Science.gov

Sample records for mutation involves b

  1. Identification of novel mutations in the VPS33B gene involved in arthrogryposis, renal dysfunction, and cholestasis syndrome.

    PubMed

    Seo, S H; Hwang, S M; Ko, J M; Ko, J S; Hyun, Y J; Cho, S I; Park, H; Kim, S Y; Seong, M-W; Park, S S

    2015-07-01

    Arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome is an autosomal recessive disorder caused by mutations in the VPS33B and VIPAS39. Here, we report novel mutations identified in four patients with ARC syndrome. We analyzed the entire coding regions of the VPS33B and VIPAS39 genes by direct sequencing. To detect novel splice site mutations, mRNA transcripts were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and sequencing. All four patients had compound heterozygous variants in the VPS33B gene. One patient had a previously reported splice site variant with unknown significance, c.239+5G>A, and a novel nonsense mutation, c.621G>A. The other three patients had the c.403+2T>A mutation, and each of them carried one of the splice site variants, c.239+5G>A or c.499-11G>A. c.239+5G>A and c.499-11G>A created novel splice sites which resulted in abnormal transcripts. No significant VIPAS39 mutation was detected in all patients. In patients suspected with ARC syndrome, mutation analysis of the VPS33B gene should be employed as a primary diagnostic test before performing invasive testing procedures such as organ biopsies. Performing mRNA analysis can be useful in predicting the pathogenic phenotype when the mutation seems to affect a normal splicing mechanism. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Suppression of a Deletion Mutation in the Gene Encoding Essential PBP2b Reveals a New Lytic Transglycosylase Involved in Peripheral Peptidoglycan Synthesis in Streptococcus pneumoniae D39

    PubMed Central

    Tsui, Ho-Ching Tiffany; Zheng, Jiaqi J.; Magallon, Ariel N.; Ryan, John D.; Yunck, Rachel; Rued, Britta E.; Bernhardt, Thomas G.; Winkler, Malcolm E.

    2016-01-01

    SUMMARY In ellipsoid-shaped ovococcus bacteria, such as the pathogen Streptococcus pneumoniae (pneumococcus), side-wall (peripheral) peptidoglycan (PG) synthesis emanates from midcells and is catalyzed by the essential class B penicillin-binding protein PBP2b transpeptidase (TP). We report that mutations that inactivate the pneumococcal YceG-domain protein, Spd_1346 (renamed MltG), remove the requirement for PBP2b. ΔmltG mutants in unencapsulated strains accumulate inactivation mutations of class A PBP1a, which possesses TP and transglycosylase (TG) activities. The “synthetic viable” genetic relationship between Δpbp1a and ΔmltG mutations extends to essential ΔmreCD and ΔrodZ mutations that misregulate peripheral PG synthesis. Remarkably, the single MltG(Y488D) change suppresses the requirement for PBP2b, MreCD, RodZ, and RodA. Structural modeling and comparisons, catalytic-site changes, and an interspecies chimera indicate that pneumococcal MltG is the functional homologue of the recently reported MltG endo-lytic transglycosylase of Escherichia coli. Depletion of pneumococcal MltG or mltG(Y488D) increases sphericity of cells, and MltG localizes with peripheral PG synthesis proteins during division. Finally, growth of Δpbp1a ΔmltG or mltG(Y488D) mutants depends on induction of expression of the WalRK TCS regulon of PG hydrolases. These results fit a model in which MltG releases anchored PG glycan strands synthesized by PBP1a for crosslinking by a PBP2b:RodA complex in peripheral PG synthesis. PMID:26933838

  3. TFAP2B mutation and dental anomalies

    PubMed Central

    Tanasubsinn, Natchaya; Sittiwangkul, Rekwan; Pongprot, Yupada; Kawasaki, Katsushige; Ohazama, Atsushi; Sastraruji, Thanapat; Kaewgahya, Massupa; Kantaputra, Piranit Nik

    2017-01-01

    Mutations inTFAP2B has been reported in patients with isolated patent ductus arteriosus (PDA) and Char syndrome. We performed mutation analysis of TFAP2B in 43 patients with isolated PDA, 7 patients with PDA with other congenital heart defects and 286 patients with isolated tooth agenesis with or without other dental anomalies. The heterozygous c.1006G>A mutation was identified in 20 individuals. Those mutation carriers consisted of 1 patient with term PDA (1/43), 16 patients with isolated tooth agenesis with or without other dental anomalies (16/286; 5.6%), 1 patient with PDA and severe valvular aortic stenosis and tooth agenesis (1/4) and 2 normal controls (2/100; 1%). The mutation is predicted to cause an amino-acid substitution p.Val336Ile in the TFAP2B protein. Tfap2b expression during early mouse tooth development supports the association of TFAP2B mutation and dental anomalies. It is hypothesized that this incidence might have been the result of founder effect. Here we report for the first time that TFAP2B mutation is associated with tooth agenesis, microdontia, supernumerary tooth and root maldevelopment. In addition, we also found that TFAP2B mutations, the common causes of PDA in Caucasian, are not the common cause of PDA in Thai population. PMID:28381879

  4. Charmless B decays involving baryons

    NASA Astrophysics Data System (ADS)

    Gronau, Michael; Rosner, Jonathan L.

    1988-02-01

    Predictions are made for the fraction of B-meson decays involving specific final states of NN¯+nπ (n>=0), as functions of (a) decay dynamics, (b) models for multipion production, (c) the isospin of the final state, and (d) the ratio ||Vbu/Vbc|| of Kobayashi-Maskawa matrix elements. From recent observations of B+-->pp¯π+(+c.c.) and B0-->pp¯π+π- by the ARGUS Collaboration, it is concluded that ||Vbu/Vbc||>~0.08, similar to the ARGUS Collaboration's own estimate of 0.07. However, a more likely value for this ratio is near its present experimental upper limit. Predictions are made for further final states in NN¯+nπ and in other charmless B decays. We also comment briefly on prospects for observing CP violation in B-->NN¯+nπ.

  5. Analysis of mutational signatures in exomes from B-cell lymphoma cell lines suggest APOBEC3 family members to be involved in the pathogenesis of primary effusion lymphoma

    DOE PAGES

    Wagener, R.; Alexandrov, L. B.; Montesinos-Rongen, M.; ...

    2015-02-04

    Here, primary effusion lymphoma (PEL) is a rare large B-cell neoplasm particularly affecting immunodeficient hosts with an increased incidence in young or middle-aged males infected with the HIV.1 The clinical outcome of patients with PEL is unfavorable with a median survival of <6 months.1 PEL has been closely associated with human herpes virus 8 (HHV8, previously called Kaposi sarcoma herpesvirus) infection.1 In some cases a coinfection of HHV8 with the Epstein–Barr Virus (EBV) has been described.1 HHV8 encodes various genes homologous to cellular genes that have proliferative and anti-apoptotic functions.2 Although HHV8 is supposed to be a major driver ofmore » PEL, it alone is not sufficient for a full-blown lymphomagenesis.2 PEL usually shows complex karyotypes with many chromosomal aberrations.3 This chromosomal complexity might be driven by the viral infection and lead to genetic alterations cooperating with HHV8 in PEL lymphomagenesis.4« less

  6. Analysis of mutational signatures in exomes from B-cell lymphoma cell lines suggest APOBEC3 family members to be involved in the pathogenesis of primary effusion lymphoma

    SciTech Connect

    Wagener, R.; Alexandrov, L. B.; Montesinos-Rongen, M.; Schlesner, M.; Haake, A.; Drexler, H. G.; Richter, J.; Bignell, G. R.; McDermott, U.; Siebert, R.

    2015-02-04

    Here, primary effusion lymphoma (PEL) is a rare large B-cell neoplasm particularly affecting immunodeficient hosts with an increased incidence in young or middle-aged males infected with the HIV.1 The clinical outcome of patients with PEL is unfavorable with a median survival of <6 months.1 PEL has been closely associated with human herpes virus 8 (HHV8, previously called Kaposi sarcoma herpesvirus) infection.1 In some cases a coinfection of HHV8 with the Epstein–Barr Virus (EBV) has been described.1 HHV8 encodes various genes homologous to cellular genes that have proliferative and anti-apoptotic functions.2 Although HHV8 is supposed to be a major driver of PEL, it alone is not sufficient for a full-blown lymphomagenesis.2 PEL usually shows complex karyotypes with many chromosomal aberrations.3 This chromosomal complexity might be driven by the viral infection and lead to genetic alterations cooperating with HHV8 in PEL lymphomagenesis.4

  7. B Decays Involving Light Mesons

    SciTech Connect

    Eschrich, Ivo Gough; /UC, Irvine

    2007-01-09

    Recent BABAR results for decays of B-mesons to combinations of non-charm mesons are presented. This includes B decays to two vector mesons, B {yields} {eta}{prime}({pi}, K, {rho}) modes, and a comprehensive Dalitz Plot analysis of B {yields} KKK decays.

  8. WNT10B mutations in human obesity

    PubMed Central

    Christodoulides, C.; Scarda, A.; Granzotto, M.; Milan, G.; Dalla Nora, E.; Keogh, J.; De Pergola, G.; Stirling, H.; Pannacciulli, N.; Sethi, J. K.; Federspil, G.; Vidal-Puig, A.; Farooqi, I. S.; O’Rahilly, S.; Vettor, R.

    2015-01-01

    Aims/hypothesis Recent studies suggest that wingless-type MMTV integration site family, member 10B (WNT10B) may play a role in the negative regulation of adipocyte differentiation in vitro and in vivo. In order to determine whether mutations in WNT10B contribute to human obesity, we screened two independent populations of obese subjects for mutations in this gene. Subjects and methods We studied 96 subjects with severe obesity of early onset (less than 10 years of age) from the UK Genetics of Obesity Study and 115 obese Italian subjects of European origin. Results One proband with early-onset obesity was found to be heterozygous for a C256Y mutation, which abrogated the ability of WNT10B to activate canonical WNT signalling and block adipogenesis and was not found in 600 control alleles. All relatives of the proband who carried this allele were either overweight or obese. Three other rare missense variants were found in obese probands, but these did not clearly cosegregate with obesity in family studies and one (P301S), which was found in three unrelated subjects with early-onset obesity, had normal functional properties. Conclusions/interpretation These mutations represent the first naturally occurring missense variants of WNT10B. While the pedigree analysis in the case of C256Y WNT10B does not provide definitive proof of a causal link of this variant with obesity, the finding of a non-functioning WNT10B allele in a human family affected by obesity should encourage further study of this gene in other obese populations. PMID:16477437

  9. Mutation analysis of the gene involved in adrenoleukodystrophy

    SciTech Connect

    Oost, B.A. van; Ligtenberg, M.J.L.; Kemp, S.; Bolhuis, P.A.

    1994-09-01

    A gene responsible for the X-linked genetic disorder adrenoleukodystrophy (ALD) that is characterized by demyelination of the nervous system and adrenocortical insufficiency has been identified by positional cloning. The gene encodes an ATP-binding transporter which is located in the peroxisomal membrane. Deficiency of the gene leads to accumulation of unsaturated very long chain fatty acids due to impaired peroxisomal {beta}-oxidation. A systematic analysis of the open reading frame of the ALD gene unraveled the mutations in 28 different families using reverse transcriptase-PCR followed by direct sequencing. No entire gene deletions or drastic promoter mutations have been detected. Only in one family did the mutation involved multiple exons. The remaining mutations were subtle alterations leading to missense (about 50%) or nonsense mutations, frameshifts or splice acceptor site defects. In one patient a single codon was missing. Mutations affecting a single amino acid were concentrated in the region between the third and fourth putative membrane spanning fragments and in the ATP-binding domain. This overview of mutations aids in the determination of structural and functional important regions and facilitates the screening for mutations in other ALD patients. The detection of mutations in virtually all ALD families tested indicates that the isolated gene is the only gene responsible for ALD located in Xq28.

  10. Germline mutations predisposing to diffuse large B-cell lymphoma

    PubMed Central

    Leeksma, O C; de Miranda, N F; Veelken, H

    2017-01-01

    Genetic studies of diffuse large B-cell lymphomas (DLBCLs) in humans have revealed numerous targets of somatic mutations and an increasing number of potentially relevant germline alterations. The latter often affect genes involved in DNA repair and/or immune function. In general, defects in these genes also predispose to other conditions. Knowledge of these mutations can lead to disease-preventing measures in the patient and relatives thereof. Conceivably, these germline mutations will be taken into account in future therapy of the lymphoma. In other hematological malignancies, mutations originally found as somatic aberrations have also been shown to confer predisposition to these diseases, when occurring in the germline. Further interrogations of the genome in DLBCL patients are therefore expected to reveal additional hereditary predisposition genes. Our review shows that germline mutations have already been described in over one-third of the genes that are somatically mutated in DLBCL. Whether such germline mutations predispose carriers to DLBCL is an open question. Symptoms of the inherited syndromes associated with these genes range from anatomical malformations to intellectual disability, immunodeficiencies and malignancies other than DLBCL. Inherited or de novo alterations in protein-coding and non-coding genes are envisioned to underlie this lymphoma. PMID:28211887

  11. [Obesity based on mutation of genes involved in energy balance].

    PubMed

    Hainerová, I

    2007-01-01

    Within the last decade an intensive research led to an identification of several genes which are involved in a regulation of energy balance. In most cases, carriers of these gene mutations do not exhibit further characteristic phenotypic features except for a severe obesity. Obesity based on mutation of one gene product is called monogenic obesity. Mutations in genes for leptin, leptin receptor, proopiomelanocortin, prohormone convertase 1, melanocortin 4 and 3 receptor disrupt the physiological humoral signalization between peripheral signals and the hypothalamic centres of satiety and hunger. Defects of all above mentioned genes lead to phenotype of abnormal eating behaviour followed by a development of severe early-onset obesity. Mutations of melanocortin 4 receptor gene represent the most common cause of monogenic obesity because they are detected in almost 6 % children with early-onset severe obesity. Mutations of the other genes involved in energy homeostasis are very rare. Although these mutations are sporadic we assume that further research of monogenic forms of obesity might lead to our understanding of physiology and pathophysiology of regulation of the energy homeostasis and eating behaviour. Additionally, they may open new approach to the management of eating behaviour and to the treatment of obesity.

  12. Mutation Analysis of B3GALTL in Peters Plus Syndrome

    PubMed Central

    Reis, Linda M.; Tyler, Rebecca C.; Abdul-Rahman, Omar; Trapane, Pamela; Wallerstein, Robert; Broome, Diane; Hoffman, Jodi; Khan, Aneal; Paradiso, Christina; Ron, Nitin; Bergner, Amanda; Semina, Elena V.

    2009-01-01

    Peters Plus syndrome comprises ocular anterior segment dysgenesis (most commonly Peters anomaly), short stature, hand anomalies, distinctive facial features, and often other additional defects and is inherited in an autosomal-recessive pattern. Mutations in the β1,3-glucosyltransferase gene (B3GALTL) were recently reported in 20 out of 20 patients with Peters Plus syndrome. In our study, B3GALTL was examined in four patients with typical Peters Plus syndrome and four patients that demonstrated a phenotypic overlap with this condition. Mutations in B3GALTL were identified in all four patients with typical Peters Plus syndrome, while no mutations were found in the remaining four patients that demonstrated some but not all characteristic features of the syndrome. The previously reported common mutation, c.660+1G>A, accounted for 75% of the mutant alleles in our Peters Plus syndrome population. In addition, two new mutant alleles, c.459+1G>A and c.230insT, were identified and predicted to result in truncated protein products. These data confirm an important role for B3GALTL in causing typical Peters Plus syndrome, and suggest that this gene may not be implicated in syndromic cases that involve Peters’ anomaly but lack other classic features of this complex condition. PMID:18798333

  13. Viral fitness: relation to drug resistance mutations and mechanisms involved: nucleoside reverse transcriptase inhibitor mutations.

    PubMed

    Weber, Jan; Henry, Kenneth R; Arts, Eric J; Quiñones-Mateu, Miguel E

    2007-03-01

    Nucleoside and nucleotide reverse transcriptase inhibitors constitute the backbone of highly active antiretroviral therapy in the treatment of HIV-1 infection. One of the major obstacles in achieving the long-term efficacy of anti-HIV-1 therapy is the development of resistance. The advent of resistance mutations is usually accompanied by a change in viral replicative fitness. This review focuses on the most common nucleoside reverse transcriptase inhibitor-associated mutations and their effects on HIV-1 replicative fitness. Recent studies have explained the two main mechanisms of resistance to nucleoside reverse transcriptase inhibitors and their role in HIV-1 replicative fitness. The first involves mutations directly interfering with binding or incorporation and seems to impact replicative fitness more adversely than the second mechanism, which involves enhanced excision of the newly incorporated analogue. Further studies have helped explain the antagonistic effects between amino acid substitutions, K65R, L74V, M184V, and thymidine analogue mutations, showing how viral replicative fitness influences the evolution of thymidine analogue resistance pathways. Nucleoside reverse transcriptase inhibitor resistance mutations impact HIV-1 replicative fitness to a lesser extent than protease resistance mutations. The monitoring of viral replicative fitness may help in the management of HIV-1 infection in highly antiretroviral-experienced individuals.

  14. ARID1B-mediated disorders: Mutations and possible mechanisms

    PubMed Central

    Sim, Joe C. H.; White, Susan M; Lockhart, Paul J.

    2015-01-01

    Summary Mutations in the gene encoding AT-rich interactive domain-containing protein 1B (ARID1B) were recently associated with multiple syndromes characterized by developmental delay and intellectual disability, in addition to nonsyndromic intellectual disability. While the majority of ARID1B mutations identified to date are predicted to result in haploinsufficiency, the underlying pathogenic mechanisms have yet to be fully understood. ARID1B is a DNA-binding subunit of the Brahma-associated factor chromatin remodelling complexes, which play a key role in the regulation of gene activity. The function of remodelling complexes can be regulated by their subunit composition, and there is some evidence that ARID1B is a component of the neuron-specific chromatin remodelling complex. This complex is involved in the regulation of stem/progenitor cells exiting the cell cycle and differentiating into postmitotic neurons. Recent research has indicated that alterations in the cell cycle contribute to the underlying pathogenesis of syndromes associated with ARID1B haploinsufficiency in fibroblasts derived from affected individuals. This review describes studies linking ARID1B to neurodevelopmental disorders and it summarizes the function of ARID1B to provide insights into the pathogenic mechanisms underlying ARID1B-mediated disorders. In conclusion, ARID1B is likely to play a key role in neurodevelopment and reduced levels of wild-type protein compromise normal brain development. Additional studies are required to determine the mechanisms by which impaired neural development contributes to the intellectual disability and speech impairment that are consistently observed in individuals with ARID1B haploinsufficiency. PMID:25674384

  15. Characterization of transcription factor AP-2 beta mutations involved in familial isolated patent ductus arteriosus suggests haploinsufficiency

    PubMed Central

    Bhattacharya, Shoumo; Chen, Yiwei; Hu, Jingjing; Li, Fen

    2015-01-01

    Background Patent ductus arteriosus (PDA) is one of the most common congenital heart defects. Transcription factor AP-2 beta (TFAP2B) mutations are associated with the Char syndrome, a disorder associated with PDA, and with facial and fingers abnormalities. Recently, we identified two TFAP2B mutations in two families without Char syndrome phenotype, c.601+5G>A and c.435_438delCCGG, and these TFAP2B mutations were associated with familial isolated PDA. The aim of this study was to identify the effects of these mutations on TFAP2B function. Methods Plasmids containing the wild-type or mutated TFAP2B were constructed and transfected in cells. Plasmids containing the TFAP2B coactivator, Cpb/p300-interacting transactivator 2 (CITED2), was also transfected. TFAP2B expression was detected by luciferase expression and by Western blot analysis. Results These mutations resulted in loss of transactivation function, which could not be improved by Cpb/p300-interacting transactivator 2. The c.601+5G>A mutated gene did not express any protein, whereas the c.435_438delCCGG mutation did not impact the transactivation function activated by the wild-type TFAP2B. Conclusions These results suggest that a haploinsufficiency effect of TFAP2B could be involved in familial isolated PDA. PMID:24507797

  16. Frontotemporal Dementia Caused by CHMP2B Mutations

    PubMed Central

    Isaacs, A.M; Johannsen, P; Holm, I; Nielsen, J.E; Consortium, FReJA

    2011-01-01

    CHMP2B mutations are a rare cause of autosomal dominant frontotemporal dementia (FTD). The best studied example is frontotemporal dementia linked to chromosome 3 (FTD-3) which occurs in a large Danish family, with a further CHMP2B mutation identified in an unrelated Belgian familial FTD patient. These mutations lead to C-terminal truncations of the CHMP2B protein and we will review recent advances in our understanding of the molecular effects of these mutant truncated proteins on vesicular fusion events within the endosome-lysosome and autophagy degradation pathways. We will also review the clinical features of FTD caused by CHMP2B truncation mutations as well as new brain imaging and neuropathological findings. Finally, we collate the current data on CHMP2B missense mutations, which have been reported in FTD and motor neuron disease. PMID:21222599

  17. Frontotemporal dementia caused by CHMP2B mutations.

    PubMed

    Isaacs, A M; Johannsen, P; Holm, I; Nielsen, J E

    2011-05-01

    CHMP2B mutations are a rare cause of autosomal dominant frontotemporal dementia (FTD). The best studied example is frontotemporal dementia linked to chromosome 3 (FTD-3) which occurs in a large Danish family, with a further CHMP2B mutation identified in an unrelated Belgian familial FTD patient. These mutations lead to C-terminal truncations of the CHMP2B protein and we will review recent advances in our understanding of the molecular effects of these mutant truncated proteins on vesicular fusion events within the endosome-lysosome and autophagy degradation pathways. We will also review the clinical features of FTD caused by CHMP2B truncation mutations as well as new brain imaging and neuropathological findings. Finally, we collate the current data on CHMP2B missense mutations, which have been reported in FTD and motor neuron disease.

  18. The CDC Hemophilia B mutation project mutation list: a new online resource.

    PubMed

    Li, Tengguo; Miller, Connie H; Payne, Amanda B; Craig Hooper, W

    2013-11-01

    Hemophilia B (HB) is caused by mutations in the human gene F9. The mutation type plays a pivotal role in genetic counseling and prediction of inhibitor development. To help the HB community understand the molecular etiology of HB, we have developed a listing of all F9 mutations that are reported to cause HB based on the literature and existing databases. The Centers for Disease Control and Prevention (CDC) Hemophilia B Mutation Project (CHBMP) mutation list is compiled in an easily accessible format of Microsoft Excel and contains 1083 unique mutations that are reported to cause HB. Each mutation is identified using Human Genome Variation Society (HGVS) nomenclature standards. The mutation types and the predicted changes in amino acids, if applicable, are also provided. Related information including the location of mutation, severity of HB, the presence of inhibitor, and original publication reference are listed as well. Therefore, our mutation list provides an easily accessible resource for genetic counselors and HB researchers to predict inhibitors. The CHBMP mutation list is freely accessible at http://www.cdc.gov/hemophiliamutations.

  19. A highly conserved interaction involving the middle residue of the SXN active-site motif is crucial for function of class B penicillin-binding proteins: mutational and computational analysis of PBP 2 from N. gonorrhoeae.

    PubMed

    Tomberg, Joshua; Temple, Brenda; Fedarovich, Alena; Davies, Christopher; Nicholas, Robert A

    2012-04-03

    Insertion of an aspartate residue at position 345a in penicillin-binding protein 2 (PBP 2), which lowers the rate of penicillin acylation by ~6-fold, is commonly observed in penicillin-resistant strains of Neisseria gonorrhoeae. Here, we show that insertions of other amino acids also lower the penicillin acylation rate of PBP 2, but none supported growth of N. gonorrhoeae, indicating loss of essential transpeptidase activity. The Asp345a mutation likely acts by altering the interaction between its adjacent residue, Asp346, in the β2a-β2d hairpin loop and Ser363, the middle residue of the SXN active site motif. Because the adjacent aspartate creates ambiguity in the position of the insertion, we also examined if insertions at position 346a could confer decreased susceptibility to penicillin. However, only aspartate insertions were identified, indicating that only an Asp-Asp couple can confer resistance and retain transpeptidase function. The importance of the Asp346-Ser363 interaction was assessed by mutation of each residue to Ala. Although both mutants lowered the acylation rate of penicillin G by 5-fold, neither could support growth of N. gonorrhoeae, again indicating loss of transpeptidase function. Interaction between a residue in the equivalent of the β2a-β2d hairpin loop and the middle residue of the SXN motif is observed in crystal structures of other Class B PBPs, and its importance is also supported by multisequence alignments. Overall, these results suggest that this conserved interaction can be manipulated (e.g., by insertion) to lower the acylation rate by β-lactam antibiotics and increase resistance, but only if essential transpeptidase activity is preserved.

  20. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity

    NASA Astrophysics Data System (ADS)

    Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit

    2016-10-01

    Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.

  1. Targetable activating mutations are very frequent in GCB and ABC diffuse large B-cell lymphoma.

    PubMed

    Bohers, Elodie; Mareschal, Sylvain; Bouzelfen, Abdelilah; Marchand, Vinciane; Ruminy, Philippe; Maingonnat, Catherine; Ménard, Anne-Lise; Etancelin, Pascaline; Bertrand, Philippe; Dubois, Sydney; Alcantara, Marion; Bastard, Christian; Tilly, Hervé; Jardin, Fabrice

    2014-02-01

    Diffuse large B cell lymphoma (DLBCL) is an aggressive and heterogeneous malignancy that can be divided in two major subgroups, germinal center B-cell-like (GCB) and activated B-cell-like (ABC). Activating mutations of genes involved in the BCR and NF-κB pathways (CD79A, CD79B, MYD88, and CARD11) or in epigenetic regulation (EZH2) have been recently reported, preferentially in one of the two DLBCL subtypes. We analyzed the mutational status of these five recurrently mutated genes in a cohort of 161 untreated de novo DLBCL. Overall, 93 mutations were detected, in 61 (38%) of the patients. The L265P MYD88 mutation was the most frequent MYD88 variant (n = 18), observed exclusively in the ABC subtype. CD79A/CD79B ITAM domains were targeted in ABC DLBCL (12/77; 16%), whereas CARD11 mutations were equally distributed in the two subtypes. The EZH2 Y641 substitution was found almost exclusively in the GCB subgroup (15/62; 24%). Twenty cases (12%) displayed two activating mutations, including the most frequent CD79/MYD88 variants combination (n = 8) which is observed exclusively in the ABC subtype. When considering only ABC DLBCL patients treated by rituximab plus chemotherapy, the presence of an activating NF-κB mutation was associated with an unfavorable outcome (3-years OS 26% for mutated cases versus 67% for the cases without mutations, P = 0.0337). Our study demonstrates that activating and targetable mutations are observed at a very high frequency in DLBCL at the time of diagnosis, indicating that sequencing of a limited number of genes could help tailor an optimal treatment strategy in DLBCL. Copyright © 2013 Wiley Periodicals, Inc.

  2. Mutations in human lymphocytes commonly involve gene duplication and resemble those seen in cancer cels.

    PubMed Central

    Turner, D R; Grist, S A; Janatipour, M; Morley, A A

    1988-01-01

    Mutations in human lymphocytes are commonly due to gene deletion. To investigate the mechanism of deletion for autosomal genes, we immunoselected lymphocytes mutated at the HLA-A locus and cloned them for molecular analysis. Of 36 mutant clones that showed deletion of the selected HLA-A allele, 8 had resulted from a simple gene deletion, whereas 28 had resulted from a more complex mutational event involving reduplication of the nonselected HLA-A allele as indicated by hybridization intensity on Southern blots. In 3 of the 28 clones, retention of heterozygosity at the HLA-B locus indicated that the reduplication was due to recombination between the two chromosomes 6; but in the remaining 25 clones, distinction could not be made between recombination and chromosome reduplication. The results indicate that mutations in normal somatic cells frequently result in hemizygosity or homozygosity at gene loci and, thereby, resemble the mutations thought to be important in the etiology of various forms of cancer. Images PMID:3258992

  3. Mutations in human lymphocytes commonly involve gene duplication and resemble those seen in cancer cells

    SciTech Connect

    Turner, D.R.; Grist, S.A.; Janatipour, M.; Morley, A.A.

    1988-05-01

    Mutations in human lymphocytes are commonly due to gene deletion. To investigate the mechanism of deletion for autosomal genes, the authors immunoselected lymphocytes mutated at the HLA-A locus and clones them for molecular analysis. Of 36 mutant clones that showed deletion of the selected HLA-A allele, 8 had resulted from a simple gene deletion, whereas 28 had resulted from a more complex mutational event involving reduplication of the nonselected HLA-A allele as indicated by hybridization intensity on Southern blots. In 3 of the 28 clones, retention of heterozygosity at the HLA-B locus indicated that the reduplication was due to recombination between the two chromosomes 6; but in the remaining 25 clones, distinction could not be made between recombination and chromosome reduplication. The results indicate that mutations in normal somatic cells frequently result in hemizygosity or homozygosity at gene loci and, thereby, resemble the mutations thought to be important in the etiology of various forms of cancer.

  4. Investigation of CYP1B1 mutations in Chinese patients with primary congenital glaucoma

    PubMed Central

    Yang, Mei; Liu, Xing; Shen, Huangxuan; Jia, Xiaoyun; Xiao, Xueshan; Li, Shiqiang; Fang, Shaohua; Zhang, Qingjiong

    2009-01-01

    Purpose This study was conducted to investigate the mutation spectrum of the cytochrome P450 gene (CYP1B1) in Chinese patients with primary congenital glaucoma (PCG). Methods The coding regions of CYP1B1 from 41 Chinese PCG patients were analyzed using polymerase chain reaction (PCR) and heteroduplex analysis-single strand conformation polymorphism (HA-SSCP) followed by subsequent cloning and bidirectional sequencing. New variants were confirmed by restriction fragment length polymorphism (RFLP) analysis in 80 normal Chinese controls. Results Six distinct mutations, four of which are novel, were identified in 14.6% (6/41) of all patients. The CYP1B1 mutations in two patients were homozygous, and the other four patients were compound heterozygous. Beyond the four novel mutations (g.4531_4552del22bp, g.4633delC, p.S336Y, and p.I471S), two reported missense mutations (R469W and R390H) were also identified. The missense mutation, R390H, was involved in 9.8% (4/41) of patients in our study. None of the novel mutations was observed in any of the 80 controls. Conclusions Our results support the premise that CYP1B1 is a major gene for PCG, appearing to be responsible for the disease in roughly one in six Chinese PCG patients. The R390H mutation was identified as a predominant CYP1B1 allele among the Chinese PCG patients in our study. This observation emphasizes the importance of mutational screening of CYP1B1, especially for the R390H mutation in Chinese patients. PMID:19247456

  5. Two novel mutations involved in hereditary tyrosinemia type I

    SciTech Connect

    St-Louis, M.; Poudrier, J.; Phaneuf, D.

    1994-09-01

    The deficiency of fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolic pathway is the cause of hereditary tyrosinemia type I (HT1), an autosomal recessive disease. The disease has been reported worldwide. The incidence is much higher in two clusters: the Saguenay- Lac St-Jean region (Quebec, Canada) and in Scandinavia. Seven mutations have been reported in the last two years. Here we describe two new missense mutations identified by direct sequencing of PCR products in two HT1 patients, a Norwegian (patient No. 1) and a French-Canadian (patient No. 2). The first mutation consists of a G to A transition at position 337 of the FAH gene which predicts a change from glycine to serine (G337S). The second mutation is an A to G transition at position 381 which predicts a change from arginine to glycine (R381G). Patient No. 1 seems heterozygous for the G337S mutation and for a splice mutation (IVS12+5G{r_arrow}A) which was previously described. Patient No. 2 was also found heterozygous for the R381G mutation and for a rare nonsense mutation (E357X) already reported. In vitro transcription and translation were performed on mutant cDNA to demonstrate the responsibility of these two mutations in causing the decreased amount of FAH detected by Western blot analysis.

  6. Expanding the clinical and mutational spectrum of Kaufman oculocerebrofacial syndrome with biallelic UBE3B mutations.

    PubMed

    Basel-Vanagaite, Lina; Yilmaz, Rüstem; Tang, Sha; Reuter, Miriam S; Rahner, Nils; Grange, Dorothy K; Mortenson, Megan; Koty, Patrick; Feenstra, Heather; Farwell Gonzalez, Kelly D; Sticht, Heinrich; Boddaert, Nathalie; Désir, Julie; Anyane-Yeboa, Kwame; Zweier, Christiane; Reis, André; Kubisch, Christian; Jewett, Tamison; Zeng, Wenqi; Borck, Guntram

    2014-07-01

    Biallelic mutations of UBE3B have recently been shown to cause Kaufman oculocerebrofacial syndrome (also reported as blepharophimosis-ptosis-intellectual disability syndrome), an autosomal recessive condition characterized by hypotonia, developmental delay, intellectual disability, congenital anomalies, characteristic facial dysmorphic features, and low cholesterol levels. To date, six patients with either missense mutations affecting the UBE3B HECT domain or truncating mutations have been described. Here, we report on the identification of homozygous or compound heterozygous UBE3B mutations in six additional patients from five unrelated families using either targeted UBE3B sequencing in individuals with suggestive facial dysmorphic features, or exome sequencing. Our results expand the clinical and mutational spectrum of the UBE3B-related disorder in several ways. First, we have identified UBE3B mutations in individuals who previously received distinct clinical diagnoses: two sibs with Toriello-Carey syndrome as well as the patient reported to have a "new" syndrome by Buntinx and Majewski in 1990. Second, we describe the adult phenotype and clinical variability of the syndrome. Third, we report on the first instance of homozygous missense alterations outside the HECT domain of UBE3B, observed in a patient with mildly dysmorphic facial features. We conclude that UBE3B mutations cause a clinically recognizable and possibly underdiagnosed syndrome characterized by distinct craniofacial features, hypotonia, failure to thrive, eye abnormalities, other congenital malformations, low cholesterol levels, and severe intellectual disability. We review the UBE3B-associated phenotypes, including forms that can mimick Toriello-Carey syndrome, and suggest the single designation "Kaufman oculocerebrofacial syndrome".

  7. SF3B1 mutations constitute a novel therapeutic target in breast cancer.

    PubMed

    Maguire, Sarah L; Leonidou, Andri; Wai, Patty; Marchiò, Caterina; Ng, Charlotte Ky; Sapino, Anna; Salomon, Anne-Vincent; Reis-Filho, Jorge S; Weigelt, Britta; Natrajan, Rachael C

    2015-03-01

    Mutations in genes encoding proteins involved in RNA splicing have been found to occur at relatively high frequencies in several tumour types including myelodysplastic syndromes, chronic lymphocytic leukaemia, uveal melanoma, and pancreatic cancer, and at lower frequencies in breast cancer. To investigate whether dysfunction in RNA splicing is implicated in the pathogenesis of breast cancer, we performed a re-analysis of published exome and whole genome sequencing data. This analysis revealed that mutations in spliceosomal component genes occurred in 5.6% of unselected breast cancers, including hotspot mutations in the SF3B1 gene, which were found in 1.8% of unselected breast cancers. SF3B1 mutations were significantly associated with ER-positive disease, AKT1 mutations, and distinct copy number alterations. Additional profiling of hotspot mutations in a panel of special histological subtypes of breast cancer showed that 16% and 6% of papillary and mucinous carcinomas of the breast harboured the SF3B1 K700E mutation. RNA sequencing identified differentially spliced events expressed in tumours with SF3B1 mutations including the protein coding genes TMEM14C, RPL31, DYNL11, UQCC, and ABCC5, and the long non-coding RNA CRNDE. Moreover, SF3B1 mutant cell lines were found to be sensitive to the SF3b complex inhibitor spliceostatin A and treatment resulted in perturbation of the splicing signature. Albeit rare, SF3B1 mutations result in alternative splicing events, and may constitute drivers and a novel therapeutic target in a subset of breast cancers.

  8. SF3B1 mutations constitute a novel therapeutic target in breast cancer

    PubMed Central

    Maguire, Sarah L; Leonidou, Andri; Wai, Patty; Marchiò, Caterina; Ng, Charlotte KY; Sapino, Anna; Salomon, Anne-Vincent; Reis-Filho, Jorge S; Weigelt, Britta; Natrajan, Rachael C

    2015-01-01

    Mutations in genes encoding proteins involved in RNA splicing have been found to occur at relatively high frequencies in several tumour types including myelodysplastic syndromes, chronic lymphocytic leukaemia, uveal melanoma, and pancreatic cancer, and at lower frequencies in breast cancer. To investigate whether dysfunction in RNA splicing is implicated in the pathogenesis of breast cancer, we performed a re-analysis of published exome and whole genome sequencing data. This analysis revealed that mutations in spliceosomal component genes occurred in 5.6% of unselected breast cancers, including hotspot mutations in the SF3B1 gene, which were found in 1.8% of unselected breast cancers. SF3B1 mutations were significantly associated with ER-positive disease, AKT1 mutations, and distinct copy number alterations. Additional profiling of hotspot mutations in a panel of special histological subtypes of breast cancer showed that 16% and 6% of papillary and mucinous carcinomas of the breast harboured the SF3B1 K700E mutation. RNA sequencing identified differentially spliced events expressed in tumours with SF3B1 mutations including the protein coding genes TMEM14C, RPL31, DYNL11, UQCC, and ABCC5, and the long non-coding RNA CRNDE. Moreover, SF3B1 mutant cell lines were found to be sensitive to the SF3b complex inhibitor spliceostatin A and treatment resulted in perturbation of the splicing signature. Albeit rare, SF3B1 mutations result in alternative splicing events, and may constitute drivers and a novel therapeutic target in a subset of breast cancers. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:25424858

  9. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing

    PubMed Central

    Morin, Ryan D.; Mungall, Karen; Pleasance, Erin; Mungall, Andrew J.; Goya, Rodrigo; Huff, Ryan D.; Scott, David W.; Ding, Jiarui; Roth, Andrew; Chiu, Readman; Corbett, Richard D.; Chan, Fong Chun; Mendez-Lago, Maria; Trinh, Diane L.; Bolger-Munro, Madison; Taylor, Greg; Hadj Khodabakhshi, Alireza; Ben-Neriah, Susana; Pon, Julia; Meissner, Barbara; Woolcock, Bruce; Farnoud, Noushin; Rogic, Sanja; Lim, Emilia L.; Johnson, Nathalie A.; Shah, Sohrab; Jones, Steven; Steidl, Christian; Holt, Robert; Birol, Inanc; Moore, Richard; Connors, Joseph M.; Gascoyne, Randy D.

    2013-01-01

    Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous cancer composed of at least 2 molecular subtypes that differ in gene expression and distribution of mutations. Recently, application of genome/exome sequencing and RNA-seq to DLBCL has revealed numerous genes that are recurrent targets of somatic point mutation in this disease. Here we provide a whole-genome-sequencing-based perspective of DLBCL mutational complexity by characterizing 40 de novo DLBCL cases and 13 DLBCL cell lines and combining these data with DNA copy number analysis and RNA-seq from an extended cohort of 96 cases. Our analysis identified widespread genomic rearrangements including evidence for chromothripsis as well as the presence of known and novel fusion transcripts. We uncovered new gene targets of recurrent somatic point mutations and genes that are targeted by focal somatic deletions in this disease. We highlight the recurrence of germinal center B-cell-restricted mutations affecting genes that encode the S1P receptor and 2 small GTPases (GNA13 and GNAI2) that together converge on regulation of B-cell homing. We further analyzed our data to approximate the relative temporal order in which some recurrent mutations were acquired and demonstrate that ongoing acquisition of mutations and intratumoral clonal heterogeneity are common features of DLBCL. This study further improves our understanding of the processes and pathways involved in lymphomagenesis, and some of the pathways mutated here may indicate new avenues for therapeutic intervention. PMID:23699601

  10. TP53 mutation and survival in aggressive B cell lymphoma.

    PubMed

    Zenz, Thorsten; Kreuz, Markus; Fuge, Maxi; Klapper, Wolfram; Horn, Heike; Staiger, Annette M; Winter, Doris; Helfrich, Hanne; Huellein, Jennifer; Hansmann, Martin-Leo; Stein, Harald; Feller, Alfred; Möller, Peter; Schmitz, Norbert; Trümper, Lorenz; Loeffler, Markus; Siebert, Reiner; Rosenwald, Andreas; Ott, German; Pfreundschuh, Michael; Stilgenbauer, Stephan

    2017-10-01

    TP53 is mutated in 20-25% of aggressive B-cell lymphoma (B-NHL). To date, no studies have addressed the impact of TP53 mutations in prospective clinical trial cohorts. To evaluate the impact of TP53 mutation to current risk models in aggressive B-NHL, we investigated TP53 gene mutations within the RICOVER-60 trial. Of 1,222 elderly patients (aged 61-80 years) enrolled in the study and randomized to six or eight cycles of CHOP-14 with or without Rituximab (NCT00052936), 265 patients were analyzed for TP53 mutations. TP53 mutations were demonstrated in 63 of 265 patients (23.8%). TP53 mutation was associated with higher LDH (65% vs. 37%; p < 0.001), higher international prognostic index-Scores (IPI 4/5 27% vs. 12%; p = 0.025) and B-symptoms (41% vs. 24%; p = 0.011). Patients with TP53 mutation were less likely to obtain a complete remission CR/CRu (CR unconfirmed) 61.9% (mut) vs. 79.7% (wt) (p = 0.007). TP53 mutations were associated with decreased event-free (EFS), progression-free (PFS) and overall survival (OS) (median observation time of 40.2 months): the 3 year EFS, PFS and OS were 42% (vs. 60%; p = 0.012), 42% (vs. 67.5%; p < 0.001) and 50% (vs. 76%; p < 0.001) for the TP53 mutation group. In a Cox proportional hazard analysis adjusting for IPI-factors and treatment arms, TP53 mutation was shown to be an independent predictor of EFS (HR 1.5), PFS (HR 2.0) and OS (HR 2.3; p < 0.001). TP53 mutations are independent predictors of survival in untreated patients with aggressive CD20+ lymphoma. TP53 mutations should be considered for risk models in DLBCL and strategies to improve outcome for patients with mutant TP53 must be developed. © 2017 UICC.

  11. Drug efflux and parC mutations are involved in fluoroquinolone resistance in viridans group streptococci.

    PubMed

    Ferrándiz, M J; Oteo, J; Aracil, B; Gómez-Garcés, J L; De La Campa, A G

    1999-10-01

    Nine ciprofloxacin-resistant viridans group streptococci isolated from asymptomatic carriers were analyzed. Identification to the species level by using three different commercial systems and a PCR-based approach was inconsistent. The nucleotide sequences of fragments of the parC, parE, gyrA, and gyrB genes showed considerable intra- and interspecies variations, and these variations mainly involved silent mutations. Three isolates had changes in Ser-79 of ParC (to Phe or Tyr). Phenotypic characterization indicated that eight of the nine isolates had a putative efflux mechanism that would confer low-level resistance to ciprofloxacin.

  12. Drug Efflux and parC Mutations Are Involved in Fluoroquinolone Resistance in Viridans Group Streptococci

    PubMed Central

    Ferrándiz, María José; Oteo, Jesús; Aracil, Belén; Gómez-Garcés, Jose Luis; De La Campa, Adela G.

    1999-01-01

    Nine ciprofloxacin-resistant viridans group streptococci isolated from asymptomatic carriers were analyzed. Identification to the species level by using three different commercial systems and a PCR-based approach was inconsistent. The nucleotide sequences of fragments of the parC, parE, gyrA, and gyrB genes showed considerable intra- and interspecies variations, and these variations mainly involved silent mutations. Three isolates had changes in Ser-79 of ParC (to Phe or Tyr). Phenotypic characterization indicated that eight of the nine isolates had a putative efflux mechanism that would confer low-level resistance to ciprofloxacin. PMID:10508036

  13. Structural and functional consequences of succinate dehydrogenase subunit B mutations.

    PubMed

    Kim, E; Rath, E M; Tsang, V H M; Duff, A P; Robinson, B G; Church, W B; Benn, D E; Dwight, T; Clifton-Bligh, R J

    2015-06-01

    Mitochondrial dysfunction, due to mutations of the gene encoding succinate dehydrogenase (SDH), has been implicated in the development of adrenal phaeochromocytomas, sympathetic and parasympathetic paragangliomas, renal cell carcinomas, gastrointestinal stromal tumours and more recently pituitary tumours. Underlying mechanisms behind germline SDH subunit B (SDHB) mutations and their associated risk of disease are not clear. To investigate genotype-phenotype correlation of SDH subunit B (SDHB) variants, a homology model for human SDH was developed from a crystallographic structure. SDHB mutations were mapped, and biochemical effects of these mutations were predicted in silico. Results of structural modelling indicated that many mutations within SDHB are predicted to cause either failure of functional SDHB expression (p.Arg27*, p.Arg90*, c.88delC and c.311delAinsGG), or disruption of the electron path (p.Cys101Tyr, p.Pro197Arg and p.Arg242His). GFP-tagged WT SDHB and mutant SDHB constructs were transfected (HEK293) to determine biological outcomes of these mutants in vitro. According to in silico predictions, specific SDHB mutations resulted in impaired mitochondrial localisation and/or SDH enzymatic activity. These results indicated strong genotype-functional correlation for SDHB variants. This study reveals new insights into the effects of SDHB mutations and the power of structural modelling in predicting biological consequences. We predict that our functional assessment of SDHB mutations will serve to better define specific consequences for SDH activity as well as to provide a much needed assay to distinguish pathogenic mutations from benign variants. © 2015 Society for Endocrinology.

  14. A novel RAB33B mutation in Smith-McCort dysplasia.

    PubMed

    Dupuis, Nina; Lebon, Sophie; Kumar, Manoj; Drunat, Séverine; Graul-Neumann, Luitgard M; Gressens, Pierre; El Ghouzzi, Vincent

    2013-02-01

    Smith-McCort dysplasia (SMC) is a rare autosomal recessive spondylo-epi-metaphyseal dysplasia with skeletal features identical to those of Dyggve-Melchior-Clausen syndrome (DMC) but with normal intelligence and no microcephaly. Although both syndromes were shown to result from mutations in the DYM gene, which encodes the Golgi protein DYMECLIN, a few SMC patients remained negative in DYM mutation screening. Recently, autozygosity mapping and exome sequencing in a large SMC family have allowed the identification of a missense mutation in RAB33B, another Golgi protein involved in retrograde transport of Golgi vesicles. Here, we report a novel RAB33B mutation in a second SMC case that leads to a marked reduction of the protein as shown by Western blot and immunofluorescence. These data confirm the genetic heterogeneity of SMC dysplasia and highlight the role of Golgi transport in the pathogenesis of SMC and DMC syndromes. © 2012 Wiley Periodicals, Inc.

  15. Mitochondrial DNA Mutations in Mutator Mice Confer Respiration Defects and B-Cell Lymphoma Development

    PubMed Central

    Mito, Takayuki; Kikkawa, Yoshiaki; Shimizu, Akinori; Hashizume, Osamu; Katada, Shun; Imanishi, Hirotake; Ota, Azusa; Kato, Yukina; Nakada, Kazuto; Hayashi, Jun-Ichi

    2013-01-01

    Mitochondrial DNA (mtDNA) mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia) due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA) also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J) nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ0) mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan. PMID:23418460

  16. Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development.

    PubMed

    Mito, Takayuki; Kikkawa, Yoshiaki; Shimizu, Akinori; Hashizume, Osamu; Katada, Shun; Imanishi, Hirotake; Ota, Azusa; Kato, Yukina; Nakada, Kazuto; Hayashi, Jun-Ichi

    2013-01-01

    Mitochondrial DNA (mtDNA) mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia) due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA) also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J) nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ(0)) mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.

  17. Clinical features and a mutation with late onset of limb girdle muscular dystrophy 2B

    PubMed Central

    Takahashi, Toshiaki; Aoki, Masashi; Suzuki, Naoki; Tateyama, Maki; Yaginuma, Chikako; Sato, Hitomi; Hayasaka, Miho; Sugawara, Hitomi; Ito, Mariko; Abe-Kondo, Emi; Shimakura, Naoko; Ibi, Tohru; Kuru, Satoshi; Wakayama, Tadashi; Sobue, Gen; Fujii, Naoki; Saito, Toshio; Matsumura, Tsuyoshi; Funakawa, Itaru; Mukai, Eiichiro; Kawanami, Toru; Morita, Mitsuya; Yamazaki, Mineo; Hasegawa, Takashi; Shimizu, Jun; Tsuji, Shoji; Kuzuhara, Shigeki; Tanaka, Hiroyasu; Yoshioka, Masaru; Konno, Hidehiko; Onodera, Hiroshi; Itoyama, Yasuto

    2013-01-01

    Objective and methods Dysferlin encoded by DYSF deficiency leads to two main phenotypes, limb girdle muscular dystrophy (LGMD) 2B and Miyoshi myopathy. To reveal in detail the mutational and clinical features of LGMD2B in Japan, we observed 40 Japanese patients in 36 families with LGMD2B in whom dysferlin mutations were confirmed. Results and conclusions Three mutations (c.1566C>G, c.2997G>T and c.4497delT) were relatively more prevalent. The c.2997G>T mutation was associated with late onset, proximal dominant forms of dysferlinopathy, a high probability that muscle weakness started in an upper limb and lower serum creatine kinase (CK) levels. The clinical features of LGMD2B are as follows: (1) onset in the late teens or early adulthood, except patients homozygous for the c.2997G>T mutation; (2) lower limb weakness at onset; (3) distal change of lower limbs on muscle CT at an early stage; (4) impairment of lumbar erector spinal muscles on muscle CT at an early stage; (5) predominant involvement of proximal upper limbs; (6) preservation of function of the hands at late stage; (7) preservation of strength in neck muscles at late stage; (8) lack of facial weakness or dysphagia; (9) avoidance of scoliosis; (10) hyper-Ckaemia; (11) preservation of cardiac function; and (12) a tendency for respiratory function to decline with disease duration. It is important that the late onset phenotype is found with prevalent mutations. PMID:23243261

  18. Mutations in FAM111B Cause Hereditary Fibrosing Poikiloderma with Tendon Contracture, Myopathy, and Pulmonary Fibrosis

    PubMed Central

    Mercier, Sandra; Küry, Sébastien; Shaboodien, Gasnat; Houniet, Darren T.; Khumalo, Nonhlanhla P.; Bou-Hanna, Chantal; Bodak, Nathalie; Cormier-Daire, Valérie; David, Albert; Faivre, Laurence; Figarella-Branger, Dominique; Gherardi, Romain K.; Glen, Elise; Hamel, Antoine; Laboisse, Christian; Le Caignec, Cédric; Lindenbaum, Pierre; Magot, Armelle; Munnich, Arnold; Mussini, Jean-Marie; Pillay, Komala; Rahman, Thahira; Redon, Richard; Salort-Campana, Emmanuelle; Santibanez-Koref, Mauro; Thauvin, Christel; Barbarot, Sébastien; Keavney, Bernard; Bézieau, Stéphane; Mayosi, Bongani M.

    2013-01-01

    Congenital poikiloderma is characterized by a combination of mottled pigmentation, telangiectasia, and epidermal atrophy in the first few months of life. We have previously described a South African European-descent family affected by a rare autosomal-dominant form of hereditary fibrosing poikiloderma accompanied by tendon contracture, myopathy, and pulmonary fibrosis. Here, we report the identification of causative mutations in FAM111B by whole-exome sequencing. In total, three FAM111B missense mutations were identified in five kindreds of different ethnic backgrounds. The mutation segregated with the disease in one large pedigree, and mutations were de novo in two other pedigrees. All three mutations were absent from public databases and were not observed on Sanger sequencing of 388 ethnically matched control subjects. The three single-nucleotide mutations code for amino acid changes that are clustered within a putative trypsin-like cysteine/serine peptidase domain of FAM111B. These findings provide evidence of the involvement of FAM111B in congenital poikiloderma and multisystem fibrosis. PMID:24268661

  19. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma

    PubMed Central

    Matlock, Matthew; Trani, Lee; Fronick, Catrina C.; Fulton, Robert S.; Kreisel, Friederike; Cashen, Amanda F.; Carson, Kenneth R.; Bartlett, Nancy L.

    2017-01-01

    Follicular lymphoma (FL) is the most common form of indolent non-Hodgkin lymphoma, yet it remains only partially characterized at the genomic level. To improve our understanding of the genetic underpinnings of this incurable and clinically heterogeneous disease, whole-exome sequencing was performed on tumor/normal pairs from a discovery cohort of 24 patients with FL. Using these data and mutations identified in other B-cell malignancies, 1716 genes were sequenced in 113 FL tumor samples from 105 primarily treatment-naive individuals. We identified 39 genes that were mutated significantly above background mutation rates. CREBBP mutations were associated with inferior PFS. In contrast, mutations in previously unreported HVCN1, a voltage-gated proton channel-encoding gene and B-cell receptor signaling modulator, were associated with improved PFS. In total, 47 (44.8%) patients harbor mutations in the interconnected B-cell receptor (BCR) and CXCR4 signaling pathways. Histone gene mutations were more frequent than previously reported (identified in 43.8% of patients) and often co-occurred (17.1% of patients). A novel, recurrent hotspot was identified at a posttranslationally modified residue in the histone H2B family. This study expands the number of mutated genes described in several known signaling pathways and complexes involved in lymphoma pathogenesis (BCR, Notch, SWitch/sucrose nonfermentable (SWI/SNF), vacuolar ATPases) and identified novel recurrent mutations (EGR1/2, POU2AF1, BTK, ZNF608, HVCN1) that require further investigation in the context of FL biology, prognosis, and treatment. PMID:28064239

  20. Mutation assays involving blood cells that metabolize toxic substances

    DOEpatents

    Crespi, Charles L.; Thilly, William G.

    1985-01-01

    A line of human blood cells which have high levels of oxidative activity (such as oxygenase, oxidase, peroxidase, and hydroxylase activity) is disclosed. Such cells grow in suspension culture, and are useful to determine the mutagenicity of xenobiotic substances that are metabolized into toxic or mutagenic substances. Mutation assays using these cells, and other cells with similar characteristics, are also disclosed.

  1. Quantitation of the JAK2V617F mutation in microdissected bone marrow trephines: equal mutational load in myeloid lineages and rare involvement of lymphoid cells.

    PubMed

    Kremer, Marcus; Horn, Thomas; Koch, Ina; Dechow, Tobias; Gattenloehner, Stefan; Pfeiffer, Walter; Quintanilla-Martínez, Leticia; Fend, Falko

    2008-06-01

    The JAK2V617F mutation is an essential oncogenic event in Philadelphia negative chronic myeloproliferative disorders (Ph-cMPD). It is still unclear how a unique tyrosine kinase mutation can give rise to the broad clinical and morphologic spectrum of Ph-cMPD. One possible explanation could be differences in the JAK2V617F gene dosage, or different maturation stages on which myeloid lineages are affected by the mutation. The extent of lymphoid lineage involvement in JAK2V617F-positive cMPD is still controversial. We comparatively studied the zygosity status of microdissected megakaryocytes, nonmegakaryocytic hematopoietic cells, and reactive as well as neoplastic lymphoid nodules from bone marrow trephines of 61 patients with Ph-cMPD. The presence of the mutation and mutant gene dosage were determined by allele-specific polymerase chain reaction and TaqMan analysis, respectively. The mutation was detected in 22/32 (68%) cases of essential thrombocythemia, all cases of polycythemia vera, and 4/8 (50%) idiopathic myelofibrosis. Comparison of whole bone marrow sections and the different myeloid lineages showed similar percentages of the mutated allele. Restriction to a particular lineage or major differences in allele dosage were not observed, except for 2 cases in which megakaryocytes revealed a higher frequency of the mutated allele. A heterozygous JAK2V617F mutation was detected in 3/8 "reactive" lymphoid nodule in patients with Ph-cMPD, whereas all concomitant non-Hodgkin lymphoma of B-cell type were negative. These results demonstrate that different myeloid lineages usually show similar frequencies of the JAK2V617F allele. The occasional detection of JAK2V617F in benign lymphocytes points to involvement of the lympho-myeloid stem cell.

  2. Involvement of and Interaction between WNT10A and EDA Mutations in Tooth Agenesis Cases in the Chinese Population

    PubMed Central

    Feng, Hailan; Qu, Hong; Song, Shujuan; Bai, Baojing; Zhang, Zhenting

    2013-01-01

    Background Dental agenesis is the most common, often heritable, developmental anomaly in humans. Although WNT10A gene mutations are known to cause rare syndromes associated with tooth agenesis, including onycho-odontodermal dysplasia (OODD), Schöpf-Schulz-Passarge syndrome (SSPS), hypohidrotic ectodermal dysplasia (HED), and more than half of the cases of isolated oligodontia recently, the genotype-phenotype correlations and the mode of inheritance of WNT10A mutations remain unclear. The phenotypic expression with WNT10A mutations shows a high degree of variability, suggesting that other genes might function with WNT10A in regulating ectodermal organ development. Moreover, the involvement of mutations in other genes, such as EDA, which is also associated with HED and isolated tooth agenesis, is not clear. Therefore, we hypothesized that EDA mutations interact with WNT10A mutations to play a role in tooth agenesis. Additionally, EDA, EDAR, and EDARADD encode signaling molecules in the Eda/Edar/NF-κB signaling pathways, we also checked EDAR and EDARADD in this study. Methods WNT10A, EDA, EDAR and EDARADD were sequenced in 88 patients with isolated oligodontia and 26 patients with syndromic tooth agenesis. The structure of two mutated WNT10A and two mutated EDA proteins was analyzed. Results Digenic mutations of both WNT10A and EDA were identified in 2 of 88 (2.27%) isolated oligodontia cases and 4 of 26 (15.38%) syndromic tooth agenesis cases. No mutation in EDAR or EDARADD gene was found. Conclusions WNT10A and EDA digenic mutations could result in oligodontia and syndromic tooth agenesis in the Chinese population. Moreover, our results will greatly expand the genotypic spectrum of tooth agenesis. PMID:24312213

  3. Mutation assays involving blood cells that metabolize toxic substances

    DOEpatents

    Crespi, Charles L.; Thilly, William G.

    1999-01-01

    The present invention pertains to a line of human blood cells which have high levels of oxidative activity (such as oxygenase, oxidase, peroxidase, and hydroxylase activity). Such cells grow in suspension culture, and are useful to determine the mutagenicity of xenobiotic substances that are metabolized into toxic or mutagenic substances. The invention also includes mutation assays using these cells, and other cells with similar characteristics.

  4. Mutation assays involving blood cells that metabolize toxic substances

    DOEpatents

    Crespi, C.L.; Thilly, W.G.

    1999-08-10

    The present invention pertains to a line of human blood cells which have high levels of oxidative activity (such as oxygenase, oxidase, peroxidase, and hydroxylase activity). Such cells grow in suspension culture, and are useful to determine the mutagenicity of xenobiotic substances that are metabolized into toxic or mutagenic substances. The invention also includes mutation assays using these cells, and other cells with similar characteristics. 3 figs.

  5. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death.

    PubMed

    Mohler, Peter J; Schott, Jean-Jacques; Gramolini, Anthony O; Dilly, Keith W; Guatimosim, Silvia; duBell, William H; Song, Long-Sheng; Haurogné, Karine; Kyndt, Florence; Ali, Mervat E; Rogers, Terry B; Lederer, W J; Escande, Denis; Le Marec, Herve; Bennett, Vann

    2003-02-06

    Mutations in ion channels involved in the generation and termination of action potentials constitute a family of molecular defects that underlie fatal cardiac arrhythmias in inherited long-QT syndrome. We report here that a loss-of-function (E1425G) mutation in ankyrin-B (also known as ankyrin 2), a member of a family of versatile membrane adapters, causes dominantly inherited type 4 long-QT cardiac arrhythmia in humans. Mice heterozygous for a null mutation in ankyrin-B are haploinsufficient and display arrhythmia similar to humans. Mutation of ankyrin-B results in disruption in the cellular organization of the sodium pump, the sodium/calcium exchanger, and inositol-1,4,5-trisphosphate receptors (all ankyrin-B-binding proteins), which reduces the targeting of these proteins to the transverse tubules as well as reducing overall protein level. Ankyrin-B mutation also leads to altered Ca2+ signalling in adult cardiomyocytes that results in extrasystoles, and provides a rationale for the arrhythmia. Thus, we identify a new mechanism for cardiac arrhythmia due to abnormal coordination of multiple functionally related ion channels and transporters.

  6. Suppression of TGA Mutations in the Bacillus subtilis spoIIR Gene by prfB Mutations

    PubMed Central

    Karow, Margaret L.; Rogers, Elizabeth J.; Lovett, Paul S.; Piggot, Patrick J.

    1998-01-01

    An unexpectedly high proportion of TGA nonsense mutations was obtained in a collection of chemically induced mutations in the spoIIR locus of Bacillus subtilis. Of 11 different mutations obtained, TGA mutations were found in four codons, whereas only three codons yielded missense mutations. Six suppressors of the TGA mutations were isolated, and five of the suppressing mutations were mapped to the prfB gene encoding protein release factor 2. These are the first mutations shown to map to the B. subtilis prfB locus. The sequence of the prfB gene was completed, and two revisions of the published sequence were made. The five prfB mutations also resulted in suppression of the catA86-TGA mutation to between 19 and 54% of the expression of catA86+, compared to the readthrough level of 6% in the prfB+ strain. N-terminal sequencing of suppressed catA86-TGA-specified protein demonstrated that the amino acid inserted at UGA because of the prfB1 mutations was tryptophan. PMID:9696765

  7. ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B).

    PubMed

    Parkinson, N; Ince, P G; Smith, M O; Highley, R; Skibinski, G; Andersen, P M; Morrison, K E; Pall, H S; Hardiman, O; Collinge, J; Shaw, P J; Fisher, E M C

    2006-09-26

    Mutation in the CHMP2B gene has been implicated in frontotemporal dementia. The authors screened CHMP2B in patients with ALS and several cohorts of control samples. They identified mutations (Q206H; I29V) in two patients with non-SOD1 ALS. Neuropathology of the Q206H case showed lower motor neuron predominant disease with ubiquitylated inclusions in motor neurons. Antibodies to p62 (sequestosome 1) showed novel oligodendroglial inclusions in the motor cortex.

  8. Mutational activation of ErbB2 reveals a new protein kinase autoinhibition mechanism.

    PubMed

    Fan, Ying-Xin; Wong, Lily; Ding, Jinhui; Spiridonov, Nikolay A; Johnson, Richard C; Johnson, Gibbes R

    2008-01-18

    Autoinhibition plays a key role in the control of protein kinase activity. ErbB2 is a unique receptor-tyrosine kinase that does not bind ligand but possesses an extracellular domain poised to engage other ErbBs. Little is known about the molecular mechanism for ErbB2 catalytic regulation. Here we show that ErbB2 kinase is strongly autoinhibited, and a loop connecting the alphaC helix and beta4 sheet within the kinase domain plays a major role in the control of kinase activity. Mutations of two Gly residues at positions 776 and 778 in this loop dramatically increase ErbB2 catalytic activity. Kinetic analysis demonstrates that mutational activation is due to approximately 10- and approximately 7-fold increases in ATP binding affinity and turnover number, respectively. Expression of the activated ErbB2 mutants in cells resulted in elevated ligand-independent ErbB2 autophosphorylation, ErbB3 phosphorylation, and stimulation of mitogen-activated protein kinase. Molecular modeling suggests that the ErbB2 kinase domain is stabilized in an inactive state via a hydrophobic interaction between the alphaC-beta4 and activation loops. Importantly, many ErbB2 human cancer mutations have been identified in the alphaC-beta4 loop, including the activating G776S mutation studied here. Our findings reveal a new kinase regulatory mechanism in which the alphaC-beta4 loop functions as an intramolecular switch that controls ErbB2 activity and suggests that loss of alphaC-beta4 loop-mediated autoinhibition is involved in oncogenic activation of ErbB2.

  9. Germline mutation in the RAD51B gene confers predisposition to breast cancer

    PubMed Central

    2013-01-01

    Background Most currently known breast cancer predisposition genes play a role in DNA repair by homologous recombination. Recent studies conducted on RAD51 paralogs, involved in the same DNA repair pathway, have identified rare germline mutations conferring breast and/or ovarian cancer predisposition in the RAD51C, RAD51D and XRCC2 genes. The present study analysed the five RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3) to estimate their contribution to breast and ovarian cancer predisposition. Methods The study was conducted on 142 unrelated patients with breast and/or ovarian cancer either with early onset or with a breast/ovarian cancer family history. Patients were referred to a French family cancer clinic and had been previously tested negative for a BRCA1/2 mutation. Coding sequences of the five genes were analysed by EMMA (Enhanced Mismatch Mutation Analysis). Detected variants were characterized by Sanger sequencing analysis. Results Three splicing mutations and two likely deleterious missense variants were identified: RAD51B c.452 + 3A > G, RAD51C c.706-2A > G, RAD51C c.1026 + 5_1026 + 7del, RAD51B c.475C > T/p.Arg159Cys and XRCC3 c.448C > T/p.Arg150Cys. No RAD51D and XRCC2 gene mutations were detected. These mutations and variants were detected in families with both breast and ovarian cancers, except for the RAD51B c.475C > T/p.Arg159Cys variant that occurred in a family with 3 breast cancer cases. Conclusions This study identified the first RAD51B mutation in a breast and ovarian cancer family and is the first report of XRCC3 mutation analysis in breast and ovarian cancer. It confirms that RAD51 paralog mutations confer breast and ovarian cancer predisposition and are rare events. In view of the low frequency of RAD51 paralog mutations, international collaboration of family cancer clinics will be required to more accurately estimate their penetrance and establish clinical guidelines in carrier individuals. PMID

  10. EphB6 overexpression and Apc mutation together promote colorectal cancer.

    PubMed

    Xu, Dan; Yuan, Liang; Liu, Xin; Li, Mingqi; Zhang, Fubin; Gu, Xin Yue; Zhang, Dongwei; Yang, Youlin; Cui, Binbin; Tong, Jinxue; Zhou, Jin; Yu, Zhiwei

    2016-05-24

    The erythropoietin-producing hepatocyte (Eph) family tyrosine kinases play important roles in tumorigenesis and cancer aggression. In this study, we investigated the role of EphB6 in oncogenic transformation of colorectal epithelial cells in vitro and in vivo. EphB6 is upregulated in human colorectal cancer (CRC) tissues as compared to normal tissues, and its overexpression promotes proliferation, migration and invasion by IMCE colorectal adenoma cells, in which one Apc allele is mutated. EphB6 overexpression together with Apc mutation leads to the development of colorectal tumors in vivo. Expression microarrays using mRNAs and lncRNAs isolated from EphB6-overexpresssing IMCE and control cells revealed a large number of dysregulated genes involved in cancer-related functions and pathways. The present study is the first to demonstrate that EphB6 overexpression together with Apc gene mutations may enhance proliferation, invasion and metastasis by colorectal epithelial cells. Microarray data and pathway analysis of differentially expressed genes provided insight into possible EphB6-regulated mechanisms promoting tumorigenesis and cancer progression. EphB6 overexpression may represent a novel, effective biomarker predictive of cell proliferation, invasion and metastasis patterns in CRC tumors.

