variety of other anomalies like short stature, microcephaly, Hirschsprung disease, malformations of the brain, seizures, congenital heart defects and urogenital anomalies. Mutations leading to haploinsufficiency of the ZFHX1B gene have been described as the underlying cause of this condition. We report on the clinical findings in a 2(1/2)-year-old boy with some aspects out of the MWS-spectrum in addition to unusual anomalies and a novel missense mutation in the ZFHX1B gene. PMID:16688751

  4. A case of primary selective hypoaldosteronism carrying three mutations in the aldosterone synthase (Cyp11b2) gene.

    PubMed

    Taranta, Anna; Bizzarri, Carla; Masotti, Andrea; Sciré, Giuseppe; Pampanini, Valentina; Cappa, Marco

    2012-05-25

    An infant with a clinical phenotype of early onset hypoaldosteronism has been screened for mutation analysis of the Cyp11b2 gene encoding aldosterone synthase enzyme. We have described a novel nonsense mutation in exon 3 (c.508C>T) that gave rise to a shorter protein (Q170X) and two known concurrent missense mutations (c.594A>C in exon 3 and c.1157T>C in exon 7) that led to substitution of glutamic acid for aspartic acid at amino acid position 198 (E198D) and of valine for alanine at amino acid position 386 (V386A). The father, who carried E198D plus V386A mutations, showed a fractional sodium excretion of 1.25% that was unmodified by dietary salt restriction, suggesting a mild haploinsufficiency. We examined by in silico analysis the effect of the mutations on the secondary and tertiary structures of aldosterone synthase to explain the inefficient enzymatic activity. The Q170X mutation produced a truncated protein, which was consequently associated with a loss of catalytic activity. As predicted by JPred web system and Dock 6.3 software, the concurrent expression of E198D and V386A mutations induced a significant secondary structure rearrangement and a shift of the heme group and the 18-hydroxycorticosterone substrate from their optimal placement.

  5. Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders.

    PubMed

    Nakajima, Masahiro; Mizumoto, Shuji; Miyake, Noriko; Kogawa, Ryo; Iida, Aritoshi; Ito, Hironori; Kitoh, Hiroshi; Hirayama, Aya; Mitsubuchi, Hiroshi; Miyazaki, Osamu; Kosaki, Rika; Horikawa, Reiko; Lai, Angeline; Mendoza-Londono, Roberto; Dupuis, Lucie; Chitayat, David; Howard, Andrew; Leal, Gabriela F; Cavalcanti, Denise; Tsurusaki, Yoshinori; Saitsu, Hirotomo; Watanabe, Shigehiko; Lausch, Ekkehart; Unger, Sheila; Bonafé, Luisa; Ohashi, Hirofumi; Superti-Furga, Andrea; Matsumoto, Naomichi; Sugahara, Kazuyuki; Nishimura, Gen; Ikegawa, Shiro

    2013-06-01

    Proteoglycans (PGs) are a major component of the extracellular matrix in many tissues and function as structural and regulatory molecules. PGs are composed of core proteins and glycosaminoglycan (GAG) side chains. The biosynthesis of GAGs starts with the linker region that consists of four sugar residues and is followed by repeating disaccharide units. By exome sequencing, we found that B3GALT6 encoding an enzyme involved in the biosynthesis of the GAG linker region is responsible for a severe skeletal dysplasia, spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1). B3GALT6 loss-of-function mutations were found in individuals with SEMD-JL1 from seven families. In a subsequent candidate gene study based on the phenotypic similarity, we found that B3GALT6 is also responsible for a connective tissue disease, Ehlers-Danlos syndrome (progeroid form). Recessive loss-of-function mutations in B3GALT6 result in a spectrum of disorders affecting a broad range of skeletal and connective tissues characterized by lax skin, muscle hypotonia, joint dislocation, and spinal deformity. The pleiotropic phenotypes of the disorders indicate that B3GALT6 plays a critical role in a wide range of biological processes in various tissues, including skin, bone, cartilage, tendon, and ligament.

  6. Mutational analysis of ERCC3, which is involved in DNA repair and transcription initiation: identification of domains essential for the DNA repair function.

    PubMed

    Ma, L; Westbroek, A; Jochemsen, A G; Weeda, G; Bosch, A; Bootsma, D; Hoeijmakers, J H; van der Eb, A J

    1994-06-01

    The human ERCC3 gene, which corrects specifically the nucleotide excision repair defect in human xeroderma pigmentosum group B and cross-complements the repair deficiency in rodent UV-sensitive mutants of group 3, encodes a presumed DNA helicase that is identical to the p89 subunit of the general transcription factor TFIIH/BTF2. To examine the significance of the postulated functional domains in ERCC3, we have introduced mutations in the ERCC3 cDNA by means of site-specific mutagenesis and have determined the repair capacity of each mutant to complement the UV-sensitive phenotype of rodent group 3 cells. A conservative substitution of arginine for the invariant lysine residue in the ATPase motif (helicase domain I), six deletion mutations in the other helicase domains, and a deletion in the potential helix-turn-helix DNA-binding motif fail to complement the ERCC3 excision repair defect of rodent group 3 mutants, which implies that the helicase domains as well as the potential DNA-binding motif are required for the repair function of ERCC3. Analysis of carboxy-terminal deletions suggests that the carboxy-terminal exon may comprise a distinct determinant for the DNA repair function. In addition, we show that a functional epitope-tagged version of ERCC3 accumulates in the nucleus. Deletion of the putative nuclear location signal impairs neither the nuclear location nor the repair function, indicating that other sequences may (also) be involved in translocation of ERCC3 to the nucleus. PMID:8196650

  7. Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): evidence for a phenotypic series involving three chondrodysplasias.

    PubMed

    Hästbacka, J; Superti-Furga, A; Wilcox, W R; Rimoin, D L; Cohn, D H; Lander, E S

    1996-02-01

    Atelosteogenesis type II (AO II) is a neonatally lethal chondrodysplasia whose clinical and histological characteristics resemble those of another chondrodysplasia, the much less severe diastrophic dysplasia (DTD). The similarity suggests a shared pathogenesis involving lesions in the same biochemical pathway and perhaps the same gene. DTD is caused by mutations in the recently identified diastrophic dysplasia sulfate-transporter gene (DTDST). Here, we report that AOII patients also have DTDST mutations, which lead to defective uptake of inorganic sulfate and insufficient sulfation of macromolecules by patient mesenchymal cells in vitro. Together with our recent observation that a third even more severe chondrodysplasia, achondrogenesis type IB, is also caused by mutations in DTDST, these results demonstrate a phenotypic series of three chondrodysplasias of increasing severity caused by lesions in a single sulfate-transporter gene. The severity of the phenotype appears to be correlated with the predicted effect of the mutations on the residual activity of the DTDST protein. PMID:8571951

  8. A Missense Mutation in PPP1R15B Causes a Syndrome Including Diabetes, Short Stature, and Microcephaly

    PubMed Central

    Abdulkarim, Baroj; Igoillo-Esteve, Mariana; Daures, Mathilde; Romero, Sophie; Philippi, Anne; Senée, Valérie; Lopes, Miguel; Cunha, Daniel A.; Harding, Heather P.; Derbois, Céline; Bendelac, Nathalie; Hattersley, Andrew T.; Eizirik, Décio L.; Ron, David

    2015-01-01

    Dysregulated endoplasmic reticulum stress and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) are associated with pancreatic β-cell failure and diabetes. Here, we report the first homozygous mutation in the PPP1R15B gene (also known as constitutive repressor of eIF2α phosphorylation [CReP]) encoding the regulatory subunit of an eIF2α-specific phosphatase in two siblings affected by a novel syndrome of diabetes of youth with short stature, intellectual disability, and microcephaly. The R658C mutation in PPP1R15B affects a conserved amino acid within the domain important for protein phosphatase 1 (PP1) binding. The R658C mutation decreases PP1 binding and eIF2α dephosphorylation and results in β-cell apoptosis. Our findings support the concept that dysregulated eIF2α phosphorylation, whether decreased by mutation of the kinase (EIF2AK3) in Wolcott-Rallison syndrome or increased by mutation of the phosphatase (PPP1R15B), is deleterious to β-cells and other secretory tissues, resulting in diabetes associated with multisystem abnormalities. PMID:26159176

  9. A missense mutation in PPP1R15B causes a syndrome including diabetes, short stature and microcephaly

    PubMed Central

    Igoillo-Esteve, Mariana; Daures, Mathilde; Romero, Sophie; Philippi, Anne; Senée, Valérie; Lopes, Miguel; Cunha, Daniel A.; Harding, Heather P.; Derbois, Céline; Bendelac, Nathalie; Hattersley, Andrew T.; Eizirik, Décio L.; Ron, David

    2015-01-01

    Dysregulated endoplasmic reticulum stress and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) are associated with pancreatic β-cell failure and diabetes. Here we report the first homozygous mutation in the PPP1R15B gene (also known as constitutive repressor of eIF2α phosphorylation, CReP), encoding the regulatory subunit of an eIF2α-specific phosphatase, in two siblings affected by a novel syndrome of diabetes of youth, with short stature, intellectual disability and microcephaly. The R658C mutation in PPP1R15B affects a conserved amino acid within the domain important for protein phosphatase 1 (PP1) binding. The R658C mutation decreases PP1 binding and eIF2α dephosphorylation, and results in β-cell apoptosis. Our findings support the concept that dysregulated eIF2α phosphorylation, whether decreased by mutation of the kinase (EIF2AK3) in Wolcott-Rallison syndrome or increased by mutation of the phosphatase (PPP1R15B), is deleterious to β-cells and other secretory tissues, resulting in diabetes associated with multi-system abnormalities. PMID:26159176

  10. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism.

    PubMed

    Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R

    2016-05-20

    C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism. PMID:26980729

  11. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism.

    PubMed

    Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R

    2016-05-20

    C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism.

  12. Psoriasis mutations disrupt CARD14 autoinhibition promoting BCL10-MALT1-dependent NF-κB activation.

    PubMed

    Howes, Ashleigh; O'Sullivan, Paul A; Breyer, Felix; Ghose, Ashavari; Cao, Li; Krappmann, Daniel; Bowcock, Anne M; Ley, Steven C

    2016-06-15

    Inherited and de novo mutations in the CARD14 gene promote the development of psoriasis, an inflammatory disease of the skin. Caspase recruitment domain-containing protein 14 (CARD14) is a member of the CARMA protein family that includes the structurally related CARD11 adaptor that mediates NF-κB activation by antigen receptors. We investigated the mechanism by which CARD14 mutation in psoriasis activates NF-κB. In contrast with wild-type CARD14, CARD14(E138A) and CARD14(G117S) psoriasis mutants interacted constitutively with BCL10 and MALT1, and triggered BCL10- and MALT1-dependent activation of NF-κB in keratinocytes. These alterations disrupted the inhibitory effect of the CARD14 linker region (LR) on NF-κB activation by facilitating BCL10 binding. Therefore, psoriasis mutations activated CARD14 by a mechanism analogous to oncogenic CARD11 mutations in non-Hodgkin B cell lymphomas. CARD14(E138A) also stimulated MALT1 paracaspase activity and activated both ERK1/2 and p38α MAP kinases. Inhibition of MALT1 with mepazine reduced CARD14(E138A)-induced expression of specific psoriasis-associated transcripts in keratinocytes. Our results establish the mechanism whereby gain-of-function CARD14 variants, which induce psoriatic disease in affected individuals, activate pro-inflammatory signalling. PMID:27071417

  13. Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies.

    PubMed

    Kayman-Kurekci, Gulsum; Talim, Beril; Korkusuz, Petek; Sayar, Nilufer; Sarioglu, Turkan; Oncel, Ibrahim; Sharafi, Parisa; Gundesli, Hulya; Balci-Hayta, Burcu; Purali, Nuhan; Serdaroglu-Oflazer, Piraye; Topaloglu, Haluk; Dincer, Pervin

    2014-07-01

    We performed genome-wide homozygosity mapping and mapped a novel myopathic phenotype to chromosomal region 1q25 in a consanguineous family with three affected individuals manifesting proximal and distal weakness and atrophy, rigid spine and contractures of the proximal and distal interphalangeal hand joints. Additionally, cardiomyopathy and respiratory involvement were noted. DNA sequencing of torsinA-interacting protein 1 (TOR1AIP1) gene encoding lamina-associated polypeptide 1B (LAP1B), showed a homozygous c.186delG mutation that causes a frameshift resulting in a premature stop codon (p.E62fsTer25). We observed that expression of LAP1B was absent in the patient skeletal muscle fibres. Ultrastructural examination showed intact sarcomeric organization but alterations of the nuclear envelope including nuclear fragmentation, chromatin bleb formation and naked chromatin. LAP1B is a type-2 integral membrane protein localized in the inner nuclear membrane that binds to both A- and B-type lamins, and is involved in the regulation of torsinA ATPase. Interestingly, luminal domain-like LAP1 (LULL1)-an endoplasmic reticulum-localized partner of torsinA-was overexpressed in the patient's muscle in the absence of LAP1B. Therefore, the findings suggest that LAP1 and LULL1 might have a compensatory effect on each other. This study expands the spectrum of genes associated with nuclear envelopathies and highlights the critical function for LAP1B in striated muscle.

  14. Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies.

    PubMed

    Kayman-Kurekci, Gulsum; Talim, Beril; Korkusuz, Petek; Sayar, Nilufer; Sarioglu, Turkan; Oncel, Ibrahim; Sharafi, Parisa; Gundesli, Hulya; Balci-Hayta, Burcu; Purali, Nuhan; Serdaroglu-Oflazer, Piraye; Topaloglu, Haluk; Dincer, Pervin

    2014-07-01

    We performed genome-wide homozygosity mapping and mapped a novel myopathic phenotype to chromosomal region 1q25 in a consanguineous family with three affected individuals manifesting proximal and distal weakness and atrophy, rigid spine and contractures of the proximal and distal interphalangeal hand joints. Additionally, cardiomyopathy and respiratory involvement were noted. DNA sequencing of torsinA-interacting protein 1 (TOR1AIP1) gene encoding lamina-associated polypeptide 1B (LAP1B), showed a homozygous c.186delG mutation that causes a frameshift resulting in a premature stop codon (p.E62fsTer25). We observed that expression of LAP1B was absent in the patient skeletal muscle fibres. Ultrastructural examination showed intact sarcomeric organization but alterations of the nuclear envelope including nuclear fragmentation, chromatin bleb formation and naked chromatin. LAP1B is a type-2 integral membrane protein localized in the inner nuclear membrane that binds to both A- and B-type lamins, and is involved in the regulation of torsinA ATPase. Interestingly, luminal domain-like LAP1 (LULL1)-an endoplasmic reticulum-localized partner of torsinA-was overexpressed in the patient's muscle in the absence of LAP1B. Therefore, the findings suggest that LAP1 and LULL1 might have a compensatory effect on each other. This study expands the spectrum of genes associated with nuclear envelopathies and highlights the critical function for LAP1B in striated muscle. PMID:24856141

  15. Mutational analysis of GlnB residues critical for NifA activation in Azospirillum brasilense.

    PubMed

    Inaba, Juliana; Thornton, Jeremy; Huergo, Luciano Fernandes; Monteiro, Rose Adele; Klassen, Giseli; Pedrosa, Fábio de Oliveira; Merrick, Mike; de Souza, Emanuel Maltempi

    2015-02-01

    PII proteins are signal transduction that sense cellular nitrogen status and relay this signals to other targets. Azospirillum brasilense is a nitrogen fixing bacterium, which associates with grasses and cereals promoting beneficial effects on plant growth and crop yields. A. brasilense contains two PII encoding genes, named glnB and glnZ. In this paper, glnB was mutagenised in order to identify amino acid residues involved in GlnB signaling. Two variants were obtained by random mutagenesis, GlnBL13P and GlnBV100A and a site directed mutant, GlnBY51F, was obtained. Their ability to complement nitrogenase activity of glnB mutant strains of A. brasilense were determined. The variant proteins were also overexpressed in Escherichia coli, purified and characterized biochemically. None of the GlnB variant forms was able to restore nitrogenase activity in glnB mutant strains of A. brasilense LFH3 and 7628. The purified GlnBY51F and GlnBL13P proteins could not be uridylylated by GlnD, whereas GlnBV100A was uridylylated but at only 20% of the rate for wild type GlnB. Biochemical and computational analyses suggest that residue Leu13, located in the α helix 1 of GlnB, is important to maintain GlnB trimeric structure and function. The substitution V100A led to a lower affinity for ATP binding. Together the results suggest that NifA activation requires uridylylated GlnB bound to ATP.

  16. In Azospirillum brasilense, mutations in flmA or flmB genes affect polar flagellum assembly, surface polysaccharides, and attachment to maize roots.

    PubMed

    Rossi, Fernando Ariel; Medeot, Daniela Beatriz; Liaudat, Juan Pablo; Pistorio, Mariano; Jofré, Edgardo

    2016-09-01

    Azospirillum brasilense is a soil bacterium capable of promoting plant growth. Several surface components were previously reported to be involved in the attachment of A. brasilense to root plants. Among these components are the exopolysaccharide (EPS), lipopolysaccharide (LPS) and the polar flagellum. Flagellin from polar flagellum is glycosylated and it was suggested that genes involved in such a posttranslational modification are the same ones involved in the biosynthesis of sugars present in the O-antigen of the LPS. In this work, we report on the characterization of two homologs present in A. brasilense Cd, to the well characterized flagellin modification genes, flmA and flmB, from Aeromonas caviae. We show that mutations in either flmA or flmB genes of A. brasilense resulted in non-motile cells due to alterations in the polar flagellum assembly. Moreover, these mutations also affected the capability of A. brasilense cells to adsorb to maize roots and to produce LPS and EPS. By generating a mutant containing the polar flagellum affected in their rotation, we show the importance of the bacterial motility for the early colonization of maize roots.

  17. Mitochondrial Encephalomyopathy and Complex III Deficiency Associated with a Stop-Codon Mutation in the Cytochrome b Gene

    PubMed Central

    Keightley, J. Andrew; Anitori, Roberto; Burton, Miriam D.; Quan, Franklin; Buist, Neil R. M.; Kennaway, Nancy G.

    2000-01-01

    We have reinvestigated a young woman, originally reported by us in 1983, who presented with exercise intolerance and lactic acidosis associated with severe deficiency of complex III and who responded to therapy with menadione and ascorbate. Gradually, she developed symptoms of a mitochondrial encephalomyopathy. Immunocytochemistry of serial sections of muscle showed a mosaic of fibers that reacted poorly with antibodies to subunits of complex III but reacted normally with antibodies to subunits of complexes I, II, or IV, suggesting a mutation of mtDNA. These findings demonstrate the diagnostic value of immunocytochemistry in identifying specific respiratory-chain deficiencies and, potentially, distinguishing between nuclear- or mtDNA-encoded defects. Sequence analysis revealed a stop-codon mutation (G15242A) in the mtDNA-encoded cytochrome b gene, resulting in loss of the last 215 amino acids of cytochrome b. PCR-RFLP analysis indicated that the G15242A mutation was heteroplasmic and was present in a high percentage (87%) of affected tissue (skeletal muscle) and a low percentage (0.7%) of unaffected tissue (blood) but was not detected in controls. Analysis of microdissected muscle fibers showed a significant correlation between the immunoreactivity toward the Rieske protein of complex III and the percentage of mutant mtDNA: immunopositive fibers had a median value of 33% of the G15242A mutation, whereas immunonegative, ragged-red fibers had a median value of 89%, indicating that the stop-codon mutation was pathogenic in this patient. The G15242A mutation was also present in several other tissues, including hair roots, indicating that it must have arisen either very early in embryogenesis, before separation of the primary germ layers, or in the maternal germ line. The findings in this patient are contrasted with other recently described patients who have mutations in the cytochrome b gene. PMID:11047755

  18. Biallelic Mutations in TMEM126B Cause Severe Complex I Deficiency with a Variable Clinical Phenotype.

    PubMed

    Alston, Charlotte L; Compton, Alison G; Formosa, Luke E; Strecker, Valentina; Oláhová, Monika; Haack, Tobias B; Smet, Joél; Stouffs, Katrien; Diakumis, Peter; Ciara, Elżbieta; Cassiman, David; Romain, Nadine; Yarham, John W; He, Langping; De Paepe, Boel; Vanlander, Arnaud V; Seneca, Sara; Feichtinger, René G; Płoski, Rafal; Rokicki, Dariusz; Pronicka, Ewa; Haller, Ronald G; Van Hove, Johan L K; Bahlo, Melanie; Mayr, Johannes A; Van Coster, Rudy; Prokisch, Holger; Wittig, Ilka; Ryan, Michael T; Thorburn, David R; Taylor, Robert W

    2016-07-01

    Complex I deficiency is the most common biochemical phenotype observed in individuals with mitochondrial disease. With 44 structural subunits and over 10 assembly factors, it is unsurprising that complex I deficiency is associated with clinical and genetic heterogeneity. Massively parallel sequencing (MPS) technologies including custom, targeted gene panels or unbiased whole-exome sequencing (WES) are hugely powerful in identifying the underlying genetic defect in a clinical diagnostic setting, yet many individuals remain without a genetic diagnosis. These individuals might harbor mutations in poorly understood or uncharacterized genes, and their diagnosis relies upon characterization of these orphan genes. Complexome profiling recently identified TMEM126B as a component of the mitochondrial complex I assembly complex alongside proteins ACAD9, ECSIT, NDUFAF1, and TIMMDC1. Here, we describe the clinical, biochemical, and molecular findings in six cases of mitochondrial disease from four unrelated families affected by biallelic (c.635G>T [p.Gly212Val] and/or c.401delA [p.Asn134Ilefs(∗)2]) TMEM126B variants. We provide functional evidence to support the pathogenicity of these TMEM126B variants, including evidence of founder effects for both variants, and establish defects within this gene as a cause of complex I deficiency in association with either pure myopathy in adulthood or, in one individual, a severe multisystem presentation (chronic renal failure and cardiomyopathy) in infancy. Functional experimentation including viral rescue and complexome profiling of subject cell lines has confirmed TMEM126B as the tenth complex I assembly factor associated with human disease and validates the importance of both genome-wide sequencing and proteomic approaches in characterizing disease-associated genes whose physiological roles have been previously undetermined. PMID:27374774

  19. Biallelic Mutations in TMEM126B Cause Severe Complex I Deficiency with a Variable Clinical Phenotype.

    PubMed

    Alston, Charlotte L; Compton, Alison G; Formosa, Luke E; Strecker, Valentina; Oláhová, Monika; Haack, Tobias B; Smet, Joél; Stouffs, Katrien; Diakumis, Peter; Ciara, Elżbieta; Cassiman, David; Romain, Nadine; Yarham, John W; He, Langping; De Paepe, Boel; Vanlander, Arnaud V; Seneca, Sara; Feichtinger, René G; Płoski, Rafal; Rokicki, Dariusz; Pronicka, Ewa; Haller, Ronald G; Van Hove, Johan L K; Bahlo, Melanie; Mayr, Johannes A; Van Coster, Rudy; Prokisch, Holger; Wittig, Ilka; Ryan, Michael T; Thorburn, David R; Taylor, Robert W

    2016-07-01

    Complex I deficiency is the most common biochemical phenotype observed in individuals with mitochondrial disease. With 44 structural subunits and over 10 assembly factors, it is unsurprising that complex I deficiency is associated with clinical and genetic heterogeneity. Massively parallel sequencing (MPS) technologies including custom, targeted gene panels or unbiased whole-exome sequencing (WES) are hugely powerful in identifying the underlying genetic defect in a clinical diagnostic setting, yet many individuals remain without a genetic diagnosis. These individuals might harbor mutations in poorly understood or uncharacterized genes, and their diagnosis relies upon characterization of these orphan genes. Complexome profiling recently identified TMEM126B as a component of the mitochondrial complex I assembly complex alongside proteins ACAD9, ECSIT, NDUFAF1, and TIMMDC1. Here, we describe the clinical, biochemical, and molecular findings in six cases of mitochondrial disease from four unrelated families affected by biallelic (c.635G>T [p.Gly212Val] and/or c.401delA [p.Asn134Ilefs(∗)2]) TMEM126B variants. We provide functional evidence to support the pathogenicity of these TMEM126B variants, including evidence of founder effects for both variants, and establish defects within this gene as a cause of complex I deficiency in association with either pure myopathy in adulthood or, in one individual, a severe multisystem presentation (chronic renal failure and cardiomyopathy) in infancy. Functional experimentation including viral rescue and complexome profiling of subject cell lines has confirmed TMEM126B as the tenth complex I assembly factor associated with human disease and validates the importance of both genome-wide sequencing and proteomic approaches in characterizing disease-associated genes whose physiological roles have been previously undetermined.

  20. Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina.

    PubMed Central

    Bouhouche, Khaled; Zickler, Denise; Debuchy, Robert; Arnaise, Sylvie

    2004-01-01

    Repeat-induced point mutation (RIP) is a homology-dependent gene-silencing mechanism that introduces C:G-to-T:A transitions in duplicated DNA segments. Cis-duplicated sequences can also be affected by another mechanism called premeiotic recombination (PR). Both are active over the sexual cycle of some filamentous fungi, e.g., Neurospora crassa and Podospora anserina. During the sexual cycle, several developmental steps require precise nuclear movement and positioning, but connections between RIP, PR, and nuclear distributions have not yet been established. Previous work has led to the isolation of ami1, the P. anserina ortholog of the Aspergillus nidulans apsA gene, which is required for nuclear positioning. We show here that ami1 is involved in nuclear distribution during the sexual cycle and that alteration of ami1 delays the fruiting-body development. We also demonstrate that ami1 alteration affects loss of transgene functions during the sexual cycle. Genetically linked multiple copies of transgenes are affected by RIP and PR much more frequently in an ami1 mutant cross than in a wild-type cross. Our results suggest that the developmental slowdown of the ami1 mutant during the period of RIP and PR increases time exposure to the duplication detection system and thus increases the frequency of RIP and PR. PMID:15166143

  1. Prolonged gray matter disease without demyelination caused by Theiler's murine encephalomyelitis virus with a mutation in VP2 puff B.

    PubMed

    Tsunoda, I; Wada, Y; Libbey, J E; Cannon, T S; Whitby, F G; Fujinami, R S

    2001-08-01

    Theiler's murine encephalomyelitis virus (TMEV) is divided into two subgroups based on neurovirulence. During the acute phase, DA virus infects cells in the gray matter of the central nervous system (CNS). Throughout the chronic phase, DA virus infects glial cells in the white matter, causing demyelinating disease. Although GDVII virus also infects neurons in the gray matter, infected mice developed a severe polioencephalomyelitis, and no virus is detected in the white matter or other areas in the CNS in rare survivors. Several sequence differences between the two viruses are located in VP2 puff B and VP1 loop II, which are located near each other, close to the proposed receptor binding site. We constructed a DA virus mutant, DApBL2M, which has the VP1 loop II of GDVII virus and a mutation at position 171 in VP2 puff B. While DApBL2M virus replicated less efficiently than DA virus during the acute phase, DApBL2M-induced acute polioencephalitis was comparable to that in DA virus infection. Interestingly, during the chronic phase, DApBL2M caused prolonged gray matter disease in the brain without white matter involvement in the spinal cord. This is opposite what is observed during wild-type DA virus infection. Our study is the first to demonstrate that conformational differences via interaction of VP2 puff B and VP1 loop II between GDVII and DA viruses can play an important role in making the transition of infection from the gray matter in the brain to the spinal cord white matter during TMEV infection. PMID:11462022

  2. Mutations in Ralstonia solanacearum loci involved in lipopolysaccharide biogenesis, phospholipid trafficking and peptidoglycan recycling render bacteriophage infection.

    PubMed

    Hong, Yu-Hau; Huang, Chi; Wang, Kuan-Chung; Chu, Tai-Hsiang; Li, Chien-Hui; Chu, Yu-Ju; Cheng, Chiu-Ping

    2014-09-01

    Ralstonia solanacearum causes deadly wilting on many crops worldwide. However, the information on its components important for cell integrity and interactions with phages is limited. By systematically characterizing mutants resistant to a T7-like phage, we showed that the biosynthesis of rough lipopolysaccharides (R-LPS) was crucial for maintaining the membrane integrity, while the production of smooth LPS (S-LPS) was required for the resistance to polymyxin B and phage adsorption. Furthermore, RSc0154/ampG disruption did not affect LPS production and phage adsorption but may have caused aberrant release of peptidoglycan fragments, thus hindering phage DNA injection into or virion release from the cell. Mutations in the RSc2958-RSc2962/mla cluster, although not affecting LPS production, may have caused elevated phospholipid level in the outer leaflet of the outer membrane, consequently sheltering the mutants from phage adsorption on the O-antigen. These results specify important roles of the biogenesis and homeogenesis of envelope components for R. solanacearum-phage interaction.

  3. Genotype-specific mutations in the polymerase gene of hepatitis B virus potentially associated with resistance to oral antiviral therapy.

    PubMed

    Mirandola, Silvia; Sebastiani, Giada; Rossi, Cristina; Velo, Emanuela; Erne, Elke Maria; Vario, Alessandro; Tempesta, Diego; Romualdi, Chiara; Campagnolo, Davide; Alberti, Alfredo

    2012-12-01

    The evolution of hepatitis B virus (HBV) and the role of different variants during antiviral therapy may be influenced by HBV genotype. We have therefore analysed substitutions potentially related to nucleos(t)ide analogues (NAs) resistance at 42 positions within RT-region in a cohort of patients with chronic hepatitis B in relation to HBV-genotype. RT mutations analysis was performed by direct sequencing in 200 NAs-naïve patients and in 64 LAM or LAM+ADV experienced patients with NAs resistance, infected mainly by HBV-genotypes D and A. 27 polymorphic-sites were identified among the 42 positions analysed and 64 novel mutations were detected in 23 positions. Genotype-D displayed the highest mutation frequency (6.4%) among all HBV-genotypes analysed. Single or multiple mutations were detected in 80% of naïve patients. Overall, the most frequent single mutations were at residues rt54, rt53 and rt91 which may associate with significantly lower HBV-DNA levels (p=0.001). Comparison with sequencing data of patients failing LMV or LAM+ADV therapy revealed an higher frequency of novel genotype-specific mutations if compared with naïve patients: 3 mutations under LAM monotherapy in HBV-D (rtS85F; rtL91I; rtC256G) and 3 mutations under ADV therapy in HBV-A (rtI53V; rtW153R; rtF221Y). In HBV-D treated patients the dominant resistance mutation was rtL80V (31.4%) and rtM204I (60%) in LAM+ADV group while LAM-treated patients showed a preference of rtM204V (51.9%). Interestingly, none of HBV-A patients had mutation rtM204I under ADV add-on treatment but all of them had the "V" AA substitution. These results suggested that in patients with CHB, HBV-genotype might be relevant in the evolution and development of drug resistance showing also different mutation patterns in the YMDD motif between HBV genotype D and A. PMID:23026293

  4. Novel CYP27B1 Gene Mutations in Patients with Vitamin D-Dependent Rickets Type 1A.

    PubMed

    Demir, Korcan; Kattan, Walaa E; Zou, Minjing; Durmaz, Erdem; BinEssa, Huda; Nalbantoğlu, Özlem; Al-Rijjal, Roua A; Meyer, Brian; Özkan, Behzat; Shi, Yufei

    2015-01-01

    The CYP27B1 gene encodes 25-hydroxyvitamin D-1α-hydroxylase. Mutations of this gene cause vitamin D-dependent rickets type 1A (VDDR-IA, OMIM 264700), which is a rare autosomal recessive disorder. To investigate CYP27B1 mutations, we studied 8 patients from 7 unrelated families. All coding exons and intron-exon boundaries of CYP27B1 gene were amplified by PCR from peripheral leukocyte DNA and subsequently sequenced. Homozygous mutations in the CYP27B1 gene were found in all the patients and heterozygous mutations were present in their normal parents. One novel single nucleotide variation (SNV, c.1215 T>C, p.R379R in the last nucleotide of exon 7) and three novel mutations were identified:, a splice donor site mutation (c.1215+2T>A) in intron 7, a 16-bp deletion in exon 6 (c.1022-1037del16), and a 2-bp deletion in exon 5 (c.934_935delAC). Both c.1215 T>C and c.1215+2T>A were present together in homozygous form in two unrelated patients, and caused exon 7 skipping. However, c.1215 T>C alone has no effect on pre-mRNA splicing. The skipping of exon 7 resulted in a shift of downstream reading frame and a premature stop codon 57 amino acids from L380 (p.L380Afs*57). The intra-exon deletions of c.1022-1037del16 and c.934_935delAC also resulted in a frameshift and the creation of premature stop codons at p.T341Rfs*5, and p.T312Rfs*19, respectively, leading to the functional inactivation of the CYP27B1 gene. Clinically, all the patients required continued calcitriol treatment and the clinical presentations were consistent with the complete loss of vitamin D1α-hydroxylase activity. In conclusion, three novel mutations have been identified. All of them caused frameshift and truncated proteins. The silent c.1215 T>C SNV has no effect on pre-mRNA splicing and it is likely a novel SNP. The current study further expands the CYP27B1 mutation spectrum.

  5. Multi-allele genotyping platform for the simultaneous detection of mutations in the Wilson disease related ATP7B gene.

    PubMed

    Amvrosiadou, Maria; Petropoulou, Margarita; Poulou, Myrto; Tzetis, Maria; Kanavakis, Emmanuel; Christopoulos, Theodore K; Ioannou, Penelope C

    2015-12-01

    Wilson's disease is an inherited disorder of copper transport in the hepatocytes with a wide range of genotype and phenotype characteristics. Mutations in the ATP7B gene are responsible for the disease. Approximately, over 500 mutations in the ATP7B gene have been described to date. We report a method for the simultaneous detection of the ten most common ATP7B gene mutations in Greek patients. The method comprises 3 simple steps: (i) multiplex PCR amplification of fragments in the ATP7B gene flanking the mutations (ii) multiplex primer extension reaction of the unpurified amplification products using allele-specific primers and (iii) visual detection of the primer extension reaction products within minutes by means of dry-reagent multi-allele dipstick assay using anti-biotin conjugated gold nanoparticles. Optimization studies on the efficiency and specificity of the PEXT reaction were performed. The method was evaluated by genotyping 46 DNA samples of known genotype and 34 blind samples. The results were fully concordant with those obtained by reference methods. The method is simple, rapid, cost-effective and it does not require specialized instrumentation or highly qualified personnel. PMID:26580967

  6. Multi-allele genotyping platform for the simultaneous detection of mutations in the Wilson disease related ATP7B gene.

    PubMed

    Amvrosiadou, Maria; Petropoulou, Margarita; Poulou, Myrto; Tzetis, Maria; Kanavakis, Emmanuel; Christopoulos, Theodore K; Ioannou, Penelope C

    2015-12-01

    Wilson's disease is an inherited disorder of copper transport in the hepatocytes with a wide range of genotype and phenotype characteristics. Mutations in the ATP7B gene are responsible for the disease. Approximately, over 500 mutations in the ATP7B gene have been described to date. We report a method for the simultaneous detection of the ten most common ATP7B gene mutations in Greek patients. The method comprises 3 simple steps: (i) multiplex PCR amplification of fragments in the ATP7B gene flanking the mutations (ii) multiplex primer extension reaction of the unpurified amplification products using allele-specific primers and (iii) visual detection of the primer extension reaction products within minutes by means of dry-reagent multi-allele dipstick assay using anti-biotin conjugated gold nanoparticles. Optimization studies on the efficiency and specificity of the PEXT reaction were performed. The method was evaluated by genotyping 46 DNA samples of known genotype and 34 blind samples. The results were fully concordant with those obtained by reference methods. The method is simple, rapid, cost-effective and it does not require specialized instrumentation or highly qualified personnel.