  11. The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations

    PubMed Central

    Howe, J; Sayed, M; Ahmed, A; Ringold, J; Larsen-Haidle, J; Merg, A; Mitros, F; Vaccaro, C; Petersen, G; Giardiello, F; Tinley, S; Aaltonen, L; Lynch, H

    2004-01-01

    Background: Juvenile polyposis (JP) is an autosomal dominant syndrome predisposing to colorectal and gastric cancer. We have identified mutations in two genes causing JP, MADH4 and bone morphogenetic protein receptor 1A (BMPR1A): both are involved in bone morphogenetic protein (BMP) mediated signalling and are members of the TGF-ß superfamily. This study determined the prevalence of mutations in MADH4 and BMPR1A, as well as three other BMP/activin pathway candidate genes in a large number of JP patients. Methods: DNA was extracted from the blood of JP patients and used for PCR amplification of each exon of these five genes, using primers flanking each intron–exon boundary. Mutations were determined by comparison to wild type sequences using sequence analysis software. A total of 77 JP cases were sequenced for mutations in the MADH4, BMPR1A, BMPR1B, BMPR2, and/or ACVR1 (activin A receptor) genes. The latter three genes were analysed when MADH4 and BMPR1A sequencing found no mutations. Results: Germline MADH4 mutations were found in 14 cases (18.2%) and BMPR1A mutations in 16 cases (20.8%). No mutations were found in BMPR1B, BMPR2, or ACVR1 in 32 MADH4 and BMPR1A mutation negative cases. Discussion: In the largest series of JP patients reported to date, the prevalence of germline MADH4 and BMPR1A mutations is approximately 20% for each gene. Since mutations were not found in more than half the JP patients, either additional genes predisposing to JP remain to be discovered, or alternate means of inactivation of the two known genes are responsible for these JP cases. PMID:15235019

  12. TERT promoter mutation in resectable hepatocellular carcinomas: a strong association with hepatitis C infection and absence of hepatitis B infection.

    PubMed

    Chen, Yu-Ling; Jeng, Yung-Ming; Chang, Chih-Ning; Lee, Hsin-Jung; Hsu, Hey-Chi; Lai, Po-Lin; Yuan, Ray-Hwang

    2014-01-01

    Mutation in the core promoter of the telomerase reverse transcriptase (TERT) gene was determined to be a frequent event in malignant melanoma and other cancers. However, the role of TERT promoter mutation in hepatocellular carcinomas (HCCs) remains largely unknown. Genomic DNA samples from the tumor tissue of 195 HCCs were analyzed for TERT promoter mutation at 2 hotspots (-124 and -146 bp from the ATG start site, g.1,295,228 and g.1,295,250, respectively) through direct sequencing. The TERT promoter mutation was identified in 57 of the 195 HCCs (29.2%) and was associated with old age (P = 0.0122), presence of anti-hepatitis C (HCV; P = 0.0048), and absence of hepatitis B surface antigen (HBsAg; P = 0.0007). However, the TERT promoter mutation did not correlate with serum α-fetoprotein levels, liver cirrhosis, tumor size, tumor grade, tumor stage, early tumor recurrence, β-catenin mutation or p53 mutation. A multivariate analysis confirmed that the absence of hepatitis B infection is an independent factor associated with TERT promoter mutation. Furthermore, among HCC patients infected with hepatitis C, those with concomitant hepatitis B infection exhibited infrequent TERT promoter mutation (P = 0.0435). Remarkably, patients presenting with TERT promoter mutation-positive and -negative HCCs exhibited similar disease-free and overall survival rates. Our study indicated that the TERT promoter mutation frequently occurred in HCV-associated HCCs. The absence of Hepatitis B infection was significantly associated with the TERT promoter mutation. These findings suggest that various etiological factors may be involved in differing mechanisms to preserve telomeres during the carcinogenesis of HCCs. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  13. B-cell lymphoma mutations: improving diagnostics and enabling targeted therapies

    PubMed Central

    Vaqué, José P.; Martínez, Nerea; Batlle-López, Ana; Pérez, Cristina; Montes-Moreno, Santiago; Sánchez-Beato, Margarita; Piris, Miguel A.

    2014-01-01

    B-cell lymphomas comprise an increasing number of clinicopathological entities whose characterization has historically been based mainly on histopathological features. In recent decades, the analysis of chromosomal aberrations as well as gene and miRNA expression profile studies have helped distinguish particular tumor types and also enabled the detection of a number of targets with therapeutic implications, such as those activated downstream of the B-cell receptor. Our ability to identify the mechanisms involved in B-cell lymphoma pathogenesis has been boosted recently through the use of Next Generation Sequencing techniques in the analysis of human cancer. This work summarizes the recent findings in the molecular pathogenesis of B-cell neoplasms with special focus on those clinically relevant somatic mutations with the potential to be explored as candidates for the development of new targeted therapies. Our work includes a comparison between the mutational indexes and ranges observed in B-cell lymphomas and also with other solid tumors and describes the most striking mutational data for the major B-cell neoplasms. This review describes a highly dynamic field that currently offers many opportunities for personalized therapy, although there is still much to be gained from the further molecular characterization of these clinicopathological entities. PMID:24497559

  14. Hepatitis C virus nonstructural protein 5B is involved in virus morphogenesis.

    PubMed

    Gouklani, Hamed; Bull, Rowena A; Beyer, Claudia; Coulibaly, Fasséli; Gowans, Eric J; Drummer, Heidi E; Netter, Hans J; White, Peter A; Haqshenas, Gholamreza

    2012-05-01

    The p7 protein of hepatitis C virus (HCV) is a viroporin that is dispensable for viral genome replication but plays a critical role in virus morphogenesis. In this study, we generated a JFH1-based intergenotypic chimeric genome that encoded a heterologous genotype 1b (GT1b) p7. The parental intergenotypic chimeric genome was nonviable in human hepatoma cells, and infectious chimeric virions were produced only when cells transfected with the chimeric genomes were passaged several times. Sequence analysis of the entire polyprotein-coding region of the recovered chimeric virus revealed one predominant amino acid substitution in nonstructural protein 2 (NS2), T23N, and one in NS5B, K151R. Forward genetic analysis demonstrated that each of these mutations per se restored the infectivity of the parental chimeric genome, suggesting that interactions between p7, NS2, and NS5B were required for virion assembly/maturation. p7 and NS5B colocalized in cellular compartments, and the NS5B mutation did not affect the colocalization pattern. The NS5B K151R mutation neither increased viral RNA replication in human hepatoma cells nor altered the polymerase activity of NS5B in an in vitro assay. In conclusion, this study suggests that HCV NS5B is involved in virus morphogenesis.

  15. Hepatitis C Virus Nonstructural Protein 5B Is Involved in Virus Morphogenesis

    PubMed Central

    Gouklani, Hamed; Bull, Rowena A.; Beyer, Claudia; Coulibaly, Fasséli; Gowans, Eric J.; Drummer, Heidi E.; Netter, Hans J.; White, Peter A.

    2012-01-01

    The p7 protein of hepatitis C virus (HCV) is a viroporin that is dispensable for viral genome replication but plays a critical role in virus morphogenesis. In this study, we generated a JFH1-based intergenotypic chimeric genome that encoded a heterologous genotype 1b (GT1b) p7. The parental intergenotypic chimeric genome was nonviable in human hepatoma cells, and infectious chimeric virions were produced only when cells transfected with the chimeric genomes were passaged several times. Sequence analysis of the entire polyprotein-coding region of the recovered chimeric virus revealed one predominant amino acid substitution in nonstructural protein 2 (NS2), T23N, and one in NS5B, K151R. Forward genetic analysis demonstrated that each of these mutations per se restored the infectivity of the parental chimeric genome, suggesting that interactions between p7, NS2, and NS5B were required for virion assembly/maturation. p7 and NS5B colocalized in cellular compartments, and the NS5B mutation did not affect the colocalization pattern. The NS5B K151R mutation neither increased viral RNA replication in human hepatoma cells nor altered the polymerase activity of NS5B in an in vitro assay. In conclusion, this study suggests that HCV NS5B is involved in virus morphogenesis. PMID:22345449

  16. Neuroferritinopathy: Missense mutation in FTL causing early-onset bilateral pallidal involvement

    PubMed Central

    Maciel, P.; Cruz, V.T.; Constante, M.; Iniesta, I.; Costa, M.C.; Gallati, S.; Sousa, N.; Sequeiros, J.; Coutinho, P.; Santos, M.M.

    2010-01-01

    The authors identified a missense mutation in the FTL gene (474G>A; A96T) in a 19-year-old man with parkinsonism, ataxia, corticospinal signs, mild nonprogressive cognitive deficit, and episodic psychosis. This mutation was also present in his asymptomatic mother and younger brother, who had abnormally low levels of ferritin in the serum. The patient and his mother displayed bilateral involvement of the pallidum. PMID:16116125

  17. STAT5B mutations in heterozygous state have negative impact on height: another clue in human stature heritability

    PubMed Central

    Scalco, Renata C; Hwa, Vivian; Domené, Horacio M.; Jasper, Héctor G.; Belgorosky, Alicia; Marino, Roxana; Pereira, Alberto M.; Tonelli, Carlos A.; Wit, Jan M.; Rosenfeld, Ron G.; Jorge, Alexander A.L.

    2016-01-01

    Context and objective Growth hormone insensitivity with immune dysfunction caused by signal transducer and activator of transcription 5B (STAT5B) mutations is an autosomal recessive condition. Heterozygous mutations in other genes involved in growth regulation were previously associated with a mild height reduction. Our objective was to assess for the first time the phenotype of heterozygous STAT5B mutations. Methods We genotyped and performed clinical and laboratorial evaluations in 52 relatives of 2 previously described Brazilian brothers with homozygous STAT5B c.424_427del mutation (21 heterozygous). Additionally, we obtained height data and genotype from 1,104 adult control individuals from the same region in Brazil and identified 5 additional families harboring the same mutation (18 individuals, 11 heterozygous). Furthermore, we gathered the available height data from first-degree relatives of patients with homozygous STAT5B mutations (17 individuals from 7 families). Data from heterozygous individuals and non-carriers were compared. Results Individuals carrying heterozygous STAT5B c.424_427del mutation were 0.6 SDS shorter than their non-carrier relatives (p= 0.009). Heterozygous subjects also had significantly lower SDS for serum concentrations of IGF-1 (p=0.028) and IGFBP-3 (p=0.02) than their non-carrier relatives. The 17 heterozygous first-degree relatives of patients carrying homozygous STAT5B mutations had an average height SDS of −1.4 ± 0.8 when compared with population-matched controls (p < 0.001). Conclusions STAT5B mutations in heterozygous state have a significant negative impact on height (approximately 3.9 cm). This effect is milder than the effect seen in the homozygous state, with height usually within the normal range. Our results support the hypothesis that heterozygosity of rare pathogenic variants contributes to normal height heritability. PMID:26034074

  18. Loss of B Cells in Patients with Heterozygous Mutations in IKAROS.

    PubMed

    Kuehn, H S; Boisson, B; Cunningham-Rundles, C; Reichenbach, J; Stray-Pedersen, A; Gelfand, E W; Maffucci, P; Pierce, K R; Abbott, J K; Voelkerding, K V; South, S T; Augustine, N H; Bush, J S; Dolen, W K; Wray, B B; Itan, Y; Cobat, A; Sorte, H S; Ganesan, S; Prader, S; Martins, T B; Lawrence, M G; Orange, J S; Calvo, K R; Niemela, J E; Casanova, J-L; Fleisher, T A; Hill, H R; Kumánovics, A; Conley, M E; Rosenzweig, S D

    2016-03-17

    Common variable immunodeficiency (CVID) is characterized by late-onset hypogammaglobulinemia in the absence of predisposing factors. The genetic cause is unknown in the majority of cases, and less than 10% of patients have a family history of the disease. Most patients have normal numbers of B cells but lack plasma cells. We used whole-exome sequencing and array-based comparative genomic hybridization to evaluate a subset of patients with CVID and low B-cell numbers. Mutant proteins were analyzed for DNA binding with the use of an electrophoretic mobility-shift assay (EMSA) and confocal microscopy. Flow cytometry was used to analyze peripheral-blood lymphocytes and bone marrow aspirates. Six different heterozygous mutations in IKZF1, the gene encoding the transcription factor IKAROS, were identified in 29 persons from six families. In two families, the mutation was a de novo event in the proband. All the mutations, four amino acid substitutions, an intragenic deletion, and a 4.7-Mb multigene deletion involved the DNA-binding domain of IKAROS. The proteins bearing missense mutations failed to bind target DNA sequences on EMSA and confocal microscopy; however, they did not inhibit the binding of wild-type IKAROS. Studies in family members showed progressive loss of B cells and serum immunoglobulins. Bone marrow aspirates in two patients had markedly decreased early B-cell precursors, but plasma cells were present. Acute lymphoblastic leukemia developed in 2 of the 29 patients. Heterozygous mutations in the transcription factor IKAROS caused an autosomal dominant form of CVID that is associated with a striking decrease in B-cell numbers. (Funded by the National Institutes of Health and others.).

  19. Involvement of Escherichia coli DNA polymerase II in response to oxidative damage and adaptive mutation.

    PubMed

    Escarceller, M; Hicks, J; Gudmundsson, G; Trump, G; Touati, D; Lovett, S; Foster, P L; McEntee, K; Goodman, M F

    1994-10-01

    DNA polymerase II (Pol II) is regulated as part of the SOS response to DNA damage in Escherichia coli. We examined the participation of Pol II in the response to oxidative damage, adaptive mutation, and recombination. Cells lacking Pol II activity (polB delta 1 mutants) exhibited 5- to 10-fold-greater sensitivity to mode 1 killing by H2O2 compared with isogenic polB+ cells. Survival decreased by about 15-fold when polB mutants containing defective superoxide dismutase genes, sodA and sodB, were compared with polB+ sodA sodB mutants. Resistance to peroxide killing was restored following P1 transduction of polB cells to polB+ or by conjugation of polB cells with an F' plasmid carrying a copy of polB+. The rate at which Lac+ mutations arose in Lac- cells subjected to selection for lactose utilization, a phenomenon known as adaptive mutation, was increased threefold in polB backgrounds and returned to wild-type rates when polB cells were transduced to polB+. Following multiple passages of polB cells or prolonged starvation, a progressive loss of sensitivity to killing by peroxide was observed, suggesting that second-site suppressor mutations may be occurring with relatively high frequencies. The presence of suppressor mutations may account for the apparent lack of a mutant phenotype in earlier studies. A well-established polB strain, a dinA Mu d(Apr lac) fusion (GW1010), exhibited wild-type (Pol II+) sensitivity to killing by peroxide, consistent with the accumulation of second-site suppressor mutations. A high titer anti-Pol II polyclonal antibody was used to screen for the presence of Pol II in other bacteria and in the yeast Saccharomyces cerevisiae. Cross-reacting material was found in all gram-negative strains tested but was not detected in gram-positive strains or in S. cerevisiae. Induction of Pol II by nalidixic acid was observed in E. coli K-12, B, and C, in Shigella flexneri, and in Salmonella typhimurium.

  20. HLA-B27 Selects for Rare Escape Mutations that Significantly Impair Hepatitis C Virus Replication and Require Compensatory Mutations

    PubMed Central

    Neumann-Haefelin, Christoph; Oniangue-Ndza, Cesar; Kuntzen, Thomas; Schmidt, Julia; Nitschke, Katja; Sidney, John; Caillet-Saguy, Célia; Binder, Marco; Kersting, Nadine; Kemper, Michael W.; Power, Karen A.; Ingber, Susan; Reyor, Laura L.; Hills-Evans, Kelsey; Kim, Arthur Y.; Lauer, Georg M.; Lohmann, Volker; Sette, Alessandro; Henn, Matthew R.; Bressanelli, Stéphane; Thimme, Robert; Allen, Todd M.

    2011-01-01

    HLA-B27 is associated with spontaneous viral clearance in hepatitis C virus (HCV) infection. Viral escape within the immunodominant HLA-B27 restricted HCV-specific CD8+ T cell epitope NS5B2841-2849 (ARMILMTHF) has been shown to be limited by viral fitness costs as well as broad T cell cross-recognition, suggesting a potential mechanism of protection by HLA-B27. Here, we studied the subdominant HLA-B27 restricted epitope NS5B2936-2944 (GRAAICGKY) in order to further define the mechanisms of protection by HLA-B27. We identified a unique pattern of escape mutations within this epitope in a large cohort of HCV genotype 1a infected patients. The predominant escape mutations represented conservative substitutions at the main HLA-B27 anchor residue or a T cell receptor contact site, neither of which impaired viral replication capacity as assessed in a subgenomic HCV replicon system. In contrast, however, in a subset of HLA-B27+ subjects rare escape mutations arose at the HLA-B27 anchor residue R2937, which nearly abolished viral replication. Notably, these rare mutations only occurred in conjunction with the selection of two equally rare, and structurally proximal, upstream mutations. Co-expression of these upstream mutations with the rare escape mutations dramatically restored viral replication capacity from <5% to ≥70% of wild-type levels. Conclusion The selection of rare CTL escape mutations in this HLA-B27 restricted epitope dramatically impairs viral replicative fitness unless properly compensated. These data support a role for the targeting of highly-constrained regions by HLA-B27 in its ability to assert immune control of HCV and other highly variable pathogens. PMID:22006856

  1. Genitopatellar syndrome: expanding the phenotype and excluding mutations in LMX1B and TBX4.

    PubMed

    Abdul-Rahman, Omar A; La, Trang H; Kwan, Andrea; Schlaubitz, Silke; Barsh, Greg S; Enns, Gregory M; Hudgins, Louanne

    2006-07-15

    Genitopatellar syndrome is a newly described disorder characterized by absent/hypoplastic patellae, lower extremity contractures, urogenital anomalies, dysmorphic features, skeletal anomalies, and agenesis of the corpus callosum. More recently, cardiac anomalies and ectodermal dysplasia have been suggested as additional features of this syndrome. We report on two additional patients with genitopatellar syndrome and expand the spectrum of anomalies to include radio-ulnar synostosis. Since there exists significant overlap in the skeletal phenotype between genitopatellar syndrome and both the nail-patella and short patella syndromes, mutation screening of their causative genes, LMX1B and TBX4, was performed. Although there still does not appear to be an identifiable molecular etiology in genitopatellar syndrome, mutations in these two candidate genes have been excluded in our patients. Since both LMX1B and TBX4 are involved in a common molecular pathway, it is likely that the causative gene of genitopatellar syndrome functions within the same developmental process.

  2. Signature mutations from B. subtilis spores exposed to radiations and simulated space environments

    NASA Astrophysics Data System (ADS)

    Munakata, , Nobuo; Natsume, Toshiyuki; Konishi, Teruaki; Hieda, Kotaro; Panitz, Corinna; Horneck, Gerda

    Rifampicin-resistant mutants were collected from the spores of three B. subtilis strains, HA101 (HA, repair proficient), TKJ6312 (US, UV-repair defective) and TKJ6412 (RF, recombination deficient) grown after exposure to various radiations and simulated space environments. All of 563 mutations analyzed carried sequence changes in the N-terminal region of the rpoB gene cod-ing for the subunit β of RNA polymerase II and belonged to 56 alleles. (1) Most of spontaneous mutants from the three strains belonged to 13 single-base substitution (SBS) alleles, exceptions (<2%) being one 3 bp insertion and one tandem double substitution (TDS). (2) About 6 % and 16 % of the mutations from the HA and RF spores, respectively, exposed to ionizing radiations were complex mutations including multiple-base substitutions, insertions and deletions. Several TDS and non-tandem double substitutions (NTDS), and 3, 6, 9 and one 30 bp deletions seem to provide signatures of the exposure to ionizing radiations. (3) Except one TDS from US and one NTDS from HA spores, UV or solar exposure seemed not to leave unique footprints. (4) In space simulation experiments, the only conditions involving high vacuum consistently increased the mutation frequency, and exhibited high occurrences (>50%) of TDS. In HA spores, the al-lele r201 (CA to TT at 1460) was the most frequent, while in US spores, another allele r210 (TC to AA at 1404) was the most frequent. In conclusion, some of the conditions encountered in space environments, such as space vacuum and ionizing radiations, could produce unique mutational signatures in the rpoB gene of B. subtilis spores.

  3. EZH2 and CD79B mutational status over time in B-cell non-Hodgkin lymphomas detected by high-throughput sequencing using minimal samples.

    PubMed

    Saieg, Mauro Ajaj; Geddie, William R; Boerner, Scott L; Bailey, Denis; Crump, Michael; da Cunha Santos, Gilda

    2013-07-01

    Numerous genomic abnormalities in B-cell non-Hodgkin lymphomas (NHLs) have been revealed by novel high-throughput technologies, including recurrent mutations in EZH2 (enhancer of zeste homolog 2) and CD79B (B cell antigen receptor complex-associated protein beta chain) genes. This study sought to determine the evolution of the mutational status of EZH2 and CD79B over time in different samples from the same patient in a cohort of B-cell NHLs, through use of a customized multiplex mutation assay. DNA that was extracted from cytological material stored on FTA cards as well as from additional specimens, including archived frozen and formalin-fixed histological specimens, archived stained smears, and cytospin preparations, were submitted to a multiplex mutation assay specifically designed for the detection of point mutations involving EZH2 and CD79B, using MassARRAY spectrometry followed by Sanger sequencing. All 121 samples from 80 B-cell NHL cases were successfully analyzed. Mutations in EZH2 (Y646) and CD79B (Y196) were detected in 13.2% and 8% of the samples, respectively, almost exclusively in follicular lymphomas and diffuse large B-cell lymphomas. In one-third of the positive cases, a wild type was detected in a different sample from the same patient during follow-up. Testing multiple minimal tissue samples using a high-throughput multiplex platform exponentially increases tissue availability for molecular analysis and might facilitate future studies of tumor progression and the related molecular events. Mutational status of EZH2 and CD79B may vary in B-cell NHL samples over time and support the concept that individualized therapy should be based on molecular findings at the time of treatment, rather than on results obtained from previous specimens. Cancer (Cancer Cytopathol) 2013;121:377-386. © 2013 American Cancer Society. © 2013 American Cancer Society.

  4. EZH2 and CD79B mutational status over time in B-cell non-Hodgkin lymphomas detected by high-throughput sequencing using minimal samples

    PubMed Central

    Saieg, Mauro Ajaj; Geddie, William R; Boerner, Scott L; Bailey, Denis; Crump, Michael; da Cunha Santos, Gilda

    2013-01-01

    BACKGROUND: Numerous genomic abnormalities in B-cell non-Hodgkin lymphomas (NHLs) have been revealed by novel high-throughput technologies, including recurrent mutations in EZH2 (enhancer of zeste homolog 2) and CD79B (B cell antigen receptor complex-associated protein beta chain) genes. This study sought to determine the evolution of the mutational status of EZH2 and CD79B over time in different samples from the same patient in a cohort of B-cell NHLs, through use of a customized multiplex mutation assay. METHODS: DNA that was extracted from cytological material stored on FTA cards as well as from additional specimens, including archived frozen and formalin-fixed histological specimens, archived stained smears, and cytospin preparations, were submitted to a multiplex mutation assay specifically designed for the detection of point mutations involving EZH2 and CD79B, using MassARRAY spectrometry followed by Sanger sequencing. RESULTS: All 121 samples from 80 B-cell NHL cases were successfully analyzed. Mutations in EZH2 (Y646) and CD79B (Y196) were detected in 13.2% and 8% of the samples, respectively, almost exclusively in follicular lymphomas and diffuse large B-cell lymphomas. In one-third of the positive cases, a wild type was detected in a different sample from the same patient during follow-up. CONCLUSIONS: Testing multiple minimal tissue samples using a high-throughput multiplex platform exponentially increases tissue availability for molecular analysis and might facilitate future studies of tumor progression and the related molecular events. Mutational status of EZH2 and CD79B may vary in B-cell NHL samples over time and support the concept that individualized therapy should be based on molecular findings at the time of treatment, rather than on results obtained from previous specimens. Cancer (Cancer Cytopathol) 2013;121:377–386. © 2013 American Cancer Society. PMID:23361872

  5. Identification of Somatic Mutations in Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type by Massive Parallel Sequencing.

    PubMed

    Mareschal, Sylvain; Pham-Ledard, Anne; Viailly, Pierre Julien; Dubois, Sydney; Bertrand, Philippe; Maingonnat, Catherine; Fontanilles, Maxime; Bohers, Elodie; Ruminy, Philippe; Tournier, Isabelle; Courville, Philippe; Lenormand, Bernard; Duval, Anne Bénédicte; Andrieu, Emilie; Verneuil, Laurence; Vergier, Beatrice; Tilly, Hervé; Joly, Pascal; Frebourg, Thierry; Beylot-Barry, Marie; Merlio, Jean-Philippe; Jardin, Fabrice

    2017-09-01

    To determine whether the mutational profile of primary cutaneous diffuse large B-cell lymphoma, leg type (PCLBCL-LT) is unique by comparison with other diffuse large B-cell lymphoma subtypes, we analyzed a total cohort of 20 PCLBCL-LT patients by using next-generation sequencing with a lymphoma panel designed for diffuse large B-cell lymphoma. We also analyzed 12 pairs of tumor and control DNA samples by whole-exome sequencing, which led us to perform resequencing of three selected genes not included in the lymphoma panel: TBL1XR1, KLHL6, and IKZF3. Our study clearly identifies an original mutational landscape of PCLBCL-LT with a very restricted set of highly recurrent mutations (>40%) involving MYD88 (p.L265P variant), PIM1, and CD79B. Other genes involved in B-cell signaling, NF-κB activation, or DNA modeling were found altered, notably TBL1XR1 (33%), MYC (26%) CREBBP (26%), and IRF4 (21%) or HIST1H1E (41%). MYD88(L265P) variant was associated with copy number variations or copy neutral loss of heterozygosity in 60% of patients. The most frequent genetic losses involved CDKN2A/2B, TNFAIP3/A20, PRDM1, TCF3, and CIITA. Together, these results show that PCLBCL-LT exhibits a unique mutational landscape, combining highly recurrent hotspot mutations in genes involved in NF-kB and B-cell signaling pathways, which provides a rationale for using selective inhibitors of the B-cell receptor. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. FBXW7 is involved in Aurora B degradation

    PubMed Central

    Teng, Chieh-Lin; Hsieh, Yun-Chi; Phan, Liem; Shin, Jihyun; Gully, Chris; Velazquez-Torres, Guermarie; Skerl, Stephen; Yeung, Sai-Ching J.; Hsu, Shih-Lan; Lee, Mong-Hong

    2012-01-01

    FBXW7, a component of E3 ubiquitin ligase, plays an important role in mitotic checkpoint, but its role remains unclear. Aurora B is a mitotic checkpoint kinase that plays a pivotal role in mitosis by ensuring correct chromosome segregation and normal progression through mitosis. Whether Aurora B and FBXW7 are coordinately regulated during mitosis is not known. Here, we show that FBXW7 is a negative regulator for Aurora B. Ectopic expression of FBXW7 can suppress the expression of Aurora B. Accordingly, FBXW7 deficiency leads to Aurora B elevation. Mechanistic studies show that all FBXW7 isoforms are negative regulators of Aurora B expression through ubiquitination-mediated protein degradation. Aurora B interacts with R465 and R505 residues of WD 40 domain of FBXW7. Significantly, inverse correlation between FBXW7 and Aurora B elevation is translated into the deregulation of mitosis. FBWX7 expression mitigates Aurora B-mediated cell growth and mitotic deregulation. In addition, FBXW7 reduces the percentage of multinucleated cells caused by Aurora B overexpression. These data suggest that FBXW7 is an important negative regulator of Aurora B, and that the loss or mutation of FBXW7 as seen in many types of cancer could lead to an abnormal elevation of Aurora B and result in deregulated mitosis, which accelerates cancer cell growth. PMID:23095493

  7. Unverricht-Lundborg disease: homozygosity for a new splicing mutation in the cystatin B gene.

    PubMed

    Pinto, Eugénia; Freitas, Joel; Duarte, Ana Joana; Ribeiro, Isaura; Ribeiro, Diogo; Lima, J Lopes; Chaves, João; Amaral, Olga

    2012-03-01

    Unverricht-Lundborg disease is the most common form of progressive myoclonic epilepsy (PME). It is due to cystatin B gene (CSTB) mutations. Several mutations in CSTB gene have been published, but few in homozygosity. We describe a patient with a new splicing alteration. Mutation Gln22Gln leads to abnormal splicing and partial inclusion of intronic sequence. This is one of the few cases of homozygosity for a non-classic mutation and adds to mutational heterogeneity of CSTB.

  8. Spectrum of LMX1B mutations: from nail-patella syndrome to isolated nephropathy.

    PubMed

    Harita, Yutaka; Kitanaka, Sachiko; Isojima, Tsuyoshi; Ashida, Akira; Hattori, Motoshi

    2016-07-23

    Nail-patella syndrome (NPS) is an autosomal-dominant disease caused by LMX1B mutations and is characterized by dysplastic nails, absent or hypoplastic patellae, elbow dysplasia, and iliac horns. Renal involvement is the major determinant of the prognosis for NPS. Patients often present with varying degrees of proteinuria or hematuria, and can occasionally progress to chronic renal failure. Recent genetic analysis has found that some mutations in the homeodomain of LMX1B cause isolated nephropathy without nail, patellar or skeletal abnormality (LMX1B-associated nephropathy). The classic term "nail-patella syndrome" would not represent disease conditions in these cases. This review provides an overview of NPS, and highlights the molecular genetics of NPS nephropathy and LMX1B-associated nephropathy. Our current understanding of LMX1B function in the pathogenesis of NPS and LMX1B-associated nephropathy is also presented, and its downstream regulatory networks discussed. This recent progress provides insights that help to define potential targeted therapeutic strategies for LMX1B-associated diseases.

  9. Spontaneous mutation 7B-1 in tomato impairs blue light-induced stomatal opening.

    PubMed

    Hlavinka, Jan; Nauš, Jan; Fellner, Martin

    2013-08-01

    It was reported earlier that 7B-1 mutant in tomato (Solanum lycopersicum L.), an ABA overproducer, is defective in blue light (BL) signaling leading to BL-specific resistance to abiotic and biotic stresses. In this work, we examine responses of stomata to blue, red and white lights, fusicoccin, anion channel blockers (anthracene-9-carboxylic acid; 9-AC and niflumic acid; NIF) and ABA. Our results showed that the aperture of 7B-1 stomata does not increase in BL, suggesting that 7B-1 mutation impairs an element of BL signaling pathway involved in stomatal opening. Similar stomatal responses of 7B-1 and wild type (WT) to fusicoccin or 9-AC points out that activity of H(+)-ATPase and 9-AC-sensitive anion channels per se is not likely affected by the mutation. Since 9-AC restored stomatal opening of 7B-1 in BL, it seems that 9-AC and BL could block similar type of anion channels. The stomata of both genotypes did not respond to NIF neither in darkness nor in any light conditions tested. In light, 9-AC but not NIF restored stomatal opening inhibited by ABA in WT and 7B-1. We suggest that in comparison to WT, the activity of S-type anion channels in 7B-1 is more promoted by increased ABA content, and less reduced by BL, because of the mutant resistance to BL. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Analysis of TACI mutations in CVID & RESPI patients who have inherited HLA B*44 or HLA*B8.

    PubMed

    Waldrep, Manda L; Zhuang, Yingxin; Schroeder, Harry W

    2009-09-23

    Recent reports have suggested that Common Variable Immunodeficieny (CVID) can present as an autosomal dominant trait dependent on the inheritance of a set of uncommon mutations/alleles of TACI (transmembrane activator and calcium-modulator and cyclophilin ligand interactor) involving exons 3 or 4. Penetrance, however, appears to be incomplete. Among our clinic population, the greatest genetic linkage for CVID is to the major histocompatibility complex (MHC) on chromosome 6. The majority of our patients have inherited HLA *DQ2, *DR7, *DR3(17), *B8, and/or *B44. Of these, HLA*B44 was present in almost half of the patients and was thus the most common susceptibility allele. HLA *B44 was also found to be over-represented among patients who presented to our clinic with adult-onset recurrent sinopulmonary infections (RESPI) and normal serum immunoglobulin levels, a cohort that included first and second degree relatives of patients with CVID. One of the two original reports of the association between TACI and CVID also reported Human Leukocyte Antigen (HLA) haplotypes. Of 13 affected subjects, nine had inherited HLA *B8 and six had inherited HLA B44. This raised the possibility that TACI mutations might synergize with MHC class I alleles to enhance susceptibility to humoral immune deficiency. We identified 63 CVID patients irrespective of HLA status and 13 RESPI patients who had inherited HLA*B44. To evaluate for mutations in the gene for TACI, we PCR amplified and sequenced TACI exons 3 and 4 from these patients. Of the 76 patients, eleven proved heterozygous for a previously reported, silent T->G polymorphism [rs35062843] at proline 97 in exon 3. However, none of the 13 RESPI patients and only one of the 63 CVID patients inherited a TACI allele previously associated with CVID. This patient was heterozygous for the TACI A181E allele (exon 4). She did not carry *DQ2, *DR7, *DR3(17), *B8, or *B44. These findings suggest that TACI mutations are unlikely to play a critical

  11. Rifampicin-Resistance Mutations in the rpoB Gene in Bacillus velezensis CC09 have Pleiotropic Effects

    PubMed Central

    Cai, Xun-Chao; Xi, Huan; Liang, Li; Liu, Jia-Dong; Liu, Chang-Hong; Xue, Ya-Rong; Yu, Xiang-Yang

    2017-01-01

    Rifampicin resistance (Rifr) mutations in the RNA polymerase β subunit (rpoB) gene exhibit pleiotropic phenotypes as a result of their effects on the transcription machinery in prokaryotes. However, the differences in the effects of the mutations on the physiology and metabolism of the bacteria remain unknown. In this study, we isolated seven Rifr mutations in rpoB, including six single point mutations (H485Y, H485C, H485D, H485R, Q472R, and S490L) and one double point mutation (S490L/S617F) from vegetative cells of an endophytic strain, Bacillus velezensis CC09. Compared to the wild-type (WT) strain (CC09), the H485R and H485D mutants exhibited a higher degree of inhibition of Aspergillus niger spore germination, while the H485Y, S490L, Q472R, and S490L/S617F mutants exhibited a lower degree of inhibition due to their lower production of the antibiotic iturin A. These mutants all exhibited defective phenotypes in terms of pellicle formation, sporulation, and swarming motility. A hierarchical clustering analysis of the observed phenotypes indicated that the four mutations involving amino acid substitutions at H485 in RpoB belonged to the same cluster. In contrast, the S490L and Q472R mutations, as well as the WT strain, were in another cluster, indicating a functional connection between the mutations in B. velezensis and phenotypic changes. Our data suggest that Rifr mutations cannot only be used to study transcriptional regulation mechanisms, but can also serve as a tool to increase the production of bioactive metabolites in B. velezensis. PMID:28243227

  12. Mutations of the CYP1B1 gene in congenital anterior staphylomas.

    PubMed

    Al Judaibi, Ramzi; Abu-Amero, Khaled K; Morales, Jose; Al Shahwan, Sami; Edward, Deepak P

    2014-01-01

    Here, we present two patients with congenital anterior staphyloma, with mutations in the CYP1B1 gene. We reviewed the medical records, including the genetic analysis. Two unrelated patients presented with congenital anterior staphylomas. Both patients showed mutations in the CYP1B1 gene. The first patient, the product of a consanguineous marriage, showed a homozygous misssense mutation g.3987G>A (p.G61E). The second patient had compound heterozygous misssense mutations [g.4160 G>T (p.A119S) and g.8131 C>G (p.L432V)]. CYP1B1 gene mutation may be associated with congenital anterior staphylomas.

  13. Cortical volumes and atrophy rates in FTD-3 CHMP2B mutation carriers and related non-carriers.

    PubMed

    Eskildsen, Simon F; Østergaard, Lasse R; Rodell, Anders B; Østergaard, Leif; Nielsen, Jørgen E; Isaacs, Adrian M; Johannsen, Peter

    2009-04-15

    Frontotemporal dementia constitutes the third most prevalent neurodegenerative disease with dementia. We compared cortical structural changes in nine presymptomatic CHMP2B frontotemporal dementia mutation positive individuals with seven mutation negative family members. Using serial MRI scans with a mean interval of 16 months and surface based cortical segmentation we measured cortical thickness and volume, and quantified atrophy rates. Cortical thickness and atrophy rates were averaged within major lobes and focal effects were determined by parametric statistical maps. The volumetric atrophy rates in the presymptomatic CHMP2B mutation carriers were statistically significant, though of a lower magnitude than those previously reported in patients of other types of frontotemporal dementia. Cortical thickness measurements revealed cortical thinning in mutation carriers bilaterally in the frontal and occipital lobes, and in the left temporal lobe. Results indicated that cortical thickness has a higher sensitivity for detecting small changes than whole-brain volumetric measures. Comparing mutation carriers with non-carriers revealed increased atrophy rates in mutation carriers bilaterally in the inferio-temporal cortex, the superior frontal cortex, and the insular cortex. These findings indicated impairment of regions involved in both behaviour and language. The symptoms previously reported in clinical CHMP2B frontotemporal dementia patients are associated with the anatomically affected regions here found in the presymptomatic mutation carriers.

  14. Characterization of mutations in ATP8B1 associated with hereditary cholestasis.

    PubMed

    Klomp, Leo W J; Vargas, Julie C; van Mil, Saskia W C; Pawlikowska, Ludmila; Strautnieks, Sandra S; van Eijk, Michiel J T; Juijn, Jenneke A; Pabón-Peña, Carlos; Smith, Lauren B; DeYoung, Joseph A; Byrne, Jane A; Gombert, Justijn; van der Brugge, Gerda; Berger, Ruud; Jankowska, Irena; Pawlowska, Joanna; Villa, Erica; Knisely, A S; Thompson, Richard J; Freimer, Nelson B; Houwen, Roderick H J; Bull, Laura N

    2004-07-01

    Progressive familial intrahepatic cholestasis (PFIC) and benign recurrent intrahepatic cholestasis (BRIC) are clinically distinct hereditary disorders. PFIC patients suffer from chronic cholestasis and develop liver fibrosis. BRIC patients experience intermittent attacks of cholestasis that resolve spontaneously. Mutations in ATP8B1 (previously FIC1) may result in PFIC or BRIC. We report the genomic organization of ATP8B1 and mutation analyses of 180 families with PFIC or BRIC that identified 54 distinct disease mutations, including 10 mutations predicted to disrupt splicing, 6 nonsense mutations, 11 small insertion or deletion mutations predicted to induce frameshifts, 1 large genomic deletion, 2 small inframe deletions, and 24 missense mutations. Most mutations are rare, occurring in 1-3 families, or are limited to specific populations. Many patients are compound heterozygous for 2 mutations. Mutation type or location correlates overall with clinical severity: missense mutations are more common in BRIC (58% vs. 38% in PFIC), while nonsense, frameshifting, and large deletion mutations are more common in PFIC (41% vs. 16% in BRIC). Some mutations, however, lead to a wide range of phenotypes, from PFIC to BRIC or even no clinical disease. ATP8B1 mutations were detected in 30% and 41%, respectively, of the PFIC and BRIC patients screened.

  15. ARC syndrome with high GGT cholestasis caused by VPS33B mutations

    PubMed Central

    Wang, Jian-She; Zhao, Jing; Li, Li-Ting

    2014-01-01

    Arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome (OMIM 208085) is an autosomal recessive disorder that is caused by mutations in 2 interacting genes VPS33B and VIPAS39. Mutations in VPS33B gene account for most cases of ARC. As low or normal gamma-glutamyl transpeptidase (GGT) activity has been described in all patients with ARC syndrome identified so far, ARC syndrome is a possible diagnosis for low GGT cholestasis. Here we describe a Chinese patient with neonatal cholestasis and a high GGT level in three consecutive tests. She had other typical manifestations of ARC syndrome, including arthrogryposis multiplex congenita, renal involvement and ichthyosis. Genetic study of the VPS33B gene further confirmed the diagnosis by identification of compound heterozygosity of two known disease-causing mutations, c.403+2T > A and c.1509-1510insG. The mechanism of high GGT in this patient is unclear. Nevertheless, this case indicates that ARC syndrome cannot be excluded from the differential diagnosis of neonatal cholestasis even if high GGT activity is found. PMID:24782640

  16. Brain involvement in Charcot-Marie-Tooth disease due to ganglioside-induced differentiation associated-protein 1 mutation.

    PubMed

    Al-Ghamdi, Fouad; Anselm, Irina; Yang, Edward; Ghosh, Partha S

    2017-09-01

    Charcot-Marie-Tooth (CMT) due to ganglioside-induced differentiation associated-protein 1 (GDAP1) gene mutation can be inherited as an autosomal recessive (severe phenotype) or dominant (milder phenotype) disorder. GDAP1 protein, located in the outer mitochondrial membrane, is involved in the mitochondrial fission. Brain imaging abnormalities have not been reported in this condition. We described an 8-year-old boy who had an early onset autosomal recessive neuropathy. Whole exome sequencing revealed compound heterozygous mutations in the GDAP1 gene: c.313_313delA, p.Arg105Glufs*3 - a novel mutation (maternally inherited) and c.358C>T, pR120W - a known pathogenic mutation (paternally inherited). He had abnormal brain MRI findings since infancy localized to the middle cerebellar peduncles and cerebellar white matter with sparing of the supratentorial brain. We speculate that GDAP1 protein due to its widespread distribution and mitochondrial location is responsible for these imaging abnormalities. This report expands the spectrum of brain imaging abnormalities seen in different types of CMT. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Two Japanese CADASIL families exhibiting Notch3 mutation R75P not involving cysteine residue.

    PubMed

    Mizuno, Toshiki; Muranishi, Manabu; Torugun, Torusunjian; Tango, Hiromi; Nagakane, Yoshinari; Kudeken, Tukasa; Kawase, Yuji; Kawabe, Kiyokazu; Oshima, Fumiko; Yaoi, Takeshi; Itoh, Kyoko; Fushiki, Shinji; Nakagawa, Masanori

    2008-01-01

    Most previously reported mutations in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) result in an odd number of cysteine residues within the epidermal growth factor (EGF)-like repeats in Notch3. We report here R75P mutation in two Japanese CADASIL families not directly involving cysteine residues located within the first EGF-like repeats. Probands in both families had repeated episodes of stroke, depression, dementia as well as T2 high-intensity lesions in the basal ganglia and periventricular white matter, but fewer white matter lesions in the temporal pole on MRI. These families provide new insights into the diagnosis and pathomechanisms of CADASIL.

  18. Involvement of B cells in non-infectious uveitis

    PubMed Central

    Smith, Justine R; Stempel, Andrew J; Bharadwaj, Arpita; Appukuttan, Binoy

    2016-01-01

    Non-infectious uveitis—or intraocular inflammatory disease—causes substantial visual morbidity and reduced quality of life amongst affected individuals. To date, research of pathogenic mechanisms has largely been focused on processes involving T lymphocyte and/or myeloid leukocyte populations. Involvement of B lymphocytes has received relatively little attention. In contrast, B-cell pathobiology is a major field within general immunological research, and large clinical trials have showed that treatments targeting B cells are highly effective for multiple systemic inflammatory diseases. B cells, including the terminally differentiated plasma cell that produces antibody, are found in the human eye in different forms of non-infectious uveitis; in some cases, these cells outnumber other leukocyte subsets. Recent case reports and small case series suggest that B-cell blockade may be therapeutic for patients with non-infectious uveitis. As well as secretion of antibody, B cells may promote intraocular inflammation by presentation of antigen to T cells, production of multiple inflammatory cytokines and support of T-cell survival. B cells may also perform various immunomodulatory activities within the eye. This translational review summarizes the evidence for B-cell involvement in non-infectious uveitis, and considers the potential contributions of B cells to the development and control of the disease. Manipulations of B cells and/or their products are promising new approaches to the treatment of non-infectious uveitis. PMID:26962453

  19. Are all the DNA gyrase mutations found in Mycobacterium leprae clinical strains involved in resistance to fluoroquinolones?

    PubMed

    Matrat, Stéphanie; Cambau, Emmanuelle; Jarlier, Vincent; Aubry, Alexandra

    2008-02-01

    Mycobacterium leprae DNA gyrases carrying various mutations, previously described in clinical strains, were investigated for quinolone susceptibility by inhibition of supercoiling and DNA cleavage promotion. We demonstrated that the gyrA mutations leading to G89C or A91V confer fluoroquinolone resistance whereas the gyrB mutation leading to D205N does not.

  20. ERBB4 Mutations that Disrupt the Neuregulin-ErbB4 Pathway Cause Amyotrophic Lateral Sclerosis Type 19

    PubMed Central

    Takahashi, Yuji; Fukuda, Yoko; Yoshimura, Jun; Toyoda, Atsushi; Kurppa, Kari; Moritoyo, Hiroyoko; Belzil, Veronique V.; Dion, Patrick A.; Higasa, Koichiro; Doi, Koichiro; Ishiura, Hiroyuki; Mitsui, Jun; Date, Hidetoshi; Ahsan, Budrul; Matsukawa, Takashi; Ichikawa, Yaeko; Moritoyo, Takashi; Ikoma, Mayumi; Hashimoto, Tsukasa; Kimura, Fumiharu; Murayama, Shigeo; Onodera, Osamu; Nishizawa, Masatoyo; Yoshida, Mari; Atsuta, Naoki; Sobue, Gen; Fifita, Jennifer A.; Williams, Kelly L.; Blair, Ian P.; Nicholson, Garth A.; Gonzalez-Perez, Paloma; Brown, Robert H.; Nomoto, Masahiro; Elenius, Klaus; Rouleau, Guy A.; Fujiyama, Asao; Morishita, Shinichi; Goto, Jun; Tsuji, Shoji

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disorder characterized by the degeneration of motor neurons and typically results in death within 3–5 years from onset. Familial ALS (FALS) comprises 5%–10% of ALS cases, and the identification of genes associated with FALS is indispensable to elucidating the molecular pathogenesis. We identified a Japanese family affected by late-onset, autosomal-dominant ALS in which mutations in genes known to be associated with FALS were excluded. A whole- genome sequencing and parametric linkage analysis under the assumption of an autosomal-dominant mode of inheritance with incomplete penetrance revealed the mutation c.2780G>A (p. Arg927Gln) in ERBB4. An extensive mutational analysis revealed the same mutation in a Canadian individual with familial ALS and a de novo mutation, c.3823C>T (p. Arg1275Trp), in a Japanese simplex case. These amino acid substitutions involve amino acids highly conserved among species, are predicted as probably damaging, and are located within a tyrosine kinase domain (p. Arg927Gln) or a C-terminal domain (p. Arg1275Trp), both of which mediate essential functions of ErbB4 as a receptor tyrosine kinase. Functional analysis revealed that these mutations led to a reduced autophosphorylation of ErbB4 upon neuregulin-1 (NRG-1) stimulation. Clinical presentations of the individuals with mutations were characterized by the involvement of both upper and lower motor neurons, a lack of obvious cognitive dysfunction, and relatively slow progression. This study indicates that disruption of the neuregulin-ErbB4 pathway is involved in the pathogenesis of ALS and potentially paves the way for the development of innovative therapeutic strategies such using NRGs or their agonists to upregulate ErbB4 functions. PMID:24119685

  1. The site-directed mutation I(L177)H in Rhodobacter sphaeroides reaction center affects coordination of P(A) and B(B) bacteriochlorophylls.

    PubMed

    Vasilieva, L G; Fufina, T Y; Gabdulkhakov, A G; Leonova, M M; Khatypov, R A; Shuvalov, V A

    2012-08-01

    To explore the influence of the I(L177)H single mutation on the properties of the nearest bacteriochlorophylls (BChls), three reaction centers (RCs) bearing double mutations were constructed in the photosynthetic purple bacterium Rhodobacter sphaeroides, and their properties and pigment content were compared with those of the correspondent single mutant RCs. Each pair of the mutations comprised the amino acid substitution I(L177)H and another mutation altering histidine ligand of BChl P(A) or BChl B(B). Contrary to expectations, the double mutation I(L177)H+H(L173)L does not bring about a heterodimer RC but causes a 46nm blue shift of the long-wavelength P absorbance band. The histidine L177 or a water molecule were suggested as putative ligands for P(A) in the RC I(L177)H+H(L173)L although this would imply a reorientation of the His backbone and additional rearrangements in the primary donor environment or even a repositioning of the BChl dimer. The crystal structure of the mutant I(L177)H reaction center determined to a resolution of 2.9Å shows changes at the interface region between the BChl P(A) and the monomeric BChl B(B). Spectral and pigment analysis provided evidence for β-coordination of the BChl B(B) in the double mutant RC I(L177)H+H(M182)L and for its hexacoordination in the mutant reaction center I(L177)H. Computer modeling suggests involvement of two water molecules in the β-coordination of the BChl B(B). Possible structural consequences of the L177 mutation affecting the coordination of the two BChls P(A) and B(B) are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.

  2. Germ-line origins of mutation in families with hemophilia B: the sex ratio varies with the type of mutation.

    PubMed Central

    Ketterling, R P; Vielhaber, E; Bottema, C D; Schaid, D J; Cohen, M P; Sexauer, C L; Sommer, S S

    1993-01-01

    Previous epidemiological and biochemical studies have generated conflicting estimates of the sex ratio of mutation. Direct genomic sequencing in combination with haplotype analysis extends previous analyses by allowing the precise mutation to be determined in a given family. From analysis of the factor IX gene of 260 consecutive families with hemophilia B, we report the germ-line origin of mutation in 25 families. When combined with 14 origins of mutation reported by others and with 4 origins previously reported by us, a total of 25 occur in the female germ line, and 18 occur in the male germ line. The excess of germ-line origins in females does not imply an overall excess mutation rate per base pair in the female germ line. Bayesian analysis of the data indicates that the sex ratio varies with the type of mutation. The aggregate of single-base substitutions shows a male predominance of germ-line mutations (P < .002). The maximum-likelihood estimate of the male predominance is 3.5-fold. Of the single-base substitutions, transitions at the dinucleotide CpG show the largest male predominance (11-fold). In contrast to single-base substitutions, deletions display a sex ratio of unity. Analysis of the parental age at transmission of a new mutation suggests that germ-line mutations are associated with a small increase in parental age in females but little, if any, increase in males. Although direct genomic sequencing offers a general method for defining the origin of mutation in specific families, accurate estimates of the sex ratios of different mutational classes require large sample sizes and careful correction for multiple biases of ascertainment. The biases in the present data result in an underestimate of the enhancement of mutation in males. PMID:8434583

  3. Germ-line origins of mutation in families with hemophilia B: The sex ratio varies with the type of mutation

    SciTech Connect

    Ketterling, R.P.; Vielhaber, E.; Bottema, C.D.K.; Schaid, D.J.; Sommer, S.S. ); Cohen, M.P. ); Sexauer, C.L. )

    1993-01-01

    Previous epidemiological and biochemical studies have generated conflicting estimates of the sex ratio of mutation. Direct genomic sequencing in combination with haplotype analysis extends previous analyses by allowing the precise mutation to be determined in a given family. From analysis of the factor IX gene of 260 consecutive families with hemophilia B, the authors report the germ-line origin of mutation in 25 families. When combined with 14 origins of mutation reported by others and with 4 origins previously reported by them, a total of 25 occur in the female germ line, and 18 occur in the male germ line. The excess of germ-line origins in females does not imply an overall excess mutation rate per base pair in the female germ line. Bayesian analysis of the data indicates that the sex ratio varies with the type of mutation. The aggregate of single-base substitutions shows a male predominance of germ-line mutations (P < .002). The maximum-likelihood estimate of the male predominance is 3.5-fold. Of the single-base substitutions, deletions display a sex ratio of unity. Analysis of the parental age at transmission of a new mutation suggests that germ-line mutations are associated with a small increase in parental age in females but little, if any, increase in males. Although direct genomic sequencing offers a general method for defining the origin of mutation in specific families, accurate estimates of the sex ratios of different mutational classes require large sample sizes and careful correction for multiple biases of ascertainment. The biases in the present data result in an underestimate of the enhancement of mutation in males. 62 refs., 1 fig., 5 tabs.

  4. Hepatitis B virus reverse transcriptase mutations in treatment Naïve chronic hepatitis B patients.

    PubMed

    Singla, Bhupesh; Chakraborti, Anuradha; Sharma, Bal Krishan; Kapil, Shweta; Chawla, Yogesh K; Arora, Sunil K; Das, Ashim; Dhiman, Radha K; Duseja, Ajay

    2013-07-01

    Mutations in the reverse transcriptase (RT) region of the hepatitis B virus (HBV) genome lead to decreased susceptibility to nucleos(t)ide analogs approved for treatment of HBV infection. The aim of this study was to detect and analyze pre-existing HBV RT mutations in treatment naïve patients with chronic hepatitis B. Seventy one chronic HBV treatment naïve patients were enrolled from January 2009 to June 2011. HBV RT sequence analysis was done by using direct bidirectional sequencing of semi-nested PCR products. HBV genotypes were determined by multiplex PCR. Genotype D was found in 64 patients (90.1%) followed by genotype C and A which were present in 5 (7.0%) and 2 (2.8%) patients respectively. The results of the RT sequence analysis showed mutations in 34 (47.9%) patients. The rtH248N mutation was the most common mutation, accounting for 47.1% patients. Other common mutations included rtD263E/S, rtM129L, rtF122L/V/I, rtS135Y/H, rtQ149K, rtL91I, rtH126R, rtC256S/G, rtY257W, rtS259T and rtE271D, which were present in 26.5% (9/34), 29.4% (10/34), 20.6% (7/34), 20.6% (7/34), 20.6% (7/34), 17.6% (6/34), 14.7% (5/34), 14.7% (5/34), 11.8% (4/34), 11.8% (4/34) and 11.8% (4/34) patients respectively. The known primary drug resistance mutations were found in 3 (8.8%) patients. The present study shows the presence of RT amino acid substitutions in treatment-naïve patients with chronic hepatitis B, which may decrease susceptibility to available oral antiviral drugs. On the basis of the finding of this study, genotypic testing is recommended before the start of therapy in naïve patients, so that suitable antiviral drugs can be prescribed.

  5. Novel FAM134B mutations and their clinicopathological significance in colorectal cancer.

    PubMed

    Islam, Farhadul; Gopalan, Vinod; Wahab, Riajul; Lee, Katherine Ting-Wei; Haque, Md Hakimul; Mamoori, Afraa; Lu, Cu-Tai; Smith, Robert A; Lam, Alfred K-Y

    2017-03-01

    FAM134B is a putative tumour suppressor gene and no mutations in FAM134B have been reported in colorectal cancer (CRC) to date. This study aims to identify FAM134B mutation sites and the clinicopathological significance of the gene in patients with CRC. Eighty-eight colorectal cancers were studied for FAM134B mutations by Sanger sequencing. The mutations in these cancers were then tested for correlations with the clinical and pathological parameters of the studied cancers. In addition, mRNA and protein expression of FAM134B in colorectal cancers was examined by polymerase chain reaction, Western blots, and immunofluorescence analysis. FAM134B mutation was noted in 46.5% (41/88) of patients with CRC. Thirty-one novel potentially pathogenic mutations were noted in coding and intronic regions of FAM134B in CRC, the majority of which were single-nucleotide substitutions. Of the 31 mutations, eight novel frameshift mutations showed potential to cause non-sense-mediated mRNA decay (NMD) in computational analysis. In addition, FAM134B mutations were associated with various clinical and pathological variables, including sex of the patients, presence of metachronous cancer, size, T staging, presence of distant metastases, and positivity of microsatellite instability (MSI) in the cancer (p < 0.05). FAM134B mRNA and protein expression was decreased in FAM134B mutated cancers. To conclude, FAM134B mutation is common in colorectal cancer. The association of the mutation of this gene with adverse clinical and pathological parameters is congruent with the tumour suppressive properties of the gene.

  6. Identification of Novel FAM134B (JK1) Mutations in Oesophageal Squamous Cell Carcinoma

    PubMed Central

    Haque, Md. Hakimul; Gopalan, Vinod; Chan, Kwok-wah; Shiddiky, Muhammad J. A.; Smith, Robert Anthony; Lam, Alfred King-yin

    2016-01-01

    Mutation of FAM134B (Family with Sequence Similarity 134, Member B) leading to loss of function of its encoded Golgi protein and has been reported induce apoptosis in neurological disorders. FAM134B mutation is still unexplored in cancer. Herein, we studied the DNA copy number variation and novel mutation sites of FAM134B in a large cohort of freshly collected oesophageal squamous cell carcinoma (ESCC) tissue samples. In ESCC tissues, 37% (38/102) showed increased FAM134B DNA copies whereas 35% (36/102) showed loss of FAM134B copies relative to matched non-cancer tissues. Novel mutations were detected in exons 4, 5, 7, 9 as well as introns 2, 4-8 of FAM134B via HRM (High-Resolution Melt) and Sanger sequencing analysis. Overall, thirty-seven FAM134B mutations were noted in which most (31/37) mutations were homozygous. FAM134B mutations were detected in all the cases with metastatic ESCC in the lymph node tested and in 14% (8/57) of the primary ESCC. Genetic alteration of FAM134B is a frequent event in the progression of ESCCs. These findings imply that mutation might be the major driving source of FAM134B genetic modulation in ESCCs. PMID:27373372

  7. Mutations in WNT10A are frequently involved in oligodontia associated with minor signs of ectodermal dysplasia.

    PubMed

    Plaisancié, Julie; Bailleul-Forestier, Isabelle; Gaston, Véronique; Vaysse, Fréderic; Lacombe, Didier; Holder-Espinasse, Muriel; Abramowicz, Marc; Coubes, Christine; Plessis, Ghislaine; Faivre, Laurence; Demeer, Bénédicte; Vincent-Delorme, Catherine; Dollfus, Hélène; Sigaudy, Sabine; Guillén-Navarro, Encarna; Verloes, Alain; Jonveaux, Philippe; Martin-Coignard, Dominique; Colin, Estelle; Bieth, Eric; Calvas, Patrick; Chassaing, Nicolas

    2013-04-01

    Ectodermal dysplasias (ED) are a clinically and genetically heterogeneous group of hereditary disorders that have in common abnormal development of ectodermal derivatives. Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of eccrine sweat glands, hair, and teeth. The X-linked form of the disease, caused by mutations in the EDA gene, represents the majority of patients with the hypohidrotic form. Autosomal dominant and autosomal recessive forms are occasionally seen, and result from mutations in at least three genes (WNT10A, EDAR, or more rarely EDARADD). We have screened for mutations in EDAR (commonly involved in the hypohidrotic form) and WNT10A (involved in a wide spectrum of ED and in isolated hypodontia) in a cohort of 36 patients referred for EDA molecular screening, which failed to identify any mutation. We identified eight EDAR mutations in five patients (two with homozygous mutations, one with compound heterozygous mutations, and two with heterozygous mutation), four of which were novel variants. We identified 28 WNT10A mutations in 16 patients (5 with homozygous mutations, 7 with compound heterozygous mutations, and 4 with heterozygous mutations), seven of which were novel variants. Our study allows a more precise definition of the phenotypic spectrum associated with EDAR and WNT10A mutations and underlines the importance of the implication of WNT10A among patients with ED. Copyright © 2013 Wiley Periodicals, Inc.

  8. Genes involved in cell cycle G1 checkpoint control are frequently mutated in human melanoma metastases.

    PubMed Central

    Platz, A.; Sevigny, P.; Norberg, T.; Ring, P.; Lagerlöf, B.; Ringborg, U.

    1996-01-01

    A common characteristic of cancer cells is unrestrained cell division. This may be caused by mutational changes in genes coding for components of cell cycle-controlling networks. Alterations in genes involved in G1 checkpoint control have been registered in many human tumours, and investigations from several laboratories show that such alterations, taken together, are the most frequent changes detected in cancer cells. The present paper describes mutational analysis by polymerase chain reaction-single-strand conformation polymorphism (PCR/SSCP) and nucleotide sequence analysis of the genes coding for the p15, p53 and N-ras proteins in 26 metastases from 25 melanoma patients. The registered mutation frequencies add together with previously registered mutations in p16 in the same patient samples to a substantial total frequency of 44% of patients with mutation in at least one of the investigated genes. These results show the occurrence of heterogeneous defects among components of the cell cycle controlling machinery in a human melanoma tumour sample collection and demonstrate that the total frequency of detected alterations increases with the number of cell cycle controlling genes included in the screening panel. Images Figure 1 PMID:8826861

  9. Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids.

    PubMed

    Kachanovsky, David E; Filler, Shdema; Isaacson, Tal; Hirschberg, Joseph

    2012-11-13

    Tomato (Solanum lycopersicum) fruit accumulate the red carotenoid pigment lycopene. The recessive mutation yellow-flesh (locus r) in tomato eliminates fruit carotenoids by disrupting the activity of the fruit-specific phytoene synthase (PSY1), the first committed step in the carotenoid biosynthesis pathway. Fruits of the recessive mutation tangerine (t) appear orange due to accumulation of 7,9,7',9'-tetra-cis-lycopene (prolycopene) as a result of a mutation in the carotenoid cis-trans isomerase. It was established 60 y ago that tangerine is epistatic to yellow-flesh. This uncharacteristic epistasis interaction defies a paradigm in biochemical genetics arguing that mutations that disrupt enzymes acting early in a biosynthetic pathway are epistatic to other mutations that block downstream steps in the same pathway. To explain this conundrum, we have investigated the interaction between tangerine and yellow-flesh at the molecular level. Results presented here indicate that allele r(2997) of yellow-flesh eliminates transcription of PSY1 in fruits. In a genetic background of tangerine, transcription of PSY1 is partially restored to a level sufficient for producing phytoene and downstream carotenoids. Our results revealed the molecular mechanism underlying the epistasis of t over r and suggest the involvement of cis-carotenoid metabolites in a feedback regulation of PSY1 gene expression.

  10. Mutations in JMJD1C are involved in Rett syndrome and intellectual disability.

    PubMed

    Sáez, Mauricio A; Fernández-Rodríguez, Juana; Moutinho, Catia; Sanchez-Mut, Jose V; Gomez, Antonio; Vidal, Enrique; Petazzi, Paolo; Szczesna, Karolina; Lopez-Serra, Paula; Lucariello, Mario; Lorden, Patricia; Delgado-Morales, Raul; de la Caridad, Olga J; Huertas, Dori; Gelpí, Josep L; Orozco, Modesto; López-Doriga, Adriana; Milà, Montserrat; Perez-Jurado, Luís A; Pineda, Mercedes; Armstrong, Judith; Lázaro, Conxi; Esteller, Manel

    2016-04-01

    Autism spectrum disorders are associated with defects in social response and communication that often occur in the context of intellectual disability. Rett syndrome is one example in which epilepsy, motor impairment, and motor disturbance may co-occur. Mutations in histone demethylases are known to occur in several of these syndromes. Herein, we aimed to identify whether mutations in the candidate histone demethylase JMJD1C (jumonji domain containing 1C) are implicated in these disorders. We performed the mutational and functional analysis of JMJD1C in 215 cases of autism spectrum disorders, intellectual disability, and Rett syndrome without a known genetic defect. We found seven JMJD1C variants that were not present in any control sample (~ 6,000) and caused an amino acid change involving a different functional group. From these, two de novo JMJD1C germline mutations were identified in a case of Rett syndrome and in a patient with intellectual disability. The functional study of the JMJD1C mutant Rett syndrome patient demonstrated that the altered protein had abnormal subcellular localization, diminished activity to demethylate the DNA damage-response protein MDC1, and reduced binding to MECP2. We confirmed that JMJD1C protein is widely expressed in brain regions and that its depletion compromises dendritic activity. Our findings indicate that mutations in JMJD1C contribute to the development of Rett syndrome and intellectual disability.Genet Med 18 1, 378-385.

  11. Predominance of precore mutations and clinical significance of basal core promoter mutations in chronic hepatitis B virus infection in Indonesia.