  7. Mutations in the COPII vesicle component gene SEC24B are associated with human neural tube defects.

    PubMed

    Yang, Xue-Yan; Zhou, Xiang-Yu; Wang, Qing Qing; Li, Hong; Chen, Ying; Lei, Yun-Ping; Ma, Xiao-Hang; Kong, Pan; Shi, Yan; Jin, Li; Zhang, Ting; Wang, Hong-Yan

    2013-08-01

    Neural tube defects (NTDs) are severe birth malformations that affect one in 1,000 live births. Recently, mutations in the planar cell polarity (PCP) pathway genes had been implicated in the pathogenesis of NTDs in both the mouse model and in human cohorts. Mouse models indicate that the homozygous disruption of Sec24b, which mediates the ER-to-Golgi transportation of the core PCP gene Vangl2 as a component of the COPII vesicle, will result in craniorachischisis. In this study, we found four rare missense heterozygous SEC24B mutations (p.Phe227Ser, p.Phe682Leu, p.Arg1248Gln, and p.Ala1251Gly) in NTDs cases that were absent in all controls. Among them, p.Phe227Ser and p.Phe682Leu affected its protein stability and physical interaction with VANGL2. Three variants (p.Phe227Ser, p.Arg1248Gln, and p.Ala1251Gly) were demonstrated to affect VANGL2 subcellular localization in cultured cells. Further functional analysis in the zebrafish including overexpression and dosage-dependent rescue study suggested that these four mutations all displayed loss-of-function effects compared with wild-type SEC24B. Our study demonstrated that functional mutations in SEC24B might contribute to the etiology of a subset of human NTDs and further expanded our knowledge of the role of PCP pathway-related genes in the pathogenesis of human NTDs.

  8. Mutational analysis of amino acid residues involved in catalytic activity of a family 18 chitinase from tulip bulbs.

    PubMed

    Suzukawa, Keisuke; Yamagami, Takeshi; Ohnuma, Takayuki; Hirakawa, Hideki; Kuhara, Satoru; Aso, Yoichi; Ishiguro, Masatsune

    2003-02-01

    We expressed chitinase-1 (TBC-1) from tulip bulbs (Tulipa bakeri) in E. coli cells and used site-directed mutagenesis to identify amino acid residues essential for catalytic activity. Mutations at Glu-125 and Trp-251 completely abolished enzyme activity, and activity decreased with mutations at Asp-123 and Trp-172 when glycolchitin was the substrate. Activity changed with the mutations of Trp-251 to one of several amino acids with side-chains of little hydrophobicity, suggesting that hydrophobic interaction of Trp-251 is important for the activity. Molecular dynamics (MD) simulation analysis with hevamine as the model compound showed that the distance between Asp-123 and Glu-125 was extended by mutation of Trp-251. Kinetic studies of Trp-251-mutated chitinases confirmed these various phenomena. The results suggested that Glu-125 and Trp-251 are essential for enzyme activity and that Trp-251 had a direct role in ligand binding.

  9. Characterisation and mutational analysis of an ORF 1a-encoding proteinase domain responsible for proteolytic processing of the infectious bronchitis virus 1a/1b polyprotein.

    PubMed

    Liu, D X; Brown, T D

    1995-06-01

    Coronavirus gene expression involves proteolytic processing of the mRNA 1-encoded polyproteins by viral and cellular proteinases. Recently, we have demonstrated that an ORF 1b-encoded 100-kDa protein is proteolytically cleaved from the 1a/1b fusion polyprotein by a viral-specific proteinase of the picornavirus 3C proteinase group (3C-like proteinase). In this report, the 3C-like proteinase has been further analysed by internal deletion of a 2.3-kb fragment between the 3C-like proteinase-encoding region and ORF 1b and by substitution mutations of its catalytic centre as well as the two predicted cleavage sites flanking the 100-kDa protein. The results show that internal deletion of ORF 1a sequences from nucleotide 9911 to 12227 does not influence the catalytic activity of the proteinase in processing of the 1a/1b polyprotein to the 100-kDa protein species. Site-directed mutagenesis studies have confirmed that the predicted nucleophilic cysteine residue (Cys2922) and a histidine residue encoded by ORF 1a from nucleotide 8985 to 8987 (His2820) are essential for the catalytic activity of the proteinase, and that the QS(G) dipeptide bonds are its target cleavage sites. Substitution mutations of the third component of the putative catalytic triad, the glutamic acid 2843 (Glu2843) residue, however, do not affect the processing to the 100-kDa protein. In addition, cotransfection experiment shows that the 3C-like proteinase is capable of trans-cleavage of the 1a/1b polyprotein. These studies have confirmed the involvement of the 3C-like proteinase domain in processing of the 1a/1b polyprotein, the predicted catalytic centre of the proteinase, and its cleavage sites. PMID:7778277

  10. Subgenotypes and Mutations in the S and Polymerase Genes of Hepatitis B Virus Carriers in the West Bank, Palestine

    PubMed Central

    Abdelnabi, Zakeih; Saleh, Niveen; Baraghithi, Sabri; Glebe, Dieter; Azzeh, Maysa

    2014-01-01

    The mutation rate and genetic variability of hepatitis B virus (HBV) are crucial factors for efficient treatment and successful vaccination against HBV. Until today, genetic properties of this virus among the Palestinian population remain unknown. Therefore, we performed genetic analysis of the overlapping S and polymerase genes of HBV, isolated from 40 Palestinian patients' sera. All patients were HBsAg positive and presented with a viral load above 105 HBV genome copies/ml. The genotyping results of the S gene demonstrated that HBV D1 was detected in 90% of the samples representing the most prominent subgenotype among Palestinians carrying HBV. Various mutations existed within the S gene; in five patients four known escape mutations including the common G145R and D144E were found. Furthermore, a ratio of 4.25 of non-synonymous to synonymous mutations in the S gene indicated a strong selection pressure on the HBs antigen loops of HBV strains circulating in those Palestinian patients. Although all patients were treatment-naïve, with the exception of one, several mutations were found in the HBV polymerase gene, but none pointed to drug resistance. The study presented here is the first report to address subgenotypes and mutation analyses of HBV S and polymerase genes in Palestine. PMID:25503289

  11. Absence of missense mutations in activated c-myc genes in avian leukosis virus-induced B-cell lymphomas

    SciTech Connect

    Hahn, M.; Hayward, W.S.

    1988-06-01

    The authors determined the nucleotide sequences of two independent DNA clones which contained the activated c-myc genes from avian leukosis virus-induced B-cell lymphomas. Neither of these c-myce genes contained missense mutations. This strongly supports the notion that the c-myc photo-oncogene in avian leukosis virus-induced B-cell lymphomas can be oncogenically activated by altered expression of the gene without a change in the primary structure of the gene product.

  12. Assembly of the mitochondrial membrane system. XVIII. Genetic loci on mitochondrial DNA involved in cytochrome b biosynthesis.

    PubMed

    Tzagoloff, A; Foury, F; Akai, A

    1976-11-24

    1. Fourteen cytoplasmic mutants of Saccharomyces cerevisiae with a specific deficiency of cytochrome b have been studied. The mutations have been shown to occur in two separate genetic loci, COB 1 and COB 2. These loci can be distinguished by mit- X mit- crosses. Pairwise crosses of cytochrome b mutants belonging to different loci yield 4-6% wild type recombinants corresponding to recombinational frequencies of 8-12%. In intra-locus crosses, the recombinational frequencies range from 1% to less than 0.01%. The two loci can also be distinguished by mit- X rho- crosses. Twenty rho- testers have been isolated of which ten preferentially restore mutations in COB 1 and ten others in COB 2. 2. The COB 1 and COB 2 loci have been localized on mitochondrial DNA between the two antibiotic resistance loci OLI 1 and OLI 2 in the order OLI 2-COB 2-COB 1-OLI 1. The results of mit- X mit- and mit- X rho- crosses have also been used to map the cytochrome b mutations relative to each other. The maps obtained by the two independent methods are in good agreement. 3. Mutations in COB 1 have been found to be linked to the OLI1 locus in some but not in other strains of S. cervisiae. This evidence suggests that there may be a spacer region between the two loci whose length varies from strain to strain. 4. Two mutations in COB 2 have been found to cause a loss of a mitochondrial translation product corresponding to the cytochrome b apoprotein. Instead of the wild type protein the mutants have a new low-molecular weight product which is probably a fragment of cytochrome b. The fact that the mutations revert suggests that they are nonsense mutations in the structural gene of cytochrome b. PMID:796670

  13. Forced Cytochrome B gene mutation expression induces mitochondrial proliferation and prevents apoptosis in human uroepithelial SV-HUC-1 cells

    PubMed Central

    Dasgupta, Santanu; Hoque, Mohammad Obaidul; Upadhyay, Sunil; Sidransky, David

    2010-01-01

    Mitochondria encoded Cytochrome B (CYTB) gene mutations were reported in tumors of different anatomic origin but the functional significance of these mutations are not well studied. Earlier, we found a 7-amino acid deletion mutation in the CYTB gene in a primary bladder cancer patient. In the present study, we overexpressed this 7-amino acid deletion mutation of CYTB gene in SV-40 transformed human uroepithelial HUC-1 cells. The nuclear transcribed mitochondrial CYTB (mtCYTB) was targeted into the mitochondria and generated increased copies of mitochondria and mitochondrial COX-I protein in the transfected HUC-1 cells. The pro-apoptotic protein Bax largely remained confined to the cytoplasm of the mtCYTB transfected HUC-1 cells without release of Cytochrome C. The downstream apoptotic proteins PARP also remained uncleaved along with increased Lamin B1 in the mtCYTB transfected cells. Our results demonstrate that forced overexpression of mtCYTB in transformed human uroepithelial HUC-1 cells triggered mitochondrial proliferation and induction of an anti-apoptotic signaling cascade favoring sustained cellular growth. Coding mitochondrial DNA mutations appear to have significant functional contribution in tumor progression. PMID:19569044

  14. Clinical and genetic description of a family with Charcot-Marie-Tooth disease type 1B from a transmembrane MPZ mutation.

    PubMed

    Eggers, Scott D Z; Keswani, Sanjay C; Melli, Giorgia; Cornblath, David R

    2004-06-01

    Mutations in the myelin protein zero gene (MPZ) are associated with certain demyelinating neuropathies, and in particular with Charcot-Marie-Tooth disease type 1B (CMT1B), Dejerine-Sottas syndrome, and congenital hypomyelination. MPZ mutations affecting the protein's transmembrane domain are generally associated with more severe phenotypes. We describe a family with mild CMT1B associated with a transmembrane MPZ mutation. Sequence analysis identified a G-to-C transversion at nucleotide 1064, predicting a glycine-to-arginine substitution in codon 163 (G163R) of MPZ. This report furthers the understanding of the clinical and electrophysiological manifestations of MPZ mutations. PMID:15170620

  15. Performance evaluation of the HepB Typer-Entecavir kit for detection of entecavir resistance mutations in chronic hepatitis B

    PubMed Central

    Ahn, Sang Hoon; Chun, Ji-Yong; Shin, Soo-Kyung; Park, Jun Yong; Yoo, Wangdon; Hong, Sun Pyo; Han, Kwang-Hyub

    2013-01-01

    Background/Aims Molecular diagnostic methods have enabled the rapid diagnosis of drug-resistant mutations in hepatitis B virus (HBV) and have reduced both unnecessary therapeutic interventions and medical costs. In this study we evaluated the analytical and clinical performances of the HepB Typer-Entecavir kit (GeneMatrix, Korea) in detecting entecavir-resistance-associated mutations. Methods The HepB Typer-Entecavir kit was evaluated for its limit of detection, interference, cross-reactivity, and precision using HBV reference standards made by diluting high-titer viral stocks in HBV-negative human serum. The performance of the HepB Typer-Entecavir kit for detecting mutations related to entecavir resistance was compared with direct sequencing for 396 clinical samples from 108 patients. Results Using the reference standards, the detection limit of the HepB Typer-Entecavir kit was found to be as low as 500 copies/mL. No cross-reactivity was observed, and elevated levels of various interfering substances did not adversely affect its analytical performance. The precision test conducted by repetitive analysis of 2,400 replicates with reference standards at various concentrations showed 99.9% agreement (2398/2400). The overall concordance rate between the HepB Typer-Entecavir kit and direct sequencing assays in 396 clinical samples was 99.5%. Conclusions The HepB Typer-Entecavir kit showed high reliability and precision, and comparable sensitivity and specificity for detecting mutant virus populations in reference and clinical samples in comparison with direct sequencing. Therefore, this assay would be clinically useful in the diagnosis of entecavir-resistance-associated mutations in chronic hepatitis B. PMID:24459645

  16. Hepatitis B virus basal core promoter mutations show lower replication fitness associated with cccDNA acetylation status.

    PubMed

    Koumbi, Lemonica; Pollicino, Teresa; Raimondo, Giovanni; Stampoulis, Dimitrios; Khakoo, Salim; Karayiannis, Peter

    2016-07-15

    In chronic hepatitis B virus (HBV) infection, variants with mutations in the basal core promoter (BCP) and precore region predominate and associate with more severe disease forms. Studies on their effect on viral replication remain controversial. Increasing evidence shows that epigenetic modifications of cccDNA regulate HBV replication and disease outcome. Here we determined the transcription and viral replication efficiency of well-defined BCP and precore mutations and their effect on cccDNA epigenetic control. HBV monomers bearing BCP mutations A1762T/G1764A and A1762T/G1764A/C1766T, and precore mutations G1896A, G1899A and G1896A/G1899A, were transfected into HepG2 cells using a plasmid-free approach. Viral RNA transcripts were detected by Northern blot hybridization and RT PCR, DNA replicative intermediates by Southern blotting and RT PCR, and viral release was measured by ELISA. Acetylation of cccDNA-bound histones was assessed by Chromatin ImmunoPrecipitation (ChIP) assay and methylation of cccDNA by bisulfite sequencing. BCP mutations resulted in low viral release, mRNA transcription and pgRNA/cccDNA ratios that paralleled the acetylation of cccDNA-bound H4 histone and inversely correlated with the HDAC1 recruitment onto cccDNA. Independently of the mutations, cccDNA was a target for methylation, accompanied by the upregulation of DNMT1 expression and DNMT1 recruitment onto cccDNA. Our results suggest that BCP mutations decrease viral replication capacity possibly by modulating the acetylation and deacetylation of cccDNA-bound histones while precore mutations do not have a significant effect on viral replication. These data provide evidence that epigenetic factors contribute to the regulation of HBV viral replication.

  17. Systemic Sclerosis Patients Present Alterations in the Expression of Molecules Involved in B-Cell Regulation

    PubMed Central

    Soto, Lilian; Ferrier, Ashley; Aravena, Octavio; Fonseca, Elianet; Berendsen, Jorge; Biere, Andrea; Bueno, Daniel; Ramos, Verónica; Aguillón, Juan Carlos; Catalán, Diego

    2015-01-01

    The activation threshold of B cells is tightly regulated by an array of inhibitory and activator receptors in such a way that disturbances in their expression can lead to the appearance of autoimmunity. The aim of this study was to evaluate the expression of activating and inhibitory molecules involved in the modulation of B cell functions in transitional, naive, and memory B-cell subpopulations from systemic sclerosis patients. To achieve this, blood samples were drawn from 31 systemic sclerosis patients and 53 healthy individuals. Surface expression of CD86, MHC II, CD19, CD21, CD40, CD22, Siglec 10, CD35, and FcγRIIB was determined by flow cytometry. IL-10 production was evaluated by intracellular flow cytometry from isolated B cells. Soluble IL-6 and IL-10 levels were measured by ELISA from supernatants of stimulated B cells. Systemic sclerosis patients exhibit an increased frequency of transitional and naive B cells related to memory B cells compared with healthy controls. Transitional and naive B cells from patients express higher levels of CD86 and FcγRIIB than healthy donors. Also, B cells from patients show high expression of CD19 and CD40, whereas memory cells from systemic sclerosis patients show reduced expression of CD35. CD19 and CD35 expression levels associate with different autoantibody profiles. IL-10+ B cells and secreted levels of IL-10 were markedly reduced in patients. In conclusion, systemic sclerosis patients show alterations in the expression of molecules involved in B-cell regulation. These abnormalities may be determinant in the B-cell hyperactivation observed in systemic sclerosis. PMID:26483788

  18. Positive selection for new disease mutations in the human germline: evidence from the heritable cancer syndrome multiple endocrine neoplasia type 2B.

    PubMed

    Choi, Soo-Kyung; Yoon, Song-Ro; Calabrese, Peter; Arnheim, Norman

    2012-01-01

    Multiple endocrine neoplasia type 2B (MEN2B) is a highly aggressive thyroid cancer syndrome. Since almost all sporadic cases are caused by the same nucleotide substitution in the RET proto-oncogene, the calculated disease incidence is 100-200 times greater than would be expected based on the genome average mutation frequency. In order to determine whether this increased incidence is due to an elevated mutation rate at this position (true mutation hot spot) or a selective advantage conferred on mutated spermatogonial stem cells, we studied the spatial distribution of the mutation in 14 human testes. In donors aged 36-68, mutations were clustered with small regions of each testis having mutation frequencies several orders of magnitude greater than the rest of the testis. In donors aged 19-23 mutations were almost non-existent, demonstrating that clusters in middle-aged donors grew during adulthood. Computational analysis showed that germline selection is the only plausible explanation. Testes of men aged 75-80 were heterogeneous with some like middle-aged and others like younger testes. Incorporating data on age-dependent death of spermatogonial stem cells explains the results from all age groups. Germline selection also explains MEN2B's male mutation bias and paternal age effect. Our discovery focuses attention on MEN2B as a model for understanding the genetic and biochemical basis of germline selection. Since RET function in mouse spermatogonial stem cells has been extensively studied, we are able to suggest that the MEN2B mutation provides a selective advantage by altering the PI3K/AKT and SFK signaling pathways. Mutations that are preferred in the germline but reduce the fitness of offspring increase the population's mutational load. Our approach is useful for studying other disease mutations with similar characteristics and could uncover additional germline selection pathways or identify true mutation hot spots. PMID:22359510

  19. GidB mutation as a phylogenetic marker for Q1 cluster Mycobacterium tuberculosis isolates and intermediate-level streptomycin resistance determinant in Lisbon, Portugal.

    PubMed

    Perdigão, J; Macedo, R; Machado, D; Silva, C; Jordão, L; Couto, I; Viveiros, M; Portugal, I

    2014-05-01

    Development of streptomycin resistance in Mycobacterium tuberculosis is usually associated with mutations in rpsL and rrs genes, although up to 50% of clinical streptomycin-resistant isolates may present no mutation in either of these genes. In the present report we investigate the role of gidB gene mutations in streptomycin resistance. We have analyzed 52 streptomycin-resistant and 30 streptomycin-susceptible Mycobacterium tuberculosis clinical isolates by sequencing and endonuclease analysis of the gidB and rpsL genes. All clinical isolates were genotyped by 12-loci MIRU-VNTR. The gidB gene of 18 streptomycin-resistant isolates was sequenced and four missense mutations were found: F12L (1/18), L16R (18/18), A80P (4/18) and S100F (18/18). The remaining isolates were screened by endonuclease analysis for mutations A80P in the gidB gene and K43R in the rpsL gene. Overall, mutation A80P in the gidB gene was found in eight streptomycin-resistant isolates and 11 streptomycin-susceptible multidrug-resistant isolates. Also noteworthy, is the fact that gidB mutations were only present in isolates without rpsL and rrs mutations, all from genetic cluster Q1. Streptomycin quantitative drug susceptibility testing showed that isolates carrying the gidB A80P mutation were streptomycin intermediate-level resistant and that standard drug susceptibility testing yielded inconsistent results, probably due to borderline resistance. We conclude that gidB mutations may explain the high number of streptomycin-resistant strains with no mutation in rpsL or rrs. These mutations might occasionally confer low-level streptomycin resistance that will go undetected in standard susceptibility testing.

  20. Obesity promotes PhIP-induced small intestinal carcinogenesis in hCYP1A-db/db mice: involvement of mutations and DNA hypermethylation of Apc.

    PubMed

    Wang, Hong; Liu, Anna; Kuo, Yingyi; Chi, Eric; Yang, Xu; Zhang, Lanjing; Yang, Chung S

    2016-07-01

    Obesity is associated with an increased risk of cancer. To study the promotion of dietary carcinogen-induced gastrointestinal cancer by obesity, we employed 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) to induce intestinal tumorigenesis in CYP1A-humanized (hCYP1A) mice, in which mouse Cyp1a1/1a2 was replaced with human CYP1A1/1A2 Obesity was introduced in hCYP1A mice by breeding with Lepr(db/+) mice to establish the genetically induced obese hCYP1A-Lepr(db/db) mice or by feeding hCYP1A mice a high-fat diet. PhIP induced the formation of small intestinal tumors at the ages of weeks 28-40 in obese hCYP1A mice, but not in lean hCYP1A mice. No tumors were found in colon and other gastrointestinal organs in the lean or obese mice. Using immunohistochemistry (IHC), we found strong positive staining of NF-κB p65, pSTAT3 and COX2 as well as elevated levels of nuclear β-catenin (Ctnnb1) in small intestinal tumors, but not in normal tissues. By sequencing Apc and Ctnnb1 genes, we found that most PhIP-induced small intestinal tumors in obese mice carried only a single heterozygous mutation in Apc By bisulfite-sequencing of CpG islands of Apc, we found DNA hypermethylation in a CpG cluster located in its transcription initiation site, which most likely caused the inactivation of the wild-type Apc allele. Our findings demonstrate that PhIP-induced small intestinal carcinogenesis in hCYP1A-db/db mice is promoted by obesity and involves Apc mutation and inactivation by DNA hypermethylation. This experimental result is consistent with the association of obesity and the increased incidence of small intestinal cancer in humans in recent decades. PMID:27207656

  1. A spectrum of CYP1B1 mutations associated with primary congenital glaucoma in families of Pakistani descent

    PubMed Central

    Rauf, Bushra; Irum, Bushra; Kabir, Firoz; Firasat, Sabika; Naeem, Muhammad Asif; Khan, Shaheen N; Husnain, Tayyab; Riazuddin, Sheikh; Akram, Javed; Riazuddin, S Amer

    2016-01-01

    Glaucoma is the second leading cause of blindness, affecting ~65 million people worldwide. We identified and ascertained a large cohort of inbred families with multiple individuals manifesting cardinal symptoms of primary congenital glaucoma (PCG) to investigate the etiology of the disease at a molecular level. Ophthalmic examinations, including slit-lamp microscopy and applanation tonometry, were performed to characterize the causal phenotype and confirm that affected individuals fulfilled the diagnostic criteria for PCG. Subsequently, exclusion analysis was completed with fluorescently labeled short tandem repeat markers, followed by Sanger sequencing to identify pathogenic variants. Exclusion analysis suggested linkage to the CYP1B1 locus, with positive two-point logarithm of odds scores in 23 families, while Sanger sequencing identified a total of 11 variants, including two novel mutations, in 23 families. All mutations segregated with the disease phenotype in their respective families. These included the following seven missense mutations: p.Y81N, p.E229K, p.R368H, p.R390H, p.W434R, p.R444Q and p.R469W, as well as one nonsense mutation, p.Q37*, and three frameshift mutations, p.W246Lfs81*, p.T404Sfs30* and p.P442Qfs15*. In conclusion, we identified a total of 11 mutations, reconfirming the genetic heterogeneity of CYP1B1 in the pathogenesis of PCG. To the best of our knowledge, this is the largest study investigating the contribution of CYP1B1 to the pathogenesis of PCG in the Pakistani population. PMID:27508083

  2. A spectrum of CYP1B1 mutations associated with primary congenital glaucoma in families of Pakistani descent.

    PubMed

    Rauf, Bushra; Irum, Bushra; Kabir, Firoz; Firasat, Sabika; Naeem, Muhammad Asif; Khan, Shaheen N; Husnain, Tayyab; Riazuddin, Sheikh; Akram, Javed; Riazuddin, S Amer

    2016-01-01

    Glaucoma is the second leading cause of blindness, affecting ~65 million people worldwide. We identified and ascertained a large cohort of inbred families with multiple individuals manifesting cardinal symptoms of primary congenital glaucoma (PCG) to investigate the etiology of the disease at a molecular level. Ophthalmic examinations, including slit-lamp microscopy and applanation tonometry, were performed to characterize the causal phenotype and confirm that affected individuals fulfilled the diagnostic criteria for PCG. Subsequently, exclusion analysis was completed with fluorescently labeled short tandem repeat markers, followed by Sanger sequencing to identify pathogenic variants. Exclusion analysis suggested linkage to the CYP1B1 locus, with positive two-point logarithm of odds scores in 23 families, while Sanger sequencing identified a total of 11 variants, including two novel mutations, in 23 families. All mutations segregated with the disease phenotype in their respective families. These included the following seven missense mutations: p.Y81N, p.E229K, p.R368H, p.R390H, p.W434R, p.R444Q and p.R469W, as well as one nonsense mutation, p.Q37*, and three frameshift mutations, p.W246Lfs81*, p.T404Sfs30* and p.P442Qfs15*. In conclusion, we identified a total of 11 mutations, reconfirming the genetic heterogeneity of CYP1B1 in the pathogenesis of PCG. To the best of our knowledge, this is the largest study investigating the contribution of CYP1B1 to the pathogenesis of PCG in the Pakistani population. PMID:27508083

  3. Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA

    DOE PAGESBeta

    Liu, Yimo; Fredrickson, Jim K.; Zachara, John M.; Shi, Liang

    2015-10-01

    The tandem gene clusters orfR-ombB-omaB-omcB and orfS-ombC-omaC-omcC of the metal-reducing bacterium Geobacter sulfurreducens PCA are responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III)-citrate and ferrihydrite [a poorly crystalline Fe(III) oxide]. Each gene cluster encodes a putative transcriptional factor (OrfR/OrfS), a porin-like outer-membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (c-Cyt, OmaB/OmaC) and an outer-membrane c-Cyt (OmcB/OmcC). The individual roles of OmbB, OmaB and OmcB in extracellular reduction of Fe(III), however, have remained either uninvestigated or controversial. Here, we showed that replacements of ombB, omaB, omcB and ombB-omaB with an antibiotic gene in the presence of ombC-omaC-omcC had nomore » impact on reduction of Fe(III)-citrate by G. sulfurreducens PCA. Disruption of ombB, omaB, omcB and ombB-omaB in the absence of ombC-omaC-omcC, however, severely impaired the bacterial ability to reduce Fe(III)-citrate as well as ferrihydrite. These results unequivocally demonstrate an overlapping role of ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction by G. sulfurreducens PCA. Involvement of both ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction reflects the importance of these trans-outer membrane protein complexes in the physiology of this bacterium. Moreover, the kinetics of Fe(III)-citrate and ferrihydrite reduction by these mutants in the absence of ombC-omaC-omcC were nearly identical, which clearly show that OmbB, OmaB and OmcB contribute equally to extracellular Fe(III) reduction. Finally, orfS was found to have a negative impact on the extracellular reduction of Fe(III)-citrate and ferrihydrite in G. sulfurreducens PCA probably by serving as a transcriptional repressor.« less

  4. Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA

    SciTech Connect

    Liu, Yimo; Fredrickson, Jim K.; Zachara, John M.; Shi, Liang

    2015-10-01

    The tandem gene clusters orfR-ombB-omaB-omcB and orfS-ombC-omaC-omcC of the metal-reducing bacterium Geobacter sulfurreducens PCA are responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III)-citrate and ferrihydrite [a poorly crystalline Fe(III) oxide]. Each gene cluster encodes a putative transcriptional factor (OrfR/OrfS), a porin-like outer-membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (c-Cyt, OmaB/OmaC) and an outer-membrane c-Cyt (OmcB/OmcC). The individual roles of OmbB, OmaB and OmcB in extracellular reduction of Fe(III), however, have remained either uninvestigated or controversial. Here, we showed that replacements of ombB, omaB, omcB and ombB-omaB with an antibiotic gene in the presence of ombC-omaC-omcC had no impact on reduction of Fe(III)-citrate by G. sulfurreducens PCA. Disruption of ombB, omaB, omcB and ombB-omaB in the absence of ombC-omaC-omcC, however, severely impaired the bacterial ability to reduce Fe(III)-citrate as well as ferrihydrite. These results unequivocally demonstrate an overlapping role of ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction by G. sulfurreducens PCA. Involvement of both ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction reflects the importance of these trans-outer membrane protein complexes in the physiology of this bacterium. Moreover, the kinetics of Fe(III)-citrate and ferrihydrite reduction by these mutants in the absence of ombC-omaC-omcC were nearly identical, which clearly show that OmbB, OmaB and OmcB contribute equally to extracellular Fe(III) reduction. Finally, orfS was found to have a negative impact on the extracellular reduction of Fe(III)-citrate and ferrihydrite in G. sulfurreducens PCA probably by serving as a transcriptional repressor.

  5. Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA.

    PubMed

    Liu, Yimo; Fredrickson, James K; Zachara, John M; Shi, Liang

    2015-01-01

    The tandem gene clusters orfR-ombB-omaB-omcB and orfS-ombC-omaC-omcC of the metal-reducing bacterium Geobacter sulfurreducens PCA are responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III)-citrate and ferrihydrite [a poorly crystalline Fe(III) oxide]. Each gene cluster encodes a putative transcriptional factor (OrfR/OrfS), a porin-like outer-membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (c-Cyt, OmaB/OmaC) and an outer-membrane c-Cyt (OmcB/OmcC). The individual roles of OmbB, OmaB and OmcB in extracellular reduction of Fe(III), however, have remained either uninvestigated or controversial. Here, we showed that replacements of ombB, omaB, omcB, and ombB-omaB with an antibiotic gene in the presence of ombC-omaC-omcC had no impact on reduction of Fe(III)-citrate by G. sulfurreducens PCA. Disruption of ombB, omaB, omcB, and ombB-omaB in the absence of ombC-omaC-omcC, however, severely impaired the bacterial ability to reduce Fe(III)-citrate as well as ferrihydrite. These results unequivocally demonstrate an overlapping role of ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction by G. sulfurreducens PCA. Involvement of both ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction reflects the importance of these trans-outer membrane protein complexes in the physiology of this bacterium. Moreover, the kinetics of Fe(III)-citrate and ferrihydrite reduction by these mutants in the absence of ombC-omaC-omcC were nearly identical, which suggests that absence of any protein subunit eliminates function of OmaB/OmbB/OmcB protein complex. Finally, orfS was found to have a negative impact on the extracellular reduction of Fe(III)-citrate and ferrihydrite in G. sulfurreducens PCA probably by serving as a transcriptional repressor. PMID:26483786

  6. Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA

    PubMed Central

    Liu, Yimo; Fredrickson, James K.; Zachara, John M.; Shi, Liang

    2015-01-01

    The tandem gene clusters orfR-ombB-omaB-omcB and orfS-ombC-omaC-omcC of the metal-reducing bacterium Geobacter sulfurreducens PCA are responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III)-citrate and ferrihydrite [a poorly crystalline Fe(III) oxide]. Each gene cluster encodes a putative transcriptional factor (OrfR/OrfS), a porin-like outer-membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (c-Cyt, OmaB/OmaC) and an outer-membrane c-Cyt (OmcB/OmcC). The individual roles of OmbB, OmaB and OmcB in extracellular reduction of Fe(III), however, have remained either uninvestigated or controversial. Here, we showed that replacements of ombB, omaB, omcB, and ombB-omaB with an antibiotic gene in the presence of ombC-omaC-omcC had no impact on reduction of Fe(III)-citrate by G. sulfurreducens PCA. Disruption of ombB, omaB, omcB, and ombB-omaB in the absence of ombC-omaC-omcC, however, severely impaired the bacterial ability to reduce Fe(III)-citrate as well as ferrihydrite. These results unequivocally demonstrate an overlapping role of ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction by G. sulfurreducens PCA. Involvement of both ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction reflects the importance of these trans-outer membrane protein complexes in the physiology of this bacterium. Moreover, the kinetics of Fe(III)-citrate and ferrihydrite reduction by these mutants in the absence of ombC-omaC-omcC were nearly identical, which suggests that absence of any protein subunit eliminates function of OmaB/OmbB/OmcB protein complex. Finally, orfS was found to have a negative impact on the extracellular reduction of Fe(III)-citrate and ferrihydrite in G. sulfurreducens PCA probably by serving as a transcriptional repressor. PMID:26483786

  7. Influence of the basal core promoter and precore mutation on replication of hepatitis B virus and antiviral susceptibility of different genotypes.

    PubMed

    Cui, Xiu-Ji; Cho, Yoo-Kyung; Song, Byung-Cheol

    2015-04-01

    Mutations in the basal core promoter (BCP) and precore (PC) regions of the hepatitis B virus (HBV) are more common in genotypes B and C than in genotype A, suggesting that these mutations might affect replication competency depending on genotype. The purpose of the study was to investigate the influence of these mutations on the capacity of HBV for replication and antiviral drug susceptibility according to genotype. Genotypes A, B, and C of HBV strains with a BCP mutation, PC mutation, or BCP + PC mutation were made by site-directed mutagenesis. Replication competency of each construct and susceptibility to nucleos(t) ide analogues were tested in an Huh7 cell line. In genotype A, the BCP and BCP + PC mutations increased the viral replication around 6.5 times compared with the wild type, and the PC mutation alone similarly increased the viral replication around three times. In genotypes B and C, all three mutant types increased viral replication to a similar extent, regardless of mutation pattern. Interestingly, the BCP mutation appeared to have a greater effect on viral replication in genotype A than in genotypes B and C. This finding was unexpected because the BCP mutation is more common in HBV genotypes B and C. Moreover, the BCP, PC, and BCP + PC mutations decreased the sensitivity of HBV to antiviral agents to various degrees (2- to 10-fold) regardless of genotype. In conclusion, BCP and PC mutations increased viral replication regardless of HBV genotype and decreased in vitro antiviral susceptibility to the nucleos(t) ide analogues.

  8. An Individual with Blepharophimosis-Ptosis-Epicanthus Inversus Syndrome (BPES) and Additional Features Expands the Phenotype Associated with Mutations in KAT6B

    PubMed Central

    Yu, Hung-Chun; Geiger, Elizabeth A.; Medne, Livija; Zackai, Elaine H.; Shaikh, Tamim H.

    2015-01-01

    Blepharophimosis-Ptosis-Epicanthus Inversus Syndrome (BPES) is an autosomal dominant disorder caused by mutations in FOXL2. We identified an individual with BPES and additional phenotypic features who did not have a FOXL2 mutation. We used whole exome sequencing to identify a de novo mutation in KAT6B (lysine acetyltransferase 6B) in this individual. The mutation was a 2 bp insertion leading to a frameshift which resulted in a premature stop codon. The resulting truncated protein does not have the C-terminal serine/methionine transcription activation domain necessary for interaction with other transcriptional and epigenetic regulators. This mutation likely has a dominant-negative or gain-of-function effect, similar to those observed in other genetic disorders resulting from KAT6B mutations, including Say-Barber-Biesecker-Young-Simpson (SBBYSS) and Genitopatellar syndrome (GTPTS). Thus, our subject’s phenotype broadens the spectrum of clinical findings associated with mutations in KAT6B. Furthermore, our results suggest that individuals with BPES without a FOXL2 mutation should be tested for KAT6B mutations. The transcriptional and epigenetic regulation mediated by KAT6B appears crucial to early developmental processes, which when perturbed can lead to a wide spectrum of phenotypic outcomes. PMID:24458743

  9. Nonsense mutations of the bHLH transcription factor TWIST2 found in Setleis Syndrome patients cause dysregulation of periostin

    PubMed Central

    Franco, Hector L.; Casasnovas, Jose J.; Leon, Ruth G.; Friesel, Robert; Ge, Yongchao; Desnick, Robert J.; Cadilla, Carmen L.

    2011-01-01

    Setleis Syndrome (OMIM ID: 227260) is a rare autosomal recessive disease characterized by abnormal facial development. Recently, we have reported that two nonsense mutations (c.486C>T [Q119X] and c.324C>T [Q65X]) of the basic helix-loop-helix (bHLH) transcription factor TWIST2 cause Setleis Syndrome. Here we show that periostin, a cell adhesion protein involved in connective tissue development and maintenance, is down-regulated in Setleis Syndrome patient fibroblast cells and that periostin positively responds to manipulations in TWIST2 levels, suggesting that TWIST2 is a transactivator of periostin. Functional analysis of the TWIST2 mutant form (Q119X) revealed that it maintains the ability to localize to the nucleus, forms homo and heterodimers with the ubiquitous bHLH protein E12, and binds to dsDNA. Reporter gene assays using deletion constructs of the human periostin promoter also reveal that TWIST2 can activate this gene more specifically than Twist1, while the Q119X mutant results in no significant transactivation. Chromatin immunoprecipitation assays show that both wild-type TWIST2 and the Q119X mutant bind the periostin promoter, however only wild-type TWIST2 is associated with higher levels of histone acetylation across the 5′-regulatory region of periostin. Taken together, these data suggest that the C-terminal domain of TWIST2, which is missing in the Q119X mutant form of TWIST2, is responsible for proper transactivation of the periostin gene. Improper regulation of periostin by the mutant form of TWIST2 could help explain some of the soft tissue abnormalities seen in these patients therefore providing a genotype-phenotype relationship for Setleis Syndrome. PMID:21801849

  10. Frameshift mutation of a histone methylation-related gene SETD1B and its regional heterogeneity in gastric and colorectal cancers with high microsatellite instability.

    PubMed

    Choi, Youn Jin; Oh, Hye Rim; Choi, Mi Ryoung; Gwak, Min; An, Chang Hyeok; Chung, Yeun Jun; Yoo, Nam Jin; Lee, Sug Hyung

    2014-08-01

    Histone methyltransferase (HMT), which catalyzes a histone methylation, is frequently altered in cancers at mutation and expression levels. The aims of this study were to explore whether SETD1B, SETDB2, and SETD2, SET domain-containing HMT genes, are mutated and expressionally altered in gastric (GC) and colorectal cancers (CRC). In a public database, we found that SETD1B, SETDB2, and SETD2 had mononucleotide repeats in coding sequences that might be mutation targets in cancers with microsatellite instability (MSI). We analyzed the mutations in 76 GCs and 93 CRCs and found SETD1B (38.7% of GC and 35.6% of CRC with high MSI [MSI-H]), SETDB2 (11.1% of CRC with MSI-H), and SETD2 frameshift mutations (6.7% of CRC with MSI-H). These mutations were not found in stable MSI/low MSI. In addition, we analyzed intratumoral heterogeneity (ITH) of SETD1B mutation in 6 CRCs and found that 2 CRCs harbored regional ITH of SETD1B. We also analyzed SETD1B expression in GC and CRC by immunohistochemistry. Loss of SETD1B expression was identified in 15% to 55% of the GC and CRC with respect to the MSI status. Of note, the loss of expression was more common in those with SETD1B mutations than those with wild-type SETD1B. We identified alterations of SET domain-containing HMT at various levels (frameshift mutations, genetic ITH, and expression loss), which together might play a role in tumorigenesis of GC and CRC with MSI-H. Our data suggest that mutation analysis in multiple regions is needed for a better evaluation of mutation status in CRC with MSI-H.

  11. Fitness Cost of Rifampin Resistance in Neisseria meningitidis: In Vitro Study of Mechanisms Associated with rpoB H553Y Mutation

    PubMed Central

    Colicchio, Roberta; Pagliuca, Chiara; Pastore, Gabiria; Cicatiello, Annunziata Gaetana; Pagliarulo, Caterina; Talà, Adelfia; Scaglione, Elena; Sammartino, Josè Camilla; Bucci, Cecilia

    2015-01-01

    Rifampin chemoprophylaxis against Neisseria meningitidis infections led to the onset of rifampin resistance in clinical isolates harboring point mutations in the rpoB gene, coding for the RNA polymerase β chain. These resistant strains are rare in medical practice, suggesting their decreased fitness in the human host. In this study, we isolated rifampin-resistant rpoB mutants from hypervirulent serogroup C strain 93/4286 and analyzed their different properties, including the ability to grow/survive in different culture media and in differentiated THP-1 human monocytes and to compete with the wild-type strain in vitro. Our results demonstrate that different rpoB mutations (H553Y, H553R, and S549F) may have different effects, ranging from low- to high-cost effects, on bacterial fitness in vitro. Moreover, we found that the S549F mutation confers temperature sensitivity, possibly explaining why it is observed very rarely in clinical isolates. Comparative high-throughput RNA sequencing analysis of bacteria grown in chemically defined medium demonstrated that the low-cost H553Y substitution resulted in global transcriptional changes that functionally mimic the stringent response. Interestingly, many virulence-associated genes, including those coding for meningococcal type IV pili, porin A, adhesins/invasins, IgA protease, two-partner secretion system HrpA/HrpB, enzymes involved in resistance to oxidative injury, lipooligosaccharide sialylation, and capsular polysaccharide biosynthesis, were downregulated in the H553Y mutant compared to their level of expression in the wild-type strain. These data might account for the reduced capacity of this mutant to grow/survive in differentiated THP-1 cells and explain the rarity of H553Y mutants among clinical isolates. PMID:26416867

  12. Fitness Cost of Rifampin Resistance in Neisseria meningitidis: In Vitro Study of Mechanisms Associated with rpoB H553Y Mutation.

    PubMed

    Colicchio, Roberta; Pagliuca, Chiara; Pastore, Gabiria; Cicatiello, Annunziata Gaetana; Pagliarulo, Caterina; Talà, Adelfia; Scaglione, Elena; Sammartino, Josè Camilla; Bucci, Cecilia; Alifano, Pietro; Salvatore, Paola

    2015-12-01

    Rifampin chemoprophylaxis against Neisseria meningitidis infections led to the onset of rifampin resistance in clinical isolates harboring point mutations in the rpoB gene, coding for the RNA polymerase β chain. These resistant strains are rare in medical practice, suggesting their decreased fitness in the human host. In this study, we isolated rifampin-resistant rpoB mutants from hypervirulent serogroup C strain 93/4286 and analyzed their different properties, including the ability to grow/survive in different culture media and in differentiated THP-1 human monocytes and to compete with the wild-type strain in vitro. Our results demonstrate that different rpoB mutations (H553Y, H553R, and S549F) may have different effects, ranging from low- to high-cost effects, on bacterial fitness in vitro. Moreover, we found that the S549F mutation confers temperature sensitivity, possibly explaining why it is observed very rarely in clinical isolates. Comparative high-throughput RNA sequencing analysis of bacteria grown in chemically defined medium demonstrated that the low-cost H553Y substitution resulted in global transcriptional changes that functionally mimic the stringent response. Interestingly, many virulence-associated genes, including those coding for meningococcal type IV pili, porin A, adhesins/invasins, IgA protease, two-partner secretion system HrpA/HrpB, enzymes involved in resistance to oxidative injury, lipooligosaccharide sialylation, and capsular polysaccharide biosynthesis, were downregulated in the H553Y mutant compared to their level of expression in the wild-type strain. These data might account for the reduced capacity of this mutant to grow/survive in differentiated THP-1 cells and explain the rarity of H553Y mutants among clinical isolates.

  13. The Lamin B receptor is essential for cholesterol synthesis and perturbed by disease-causing mutations

    PubMed Central

    Tsai, Pei-Ling; Zhao, Chenguang; Turner, Elizabeth; Schlieker, Christian

    2016-01-01

    Lamin B receptor (LBR) is a polytopic membrane protein residing in the inner nuclear membrane in association with the nuclear lamina. We demonstrate that human LBR is essential for cholesterol synthesis. LBR mutant derivatives implicated in Greenberg skeletal dysplasia or Pelger-Huët anomaly fail to rescue the cholesterol auxotrophy of a LBR-deficient human cell line, consistent with a loss-of-function mechanism for these congenital disorders. These disease-causing variants fall into two classes: point mutations in the sterol reductase domain perturb enzymatic activity by reducing the affinity for the essential cofactor NADPH, while LBR truncations render the mutant protein metabolically unstable, leading to its rapid degradation at the inner nuclear membrane. Thus, metabolically unstable LBR variants may serve as long-sought-after model substrates enabling previously impossible investigations of poorly understood protein turnover mechanisms at the inner nuclear membrane of higher eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.16011.001 PMID:27336722

  14. Missense mutations in β-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker–Warburg syndrome

    PubMed Central

    Buysse, Karen; Riemersma, Moniek; Powell, Gareth; van Reeuwijk, Jeroen; Chitayat, David; Roscioli, Tony; Kamsteeg, Erik-Jan; van den Elzen, Christa; van Beusekom, Ellen; Blaser, Susan; Babul-Hirji, Riyana; Halliday, William; Wright, Gavin J.; Stemple, Derek L.; Lin, Yung-Yao; Lefeber, Dirk J.; van Bokhoven, Hans

    2013-01-01

    Several known or putative glycosyltransferases are required for the synthesis of laminin-binding glycans on alpha-dystroglycan (αDG), including POMT1, POMT2, POMGnT1, LARGE, Fukutin, FKRP, ISPD and GTDC2. Mutations in these glycosyltransferase genes result in defective αDG glycosylation and reduced ligand binding by αDG causing a clinically heterogeneous group of congenital muscular dystrophies, commonly referred to as dystroglycanopathies. The most severe clinical form, Walker–Warburg syndrome (WWS), is characterized by congenital muscular dystrophy and severe neurological and ophthalmological defects. Here, we report two homozygous missense mutations in the β-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) gene in a family affected with WWS. Functional studies confirmed the pathogenicity of the mutations. First, expression of wild-type but not mutant B3GNT1 in human prostate cancer (PC3) cells led to increased levels of αDG glycosylation. Second, morpholino knockdown of the zebrafish b3gnt1 orthologue caused characteristic muscular defects and reduced αDG glycosylation. These functional studies identify an important role of B3GNT1 in the synthesis of the uncharacterized laminin-binding glycan of αDG and implicate B3GNT1 as a novel causative gene for WWS. PMID:23359570

  15. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers.

    PubMed

    Osorio, Ana; Milne, Roger L; Kuchenbaecker, Karoline; Vaclová, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Díez, Orland; Ramón Y Cajal, Teresa; Konstantopoulou, Irene; Martínez-Bouzas, Cristina; Andrés Conejero, Raquel; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; Swe-Brca; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I; Beattie, Mary S; Domchek, Susan M; Nathanson, Katherine; Rebbeck, Timothy R; Arun, Banu K; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; John, Esther M; Whittemore, Alice S; Daly, Mary B; Southey, Melissa; Hopper, John; Terry, Mary B; Buys, Saundra S; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Steele, Linda; Neuhausen, Susan L; Ding, Yuan Chun; Hansen, Thomas V O; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herráez, Belén; Moreno, Leticia Thais; Weitzel, Jeffrey N; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodríguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldés, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Rookus, Matti A; van Os, Theo A M; van der Kolk, Lizet; de Lange, J L; Meijers-Heijboer, Hanne E J; van der Hout, A H; van Asperen, Christi J; Gómez Garcia, Encarna B; Hoogerbrugge, Nicoline; Collée, J Margriet; van Deurzen, Carolien H M; van der Luijt, Rob B; Devilee, Peter; Hebon; Olah, Edith; Lázaro, Conxi; Teulé, Alex; Menéndez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R; Healey, Sue; Investigators, Kconfab; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F; Rappaport, Christine; Geschwantler Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F; Offit, Kenneth; Couch, Fergus J; Chenevix-Trench, Georgia; Antoniou, Antonis C; Benitez, Javier

    2014-04-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7 × 10(-3)) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8 × 10(-3)). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.

  16. DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    PubMed Central

    Osorio, Ana; Milne, Roger L.; Kuchenbaecker, Karoline; Vaclová, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Díez, Orland; Ramón y Cajal, Teresa; Konstantopoulou, Irene; Martínez-Bouzas, Cristina; Andrés Conejero, Raquel; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; SWE-BRCA; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I.; Beattie, Mary S.; Domchek, Susan M.; Nathanson, Katherine; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; John, Esther M.; Whittemore, Alice S.; Daly, Mary B.; Southey, Melissa; Hopper, John; Terry, Mary B.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Steele, Linda; Neuhausen, Susan L.; Ding, Yuan Chun; Hansen, Thomas v. O.; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herráez, Belén; Moreno, Leticia Thais; Weitzel, Jeffrey N.; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K.; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M.; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodríguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldés, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Rookus, Matti A.; van Os, Theo A. M.; van der Kolk, Lizet; de Lange, J. L.; Meijers-Heijboer, Hanne E. J.; van der Hout, A. H.; van Asperen, Christi J.; Gómez Garcia, Encarna B.; Hoogerbrugge, Nicoline; Collée, J. Margriet; van Deurzen, Carolien H. M.; van der Luijt, Rob B.; Devilee, Peter; HEBON; Olah, Edith; Lázaro, Conxi; Teulé, Alex; Menéndez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th.; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R.; Healey, Sue; Investigators, kConFab; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I.; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Geschwantler Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F.; Offit, Kenneth; Couch, Fergus J.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Benitez, Javier

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03–1.16), p = 2.7×10−3) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03–1.21, p = 4.8×10−3). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied. PMID:24698998

  17. Mutations of pre-core and basal core promoter before and after hepatitis B e antigen seroconversion

    PubMed Central

    Kamijo, Nozomi; Matsumoto, Akihiro; Umemura, Takeji; Shibata, Soichiro; Ichikawa, Yuki; Kimura, Takefumi; Komatsu, Michiharu; Tanaka, Eiji

    2015-01-01

    AIM: To investigate the role of pre-core and basal core promoter (BCP) mutations before and after hepatitis B e antigen (HBeAg) seroconversion. METHODS: The proportion of pre-core (G1896A) and basal core promoter (A1762T and G1764A) mutant viruses and serum levels of hepatitis B virus (HBV) DNA, hepatitis B surface antigen (HBsAg), and HB core-related antigen were analyzed in chronic hepatitis B patients before and after HBeAg seroconversion (n = 25), in those who were persistently HBeAg positive (n = 18), and in those who were persistently anti-HBe positive (n = 43). All patients were infected with HBV genotype C and were followed for a median of 9 years. RESULTS: Although the pre-core mutant became predominant (24% to 65%, P = 0.022) in the HBeAg seroconversion group during follow-up, the proportion of the basal core promoter mutation did not change. Median HBV viral markers were significantly higher in patients without the mutations in an HBeAg positive status (HBV DNA: P = 0.003; HBsAg: P < 0.001; HB core-related antigen: P = 0.001). In contrast, HBV DNA (P = 0.012) and HBsAg (P = 0.041) levels were significantly higher in patients with the pre-core mutation in an anti-HBe positive status. CONCLUSION: There is an opposite association of the pre-core mutation with viral load before and after HBeAg seroconversion in patients with HBV infection. PMID:25593470

  18. The Involvement of Arl-5b in the Repair of Hair Cells in Sea Anemones

    PubMed Central

    Graugnard, Erin M.; Mire, Patricia

    2007-01-01

    The subcellular processes involved in repair of hair cells are not well understood. Sea anemones repair hair bundle mechanoreceptors on their tentacles after severe trauma caused by 1-h exposure to calcium-depleted seawater. Repair is dependent on the synthesis and secretion of large protein complexes named “repair proteins.” A cDNA library on traumatized anemone tissue was probed using polyclonal antibodies raised to a specific chromatographic fraction of the repair protein mixture. An ADP-ribosylation factor-like protein, Arl-5b, was identified. The amino acid sequence of the Arl-5b protein in sea anemones is similar to that among several model vertebrates and humans. A polyclonal antibody raised to a peptide of the anemone Arl-5b labels some but not all hair bundles in healthy control animals. The abundance of labeled hair bundles significantly increases above healthy controls after trauma and continuing through the first hour of recovery. Dilute anti-Arl-5b blocks the spontaneous repair of hair bundle mechanoreceptors, suggesting that Arl-5b acts on the extracellular face of the plasma membrane. Immunoelectron microscopy indicates that Arl-5b is located along the length of stereocilia including sites in the vicinity of tip links. We propose that Arl-5b is involved in installing replacement linkages into damaged hair bundle mechanoreceptors. PMID:17332968

  19. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia

    PubMed Central

    Nadeu, Ferran; Delgado, Julio; Royo, Cristina; Baumann, Tycho; Stankovic, Tatjana; Pinyol, Magda; Jares, Pedro; Navarro, Alba; Martín-García, David; Beà, Sílvia; Salaverria, Itziar; Oldreive, Ceri; Aymerich, Marta; Suárez-Cisneros, Helena; Rozman, Maria; Villamor, Neus; Colomer, Dolors; López-Guillermo, Armando; González, Marcos; Alcoceba, Miguel; Terol, Maria José; Colado, Enrique; Puente, Xose S.; López-Otín, Carlos; Enjuanes, Anna

    2016-01-01

    Genomic studies have revealed the complex clonal heterogeneity of chronic lymphocytic leukemia (CLL). The acquisition and selection of genomic aberrations may be critical to understanding the progression of this disease. In this study, we have extensively characterized the mutational status of TP53, SF3B1, BIRC3, NOTCH1, and ATM in 406 untreated CLL cases by ultra-deep next-generation sequencing, which detected subclonal mutations down to 0.3% allele frequency. Clonal dynamics were examined in longitudinal samples of 48 CLL patients. We identified a high proportion of subclonal mutations, isolated or associated with clonal aberrations. TP53 mutations were present in 10.6% of patients (6.4% clonal, 4.2% subclonal), ATM mutations in 11.1% (7.8% clonal, 1.3% subclonal, 2% germ line mutations considered pathogenic), SF3B1 mutations in 12.6% (7.4% clonal, 5.2% subclonal), NOTCH1 mutations in 21.8% (14.2% clonal, 7.6% subclonal), and BIRC3 mutations in 4.2% (2% clonal, 2.2% subclonal). ATM mutations, clonal SF3B1, and both clonal and subclonal NOTCH1 mutations predicted for shorter time to first treatment irrespective of the immunoglobulin heavy-chain variable-region gene (IGHV) mutational status. Clonal and subclonal TP53 and clonal NOTCH1 mutations predicted for shorter overall survival together with the IGHV mutational status. Clonal evolution in longitudinal samples mainly occurred in cases with mutations in the initial samples and was observed not only after chemotherapy but also in untreated patients. These findings suggest that the characterization of the subclonal architecture and its dynamics in the evolution of the disease may be relevant for the management of CLL patients. PMID:26837699

  20. Isolation and Characterization of a Highly Mutated Chinese Isolate of Enterovirus B84 from a Patient with Acute Flaccid Paralysis

    PubMed Central

    Zheng, Huanying; Zhang, Yong; Liu, Leng; Lu, Jing; Guo, Xue; Li, Hui; Zeng, Hanri; Fang, Ling; Xu, Wenbo; Ke, Changwen

    2016-01-01

    Enterovirus B84 (EV-B84) is a newly identified serotype within the species Enterovirus B (EV-B). To date, only ten nucleotide sequences of EV-B84 are published and only one full-length genome sequence (the prototype strain) is available in the GenBank database. Here, a highly mutated EV-B84 (strain AFP452/GD/CHN/2004) was recovered from a patient with acute flaccid paralysis in the Guangdong province of China in 2004 making this the first report of EV-B84 in China. Sequence comparison and phylogenetic dendrogram analysis revealed high variation from the global EV-B84 strains (African and Indian strains) and frequent intertypic recombination in the non-structural protein region, suggesting high genetic diversity in EV-B84. The Chinese EV-B84 strain, apparently evolving independently of the other ten strains, strongly suggests that the EV-B84 strain has been circulating for many years. However, the extremely low isolation rate suggests that it is not a prevalent EV serotype in China or worldwide. This study provides valuable information about the molecular epidemiology of EV-B84 in China, and will be helpful in future studies to understand the association of EV-B84 with neurological disorders; it also helps expand the number of whole virus genome sequences of EV-B84 in the GenBank database. PMID:27499334

  1. Isolation and Characterization of a Highly Mutated Chinese Isolate of Enterovirus B84 from a Patient with Acute Flaccid Paralysis.

    PubMed

    Zheng, Huanying; Zhang, Yong; Liu, Leng; Lu, Jing; Guo, Xue; Li, Hui; Zeng, Hanri; Fang, Ling; Xu, Wenbo; Ke, Changwen

    2016-01-01

    Enterovirus B84 (EV-B84) is a newly identified serotype within the species Enterovirus B (EV-B). To date, only ten nucleotide sequences of EV-B84 are published and only one full-length genome sequence (the prototype strain) is available in the GenBank database. Here, a highly mutated EV-B84 (strain AFP452/GD/CHN/2004) was recovered from a patient with acute flaccid paralysis in the Guangdong province of China in 2004 making this the first report of EV-B84 in China. Sequence comparison and phylogenetic dendrogram analysis revealed high variation from the global EV-B84 strains (African and Indian strains) and frequent intertypic recombination in the non-structural protein region, suggesting high genetic diversity in EV-B84. The Chinese EV-B84 strain, apparently evolving independently of the other ten strains, strongly suggests that the EV-B84 strain has been circulating for many years. However, the extremely low isolation rate suggests that it is not a prevalent EV serotype in China or worldwide. This study provides valuable information about the molecular epidemiology of EV-B84 in China, and will be helpful in future studies to understand the association of EV-B84 with neurological disorders; it also helps expand the number of whole virus genome sequences of EV-B84 in the GenBank database. PMID:27499334

  2. Intramolecular Schmidt reaction involving primary azidoalcohols under nonacidic conditions: synthesis of indolizidine (-)-167B.

    PubMed

    Kapat, Ajoy; Nyfeler, Erich; Giuffredi, Guy T; Renaud, Philippe

    2009-12-16

    A powerful intramolecular Schmidt reaction starting from primary azidoalcohols is reported. This approach involves a nonacidic activation of the alcohol via triflation. The synthetic potential offered by the mild reaction conditions is demonstrated by a highly selective synthesis of (-)-indolizidine 167B. PMID:19928759

  3. 12 CFR 563b.570 - How do I address conflicts of interest involving my directors?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false How do I address conflicts of interest... Charitable Organizations § 563b.570 How do I address conflicts of interest involving my directors? (a) A... management or policies, or otherwise owes a fiduciary duty to you (for example, holding company...

  4. A mutation in the converter subdomain of Aspergillus nidulans MyoB blocks constriction of the actomyosin ring in cytokinesis.

    PubMed

    Hill, Terry W; Jackson-Hayes, Loretta; Wang, Xiao; Hoge, Brianna L

    2015-02-01

    We have identified a mutant allele of the Aspergillus nidulans homologue of myosin II (myoB; AN4706), which prevents normal septum formation. This is the first reported myosin II mutation in a filamentous fungus. Strains expressing the myoB(G843D) allele produce mainly aberrant septa at 30 °C and are completely aseptate at temperatures above 37 °C. Conidium formation is greatly reduced at 30 °C and progressively impaired with increasing temperature. Sequencing of the myoB(G843D) allele identified a point mutation predicted to result in a glycine-to-aspartate amino acid substitution at residue 843 in the myosin II converter domain. This residue is conserved in all fungal, plant, and animal myosin sequences that we have examined. The mutation does not prevent localization of the myoB(G843D) gene product to contractile rings, but it does block ring constriction. MyoB(G843D) rings at sites of abortive septation disassemble after an extended period and dissipate into the cytoplasm. During contractile ring formation, both wild type and mutant MyoB::GFP colocalize with actin--an association that begins at the pre-ring "string" stage. Down-regulation of wild-type myoB expression under control of the alcA promoter blocks septation but does not prevent actin from aggregating at putative septation sites--the actin rings, however, do not fully coalesce. Both septation and targeting of MyoB are blocked by disruption of filamentous actin using latrunculin B. We propose a model in which myosin assembly at septation sites depends upon the presence of F-actin, but assembly of the actin component of contractile rings depends upon normal levels of myosin only for the final stages of ring compaction.

  5. Interactions involving ozone, Botrytis cinerea, and B. squamosa on onion leaves

    SciTech Connect

    Rist, D.L.

    1983-01-01

    Interactions involving Botrytis cinerea Pers., B. squamosa Walker, and ozone on onion (alium cepae L.) were investigated. Initially, threshold dosages of ozone required to predispose onion leaves to greater infection by B. cinerea and B. squamosa were determined under controlled conditions in an ozone-exposure chamber. Subsequent experiments supported the hypothesis that nutrients leaking out of ozone-injured cells stimulated lesion production by B. cinerea. The electrical conductivity of, and carbohydrate concentration in, dew collected from leaves of onion plants which had been exposed to ozone were greater than the electrical conductivity of, and carbohydrate concentration in, dew collected from leaves of other, non-exposed onion plants. When conidia of B. cinerea were suspended in dew collected from leaves of plants which had been exposed to ozone and the resulting suspension atomized onto leaves of non-exposed plants, more lesions were induced than on leaves of other non-exposed plants inoculated with conidia suspended in dew collected from plants which had not been exposed to ozone. EDU protected onion leaves from ozone-induced predisposition to these fungi under controlled conditions. Experiments designed to detect interaction between B. cinerea and B. squamosa in onion leaf blighting indicated that such interaction did not occur. Leaves were blighted rapidly when inoculated with B. squamosa whether B. cinerea was present or absent.

  6. Arabidopsis radical-induced cell death1 is involved in UV-B signaling.

    PubMed

    Jiang, Lei; Wang, Yan; Björn, Lars Olof; Li, Shaoshan

    2009-06-01

    The Arabidopsis radical-induced cell death1 (rcd1) mutant is sensitive to ozone fumigation and apoplastic superoxide, but tolerant to methyl viologen. In the present article, we report that the rcd1 mutant is also tolerant to supplementary UV-B radiation. The rcd1-1 mutant exhibits less accumulation of TT dimers, increased hypocotyl growth inhibition and higher accumulation of flavonoids under supplemental UV-B radiation. Moreover, the expression of HY5 (elongated hypocotyl5) is increased in the mutant after UV-B treatment. Gene expression downstream of UV-B signaling reveals that COP1 (constitutively photomorphogenic1)-regulated genes have an elevated expression in rcd1-1 mutant under UV-B radiation, while expression of UVR8 (UV resistance locus 8)-regulated and HY5-independent genes are not changed. Interestingly, the expression of RCD1 genes is not significantly changed by UV-B radiation. Previous study has shown that STO protein is interacting with RCD1 in vitro. Here, we found the mRNA level of STO (salt tolerance) is greatly increased in rcd1-1 mutant after UV-B radiation. However, UV-B-induced HY5 and CHS expression is partially inhibited in sto mutant. Based on the above results, it is deduced that the RCD1, working together with STO, is involved in Arabidopsis UV-B signaling.

  7. Influence of Drug Resistance Mutations on the Activity of HIV-1 Subtypes A and B Integrases: a Comparative Study.

    PubMed

    Shadrina, O A; Zatsepin, T S; Agapkina, Yu Yu; Isaguliants, M G; Gottikh, M B

    2015-01-01

    Integration of human immunodeficiency virus (HIV-1) DNA into the genome of an infected cell is one of the key steps in the viral replication cycle. The viral enzyme integrase (IN), which catalyzes the integration, is an attractive target for the development of new antiviral drugs. However, the HIV-1 therapy often results in the IN gene mutations inducing viral resistance to integration inhibitors. To assess the impact of drug resistance mutations on the activity of IN of HIV-1 subtype A strain FSU-A, which is dominant in Russia, variants of the consensus IN of this subtype containing the primary resistance mutations G118R and Q148K and secondary compensatory substitutions E138K and G140S were prepared and characterized. Comparative study of these enzymes with the corresponding mutants of IN of HIV-1 subtype B strains HXB-2 was performed. The mutation Q148K almost equally reduced the activity of integrases of both subtypes. Its negative effect was partially compensated by the secondary mutations E138K and G140S. Primary substitution G118R had different influence on the activity of proteins of the subtypes A and B, and the compensatory effect of the secondary substitution E138K also depended on the viral subtype. Comparison of the mutants resistance to the known strand transfer inhibitors raltegravir and elvitegravir, and a new inhibitor XZ-259 (a dihydro-1H-isoindol derivative), showed that integrases of both subtypes with the Q148K mutation were insensitive to raltegravir and elvitegravir but were effectively inhibited by XZ-259. The substitution G118R slightly reduced the efficiency of IN inhibition by raltegravir and elvitegravir and caused no resistance to XZ_259.

  8. Glutamate activation of Oct-2 in cultured chick Bergmann glia cells: involvement of NFkappaB.

    PubMed

    Méndez, J Alfredo; López-Bayghen, Esther; Ortega, Arturo

    2005-07-01

    Glutamate, the major excitatory neurotransmitter in the central nervous system, is critically involved in gene expression regulation at the transcriptional and translational levels. Its activity through ionotropic as well as metabotropic receptors modifies the protein repertoire in neurons and glial cells. In avian cerebellar Bergmann glia cells, glutamate receptors trigger a diverse array of signaling cascades that include activity-dependent transcription factors such as the activator protein-1, the cAMP response-element binding protein, and Oct-2. We analyze the upstream regulatory elements involved in Oct-2 activation. Our results demonstrate that Ca2+ influx, protein kinase C, phosphatidylinositol-3 kinase, Src, and nuclear factor (NF)kappaB are involved in this signaling pathway. Our findings link alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor activation to a negative phase of chkbp gene regulation, controlled by NFkappaB.

  9. The action of orexin B on passive avoidance learning. Involvement of neurotransmitters.

    PubMed

    Palotai, Miklós; Telegdy, Gyula; Ekwerike, Alphonsus; Jászberényi, Miklós

    2014-10-01

    The extensive projection of orexigenic neurons and the diffuse expression of orexin receptors suggest that endogenous orexins are involved in several physiological functions of the central nervous system, including learning and memory. Our previous study demonstrated that orexin A improves learning, consolidation and retrieval processes, which involves α- and β-adrenergic, cholinergic, dopaminergic, GABA-A-ergic, opiate and nitrergic neurotransmissions. However, we have little evidence about the action of orexin B on memory processes and the underlying neuromodulation. Therefore, the aim of the present study was to investigate the action of orexin B on passive avoidance learning and the involvement of neurotransmitters in this action in rats. Accordingly, rats were pretreated with the selective orexin 2 receptor (OX2R) antagonist, EMPA; the γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, the bicuculline; a D2, D3, D4 dopamine receptor antagonist, haloperidol; the nonselective opioid receptor antagonist, naloxone; the non-specific nitric oxide synthase (NOS) inhibitor, nitro-l-arginine; the nonselective α-adrenergic receptor antagonist, phenoxybenzamine and the β-adrenergic receptor antagonist, propranolol. Our results demonstrate that orexin B can improve learning, consolidation of memory and retrieval. EMPA reversed completely the action of orexin B on memory consolidation. Bicuculline blocked fully; naloxone, nitro-l-arginine, phenoxybenzamine and propranolol attenuated the orexin B-induced memory consolidation, whereas haloperidol was ineffective. These data suggest that orexin B improves memory functions through OX2R and GABA-ergic, opiate, nitrergic, α- and β-adrenergic neurotransmissions are also involved in this action.

  10. A novel arginine substitution mutation in 1A domain and a novel 27 bp insertion mutation in 2B domain of keratin 12 gene associated with Meesmann’s corneal dystrophy

    PubMed Central

    Yoon, M K; Warren, J F; Holsclaw, D S; Gritz, D C; Margolis, T P

    2004-01-01

    Aim: To determine the disease causing gene defects in two patients with Meesmann’s corneal dystrophy. Methods: Mutational analysis of domains 1A and 2B of the keratin 3 (K3) and keratin 12 (K12) genes from two patients with Meesmann’s corneal dystrophy was performed by polymerase chain reaction amplification and direct sequencing. Results: Novel mutations of the K12 gene were identified in both patients. In one patient a heterozygous point mutation (429A→C = Arg135Ser) was found in the 1A domain of the K12 gene. This mutation was confirmed by restriction digestion. In the second patient a heterozygous 27 bp duplication was found inserted in the 2B domain at nucleotide position 1222 (1222ins27) of the K12 gene. This mutation was confirmed by gel electrophoresis. The mutations were not present in unaffected controls. Conclusion: Novel K12 mutations were linked to Meesmann’s corneal dystrophy in two different patients. A missense mutation replacing a highly conserved arginine residue in the beginning of the helix initiation motif was found in one patient, and an insertion mutation, consisting of a duplication of 27 nucleotides, was found before the helix termination motif in the other. PMID:15148206

  11. Increased extrasynaptic GluN2B expression is involved in cognitive impairment after isoflurane anesthesia

    PubMed Central

    LI, LUNXU; LI, ZHENGQIAN; CAO, YIYUN; FAN, DONGSHENG; CHUI, DEHUA; GUO, XIANGYANG

    2016-01-01

    There is increasing concern regarding the postoperative cognitive dysfunction (POCD) in the aging population, and general anesthetics are believed to be involved. Isoflurane exposure induced increased N-methyl-D-aspartic acid receptor (NMDAR) GluN2B subunit expression following anesthesia, which was accompanied by alteration of the cognitive function. However, whether isoflurane affects this expression in different subcellular compartments, and is involved in the development of POCD remains to be elucidated. The aims of the study were to investigate the effects of isoflurane on the expression of the synaptic and extrasynaptic NMDAR subunits, GluN2A and GluN2B, as well as the associated alteration of cognitive function in aged rats. The GluN2B antagonist, Ro25–6981, was given to rats exposed to isoflurane to determine the role of GluN2B in the isoflurane-induced alteration of cognitive function. The results showed that spatial learning and memory tested in the Morris water maze (MWM) was impaired at least 7 days after isoflurane exposure, and was returned to control levels 30 days thereafter. Ro25-6981 treatment can alleviate this impairment. Extrasynaptic GluN2B protein expression, but not synaptic GluN2B or GluN2A, increased significantly after isoflurane exposure compared to non-isoflurane exposure, and returned to control levels approximately 30 days thereafter. The results of the present study indicated that isoflurane induced the prolonged upregulation of extrasynaptic GluN2B expression after anesthesia and is involved in reversible cognitive impairment. PMID:27347033

  12. Staying green postharvest: how three mutations in the Arabidopsis chlorophyll b reductase gene NYC1 delay degreening by distinct mechanisms.

    PubMed

    Jibran, Rubina; Sullivan, Kerry L; Crowhurst, Ross; Erridge, Zoe A; Chagné, David; McLachlan, Andrew R G; Brummell, David A; Dijkwel, Paul P; Hunter, Donald A

    2015-11-01

    Stresses such as energy deprivation, wounding and water-supply disruption often contribute to rapid deterioration of harvested tissues. To uncover the genetic regulation behind such stresses, a simple assessment system was used to detect senescence mutants in conjunction with two rapid mapping techniques to identify the causal mutations. To demonstrate the power of this approach, immature inflorescences of Arabidopsis plants that contained ethyl methanesulfonate-induced lesions were detached and screened for altered timing of dark-induced senescence. Numerous mutant lines displaying accelerated or delayed timing of senescence relative to wild type were discovered. The underlying mutations in three of these were identified using High Resolution Melting analysis to map to a chromosomal arm followed by a whole-genome sequencing-based mapping method, termed 'Needle in the K-Stack', to identify the causal lesions. All three mutations were single base pair changes and occurred in the same gene, NON-YELLOW COLORING1 (NYC1), a chlorophyll b reductase of the short-chain dehydrogenase/reductase (SDR) superfamily. This was consistent with the mutants preferentially retaining chlorophyll b, although substantial amounts of chlorophyll b were still lost. The single base pair mutations disrupted NYC1 function by three distinct mechanisms, one by producing a termination codon, the second by interfering with correct intron splicing and the third by replacing a highly conserved proline with a non-equivalent serine residue. This non-synonymous amino acid change, which occurred in the NADPH binding domain of NYC1, is the first example of such a mutation in an SDR protein inhibiting a physiological response in plants. PMID:26261268

  13. Staying green postharvest: how three mutations in the Arabidopsis chlorophyll b reductase gene NYC1 delay degreening by distinct mechanisms.

    PubMed

    Jibran, Rubina; Sullivan, Kerry L; Crowhurst, Ross; Erridge, Zoe A; Chagné, David; McLachlan, Andrew R G; Brummell, David A; Dijkwel, Paul P; Hunter, Donald A

    2015-11-01

    Stresses such as energy deprivation, wounding and water-supply disruption often contribute to rapid deterioration of harvested tissues. To uncover the genetic regulation behind such stresses, a simple assessment system was used to detect senescence mutants in conjunction with two rapid mapping techniques to identify the causal mutations. To demonstrate the power of this approach, immature inflorescences of Arabidopsis plants that contained ethyl methanesulfonate-induced lesions were detached and screened for altered timing of dark-induced senescence. Numerous mutant lines displaying accelerated or delayed timing of senescence relative to wild type were discovered. The underlying mutations in three of these were identified using High Resolution Melting analysis to map to a chromosomal arm followed by a whole-genome sequencing-based mapping method, termed 'Needle in the K-Stack', to identify the causal lesions. All three mutations were single base pair changes and occurred in the same gene, NON-YELLOW COLORING1 (NYC1), a chlorophyll b reductase of the short-chain dehydrogenase/reductase (SDR) superfamily. This was consistent with the mutants preferentially retaining chlorophyll b, although substantial amounts of chlorophyll b were still lost. The single base pair mutations disrupted NYC1 function by three distinct mechanisms, one by producing a termination codon, the second by interfering with correct intron splicing and the third by replacing a highly conserved proline with a non-equivalent serine residue. This non-synonymous amino acid change, which occurred in the NADPH binding domain of NYC1, is the first example of such a mutation in an SDR protein inhibiting a physiological response in plants.