    PubMed

    Juniastuti; Utsumi, Takako; Aksono, Eduardus Bimo; Yano, Yoshihiko; Soetjipto; Hayashi, Yoshitake; Hotta, Hak; Rantam, Fedik Abdul; Kusumobroto, Hernomo Ontoseno; Lusida, Maria Inge

    2013-07-01

    Chronic hepatitis B virus (HBV) infection is a major health problem worldwide, with a particularly high prevalence in the Asian-Pacific region. During chronic hepatitis B virus (HBV) infection, mutations commonly occur in the basal core promoter (BCP) and precore (PC) regions of HBV, affecting HBeAg expression, particularly following HBeAg serocon-version. Mutations in the B- and T-cell epitopes of the HBV core have also been observed during disease progression. The clinical significance of HBV genome variability has been demonstrated, however the results are a subject of controversy. Considering the characteristics of the virus associated with geographical location, the profiles of BCP, PC and core mutations and their clinical implications in patients with chronic HBV infection in Surabaya, Indonesia, were investigated. The BCP, PC and core mutations and HBV genotypes were detected by direct sequencing. The HBeAg/anti-HBe status and HBV DNA levels were also assessed. This study enrolled 10 patients with chronic HBV infection (UC) from Dr Soetomo General Hospital and Indonesian Red Cross, Surabaya, East Java, Indonesia, 10 patients with chronic hepatitis B and liver cirrhosis (LC) and 4 patients with chronic hepatitis B and hepatocellular carcinoma (HCC) from Dr Soetomo General Hospital. The PC mutation A1896 was predominant in all the groups (60-100%), together with the PC variant T1858, which was associated with HBV genotype B. The number of detected core mutations (Thr/Ser130) was higher in HCC patients (50%). However, the BCP mutations T1762/A1764 were predominant in LC patients (50-60%). The LC and HCC patients carried HBV isolates with additional mutations, at least at BCP or PC, mainly following HBeAg seroconversion. In the majority of anti-HBe-positive samples, the BCP T1762/A1764 mutations were associated with a high viral load, regardless of the PC 1896 status. In conclusion, the PC mutations were found to be predominant in all the groups. However, the

  12. Predominance of precore mutations and clinical significance of basal core promoter mutations in chronic hepatitis B virus infection in Indonesia

    PubMed Central

    JUNIASTUTI; UTSUMI, TAKAKO; AKSONO, EDUARDUS BIMO; YANO, YOSHIHIKO; SOETJIPTO; HAYASHI, YOSHITAKE; HOTTA, HAK; RANTAM, FEDIK ABDUL; KUSUMOBROTO, HERNOMO ONTOSENO; LUSIDA, MARIA INGE

    2013-01-01

    Chronic hepatitis B virus (HBV) infection is a major health problem worldwide, with a particularly high prevalence in the Asian-Pacific region. During chronic hepatitis B virus (HBV) infection, mutations commonly occur in the basal core promoter (BCP) and precore (PC) regions of HBV, affecting HBeAg expression, particularly following HBeAg serocon-version. Mutations in the B- and T-cell epitopes of the HBV core have also been observed during disease progression. The clinical significance of HBV genome variability has been demonstrated, however the results are a subject of controversy. Considering the characteristics of the virus associated with geographical location, the profiles of BCP, PC and core mutations and their clinical implications in patients with chronic HBV infection in Surabaya, Indonesia, were investigated. The BCP, PC and core mutations and HBV genotypes were detected by direct sequencing. The HBeAg/anti-HBe status and HBV DNA levels were also assessed. This study enrolled 10 patients with chronic HBV infection (UC) from Dr Soetomo General Hospital and Indonesian Red Cross, Surabaya, East Java, Indonesia, 10 patients with chronic hepatitis B and liver cirrhosis (LC) and 4 patients with chronic hepatitis B and hepatocellular carcinoma (HCC) from Dr Soetomo General Hospital. The PC mutation A1896 was predominant in all the groups (60–100%), together with the PC variant T1858, which was associated with HBV genotype B. The number of detected core mutations (Thr/Ser130) was higher in HCC patients (50%). However, the BCP mutations T1762/A1764 were predominant in LC patients (50–60%). The LC and HCC patients carried HBV isolates with additional mutations, at least at BCP or PC, mainly following HBeAg seroconversion. In the majority of anti-HBe-positive samples, the BCP T1762/A1764 mutations were associated with a high viral load, regardless of the PC 1896 status. In conclusion, the PC mutations were found to be predominant in all the groups. However

  13. The Role of B-RAF Mutations in Melanoma and the Induction of EMT via Dysregulation of the NF-κB/Snail/RKIP/PTEN Circuit

    PubMed Central

    Lin, Kimberly; Baritaki, Stavroula; Militello, Loredana; Malaponte, Graziella; Bevelacqua, Ylenia; Bonavida, Benjamin

    2010-01-01

    Melanoma is a highly metastatic cancer, and there are no current therapeutic modalities to treat this deadly malignant disease once it has metastasized. Melanoma cancers exhibit B-RAF mutations in up to 70% of cases. B-RAF mutations are responsible, in large part, for the constitutive hyperactivation of survival/antiapoptotic pathways such as the MAPK, NF-κB, and PI3K/AKT. These hyperactivated pathways regulate the expression of genes targeting the initiation of the metastatic cascade, namely, the epithelial to mesenchymal transition (EMT). EMT is the result of the expression of mesenchymal gene products such as fibronectin, vimentin, and metalloproteinases and the invasion and inhibition of E-cadherin. The above pathways cross-talk and regulate each other’s activities and functions. For instance, the NF-κB pathway directly regulates EMT through the transcription of gene products involved in EMT and indirectly through the transcriptional up-regulation of the metastasis inducer Snail. Snail, in turn, suppresses the expression of the metastasis suppressor gene product Raf kinase inhibitor protein RKIP (inhibits the MAPK and the NF-κB pathways) as well as PTEN (inhibits the PI3K/AKT pathway). The role of B-RAF mutations in melanoma and their direct role in the induction of EMT are not clear. This review discusses the hypothesis that B-RAF mutations are involved in the dysregulation of the NF-κB/Snail/RKIP/PTEN circuit and in both the induction of EMT and metastasis. The therapeutic implications of the dysregulation of the above circuit by B-RAF mutations are such that they offer novel targets for therapeutic interventions in the treatment of EMT and metastasis. PMID:20827424

  14. The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract

    PubMed Central

    Hansen, Lars; Comyn, Sophie; Mang, Yuan; Lind-Thomsen, Allan; Myhre, Layne; Jean, Francesca; Eiberg, Hans; Tommerup, Niels; Rosenberg, Thomas; Pilgrim, David

    2014-01-01

    Genome-wide linkage analysis, followed by targeted deep sequencing, in a Danish multigeneration family with juvenile cataract revealed a region of chromosome 17 co-segregating with the disease trait. Affected individuals were heterozygous for two potentially protein-disrupting alleles in this region, in ACACA and UNC45B. As alterations of the UNC45B protein have been shown to affect eye development in model organisms, effort was focused on the heterozygous UNC45B missense mutation. UNC45B encodes a myosin-specific chaperone that, together with the general heat shock protein HSP90, is involved in myosin assembly. The mutation changes p.Arg805 to Trp in the UCS domain, an amino acid that is highly conserved from yeast to human. UNC45B is strongly expressed in the heart and skeletal muscle tissue, but here we show expression in human embryo eye and zebrafish lens. The zebrafish mutant steif, carrying an unc45b nonsense mutation, has smaller eyes than wild-type embryos and shows accumulation of nuclei in the lens. Injection of RNA encoding the human wild-type UNC45B protein into the steif homozygous embryo reduced the nuclei accumulation and injection of human mutant UNC45B cDNA in wild-type embryos resulted in development of a phenotype similar to the steif mutant. The p.Arg805Trp alteration in the mammalian UNC45B gene suggests that developmental cataract may be caused by a defect in non-muscle myosin assembly during maturation of the lens fiber cells. PMID:24549050

  15. The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract.

    PubMed

    Hansen, Lars; Comyn, Sophie; Mang, Yuan; Lind-Thomsen, Allan; Myhre, Layne; Jean, Francesca; Eiberg, Hans; Tommerup, Niels; Rosenberg, Thomas; Pilgrim, David

    2014-11-01

    Genome-wide linkage analysis, followed by targeted deep sequencing, in a Danish multigeneration family with juvenile cataract revealed a region of chromosome 17 co-segregating with the disease trait. Affected individuals were heterozygous for two potentially protein-disrupting alleles in this region, in ACACA and UNC45B. As alterations of the UNC45B protein have been shown to affect eye development in model organisms, effort was focused on the heterozygous UNC45B missense mutation. UNC45B encodes a myosin-specific chaperone that, together with the general heat shock protein HSP90, is involved in myosin assembly. The mutation changes p.Arg805 to Trp in the UCS domain, an amino acid that is highly conserved from yeast to human. UNC45B is strongly expressed in the heart and skeletal muscle tissue, but here we show expression in human embryo eye and zebrafish lens. The zebrafish mutant steif, carrying an unc45b nonsense mutation, has smaller eyes than wild-type embryos and shows accumulation of nuclei in the lens. Injection of RNA encoding the human wild-type UNC45B protein into the steif homozygous embryo reduced the nuclei accumulation and injection of human mutant UNC45B cDNA in wild-type embryos resulted in development of a phenotype similar to the steif mutant. The p.Arg805Trp alteration in the mammalian UNC45B gene suggests that developmental cataract may be caused by a defect in non-muscle myosin assembly during maturation of the lens fiber cells.

  16. Mutation analysis in F9 gene of 17 families with haemophilia B from Iran.

    PubMed

    Enayat, M S; Karimi, M; Chana, G; Farjadian, S; Theophilus, B D M; Hill, F G H

    2004-11-01

    Seventeen haemophilia B families from Iran were investigated to determine the causative mutation. All the essential regions of the F9 gene were initially screened by conformational sensitive gel electrophoresis and exons with band shift were sequenced. Seven of the 15 mutations identified in these families were novel mutations. The mutations were authenticated in nine families as other affected members or heterozygous female carriers were available for verification.

  17. Gene Mutation Profiles in Primary Diffuse Large B Cell Lymphoma of Central Nervous System: Next Generation Sequencing Analyses.

    PubMed

    Todorovic Balint, Milena; Jelicic, Jelena; Mihaljevic, Biljana; Kostic, Jelena; Stanic, Bojana; Balint, Bela; Pejanovic, Nadja; Lucic, Bojana; Tosic, Natasa; Marjanovic, Irena; Stojiljkovic, Maja; Karan-Djurasevic, Teodora; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Raicevic, Sava; Bila, Jelena; Antic, Darko; Andjelic, Bosko; Pavlovic, Sonja

    2016-05-06

    The existence of a potential primary central nervous system lymphoma-specific genomic signature that differs from the systemic form of diffuse large B cell lymphoma (DLBCL) has been suggested, but is still controversial. We investigated 19 patients with primary DLBCL of central nervous system (DLBCL CNS) using the TruSeq Amplicon Cancer Panel (TSACP) for 48 cancer-related genes. Next generation sequencing (NGS) analyses have revealed that over 80% of potentially protein-changing mutations were located in eight genes (CTNNB1, PIK3CA, PTEN, ATM, KRAS, PTPN11, TP53 and JAK3), pointing to the potential role of these genes in lymphomagenesis. TP53 was the only gene harboring mutations in all 19 patients. In addition, the presence of mutated TP53 and ATM genes correlated with a higher total number of mutations in other analyzed genes. Furthermore, the presence of mutated ATM correlated with poorer event-free survival (EFS) (p = 0.036). The presence of the mutated SMO gene correlated with earlier disease relapse (p = 0.023), inferior event-free survival (p = 0.011) and overall survival (OS) (p = 0.017), while mutations in the PTEN gene were associated with inferior OS (p = 0.048). Our findings suggest that the TP53 and ATM genes could be involved in the molecular pathophysiology of primary DLBCL CNS, whereas mutations in the PTEN and SMO genes could affect survival regardless of the initial treatment approach.

  18. Gene Mutation Profiles in Primary Diffuse Large B Cell Lymphoma of Central Nervous System: Next Generation Sequencing Analyses

    PubMed Central

    Todorovic Balint, Milena; Jelicic, Jelena; Mihaljevic, Biljana; Kostic, Jelena; Stanic, Bojana; Balint, Bela; Pejanovic, Nadja; Lucic, Bojana; Tosic, Natasa; Marjanovic, Irena; Stojiljkovic, Maja; Karan-Djurasevic, Teodora; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Raicevic, Sava; Bila, Jelena; Antic, Darko; Andjelic, Bosko; Pavlovic, Sonja

    2016-01-01

    The existence of a potential primary central nervous system lymphoma-specific genomic signature that differs from the systemic form of diffuse large B cell lymphoma (DLBCL) has been suggested, but is still controversial. We investigated 19 patients with primary DLBCL of central nervous system (DLBCL CNS) using the TruSeq Amplicon Cancer Panel (TSACP) for 48 cancer-related genes. Next generation sequencing (NGS) analyses have revealed that over 80% of potentially protein-changing mutations were located in eight genes (CTNNB1, PIK3CA, PTEN, ATM, KRAS, PTPN11, TP53 and JAK3), pointing to the potential role of these genes in lymphomagenesis. TP53 was the only gene harboring mutations in all 19 patients. In addition, the presence of mutated TP53 and ATM genes correlated with a higher total number of mutations in other analyzed genes. Furthermore, the presence of mutated ATM correlated with poorer event-free survival (EFS) (p = 0.036). The presence of the mutated SMO gene correlated with earlier disease relapse (p = 0.023), inferior event-free survival (p = 0.011) and overall survival (OS) (p = 0.017), while mutations in the PTEN gene were associated with inferior OS (p = 0.048). Our findings suggest that the TP53 and ATM genes could be involved in the molecular pathophysiology of primary DLBCL CNS, whereas mutations in the PTEN and SMO genes could affect survival regardless of the initial treatment approach. PMID:27164089

  19. The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa: III. mutation rate of B chromosomes.

    PubMed

    Bakkali, M; Camacho, J P M

    2004-05-01

    B chromosome variation in nine Moroccan populations of the grasshopper Eyprepocnemis plorans was analysed for 3 consecutive years. In addition to B1, which was the predominant B chromosome in all nine populations, we found 15 other B variants, albeit at very low frequency. Eight variants were found in adults caught in the wild, four appeared in adults reared in the laboratory and seven were found in embryo progeny of controlled crosses between a 0B male and a B-carrying female. Some variants were found in more than one kind of material. At least the seven B variants that appeared in embryo progeny of females carrying a different B type arose de novo through mutation of the maternal B chromosome. The mutation rate of B chromosomes was 0.73%, on average, which explains the high variety of morphs and banding patterns found. The most frequent de novo mutations observed in these chromosomes were centromere misdivision with or without chromatid nondisjunction, which generates iso-B-chromosomes or telocentric Bs, respectively, as well as translocations with A and B chromosomes and deletions. But the whole variation observed, including that found in adult individuals, suggests that other mutations such as duplications, inversions and centric fusions do usually affect B chromosomes. Finally, B chromosome mutation rate was remarkably similar in both Moroccan and Spanish populations, which suggests that it might be dependent on B chromosome intrinsic factors.

  20. A ΔdinB mutation that sensitizes Escherichia coli to the lethal effects of UV- and X-radiation.

    PubMed

    Lee, Mei-Chong W; Franco, Magdalena; Vargas, Doris M; Hudman, Deborah A; White, Steven J; Fowler, Robert G; Sargentini, Neil J

    2014-01-01

    The DinB (PolIV) protein of Escherichia coli participates in several cellular functions. We investigated a dinB mutation, Δ(dinB-yafN)883(::kan) [referred to as ΔdinB883], which strongly sensitized E. coli cells to both UV- and X-radiation killing. Earlier reports indicated dinB mutations had no obvious effect on UV radiation sensitivity which we confirmed by showing that normal UV radiation sensitivity is conferred by the ΔdinB749 allele. Compared to a wild-type strain, the ΔdinB883 mutant was most sensitive (160-fold) in early to mid-logarithmic growth phase and much less sensitive (twofold) in late log or stationary phases, thus showing a growth phase-dependence for UV radiation sensitivity. This sensitizing effect of ΔdinB883 is assumed to be completely dependent upon the presence of UmuDC protein; since the ΔdinB883 mutation did not sensitize the ΔumuDC strain to UV radiation killing throughout log phase and early stationary phase growth. The DNA damage checkpoint activity of UmuDC was clearly affected by ΔdinB883 as shown by testing a umuC104 ΔdinB883 double-mutant. The sensitivities of the ΔumuDC strain and the ΔdinB883 ΔumuDC double-mutant strain were significantly greater than for the ΔdinB883 strain, suggesting that the ΔdinB883 allele only partially suppresses UmuDC activity. The ΔdinB883 mutation partially sensitized (fivefold) uvrA and uvrB strains to UV radiation, but did not sensitize a ΔrecA strain. A comparison of the DNA sequences of the ΔdinB883 allele with the sequences of the Δ(dinB-yafN)882(::kan) and ΔdinB749 alleles, which do not sensitize cells to UV radiation, revealed ΔdinB883 is likely a "gain-of-function" mutation. The ΔdinB883 allele encodes the first 54 amino acids of wild-type DinB followed by 29 predicted residues resulting from the continuation of the dinB reading frame into an adjacent insertion fragment. The resulting polypeptide is proposed to interfere directly or indirectly with UmuDC function(s) involved

  1. A ΔdinB mutation that sensitizes Escherichia coli to the lethal effects of UV and X-radiation

    PubMed Central

    Lee, Mei-Chong W.; Franco, Magdalena; Vargas, Doris M.; Hudman, Deborah A.; White, Steven J.; Fowler, Robert G.; Sargentini, Neil J.

    2014-01-01

    The DinB (PolIV) protein of Escherichia coli participates in several cellular functions. We investigated a dinB mutation, Δ(dinB-yafN)883(::kan) [referred to as ΔdinB883], which strongly sensitized E. coli cells to both UV- and X-radiation killing. Earlier reports indicated dinB mutations had no obvious effect on UV radiation sensitivity which we confirmed by showing that normal UV radiation sensitivity is conferred by the ΔdinB749 allele. Compared to a wild-type strain, the ΔdinB883 mutant was most sensitive (160-fold) in early to mid-logarithmic growth phase and much less sensitive (twofold) in late log or stationary phases, thus showing a growth phase-dependence for UV radiation sensitivity. This sensitizing effect of ΔdinB883 is assumed to be completely dependent upon the presence of UmuDC protein; since the ΔdinB883 mutation did not sensitize the ΔumuDC strain to UV radiation killing throughout log phase and early stationary phase growth. The DNA damage checkpoint activity of UmuDC was clearly affected by ΔdinB883 as shown by testing a umuC104 ΔdinB883 double-mutant. The sensitivities of the ΔumuDC strain and the ΔdinB883 ΔumuDC double-mutant strain were significantly greater than for the ΔdinB883 strain, suggesting that the ΔdinB883 allele only partially suppresses UmuDC activity. The ΔdinB883 mutation partially sensitized (fivefold) uvrA and uvrB strains to UV radiation, but did not sensitize a ΔrecA strain. A comparison of the DNA sequences of the ΔdinB883 allele with the sequences of the Δ(dinB-yafN)882(::kan) and ΔdinB749 alleles, which do not sensitize cells to UV radiation, revealed ΔdinB883 is likely a “gain-of-function” mutation. The ΔdinB883 allele encodes the first 54 amino acids of wild-type DinB followed by 29 predicted residues resulting from the continuation of the dinB reading frame into an adjacent insertion fragment. The resulting polypeptide is proposed to interfere directly or indirectly with UmuDC function

  2. Transcriptomic Characterization of SF3B1 Mutation Reveals Its Pleiotropic Effects in Chronic Lymphocytic Leukemia.

    PubMed

    Wang, Lili; Brooks, Angela N; Fan, Jean; Wan, Youzhong; Gambe, Rutendo; Li, Shuqiang; Hergert, Sarah; Yin, Shanye; Freeman, Samuel S; Levin, Joshua Z; Fan, Lin; Seiler, Michael; Buonamici, Silvia; Smith, Peter G; Chau, Kevin F; Cibulskis, Carrie L; Zhang, Wandi; Rassenti, Laura Z; Ghia, Emanuela M; Kipps, Thomas J; Fernandes, Stacey; Bloch, Donald B; Kotliar, Dylan; Landau, Dan A; Shukla, Sachet A; Aster, Jon C; Reed, Robin; DeLuca, David S; Brown, Jennifer R; Neuberg, Donna; Getz, Gad; Livak, Kenneth J; Meyerson, Matthew M; Kharchenko, Peter V; Wu, Catherine J

    2016-11-14

    Mutations in SF3B1, which encodes a spliceosome component, are associated with poor outcome in chronic lymphocytic leukemia (CLL), but how these contribute to CLL progression remains poorly understood. We undertook a transcriptomic characterization of primary human CLL cells to identify transcripts and pathways affected by SF3B1 mutation. Splicing alterations, identified in the analysis of bulk cells, were confirmed in single SF3B1-mutated CLL cells and also found in cell lines ectopically expressing mutant SF3B1. SF3B1 mutation was found to dysregulate multiple cellular functions including DNA damage response, telomere maintenance, and Notch signaling (mediated through KLF8 upregulation, increased TERC and TERT expression, or altered splicing of DVL2 transcript, respectively). SF3B1 mutation leads to diverse changes in CLL-related pathways.

  3. B-Myb Induces APOBEC3B Expression Leading to Somatic Mutation in Multiple Cancers

    PubMed Central

    Chou, Wen-Cheng; Chen, Wei-Ting; Hsiung, Chia-Ni; Hu, Ling-Yueh; Yu, Jyh-Cherng; Hsu, Huan-Ming; Shen, Chen-Yang

    2017-01-01

    The key signature of cancer genomes is the accumulation of DNA mutations, the most abundant of which is the cytosine-to-thymine (C-to-T) transition that results from cytosine deamination. Analysis of The Cancer Genome Atlas (TCGA) database has demonstrated that this transition is caused mainly by upregulation of the cytosine deaminase APOBEC3B (A3B), but the mechanism has not been completely characterized. We found that B-Myb (encoded by MYBL2) binds the A3B promoter, causing transactivation, and this is responsible for the C-to-T transitions and DNA hypermutation in breast cancer cells. Analysis of TCGA database yielded similar results, supporting that MYBL2 and A3B are upregulated and putatively promote C-to-T transitions in multiple cancer types. Moreover, blockade of EGF receptor with afatinib attenuated B-Myb–A3B signaling, suggesting a clinically relevant means of suppressing mutagenesis. Our results suggest that B-Myb–A3B contributes to DNA damage and could be targeted by inhibiting EGF receptor. PMID:28276478

  4. Distinct phenotype of a Wilson disease mutation reveals a novel trafficking determinant in the copper transporter ATP7B

    PubMed Central

    Braiterman, Lelita T.; Murthy, Amrutha; Jayakanthan, Samuel; Nyasae, Lydia; Tzeng, Eric; Gromadzka, Grazyna; Woolf, Thomas B.; Lutsenko, Svetlana; Hubbard, Ann L.

    2014-01-01

    Wilson disease (WD) is a monogenic autosomal-recessive disorder of copper accumulation that leads to liver failure and/or neurological deficits. WD is caused by mutations in ATP7B, a transporter that loads Cu(I) onto newly synthesized cupro-enzymes in the trans-Golgi network (TGN) and exports excess copper out of cells by trafficking from the TGN to the plasma membrane. To date, most WD mutations have been shown to disrupt ATP7B activity and/or stability. Using a multidisciplinary approach, including clinical analysis of patients, cell-based assays, and computational studies, we characterized a patient mutation, ATP7BS653Y, which is stable, does not disrupt Cu(I) transport, yet renders the protein unable to exit the TGN. Bulky or charged substitutions at position 653 mimic the phenotype of the patient mutation. Molecular modeling and dynamic simulation suggest that the S653Y mutation induces local distortions within the transmembrane (TM) domain 1 and alter TM1 interaction with TM2. S653Y abolishes the trafficking-stimulating effects of a secondary mutation in the N-terminal apical targeting domain. This result indicates a role for TM1/TM2 in regulating conformations of cytosolic domains involved in ATP7B trafficking. Taken together, our experiments revealed an unexpected role for TM1/TM2 in copper-regulated trafficking of ATP7B and defined a unique class of WD mutants that are transport-competent but trafficking-defective. Understanding the precise consequences of WD-causing mutations will facilitate the development of advanced mutation-specific therapies. PMID:24706876

  5. Involvement of Interleukin 6 in Hepatitis B Viral Infection.

    PubMed

    Xia, Caixia; Liu, Yanning; Chen, Zhi; Zheng, Min

    2015-01-01

    Hepatitis B is a major global health problem and a potentially life-threatening liver infection caused by hepatitis B virus (HBV). Many cytokines including interleukin 6 (IL-6) have been shown to be involved in the HBV infection process. IL-6 is a typical cytokine made up of 184 amino acids, and the gene is located in chromosome 7p21. For healthy people, serum IL-6 levels are usually too low to be detected. However, dysregulated synthesis of IL-6 has been discovered in chronic inflammatory diseases such as hepatitis B, Crohn's disease and rheumatoid arthritis. IL-6 also plays an important role in HBV replication and in the development of hepatitis B disease. This review aims to present the latest discoveries concerning the role of IL-6 in hepatitis B disease progression, and HBV entry and replication, and evaluate polymorphisms that are associated with the development of hepatitis B disease.

  6. PTCH mutations are not mainly involved in the pathogenesis of sporadic trichoblastomas.

    PubMed

    Hafner, Christian; Schmiemann, Viola; Ruetten, Arno; Coras, Brigitte; Landthaler, Michael; Reifenberger, Julia; Vogt, Thomas

    2007-10-01

    Trichoblastomas are rare, benign tumors of the appendix in human skin. The histopathology comprises elements of basal cell carcinoma and trichoepithelioma with a variable degree of follicular differentiation. Both basal cell carcinoma and trichoepithelioma reveal alterations of PTCH, the human homolog of the Drosophila segment polarity patched gene. Furthermore, heterozygous PTCH knockout mice develop trichoblastoma-like tumors. This suggests an involvement of the PTCH gene in the pathogenesis of human trichoblastomas. However, trichoblastomas arising in nevus sebaceus did not show loss of heterozygosity at the PTCH locus (9q22.3) in a previous study. Sequencing of the PTCH gene and analysis of sporadic human trichoblastomas have not been performed yet. We therefore screened 10 sporadic trichoblastomas and 1 trichoblastoma arising within a nevus sebaceus for PTCH mutations. After microdissection of the tumors, single-strand conformational polymorphism (SSCP)/heteroduplex analysis of exons 2 to 23 of PTCH was performed, and polymerase chain reaction products with aberrant band patterns were sequenced. One trichoblastoma revealed a silent mutation at codon 562 in exon 12. Another trichoblastoma showed a somatic C > T single nucleotide substitution at codon 1,315 (exon 23), which was not present in corresponding normal epidermis. This mutation at codon 1,315 represents an already described PTCH germline polymorphism and results in a heterozygous Pro to Leu substitution in the tumor. The Pro/Leu polymorphism in germline is associated with a higher risk for breast cancer, but a potential contribution to the tumorigenesis of trichoblastoma is unknown. We detected no classical PTCH mutations in the investigated trichoblastomas. Our results indicate that PTCH mutations are not mainly involved in the pathogenesis of sporadic trichoblastomas, in contrast to basal cell carcinomas and trichoepitheliomas. The genetic basis of this rare appendageal tumor remains elusive.

  7. Mutational and Transcriptomic Changes Involved in the Development of Macrolide Resistance in Campylobacter jejuni

    PubMed Central

    Hao, Haihong; Yuan, Zonghui; Shen, Zhangqi; Han, Jing; Sahin, Orhan; Liu, Peng

    2013-01-01

    Macrolide antibiotics are important for clinical treatment of infections caused by Campylobacter jejuni. Development of resistance to this class of antibiotics in Campylobacter is a complex process, and the dynamic molecular changes involved in this process remain poorly defined. Multiple lineages of macrolide-resistant mutants were selected by stepwise exposure of C. jejuni to escalating doses of erythromycin or tylosin. Mutations in target genes were determined by DNA sequencing, and the dynamic changes in the expression of antibiotic efflux transporters and the transcriptome of C. jejuni were examined by real-time reverse transcription-PCR, immunoblotting, and DNA microarray analysis. Multiple types of mutations in ribosomal proteins L4 and L22 occurred early during stepwise selection. On the contrary, the mutations in the 23S rRNA gene, mediating high resistance to macrolides, were observed only in the late-stage mutants. Upregulation of antibiotic efflux genes was observed in the intermediately resistant mutants, and the magnitude of upregulation declined with the occurrence of mutations in the 23S rRNA gene. DNA microarray analysis revealed the differential expression of 265 genes, most of which occurred in the intermediate mutant, including the upregulation of genes encoding ribosomal proteins and the downregulation of genes involved in energy metabolism and motility. These results indicate (i) that mutations in L4 and L22 along with temporal overexpression of antibiotic efflux genes precede and may facilitate the development of high-level macrolide resistance and (ii) that the development of macrolide resistance affects the pathways important for physiology and metabolism in C. jejuni, providing an explanation for the reduced fitness of macrolide-resistant Campylobacter. PMID:23274667

  8. Characterisation of novel mutations involved in quinolone resistance in Escherichia coli isolated from imported shrimp.

    PubMed

    Nawaz, Mohamed; Sung, Kidon; Kweon, Ohgew; Khan, Saeed; Nawaz, Samia; Steele, Roger

    2015-05-01

    Fifty-five nalidixic acid-resistant Escherichia coli strains were isolated from imported shrimp. Purified PCR amplicons of gyrA, gyrB, parC and parE from the template DNA of all isolates were sequenced and analysed for point mutations that confer resistance to nalidixic acid and ciprofloxacin. Point mutations in the quinolone resistance-determining regions (QRDRs) of GyrA at positions 68, 83 and 87 and in ParC at positions 80 and 84 as well as in the non-QRDR of GyrA at positions 112, 127, 128 and 154 along with point mutations in parE at position 476 conferred resistance to these antibiotics. Computational modelling and analysis of the different point mutations and their role in the enhanced resistance to these antibiotics indicated that only mutation at codons 83 (Ser→Ile) and 87 (Asp→Asn) played a vital role in increasing the minimum inhibitory concentration (MIC) to these drugs compared with other mutations. Ethidium bromide experiments indicated higher efflux pump activities in quinolone-resistant E. coli strains compared with their quinolone-sensitive counterparts. Class 1 integrons measuring 0.7-2.3kb were amplified and sequenced from the template DNA of the isolates. Sequence analysis of the 2.0kb and 1.7kb integrons indicated the presence of resistance determinants for trimethoprim (dfrA12 and dfrA17) and aminoglycosides (aadA2 and aadA5). These results indicate that use of nalidixic acid, ciprofloxacin and other antibiotics in shrimp aquaculture ponds may select E. coli resistant to these antibiotics and that imported shrimp is a reservoir of multiple antibiotic-resistant E. coli.

  9. Detection of B-RAF and N-RAS mutations in human melanoma.

    PubMed

    Goydos, James S; Mann, Barbara; Kim, Hyunjin J; Gabriel, Emmanuel M; Alsina, Janivette; Germino, F Joseph; Shih, Weichung; Gorski, David H

    2005-03-01

    It is now known that activating point mutations in components of the mitogen-activated protein kinase pathway commonly occur in melanoma. We previously described a method to detect point mutations in heterogenous tissues containing both wild-type and mutant B-RAF and N-RAS genes by using site-directed mutagenesis to introduce new restrictions sites in the cDNA sequence when the specific point mutations are present. We modified this technique to improve sensitivity and used it to determine the incidence of B-RAF and N-RAS mutations in human melanoma. We screened 115 melanoma samples for the most common B-RAF and N-RAS mutations found in melanoma using a site-directed mutagenesis-based detection technique. Southern blotting was used to increase sensitivity of the basic system. We also tested this method of genetic mutation detection in fine-needle aspiration specimens and paraffin-embedded tissues. Sixty-eight samples (20 of 36 primaries, 18 of 27 regional metastases, 16 of 40 nodal metastases, and 9 of 12 distant metastases) harbored the V599E B-RAF mutation (59%), 17 contained a Q61R N-RAS mutation, and 4 contained a Q61K N-RAS mutation. We were able to detect the V599E mutation in genomic DNA from paraffin-embedded melanoma samples and could routinely detect this mutation in fine-needle aspirations of melanoma tumors. This method of detection was sensitive and specific with no false positives. Activating mutations of B-RAF and N-RAS were present in approximately 60% and 18%, respectively, of samples tested. The site-directed mutagenesis system of mutation detection was both sensitive and specific in detecting these mutations and will likely prove very clinically useful in future studies.

  10. Involvement of a novel GATA4 mutation in atrial septal defects.

    PubMed

    Liu, Xing-Yuan; Wang, Juan; Zheng, Jing-Hao; Bai, Kai; Liu, Zhong-Min; Wang, Xiao-Zhou; Liu, Xu; Fang, Wei-Yi; Yang, Yi-Qing

    2011-07-01

    Atrial septal defect (ASD) is one of the most common types of congenital heart disease and is associated with a significant increase in the morbidity and mortality of affected individuals. Accumulating evidence indicates that genetic defects play important roles in the pathogenesis of congenital ASD. However, ASD is genetically heterogeneous and the genetic determinants for ASD in the majority of the patients remain to be identified. In this study, the entire coding region of GATA4, a gene encoding a zinc-finger transcription factor crucial to embryogenesis, was initially sequenced in 120 unrelated patients with ASD. The available relatives of patients carrying the identified mutation and 200 ethnicity-matched unrelated control individuals were genotyped. The functional characteristics of the GATA4 mutant were compared to its wild-type counterpart using a luciferase reporter assay system. A novel heterozygous missense GATA4 mutation, p.G21V, was identified in 2 unrelated families with ASD, which was not detected in the control population nor reported in the human gene mutation database. Alignment of multiple GATA4 proteins displayed that the affected amino acid residue was highly conserved across species. Functional analysis showed that the p.G21V GATA4 mutation was associated with a decreased transcriptional activity. The findings underscore the pathogenic link between compromised GATA4 function and congenital ASD, providing new insight into the molecular mechanism involved in this common form of congenital cardiovascular anomalies.

  11. Mutations within enhancer II and BCP regions of hepatitis B virus in relation to advanced liver diseases in patients infected with subgenotype B3 in Indonesia.

    PubMed

    Heriyanto, Didik Setyo; Yano, Yoshihiko; Utsumi, Takako; Anggorowati, Nungki; Rinonce, Hanggoro Tri; Lusida, Maria Inge; Soetjipto; Triwikatmani, Catharina; Ratnasari, Neneng; Maduseno, Sutanto; Purnama, Putut Bayu; Nurdjanah, Siti; Hayashi, Yoshitake

    2012-01-01

    Studies on the characteristics of mutations within the hepatitis B virus (HBV) genome, their roles in the pathogenesis of advanced liver diseases, and the involvement of host properties of HBV-infected individuals have not been conducted in subgenotype B3-infected populations. For addressing this issue, 40 cases with HBV surface antigen (HBsAg)-positive advanced liver diseases, including advanced liver cancer and cirrhosis (male 31, female 9, age 54.4 ± 11.6-year-old), were collected and compared with 109 cases with chronic hepatitis B (male 71, female 38, age 38.0 ± 13.4-year-old). Mutations in enhancer II (Enh II) and basal core promoter (BCP)/precore regions were analyzed by PCR-direct sequencing method. HBV viral load was examined by real-time PCR. For all examined regions, the prevalence of mutation was significantly higher in cases with advanced liver diseases. Multivariate analysis showed that, in patients older than 45 years, C1638T and T1753V mutations constituted independent risk factors for the advancement of liver diseases. The presence of C1638T and T1753V mutations may serve as predictive markers for the progression of liver diseases in Indonesia and other countries, where subgenotype B3 infection is prevalent.

  12. Mutational analysis of the myelin protein zero (MPZ) gene associated with Charcot-Marie-Tooth neuropathy type 1B

    SciTech Connect

    Roa, B.B.; Warner, L.E.; Lupski, J.R.

    1994-09-01

    The MPZ gene that maps to chromosome 1q22q23 encodes myelin protein zero, which is the most abundant peripheral nerve myelin protein that functions as a homophilic adhesion molecule in myelin compaction. Association of the MPZ gene with the dysmyelinating peripheral neuropathies Charcot-Marie-Tooth disease type 1B (CMT1B) and the more severe Dejerine-Sottas syndrome (DSS) was previously demonstrated by MPZ mutations identified in CMT1B and in rare DSS patients. In this study, the coding region of the MPZ gene was screened for mutations in a cohort of 74 unrelated patients with either CMT type 1 or DSS who do not carry the most common CMT1-associated molecular lesion of a 1.5 Mb DNA duplication on 17p11.2-p12. Heteroduplex analysis detected base mismatches in ten patients that were distributed over three exons of MPZ. Direct sequencing of PCR-amplified genomic DNA identified a de novo MPZ mutation associated with CMT1B that predicts an Ile(135)Thr substitution. This finding further confirms the role of MPZ in the CMT1B disease process. In addition, two polymorphisms were identified within the Gly(200) and Ser(228) codons that do not alter the respective amino acid residues. A fourth base mismatch in MPZ exon 3 detected by heteroduplex analysis is currently being characterized by direct sequence determination. Previously, four unrelated patients in this same cohort were found to have unique point mutations in the coding region of the PMP22 gene. The collective findings on CMT1 point mutations could suggest that regulatory region mutations, and possibly mutations in CMT gene(s) apart from the MPZ, PMP22 and Cx32 genes identified thus far, may prove to be significant for a number of CMT1 cases that do not involve DNA duplication.

  13. nfxB as a Novel Target for Analysis of Mutation Spectra in Pseudomonas aeruginosa

    PubMed Central

    Miguel, Virginia; Argaraña, Carlos E.

    2013-01-01

    nfxB encodes a negative regulator of the mexCD-oprJ genes for drug efflux in the opportunistic pathogen Pseudomonas aeruginosa. Inactivating mutations in this transcriptional regulator constitute one of the main mechanisms of resistance to ciprofloxacin (Cipr). In this work, we evaluated the use of nfxB/Cipr as a new test system to study mutation spectra in P. aeruginosa. The analysis of 240 mutations in nfxB occurring spontaneously in the wild-type and mutator backgrounds or induced by mutagens showed that nfxB/Cipr offers several advantages compared with other mutation detection systems. Identification of nfxB mutations was easy since the entire open reading frame and its promoter region were sequenced from the chromosome using a single primer. Mutations detected in nfxB included all transitions and transversions, 1-bp deletions and insertions, >1-bp deletions and duplications. The broad mutation spectrum observed in nfxB relies on the selection of loss-of-function changes, as we confirmed by generating a structural model of the NfxB repressor and evaluating the significance of each detected mutation. The mutation spectra characterized in the mutS, mutT, mutY and mutM mutator backgrounds or induced by the mutagenic agents 2-aminopurine, cisplatin and hydrogen peroxide were in agreement with their predicted mutational specificities. Additionally, this system allowed the analysis of sequence context effects since point mutations occurred at 85 different sites distributed over the entire nfxB. Significant hotspots and preferred sequence contexts were observed for spontaneous and mutagen-induced mutation spectra. Finally, we demonstrated the utility of a luminescence-based reporter for identification of nfxB mutants previous to sequencing analysis. Thus, the nfxB/Cipr system in combination with the luminescent reporter may be a valuable tool for studying mutational processes in Pseudomonas spp. wherein the genes encoding the NfxB repressor and the associated efflux

  14. A novel mutation in FGD4 causes Charcot-Marie-Tooth disease type 4H with cranial nerve involvement.

    PubMed

    Kondo, Daisuke; Shinoda, Koji; Yamashita, Ken-Ichiro; Yamasaki, Ryo; Hashiguchi, Akihiro; Takashima, Hiroshi; Kira, Jun-Ichi

    2017-07-26

    Charcot-Marie-Tooth disease type 4H (CMT4H) is a rare variant of autosomal recessive hereditary neuropathy. It is caused by FGD4 mutations and characterized by early infantile onset, slowly progressive distal muscle weakness, scoliosis, and myelin outfoldings visible in nerve biopsy samples. Here, we report a 65-year-old male born to consanguineous parents, who carries a novel homozygous FGD4 c.724C>T nonsense mutation. He developed lower limb weakness in his teens, which progressed slowly and was accompanied by diplopia, bilateral hearing loss, and erectile dysfunction from his twenties. At the age of 65, he was wheelchair-bound and had mild scoliosis, bilateral ophthalmoplegia, facial muscle weakness, inner ear hearing loss, distal-dominant weakness, and sensory disturbance, but no cognitive deterioration. Magnetic resonance imaging revealed enlarged bilateral trigeminal and facial nerves. Accordingly, we believe that this mutation causes slowly progressive sensorimotor neuropathy with apparent cranial nerve involvement, thereby further expanding the clinical spectrum of CMT4H. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Infantile spinal muscular atrophy with respiratory distress type I presenting without respiratory involvement: Novel mutations and review of the literature.

    PubMed

    Luan, Xinghua; Huang, Xiaojun; Liu, Xiaoli; Zhou, Haiyan; Chen, Shengdi; Cao, Li

    2016-08-01

    Spinal muscular atrophy with respiratory distress type 1 (SMARD1), also known as distal spinal muscular atrophy 1 (DSMA1) or distal hereditary motor neuropathies type 6 (dHMN6), is a rare autosomal recessive motor neuron disorder that affects infants and is characterized by diaphragmatic palsy, distal muscular weakness and muscle atrophy. The disease is caused by mutations in the gene encoding immunoglobulinm-binding protein 2 (IGHMBP2). We present a female child with novel compound heterozygous mutations in IGHMBP2 gene c.344C>T (p.115T>M) and c.1737C>A (p.579F>L), displaying distal limbs weakness and atrophy without signs of diaphragmatic palsy or respiratory insufficiency. We review 20 reported SMARD1 cases that have no respiratory involvement or have late onsets. We propose that IGHMBP2 gene mutations are characterized by significant phenotypic heterogeneity. Diaphragmatic palsy and respiratory distress may be absent and SMARD1 should be considered in infantile with the onset of peripheral neuropathies. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  16. Analysis of genetic mutations in the 7a7b open reading frame of coronavirus of cheetahs (Acinonyx jubatus).

    PubMed

    Kennedy, Melissa A; Moore, Emily; Wilkes, Rebecca P; Citino, Scott B; Kania, Stephen A

    2006-04-01

    To analyze the 7a7b genes of the feline coronavirus (FCoV) of cheetahs, which are believed to play a role in virulence of this virus. Biologic samples collected during a 4-year period from 5 cheetahs at the same institution and at 1 time point from 4 cheetahs at different institutions. Samples were first screened for FCoV via a reverse transcription-PCR procedure involving primers that encompassed the 3'-untranslated region. Samples that yielded positive assay results were analyzed by use of primers that targeted the 7a7b open reading frames. The nucleotide sequences of the 7a7b amplification products were determined and analyzed. In most isolates, substantial deletional mutations in the 7a gene were detected that would result in aberrant or no expression of the 7a product because of altered reading frames. Although the 7b gene was also found to contain mutations, these were primarily point mutations resulting in minor amino acid changes. The coronavirus associated with 1 cheetah with feline infectious peritonitis had intact 7a and 7b genes. The data suggest that mutations arise readily in the 7a region and may remain stable in FCoV of cheetahs. In contrast, an intact 7b gene may be necessary for in vivo virus infection and replication. Persistent infection with FCoV in a cheetah population results in continued virus circulation and may lead to a quasispecies of virus variants.

  17. Functional Consequences of Seven Novel Mutations in the CYP11B1 Gene: Four Mutations Associated with Nonclassic and Three Mutations Causing Classic 11β-Hydroxylase Deficiency

    PubMed Central

    Parajes, Silvia; Loidi, Lourdes; Reisch, Nicole; Dhir, Vivek; Rose, Ian T.; Hampel, Rainer; Quinkler, Marcus; Conway, Gerard S.; Castro-Feijóo, Lidia; Araujo-Vilar, David; Pombo, Manuel; Dominguez, Fernando; Williams, Emma L.; Cole, Trevor R.; Kirk, Jeremy M.; Kaminsky, Elke; Rumsby, Gill; Arlt, Wiebke; Krone, Nils

    2010-01-01

    Context: Steroid 11β-hydroxylase (CYP11B1) deficiency (11OHD) is the second most common form of congenital adrenal hyperplasia (CAH). Cases of nonclassic 11OHD are rare compared with the incidence of nonclassic 21-hydroxylase deficiency. Objective: The aim of the study was to analyze the functional consequences of seven novel CYP11B1 mutations (p.M88I, p.W116G, p.P159L, p.A165D, p.K254_A259del, p.R366C, p.T401A) found in three patients with classic 11OHD, two patients with nonclassic 11OHD, and three heterozygous carriers for CYP11B1 mutations. Methods: We conducted functional studies employing a COS7 cell in vitro expression system comparing wild-type (WT) and mutant CYP11B1 activity. Mutants were examined in a computational three-dimensional model of the CYP11B1 protein. Results: All mutations (p.W116G, p.A165D, p.K254_A259del) found in patients with classic 11OHD have absent or very little 11β-hydroxylase activity relative to WT. The mutations detected in patients with nonclassic 11OHD showed partial functional impairment, with one patient being homozygous (p.P159L; 25% of WT) and the other patient compound heterozygous for a novel mild p.M88I (40% of WT) and the known severe p.R383Q mutation. The two mutations detected in heterozygous carriers (p.R366C, p.T401A) also reduced CYP11B1 activity by 23 to 37%, respectively. Conclusion: Functional analysis results allow for the classification of novel CYP11B1 mutations as causative for classic and nonclassic 11OHD, respectively. Four partially inactivating mutations are predicted to result in nonclassic 11OHD. These findings double the number of mild CYP11B1 mutations previously described as associated with mild 11OHD. Our data are important to predict phenotypic expression and provide important information for clinical and genetic counseling in 11OHD. PMID:20089618

  18. Mutations in WNT9B are associated with Mayer-Rokitansky-Küster-Hauser syndrome.

    PubMed

    Waschk, D E J; Tewes, A-C; Römer, T; Hucke, J; Kapczuk, K; Schippert, C; Hillemanns, P; Wieacker, P; Ledig, S

    2016-05-01

    Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS) is a well-known malformation pattern of the Müllerian ducts (MDs) characterized by congenital absence of the uterus and vagina. To date, most cases remain unexplained at molecular level. As female Wnt9b-/- mice show a MRKHS-like phenotype, WNT9B has emerged as a promising candidate gene for this disease. We performed retrospective sequence analyses of WNT9B in 226 female patients with disorders of the MDs, including 109 patients with MRKHS, as well as in 135 controls. One nonsense mutation and five likely pathogenic missense mutations were detected in WNT9B. Five of these mutations were found in cases with MRKHS accounting for 4.6% of the patients with this phenotype. No pathogenic mutations were detected in the control group (p = 0.017). Interestingly, all of the MRKHS patients with a WNT9B mutation were classified as MRKHS type 1, representing 8.5% of the cases from this subgroup. In previous studies, two of the patients with a WNT9B mutation were found to carry either an additional deletion of LHX1 or a missense mutation in TBX6. We conclude that mutations in WNT9B were frequently associated with MRKHS in our cohort and some cases may be explained by a digenic disease model. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. A synthetic combination of mutations, including fs(1)pyrSu(b), rSu(b) and b, causes female sterility and reduces embryonic viability in Drosophila melanogaster.

    PubMed

    Piskur, J; Gojković, Z; Bahn, E

    1999-04-01

    A Drosophila melanogaster mutant, fs(1)pyrSu(b), carrying a mutation that maps to the tip of the X chromosome, has been isolated. The mutation, when present alone, does not confer a detectable phenotype. However, this mutation causes female sterility and reduces embryonic viability when combined with mutations which deregulate the pyrimidine and beta-alanine pools. Embryos that are homozygous for the mutations fs(1)pyrSu(b), rSu(b) [previously designated as Su(b)] and b, and originate from a female parent homozygous for the three mutations show severely reduced viability. Newly laid eggs begin development normally, but the majority of the embryos die just before the eggs are due to hatch.

  20. Use of targeted sequence capture and high-throughput sequencing identifies a novel PKD1 mutation involved in adult polycystic kidney disease.

    PubMed

    Sha, Yan-Kun; Sha, Yan-Wei; Mei, Li-Bin; Huang, Xian-Jing; Wang, Xu; Lin, Shao-Bin; Li, Lin; Li, Ping

    2017-09-01

    Polycystic kidney disease (PKD) is a common inherited disease that is characterized by a progressive development of renal cysts. Approximately 85% of PKD cases are due to mutations in the polycystin 1 (PKD1) gene. Here, we report a pedigree containing nine patients with autosomal dominant PKD (ADPKD). Using targeted exome sequencing of PKD1 and PKD2 genes, we identified a novel heterozygous frameshift mutation c.3976_3977insCT (p.F1326Sfs*21) in the PKD1 gene that segregated between affected and unaffected family members. This mutation is currently not present in the 1000 Genomes Project nor ExAC databases and is therefore a novel PKD1 mutation involved in ADPKD. These results provide a novel sequence variant for the genetic analysis of this disease. Copyright © 2017. Published by Elsevier B.V.

  1. Most Factor VIII B Domain Missense Mutations Are Unlikely to Be Causative Mutations for Severe Hemophilia A: Implications for Genotyping

    PubMed Central

    Ogata, Kyoichi; Selvaraj, Sundar R; Miao, Hongzhi Z; Pipe, Steven W

    2011-01-01

    Summary Background & Objective The factor VIII (FVIII) B domain shares very little amino acid homology to other known proteins and is not directly necessary for procoagulant activity. Despite this, missense mutations within the B domain have been reported in patients with hemophilia A. Given that the B domain is dispensable for secretion and function of FVIII, we hypothesized that these mutations should not be causative of hemophilia A in these patients. Methods Plasmid vectors containing B domain missense mutations that were reported to be associated with moderate/severe hemophilia A (T751S, D826E, V993L, H1047Y, T1353A, N1441K, L1462P, E1579D, A1591S, P1641L and S1669L) were analyzed for their effect on synthesis and secretion compared to FVIII wild-type (WT) following transient transfection into COS-1 and CHO cells in vitro. Further, H1047Y, N1441K and E1579D mutants were expressed in vivo in a hemophilia A mouse model by hydrodynamic tail-vein injection. Results FVIII activity and antigen levels for all mutants expressed into the conditioned media of COS-1 and CHO cells were similar to FVIII WT. Also, plasma expression of these mutants was similar to FVIII WT in hemophilia A mice. An in vivo tail clip bleeding assay also demonstrated that blood loss from hemophilia A mice expressing FVIII WT, H1047Y, N1441K and E1579D were similar. Conclusion We conclude that most missense mutations within the FVIII B domain would be unlikely to lead to severe hemophilia A and that the majority of such missense mutations represent polymorphisms or non-pathologic mutations. PMID:21645226

  2. Mutations in JMJD1C are involved in Rett syndrome and intellectual disability

    PubMed Central

    Sáez, Mauricio A.; Fernández-Rodríguez, Juana; Moutinho, Catia; Sanchez-Mut, Jose V.; Gomez, Antonio; Vidal, Enrique; Petazzi, Paolo; Szczesna, Karolina; Lopez-Serra, Paula; Lucariello, Mario; Lorden, Patricia; Delgado-Morales, Raul; de la Caridad, Olga J.; Huertas, Dori; Gelpí, Josep L.; Orozco, Modesto; López-Doriga, Adriana; Milà, Montserrat; Perez-Jurado, Luís A.; Pineda, Mercedes; Armstrong, Judith; Lázaro, Conxi; Esteller, Manel

    2016-01-01

    Purpose: Autism spectrum disorders are associated with defects in social response and communication that often occur in the context of intellectual disability. Rett syndrome is one example in which epilepsy, motor impairment, and motor disturbance may co-occur. Mutations in histone demethylases are known to occur in several of these syndromes. Herein, we aimed to identify whether mutations in the candidate histone demethylase JMJD1C (jumonji domain containing 1C) are implicated in these disorders. Genet Med 18 1, 378–385. Methods: We performed the mutational and functional analysis of JMJD1C in 215 cases of autism spectrum disorders, intellectual disability, and Rett syndrome without a known genetic defect. Genet Med 18 1, 378–385. Results: We found seven JMJD1C variants that were not present in any control sample (~ 6,000) and caused an amino acid change involving a different functional group. From these, two de novo JMJD1C germline mutations were identified in a case of Rett syndrome and in a patient with intellectual disability. The functional study of the JMJD1C mutant Rett syndrome patient demonstrated that the altered protein had abnormal subcellular localization, diminished activity to demethylate the DNA damage-response protein MDC1, and reduced binding to MECP2. We confirmed that JMJD1C protein is widely expressed in brain regions and that its depletion compromises dendritic activity. Genet Med 18 1, 378–385. Conclusions: Our findings indicate that mutations in JMJD1C contribute to the development of Rett syndrome and intellectual disability. Genet Med 18 1, 378–385. PMID:26181491

  3. Mutations in B9D1 and MKS1 cause mild Joubert syndrome: expanding the genetic overlap with the lethal ciliopathy Meckel syndrome.

    PubMed

    Romani, Marta; Micalizzi, Alessia; Kraoua, Ichraf; Dotti, Maria Teresa; Cavallin, Mara; Sztriha, László; Ruta, Rosario; Mancini, Francesca; Mazza, Tommaso; Castellana, Stefano; Hanene, Benrhouma; Carluccio, Maria Alessandra; Darra, Francesca; Máté, Adrienn; Zimmermann, Alíz; Gouider-Khouja, Neziha; Valente, Enza Maria

    2014-05-05

    Joubert syndrome is a clinically and genetically heterogeneous ciliopathy characterized by a typical cerebellar and brainstem malformation (the "molar tooth sign"), and variable multiorgan involvement. To date, 24 genes have been found mutated in Joubert syndrome, of which 13 also cause Meckel syndrome, a lethal ciliopathy with kidney, liver and skeletal involvement. Here we describe four patients with mild Joubert phenotypes who carry pathogenic mutations in either MKS1 or B9D1, two genes previously implicated only in Meckel syndrome.

  4. Secondary breast cancer in patients presenting with osteosarcoma: possible involvement of germline p53 mutations.

    PubMed

    Russo, C L; McIntyre, J; Goorin, A M; Link, M P; Gebhardt, M C; Friend, S H

    1994-01-01

    Second malignancies following treatment for osteosarcoma are unusual. Breast cancer occurring in patients with osteosarcoma has been reported following therapeutic chest irradiation. We now report three cases of breast cancer occurring in young women who were successfully treated for osteosarcoma. These women had not received therapeutic chest irradiation and in two of the three women there was no family history of breast cancer. Peripheral blood was available for study from one case. Of import, this case demonstrated a germline mutation in exon 7 of the tumor suppressor gene, p53. The mutation was detected by constant denaturing gradient gel electrophoresis and confirmed by DNA sequencing. In this particular patient, inactivation of the p53 gene may be involved in the development of both the first and second malignancy.

  5. TACI mutations and impaired B-cell function in subjects with CVID and healthy heterozygotes.

    PubMed

    Martinez-Gallo, Monica; Radigan, Lin; Almejún, María Belén; Martínez-Pomar, Natalia; Matamoros, Núria; Cunningham-Rundles, Charlotte

    2013-02-01

    Mutations in the gene coding for the transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) are found in 8% to 10% of subjects with common variable immunodeficiency (CVID). Although heterozygous mutations may coincide with immunodeficiency in a few families, most mutation-bearing relatives are not hypogammaglobulinemic. Thus, the role of TACI mutations in producing the immune defect remains unclear. This study examined the expression and function of TACI mutations in healthy heterozygous relatives. We examined the surface and intracellular expression of TACI protein in EBV-transformed B cells of patients and relatives with mutations in 7 families, binding of a proliferation-inducing ligand, and secretion of IgG and IgA by ligand-activated B cells. We tested whether Toll-like receptor 9 agonists increased TACI expression and whether an agonistic anti-TACI antibody could induce activation-induced cytidine deaminase mRNA in those with mutations. Intracellular and extracellular TACI expression was defective for B cells of all subjects with mutations, including subjects with CVID and relatives. Although Toll-like receptor 9 triggering normally up-regulates B-cell TACI expression, this was defective for all subjects with mutations. Triggering TACI by an agonistic antibody showed loss of activation-induced cytidine deaminase mRNA induction in all mutation-bearing B cells. However, ligand-induced IgG and IgA production was normal for healthy relatives but not for subjects with CVID. Thus, B cells of relatives of subjects with CVID who have mutations in TACI but normal immune globulin levels still have detectable in vitro B-cell defects. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  6. Evolution and mutations of hepatitis B virus quasispecies in genotype B and C during vertical transmission.

    PubMed

    Wu, Quanxin; Xu, Cheng; Li, Junnan; Li, Li; Yan, Guohua; Yue, Liangliang; Zeng, Yi; Huang, Hongfei; Deng, Guohong; Wang, Yuming

    2016-06-01

    Evolution patterns of HBV QS between genotype B and C during vertical transmission are not well understood. In this study, we enrolled 10 HBV infected mother-infant pairs (four pairs with genotype B, four pairs with genotype C, and two with co-infection) without anti-viral therapy. Serum HBV DNA of mothers and infants were sequenced, HBV QS complexity and diversity were analyzed, polymorphisms and mutation sites were recorded, and phylogenetic trees were performed. Our result showed that the QS complexities in P (amino acid), C/PreC (amino acid), and PreS1 (nucleotide) gene were significantly higher in mothers than in infants in pairs with genotype C (P < 0.05), however, full-length and other genes showed non-significant differences (P > 0.05). Unlike genotype C, QS complexity of P gene (nucleotide) was significantly higher in infants than in mothers (P < 0.05) in pairs with genotype B, similarly, QS complexities of full-length and other genes (except Pre S2) were also higher in infants than in mothers but without significant differences (P > 0.05). QS diversities of full-length and most genes in genotype B were comparable between mothers and their infants (P > 0.05), in pairs with genotype C, dS of P, X, RT genes, genetic distance of Pre S1 gene (amino acid) and dN of Pre S1 gene were significant higher in mothers than in infants (P < 0.05). Several HBV mutations correlated with immune escape, e antigen loss and drug resistance were observed in infants. The results indicated that differences of HBV QS evolution patterns between genotype B and C during vertical transmission might contribute to distinct prognosis.

  7. CVID-associated TACI mutations affect autoreactive B cell selection and activation.

    PubMed

    Romberg, Neil; Chamberlain, Nicolas; Saadoun, David; Gentile, Maurizio; Kinnunen, Tuure; Ng, Yen Shing; Virdee, Manmeet; Menard, Laurence; Cantaert, Tineke; Morbach, Henner; Rachid, Rima; Martinez-Pomar, Natalia; Matamoros, Nuria; Geha, Raif; Grimbacher, Bodo; Cerutti, Andrea; Cunningham-Rundles, Charlotte; Meffre, Eric

    2013-10-01

    Common variable immune deficiency (CVID) is an assorted group of primary diseases that clinically manifest with antibody deficiency, infection susceptibility, and autoimmunity. Heterozygous mutations in the gene encoding the tumor necrosis factor receptor superfamily member TACI are associated with CVID and autoimmune manifestations, whereas two mutated alleles prevent autoimmunity. To assess how the number of TACI mutations affects B cell activation and tolerance checkpoints, we analyzed healthy individuals and CVID patients carrying one or two TACI mutations. We found that TACI interacts with the cleaved, mature forms of TLR7 and TLR9 and plays an important role during B cell activation and the central removal of autoreactive B cells in healthy donors and CVID patients. However, only subjects with a single TACI mutation displayed a breached immune tolerance and secreted antinuclear antibodies (ANAs). These antibodies were associated with the presence of circulating B cell lymphoma 6-expressing T follicular helper (Tfh) cells, likely stimulating autoreactive B cells. Thus, TACI mutations may favor CVID by altering B cell activation with coincident impairment of central B cell tolerance, whereas residual B cell responsiveness in patients with one, but not two, TACI mutations enables autoimmune complications.

  8. CVID-associated TACI mutations affect autoreactive B cell selection and activation

    PubMed Central

    Romberg, Neil; Chamberlain, Nicolas; Saadoun, David; Gentile, Maurizio; Kinnunen, Tuure; Ng, Yen Shing; Virdee, Manmeet; Menard, Laurence; Cantaert, Tineke; Morbach, Henner; Rachid, Rima; Martinez-Pomar, Natalia; Matamoros, Nuria; Geha, Raif; Grimbacher, Bodo; Cerutti, Andrea; Cunningham-Rundles, Charlotte; Meffre, Eric

    2013-01-01

    Common variable immune deficiency (CVID) is an assorted group of primary diseases that clinically manifest with antibody deficiency, infection susceptibility, and autoimmunity. Heterozygous mutations in the gene encoding the tumor necrosis factor receptor superfamily member TACI are associated with CVID and autoimmune manifestations, whereas two mutated alleles prevent autoimmunity. To assess how the number of TACI mutations affects B cell activation and tolerance checkpoints, we analyzed healthy individuals and CVID patients carrying one or two TACI mutations. We found that TACI interacts with the cleaved, mature forms of TLR7 and TLR9 and plays an important role during B cell activation and the central removal of autoreactive B cells in healthy donors and CVID patients. However, only subjects with a single TACI mutation displayed a breached immune tolerance and secreted antinuclear antibodies (ANAs). These antibodies were associated with the presence of circulating B cell lymphoma 6–expressing T follicular helper (Tfh) cells, likely stimulating autoreactive B cells. Thus, TACI mutations may favor CVID by altering B cell activation with coincident impairment of central B cell tolerance, whereas residual B cell responsiveness in patients with one, but not two, TACI mutations enables autoimmune complications. PMID:24051380

  9. [Swiss warmblood horse with symptoms of hereditary equine regional dermal asthenia without mutation in the cyclophylin B gene (PPIB)].

    PubMed

    Rüfenacht, S; Straub, R; Steinmann, B; Winand, N; Bidaut, A; Stoffel, M H; Gerber, V; Wyder, M; Müller, E; Roosje, P J

    2010-04-01

    Hereditary equine dermal asthenia (HERDA) is an autosomal recessive skin disease that affects predominantly Quarter Horses and related breeds. Typical symptoms are easy bruising and hyperextensible skin on the back. The prognosis is guarded, as affected horses cannot be ridden normally and are often euthanised. In the Quarter Horse, HERDA is associated with a mutation in cyclophilin B (PPIB), an enzyme involved in triple helix formation of collagen. Here we describe the case of a Swiss Warmblood filly with symptoms of HERDA without PPIB-mutation and in which we also could exclude Ehlers-Danlos syndrome Type IV, VI, VIIA, VIIB and VIIC (dermatosparaxis type) as etiological diseases.

  10. Telomerase reverse transcriptase promoter mutations in hepatitis B virus-associated hepatocellular carcinoma

    PubMed Central

    Yang, Xunjun; Guo, Xiuchan; Chen, Yao; Chen, Guorong; Ma, Yin; Huang, Kate; Zhang, Yuning; Zhao, Qiongya; Winkler, Cheryl A.; An, Ping; Lyu, Jianxin

    2016-01-01

    Telomerase reverse transcriptase (TERT) promoter mutations are among the most frequent noncoding somatic mutations in multiple cancers, including hepatocellular carcinoma (HCC). The clinical and pathological implications of TERT promoter mutations in hepatitis B virus (HBV)-associated HCC have not been resolved. To investigate TERT promoter mutations, protein expression, and their clinical-pathological implications, we sequenced the TERT promoter region for hotspot mutations in HCC tissues and performed immunostaining for TERT protein expression from HBV-associated HCC in Chinese patients. Of 276 HCC tumor DNA samples sequenced, 85 (31%) carried TERT promoter mutations. TERT promoter mutations were more frequent in those with low α-fetoprotein (AFP) serum levels (p = 0.03), advanced age (p = 0.04), and in those lacking HCC family history (p = 0.02), but were not correlated with HCC stages and grades. TERT protein levels were higher in HCC (n = 28) compared to normal liver tissues (n = 8) (p =0.001), but did not differ between mutated and non-mutated tumor tissues. In conclusion, TERT promoter mutations are common somatic mutations in HCC of Han Chinese with HBV infection. Detection of TERT promoter mutations in those with low levels of AFP may aid diagnosis of HCC with atypical presentation. PMID:27056898

  11. Four novel connexin 32 mutations in X-linked Charcot-Marie-Tooth disease. Phenotypic variability and central nervous system involvement.

    PubMed

    Karadima, Georgia; Koutsis, Georgios; Raftopoulou, Maria; Floroskufi, Paraskewi; Karletidi, Karolina-Maria; Panas, Marios

    2014-06-15

    Charcot-Marie-Tooth (CMT) disease, the most common hereditary neuropathy, is clinically and genetically heterogeneous. X-linked CMT (CMTX) is usually caused by mutations in the gap junction protein b 1 gene (GJB1) coding for connexin 32 (Cx32). The clinical manifestations of CMTX are characterized by significant variability, with some patients exhibiting central nervous system (CNS) involvement. We report four novel mutations in GJB1, c.191G>A (p.Cys64Tyr), c.508G>T (p.Val170Phe), c.778A>G (p.Lys260Glu) and c.300C>G (p.His100Gln) identified in four unrelated Greek families. These mutations were characterized by variable phenotypic expression, including a family with the Roussy-Lévy syndrome, and three of them were associated with mild clinical CNS manifestations. Copyright © 2014. Published by Elsevier B.V.

  12. Cancer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3' Splice Site Selection through Use of a Different Branch Point.

    PubMed

    Darman, Rachel B; Seiler, Michael; Agrawal, Anant A; Lim, Kian H; Peng, Shouyong; Aird, Daniel; Bailey, Suzanna L; Bhavsar, Erica B; Chan, Betty; Colla, Simona; Corson, Laura; Feala, Jacob; Fekkes, Peter; Ichikawa, Kana; Keaney, Gregg F; Lee, Linda; Kumar, Pavan; Kunii, Kaiko; MacKenzie, Crystal; Matijevic, Mark; Mizui, Yoshiharu; Myint, Khin; Park, Eun Sun; Puyang, Xiaoling; Selvaraj, Anand; Thomas, Michael P; Tsai, Jennifer; Wang, John Y; Warmuth, Markus; Yang, Hui; Zhu, Ping; Garcia-Manero, Guillermo; Furman, Richard R; Yu, Lihua; Smith, Peter G; Buonamici, Silvia

    2015-11-03

    Recurrent mutations in the spliceosome are observed in several human cancers, but their functional and therapeutic significance remains elusive. SF3B1, the most frequently mutated component of the spliceosome in cancer, is involved in the recognition of the branch point sequence (BPS) during selection of the 3' splice site (ss) in RNA splicing. Here, we report that common and tumor-specific splicing aberrations are induced by SF3B1 mutations and establish aberrant 3' ss selection as the most frequent splicing defect. Strikingly, mutant SF3B1 utilizes a BPS that differs from that used by wild-type SF3B1 and requires the canonical 3' ss to enable aberrant splicing during the second step. Approximately 50% of the aberrantly spliced mRNAs are subjected to nonsense-mediated decay resulting in downregulation of gene and protein expression. These findings ascribe functional significance to the consequences of SF3B1 mutations in cancer.