  14. Possible involvement of a tetrahydrobiopterin in photoreception for UV-B-induced anthocyanin synthesis in carrot.

    PubMed

    Takeda, Junko; Nakata, Rieko; Ueno, Hiroshi; Murakami, Akio; Iseki, Mineo; Watanabe, Masakatsu

    2014-01-01

    Our previous studies of action spectra for UV-B-induced anthocyanin accumulation in cultured carrot cells indicated that a reduced form of pterin, possibly tetrahydrobiopterin, contributes to UV-B photoreception. In this report, we provide additional evidence for the involvement of pterin in UV-B light sensing. UV-B-induced phenylalanine ammonia-lyase (PAL) activity was considerably suppressed by N-acetylserotonin (an inhibitor of tetrahydrobiopterin biosynthesis), and this suppression was partially recovered by adding biopterin or tetrahydrobiobiopterin. In addition, protein(s) specifically bound to biopterin were detected by radiolabeling experiments in N-acetylserotonin-treated cells. Furthermore, diphenyleneiodonium, a potent inhibitor of electron transfer, completely suppressed UV-B-induced PAL activity. These results suggest the occurrence of an unidentified UV-B photoreceptor (other than UVR8, the tryptophan-based UV-B sensor originally identified in Arabidopsis) with reduced pterin in carrot cells. After reexamining published action spectra, we suggest that anthocyanin synthesis is coordinately regulated by these two UV-B sensors.

  15. Heteroplasmy of the cytochrome b gene in Venturia inaequalis and its involvement in quantitative and practical resistance to trifloxystrobin.

    PubMed

    Villani, Sara M; Cox, Kerik D

    2014-09-01

    Quantitative (partial) and qualitative (complete) resistance responses to quinone outside inhibitor (QoI) fungicides have been documented for the apple scab pathogen Venturia inaequalis. Resistance monitoring efforts have traditionally focused on the detection of qualitative resistance based on a single point mutation, G143A, within the cytochrome b (cyt b) gene. In order to better understand the role of heteroplasmy of the cyt b gene in the QoI resistance response for isolates and populations of V. inaequalis, an allele-specific quantitative polymerase chain reaction was developed to quantify the relative abundance of the A143 (resistant) allele in 45 isolates of V. inaequalis with differing in vitro resistance responses to the QoI fungicide trifloxystrobin. Although a high relative abundance of the A143 allele (>62%) was associated with isolates with high resistance responses (50 to 100% relative growth on trifloxystrobin-amended medium), heteroplasmy of the cyt b gene was not the primary factor involved in isolates with moderate resistance responses (29 to 49% relative growth). The relative abundance of the A143 allele in isolates with moderate resistance to trifloxystrobin rarely exceeded 8%, suggesting that other resistance mechanisms are involved in moderate resistance and, therefore, that the Qol resistance response is polygenic. In research orchards where QoI fungicides failed to control apple scab (practical resistance), field trials were conducted to demonstrate the link between practical resistance and the abundance of the A143 allele. Relative abundance of the A143 allele in these orchard populations exceeded 20% in 2011 and 2012. Similarly, of the eight additional commercial orchards screened in 2011, the relative abundance of the A143 allele always exceeded 20% in those with QoI practical resistance. Although heteroplasmy of the cyt b gene did not entirely explain the response of isolates with moderate resistance to QoIs, the relative abundance of A

  16. Whole Exome Sequencing Reveals DYSF, FKTN, and ISPD Mutations in Congenital Muscular Dystrophy Without Brain or Eye Involvement

    PubMed Central

    Ceyhan-Birsoy, Ozge; Talim, Beril; Swanson, Lindsay C.; Karakaya, Mert; Graff, Michelle A.; Beggs, Alan H.; Topaloglu, Haluk

    2015-01-01

    Background Congenital muscular dystrophies (CMDs) are a genetically and clinically heterogeneous group of neuromuscular disorders. Several genes encoding extracellular matrix, nuclear envelope, sarcolemmal proteins and glycosylation enzymes have been implicated in CMDs. The large overlap of clinical presentations due to mutations in different genes poses a challenge for clinicians in determining disease etiology for each patient. Objective We investigated the use of whole exome sequencing (WES) in identifying the genetic cause of disease in 5 CMD patients from 3 families who presented with highly similar clinical features, including early-onset rapidly progressive weakness without brain or eye abnormalities. Methods Whole exome sequencing was performed on DNA from affected individuals. Potential functional impacts of mutations were investigated by immunostaining on available muscle biopsies. Results Pathogenic mutations in 3 different genes, DYSF, FKTN, and ISPD were identified in each family. Mutation in DYSF led to absence of dysferlin protein in patient muscle. Mutations in ISPD led to impaired ISDP function, as demonstrated by deficiency of α-dystroglycan glycosylation in patient muscle. Conclusions This study highlights the benefit of unbiased genomic approaches in molecular diagnosis of neuromuscular disorders with high clinical heterogeneity, such as the phenotypes observed in our patients. Our results suggest that dysferlin deficiency should be in the differential diagnosis of congenital and rapidly progressive muscular dystrophy, and therefore dysferlin antibody should be in the standard immunohistochemistry panel for muscle biopsies in cases with suspected CMD. PMID:25821721

  17. Whole exome analysis identifies dominant COL4A1 mutations in patients with complex ocular phenotypes involving microphthalmia.

    PubMed

    Deml, B; Reis, L M; Maheshwari, M; Griffis, C; Bick, D; Semina, E V

    2014-11-01

    Anophthalmia/microphthalmia (A/M) is a developmental ocular malformation defined as complete absence or reduction in size of the eye. A/M is a heterogenous disorder with numerous causative genes identified; however, about half the cases lack a molecular diagnosis. We undertook whole exome sequencing in an A/M family with two affected siblings, two unaffected siblings, and unaffected parents; the ocular phenotype was isolated with only mild developmental delay/learning difficulties reported and a normal brain magnetic resonance imaging (MRI) in the proband at 16 months. No pathogenic mutations were identified in 71 known A/M genes. Further analysis identified a shared heterozygous mutation in COL4A1, c.2317G>A, p.(Gly773Arg) that was not seen in the unaffected parents and siblings. Analysis of 24 unrelated A/M exomes identified a novel c.2122G>A, p.(Gly708Arg) mutation in an additional patient with unilateral microphthalmia, bilateral microcornea and Peters anomaly; the mutation was absent in the unaffected mother and the unaffected father was not available. Mutations in COL4A1 have been linked to a spectrum of human disorders; the most consistent feature is cerebrovascular disease with variable ocular anomalies, kidney and muscle defects. This study expands the spectrum of COL4A1 phenotypes and indicates screening in patients with A/M regardless of MRI findings or presumed inheritance pattern.

  18. SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage

    PubMed Central

    Clifford, Ruth; Louis, Tania; Robbe, Pauline; Ackroyd, Sam; Burns, Adam; Timbs, Adele T.; Wright Colopy, Glen; Dreau, Helene; Sigaux, Francois; Judde, Jean Gabriel; Rotger, Margalida; Telenti, Amalio; Lin, Yea-Lih; Pasero, Philippe; Maelfait, Jonathan; Titsias, Michalis; Cohen, Dena R.; Henderson, Shirley J.; Ross, Mark T.; Bentley, David; Hillmen, Peter; Pettitt, Andrew; Rehwinkel, Jan; Knight, Samantha J. L.; Taylor, Jenny C.; Crow, Yanick J.

    2014-01-01

    SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase and a nuclease that restricts HIV-1 in noncycling cells. Germ-line mutations in SAMHD1 have been described in patients with Aicardi-Goutières syndrome (AGS), a congenital autoimmune disease. In a previous longitudinal whole genome sequencing study of chronic lymphocytic leukemia (CLL), we revealed a SAMHD1 mutation as a potential founding event. Here, we describe an AGS patient carrying a pathogenic germ-line SAMHD1 mutation who developed CLL at 24 years of age. Using clinical trial samples, we show that acquired SAMHD1 mutations are associated with high variant allele frequency and reduced SAMHD1 expression and occur in 11% of relapsed/refractory CLL patients. We provide evidence that SAMHD1 regulates cell proliferation and survival and engages in specific protein interactions in response to DNA damage. We propose that SAMHD1 may have a function in DNA repair and that the presence of SAMHD1 mutations in CLL promotes leukemia development. PMID:24335234

  19. SH2B3 (LNK) mutations from Myeloproliferative Neoplasms patients have mild loss of function against wild type JAK2 and JAK2 V617F

    PubMed Central

    Koren-Michowitz, Maya; Gery, Sigal; Tabayashi, Takayuki; Lin, Dechen; Alvarez, Rocio; Nagler, Arnon; Koeffler, H. Phillip

    2013-01-01

    Summary Somatic point mutations in the PH domain of SH2B3 (LNK), an adaptor protein that is highly expressed in haematopoietic cells, were recently described in patients with myeloproliferative neoplasms. We studied the effect of these mutations on the JAK2 signalling pathway in cells expressing either wild type JAK2 or the JAK2 V617F mutation. Compared to wild type SH2B3, PH domain mutants have mild loss of function, with no evidence for a dominant-negative effect. Mutants retain binding capacity for JAK2, an established SH2B3 target, as well as for the adaptor proteins 14-3-3 and CBL. Our data suggest that the loss of SH2B3 inhibitory function conferred by the PH domain mutations is mild and may collaborate with JAK2 V617F and CBL mutations in order to promote either the development or the progression of myeloproliferative neoplasms. PMID:23590807

  20. Entamoeba histolytica: the over expression of a mutated EhRabB protein produces a decrease of in vitro and in vivo virulence.

    PubMed

    Juárez-Hernández, L J; García-Pérez, R M; Salas-Casas, A; García-Rivera, G; Orozco, E; Rodríguez, M A

    2013-03-01

    Vesicular trafficking, which is implicated in secretion of cytolytic molecules as well as in phagocytosis, plays an important role in the pathogenic mechanism of Entamoeba histolytica, the protozoan parasite causative of human amoebiasis. Thus, Rab GTPases, that are key regulators of vesicle trafficking, should be considered as molecules involved in the parasite virulence. EhRabB is a Rab protein located in cytoplasmic vesicles that are translocated to phagocytic mouths during ingestion of target cells, suggesting that this Rab protein is involved in phagocytosis. To prove this hypothesis, we over expressed the wild type EhrabB gene and a mutant gene encoding for a protein (RabBN118I) unable to bind guanine nucleotides and therefore constitutively inactive. The over expression of the mutated protein in E. histolytica trophozoites provoked a dominant negative effect, reflected in a significant decrease of both phagocytosis and cytopathic effect as well as in a failure to produce hepatic abscesses in hamsters. These results confirm that EhRabB is involved in phagocytosis and virulence of E. histolytica.

  1. The human B22 subunit of the NADH-ubiquinone oxidoreductase maps to the region of chromosome 8 involved in Branchio-oto-renal syndrome

    SciTech Connect

    Gu, J.Z.; Lin, Xin; Wells, D.E.

    1996-07-01

    To identify candidate genes for Branchio-oto-renal (BOR) syndrome, we have made use of a set of cosmids that map to 8q13.3, which has previously been shown to be involved in this syndrome. These cosmids were used as genomic clones in the attempts to isolate corresponding cDNAs using a modified hybrid selection technique. cDNAs using a modified hybrid selection technique. cDNAs from the region were identified and used to search for sequence similarity in human or other species. One cDNA clone was found to have 89% sequence similarity to the bovine B22 subunit of NADH-ubiquinone oxidoreductase, a mitochondrial protein in the respiratory electron transport chain. Given the history of other mitochondrial mutations being involved in hearing loss syndromes, this gene should be considered a strong candidate for involvement in BOR.

  2. Role of gyrB Mutations in Pre-extensively and Extensively Drug-Resistant Tuberculosis in Thai Clinical Isolates.

    PubMed

    Disratthakit, Areeya; Prammananan, Therdsak; Tribuddharat, Chanwit; Thaipisuttikul, Iyarit; Doi, Norio; Leechawengwongs, Manoon; Chaiprasert, Angkana

    2016-09-01

    DNA gyrase mutations are a major cause of quinolone resistance in Mycobacterium tuberculosis We therefore conducted the first comprehensive study to determine the diversity of gyrase mutations in pre-extensively drug-resistant (pre-XDR) (n = 71) and extensively drug-resistant (XDR) (n = 30) Thai clinical tuberculosis (TB) isolates. All pre-XDR-TB and XDR-TB isolates carried at least one mutation within the quinolone resistance-determining region of GyrA (G88A [1.1%], A90V [17.4%], S91P [1.1%], or D94A/G/H/N/V/Y [72.7%]) or GyrB (D533A [1.1%], N538D [1.1%], or E540D [2.2%]). MIC and DNA gyrase supercoiling inhibition assays were performed to determine the role of gyrase mutations in quinolone resistance. Compared to the MICs against M. tuberculosis H37Rv, the levels of resistance to all quinolones tested in the isolates that carried GyrA-D94G or GyrB-N538D (8- to 32-fold increase) were significantly higher than those in isolates bearing GyrA-D94A or GyrA-A90V (2- to 8-fold increase) (P < 0.01). Intriguingly, GyrB-E540D led to a dramatic resistance to later-generation quinolones, including moxifloxacin, gatifloxacin, and sparfloxacin (8- to 16-fold increases in MICs and 8.3- to 11.2-fold increases in 50% inhibitory concentrations [IC50s]). However, GyrB-E540D caused low-level resistance to early-generation quinolones, including ofloxacin, levofloxacin, and ciprofloxacin (2- to 4-fold increases in MICs and 1.5- to 2.0-fold increases in IC50s). In the present study, DC-159a was the most active antituberculosis agent and was little affected by the gyrase mutations described above. Our findings suggest that although they are rare, gyrB mutations have a notable role in quinolone resistance, which may provide clues to the molecular basis of estimating quinolone resistance levels for drug and dose selection. PMID:27297489

  3. A novel LMX1B mutation in a family with end-stage renal disease of ‘unknown cause’

    PubMed Central

    Edwards, Noel; Rice, Sarah J.; Raman, Shreya; Hynes, Ann Marie; Srivastava, Shalabh; Moore, Iain; Al-Hamed, Mohamed; Xu, Yaobo; Santibanez-Koref, Mauro; Thwaites, David T.; Gale, Daniel P.; Sayer, John A.

    2015-01-01

    End-stage renal disease (ESRD) presenting in a familial autosomal dominant pattern points to an underlying monogenic cause. Nail-patella syndrome (NPS) is an autosomal dominant disorder that may lead to ESRD caused by mutations in the transcription factor LMX1B. Renal-limited forms of this disease, termed nail-patella-like renal disease (NPLRD), and LMX1B nephropathy have recently been described. We report a large family, from the North East of England, with seven affected members with varying phenotypes of renal disease, ranging from ESRD at 28 years of age to microscopic haematuria and proteinuria and relatively preserved renal function. In this family, there were no extra-renal manifestations to suggest NPS. Genome-wide linkage studies and inheritance by descent (IBD) suggested disease loci on Chromosome 1 and 9. Whole exome sequencing (WES) analysis identified a novel sequence variant (p.R249Q) in the LMX1B gene in each of the three samples submitted, which was confirmed using Sanger sequencing. The variant segregated with the disease in all affected individuals. In silico modelling revealed that R249 is putatively located in close proximity to the DNA phosphoskeleton, supporting a role for this residue in the interaction between the LMX1B homeodomain and its target DNA. WES and analysis of potential target genes, including CD2AP, NPHS2, COL4A3, COL4A4 and COL4A5, did not reveal any co-inherited pathogenic variants. In conclusion, we confirm a novel LMX1B mutation in a large family with an autosomal dominant pattern of nephropathy. This report confirms that LMX1B mutations may cause a glomerulopathy without extra-renal manifestations. A molecular genetic diagnosis of LMX1B nephropathy thus provides a definitive diagnosis, prevents the need for renal biopsies and allows at risk family members to be screened. PMID:25713721

  4. Mutations in Complex I Assembly Factor TMEM126B Result in Muscle Weakness and Isolated Complex I Deficiency.

    PubMed

    Sánchez-Caballero, Laura; Ruzzenente, Benedetta; Bianchi, Lucas; Assouline, Zahra; Barcia, Giulia; Metodiev, Metodi D; Rio, Marlène; Funalot, Benoît; van den Brand, Mariël A M; Guerrero-Castillo, Sergio; Molenaar, Joery P; Koolen, David; Brandt, Ulrich; Rodenburg, Richard J; Nijtmans, Leo G; Rötig, Agnès

    2016-07-01

    Mitochondrial complex I deficiency results in a plethora of often severe clinical phenotypes manifesting in early childhood. Here, we report on three complex-I-deficient adult subjects with relatively mild clinical symptoms, including isolated, progressive exercise-induced myalgia and exercise intolerance but with normal later development. Exome sequencing and targeted exome sequencing revealed compound-heterozygous mutations in TMEM126B, encoding a complex I assembly factor. Further biochemical analysis of subject fibroblasts revealed a severe complex I deficiency caused by defective assembly. Lentiviral complementation with the wild-type cDNA restored the complex I deficiency, demonstrating the pathogenic nature of these mutations. Further complexome analysis of one subject indicated that the complex I assembly defect occurred during assembly of its membrane module. Our results show that TMEM126B defects can lead to complex I deficiencies and, interestingly, that symptoms can occur only after exercise. PMID:27374773

  5. Age, JAK2(V617F) and SF3B1 mutations are the main predicting factors for survival in refractory anaemia with ring sideroblasts and marked thrombocytosis.

    PubMed

    Broséus, J; Alpermann, T; Wulfert, M; Florensa Brichs, L; Jeromin, S; Lippert, E; Rozman, M; Lifermann, F; Grossmann, V; Haferlach, T; Germing, U; Luño, E; Girodon, F; Schnittger, S

    2013-09-01

    Refractory anaemia with ring sideroblasts (RARS) and marked thrombocytosis (RARS-T) is a provisional entity in the World Health Organisation 2008 classification and has previously been shown to have a high proportion of JAK2(V617F) (Janus Kinase 2) and SF3B1 (Splicing Factor 3B subunit 1) mutations. The purpose of the present study was to analyse the frequency of SF3B1 mutations in a large cohort of 111 patients with RARS-T and 33 patients with RARS and to explore the prognostic impact of SF3B1 mutational status on RARS-T. The frequency of SF3B1 mutations in RARS-T (96/111, 86.5%) and RARS (28/33, 84.8%) was similar. In RARS-T, median survival was better in SF3B1-mutated patients than in SF3B1-non-mutated patients (6.9 and 3.3 years, respectively, P=0.003). RARS can be differentiated from RARS-T by the frequency of JAK2(V617F) (0% vs 48.6%). In RARS-T patients, SF3B1 (P=0.021) and JAK2 mutations (P=0.016) were independent factors for a better prognosis. Altogether, our results confirm that RARS-T is an independent entity that should be recognised by the next World Health Organisation classification. The assessment of SF3B1 mutations is of prognostic interest in RARS-T patients. Younger age, JAK2(V617F) and SF3B1 mutations are the main predicting factors for survival in RARS-T. PMID:23594705

  6. A novel fibrinogen B beta chain frameshift mutation causes congenital afibrinogenaemia.

    PubMed

    Zhang, Jian; Zhao, Xiaojuan; Wang, Zhaoyue; Yu, Ziqiang; Cao, Lijuan; Zhang, Wei; Bai, Xia; Ruan, Changgeng

    2013-07-01

    Congenital afibrinogenaemia is a rare autosomal recessive disorder caused by various mutations within the fibrinogen genes FGA, FGB and FGG. Ins/del mutations in FGB are extremely rare. We report a patient with afibrinogenaemia who suffered from umbilical cord bleeding and repeated bleeding episodes. His plasma fibrinogen levels could not be detected using the Clauss method and immunological methods. Molecular analyses revealed homozygosity in a novel four bases insertion in codon 40 of FGB exon 2 (g. 2833_2834 ins GTTT), which resulted in a truncated 50-residue polypeptide that contained 11 exceptional abnormal residues. In the transient expression experiments, mutant fibrinogen could be detected at higher level than wild-type fibrinogen in COS-7 cell lysates but not in culture media. These results suggest that the homozygous mutation in FGB could be responsible for congenital afibrinogenaemia in this patient. This frameshift mutation could impair fibrinogen assembly and secretion without influencing the protein synthesis.

  7. Characterization of B56γ tumor-associated mutations reveals mechanisms for inactivation of B56γ-PP2A

    PubMed Central

    Nobumori, Yumiko; Shouse, Geoffrey P.; Wu, Yong; Lee, Kyu Joon; Shen, Binghui; Liu, Xuan

    2013-01-01

    A subset of the hetero-trimeric PP2A serine/threonine phosphatases that contain B56, and in particular B56γ, can function as tumor suppressors. In response to DNA damage, the B56γ subunit complexes with the PP2A AC core (B56γ–PP2A) and binds p53. This event promotes PP2A-mediated dephosphorylation of p53 at Thr55, which induces expression of p21, and the subsequent inhibition of cell proliferation and transformation. In addition to dephosphorylation of p53, B56γ–PP2A also inhibits cell proliferation and transformation by a second, as yet unknown, p53-independent mechanism. Here, we characterized a panel of B56γ mutations found in human cancer samples and cancer cell lines and showed that the mutations lost B56γ tumor-suppressive activity by two distinct mechanisms; one is by disrupting interaction with the PP2A AC core and the other with B56γ–PP2A substrates (p53 and unknown proteins). For the first mechanism, due to the absence of the C catalytic subunit in the complex, the mutants would be unable to mediate dephosphorylation of any substrate and thus failed to promote both p53-dependent and p53–independent tumor-suppressive function of B56γ-PP2A. For the second mechanism, the mutants lacked specific substrate interactions and thus partially lost tumor-suppressive function, i.e. either p53-dependent or p53-independent contingent upon which substrate binding was affected. Overall the data provide new insight into the mechanisms for inactivation of tumor-suppressive function of B56γ and further indicate the importance of B56γ-PP2A in tumorigenesis. PMID:23723076

  8. Juvenile paget's disease in an Iranian kindred with vitamin D deficiency and novel homozygous TNFRSF11B mutation.

    PubMed

    Saki, Forough; Karamizadeh, Zohreh; Nasirabadi, Shiva; Mumm, Steven; McAlister, William H; Whyte, Michael P

    2013-06-01

    Juvenile Paget's disease (JPD) is a rare heritable osteopathy characterized biochemically by markedly increased serum alkaline phosphatase (ALP) activity emanating from generalized acceleration of skeletal turnover. Affected infants and children typically suffer bone pain and fractures and deformities, become deaf, and have macrocranium. Some who survive to young adult life develop blindness from retinopathy engendered by vascular microcalcification. Most cases of JPD are caused by osteoprotegerin (OPG) deficiency due to homozygous loss-of-function mutations within the TNFRSF11B gene that encodes OPG. We report a 3-year-old Iranian girl with JPD and craniosynostosis who had vitamin D deficiency in infancy. She presented with fractures during the first year-of-life followed by bone deformities, delayed development, failure-to-thrive, and pneumonias. At 1 year-of-age, biochemical studies of serum revealed marked hyperphosphatasemia together with low-normal calcium and low inorganic phosphate and 25-hydroxyvitamin D levels. Several family members in previous generations of this consanguineous kindred may also have had JPD and vitamin D deficiency. Mutation analysis showed homozygosity for a unique missense change (c.130T>C, p.Cys44Arg) in TNFRSF11B that would compromise the cysteine-rich domain of OPG that binds receptor activator of NF-κB ligand (RANKL). Both parents were heterozygous for this mutation. The patient's serum OPG level was extremely low and RANKL level markedly elevated. She responded well to rapid oral vitamin D repletion followed by pamidronate treatment given intravenously. Our patient is the first Iranian reported with JPD. Her novel mutation in TNFRSF11B plus vitamin D deficiency in infancy was associated with severe JPD uniquely complicated by craniosynostosis. Pamidronate treatment with vitamin D sufficiency can be effective therapy for the skeletal disease caused by the OPG deficiency form of JPD. PMID:23322328

  9. Involvement of mitogen-activated protein kinases and NF{kappa}B in LPS-induced CD40 expression on human monocytic cells

    SciTech Connect

    Wu Weidong | Alexis, Neil E. |; Chen Xian |; Bromberg, Philip A. |; Peden, David B. ||

    2008-04-15

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NF{kappa}B were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NF{kappa}B activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NF{kappa}B activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NF{kappa}B activation, and CD40 expression. Moreover, blockage of MAPK and NF{kappa}B activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NF{kappa}B.

  10. Involvement of mitogen-activated protein kinases and NFkappaB in LPS-induced CD40 expression on human monocytic cells.

    PubMed

    Wu, Weidong; Alexis, Neil E; Chen, Xian; Bromberg, Philip A; Peden, David B

    2008-04-15

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NFkappaB were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NFkappaB activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NFkappaB activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NFkappaB activation, and CD40 expression. Moreover, blockage of MAPK and NFkappaB activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NFkappaB.

  11. Mutational Hotspot of TET2, IDH1, IDH2, SRSF2, SF3B1, KRAS, and NRAS from Human Systemic Mastocytosis Are Not Conserved in Canine Mast Cell Tumors

    PubMed Central

    Zorzan, Eleonora; Hanssens, Katia; Giantin, Mery; Dacasto, Mauro; Dubreuil, Patrice

    2015-01-01

    Introduction Both canine cutaneous mast cell tumor (MCT) and human systemic mastocytosis (SM) are characterized by abnormal proliferation and accumulation of mast cells in tissues and, frequently, by the presence of activating mutations in the receptor tyrosine kinase V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (c-KIT), albeit at different incidence (>80% in SM and 10–30% in MCT). In the last few years, it has been discovered that additional mutations in other genes belonging to the methylation system, the splicing machinery and cell signaling, contribute, with c-KIT, to SM pathogenesis and/or phenotype. In the present study, the mutational profile of the Tet methylcytosine dioxygenase 2 (TET2), the isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2), the serine/arginine-rich splicing factor 2 (SRSF2), the splicing factor 3b subunit 1 (SF3B1), the Kirsten rat sarcoma viral oncogene homolog (KRAS) and the neuroblastoma RAS viral oncogene homolog (NRAS), commonly mutated in human myeloid malignancies and mastocytosis, was investigated in canine MCTs. Methods Using the Sanger sequencing method, a cohort of 75 DNA samples extracted from MCT biopsies already investigated for c-KIT mutations were screened for the “human-like” hot spot mutations of listed genes. Results No mutations were ever identified except for TET2 even if with low frequency (2.7%). In contrast to what is observed in human TET2 no frame-shift mutations were found in MCT samples. Conclusion Results obtained in this preliminary study are suggestive of a substantial difference between human SM and canine MCT if we consider some target genes known to be involved in the pathogenesis of human SM. PMID:26562302

  12. Mutations in C8orf37, encoding a ciliary protein, are associated with autosomal-recessive retinal dystrophies with early macular involvement.

    PubMed

    Estrada-Cuzcano, Alejandro; Neveling, Kornelia; Kohl, Susanne; Banin, Eyal; Rotenstreich, Ygal; Sharon, Dror; Falik-Zaccai, Tzipora C; Hipp, Stephanie; Roepman, Ronald; Wissinger, Bernd; Letteboer, Stef J F; Mans, Dorus A; Blokland, Ellen A W; Kwint, Michael P; Gijsen, Sabine J; van Huet, Ramon A C; Collin, Rob W J; Scheffer, H; Veltman, Joris A; Zrenner, Eberhart; den Hollander, Anneke I; Klevering, B Jeroen; Cremers, Frans P M

    2012-01-13

    Cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) are clinically and genetically overlapping heterogeneous retinal dystrophies. By using homozygosity mapping in an individual with autosomal-recessive (ar) RP from a consanguineous family, we identified three sizeable homozygous regions, together encompassing 46 Mb. Next-generation sequencing of all exons, flanking intron sequences, microRNAs, and other highly conserved genomic elements in these three regions revealed a homozygous nonsense mutation (c.497T>A [p.Leu166(∗)]) in C8orf37, located on chromosome 8q22.1. This mutation was not present in 150 ethnically matched control individuals, single-nucleotide polymorphism databases, or the 1000 Genomes database. Immunohistochemical studies revealed C8orf37 localization at the base of the primary cilium of human retinal pigment epithelium cells and at the base of connecting cilia of mouse photoreceptors. C8orf37 sequence analysis of individuals who had retinal dystrophy and carried conspicuously large homozygous regions encompassing C8orf37 revealed a homozygous splice-site mutation (c.156-2A>G) in two siblings of a consanguineous family and homozygous missense mutations (c.529C>T [p.Arg177Trp]; c.545A>G [p.Gln182Arg]) in siblings of two other consanguineous families. The missense mutations affect highly conserved amino acids, and in silico analyses predicted that both variants are probably pathogenic. Clinical assessment revealed CRD in four individuals and RP with early macular involvement in two individuals. The two CRD siblings with the c.156-2A>G mutation also showed unilateral postaxial polydactyly. These results underline the importance of disrupted ciliary processes in the pathogenesis of retinal dystrophies.

  13. Mutations in Cytochrome b Resulting in Atovaquone Resistance Are Associated with Loss of Fitness in Plasmodium falciparum

    PubMed Central

    Peters, Jennifer M.; Chen, Nanhua; Gatton, Michelle; Korsinczky, Michael; Fowler, Elizabeth V.; Manzetti, Sergio; Saul, Allan; Cheng, Qin

    2002-01-01

    Drug resistance in malarial parasites has become a major obstacle in the control of the disease. Strategies are urgently needed to control the development of resistance and to possibly reverse existing resistance. One key element required to reverse malaria drug resistance is for the parasites to “pay” a biological “cost” or suffer a loss of fitness when acquiring resistance to antimalarial drugs. Such a situation would be a disadvantage to the resistant parasites in the absence of drug pressure. We compared here the relative fitness of atovaquone-resistant Plasmodium falciparum K1 clones with single and double base mutations in their cytochrome b genes to their parent clones during erythrocytic stages in the absence of drug pressure. We found that the double amino acid mutation (M133I and G280D) is associated with a 5 to 9% loss of fitness and that the single amino acid change of M133I did not result in any detectable loss of fitness. Molecular modeling of the interaction of P. falciparum cytochrome b with ubiquinone led to the prediction that a loss of fitness of the malaria parasites would result from the G280D mutation due to its close proximity to the putative ubiquinone-binding site. This appears to have resulted in a weakening of the cytochrome b-ubiquinone complex, thereby causing the electron transport chain to become less efficient. Our results suggest that the prevalence of resistant parasites may decrease after the drug usage is discontinued. PMID:12121915

  14. The medaka mutation tintachina sheds light on the evolution of V-ATPase B subunits in vertebrates

    NASA Astrophysics Data System (ADS)

    Müller, Claudia; Maeso, Ignacio; Wittbrodt, Joachim; Martínez-Morales, Juan R.

    2013-11-01

    Vacuolar-type H+ ATPases (V-ATPases) are multimeric protein complexes that play a universal role in the acidification of intracellular compartments in eukaryotic cells. We have isolated the recessive medaka mutation tintachina (tch), which carries an inactivating modification of the conserved glycine residue (G75R) of the proton pump subunit atp6v1Ba/vatB1. Mutant embryos show penetrant pigmentation defects, massive brain apoptosis and lethality before hatching. Strikingly, an equivalent mutation in atp6v1B1 (G78R) has been reported in a family of patients suffering from distal renal tubular acidosis (dRTA), a hereditary disease that causes metabolic acidosis due to impaired kidney function. This poses the question as to how molecularly identical mutations result in markedly different phenotypes in two vertebrate species. Our work offers an explanation for this phenomenon. We propose that, after successive rounds of whole-genome duplication, the emergence of paralogous copies allowed the divergence of the atp6v1B cis-regulatory control in different vertebrate groups.

  15. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis.

    PubMed

    Stambuk, Boris U; Dunn, Barbara; Alves, Sergio L; Duval, Eduarda H; Sherlock, Gavin

    2009-12-01

    Fuel ethanol is now a global energy commodity that is competitive with gasoline. Using microarray-based comparative genome hybridization (aCGH), we have determined gene copy number variations (CNVs) common to five industrially important fuel ethanol Saccharomyces cerevisiae strains responsible for the production of billions of gallons of fuel ethanol per year from sugarcane. These strains have significant amplifications of the telomeric SNO and SNZ genes, which are involved in the biosynthesis of vitamins B6 (pyridoxine) and B1 (thiamin). We show that increased copy number of these genes confers the ability to grow more efficiently under the repressing effects of thiamin, especially in medium lacking pyridoxine and with high sugar concentrations. These genetic changes have likely been adaptive and selected for in the industrial environment, and may be required for the efficient utilization of biomass-derived sugars from other renewable feedstocks.

  16. Further delineation of Loeys-Dietz syndrome type 4 in a family with mild vascular involvement and a TGFB2 splicing mutation

    PubMed Central

    2014-01-01

    Background The Loeys-Dietz syndrome (LDS) is a rare autosomal dominant disorder characterized by thoracic aortic aneurysm and dissection and widespread systemic connective tissue involvement. LDS type 1 to 4 are caused by mutations in genes of the TGF-β signaling pathway: TGFBR1 and TGFBR2 encoding the TGF-β receptor (LDS1 and LDS2), SMAD3 encoding the TGF-β receptor cytoplasmic effector (LDS3), and TGFB2 encoding the TGF-β2 ligand (LDS4). LDS4 represents the mildest end of the LDS spectrum, since aneurysms are usually observed in fourth decade and the progression of the disease is slower than in the other forms. Case presentation We report the clinical and molecular findings of an LDS4 Italian family. Genetic testing included TGFBR1, TGFBR2, SMAD3, and TGFB2 analysis by Sanger sequencing. In order to verify the effect of the identified splice mutation, RT-PCR analysis was performed. The proband, a 57-year-old woman, showed high palate, hypoplasic uvula, easy bruising, joint hypermobility, chronic pain, scoliosis, multiple relapsing hernias, dural ectasia, and mitral valve prolapse. Magnetic resonance angiography revealed tortuosity and ectasia of carotid, vertebral, cerebral, and segmental pulmonary arteries. Arterial aneurysm and dissection never occurred. Her 39- and 34-year-old daughters presented with a variable degree of musculoskeletal involvement. Molecular analysis disclosed the novel c.839-1G>A splice site mutation in the TGFB2 gene. This mutation activates a cryptic splice acceptor site in exon 6 leading to frameshift, premature termination codon and haploinsufficiency (p.Gly280Aspfs*41). Conclusions Our data confirm that loss-of-function mutations in TGFB2 gene do not always lead to aggressive vascular phenotypes and that articular and skeletal signs are prevalent, therefore suggesting that LDS4 must be considered in patients with sparse signs of LDS and related disorders also in the absence of vascular events. PMID:25163805

  17. Involvement of EphB1 Receptors Signalling in Models of Inflammatory and Neuropathic Pain

    PubMed Central

    Battaglia, Anna; Fredriksson, Sarah; Henkemeyer, Mark; Sears, Thomas; Gavazzi, Isabella

    2013-01-01

    EphB receptors tyrosine kinases and ephrinB ligands were first identified as guidance molecules involved in the establishment of topographical mapping and connectivity in the nervous system during development. Later in development and into adulthood their primary role would switch from guidance to activity-dependent modulation of synaptic efficacy. In sensory systems, they play a role in both the onset of inflammatory and neuropathic pain, and in the establishment of central sensitisation, an NMDA-mediated form of synaptic plasticity thought to underlie most forms of chronic pain. We studied wild type and EphB1 knockout mice in a range of inflammatory and neuropathic pain models to determine 1), whether EphB1 expression is necessary for the onset and/or maintenance of persistent pain, regardless of origin; 2), whether in these models cellular and molecular changes, e.g. phosphorylation of the NR2B subunit of the NMDA receptor, increased c-fos expression or microglial activation, associated with the onset of pain, are affected by the lack of functional EphB1 receptors. Differences in phenotype were examined behaviourally, anatomically, biochemically and electrophysiologically. Our results establish firstly, that functional EphB1 receptors are not essential for the development of normal nociception, thermal or mechanical sensitivity. Secondly, they demonstrate a widespread involvement of EphB1 receptors in chronic pain. NR2B phosphorylation, c-fos expression and microglial activation are all reduced in EphB1 knockout mice. This last finding is intriguing, since microglial activation is supposedly triggered directly by primary afferents, therefore it was not expected to be affected. Interestingly, in some models of long-term pain (days), mechanical and thermal hyperalgesia develop both in wild type and EphB1 knockout mice, but recovery is faster in the latter, indicating that in particular models these receptors are required for the maintenance, rather than the onset

  18. SrmB, a DEAD-box helicase involved in Escherichia coli ribosome assembly, is specifically targeted to 23S rRNA in vivo

    PubMed Central

    Trubetskoy, Dmitrii; Proux, Florence; Allemand, Frédéric; Dreyfus, Marc; Iost, Isabelle

    2009-01-01

    DEAD-box proteins play specific roles in remodeling RNA or ribonucleoprotein complexes. Yet, in vitro, they generally behave as nonspecific RNA-dependent ATPases, raising the question of what determines their specificity in vivo. SrmB, one of the five Escherichia coli DEAD-box proteins, participates in the assembly of the large ribosomal subunit. Moreover, when overexpressed, it compensates for a mutation in L24, the ribosomal protein (r-protein) thought to initiate assembly. Here, using the tandem affinity purification (TAP) procedure, we show that SrmB forms a complex with r-proteins L4, L24 and a region near the 5′-end of 23S rRNA that binds these proteins. In vitro reconstitution experiments show that the stability of this complex reflects cooperative interactions of SrmB with L4, L24 and rRNA. These observations are consistent with an early role of SrmB in assembly and explain the genetic link between SrmB and L24. Besides its catalytic core, SrmB possesses a nonconserved C-terminal extension that, we show, is not essential for SrmB function and specificity. In this regard, SrmB differs from DbpA, another DEAD-box protein involved in ribosome assembly. PMID:19734346

  19. SrmB, a DEAD-box helicase involved in Escherichia coli ribosome assembly, is specifically targeted to 23S rRNA in vivo.