  13. Lack of TERT Promoter Mutations in Human B-Cell Non-Hodgkin Lymphoma.

    PubMed

    Lam, Gary; Xian, Rena R; Li, Yingying; Burns, Kathleen H; Beemon, Karen L

    2016-10-25

    Non-Hodgkin lymphomas (NHL) are a heterogeneous group of immune cell neoplasms that comprise molecularly distinct lymphoma subtypes. Recent work has identified high frequency promoter point mutations in the telomerase reverse transcriptase (TERT) gene of different cancer types, including melanoma, glioma, liver and bladder cancer. TERT promoter mutations appear to correlate with increased TERT expression and telomerase activity in these cancers. In contrast, breast, pancreatic, and prostate cancer rarely demonstrate mutations in this region of the gene. TERT promoter mutation prevalence in NHL has not been thoroughly tested thus far. We screened 105 B-cell lymphoid malignancies encompassing nine NHL subtypes and acute lymphoblastic leukemia, for TERT promoter mutations. Our results suggest that TERT promoter mutations are rare or absent in most NHL. Thus, the classical TERT promoter mutations may not play a major oncogenic role in TERT expression and telomerase activation in NHL.

  14. Lack of TERT Promoter Mutations in Human B-Cell Non-Hodgkin Lymphoma

    PubMed Central

    Lam, Gary; Xian, Rena R.; Li, Yingying; Burns, Kathleen H.; Beemon, Karen L.

    2016-01-01

    Non-Hodgkin lymphomas (NHL) are a heterogeneous group of immune cell neoplasms that comprise molecularly distinct lymphoma subtypes. Recent work has identified high frequency promoter point mutations in the telomerase reverse transcriptase (TERT) gene of different cancer types, including melanoma, glioma, liver and bladder cancer. TERT promoter mutations appear to correlate with increased TERT expression and telomerase activity in these cancers. In contrast, breast, pancreatic, and prostate cancer rarely demonstrate mutations in this region of the gene. TERT promoter mutation prevalence in NHL has not been thoroughly tested thus far. We screened 105 B-cell lymphoid malignancies encompassing nine NHL subtypes and acute lymphoblastic leukemia, for TERT promoter mutations. Our results suggest that TERT promoter mutations are rare or absent in most NHL. Thus, the classical TERT promoter mutations may not play a major oncogenic role in TERT expression and telomerase activation in NHL. PMID:27792139

  15. Factor IX mutations in haemophilia B patients in Malaysia: a preliminary study.

    PubMed

    Balraj, Pauline; Ahmad, Munirah; Khoo, Alan Soo Beng; Ayob, Yasmin

    2012-06-01

    Haemophilia B is caused by coagulation defects in the factor IX gene located in Xq27.1 on the X chromosome. Identification of mutations contributing to defective factor IX may be advantageous for precise carrier and prenatal diagnosis. We studied 16 patients from 11 families, consisting of 8 patients of the Malay ethnic group, of which 6 were siblings. Factor IX mutations have not been previously reported in the Malay ethnic group. The functional region of the factor IX gene was sequenced and mutations were identified in either the exon or intronic regions in 15 of the patients. One novel mutation, 6660_6664delTTCTT was identified in siblings with moderate form of haemophilia B. Mutations identified in our patients when linked with disease severity were similar to findings in other populations. In summary, this preliminary data will be used to build a Malaysian mutation database which would facilitate genetic counseling.

  16. Mutations in CHMP2B are not a cause of frontotemporal lobar degeneration in Finnish patients.

    PubMed

    Kaivorinne, A-L; Krüger, J; Udd, B; Majamaa, K; Remes, A M

    2010-11-01

    Frontotemporal lobar degeneration (FTLD) is a genetically complex disorder. The majority of mutations linked to FTLD families are found in the microtubule-associated protein tau (MAPT) and progranulin (PGRN) genes. Mutations in the chromatin-modifying protein 2B gene (CHMP2B) have been identified in a few families. However, CHMP2B has been showed to be a rare cause of FTLD. Our aim was to determine the frequency of CHMP2B mutations in a clinical series of patients with FTLD in Northern Finland. We examined 72 (36 men) Finnish patients with FTLD. The mean age at onset was 58.9 (range 43–80). Symptoms of motor neuron disease (FTLDMND) were present in 12 patients (17%). Positive family history was detected in 28% of the patients. Mutations in MAPT and PGRN were excluded from these patients. All exons and exon–intron boundaries of the CHMP2B gene were sequenced. No pathogenic CHMP2B mutations were found. A rare polymorphism in the non-coding region of exon 1 (rs36098294) and three other previously reported polymorphisms were detected. Our results confirm that mutations in CHMP2B are not a common cause of FTLD. MAPT and PGRN mutations are also rare in Finnish population, suggesting that other, still unknown genetic factors may play a role in the pathogenesis of FTLD in Finnish population.

  17. Inactivating I kappa B epsilon mutations in Hodgkin/Reed-Sternberg cells.

    PubMed

    Emmerich, Florian; Theurich, Sebastian; Hummel, Michael; Haeffker, Antje; Vry, Magnus S; Döhner, Konstanze; Bommert, Kurt; Stein, Harald; Dörken, Bernd

    2003-11-01

    The pathogenesis of Hodgkin lymphoma (HL) is still unclear. Previous investigations have demonstrated constitutive nuclear activity of the transcription factor NF kappa B (NF-kappaB) in Hodgkin/Reed-Sternberg (HRS) cells as an important prerequisite in protecting these cells from apoptosis. As a molecular mechanism leading to constitutive NF-kappaB activity in HRS cells, mutations of the NF-kappaB inhibitor I kappa B alpha (IkappaBalpha) have recently been identified in classical (c) HL-derived cell lines in a patient with cHL. In the present study, the NF-kappaB inhibitor I kappa B epsilon (IkappaBepsilon) has been analysed for somatic mutations in the same group of six patients already studied for IkappaBalpha mutations, as well as in cHL-derived cell lines. In one cHL-derived cell line (L428), a hemizygous frame-shift mutation generating a pre-terminal stop codon resulting in a severely truncated protein was found. Moreover, in the HRS cells of one patient, a hemizygous mutation affecting the 5'-splicing site of intron 1 of the IkappaBepsilon gene was found. These results, in combination with recently described IkappaBalpha mutations, indicate that defective NF-kappaB inhibitors appear more frequent than previously thought and might explain the constitutive nuclear activity of NF-kappaB in a significant proportion of cHL cases.

  18. Mutation mismatch repair gene deletions in diffuse large B-cell lymphoma.

    PubMed

    Couronné, Lucile; Ruminy, Philippe; Waultier-Rascalou, Agathe; Rainville, Vinciane; Cornic, Marie; Picquenot, Jean-Michel; Figeac, Martin; Bastard, Christian; Tilly, Hervé; Jardin, Fabrice

    2013-05-01

    To further unravel the molecular pathogenesis of diffuse large B-cell lymphoma (DLBCL), we performed high-resolution comparative genomic hybridization on lymph node biopsies from 70 patients. With this strategy, we identified microdeletions of genes involved in the mutation mismatch repair (MMR) pathway in two samples. The first patient presented with a homozygous deletion of MSH2-MSH6 due to duplication of an unbalanced pericentric inversion of chromosome 2. The other case showed a PMS2 heterozygous deletion. PMS2 and MSH2-MSH6 abnormalities, respectively, resulted in a decrease and complete loss of gene expression. However, unlike tumors associated with the hereditary non-polyposis colorectal cancer syndrome or immunodeficiency-related lymphomas, no microsatellite instability was detected. Mutational profiles revealed especially in one patient an aberrant hypermutation without a clear activation-induced cytidine deaminase signature, indicating a breakdown of the high-fidelity repair in favor of the error-prone repair pathway. Our findings suggest that in a rare subset of patients, inactivation of the genes of the MMR pathway is likely an important step in the molecular pathogenesis of DLBCL and does not involve the same molecular mechanisms as other common neoplasms with MMR deficiency.

  19. Mutation of Breast Cancer Cell Genomic DNA by APOBEC3B

    DTIC Science & Technology

    2012-09-01

    Award Number: W81XWH-11-1-0014 TITLE: Mutation of Breast Cancer Cell Genomic DNA by APOBEC3B...September 2012 2. REPORT TYPE ANNUAL SUMMARY 3. DATES COVERED 01 Sep 2012 – 31 Aug 2012 4. TITLE AND SUBTITLE Mutation of Breast Cancer Cell Genomic...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many breast cancers have somatic mutation spectra dominated by C-to

  20. Mutation Processes in 293-Based Clones Overexpressing the DNA Cytosine Deaminase APOBEC3B

    PubMed Central

    Quist, Jelmar S.; Temiz, Nuri A.; Tutt, Andrew N. J.; Grigoriadis, Anita; Harris, Reuben S.

    2016-01-01

    Molecular, cellular, and clinical studies have combined to demonstrate a contribution from the DNA cytosine deaminase APOBEC3B (A3B) to the overall mutation load in breast, head/neck, lung, bladder, cervical, ovarian, and other cancer types. However, the complete landscape of mutations attributable to this enzyme has yet to be determined in a controlled human cell system. We report a conditional and isogenic system for A3B induction, genomic DNA deamination, and mutagenesis. Human 293-derived cells were engineered to express doxycycline-inducible A3B-eGFP or eGFP constructs. Cells were subjected to 10 rounds of A3B-eGFP exposure that each caused 80–90% cell death. Control pools were subjected to parallel rounds of non-toxic eGFP exposure, and dilutions were done each round to mimic A3B-eGFP induced population fluctuations. Targeted sequencing of portions of TP53 and MYC demonstrated greater mutation accumulation in the A3B-eGFP exposed pools. Clones were generated and microarray analyses were used to identify those with the greatest number of SNP alterations for whole genome sequencing. A3B-eGFP exposed clones showed global increases in C-to-T transition mutations, enrichments for cytosine mutations within A3B-preferred trinucleotide motifs, and more copy number aberrations. Surprisingly, both control and A3B-eGFP clones also elicited strong mutator phenotypes characteristic of defective mismatch repair. Despite this additional mutational process, the 293-based system characterized here still yielded a genome-wide view of A3B-catalyzed mutagenesis in human cells and a system for additional studies on the compounded effects of simultaneous mutation mechanisms in cancer cells. PMID:27163364

  1. Targeting the APOBEC3B-Induced Mutation Showers in Breast Cancer

    DTIC Science & Technology

    2015-06-01

    AWARD NUMBER: W81XWH-14-1-0082 TITLE: Targeting the APOBEC3B-Induced Mutation Showers in Breast Cancer PRINCIPAL INVESTIGATOR: Lee Zou...Targeting the APOBEC3B-Induced Mutation Showers in Breast Cancer 5b. GRANT NUMBER W81WXH-14-1-0082 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Lee Zou Lee...studies have shown that the genomes of breast cancer cells contained particularly high levels of clustered mutations . In addition, overexpression of the

  2. Role of CYP1B1, MYOC, OPTN and OPTC genes in adult-onset primary open-angle glaucoma: predominance of CYP1B1 mutations in Indian patients

    PubMed Central

    Basavaraj, Manjunath G.; Gupta, Santosh K.; Qamar, Imteyaz; Ali, Abdullah Mahmood; Bajaj, Vineeta; Ramesh, T.K.; Prakash, D. Ravi; Shetty, Jyoti S.; Dorairaj, Syril K.

    2007-01-01

    Purpose Mutations in the CYP1B1, MYOC, OPTN, and WDR36 genes result in glaucoma. Given its expression in the optic nerve, it is likely a mutation in the OPTC gene is also involved in initiating glaucoma. This study was designed to evaluate the involvement of the CYP1B1, MYOC, OPTN, and OPTC genes in the etiology of adult-onset primary open-angle glaucoma (POAG) found in 251 Indian patients. Methods Blood samples were obtained from individuals for DNA isolation. A combination of polymerase chain reaction-single strand conformation polymorphism, allele-specific PCR, and DNA sequencing techniques were used to detect mutations in four genes. Four microsatellite markers from the CYP1B1 candidate region and three intragenic CYP1B1 single nucleotide polymorphisms (SNPs) were used to determine the origin of the most common CYP1B1 mutations. Results Three previously known mutations (Pro193Leu, Glu229Lys, and Arg368His) and one novel (Met292Lys) mutation were found in the CYP1B1 gene. Frequencies of the most common mutations, Glu229Lys and Arg368His, in patients were 5.12% and 3.98%, respectively. The Glu229Lys and Arg368His mutations were also found in normal controls at frequencies of 5% and 2%, respectively, suggesting that these mutations might be polymorphic variants in our population. The absence of allele sharing for D2S177, D2S1346, D2S2974, and D2S2331 markers and three intragenic CYP1B1 SNPs in patients suggested multiple origins for the Glu229Lys and Arg368His variants. Two of 251 (0.8%) patients had the Gln48His mutation in MYOC. There was no difference in the frequency of a MYOC -83G>A promoter polymorphism between patients and controls. A novel OPTN mutation, Thr202Arg, was detected in one of 251 (0.4%) patients. The OPTN variant Met98Lys was detected in similar frequencies in patients and controls. No mutation was detected in OPTC. Taken together, 3.59% (9/251) of our POAG patients had mutations in the CYP1B1, MYOC, and OPTN genes. Conclusions This is the

  3. Group B Streptococcal Toxic Shock Syndrome and covR/S Mutations Revisited

    PubMed Central

    Sendi, Parham; el Hay, Muad Abd; Brandt, Claudia M.

    2017-01-01

    Gene mutations in the virulence regulator CovR/S of group A Streptococcus play a substantial role in the pathogenesis of streptococcal toxic shock syndrome. We screened 25 group B Streptococcus (GBS) isolates obtained from patients with streptococcal toxic shock syndrome and found only 1 GBS clone harboring this kind of mutation. PMID:27983484

  4. Analysis of FOXO1 mutations in diffuse large B-cell lymphoma | Office of Cancer Genomics

    Cancer.gov

    Abstract: Diffuse large B-cell lymphoma (DLBCL) accounts for 30% to 40% of newly diagnosed lymphomas and has an overall cure rate of approximately 60%. Previously, we observed FOXO1 mutations in non-Hodgkin lymphoma patient samples. To explore the effects of FOXO1 mutations, we assessed FOXO1 status in 279 DLBCL patient samples and 22 DLBCL-derived cell lines.

  5. High frequency of alkaptonuria in Slovakia: evidence for the appearance of multiple mutations in HGO involving different mutational hot spots.

    PubMed

    Zatková, A; de Bernabé, D B; Poláková, H; Zvarík, M; Feráková, E; Bosák, V; Ferák, V; Kádasi, L; de Córdoba, S R

    2000-11-01

    Alkaptonuria (AKU) is an autosomal recessive disorder caused by the deficiency of homogentisate 1,2 dioxygenase (HGO) activity. AKU shows a very low prevalence (1:100,000-250,000) in most ethnic groups. One notable exception is in Slovakia, where the incidence of AKU rises to 1:19,000. This high incidence is difficult to explain by a classical founder effect, because as many as 10 different AKU mutations have been identified in this relatively small country. We have determined the allelic associations of 11 HGO intragenic polymorphisms for 44 AKU chromosomes from 20 Slovak pedigrees. These data were compared to the HGO haplotype data available in our laboratory for >80 AKU chromosomes from different European and non-European countries. The results show that common European AKU chromosomes have had only a marginal contribution to the Slovak AKU gene pool. Six of the ten Slovak AKU mutations, including the prevalent G152fs, G161R, G270R, and P370fs mutations, most likely originated in Slovakia. Data available for 17 Slovak AKU pedigrees indicate that most of the AKU chromosomes have their origins in a single very small region in the Carpathian mountains, in the northwestern part of the country. Since all six Slovak AKU mutations are associated with HGO mutational hot spots, we suggest that an increased mutation rate at the HGO gene is responsible for the clustering of AKU mutations in such a small geographical region.

  6. High Frequency of Alkaptonuria in Slovakia: Evidence for the Appearance of Multiple Mutations in HGO Involving Different Mutational Hot Spots

    PubMed Central

    Zatková, Andrea; de Bernabé, Daniel Beltrán Valero; Poláková, Helena; Zvarík, Marek; Feráková, Eva; Bošák, Vladimir; Ferák, Vladimír; Kádasi, L'udovít; de Córdoba , Santiago Rodríguez

    2000-01-01

    Alkaptonuria (AKU) is an autosomal recessive disorder caused by the deficiency of homogentisate 1,2 dioxygenase (HGO) activity. AKU shows a very low prevalence (1:100,000–250,000) in most ethnic groups. One notable exception is in Slovakia, where the incidence of AKU rises to 1:19,000. This high incidence is difficult to explain by a classical founder effect, because as many as 10 different AKU mutations have been identified in this relatively small country. We have determined the allelic associations of 11 HGO intragenic polymorphisms for 44 AKU chromosomes from 20 Slovak pedigrees. These data were compared to the HGO haplotype data available in our laboratory for >80 AKU chromosomes from different European and non-European countries. The results show that common European AKU chromosomes have had only a marginal contribution to the Slovak AKU gene pool. Six of the ten Slovak AKU mutations, including the prevalent G152fs, G161R, G270R, and P370fs mutations, most likely originated in Slovakia. Data available for 17 Slovak AKU pedigrees indicate that most of the AKU chromosomes have their origins in a single very small region in the Carpathian mountains, in the northwestern part of the country. Since all six Slovak AKU mutations are associated with HGO mutational hot spots, we suggest that an increased mutation rate at the HGO gene is responsible for the clustering of AKU mutations in such a small geographical region. PMID:11017803

  7. Mutations in pre-core and basic core promoter regions of hepatitis B virus in chronic hepatitis B patients

    PubMed Central

    Wang, Xiao-Ling; Ren, Jian-Ping; Wang, Xue-Qing; Wang, Xiao-Hong; Yang, Shao-Fang; Xiong, Yi

    2016-01-01

    AIM: To investigate the frequency of mutations in pre-core (pre-C) and basic core promoter (BCP) regions of hepatitis B virus (HBV) from Shanxi Province, and the association between mutations and disease related indexes. METHODS: One hundred chronic hepatitis B patients treated at Shanxi Province Hospital of Traditional Chinese Medicine were included in this study. PCR-reverse dot blot hybridization and mismatch amplification mutation assay (MAMA)-PCR were used to detect the mutations in the HBV pre-C and BCP regions. HBV DNA content and liver function were compared between patients with mutant HBV pre-C and BCP loci and those with wild-type loci. The consistency between PCR-reverse dot blot hybridization and MAMA-PCR for detecting mutations in the HBV pre-C and BCP regions was assessed. RESULTS: Of the 100 serum samples detected, 9.38% had single mutations in the pre-C region, 29.17% had single mutations in the BCP region, 41.67% had mutations in both BCP and pre-C regions, and 19.79% had wild-type loci. The rates of BCP and pre-C mutations were 65.7% and 34.3%, respectively, in hepatitis B e antigen (HBeAg) positive patients, and 84.6% and 96.2%, respectively, in HBeAg negative patients. The rate of pre-C mutations was significantly higher in HBeAg negative patients than in HBeAg positive patients (χ2 = 26.62, P = 0.00), but there was no significant difference in the distribution of mutations in the BCP region between HBeAg positive and negative patients (χ2 = 2.43, P = 0.12). The presence of mutations in the pre-C (Wilcoxon W = 1802.5, P = 0.00) and BCP regions (Wilcoxon W = 2906.5, P = 0.00) was more common in patients with low HBV DNA content. Both AST and GGT were significantly higher in patients with mutant pre-C and BCP loci than in those with wild-type loci (P < 0.05). PCR-reverse dot blot hybridization and MAMA-PCR for detection of mutations in the BCP and pre-C regions had good consistency, and the Kappa values obtained were 0.91 and 0.58, respectively

  8. Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology.

    PubMed

    Clayton, Emma L; Mizielinska, Sarah; Edgar, James R; Nielsen, Troels Tolstrup; Marshall, Sarah; Norona, Frances E; Robbins, Miranda; Damirji, Hana; Holm, Ida E; Johannsen, Peter; Nielsen, Jørgen E; Asante, Emmanuel A; Collinge, John; Isaacs, Adrian M

    2015-10-01

    Mutations in the charged multivesicular body protein 2B (CHMP2B) cause frontotemporal dementia (FTD). We report that mice which express FTD-causative mutant CHMP2B at physiological levels develop a novel lysosomal storage pathology characterised by large neuronal autofluorescent aggregates. The aggregates are an early and progressive pathology that occur at 3 months of age and increase in both size and number over time. These autofluorescent aggregates are not observed in mice expressing wild-type CHMP2B, or in non-transgenic controls, indicating that they are a specific pathology caused by mutant CHMP2B. Ultrastructural analysis and immuno- gold labelling confirmed that they are derived from the endolysosomal system. Consistent with these findings, CHMP2B mutation patient brains contain morphologically similar autofluorescent aggregates. These aggregates occur significantly more frequently in human CHMP2B mutation brain than in neurodegenerative disease or age-matched control brains. These data suggest that lysosomal storage pathology is the major neuronal pathology in FTD caused by CHMP2B mutation. Recent evidence suggests that two other genes associated with FTD, GRN and TMEM106B are important for lysosomal function. Our identification of lysosomal storage pathology in FTD caused by CHMP2B mutation now provides evidence that endolysosomal dysfunction is a major degenerative pathway in FTD.

  9. Catalysis of Methyl Group Transfers Involving Tetrahydrofolate and B12

    PubMed Central

    Ragsdale, Stephen W.

    2011-01-01

    This review focuses on the reaction mechanism of enzymes that use B12 and tetrahydrofolate (THF) to catalyze methyl group transfers. It also covers the related reactions that use B12 and tetrahydromethanopterin (THMPT), which is a THF analog used by archaea. In the past decade, our understanding of the mechanisms of these enzymes has increased greatly because the crystal structures for three classes of B12-dependent methyltransferases have become available and because biophysical and kinetic studies have elucidated the intermediates involved in catalysis. These steps include binding of the cofactors and substrates, activation of the methyl donors and acceptors, the methyl transfer reaction itself, and product dissociation. Activation of the methyl donor in one class of methyltransferases is achieved by an unexpected proton transfer mechanism. The cobalt (Co) ion within the B12 macrocycle must be in the Co(I) oxidation state to serve as a nucleophile in the methyl transfer reaction. Recent studies have uncovered important principles that control how this highly reducing active state of B12 is generated and maintained. PMID:18804699

  10. Coevolution of Quasispecies: B-Cell Mutation Rates Maximize Viral Error Catastrophes

    NASA Astrophysics Data System (ADS)

    Kamp, Christel; Bornholdt, Stefan

    2002-02-01

    Coevolution of two coupled quasispecies is studied, motivated by the competition between viral evolution and adapting immune response. In this coadaptive model, besides the classical error catastrophe for high virus mutation rates, a second ``adaptation'' catastrophe occurs, when virus mutation rates are too small to escape immune attack. Maximizing both regimes of viral error catastrophes is a possible strategy for an optimal immune response, reducing the range of allowed viral mutation rates to a minimum. From this requirement, one obtains constraints on B-cell mutation rates and receptor lengths, yielding an estimate of somatic hypermutation rates in the germinal center in accordance with observation.

  11. Presymptomatic generalized brain atrophy in frontotemporal dementia caused by CHMP2B mutation.

    PubMed

    Rohrer, Jonathan D; Ahsan, R Laila; Isaacs, Adrian M; Nielsen, Jorgen E; Ostergaard, Leif; Scahill, Rachael; Warren, Jason D; Rossor, Martin N; Fox, Nick C; Johannsen, Peter

    2009-01-01

    CHMP2B mutations are a rare cause of familial frontotemporal dementia (FTD). The clinical syndrome is dominated by personality change and behavioural symptoms, but language, memory, calculation and praxis impairments are also seen early in the course of the disease. There are no detailed studies of brain imaging in CHMP2B mutation-associated FTD. This study aimed to investigate whether there were early or presymptomatic changes in this group of patients. Subjects comprised 16 members of a Danish family with CHMP2B mutation-associated FTD. Nine subjects were presymptomatic mutation carriers with a control group of 7 mutation-negative family members. Volumetric MRI brain scans were performed on all subjects at two time points, and rates of volume change were compared between the two groups. We demonstrate that generalized atrophy occurs presymptomatically in CHMP2B gene mutation carriers. This finding suggests that mutations in CHMP2B have widespread effects throughout the brain, leading to a neuro-anatomical signature distinct from other diseases in the frontotemporal lobar degeneration spectrum. Copyright 2009 S. Karger AG, Basel.

  12. Delineation of Molecular Pathways Involved in Cardiomyopathies Caused by Troponin T Mutations*

    PubMed Central

    Gilda, Jennifer E.; Lai, Xianyin; Witzmann, Frank A.; Gomes, Aldrin V.

    2016-01-01

    Familial hypertrophic cardiomyopathy (FHC) is associated with mild to severe cardiac problems and is the leading cause of sudden death in young people and athletes. Although the genetic basis for FHC is well-established, the molecular mechanisms that ultimately lead to cardiac dysfunction are not well understood. To obtain important insights into the molecular mechanism(s) involved in FHC, hearts from two FHC troponin T models (Ile79Asn [I79N] and Arg278Cys [R278C]) were investigated using label-free proteomics and metabolomics. Mutations in troponin T are the third most common cause of FHC, and the I79N mutation is associated with a high risk of sudden cardiac death. Most FHC-causing mutations, including I79N, increase the Ca2+ sensitivity of the myofilament; however, the R278C mutation does not alter Ca2+ sensitivity and is associated with a better prognosis than most FHC mutations. Out of more than 1200 identified proteins, 53 and 76 proteins were differentially expressed in I79N and R278C hearts, respectively, when compared with wild-type hearts. Interestingly, more than 400 proteins were differentially expressed when the I79N and R278C hearts were directly compared. The three major pathways affected in I79N hearts relative to R278C and wild-type hearts were the ubiquitin-proteasome system, antioxidant systems, and energy production pathways. Further investigation of the proteasome system using Western blotting and activity assays showed that proteasome dysfunction occurs in I79N hearts. Metabolomic results corroborate the proteomic data and suggest the glycolytic, citric acid, and electron transport chain pathways are important pathways that are altered in I79N hearts relative to R278C or wild-type hearts. Our findings suggest that impaired energy production and protein degradation dysfunction are important mechanisms in FHCs associated with poor prognosis and that cardiac hypertrophy is not likely needed for a switch from fatty acid to glucose metabolism

  13. Contribution of rpoB Mutations to Development of Rifamycin Cross-Resistance in Mycobacterium tuberculosis

    PubMed Central

    Williams, D. L.; Spring, L.; Collins, L.; Miller, L. P.; Heifets, L. B.; Gangadharam, P. R. J.; Gillis, T. P.

    1998-01-01

    The contributions of 23 insertion, deletion, or missense mutations within an 81-bp fragment of rpoB, the gene encoding the β-subunit of the DNA-dependent RNA polymerase of Mycobacterium tuberculosis, to the development of resistance to rifamycins (rifampin, rifabutin, rifapentine, and KRM-1648) in 29 rifampin-resistant clinical isolates were defined. Specific mutant rpoB alleles led to the development of cross-resistance to all rifamycins tested, while a subset of mutations were associated with resistance to rifampin and rifapentine but not to KRM-1648 or rifabutin. To further study the impact of specific rpoB mutant alleles on the development of rifamycin resistance, mutations were incorporated into the rpoB gene of M. tuberculosis H37Rv, contained on a mycobacterial shuttle plasmid, by in vitro mutagenesis. Recombinant M. tuberculosis clones containing plasmids with specific mutations in either codon 531 or 526 of rpoB exhibited high-level resistance to all rifamycins tested, whereas clones containing a plasmid with a mutation in codon 516 exhibited high-level resistance to rifampin and rifapentine but were susceptible to both rifabutin and KRM-1648. These results provided additional proof of the association of specific rpoB mutations with the development of rifamycin resistance and corroborate previous reports of the usefulness of rpoB genotyping for predicting rifamycin-resistant phenotypes. PMID:9661035

  14. CHMP2B mutations are rare in French families with frontotemporal lobar degeneration.

    PubMed

    Ghanim, Mustapha; Guillot-Noel, Léna; Pasquier, Florence; Jornea, Ludmila; Deramecourt, Vincent; Dubois, Bruno; Le Ber, Isabelle; Brice, Alexis

    2010-12-01

    Two C-truncating CHMP2B (chromatin modifying protein 2B) mutations were recently found in Danish and Belgian families with autosomal dominant forms of frontotemporal lobar degeneration (FTLD). In addition, few CHMP2B missense mutations of uncertain pathogenic role were reported in several families with FTLD or FTLD associated with motoneuron disease (FTLD-MND). In order to determine the genetic contribution of CHMP2B mutations in FTLD and FTLD-MND families, we analyzed the CHMP2B gene in 198 French probands with familial FTLD and FTLD-MND. One CHMP2B missense variant was found in a proband with familial FTLD (0.8%). The pathogenic role of CHMP2B missense variants is unclear, however the pSer194Leu substitution, located in the C-terminal domain of the protein, was predicted to alter the stability of the protein by in silico analyses. We conclude that CHMP2B mutations represent a rare cause of familial FTLD and they are not implicated in familial FTLD-MND in French patients. The previously reported C-truncating CHMP2B mutations may be private to the Danish and Belgian pedigrees.

  15. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes.

    PubMed

    Schubert, Julian; Siekierska, Aleksandra; Langlois, Mélanie; May, Patrick; Huneau, Clément; Becker, Felicitas; Muhle, Hiltrud; Suls, Arvid; Lemke, Johannes R; de Kovel, Carolien G F; Thiele, Holger; Konrad, Kathryn; Kawalia, Amit; Toliat, Mohammad R; Sander, Thomas; Rüschendorf, Franz; Caliebe, Almuth; Nagel, Inga; Kohl, Bernard; Kecskés, Angela; Jacmin, Maxime; Hardies, Katia; Weckhuysen, Sarah; Riesch, Erik; Dorn, Thomas; Brilstra, Eva H; Baulac, Stephanie; Møller, Rikke S; Hjalgrim, Helle; Koeleman, Bobby P C; Jurkat-Rott, Karin; Lehman-Horn, Frank; Roach, Jared C; Glusman, Gustavo; Hood, Leroy; Galas, David J; Martin, Benoit; de Witte, Peter A M; Biskup, Saskia; De Jonghe, Peter; Helbig, Ingo; Balling, Rudi; Nürnberg, Peter; Crawford, Alexander D; Esguerra, Camila V; Weber, Yvonne G; Lerche, Holger

    2014-12-01

    Febrile seizures affect 2-4% of all children and have a strong genetic component. Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding syntaxin-1B, that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations and a de novo microdeletion encompassing STX1B were then identified in 449 familial or sporadic cases. Video and local field potential analyses of zebrafish larvae with antisense knockdown of stx1b showed seizure-like behavior and epileptiform discharges that were highly sensitive to increased temperature. Wild-type human syntaxin-1B but not a mutated protein rescued the effects of stx1b knockdown in zebrafish. Our results thus implicate STX1B and the presynaptic release machinery in fever-associated epilepsy syndromes.

  16. Mutations in hepatitis B virus small S genes predict postoperative survival in hepatocellular carcinoma

    PubMed Central

    Peng, Li; Yang, Guang; Wu, Chensi; Wang, Wenshuai; Wu, Jianhua; Guo, Zhanjun

    2016-01-01

    Hepatitis B virus (HBV) DNA is prone to mutations due to proofreading deficiencies of HBV polymerase. We have previously identified hepatocellular carcinoma (HCC) survival–associated HBV mutations in the X, precore, and core regions. In the present study, we extended our research to assess HCC survival–associated HBV mutations in the small S gene of HBV genome in 115 HCC patients including 60 patients with HBV B genotype, 52 patients with HBV C genotype, and 3 patients with other genotypes. The overfrequencies of mutations at nucleotides 529 and 735 are 8.5% and 91.5%, respectively, but the distribution frequencies of these mutations are not different between HBV genotypes B and C. Mutational sites 529 (relative risk: 3.611, 95% confidence interval [CI]: 1.414–9.221, P=0.007) and 735 (relative risk: 1.905, 95% CI: 1.101–3.297, P=0.021) were identified as statistically significant independent predictors for HCC survival by multivariate survival analysis using a Cox proportional hazards model. Moreover, the mutated 529A and 735T were associated with both short survival time and high HBV DNA load score in HCC patients. The analysis of DNA mutations in the HBV S gene may help identify HCC subgroups with poor prognosis and may provide reference for therapeutic decisions. PMID:27980426

  17. Primary Mediastinal Large B-cell Lymphoma Exhibiting Endobronchial Involvement

    PubMed Central

    Shimada, Midori; Fukuda, Minoru; Horio, Kensuke; Suyama, Takayuki; Kitazaki, Takeshi; Hashiguchi, Kohji; Fukuda, Masaaki; Shigematsu, Kazuto; Nakamura, Yoichi; Honda, Takuya; Ashizawa, Kazuto; Mukae, Hiroshi

    2016-01-01

    Primary mediastinal large B-cell lymphoma (PMLBCL) is one of the subtypes of diffuse large B-cell lymphoma. We experienced a rare case of PMLBCL that exhibited endobronchial involvement. A 33-year-old Japanese female with the chief complaints of epigastralgia, back pain, and nausea visited a primary care hospital. Computed tomography of the chest and abdomen demonstrated a bulky mass in the left anterior mediastinum, multiple pulmonary nodules, axillary lymph node swelling, and a pancreatic tumor. Fiberoptic bronchoscopy showed a white-tinged irregularly shaped endobronchial tumor accompanied by capillary vessel dilation in the left upper lobar bronchus. Taken together, these findings resulted in a diagnosis of PMLBCL. PMID:27803409

  18. Mutation in the AP4B1 gene cause hereditary spastic paraplegia type 47 (SPG47) .

    PubMed

    Bauer, Peter; Leshinsky-Silver, Esther; Blumkin, Lubov; Schlipf, Nina; Schröder, Christopher; Schicks, Julia; Lev, Dorit; Riess, Olaf; Lerman-Sagie, Tally; Schöls, Ludger

    2012-02-01

    We recently identified a new locus for spastic paraplegia type 47 (SPG47) in a consanguineous Arabic family with two affected siblings with progressive spastic paraparesis,intellectual disability, seizures, periventricular white matter changes and thin corpus callosum. Using exome sequencing, we now identified a novel AP4B1 frameshift mutation (c.664delC) in this family. This mutation was homozygous in both affected siblings and heterozygous in both parents. The mutant allele was absent in 316 Caucasian and 200 ethnically matched control chromosomes. We propose that AP4B1 mutations cause SPG47 and should be considered in early onset spastic paraplegia with intellectual disability.

  19. Mutations in Three Genes Encoding Proteins Involved in Hair Shaft Formation Cause Uncombable Hair Syndrome.

    PubMed

    Ü Basmanav, F Buket; Cau, Laura; Tafazzoli, Aylar; Méchin, Marie-Claire; Wolf, Sabrina; Romano, Maria Teresa; Valentin, Frederic; Wiegmann, Henning; Huchenq, Anne; Kandil, Rima; Garcia Bartels, Natalie; Kilic, Arzu; George, Susannah; Ralser, Damian J; Bergner, Stefan; Ferguson, David J P; Oprisoreanu, Ana-Maria; Wehner, Maria; Thiele, Holger; Altmüller, Janine; Nürnberg, Peter; Swan, Daniel; Houniet, Darren; Büchner, Aline; Weibel, Lisa; Wagner, Nicola; Grimalt, Ramon; Bygum, Anette; Serre, Guy; Blume-Peytavi, Ulrike; Sprecher, Eli; Schoch, Susanne; Oji, Vinzenz; Hamm, Henning; Farrant, Paul; Simon, Michel; Betz, Regina C

    2016-12-01

    Uncombable hair syndrome (UHS), also known as "spun glass hair syndrome," "pili trianguli et canaliculi," or "cheveux incoiffables" is a rare anomaly of the hair shaft that occurs in children and improves with age. UHS is characterized by dry, frizzy, spangly, and often fair hair that is resistant to being combed flat. Until now, both simplex and familial UHS-affected case subjects with autosomal-dominant as well as -recessive inheritance have been reported. However, none of these case subjects were linked to a molecular genetic cause. Here, we report the identification of UHS-causative mutations located in the three genes PADI3 (peptidylarginine deiminase 3), TGM3 (transglutaminase 3), and TCHH (trichohyalin) in a total of 11 children. All of these individuals carry homozygous or compound heterozygous mutations in one of these three genes, indicating an autosomal-recessive inheritance pattern in the majority of UHS case subjects. The two enzymes PADI3 and TGM3, responsible for posttranslational protein modifications, and their target structural protein TCHH are all involved in hair shaft formation. Elucidation of the molecular outcomes of the disease-causing mutations by cell culture experiments and tridimensional protein models demonstrated clear differences in the structural organization and activity of mutant and wild-type proteins. Scanning electron microscopy observations revealed morphological alterations in hair coat of Padi3 knockout mice. All together, these findings elucidate the molecular genetic causes of UHS and shed light on its pathophysiology and hair physiology in general. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. Symmetric polymicrogyria and pachygyria associated with TUBB2B gene mutations

    PubMed Central

    Guerrini, Renzo; Mei, Davide; Cordelli, Duccio Maria; Pucatti, Daniela; Franzoni, Emilio; Parrini, Elena

    2012-01-01

    The purpose of the study is to explore the causative role of TUBB2B gene mutations in patients with different malformations of cortical development. We collected and evaluated clinical and MRI data of a cohort of 128 consecutive patients (61 females and 67 males) in whom brain MRI had detected a spectrum of malformations of cortical development including polymicrogyria or pachygyria, who were mutation-negative to other possible causative genes. Mutation analysis of the TUBB2B gene was performed. We identified three new TUBB2B mutations in three unrelated patients (3 out of 128; 2.3%) with a diffuse and rather symmetrical cortical abnormality, including diffuse polymicrogyria in two and bilateral regional pachygyria in one. One patient harbored a p.Asp417Asn amino-acid substitution in the C-terminal domain of the protein; one patient a p.Asn256Ser amino-acid substitution in the intermediate domain and one patient a p.Leu117Pro amino-acid substitution in the N-terminal domain. The localization of each mutation within the secondary structure of the β2-tubulin polypeptide suggests that these mutations might alter the proper functions of microtubules. The phenotypic spectrum associated with TUBB2B mutations is wider than previously reported and includes diffuse, symmetric malformations of cortical development. PMID:22333901

  1. CHMP2B mutations are not a cause of dementia in Dutch patients with familial and sporadic frontotemporal dementia.

    PubMed

    Rizzu, Patrizia; van Mil, Saskia E; Anar, Burcu; Rosso, Sonia M; Donker Kaat, Laura; Heutink, Peter; van Swieten, John C

    2006-12-05

    Mutations in the CHMP2B gene have been recently identified in a large Danish pedigree with autosomal dominant frontotemporal dementia (FTD) linked to chromosome 3 (FTD3). We report the frequency of CHMP2B mutations in 162 FTD patients recruited from a large population-based study of FTD carried out in The Netherlands. Our results suggest that mutations in CHMP2B are a rare cause of FTD as compared to MAPT mutations. (c) 2006 Wiley-Liss, Inc.

  2. Somatic overgrowth associated with homozygous mutations in both MAN1B1 and SEC23A

    PubMed Central

    Gupta, Swati; Fahiminiya, Somayyeh; Wang, Tracy; Dempsey Nunez, Laura; Rosenblatt, David S.; Gibson, William T.; Gilfix, Brian; Bergeron, John J. M.; Jerome-Majewska, Loydie A.

    2016-01-01

    Using whole-exome sequencing, we identified homozygous mutations in two unlinked genes, SEC23A c.1200G>C (p.M400I) and MAN1B1 c.1000C>T (p.R334C), associated with congenital birth defects in two patients from a consanguineous family. Patients presented with carbohydrate-deficient transferrin, tall stature, obesity, macrocephaly, and maloccluded teeth. The parents were healthy heterozygous carriers for both mutations and an unaffected sibling with tall stature carried the heterozygous mutation in SEC23A only. Mutations in SEC23A are responsible for craniolenticosultura dysplasia (CLSD). CLSD patients are short, have late-closing fontanels, and have reduced procollagen (pro-COL1A1) secretion because of abnormal pro-COL1A1 retention in the endoplasmic reticulum (ER). The mutation we identified in MAN1B1 was previously associated with reduced MAN1B1 protein and congenital disorders of glycosylation (CDG). CDG patients are also short, are obese, and have abnormal glycan remodeling. Molecular analysis of fibroblasts from the family revealed normal levels of SEC23A in all cells and reduced levels of MAN1B1 in cells with heterozygous or homozygous mutations in SEC23A and MAN1B1. Secretion of pro-COL1A1 was increased in fibroblasts from the siblings and patients, and pro-COL1A1 was retained in Golgi of heterozygous and homozygous mutant cells, although intracellular pro-COL1A1 was increased in patient fibroblasts only. We postulate that increased pro-COL1A1 secretion is responsible for tall stature in these patients and an unaffected sibling, and not previously discovered in patients with mutations in either SEC23A or MAN1B1. The patients in this study share biochemical and cellular characteristics consistent with mutations in MAN1B1 and SEC23A, indicating a digenic disease. PMID:27148587

  3. Familial ligand-defective apolipoprotein B. Identification of a new mutation that decreases LDL receptor binding affinity.

    PubMed Central

    Pullinger, C R; Hennessy, L K; Chatterton, J E; Liu, W; Love, J A; Mendel, C M; Frost, P H; Malloy, M J; Schumaker, V N; Kane, J P

    1995-01-01

    Detection of new ligand-defective mutations of apolipoprotein B (apoB) will enable identification of sequences involved in binding to the LDL receptor. Genomic DNA from patients attending a lipid clinic was screened by single-strand conformation polymorphism analysis for novel mutations in the putative LDL receptor-binding domain of apoB-100. A 46-yr-old woman of Celtic and Native American ancestry with primary hypercholesterolemia (total cholesterol [TC] 343 mg/dl; LDL cholesterol [LDL-C] 241 mg/dl) and pronounced peripheral vascular disease was found to be heterozygous for a novel Arg3531-->Cys mutation, caused by a C-->T transition at nucleotide 10800. One unrelated 59-yr-old man of Italian ancestry was found with the same mutation after screening 1,560 individuals. He had coronary heart disease, a TC of 310 mg/dl, and an LDL-C of 212 mg/dl. A total of eight individuals were found with the defect in the families of the two patients. They had an age- and sex-adjusted TC of 240 +/- 14 mg/dl and LDL-C of 169 +/- 10 mg/dl. This compares with eight unaffected family members with age- and sex-adjusted TC of 185 +/- 12 mg/dl and LDL-C of 124 +/- 12 mg/dl. In a dual-label fibroblast binding assay, LDL from the eight subjects with the mutation had an affinity for the LDL receptor that was 63% that of control LDL. LDL from eight unaffected family members had an affinity of 91%. By way of comparison, LDL from six patients heterozygous for the Arg3500-->Gln mutation had an affinity of 36%. The percentage mass ratio of the defective Cys3531 LDL to normal LDL was 59:41, as determined using the mAb MB19 and dynamic laser light scattering. Thus, the defective LDL had accumulated in the plasma of these patients. Using this mass ratio, it was calculated that the defective Cys3531 LDL particles bound with 27% of normal affinity. Deduced haplotypes using 10 apoB gene markers showed the Arg3531-->Cys alleles to be different in the two kindreds and indicates that the mutations arose

  4. A novel CYP1B1 mutation with congenital glaucoma and total aniridia.

    PubMed

    Alzuhairy, Sultan; Abu-Amero, Khaled K; Al-Shahwan, Sami; Edward, Deepak P

    2015-03-01

    Primary congenital glaucoma is a common disorder in the Middle East mainly caused by mutations in the the CYP1Bl gene. We report a family with three siblings that presented with recalcitrant childhood glaucoma, aniridia in two siblings with a novel CYP1B1 gene mutation. Review of pedigree, clinical history and clinical course of the family. Genetic testing in the affected family members. Three sisters presented with clinical findings of severe congenital glaucoma and a positive family history. Clinical examination of two of sisters revealed corneal scarring, bilateral aniridia with severe glaucoma that required multiple surgical procedures to control intraocular pressure. The third sibling presented with garden-variety primary congenital glaucoma. Genetic analysis revealed a novel CYP1B1 gene mutation (g.8291 C > T; p.S485F). CYP1B1 mutation related congenital glaucoma can present with an extreme form of anterior segment dysgenesis that includes recalcitrant glaucoma, corneal opacification and aniridia.

  5. Identification of translocation products but not K-RAS mutations in memory B cells from patients with multiple myeloma.

    PubMed

    Rasmussen, Thomas; Haaber, Jacob; Dahl, Inger Marie; Knudsen, Lene M; Kerndrup, Gitte B; Lodahl, Marianne; Johnsen, Hans E; Kuehl, Michael

    2010-10-01

    Several laboratories have shown that cells with a memory B-cell phenotype can have the same clonotype as multiple myeloma tumor cells. The aim of this study was to determine whether some memory B cells have the same genetic alterations as their corresponding multiple myeloma malignant plasma cells. The methodology included sorting multiple myeloma or memory B cells into RNA stabilizing medium for generation of subset-specific polymerase chain reaction complementary DNA libraries from one or 100 cells. Cells with the phenotype of tumor plasma cells (CD38(++)CD19(-)CD45(-/+)CD56(-/+/++)) or memory B cells (CD38(-)/CD19(+)/CD27(+)) were isolated by flow activated cell sorting. In samples from all four patients with multiple myeloma and from two of the three with monoclonal gammopathy of undetermined significance, we identified memory B cells expressing multiple myeloma-specific oncogenes (FGFR3; IGH-MMSET; CCND1 high) dysregulated by an IGH translocation in the respective tumor plasma cells. By contrast, in seven patients with multiple myeloma, each of whom had tumor plasma cells with a K-RAS61 mutation, a total of 32,400 memory B cells were analyzed using a sensitive allele-specific, competitive blocker polymerase chain reaction assay, but no K-RAS mutations were identified. The increased expression of a specific "early" oncogene of multiple myeloma (monoclonal gammopathy of undetermined significance) in some memory B cells suggests that dysregulation of the oncogene occurs in a precursor B-cell that can generate memory B cells and transformed plasma cells. However, if memory B cells lack "late" oncogene (K-RAS) mutations but express the "early" oncogene, they cannot be involved in maintaining the multiple myeloma tumor, but presumably represent a clonotypic remnant that is only partially transformed.

  6. [Mutations and their significance in the corepromoter region of hepatitis B virus].

    PubMed

    Tu, H; Wen, Y; Xiong, S

    1997-08-01

    To study the mutations in the core promoter (CP) region of hepatitis B virus (HBV) in Chinese viral hepatits B patients. CP regions of 48 HBV strains were analysed by polymerase chain reaction (PCR) direct sequencing approach. 67% of the samples were detected to have point mutations in the CP region. The hot spots located in nt 1754-1766 and nt 1801-1811 while nucleotides in nt 1777-1800 and nt 1812-1836 were highly conserved. nt. 1764 mutation was present in HBeAg negative patients. There were 16 point mutations in region overlapping X gene, 9 of which lead to amino acid change. Though mutations in CP region of HBV appear frequently, the sequences associated with viral transcription are rarely changed. Point mutation at nt 1764 is related to HBeAg negative phenotype, but it is not the specific mutation of fulminant hepatitis. The importance of mutations in the X gene overlapping region needs to be further investigated.

  7. Severe ipsilateral musculoskeletal involvement in a Cornelia de Lange patient with a novel NIPBL mutation.

    PubMed

    Baquero-Montoya, Carolina; Gil-Rodríguez, María-Concepción; Hernández-Marcos, María; Teresa-Rodrigo, María-Esperanza; Vicente-Gabas, Alicia; Bernal, María-Luisa; Casale, Cesar-Horacio; Bueno-Lozano, Gloria; Bueno-Martínez, Inés; Queralt, Ethel; Villa, Olaya; Hernando-Davalillo, Cristina; Armengol, Lluís; Gómez-Puertas, Paulino; Puisac, Beatriz; Selicorni, Angelo; Ramos, Feliciano J; Pié, Juan

    2014-09-01

    Cornelia de Lange Syndrome (CdLS) is a congenital autosomal dominant (NIPBL, SMC3 and RAD21) or X-linked (SMC1A and HDAC8) disorder characterized by facial dysmorphism, pre and postnatal growth retardation, developmental delay and/or intellectual disability, and multiorgan involvement. Musculoskeletal malformations are usually bilateral and affect mainly the upper limbs; the range goes from brachyclinodactyly to severe reduction defects. Instead lower extremities are usually less and mildly involved. Here, we report on a 3-year-old Senegalese boy with typical craniofacial CdLS features, pre and postnatal growth retardation, atrial septal defect, developmental delay and right ipsilateral limb malformations, consistent with oligodactyly of the 3rd and 4th fingers, tibial agenesis and fibula hypoplasia. Exome sequencing and Sanger sequencing showed a novel missense mutation in NIPBL gene (c.6647A>G; p.(Tyr2216Cys)), which affects a conserved residue located within NIPBL HEAT repeat elements. Pyrosequencing analysis of NIPBL gene, disclosed similar levels of wild-type and mutated alleles in DNA and RNA samples from all tissues analyzed (oral mucosa epithelial cells, peripheral blood leukocytes and fibroblasts). These findings indicated the absence of somatic mosaicism, despite of the segmental asymmetry of the limbs, and confirmed biallelic expression for NIPBL transcripts, respectively. Additionally, conditions like Split-hand/foot malformation with long-bone deficiency secondary to duplication of BHLHA9 gene have been ruled out by the array-CGH and MLPA analysis. To our knowledge, this is the first CdLS patient described with major ipsilateral malformations of both the upper and lower extremities, that even though this finding could be due to a random event, expands the spectrum of limb reduction defects in CdLS. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. ATF6 Is Mutated in Early Onset Photoreceptor Degeneration With Macular Involvement

    PubMed Central

    Xu, Mingchu; Gelowani, Violet; Eblimit, Aiden; Wang, Feng; Young, Marielle P.; Sawyer, Briana L.; Zhao, Li; Jenkins, Glen; Creel, Donnell J.; Wang, Keqing; Ge, Zhongqi; Wang, Hui; Li, Yumei; Hartnett, M. Elizabeth; Chen, Rui

    2015-01-01

    Purpose. Photoreceptor degeneration (PRD) is a genetically heterogeneous retinal disorder. Although a number of genes involved in PRD have been identified, their genetic basis remains unknown in a significant number of patients. In this study, we aimed to identify novel disease-causing genes of PRD. Methods. Comprehensive ocular examinations were performed in a 2-year-old patient diagnosed with early onset PRD. Retinal capture sequencing was performed to screen causative mutations in known retinal disease-causing loci. Whole-exome sequencing (WES) and a series of variant-filtering strategies were applied for identifying novel disease-causing genes. Retina ATF6 expression was confirmed by immunohistochemistry. RT-PCR was performed to identify ATF6 mRNA in the patient. Results. The patient showed typical PRD features, with macular involvement and ellipsoid zone irregularities. Results of retinal capture sequencing were negative. WES data led to identification of biallelic loss-of-function mutations in the ATF6 gene. The first variant generates a premature stop codon (NCBI accession no. NM_007348: c.1126C>T, p.R376*) and the second variant affects a splicing donor site (NM_007348: c.1533+1G>C). Sanger sequencing confirmed the 2 alleles are from 1 parent each. Both of the variants are extremely rare in the population. The splicing variant causes either intron inclusion or exon skipping in the patient, thus severely disrupting ATF6 functional domains. ATF6 is expressed in three neuronal cell layers of mouse retina. Conclusions. Our results support ATF6 as a novel disease-causing gene for PRD and suggest that disrupted protein quality control mechanisms may be a novel pathological mechanism underlying human retinal degeneration. PMID:26070061

  9. Human SH2B1 mutations are associated with maladaptive behaviors and obesity.

    PubMed

    Doche, Michael E; Bochukova, Elena G; Su, Hsiao-Wen; Pearce, Laura R; Keogh, Julia M; Henning, Elana; Cline, Joel M; Saeed, Sadia; Dale, Anne; Cheetham, Tim; Barroso, Inês; Argetsinger, Lawrence S; O'Rahilly, Stephen; Rui, Liangyou; Carter-Su, Christin; Farooqi, I Sadaf

    2012-12-01

    Src homology 2 B adapter protein 1 (SH2B1) modulates signaling by a variety of ligands that bind to receptor tyrosine kinases or JAK-associated cytokine receptors, including leptin, insulin, growth hormone (GH), and nerve growth factor (NGF). Targeted deletion of Sh2b1 in mice results in increased food intake, obesity, and insulin resistance, with an intermediate phenotype seen in heterozygous null mice on a high-fat diet. We identified SH2B1 loss-of-function mutations in a large cohort of patients with severe early-onset obesity. Mutation carriers exhibited hyperphagia, childhood-onset obesity, disproportionate insulin resistance, and reduced final height as adults. Unexpectedly, mutation carriers exhibited a spectrum of behavioral abnormalities that were not reported in controls, including social isolation and aggression. We conclude that SH2B1 plays a critical role in the control of human food intake and body weight and is implicated in maladaptive human behavior.

  10. Precore/Core Region Mutations in Hepatitis B Virus DNA Predict Postoperative Survival in Hepatocellular Carcinoma

    PubMed Central

    Zhao, Yufei; Zhang, Lan; Zhao, Yue; Liu, Binghui; Guo, Zhanjun

    2015-01-01

    Hepatitis B virus (HBV) DNA is prone to mutations because of the proofreading deficiencies of HBV polymerase. We have identified hepatocellular carcinoma (HCC) survival-associated HBV mutations in the X protein region of HBV DNA. In the present study, we extend our research to assess HCC survival-associated HBV mutations in the HBV precore/core (PreC/C) region. The PreC/C region was amplified and sequenced and the HBV mutations were identified according to the NCBI database (http://www.ncbi.nlm.nih.gov/genome/5536). The relationships between the mutations in the PreC/C region and HCC survival were analyzed. Survival curves were generated using the Kaplan-Meier method, and comparisons between the curves were made using the log-rank test. Multivariate survival analysis was performed using a Cox proportional hazards model. After adjusting for clinical characteristics, the 1915, 2134, 2221, 2245 and 2288 mutational sites were identified as statistically significant independent predictors of HCC survival by multivariate survival analysis using a Cox proportional hazards model. In addition, the mutational site of 1896 was identified for its association with survival at a borderline significance level. A total of five mutations in the precore/core region were identified as independent predictors of postoperative survival in HCC patients. The analysis of HBV DNA mutations may help identify patient subgroups with poor prognosis and may help refine therapeutic decisions regarding HCC patients. PMID:26208136

  11. Mutations in the promoter region of the aldolase B gene that cause hereditary fructose intolerance.

    PubMed

    Coffee, Erin M; Tolan, Dean R

    2010-12-01

    Hereditary fructose intolerance (HFI) is a potentially fatal inherited metabolic disease caused by a deficiency of aldolase B activity in the liver and kidney. Over 40 disease-causing mutations are known in the protein-coding region of ALDOB. Mutations upstream of the protein-coding portion of ALDOB are reported here for the first time. DNA sequence analysis of 61 HFI patients revealed single base mutations in the promoter, intronic enhancer, and the first exon, which is entirely untranslated. One mutation, g.-132G>A, is located within the promoter at an evolutionarily conserved nucleotide within a transcription factor-binding site. A second mutation, IVS1+1G>C, is at the donor splice site of the first exon. In vitro electrophoretic mobility shift assays show a decrease in nuclear extract-protein binding at the g.-132G>A mutant site. The promoter mutation results in decreased transcription using luciferase reporter plasmids. Analysis of cDNA from cells transfected with plasmids harboring the IVS1+1G>C mutation results in aberrant splicing leading to complete retention of the first intron (~5 kb). The IVS1+1G>C splicing mutation results in loss of luciferase activity from a reporter plasmid. These novel mutations in ALDOB represent 2% of alleles in American HFI patients, with IVS1+1G>C representing a significantly higher allele frequency (6%) among HFI patients of Hispanic and African-American ethnicity.

  12. Precore/Core Region Mutations in Hepatitis B Virus DNA Predict Postoperative Survival in Hepatocellular Carcinoma.

    PubMed

    Xie, Ying; Liu, Shufeng; Zhao, Yufei; Zhang, Lan; Zhao, Yue; Liu, Binghui; Guo, Zhanjun

    2015-01-01

    Hepatitis B virus (HBV) DNA is prone to mutations because of the proofreading deficiencies of HBV polymerase. We have identified hepatocellular carcinoma (HCC) survival-associated HBV mutations in the X protein region of HBV DNA. In the present study, we extend our research to assess HCC survival-associated HBV mutations in the HBV precore/core (PreC/C) region. The PreC/C region was amplified and sequenced and the HBV mutations were identified according to the NCBI database (http://www.ncbi.nlm.nih.gov/genome/5536). The relationships between the mutations in the PreC/C region and HCC survival were analyzed. Survival curves were generated using the Kaplan-Meier method, and comparisons between the curves were made using the log-rank test. Multivariate survival analysis was performed using a Cox proportional hazards model. After adjusting for clinical characteristics, the 1915, 2134, 2221, 2245 and 2288 mutational sites were identified as statistically significant independent predictors of HCC survival by multivariate survival analysis using a Cox proportional hazards model. In addition, the mutational site of 1896 was identified for its association with survival at a borderline significance level. A total of five mutations in the precore/core region were identified as independent predictors of postoperative survival in HCC patients. The analysis of HBV DNA mutations may help identify patient subgroups with poor prognosis and may help refine therapeutic decisions regarding HCC patients.

  13. Analysis of HBV genotype, drug resistant mutations, and pre-core/basal core promoter mutations in Korean patients with acute hepatitis B.

    PubMed

    Lee, Jong Ho; Hong, Sun Pyo; Jang, Eun Sun; Park, Sang Jong; Hwang, Seong Gyu; Kang, Sook-Kyoung; Jeong, Sook-Hyang

    2015-06-01

    Acute hepatitis B, caused by hepatitis B virus (HBV) strains with drug resistant mutations or pre-core/basal core promoter (PC/BCP) mutations, is a public health concern, because this infection is often associated with poor disease outcome or difficulty in therapeutic choice. The HBV genotype, the prevalence of drug resistant mutations, and PC/BCP mutations in Korean patients with acute hepatitis B were studied. From 2006 to 2008, 36 patients with acute hepatitis B were enrolled prospectively in four general hospitals. Among them, 20 showed detectable HBV DNA (median value was 4.8 log copies/mL). HBV genotyping and analysis of HBV mutations that conferred resistance against lamivudine, adefovir, or entecavir and of PC/BCP mutations were performed using highly sensitive restriction fragment mass polymorphism (RFMP) analysis. All 20 patients were infected with HBV genotype C, which causes almost all cases of chronic hepatitis B in Korea. No patient showed mutations that conferred resistance against lamivudine (L180M, M204V/I), adefovir (A181T, N236S), or entecavir (I169M, A184T/V, S202I/G, M250V/I/L). However, four patients had BCP mutations, and two had PC mutations. Platelet counts were significantly lower in the four patients with PC/BCP mutations compared to those with wild type. In this study, all acute hepatitis B patients had genotype C HBV strains with no drug resistant mutations. However, 20% showed PC/BCP mutations. This highlights the need for further study on the significance of PC/BCP mutations.

  14. Identification of a CysB-regulated gene involved in glutathione transport in Escherichia coli.

    PubMed

    Parry, Jesse; Clark, David P

    2002-03-19

    Growth of Escherichia coli using the tripeptide glutathione as a sulfur source is well documented, but transport of glutathione into E. coli is uncharacterized. We have found that the ybiK gene, at 18.7 min, appears to be involved in the transport of glutathione and have therefore renamed ybiK as spt for sulfur peptide transport. The ybiK/spt gene is the first of what appear to be five cotranscribed genes, three of which show high homology to the peptide transport operon dpp. When the lacZ gene encoding beta-galactosidase was fused to the promoter of ybiK/spt, expression of the ybiK-lacZ fusion was repressed in rich media. This was shown to be due to the presence of exogenous cysteine. The ybiK-lacZ fusion was found to be regulated by cysB, the transcriptional activator for the cysteine regulon. Mutations in the cysB or ybiK genes led to severe growth inhibition when cells were given glutathione as the sole sulfur source. In particular, strains of E. coli containing mutations in both the ybiK and cysA genes were unable to grow when the sole sulfur source provided was glutathione whereas single cysA mutants grew well with glutathione. In contrast, no such defects were seen when L-djenkolic acid or cysteine were used as the sole sulfur source.

  15. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms

    PubMed Central

    Malcovati, Luca; Papaemmanuil, Elli; Bowen, David T.; Boultwood, Jacqueline; Della Porta, Matteo G.; Pascutto, Cristiana; Travaglino, Erica; Groves, Michael J.; Godfrey, Anna L.; Ambaglio, Ilaria; Gallì, Anna; Da Vià, Matteo C.; Conte, Simona; Tauro, Sudhir; Keenan, Norene; Hyslop, Ann; Hinton, Jonathan; Mudie, Laura J.; Wainscoat, James S.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Hellström-Lindberg, Eva

    2011-01-01

    In a previous study, we identified somatic mutations of SF3B1, a gene encoding a core component of RNA splicing machinery, in patients with myelodysplastic syndrome (MDS). Here, we define the clinical significance of these mutations in MDS and myelodysplastic/myeloproliferative neoplasms (MDS/MPN). The coding exons of SF3B1 were screened using massively parallel pyrosequencing in patients with MDS, MDS/MPN, or acute myeloid leukemia (AML) evolving from MDS. Somatic mutations of SF3B1 were found in 150 of 533 (28.1%) patients with MDS, 16 of 83 (19.3%) with MDS/MPN, and 2 of 38 (5.3%) with AML. There was a significant association of SF3B1 mutations with the presence of ring sideroblasts (P < .001) and of mutant allele burden with their proportion (P = .002). The mutant gene had a positive predictive value for ring sideroblasts of 97.7% (95% confidence interval, 93.5%-99.5%). In multivariate analysis including established risk factors, SF3B1 mutations were found to be independently associated with better overall survival (hazard ratio = 0.15, P = .025) and lower risk of evolution into AML (hazard ratio = 0.33, P = .049). The close association between SF3B1 mutations and disease phenotype with ring sideroblasts across MDS and MDS/MPN is consistent with a causal relationship. Furthermore, SF3B1 mutations are independent predictors of favorable clinical outcome, and their incorporation into stratification systems might improve risk assessment in MDS. PMID:21998214

  16. Burkitt's lymphoma is a malignancy of mature B cells expressing somatically mutated V region genes.

    PubMed Central

    Klein, U.; Klein, G.; Ehlin-Henriksson, B.; Rajewsky, K.; Küppers, R.

    1995-01-01

    BACKGROUND: The developmental stage from which stems the malignant B cell population in Burkitt's lymphoma (BL) is unclear. An approach to answering this question is provided by the sequence analysis of rear-ranged immunoglobulin (Ig) variable region (V) genes from BL for evidence of somatic mutations, together with a phenotypic characterization. As somatic hypermutation of Ig V region genes occurs in germinal center B cells, somatically mutated Ig genes are found in germinal center B cells and their descendents. MATERIALS AND METHODS: Rearranged V kappa region genes from 10 kappa-expressing sporadic and endemic BL-derived cell lines (9 IgM and 1 IgG positive) and three kappa-expressing endemic BL biopsy specimens were amplified by polymerase chain reaction and sequenced. In addition, VH region gene sequences from these cell lines were determined. RESULTS: All BL cell lines and the three biopsy specimens carried somatically mutated V region genes. The average mutation frequency of rearranged V kappa genes from eight BL cell lines established from sporadic BL was 1.8%. A higher frequency (6%) was found in five endemic cases (three biopsy specimens and two BL cell lines). CONCLUSIONS: The detection of somatic mutations in the rearranged V region genes suggests that both sporadic and endemic BL represent a B-cell malignancy originating from germinal center B cells or their descendants. Interestingly, the mutation frequency detected in sporadic BL is in a range similar to that characteristic for IgM-expressing B cells in the human peripheral blood and for mu chain-expressing germinal center B cells, whereas the mutation frequency found in endemic BL is significantly higher. PMID:8529116

  17. GRIN2B Mutations in West Syndrome and Intellectual Disability with Focal Epilepsy

    PubMed Central

    Lemke, Johannes R; Hendrickx, Rik; Geider, Kirsten; Laube, Bodo; Schwake, Michael; Harvey, Robert J; James, Victoria M; Pepler, Alex; Steiner, Isabelle; Hörtnagel, Konstanze; Neidhardt, John; Ruf, Susanne; Wolff, Markus; Bartholdi, Deborah; Caraballo, Roberto; Platzer, Konrad; Suls, Arvid; De Jonghe, Peter; Biskup, Saskia; Weckhuysen, Sarah

    2014-01-01

    Objective To identify novel epilepsy genes using a panel approach and describe the functional consequences of mutations. Methods Using a panel approach, we screened 357 patients comprising a vast spectrum of epileptic disorders for defects in genes known to contribute to epilepsy and/or intellectual disability (ID). After detection of mutations in a novel epilepsy gene, we investigated functional effects in Xenopus laevis oocytes and screened a follow-up cohort. Results We revealed de novo mutations in GRIN2B encoding the NR2B subunit of the N-methyl-D-aspartate (NMDA) receptor in 2 individuals with West syndrome and severe developmental delay as well as 1 individual with ID and focal epilepsy. The patient with ID and focal epilepsy had a missense mutation in the extracellular glutamate-binding domain (p.Arg540His), whereas both West syndrome patients carried missense mutations within the NR2B ion channel-forming re-entrant loop (p.Asn615Ile, p.Val618Gly). Subsequent screening of 47 patients with unexplained infantile spasms did not reveal additional de novo mutations, but detected a carrier of a novel inherited GRIN2B splice site variant in close proximity (c.2011-5_2011-4delTC). Mutations p.Asn615Ile and p.Val618Gly cause a significantly reduced Mg2+ block and higher Ca2+ permeability, leading to a dramatically increased Ca2+ influx, whereas p.Arg540His caused less severe disturbance of channel function, corresponding to the milder patient phenotype. Interpretation We identified GRIN2B gain-of-function mutations as a cause of West syndrome with severe developmental delay as well as of ID with childhood onset focal epilepsy. Severely disturbed channel function corresponded to severe clinical phenotypes, underlining the important role of facilitated NMDA receptor signaling in epileptogenesis. PMID:24272827

  18. Mutation screening of GRIN2B in schizophrenia and autism spectrum disorder in a Japanese population

    PubMed Central

    Takasaki, Yuto; Koide, Takayoshi; Wang, Chenyao; Kimura, Hiroki; Xing, Jingrui; Kushima, Itaru; Ishizuka, Kanako; Mori, Daisuke; Sekiguchi, Mariko; Ikeda, Masashi; Aizawa, Miki; Tsurumaru, Naoko; Iwayama, Yoshimi; Yoshimi, Akira; Arioka, Yuko; Yoshida, Mami; Noma, Hiromi; Oya-Ito, Tomoko; Nakamura, Yukako; Kunimoto, Shohko; Aleksic, Branko; Uno, Yota; Okada, Takashi; Ujike, Hiroshi; Egawa, Jun; Kuwabara, Hitoshi; Someya, Toshiyuki; Yoshikawa, Takeo; Iwata, Nakao; Ozaki, Norio

    2016-01-01

    N-methyl-d-aspartate receptors (NMDARs) play a critical role in excitatory synaptic transmission and plasticity in the central nervous systems. Recent genetics studies in schizophrenia (SCZ) show that SCZ is susceptible to NMDARs and the NMDAR signaling complex. In autism spectrum disorder (ASD), several studies report dysregulation of NMDARs as a risk factor for ASD. To further examine the association between NMDARs and SCZ/ASD development, we conducted a mutation screening study of GRIN2B which encodes NR2B subunit of NMDARs, to identify rare mutations that potentially cause diseases, in SCZ and ASD patients (n = 574 and 152, respectively). This was followed by an association study in a large sample set of SCZ, ASD, and normal healthy controls (n = 4145, 381, and 4432, respectively). We identified five rare missense mutations through the mutation screening of GRIN2B. Although no statistically significant association between any single mutation and SCZ or ASD was found, one of its variant, K1292R, is found only in the patient group. To further examine the association between mutations in GRIN2B and SCZ/ASD development, a larger sample size and functional experiments are needed. PMID:27616045

  19. Prevalence of BTK mutations in male Algerian patterns with agammaglobulinemia and severe B cell lymphopenia.

    PubMed

    Boushaki, Soraya; Tahiat, Azzedine; Meddour, Yanis; Chan, Koon Wing; Chaib, Samia; Benhalla, Nafissa; Smati, Leila; Bensenouci, Abdellatif; Lau, Yu-Lung; Magdinier, Frédérique; Djidjik, Réda

    2015-12-01

    X linked agammaglobulinemia (XLA) is the first described primary immunodeficiency and the most common form of agammaglobulinemia. It is characterized by susceptibility to recurrent infections, profound decrease of all immunoglobulin isotypes and very low level of B lymphocytes in peripheral blood. The disorder is caused by mutations in the Bruton's Tyrosine Kinase (BTK). Nine male patients suspected to have XLA from nine unrelated families were enrolled in this study. We performed sequencing of the BTK gene in all nine patients, and in the patients' relatives when possible. The XLA diagnosis was confirmed for six patients with six different mutations; we identified a novel mutation (c.1522G>A) and five known mutations. One third of nine unrelated patients do not have mutations in BTK and thus likely suffer from autosomal recessive agammaglobulinemia in the setting of consanguinity. Our results support that the autosomal recessive agammaglobulinemia can be more common in Algeria. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Both mutated and unmutated memory B cells accumulate mutations in the course of the secondary response and develop a new antibody repertoire optimally adapted to the secondary stimulus

    PubMed Central

    2013-01-01

    High-affinity memory B cells are preferentially selected during secondary responses and rapidly differentiate into antibody-producing cells. However, it remains unknown whether only high-affinity, mutated memory B cells simply expand to dominate the secondary response or if in fact memory B cells with a diverse VH repertoire, including those with no mutations, accumulate somatic mutations to create a new repertoire through the process of affinity maturation. In this report, we took a new approach to address this question by analyzing the VH gene repertoire of IgG1+ memory B cells before and after antigen re-exposure in a host unable to generate IgG+ B cells. We show here that both mutated and unmutated IgG1+ memory B cells respond to secondary challenge and expand while accumulating somatic mutations in their VH genes in a stepwise manner. Both types of memory cells subsequently established a VH gene repertoire dominated by two major clonotypes, which are distinct from the original repertoire before antigen re-exposure. In addition, heavily mutated memory B cells were excluded from the secondary repertoire. Thus, both mutated and unmutated IgG1+ memory cells equally contribute to establish a new antibody repertoire through a dynamic process of mutation and selection, becoming optimally adapted to the recall challenge. PMID:24021876

  1. Mutation spectrum of CYP1B1 in North Indian congenital glaucoma patients

    PubMed Central

    Tanwar, Mukesh; Dada, Tanuj; Sihota, Ramanjit; Das, Taposh K.; Yadav, Usha

    2009-01-01

    Purpose Mutations in Cytochrome P450 (CYP1B1) are a predominant cause of congenital glaucoma. This study was planned with the aim to identify the mutation profile of CYP1B1 in North Indian primary congenital glaucoma (PCG) patients. Methods After ethical clearance, 50 congenital glaucoma patients and 50 ethnically matched controls were recruited in this study. Genomic DNA was isolated from the blood and trabecular meshwork, and CYP1B1 was screened for the six most prevalent mutations (termination at 223 [Ter@223], Gly61Glu, Pro193Leu, Glu229Lys, Arg368His, and Arg390Cys) by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). DNA sequencing was done to identify other mutations and for confirmation of RFLP positive samples. Results On PCR-RFLP, 21/50 cases (42%) were found positive for one or more of these mutations. However, on sequencing, we found that 23/50 (46%) harbored the CYPIB1 mutations. Ter@223 was found in 18%, p.R390H in 16%, and p.R368H in 8% of cases. Three novel mutations, p.L24R, p.F190L, and p.G329D, were identified by DNA sequencing. Leucine, phenylalanine, and glycine are conserved at the 24th, 190th, and 329th position in the CYP1B1 protein in different species, suggestive of important functions at these loci. Ter@223 was found to be the most prevalent mutation in our patients while p.R368H was most prevalent in southern India. The difference in frequency and mutation profile may be due to the heterogeneous Indian population. Pathogenic CYP1B1 mutations impair anterior chamber development and differentiation by blocking the aqueous outflow and raising intraocular pressure (IOP). Conclusions Three novel mutations were identified in this study. Studies of pathogenic sequence variants in CYP1B1 in different populations may contribute to a better understanding of the disease pathogenesis. This may lead to the development of novel therapeutic approaches in the near future. PMID:19536304

  2. CHMP2B mutations are not a common cause of frontotemporal lobar degeneration.

    PubMed

    Cannon, Ashley; Baker, Matthew; Boeve, Brad; Josephs, Keith; Knopman, David; Petersen, Ron; Parisi, Joseph; Dickison, Dennis; Adamson, Jennifer; Snowden, Julie; Neary, David; Mann, David; Hutton, Mike; Pickering-Brown, Stuart M

    2006-05-01

    It was reported in 1995 that a large Danish family with familial frontotemporal dementia (FTD) was linked to the pericentromeric region of chromosome 3. It has since been claimed that a mutation in the splice acceptor site of exon 6 of CHMP2B is the pathogenic variant in this family. In order to determine whether CHMP2B mutations are a common cause of disease in patients with frontotemporal lobar degeneration (FTLD) we sequenced all exons and flanking regions of CHMP2B in 141 familial FTLD probands from the USA and UK. We failed to find a single pathogenic variant in any case. Polymorphisms were detected but were present in control samples. We conclude that mutations in CHMP2B are a rare cause of familial FTLD and may be specific to the Danish pedigree.

  3. SF3B1 and BAP1 mutations in blue nevus-like melanoma.

    PubMed

    Griewank, Klaus G; Müller, Hansgeorg; Jackett, Louise A; Emberger, Michael; Möller, Inga; van de Nes, Johannes Ap; Zimmer, Lisa; Livingstone, Elisabeth; Wiesner, Thomas; Scholz, Simone L; Cosgarea, Ioana; Sucker, Antje; Schimming, Tobias; Hillen, Uwe; Schilling, Bastian; Paschen, Annette; Reis, Henning; Mentzel, Thomas; Kutzner, Heinz; Rütten, Arno; Murali, Rajmohan; Scolyer, Richard A; Schadendorf, Dirk

    2017-07-01

    Blue nevi are melanocytic tumors originating in the cutaneous dermis. Malignant tumors may arise in association with or resembling blue nevi, so called 'blue nevus-like melanoma', which can metastasize and result in patient death. Identifying which tumors will behave in a clinically aggressive manner can be challenging. Identifying genetic alterations in such tumors may assist in their diagnosis and prognostication. Blue nevi are known to be genetically related to uveal melanomas (eg, both harboring GNAQ and GNA11 mutations). In this study, we analyzed a large cohort (n=301) of various morphologic variants of blue nevi and related tumors including tumors diagnosed as atypical blue nevi (n=21), and blue nevus-like melanoma (n=12), screening for all gene mutations known to occur in uveal melanoma. Similar to published reports, we found the majority of blue nevi harbored activating mutations in GNAQ (53%) or GNA11 (15%). In addition, rare CYSLTR2 (1%) and PLCB4 (1%) mutations were identified. EIF1AX, SF3B1, and BAP1 mutations were also detected, with BAP1 and SF3B1 R625 mutations being present only in clearly malignant tumors (17% (n=2) and 25% (n=3) of blue nevus-like melanoma, respectively). In sequencing data from a larger cohort of cutaneous melanomas, this genetic profile was also identified in tumors not originally diagnosed as blue nevus-like melanoma. Our findings suggest that the genetic profile of coexistent GNAQ or GNA11 mutations with BAP1 or SF3B1 mutations can aid the histopathological diagnosis of blue nevus-like melanoma and distinguish blue nevus-like melanoma from conventional epidermal-derived melanomas. Future studies will need to further elucidate the prognostic implications and appropriate clinical management for patients with tumors harboring these mutation profiles.

  4. rpoB Mutations in Multidrug-Resistant Strains of Mycobacterium tuberculosis Isolated in Italy

    PubMed Central

    Pozzi, G.; Meloni, M.; Iona, E.; Orrù, G.; Thoresen, O. F.; Ricci, M. L.; Oggioni, M. R.; Fattorini, L.; Orefici, G.

    1999-01-01

    Mutations of rpoB associated with rifampin resistance were studied in 37 multidrug-resistant (MDR) clinical strains of Mycobacterium tuberculosis isolated in Italy. At least one mutated codon was found in each MDR strain. It was always a single-base substitution leading to an amino acid change. Nine different rpoB alleles, three of which had not been reported before, were found. The relative frequencies of specific mutations in this sample were different from those previously reported from different geographical areas, since 22 strains (59.5%) carried the mutated codon TTG in position 531 (Ser→Leu) and 11 (29.7%) had GAC in position 526 (His→Asp). PMID:10074552

  5. Consequences of the recurrent MYD88L265P somatic mutation for B cell tolerance

    PubMed Central

    Wang, James Q.; Jeelall, Yogesh S.; Beutler, Bruce

    2014-01-01

    MYD88L265P has recently been discovered as an extraordinarily frequent somatic mutation in benign monoclonal IgM gammopathy, Waldenström’s macroglobulinemia, and diffuse large B cell lymphoma. In this study, we analyze the consequences for antigen-activated primary B cells of acquiring MYD88L265P. The mutation induced rapid B cell division in the absence of exogenous TLR ligands and was inhibited by Unc93b13d mutation and chloroquine or TLR9 deficiency, indicating continued dependence on upstream TLR9 activation. Proliferation and NF-κB activation induced by MYD88L265P were nevertheless rapidly countered by the induction of TNFAIP3, an NF-κB inhibitor frequently inactivated in MYD88L265P–bearing lymphomas, and extinguished by Bim-dependent apoptosis. MYD88L265P caused self-reactive B cells to accumulate in vivo only when apoptosis was opposed by Bcl2 overexpression. These results reveal checkpoints that fortify TLR responses against aberrant B cell proliferation in response to ubiquitous TLR and BCR self-ligands and suggest that tolerance failure requires the accumulation of multiple somatic mutations. PMID:24534189

  6. Consequences of the recurrent MYD88(L265P) somatic mutation for B cell tolerance.

    PubMed

    Wang, James Q; Jeelall, Yogesh S; Beutler, Bruce; Horikawa, Keisuke; Goodnow, Christopher C

    2014-03-10

    MYD88(L265P) has recently been discovered as an extraordinarily frequent somatic mutation in benign monoclonal IgM gammopathy, Waldenström's macroglobulinemia, and diffuse large B cell lymphoma. In this study, we analyze the consequences for antigen-activated primary B cells of acquiring MYD88(L265P). The mutation induced rapid B cell division in the absence of exogenous TLR ligands and was inhibited by Unc93b1(3d) mutation and chloroquine or TLR9 deficiency, indicating continued dependence on upstream TLR9 activation. Proliferation and NF-κB activation induced by MYD88(L265P) were nevertheless rapidly countered by the induction of TNFAIP3, an NF-κB inhibitor frequently inactivated in MYD88(L265P)-bearing lymphomas, and extinguished by Bim-dependent apoptosis. MYD88(L265P) caused self-reactive B cells to accumulate in vivo only when apoptosis was opposed by Bcl2 overexpression. These results reveal checkpoints that fortify TLR responses against aberrant B cell proliferation in response to ubiquitous TLR and BCR self-ligands and suggest that tolerance failure requires the accumulation of multiple somatic mutations.

  7. Early-onset foveal involvement in retinitis punctata albescens with mutations in RLBP1.

    PubMed

    Dessalces, Elodie; Bocquet, Béatrice; Bourien, Jérôme; Zanlonghi, Xavier; Verdet, Robert; Meunier, Isabelle; Hamel, Christian P

    2013-10-01

    Retinitis punctata albescens (RPA) is an autosomal recessive form of retinitis pigmentosa characterized by white dotlike deposits in the fundus, in most cases caused by mutations in RLBP1. To study disease progression and visual function in RPA. We performed clinical and molecular investigations in patients with RPA at various ages, from November 5, 2003, through June 20, 2012, with no planned patient follow-up. The National Reference Center for Genetic Sensory Diseases (Montpellier). Eleven patients with RPA (mean age, 24 [range, 3-39] years) from 7 families and 11 control subjects undergoing evaluation. Optical coherence tomography measurements. Screening for mutations by polymerase chain reaction sequencing of the 9 RLBP1 exons. Patients underwent standard ophthalmic examination, fundus imaging, autofluorescence testing, Goldmann visual field measurement, optical coherence tomography, adaptive optics-based infrared fundus ophthalmoscopy, dark adaptometry, and electroretinography. We found 2 novel RLBP1 mutations (p.Tyr111X and p.Arg9Cys), and 8 patients from Morocco were homozygous for the recurrent 7.36-kilobase RLBP1 deletion of exons 7 through 9. All patients had night blindness (before age 6 years in 10). The dotlike deposits were generally dense but could be rare, appearing in adaptive optics as elongated structures with variable orientation and no foveal involvement. We found no specific refractive error, and visual acuity varied widely from normal (1.2) to counting fingers. Variable degrees of visual field impairment were present, and all patients had severely decreased electroretinographic responses with predominant rod impairment. No correlation between visual acuity (P = .27) or visual field and age (P = .08) was present. On optical coherence tomography, the mean (SD) central foveal (122 [23] vs 187 [30] µm in controls) and foveal (147 [19] vs 217 [17] µm) thicknesses were significantly (P < .01) decreased, independently of age, whereas the retinal

  8. Mitochondrial 12S rRNA A827G mutation is involved in the genetic susceptibility to aminoglycoside ototoxicity

    SciTech Connect

    Xing Guangqian; Chen Zhibin; Wei Qinjun; Tian Huiqin; Li Xiaolu; Zhou Aidong; Bu Xingkuan; Cao Xin . E-mail: caoxin@njmu.edu.cn

    2006-08-11

    We have analyzed the clinical and molecular characterization of a Chinese family with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluations revealed that only those family members who had a history of exposure to aminoglycoside antibiotics subsequently developed hearing loss, suggesting mitochondrial genome involvement. Sequence analysis of the mitochondrial 12S rRNA and tRNA{sup Ser(UCN)} genes led to the identification of a homoplasmic A827G mutation in all maternal relatives, a mutation that was identified previously in a few sporadic patients and in another Chinese family with non-syndromic deafness. The pathogenicity of the A827G mutation is strongly supported by the occurrence of the same mutation in two independent families and several genetically unrelated subjects. The A827G mutation is located at the A-site of the mitochondrial 12S rRNA gene which is highly conserved in mammals. It is possible that the alteration of the tertiary or quaternary structure of this rRNA by the A827G mutation may lead to mitochondrial dysfunction, thereby playing a role in the pathogenesis of hearing loss and aminoglycoside hypersensitivity. However, incomplete penetrance of hearing impairment indicates that the A827G mutation itself is not sufficient to produce clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Indeed, aminoglycosides may contribute to the phenotypic manifestation of the A827G mutation in this family. In contrast with the congenital or early-onset hearing impairment in another Chinese family carrying the A827G mutation, three patients in this pedigree developed hearing loss only after use of aminoglycosides. This discrepancy likely reflects the difference of genetic backgrounds, either mitochondrial haplotypes or nuclear modifier genes, between two families.

  9. Molecular basis of hereditary fructose intolerance: mutations and polymorphisms in the human aldolase B gene.

    PubMed

    Tolan, D R

    1995-01-01

    Mutations in the human aldolase B gene that result in hereditary fructose intolerance have been characterized extensively. Although the majority of subjects have been from northern Europe, subjects from other geographical regions and ethnic groups have been identified. At present 21 mutations have been reported; 15 of these are single base substitutions, resulting in nine amino acid replacements, four nonsense codons, and two putative splicing defects. Two large deletions, two four-base deletions, a single-base deletion, and a seven-base deletion/one-base insertion have been found. This last mutation leads to a defect in splicing and it is likely that one of the small deletions does as well. Regions of the enzyme where mutations have been observed recurrently are encoded by exons 5 and 9. Indeed, the three most common mutations are found in these exons. Two of these prevalent HFI mutations arose from a common ancestor and spread throughout the population by genetic drift. This finding was based on linkage to two sequence polymorphisms, which are among very few informative polymorphic markers that have been identified within the aldolase B gene. Because of the prevalence of a few HFI alleles, and the recent advances in molecular methods for identifying and screening for mutation, the diagnosis of HFI by molecular screening methods should become routine. These molecular diagnostic methods will be extremely beneficial for this often difficult to diagnose and sometimes fatal disease.

  10. X protein mutations in hepatitis B virus DNA predict postoperative survival in hepatocellular carcinoma.

    PubMed

    Xie, Ying; Liu, Shufeng; Zhao, Yue; Guo, Zhanjun; Xu, Jinsheng

    2014-10-01

    Hepatitis B virus (HBV) DNA is prone to mutations because of the proofreading deficiencies of HBV polymerase. The postoperative prognostic value of HBV mutations in HBV X protein (HBx) gene was assessed in HBV associated hepatocellular carcinoma (HCC) patients. The HBx gene was amplified and sequenced, the HBV mutations was identified according to NCBI database ( http://www.ncbi.nlm.nih.gov/genome/5536 ). The relationship between the HBV mutations and HCC survival was compared. Survival curves were generated using the Kaplan-Meier method, and comparisons between the curves were made using the log-rank test. Multivariate survival analysis was performed using a Cox proportional hazards model. After adjusting for clinical characteristics, the following eight mutational sites were identified as statistically significant independent predictors of HCC survival: 1383, 1461, 1485, 1544, 1613, 1653, 1719, and 1753. In addition, the following four mutational sites were identified for their association with survival at a border-line significance level: 1527, 1637, 1674, and 1762/1764. A total of 12 mutations in HBx gene region were identified as independent predictors of postoperative survival in HCC patients. The analysis of HBV DNA mutations may help identify patient subgroups with poor prognosis and may help refine therapeutic decisions regarding HCC patients.

  11. Mutations in the major hydrophilic region (MHR) of hepatitis B virus genotype C in North China.

    PubMed

    Shi, Ying; Wei, Feili; Hu, Dongmei; Li, Qing; Smith, Davey; Li, Ning; Chen, Dexi

    2012-12-01

    Hepatitis B virus (HBV) can evolve by mutations in the major hydrophilic region (MHR) of the HBV surface antigen (HBsAg) to permit its escape from neutralization by antibodies such as HBV surface antibody (anti-HBs) and from host immune responses. This study investigated the prevalence and pattern of MHR mutations in North China and the clinical correlations of these mutations. The MHRs of 161 HBsAg-positive patients were amplified using nested PCR, and directly sequenced to identify MHR mutations. It was showed that among the 161 patients infected with HBV genotype C in North China, the overall frequency of MHR mutation was 46.6%. Furthermore, MHR mutations were associated with high white blood cell counts (P = 0.025), high bilirubin levels (P = 0.048), and cirrhosis (P = 0.010). The most frequent mutations in patients with both HBsAg-positive and anti-HBs-positive were located in subregion 1 and 3 of MHR, specifically, residue Q101 (29.9%) and I126 (70.6%), which was different from the mutation pattern found in Western Europe and the United States. Taken together, these data indicated important virological and clinical aspects of HBV evolution in terms of the surface gene of genotype C, which might be important for its response to the currently available HBV vaccine. Copyright © 2012 Wiley Periodicals, Inc.

  12. Mutations in the Major Hydrophilic Region (MHR) of Hepatitis B Virus Genotype C in North China

    PubMed Central

    Shi, Ying; Wei, Feili; Hu, Dongmei; Li, Qing; Smith, Davey; Li, Ning; Chen, Dexi

    2013-01-01

    Hepatitis B virus (HBV) can evolve by mutations in the major hydrophilic region (MHR) of the HBV surface antigen (HBsAg) to permit its escape from neutralization by antibodies such as HBV surface antibody (anti-HBs) and from host immune responses. This study investigated the prevalence and pattern of MHR mutations in North China and the clinical correlations of these mutations. The MHRs of 161 HBsAg-positive patients were amplified using nested PCR, and directly sequenced to identify MHR mutations. It was showed that among the 161 patients infected with HBV genotype C in North China, the overall frequency of MHR mutation was 46.6%. Furthermore, MHR mutations were associated with high white blood cell counts (P = 0.025), high bilirubin levels (P = 0.048), and cirrhosis (P = 0.010). The most frequent mutations in patients with both HBsAg-positive and anti-HBs-positive were located in subregion 1 and 3 of MHR, specifically, residue Q101 (29.9%) and I126 (70.6%), which was different from the mutation pattern found in Western Europe and the United States. Taken together, these data indicated important virological and clinical aspects of HBV evolution in terms of the surface gene of genotype C, which might be important for its response to the currently available HBV vaccine. PMID:23080494

  13. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia.

    PubMed

    Skibinski, Gaia; Parkinson, Nicholas J; Brown, Jeremy M; Chakrabarti, Lisa; Lloyd, Sarah L; Hummerich, Holger; Nielsen, Jørgen E; Hodges, John R; Spillantini, Maria Grazia; Thusgaard, Tove; Brandner, Sebastian; Brun, Arne; Rossor, Martin N; Gade, Anders; Johannsen, Peter; Sørensen, Sven Asger; Gydesen, Susanne; Fisher, Elizabeth M C; Collinge, John

    2005-08-01

    We have previously reported a large Danish pedigree with autosomal dominant frontotemporal dementia (FTD) linked to chromosome 3 (FTD3). Here we identify a mutation in CHMP2B, encoding a component of the endosomal ESCRTIII complex, and show that it results in aberrant mRNA splicing in tissue samples from affected members of this family. We also describe an additional missense mutation in an unrelated individual with FTD. Aberration in the endosomal ESCRTIII complex may result in FTD and neurodegenerative disease.

  14. A Point Mutation in the Gene for Asparagine-Linked Glycosylation 10B (Alg10b) Causes Nonsyndromic Hearing Impairment in Mice (Mus musculus)

    PubMed Central

    Probst, Frank J.; Corrigan, Rebecca R.; del Gaudio, Daniela; Salinger, Andrew P.; Lorenzo, Isabel; Gao, Simon S.; Chiu, Ilene; Xia, Anping

    2013-01-01

    The study of mouse hearing impairment mutants has led to the identification of a number of human hearing impairment genes and has greatly furthered our understanding of the physiology of hearing. The novel mouse mutant neurological/sensory 5 (nse5) demonstrates a significantly reduced or absent startle response to sound and is therefore a potential murine model of human hearing impairment. Genetic analysis of 500 intercross progeny localized the mutant locus to a 524 kilobase (kb) interval on mouse chromosome 15. A missense mutation in a highly-conserved amino acid was found in the asparagine-linked glycosylation 10B gene (Alg10b), which is within the critical interval for the nse5 mutation. A 20.4 kb transgene containing a wildtype copy of the Alg10b gene rescued the mutant phenotype in nse5/nse5 homozygous animals, confirming that the mutation in Alg10b is responsible for the nse5/nse5 mutant phenotype. Homozygous nse5/nse5 mutants had abnormal auditory brainstem responses (ABRs), distortion product otoacoustic emissions (DPOAEs), and cochlear microphonics (CMs). Endocochlear potentials (EPs), on the other hand, were normal. ABRs and DPOAEs also confirmed the rescue of the mutant nse5/nse5 phenotype by the wildtype Alg10b transgene. These results suggested a defect in the outer hair cells of mutant animals, which was confirmed by histologic analysis. This is the first report of mutation in a gene involved in the asparagine (N)-linked glycosylation pathway causing nonsyndromic hearing impairment, and it suggests that the hearing apparatus, and the outer hair cells in particular, are exquisitely sensitive to perturbations of the N-linked glycosylation pathway. PMID:24303013

  15. A point mutation in the gene for asparagine-linked glycosylation 10B (Alg10b) causes nonsyndromic hearing impairment in mice (Mus musculus).

    PubMed

    Probst, Frank J; Corrigan, Rebecca R; Del Gaudio, Daniela; Salinger, Andrew P; Lorenzo, Isabel; Gao, Simon S; Chiu, Ilene; Xia, Anping; Oghalai, John S; Justice, Monica J

    2013-01-01

    The study of mouse hearing impairment mutants has led to the identification of a number of human hearing impairment genes and has greatly furthered our understanding of the physiology of hearing. The novel mouse mutant neurological/sensory 5 (nse5) demonstrates a significantly reduced or absent startle response to sound and is therefore a potential murine model of human hearing impairment. Genetic analysis of 500 intercross progeny localized the mutant locus to a 524 kilobase (kb) interval on mouse chromosome 15. A missense mutation in a highly-conserved amino acid was found in the asparagine-linked glycosylation 10B gene (Alg10b), which is within the critical interval for the nse5 mutation. A 20.4 kb transgene containing a wildtype copy of the Alg10b gene rescued the mutant phenotype in nse5/nse5 homozygous animals, confirming that the mutation in Alg10b is responsible for the nse5/nse5 mutant phenotype. Homozygous nse5/nse5 mutants had abnormal auditory brainstem responses (ABRs), distortion product otoacoustic emissions (DPOAEs), and cochlear microphonics (CMs). Endocochlear potentials (EPs), on the other hand, were normal. ABRs and DPOAEs also confirmed the rescue of the mutant nse5/nse5 phenotype by the wildtype Alg10b transgene. These results suggested a defect in the outer hair cells of mutant animals, which was confirmed by histologic analysis. This is the first report of mutation in a gene involved in the asparagine (N)-linked glycosylation pathway causing nonsyndromic hearing impairment, and it suggests that the hearing apparatus, and the outer hair cells in particular, are exquisitely sensitive to perturbations of the N-linked glycosylation pathway.

  16. CYP1B1 gene mutations causing primary congenital glaucoma in Tunisia.

    PubMed

    Bouyacoub, Yosra; Ben Yahia, Salim; Abroug, Nesrine; Kahloun, Rim; Kefi, Rym; Khairallah, Moncef; Abdelhak, Sonia

    2014-07-01

    Primary congenital glaucoma (PCG) is responsible for a significant proportion of childhood blindness in Tunisia. Early prevention based on genetic diagnosis is therefore required. This study sought to determine the frequency of CYP1B1 (cytochrome P450, family 1, subfamily B, polypeptide 1) mutations in 18 PCG patients, recruited from Central and Southern of Tunisia. Genomic DNA was extracted and the coding regions of CYP1B1 were analysed by direct sequencing. A phylogenetic network of CYP1B1 haplotypes was drawn using the median-joining algorithm. Sequence analysis revealed a "tetra-allelic mutation" (two novel mutations, p.F231I and p.P437A in the homozygous state) in one patient. The healthy members of his family carried those variations on the same allele. Two previously described mutations p.G61E and c.535delG were also identified in the homozygous state in seven and two probands, respectively. Seven single-nucleotide polymorphisms were identified and used to generate haplotypes. Our results showed that the CYP1B1 mutations were present in 55% of Tunisian PCG patients' alleles. Haplotype analysis allowed us to define the proto-haplotype and to confirm historical migratory flows. Establishment of PCG genetic aetiology in Tunisia will improve genetic diagnosis and counselling.

  17. Charcot Marie Tooth 2B Peripheral Sensory Neuropathy: How Rab7 Mutations Impact NGF Signaling?

    PubMed Central

    Liu, Harry; Wu, Chengbiao

    2017-01-01

    Charcot-Marie-Tooth 2B peripheral sensory neuropathy (CMT2B) is a debilitating autosomal dominant hereditary sensory neuropathy. Patients with this disease lose pain sensation and frequently need amputation. Axonal dysfunction and degeneration of peripheral sensory neurons is a major clinical manifestation of CMT2B. However, the cellular and molecular pathogenic mechanisms remain undefined. CMT2B is caused by missense point mutations (L129F, K157N, N161T/I, V162M) in Rab7 GTPase. Strong evidence suggests that the Rab7 mutation(s) enhances the cellular levels of activated Rab7 proteins, thus resulting in increased lysosomal activity and autophagy. As a consequence, trafficking and signaling of neurotrophic factors such as nerve growth factor (NGF) in the long axons of peripheral sensory neurons are particularly vulnerable to premature degradation. A “gain of toxicity” model has, thus, been proposed based on these observations. However, studies of fly photo-sensory neurons indicate that the Rab7 mutation(s) causes a “loss of function”, resulting in haploinsufficiency. In the review, we summarize experimental evidence for both hypotheses. We argue that better models (rodent animals and human neurons) of CMT2B are needed to precisely define the disease mechanisms. PMID:28165391

  18. Spectrum of Mutations that cause Distal Arthrogryposis Types 1 and 2B

    PubMed Central

    Beck, Anita E.; McMillin, Margaret J.; Gildersleeve, Heidi I. S.; Kezele, Phillip R.; Shively, Kathryn M. B.; Carey, John C.; Regnier, Michael; Bamshad, Michael J.

    2012-01-01

    The distal arthrogryposis (DA) syndromes are a group of disorders characterized by non-progressive congenital contractures of the limbs. Mutations that cause distal arthrogryposis syndromes have been reported in six genes, each of which encodes a component of the contractile apparatus of skeletal myofibers. However, these reports have usually emanated from gene discovery efforts and thus potentially bias estimates of the frequency of pathogenic mutations at each locus. We characterized the spectrum of pathogenic variants in a cohort of 153 cases of DA1 (n = 48) and DA2B (n = 105). Disease-causing mutations in 56/153 (37%) kindreds including 14/48 (29%) with DA1 and 42/105 (40%) with DA2B were distributed nearly equally across TNNI2, TNNT3, TPM2, and MYH3. In TNNI2, TNNT3, and TPM2 the same mutation caused DA1 in some families and DA2B in others. We found no significant differences among the clinical characteristics of DA by locus or between each locus and DA1 or DA2B. Collectively, the substantial overlap between phenotypic characteristics and spectrum of mutations suggest that DA1 and DA2B should be considered phenotypic extremes of the same disorder. PMID:23401156

  19. Spectrum of mutations that cause distal arthrogryposis types 1 and 2B.

    PubMed

    Beck, Anita E; McMillin, Margaret J; Gildersleeve, Heidi I S; Kezele, Phillip R; Shively, Kathryn M; Carey, John C; Regnier, Michael; Bamshad, Michael J

    2013-03-01

    The distal arthrogryposis (DA) syndromes are a group of disorders characterized by non-progressive congenital contractures of the limbs. Mutations that cause distal arthrogryposis syndromes have been reported in six genes, each of which encodes a component of the contractile apparatus of skeletal myofibers. However, these reports have usually emanated from gene discovery efforts and thus potentially bias estimates of the frequency of pathogenic mutations at each locus. We characterized the spectrum of pathogenic variants in a cohort of 153 cases of DA1 (n = 48) and DA2B (n = 105). Disease-causing mutations in 56/153 (37%) kindreds including 14/48 (29%) with DA1 and 42/105 (40%) with DA2B were distributed nearly equally across TNNI2, TNNT3, TPM2, and MYH3. In TNNI2, TNNT3, and TPM2 the same mutation caused DA1 in some families and DA2B in others. We found no significant differences among the clinical characteristics of DA by locus or between each locus and DA1 or DA2B. Collectively, the substantial overlap between phenotypic characteristics and spectrum of mutations suggests that DA1 and DA2B should be considered phenotypic extremes of the same disorder. Copyright © 2013 Wiley Periodicals, Inc.

  20. Charcot Marie Tooth 2B Peripheral Sensory Neuropathy: How Rab7 Mutations Impact NGF Signaling?

    PubMed

    Liu, Harry; Wu, Chengbiao

    2017-02-04

    Charcot-Marie-Tooth 2B peripheral sensory neuropathy (CMT2B) is a debilitating autosomal dominant hereditary sensory neuropathy. Patients with this disease lose pain sensation and frequently need amputation. Axonal dysfunction and degeneration of peripheral sensory neurons is a major clinical manifestation of CMT2B. However, the cellular and molecular pathogenic mechanisms remain undefined. CMT2B is caused by missense point mutations (L129F, K157N, N161T/I, V162M) in Rab7 GTPase. Strong evidence suggests that the Rab7 mutation(s) enhances the cellular levels of activated Rab7 proteins, thus resulting in increased lysosomal activity and autophagy. As a consequence, trafficking and signaling of neurotrophic factors such as nerve growth factor (NGF) in the long axons of peripheral sensory neurons are particularly vulnerable to premature degradation. A "gain of toxicity" model has, thus, been proposed based on these observations. However, studies of fly photo-sensory neurons indicate that the Rab7 mutation(s) causes a "loss of function", resulting in haploinsufficiency. In the review, we summarize experimental evidence for both hypotheses. We argue that better models (rodent animals and human neurons) of CMT2B are needed to precisely define the disease mechanisms.

  1. Novel missense mutation in Charged Multivesicular body Protein 2B in a patient with Frontotemporal Dementia

    PubMed Central

    Ferrari, Raffaele; Kapogiannis, Dimitrios; Huey, Edward D.; Grafman, Jordan; Hardy, John; Momeni, Parastoo

    2010-01-01

    Frontotemporal Dementia (FTD) is the second major cause of dementia in persons under the age of 65 after Alzheimer’s disease (AD). FTD is clinically, pathologically and genetically heterogeneous and has been associated with mutations in different genes located on chromosomes 17, 9 and 3. In our study we report a novel heterozygous g.26218G>A variant in exon 6 of Charged Multivesicular body Protein 2B (CHMP2B), predicted to cause the amino acid change p.Ser187Asn, in one patient diagnosed with FTD. We were not able to determine the mode of inheritance of the mutation since we did not have access to the genetically informative family members of the proband; those who were screened did not carry the variant. We didn’t find this variant in 273 Caucasian controls while we did find it in 6 of 94 African American controls. Most of the mutations in CHMP2B which are considered pathogenic lead to partial deletion of the C-terminus region of CHMP2B protein. Based on previous reports and on our current data, missense mutations seem unlikely to be pathogenic. The pathogenicity of CHMP2B mutations requires further investigation. PMID:20592581

  2. Novel missense mutation in charged multivesicular body protein 2B in a patient with frontotemporal dementia.

    PubMed

    Ferrari, Raffaele; Kapogiannis, Dimitrios; Huey, Edward D; Grafman, Jordan; Hardy, John; Momeni, Parastoo

    2010-01-01

    Frontotemporal dementia (FTD) is the second major cause of dementia in persons below the age of 65 years after Alzheimer disease. FTD is clinically, pathologically, and genetically heterogeneous and has been associated with mutations in different genes located on chromosomes 17, 9, and 3. In our study we report a novel heterozygous g.26218G>A variant in exon 6 of charged multivesicular body protein 2B (CHMP2B), predicted to cause the amino acid change p.Ser187Asn, in one patient diagnosed with FTD. We were not able to determine the mode of inheritance of the mutation as we did not have access to the genetically informative family members of the proband; those who were screened did not carry the variant. We did not find this variant in 273 White controls although we did find it in 6 of 94 African-American controls. Most of the mutations in CHMP2B which are considered pathogenic lead to partial deletion of the C-terminus region of CHMP2B protein. Based on previous reports and on our current data, missense mutations in this gene seem unlikely to be pathogenic. The pathogenicity of CHMP2B mutations requires further investigation.

  3. Missense mutation of the cholecystokinin B receptor gene: Lack of association with panic disorder

    SciTech Connect

    Kato, Tadafumi; Wang, Zhe Wu; Crowe, R.R.; Zoega, T.

    1996-07-26

    Cholecystokinin tetrapeptide (CCK{sub 4}) is known to induce panic attacks in patients with panic disorder at a lower dose than in normal controls. Therefore, the cholecystokinin B (CCK{sub B}) receptor gene is a candidate gene for panic disorder. We searched for mutations in the CCK{sub B} gene in 22 probands of panic disorder pedigrees, using single-strand conformation polymorphism (SSCP) analysis. Two polymorphisms were detected. A polymorphism in an intron (2491 C{yields}A) between exons 4 and 5 was observed in 10 of 22 probands. A missense mutation in the extracellular loop of exon 2 (1550 G{yields}A, Val{sup 125}{yields}Ile) was found in only one proband. This mutation was also examined in additional 34 unrelated patients with panic disorder and 112 controls. The prevalence rate of this mutation was 8.8% in patients with panic disorder (3/34) and 4.4% in controls (5/112). The mutation did not segregate with panic disorder in two families where this could be tested. These results suggest no pathophysiological significance of this mutation in panic disorder. 21 refs., 4 figs., 1 tab.

  4. Uner Tan syndrome caused by a homozygous TUBB2B mutation affecting microtubule stability.

    PubMed

    Breuss, Martin W; Nguyen, Thai; Srivatsan, Anjana; Leca, Ines; Tian, Guoling; Fritz, Tanja; Hansen, Andi H; Musaev, Damir; McEvoy-Venneri, Jennifer; James, Kiely N; Rosti, Rasim O; Scott, Eric; Tan, Uner; Kolodner, Richard D; Cowan, Nicholas J; Keays, David A; Gleeson, Joseph G

    2016-12-23

    The integrity and dynamic properties of the microtubule cytoskeleton are indispensable for the development of the mammalian brain. Consequently, mutations in the genes that encode the structural component (the α/β-tubulin heterodimer) can give rise to severe, sporadic neurodevelopmental disorders. These are commonly referred to as the tubulinopathies. Here we report the addition of recessive quadrupedalism, also known as Uner Tan syndrome (UTS), to the growing list of diseases caused by tubulin variants. Analysis of a consanguineous UTS family identified a biallelic TUBB2B mutation, resulting in a p.R390Q amino acid substitution. In addition to the identifying quadrupedal locomotion, all three patients showed severe cerebellar hypoplasia. None, however, displayed the basal ganglia malformations typically associated with TUBB2B mutations. Functional analysis of the R390Q substitution revealed that it did not affect the ability of β-tubulin to fold or become assembled into the α/β-heterodimer, nor did it influence the incorporation of mutant-containing heterodimers into microtubule polymers. The 390Q mutation in S. cerevisiae TUB2 did not affect growth under basal conditions, but did result in increased sensitivity to microtubule-depolymerizing drugs, indicative of a mild impact of this mutation on microtubule function. The TUBB2B mutation described here represents an unusual recessive mode of inheritance for missense-mediated tubulinopathies and reinforces the sensitivity of the developing cerebellum to microtubule defects.

  5. Evidence of a wide spectrum of cardiac involvement due to ACAD9 mutations: Report on nine patients.

    PubMed

    Dewulf, Joseph P; Barrea, Catherine; Vincent, Marie-Françoise; De Laet, Corinne; Van Coster, Rudy; Seneca, Sara; Marie, Sandrine; Nassogne, Marie-Cécile

    2016-07-01

    Acyl-CoA dehydrogenase 9 (ACAD9) is a mitochondrial protein involved in oxidative phosphorylation complex I biogenesis. This protein also exhibits acyl-CoA dehydrogenase (ACAD) activity. ACAD9-mutated patients have been reported to suffer from primarily heart, muscle, liver, and nervous system disorders. ACAD9 mutation is suspected in cases of elevated lactic acid levels combined with complex I deficiency, and confirmed by ACAD9 gene analysis. At least 18 ACAD9-mutated patients have previously been reported, usually displaying severe cardiac involvement. We retrospectively studied nine additional patients from three unrelated families with a wide spectrum of cardiac involvement between the families as well as the patients from the same families. All patients exhibited elevated lactate levels. Deleterious ACAD9 mutations were identified in all patients except one for whom it was not possible to recover DNA. To our knowledge, this is one of the first reports on isolated mild ventricular hypertrophy due to ACAD9 mutation in a family with moderate symptoms during adolescence. This report also confirms that dilated cardiomyopathy may occur in conjunction with ACAD9 mutation and that some patients may respond clinically to riboflavin treatment. Of note, several patients suffered from patent ductus arteriosus (PDA), with one exhibiting a complex congenital heart defect. It is yet unknown whether these cardiac manifestations were related to ACAD9 mutation. In conclusion, this disorder should be suspected in the presence of lactic acidosis, complex I deficiency, and any cardiac involvement, even mild. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Wilson disease: novel mutations in the ATP7B gene and clinical correlation in Brazilian patients.

    PubMed

    Deguti, Marta M; Genschel, Janine; Cancado, Eduardo L R; Barbosa, Egberto R; Bochow, Bettina; Mucenic, Marcos; Porta, Gilda; Lochs, Herbert; Carrilho, Flair J; Schmidt, Hartmut H-J

    2004-04-01

    Wilson disease (WD) is a rare inherited autosomal recessive disorder caused by a defect in a metal transporting P-type ATPase, resulting in copper overload in various tissues and cells. The aim was to assess both the phenotype in Brazilian WD patients and the corresponding ATP7B genotype. Sixty subjects belonging to 46 pedigrees diagnosed as WD were included in this study. Direct sequencing of all 21 exons within ATP7B and their flanking introns was performed. Demographic, clinical, laboratory and histopathological data at the time of diagnosis were obtained. We identified twenty-five mutations, twelve of them reported for the first time. The c.3402delC mutation had the highest allelic frequency (30.8%), followed by the c.2123T>C (p.L708P) (16.7%). Exons 8 and 15 were the site of 62.5% of the mutations. The common European mutation c.3207C>A (p.H1069Q) was not present at all. Phenotype varied greatly among individuals with the same ATP7B genotype. Our data confirm the heterogeneity of ATP7B genotype in Brazilian WD patients. The mutational spectrum is compatible with the Brazilian history of Mediterranean immigration; however, new mutations, and different frequencies and phenotype associated with the previously known mutations characterize this population. Exons 8 and 15 should be preferentially screened in WD cases from Brazil. Phenotype variation among subjects with the same ATP7B genotype suggests that modifying factors play an additional role in the pathogenesis of WD.

  7. ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation.

    PubMed

    Moarefi, Amir H; Chédin, Frédéric

    2011-06-24

    The DNMT3B de novo DNA methyltransferase (DNMT) plays a major role in establishing DNA methylation patterns in early mammalian development, but its catalytic mechanism remains poorly characterized. Here, we provide a comprehensive biochemical analysis of human DNMT3B function through the characterization of a series of site-directed DNMT3B variants associated with immunodeficiency, centromere instability, and facial anomalies (ICF) syndrome. Our data reveal several novel and important aspects of DNMT3B function. First, DNMT3B, unlike DNMT3A, requires a DNA cofactor in order to stably bind to S-adenosyl-l-methionine (SAM), suggesting that it proceeds according to an ordered catalytic scheme. Second, ICF mutations cause a broad spectrum of biochemical defects in DNMT3B function, including defects in homo-oligomerization, SAM binding, SAM utilization, and DNA binding. Third, all tested ICF mutations, including the A766P and R840Q variants, result in altered catalytic properties without interfering with DNMT3L-mediated stimulation; this indicates that DNMT3L is not involved in the pathogenesis of ICF syndrome. Finally, our study reveals a novel level of coupling between substrate binding, oligomerization, and catalysis that is likely conserved within the DNMT3 family of enzymes.

  8. Genetic heterogeneity and minor CYP1B1 involvement in the molecular basis of primary congenital glaucoma in Gypsies.

    PubMed

    Sivadorai, P; Cherninkova, S; Bouwer, S; Kamenarova, K; Angelicheva, D; Seeman, P; Hollingsworth, K; Mihaylova, V; Oscar, A; Dimitrova, G; Kaneva, R; Tournev, I; Kalaydjieva, L

    2008-07-01

    Primary congenital glaucoma (PCG) is a genetically heterogeneous disorder of autosomal recessive inheritance, with mutations in the cytochrome P450 1B1 (CYP1B1) gene detected in an average of approximately 50% of cases worldwide. The Roma/Gypsies are considered to be a rare example of a single founder CYP1B1 mutation, E387K (identified in the Slovak Roma), accounting for 100% of disease alleles. Contrary to this concept, unusual genetic heterogeneity was revealed in this study of 21 Gypsy PCG patients from Bulgaria and 715 controls from the general Gypsy population. In our small sample of affected subjects, we identified five different CYP1B1 mutations - four known (E229K, R368H, E387K and R390C) and one novel and potentially pathogenic (F445I), which together accounted for approximately 30% of disease alleles. E387K was rare in both the patient and the control group, indicating that its high frequency in the Slovak Roma is the product of local founder effect not representative of the overall molecular pattern of PCG in the Gypsy population. Data on other Mendelian disorders and on the population genetics of the Gypsies suggest that a true founder mutation is likely to exist and has remained undetected. Our analysis of another candidate gene, MYOC, and the GLC3B and GLC3C loci did not provide support for their involvement. The molecular basis of PCG in the Gypsies is thus unresolved, and diagnostic analyses should be extended beyond the E387K mutation.

  9. The Association of Pre-S/S Gene Mutations and Hepatitis B Virus Vertical Transmission

    PubMed Central

    Yin, Yuzhu; Zhang, Peizhen; Tan, Zhangmin; Zhou, Jin; Wu, Lingling; Hou, Hongying

    2016-01-01

    Background HBV Pre-S/S gene mutations can occur before or after implementation of combined vaccination program. HBV Prs-S/S gene mutation is a risk factor of vaccination failure and frequently causes HBV vertical transfection. Objectives To assess the association of hepatitis B virus (HBV) S gene mutations with vertical transmission. Patients and Methods In this prospective nested case-control study, a total of 60 pregnant women with positive serum HBsAg and HBV DNA ≥ 107 IU/mL were divided into a case group (15 cases with vaccination failure) and a control group (45 cases with vaccination success) according to whether their infants tested positive for HBV infection. Mothers and their children in the case group were further sub-divided into groups including mothers, newborns and infant (the same newborns at age of seven months). The pre-S/S gene mutations were detected by PCR and sequenced and its association with vertical transmission of HBV was analyzed. Results HBV genotype B was the dominant genotype in the both groups’ mothers. Each mother-child pair in case group had the same HBV genotype. There were no significant differences in mutation frequencies of HBV Pre-S/S gene between case and control groups’ mothers (Fragment 1 (M): 2 vs. 4, P > 0.05; Fragment 2 (M): 10 vs. 10, P > 0.05), or among the mothers, newborns and infants in the case group (Fragment 1 (M): 2, 2, and 3, respectively, P > 0.05; Fragment 2 (M): 10, 10 and 10 respectively, P > 0.05). Mutation site analysis of the both groups’ mothers demonstrated 108 different mutation sites in the HBV pre-S/S gene, with 105 silent mutations and 5 missense mutations including ntA826G, ntC531T, ntT667C, ntC512T and ntC546A. Among 15 mother-newborn-infant pairs with successful PCR and sequence in case group, 7 (41.17%) mother-newborn pairs, 9 (60.00%) mother-infant pairs and 3 (20.00%) infant-newborn pairs had different mutation sites. Conclusions HBV in children due to vaccination failure was resulted

  10. Unusual multisystemic involvement and a novel BAG3 mutation revealed by NGS screening in a large cohort of myofibrillar myopathies

    PubMed Central

    2014-01-01

    Background Myofibrillar myopathies (MFM) are a group of phenotypically and genetically heterogeneous neuromuscular disorders, which are characterized by protein aggregations in muscle fibres and can be associated with multisystemic involvement. Methods We screened a large cohort of 38 index patients with MFM for mutations in the nine thus far known causative genes using Sanger and next generation sequencing (NGS). We studied the clinical and histopathological characteristics in 38 index patients and five additional relatives (n = 43) and particularly focused on the associated multisystemic symptoms. Results We identified 14 heterozygous mutations (diagnostic yield of 37%), among them the novel p.Pro209Gln mutation in the BAG3 gene, which was associated with onset in adulthood, a mild phenotype and an axonal sensorimotor polyneuropathy, in the absence of giant axons at the nerve biopsy. We revealed several novel clinical phenotypes and unusual multisystemic presentations with previously described mutations: hearing impairment with a FLNC mutation, dysphonia with a mutation in DES and the first patient with a FLNC mutation presenting respiratory insufficiency as the initial symptom. Moreover, we described for the first time respiratory insufficiency occurring in a patient with the p.Gly154Ser mutation in CRYAB. Interestingly, we detected a polyneuropathy in 28% of the MFM patients, including a BAG3 and a MYOT case, and hearing impairment in 13%, including one patient with a FLNC mutation and two with mutations in the DES gene. In four index patients with a mutation in one of the MFM genes, typical histological findings were only identified at the ultrastructural level (29%). Conclusions We conclude that extraskeletal symptoms frequently occur in MFM, particularly cardiac and respiratory involvement, polyneuropathy and/or deafness. BAG3 mutations should be considered even in cases with a mild phenotype or an adult onset. We identified a genetic defect in one of

  11. Unusual multisystemic involvement and a novel BAG3 mutation revealed by NGS screening in a large cohort of myofibrillar myopathies.

    PubMed

    Semmler, Anna-Lena; Sacconi, Sabrina; Bach, J Elisa; Liebe, Claus; Bürmann, Jan; Kley, Rudolf A; Ferbert, Andreas; Anderheiden, Roland; Van den Bergh, Peter; Martin, Jean-Jacques; De Jonghe, Peter; Neuen-Jacob, Eva; Müller, Oliver; Deschauer, Marcus; Bergmann, Markus; Schröder, J Michael; Vorgerd, Matthias; Schulz, Jörg B; Weis, Joachim; Kress, Wolfram; Claeys, Kristl G

    2014-08-01

    Myofibrillar myopathies (MFM) are a group of phenotypically and genetically heterogeneous neuromuscular disorders, which are characterized by protein aggregations in muscle fibres and can be associated with multisystemic involvement. We screened a large cohort of 38 index patients with MFM for mutations in the nine thus far known causative genes using Sanger and next generation sequencing (NGS). We studied the clinical and histopathological characteristics in 38 index patients and five additional relatives (n = 43) and particularly focused on the associated multisystemic symptoms. We identified 14 heterozygous mutations (diagnostic yield of 37%), among them the novel p.Pro209Gln mutation in the BAG3 gene, which was associated with onset in adulthood, a mild phenotype and an axonal sensorimotor polyneuropathy, in the absence of giant axons at the nerve biopsy. We revealed several novel clinical phenotypes and unusual multisystemic presentations with previously described mutations: hearing impairment with a FLNC mutation, dysphonia with a mutation in DES and the first patient with a FLNC mutation presenting respiratory insufficiency as the initial symptom. Moreover, we described for the first time respiratory insufficiency occurring in a patient with the p.Gly154Ser mutation in CRYAB. Interestingly, we detected a polyneuropathy in 28% of the MFM patients, including a BAG3 and a MYOT case, and hearing impairment in 13%, including one patient with a FLNC mutation and two with mutations in the DES gene. In four index patients with a mutation in one of the MFM genes, typical histological findings were only identified at the ultrastructural level (29%). We conclude that extraskeletal symptoms frequently occur in MFM, particularly cardiac and respiratory involvement, polyneuropathy and/or deafness. BAG3 mutations should be considered even in cases with a mild phenotype or an adult onset. We identified a genetic defect in one of the known genes in less than half of the

  12. SF3B1 mutation is a rare event in Chinese patients with acute and chronic myeloid leukemia.

    PubMed

    Yang, Jing; Qian, Jun; Yao, Dong-ming; Qian, Si-xuan; Qian, Wei; Lin, Jiang; Xiao, Gao-fei; Wang, Cui-zhu; Deng, Zhao-qun; Ma, Ji-chun; Chen, Xing-xing

    2013-05-01

    Somatic mutations of SF3B1 gene have recently been identified in myelodysplastic syndrome and chronic lymphocytic leukemia. The frequency and clinical relevance of SF3B1 mutations have been rarely studied in acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). The present study was aimed to analyze the frequency of SF3B1 mutations in AML and CML. High-resolution melting analysis (HRMA) was established to detect the mutation hotspots (codon E622, H662, K666, and K700) of SF3B1 gene in 275 AML and 81 CML patients. Heterozygous SF3B1 mutations were detected in three AML patients by HRMA. Direct DNA sequencing identified one K666T, one K666N and one K700E mutations. All three AML patients had normal karyotypes. One case also had NPM1 and DNMT3A mutations, one had FLT3 internal tandem duplication and DNMT3A mutations, and the other had NPM1 mutation. No SF3B1 mutations were detected in CML patients. SF3B1 mutation is a rare molecular event in Chinese AML and CML patients. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Mutations associated with occult hepatitis B in HIV-positive South Africans.

    PubMed

    Powell, Eleanor A; Gededzha, Maemu P; Rentz, Michael; Rakgole, Nare J; Selabe, Selokela G; Seleise, Tebogo A; Mphahlele, M Jeffrey; Blackard, Jason T

    2015-03-01

    Occult hepatitis B is characterized by the absence of hepatitis B surface antigen (HBsAg) but the presence of HBV DNA. Because diagnosis of hepatitis B virus (HBV) typically includes HBsAg detection, occult HBV remains largely undiagnosed. Occult HBV is associated with increased risk of hepatocellular carcinoma, reactivation to chronic HBV during immune suppression, and transmission during blood transfusion and liver transplant. The mechanisms leading to occult HBV infection are unclear, although viral mutations are likely a significant factor. In this study, sera from 394 HIV-positive South Africans were tested for HBV DNA and HBsAg. For patients with detectable HBV DNA, the overlapping surface and polymerase open reading frames (ORFs) were sequenced. Occult-associated mutations-those mutations found exclusively in individuals with occult HBV infection but not in individuals with chronic HBV infection from the same cohort or GenBank references-were identified. Ninety patients (22.8%) had detectable HBV DNA. Of these, 37 had detectable HBsAg, while 53 lacked detectable surface antigen. The surface and polymerase ORFs were cloned successfully for 19 patients with chronic HBV and 30 patients with occult HBV. In total, 235 occult-associated mutations were identified. Ten occult-associated mutations were identified in more than one patient. Additionally, 15 amino acid positions had two distinct occult-associated mutations at the same residue. Occult-associated mutations were common and present in all regions of the surface and polymerase ORFs. Further study is underway to determine the effects of these mutations on viral replication and surface antigen expression in vitro. © 2014 Wiley Periodicals, Inc.

  14. Mutational analysis of the DTDST gene in a fetus with achondrogenesis type 1B.

    PubMed

    Cai, G; Nakayama, M; Hiraki, Y; Ozono, K

    1998-06-16

    We describe a diastrophic dysplasia (DTDST) gene mutation in a Japanese male fetus with achondrogenesis type 1B and his relatives. Diagnosis in the fetus was based on roentgenographic data and pathological findings of bones and cartilage. Nucleotide sequencing of the DTDST gene demonstrated that the fetus was homozygous for both delVal340 and Thr689Ser and his parents and a healthy brother were heterozygous for the mutations. The former mutation was reported previously in patients with achondrogenesis type 1B, and the latter was detected in 5 alleles of 26 healthy Japanese individuals. These data suggest that delVal340 is associated with achondrogenesis type 1B in the Japanese, whereas a serine to threonine substitution is most likely polymorphic.

  15. Different precore/core mutations of hepatitis B interact with, limit, or favor liver fibrosis severity.

    PubMed

    Ducancelle, Alexandra; Pivert, Adeline; Bertrais, Sandrine; Boursier, Jérôme; Balan, Viorica; Veillon, Pascal; le Guillou-Guillemette, Hélène; Thibault, Vincent; Castelain, Sandrine; Roquebert, Bénédicte; Coste-Burel, Marianne; Mackiewicz, Vincent; Schvoerer, Evelyne; Larrat, Sylvie; Maylin, Sarah; Alain, Sophie; Loustaud-Ratti, Véronique; Gordien, Emmanuel; Gozlan, Joël; Brodard, Véronique; Chevaliez, Stéphane; Calès, Paul; Lunel-Fabiani, Françoise

    2016-10-01

    The impact of basal core promoter (BCP) and precore (PC) mutants of the hepatitis B virus (HBV) on liver disease severity remains controversial. The aim of the present study was to screen BCP and PC mutations in 252 HBV surface antigen (HBsAg) positive carriers in France and to assess relationships between these mutations and severe fibrosis. Direct sequencing of the precore/core gene was used to detect A1762T/G1764A and G1757A mutations in the BCP and G1896A and G1899A mutations in the PC region. The prevalences of A1762T/G1764A, G1757A, G1896A, and G1899A mutations were 34.1%, 38.7%, 54.9%, and 29.3% (P < 0.001), respectively. The independent predictors of severe fibrosis (≥F3 Metavir) were older age (P < 0.001), male gender (P = 0.012), elevated alanine aminotransferase (P < 0.001), and the double A1762T/G1764A mutant with no other mutations (P = 0.011). Interestingly, the association of the G1899A mutation with the double A1762T/G1764A mutant significantly counteracted the deleterious effect of the sole double A1762T/G1764A mutant (odds ratio [OR] = 0.28 vs. OR = 3.55, respectively, P = 0.028). Patients with the A1762T/G1764A mutation have a higher risk of severe fibrosis. The G1899A mutation is a protective factor against severe fibrosis that counteracted the deleterious effect of the A1762T/G1764A mutation. Finally, host phenotypic and HBV genotypic markers independently predict fibrosis severity. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  16. Mutations of the human interferon alpha-2b (hIFNα-2b) gene in cancer patients receiving radiotherapy

    PubMed Central

    Shahid, Saman; Chaudhry, Muhammad Nawaz; Mahmood, Nasir

    2015-01-01

    This research aimed to find out the impact of ionizing radiations on the hIFNα-2b gene of radiotherapy treated cancer patients. The gene hIFNα-2b synthesizes a protein which is an important anticancerous and antiviral protein. The cancer patients (breast, lung, thyroid, oral and prostate) who were undergoing a radiotherapy treatment were selected. A molecular analysis was performed for DNA isolation and gene amplification through PCR, to identify gene mutations. Further, by bioinformatics tools we concluded that how mutations identified in gene sequences have led to the alterations in the hINFα-2b protein in radiotherapy receiving cancer patients. The 32% mutations in the hINFα-2b gene were identified and all were frameshift mutations. Radiotherapy can impact the immune system and cancer patients may modulate their immunity. Understaning the mechanisms of radiotherapy-elicited immune response may be helpful in the development of those therapeutic interventions that can enhance the efficacy of radiotherapy. PMID:26396921

  17. The FH mutation database: an online database of fumarate hydratase mutations involved in the MCUL (HLRCC) tumor syndrome and congenital fumarase deficiency.

    PubMed

    Bayley, Jean-Pierre; Launonen, Virpi; Tomlinson, Ian P M

    2008-03-25

    Fumarate hydratase (HGNC approved gene symbol - FH), also known as fumarase, is an enzyme of the tricarboxylic acid (TCA) cycle, involved in fundamental cellular energy production. First described by Zinn et al in 1986, deficiency of FH results in early onset, severe encephalopathy. In 2002, the Multiple Leiomyoma Consortium identified heterozygous germline mutations of FH in patients with multiple cutaneous and uterine leiomyomas, (MCUL: OMIM 150800). In some families renal cell cancer also forms a component of the complex and as such has been described as hereditary leiomyomatosis and renal cell cancer (HLRCC: OMIM 605839). The identification of FH as a tumor suppressor was an unexpected finding and following the identification of subunits of succinate dehydrogenase in 2000 and 2001, was only the second description of the involvement of an enzyme of intermediary metabolism in tumorigenesis. The FH mutation database is a part of the TCA cycle gene mutation database (formerly the succinate dehydrogenase gene mutation database) and is based on the Leiden Open (source) Variation Database (LOVD) system. The variants included in the database were derived from the published literature and annotated to conform to current mutation nomenclature. The FH database applies HGVS nomenclature guidelines, and will assist researchers in applying these guidelines when directly submitting new sequence variants online. Since the first molecular characterization of an FH mutation by Bourgeron et al in 1994, a series of reports of both FH deficiency patients and patients with MCUL/HLRRC have described 107 variants, of which 93 are thought to be pathogenic. The most common type of mutation is missense (57%), followed by frameshifts & nonsense (27%), and diverse deletions, insertions and duplications. Here we introduce an online database detailing all reported FH sequence variants. The FH mutation database strives to systematically unify all current genetic knowledge of FH variants. We

  18. Digenic mutations involving both the BSND and GJB2 genes detected in Bartter syndrome type IV.

    PubMed

    Wang, Hong-Han; Feng, Yong; Li, Hai-Bo; Wu, Hong; Mei, Ling-Yun; Wang, Xing-Wei; Jiang, Lu; He, Chu-Feng

    2017-01-01

    Bartter syndrome type IV, characterized by salt-losing nephropathies and sensorineural deafness, is caused by mutations of BSND or simultaneous mutations of both CLCNKA and CLCNKB. GJB2 is the primary causative gene for non-syndromic sensorineural deafness and associated with several syndromic sensorineural deafness. Owing to the rarity of Bartter syndrome, only a few mutations have been reported in the abovementioned causative genes. To investigate the underlying mutations in a Chinese patient with Bartter syndrome type IV, genetic analysis of BSND, CLCNKA, CLCNKB and GJB2 were performed by polymerase chain reaction and direct sequencing. Finally, double homozygous mutations c.22C > T (p.Arg8Trp) and c.127G > A (Val43Ile) were detected in exon 1 of BSND. Intriguingly, compound heterozygous mutations c.235delC (p.Leu79CysfsX3) and c.109G > A (p.Val37Ile) were also revealed in exon 2 of GJB2 in the same patient. No pathogenic mutations were found in CLCNKA and CLCNKB. Our results indicated that the homozygous mutation c.22C > T was the key genetic reason for the proband, and a digenic effect of BSND and GJB2 might contributed to sensorineural deafness. To our knowledge, it was the first report showing that the GJB2 gene mutations were detected in Bartter syndrome.

  19. Mutations of CREBBP and SOCS1 are independent prognostic factors in diffuse large B cell lymphoma: mutational analysis of the SAKK 38/07 prospective clinical trial cohort.