    PubMed

    Trubetskoy, Dmitrii; Proux, Florence; Allemand, Frédéric; Dreyfus, Marc; Iost, Isabelle

    2009-10-01

    DEAD-box proteins play specific roles in remodeling RNA or ribonucleoprotein complexes. Yet, in vitro, they generally behave as nonspecific RNA-dependent ATPases, raising the question of what determines their specificity in vivo. SrmB, one of the five Escherichia coli DEAD-box proteins, participates in the assembly of the large ribosomal subunit. Moreover, when overexpressed, it compensates for a mutation in L24, the ribosomal protein (r-protein) thought to initiate assembly. Here, using the tandem affinity purification (TAP) procedure, we show that SrmB forms a complex with r-proteins L4, L24 and a region near the 5'-end of 23S rRNA that binds these proteins. In vitro reconstitution experiments show that the stability of this complex reflects cooperative interactions of SrmB with L4, L24 and rRNA. These observations are consistent with an early role of SrmB in assembly and explain the genetic link between SrmB and L24. Besides its catalytic core, SrmB possesses a nonconserved C-terminal extension that, we show, is not essential for SrmB function and specificity. In this regard, SrmB differs from DbpA, another DEAD-box protein involved in ribosome assembly.

  20. Structural Insights into the MMACHC-MMADHC Protein Complex Involved in Vitamin B12 Trafficking*

    PubMed Central

    Froese, D. Sean; Kopec, Jolanta; Fitzpatrick, Fiona; Schuller, Marion; McCorvie, Thomas J.; Chalk, Rod; Plessl, Tanja; Fettelschoss, Victoria; Fowler, Brian; Baumgartner, Matthias R.; Yue, Wyatt W.

    2015-01-01

    Conversion of vitamin B12 (cobalamin, Cbl) into the cofactor forms methyl-Cbl (MeCbl) and adenosyl-Cbl (AdoCbl) is required for the function of two crucial enzymes, mitochondrial methylmalonyl-CoA mutase and cytosolic methionine synthase, respectively. The intracellular proteins MMACHC and MMADHC play important roles in processing and targeting the Cbl cofactor to its destination enzymes, and recent evidence suggests that they may interact while performing these essential trafficking functions. To better understand the molecular basis of this interaction, we have mapped the crucial protein regions required, indicate that Cbl is likely processed by MMACHC prior to interaction with MMADHC, and identify patient mutations on both proteins that interfere with complex formation, via different mechanisms. We further report the crystal structure of the MMADHC C-terminal region at 2.2 Å resolution, revealing a modified nitroreductase fold with surprising homology to MMACHC despite their poor sequence conservation. Because MMADHC demonstrates no known enzymatic activity, we propose it as the first protein known to repurpose the nitroreductase fold solely for protein-protein interaction. Using small angle x-ray scattering, we reveal the MMACHC-MMADHC complex as a 1:1 heterodimer and provide a structural model of this interaction, where the interaction region overlaps with the MMACHC-Cbl binding site. Together, our findings provide novel structural evidence and mechanistic insight into an essential biological process, whereby an intracellular “trafficking chaperone” highly specific for a trace element cofactor functions via protein-protein interaction, which is disrupted by inherited disease mutations. PMID:26483544

  1. Diffuse large B-cell lymphoma involving the central nervous system.

    PubMed

    Gualco, Gabriela; Weiss, Lawrence M; Barber, Glen N; Bacchi, Carlos E

    2011-02-01

    Lymphomas involving the central nervous system are recognized increasingly in immunocompetent as well as immunosuppressed individuals, and the majority of the cases are diffuse large B-cell lymphoma (DLBCL). The aim of this study was to compare the immunophenotype, clinicopathological features, and association with Epstein-Barr virus (EBV) of DLBCL of the central nervous system (CNS) in 3 different clinical situations: primary, in immunocompetent patients; "primary," in immunosuppressed patients; and in patients with secondary involvement by systemic lymphoma. The authors reviewed the clinicopathological features, morphology, immunophenotype (according to germinal-center B-cell-like and nongerminal B-cell-like subtypes), and association with EBV in 36 cases of DLBCL of the CNS, including 25 primary cases, 5 associated with immunosuppression, and 6 cases with secondary involvement. Survival was evaluated in 15 cases of primary CNS lymphomas. Of the 36 patients, 19 were male and 18 female. Only 2 cases of lymphomas were EBV-positive; both occurred in immunosuppressed patients. Separation into germinal-center and non-germinal center subtypes by an immunohistochemistry panel showed that 68% of primary, 80% of secondary, and 83% of the cases associated with immunosuppression were of non-germinal-center subtype, respectively. Patients with non-germinal-center immunophenotype showed significantly worse survival than those with CNS lymphomas of the germinal-center subtype.

  2. Involvement of endocrine system in a patient affected by glycogen storage disease 1b: speculation on the role of autoimmunity.

    PubMed

    Melis, Daniela; Della Casa, Roberto; Balivo, Francesca; Minopoli, Giorgia; Rossi, Alessandro; Salerno, Mariacarolina; Andria, Generoso; Parenti, Giancarlo

    2014-03-19

    Glycogen storage disease type 1b (GSD1b) is an inherited metabolic defect of glycogenolysis and gluconeogenesis due to mutations of the SLC37A4 gene and to defective transport of glucose-6-phosphate. The clinical presentation of GSD1b is characterized by hepatomegaly, failure to thrive, fasting hypoglycemia, and dyslipidemia. Patients affected by GSD1b also show neutropenia and/or neutrophil dysfunction that cause increased susceptibility to recurrent bacterial infections. GSD1b patients are also at risk for inflammatory bowel disease. Occasional reports suggesting an increased risk of autoimmune disorders in GSD1b patients, have been published. These complications affect the clinical outcome of the patients. Here we describe the occurrence of autoimmune endocrine disorders including thyroiditis and growth hormone deficiency, in a patient affected by GSD1b. This case further supports the association between GSD1b and autoimmune diseases.

  3. Two Clinical Isolates of Candida glabrata Exhibiting Reduced Sensitivity to Amphotericin B Both Harbor Mutations in ERG2

    PubMed Central

    Hull, Claire M.; Bader, Oliver; Parker, Josie E.; Weig, Michael; Gross, Uwe; Warrilow, Andrew G. S.; Kelly, Diane E.

    2012-01-01

    Two novel isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B (MIC, 8 μg ml−1) were found to be ERG2 mutants, wherein Δ8-sterol intermediates comprised >90% of the total cellular sterol fraction. Both harbored an alteration at Thr121 in ERG2; the corresponding residue (Thr119) in Saccharomyces cerevisiae is essential for sterol Δ8-Δ7 isomerization. This constitutes the first report of C. glabrata harboring mutations in ERG2 and exhibiting reduced sensitivity to amphotericin B. PMID:23027188

  4. Effect on transformation of mutations in the early region 1b-encoded 21- and 55-kilodalton proteins of adenovirus 5.

    PubMed Central

    Babiss, L E; Fisher, P B; Ginsberg, H S

    1984-01-01

    It is well established that the adenovirus 5 genes responsible for the initiation and maintenance of the transformed cell reside in the early region 1a and 1b genes, but it remains unclear how the polypeptides encoded in these genes mediate their functions. To probe the function of the early region 1b-encoded 55- and 21-kilodalton (kd) polypeptides during this process, a series of viral mutants was engineered so that they contained deletions or insertions at 5.4, 5.7, 7.9, or 9.6 map units. By means of either an overlap recombination procedure involving H5dl314 (delta 3.7 to 4.6 map units) cleaved with ClaI, or a marker rescue procedure involving H5dl312 (delta 1.2 to 3.8 map units), viral mutants were isolated by their ability to produce plaques on KB cell line 18 cells, which constitutively express only viral early region 1b functions. DNA sequence analysis confirmed that the series of mutants generated differed in their abilities to express the 21- or the 55-kd polypeptides, or both. Upon infection of cloned rat embryo fibroblast cells with viruses containing mutations affecting the 55-kd protein, the transformation frequency decreased as the size of the predicted truncated polypeptide decreased. Although all of the foci generated by the 55-kd protein mutants were indistinguishable from the foci induced by wild-type virus, they displayed an inefficient ability to grow in soft agar, again in relation to the size of the truncated polypeptide. In contrast, if cloned rat embryo fibroblast cells were transfected with viral DNA, the defectiveness in transformation observed after infection with virions was not as dramatic. However, all of the viruses containing 21-kd mutations were transformation defective, regardless of the mode by which the viral nucleic acid was introduced into the cell. Images PMID:6333514

  5. Age-related decrease in the proportion of germinal center B cells from mouse Peyer's patches is accompanied by an accumulation of somatic mutations in their immunoglobulin genes.

    PubMed

    González-Fernández, A; Gilmore, D; Milstein, C

    1994-11-01

    Somatic hypermutation of immunoglobulin genes and the generation of memory B cells seems to take place in germinal centers, which are chronically present in Peyer's patches. Age-associated changes in the germinal center B cell compartment of Peyer's patches and in the mutations of a kappa light chain transgene were analyzed in unimmunized mice. Somatic mutations accumulate in germinal center B cells slowly and continuously to reach an apparent plateau when the animals are around 5 months old. In contrast, the proportion of germinal center B cells reaches a maximum in very young mice (about 2 months old) and decreases progressively thereafter. These results suggest that the highly mutated B cells in older mice arise by the successive accumulation of mutations in memory cells. The data also show that the optimum time for the analysis of hypermutation of transgenes in Peyer's patches is when the mice are about 5 months old.

  6. Isolated cerebellar involvement in vitamin B12 deficiency: a case report.

    PubMed

    Chakrabarty, Biswaroop; Dubey, Rachana; Gulati, Sheffali; Yoganathan, Sangeetha; Kumar, Ajay; Kumar, Atin

    2014-11-01

    Deficiency of vitamin B12 causes megaloblastic anemia and nervous system demyelination. Structures affected in the nervous system include spinal cord, cranial and peripheral nerves, and brain white matter. A 9-year-old boy presented with knuckle hyperpigmentation and oral ulcers for 3 years, pallor and easy fatigability for 6 months, gait abnormalities for 3 months, and abnormal speech and behavioral abnormalities for 3 days. On examination, he had physical signs of megaloblastic anemia, mood swings with intermittent hallucinations, and features of cerebellar impairment. Blood investigations revealed megaloblastic anemia, and pernicious anemia was ruled out. Brain magnetic resonance imaging (MRI) revealed bilateral cerebellar signal changes. He received treatment for vitamin B12 deficiency and appropriate nutritional counseling. Three months later, he showed significant clinical and radiologic resolution. To our knowledge, isolated cerebellar involvement as the sole neurologic manifestation of vitamin B12 deficiency has not been described previously in children. PMID:24346315

  7. (+)-Pinoresinol/(-)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B.

    PubMed

    Hemmati, Shiva; Schmidt, Thomas J; Fuss, Elisabeth

    2007-02-20

    A cDNA encoding a pinoresinol-lariciresinol reductase PLR (PLR-Lp1) was isolated from a cell culture of Linum perenne Himmelszelt accumulating the arylnaphthalene lignan justicidin B. The recombinant PLR-Lp1 prefers (+)-pinoresinol in the first reaction step, but (-)-lariciresinol in the second step. Therefore, it is the first PLR described with opposite enantiospecificity within the two reaction steps catalysed by PLRs. Hairy root lines transformed with an ihpRNAi construct to suppress plr gene expression show less mRNA accumulation for the plr-Lp1 gene and PLR enzyme activity. Justicidin B accumulation was reduced down to 24% in comparison to control lines showing the involvement of PLR-Lp1 in the biosynthesis of justicidin B.

  8. Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): Evidence for a phenotypic series involving three chondrodysplasias

    SciTech Connect

    Haestbacka, J.; Lander, E.S.; Superti-Furga, A.

    1996-02-01

    Atelosteogenesis type II (AO II) is a neonatally lethal chondrodysplasia whose clinical and histological characteristics resemble those of another chondrodysplasia, the much less severe diastrophic dysplasia (DTD). The similarity suggests a shared pathogenesis involving lesions in the same biochemical pathway and perhaps the same gene. DTD is caused by mutations in the recently identified diastrophic dysplasia sulfate-transporter gene (DTDST). Here, we report that AOII patients also have DTDST mutations, which lead to defective uptake of inorganic sulfate and insufficient sulfation of macromolecules by patient mesenchymal cells in vitro. Together with our recent observation that a third even more severe chondrodysplasia, achondrogenesis type IB, is also caused by mutations in DTDST, these results demonstrate a phenotypic series of three chondrodysplasias of increasing severity caused by lesions in a single sulfate-transporter gene. The severity of the phenotype appears to be correlated with the predicted effect of the mutations on the residual activity of the DTDST protein. 24 refs., 6 figs., 1 tab.

  9. Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): evidence for a phenotypic series involving three chondrodysplasias.

    PubMed Central

    Hästbacka, J.; Superti-Furga, A.; Wilcox, W. R.; Rimoin, D. L.; Cohn, D. H.; Lander, E. S.

    1996-01-01

    Atelosteogenesis type II (AO II) is a neonatally lethal chondrodysplasia whose clinical and histological characteristics resemble those of another chondrodysplasia, the much less severe diastrophic dysplasia (DTD). The similarity suggests a shared pathogenesis involving lesions in the same biochemical pathway and perhaps the same gene. DTD is caused by mutations in the recently identified diastrophic dysplasia sulfate-transporter gene (DTDST). Here, we report that AOII patients also have DTDST mutations, which lead to defective uptake of inorganic sulfate and insufficient sulfation of macromolecules by patient mesenchymal cells in vitro. Together with our recent observation that a third even more severe chondrodysplasia, achondrogenesis type IB, is also caused by mutations in DTDST, these results demonstrate a phenotypic series of three chondrodysplasias of increasing severity caused by lesions in a single sulfate-transporter gene. The severity of the phenotype appears to be correlated with the predicted effect of the mutations on the residual activity of the DTDST protein. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 3 Figure 6 PMID:8571951

  10. Investigation of the mechanisms underlying the differential effects of the K262R mutation of P450 2B6 on catalytic activity

    PubMed Central

    Bumpus, Namandjé N.; Hollenberg, Paul F.

    2008-01-01

    Human P450 2B6 is a polymorphic enzyme involved in the oxidative metabolism of a number of clinically relevant substrates. The lysine 262 to arginine mutant of P450 2B6 (P450 2B6.4) has been shown to have differential effects on P450 2B6 catalytic activity. We previously reported that the mutant enzyme was not able to metabolize 17-α-ethynylestradiol (17EE) or become inactivated by 17EE or efavirenz, which are inactivators of the wild-type enzyme. Studies were performed to elucidate the mechanism by which this mutation affects P450 2B6 catalytic activity. Studies using phenyldiazene to investigate differences between the active site topologies of the wild-type and mutant enzymes revealed only minor differences. Similarly, Ks values for the binding of both benzphetamine and efavirenz were comparable between the two enzymes. Using the alternate oxidant tert-butyl hydroperoxide, the mutant enzyme was inactivated by both 17EE and efavirenz. The stoichiometry of 17EE and efavirenz metabolism by P450s 2B6 and 2B6.4 revealed the mutant enzyme was more uncoupled, producing hydrogen peroxide as the primary product. Interestingly, the addition of cytochrome b5 improved the coupling of the mutant, resulting in increased catalytic activity. In the presence of cytochrome b5 the variant readily metabolized 17EE and was inactivated by both 17EE and efavirenz. It is therefore proposed that the oxyferrous or iron-peroxo intermediate formed by the mutant enzyme in the presence of 17EE and efavirenz may be less stable than the same intermediates formed by the wild-type enzyme. PMID:18621926

  11. Simultaneous Detection of Major Drug Resistance Mutations of HIV-1 Subtype B Viruses from Dried Blood Spot Specimens by Multiplex Allele-Specific Assay.

    PubMed

    Zhang, Guoqing; Cai, Fangping; de Rivera, Ivette Lorenzana; Zhou, Zhiyong; Zhang, Jing; Nkengasong, John; Gao, Feng; Yang, Chunfu

    2016-01-01

    A multiplex allele-specific (MAS) assay has been developed for the detection of HIV-1 subtype C drug resistance mutations (DRMs). We have optimized the MAS assay to determine subtype B DRMs in dried blood spots (DBS) collected from patients on antiretroviral therapy. The new assay accurately detected DRMs, including low-abundance mutations that were often missed by Sanger sequencing. PMID:26560533

  12. Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11.

    PubMed

    Eriksson, T M; Alvarsson, A; Stan, T L; Zhang, X; Hascup, K N; Hascup, E R; Kehr, J; Gerhardt, G A; Warner-Schmidt, J; Arango-Lievano, M; Kaplitt, M G; Ogren, S O; Greengard, P; Svenningsson, P

    2013-10-01

    Cognitive impairments are common in depression and involve dysfunctional serotonin neurotransmission. The 5-HT1B receptor (5-HT(1B)R) regulates serotonin transmission, via presynaptic receptors, but can also affect transmitter release at heterosynaptic sites. This study aimed at investigating the roles of the 5-HT(1B)R, and its adapter protein p11, in emotional memory and object recognition memory processes by the use of p11 knockout (p11KO) mice, a genetic model for aspects of depression-related states. 5-HT(1B)R agonist treatment induced an impairing effect on emotional memory in wild type (WT) mice. In comparison, p11KO mice displayed reduced long-term emotional memory performance. Unexpectedly, 5-HT(1B)R agonist stimulation enhanced memory in p11KO mice, and this atypical switch was reversed after hippocampal adeno-associated virus mediated gene transfer of p11. Notably, 5-HT(1B)R stimulation increased glutamatergic neurotransmission in the hippocampus in p11KO mice, but not in WT mice, as measured by both pre- and postsynaptic criteria. Magnetic resonance spectroscopy demonstrated global hippocampal reductions of inhibitory GABA, which may contribute to the memory enhancement and potentiation of pre- and post-synaptic measures of glutamate transmission by a 5-HT(1B)R agonist in p11KO mice. It is concluded that the level of hippocampal p11 determines the directionality of 5-HT(1B)R action on emotional memory processing and modulates hippocampal functionality. These results emphasize the importance of using relevant disease models when evaluating the role of serotonin neurotransmission in cognitive deficits related to psychiatric disorders.

  13. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    SciTech Connect

    Hachem, Ahmed; Yacoub, Daniel; Zaid, Younes; Mourad, Walid; Merhi, Yahye

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Given that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo

  14. A Novel Mutation in the Upstream Open Reading Frame of the CDKN1B Gene Causes a MEN4 Phenotype

    PubMed Central

    Occhi, Gianluca; Regazzo, Daniela; Trivellin, Giampaolo; Boaretto, Francesca; Ciato, Denis; Bobisse, Sara; Ferasin, Sergio; Cetani, Filomena; Pardi, Elena; Korbonits, Márta; Pellegata, Natalia S.; Sidarovich, Viktoryia; Quattrone, Alessandro; Opocher, Giuseppe; Mantero, Franco; Scaroni, Carla

    2013-01-01

    The CDKN1B gene encodes the cyclin-dependent kinase inhibitor p27KIP1, an atypical tumor suppressor playing a key role in cell cycle regulation, cell proliferation, and differentiation. Impaired p27KIP1 expression and/or localization are often observed in tumor cells, further confirming its central role in regulating the cell cycle. Recently, germline mutations in CDKN1B have been associated with the inherited multiple endocrine neoplasia syndrome type 4, an autosomal dominant syndrome characterized by varying combinations of tumors affecting at least two endocrine organs. In this study we identified a 4-bp deletion in a highly conserved regulatory upstream ORF (uORF) in the 5′UTR of the CDKN1B gene in a patient with a pituitary adenoma and a well-differentiated pancreatic neoplasm. This deletion causes the shift of the uORF termination codon with the consequent lengthening of the uORF–encoded peptide and the drastic shortening of the intercistronic space. Our data on the immunohistochemical analysis of the patient's pancreatic lesion, functional studies based on dual-luciferase assays, site-directed mutagenesis, and on polysome profiling show a negative influence of this deletion on the translation reinitiation at the CDKN1B starting site, with a consequent reduction in p27KIP1 expression. Our findings demonstrate that, in addition to the previously described mechanisms leading to reduced p27KIP1 activity, such as degradation via the ubiquitin/proteasome pathway or non-covalent sequestration, p27KIP1 activity can also be modulated by an uORF and mutations affecting uORF could change p27KIP1 expression. This study adds the CDKN1B gene to the short list of genes for which mutations that either create, delete, or severely modify their regulatory uORFs have been associated with human diseases. PMID:23555276

  15. Functional characterization of three mutations of the endothelin B receptor gene in patients with Hirschsprung's disease: evidence for selective loss of Gi coupling.

    PubMed Central

    Fuchs, S.; Amiel, J.; Claudel, S.; Lyonnet, S.; Corvol, P.; Pinet, F.

    2001-01-01

    BACKGROUND: Hirschsprung's disease (HSCR) is one the most common congenital intestinal disease. It leads to aganglionic megacolon in the early childhood. Several susceptibility genes have been identified : RET protooncogene and its ligand, glial cell derived neutrophic factor (GDNF), Sox 10, Endothelin-3 (EDN3) and its receptor B (EDNRB). EDNRB mutations are found in 5% of familial or sporadic HSCR. Only few EDNRB mutations found in HSCR have been explored and some of them seem to be non fonctional variants. MATERIALS AND METHODS: The properties of three mutant human endothelin B receptor (hETB) (G57S, R319W and P383L) in isolated HSCR were analyzed. Stable recombinant cells expressing the three mutants and the wild-type (WT) were established. The hETB receptors were characterized for 125I ET-1 binding, ET-1 induced signaling: calcium transient, AP-1 transcriptional factor activation and cAMP accumulation. RESULTS: Immunofluorescence experiments showed normal cellular distributions of the mutant G57S, R319W and WT hETB receptors. In contrast, the P383L hETB mutant receptor was concentrated near the nucleus and essentially no ET-1 binding was detected. The two other mutants (G57S and R319W) bound ET-1 normally, induced calcium transients and activated the AP-1 pathway in the same way as wild type, but did not inhibit adenylate cyclase. The G57S hETB mutant even stimulated cAMP accumulation which was blocked by pertussis toxin. CONCLUSION: The absence of the P383L mutant receptor from the membrane clearly indicates that this mutation could be involved in HSCR. The G57S and R319W mutant receptors, despite their normal coupling to Gaq, have a defect in the Galphai signaling pathway and the G57S mutation couples to Galphas. These observations allow us to hypothesize that cAMP signaling might be involved in the differenciation of neural cells in the bowel. PMID:11471546

  16. Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy

    PubMed Central

    Özcelik, Cemil; Erdmann, Bettina; Pilz, Bernhard; Wettschureck, Nina; Britsch, Stefan; Hübner, Norbert; Chien, Kenneth R.; Birchmeier, Carmen; Garratt, Alistair N.

    2002-01-01

    The ErbB2 (Her2) proto-oncogene encodes a receptor tyrosine kinase, which is frequently amplified and overexpressed in human tumors. ErbB2 provides the target for a novel and effective antibody-based therapy (Trastuzumab/Herceptin) used for the treatment of mammary carcinomas. However, cardiomyopathies develop in a proportion of patients treated with Trastuzumab, and the incidence of such complications is increased by combination with standard chemotherapy. Gene ablation studies have previously demonstrated that the ErbB2 receptor, together with its coreceptor ErbB4 and the ligand Neuregulin-1, are essential for normal development of the heart ventricle. We use here Cre-loxP technology to mutate ErbB2 specifically in ventricular cardiomyocytes. Conditional mutant mice develop a severe dilated cardiomyopathy, with signs of cardiac dysfunction generally appearing by the second postnatal month. We infer that signaling from the ErbB2 receptor, which is enriched in T-tubules in cardiomyocytes, is crucial for adult heart function. Conditional ErbB2 mutant mice provide a model of dilated cardiomyopathy. In particular, they will allow a rigorous assessment of the role of ErbB2 in the heart and provide insight into the molecular mechanisms that underlie the adverse effects of anti-ErbB2 antibodies. PMID:12072561

  17. Novel HSAN1 mutation in serine palmitoyltransferase resides at a putative phosphorylation site that is involved in regulating substrate specificity.

    PubMed

    Ernst, Daniela; Murphy, Sinéad M; Sathiyanadan, Karthik; Wei, Yu; Othman, Alaa; Laurá, Matilde; Liu, Yo-Tsen; Penno, Anke; Blake, Julian; Donaghy, Michael; Houlden, Henry; Reilly, Mary M; Hornemann, Thorsten

    2015-03-01

    1-Deoxysphingolipids (1-deoxySL) are atypical sphingolipids that are formed by the enzyme serine palmitoyltransferase (SPT) due to a promiscuous use of L-alanine over its canonical substrate L-serine. Several mutations in SPT are associated with the hereditary sensory and autonomic neuropathy type I (HSAN1). The current hypothesis is that these mutations induce a permanent shift in the affinity from L-serine toward L-alanine which results in a pathologically increased 1-deoxySL formation in HSAN1 patients. Also, wild-type SPT forms 1-deoxySL under certain conditions, and elevated levels were found in individuals with the metabolic syndrome and diabetes. However, the molecular mechanisms which control the substrate shift of the wild-type enzyme are not understood. Here, we report a novel SPTLC2-S384F variant in two unrelated HSAN1 families. Affected patients showed elevated plasma 1-deoxySL levels and expression of the S384F mutant in HEK293 cells increased 1-deoxySL formation. Previously, S384 has been reported as one of the two (S384 and Y387) putative phosphorylation sites in SPTLC2. The phosphorylation of wild-type SPTLC2 was confirmed by isoelectric focusing. The impact of an S384 phosphorylation on SPT activity was tested by creating mutants mimicking either a constitutively phosphorylated (S384D, S384E) or non-phosphorylated (S384A, Y387F, Y387F+S384A) protein. The S384D but not the S384E variant was associated with increased 1-deoxySL formation. The other mutations had no influence on activity and substrate affinity. In summary, our data show that S384F is a novel mutation in HSAN1 and that the substrate specificity of wild-type SPT might by dynamically regulated by a phosphorylation at this position.

  18. Novel HSAN1 mutation in serine palmitoyltransferase resides at a putative phosphorylation site that is involved in regulating substrate specificity.

    PubMed

    Ernst, Daniela; Murphy, Sinéad M; Sathiyanadan, Karthik; Wei, Yu; Othman, Alaa; Laurá, Matilde; Liu, Yo-Tsen; Penno, Anke; Blake, Julian; Donaghy, Michael; Houlden, Henry; Reilly, Mary M; Hornemann, Thorsten

    2015-03-01

    1-Deoxysphingolipids (1-deoxySL) are atypical sphingolipids that are formed by the enzyme serine palmitoyltransferase (SPT) due to a promiscuous use of L-alanine over its canonical substrate L-serine. Several mutations in SPT are associated with the hereditary sensory and autonomic neuropathy type I (HSAN1). The current hypothesis is that these mutations induce a permanent shift in the affinity from L-serine toward L-alanine which results in a pathologically increased 1-deoxySL formation in HSAN1 patients. Also, wild-type SPT forms 1-deoxySL under certain conditions, and elevated levels were found in individuals with the metabolic syndrome and diabetes. However, the molecular mechanisms which control the substrate shift of the wild-type enzyme are not understood. Here, we report a novel SPTLC2-S384F variant in two unrelated HSAN1 families. Affected patients showed elevated plasma 1-deoxySL levels and expression of the S384F mutant in HEK293 cells increased 1-deoxySL formation. Previously, S384 has been reported as one of the two (S384 and Y387) putative phosphorylation sites in SPTLC2. The phosphorylation of wild-type SPTLC2 was confirmed by isoelectric focusing. The impact of an S384 phosphorylation on SPT activity was tested by creating mutants mimicking either a constitutively phosphorylated (S384D, S384E) or non-phosphorylated (S384A, Y387F, Y387F+S384A) protein. The S384D but not the S384E variant was associated with increased 1-deoxySL formation. The other mutations had no influence on activity and substrate affinity. In summary, our data show that S384F is a novel mutation in HSAN1 and that the substrate specificity of wild-type SPT might by dynamically regulated by a phosphorylation at this position. PMID:25567748

  19. Incomplete distal renal tubular acidosis from a heterozygous mutation of the V-ATPase B1 subunit

    PubMed Central

    Zhang, Jianning; Fuster, Daniel G.; Cameron, Mary Ann; Quiñones, Henry; Griffith, Carolyn; Xie, Xiao-Song

    2014-01-01

    Congenital distal renal tubular acidosis (RTA) from mutations of the B1 subunit of V-ATPase is considered an autosomal recessive disease. We analyzed a distal RTA kindred with a truncation mutation of B1 (p.Phe468fsX487) previously shown to have failure of assembly into the V1 domain of V-ATPase. All heterozygous carriers in this kindred have normal plasma HCO3− concentrations and thus evaded the diagnosis of RTA. However, inappropriately high urine pH, hypocitraturia, and hypercalciuria were present either individually or in combination in the heterozygotes at baseline. Two of the heterozygotes studied also had inappropriate urinary acidification with acute ammonium chloride loading and an impaired urine-blood Pco2 gradient during bicarbonaturia, indicating the presence of a H+ gradient and flux defects. In normal human renal papillae, wild-type B1 is located primarily on the plasma membrane, but papilla from one of the heterozygote who had kidney stones but not nephrocalcinosis showed B1 in both the plasma membrane as well as diffuse intracellular staining. Titration of increasing amounts of the mutant B1 subunit did not exhibit negative dominance over the expression, cellular distribution, or H+ pump activity of wild-type B1 in mammalian human embryonic kidney-293 cells and in V-ATPase-deficient Saccharomyces cerevisiae. This is the first demonstration of renal acidification defects and nephrolithiasis in heterozygous carriers of a mutant B1 subunit that cannot be attributable to negative dominance. We propose that heterozygosity may lead to mild real acidification defects due to haploinsufficiency. B1 heterozygosity should be considered in patients with calcium nephrolithiasis and urinary abnormalities such as alkalinuria or hypocitraturia. PMID:25164082

  20. The ACMSD gene, involved in tryptophan metabolism, is mutated in a family with cortical myoclonus, epilepsy, and parkinsonism

    PubMed Central

    Martí-Massó, Jose Felix; Bergareche, Alberto; Makarov, Vladimir; Ruiz-Martinez, Javier; Gorostidi, Ana; de Munain, Adolfo López; Poza, Juan Jose; Striano, Pasquale; Buxbaum, Joseph D.; Paisán-Ruiz, Coro

    2013-01-01

    Familial cortical myoclonic tremor and epilepsy is a phenotypically and genetically heterogeneous autosomal dominant disorder characterized by the presence of cortical myoclonic tremor and epilepsy that is often accompanied of additional neurological features. Despite the numerous familial studies performed and the number of loci identified, there is no gene associated with this syndrome. It is expected that through the application of novel genomic technologies, such as whole exome sequencing and whole genome sequencing, a substantial number of novel genes will come to light in the coming years. In this study, we describe the identification of two disease-segregating mutations in a large family featuring cortical myoclonic tremor with epilepsy and parkinsonism. Due to the previous association of ACMSD deficiency with the development of epileptic seizures, we concluded that the identified nonsense mutation in the ACMSD gene, which encodes for a critical enzyme of the kynurenine pathway of the tryptophan metabolism, is the disease-segregating mutation most likely to be responsible for the phenotype described in our family. This finding not only reveals the identification of the first gene associated with familial cortical myoclonic tremor and epilepsy but also discloses the kynurenine pathway as a potential therapeutic target for the treatment of this devastating syndrome. PMID:23955123

  1. Are human male patients with DAX1/NR0B1 mutations infertile?

    PubMed

    Ravel, Célia; Hyon, Capucine; Siffroi, Jean-Pierre; Christin-Maitre, Sophie

    2014-05-01

    DAX-1 stands for Dosage sensitive sex-reversal, Adrenal hypoplasia congenital (AHC), on the X chromosome. DAX-1 mutations usually cause primary adrenal insufficiency or congenital adrenal hypoplasia in early childhood and hypogonadotropic hypogonadism (MIM # 300200). DAX-1 protein is necessary to maintain normal spermatogenesis. In humans, male fertility has been studied in few patients carrying DAX-1 mutations. Cases of azoospermia have been reported, as well as unsuccessful gonadotropin treatments. The clinician should be informed that TESE-ICSI technique carries a potential hope to father non-affected children, as shown in this review. PMID:24751136

  2. Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence

    PubMed Central

    Rico-Lastres, Palma; Díez-Martínez, Roberto; Iglesias-Bexiga, Manuel; Bustamante, Noemí; Aldridge, Christine; Hesek, Dusan; Lee, Mijoon; Mobashery, Shahriar; Gray, Joe; Vollmer, Waldemar; García, Pedro; Menéndez, Margarita

    2015-01-01

    Streptococcus pneumoniae is a major cause of life-threatening diseases worldwide. Here we provide an in-depth functional characterization of LytB, the peptidoglycan hydrolase responsible for physical separation of daughter cells. Identified herein as an N-acetylglucosaminidase, LytB is involved also in colonization and invasion of the nasopharynx, biofilm formation and evasion of host immunity as previously demonstrated. We have shown that LytB cleaves the GlcNAc-β-(1,4)-MurNAc glycosidic bond of peptidoglycan building units. The hydrolysis occurs at sites with fully acetylated GlcNAc moieties, with preference for uncross-linked muropeptides. The necessity of GlcN acetylation and the presence of a single acidic moiety (Glu585) essential for catalysis strongly suggest a substrate-assisted mechanism with anchimeric assistance of the acetamido group of GlcNAc moieties. Additionally, modelling of the catalytic region bound to a hexasaccharide tripentapeptide provided insights into substrate-binding subsites and peptidoglycan recognition. Besides, cell-wall digestion products and solubilisation rates might indicate a tight control of LytB activity to prevent unrestrained breakdown of the cell wall. Choline-independent localization at the poles of the cell, mediated by the choline-binding domain, peptidoglycan modification, and choline-mediated (lipo)teichoic-acid attachment contribute to the high selectivity of LytB. Moreover, so far unknown chitin hydrolase and glycosyltransferase activities were detected using GlcNAc oligomers as substrate. PMID:26537571

  3. Point Mutations in Exon 1B of APC Reveal Gastric Adenocarcinoma and Proximal Polyposis of the Stomach as a Familial Adenomatous Polyposis Variant.

    PubMed

    Li, Jun; Woods, Susan L; Healey, Sue; Beesley, Jonathan; Chen, Xiaoqing; Lee, Jason S; Sivakumaran, Haran; Wayte, Nicci; Nones, Katia; Waterfall, Joshua J; Pearson, John; Patch, Anne-Marie; Senz, Janine; Ferreira, Manuel A; Kaurah, Pardeep; Mackenzie, Robertson; Heravi-Moussavi, Alireza; Hansford, Samantha; Lannagan, Tamsin R M; Spurdle, Amanda B; Simpson, Peter T; da Silva, Leonard; Lakhani, Sunil R; Clouston, Andrew D; Bettington, Mark; Grimpen, Florian; Busuttil, Rita A; Di Costanzo, Natasha; Boussioutas, Alex; Jeanjean, Marie; Chong, George; Fabre, Aurélie; Olschwang, Sylviane; Faulkner, Geoffrey J; Bellos, Evangelos; Coin, Lachlan; Rioux, Kevin; Bathe, Oliver F; Wen, Xiaogang; Martin, Hilary C; Neklason, Deborah W; Davis, Sean R; Walker, Robert L; Calzone, Kathleen A; Avital, Itzhak; Heller, Theo; Koh, Christopher; Pineda, Marbin; Rudloff, Udo; Quezado, Martha; Pichurin, Pavel N; Hulick, Peter J; Weissman, Scott M; Newlin, Anna; Rubinstein, Wendy S; Sampson, Jone E; Hamman, Kelly; Goldgar, David; Poplawski, Nicola; Phillips, Kerry; Schofield, Lyn; Armstrong, Jacqueline; Kiraly-Borri, Cathy; Suthers, Graeme K; Huntsman, David G; Foulkes, William D; Carneiro, Fatima; Lindor, Noralane M; Edwards, Stacey L; French, Juliet D; Waddell, Nicola; Meltzer, Paul S; Worthley, Daniel L; Schrader, Kasmintan A; Chenevix-Trench, Georgia

    2016-05-01

    Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome with a significant risk of gastric, but not colorectal, adenocarcinoma. We mapped the gene to 5q22 and found loss of the wild-type allele on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing failed to find causal mutations but, through Sanger sequencing, we identified point mutations in APC promoter 1B that co-segregated with disease in all six families. The mutations reduced binding of the YY1 transcription factor and impaired activity of the APC promoter 1B in luciferase assays. Analysis of blood and saliva from carriers showed allelic imbalance of APC, suggesting that these mutations lead to decreased allele-specific expression in vivo. Similar mutations in APC promoter 1B occur in rare families with familial adenomatous polyposis (FAP). Promoter 1A is methylated in GAPPS and sporadic FGPs and in normal stomach, which suggests that 1B transcripts are more important than 1A in gastric mucosa. This might explain why all known GAPPS-affected families carry promoter 1B point mutations but only rare FAP-affected families carry similar mutations, the colonic cells usually being protected by the expression of the 1A isoform. Gastric polyposis and cancer have been previously described in some FAP-affected individuals with large deletions around promoter 1B. Our finding that GAPPS is caused by point mutations in the same promoter suggests that families with mutations affecting the promoter 1B are at risk of gastric adenocarcinoma, regardless of whether or not colorectal polyps are present.

  4. Point Mutations in Exon 1B of APC Reveal Gastric Adenocarcinoma and Proximal Polyposis of the Stomach as a Familial Adenomatous Polyposis Variant.

    PubMed

    Li, Jun; Woods, Susan L; Healey, Sue; Beesley, Jonathan; Chen, Xiaoqing; Lee, Jason S; Sivakumaran, Haran; Wayte, Nicci; Nones, Katia; Waterfall, Joshua J; Pearson, John; Patch, Anne-Marie; Senz, Janine; Ferreira, Manuel A; Kaurah, Pardeep; Mackenzie, Robertson; Heravi-Moussavi, Alireza; Hansford, Samantha; Lannagan, Tamsin R M; Spurdle, Amanda B; Simpson, Peter T; da Silva, Leonard; Lakhani, Sunil R; Clouston, Andrew D; Bettington, Mark; Grimpen, Florian; Busuttil, Rita A; Di Costanzo, Natasha; Boussioutas, Alex; Jeanjean, Marie; Chong, George; Fabre, Aurélie; Olschwang, Sylviane; Faulkner, Geoffrey J; Bellos, Evangelos; Coin, Lachlan; Rioux, Kevin; Bathe, Oliver F; Wen, Xiaogang; Martin, Hilary C; Neklason, Deborah W; Davis, Sean R; Walker, Robert L; Calzone, Kathleen A; Avital, Itzhak; Heller, Theo; Koh, Christopher; Pineda, Marbin; Rudloff, Udo; Quezado, Martha; Pichurin, Pavel N; Hulick, Peter J; Weissman, Scott M; Newlin, Anna; Rubinstein, Wendy S; Sampson, Jone E; Hamman, Kelly; Goldgar, David; Poplawski, Nicola; Phillips, Kerry; Schofield, Lyn; Armstrong, Jacqueline; Kiraly-Borri, Cathy; Suthers, Graeme K; Huntsman, David G; Foulkes, William D; Carneiro, Fatima; Lindor, Noralane M; Edwards, Stacey L; French, Juliet D; Waddell, Nicola; Meltzer, Paul S; Worthley, Daniel L; Schrader, Kasmintan A; Chenevix-Trench, Georgia

    2016-05-01

    Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome with a significant risk of gastric, but not colorectal, adenocarcinoma. We mapped the gene to 5q22 and found loss of the wild-type allele on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing failed to find causal mutations but, through Sanger sequencing, we identified point mutations in APC promoter 1B that co-segregated with disease in all six families. The mutations reduced binding of the YY1 transcription factor and impaired activity of the APC promoter 1B in luciferase assays. Analysis of blood and saliva from carriers showed allelic imbalance of APC, suggesting that these mutations lead to decreased allele-specific expression in vivo. Similar mutations in APC promoter 1B occur in rare families with familial adenomatous polyposis (FAP). Promoter 1A is methylated in GAPPS and sporadic FGPs and in normal stomach, which suggests that 1B transcripts are more important than 1A in gastric mucosa. This might explain why all known GAPPS-affected families carry promoter 1B point mutations but only rare FAP-affected families carry similar mutations, the colonic cells usually being protected by the expression of the 1A isoform. Gastric polyposis and cancer have been previously described in some FAP-affected individuals with large deletions around promoter 1B. Our finding that GAPPS is caused by point mutations in the same promoter suggests that families with mutations affecting the promoter 1B are at risk of gastric adenocarcinoma, regardless of whether or not colorectal polyps are present. PMID:27087319

  5. Somatic mutation of EZH2 (Y641) in follicular and diffuse large B-cell lymphomas of germinal center origin | Office of Cancer Genomics

    Cancer.gov

    Morin et al. describe recurrent somatic mutations in EZH2, a polycomb group oncogene. The mutation, found in the SET domain of this gene encoding a histone methyltransferase, is found only in a subset of lymphoma samples. Specifically, EZH2 mutations are found in about 12% of follicular lymphomas (FL) and almost 23% of diffuse large B-cell lymphomas (DLBCL) of germinal center origin. This paper goes on to demonstrate that altered EZH2 proteins, corresponding to the most frequent mutations found in human lymphomas, have reduced activity using in vitro histone methylation assays.

  6. Characterization of cathepsin B gene from orange-spotted grouper, Epinephelus coioides involved in SGIV infection.

    PubMed

    Wei, Shina; Huang, Youhua; Huang, Xiaohong; Cai, Jia; Yan, Yang; Guo, Chuanyu; Qin, Qiwei

    2014-01-01

    The lysosomal cysteine protease cathepsin B of papain family is a key regulator and signaling molecule that involves in various biological processes, such as the regulation of apoptosis and activation of virus. In the present study, cathepsin B gene (Ec-CB) was cloned and characterized from orange-spotted grouper, Epinephelus coioides. The full-length Ec-CB cDNA was composed of 1918 bp and encoded a polypeptide of 330 amino acids with higher identities to cathepsin B of teleosts and mammalians. Ec-CB possessed typical cathepsin B structural features including an N-terminal signal peptide, the propeptide region and the cysteine protease domain which were conserved in other cathepsin B sequences. Phylogenetic analysis revealed that Ec-CB was most closely related to Lutjanus argentimaculatus. RT-PCR analysis showed that Ec-CB transcript was expressed in all the examined tissues which abundant in spleen, kidney and gill. After challenged with Singapore grouper iridovirus (SGIV) stimulation, the mRNA expression of cathepsin B in E. coioides was up-regulated at 24 h post-infection. Subcellular localization analysis revealed that Ec-CB was distributed predominantly in the cytoplasm. When the fish cells (GS or FHM) were treated with the cathepsin B specific inhibitor CA-074Me, the occurrence of CPE induced by SGIV was delayed, and the viral gene transcription was significantly inhibited. Additionally, SGIV-induced typical apoptosis was also inhibited by CA-074Me in FHM cells. Taken together, our results demonstrated that the Ec-CB might play a functional role in SGIV infection.

  7. Involvement of KRAS G12A mutation in the IL-2-independent growth of a human T-LGL leukemia cell line, PLT-2.

    PubMed

    Mizutani, Naoki; Ito, Hiromi; Hagiwara, Kazumi; Kobayashi, Misa; Hoshikawa, Asuka; Nishida, Yayoi; Takagi, Akira; Kojima, Tetsuhito; Suzuki, Motoshi; Osawa, Yosuke; Ohnishi, Kazunori; Daibata, Masanori; Murate, Takashi

    2012-08-01

    Cytokine-dependent cell lines have been used to analyze the cytokine-induced cellular signaling and the mechanism of oncogenesis. In the current study, we analyzed MOTN-1 and PLT-2 cell lines established from different stages of a T-cell large granular lymphocyte leukemia patient (Daibata et al. 2004). MOTN-1 is IL-2-dependent derived from the chronic phase, whereas IL-2-independent PLT-2 is from the aggressive and terminal stage. They shared considerable chromosome abnormalities and the pattern of T-cell receptor rearrangement, presuming that the cytokine independence of PLT-2 was due to the additive genetic abnormality. Besides IL-2, IL-15 supported MOTN-1 cell growth, because these receptors share beta- and gamma-subunits. IL-2 activated ERK, AKT and STAT pathway of MOTN-1. STAT3 pathway of PLT-2 was also activated by IL-2, suggesting intact IL-2 induces signal transduction of PLT-2. However, ERK1/2 but not AKT, was continuously activated in PLT-2, consistent with the increased Ras-activity of PLT-2. Sequence analysis revealed KRAS G12A mutation but not NRAS and HRAS mutation of PLT-2 but not MOTN-1. Another signaling molecule affecting Ras-signaling pathway, SHP2, which has been frequently mutated in juvenile myelomonocytic leukemia (JMML), did not show mutation. Moreover, MEK inhibitor, PD98059, as well as farnesylation inhibitor inhibited PLT-2 cell growth. Using NIH3T3 and MOTN-1, ERK activation, increased cell proliferation and survival by KRAS G12A were shown, suggesting the important role of KRAS G12A in IL-2-independent growth of PLT-2. Taken together, KRAS G12A is important for IL-2-independent growth of PLT-2 cells and suggests the possibility of involvement of KRAS mutation with disease progression.

  8. Spectrum of mutations in the ATP binding domain of ATP7B gene of Wilson Disease in a regional Indian cohort.

    PubMed

    Guggilla, Sreenivasa Rao; Senagari, Jalandhar Reddy; Rao, P N; Madireddi, Sujatha

    2015-09-10

    Wilson disease is an autosomal recessive disorder of abnormal copper accumulation in the liver, brain, kidney and cornea, resulting in hepatic and neurological abnormalities, which results from impaired ATP7B protein function due to mutations in candidate ATP7B gene, till date more than 500 disease causing mutations were found. In India most disease causing mutations were identified in ATP-BD. DNA samples of the 101 WD cases and 100 control population were analyzed for mutations. 11 mutations were identified in 57 chromosomes. Three novel mutations, c.3310T>A (p.Cys1104Ser), c.3337C>A (p.Leu1113Met) on exon 15 and c.3877G>A (p.Glu1293Lys) on exon 18 were identified for the first time in the ATP7B gene. Two mutations, c.3121C>T (p.Arg1041Trp) and c.3128T>C (p.Leu1043Pro) on exon 14 were discovered for the first time in Indian Wilson disease patients. Four previously reported mutations c.3008C>T, c.3029A>G on exon 13, c.3182G>A on exon 14 and c.3809A>G on exon 18 from South India were also found in this study. Our research has enriched the spectrum of mutations of the ATP7B gene in the south Indian population. The detection of new mutations in the ATP7B gene can aid in genetic counseling and clinical or/prenatal diagnosis.

  9. NK and B cell deficiency in a MPS type II family with novel mutation in the IDS gene.

    PubMed

    Torres, Leuridan Cavalcante; Soares, Diogo Cordeiro de Queiroz; Kulikowski, Leslie Domenici; Franco, Jose Francisco; Kim, Chong Ae

    2014-10-01

    The mucopolysaccharidoses (MPSs) are a group of rare, inherited lysosomal storage disorders that are clinically characterized by abnormalities in multiple organ systems and reduced life expectancy. Whereas the lysosome is essential to the functioning of the immune system, some authors suggest that the MPS patients have abnormalities in the immune system similar to the patients with primary immunodeficiency. In this study, we evaluated 8 male MPS type II patients of the same family with novel mutation in the IDS gene. We found in this MPS family a quantitative deficiency of NK and B cells with normal values of IgG, IgM and IgA serum antibodies and normal response to polysaccharide antigens. Interestingly, abnormalities found in these patients were not observed in other MPS patients, suggesting that the type of mutation found in the IDS gene can be implicated in the immunodeficiency.

  10. J.B.S. Haldane as I knew him, with a brief account of his contribution to mutation research.

    PubMed

    Dronamraju, Krishna

    2015-01-01

    J.B.S. Haldane made important contributions to several sciences although he did not possess an academic qualification in any branch of science. A classical scholar, who grew up in a scientific household in Oxford, Haldane was taught the principles of scientific experimentation from his childhood by his father, the distinguished physiologist John Scott Haldane. Collaborating with his father, Haldane contributed to respiratory physiology but soon switched to genetics, especially population genetics. He investigated mathematically the dynamics of selection - mutation balance in populations - concluding that it is mutation that determines the course of evolution. Besides genetics, Haldane was noted for his important contributions to enzyme kinetics, origin of life, biometry, cybernetics, cosmology and deep sea diving, among others. PMID:26281764

  11. Increased susceptibility to beta-lactam antibiotics and decreased porin content caused by envB mutations of Salmonella typhimurium.

    PubMed Central

    Oppezzo, O J; Avanzati, B; Antón, D N

    1991-01-01

    Isogenic derivatives carrying envB6, envB9, or envB+ alleles were obtained from a strain of Salmonella typhimurium that was partially resistant to mecillinam, a beta-lactam antibiotic specific for penicillin-binding protein 2 (PBP 2). Testing of the isogenic strains with several antibacterial agents demonstrated that envB mutations either increased resistance (mecillinam) or did not affect the response (imipemen) to beta-lactams that act primarily on PBP 2, while susceptibilities to beta-lactams that act on PBP 1B, PBP 3, or both were increased. Furthermore, the susceptibilities of envB strains to hydrophobic compounds such as rifampin, novobiocin, or chloramphenicol were not modified, even though their susceptibilities to deoxycholate and crystal violet were enhanced. Outer cell membranes of envB mutants presented a 50% reduction in protein content compared with that of the isogenic envB+ strains, and OmpF and OmpD porins were particularly affected by the reduction. No alteration in the amount or pattern of periplasmic proteins was noticed, and lipopolysaccharides from envB mutants appeared to be normal by sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis. By using derivatives that produced a plasmid-encoded beta-lactamase, it was demonstrated that envB cells are slightly less permeable to cephalothin than envB+ bacteria are. It is concluded that the high susceptibility of envB mutants to beta-lactams is due to the increased effectiveness of the antibiotics on PBP 1B, PBP 3, or both. Images PMID:1656857

  12. The mitochondrial and death receptor pathways involved in the thymocytes apoptosis induced by aflatoxin B1

    PubMed Central

    Chi, Xiaofeng; Li, Xiaochong; Jiang, Min; Fang, Jing; Cui, Hengmin; Lai, Weimin; Zhou, Yi; Zhou, Shan

    2016-01-01

    Aflatoxin B1 (AFB1) is a potent immunosuppressive agent in endotherms, which can be related to the up-regulated apoptosis of immune organs. In this study, we investigated the roles of the mitochondrial, death receptor, and endoplasmic reticulum pathways in Aflatoxin B1 induced thymocytes apoptosis. Chickens were fed an aflatoxin B1 containing diet (0.6 mg/kg AFB1) for 3 weeks. Our results showed that (1) AFB1 diet induced the decrease of T-cell subsets, morphological changes, and excessive apoptosis of thymus. (2) The excessive apoptosis involved the mitochondrial pathway (up-regulation of Bax, Bak, cytC and down-regulation of Bcl-2 and Bcl-xL) and death receptor pathway (up-regulation of FasL, Fas and FADD). (3) Oxidative stress, an apoptosis inducer, was confirmed in the thymus. In conclusion, this is the first study to demonstrate that mitochondrial and death receptor pathways involved in AFB1 induced thymocytes apoptosis in broilers. PMID:26933817

  13. Whole-Genome Comparison Uncovers Genomic Mutations between Group B Streptococci Sampled from Infected Newborns and Their Mothers

    PubMed Central

    Almeida, Alexandre; Villain, Adrien; Joubrel, Caroline; Touak, Gérald; Sauvage, Elisabeth; Rosinski-Chupin, Isabelle

    2015-01-01

    ABSTRACT Streptococcus agalactiae (group B Streptococcus or GBS), a commensal of the human gut and genitourinary tract, is a leading cause of neonatal infections, in which vertical transmission from mother to child remains the most frequent route of contamination. Here, we investigated whether the progression of GBS from carriage to disease is associated with genomic adaptation. Whole-genome comparison of 47 GBS samples from 19 mother-child pairs uncovered 21 single nucleotide polymorphisms (SNPs) and seven insertions/deletions. Of the SNPs detected, 16 appear to have been fixed in the population sampled whereas five mutations were found to be polymorphic. In the infant strains, 14 mutations were detected, including two independently fixed variants affecting the covRS locus, which is known to encode a major regulatory system of virulence. A one-nucleotide insertion was also identified in the promoter region of the highly immunogenic surface protein Rib gene. Gene expression analysis after incubation in human blood showed that these mutations influenced the expression of virulence-associated genes. Additional identification of three mutated strains in the mothers' milk raised the possibility of the newborns also being a source of contamination for their mothers. Overall, our work showed that GBS strains in carriage and disease scenarios might undergo adaptive changes following colonization. The types and locations of the mutations found, together with the experimental results showing their phenotypic impact, suggest that those in a context of infection were positively selected during the transition of GBS from commensal to pathogen, contributing to an increased capacity to cause disease. IMPORTANCE Group B Streptococcus (GBS) is a major pathogen responsible for neonatal infections. Considering that its colonization of healthy adults is mostly asymptomatic, the mechanisms behind its switch from a commensal to an invasive state are largely unknown. In this work, we

  14. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    NASA Astrophysics Data System (ADS)

    Mahadtanapuk, S.; Teraarusiri, W.; Nanakorn, W.; Yu, L. D.; Thongkumkoon, P.; Anuntalabhochai, S.

    2014-05-01

    This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection.

  15. Endoscopic biopsy of a B-cell lymphoma involving the entire ventricular system: A case report

    PubMed Central

    QIN, JIA-ZHEN; WU, YUE-KUI; YANG, ZHI-JUN; LV, JUN; DANG, YUAN-YUAN; ZHANG, HONG-TIAN; DAI, YI-WU

    2016-01-01

    A 62-year-old male suffering from vomiting and mild preceding nausea for 15 days was examined in the present case report. Magnetic resonance imaging revealed a homogeneously enhancing cluster-like lesion involving the lateral, third and fourth ventricles. An endoscopic biopsy was performed, and histopathological examination led to the diagnosis of a high-grade diffuse large B-cell lymphoma. To the best of our knowledge, the present study reports the first case of a primary lymphoma involving the entire ventricular system. Therefore, primary lymphomas should be considered in the list of ventricular tumors. An endoscopic biopsy requires minimal invasion to obtain an adequate tissue sample, and frequently leads to the correct diagnosis and subsequent treatment protocols. PMID:26889262

  16. Intrinsic Subtypes, PIK3CA Mutation, and the Degree of Benefit From Adjuvant Trastuzumab in the NSABP B-31 Trial

    PubMed Central

    Pogue-Geile, Katherine L.; Song, Nan; Jeong, Jong-Hyeon; Gavin, Patrick G.; Kim, Seong-Rim; Blackmon, Nicole L.; Finnigan, Melanie; Rastogi, Priya; Fehrenbacher, Louis; Mamounas, Eleftherios P.; Swain, Sandra M.; Wickerham, D. Lawrence; Geyer, Charles E.; Costantino, Joseph P.; Wolmark, Norman; Paik, Soonmyung

    2015-01-01

    Purpose Considerable molecular heterogeneity exists among human epidermal growth factor receptor 2 (HER2) –positive breast cancer regarding gene expression and mutation profiling. Evidence from preclinical, clinical neoadjuvant, and metastatic clinical trials suggested that PIK3CA mutational status and PAM50 intrinsic subtype of a tumor were markers of response to anti-HER2 therapies. We evaluated the predictive value of these two biomarkers in the adjuvant setting using archived tumor blocks from National Surgical Adjuvant Breast and Bowel Project (NSABP) trial B-31. Patients and Methods Expression data for 49 genes using the nCounter platform were used to generate PAM50 intrinsic subtypes for 1,578 archived tumor blocks from patients in the B-31 trial. Six PIK3CA hotspot mutations were examined by mass spectrometry of the primer extension products in a randomly selected subset (n = 671). We examined the heterogeneity of trastuzumab treatment effect across different subsets defined by each marker using Cox regression and disease-free survival as the end point. Results Seven hundred forty-one (47.0%) of 1,578 tumors were classified as HER2-enriched (HER2E) subtype, and 166 (24.7%) of 671 tumors had PIK3CA mutations. Hazard ratios (HRs) for trastuzumab in HER2E and other subtypes were 0.44 (95% CI, 0.34 to 0.58; P < .001) and 0.47 (95% CI, 0.35 to 0.62; P < .001), respectively (interaction P = .67). HRs for trastuzumab in PIK3CA wild-type and mutated tumors were 0.51 (95% CI, 0.37 to 0.71; P < .001) and 0.44 (95% CI, 0.24 to 0.82; P = .009), respectively (interaction P = .64). Conclusion Unlike results seen in the metastatic and neoadjuvant clinical trials, PIK3CA and PAM50 intrinsic subtypes were not predictive biomarkers for adjuvant trastuzumab in NSABP B-31. These data suggest that results from the metastatic and neoadjuvant setting may not be always applicable to the adjuvant setting. PMID:25559813

  17. Murine viable motheaten mutation reveals a gene critical to the development of both B and T lymphocytes

    SciTech Connect

    Sidman, C.L.; Marshall, J.D.; Allen, R.D. )

    1989-08-01

    In lethally irradiated normal mice reconstituted with both normal and autoimmune mutant viable moth-eaten (me{sup v}) bone marrow, the me{sup v}-derived B and T cells display aberrant behavior, while those derived from the normal bone marrow develop and function normally. The observed developmental abnormalities of me{sup v} B and T lymphocytes are therefore intrinsic to these cell types, rather than being determined by defective influences from the cells' environment. These data bring into question the in vivo significance of reported intracellular regulatory defects in motheaten (me) and me{sup v} mice and suggest that these mutations affect a gene whose product acts cell autonomously in the development of several hematopoietic cell lineages including B and T lymphocytes.

  18. Mutations in Arabidopsis thaliana genes involved in the tryptophan biosynthesis pathway affect root waving on tilted agar surfaces

    NASA Technical Reports Server (NTRS)

    Rutherford, R.; Gallois, P.; Masson, P. H.

    1998-01-01

    Arabidopsis thaliana roots grow in a wavy pattern upon a slanted surface. A novel mutation in the anthranilate synthase alpha 1 (ASA1) gene, named trp5-2wvc1, and mutations in the tryptophan synthase alpha and beta 1 genes (trp3-1 and trp2-1, respectively) confer a compressed root wave phenotype on tilted agar surfaces. When trp5-2wvc1 seedlings are grown on media supplemented with anthranilate metabolites, their roots wave like wild type. Genetic and pharmacological experiments argue that the compressed root wave phenotypes of trp5-2wvc1, trp2-1 and trp3-1 seedlings are not due to reduced IAA biosynthetic potential, but rather to a deficiency in L-tryptophan (L-Trp), or in a L-Trp derivative. Although the roots of 7-day-old seedlings possess higher concentrations of free L-Trp than the shoot as a whole, trp5-2wvc1 mutants show no detectable alteration in L-Trp levels in either tissue type, suggesting that a very localized shortage of L-Trp, or of a L-Trp-derived compound, is responsible for the observed phenotype.

  19. Spliceosome mutations exhibit specific associations with epigenetic modifiers and proto-oncogenes mutated in myelodysplastic syndrome.

    PubMed

    Mian, Syed A; Smith, Alexander E; Kulasekararaj, Austin G; Kizilors, Aytug; Mohamedali, Azim M; Lea, Nicholas C; Mitsopoulos, Konstantinos; Ford, Kevin; Nasser, Erick; Seidl, Thomas; Mufti, Ghulam J

    2013-07-01

    The recent identification of acquired mutations in key components of the spliceosome machinery strongly implicates abnormalities of mRNA splicing in the pathogenesis of myelodysplastic syndromes. However, questions remain as to how these aberrations functionally combine with the growing list of mutations in genes involved in epigenetic modification and cell signaling/transcription regulation identified in these diseases. In this study, amplicon sequencing was used to perform a mutation screen in 154 myelodysplastic syndrome patients using a 22-gene panel, including commonly mutated spliceosome components (SF3B1, SRSF2, U2AF1, ZRSR2), and a further 18 genes known to be mutated in myeloid cancers. Sequencing of the 22-gene panel revealed that 76% (n=117) of the patients had mutations in at least one of the genes, with 38% (n=59) having splicing gene mutations and 49% (n=75) patients harboring more than one gene mutation. Interestingly, single and specific epigenetic modifier mutations tended to coexist with SF3B1 and SRSF2 mutations (P<0.03). Furthermore, mutations in SF3B1 and SRSF2 were mutually exclusive to TP53 mutations both at diagnosis and at the time of disease transformation. Moreover, mutations in FLT3, NRAS, RUNX1, CCBL and C-KIT were more likely to co-occur with splicing factor mutations generally (P<0.02), and SRSF2 mutants in particular (P<0.003) and were significantly associated with disease transformation (P<0.02). SF3B1 and TP53 mutations had varying impacts on overall survival with hazard ratios of 0.2 (P<0.03, 95% CI, 0.1-0.8) and 2.1 (P<0.04, 95% CI, 1.1-4.4), respectively. Moreover, patients with splicing factor mutations alone had a better overall survival than those with epigenetic modifier mutations, or cell signaling/transcription regulator mutations with and without coexisting mutations of splicing factor genes, with worsening prognosis (P<0.001). These findings suggest that splicing factor mutations are maintained throughout disease

  20. Molecular characterization and mutational analysis of the human B17 subunit of the mitochondrial respiratory chain complex I.

    PubMed

    Smeitink, J; Loeffen, J; Smeets, R; Triepels, R; Ruitenbeek, W; Trijbels, F; van den Heuvel, L

    1998-08-01

    Bovine NADH:ubiquinone oxidoreductase (complex 1) of the mitochondrial respiratory chain consists of about 36 nuclear-encoded subunits. We review the current knowledge of the 15 human complex I subunits cloned so far, and report the 598-bp cDNA sequence, the chromosomal localization and the tissue expression of an additional subunit, the B17 subunit. The cDNA open reading frame of B17 comprises 387 bp and encodes a protein of 128 amino acids (calculated Mr 15.5 kDa). There is 82.7% and 78.1% homology, respectively, at the cDNA and amino acid level with the bovine counterpart. The gene of the B17 subunit has been mapped to chromosome 2. Multiple-tissue dot-blots showed ubiquitous expression of the mRNA with relatively higher expression in tissues known for their high energy demand. Of these, kidney showed the highest expression. Mutational analysis of the subunit revealed no mutations or polymorphisms in 20 patients with isolated enzymatic complex I deficiency in cultured skin fibroblasts. PMID:9760212

  1. Molecular characterization and mutational analysis of the human B17 subunit of the mitochondrial respiratory chain complex I.

    PubMed

    Smeitink, J; Loeffen, J; Smeets, R; Triepels, R; Ruitenbeek, W; Trijbels, F; van den Heuvel, L

    1998-08-01

    Bovine NADH:ubiquinone oxidoreductase (complex 1) of the mitochondrial respiratory chain consists of about 36 nuclear-encoded subunits. We review the current knowledge of the 15 human complex I subunits cloned so far, and report the 598-bp cDNA sequence, the chromosomal localization and the tissue expression of an additional subunit, the B17 subunit. The cDNA open reading frame of B17 comprises 387 bp and encodes a protein of 128 amino acids (calculated Mr 15.5 kDa). There is 82.7% and 78.1% homology, respectively, at the cDNA and amino acid level with the bovine counterpart. The gene of the B17 subunit has been mapped to chromosome 2. Multiple-tissue dot-blots showed ubiquitous expression of the mRNA with relatively higher expression in tissues known for their high energy demand. Of these, kidney showed the highest expression. Mutational analysis of the subunit revealed no mutations or polymorphisms in 20 patients with isolated enzymatic complex I deficiency in cultured skin fibroblasts.

  2. The clinical significance of aldosterone synthase deficiency: report of a novel mutation in the CYP11B2 gene

    PubMed Central

    2014-01-01

    Background Aldosterone synthase (CYP11B2) deficiency is a rare autosomal recessive disorder, usually presenting with severe salt-wasting in infancy or stress-induced hyperkalaemia and postural hypotension in adulthood. Neonatal screening for congenital adrenal hyperplasia, another cause of salt wasting, using 17-hydroxyprogesterone measurement would fail to detect aldosterone synthase deficiency, a diagnosis which may be missed until the patient presents with salt-wasting crisis. Due to this potential life-threatening risk, comprehensive hormonal investigation followed by genetic confirmation for suspected patients would facilitate clinical management of the patient and assessment of the genetic implication in their offspring. Case presentation We describe a 33-year old Chinese man who presented in infancy with life-threatening hyponatraemia and failure to thrive, but remained asymptomatic on fludrocortisone since. Chromosomal analysis confirmed a normal male karyotype of 46, XY. Plasma steroid profile showed high plasma renin activity, low aldosterone level, and elevated 18-hydroxycorticosterone, compatible with type 2 aldosterone synthase deficiency. The patient was heterozygous for a novel CYP11B2 mutation: c.977C > A (p.Thr326Lys) in exon 3. He also carried a heterozygous mutation c.523_525delAAG (p.Lys175del) in exon 6, a known pathogenic mutation causing aldosterone synthase deficiency. Sequencing of CYP11B2 in his parents demonstrated that the mother was heterozygous for c.977C > A, and the father was heterozygous for c.523_525delAAG. Conclusion Although a rare cause of hyperreninaemic hypoaldosteronism, aldosterone synthase deficiency should be suspected and the diagnosis sought in patients who present with life-threatening salt-wasting in infancy, as it has a good long-term prognosis when adequate fludrocortisone replacement is instituted. To our knowledge, this is the first Chinese patient in which the molecular basis of aldosterone synthase

  3. Selection of nitrogen-fixing deficient Burkholderia vietnamiensis strains by cystic fibrosis patients: involvement of nif gene deletions and auxotrophic mutations.

    PubMed

    Menard, Aymeric; Monnez, Claire; Estrada de Los Santos, Paulina; Segonds, Christine; Caballero-Mellado, Jesus; Lipuma, John J; Chabanon, Gerard; Cournoyer, Benoit

    2007-05-01

    Burkholderia vietnamiensis is the third most prevalent species of the Burkholderia cepacia complex (Bcc) found in cystic fibrosis (CF) patients. Its ability at fixing nitrogen makes it one of the main Bcc species showing strong filiations with environmental reservoirs. In this study, 83% (29 over 35) of the B. vietnamiensis CF isolates and 100% of the environmental ones (over 29) were found expressing the dinitrogenase complex (encoded by the nif cluster) which is essential in N(2) fixation. Among the deficient strains, two were found growing with ammonium chloride suggesting that they were defective in N(2) fixation, and four with amino acids supplements suggesting that they were harbouring auxotrophic mutations. To get insights about the genetic events that led to the emergence of the N(2)-fixing defective strains, a genetic analysis of B. vietnamiensis nitrogen-fixing property was undertaken. A 40-kb-long nif cluster and nif regulatory genes were identified within the B. vietnamiensis strain G4 genome sequence, and analysed. Transposon mutagenesis and nifH genetic marker exchanges showed the nif cluster and several other genes like gltB (encoding a subunit of the glutamate synthase) to play a key role in B. vietnamiensis ability at growing in nitrogen-free media. nif cluster DNA probings of restricted genomic DNA blots showed a full deletion of the nif cluster for one of the N(2)-fixing defective strain while the other one showed a genetic organization similar to the one of the G4 strain. For 17% of B. vietnamiensis clinical strains, CF lungs appeared to have favoured the selection of mutations or deletions leading to N(2)-fixing deficiencies.

  4. Mutational Analysis of Bacillus megaterium QM B1551 Cortex-Lytic Enzymes ▿ †

    PubMed Central

    Christie, Graham; Üstok, Fatma Isık; Lu, Qiaozhi; Packman, Len C.; Lowe, Christopher R.

    2010-01-01

    Molecular-genetic and muropeptide analysis techniques have been applied to examine the function in vivo of the Bacillus megaterium QM B1551 SleB and SleL proteins. In common with Bacillus subtilis and Bacillus anthracis, the presence of anhydromuropeptides in B. megaterium germination exudates, which is indicative of lytic transglycosylase activity, is associated with an intact sleB structural gene. B. megaterium sleB cwlJ double mutant strains complemented with engineered SleB variants in which the predicted N- or C-terminal domain has been deleted (SleB-ΔN or SleB-ΔC) efficiently initiate and hydrolyze the cortex, generating anhydromuropeptides in the process. Additionally, sleB cwlJ strains complemented with SleB-ΔN or SleB-ΔC, in which glutamate and aspartate residues have individually been changed to alanine, all retain the ability to hydrolyze the cortex to various degrees during germination, with concomitant release of anhydromuropeptides to the surrounding medium. These data indicate that while the presence of either the N- or C-terminal domain of B. megaterium SleB is sufficient for initiation of cortex hydrolysis and the generation of anhydromuropeptides, the perceived lytic transglycosylase activity may be derived from an enzyme(s), perhaps exclusively or in addition to SleB, which has yet to be identified. B. megaterium SleL appears to be associated with the epimerase-type activity observed previously in B. subtilis, differing from the glucosaminidase function that is apparent in B. cereus/B. anthracis. PMID:20729357

  5. High frequency of vitamin B12 deficiency in asymptomatic individuals homozygous to MTHFR C677T mutation is associated with endothelial dysfunction and homocysteinemia.