    PubMed

    Juskevicius, Darius; Jucker, David; Klingbiel, Dirk; Mamot, Christoph; Dirnhofer, Stephan; Tzankov, Alexandar

    2017-03-17

    Recently, the mutational background of diffuse large B cell lymphoma (DLBCL) has been revealed, identifying specific genetic events that drive lymphomagenesis. However, the prognostic value of these mutations remains to be determined. Prognostic biomarkers in DLBCL are urgently needed, since the current clinical parameter-based factors (e.g., International Prognostic Index (IPI)) are insufficient, particularly in identifying patients with poor prognosis who might benefit from alternative treatments. We investigated the prognostic value of somatic mutations in DLBCL in a clinical trial (NCT00544219) patient cohort homogenously treated with six cycles of rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone (R-CHOP), followed by two cycles of R (R-CHOP-14). The primary endpoint was event-free survival (EFS) at 2 years. Secondary endpoints included progression-free survival (PFS) and overall survival (OS). Targeted high-throughput sequencing (HTS) of tumor genomic DNA was performed on all exons or hotspots of 68 genes frequently mutated in B cell lymphomas. Mutational data was correlated with the endpoints to identify prognostic associations. Targeted HTS detected somatic mutations in 71/76 (93%) of investigated cases. The most frequently mutated genes were KMT2D, SOCS1, GNA13, and B2M. Survival analysis revealed that CREBBP- and EP300-mutated cases had significantly worse OS, PFS, and EFS. In addition, ATM mutations predicted worse outcomes for all three clinical endpoints in germinal center B cell-like DLBCL. In contrast, SOCS1 mutations were associated with better PFS. On multivariable analysis taken into account IPI and failure to achieve complete remission, CREBBP and EP300 mutations remained significant to predict worse OS, PFS, and EFS. Targeted mutation analysis of a uniformly treated prospective clinical trial DLBCL cohort identifies tumor-based genetic prognostic markers that could be useful in the clinical management of such

  20. Analysis of regulatory mechanism after ErbB4 gene mutation based on local modeling methodology.

    PubMed

    Chen, C L; Zhao, J W

    2016-05-13

    ErbB4 is an oncogene belonging to the epidermal growth factor receptor family and contributes to the occurrence and development of multiple cancers, such as gastric, breast, and colorectal cancers. Therefore, studies of the regulation of ErbB4 in cancerigenic pathway will advance molecular targeted therapy. Advanced bioinformatic analysis softwares, such as ExPASy, Predictprotei, QUARK, and I-TASSER, were used to analyze the regulatory mechanism after ErbB4 gene mutation in terms of amino acid sequence, primary, secondary, and tertiary structure of the protein and upstream-downstream receptor/ligands. Mutation of the 19th and 113th amino acids at the carboxyl terminus of ErbB4 protein did not affect its biological nature, but its secondary structure changed and protein binding sites were near 2 mutational sites; moreover, after mutation introduction, additional binding sites were observed. Tertiary structure modeling indicated that local structure of ErbB4 was changed from an α helical conformation into a β chain folding structure; the α helical conformation is the functional site of protein, while active sites are typically near junctions between helical regions, thus the helical structures are easily destroyed and change into folding structures or other structures after stretching. Mutable sites of ErbB4 is exact binding sites where dimer formed with other epidermal growth factor family proteins; mutation enabled the ErbB4 receptor to bind to neuregulin 1 ligand without dimer formation, disrupting the signal transduction pathway and affecting ErbB4 function.

  1. Mutations in gidB Confer Low-Level Streptomycin Resistance in Mycobacterium tuberculosis▿†

    PubMed Central

    Wong, Sharon Y.; Lee, Jong Seok; Kwak, Hyun Kyung; Via, Laura E.; Boshoff, Helena I. M.; Barry, Clifton E.

    2011-01-01

    The global threat posed by drug-resistant strains of Mycobacterium tuberculosis demands a greater understanding of the genetic basis and molecular mechanisms that govern how such strains develop resistance against various antituberculous drugs. In this report, we examine a new genetic basis for resistance to one of the oldest and most widely used second-line drugs employed in tuberculosis therapy, streptomycin (SM). This marker for SM resistance was first discovered on the basis of genomic data obtained from drug-resistant M. tuberculosis strains collected in Japan, wherein an association was observed between SM resistance and a mutation in gidB, a putative 16S rRNA methyltransferase. By evaluating an isogenic ΔgidB mutant strain constructed from strain H37Rv, we demonstrate the causal role of gidB in conferring a low-level SM-resistant phenotype in M. tuberculosis with a 16-fold increase in the MIC over the parent strain. Among clinical isolates, the modest increase in SM resistance conferred by a gidB mutation leads to an MIC distribution of gidB mutation-containing strains that spans the recommended SM breakpoint concentration currently used in drug susceptibility testing protocols. As such, some gidB mutation-containing isolates are found to be SM sensitive, while others are SM resistant. On the basis of a pharmacodynamic analysis and Monte Carlo simulation, those isolates that are found to be SM sensitive should still respond favorably to SM treatment, while nearly half of those found to be SM resistant will likely respond poorly. This report provides the first microbiological evidence for the contribution of gidB in streptomycin resistance and examines the clinical implications of mutations in the gidB gene. PMID:21444711

  2. Genome-first approach diagnosed Cabezas syndrome via novel CUL4B mutation detection.

    PubMed

    Okamoto, Nobuhiko; Watanabe, Miki; Naruto, Takuya; Matsuda, Keiko; Kohmoto, Tomohiro; Saito, Masako; Masuda, Kiyoshi; Imoto, Issei

    2017-01-01

    Cabezas syndrome is a syndromic form of X-linked intellectual disability primarily characterized by a short stature, hypogonadism and abnormal gait, with other variable features resulting from mutations in the CUL4B gene. Here, we report a clinically undiagnosed 5-year-old male with severe intellectual disability. A genome-first approach using targeted exome sequencing identified a novel nonsense mutation [NM_003588.3:c.2698G>T, p.(Glu900*)] in the last coding exon of CUL4B, thus diagnosing this patient with Cabezas syndrome.

  3. Genome-first approach diagnosed Cabezas syndrome via novel CUL4B mutation detection

    PubMed Central

    Okamoto, Nobuhiko; Watanabe, Miki; Naruto, Takuya; Matsuda, Keiko; Kohmoto, Tomohiro; Saito, Masako; Masuda, Kiyoshi; Imoto, Issei

    2017-01-01

    Cabezas syndrome is a syndromic form of X-linked intellectual disability primarily characterized by a short stature, hypogonadism and abnormal gait, with other variable features resulting from mutations in the CUL4B gene. Here, we report a clinically undiagnosed 5-year-old male with severe intellectual disability. A genome-first approach using targeted exome sequencing identified a novel nonsense mutation [NM_003588.3:c.2698G>T, p.(Glu900*)] in the last coding exon of CUL4B, thus diagnosing this patient with Cabezas syndrome. PMID:28144446

  4. Factor IX gene analysis in 70 unrelated patients with haemophilia B: description of 13 new mutations.

    PubMed

    Attali, O; Vinciguerra, C; Trzeciak, M C; Durin, A; Pernod, G; Gay, V; Ménart, C; Sobas, F; Dechavanne, M; Négrier, C

    1999-11-01

    Seventy unrelated patients suffering from haemophilia B have been screened for determining the molecular defect and for evaluating the spectrum of factor IX mutations in the Rhône Alpes region in France. Most patients were characterized with respect to factor IX antigen and factor IX coagulant activity. We have used denaturing gradient gel electrophoresis to obtain a full scanning of the whole coding, promoter, and exon flanking sequences of the factor IX gene. This technique enabled us to determine the molecular defect in 68 out of 70 families (97%), and the mutation was further identified in the two last patients with a direct sequencing of the gene. A total of 2 complete gene deletions in patients with antifactor IX inhibitor, 6 small insertions/deletions and 62 point mutations were found. Two of these nucleotide substitutions (Arg145His and Ala233Thr) were detected in 21 patients (30%) suggesting the existence of a local founder effect. Thirteen mutations were previously undescribed, including 7 missense mutations. The detection of mutations in patients affected with haemophilia B may shed some light in the structure-function relationship of factor IX molecule within the coagulation system.

  5. Parallel Evolution of Group B Streptococcus Hypervirulent Clonal Complex 17 Unveils New Pathoadaptive Mutations

    PubMed Central

    Almeida, Alexandre; Rosinski-Chupin, Isabelle; Plainvert, Céline; Douarre, Pierre-Emmanuel; Borrego, Maria J.; Poyart, Claire

    2017-01-01

    ABSTRACT Group B Streptococcus (GBS) is a commensal of the gastrointestinal and genitourinary tracts, while a prevailing cause of neonatal disease worldwide. Of the various clonal complexes (CCs), CC17 is overrepresented in GBS-infected newborns for reasons that are still largely unknown. Here, we report a comprehensive genomic analysis of 626 CC17 isolates collected worldwide, identifying the genetic traits behind their successful adaptation to humans and the underlying differences between carriage and clinical strains. Comparative analysis with 923 GBS genomes belonging to CC1, CC19, and CC23 revealed that the evolution of CC17 is distinct from that of other human-adapted lineages and recurrently targets functions related to nucleotide and amino acid metabolism, cell adhesion, regulation, and immune evasion. We show that the most distinctive features of disease-specific CC17 isolates were frequent mutations in the virulence-associated CovS and Stk1 kinases, underscoring the crucial role of the entire CovRS regulatory pathway in modulating the pathogenicity of GBS. Importantly, parallel and convergent evolution of major components of the bacterial cell envelope, such as the capsule biosynthesis operon, the pilus, and Rib, reflects adaptation to host immune pressures and should be taken into account in the ongoing development of a GBS vaccine. The presence of recurrent targets of evolution not previously implicated in virulence also opens the way for uncovering new functions involved in host colonization and GBS pathogenesis. IMPORTANCE The incidence of group B Streptococcus (GBS) neonatal disease continues to be a significant cause of concern worldwide. Strains belonging to clonal complex 17 (CC17) are the most frequently responsible for GBS infections in neonates, especially among late-onset disease cases. Therefore, we undertook the largest genomic study of GBS CC17 strains to date to decipher the genetic bases of their remarkable colonization and infection

  6. CYP1B1 Mutations are a Major Contributor to Juvenile-Onset Open Angle Glaucoma in Saudi Arabia.

    PubMed

    Abu-Amero, Khaled K; Morales, Jose; Aljasim, Leyla A; Edward, Deepak P

    2015-06-01

    To describe the genotype and phenotype in 14 unrelated Saudis with juvenile open angle glaucoma (JOAG). Detailed clinical examination was carried out and we sequenced cytochrome P450, family 1, subfamily B (CYP1B1), Myocilin (MYOC) and latent-transforming growth factor beta-binding protein 2 (LTBP2) genes. Twelve (85.7%) patients had apparent sporadic inheritance and 2 (14.3%) presented with a family history of glaucoma. Overall, 12 patients (85.7%) had CYP1B1 mutation. Nine patients had CYP1B1 mutations in a homozygous status. Eight of these had homozygous p.G61E mutation and one had a silent (no amino acid change) sequence change. Two patients had p.G61E mutation in a compound heterozygous status with another CYP1B1 mutation (p.L432V). Two patients had p.G61E in a heterozygous status with no other mutation, while one patient had no mutation(s). None of the patients had any mutation(s) in the MYOC or LTBP2 genes. JOAG associated with CYP1B1 mutations occurs at a high rate in the Saudi population. A specific genotype-phenotype relationship was not demonstrated.

  7. Genetic and Proteomic Characterization of rpoB Mutations and Their Effect on Nematicidal Activity in Photorhabdus luminescens LN2

    PubMed Central

    Qiu, Xuehong; Yan, Xun; Liu, Mingxing; Han, Richou

    2012-01-01

    Rifampin resistant (RifR) mutants of the insect pathogenic bacterium Photorhabdus luminescens LN2 from entomopathogenic nematode Heterorhabditis indica LN2 were genetically and proteomically characterized. The RifR mutants showed typical phase one characters of Photorhabdus bacteria, and insecticidal activity against Galleria mellonella larvae, but surprisingly influenced their nematicidal activity against axenic infective juveniles (IJs) of H. bacteriophora H06, an incompatible nematode host. 13 out of 34 RifR mutants lost their nematicidal activity against H06 IJs but supported the reproduction of H06 nematodes. 7 nematicidal-producing and 7 non-nematicidal-producing RifR mutants were respectively selected for rpoB sequence analysis. rpoB mutations were found in all 14 RifR mutants. The rpoB (P564L) mutation was found in all 7 mutants which produced nematicidal activity against H06 nematodes, but not in the mutants which supported H06 nematode production. Allelic exchange assays confirmed that the Rif-resistance and the impact on nematicidal activity of LN2 bacteria were conferred by rpoB mutation(s). The non-nematicidal-producing RifR mutant was unable to colonize in the intestines of H06 IJs, but able to colonize in the intestines of its indigenous LN2 IJs. Proteomic analysis revealed different protein expression between wild-type strain and RifR mutants, or between nematicidal-producing and non nematicidal-producing mutants. At least 7 putative proteins including DsbA, HlpA, RhlE, RplC, NamB (a protein from T3SS), and 2 hypothetical proteins (similar to unknown protein YgdH and YggE of Escherichia coli respectively) were probably involved in the nematicidal activity of LN2 bacteria against H06 nematodes. This hypothesis was further confirmed by creating insertion-deletion mutants of three selected corresponding genes (the downregulated rhlE and namB, and upregualted dsbA). These results indicate that the rpoB mutations greatly influence the symbiotic

  8. Relevance of ID3-TCF3-CCND3 pathway mutations in pediatric aggressive B-cell lymphoma treated according to the NHL-BFM protocols.

    PubMed

    Rohde, Marius; Bonn, Bettina R; Zimmermann, Martin; Lange, Jonas; Möricke, Anja; Klapper, Wolfram; Oschlies, Ilske; Szczepanowski, Monika; Nagel, Inga; Schrappe, Martin; Loeffler, Markus; Siebert, Reiner; Reiter, Alfred; Burkhardt, Birgit

    2017-02-16

    Mature B-cell Non-Hodgkin lymphoma is the most common subtype of Non-Hodgkin lymphoma in childhood and adolescence. B-cell Non-Hodgkin lymphoma are further classified into histological subtypes, with Burkitt lymphoma and Diffuse large B-cell lymphoma being the most common subgroups in pediatric patients. Translocations involving the MYC oncogene are known as relevant but not sufficient hit for Burkitt lymphoma pathogenesis. Recently published large-scale next-generation sequencing studies unveiled sets of additional recurrently mutated genes in samples of pediatric and adult B-cell Non-Hodgkin lymphoma patients. ID3, TCF3 and CCND3 are potential drivers of Burkitt-lymphomagenesis. In the present study frequency and clinical relevance of mutations in ID3, TCF3 and CCND3 were analyzed within a well-defined cohort of 84 uniformly diagnosed and treated pediatric B-cell Non-Hodgkin lymphoma patients of the Berlin-Frankfurt-Munster group (NHL-BFM). Mutation frequency was 78% (ID3), 13% (TCF3) and 36% (CCND3) in Burkitt lymphoma (including Burkitt leukemia). ID3 and CCND3 mutations were associated with more advanced stages of the disease in MYC rearrangement positive Burkitt lymphoma. In conclusion ID3-TCF3-CCND3 pathway genes are mutated in more than 88% of MYC-rearranged pediatric B-cell Non-Hodgkin lymphoma and the pathway may represent a highly relevant second hit of Burkitt lymphoma pathogenesis especially in children and adolescents.

  9. A novel, de novo mutation in the PRKAG2 gene: infantile-onset phenotype and the signaling pathway involved.

    PubMed

    Xu, Yanchun; Gray, A; Hardie, D Grahame; Uzun, Alper; Shaw, Sunil; Padbury, James; Phornphutkul, Chanika; Tseng, Yi-Tang

    2017-08-01

    PRKAG2 encodes the γ2-subunit isoform of 5'-AMP-activated protein kinase (AMPK), a heterotrimeric enzyme with major roles in the regulation of energy metabolism in response to cellular stress. Mutations in PRKAG2 have been implicated in a unique hypertrophic cardiomyopathy (HCM) characterized by cardiac glycogen overload, ventricular preexcitation, and hypertrophy. We identified a novel, de novo PRKAG2 mutation (K475E) in a neonate with prenatal onset of HCM. We aimed to investigate the cellular impact, signaling pathways involved, and therapeutic options for K475E mutation using cells stably expressing human wild-type (WT) or the K475E mutant. In human embryonic kidney-293 cells, the K475E mutation induced a marked increase in the basal phosphorylation of T172 and AMPK activity, reduced sensitivity to AMP in allosteric activation, and a loss of response to phenformin. In H9c2 cardiomyocytes, the K475E mutation induced inhibition of AMPK and reduced the response to phenformin and increases in the phosphorylation of p70S6 kinase (p70S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). Primary fibroblasts from the patient with the K475E mutation also showed marked increases in the phosphorylation of p70S6K and 4E-BP1 compared with those from age-matched, nondiseased controls. Moreover, overexpression of K475E induced hypertrophy in H9c2 cells, which was effectively reversed by treatment with rapamycin. Taken together, we have identified a novel, de novo infantile-onset PRKAG2 mutation causing HCM. Our study suggests the K475E mutation induces alteration in basal AMPK activity and results in a hypertrophy phenotype involving the mechanistic target of rapamycin signaling pathway, which can be reversed with rapamycin.NEW & NOTEWORTHY We identified a novel, de novo PRKAG2 mutation (K475E) in the cystathionine β-synthase 3 repeat, a region critical for AMP binding but with no previous reported mutation. Our data suggest the mutation affects

  10. Mutations of the UPF3B gene, which encodes a protein widely expressed in neurons, are associated with nonspecific mental retardation with or without autism.

    PubMed

    Laumonnier, F; Shoubridge, C; Antar, C; Nguyen, L S; Van Esch, H; Kleefstra, T; Briault, S; Fryns, J P; Hamel, B; Chelly, J; Ropers, H H; Ronce, N; Blesson, S; Moraine, C; Gécz, J; Raynaud, M

    2010-07-01

    Mutations in the UPF3B gene, which encodes a protein involved in nonsense-mediated mRNA decay, have recently been described in four families with specific (Lujan-Fryns and FG syndromes), nonspecific X-linked mental retardation (XLMR) and autism. To further elucidate the contribution of UPF3B to mental retardation (MR), we screened its coding sequence in 397 families collected by the EuroMRX consortium. We identified one nonsense mutation, c.1081C>T/p.Arg361(*), in a family with nonspecific MR (MRX62) and two amino-acid substitutions in two other, unrelated families with MR and/or autism (c.1136G>A/p.Arg379His and c.1103G>A/p.Arg368Gln). Functional studies using lymphoblastoid cell lines from affected patients revealed that c.1081C>T mutation resulted in UPF3B mRNA degradation and consequent absence of the UPF3B protein. We also studied the subcellular localization of the wild-type and mutated UPF3B proteins in mouse primary hippocampal neurons. We did not detect any obvious difference in the localization between the wild-type UPF3B and the proteins carrying the two missense changes identified. However, we show that UPF3B is widely expressed in neurons and also presents in dendritic spines, which are essential structures for proper neurotransmission and thus learning and memory processes. Our results demonstrate that in addition to Lujan-Fryns and FG syndromes, UPF3B protein truncation mutations can cause also nonspecific XLMR. We also identify comorbidity of MR and autism in another family with UPF3B mutation. The neuronal localization pattern of the UPF3B protein and its function in mRNA surveillance suggests a potential function in the regulation of the expression and degradation of various mRNAs present at the synapse.

  11. Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis isolates in Sichuan, China and the association between Beijing-lineage and dual-mutation in gidB.

    PubMed

    Sun, Honghu; Zhang, Congcong; Xiang, Ling; Pi, Rui; Guo, Zhen; Zheng, Chao; Li, Song; Zhao, Yuding; Tang, Ke; Luo, Mei; Rastogi, Nalin; Li, Yuqing; Sun, Qun

    2016-01-01

    Mutations in rpsL, rrs, and gidB are well linked to streptomycin (STR) resistance, some of which are suggested to be potentially associated with Mycobacterium tuberculosis genotypic lineages in certain geographic regions. In this study, we aimed to investigate the mutation characteristics of streptomycin resistance and the relationship between the polymorphism of drug-resistant genes and the lineage of M. tuberculosis isolates in Sichuan, China. A total of 227 M. tuberculosis clinical isolates, including 180 STR-resistant and 47 pan-susceptible isolates, were analyzed for presence of mutations in the rpsL, rrs and gidB loci. Mutation K43R in rpsL was strongly associated with high-level streptomycin resistance (P < 0.01), while mutations in rrs and gidB potentially contributed to low-level resistance (P < 0.05). No general association was exhibited between STR resistance and Beijing genotype, however, in STR-resistant strains, Beijing genotype was significantly correlated with high-level STR resistance, as well as the rpsL mutation K43R (P < 0.01), indicating that Beijing genotype has an evolutionary advantage under streptomycin pressure. Notably, in all isolates of Beijing genotype, a dual mutation E92D (a276c) and A205A (a615g) in gidB was detected, suggesting a highly significant association between this dual mutation and Beijing genotype.

  12. Molecular basis of the attenuated phenotype of human APOBEC3B DNA mutator enzyme

    PubMed Central

    Caval, Vincent; Bouzidi, Mohamed S.; Suspène, Rodolphe; Laude, Hélène; Dumargne, Marie-Charlotte; Bashamboo, Anu; Krey, Thomas; Vartanian, Jean-Pierre; Wain-Hobson, Simon

    2015-01-01

    The human APOBEC3A and APOBEC3B genes (A3A and A3B) encode DNA mutator enzymes that deaminate cytidine and 5-methylcytidine residues in single-stranded DNA (ssDNA). They are important sources of mutations in many cancer genomes which show a preponderance of CG->TA transitions. Although both enzymes can hypermutate chromosomal DNA in an experimental setting, only A3A can induce double strand DNA breaks, even though the catalytic domains of A3B and A3A differ by only 9% at the protein level. Accordingly we sought the molecular basis underlying A3B attenuation through the generation of A3A-A3B chimeras and mutants. It transpires that the N-terminal domain facilitates A3B activity while a handful of substitutions in the catalytic C-terminal domain impacting ssDNA binding serve to attenuate A3B compared to A3A. Interestingly, functional attenuation is also observed for the rhesus monkey rhA3B enzyme compared to rhA3A indicating that this genotoxic dichotomy has been selected for and maintained for some 38 million years. Expression of all human ssDNA cytidine deaminase genes is absent in mature sperm indicating they contribute to somatic mutation and cancer but not human diversity. PMID:26384561

  13. Mutational spectra of aflatoxin B1 in vivo establish biomarkers of exposure for human hepatocellular carcinoma.

    PubMed

    Chawanthayatham, Supawadee; Valentine, Charles C; Fedeles, Bogdan I; Fox, Edward J; Loeb, Lawrence A; Levine, Stuart S; Slocum, Stephen L; Wogan, Gerald N; Croy, Robert G; Essigmann, John M

    2017-04-11

    Aflatoxin B1 (AFB1) and/or hepatitis B and C viruses are risk factors for human hepatocellular carcinoma (HCC). Available evidence supports the interpretation that formation of AFB1-DNA adducts in hepatocytes seeds a population of mutations, mainly G:C→T:A, and viral processes synergize to accelerate tumorigenesis, perhaps via inflammation. Responding to a need for early-onset evidence predicting disease development, highly accurate duplex sequencing was used to monitor acquisition of high-resolution mutational spectra (HRMS) during the process of hepatocarcinogenesis. Four-day-old male mice were treated with AFB1 using a regimen that induced HCC within 72 wk. For analysis, livers were separated into tumor and adjacent cellular fractions. HRMS of cells surrounding the tumors revealed predominantly G:C→T:A mutations characteristic of AFB1 exposure. Importantly, 25% of all mutations were G→T in one trinucleotide context (CGC; the underlined G is the position of the mutation), which is also a hotspot mutation in human liver tumors whose incidence correlates with AFB1 exposure. The technology proved sufficiently sensitive that the same distinctive spectrum was detected as early as 10 wk after dosing, well before evidence of neoplasia. Additionally, analysis of tumor tissue revealed a more complex pattern than observed in surrounding hepatocytes; tumor HRMS were a composite of the 10-wk spectrum and a more heterogeneous set of mutations that emerged during tumor outgrowth. We propose that the 10-wk HRMS reflects a short-term mutational response to AFB1, and, as such, is an early detection metric for AFB1-induced liver cancer in this mouse model that will be a useful tool to reconstruct the molecular etiology of human hepatocarcinogenesis.

  14. Mutational spectra of aflatoxin B1 in vivo establish biomarkers of exposure for human hepatocellular carcinoma

    PubMed Central

    Chawanthayatham, Supawadee; Valentine, Charles C.; Fedeles, Bogdan I.; Fox, Edward J.; Loeb, Lawrence A.; Levine, Stuart S.; Slocum, Stephen L.; Wogan, Gerald N.; Croy, Robert G.; Essigmann, John M.

    2017-01-01

    Aflatoxin B1 (AFB1) and/or hepatitis B and C viruses are risk factors for human hepatocellular carcinoma (HCC). Available evidence supports the interpretation that formation of AFB1-DNA adducts in hepatocytes seeds a population of mutations, mainly G:C→T:A, and viral processes synergize to accelerate tumorigenesis, perhaps via inflammation. Responding to a need for early-onset evidence predicting disease development, highly accurate duplex sequencing was used to monitor acquisition of high-resolution mutational spectra (HRMS) during the process of hepatocarcinogenesis. Four-day-old male mice were treated with AFB1 using a regimen that induced HCC within 72 wk. For analysis, livers were separated into tumor and adjacent cellular fractions. HRMS of cells surrounding the tumors revealed predominantly G:C→T:A mutations characteristic of AFB1 exposure. Importantly, 25% of all mutations were G→T in one trinucleotide context (CGC; the underlined G is the position of the mutation), which is also a hotspot mutation in human liver tumors whose incidence correlates with AFB1 exposure. The technology proved sufficiently sensitive that the same distinctive spectrum was detected as early as 10 wk after dosing, well before evidence of neoplasia. Additionally, analysis of tumor tissue revealed a more complex pattern than observed in surrounding hepatocytes; tumor HRMS were a composite of the 10-wk spectrum and a more heterogeneous set of mutations that emerged during tumor outgrowth. We propose that the 10-wk HRMS reflects a short-term mutational response to AFB1, and, as such, is an early detection metric for AFB1-induced liver cancer in this mouse model that will be a useful tool to reconstruct the molecular etiology of human hepatocarcinogenesis. PMID:28351974

  15. Identification of seven novel SMPD1 mutations causing Niemann-Pick disease types A and B.

    PubMed

    Irun, P; Mallén, M; Dominguez, C; Rodriguez-Sureda, V; Alvarez-Sala, L A; Arslan, N; Bermejo, N; Guerrero, C; Perez de Soto, I; Villalón, L; Giraldo, P; Pocovi, M

    2013-10-01

    Niemann-Pick disease (NPD) types A and B are autosomal, recessively inherited, lysosomal storage disorders caused by deficient activity of acid sphingomyelinase (E.C. 3.1.4.12) because of mutations in the sphingomyelin phosphodiesterase-1 (SMPD1) gene. Here, we present the molecular analysis and clinical characteristics of 15 NPD type A and B patients. Sequencing the SMDP1 gene revealed eight previously described mutations and seven novel mutations including four missense [c.682T>C (p.Cys228Arg), c.1159T>C (p.Cys387Arg), c.1474G>A (p.Gly492Ser), and c.1795C>T (p.Leu599Phe)], one frameshift [c.169delG (p.Ala57Leufs*20)] and two splicing (c.316+1G>T and c.1341delG). The most frequent mutations were p.Arg610del (21%) and p.Gly247Ser (12%). Two patients homozygous for p.Arg610del and initially classified as phenotype B showed different clinical manifestations. Patients homozygous for p.Leu599Phe had phenotype B, and those homozygous for c.1341delG or c.316+1G>T presented phenotype A. The present results provide new insight into genotype/phenotype correlations in NPD and emphasize the difficulty of classifying patients into types A and B, supporting the idea of a continuum between these two classic phenotypes.

  16. Mutations in the PDE6B gene in autosomal recessive retinitis pigmentosa

    SciTech Connect

    Danciger, M.; Blaney, J.; Gao, Y.Q.; Zhao, D.Y.

    1995-11-01

    We have studied 24 small families with presumed autosomal recessive inheritance of retinitis pigmentosa by a combination of haplotype analysis and exon screening. Initial analysis of the families was made with a dinucleotide repeat polymorphism adjacent to the gene for rod cGMP-phosphodiesterase (PDE6B). This was followed by denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism electrophoresis (SSCPE) of the 22 exons and a portion of the 5{prime} untranslated region of the PDE6B gene in the probands of each family in which the PDE6B locus could not be ruled out from segregating with disease. Two probands were found with compound heterozygous mutations: Gly576Asp and His620(1-bp del) mutations were present in one proband, and a Lys706X null mutation and an AG to AT splice acceptor site mutation in intron 2 were present in the other. Only the affecteds of each of the two families carried both corresponding mutations. 29 refs., 3 figs., 1 tab.

  17. Point mutations in the Theileria annulata cytochrome b gene is associated with buparvaquone treatment failure.

    PubMed

    Sharifiyazdi, Hassan; Namazi, Fatemah; Oryan, Ahmad; Shahriari, Reza; Razavi, Mostafa

    2012-07-06

    Theileriosis is an economically important haemoprotozoal disease with high morbidity and mortality in cattle. Buparvaquone is very effective in the treatment of Theileria infections in cattle. The present study reported an outbreak of bovine tropical theileriosis in Fars Province, southern Iran with buparvaquone treatment failure associated with mutations in drug-binding sites of its causative agent. The infected animals (n=8) exhibited poor condition, fever, anemia, rough coat and superficial lymph node enlargement. Both blood smears and lymph nodes punctures were positive and further molecular examination revealed that these animals were infected with Theileria annulata. Death occurred in seven of the eight infected animals in spite of the buparvaquone treatment. At molecular study, two types of important single-base mutations were observed in the cytochrome b gene of the parasite. These changes resulted in amino acid mutations in the parasite cytochrome b from serine (AGT) 109 to glycine (GGT) for the six dead cases and proline (CCT) 233 to serine (TCT) for one dead case within strongly Q(o) drug-binding sites. In contrast, neither of these mutations was found in the parasite cytochrome b for the buvarvaquone-treated animal. It seems that these mutation sites are associated with resistance to buparvaquone, a hydroxynaphthoquinone compound.

  18. Optimization of Polymyxin B in Combination with Doripenem To Combat Mutator Pseudomonas aeruginosa

    PubMed Central

    Bulman, Zackery P.; Bulitta, Jürgen B.; Baron, Christopher; Rao, Gauri G.; Holden, Patricia N.; Li, Jian; Sutton, Mark D.

    2016-01-01

    Development of spontaneous mutations in Pseudomonas aeruginosa has been associated with antibiotic failure, leading to high rates of morbidity and mortality. Our objective was to evaluate the pharmacodynamics of polymyxin B combinations against rapidly evolving P. aeruginosa mutator strains and to characterize the time course of bacterial killing and resistance via mechanism-based mathematical models. Polymyxin B or doripenem alone and in combination were evaluated against six P. aeruginosa strains: wild-type PAO1, mismatch repair (MMR)-deficient (mutS and mutL) strains, and 7,8-dihydro-8-oxo-deoxyguanosine system (GO) base excision repair (BER)-deficient (mutM, mutT, and mutY) strains over 48 h. Pharmacodynamic modeling was performed using S-ADAPT and facilitated by SADAPT-TRAN. Mutator strains displayed higher mutation frequencies than the wild type (>600-fold). Exposure to monotherapy was followed by regrowth, even at high polymyxin B concentrations of up to 16 mg/liter. Polymyxin B and doripenem combinations displayed enhanced killing activity against all strains where complete eradication was achieved for polymyxin B concentrations of >4 mg/liter and doripenem concentrations of 8 mg/liter. Modeling suggested that the proportion of preexisting polymyxin B-resistant subpopulations influenced the pharmacodynamic profiles for each strain uniquely (fraction of resistance values are −8.81 log10 for the wild type, −4.71 for the mutS mutant, and −7.40 log10 for the mutM mutant). Our findings provide insight into the optimization of polymyxin B and doripenem combinations against P. aeruginosa mutator strains. PMID:26926641

  19. Mutation Profiling of the Hepatitis B Virus Strains Circulating in North Indian Population

    PubMed Central

    Tuteja, Amit; Siddiqui, Abu Baker; Madan, Kaushal; Goyal, Rohit; Shalimar; Sreenivas, Vishnubhatla; Kaur, Navkiran; Panda, Subrat K.; Narayanasamy, Krishnamoorthy; Subodh, Swati; Acharya, Subrat K.

    2014-01-01

    Aims The aim of this study was to investigate the genomic mutations in the circulating Hepatitis B virus strains causing infection in the Indian population. Further, we wanted to analyze the biological significance of these mutations in HBV mediated disease. Methods 222 HBsAg positive patients were enrolled in the study. The genotype and mutation profile was determined for the infecting HBV isolate by sequencing overlapping fragments. These sequences were analyzed by using different tools and compared with previously available HBV sequence information. Mutation Frequency Index (MFI) for the Genes and Diagnosis group was also calculated. Results HBV Genotype D was found in 55% (n = 121) of the patient group and genotype A was found in 30% (n = 66) of samples. The majority (52%) of the HBV-infected individuals in the present study were HBeAg-negative in all the age groups studied. Spontaneous drug associated mutations implicated in resistance to antiviral therapy were also identified in about quarter of our patients, which is of therapeutic concern. The MFI approach used in the study indicated that Core peptide was the most conserved region in both genotypes and Surface peptide had highest mutation frequency. Few mutations in X gene (T36A and G50R) showed high frequency of association with HCC. A rare recombinant strain of HBV genotype A and D was also identified in the patient group. Conclusions HBV genotype D was found out to be most prevalent. More than half of the patients studied had HBeAg negative disease. Core region was found to be most conserved. Drug Associated mutations were detected in 22% of the patient group and T36A and G50R mutations in X gene were found to be associated with HCC. PMID:24637457

  20. New AP4B1 mutation in an African-American child associated with intellectual disability.

    PubMed

    Lamichhane, Dronacharya

    2013-12-01

    Prevalence of intellectual disability (ID) varies from 1-3%. Genetic causes of ID are being increasingly recognized. Although multiple mutations have been identified as a cause of syndromic ID, the genetic etiology of non-syndromic ID is poorly understood. However, more than 100 loci have been mapped that are associated with non-syndromic ID. There have been a couple of reports of AP4B1 gene mutation causing severe intellectual disability, absent speech, shy character, stereotypic laughter, muscular hypotonia that progressed to spastic paraplegia, microcephaly, foot deformity, decreased muscle mass of the lower limbs, inability to walk, and growth retardation. They had structural brain abnormalities and seizures. The reported cases were from Arab families where consanguineous marriage is common. We encountered an African-American child who presented first at the age of 24 mo with language difficulties and was subsequently found to have moderate to severe intellectual disability by standardized tests. Shortly, he started to have seizures and problems with ambulation. Although he was hypotonic at the time of presentation, legs slowly became spastic at the age of 4 yr. After a thorough work up, he was found to have heterozygous mutation in the AP4B1 gene along with another missense mutation in the same gene. There has been no report of mutation in this gene in the North American population. Although AP4B1 typically is said to be an autosomal recessive disease-causing gene, our case is different in the sense that there are two mutations in the same gene one of which has never been reported before and co-exists with a known disease causing mutation. Yet, the phenotype of the case closely resembles those published previously.

  1. Frequency of MYD88 and CD79B mutations, and MGMT methylation in primary central nervous system diffuse large B-cell lymphoma.

    PubMed

    Zheng, Mei; Perry, Anamarija M; Bierman, Philip; Loberiza, Fausto; Nasr, Michel R; Szwajcer, David; Del Bigio, Marc R; Smith, Lynette M; Zhang, Weiwei; Greiner, Timothy C

    2017-08-30

    Primary CNS diffuse large B-cell lymphoma (PCNS-DLBCL) and systemic DLBCL harbor mutations in MYD88 and CD79B. DNA methyltransferase (MGMT) is methylated in some DLBCL. Our goal was to investigate the frequencies of these events, which have not been previously reported within the same series of patients with PCNS-DLBCL. Fifty-four cases of PCNS-DLBCL from two institutions were analyzed by Sanger sequencing for MYD88 and CD79B, and pyrosequencing for MGMT. MYD88 mutations were identified in 68.8% (35 of 51 cases), with L265P being the most frequent mutation. Mutations other than L265P were identified in 21.6% of cases, of which eight novel MYD88 mutations were identified. Of mutated cases, 17.6% had homozygous/hemizygous MYD88 mutations, which has not been previously reported in PCNS-DLBCL. CD79B mutations were found in six of 19 cases (31.6%), all in the Y196 mutation hotspot. MGMT methylation was observed in 37% (20 of 54 cases). There was no significant difference in median overall survival (OS) between the wild type and mutated MYD88 cases, or between methylated and unmethylated MGMT cases. However, a significant difference (P = 0.028) was noted in median OS between the wild type and mutated CD79B cases. © 2017 Japanese Society of Neuropathology.

  2. Mutations defining functional regions of the superantigen staphylococcal enterotoxin B

    PubMed Central

    1992-01-01

    Staphylococcal enterotoxin B (SEB) is both a superantigen and toxin. As a superantigen, SEB can bind to major histocompatibility complex (MHC) class II molecules to form a ligand for alpha/beta T cell receptors bearing particular V beta elements. As a toxin, SEB causes rapid weight loss in mice sometimes leading to death. We show here that both of these functions map to the NH2-terminal portion of the toxin. Three regions were identified: one important in MHC class II binding, one in T cell recognition, and one in both functions. These results support the conclusion that the toxicity of SEB is related to massive T cell stimulation and release of cytokine mediators and show that the residues interacting with MHC and the T cell receptor are intertwined. PMID:1370682

  3. Characterization and Structural Analysis of Novel Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase Involved in the Regulation of Resistance to Nonnucleoside Inhibitors▿

    PubMed Central

    Ceccherini-Silberstein, Francesca; Svicher, Valentina; Sing, Tobias; Artese, Anna; Santoro, Maria Mercedes; Forbici, Federica; Bertoli, Ada; Alcaro, Stefano; Palamara, Guido; d'Arminio Monforte , Antonella; Balzarini, Jan; Antinori , Andrea; Lengauer, Thomas; Perno, Carlo Federico

    2007-01-01

    Resistance to antivirals is a complex and dynamic phenomenon that involves more mutations than are currently known. Here, we characterize 10 additional mutations (L74V, K101Q, I135M/T, V179I, H221Y, K223E/Q, and L228H/R) in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase which are involved in the regulation of resistance to nonnucleoside reverse transcriptase inhibitors (NNRTIs). These mutations are strongly associated with NNRTI failure and strongly correlate with the classical NNRTI resistance mutations in a data set of 1,904 HIV-1 B-subtype pol sequences from 758 drug-naïve patients, 592 nucleoside reverse transcriptase inhibitor (NRTI)-treated but NNRTI-naïve patients, and 554 patients treated with both NRTIs and NNRTIs. In particular, L74V and H221Y, positively correlated with Y181C, were associated with an increase in Y181C-mediated resistance to nevirapine, while I135M/T mutations, positively correlated with K103N, were associated with an increase in K103N-mediated resistance to efavirenz. In addition, the presence of the I135T polymorphism in NNRTI-naïve patients significantly correlated with the appearance of K103N in cases of NNRTI failure, suggesting that I135T may represent a crucial determinant of NNRTI resistance evolution. Molecular dynamics simulations show that I135T can contribute to the stabilization of the K103N-induced closure of the NNRTI binding pocket by reducing the distance and increasing the number of hydrogen bonds between 103N and 188Y. H221Y also showed negative correlations with type 2 thymidine analogue mutations (TAM2s); its copresence with the TAM2s was associated with a higher level of zidovudine susceptibility. Our study reinforces the complexity of NNRTI resistance and the significant interplay between NRTI- and NNRTI-selected mutations. Mutations beyond those currently known to confer resistance should be considered for a better prediction of clinical response to reverse transcriptase inhibitors and for the

  4. Catalytic deficiency of human aldolase B in hereditary fructose intolerance caused by a common missense mutation.

    PubMed

    Cross, N C; Tolan, D R; Cox, T M

    1988-06-17

    Hereditary fructose intolerance (HFI) is a human autosomal recessive disease caused by a deficiency of aldolase B that results in an inability to metabolize fructose and related sugars. We report here the first identification of a molecular lesion in the aldolase B gene of an affected individual whose defective protein has previously been characterized. The mutation is a G----C transversion in exon 5 that creates a new recognition site for the restriction enzyme Ahall and results in an amino acid substitution (Ala----Pro) at position 149 of the protein within a region critical for substrate binding. Utilizing this novel restriction site and the polymerase chain reaction, the patient was shown to be homozygous for the mutation. Three other HFI patients from pedigrees unrelated to this individual were found to have the same mutation: two were homozygous and one was heterozygous. We suggest that this genetic lesion is a prevailing cause of hereditary fructose intolerance.

  5. Molecular surveillance of mutations in the cytochrome b gene of Plasmodium falciparum in Gabon and Ethiopia

    PubMed Central

    Gebru, Tamirat; Hailu, Asrat; Kremsner, Peter G; Kun, Jürgen FJ; Grobusch, Martin P

    2006-01-01

    Background Atovaquone is part of the antimalarial drug combination atovaquone-proguanil (Malarone®) and inhibits the cytochrome bc1 complex of the electron transport chain in Plasmodium spp. Molecular modelling showed that amino acid mutations are clustered around a putative atovaquone-binding site resulting in a reduced binding affinity of atovaquone for plasmodial cytochrome b, thus resulting in drug resistance. Methods The prevalence of cytochrome b point mutations possibly conferring atovaquone resistance in Plasmodium falciparum isolates in atovaquone treatment-naïve patient cohorts from Lambaréné, Gabon and from South Western Ethiopia was assessed. Results Four/40 (10%) mutant types (four different single polymorphisms, one leading to an amino acid change from M to I in a single case) in Gabonese isolates, but all 141/141 isolates were wild type in Ethiopia were found. Conclusion In the absence of drug pressure, spontaneous and possibly resistance-conferring mutations are rare. PMID:17118179

  6. New mutations and horizontal transfer of rpoB among rifampin-resistant Streptococcus pneumoniae from four Spanish hospitals.

    PubMed

    Ferrándiz, María José; Ardanuy, Carmen; Liñares, Josefina; García-Arenzana, José María; Cercenado, Emilia; Fleites, Ana; de la Campa, Adela G

    2005-06-01

    A total of 103 (0.7%) of 14,236 Streptococcus pneumoniae isolates collected in four Spanish hospitals from 1989 to 2003 were resistant to rifampin (MICs, 4 to 512 microg/ml). Only sixty-one (59.2%) of these isolates were available for molecular characterization. Resistance was mostly related to human immunodeficiency virus (HIV) infection in adult patients and to conjunctivitis in children. Thirty-six different pulsed-field gel electrophoresis patterns were identified among resistant isolates, five of which were related to international clones (Spain23F-1, Spain6B-2, Spain9V-3, Spain14-5, and clone C of serotype 19F), and accounted for 49.2% of resistant isolates. Single sense mutations at cluster N or I of the rpoB gene were found in 39 isolates, while double mutations, either at cluster I, at clusters I and II, or at clusters N and III, were found in 14 isolates. The involvement of the mutations in rifampin resistance was confirmed by genetic transformation. Single mutations at clusters N and I conferred MICs of 2 microg/ml and 4 to 32 microg/ml, respectively. Eight isolates showed high degrees of nucleotide sequence variations (2.3 to 10.8%) in rpoB, suggesting a recombinational origin for these isolates, for which viridans group streptococci are their potential gene donors. Although the majority of rifampin-resistant isolates were isolated from individual patients without temporal or geographical relationships, the clonal dissemination of rifampin-resistant isolates was observed among 12 HIV-infected patients in the two hospitals with higher rates of resistance.

  7. A 22-Week-Old Fetus with Nager Syndrome and Congenital Diaphragmatic Hernia due to a Novel SF3B4 Mutation

    PubMed Central

    Castori, Marco; Bottillo, Irene; D'Angelantonio, Daniela; Morlino, Silvia; De Bernardo, Carmelilia; Scassellati Sforzolini, Giovanna; Silvestri, Evelina; Grammatico, Paola

    2014-01-01

    Nager syndrome, or acrofacial dysostosis type 1 (AFD1), is a rare multiple malformation syndrome characterized by hypoplasia of first and second branchial arches derivatives and appendicular anomalies with variable involvement of the radial/axial ray. In 2012, AFD1 has been associated with dominant mutations in SF3B4. We report a 22-week-old fetus with AFD1 associated with diaphragmatic hernia due to a previously unreported SF3B4 mutation (c.35-2A>G). Defective diaphragmatic development is a rare manifestation in AFD1 as it is described in only 2 previous cases, with molecular confirmation in 1 of them. Our molecular finding adds a novel pathogenic splicing variant to the SF3B4 mutational spectrum and contributes to defining its prenatal/fetal phenotype. PMID:25337072

  8. A 22-Week-Old Fetus with Nager Syndrome and Congenital Diaphragmatic Hernia due to a Novel SF3B4 Mutation.

    PubMed

    Castori, Marco; Bottillo, Irene; D'Angelantonio, Daniela; Morlino, Silvia; De Bernardo, Carmelilia; Scassellati Sforzolini, Giovanna; Silvestri, Evelina; Grammatico, Paola

    2014-08-01

    Nager syndrome, or acrofacial dysostosis type 1 (AFD1), is a rare multiple malformation syndrome characterized by hypoplasia of first and second branchial arches derivatives and appendicular anomalies with variable involvement of the radial/axial ray. In 2012, AFD1 has been associated with dominant mutations in SF3B4. We report a 22-week-old fetus with AFD1 associated with diaphragmatic hernia due to a previously unreported SF3B4 mutation (c.35-2A>G). Defective diaphragmatic development is a rare manifestation in AFD1 as it is described in only 2 previous cases, with molecular confirmation in 1 of them. Our molecular finding adds a novel pathogenic splicing variant to the SF3B4 mutational spectrum and contributes to defining its prenatal/fetal phenotype.

  9. The Role of Histone Protein Modifications and Mutations in Histone Modifiers in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia

    PubMed Central

    Janczar, Szymon; Janczar, Karolina; Pastorczak, Agata; Harb, Hani; Paige, Adam J. W.; Zalewska-Szewczyk, Beata; Danilewicz, Marian; Mlynarski, Wojciech

    2017-01-01

    While cancer has been long recognized as a disease of the genome, the importance of epigenetic mechanisms in neoplasia was acknowledged more recently. The most active epigenetic marks are DNA methylation and histone protein modifications and they are involved in basic biological phenomena in every cell. Their role in tumorigenesis is stressed by recent unbiased large-scale studies providing evidence that several epigenetic modifiers are recurrently mutated or frequently dysregulated in multiple cancers. The interest in epigenetic marks is especially due to the fact that they are potentially reversible and thus druggable. In B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) there is a relative paucity of reports on the role of histone protein modifications (acetylation, methylation, phosphorylation) as compared to acute myeloid leukemia, T-cell ALL, or other hematologic cancers, and in this setting chromatin modifications are relatively less well studied and reviewed than DNA methylation. In this paper, we discuss the biomarker associations and evidence for a driver role of dysregulated global and loci-specific histone marks, as well as mutations in epigenetic modifiers in BCP-ALL. Examples of chromatin modifiers recurrently mutated/disrupted in BCP-ALL and associated with disease outcomes include MLL1, CREBBP, NSD2, and SETD2. Altered histone marks and histone modifiers and readers may play a particular role in disease chemoresistance and relapse. We also suggest that epigenetic regulation of B-cell differentiation may have parallel roles in leukemogenesis. PMID:28054944

  10. Mutation, selection, and memory in B lymphocytes of exothermic vertebrates.

    PubMed

    Hsu, E

    1998-04-01

    Unlike mammals, cold-blooded vertebrates produce antibodies of low heterogeneity that show little increase in binding affinity with time after immunization. In secondary responses, antibody titers and affinities are often little, if any, higher than in primary responses. That is, specificity, diversity, and memory--the hallmarks of the immune system--are rather meager in the humoral immune responses of exothermic vertebrates. As the genetic components of the immunoglobulin (Ig) gene systems in fishes, amphibians or reptiles are not deficient in number or diversity, their responses probably do not stem from restrictions in the primary antibody repertoire. Somatic hypermutation at the Ig locus, which generates diversity and higher affinity antibodies in mammals, is not lacking in the South African frog Xenopus or in the shark. However, the Ig mutants recovered are strongly biased toward alterations at GC pairs, an indication that they have not undergone effective selection. While cells resembling follicular dendritic cells are present in cold-blooded vertebrates, germinal centers do not form. It is suggested that this absence of germinal centers, the site of selection for the mutants with higher affinity receptors and of differentiation into memory B cells in mammals, may explain the principal differences between cold and warm-blooded vertebrates.

  11. FosB Null Mutant Mice Show Enhanced Methamphetamine Neurotoxicity: Potential Involvement of FosB in Intracellular Feedback Signaling and Astroglial Function

    PubMed Central

    Kuroda, Kumi O; Ornthanalai, Veravej G; Kato, Tadafumi; Murphy, Niall P

    2010-01-01

    Previous studies show that (1) two members of fos family transcription factors, c-Fos and FosB, are induced in frontal brain regions by methamphetamine; (2) null mutation of c-Fos exacerbates methamphetamine-induced neurotoxicity; and (3) null mutation of FosB enhances behavioral responses to cocaine. Here we sought a role of FosB in responses to methamphetamine by studying FosB null mutant (−/−) mice. After a 10 mg/kg methamphetamine injection, FosB(−/−) mice were more prone to self-injury. Concomitantly, the intracellular feedback regulators of Sprouty and Rad-Gem-Kir (RGK) family transcripts had lower expression profiles in the frontoparietal cortex and striatum of the FosB(−/−) mice. Three days after administration of four 10 mg/kg methamphetamine injections, the frontoparietal cortex and striatum of FosB(−/−) mice contained more degenerated neurons as determined by Fluoro-Jade B staining. The abundance of the small neutral amino acids, serine, alanine, and glycine, was lower and/or was poorly induced after methamphetamine administration in the frontoparietal cortex and striatum of FosB(−/−) mice. In addition, methamphetamine-treated FosB(−/−) frontoparietal and piriform cortices showed more extravasation of immunoglobulin, which is indicative of blood–brain barrier dysfunction. Methamphetamine-induced hyperthermia, brain dopamine content, and loss of tyrosine hydroxylase immunoreactivity in the striatum, however, were not different between genotypes. These data indicate that FosB is involved in thermoregulation-independent protective functions against methamphetamine neurotoxicity in postsynaptic neurons. Our findings suggest two possible mechanisms of FosB-mediated neuroprotection: one is induction of negative feedback regulation within postsynaptic neurons through Sprouty and RGK. Another is supporting astroglial function such as maintenance of the blood–brain barrier, and metabolism of serine and glycine, which are important

  12. FosB null mutant mice show enhanced methamphetamine neurotoxicity: potential involvement of FosB in intracellular feedback signaling and astroglial function.

    PubMed

    Kuroda, Kumi O; Ornthanalai, Veravej G; Kato, Tadafumi; Murphy, Niall P

    2010-02-01

    Previous studies show that (1) two members of fos family transcription factors, c-Fos and FosB, are induced in frontal brain regions by methamphetamine; (2) null mutation of c-Fos exacerbates methamphetamine-induced neurotoxicity; and (3) null mutation of FosB enhances behavioral responses to cocaine. Here we sought a role of FosB in responses to methamphetamine by studying FosB null mutant (-/-) mice. After a 10 mg/kg methamphetamine injection, FosB(-/-) mice were more prone to self-injury. Concomitantly, the intracellular feedback regulators of Sprouty and Rad-Gem-Kir (RGK) family transcripts had lower expression profiles in the frontoparietal cortex and striatum of the FosB(-/-) mice. Three days after administration of four 10 mg/kg methamphetamine injections, the frontoparietal cortex and striatum of FosB(-/-) mice contained more degenerated neurons as determined by Fluoro-Jade B staining. The abundance of the small neutral amino acids, serine, alanine, and glycine, was lower and/or was poorly induced after methamphetamine administration in the frontoparietal cortex and striatum of FosB(-/-) mice. In addition, methamphetamine-treated FosB(-/-) frontoparietal and piriform cortices showed more extravasation of immunoglobulin, which is indicative of blood-brain barrier dysfunction. Methamphetamine-induced hyperthermia, brain dopamine content, and loss of tyrosine hydroxylase immunoreactivity in the striatum, however, were not different between genotypes. These data indicate that FosB is involved in thermoregulation-independent protective functions against methamphetamine neurotoxicity in postsynaptic neurons. Our findings suggest two possible mechanisms of FosB-mediated neuroprotection: one is induction of negative feedback regulation within postsynaptic neurons through Sprouty and RGK. Another is supporting astroglial function such as maintenance of the blood-brain barrier, and metabolism of serine and glycine, which are important glial modulators of nerve cells.

  13. Promiscuous Mutations Activate the Non-Canonical NF-kB Pathway in Multiple Myeloma

    PubMed Central

    Keats, Jonathan J.; Fonseca, Rafael; Chesi, Marta; Schop, Roelandt; Baker, Angela; Chng, Wee-Joo; Van Wier, Scott; Tiedemann, Rodger; Shi, Chang-Xin; Sebag, Michael; Braggio, Esteban; Henry, Travis; Zhu, Yuan-Xiao; Fogle, Homer; Price-Troska, Tammy; Ahmann, Gregory; Mancini, Catherine; Brents, Leslie A.; Kumar, Shaji; Greipp, Philip; Dispenzieri, Angela; Bryant, Barb; Mulligan, George; Bruhn, Laurakay; Barrett, Michael; Valdez, Riccardo; Trent, Jeff; Stewart, A. Keith; Carpten, John; Bergsagel, P. Leif

    2007-01-01

    Summary Activation of NF-kB has been noted in many tumor types, however only rarely has this been linked to an underlying genetic mutation. An integrated analysis of high-density oligonucleotide array CGH and gene expression profiling data from 155 multiple myeloma samples identified a promiscuous array of abnormalities contributing to the dysregulation of NF-kB in approximately 20% of patients. We report mutations in ten genes causing the inactivation of TRAF2, TRAF3, CYLD, cIAP1/cIAP2, and activation of NFKB1, NFKB2, CD40, LTBR, TACI, and NIK that result primarily in constitutive activation of the non-canonical NF-kB pathway, with the single most common abnormality being inactivation of TRAF3. These results highlight the critical importance of the NF-kB pathway in the pathogenesis of multiple myeloma. PMID:17692805

  14. A compound heterozygous EARS2 mutation associated with mild leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL).

    PubMed

    Güngör, Olcay; Özkaya, Ahmet Kağan; Şahin, Yavuz; Güngör, Gülay; Dilber, Cengiz; Aydın, Kürşad

    2016-10-01

    Mitochondrial glutamyl-tRNA synthetase is a major component of protein biosynthesis that loads tRNAs with cognate amino acids. Mutations in the gene encoding this enzyme have been associated with a variety of disorders related to oxidative phosphorylation. Here, we present a case of leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL) presenting a biphasic clinical course characterized by delayed psychomotor development and seizure. High-throughput sequencing revealed a novel compound heterozygous mutation in mitochondrial glutamyl-tRNA synthetase 2 (EARS2), which appears to be causative of disease symptoms.

  15. Precore/core region mutations of hepatitis B virus related to clinical severity

    PubMed Central

    Kim, Hong; Lee, Seoung-Ae; Do, Seung Yeon; Kim, Bum-Joon

    2016-01-01

    Despite the availability of an effective vaccine, hepatitis B virus (HBV) infection remains a major health problem, with more than 350 million chronically infected people worldwide and over 1 million annual deaths due to cirrhosis and liver cancer. HBV mutations are primarily generated due both to a lack of proofreading capacity by HBV polymerase and to host immune pressure, which is a very important factor for predicting disease progression and therapeutic outcomes. Several types of HBV precore/core (preC/C) mutations have been described to date. The host immune response against T cells drives mutation in the preC/C region. Specifically, preC/C mutations in the MHC class II restricted region are more common than in other regions and are significantly related to hepatocellular carcinoma. Certain mutations, including preC G1896A, are also significantly related to HBeAg-negative chronic infection. This review article mainly focuses on the HBV preC/C mutations that are related to disease severity and on the HBeAg serostatus of chronically infected patients. PMID:27158197

  16. Loss of lysosomal association of cystatin B proteins representing progressive myoclonus epilepsy, EPM1, mutations.

    PubMed

    Alakurtti, Kirsi; Weber, Ekkehard; Rinne, Riitta; Theil, Gerit; de Haan, Gerrit-Jan; Lindhout, Dick; Salmikangas, Paula; Saukko, Pekka; Lahtinen, Ulla; Lehesjoki, Anna-Elina

    2005-02-01

    Loss-of-function mutations in the cystatin B (CSTB), a cysteine protease inhibitor, gene underlie progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1), characterized by myoclonic and tonic-clonic seizures, ataxia and a progressive course. A minisatellite repeat expansion in the promoter region of the CSTB gene is the most common mutation in EPM1 patients and leads to reduced mRNA levels. Seven other mutations altering the structure of CSTB, or predicting altered splicing, have been described. Using a novel monoclonal CSTB antibody and organelle-specific markers in human primary myoblasts, we show here that endogenous CSTB localizes not only to the nucleus and cytoplasm but also associates with lysosomes. Upon differentiation to myotubes, CSTB becomes excluded from the nucleus and lysosomes, suggesting that the subcellular distribution of CSTB is dependent on the differentiation status of the cell. Four patient mutations altering the CSTB polypeptide were transiently expressed in BHK-21 cells. The p.Lys73fsX2-truncated mutant protein shows diffuse cytoplasmic and nuclear distribution, whereas p.Arg68X is rapidly degraded. Two missense mutations, the previously described p.Gly4Arg affecting the highly conserved glycine, critical for cathepsin binding, and a novel mutation, p.Gln71Pro, fail to associate with lysosomes. These data imply an important lysosome-associated physiological function for CSTB and suggest that loss of this association contributes to the molecular pathogenesis of EPM1.

  17. Lamivudine/Adefovir Treatment Increases the Rate of Spontaneous Mutation of Hepatitis B Virus in Patients

    PubMed Central

    Pereira-Gómez, Marianoel; Bou, Juan-Vicente; Andreu, Iván; Sanjuán, Rafael

    2016-01-01

    The high levels of genetic diversity shown by hepatitis B virus (HBV) are commonly attributed to the low fidelity of its polymerase. However, the rate of spontaneous mutation of human HBV in vivo is currently unknown. Here, based on the evolutionary principle that the population frequency of lethal mutations equals the rate at which they are produced, we have estimated the mutation rate of HBV in vivo by scoring premature stop codons in 621 publicly available, full-length, molecular clone sequences derived from patients. This yielded an estimate of 8.7 × 10−5 spontaneous mutations per nucleotide per cell infection in untreated patients, which should be taken as an upper limit estimate because PCR errors and/or lack of effective lethality may inflate observed mutation frequencies. We found that, in patients undergoing lamivudine/adefovir treatment, the HBV mutation rate was elevated by more than sixfold, revealing a mutagenic effect of this treatment. Genome-wide analysis of single-nucleotide polymorphisms indicated that lamivudine/adefovir treatment increases the fraction of A/T-to-G/C base substitutions, consistent with recent work showing similar effects of lamivudine in cellular DNA. Based on these data, the rate at which HBV produces new genetic variants in treated patients is similar to or even higher than in RNA viruses. PMID:27649318

  18. PMCA4 (ATP2B4) Mutation in Familial Spastic Paraplegia

    PubMed Central

    Tse, Zero Ho-Man; Kung, Michelle Hiu-Wai; Sham, Pak-Chung; Ho, Shu-Leong

    2014-01-01

    Familial spastic paraplegia (FSP) is a heterogeneous group of disorders characterized primarily by progressive lower limb spasticity and weakness. More than 50 disease loci have been described with different modes of inheritance. In this study, we identified a novel missense mutation (c.803G>A, p.R268Q) in the plasma membrane calcium ATPase (PMCA4, or ATP2B4) gene in a Chinese family with autosomal dominant FSP using whole-exome sequencing and confirmed with Sanger sequencing. This mutation co-segregated with the phenotype in the six family members studied and is predicted to be pathogenic when multiple deleteriousness predictions were combined. This novel R268Q mutation was not present in over 7,000 subjects in public databases, and over 1,000 Han Chinese in our database. Prediction of potential functional consequence of R268Q mutation on PMCA4 by computational modeling revealed that this mutation is located in protein aggregation-prone segment susceptible to protein misfolding. Analysis for thermodynamic protein stability indicated that this mutation destabilizes the PMCA4 protein structure with higher folding free energy. As PMCA4 functions to maintain neuronal calcium homeostasis, our result showed that calcium dysregulation may be associated with the pathogenesis of FSP. PMID:25119969

  19. PMCA4 (ATP2B4) mutation in familial spastic paraplegia.

    PubMed

    Li, Miaoxin; Ho, Philip Wing-Lok; Pang, Shirley Yin-Yu; Tse, Zero Ho-Man; Kung, Michelle Hiu-Wai; Sham, Pak-Chung; Ho, Shu-Leong

    2014-01-01

    Familial spastic paraplegia (FSP) is a heterogeneous group of disorders characterized primarily by progressive lower limb spasticity and weakness. More than 50 disease loci have been described with different modes of inheritance. In this study, we identified a novel missense mutation (c.803G>A, p.R268Q) in the plasma membrane calcium ATPase (PMCA4, or ATP2B4) gene in a Chinese family with autosomal dominant FSP using whole-exome sequencing and confirmed with Sanger sequencing. This mutation co-segregated with the phenotype in the six family members studied and is predicted to be pathogenic when multiple deleteriousness predictions were combined. This novel R268Q mutation was not present in over 7,000 subjects in public databases, and over 1,000 Han Chinese in our database. Prediction of potential functional consequence of R268Q mutation on PMCA4 by computational modeling revealed that this mutation is located in protein aggregation-prone segment susceptible to protein misfolding. Analysis for thermodynamic protein stability indicated that this mutation destabilizes the PMCA4 protein structure with higher folding free energy. As PMCA4 functions to maintain neuronal calcium homeostasis, our result showed that calcium dysregulation may be associated with the pathogenesis of FSP.

  20. Constitutive activation of NF-κB signaling by NOTCH1 mutations in chronic lymphocytic leukemia.

    PubMed

    Xu, Zhen-Shu; Zhang, Ju-Shun; Zhang, Jing-Yan; Wu, Shun-Quan; Xiong, Dong-Lian; Chen, Hui-Jun; Chen, Zhi-Zhe; Zhan, Rong

    2015-04-01

    NOTCH1 mutations occur in approximately 10% of patients with chronic lymphocytic leukemia (CLL). However, the relationship between the genetic aberrations and tumor cell drug resistance or disease progression remains unclear. Frameshift deletions were detected by gene sequencing in the NOTCH1 PEST domain in three naive CLL patients. These mutations were associated with chromosomal abnormalities including trisomy 12 or 13q deletion. Of note, one of the patients developed Richter's transformation during FCR treatment. Immunofluorescent and western blot analyses revealed a markedly higher intracellular domain of NOTCH (ICN) expression in the mutated cells compared with their unmutated counterparts and normal CD19+ B lymphocytes (P<0.01 and P<0.001, respectively). In addition, strong DNA-κB binding activities were observed in the mutant cells by gel shift assays. RT-PCR analysis revealed elevated RelA mRNA expression in the mutant cells, while RelB levels were variable. Reduced levels of RelA and RelB mRNA were observed in unmutated CLL and normal B cells. Compared to unmutated CLL and normal B cells, increased apoptosis occurred in the mutant cells in the presence of GSI (ICN inhibitor) and PDTC (NF-κB inhibitor), particularly under the synergistic effects of the two drugs (P=0.03). Moreover, IKKα and IKKβ, the active components in the NF-κB pathway, were markedly inhibited following prolonged treatment with GSI and PDTC. These results suggested that NOTCH1 mutations constitutively activate the NF-κB signaling pathway in CLL, which is likely related to ICN overexpression, indicating NOTCH1 and NF-κB as potential therapeutic targets in the treatment of CLL.

  1. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity.

    PubMed

    Müller, Thomas; Hess, Michael W; Schiefermeier, Natalia; Pfaller, Kristian; Ebner, Hannes L; Heinz-Erian, Peter; Ponstingl, Hannes; Partsch, Joachim; Röllinghoff, Barbara; Köhler, Henrik; Berger, Thomas; Lenhartz, Henning; Schlenck, Barbara; Houwen, Roderick J; Taylor, Christopher J; Zoller, Heinz; Lechner, Silvia; Goulet, Olivier; Utermann, Gerd; Ruemmele, Frank M; Huber, Lukas A; Janecke, Andreas R

    2008-10-01

    Following homozygosity mapping in a single kindred, we identified nonsense and missense mutations in MYO5B, encoding type Vb myosin motor protein, in individuals with microvillus inclusion disease (MVID). MVID is characterized by lack of microvilli on the surface of enterocytes and occurrence of intracellular vacuolar structures containing microvilli. In addition, mislocalization of transferrin receptor in MVID enterocytes suggests that MYO5B deficiency causes defective trafficking of apical and basolateral proteins in MVID.

  2. V-raf murine sarcoma viral oncogene homolog B (BRAF) mutations in hairy cell leukaemia.

    PubMed

    Arora, Neeraj; Nair, Sheila; Pai, Rekha; Nair, Sukesh; Ahmed, Rayaz; Abraham, Aby; Viswabandya, Auro; George, Biju; Balasubramanian, Poonkuzhali; Srivastava, Alok; Mathews, Vikram

    2015-01-01

    Hairy cell leukemia (HCL) is a B-cell non-Hodgkin lymphoma with distinct clinical, morphological and immunophenotypic features; however, there are many other B-cell lymphomas, which closely mimic HCL. Accurate diagnosis of HCL is important as treatment with 2-chloro-2'-deoxyadenosine (cladribine) is associated with >80% chance of complete cure. The recent description of BRAF p.V600E mutations in almost all HCL cases in various studies has not only improved the pathogenetic understanding of this entity but also increased the diagnostic accuracy of this disorder. The aim of the study was to standardize a molecular test for diagnosis of HCL and compare with standard established morphological, cytochemical and immunophenotypic parameters for HCL diagnosis. The incidence of this mutation was sought in 20 patients with either classical HCL or HCL variant (HCLv) by Sanger sequencing and allele-specific polymerase chain reaction. BRAF p.V600E mutation was present in all HCL cases and absent in the only HCLv case. A high degree of correlation was noted between the presence of BRAF p.V600E and established diagnostic criteria in 20/20 patients with HCL/HCLv. Our data supports the observation that this mutation is present in all cases of HCL and is absent in HCLv. Hence, detection of the BRAF p. V600E mutation can be a useful adjunct in the diagnostic algorithm.