    PubMed

    Zittan, E; Preis, M; Asmir, I; Cassel, A; Lindenfeld, N; Alroy, S; Halon, D A; Lewis, B S; Shiran, A; Schliamser, J E; Flugelman, M Y

    2007-07-01

    The aim of this study was to examine the association of homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T mutation and vitamin B12 deficiency in 360 asymptomatic individuals and to investigate forearm endothelial function in C677T homozygotes. MTHFR C677T mutation and levels of vitamin B12, folic acid, and homocysteine were measured in study participants. Frequency of homozygosity for the C677T mutation was 67/360 (18.6%). Homocysteine levels were elevated in homozygous compared with heterozygous subjects or those without the mutation (20.6 +/- 18.8 vs. 9.4 +/- 3.2 mumol/l; P < 0.0001). The number of subjects with vitamin B12 deficiency (<150 pmol/l) was significantly higher among the homozygote than the heterozygote subjects or subjects without mutation [20/67 (29.8%) vs. 27/293 (9.2%); P < 0.0001]. Homozygote subjects had 4.2 times higher probability of having B12 deficiency (95% confidence interval = 2.1-8.3). Forearm endothelial function was assessed in 33 homozygote and 12 control subjects. Abnormal endothelial function was observed in homozygous subjects and was worse in homozygote subjects with vitamin B12 deficiency. Endothelial function was normalized after B12 and folic acid treatment. We found that homozygosity for the C677T mutation is strongly associated with B12 deficiency. Coexistence of homozygosity for the C677T mutation and B12 deficiency is associated with endothelial dysfunction and can be corrected with vitamin B12 and folic acid treatment. PMID:17449548

  6. PMCA4 (ATP2B4) mutation in familial spastic paraplegia causes delay in intracellular calcium extrusion

    PubMed Central

    Ho, Philip Wing-Lok; Pang, Shirley Yin-Yu; Li, Miaoxin; Tse, Zero Ho-Man; Kung, Michelle Hiu-Wai; Sham, Pak-Chung; Ho, Shu-Leong

    2015-01-01

    Background Familial spastic paraplegia (FSP) is a heterogeneous group of disorders characterized primarily by progressive lower limb spasticity and weakness. More than 50 disease loci have been described with different modes of inheritance. Recently, we described a novel missense mutation (c.803G>A, p.R268Q) in the plasma membrane calcium ATPase (PMCA4, or ATP2B4) gene in a Chinese family with autosomal dominant FSP. Further to this finding, here we describe the functional effect of this mutation. Methods As PMCA4 removes cytosolic calcium, we measured transient changes and the time-dependent decay of cytosolic calcium level as visualized by using fura-2 fluorescent dye with confocal microscopy in human SH-SY5Y neuroblastoma cells overexpressing either wild-type or R268Q mutant PMCA4. Results Overexpressing both wild-type and R268Q PMCA4 significantly reduced maximum calcium surge after KCl-induced depolarization as compared with vector control cells. However, cells overexpressing mutant PMCA4 protein demonstrated significantly higher level of calcium surge when compared with wild-type. Furthermore, the steady-state cytosolic calcium concentration in these mutant cells remained markedly higher than the wild-type after SERCA inhibition by thapsigargin. Conclusion Our result showed that p.R268Q mutation in PMCA4 resulted in functional changes in calcium homeostasis in human neuronal cells. This suggests that calcium dysregulation may be associated with the pathogenesis of FSP. PMID:25798335

  7. An Effective Molecular Target Site in Hepatitis B Virus S Gene for Cas9 Cleavage and Mutational Inactivation.

    PubMed

    Li, Hao; Sheng, Chunyu; Liu, Hongbo; Liu, Guangze; Du, Xinying; Du, Juan; Zhan, Linsheng; Li, Peng; Yang, Chaojie; Qi, Lihua; Wang, Jian; Yang, Xiaoxia; Jia, Leili; Xie, Jing; Wang, Ligui; Hao, Rongzhang; Xu, Dongping; Tong, Yigang; Zhou, Yusen; Zhou, Jianjun; Sun, Yansong; Li, Qiao; Qiu, Shaofu; Song, Hongbin

    2016-01-01

    Chronic hepatitis B infection remains incurable because HBV cccDNA can persist indefinitely in patients recovering from acute HBV infection. Given the incidence of HBV infection and the shortcomings of current therapeutic options, a novel antiviral strategy is urgently needed. To inactivate HBV replication and destroy the HBV genome, we employed genome editing tool CRISPR/Cas9. Specifically, we found a CRISPR/Cas9 system (gRNA-S4) that effectively targeted the HBsAg region and could suppress efficiently viral replication with minimal off-target effects and impact on cell viability. The mutation mediated by CRISPR/Cas9 in HBV DNA both in a stable HBV-producing cell line and in HBV transgenic mice had been confirmed and evaluated using deep sequencing. In addition, we demonstrated the reduction of HBV replication was caused by the mutation of S4 site through three S4 region-mutated monoclonal cells. Besides, the gRNA-S4 system could also reduce serum surface-antigen levels by 99.91 ± 0.05% and lowered serum HBV DNA level below the negative threshold in the HBV hydrodynamics mouse model. Together, these findings indicate that the S4 region may be an ideal target for the development of innovative therapies against HBV infection using CRISPR/Cas9. PMID:27570484

  8. An Effective Molecular Target Site in Hepatitis B Virus S Gene for Cas9 Cleavage and Mutational Inactivation

    PubMed Central

    Li, Hao; Sheng, Chunyu; Liu, Hongbo; Liu, Guangze; Du, Xinying; Du, Juan; Zhan, Linsheng; Li, Peng; Yang, Chaojie; Qi, Lihua; Wang, Jian; Yang, Xiaoxia; Jia, Leili; Xie, Jing; Wang, Ligui; Hao, Rongzhang; Xu, Dongping; Tong, Yigang; Zhou, Yusen; Zhou, Jianjun; Sun, Yansong; Li, Qiao; Qiu, Shaofu; Song, Hongbin

    2016-01-01

    Chronic hepatitis B infection remains incurable because HBV cccDNA can persist indefinitely in patients recovering from acute HBV infection. Given the incidence of HBV infection and the shortcomings of current therapeutic options, a novel antiviral strategy is urgently needed. To inactivate HBV replication and destroy the HBV genome, we employed genome editing tool CRISPR/Cas9. Specifically, we found a CRISPR/Cas9 system (gRNA-S4) that effectively targeted the HBsAg region and could suppress efficiently viral replication with minimal off-target effects and impact on cell viability. The mutation mediated by CRISPR/Cas9 in HBV DNA both in a stable HBV-producing cell line and in HBV transgenic mice had been confirmed and evaluated using deep sequencing. In addition, we demonstrated the reduction of HBV replication was caused by the mutation of S4 site through three S4 region-mutated monoclonal cells. Besides, the gRNA-S4 system could also reduce serum surface-antigen levels by 99.91 ± 0.05% and lowered serum HBV DNA level below the negative threshold in the HBV hydrodynamics mouse model. Together, these findings indicate that the S4 region may be an ideal target for the development of innovative therapies against HBV infection using CRISPR/Cas9. PMID:27570484

  9. Expression of molecules involved in B lymphocyte survival and differentiation by synovial fibroblasts.

    PubMed

    Edwards, J C; Leigh, R D; Cambridge, G

    1997-06-01

    The synovitis of rheumatoid arthritis (RA) is one of few pathological lesions in which B lymphocyte accumulation progresses to the extent of germinal centre formation. The present study was designed to assess the ability of synovial fibroblasts to express molecules implicated in B lymphocyte survival and differentiation, both in vivo, and in response to cytokines in vitro. Normal and diseased synovia were examined by indirect immunofluorescence. In all tissues synovial intimal fibroblasts showed co-expression of vascular cell adhesion molecule-1 (VCAM-1) and complement decay-accelerating factor (DAF) comparable to that of follicular dendritic cells (FDC), but not complement receptor 2 (CR2). In rheumatoid synovia, subintimal cells showed variable expression of VCAM-1 and DAF, with bright co-expression of VCAM-1, DAF and CR2 in lymphoid follicle centres. B lymphocytes, some of which were proliferating cell nuclear antigen-positive, were present in contact with subintimal cells expressing VCAM-1 with or without DAF or CR2. B lymphocytes were rarely present in the intimal layer, and, where present, showed fragmentation. In vitro, synovial fibroblasts exposed to tumour necrosis factor-alpha (TNF-alpha) in combination with interferon-gamma (IFN-gamma) showed enhanced expression of VCAM-1, in comparison with fibroblasts from skin and lung and, unlike skin and lung fibroblasts, also expressed DAF and CR2. These findings support the hypothesis that synovial targeting in RA involves an enhanced ability of synovial fibroblasts to support B lymphocyte survival. This appears to be dependent, not on the constitutive expression of VCAM-1 and DAF on intimal cells, but on the increased ability of subintimal cells to respond to proinflammatory cytokines, perhaps critically in the expression of VCAM-1.

  10. Expression of molecules involved in B lymphocyte survival and differentiation by synovial fibroblasts.

    PubMed

    Edwards, J C; Leigh, R D; Cambridge, G

    1997-06-01

    The synovitis of rheumatoid arthritis (RA) is one of few pathological lesions in which B lymphocyte accumulation progresses to the extent of germinal centre formation. The present study was designed to assess the ability of synovial fibroblasts to express molecules implicated in B lymphocyte survival and differentiation, both in vivo, and in response to cytokines in vitro. Normal and diseased synovia were examined by indirect immunofluorescence. In all tissues synovial intimal fibroblasts showed co-expression of vascular cell adhesion molecule-1 (VCAM-1) and complement decay-accelerating factor (DAF) comparable to that of follicular dendritic cells (FDC), but not complement receptor 2 (CR2). In rheumatoid synovia, subintimal cells showed variable expression of VCAM-1 and DAF, with bright co-expression of VCAM-1, DAF and CR2 in lymphoid follicle centres. B lymphocytes, some of which were proliferating cell nuclear antigen-positive, were present in contact with subintimal cells expressing VCAM-1 with or without DAF or CR2. B lymphocytes were rarely present in the intimal layer, and, where present, showed fragmentation. In vitro, synovial fibroblasts exposed to tumour necrosis factor-alpha (TNF-alpha) in combination with interferon-gamma (IFN-gamma) showed enhanced expression of VCAM-1, in comparison with fibroblasts from skin and lung and, unlike skin and lung fibroblasts, also expressed DAF and CR2. These findings support the hypothesis that synovial targeting in RA involves an enhanced ability of synovial fibroblasts to support B lymphocyte survival. This appears to be dependent, not on the constitutive expression of VCAM-1 and DAF on intimal cells, but on the increased ability of subintimal cells to respond to proinflammatory cytokines, perhaps critically in the expression of VCAM-1. PMID:9182884

  11. Mutation Analysis of H3F3A and H3F3B as a Diagnostic Tool for Giant Cell Tumor of Bone and Chondroblastoma.

    PubMed

    Cleven, Arjen H G; Höcker, Saskia; Briaire-de Bruijn, Inge; Szuhai, Karoly; Cleton-Jansen, Anne-Marie; Bovée, Judith V M G

    2015-11-01

    Specific H3F3A driver mutations and IDH2 mutations were recently described in giant cell tumor of bone (GCTB) and H3F3B driver mutations in chondroblastoma; these may be helpful as a diagnostic tool for giant cell-containing tumors of the bone. Using Sanger sequencing, we determined the frequency of H3F3A, H3F3B, IDH1, and IDH2 mutations in GCTBs (n=60), chondroblastomas (n=12), and other giant cell-containing tumors (n=24), including aneurysmal bone cyst, chondromyxoid fibroma, and telangiectatic osteosarcoma. To find an easy applicable marker for H3F3A mutation status, H3K36 trimethylation and ATRX expression were correlated with H3F3A mutations. In total, 69% of all GCTBs harbored an H3F3A (G34W/V) mutation compared with 0% of all other giant cell-containing tumors (P<0.001), whereas 70% of chondroblastomas showed an H3F3B (K36M) mutation compared with 0% of other giant cell-containing tumors (P<0.001). Diffuse H3K36 trimethylation positivity was more often seen in mutated H3F3A GCTBs compared with other giant cell-containing tumors (P=0.005). ATRX protein expression was not correlated with H3F3A mutation status. Hotspot mutations in IDH1 or IDH2 were absent. Our results show that H3F3A and H3F3B mutation analysis appears to be a highly specific, although less sensitive, diagnostic tool for the distinction of GCTB and chondroblastoma from other giant cell-containing tumors. Although H3K36 trimethylation and ATRX immunohistochemistry cannot be used as surrogate markers for H3F3A mutation status, mutations in H3F3A are associated with increased H3K36 trimethylation, suggesting that methylation at this residue may play a role in the etiology of the disease.

  12. Mutation Analysis of H3F3A and H3F3B as a Diagnostic Tool for Giant Cell Tumor of Bone and Chondroblastoma.

    PubMed

    Cleven, Arjen H G; Höcker, Saskia; Briaire-de Bruijn, Inge; Szuhai, Karoly; Cleton-Jansen, Anne-Marie; Bovée, Judith V M G

    2015-11-01

    Specific H3F3A driver mutations and IDH2 mutations were recently described in giant cell tumor of bone (GCTB) and H3F3B driver mutations in chondroblastoma; these may be helpful as a diagnostic tool for giant cell-containing tumors of the bone. Using Sanger sequencing, we determined the frequency of H3F3A, H3F3B, IDH1, and IDH2 mutations in GCTBs (n=60), chondroblastomas (n=12), and other giant cell-containing tumors (n=24), including aneurysmal bone cyst, chondromyxoid fibroma, and telangiectatic osteosarcoma. To find an easy applicable marker for H3F3A mutation status, H3K36 trimethylation and ATRX expression were correlated with H3F3A mutations. In total, 69% of all GCTBs harbored an H3F3A (G34W/V) mutation compared with 0% of all other giant cell-containing tumors (P<0.001), whereas 70% of chondroblastomas showed an H3F3B (K36M) mutation compared with 0% of other giant cell-containing tumors (P<0.001). Diffuse H3K36 trimethylation positivity was more often seen in mutated H3F3A GCTBs compared with other giant cell-containing tumors (P=0.005). ATRX protein expression was not correlated with H3F3A mutation status. Hotspot mutations in IDH1 or IDH2 were absent. Our results show that H3F3A and H3F3B mutation analysis appears to be a highly specific, although less sensitive, diagnostic tool for the distinction of GCTB and chondroblastoma from other giant cell-containing tumors. Although H3K36 trimethylation and ATRX immunohistochemistry cannot be used as surrogate markers for H3F3A mutation status, mutations in H3F3A are associated with increased H3K36 trimethylation, suggesting that methylation at this residue may play a role in the etiology of the disease. PMID:26457357

  13. Altered mRNA Splicing, Chondrocyte Gene Expression and Abnormal Skeletal Development due to SF3B4 Mutations in Rodriguez Acrofacial Dysostosis

    PubMed Central

    Nevarez, Lisette; Pogue, Robert; Krakow, Deborah; Cohn, Daniel H.

    2016-01-01

    The acrofacial dysostoses (AFD) are a genetically heterogeneous group of inherited disorders with craniofacial and limb abnormalities. Rodriguez syndrome is a severe, usually perinatal lethal AFD, characterized by severe retrognathia, oligodactyly and lower limb abnormalities. Rodriguez syndrome has been proposed to be a severe form of Nager syndrome, a non-lethal AFD that results from mutations in SF3B4, a component of the U2 small nuclear ribonucleoprotein particle (U2 snRNP). Furthermore, a case with a phenotype intermediate between Rodriguez and Nager syndromes has been shown to have an SF3B4 mutation. We identified heterozygosity for SF3B4 mutations in Rodriguez syndrome, confirming that the phenotype is a dominant disorder that is allelic with Nager syndrome. The mutations led to reduced SF3B4 synthesis and defects in mRNA splicing, primarily exon skipping. The mutations also led to reduced expression in growth plate chondrocytes of target genes, including the DLX5, DLX6, SOX9, and SOX6 transcription factor genes, which are known to be important for skeletal development. These data provide mechanistic insight toward understanding how SF3B4 mutations lead to the skeletal abnormalities observed in the acrofacial dysostoses. PMID:27622494

  14. Enzymological and mutational analysis of a complex primary hyperoxaluria type I phenotype involving alanine: Glyoxylate aminotransferase peroxisome-to-mitochondrion mistargeting and intraperoxisomal aggregation

    SciTech Connect

    Danpure, C.J.; Purdue, P.E.; Allsop, J.; Lumb, M.J.; Jennings, P.R. ); Scheinman, J.I. ); Mauer, S.M. ); Davidson, N.O. )

    1993-08-01

    Primary hyperoxaluri type 1 (PH1) is a rare autosomal recessive disease caused by a deficiency of the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). Three unrelated PH1 patients, who possess a novel complex phenotype, are described. At the enzymological level, this phenotype is characterized by a complete, or nearly complete, absence of AGT catalytic activity and reduced AGT immunoreactivity. Unlike normal individuals in whom the AGT is confined to the peroxisomal matrix, the immunoreactive AGT in these three patients was distributed approximately equally between the peroxisomes and mitochondria. The peroxisomal AGT appeared to be aggregated into amorphous core-like structures in which no other peroxisomal enzymes could be identified. Mutational analysis of the AGT gene showed that two of the three patients were compound heterozygotes for two previously unrecognized point mutations which caused Gly41[yields]Arg and Phe152[yields]Iso amino acid substitutions. The third patient was shown to be a compound heterozygote for the Gly41[yields]Arg mutation and a previously recognized Gly170[yields]Arg mutation. All three patients were homozygous for the Pro11[yields]Leu polymorphism that had been found previously with a high allelic frequency in normal populations. It is suggested the the Phe152[yields]Iso and Gly170[yields]Arg substitutions, which are only eighteen residues apart and located in the same highly conserved internal region of 58 amino acids, might be involved in the inhibition of peroxisomal targeting and/or import of AGT and, in combination with the Pro11[yields]Leu polymorphism, be responsible for its aberrant mitochondrial compartmentalization. On the other hand, the Gly41[yields]Arg substitution, either in combination with the Pro11[yields]Leu polymorphism or by itself, is predicted to be responsible for the intraperoxisomal aggregation of the AGT protein. 50 refs., 8 figs., 4 tabs.

  15. Hypothalamic Programming of Systemic Aging Involving IKKβ/NF-κB and GnRH

    PubMed Central

    Zhang, Guo; Li, Juxue; Purkayastha, Sudarshana; Tang, Yizhe; Zhang, Hai; Yin, Ye; Li, Bo; Liu, Gang; Cai, Dongsheng

    2013-01-01

    Summary Aging is a result of gradual and overall functional deteriorations across the body; however, it is unknown if an individual tissue works to primarily mediate aging progress and lifespan control. Here we found that the hypothalamus is important for the development of whole-body aging in mice, and the underlying basis involves hypothalamic immunity mediated by IKKβ/NF-κB and related microglia-neuron immune crosstalk. Several interventional models were developed showing that aging retardation and lifespan extension are achieved in mice through preventing against aging-related hypothalamic or brain IKKβ/NF-κB activation. Mechanistic studies further revealed that IKKβ/NF-κB inhibits GnRH to mediate aging-related hypothalamic GnRH decline, and GnRH treatment amends aging-impaired neurogenesis and decelerates aging. In conclusion, the hypothalamus has a programmatic role in aging development via immune-neuroendocrine integration, and immune inhibition or GnRH restoration in the hypothalamus/brain represent two potential strategies for optimizing lifespan and combating aging-related health problems. PMID:23636330

  16. Involvement of reactive oxygen species in the UV-B damage to the cyanobacterium Anabaena sp.

    PubMed

    He, Yu Ying; Häder, Donat P

    2002-02-01

    Reactive oxygen species (ROS) are involved the damage of living organisms under environmental stress including UV radiation. Cyanobacteria, photoautotrophic prokaryotic organisms, also suffer from increasing UV-B due to the depletion of the stratospheric ozone layer. The increased UV-B induces the production of ROS in vivo detected by using the ROS-sensitive probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Ascorbic acid and N-acetyl-L-cysteine (NAC) scavenged ROS effectively, while alpha-tocopherol acetate or pyrrolidine dithiocarbamate (PDTC) did not. The presence of rose bengal and hypocrellin A increased the ROS level by photodynamic action in the visible light. The presence of the herbicide, 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), increased ROS production slightly, and ROS formation was greatly enhanced by the addition of methyl viologen due to the fact that this redox system diverts electrons from PSI to oxygen and thus forms ROS. UV-B induces ROS generation by photodynamic action and inhibition of the electron transport by damaging the electron receptors or enzymes associated with the electron transport chain during photosynthesis.

  17. Point mutations in EBV gH that abrogate or differentially affect B cell and epithelial cell fusion

    SciTech Connect

    Wu Liguo; Hutt-Fletcher, Lindsey M. . E-mail: lhuttf@lsuhsc.edu

    2007-06-20

    Cell fusion mediated by Epstein-Barr virus requires three conserved glycoproteins, gB and gHgL, but activation is cell type specific. B cell fusion requires interaction between MHC class II and a fourth virus glycoprotein, gp42, which complexes non-covalently with gHgL. Epithelial cell fusion requires interaction between gHgL and a novel epithelial cell coreceptor and is blocked by excess gp42. We show here that gp42 interacts directly with gH and that point mutations in the region of gH recognized by an antibody that differentially inhibits epithelial and B cell fusion significantly impact both the core fusion machinery and cell-specific events. Substitution of alanine for glycine at residue 594 completely abrogates fusion with either B cells or epithelial cells. Substitution of alanine for glutamic acid at residue 595 reduces fusion with epithelial cells, greatly enhances fusion with B cells and allows low levels of B cell fusion even in the absence of gL.

  18. Selection-driven accumulation of suppressor mutants in bacillus subtilis: the apparent high mutation frequency of the cryptic gudB gene and the rapid clonal expansion of gudB(+) suppressors are due to growth under selection.

    PubMed

    Gunka, Katrin; Stannek, Lorena; Care, Rachel A; Commichau, Fabian M

    2013-01-01

    Soil bacteria like Bacillus subtilis can cope with many growth conditions by adjusting gene expression and metabolic pathways. Alternatively, bacteria can spontaneously accumulate beneficial mutations or shape their genomes in response to stress. Recently, it has been observed that a B. subtilis mutant lacking the catabolically active glutamate dehydrogenase (GDH), RocG, mutates the cryptic gudB(CR) gene at a high frequency. The suppressor mutants express the active GDH GudB, which can fully replace the function of RocG. Interestingly, the cryptic gudB(CR) allele is stably inherited as long as the bacteria synthesize the functional GDH RocG. Competition experiments revealed that the presence of the cryptic gudB(CR) allele provides the bacteria with a selective growth advantage when glutamate is scarce. Moreover, the lack of exogenous glutamate is the driving force for the selection of mutants that have inactivated the active gudB gene. In contrast, two functional GDHs are beneficial for the cells when glutamate was available. Thus, the amount of GDH activity strongly affects fitness of the bacteria depending on the availability of exogenous glutamate. At a first glance the high mutation frequency of the cryptic gudB(CR) allele might be attributed to stress-induced adaptive mutagenesis. However, other loci on the chromosome that could be potentially mutated during growth under the selective pressure that is exerted on a GDH-deficient mutant remained unaffected. Moreover, we show that a GDH-proficient B. subtilis strain has a strong selective growth advantage in a glutamate-dependent manner. Thus, the emergence and rapid clonal expansion of the active gudB allele can be in fact explained by spontaneous mutation and growth under selection without an increase of the mutation rate. Moreover, this study shows that the selective pressure that is exerted on a maladapted bacterium strongly affects the apparent mutation frequency of mutational hot spots.

  19. The nuclear factor kappaB-activator gene PLEKHG5 is mutated in a form of autosomal recessive lower motor neuron disease with childhood onset.

    PubMed

    Maystadt, Isabelle; Rezsöhazy, René; Barkats, Martine; Duque, Sandra; Vannuffel, Pascal; Remacle, Sophie; Lambert, Barbara; Najimi, Mustapha; Sokal, Etienne; Munnich, Arnold; Viollet, Louis; Verellen-Dumoulin, Christine

    2007-07-01

    Lower motor neuron diseases (LMNDs) include a large spectrum of clinically and genetically heterogeneous disorders. Studying a large inbred African family, we recently described a novel autosomal recessive LMND variant characterized by childhood onset, generalized muscle involvement, and severe outcome, and we mapped the disease gene to a 3.9-cM interval on chromosome 1p36. We identified a homozygous missense mutation (c.1940 T-->C [p.647 Phe-->Ser]) of the Pleckstrin homology domain-containing, family G member 5 gene, PLEKHG5. In transiently transfected HEK293 and MCF10A cell lines, we found that wild-type PLEKHG5 activated the nuclear factor kappa B (NF kappa B) signaling pathway and that both the stability and the intracellular location of mutant PLEKHG5 protein were altered, severely impairing the NF kappa B transduction pathway. Moreover, aggregates were observed in transiently transfected NSC34 murine motor neurons overexpressing the mutant PLEKHG5 protein. Both loss of PLEKHG5 function and aggregate formation may contribute to neurotoxicity in this novel form of LMND.

  20. A mutation in repB, the dictyostelium homolog of the human xeroderma pigmentosum B gene, has increased sensitivity to UV-light but normal morphogenesis.

    PubMed

    Lee, S K; Yu, S L; Alexander, H; Alexander, S

    1998-08-20

    Nucleotide excision repair (NER) is an important cellular defense mechanism which protects the integrity of the genome by removing DNA damage caused by UV-light or chemical agents. In humans, defects in the NER pathway result in the disease xeroderma pigmentosum (XP) which is characterized by increased UV-sensitivity, with increased propensity for skin cancer, and an array of developmental abnormalities. Some XP patients exhibit, in addition, symptoms of Cockayne's syndrome (CS) and trichothiodystrophy (TTD), which are characterized by increased UV-sensitivity, without increased cancer incidence, and an array of developmental abnormalities. Some NER genes, including the DNA helicases XPB and XPD, have been shown to function in transcription as well as repair, by virtue of being an integral part of the transcription initiation factor TFIIH. This dual function may account for the above-mentioned wide pleiotropy of phenotypes associated with defects in NER genes, and may explain why some XP patients exhibit developmental abnormalities in addition to XP symptoms. To date, only five XPB patients with three different mutations in the XPB gene have been reported. One of these mutations is a C to A transversion at the splice site at the beginning of the last exon, which resulted in a frameshift throughout the last exon. This patient shows combined clinical symptoms of XP and CS. The recent cloning of the repB gene, the Dictyostelium discoideum homolog of XPB, allowed us to generate a similar C-terminal mutation in the Dictyostelium, in order to test whether the defect in this NER gene has an effect on growth or development. To this end, we have constructed a C-terminal deletion repB mutant in Dictyostelium. To avoid the possibility that a null mutant would be lethal, we used direct homologous recombination to create a 46 amino acid C-terminal deletion mutant. Indeed, we were unable to obtain mutants with a longer 95 amino acid deletion. The repB delta C46 mutants showed an

  1. nr0b1 (DAX1) mutation in zebrafish causes female-to-male sex reversal through abnormal gonadal proliferation and differentiation.

    PubMed

    Chen, Sijie; Zhang, Hefei; Wang, Fenghua; Zhang, Wei; Peng, Gang

    2016-09-15

    Sex determinations are diverse in vertebrates. Although many sex-determining genes and pathways are conserved, the mechanistic roles of these genes and pathways in the genetic sex determination are not well understood. DAX1 (encoded by the NR0B1 gene) is a vertebrate specific orphan nuclear receptor that regulates gonadal development and sexual determination. In human, duplication of the NR0B1 gene leads to male-to-female sex reversal. In mice, Nr0b1 shows both pro-testis and anti-testis functions. We generated inheritable nr0b1 mutation in the zebrafish and found the nr0b1 mutation caused homozygous mutants to develop as fertile males due to female-to-male sex reversal. The nr0b1 mutation did not increase Caspase-3 labeling nor tp53 expression in the developing gonads. Introduction of a tp53 mutation into the nr0b1 mutant did not rescue the sex-reversal phenotype. Further examination revealed reduction in cell proliferation and abnormal somatic cell differentiation in the nr0b1 mutant gonads at the undifferentiated and bi-potential ovary stages. Together, our results suggest nr0b1 regulates somatic cell differentiation and cell proliferation to ensure normal sex development in the zebrafish. PMID:27267667

  2. nr0b1 (DAX1) mutation in zebrafish causes female-to-male sex reversal through abnormal gonadal proliferation and differentiation.

    PubMed

    Chen, Sijie; Zhang, Hefei; Wang, Fenghua; Zhang, Wei; Peng, Gang

    2016-09-15

    Sex determinations are diverse in vertebrates. Although many sex-determining genes and pathways are conserved, the mechanistic roles of these genes and pathways in the genetic sex determination are not well understood. DAX1 (encoded by the NR0B1 gene) is a vertebrate specific orphan nuclear receptor that regulates gonadal development and sexual determination. In human, duplication of the NR0B1 gene leads to male-to-female sex reversal. In mice, Nr0b1 shows both pro-testis and anti-testis functions. We generated inheritable nr0b1 mutation in the zebrafish and found the nr0b1 mutation caused homozygous mutants to develop as fertile males due to female-to-male sex reversal. The nr0b1 mutation did not increase Caspase-3 labeling nor tp53 expression in the developing gonads. Introduction of a tp53 mutation into the nr0b1 mutant did not rescue the sex-reversal phenotype. Further examination revealed reduction in cell proliferation and abnormal somatic cell differentiation in the nr0b1 mutant gonads at the undifferentiated and bi-potential ovary stages. Together, our results suggest nr0b1 regulates somatic cell differentiation and cell proliferation to ensure normal sex development in the zebrafish.

  3. Different Effects of Nonnucleoside Reverse Transcriptase Inhibitor Resistance Mutations on Cytotoxic T Lymphocyte Recognition between HIV-1 Subtype B and Subtype A/E Infections

    PubMed Central

    Kuse, Nozomi; Rahman, Mohammad Arif; Murakoshi, Hayato; Tran, Giang Van; Chikata, Takayuki; Koyanagi, Madoka; Nguyen, Kinh Van; Gatanaga, Hiroyuki; Oka, Shinichi

    2015-01-01

    ABSTRACT The effect of antiretroviral drug resistance mutations on cytotoxic T lymphocyte (CTL) recognition has been analyzed in HIV-1 subtype B infections, but it remains unclear in infections by other HIV-1 subtypes that are epidemic in countries where antiretroviral drugs are not effectively used. We investigated the effect of nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI)-resistance mutations (Y181C, Y181I, and Y181V) on epitope recognition by CTLs specific for 3 different HIV-1 epitopes (HLA-A*02:01-restricted IV10, HLA-B*35:01-restricted NY9, and HLA-C*12:02-restricted KY9) in subtype B and subtype A/E infections and the accumulation of these mutations in treatment-naive Japanese and Vietnamese. These NNRTI-resistance mutations critically affected NY9-specific and KY9-specific T cell responses in the subtype B infections, whereas they showed a different effect on IV10-specific T cell responses among the subtype B-infected individuals. These mutations affected IV10-specific T cell responses but weakly affected NY9-specific T cell responses in the subtype A/E infections. The substitution at position 3 of NY9 epitope which was found in the subtype A/E virus differently influenced the peptide binding to HLA-B*35:01, suggesting that the differences in peptide binding may result in the differences in T cell recognition between the subtype B virus and A/E virus infections. The Y181C mutation was found to be accumulating in treatment-naive Vietnamese infected with the subtype A/E virus. The present study demonstrated different effects of NNRTI-resistance RT181 mutations on CTL responses between the 2 subtype infections. The Y181C mutation may influence HIV-1 control by the CTLs in Vietnam, since this mutation has been accumulating in treatment-naive Vietnamese. IMPORTANCE Antiretroviral therapy leads to the emergence of drug-resistant HIV-1, resulting in virological and clinical failures. Though HIV-1-specific CTLs play a critical role in HIV-1 infection

  4. A double mutation in exon 6 of the [beta]-hexosaminidase [alpha] subunit in a patient with the B1 variant of Tay-Sachs disease

    SciTech Connect

    Ainsworth, P.J. Child Health Research Institute, London, Ontario ); Coulter-Mackie, M.B. Child Health Research Institute, London, Ontario Children's Psychiatric Research Institute, London, Ontario )

    1992-10-01

    The B1 variant form of Tay-Sachs disease is enzymologically unique in that the causative mutation(s) appear to affect the active site in the [alpha] subunit of [beta]-hexosaminidase A without altering its ability to associate with the [beta] subunit. Most previously reported B1 variant mutations were found in exon 5 within codon 178. The coding sequence of the [alpha] subunit gene of a patient with the B1 variant form was examined with a combination of reverse transcription of mRNA to cDNA, PCR, and dideoxy sequencing. A double mutation in exon 6 has been identified: a G[sub 574][yields]C transversion causing a val[sub 192][yields]leu change and a G[sub 598][yields] A transition resulting in a val[sub 200][yields]met alteration. The amplified cDNAs were otherwise normal throughout their sequence. The 574 and 598 alterations have been confirmed by amplification directly from genomic DNA from the patient and her mother. Transient-expression studies of the two exon 6 mutations (singly or together) in COS-1 cells show that the G[sub 574][yields]C change is sufficient to cause the loss of enzyme activity. The biochemical phenotype of the 574 alteration in transfection studies is consistent with that expected for a B1 variant mutation. As such, this mutation differs from previously reported B1 variant mutations, all of which occur in exon 5. 31 refs., 2 figs., 2 tabs.

  5. Characterization of a Disease-associated Mutation Affecting a Putative Splicing Regulatory Element in Intron 6b of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene*

    PubMed Central

    Faà, Valeria; Incani, Federica; Meloni, Alessandra; Corda, Denise; Masala, Maddalena; Baffico, A. Maria; Seia, Manuela; Cao, Antonio; Rosatelli, M. Cristina

    2009-01-01

    Cystic fibrosis (CF) is a common recessive disorder caused by >1600 mutations in the CF transmembrane conductance regulator (CFTR) gene. About 13% of CFTR mutations are classified as “splicing mutations,” but for almost 40% of these, their role in affecting the pre-mRNA splicing of the gene is not yet defined. In this work, we describe a new splicing mutation detected in three unrelated Italian CF patients. By DNA analyses and mRNA studies, we identified the c.1002–1110_1113delTAAG mutation localized in intron 6b of the CFTR gene. At the mRNA level, this mutation creates an aberrant inclusion of a sequence of 101 nucleotides between exons 6b and 7. This sequence corresponds to a portion of intron 6b and resembles a cryptic exon because it is characterized by an upstream ag and a downstream gt sequence, which are most probably recognized as 5′- and 3′-splice sites by the spliceosome. Through functional analysis of this splicing defect, we show that this mutation abolishes the interaction of the splicing regulatory protein heterogeneous nuclear ribonucleoprotein A2/B1 with an intronic splicing regulatory element and creates a new recognition motif for the SRp75 splicing factor, causing activation of the cryptic exon. Our results show that the c.1002–1110_1113delTAAG mutation creates a new intronic splicing regulatory element in intron 6b of the CFTR gene exclusively recognized by SRp75. PMID:19759008

  6. Molecular basis of recessive congenital methemoglobinemia, types I and II: Exon skipping and three novel missense mutations in the NADH-cytochrome b5 reductase (diaphorase 1) gene.

    PubMed

    Kugler, W; Pekrun, A; Laspe, P; Erdlenbruch, B; Lakomek, M

    2001-04-01

    Hereditary methemoglobinemia due to reduced nicotin amide adenine dinucleotide (NADH)-cytochrome b5 reductase (b5r) deficiency is classified into an erythrocyte type (I) and a generalized type (II). We investigated the b5r gene of three unrelated patients with types I and II and found four novel mutations. The patient with type I was homozygous for a c.535 G-->A exchange in exon 6 (A179T). The patients with type II were found to be homozygous for a c.757 G-->A transition in exon 9 (V253M) and compound heterozygous for two mutations, respectively. One allele presented a c.379 A-->G transition (M127V). The second allele carried a sequence difference at the invariant 3' splice-acceptor dinucleotide of intron 4 (IVS4-2A-->G) resulting in skipping of exon 5. To characterize a possible effect of this mutation on RNA metabolism, poly(A)(+) RNA was analyzed by RT-PCR and sequencing. The results show that RNA is made from the allele harboring the 3'-splice site mutation. Furthermore, western blot analysis revealed a complete absence of immunologically detectable b5r in skin fibroblasts of this patient. The compound heterozygosity for the splice site and the missense mutations apparently caused hereditary methemoglobinemia type II in this patient. Hum Mutat 17:348, 2001. PMID:11295830

  7. Phenotypic, metabolic, and molecular genetic characterization of six patients with congenital adrenal hyperplasia caused by novel mutations in the CYP11B1 gene.

    PubMed

    Nguyen, Huy-Hoang; Eiden-Plach, Antje; Hannemann, Frank; Malunowicz, Ewa M; Hartmann, Michaela F; Wudy, Stefan A; Bernhardt, Rita

    2016-01-01

    Congenital adrenal hyperplasia (CAH) is an autosomal recessive inherited disorder of steroidogenesis. Steroid 11β-hydroxylase deficiency (11β-OHD) due to mutations in the CYP11B1 gene is the second most common form of CAH. In this study, 6 patients suffering from CAH were diagnosed with 11β-OHD using urinary GC-MS steroid metabolomics analysis. The molecular basis of the disorder was investigated by molecular genetic analysis of the CYP11B1 gene, functional characterization of splicing and missense mutations, and analysis of the missense mutations in a computer model of CYP11B1. All patients presented with abnormal clinical signs of hyperandrogenism. Their urinary steroid metabolomes were characterized by excessive excretion rates of metabolites of 11-deoxycortisol as well as metabolites of 11-deoxycorticosterone, and allowed definite diagnosis. Patient 1 carries compound heterozygous mutations consisting of a novel nonsense mutation p.Q102X (c.304C>T) in exon 2 and the known missense mutation p.T318R (c.953C>G) in exon 5. Two siblings (patient 2 and 3) were compound heterozygous carriers of a known splicing mutation c.1200+1G>A in intron 7 and a known missense mutation p.R448H (c.1343G>A) in exon 8. Minigene experiments demonstrated that the c.1200+1G>A mutation caused abnormal pre-mRNA splicing (intron retention). Two further siblings (patient 4 and 5) were compound heterozygous carriers of a novel missense mutation p.R332G (c.994C>G) in exon 6 and the known missense mutation p.R448H (c.1343G>A) in exon 8. A CYP11B1 activity study in COS-1 cells showed that only 11% of the enzyme activity remained in the variant p.R332G. Patient 6 carried a so far not described homozygous deletion g.2470_5320del of 2850 bp corresponding to a loss of the CYP11B1 exons 3-8. The breakpoints of the deletion are embedded into two typical 6 base pair repeats (GCTTCT) upstream and downstream of the gene. Experiments analyzing the influence of mutations on splicing and on enzyme

  8. WDR34 mutations that cause short-rib polydactyly syndrome type III/severe asphyxiating thoracic dysplasia reveal a role for the NF-κB pathway in cilia.

    PubMed

    Huber, Céline; Wu, Sulin; Kim, Ashley S; Sigaudy, Sabine; Sarukhanov, Anna; Serre, Valérie; Baujat, Genevieve; Le Quan Sang, Kim-Hanh; Rimoin, David L; Cohn, Daniel H; Munnich, Arnold; Krakow, Deborah; Cormier-Daire, Valérie

    2013-11-01

    Short-rib polydactyly (SRP) syndrome type III, or Verma-Naumoff syndrome, is an autosomal-recessive chondrodysplasia characterized by short ribs, a narrow thorax, short long bones, an abnormal acetabulum, and numerous extraskeletal malformations and is lethal in the perinatal period. Presently, mutations in two genes, IFT80 and DYNC2H1, have been identified as being responsible for SRP type III. Via homozygosity mapping in three affected siblings, a locus for the disease was identified on chromosome 9q34.11, and homozygosity for three missense mutations in WDR34 were found in three independent families, as well as compound heterozygosity for mutations in one family. WDR34 encodes a member of the WD repeat protein family with five WD40 domains, which acts as a TAK1-associated suppressor of the IL-1R/TLR3/TLR4-induced NF-κB activation pathway. We showed, through structural modeling, that two of the three mutations altered specific structural domains of WDR34. We found that primary cilia in WDR34 mutant fibroblasts were significantly shorter than normal and had a bulbous tip. This report expands on the pathogenesis of SRP type III and demonstrates that a regulator of the NF-κB activation pathway is involved in the pathogenesis of the skeletal ciliopathies.

  9. WDR34 Mutations that Cause Short-Rib Polydactyly Syndrome Type III/Severe Asphyxiating Thoracic Dysplasia Reveal a Role for the NF-κB Pathway in Cilia

    PubMed Central

    Huber, Céline; Wu, Sulin; Kim, Ashley S.; Sigaudy, Sabine; Sarukhanov, Anna; Serre, Valérie; Baujat, Genevieve; Le Quan Sang, Kim-Hanh; Rimoin, David L.; Cohn, Daniel H.; Munnich, Arnold; Krakow, Deborah; Cormier-Daire, Valérie

    2013-01-01

    Short-rib polydactyly (SRP) syndrome type III, or Verma-Naumoff syndrome, is an autosomal-recessive chondrodysplasia characterized by short ribs, a narrow thorax, short long bones, an abnormal acetabulum, and numerous extraskeletal malformations and is lethal in the perinatal period. Presently, mutations in two genes, IFT80 and DYNC2H1, have been identified as being responsible for SRP type III. Via homozygosity mapping in three affected siblings, a locus for the disease was identified on chromosome 9q34.11, and homozygosity for three missense mutations in WDR34 were found in three independent families, as well as compound heterozygosity for mutations in one family. WDR34 encodes a member of the WD repeat protein family with five WD40 domains, which acts as a TAK1-associated suppressor of the IL-1R/TLR3/TLR4-induced NF-κB activation pathway. We showed, through structural modeling, that two of the three mutations altered specific structural domains of WDR34. We found that primary cilia in WDR34 mutant fibroblasts were significantly shorter than normal and had a bulbous tip. This report expands on the pathogenesis of SRP type III and demonstrates that a regulator of the NF-κB activation pathway is involved in the pathogenesis of the skeletal ciliopathies. PMID:24183449

  10. Serine suppresses the motor function of a periplasmic PomB mutation in the Vibrio flagella stator.

    PubMed

    Nishikino, Tatsuro; Zhu, Shiwei; Takekawa, Norihiro; Kojima, Seiji; Onoue, Yasuhiro; Homma, Michio

    2016-05-01

    The flagellar motor of Vibrio alginolyticus is made of two parts: a stator consisting of proteins PomA and PomB, and a rotor whose main component is FliG. The interaction between FliG and PomA generates torque for flagellar rotation. Based on cross-linking experiments of double-Cys mutants of PomB, we previously proposed that a conformational change in the periplasmic region of PomB caused stator activation. Double-Cys mutants lost their motility due to an intramolecular disulfide bridge. In this study, we found that the addition of serine, a chemotactic attractant, to a PomB(L160C/I186C) mutant restored motility without cleaving the disulfide bridge. We speculate that serine changed the rotor (FliG) conformation, affecting rotational direction. Combined with the counterclockwise (CCW)-biased mutation FliG(G214S), motility of PomB(L160C/I186C) was restored without the addition of serine. Likewise, motility was restored without serine in Che(-) mutants, in either a CCW-locked or clockwise (CW)-locked strain. In contrast, in a ΔcheY (CCW-locked) strain, Vibrio (L160C/I186C) required serine to be rescued. We speculate that CheY affects stator conformation and motility restoration by serine is independent on the chemotaxis signaling pathway. PMID:27004994

  11. Investigation of prolific sheep from UK and Ireland for evidence on origin of the mutations in BMP15 (FecX(G), FecX(B)) and GDF9 (FecG(H)) in Belclare and Cambridge sheep.

    PubMed

    Mullen, Michael P; Hanrahan, James P; Howard, Dawn J; Powell, Richard

    2013-01-01

    This paper concerns the likely origin of three mutations with large effects on ovulation rate identified in the Belclare and Cambridge sheep breeds; two in the BMP15 gene (FecX(G) and FecX(B)) and the third (FecG(H)) in GDF9. All three mutations segregate in Belclare sheep while one, FecX(B), has not been found in the Cambridge. Both Belclare and Cambridge breeds are relatively recently developed composites that have common ancestry through the use of genetic material from the Finnish Landrace and Lleyn breeds. The development of both composites also involved major contributions from exceptionally prolific ewes screened from flocks in Ireland (Belclare) and Britain (Cambridge) during the 1960s. The objective of the current study was to establish the likely origin of the mutations (FecX(G), FecX(B) and FecG(H)) through analysis of DNA from Finnish Landrace and Lleyn sheep, and Galway and Texel breeds which contributed to the development of the Belclare breed. Ewes with exceptionally high prolificacy (hyper-prolific ewes) in current flocks on Irish farms were identified to simulate the screening of ewes from Irish flocks in the 1960s. DNA was obtained from: prolific ewes in extant flocks of Lleyn sheep (n = 44) on the Lleyn peninsula in Wales; hyper-prolific ewes (n = 41); prolific Galway (n = 41) ewes; Finnish Landrace (n = 124) and Texel (n = 19) ewes. The FecX(G) mutation was identified in Lleyn but not in Finnish Landrace, Galway or Texel sheep; FecX(B) was only found among the hyper-prolific ewes. The FecG(H) mutation was identified in the sample of Lleyn sheep. It was concluded from these findings that the Lleyn breed was the most likely source of the FecX(G) and FecG(H) mutations in Belclare and Cambridge sheep and that the FecX(B) mutation came from the High Fertility line that was developed using prolific ewes selected from commercial flocks in Ireland in the 1960's and subsequently used in the genesis of the Belclare.

  12. Structural and Mutational Analysis of Escherichia coli AlkB Provides Insight into Substrate Specificity and DNA Damage Searching

    SciTech Connect

    Holland, P.; Hollis, T

    2010-01-01

    In Escherichia coli, cytotoxic DNA methyl lesions on the N1 position of purines and N3 position of pyrimidines are primarily repaired by the 2-oxoglutarate (2-OG) iron(II) dependent dioxygenase, AlkB. AlkB repairs 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) lesions, but it also repairs 1-methylguanine (1-meG) and 3-methylthymine (3-meT) at a much less efficient rate. How the AlkB enzyme is able to locate and identify methylated bases in ssDNA has remained an open question. We determined the crystal structures of the E. coli AlkB protein holoenzyme and the AlkB-ssDNA complex containing a 1-meG lesion. We coupled this to site-directed mutagenesis of amino acids in and around the active site, and tested the effects of these mutations on the ability of the protein to bind both damaged and undamaged DNA, as well as catalyze repair of a methylated substrate. A comparison of our substrate-bound AlkB-ssDNA complex with our unliganded holoenzyme reveals conformational changes of residues within the active site that are important for binding damaged bases. Site-directed mutagenesis of these residues reveals novel insight into their roles in DNA damage recognition and repair. Our data support a model that the AlkB protein utilizes at least two distinct conformations in searching and binding methylated bases within DNA: a 'searching' mode and 'repair' mode. Moreover, we are able to functionally separate these modes through mutagenesis of residues that affect one or the other binding state. Finally, our mutagenesis experiments show that amino acid D135 of AlkB participates in both substrate specificity and catalysis.

  13. IDH1 and IDH2 Gene Mutations Identify Novel Molecular Subsets Within De Novo Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study

    PubMed Central

    Marcucci, Guido; Maharry, Kati; Wu, Yue-Zhong; Radmacher, Michael D.; Mrózek, Krzysztof; Margeson, Dean; Holland, Kelsi B.; Whitman, Susan P.; Becker, Heiko; Schwind, Sebastian; Metzeler, Klaus H.; Powell, Bayard L.; Carter, Thomas H.; Kolitz, Jonathan E.; Wetzler, Meir; Carroll, Andrew J.; Baer, Maria R.; Caligiuri, Michael A.; Larson, Richard A.; Bloomfield, Clara D.

    2010-01-01

    Purpose To analyze the frequency and associations with prognostic markers and outcome of mutations in IDH genes encoding isocitrate dehydrogenases in adult de novo cytogenetically normal acute myeloid leukemia (CN-AML). Patients and Methods Diagnostic bone marrow or blood samples from 358 patients were analyzed for IDH1 and IDH2 mutations by DNA polymerase chain reaction amplification/sequencing. FLT3, NPM1, CEBPA, WT1, and MLL mutational analyses and gene- and microRNA-expression profiling were performed centrally. Results IDH mutations were found in 33% of the patients. IDH1 mutations were detected in 49 patients (14%; 47 with R132). IDH2 mutations, previously unreported in AML, were detected in 69 patients (19%; 13 with R172 and 56 with R140). R172 IDH2 mutations were mutually exclusive with all other prognostic mutations analyzed. Younger age (< 60 years), molecular low-risk (NPM1-mutated/FLT3-internal tandem duplication–negative) IDH1-mutated patients had shorter disease-free survival than molecular low-risk IDH1/IDH2-wild-type (wt) patients (P = .046). R172 IDH2-mutated patients had lower complete remission rates than IDH1/IDH2wt patients (P = .007). Distinctive microarray gene- and microRNA-expression profiles accurately predicted R172 IDH2 mutations. The highest expressed gene and microRNAs in R172 IDH2-mutated patients compared with the IDH1/IDH2wt patients were APP (previously associated with complex karyotype AML) and miR-1 and miR-133 (involved in embryonal stem-cell differentiation), respectively. Conclusion IDH1 and IDH2 mutations are recurrent in CN-AML and have an unfavorable impact on outcome. The R172 IDH2 mutations, previously unreported in AML, characterize a novel subset of CN-AML patients lacking other prognostic mutations and associate with unique gene- and microRNA-expression profiles that may lead to the discovery of novel, therapeutically targetable leukemogenic mechanisms. PMID:20368543

  14. Resistance of American sloughgrass (Bechmannia syzigachne) populations to ACCase-inhibiting herbicides involves three different target site mutations from China.

    PubMed

    Tang, Wei; Zhou, Fengyan; Zhang, Yong; Chen, Jie

    2015-10-01

    American sloughgrass [Beckmannia syzigachne (Steud.) Fernald] is a problematic annual grass weed in winter wheat fields of China, which causes great loss of wheat yield. Repeated use of acetyl-CoA carboxylase (ACCase)-inhibiting herbicides during the last two decades to control this weed has been selected for resistance in American sloughgrass in Jiangsu province. In this study, whole-plant dose-response assays were conducted to investigate the level of resistance in four resistant American sloughgrass populations (LY, JH, BYJ and BYP) to four ACCase-inhibiting herbicides belonging to aryloxyphenoxypropionates, cyclohexanediones, and phenylpyrazolines groups under greenhouse conditions. Based on resistance factor (RF), three populations, LY, BYJ and BYP, were highly resistant to fenoxaprop-P-ethyl, clodinafop propargyl, sethoxydim and pinoxaden. JH plants exhibited resistance to fenoxaprop-P-ethyl and clodinafop propargyl, but showed much lower RF values for sethoxydim and pinoxaden. Molecular analysis of resistance revealed that resistance in all the four populations was target site-based. Results confirmed that substitutions of Ile-1781-Leu, Ile-2041-Asn and Asp-2078-Gly, respectively, in LY, JH and BYJ/BYP, are responsible for diverse sensitivity to different ACCase-inhibiting herbicides in these populations. The substitution at position 1781 had been reported, while it is the first report of Ile-2041-Asn and Asp-2078-Gly mutations that corresponded to resistance in American sloughgrass.

  15. Familial hypobetalipoproteinemia caused by a mutation in the apolipoprotein B gene that results in a truncated species of apolipoprotein B (B-31). A unique mutation that helps to define the portion of the apolipoprotein B molecule required for the formation of buoyant, triglyceride-rich lipoproteins.

    PubMed Central

    Young, S G; Hubl, S T; Smith, R S; Snyder, S M; Terdiman, J F

    1990-01-01

    Apolipoprotein B-100 has a crucial structural role in the formation of VLDL and LDL. Familial hypobetalipoproteinemia, a syndrome in which the concentration of LDL cholesterol in plasma is abnormally low, can be caused by mutations in the apo B gene that prevent the translation of a full-length apo B-100 molecule. Prior studies have revealed that truncated species of apo B [e.g., apo B-37 (1728 amino acids), apo B-46 (2057 amino acids)] can occasionally be identified in the plasma of subjects with familial hypobetalipoproteinemia; in each of these cases, the truncated apo B species has been a prominent protein component of VLDL. In this report, we describe a kindred with hypobetalipoproteinemia in which the plasma of four affected heterozygotes contained a unique truncated apo B species, apo B-31. Apolipoprotein B-31 is caused by the deletion of a single nucleotide in the apo B gene, and it is predicted to contain 1425 amino acids. Apolipoprotein B-31 is the shortest of the mutant apo B species to be identified in the plasma of a subject with hypobetalipoproteinemia. In contrast to longer truncated apo B species, apo B-31 was undetectable in the VLDL and the LDL; however, it was present in the HDL fraction and the lipoprotein-deficient fraction of plasma. The density distribution of apo B-31 in the plasma suggests the possibility that the amino-terminal 1425 amino acids of apo B-100 are sufficient to permit the formation and secretion of small, dense lipoproteins but are inadequate to support the formation of the more lipid-rich VLDL and LDL particles. Images PMID:2312735

  16. Identification of B-type procyanidins in Fallopia spp. involved in biological denitrification inhibition.

    PubMed

    Bardon, Clément; Piola, Florence; Haichar, Feth el Zahar; Meiffren, Guillaume; Comte, Gilles; Missery, Boris; Balby, Manon; Poly, Franck

    2016-02-01

    Nitrogen (N) is considered as a main limiting factor in plant growth, and nitrogen losses through denitrification can be responsible for severe decreases in plant productivity. Recently, it was demonstrated that Fallopia spp. is responsible for biological denitrification inhibition (BDI) through the release of unknown secondary metabolites. Here, we investigate the secondary metabolites involved in the BDI of Fallopia spp. The antioxidant, protein precipitation capability of Fallopia spp. extracts was measured in relation to the aerobic respiration and denitrification of two bacteria (Gram positive and Gram negative). Proanthocyanidin concentrations were estimated. Proanthocyanidins in extracts were characterized by chromatographic analysis, purified and tested on the bacterial denitrification and aerobic respiration of two bacterial strains. The effect of commercial procyanidins on denitrification was tested on two different soil types. Denitrification and aerobic respiration inhibition were correlated with protein precipitation capacity and concentration of proanthocyanidins but not to antioxidant capacity. These proanthocyanidins were B-type procyanidins that inhibited denitrification more than the aerobic respiration of bacteria. In addition, procyanidins also inhibited soil microbial denitrification. We demonstrate that procyanidins are involved in the BDI of Fallopia spp. Our results pave the way to a better understanding of plant-microbe interactions and highlight future applications for a more sustainable agriculture.

  17. Variant B Cell Receptor Isotype Functions Differ in Hairy Cell Leukemia with Mutated BRAF and IGHV Genes

    PubMed Central

    Weston-Bell, Nicola J.; Forconi, Francesco; Kluin-Nelemans, Hanneke C.; Sahota, Surinder S.

    2014-01-01

    A functional B-cell receptor (BCR) is critical for survival of normal B-cells, but whether it plays a comparable role in B-cell malignancy is as yet not fully delineated. Typical Hairy Cell Leukemia (HCL) is a rare B-cell tumor, and unique in expressing multiple surface immunoglobulin (sIg) isotypes on individual tumor cells (mult-HCL), to raise questions as to their functional relevance. Typical mult-HCL also displays a mutated BRAF V(600)E lesion. Since wild type BRAF is a primary conduit for transducing normal BCR signals, as revealed by deletion modelling studies, it is as yet not apparent if mutated BRAF alters BCR signal transduction in mult-HCL. To address these questions, we examined BCR signalling in mult-HCL cases uniformly displaying mutated BRAF and IGHV genes. Two apparent functional sets were delineated by IgD co-expression. In sIgD+ve mult-HCL, IgD mediated persistent Ca2+ flux, also evident via >1 sIgH isotype, linked to increased ERK activation and BCR endocytosis. In sIgD−ve mult-HCL however, BCR-mediated signals and downstream effects were restricted to a single sIgH isotype, with sIgM notably dysfunctional and remaining immobilised on the cell surface. These observations reveal discordance between expression and function of individual isotypes in mult-HCL. In dual sIgL expressing cases, only a single sIgL was fully functional. We examined effects of anti-BCR stimuli on mult-HCL survival ex-vivo. Significantly, all functional non-IgD isotypes increased ERK1/2 phosphorylation but triggered apoptosis of tumor cells, in both subsets. IgD stimuli, in marked contrast retained tumor viability. Despite mutant BRAF, BCR signals augment ERK1/2 phosphorylation, but isotype dictates functional downstream outcomes. In mult-HCL, sIgD retains a potential to transduce BCR signals for tumor survival in-vivo. The BCR in mult-HCL emerges as subject to complex regulation, with apparent conflicting signalling by individual isotypes when co-expressed with s

  18. Adhesion receptors involved in HSC and early-B cell interactions with bone marrow microenvironment.

    PubMed

    De Grandis, Maria; Lhoumeau, Anne-Catherine; Mancini, Stéphane J C; Aurrand-Lions, Michel

    2016-02-01

    Hematopoiesis takes place in the bone marrow of adult mammals and is the process by which blood cells are replenished every day throughout life. Differentiation of hematopoietic cells occurs in a stepwise manner through intermediates of differentiation that could be phenotypically identified. This has allowed establishing hematopoietic cell classification with hematopoietic stem cells (HSCs) at the top of the hierarchy. HSCs are mostly quiescent and serve as a reservoir for maintenance of lifelong hematopoiesis. Over recent years, it has become increasingly clear that HSC quiescence is not only due to intrinsic properties, but is also mediated by cognate interactions between HSCs and surrounding cells within micro-anatomical sites called “niches”. This hematopoietic/stromal crosstalk model also applies to more mature progenitors such as B cell progenitors, which are thought to reside in distinct “niches”. This prompted many research teams to search for specific molecular mechanisms supporting leuko-stromal crosstalk in the bone marrow and acting at specific stage of differentiation to regulate hematopoietic homeostasis. Here, we review recent data on adhesion mechanisms involved in HSCs and B cell progenitors interactions with surrounding bone marrow stromal cells. PMID:26495446

  19. CCR4 is critically involved in effective antitumor immunity in mice bearing intradermal B16 melanoma.

    PubMed

    Matsuo, Kazuhiko; Itoh, Tatsuki; Koyama, Atsushi; Imamura, Reira; Kawai, Shiori; Nishiwaki, Keiji; Oiso, Naoki; Kawada, Akira; Yoshie, Osamu; Nakayama, Takashi

    2016-08-01

    CCR4 is a major chemokine receptor expressed by Treg cells and Th17 cells. While Treg cells are known to suppress antitumor immunity, Th17 cells have recently been shown to enhance the induction of antitumor cytotoxic T lymphocytes. Here, CCR4-deficient mice displayed enhanced tumor growth upon intradermal inoculation of B16-F10 melanoma cells. In CCR4-deficient mice, while IFN-γ+CD8+ effector T cells were decreased in tumor sites, IFN-γ+CD8+ T cells and Th17 cells were decreased in regional lymph nodes. In wild-type mice, CD4+IL-17A+ cells, which were identified as CCR4+CD44+ memory Th17, were found to be clustered around dendritic cells expressing MDC/CCL22, a ligand for CCR4, in regional lymph nodes. Compound 22, a CCR4 antagonist, also enhanced tumor growth and decreased Th17 cells in regional lymph nodes in tumor-bearing mice treated with Dacarbazine. In contrast, CCR6 deficiency did not affect the tumor growth and the numbers of Th17 cells in regional lymph nodes. These findings indicate that CCR4 is critically involved in regional lymph node DC-Th17 cell interactions that are necessary for Th17 cell-mediated induction of antitumor CD8+ effector T cells in mice bearing B16 melanoma. PMID:27132989

  20. Involvement of cathepsin B in mitochondrial apoptosis by p-phenylenediamine under ambient UV radiation.

    PubMed

    Goyal, Shruti; Amar, Saroj Kumar; Dubey, Divya; Pal, Manish Kumar; Singh, Jyoti; Verma, Ankit; Kushwaha, Hari Narayan; Ray, Ratan Singh

    2015-12-30

    Paraphenylenediamine (PPD), a derivative of paranitroaniline has been most commonly used as an ingredient of oxidative hair dye and permanent tattoos. We have studied the phototoxic potential of PPD under ambient ultraviolet radiation. PPD is photodegraded and form a novel photoproduct under UV A exposure. PPD shows a concentration dependent decrease in cell viability of human Keratinocyte cells (HaCaT) through MTT and NRU test. Significant intracellular ROS generation was measured by DCFDA assay. It caused an oxidative DNA damage via single stranded DNA breaks, micronuclei and CPD formation. Both lysosome and mitochondria is main target for PPD induced apoptosis which was proved through lysosomal destabilization and release of cathepsin B by immunofluorescence, real time PCR and western blot analysis. Cathepsin B process BID to active tBID which induces the release of cytochrome C from mitochondria. Mitochondrial depolarization was reported through transmission electron microscopy. The cathepsin inhibitor reduced the release of cytochrome C in PPD treated cells. Thus study suggests that PPD leads to apoptosis via the involvement of lysosome and mitochondria both under ambient UV radiation. Therefore, photosensitizing nature of hair dye ingredients should be tested before coming to market as a cosmetic product for the safety of human beings. PMID:26223015

  1. Mutations in the classical swine fever virus NS4B protein affects virulence in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NS4B is one of the non-structural proteins of Classical Swine Fever Virus (CSFV), the etiological agent of a severe, highly lethal disease of swine. Protein domain analysis of the predicted amino acid sequence of the NS4B protein of highly pathogenic CSFV strain Brescia (BICv) identified a Toll/Inte...

  2. X-linked adrenal hypoplasia congenita: clinical and follow-up findings of two kindreds, one with a novel NR0B1 mutation.

    PubMed

    Pereira, Bernardo Dias; Pereira, Iris; Portugal, Jorge Ralha; Gonçalves, João; Raimundo, Luísa

    2015-04-01

    X-linked adrenal hypoplasia congenita typically manifests as primary adrenal insufficiency in the newborn age and hypogonadotropic hypogonadism in males, being caused by mutations in NR0B1 gene. We present the clinical and follow-up findings of two kindreds with NR0B1 mutations. The proband of kindred A had a diagnosis of primary adrenal insufficiency when he was a newborn. Family history was relevant for a maternal uncle death at the newborn age. Beyond 2 year-old steroid measurements rendered undetectable and delayed bone age was noticed. Molecular analysis of NR0B1 gene revealed a previously unreported mutation (c.1084A>T), leading to a premature stop codon, p.Lys362*, in exon 1. His mother and sister were asymptomatic carriers. At 14 year-old he had 3 mL of testicular volume and biochemical surveys (LH < 0.1 UI/L, total testosterone < 10 ng/dL) concordant with hypogonadotrophic hypogonadism. Kindred B had two males diagnosed with adrenal insufficiency at the newborn age. By 3 year-old both siblings had undetectable androgen levels and delayed bone age. NR0B1 molecular analysis identified a nonsense mutation in both cases, c.243C>G; p.Tyr81*, in exon 1. Their mother and sister were asymptomatic carriers. At 14 year-old (Tanner stage 1) hypothalamic-pituitary-gonadal axis evaluation in both males (LH < 0.1UI/L, total testosterone < 10 ng/dL) confirmed hypogonadotropic hypogonadism. In conclusion, biochemical profiles, bone age and an X-linked inheritance led to suspicion of NR0B1 mutations. Two nonsense mutations were detected in both kindreds, one previously unreported (c.1084A>T; p.Lys362*). Mutation identification allowed the timely institution of testosterone in patients at puberty and an appropriate genetic counselling for relatives.

  3. X-linked adrenal hypoplasia congenita: clinical and follow-up findings of two kindreds, one with a novel NR0B1 mutation.

    PubMed

    Pereira, Bernardo Dias; Pereira, Iris; Portugal, Jorge Ralha; Gonçalves, João; Raimundo, Luísa

    2015-04-01

    X-linked adrenal hypoplasia congenita typically manifests as primary adrenal insufficiency in the newborn age and hypogonadotropic hypogonadism in males, being caused by mutations in NR0B1 gene. We present the clinical and follow-up findings of two kindreds with NR0B1 mutations. The proband of kindred A had a diagnosis of primary adrenal insufficiency when he was a newborn. Family history was relevant for a maternal uncle death at the newborn age. Beyond 2 year-old steroid measurements rendered undetectable and delayed bone age was noticed. Molecular analysis of NR0B1 gene revealed a previously unreported mutation (c.1084A>T), leading to a premature stop codon, p.Lys362*, in exon 1. His mother and sister were asymptomatic carriers. At 14 year-old he had 3 mL of testicular volume and biochemical surveys (LH < 0.1 UI/L, total testosterone < 10 ng/dL) concordant with hypogonadotrophic hypogonadism. Kindred B had two males diagnosed with adrenal insufficiency at the newborn age. By 3 year-old both siblings had undetectable androgen levels and delayed bone age. NR0B1 molecular analysis identified a nonsense mutation in both cases, c.243C>G; p.Tyr81*, in exon 1. Their mother and sister were asymptomatic carriers. At 14 year-old (Tanner stage 1) hypothalamic-pituitary-gonadal axis evaluation in both males (LH < 0.1UI/L, total testosterone < 10 ng/dL) confirmed hypogonadotropic hypogonadism. In conclusion, biochemical profiles, bone age and an X-linked inheritance led to suspicion of NR0B1 mutations. Two nonsense mutations were detected in both kindreds, one previously unreported (c.1084A>T; p.Lys362*). Mutation identification allowed the timely institution of testosterone in patients at puberty and an appropriate genetic counselling for relatives. PMID:25993682

  4. Allele-specific polymerase chain reaction for detection of a mutation in the relax circular DNA and the covalently closed circular DNA of hepatitis B virus.

    PubMed

    Pan, Wan-Long; Hu, Jie-Li; Fang, Yan; Luo, Qiang; Xu, Ge; Xu, Lei; Jing, Zhou-Hong; Shan, Xue-Feng; Zhu, Yan-Ling; Huang, Ai-Long

    2013-12-01

    The relax circle DNA (rcDNA) sequence and the covalently closed circle DNA (cccDNA) sequence in hepatitis B virus (HBV) are crucial regions for HBV infections. To analyze mutations in rcDNA and cccDNA, DNA sequencing is often used, although it is time-consuming and expensive. Herein, we report a simple, economic, albeit accurate allele-specific polymerase chain reaction (AS-PCR) to detect mutations in these regions of HBV. This method can be extensively used to screen for mutations at specific positions of HBV genome.

  5. That's not it, either-neither polymorphisms in PHOX2B nor in MIF are involved in sudden infant death syndrome (SIDS).

    PubMed

    Poetsch, Micaela; Todt, Rebecca; Vennemann, Mechtild; Bajanowski, Thomas

    2015-09-01

    The occurrence of sudden infant death syndrome (SIDS) has been linked to several genetic risk factors, e.g. genes involved in the neuroadrenergic system, variations in serotonin reporter genes or mutations in long-QT syndrome genes. Additionally, polymorphisms in genes with impact in sleep disorder syndromes have been proposed to be of importance as genetic risk factors for SIDS. In this study, we investigated the polyalanine length variation of PHOX2B and the -794 CATT repeat in the MIF promoter region as well as single nucleotide polymorphisms (rs28462174, rs28727473, rs16853571, rs755622, rs12485058, rs12485068, rs4822444, rs4822445, rs4822446, rs4822447 and rs2012124) in both genes in 278 SIDS cases and 240 controls. No significant differences were found in allele distribution of neither length polymorphisms nor single nucleotide polymorphisms between SIDS cases or controls. Therefore, an importance of these variations for the occurrence of SIDS could be ruled out. PMID:26104808

  6. [Clinical feature and ATP8B1 mutation analysis of a patient with progressive familial intrahepatic cholestasis type I].

    PubMed

    Cheng, Ying; Guo, Li; Song, Yuan-Zong

    2016-08-01

    Progressive familial intrahepatic cholestasis type I (PFIC1) is an autosomal recessive disorder caused by biallelic mutations of ATP8B1 gene, with progressive cholestasis as the main clinical manifestation. This paper reports the clinical and genetic features of a PFIC1 patient definitely diagnosed by ATP8B1 genetic analysis. The patient, a boy aged 14 months, was referred to the hospital with the complaint of jaundiced skin and sclera over 10 months. The patient had been managed in different hospitals, but the therapeutic effects were unsatisfactory due to undetermined etiology. On physical examination, hepatosplenomegaly was discovered in addition to jaundice of the skin and sclera. The liver was palpable 4 cm below the right subcostal margin and 2 cm below the xiphoid while the spleen 2 cm below the left subcostal margin. The liver function test revealed elevated levels of serum total bile acids, bilirubin, and transaminases; however, the γ-glutamyl transferase level was normal. The diagnosis was genetic cholestasis of undetermined origin. At the age of 1 year and 8 months, a Roux-en-Y cholecystocolonic bypass operation was performed, and thereafter the jaundice disappeared. At 5 years and 1 month, via whole genome sequencing analysis and Sanger sequencing confirmation, the boy was found to be a homozygote of mutation c.2081T>A(p.I694N) of ATP8B1 gene, and thus PFIC1 was definitely diagnosed. The boy was followed up until he was 6 years, and jaundice did not recur, but the long-term outcome remains to be observed. PMID:27530795

  7. Anterior Segment Dysgenesis and Early-Onset Glaucoma in nee Mice with Mutation of Sh3pxd2b

    PubMed Central

    Mao, Mao; Hedberg-Buenz, Adam; Koehn, Demelza; John, Simon W. M.

    2011-01-01

    Purpose. Mutations in SH3PXD2B cause Frank-Ter Haar syndrome, a rare condition characterized by congenital glaucoma, as well as craniofacial, skeletal, and cardiac anomalies. The nee strain of mice carries a spontaneously arising mutation in Sh3pxd2b. The purpose of this study was to test whether nee mice develop glaucoma. Methods. Eyes of nee mutants and strain-matched controls were comparatively analyzed at multiple ages by slit lamp examination, intraocular pressure recording, and histologic analysis. Cross sections of the optic nerve were analyzed to confirm glaucomatous progression. Results. Slit lamp examination showed that, from an early age, nee mice uniformly exhibited severe iridocorneal adhesions around the entire circumference of the eye. Presumably as a consequence of aqueous humor outflow blockage, they rapidly developed multiple indices of glaucoma. By 3 to 4 months of age, they exhibited high intraocular pressure (30.8 ± 12.5 mm Hg; mean ± SD), corneal opacity, and enlarged anterior chambers. Although histologic analyses at P17 did not reveal any indices of damage, similar analysis at 3 to 4 months of age revealed a course of progressive retinal ganglion cell loss, optic nerve head excavation, and axon loss. Conclusions. Eyes of nee mice exhibit anterior segment dysgenesis and early-onset glaucoma. Because SH3PXD2B is predicted to be a podosome adaptor protein, these findings implicate podosomes in normal development of the iridocorneal angle and the genes influencing podosomes as candidates in glaucoma. Because of the early-onset, high-penetrance glaucoma, nee mice offer many potential advantages as a new mouse model of the disease. PMID:21282566

  8. Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation.

    PubMed

    Yan, Hong Qiong; Huang, Xiao Bo; Ke, Shi Zhong; Jiang, Yi Na; Zhang, Yue Hua; Wang, Yi Nan; Li, Juan; Gao, Feng Guang

    2014-09-01

    Although it is known that ataxia-telangiectasia mutated (ATM) and interleukin 6 (IL-6) contribute to multiple drug resistance (MDR) in tumor chemotherapy, the exact role of ATM activation in MDR resulting from increased IL-6 expression is still unclear. In the present study, we demonstrate that the activation of the ATM-NF-kappaB pathway, resulting from increased IL-6 expression, plays a central role in augmented chemoresistance in lung cancer cell lines. This result was supported by the increased expressions of Bcl-2, Mcl-1, Bcl-xl, and the upregulation of MDR-associated protein ABCG2. The higher level of IL-6 reveals not only higher ATM/NF-kappaB activity but also increased expressions of ABCG2, Bcl-2, Mcl-1 and Bcl-xl. Most im