  3. The prevalence of mutations in the major hydrophilic region of the surface antigen of hepatitis B virus varies with subgenotype.

    PubMed

    Wang, X Y; Harrison, T J; He, X; Chen, Q Y; Li, G J; Liu, M H; Li, H; Yang, J Y; Fang, Z L

    2015-12-01

    Mutations in the major hydrophilic region (MHR) of the surface antigen of hepatitis B virus (HBV) may result in vaccine escape, failure of immunotherapy and antiviral resistance. These mutants may be transmitted and constitute a public health threat. We aimed to determine the prevalence of MHR mutations of HBV in areas of high endemicity in Guangxi, China. HBV surface gene was analysed from 278 HBsAg-positive asymptomatic individuals recruited from Guangxi using cluster sampling. Three genotypes, B, C and I, were identified. The overall prevalence of MHR mutations is 17·6%. The prevalence of MHR mutations in genotype B (15·1%) is not significantly different from that in genotype C (16·4%). However, the prevalence in subgenotype C5 (31·1%) is significantly higher than in subgenotype C2 (13·0%) (χ 2 = 6·997, P < 0·05). The prevalence of escape mutations and overlapping polymerase substitutions in subgenotype C5 is significantly higher than in subgenotypes B2 and C2. In total, 7·9% of MHR mutants are escape mutations and 72·1% of MHR mutations produced amino-acid changes in the overlapping polymerase, including resistance mutations to entecavir. Our results suggest that the prevalence of MHR mutations varies with subgenotype. The prevalence of escape mutations and polymerase mutations may be associated with subgenotype.

  4. Analysis of somatic mutation in five B cell subsets of human tonsil.

    PubMed

    Pascual, V; Liu, Y J; Magalski, A; de Bouteiller, O; Banchereau, J; Capra, J D

    1994-07-01

    Using a series of phenotypic markers that include immunoglobulin (Ig)D, IgM, IgG, CD23, CD44, Bcl-2, CD38, CD10, CD77, and Ki67, human tonsillar B cells were separated into five fractions representing different stages of B cell differentiation that included sIgD+ (Bm1 and Bm2), germinal center (Bm3 and Bm4), and memory (Bm5) B cells. To establish whether the initiation of somatic mutation correlated with this phenotypic characterization, we performed polymerase chain reaction and subsequent sequence analysis of the Ig heavy chain variable region genes from each of the B cell subsets. We studied the genes from the smallest VH families (VH4, VH5, and VH6) in order to facilitate the mutational analysis. In agreement with previous reports, we found that the somatic mutation machinery is activated only after B cells reach the germinal center and become centroblasts (Bm3). Whereas 47 independently rearranged IgM transcripts from the Bm1 and Bm2 subsets were nearly germline encoded, 57 Bm3-, and Bm4-, and Bm5-derived IgM transcripts had accumulated an average of 5.7 point mutations within the VH gene segment. gamma transcripts corresponding to the same VH gene families were isolated from subsets Bm3, Bm4, and Bm5, and had accumulated an average of 9.5 somatic mutations. We conclude that the molecular events underlying the process of somatic mutation takes place during the transition from IgD+, CD23+ B cells (Bm2) to the IgD-, CD23-, germinal center centroblast (Bm3). Furthermore, the analysis of Ig variable region transcripts from the different subpopulations confirms that the pathway of B cell differentiation from virgin B cell throughout the germinal center up to the memory compartment can be traced with phenotypic markers. The availability of these subpopulations should permit the identification of the functional molecules relevant to each stage of B cell differentiation.

  5. ICF, An Immunodeficiency Syndrome: DNA Methyltransferase 3B Involvement, Chromosome Anomalies, and Gene Dysregulation

    PubMed Central

    Ehrlich, Melanie; Sanchez, Cecilia; Shao, Chunbo; Nishiyama, Rie; Kehrl, John; Kuick, Rork; Kubota, Takeo; Hanash, Samir M.

    2008-01-01

    The immunodeficiency, centromeric region instability, and facial anomalies syndrome (ICF) is the only disease known to result from a mutated DNA methyltransferase gene, namely, DNMT3B. Characteristic of this recessive disease are decreases in serum immunoglobulins despite the presence of B cells and, in the juxtacentromeric heterochromatin of chromosomes 1 and 16, chromatin decondensation, distinctive rearrangements, and satellite DNA hypomethylation. Although DNMT3B is involved in specific associations with histone deacetylases, HP1, other DNMTs, chromatin remodelling proteins, condensin, and other nuclear proteins, it is probably the partial loss of catalytic activity that is responsible for the disease. In microarray experiments and real-time RT-PCR assays, we observed significant differences in RNA levels from ICF vs. control lymphoblasts for pro- and anti-apoptotic genes (BCL2L10, CASP1, and PTPN13); nitrous oxide, carbon monoxide, NF-κB, and TNFa signalling pathway genes (PRKCH, GUCY1A3, GUCY1B3, MAPK13; HMOX1, and MAP4K4); and transcription control genes (NR2F2 and SMARCA2). This gene dysregulation could contribute to the immunodeficiency and other symptoms of ICF and might result from the limited losses of DNA methylation although ICF-related promoter hypomethylation was not observed for six of the above examined genes. We propose that hypomethylation of satellite 2at1qh and 16qh might provoke this dysregulation gene expression by trans effects from altered sequestration of transcription factors, changes in nuclear architecture, or expression of noncoding RNAs. PMID:18432406

  6. Pathogenic Mechanism of an Autism-Associated Neuroligin Mutation Involves Altered AMPA-Receptor Trafficking

    PubMed Central

    Chanda, Soham; Aoto, Jason; Lee, Sung-Jin; Wernig, Marius; Südhof, Thomas C.

    2015-01-01

    Neuroligins are postsynaptic cell-adhesion molecules that bind to presynaptic neurexins. Although the general synaptic role of neuroligins is undisputed, their specific functions at a synapse remain unclear, even controversial. Moreover, many neuroligin gene mutations were associated with autism, but the pathophysiological relevance of these mutations is often unknown, and their mechanisms of action uninvestigated. Here, we examine the synaptic effects of an autism-associated neuroligin-4 substitution (called R704C) which mutates a cytoplasmic arginine residue that is conserved in all neuroligins. We show that the R704C mutation, when introduced into neuroligin-3, enhances the interaction between neuroligin-3 and AMPA-receptors, increases AMPA-receptor internalization, and decreases postsynaptic AMPA-receptor levels. When introduced into neuroligin-4, conversely, the R704C mutation unexpectedly elevated AMPA-receptor mediated synaptic responses. These results suggest a general functional link between neuroligins and AMPA-receptors, indicate that both neuroligin-3 and -4 act at excitatory synapses but perform surprisingly distinct functions, and demonstrate that the R704C mutation significantly impairs the normal function of neuroligin-4, thereby validating its pathogenicity. PMID:25778475

  7. A genetic pedigree analysis to identify gene mutations involved in femoral head necrosis.

    PubMed

    Wang, Lin; Pan, Hehai; Zhu, Zhen-An

    2014-10-01

    The present study presents results from a linkage and mutation screening analysis aiming to identify the causative gene of femoral head necrosis, also known as osteonecrosis of femoral head (ONFH), in a Chinese pedigree. We collected clinical data on the osteonecrosis pedigree, and extracted blood and genomic DNA from the family members. Polymerase chain reaction (PCR) and direct sequencing allowed to identify a mutation in the COL2A1 gene of the proband; the clinical manifestations of the proband meet the criteria for osteonecrosis. The exons of COL2A1 were amplified by polymerase chain reaction and mutation screening was conducted by direct sequencing in all the family members. The locus was also sequenced in 50 unrelated healthy controls. The c.3665G>A heterozygous mutation was detected in patients of the pedigree, but not in healthy individuals. We conclude that a mutation in the COL2A1 gene is the causative agent of ONFH in this family. Therefore, this mutation may be associated with osteonecrosis in Chinese populations.

  8. EGFR-activating mutations, DNA copy number abundance of ErbB family, and prognosis in lung adenocarcinoma.

    PubMed

    Chen, Hsuan-Yu; Liu, Chia-Hsin; Chang, Ya-Hsuan; Yu, Sung-Liang; Ho, Bing-Ching; Hsu, Chung-Ping; Yang, Tsung-Ying; Chen, Kun-Chieh; Hsu, Kuo-Hsuan; Tseng, Jeng-Sen; Hsia, Jiun-Yi; Chuang, Cheng-Yen; Chang, Chi-Sheng; Li, Yu-Cheng; Li, Ker-Chau; Chang, Gee-Chen; Yang, Pan-Chyr

    2016-02-23

    In this study, EGFR-activating mutation status and DNA copy number abundances of members of ErbB family were measured in 261 lung adenocarcinomas. The associations between DNA copy number abundances of ErbB family, EGFR-activating mutation status, and prognosis were explored. Results showed that DNA copy number abundances of EGFR, ERBB2, ERBB3, and ERBB4 had associations with overall survival in lung adenocarcinoma with EGFR-activating mutations. In the stratification analysis, only ERBB2 showed significant discrepancy in patients carrying wild type EGFR and other members of ErbB family in patients carrying EGFR-activating mutation. This indicated that CNAs of ErbB family had effect modifications of EGFR-activating mutation status. Findings of this study demonstrate potential molecular guidance of patient management of lung adenocarcinoma with or without EGFR-activating mutations.

  9. B.C. Public Library Involvement in Literacy Programs.

    ERIC Educational Resources Information Center

    Houle, Laura

    1990-01-01

    This report presents the methodology and results of a survey which determined the current level of involvement in literacy-related services of 50 public libraries in British Columbia. The primary areas addressed by the survey are: (1) the degree of "formal involvement" in literacy-related activities; (2) most common literacy activities;…

  10. MicroRNA-142 is mutated in about 20% of diffuse large B-cell lymphoma

    PubMed Central

    Kwanhian, Wiyada; Lenze, Dido; Alles, Julia; Motsch, Natalie; Barth, Stephanie; Döll, Celina; Imig, Jochen; Hummel, Michael; Tinguely, Marianne; Trivedi, Pankaj; Lulitanond, Viraphong; Meister, Gunter; Renner, Christoph; Grässer, Friedrich A

    2012-01-01

    MicroRNAs (miRNAs) are short 18–23 nucleotide long noncoding RNAs that posttranscriptionally regulate gene expression by binding to mRNA. Our previous miRNA profiling of diffuse large B-cell lymphoma (DLBCL) revealed a mutation in the seed sequence of miR-142-3p. Further analysis now showed that miR-142 was mutated in 11 (19.64%) of the 56 DLBCL cases. Of these, one case had a mutation in both alleles, with the remainder being heterozygous. Four mutations were found in the mature miR-142-5p, four in the mature miR-142-3p, and three mutations affected the miR-142 precursor. Two mutations in the seed sequence redirected miR-142-3p to the mRNA of the transcriptional repressor ZEB2 and one of them also targeted the ZEB1 mRNA. However, the other mutations in the mature miR-142-3p did not influence either the ZEB1 or ZEB2 3′ untranslated region (3′ UTR). On the other hand, the mutations affecting the seed sequence of miR-142-3p resulted in a loss of responsiveness in the 3′ UTR of the known miR-142-3p targets RAC1 and ADCY9. In contrast to the mouse p300 gene, the human p300 gene was not found to be a target for miR-142-5p. In one case with a mutation of the precursor, we observed aberrant processing of the miR-142-5p. Our data suggest that the mutations in miR-142 probably lead to a loss rather than a gain of function. This is the first report describing mutations of a miRNA gene in a large percentage of a distinct lymphoma subtype. PMID:23342264

  11. Gentamicin B1 is a minor gentamicin component with major nonsense mutation suppression activity

    PubMed Central

    Baradaran-Heravi, Alireza; Niesser, Jürgen; Balgi, Aruna D.; Choi, Kunho; Zimmerman, Carla; South, Andrew P.; Anderson, Hilary J.; Strynadka, Natalie C.; Bally, Marcel B.; Roberge, Michel

    2017-01-01

    Nonsense mutations underlie about 10% of rare genetic disease cases. They introduce a premature termination codon (PTC) and prevent the formation of full-length protein. Pharmaceutical gentamicin, a mixture of several related aminoglycosides, is a frequently used antibiotic in humans that can induce PTC readthrough and suppress nonsense mutations at high concentrations. However, testing of gentamicin in clinical trials has shown that safe doses of this drug produce weak and variable readthrough activity that is insufficient for use as therapy. In this study we show that the major components of pharmaceutical gentamicin lack PTC readthrough activity but the minor component gentamicin B1 (B1) is a potent readthrough inducer. Molecular dynamics simulations reveal the importance of ring I of B1 in establishing a ribosome configuration that permits pairing of a near-cognate complex at a PTC. B1 induced readthrough at all three nonsense codons in cultured cancer cells with TP53 (tumor protein p53) mutations, in cells from patients with nonsense mutations in the TPP1 (tripeptidyl peptidase 1), DMD (dystrophin), SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), and COL7A1 (collagen type VII alpha 1 chain) genes, and in an in vivo tumor xenograft model. The B1 content of pharmaceutical gentamicin is highly variable and major gentamicins suppress the PTC readthrough activity of B1. Purified B1 provides a consistent and effective source of PTC readthrough activity to study the potential of nonsense suppression for treatment of rare genetic disorders. PMID:28289221

  12. Mutations in SH3PXD2B cause Borrone dermato-cardio-skeletal syndrome.

    PubMed

    Wilson, Gabrielle R; Sunley, Jasmine; Smith, Katherine R; Pope, Kate; Bromhead, Catherine J; Fitzpatrick, Elizabeth; Di Rocco, Maja; van Steensel, Maurice; Coman, David J; Leventer, Richard J; Delatycki, Martin B; Amor, David J; Bahlo, Melanie; Lockhart, Paul J

    2014-06-01

    Borrone Dermato-Cardio-Skeletal (BDCS) syndrome is a severe progressive autosomal recessive disorder characterized by coarse facies, thick skin, acne conglobata, dysmorphic facies, vertebral abnormalities and mitral valve prolapse. We identified a consanguineous kindred with a child clinically diagnosed with BDCS. Linkage analysis of this family (BDCS1) identified five regions homozygous by descent with a maximum LOD score of 1.75. Linkage analysis of the family that originally defined BDCS (BDCS3) identified an overlapping linkage peak at chromosome 5q35.1. Sequence analysis identified two different homozygous mutations in BDCS1 and BDCS3, affecting the gene encoding the protein SH3 and PX domains 2B (SH3PXD2B), which localizes to 5q35.1. Western blot analysis of patient fibroblasts derived from affected individuals in both families demonstrated complete loss of SH3PXD2B. Homozygosity mapping and sequence analysis in a second published BDCS family (BDCS2) excluded SH3PXD2B. SH3PXD2B is required for the formation of functional podosomes, and loss-of-function mutations in SH3PXD2B have recently been shown to underlie 7 of 13 families with Frank-Ter Haar syndrome (FTHS). FTHS and BDCS share some overlapping clinical features; therefore, our results demonstrate that a proportion of BDCS and FTHS cases are allelic. Mutations in other gene(s) functioning in podosome formation and regulation are likely to underlie the SH3PXD2B-mutation-negative BDSC/FTHS patients.

  13. Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS).

    PubMed

    Cox, Laura E; Ferraiuolo, Laura; Goodall, Emily F; Heath, Paul R; Higginbottom, Adrian; Mortiboys, Heather; Hollinger, Hannah C; Hartley, Judith A; Brockington, Alice; Burness, Christine E; Morrison, Karen E; Wharton, Stephen B; Grierson, Andrew J; Ince, Paul G; Kirby, Janine; Shaw, Pamela J

    2010-03-24

    Amyotrophic lateral sclerosis (ALS), a common late-onset neurodegenerative disease, is associated with fronto-temporal dementia (FTD) in 3-10% of patients. A mutation in CHMP2B was recently identified in a Danish pedigree with autosomal dominant FTD. Subsequently, two unrelated patients with familial ALS, one of whom also showed features of FTD, were shown to carry missense mutations in CHMP2B. The initial aim of this study was to determine whether mutations in CHMP2B contribute more broadly to ALS pathogenesis. Sequencing of CHMP2B in 433 ALS cases from the North of England identified 4 cases carrying 3 missense mutations, including one novel mutation, p.Thr104Asn, none of which were present in 500 neurologically normal controls. Analysis of clinical and neuropathological data of these 4 cases showed a phenotype consistent with the lower motor neuron predominant (progressive muscular atrophy (PMA)) variant of ALS. Only one had a recognised family history of ALS and none had clinically apparent dementia. Microarray analysis of motor neurons from CHMP2B cases, compared to controls, showed a distinct gene expression signature with significant differential expression predicting disassembly of cell structure; increased calcium concentration in the ER lumen; decrease in the availability of ATP; down-regulation of the classical and p38 MAPK signalling pathways, reduction in autophagy initiation and a global repression of translation. Transfection of mutant CHMP2B into HEK-293 and COS-7 cells resulted in the formation of large cytoplasmic vacuoles, aberrant lysosomal localisation demonstrated by CD63 staining and impairment of autophagy indicated by increased levels of LC3-II protein. These changes were absent in control cells transfected with wild-type CHMP2B. We conclude that in a population drawn from North of England pathogenic CHMP2B mutations are found in approximately 1% of cases of ALS and 10% of those with lower motor neuron predominant ALS. We provide a body of

  14. Mutations in CHMP2B in Lower Motor Neuron Predominant Amyotrophic Lateral Sclerosis (ALS)

    PubMed Central

    Cox, Laura E.; Ferraiuolo, Laura; Goodall, Emily F.; Heath, Paul R.; Higginbottom, Adrian; Mortiboys, Heather; Hollinger, Hannah C.; Hartley, Judith A.; Brockington, Alice; Burness, Christine E.; Morrison, Karen E.; Wharton, Stephen B.; Grierson, Andrew J.; Ince, Paul G.

    2010-01-01

    Background Amyotrophic lateral sclerosis (ALS), a common late-onset neurodegenerative disease, is associated with fronto-temporal dementia (FTD) in 3–10% of patients. A mutation in CHMP2B was recently identified in a Danish pedigree with autosomal dominant FTD. Subsequently, two unrelated patients with familial ALS, one of whom also showed features of FTD, were shown to carry missense mutations in CHMP2B. The initial aim of this study was to determine whether mutations in CHMP2B contribute more broadly to ALS pathogenesis. Methodology/Principal Findings Sequencing of CHMP2B in 433 ALS cases from the North of England identified 4 cases carrying 3 missense mutations, including one novel mutation, p.Thr104Asn, none of which were present in 500 neurologically normal controls. Analysis of clinical and neuropathological data of these 4 cases showed a phenotype consistent with the lower motor neuron predominant (progressive muscular atrophy (PMA)) variant of ALS. Only one had a recognised family history of ALS and none had clinically apparent dementia. Microarray analysis of motor neurons from CHMP2B cases, compared to controls, showed a distinct gene expression signature with significant differential expression predicting disassembly of cell structure; increased calcium concentration in the ER lumen; decrease in the availability of ATP; down-regulation of the classical and p38 MAPK signalling pathways, reduction in autophagy initiation and a global repression of translation. Transfection of mutant CHMP2B into HEK-293 and COS-7 cells resulted in the formation of large cytoplasmic vacuoles, aberrant lysosomal localisation demonstrated by CD63 staining and impairment of autophagy indicated by increased levels of LC3-II protein. These changes were absent in control cells transfected with wild-type CHMP2B. Conclusions/Significance We conclude that in a population drawn from North of England pathogenic CHMP2B mutations are found in approximately 1% of cases of ALS and 10% of

  15. Genes involved in angiogenesis and mTOR pathways are frequently mutated in Asian patients with pancreatic neuroendocrine tumors

    PubMed Central

    Chou, Wen-Chi; Lin, Po-Han; Yeh, Yi-Chen; Shyr, Yi-Ming; Fang, Wen-Liang; Wang, Shin-E; Liu, Chun-Yu; Chang, Peter Mu-Hsin; Chen, Ming-Han; Hung, Yi-Ping; Li, Chung-Pin; Chao, Yee; Chen, Ming-Huang

    2016-01-01

    Introduction: To address the issue of limited data on and inconsistent findings for genetic alterations in pancreatic neuroendocrine tumors (pNETs), we analyzed sequences of known pNET-associated genes for their impact on clinical outcomes in a Taiwanese cohort. Methods: Tissue samples from 40 patients with sporadic pNETs were sequenced using a customized sequencing panel that analyzed 43 genes with either an established or potential association with pNETs. Genetic mutations and clinical outcomes were analyzed for potential associations. Results: Thirty-three patients (82.5%) survived for a median 5.9 years (range, 0.3-18.4) of follow up. The median number of mutations per patient was 3 (range, 0-16). The most frequent mutations were in ATRX (28%), MEN1 (28%), ASCL1 (28%), TP53 (20%), mTOR (20%), ARID1A (20%), and VHL (20%). The mutation frequencies in the MEN1 (including MEN1/PSIP1/ARID1A), mTOR (including mTOR/PIK3CA/AKT1/PTEN /TS1/TSC2/ATM), DAXX/ATRX, and angiogenesis (including VHL/ANGPT1/ANGPT2 /HIF1A) pathways were 48%, 48%, 38%, and 45%, respectively. Mutations in ATRX were associated with WHO grade I pNET (vs. grade II or III, p = 0.043), and so were those in genes involved in angiogenesis (p = 0.002). Patients with mutated MEN1 and DAXX/ATRX pathways showed a trend toward better survival, compared to patients with the wild-type genes (p = 0.08 and 0.12, respectively). Conclusion: Genetic profiles of Asian patients with pNETs were distinct from Caucasian patient profiles. Asian patients with pNETs were more frequently mutated for the mTOR and angiogenesis pathways. This could partially explain the better outcome observed for targeted therapy in Asian patients with pNETs. PMID:27994516

  16. Mutations that impair a posttranscriptional step in expression of HLA-A and -B antigens.

    PubMed Central

    DeMars, R; Rudersdorf, R; Chang, C; Petersen, J; Strandtmann, J; Korn, N; Sidwell, B; Orr, H T

    1985-01-01

    Mutations can interfere with posttranscriptional expression of the HLA-A and -B genes. B-lymphoblastoid cells that contain one copy of the major histocompatibility complex (MHC) were subjected to mutagenesis and immunoselection for MHC antigen-loss mutants. Some mutations partially reduced surface expression of HLA-A and eliminated HLA-B expression concurrently, although the HLA-A and -B genes were present and transcribed. Antigen expression was fully restored in hybrids of these mutants with other B-lymphoblastoid cells. Therefore, normal cell surface expression of the HLA-A and -B antigens on B lymphoblasts requires (i) execution of at least one trans-active step in the production of the antigens after transcription of the HLA-A and -B genes or (ii) association of the class I antigens with other molecules. DNA analysis of one mutant suggests the possibility that a locus required for the normal expression of the HLA-A and -B antigens is located between the MHC complement genes and the HLA-DP alpha II locus. Images PMID:3906658

  17. Apolipoprotein B-100 containing lipoprotein metabolism in subjects with lipoprotein lipase gene mutations (106/120)

    PubMed Central

    Ooi, Esther M M; Russell, Betsy S; Olson, Eric; Sun, Sam Z; Diffenderfer, Margaret R; Lichtenstein, Alice H; Keilson, Leonard; Barrett, P Hugh R; Schaefer, Ernst J; Sprecher, Dennis L

    2012-01-01

    Objective We investigated the impact of lipoprotein lipase (LPL) gene mutations on apolipoprotein (apo) B-100 metabolism. Methods and Results We studied 3 subjects with familial LPL deficiency (FLD), 14 subjects heterozygous for the LPL gene mutations, Gly188Glu, Trp64Stop and Ile194Thr, and 10 control subjects. Very-low density lipoprotein (VLDL), intermediate-density lipoprotein (IDL) and low-density lipoprotein (LDL)-apoB-100 kinetics were determined in the fed state using stable isotope methods and compartmental modeling. Compared with controls, FLD had markedly elevated plasma triglycerides and lower VLDL-apoB-100 fractional catabolic rate (FCR), IDL-apoB-100 FCR, VLDL-to-IDL conversion and VLDL-apoB-100 production rate (PR) (p<0.01). Compared with controls, Gly188Glu had higher plasma triglyceride, VLDL- and IDL-apoB-100 concentrations, and lower VLDL- and IDL-apoB-100 FCR (p<0.05). Plasma triglycerides were not different but IDL-apoB-100 concentration and PR, and VLDL-to-IDL conversion were lower in Trp64Stop compared with controls (p<0.05). No differences between controls and Ile194Thr were observed. Conclusions Our results confirm that hypertriglyceridemia is a key feature of familial LPL deficiency. This is due to impaired VLDL- and IDL-apoB-100 catabolism and VLDL-to-IDL conversion. Single allele mutations of the LPL gene result in modest to elevated plasma triglycerides. The changes in plasma triglycerides and apoB-100 kinetics are attributable to the effects of the LPL genotype. PMID:22095987

  18. A functional null mutation of SCN1B in a patient with Dravet syndrome.

    PubMed

    Patino, Gustavo A; Claes, Lieve R F; Lopez-Santiago, Luis F; Slat, Emily A; Dondeti, Raja S R; Chen, Chunling; O'Malley, Heather A; Gray, Charles B B; Miyazaki, Haruko; Nukina, Nobuyuki; Oyama, Fumitaka; De Jonghe, Peter; Isom, Lori L

    2009-08-26

    Dravet syndrome (also called severe myoclonic epilepsy of infancy) is one of the most severe forms of childhood epilepsy. Most patients have heterozygous mutations in SCN1A, encoding voltage-gated sodium channel Na(v)1.1 alpha subunits. Sodium channels are modulated by beta1 subunits, encoded by SCN1B, a gene also linked to epilepsy. Here we report the first patient with Dravet syndrome associated with a recessive mutation in SCN1B (p.R125C). Biochemical characterization of p.R125C in a heterologous system demonstrated little to no cell surface expression despite normal total cellular expression. This occurred regardless of coexpression of Na(v)1.1 alpha subunits. Because the patient was homozygous for the mutation, these data suggest a functional SCN1B null phenotype. To understand the consequences of the lack of beta1 cell surface expression in vivo, hippocampal slice recordings were performed in Scn1b(-/-) versus Scn1b(+/+) mice. Scn1b(-/-) CA3 neurons fired evoked action potentials with a significantly higher peak voltage and significantly greater amplitude compared with wild type. However, in contrast to the Scn1a(+/-) model of Dravet syndrome, we found no measurable differences in sodium current density in acutely dissociated CA3 hippocampal neurons. Whereas Scn1b(-/-) mice seize spontaneously, the seizure susceptibility of Scn1b(+/-) mice was similar to wild type, suggesting that, like the parents of this patient, one functional SCN1B allele is sufficient for normal control of electrical excitability. We conclude that SCN1B p.R125C is an autosomal recessive cause of Dravet syndrome through functional gene inactivation.

  19. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome

    PubMed Central

    de Jorge, Elena Goicoechea; Harris, Claire L.; Esparza-Gordillo, Jorge; Carreras, Luis; Arranz, Elena Aller; Garrido, Cynthia Abarrategui; López-Trascasa, Margarita; Sánchez-Corral, Pilar; Morgan, B. Paul; de Córdoba, Santiago Rodríguez

    2007-01-01

    Hemolytic uremic syndrome (HUS) is an important cause of acute renal failure in children. Mutations in one or more genes encoding complement-regulatory proteins have been reported in approximately one-third of nondiarrheal, atypical HUS (aHUS) patients, suggesting a defect in the protection of cell surfaces against complement activation in susceptible individuals. Here, we identified a subgroup of aHUS patients showing persistent activation of the complement alternative pathway and found within this subgroup two families with mutations in the gene encoding factor B (BF), a zymogen that carries the catalytic site of the complement alternative pathway convertase (C3bBb). Functional analyses demonstrated that F286L and K323E aHUS-associated BF mutations are gain-of-function mutations that result in enhanced formation of the C3bBb convertase or increased resistance to inactivation by complement regulators. These data expand our understanding of the genetic factors conferring predisposition to aHUS, demonstrate the critical role of the alternative complement pathway in the pathogenesis of aHUS, and provide support for the use of complement-inhibition therapies to prevent or reduce tissue damage caused by dysregulated complement activation. PMID:17182750

  20. Further defining the phenotypic spectrum of B4GALT7 mutations.

    PubMed

    Salter, Claire G; Davies, Justin H; Moon, Rebecca J; Fairhurst, Joanna; Bunyan, David; Foulds, Nicola

    2016-06-01

    Proteoglycans are components of the extracellular matrix with diverse biological functions. Defects in proteoglycan synthesis have been linked to several human diseases with common features of short stature, hypermobility, joint dislocations, and skeletal dysplasia. B4GALT7 encodes galactosyltransferase-I that catalyzes the addition of a galactose moiety to a xylosyl group in the tetrasaccharide linker of proteoglycans. Mutations in this gene have been associated with the rare progeroid form of Ehlers Danlos syndrome and in addition more recently found to underlie Larsen of Reunion Island syndrome. Nine individuals have been reported with a diagnosis of the progeroid form of Ehlers Danlos syndrome, four of whom have had molecular characterization showing homozygous or compound heterozygous mutations in B4GALT7. We report two newly described patients with compound heterozygous mutations in B4GALT7, and show that the six individuals with confirmed mutations do not have the progeroid features described in the original five patients with a clinical diagnosis of the progeroid form of Ehlers Danlos syndrome. We suggest that galactosyltransferase-I deficiency does not cause the progeroid form of Ehlers Danlos syndrome, but instead results in a clinically recognizable syndrome comprising short stature, joint hypermobility, radioulnar synostosis, and severe hypermetropia. This group of syndromic patients are on a phenotypic spectrum with individuals who have Larsen of Reunion Island syndrome, although the key features of osteopenia, fractures and hypermetropia have not been reported in patients from Reunion Island. © 2016 Wiley Periodicals, Inc.

  1. ID3 mutations are recurrent events in double-hit B-cell lymphomas.

    PubMed

    Gebauer, Niklas; Bernard, Veronica; Feller, Alfred C; Merz, Hartmut

    2013-11-01

    Double-hit lymphomas (DHL) with chromosomal rearrangements affecting the avian myelocytomatosis viral oncogene homolog (cMYC) and either the B-cell lymphoma-2 (BCL2) or -6 (BCL6) locus are uncommon neoplasms with an aggressive clinical course and dismal prognosis. Most cases exhibit a phenotype intermediate between diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma. Recently mutations affecting the inhibitor of DNA binding 3 (ID3), a helix-loop-helix protein regulating cell cycle progression and B-cell differentiation, were identified as being molecular hallmarks in Burkitt lymphoma, with only rare mutations being found in other lymphomas with translocations affecting cMYC. In the present study, we evaluated the mutational status of ID3 in 37 cases of DHL and 16 cases of sporadic Burkitt lymphoma in order to identify a possible association of this new found hallmark with the rare and insufficiently-defined entity of DHL, seeking to broaden the understanding of these lymphomas at a molecular level. We identified ID3 mutations in lymphomas with chromosomal aberrations at cMYC and either BCL2 or BCL6 at a frequency intermediate between that of DLBCL and Burkitt lymphoma, hinting at a common pathway in lymphomagenesis for a subset of patients with DHL. The results of this study assist in the molecular characterization of these highly aggressive lymphomas, potentially giving rise to novel therapeutic approaches.

  2. Rare compound heterozygosity involving dominant and recessive mutations of GJB2 gene in an assortative mating hearing impaired Indian family.

    PubMed

    Pavithra, Amritkumar; Chandru, Jayasankaran; Jeffrey, Justin Margret; Karthikeyen, N P; Srisailapathy, C R Srikumari

    2017-01-01

    Connexin 26 (Cx-26), a gap junction protein coded by GJB2 gene, plays a very important role in recycling of potassium ions, one of the vital steps in the mechanotransduction process of hearing. Mutations in the GJB2 gene have been associated with both autosomal recessive as well as dominant nonsyndromic hearing loss. As Cx-26 is linked with skin homeostasis, mutations in this gene are sometimes associated with syndromic forms of hearing loss showing skin anomalies. We report here a non consanguineous assortatively mating hearing impaired family with one of the hearing impaired partners, their hearing impaired sibling and hearing impaired offspring showing compound heterozygosity in the GJB2 gene, involving a dominant mutation p.R184Q and two recessive mutations p.Q124X and c.IVS 1+1G>A in a unique triallelic combination. To the best of our knowledge, this is the first report from India on p.R184Q mutation in the GJB2 gene associated with rare compound heterozygosity showing nonsyndromic presentation.

  3. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers

    PubMed Central

    Finch, N.; Carrasquillo, M.M.; Baker, M.; Rutherford, N.J.; Coppola, G.; DeJesus-Hernandez, M.; Crook, R.; Hunter, T.; Ghidoni, R.; Benussi, L.; Crook, J.; Finger, E.; Hantanpaa, K.J.; Karydas, A.M.; Sengdy, P.; Gonzalez, J.; Seeley, W.W.; Johnson, N.; Beach, T.G.; Mesulam, M.; Forloni, G.; Kertesz, A.; Knopman, D.S.; Uitti, R.; White, C.L.; Caselli, R.; Lippa, C.; Bigio, E.H.; Wszolek, Z.K.; Binetti, G.; Mackenzie, I.R.; Miller, B.L.; Boeve, B.F.; Younkin, S.G.; Dickson, D.W.; Petersen, R.C.; Graff-Radford, N.R.; Geschwind, D.H.

    2011-01-01

    Objectives: To determine whether TMEM106B single nucleotide polymorphisms (SNPs) are associated with frontotemporal lobar degeneration (FTLD) in patients with and without mutations in progranulin (GRN) and to determine whether TMEM106B modulates GRN expression. Methods: We performed a case-control study of 3 SNPs in TMEM106B in 482 patients with clinical and 80 patients with pathologic FTLD–TAR DNA-binding protein 43 without GRN mutations, 78 patients with FTLD with GRN mutations, and 822 controls. Association analysis of TMEM106B with GRN plasma levels was performed in 1,013 controls and TMEM106B and GRN mRNA expression levels were correlated in peripheral blood samples from 33 patients with FTLD and 150 controls. Results: In our complete FTLD patient cohort, nominal significance was identified for 2 TMEM106B SNPs (top SNP rs1990622, pallelic = 0.036). However, the most significant association with risk of FTLD was observed in the subgroup of GRN mutation carriers compared to controls (corrected pallelic = 0.0009), where there was a highly significant decrease in the frequency of homozygote carriers of the minor alleles of all TMEM106B SNPs (top SNP rs1990622, CC genotype frequency 2.6% vs 19.1%, corrected precessive = 0.009). We further identified a significant association of TMEM106B SNPs with plasma GRN levels in controls (top SNP rs1990622, corrected p = 0.002) and in peripheral blood samples a highly significant correlation was observed between TMEM106B and GRN mRNA expression in patients with FTLD (r = −0.63, p = 7.7 × 10−5) and controls (r = −0.49, p = 2.2 × 10−10). Conclusions: In our study, TMEM106B SNPs significantly reduced the disease penetrance in patients with GRN mutations, potentially by modulating GRN levels. These findings hold promise for the development of future protective therapies for FTLD. PMID:21178100

  4. Human SH2B1 mutations are associated with maladaptive behaviors and obesity

    PubMed Central

    Doche, Michael E.; Bochukova, Elena G.; Su, Hsiao-Wen; Pearce, Laura R.; Keogh, Julia M.; Henning, Elana; Cline, Joel M.; Dale, Anne; Cheetham, Tim; Barroso, Inês; Argetsinger, Lawrence S.; O’Rahilly, Stephen; Rui, Liangyou; Carter-Su, Christin; Farooqi, I. Sadaf

    2012-01-01

    Src homology 2 B adapter protein 1 (SH2B1) modulates signaling by a variety of ligands that bind to receptor tyrosine kinases or JAK-associated cytokine receptors, including leptin, insulin, growth hormone (GH), and nerve growth factor (NGF). Targeted deletion of Sh2b1 in mice results in increased food intake, obesity, and insulin resistance, with an intermediate phenotype seen in heterozygous null mice on a high-fat diet. We identified SH2B1 loss-of-function mutations in a large cohort of patients with severe early-onset obesity. Mutation carriers exhibited hyperphagia, childhood-onset obesity, disproportionate insulin resistance, and reduced final height as adults. Unexpectedly, mutation carriers exhibited a spectrum of behavioral abnormalities that were not reported in controls, including social isolation and aggression. We conclude that SH2B1 plays a critical role in the control of human food intake and body weight and is implicated in maladaptive human behavior. PMID:23160192

  5. CYP1B1 polymorphisms and k-ras mutations in patients with pancreatic ductal adenocarcinoma.

    PubMed

    Crous-Bou, Marta; De Vivo, Immaculata; Porta, Miquel; Pumarega, José A; López, Tomàs; Alguacil, Joan; Morales, Eva; Malats, Núria; Rifà, Juli; Hunter, David J; Real, Francisco X

    2008-05-01

    The frequency of CYP1B1 polymorphisms in pancreatic cancer has never been reported. There is also no evidence on the relationship between CYP1B1 variants and mutations in ras genes (K-, H- or N-ras) in any human neoplasm. We analyzed the following CYP1B1 polymorphisms in 129 incident cases of pancreatic ductal adenocarcinoma (PDA): the m1 allele (Val to Leu at codon 432) and the m2 allele (Asn to Ser at codon 453). The calculated frequencies for the m1 Val and m2 Asn alleles were 0.45 and 0.68, respectively. CYP1B1 genotypes were out of Hardy-Weinberg equilibrium; this was largely due to K-ras mutated PDA cases. The Val/Val genotype was over five times more frequent in PDA cases with a K-ras mutation than in wild-type cases (OR = 5.25; P = 0.121). In PDA, polymorphisms in CYP1B1 might be related with K-ras activation pathways.

  6. Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations

    PubMed Central

    Urwin, Hazel; Authier, Astrid; Nielsen, Jorgen E.; Metcalf, Daniel; Powell, Caroline; Froud, Kristina; Malcolm, Denise S.; Holm, Ida; Johannsen, Peter; Brown, Jeremy; Fisher, Elizabeth M.C.; van der Zee, Julie; Bruyland, Marc; Van Broeckhoven, Christine; Collinge, John; Brandner, Sebastian; Futter, Clare; Isaacs, Adrian M.

    2010-01-01

    Mutations in CHMP2B cause frontotemporal dementia (FTD) in a large Danish pedigree, which is termed FTD linked to chromosome 3 (FTD-3), and also in an unrelated familial FTD patient. CHMP2B is a component of the ESCRT-III complex, which is required for function of the multivesicular body (MVB), an endosomal structure that fuses with the lysosome to degrade endocytosed proteins. We report a novel endosomal pathology in CHMP2B mutation-positive patient brains and also identify and characterize abnormal endosomes in patient fibroblasts. Functional studies demonstrate a specific disruption of endosome–lysosome fusion but not protein sorting by the MVB. We provide evidence for a mechanism for impaired endosome–lysosome fusion whereby mutant CHMP2B constitutively binds to MVBs and prevents recruitment of proteins necessary for fusion to occur, such as Rab7. The fusion of endosomes with lysosomes is required for neuronal function and the data presented therefore suggest a pathogenic mechanism for FTD caused by CHMP2B mutations. PMID:20223751

  7. Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations.

    PubMed

    Urwin, Hazel; Authier, Astrid; Nielsen, Jorgen E; Metcalf, Daniel; Powell, Caroline; Froud, Kristina; Malcolm, Denise S; Holm, Ida; Johannsen, Peter; Brown, Jeremy; Fisher, Elizabeth M C; van der Zee, Julie; Bruyland, Marc; Van Broeckhoven, Christine; Collinge, John; Brandner, Sebastian; Futter, Clare; Isaacs, Adrian M

    2010-06-01

    Mutations in CHMP2B cause frontotemporal dementia (FTD) in a large Danish pedigree, which is termed FTD linked to chromosome 3 (FTD-3), and also in an unrelated familial FTD patient. CHMP2B is a component of the ESCRT-III complex, which is required for function of the multivesicular body (MVB), an endosomal structure that fuses with the lysosome to degrade endocytosed proteins. We report a novel endosomal pathology in CHMP2B mutation-positive patient brains and also identify and characterize abnormal endosomes in patient fibroblasts. Functional studies demonstrate a specific disruption of endosome-lysosome fusion but not protein sorting by the MVB. We provide evidence for a mechanism for impaired endosome-lysosome fusion whereby mutant CHMP2B constitutively binds to MVBs and prevents recruitment of proteins necessary for fusion to occur, such as Rab7. The fusion of endosomes with lysosomes is required for neuronal function and the data presented therefore suggest a pathogenic mechanism for FTD caused by CHMP2B mutations.

  8. Mycobacterium fluoroquinolone resistance protein B, a novel small GTPase, is involved in the regulation of DNA gyrase and drug resistance

    PubMed Central

    Tao, Jun; Han, Jiao; Wu, Hanyu; Hu, Xinling; Deng, Jiaoyu; Fleming, Joy; Maxwell, Anthony; Bi, Lijun; Mi, Kaixia

    2013-01-01

    DNA gyrase plays a vital role in resolving DNA topological problems and is the target of antibiotics such as fluoroquinolones. Mycobacterium fluoroquinolone resistance protein A (MfpA) from Mycobacterium smegmatis is a newly identified DNA gyrase inhibitor that is believed to confer intrinsic resistance to fluoroquinolones. However, MfpA does not prevent drug-induced inhibition of DNA gyrase in vitro, implying the involvement of other as yet unknown factors. Here, we have identified a new factor, named Mycobacterium fluoroquinolone resistance protein B (MfpB), which is involved in the protection of DNA gyrase against drugs both in vivo and in vitro. Genetic results suggest that MfpB is necessary for MfpA protection of DNA gyrase against drugs in vivo; an mfpB knockout mutant showed greater susceptibility to ciprofloxacin than the wild-type, whereas a strain overexpressing MfpA and MfpB showed higher loss of susceptibility. Further biochemical characterization indicated that MfpB is a small GTPase and its GTP bound form interacts directly with MfpA and influences its interaction with DNA gyrase. Mutations in MfpB that decrease its GTPase activity disrupt its protective efficacy. Our studies suggest that MfpB, a small GTPase, is required for MfpA-conferred protection of DNA gyrase. PMID:23275532

  9. Mycobacterium fluoroquinolone resistance protein B, a novel small GTPase, is involved in the regulation of DNA gyrase and drug resistance.

    PubMed

    Tao, Jun; Han, Jiao; Wu, Hanyu; Hu, Xinling; Deng, Jiaoyu; Fleming, Joy; Maxwell, Anthony; Bi, Lijun; Mi, Kaixia

    2013-02-01

    DNA gyrase plays a vital role in resolving DNA topological problems and is the target of antibiotics such as fluoroquinolones. Mycobacterium fluoroquinolone resistance protein A (MfpA) from Mycobacterium smegmatis is a newly identified DNA gyrase inhibitor that is believed to confer intrinsic resistance to fluoroquinolones. However, MfpA does not prevent drug-induced inhibition of DNA gyrase in vitro, implying the involvement of other as yet unknown factors. Here, we have identified a new factor, named Mycobacterium fluoroquinolone resistance protein B (MfpB), which is involved in the protection of DNA gyrase against drugs both in vivo and in vitro. Genetic results suggest that MfpB is necessary for MfpA protection of DNA gyrase against drugs in vivo; an mfpB knockout mutant showed greater susceptibility to ciprofloxacin than the wild-type, whereas a strain overexpressing MfpA and MfpB showed higher loss of susceptibility. Further biochemical characterization indicated that MfpB is a small GTPase and its GTP bound form interacts directly with MfpA and influences its interaction with DNA gyrase. Mutations in MfpB that decrease its GTPase activity disrupt its protective efficacy. Our studies suggest that MfpB, a small GTPase, is required for MfpA-conferred protection of DNA gyrase.

  10. Mutations causing aminotriazole resistance and temperature sensitivity reside in gyrB, which encodes the B subunit of DNA gyrase.

    PubMed Central

    Toone, W M; Rudd, K E; Friesen, J D

    1992-01-01

    Certain mutations in gyrA and gyrB, the genes encoding the two subunits of DNA gyrase, are known to influence expression of the his operon (K. E. Rudd and R. Menzel, Proc. Natl. Acad. Sci. USA 84:517-521, 1987). Such mutations lead to a decrease in tRNA(His) levels and consequently to an attenuator-dependent increase in his operon expression. This effect presumably is due to the dependence of the hisR promoter (hisR encodes tRNA(His) on supercoiling for maximal activity. We used a relaxed (Rel-) strain of Escherichia coli to isolate gyrB mutants by selecting for resistance to the histidine antimetabolite 3-amino-1,2,4-triazole and then screening for temperature-sensitive growth on rich medium. Rel- mutants, which generally have lower basal levels of ppGpp (a positive regulator of his operon transcription), are more sensitive than wild-type E. coli to aminotriazole. The chance of isolating spoT mutants, which can be selected with a similar procedure, was decreased by selecting in the presence of a multicopy plasmid that carries the wild-type spoT gene. Under these conditions, gyrB mutants were isolated preferentially. This scheme selects for loss of function of DNA gyrase, rather than for its alteration due to resistance to specific gyrase inhibitors, and thus a greater variety of gyrase mutations might be obtainable. PMID:1322887

  11. Expanding the clinical spectrum of B4GALT7 deficiency: homozygous p.R270C mutation with founder effect causes Larsen of Reunion Island syndrome.

    PubMed

    Cartault, François; Munier, Patrick; Jacquemont, Marie-Line; Vellayoudom, Jeannine; Doray, Bérénice; Payet, Christine; Randrianaivo, Hanitra; Laville, Jean-Marc; Munnich, Arnold; Cormier-Daire, Valérie

    2015-01-01

    First described as a variant of Larsen syndrome in Reunion Island (LRS) in the southern Indian Ocean, 'Larsen of Reunion Island syndrome' is characterized by dwarfism, hyperlaxity, multiple dislocations and distinctive facial features. It overlaps with Desbuquois dysplasia, Larsen syndrome and spondyloepiphyseal dysplasia with dislocations ascribed to CANT1, FLNB and CHST3 mutations, respectively. We collected the samples of 22 LRS cases. After exclusion of CANT1, FLNB and CHST3 genes, an exome sequencing was performed in two affected second cousins and one unaffected sister. We identified a homozygous missense mutation in B4GALT7, NM_007255.2: c.808C>T p.(Arg270Cys) named p.R270C, in the two affected cases, not present in the unaffected sister. The same homozygous mutation was subsequently identified in the remaining 20 LRS cases. Our findings demonstrate that B4GALT7 is the causative gene for LRS. The identification of a unique homozygous mutation argues in favor of a founder effect. B4GALT7 encodes a galactosyltransferase, required for the initiation of glycoaminoglycan side chain synthesis of proteoglycans. This study expands the phenotypic spectrum of B4GALT7 mutations, initially described as responsible for the progeroid variant of Ehlers-Danlos syndrome. It further supports a common physiopathological basis involving proteoglycan synthesis in skeletal disorders with dislocations.

  12. Hepatitis B and Hepatitis C Infection Biomarkers and TP53 Mutations in Hepatocellular Carcinomas from Colombia.

    PubMed

    Navas, Maria-Cristina; Suarez, Iris; Carreño, Andrea; Uribe, Diego; Rios, Wilson Alfredo; Cortes-Mancera, Fabian; Martel, Ghyslaine; Vieco, Beatriz; Lozano, Diana; Jimenez, Carlos; Gouas, Doriane; Osorio, German; Hoyos, Sergio; Restrepo, Juan Carlos; Correa, Gonzalo; Jaramillo, Sergio; Lopez, Rocio; Bravo, Luis Eduardo; Arbelaez, Maria Patricia; Scoazec, Jean-Yves; Abedi-Ardekani, Behnoush; Santella, Regina M; Chemin, Isabelle; Hainaut, Pierre

    2011-01-01

    Hepatocellular Carcinoma (HCC) is a leading cause of cancer-related death worldwide. Globally, the most important HCC risk factors are Hepatitis B Virus (HBV) and/or Hepatitis C Virus (HCV), chronic alcoholism, and dietary exposure to aflatoxins. We have described the epidemiological pattern of 202 HCC samples obtained from Colombian patients. Additionally we investigated HBV/HCV infections and TP53 mutations in 49 of these HCC cases. HBV biomarkers were detected in 58.1% of the cases; HBV genotypes F and D were characterized in three of the samples. The HCV biomarker was detected in 37% of the samples while HBV/HCV coinfection was found in 19.2%. Among TP53 mutations, 10.5% occur at the common aflatoxin mutation hotspot, codon 249. No data regarding chronic alcoholism was available from the cases. In conclusion, in this first study of HCC and biomarkers in a Colombian population, the main HCC risk factor was HBV infection.

  13. Diversity and Convergence of Sodium Channel Mutations Involved in Resistance to Pyrethroids

    PubMed Central

    Rinkevich, Frank D.; Du, Yuzhe; Dong, Ke

    2013-01-01

    Pyrethroid insecticides target voltage-gated sodium channels, which are critical for electrical signaling in the nervous system. The intensive use of pyrethroids in controlling arthropod pests and disease vectors has led to many instances of pyrethroid resistance around the globe. In the past two decades, studies have identified a large number of sodium channel mutations that are associated with resistance to pyrethroids. The purpose of this review is to summarize both common and unique sodium channel mutations that have been identified in arthropod pests of importance to agriculture or human health. Identification of these mutations provides valuable molecular markers for resistance monitoring in the field and helped the discovery of the elusive pyrethroid receptor site(s) on the sodium channel. PMID:24019556

  14. Mutation of fibulin-1 causes a novel syndrome involving the central nervous system and connective tissues

    PubMed Central

    Bohlega, Saeed; Al-Ajlan, Huda; Al-Saif, Amr

    2014-01-01

    Fibulin-1 is an extracellular matrix protein that has an important role in the structure of elastic fibers and basement membranes of various tissues. Using homozygosity mapping and exome sequencing, we discovered a missense mutation, p.(Cys397Phe), in fibulin-1 in three patients from a consanguineous family presented with a novel syndrome of syndactyly, undescended testes, delayed motor milestones, mental retardation and signs of brain atrophy. The mutation discovered segregated with the phenotype and was not found in 374 population-matched alleles. The affected cysteine is highly conserved across vertebrates and its mutation is predicted to abolish a disulfide bond that defines the tertiary structure of fibulin-1. Our findings emphasize the crucial role fibulin-1 has in development of the central nervous system and various connective tissues. PMID:24084572

  15. Characterization of potential driver mutations involved in human breast cancer by computational approaches

    PubMed Central

    Rajendran, Barani Kumar; Deng, Chu-Xia

    2017-01-01

    Breast cancer is the second most frequently occurring form of cancer and is also the second most lethal cancer in women worldwide. A genetic mutation is one of the key factors that alter multiple cellular regulatory pathways and drive breast cancer initiation and progression yet nature of these cancer drivers remains elusive. In this article, we have reviewed various computational perspectives and algorithms for exploring breast cancer driver mutation genes. Using both frequency based and mutational exclusivity based approaches, we identified 195 driver genes and shortlisted 63 of them as candidate drivers for breast cancer using various computational approaches. Finally, we conducted network and pathway analysis to explore their functions in breast tumorigenesis including tumor initiation, progression, and metastasis. PMID:28477017

  16. Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis, and processing in Azotobacter vinelandii.

    PubMed

    Mouncey, N J; Mitchenall, L A; Pau, R N

    1995-09-01

    DNA sequencing of the region upstream from the Azotobacter vinelandii operon (modEABC) that contains genes for the molybdenum transport system revealed an open reading frame (modG) encoding a hypothetical 14-kDa protein. It consists of a tandem repeat of an approximately 65-amino-acid sequence that is homologous to Mop, a 7-kDa molybdopterin-binding protein of Clostridium pasteurianum. The tandem repeat is similar to the C-terminal half of the product of modE. The effects of mutations in the mod genes provide evidence for distinct high- and low-affinity Mo transport systems and for the involvement of the products of modE and modG in the processing of molybdate. modA, modB, and modC, which encode the component proteins of the high-affinity Mo transporter, are required for 99Mo accumulation and for the nitrate reductase activity of cells growing in medium with less than 10 microM Mo. The exchange of accumulated 99Mo with nonradioactive Mo depends on the presence of modA, which encodes the periplasmic molybdate-binding protein. 99Mo also exchanges with tungstate but not with vanadate or sulfate. modA, modB, and modC mutants exhibit nitrate reductase activity and 99Mo accumulation only when grown in more than 10 microM Mo, indicating that A. vinelandii also has a low-affinity Mo uptake system. The low-affinity system is not expressed in a modE mutant that synthesizes the high-affinity Mo transporter constitutively or in a spontaneous tungstate-tolerant mutant. Like the wild type, modG mutants only show nitrate reductase activity when grown in > 10 nM Mo. However, a modE modG double mutant exhibits maximal nitrate reductase activity at a 100-fold lower Mo concentration. This indicates that the products of both genes affect the supply of Mo but are not essential for nitrate reductase cofactor synthesis. However, nitrogenase-dependent growth in the presence or absence of Mo is severely impaired in the double mutant, indicating that the products of modE and modG may be

  17. Non-canonical NFκB mutations reinforce pro-survival TNF response in multiple myeloma through an autoregulatory RelB:p50 NFκB pathway

    PubMed Central

    Roy, P; Mukherjee, T; Chatterjee, B; Vijayaragavan, B; Banoth, B; Basak, S

    2017-01-01

    Environmental drug resistance constitutes a serious impediment for therapeutic intervention in multiple myeloma. Tumor-promoting cytokines, such as tumor necrosis factor (TNF), induce nuclear factor-κB (NFκB)- driven expression of pro-survival factors, which confer resistance in myeloma cells to apoptotic insults from TNF-related apoptosis-inducing ligand (TRAIL) and other chemotherapeutic drugs. It is thought that RelA:p50 dimer, activated from IκBα-inhibited complex in response to TNF-induced canonical NFκB signal, mediates the pro-survival NFκB function in cancerous cells. Myeloma cells additionally acquire gain-of-function mutations in the non-canonical NFκB module, which induces partial proteolysis of p100 into p52 to promote RelB:p52/NFκB activation from p100-inhibited complex during immune cell differentiation. However, role of non-canonical NFκB signaling in the drug resistance in multiple myeloma remains unclear. Here we report that myeloma-associated non-canonical aberrations reinforce pro-survival TNF signaling in producing a protracted TRAIL-refractory state. These mutations did not act through a typical p52 NFκB complex, but completely degraded p100 to reposition RelB under IκBα control, whose degradation during TNF signaling induced an early RelB:p50 containing NFκB activity. More so, autoregulatory RelB synthesis prolonged this TNF-induced RelB:p50 activity in myeloma cells harboring non-canonical mutations. Intriguingly, TNF-activated RelB:p50 dimer was both necessary and sufficient, and RelA was not required, for NFκB-dependent pro-survival gene expressions and suppression of apoptosis. Indeed, high RelB mRNA expressions in myeloma patients correlated with the augmented level of pro-survival factors and resistance to therapeutic intervention. In sum, we provide evidence that cancer-associated mutations perpetuate TNF-induced pro-survival NFκB activity through autoregulatory RelB control and thereby exacerbate environmental drug

  18. Mutations, kataegis, and translocations in B lymphocytes: towards a mechanistic understanding of AID promiscuous activity

    PubMed Central

    Casellas, Rafael; Basu, Uttiya; Yewdell, William T.; Chaudhuri, Jayanta; Robbiani, Davide F.; Di Noia, Javier M.

    2016-01-01

    As B cells engage in the immune response they express the deaminase AID to initiate the hypermutation and recombination of immunoglobulin genes, which are crucial processes for the efficient recognition and disposal of pathogens, However, AID must be tightly controlled in B cells to minimize off-targeting mutations, which can drive chromosomal translocations and the development of B cell malignancies, such as lymphomas. Recent genomic and biochemical analyses have begun to unravel the crucial question of how AID-mediated deamination is targeted outside immunoglobulin genes. Here, we discuss the transcriptional and topological features that are emerging as key drivers of AID promiscuous activity. PMID:26898111

  19. Docking, molecular dynamics and free energy studies on aspartoacylase mutations involved in Canavan disease.

    PubMed

    Kocak, Abdulkadir; Yildiz, Muslum

    2017-03-19

    The disruption of aspartoacylase enzyme's catalytic activity causes fatal neurodegenerative Canavan disease. By molecular dynamics and docking methods, here we studied two deleterious mutations that have been identified in the Canavan patients' genotype E285A, F295S, and revealed the possible cause for the enzyme inhibition due to the drastic changes in active site dynamics, loss of interactions among Arg 71, Arg 168 and the substrate and pKa value of critical Glu178 residue. In addition to changes in the enzyme dynamics, free energy calculations show that the binding energy of substrate decreases dramatically up on mutations.

  20. [The analysis of "a" dominant mutation of hepatitis B virus in community-based population of Shandong Province, China].

    PubMed

    Zhang, Li; Yan, Bing-Yu; Ji, Feng; Li, Man-Shi; Song, Li-Zhi; Xu, Ai-Qiang

    2010-12-01

    To determine the rate and type of "a" dominant mutation of hepatitis B virus (HBV) in community-based population of Shandong province and the possible effect of hepatitis B vaccination upon "a" dominant mutation. The anticipants aged 1-59 years were selected by multi-stage random sampling from the general population of Shandong province. Hepatitis B vaccination status was obtained by inquisition (for those over 15 years old) or immunization record (for those under 14 years old). The blood samples were collected and detected for HBsAg by ELISA. HBV DNA was extracted from the sera with positive HBsAg and S gene was amplified by nested-PCR. The PCR produce was sequenced and compared with the standard sequence. Overall, 7601 anticipants were investigated. HBV DNA was successfully amplified and sequenced in 102 of 239 samples with positive HBsAg. 14.70% sera samples mutated in HBV "a" determinant region and 13 mutation types were detected. There were no statistically differences in the mutation rate by age groups (born before or after national universal infant hepatitis B vaccination) and hepatitis B vaccination status. The "a" determinant mutation seemed to be uncommon in community-based population of Shandong province and the mutation sites were relatively scattered. Hepatitis B vaccination has no effect on "a" dominant mutation of hepatitis B virus.

  1. Germline Mutation in EXPH5 Implicates the Rab27B Effector Protein Slac2-b in Inherited Skin Fragility

    PubMed Central

    McGrath, John A.; Stone, Kristina L.; Begum, Rumena; Simpson, Michael A.; Dopping-Hepenstal, Patricia J.; Liu, Lu; McMillan, James R.; South, Andrew P.; Pourreyron, Celine; McLean, W.H. Irwin; Martinez, Anna E.; Mellerio, Jemima E.; Parsons, Maddy

    2012-01-01

    The Rab GTPase Rab27B and one of its effector proteins, Slac2-b (also known as EXPH5, exophilin-5), have putative roles in intracellular vesicle trafficking but their relevance to human disease is not known. By using whole-exome sequencing, we identified a homozygous frameshift mutation in EXPH5 in three siblings with inherited skin fragility born to consanguineous Iraqi parents. All three individuals harbor the mutation c.5786delC (p.Pro1929Leufs∗8) in EXPH5, which truncates the 1,989 amino acid Slac2-b protein by 52 residues. The clinical features comprised generalized scale-crusts and occasional blisters, mostly induced by trauma, as well as mild diffuse pigmentary mottling on the trunk and proximal limbs. There was no increased bleeding tendency, no neurologic abnormalities, and no increased incidence of infection. Analysis of an affected person's skin showed loss of Slac2-b immunostaining (C-terminal antibody), disruption of keratinocyte adhesion within the lower epidermis, and an increased number of perinuclear vesicles. A role for Slac2-b in keratinocyte biology was supported by findings of cytoskeletal disruption (mainly keratin intermediate filaments) and decreased keratinocyte adhesion in both keratinocytes from an affected subject and after shRNA knockdown of Slac2-b in normal keratinocytes. Slac2-b was also shown to colocalize with Rab27B and β4 integrin to early adhesion initiation sites in spreading normal keratinocytes. Collectively, our findings identify an unexpected role for Slac2-b in inherited skin fragility and expand the clinical spectrum of human disorders of GTPase effector proteins. PMID:23176819

  2. Involvement of Novel Human Immunodeficiency Virus Type 1 Reverse Transcriptase Mutations in the Regulation of Resistance to Nucleoside Inhibitors

    PubMed Central

    Svicher, Valentina; Sing, Tobias; Santoro, Maria Mercedes; Forbici, Federica; Rodríguez-Barrios, Fátima; Bertoli, Ada; Beerenwinkel, Niko; Bellocchi, Maria Concetta; Gago, Federigo; d'Arminio Monforte, Antonella; Antinori, Andrea; Lengauer, Thomas; Ceccherini-Silberstein, Francesca; Perno, Carlo Federico

    2006-01-01

    We characterized 16 additional mutations in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) whose role in drug resistance is still unknown by analyzing 1,906 plasma-derived HIV-1 subtype B pol sequences from 551 drug-naïve patients and 1,355 nucleoside RT inhibitor (NRTI)-treated patients. Twelve mutations positively associated with NRTI treatment strongly correlated both in pairs and in clusters with known NRTI resistance mutations on divergent evolutionary pathways. In particular, T39A, K43E/Q, K122E, E203K, and H208Y clustered with the nucleoside analogue mutation 1 cluster (NAM1; M41L+L210W+T215Y). Their copresence in this cluster was associated with an increase in thymidine analogue resistance. Moreover, treatment failure in the presence of K43E, K122E, or H208Y was significantly associated with higher viremia and lower CD4 cell count. Differently, D218E clustered with the NAM2 pathway (D67N+K70R+K219Q+T215F), and its presence in this cluster determined an increase in zidovudine resistance. In contrast, three mutations (V35I, I50V, and R83K) negatively associated with NRTI treatment showed negative correlations with NRTI resistance mutations and were associated with increased susceptibility to specific NRTIs. In particular, I50V negatively correlated with the lamivudine-selected mutation M184V and was associated with a decrease in M184V/lamivudine resistance, whereas R83K negatively correlated with both NAM1 and NAM2 clusters and was associated with a decrease in thymidine analogue resistance. Finally, the association pattern of the F214L polymorphism revealed its propensity for the NAM2 pathway and its strong negative association with the NAM1 pathway. Our study provides evidence of novel RT mutational patterns that regulate positively and/or negatively NRTI resistance and strongly suggests that other mutations beyond those currently known to confer resistance should be considered for improved prediction of clinical response to

  3. Novel activating JAK2 mutation in a patient with Down syndrome and B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Malinge, Sebastien; Ben-Abdelali, Raouf; Settegrana, Catherine; Radford-Weiss, Isabelle; Debre, Marianne; Beldjord, Kheira; Macintyre, Elizabeth A; Villeval, Jean-Luc; Vainchenker, William; Berger, Roland; Bernard, Olivier A; Delabesse, Eric; Penard-Lacronique, Virginie

    2007-03-01

    Activation of tyrosine kinase genes is a frequent event in human hematologic malignancies. Because gene activation could be associated with gene dysregulation, we attempted to screen for activating gene mutation based on high-level gene expression. We focused our study on the Janus kinase 2 (JAK2) gene in 90 cases of acute leukemia. This strategy led to the identification of a novel JAK2-acquired mutation in a patient with Down syndrome (DS) with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This mutation involves a 5-amino acid deletion within the JH2 pseudokinase domain (JAK2DeltaIREED). Expression of JAK2DeltaIREED in Ba/F3 cells induced constitutive activation of the JAK-STAT pathway and growth factor-independent cell proliferation. These results highlight the JAK2 pseudokinase domain as an oncogenic hot spot and indicate that activation of the JAK-STAT pathway may contribute to lymphoid malignancies and hematologic disorders observed in children with DS.

  4. Methylmalonic aciduria cblB type: characterization of two novel mutations and mitochondrial dysfunction studies.

    PubMed

    Brasil, S; Richard, E; Jorge-Finnigan, A; Leal, F; Merinero, B; Banerjee, R; Desviat, L R; Ugarte, M; Pérez, B

    2015-06-01

    Methylmalonic aciduria (MMA) cblB type is caused by mutations in the MMAB gene, which codes for the enzyme adenosine triphosphate (ATP): cobalamin adenosyltransferase (ATR). This study reports differences in the metabolic and disease outcomes of two pairs of siblings with MMA cblB type, respectively harbouring the novel changes p.His183Leu/p.Arg190dup (P1 and P2) and the previously described mutations p.Ile96Thr/p.Ser174fs (P3 and P4). Expression analysis showed p.His183Leu and p.Arg190dup to be destabilizing mutations. Both were associated with reduced ATR stability and a shorter half-life than wild-type ATR. Analysis of several parameters related to oxidative stress and mitochondrial function showed an increase in reactive oxygen species (ROS) content, a decrease in mitochondrial respiration and changes in mitochondria morphology and structure in patient-derived fibroblasts compared to control cells. The impairment in energy production and the presence of oxidative stress and fission of the mitochondrial reticulum suggested mitochondrial dysfunction in cblB patients' fibroblasts. The recovery of mitochondrial function should be a goal in efforts to improve the clinical outcome of MMA cblB type.

  5. Expanding the clinical and mutational spectrum of B4GALT7-spondylodysplastic Ehlers-Danlos syndrome.

    PubMed

    Ritelli, Marco; Dordoni, Chiara; Cinquina, Valeria; Venturini, Marina; Calzavara-Pinton, Piergiacomo; Colombi, Marina

    2017-09-07

    Spondylodysplastic EDS (spEDS) is a rare connective tissue disorder that groups the phenotypes caused by biallelic B4GALT7, B3GALT6, and SLC39A13 mutations. In the 2017 EDS nosology, minimal criteria (general and gene-specific) for a clinical suspicion of spEDS have been proposed, but molecular analysis is required to reach a definite diagnosis. The majority of spEDS patients presented with short stature, skin hyperextensibility, facial dysmorphisms, peculiar radiological findings, muscle hypotonia and joint laxity and/or its complications. To date only 7 patients with β4GALT7-deficiency (spEDS-B4GALT7) have been described and their clinical data suggested that, in addition to short stature and muscle hypotonia, radioulnar synostosis, hypermetropia, and delayed cognitive development might be a hallmark of this specific type of spEDS. Additional 22 patients affected with an overlapping phenotype, i.e., Larsen of Reunion Island syndrome, all carrying a homozygous B4GALT7 mutation, are also recognized. Herein, we report on a 30-year-old Moroccan woman who fitted the minimal criteria to suspect spEDS, but lacked radioulnar synostosis and intellectual disability and presented with neurosensorial hearing loss and limb edema of lymphatic origin. Sanger sequencing of B4GALT7 was performed since the evaluation of the spEDS gene-specific minor criteria suggested this specific subtype. Mutational screening revealed the homozygous c.829G>T, p.Glu277* pathogenetic variant leading to aberrant splicing. Our findings expand both the clinical and mutational spectrum of this ultrarare connective tissue disorder. The comparison of the patient's features with those of the other spEDS and Larsen of Reunion Island syndrome patients reported up to now offers future perspectives for spEDS nosology and clinical research in this field.

  6. Molecular analysis of constitutive mutations in ermB and ermA selected in vitro from inducibly MLSB-resistant enterococci.

    PubMed

    Min, Yu-Hong; Kwon, Ae-Ran; Yoon, Jong-Min; Yoon, Eun-Jeong; Shim, Mi-Ja; Choi, Eung-Chil

    2008-03-01

    Frequencies of spontaneous mutation from inducible resistance to constitutive resistance were determined for the four clinical isolates of erythromycin-resistant enterococci, including one isolate with ermB gene and three clinical isolates with ermA gene. The rate of ermB mutation was higher than that of ermA mutation by more than 10 fold. Sequence analysis of the regulatory regions of erm genes revealed that mutation type of ermB was just point mutation, by contraries the mutation type of ermA was either deletion or tandem duplication. These results showed distinct characteristics in mutation patterns of ermB and ermA.

  7. Employee Participation and Involvement. Background Paper No. 35b.

    ERIC Educational Resources Information Center

    Levine, David I.; Strauss, George

    Formal worker participation schemes, such as the quality circles and related employee involvement schemes that have been introduced in 75 percent of Fortune 500 companies, are likely to have a lasting impact on the way many organizations work. In a majority of empirical studies, direct participation is associated with at least a short-run…

  8. Mutation of POC1B in a severe syndromic retinal ciliopathy

    PubMed Central

    Beck, Bodo B.; Phillips, Jennifer B.; Bartram, Malte P.; Wegner, Jeremy; Thoenes, Michaela; Pannes, Andrea; Sampson, Josephina; Heller, Raoul; Göbel, Heike; Koerber, Friederike; Neugebauer, Antje; Hedergott, Andrea; Nürnberg, Gudrun; Nürnberg, Peter; Thiele, Holger; Altmüller, Janine; Toliat, Mohammad R.; Staubach, Simon; Boycott, Kym M.; Valente, Enza Maria; Janecke, Andreas R.; Eisenberger, Tobias; Bergmann, Carsten; Tebbe, Lars; Wang, Yang; Wu, Yundong; Fry, Andrew M.; Westerfield, Monte; Wolfrum, Uwe; Bolz, Hanno J.

    2014-01-01

    We describe a consanguineous Iraqi family with Leber congenital amaurosis (LCA), Joubert syndrome (JBTS), and polycystic kidney disease. Targeted NGS for excluding mutations in known LCA and JBTS genes, homozygosity mapping and whole-exome sequencing identified a homozygous missense variant, c.317G>C (p.Arg106Pro), in POC1B, a gene essential for ciliogenesis, basal body and centrosome integrity. In silico modeling suggested a requirement of p.Arg106 for formation of the third WD40 repeat and a protein interaction interface. In human and mouse retina, POC1B localized to the basal body and centriole adjacent to the connecting cilium of photoreceptors and in synapses of the outer plexiform layer. Knockdown of Poc1b in zebrafish caused cystic kidneys and retinal degeneration with shortened and reduced photoreceptor connecting cilia, compatible with the human syndromic ciliopathy. A recent study describes homozygosity for p.Arg106ProPOC1B in a family with non-syndromic cone-rod dystrophy. The phenotype associated with homozygous p.Arg106ProPOC1B may thus be highly variable, analogous to homozygous p.Leu710Ser in WDR19 causing either isolated retinitis pigmentosa or Jeune syndrome. Our study indicates that POC1B is required for retinal integrity, and we propose POC1B mutations as a probable cause for JBTS with severe polycystic kidney disease. PMID:25044745

  9. Mutational analysis of the major soybean UreF paralogue involved in urease activation

    USDA-ARS?s Scientific Manuscript database

    In soybean, mutation at Eu2 or Eu3 eliminates the urease activities of both the embryo-specific and the tissue-ubiquitous (assimilatory) isozymes, encoded by Eu1 and Eu4, respectively. Eu3 encodes UreG, a GTP’ase necessary for proper emplacement of Ni and carbon dioxide in the urease active site. ...

  10. Germline BRCA Mutations Are Associated With Higher Risk of Nodal Involvement, Distant Metastasis, and Poor Survival Outcomes in Prostate Cancer

    PubMed Central

    Castro, Elena; Goh, Chee; Olmos, David; Saunders, Ed; Leongamornlert, Daniel; Tymrakiewicz, Malgorzata; Mahmud, Nadiya; Dadaev, Tokhir; Govindasami, Koveela; Guy, Michelle; Sawyer, Emma; Wilkinson, Rosemary; Ardern-Jones, Audrey; Ellis, Steve; Frost, Debra; Peock, Susan; Evans, D. Gareth; Tischkowitz, Marc; Cole, Trevor; Davidson, Rosemarie; Eccles, Diana; Brewer, Carole; Douglas, Fiona; Porteous, Mary E.; Donaldson, Alan; Dorkins, Huw; Izatt, Louise; Cook, Jackie; Hodgson, Shirley; Kennedy, M. John; Side, Lucy E.; Eason, Jacqueline; Murray, Alex; Antoniou, Antonis C.; Easton, Douglas F.; Kote-Jarai, Zsofia; Eeles, Rosalind

    2013-01-01

    Purpose To analyze the baseline clinicopathologic characteristics of prostate tumors with germline BRCA1 and BRCA2 (BRCA1/2) mutations and the prognostic value of those mutations on prostate cancer (PCa) outcomes. Patients and Methods This study analyzed the tumor features and outcomes of 2,019 patients with PCa (18 BRCA1 carriers, 61 BRCA2 carriers, and 1,940 noncarriers). The Kaplan-Meier method and Cox regression analysis were used to evaluate the associations between BRCA1/2 status and other PCa prognostic factors with overall survival (OS), cause-specific OS (CSS), CSS in localized PCa (CSS_M0), metastasis-free survival (MFS), and CSS from metastasis (CSS_M1). Results PCa with germline BRCA1/2 mutations were more frequently associated with Gleason ≥ 8 (P = .00003), T3/T4 stage (P = .003), nodal involvement (P = .00005), and metastases at diagnosis (P = .005) than PCa in noncarriers. CSS was significantly longer in noncarriers than in carriers (15.7 v 8.6 years, multivariable analyses [MVA] P = .015; hazard ratio [HR] = 1.8). For localized PCa, 5-year CSS and MFS were significantly higher in noncarriers (96% v 82%; MVA P = .01; HR = 2.6%; and 93% v 77%; MVA P = .009; HR = 2.7, respectively). Subgroup analyses confirmed the poor outcomes in BRCA2 patients, whereas the role of BRCA1 was not well defined due to the limited size and follow-up in this subgroup. Conclusion Our results confirm that BRCA1/2 mutations confer a more aggressive PCa phenotype with a higher probability of nodal involvement and distant metastasis. BRCA mutations are associated with poor survival outcomes and this should be considered for tailoring clinical management of these patients. PMID:23569316

  11. Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression

    PubMed Central

    Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D.; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario

    2016-01-01

    The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma. Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines. We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK. Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%. Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression. Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants. In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression. PMID:27009842

  12. Mutations in ATP6V1B1 and ATP6V0A4 genes cause recessive distal renal tubular acidosis in Mexican families.

    PubMed

    Escobar, Laura I; Simian, Christopher; Treard, Cyrielle; Hayek, Donia; Salvador, Carolina; Guerra, Norma; Matos, Mario; Medeiros, Mara; Enciso, Sandra; Camargo, María Dolores; Vargas-Poussou, Rosa

    2016-05-01

    Autosomal recessive distal renal tubular acidosis (dRTA) is a rare disease characterized by a hyperchloremic metabolic acidosis with normal anion gap, hypokalemia, hypercalciuria, hypocitraturia, nephrocalcinosis, and conserved glomerular filtration rate. In some cases, neurosensorial deafness is associated. dRTA is developed during the first months of life and the main manifestations are failure to thrive, vomiting, dehydration, and anorexia. Nine unrelated families were studied: seven children, a teenager, and an adult with dRTA. Hearing was preserved in four children. Coding regions of the genes responsible for recessive dRTA were analysed by Sanger sequencing. Molecular defects were found in the genes ATP6V1B1 and ATP6V0A4. We identified three homozygous variants in ATP6V1B: a frameshift mutation (p.Ile386Hisfs*56), a nucleotide substitution in exon 10 (p.Pro346Arg), and a new splicing mutation in intron 5. Three patients were homozygous for one novel (p.Arg743Trp) and one known (p.Asp411Tyr) missense mutations in the ATP6V0A4 gene. Three patients were compound heterozygous: one proband displayed two novel mutations, the frameshift mutation p.Val52Metfs*25, and a large deletion of exons 18-21; two probands showed the missense mutation p.Asp411Tyr and as a second mutation, p.Arg194Ter and c.1691+2dup, respectively. ATP6V0A4 and ATP6V1B1 genes were involved in recessive dRTA of Mexican families. All ATP6V1B1 mutations detected were homozygous and all patients developed sensorineural hearing loss (SNHL) early in infancy. ATP6V0A4 mutations were found in one infant and three children without SNHL, and in one teenager and one adult with SNHL confirming the phenotypic variability in this trait. The mutation p.Asp411Tyr detected in four Mexican families was due to a founder effect. Screening of these mutations could provide a rapid and valuable tool for diagnosis of dRTA in this population.

  13. Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria

    PubMed Central

    Jaglin, Xavier Hubert; Poirier, Karine; Saillour, Yoann; Buhler, Emmanuelle; Tian, Guoling; Bahi-Buisson, Nadia; Fallet-Bianco, Catherine; Phan-Dinh-Tuy, Françoise; Kong, Xiang Peng; Bomont, Pascale; Castelnau-Ptakhine, Laëtitia; Odent, Sylvie; Loget, Philippe; Kossorotoff, Manoelle; Snoeck, Irina; Plessis, Ghislaine; Parent, Philippe; Beldjord, Cherif; Cardoso, Carlos; Represa, Alfonso; Flint, Jonathan; Keays, David Anthony; Cowan, Nicholas Justin; Chelly, Jamel

    2009-01-01

    Polymicrogyria is a relatively common but poorly understood defect of cortical development characterized by numerous small gyri and a thick disorganized cortical plate lacking normal lamination. We show an association between bilateral asymmetrical polymicrogyria and de novo mutations in a β-tubulin gene, TUBB2B, in four patients and a 27 GW (gestational week) fetus. Neuropathological examination of the fetus revealed an absence of cortical lamination associated with the presence of ectopic neuronal cells in the white matter, and in the leptomeningeal spaces due to breaches in the pial basement membrane. In utero RNAi-based inactivation demonstrates that TUBB2B is required for neuronal migration. We also show that two disease-associated mutations lead to an impaired formation of tubulin heterodimers. These observations, together with previous data, demonstrate that disruption of microtubule-based processes underlies a large spectrum of neuronal migration disorders that includes not only lissencephaly/pachygyria, but also polymicrogyria malformations. PMID:19465910

  14. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors

    PubMed Central

    Sutton, Lesley-Ann; Young, Emma; Baliakas, Panagiotis; Hadzidimitriou, Anastasia; Moysiadis, Theodoros; Plevova, Karla; Rossi, Davide; Kminkova, Jana; Stalika, Evangelia; Pedersen, Lone Bredo; Malcikova, Jitka; Agathangelidis, Andreas; Davis, Zadie; Mansouri, Larry; Scarfò, Lydia; Boudjoghra, Myriam; Navarro, Alba; Muggen, Alice F.; Yan, Xiao-Jie; Nguyen-Khac, Florence; Larrayoz, Marta; Panagiotidis, Panagiotis; Chiorazzi, Nicholas; Niemann, Carsten Utoft; Belessi, Chrysoula; Campo, Elias; Strefford, Jonathan C.; Langerak, Anton W.; Oscier, David; Gaidano, Gianluca; Pospisilova, Sarka; Davi, Frederic; Ghia, Paolo; Stamatopoulos, Kostas; Rosenquist, Richard

    2016-01-01

    We report on markedly different frequencies of genetic lesions within subsets of chronic lymphocytic leukemia patients carrying mutated or unmutated stereotyped B-cell receptor immunoglobulins in the largest cohort (n=565) studied for this purpose. By combining data on recurrent gene mutations (BIRC3, MYD88, NOTCH1, SF3B1 and TP53) and cytogenetic aberrations, we reveal a subset-biased acquisition of gene mutations. More specifically, the frequency of NOTCH1 mutations was found to be enriched in subsets expressing unmutated immunoglobulin genes, i.e. #1, #6, #8 and #59 (22–34%), often in association with trisomy 12, and was significantly different (P<0.001) to the frequency observed in subset #2 (4%, aggressive disease, variable somatic hypermutation status) and subset #4 (1%, indolent disease, mutated immunoglobulin genes). Interestingly, subsets harboring a high frequency of NOTCH1 mutations were found to carry few (if any) SF3B1 mutations. This starkly contrasts with subsets #2 and #3 where, despite their immunogenetic differences, SF3B1 mutations occurred in 45% and 46% of cases, respectively. In addition, mutations within TP53, whilst enriched in subset #1 (16%), were rare in subsets #2 and #8 (both 2%), despite all being clinically aggressive. All subsets were negative for MYD88 mutations, whereas BIRC3 mutations were infrequent. Collectively, this striking bias and skewed distribution of mutations and cytogenetic aberrations within specific chronic lymphocytic leukemia subsets implies that the mechanisms underlying clinical aggressiveness are not uniform, but rather support the existence of distinct genetic pathways of clonal evolution governed by a particular stereotyped B-cell receptor selecting a certain molecular lesion(s). PMID:27198719

  15. Unique Mixed Phenotype and Unexpected Functional Effect Revealed by Novel Compound Heterozygosity Mutations Involving SCN5A

    PubMed Central

    Medeiros-Domingo, Argelia; Tan, Bi-Hua; Torres, Pedro Iturralde; Tester, David J.; Luna, Teresa Tusié; Makielski, Jonathan C.; Ackerman, Michael J.

    2011-01-01

    Background Functional characterization of mutations involving the SCN5A-encoded cardiac sodium channel has established the pathogenic mechanisms for type 3 long QT syndrome (LQT3) and type 1 Brugada syndrome and has provided key insights into the physiological importance of essential structure-function domains. Objective To present the clinical and biophysical phenotypes discerned from compound heterozygosity mutations in SCN5A on different alleles in a toddler diagnosed with QT prolongation and fever induced ventricular arrhythmias. Methods A 22-month-old male presented emergently with fever and refractory ventricular tachycardia. Despite restoration of sinus rhythm, the infant sustained profound neurological injury and died. Using PCR, DHPLC, and direct DNA sequencing, comprehensive open reading frame/splice mutational analysis of the 12 known LQTS-susceptibility genes was performed. Results The infant had two SCN5A mutations: a maternally inherited N-terminal frameshift/deletion (R34fs/60) and a paternally inherited missense mutation, R1195H. The mutations were engineered by site-directed mutagenesis and heterologously expressed transiently in HEK293 cells. As expected, the frame-shifted and prematurely truncated peptide, SCN5A-R34fs/60, showed no current. SCN5A-R1195H had normal peak and late current but abnormal voltage-dependent gating parameters. Surprisingly, co-expression of SCN5A-R34fs/60 with SCN5A-R1195H elicited a significant increase in late sodium current, while co-expression of SCN5A-WT with SCN5A-R34fs/60 did not. Conclusions A severe clinical phenotype characterized by fever-induced monomorphic ventricular tachycardia and QT interval prolongation emerged in a toddler with compound heterozygosity involving SCN5A: R34fs/60, and R1195H. Unexpectedly, the 94-aminoacid “fusion” peptide derived from the R34fs/60 mutation accentuated the late sodium current of R1195H-containing NaV1.5 channels in vitro. PMID:19632629

  16. Novel homozygous mutations in the WNT10B gene underlying autosomal recessive split hand/foot malformation in three consanguineous families.

    PubMed

    Aziz, Abdul; Irfanullah; Khan, Saadullah; Zimri, Faridullah Khan; Muhammad, Noor; Rashid, Sajid; Ahmad, Wasim

    2014-01-25

    Split-hand/split-foot malformation (SHFM), representing variable degree of median clefts of hands and feet, is a genetically heterogeneous group of limb malformations with seven loci mapped on different human chromosomes. However, only 3 genes (TP63, WNT10B, DLX5) for the seven loci have been identified. The study, presented here, described three consanguineous Pakistani families segregating SHFM in autosomal recessive manner. Linkage in the families was searched by genotyping microsatellite markers and mutation screening of candidate gene was performed by Sanger DNA sequencing. Clinical features of affected members of these families exhibited SHFM phenotype with involvement of hands and feet. Genotyping using microsatellite markers mapped the families to WNT10B gene at SHFM6 on chromosome 12q13.11-q13. Subsequently, sequence analysis of WNT10B gene revealed a novel 4-bp deletion mutation (c.1165_1168delAAGT) in one family and 7-bp duplication (c.300_306dupAGGGCGG) in two other families. Structure-based analysis showed a significant conformational shift in the active binding site of mutated WNT10B (p.Lys388Glufs*36), influencing binding with Fzd8. The mutations identified in the WNT10B gene extend the body of evidence implicating it in the pathogenesis of SHFM.

  17. An association of multiple endocrine neoplasia 2B, a RET mutation; constipation; and low substance P-nerve fiber density in colonic circular muscle.

    PubMed

    King, Sebastian K; Southwell, Bridget R; Hutson, John M

    2006-02-01

    Multiple endocrine neoplasia (MEN) 2B is a rare hereditary syndrome that results from an activating mutation of the RET proto-oncogene. The RET gene is involved in the development of the enteric nervous system. Patients with MEN 2B have enlarged enteric ganglia and may be affected by gastrointestinal dysmotility. A deficiency of the neurotransmitter substance P (SP) has been identified in both pediatric and adult patients with chronic constipation. Three patients, in whom constipation was the presenting symptom and MEN 2B had been provisionally diagnosed, underwent genetic analysis. Seromuscular colonic biopsies were taken for immunofluorescence imaging in all 3 patients. A retrospective review of the patient notes was undertaken. All 3 patients had constipation refractory to conservative treatment. Genetic analyses in the 3 patients confirmed an identical RET mutation (Met918Thr). Immunofluorescence imaging in all 3 patients identified grossly enlarged myenteric plexus ganglia but surprisingly a low density of SP-labeled nerve fibers in the colonic circular muscle. Nitric oxide synthase and vasoactive intestinal peptide labeling were not reduced. The results show an association between MEN 2B and its most common RET mutation, colonic dysmotility, and low density of SP in the colonic circular muscle. Larger numbers of patients need to be studied to investigate whether low SP is primarily associated with the constipation or RET mutation and if it is a common feature of MEN 2B.

  18. Consequences of HLA-B*13-Associated Escape Mutations on HIV-1 Replication and Nef Function

    PubMed Central

    Shahid, Aniqa; Olvera, Alex; Anmole, Gursev; Kuang, Xiaomei T.; Cotton, Laura A.; Plana, Montserrat; Brander, Christian; Brockman, Mark A.

    2015-01-01

    ABSTRACT HLA-B*13 is associated with superior in vivo HIV-1 viremia control. Protection is thought to be mediated by sustained targeting of key cytotoxic T lymphocyte (CTL) epitopes and viral fitness costs of CTL escape in Gag although additional factors may contribute. We assessed the impact of 10 published B*13-associated polymorphisms in Gag, Pol, and Nef, in 23 biologically relevant combinations, on HIV-1 replication capacity and Nef-mediated reduction of cell surface CD4 and HLA class I expression. Mutations were engineered into HIV-1NL4.3, and replication capacity was measured using a green fluorescent protein (GFP) reporter T cell line. Nef-mediated CD4 and HLA-A*02 downregulation was assessed by flow cytometry, and T cell recognition of infected target cells was measured via coculture with an HIV-specific luciferase reporter cell line. When tested individually, only Gag-I147L and Gag-I437L incurred replicative costs (5% and 17%, respectively), consistent with prior reports. The Gag-I437L-mediated replication defect was rescued to wild-type levels by the adjacent K436R mutation. A novel B*13 epitope, comprising 8 residues and terminating at Gag147, was identified in p24Gag (GQMVHQAIGag140–147). No other single or combination Gag, Pol, or Nef mutant impaired viral replication. Single Nef mutations did not affect CD4 or HLA downregulation; however, the Nef double mutant E24Q-Q107R showed 40% impairment in HLA downregulation with no evidence of Nef stability defects. Moreover, target cells infected with HIV-1-NefE24Q-Q107R were recognized better by HIV-specific T cells than those infected with HIV-1NL4.3 or single Nef mutants. Our results indicate that CTL escape in Gag and Nef can be functionally costly and suggest that these effects may contribute to long-term HIV-1 control by HLA-B*13. IMPORTANCE Protective effects of HLA-B*13 on HIV-1 disease progression are mediated in part by fitness costs of CTL escape mutations in conserved Gag epitopes, but other

  19. Consequences of HLA-B*13-Associated Escape Mutations on HIV-1 Replication and Nef Function.

    PubMed

    Shahid, Aniqa; Olvera, Alex; Anmole, Gursev; Kuang, Xiaomei T; Cotton, Laura A; Plana, Montserrat; Brander, Christian; Brockman, Mark A; Brumme, Zabrina L

    2015-11-01

    HLA-B*13 is associated with superior in vivo HIV-1 viremia control. Protection is thought to be mediated by sustained targeting of key cytotoxic T lymphocyte (CTL) epitopes and viral fitness costs of CTL escape in Gag although additional factors may contribute. We assessed the impact of 10 published B*13-associated polymorphisms in Gag, Pol, and Nef, in 23 biologically relevant combinations, on HIV-1 replication capacity and Nef-mediated reduction of cell surface CD4 and HLA class I expression. Mutations were engineered into HIV-1NL4.3, and replication capacity was measured using a green fluorescent protein (GFP) reporter T cell line. Nef-mediated CD4 and HLA-A*02 downregulation was assessed by flow cytometry, and T cell recognition of infected target cells was measured via coculture with an HIV-specific luciferase reporter cell line. When tested individually, only Gag-I147L and Gag-I437L incurred replicative costs (5% and 17%, respectively), consistent with prior reports. The Gag-I437L-mediated replication defect was rescued to wild-type levels by the adjacent K436R mutation. A novel B*13 epitope, comprising 8 residues and terminating at Gag147, was identified in p24(Gag) (GQMVHQAIGag140-147). No other single or combination Gag, Pol, or Nef mutant impaired viral replication. Single Nef mutations did not affect CD4 or HLA downregulation; however, the Nef double mutant E24Q-Q107R showed 40% impairment in HLA downregulation with no evidence of Nef stability defects. Moreover, target cells infected with HIV-1-NefE24Q-Q107R were recognized better by HIV-specific T cells than those infected with HIV-1NL4.3 or single Nef mutants. Our results indicate that CTL escape in Gag and Nef can be functionally costly and suggest that these effects may contribute to long-term HIV-1 control by HLA-B*13. Protective effects of HLA-B*13 on HIV-1 disease progression are mediated in part by fitness costs of CTL escape mutations in conserved Gag epitopes, but other mechanisms remain

  20. Novel rapid PCR for the detection of Ile491Phe rpoB mutation of Mycobacterium tuberculosis, a rifampicin-resistance-conferring mutation undetected by commercial assays.

    PubMed

    André, E; Goeminne, L; Colmant, A; Beckert, P; Niemann, S; Delmee, M

    2017-04-01

    Neither the liquid medium-based Bactec MGIT, nor commercial molecular assays such as the Xpert MTB/RIF and the MTBDRplus V2.0 assays are capable of detecting up to 30% of rifampicin-resistant Mycobacterium tuberculosis strains in Swaziland because of the large proportion of the rpoB Ile491Phe mutations. In other countries, the frequency of this mutation is thought to be low. We designed a real-time multiplex allele-specific PCR assay to identify the rpoB Ile491Phe mutation responsible for these undetected resistant M. tuberculosis strains. The technique showed 100% similarity with rpoB sequencing on a panel of 78 strains from Swaziland. We propose that the detection of the rpoB Ile491Phe rpoB mutation should complement commercial assays for the diagnosis of rifampicin-resistant M. tuberculosis in routine conditions, particularly in countries where this specific mutation is frequent. The technique proposed in this paper is adapted for most reference laboratories. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Trisomy 4 leading to duplication of a mutated KIT allele in acute myeloid leukemia with mast cell involvement.

    PubMed

    Beghini, A; Ripamonti, C B; Castorina, P; Pezzetti, L; Doneda, L; Cairoli, R; Morra, E; Larizza, L

    2000-05-01

    A G-->T transversion at nucleotide 2467 of the c-KIT gene leading to Asp816-->Tyr (D816Y) substitution in the phosphotransferase domain has been previously identified in a patient with rapidly progressing AML-M2 and mast cell involvement; the patient's blasts had a 47,XY, +4,t(8;21)(q22;q22) karyotype. Herein we confirm the simultaneous presence of both major chromosomal changes by multicolor fluorescence in situ hybridization (FISH) on interphase CD34+ mononuclear cells. By setting up culture leukemic blasts, spontaneous differentiation of adherent cells with mast-cell like features was proved by histochemical and immunoenzymatic analyses. Fluorescence in situ hybridization evidence of trisomy 4 confirmed the origin of differentiated cells from the leukemic blasts. Semiquantitative polymerase chain reaction (PCR) and phosphoimage densitometry of wild-type and mutated KIT alleles on bone marrow blasts made it possible to demonstrate that chromosome 4 trisomy led to a double dosage of the mutated KIT allele. This finding, and that of trisomy 7 and MET mutation in hereditary renal carcinoma represent the only cases of human tumors in which an increased number of chromosomes carrying an oncogene activated by point mutation have been detected.

  2. Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis.

    PubMed

    Harlalka, Gaurav V; Lehman, Anna; Chioza, Barry; Baple, Emma L; Maroofian, Reza; Cross, Harold; Sreekantan-Nair, Ajith; Priestman, David A; Al-Turki, Saeed; McEntagart, Meriel E; Proukakis, Christos; Royle, Louise; Kozak, Radoslaw P; Bastaki, Laila; Patton, Michael; Wagner, Karin; Coblentz, Roselyn; Price, Joy; Mezei, Michelle; Schlade-Bartusiak, Kamilla; Platt, Frances M; Hurles, Matthew E; Crosby, Andrew H

    2013-12-01

    Glycosphingolipids are ubiquitous constituents of eukaryotic plasma membranes, and their sialylated derivatives, gangliosides, are the major class of glycoconjugates expressed by neurons. Deficiencies in their catabolic pathways give rise to a large and well-studied group of inherited disorders, the lysosomal storage diseases. Although many glycosphingolipid catabolic defects have been defined, only one proven inherited disease arising from a defect in ganglioside biosynthesis is known. This disease, because of defects in the first step of ganglioside biosynthesis (GM3 synthase), results in a severe epileptic disorder found at high frequency amongst the Old Order Amish. Here we investigated an unusual neurodegenerative phenotype, most commonly classified as a complex form of hereditary spastic paraplegia, present in families from Kuwait, Italy and the Old Order Amish. Our genetic studies identified mutations in B4GALNT1 (GM2 synthase), encoding the enzyme that catalyzes the second step in complex ganglioside biosynthesis, as the cause of this neurodegenerative phenotype. Biochemical profiling of glycosphingolipid biosynthesis confirmed a lack of GM2 in affected subjects in association with a predictable increase in levels of its precursor, GM3, a finding that will greatly facilitate diagnosis of this condition. With the description of two neurological human diseases involving defects in two sequentially acting enzymes in ganglioside biosynthesis, there is the real possibility that a previously unidentified family of ganglioside deficiency diseases exist. The study of patients and animal models of these disorders will pave the way for a greater understanding of the role gangliosides play in neuronal structure and function and provide insights into the development of effective treatment therapies.

  3. Cold adaptation generates mutations associated with the growth of influenza B vaccine viruses.

    PubMed

    Kim, Hyunsuh; Velkov, Tony; Camuglia, Sarina; Rockman, Steven P; Tannock, Gregory A

    2015-10-26

    Seasonal inactivated influenza vaccines are usually trivalent or quadrivalent and are prepared from accredited seed viruses. Yields of influenza A seed viruses can be enhanced by gene reassortment with high-yielding donor strains, but similar approaches for influenza B seed viruses have been largely unsuccessful. For vaccine manufacture influenza B seed viruses are usually adapted for high-growth by serial passage. Influenza B antigen yields so obtained are often unpredictable and selection of influenza B seed viruses by this method can be a rate-limiting step in seasonal influenza vaccine manufacture. We recently have shown that selection of stable cold-adapted mutants from seasonal epidemic influenza B viruses is associated with improved growth. In this study, specific mutations were identified that were responsible for growth enhancement as a consequence of adaptation to growth at lower temperatures. Molecular analysis revealed that the following mutations in the HA, NP and NA genes are required for enhanced viral growth: G156/N160 in the HA, E253, G375 in the NP and T146 in the NA genes. These results demonstrate that the growth of seasonal influenza B viruses can be optimized or improved significantly by specific gene modifications.

  4. Reading-frame restoration with an apolipoprotein B gene frameshift mutation.

    PubMed Central

    Linton, M F; Pierotti, V; Young, S G

    1992-01-01

    We examined a mutant human apolipoprotein B (apoB) allele that causes hypobetalipoproteinemia and has a single cytosine deletion in exon 26. This frameshift mutation was associated with the synthesis of a truncated apoB protein of the predicted size; however, studies in human subjects and minigene expression studies in cultured cells indicated that the mutant allele also yielded a full-length apoB protein. The 1-base-pair deletion in the mutant apoB allele created a stretch of eight consecutive adenines. To understand the mechanism whereby the mutant apoB allele yielded a full-length apoB protein, the cDNA from cells transfected with the mutant apoB minigene expression vector was examined. Splicing of the mRNA was normal; however, 11% of the cDNA clones had an additional adenine within the stretch of eight adenines, yielding nine consecutive adenines. The insertion of the extra adenine, presumably during apoB gene transcription, is predicted to restore the correct apoB reading frame, thereby permitting the synthesis of a full-length apoB protein. Images PMID:1454832

  5. Novel deletion mutation of HLA-B*40:02 gene in acquired aplastic anemia.

    PubMed

    Jeong, T-D; Mun, Y-C; Chung, H-S; Seo, D; Im, J; Huh, J

    2017-01-01

    Despite prevalence of clonal evolution in patients with aplastic anemia (AA), somatic mutation of human leukocyte antigen (HLA) gene is rarely reported. Herein, we reported a case of acquired AA (aAA) harboring a new four-base-pair deletion mutation within exon 4 of HLA-B*40:02 leading to frameshift and premature stop codon. The HLA-B*40:02 mutant allele was detected in the patient's peripheral blood sample not in patient's buccal epithelial cells. The patient received allogenic hematopoietic stem cell transplantation (HSCT) from HLA-matched sibling donor. On day 30 after HSCT, the mutant HLA allele was not detected by high-resolution sequence-based HLA typing. Serial chimerism analyses showed mixed chimeric status indicative of coexisting donor and recipient hematopoietic cells. Our data could provide additional support in view of pathophysiology of aAA that somatic mutation of HLA-B*40:02 allele is one of the possible origin of clonal escape to evade immune attack in patient with aAA. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Mutation of L-2,3-diaminopropionic acid synthase genes blocks staphyloferrin B synthesis in Staphylococcus aureus

    PubMed Central

    2011-01-01

    Background Staphylococcus aureus synthesizes two siderophores, staphyloferrin A and staphyloferrin B, that promote iron-restricted growth. Previous work on the biosynthesis of staphyloferrin B has focused on the role of the synthetase enzymes, encoded from within the sbnA-I operon, which build the siderophore from the precursor molecules citrate, alpha-ketoglutarate and L-2,3-diaminopropionic acid. However, no information yet exists on several other enzymes, expressed from the biosynthetic cluster, that are thought to be involved in the synthesis of the precursors (or synthetase substrates) themselves. Results Using mutants carrying insertions in sbnA and sbnB, we show that these two genes are essential for the synthesis of staphyloferrin B, and that supplementation of the growth medium with L-2,3-diaminopropionic acid can bypass the block in staphyloferrin B synthesis displayed by the mutants. Several mechanisms are proposed for how the enzymes SbnA, with similarity to cysteine synthase enzymes, and SbnB, with similarity to amino acid dehydrogenases and ornithine cyclodeaminases, function together in the synthesis of this unusual nonproteinogenic amino acid L-2,3-diaminopropionic acid. Conclusions Mutation of either sbnA or sbnB result in abrogation of synthesis of staphyloferrin B, a siderophore that contributes to iron-restricted growth of S. aureus. The loss of staphyloferrin B synthesis is due to an inability to synthesize the unusual amino acid L-2,3-diaminopropionic acid which is an important, iron-liganding component of the siderophore structure. It is proposed that SbnA and SbnB function together as an L-Dap synthase in the S. aureus cell. PMID:21906287

  7. Type B mandibuloacral dysplasia with congenital myopathy due to homozygous ZMPSTE24 missense mutation

    PubMed Central

    Yaou, Rabah Ben; Navarro, Claire; Quijano-Roy, Susana; Bertrand, Anne T; Massart, Catherine; De Sandre-Giovannoli, Annachiara; Cadiñanos, Juan; Mamchaoui, Kamel; Butler-Browne, Gillian; Estournet, Brigitte; Richard, Pascale; Barois, Annie; Lévy, Nicolas; Bonne, Gisèle

    2011-01-01

    Mutation in ZMPSTE24 gene, encoding a major metalloprotease, leads to defective prelamin A processing and causes type B mandibuloacral dysplasia, as well as the lethal neonatal restrictive dermopathy syndrome. Phenotype severity is correlated with the residual enzyme activity of ZMPSTE24 and accumulation of prelamin A. We had previously demonstrated that a complete loss of function in ZMPSTE24 was lethal in the neonatal period, whereas compound heterozygous mutations including one PTC and one missense mutation were associated with type B mandibuloacral dysplasia. In this study, we report a 30-year longitudinal clinical survey of a patient harboring a novel severe and complex phenotype, combining an early-onset progeroid syndrome and a congenital myopathy with fiber-type disproportion. A unique homozygous missense ZMPSTE24 mutation (c.281T>C, p.Leu94Pro) was identified and predicted to produce two possible ZMPSTE24 conformations, leading to a partial loss of function. Western blot analysis revealed a major reduction of ZMPSTE24, together with the presence of unprocessed prelamin A and decreased levels of lamin A, in the patient's primary skin fibroblasts. These cells exhibited significant reductions in lifespan associated with major abnormalities of the nuclear shape and structure. This is the first report of MAD presenting with confirmed myopathic abnormalities associated with ZMPSTE24 defects, extending the clinical spectrum of ZMPSTE24 gene mutations. Moreover, our results suggest that defective prelamin A processing affects muscle regeneration and development, thus providing new insights into the disease mechanism of prelamin A-defective associated syndromes in general. PMID:21267004

  8. Type B mandibuloacral dysplasia with congenital myopathy due to homozygous ZMPSTE24 missense mutation.

    PubMed

    Ben Yaou, Rabah; Navarro, Claire; Quijano-Roy, Susana; Bertrand, Anne T; Massart, Catherine; De Sandre-Giovannoli, Annachiara; Cadiñanos, Juan; Mamchaoui, Kamel; Butler-Browne, Gillian; Estournet, Brigitte; Richard, Pascale; Barois, Annie; Lévy, Nicolas; Bonne, Gisèle

    2011-06-01

    Mutation in ZMPSTE24 gene, encoding a major metalloprotease, leads to defective prelamin A processing and causes type B mandibuloacral dysplasia, as well as the lethal neonatal restrictive dermopathy syndrome. Phenotype severity is correlated with the residual enzyme activity of ZMPSTE24 and accumulation of prelamin A. We had previously demonstrated that a complete loss of function in ZMPSTE24 was lethal in the neonatal period, whereas compound heterozygous mutations including one PTC and one missense mutation were associated with type B mandibuloacral dysplasia. In this study, we report a 30-year longitudinal clinical survey of a patient harboring a novel severe and complex phenotype, combining an early-onset progeroid syndrome and a congenital myopathy with fiber-type disproportion. A unique homozygous missense ZMPSTE24 mutation (c.281T>C, p.Leu94Pro) was identified and predicted to produce two possible ZMPSTE24 conformations, leading to a partial loss of function. Western blot analysis revealed a major reduction of ZMPSTE24, together with the presence of unprocessed prelamin A and decreased levels of lamin A, in the patient's primary skin fibroblasts. These cells exhibited significant reductions in lifespan associated with major abnormalities of the nuclear shape and structure. This is the first report of MAD presenting with confirmed myopathic abnormalities associated with ZMPSTE24 defects, extending the clinical spectrum of ZMPSTE24 gene mutations. Moreover, our results suggest that defective prelamin A processing affects muscle regeneration and development, thus providing new insights into the disease mechanism of prelamin A-defective associated syndromes in general.

  9. Novel cystatin B mutation and diagnostic PCR assay in an Unverricht-Lundborg progressive myoclonus epilepsy patient.

    PubMed

    Bespalova, I N; Adkins, S; Pranzatelli, M; Burmeister, M

    1997-09-19

    Two mutations in the cystatin B gene, a 3' splice mutation and a stop codon mutation, were previously found in patients with progressive myoclonus epilepsy of Unverricht-Lundborg type [Pennacchio et al. (1996): Science 271:1731-1734]. We present here a new mutation 2404deltaTC: a 2-bp deletion within the third exon of the cystatin B gene in an Unverricht-Lundborg patient. This mutation results in a frameshift and consequently premature termination of protein synthesis. Complete sequencing of the coding region and splice junctions of the cystatin B gene showed that neither of the two previously known mutations was present in this patient. The level of cystatin B mRNA in an immortalized cell line was found to be decreased, as had been reported for other Unverricht-Lundborg patients. The new mutation further supports the argument that defects in the cystatin B gene cause the Unverricht-Lundborg form of progressive myoclonus epilepsy. We describe a simple PCR method which can detect the 2404deltaTC deletion. This assay, together with previously described PCR assays for the other two known mutations, should prove useful in confirming clinically difficult diagnoses of Unverricht-Lundborg disease.

  10. A Novel Mutation of the HNF1B Gene Associated With Hypoplastic Glomerulocystic Kidney Disease and Neonatal Renal Failure

    PubMed Central

    Alvelos, Maria Inês; Rodrigues, Magda; Lobo, Luísa; Medeira, Ana; Sousa, Ana Berta; Simão, Carla; Lemos, Manuel Carlos

    2015-01-01

    Abstract Hepatocyte nuclear factor 1 beta (HNF1B) plays an important role in embryonic development, namely in the kidney, pancreas, liver, genital tract, and gut. Heterozygous germline mutations of HNF1B are associated with the renal cysts and diabetes syndrome (RCAD). Affected individuals may present a variety of renal developmental abnormalities and/or maturity-onset diabetes of the young (MODY). A Portuguese 19-month-old male infant was evaluated due to hypoplastic glomerulocystic kidney disease and renal dysfunction diagnosed in the neonatal period that progressed to stage 5 chronic renal disease during the first year of life. His mother was diagnosed with a solitary hypoplastic microcystic left kidney at age 20, with stage 2 chronic renal disease established at age 35, and presented bicornuate uterus, pancreatic atrophy, and gestational diabetes. DNA sequence analysis of HNF1B revealed a novel germline frameshift insertion (c.110_111insC or c.110dupC) in both the child and the mother. A review of the literature revealed a total of 106 different HNF1B mutations, in 236 mutation-positive families, comprising gross deletions (34%), missense mutations (31%), frameshift deletions or insertions (15%), nonsense mutations (11%), and splice-site mutations (8%). The study of this family with an unusual presentation of hypoplastic glomerulocystic kidney disease with neonatal renal dysfunction identified a previously unreported mutation of the HNF1B gene, thereby expanding the spectrum of known mutations associated with renal developmental disorders. PMID:25700310

  11. Universal pattern of RpoB gene mutations among multidrug-resistant isolates of Mycobacterium tuberculosis complex from Africa.

    PubMed

    Schilke, K; Weyer, K; Bretzel, G; Amthor, B; Brandt, J; Sticht-Groh, V; Fourie, P B; Haas, W H

    1999-07-01

    Multidrug-resistant tuberculosis (MDR-TB) presents an increasing burden in Southern Africa. Rapid diagnostic tests for drug resistance to rifampicin have been developed based on mutation analysis of the rpoB gene. However, geographic differences of underlying mutations have recently been suggested. Drug-resistant strains of Mycobacterium tuberculosis complex from Africa were analysed for geographic differences in frequency and location of rpoB mutations. A random sample of rifampicin-resistant strains was collected from 87 patients with pulmonary MDR-TB treated in 12 hospitals from six different regions of South Africa. In addition, 18 isolates of M. tuberculosis complex from Namibia, Sierra Leone, and Uganda, including 13 isolates of M. africanum, were analyzed. Point mutations were detected by direct sequence analysis of the rpoB gene. Missense mutations were identified for 91 isolates (87%). Double mutations were present in eight (8%) MDR-TB isolates, two of which carried one mutation outside a previously described diagnostic region. We found no geographic differences regarding the frequency and pattern of single rpoB gene mutations. Our results confirm that molecular genetic analysis of rifampicin resistance based on a core region within the rpoB gene is universally applicable to strains of M. tuberculosis complex from different geographic regions.

  12. Severe CNS involvement in WWOX mutations: Description of five new cases.

    PubMed

    Tabarki, Brahim; AlHashem, Amal; AlShahwan, Saad; Alkuraya, Fowzan S; Gedela, Satyanarayana; Zuccoli, Giulio

    2015-12-01

    Recently, mutations in WWOX have been identified in the setting of central nervous system (CNS) disorders, highlighting a previously unrevealed role of this gene in the normal development and function of the CNS. In this report, we add five patients from two seemingly unrelated families presenting with a primarily neurological phenotype. All the children were product of consanguineous marriages. Whole exome sequencing revealed the same homozygous mutation (NM_016373.3:c.606-1G>A) of WWOX in all five patients. All patients and carriers in the family share the same haplotype indicating the families are in fact related to one another. The clinical presentation included progressive microcephaly, early onset of spasticity in the first 3 months of life, intractable epilepsy, severe failure to thrive, and profound developmental delay. Retinopathy was observed in two patients. All five patients died before their third birthday. Neuroimaging showed extensive neurodegeneration characterized by periventricular white matter volume loss and atrophy of the corpus callosum. Additional degeneration selectively affecting the mediodorsal nucleus of the thalamus was observed in one patient. Our findings in five new patients affected by WWOX mutation with early infantile phenotype confirm the features of the disease represented by early infantile epileptic encephalopathy. We suggest that neuroimaging in these patients reveals a characteristic pattern of neurodegeneration in which the cerebellum is spared that could help with early diagnosis in the appropriate clinical setting. © 2015 Wiley Periodicals, Inc.

  13. Human genes involved in hepatitis B virus infection.

    PubMed

    Zeng, Zheng

    2014-06-28

    Persistent hepatitis B virus (HBV) infection is a significant public health problem because it is a major cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma (HCC). Roughly one-third of the world population has been infected with HBV and there are about 350 million (5%-6%) persistent carriers. HBV causes 80% of all liver cancer cases and is the second most important carcinogen, after smoking tobacco. There is an approximate 90% risk of becoming a persistent carrier following perinatal infection in infants born to e antigen positive carrier mothers and a 30% risk in pre-school children. Only 5%-10% of adults become persistent carriers following infection. Of individuals persistently infected with HBV, 10%-30% will develop liver cirrhosis and HCC. These highly variable outcomes in both clearance rates and disease outcomes in persistently infected individuals cannot be fully explained by differences in immunological, viral or environmental factors. Thus, differences in host genetic factors may affect the natural history of hepatitis B.

  14. Analysis of the B-RafV600E mutation in cutaneous melanoma patients with occupational sun exposure.

    PubMed

    Candido, Saverio; Rapisarda, Venerando; Marconi, Andrea; Malaponte, Grazia; Bevelacqua, Valentina; Gangemi, Pietro; Scalisi, Aurora; McCubrey, James A; Maestro, Roberta; Spandidos, Demetrios A; Fenga, Concettina; Libra, Massimo

    2014-03-01

    Sun-exposure is one of the risk factors associated with the development of a cutaneous neoplasm. In melanoma, the Ras-Raf-MEK-ERK (MAPK) signaling pathway is constitutively activated through multiple mechanisms, including B-Raf mutation. It has been hypothesized that B-Raf mutations in melanocytic lesions arise from DNA damage induced by ultraviolet (UV) radiation. However, it is still discussed if B-Raf mutations are associated with melanoma patients exposed to the sun. Therefore, in the present study, the known B-RafV600E mutation was analysed in melanoma samples from 30 indoor and 38 outdoor workers. B-RafV600E mutation was detected in 52 and 73% of outdoor workers and indoor workers, respectively. Of note, this mutation was identified in 12 of 14 (85%) melanoma of the trunk diagnosed in indoor workers and in 9 of 19 (47%) samples from outdoor workers (p=0.03). By analyzing melanomas of other body sites, no statistical difference in the frequency of B-RafV600E mutation was identified between the groups of workers. It appears that the mutation detected among indoor workers may be associated with a recreational or intermittent exposure to the sun, as usually the trunk is a sun-protected body site. Overall, these data indicate that the B-RafV600E mutation detected in melanoma is not associated with a chronic exposure to the sun. Mutations detected in other genes may also contribute to melanoma development in the subset of patients exposed to UV radiation.

  15. Analysis of the B-RAFV600E mutation in cutaneous melanoma patients with occupational sun exposure

    PubMed Central

    CANDIDO, SAVERIO; RAPISARDA, VENERANDO; MARCONI, ANDREA; MALAPONTE, GRAZIA; BEVELACQUA, VALENTINA; GANGEMI, PIETRO; SCALISI, AURORA; McCUBREY, JAMES A.; MAESTRO, ROBERTA; SPANDIDOS, DEMETRIOS A.; FENGA, CONCETTINA; LIBRA, MASSIMO

    2014-01-01

    Sun-exposure is one of the risk factors associated with the development of a cutaneous neoplasm. In melanoma, the Ras-Raf-MEK-ERK (MAPK) signaling pathway is constitutively activated through multiple mechanisms, including B-RAF mutation. It has been hypothesized that B-RAF mutations in melanocytic lesions arise from DNA damage induced by ultraviolet (UV) radiation. However, it is still discussed if B-RAF mutations are associated with melanoma patients exposed to the sun. Therefore, in the present study, the known B-RAFV600E mutation was analysed in melanoma samples from 30 indoor and 38 outdoor workers. B-RAFV600E mutation was detected in 52 and 73% of outdoor workers and indoor workers, respectively. Of note, this mutation was identified in 12 of 14 (85%) melanoma of the trunk diagnosed in indoor workers and in 9 of 19 (47%) samples from outdoor workers (p=0.03). By analyzing melanomas of other body sites, no statistical difference in the frequency of B-RAFV600E mutation was identified between the groups of workers. It appears that the mutation detected among indoor workers may be associated with a recreational or intermittent exposure to the sun, as usually the trunk is a sun-protected body site. Overall, these data indicate that the B-RAFV600E mutation detected in melanoma is not associated with a chronic exposure to the sun. Mutations detected in other genes may also contribute to melanoma development in the subset of patients exposed to UV radiation. PMID:24424406

  16. A protein related to prokaryotic UMP kinases is involved in psaA/B transcript accumulation in Arabidopsis.

    PubMed

    Hein, Paul; Stöckel, Jana; Bennewitz, Stefan; Oelmüller, Ralf

    2009-03-01

    Dpt1 (defect in p saA/B transcript accumulation 1) is a novel photosystem (PS) I mutant in Arabidopsis. dpt1 mutants fail to grow photoautotrophically, and are impaired in the accumulation of psaA/B transcripts while the transcript levels for the remaining PSI subunits, for subunits of the PSII, the cyt-b ( 6 )/f-complex, and the ribulose-1,5-bisphosphate carboxylase are comparable to the wild type. In-organello run-on transcription assays demonstrate that the lower psaA/B transcript abundance in dpt1-1 is not caused by the inability to transcribe the psaA/psaB/rps14 operon. psaA/B transcripts in the mutant are associated with polyribosomes and translated. Thus, the mutation affects post-transcriptional processes specific for psaA/B. The dpt1 gene was isolated by map-based cloning. The protein is localized in the stroma of the chloroplast and exhibits striking similarities to UMP kinases of prokaryotic origin. Our results show that the nuclear encoded protein Dpt1 is essential for retaining photosynthetic activity in higher plant chloroplasts and involved in post-transcriptional steps of psaA/B transcript accumulation. We discuss that Dpt1 may be a bifunctional protein that couples the pyrimidine metabolism to the photosynthetic electron transport.

  17. Reconstructing a B-Cell Clonal Lineage. II. Mutation, Selection, and Affinity Maturation

    PubMed Central

    Kepler, Thomas B.; Munshaw, Supriya; Wiehe, Kevin; Zhang, Ruijun; Yu, Jae-Sung; Woods, Christopher W.; Denny, Thomas N.; Tomaras, Georgia D.; Alam, S. Munir; Moody, M. Anthony; Kelsoe, Garnett; Liao, Hua-Xin; Haynes, Barton F.

    2014-01-01

    Affinity maturation of the antibody response is a fundamental process in adaptive immunity during which B-cells activated by infection or vaccination undergo rapid proliferation accompanied by the acquisition of point mutations in their rearranged immunoglobulin (Ig) genes and selection for increased affinity for the eliciting antigen. The rate of somatic hypermutation at any position within an Ig gene is known to depend strongly on the local DNA sequence, and Ig genes have region-specific codon biases that influence the local mutation rate within the gene resulting in increased differential mutability in the regions that encode the antigen-binding domains. We have isolated a set of clonally related natural Ig heavy chain–light chain pairs from an experimentally infected influenza patient, inferred the unmutated ancestral rearrangements and the maturation intermediates, and synthesized all the antibodies using recombinant methods. The lineage exhibits a remarkably uniform rate of improvement of the effective affinity to influenza hemagglutinin (HA) over evolutionary time, increasing 1000-fold overall from the unmutated ancestor to the best of the observed antibodies. Furthermore, analysis of selection reveals that selection and mutation bias were concordant even at the level of maturation to a single antigen. Substantial improvement in affinity to HA occurred along mutationally preferred paths in sequence space and was thus strongly facilitated by the underlying local codon biases. PMID:24795717

  18. Reconstructing a B-Cell Clonal Lineage. II. Mutation, Selection, and Affinity Maturation.

    PubMed

    Kepler, Thomas B; Munshaw, Supriya; Wiehe, Kevin; Zhang, Ruijun; Yu, Jae-Sung; Woods, Christopher W; Denny, Thomas N; Tomaras, Georgia D; Alam, S Munir; Moody, M Anthony; Kelsoe, Garnett; Liao, Hua-Xin; Haynes, Barton F

    2014-01-01

    Affinity maturation of the antibody response is a fundamental process in adaptive immunity during which B-cells activated by infection or vaccination undergo rapid proliferation accompanied by the acquisition of point mutations in their rearranged immunoglobulin (Ig) genes and selection for increased affinity for the eliciting antigen. The rate of somatic hypermutation at any position within an Ig gene is known to depend strongly on the local DNA sequence, and Ig genes have region-specific codon biases that influence the local mutation rate within the gene resulting in increased differential mutability in the regions that encode the antigen-binding domains. We have isolated a set of clonally related natural Ig heavy chain-light chain pairs from an experimentally infected influenza patient, inferred the unmutated ancestral rearrangements and the maturation intermediates, and synthesized all the antibodies using recombinant methods. The lineage exhibits a remarkably uniform rate of improvement of the effective affinity to influenza hemagglutinin (HA) over evolutionary time, increasing 1000-fold overall from the unmutated ancestor to the best of the observed antibodies. Furthermore, analysis of selection reveals that selection and mutation bias were concordant even at the level of maturation to a single antigen. Substantial improvement in affinity to HA occurred along mutationally preferred paths in sequence space and was thus strongly facilitated by the underlying local codon biases.

  19. Complement Factor B Mutations in Atypical Hemolytic Uremic Syndrome—Disease-Relevant or Benign?

    PubMed Central

    Marinozzi, Maria Chiara; Vergoz, Laura; Rybkine, Tania; Ngo, Stephanie; Bettoni, Serena; Pashov, Anastas; Cayla, Mathieu; Tabarin, Fanny; Jablonski, Mathieu; Hue, Christophe; Smith, Richard J.; Noris, Marina; Halbwachs-Mecarelli, Lise; Donadelli, Roberta; Fremeaux-Bacchi, Veronique

    2014-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a genetic ultrarare renal disease associated with overactivation of the alternative pathway of complement. Four gain-of-function mutations that form a hyperactive or deregulated C3 convertase have been identified in Factor B (FB) ligand binding sites. Here, we studied the functional consequences of 10 FB genetic changes recently identified from different aHUS cohorts. Using several tests for alternative C3 and C5 convertase formation and regulation, we identified two gain-of-function and potentially disease-relevant mutations that formed either an overactive convertase (M433I) or a convertase resistant to decay by FH (K298Q). One mutation (R178Q) produced a partially cleaved protein with no ligand binding or functional activity. Seven genetic changes led to near-normal or only slightly reduced ligand binding and functional activity compared with the most common polymorphism at position 7, R7. Notably, none of the algorithms used to predict the disease relevance of FB mutations agreed completely with the experimental data, suggesting that in silico approaches should be undertaken with caution. These data, combined with previously published results, suggest that 9 of 15 FB genetic changes identified in patients with aHUS are unrelated to disease pathogenesis. This study highlights that functional assessment of identified nucleotide changes in FB is mandatory to confirm disease association. PMID:24652797

  20. Screening of CYP1B1 and MYOC in Moroccan families with primary congenital glaucoma: Three novel mutations in CYP1B1

    PubMed Central

    Boutayeb, Soraya; Serrou, Aziza; Refass-Buret, Loubna; Shisseh, Hafsa; Bencherifa, Fatiha; El Mzibri, Mohammed; Benazzouz, Bouchra; Berraho, Amina

    2010-01-01

    Purpose To investigate the contribution of cytochrome P4501B1 (CYP1B1) and myocillin (MYOC) mutations to primary congenital glaucoma (PCG) in Moroccan families. Methods This study included 90 unrelated families with PCG and 100 normal control individuals. Two previously reported CYP1B1 mutations (g.4339delG and p.G61E) were first screened by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The coding exons of CYP1B1 were sequenced in g.4339delG- and p.G61E-negative or heterozygous probands. Then the coding exons of MYOC were sequenced in patients who had no mutation in CYP1B1 or carried heterozygous CYP1B1 mutation. Results Twelve CYP1B1 mutations were identified in 43 PCG pedigrees. Three of them were novel (p.R163C, p.C470Y, and g.4330–4331delTG) and associated with moderate to severe phenotypes. Two novel intronic polymorphisms in CYP1B1 were identified in addition to those previously described. The g.4339delG was the most frequent mutation detected in 31 families (34.44%), followed by the p.G61E in seven families (7.77%). The remaining mutations (p.R163C, p.E173K, g.4330–4331delTG, p.E229K, p.R390S, p.R368H, p.R469W, p.C470Y, and g.7901–7913del13bp) were infrequent. One family with the p.R390S mutation showed both PCG and primary open angle glaucoma (POAG) phenotypes. One proband was heterozygous for p.T193K mutation in MYOC. This mutation has been initially associated with POAG, but never with PCG. Conclusions Our results support that mutations in CYP1B1 are a major cause for PCG in the Moroccan population with a predominance of the g.4339delG mutation. Furthermore, these results demonstrate the diversity of CYP1B1 mutations, while suggesting a modest role of MYOC in Moroccan PCG. PMID:20664688

  1. Evidence for synergistic effects of PRNP and ATP7B mutations in severe neuropsychiatric deterioration

    PubMed Central

    2014-01-01

    Background Wilson’s disease (WD), a rare cause of neuropsychiatric deterioration, is associated with mutations in the ATP7B gene. Prion diseases are also rare causes of neuropsychiatric deterioration that can occur sporadically without an identifiable cause, or can be attributed to mutations in the PRNP gene. Case presentation Here we describe a biological “experiment of nature” in which a patient presented with severe neuropsychiatric decline and strong biochemical evidence of WD. Genetic analysis revealed that he was a compound heterozygote for two ATP7B sequence variants (c.2165dupT, p.Arg723Glufs*32; and c.4039G > A, p.Gly1347Ser), the first having been reported once previously, and the second being novel. In addition, the patient was heterozygous for a PRNP variant, c.160G > A, p.Gly54Ser, that has been reported in a neuropsychiatric patient only once previously in association with a similarly severe clinical course of neuropsychiatric disease and early age of onset, but no accompanying information on ATP7B genotype. Of particular interest was the observation that the patient’s older sister, who carried the same ATP7B genotype and laboratory evidence for biochemical WD but was clinically asymptomatic, lacked the PRNP variant allele. Conclusions We propose that synergism may occur between at least some allelic variants of ATP7B and PRNP, possibly exerted through effects on cellular copper metabolism. PMID:24555712

  2. [Nuclear gene involves in phenotype of non-syndromic deafness associated with mitochondrial 12S rRNA mutation].

    PubMed

    Zhao, Su Ying; Zhang, Hai Jun; Xu, Chun Hong; Shan, Xiang Nian

    2006-02-01

    The human mitochondrial 12S rRNA gene mutation at position 1555 associated with non-syndromic deafness and aminoglycoside-induced deafness. Family of Huaiyin in Jiangsu is one of the biggest non-syndromic deafness family in the world. In this family, deafness is maternally inherited. After establishing immortal lymphoblastoid cell lines of the family by EB virus, we analysed 17 lymphoblastoid cell lines derived, respectively, from symptomatic, asymptomatic and controll members of the family. Compared with control members, symptomatic and asymptomatic members both exhibited significant decreases in the rate of growth as well as in the rates of mitochondrial protein synthesis. But the extent of decreases is different and the severity of mitochondrial defect is related with its clinical phenotype. These results supported that the nuclear factor involves in the phenotypic manifestation of the non-syndromic deafness associated with the A1555G mutation.

  3. Reduced sensitivity to and ras mutation spectrum of N-ethyl-N-nitrosourea-induced thymic lymphomas in adult C.B-17 scid mice.

    PubMed

    Nishimura, M; Kakinuma, S; Wakana, S; Mukaigawara, A; Mita, K; Sado, T; Ogiu, T; Shimada, Y

    2001-09-04

    Scid mice are defective in the ability to repair DNA double strand breaks and, as a consequence, their cells are radiosensitive. Further, they have been shown to be prone to develop thymic lymphomas (TLs) after small doses of ionizing radiation. Little is known, however, on the role of scid mutation in chemical carcinogenesis. To determine if scid mutation increased predisposition to chemical carcinogenesis, we examined both the susceptibility of scid mice to N-ethyl-N-nitrosourea (ENU)-induced lymphomagenesis and the involvement of ras gene activation. Adult female mice at 8 weeks of age were given ENU in their drinking water at 400 ppm for 2-10 weeks. Contrary to expectations, we observed a two to three-fold reduction in TL development in the scid mice. The highest incidence was achieved by ENU treatment for 8 weeks for scid and wild-type C.B-17 mice, of 42 and 85%, respectively (P<0.05). We investigated whether this was attributable to the usage of the ras mutation pathway. There was, however, no significant difference in the frequency and spectrum of K-ras mutation between the scid and wild-type C.B-17 mice. Most of the K-ras mutations were either GGT to GAT transition in codon 12 (11/23: 48%) or CAA to CCA transversion in codon 61 (8/23: 35%) that was independent of scid background. The incidence of N-ras mutation was very low. These results indicate that scid mice are less susceptible to ENU-induced lymphomagenesis and ras gene mutation frequently occurs in both scid and wild-type C.B-17 mice.

  4. Investigating the Impact of Asp181 Point Mutations on Interactions between PTP1B and Phosphotyrosine Substrate

    NASA Astrophysics Data System (ADS)

    Liu, Mengyuan; Wang, Lushan; Sun, Xun; Zhao, Xian

    2014-05-01

    Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling, which suggests that it is an attractive therapeutic target in type II diabetes and obesity. The aim of this research is to explore residues which interact with phosphotyrosine substrate can be affected by D181 point mutations and lead to increased substrate binding. To achieve this goal, molecular dynamics simulations were performed on wild type (WT) and two mutated PTP1B/substrate complexes. The cross-correlation and principal component analyses show that point mutations can affect the motions of some residues in the active site of PTP1B. Moreover, the hydrogen bond and energy decomposition analyses indicate that apart from residue 181, point mutations have influence on the interactions of substrate with several residues in the active site of PTP1B.

  5. Mutations in the Transmembrane Natriuretic Peptide Receptor NPR-B Impair Skeletal Growth and Cause Acromesomelic Dysplasia, Type Maroteaux

    PubMed Central

    Bartels, Cynthia F.; Bükülmez, Hülya; Padayatti, Pius; Rhee, David K.; van Ravenswaaij-Arts, Conny; Pauli, Richard M.; Mundlos, Stefan; Chitayat, David; Shih, Ling-Yu; Al-Gazali, Lihadh I.; Kant, Sarina; Cole, Trevor; Morton, Jenny; Cormier-Daire, Valérie; Faivre, Laurence; Lees, Melissa; Kirk, Jeremy; Mortier, Geert R.; Leroy, Jules; Zabel, Bernhard; Kim, Chong Ae; Crow, Yanick; Braverman, Nancy E.; van den Akker, Focco; Warman, Matthew L.

    2004-01-01

    The homodimeric transmembrane receptor natriuretic peptide receptor B (NPR-B [also known as guanylate cyclase B, GC-B, and GUC2B]; gene name NPR2) produces cytoplasmic cyclic GMP from GTP on binding its extracellular ligand, C-type natriuretic peptide (CNP). CNP has previously been implicated in the regulation of skeletal growth in transgenic and knockout mice. The autosomal recessive skeletal dysplasia known as “acromesomelic dysplasia, type Maroteaux” (AMDM) maps to an interval that contains NPR2. We sequenced DNA from 21 families affected by AMDM and found 4 nonsense mutations, 4 frameshift mutations, 2 splice-site mutations, and 11 missense mutations. Molecular modeling was used to examine the putative protein change brought about by each missense mutation. Three missense mutations were tested in a functional assay and were found to have markedly deficient guanylyl cyclase activity. We also found that obligate carriers of NPR2 mutations have heights that are below the mean for matched controls. We conclude that, although NPR-B is expressed in a number of tissues, its major role is in the regulation of skeletal growth. PMID:15146390

  6. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus.

    PubMed

    Satoda, M; Zhao, F; Diaz, G A; Burn, J; Goodship, J; Davidson, H R; Pierpont, M E; Gelb, B D

    2000-05-01

    Char syndrome is an autosomal dominant trait characterized by patent ductus arteriosus, facial dysmorphism and hand anomalies. Using a positional candidacy strategy, we mapped TFAP2B, encoding a transcription factor expressed in neural crest cells, to the Char syndrome critical region and identified missense mutations altering conserved residues in two affected families. Mutant TFAP2B proteins dimerized properly in vitro, but showed abnormal binding to TFAP2 target sequence. Dimerization of both mutants with normal TFAP2B adversely affected transactivation, demonstrating a dominant-negative mechanism. Our work shows that TFAP2B has a role in ductal, facial and limb development and suggests that Char syndrome results from derangement of neural-crest-cell derivatives.

  7. NF-κB-driven suppression of FOXO3a contributes to EGFR mutation-independent gefitinib resistance.

    PubMed

    Chiu, Ching-Feng; Chang, Yi-Wen; Kuo, Kuang-Tai; Shen, Yu-Shiuan; Liu, Chien-Ying; Yu, Yang-Hao; Cheng, Ching-Chia; Lee, Kang-Yun; Chen, Feng-Chi; Hsu, Min-Kung; Kuo, Tsang-Chih; Ma, Jui-Ti; Su, Jen-Liang

    2016-05-03

    Therapy with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs, such as gefitinib or erlotinib) significantly prolongs survival time for patients with tumors harboring an activated mutation on EGFR; however, up to 40% of lung cancer patients exhibit acquired resistance to EGFR-TKIs with an unknown mechanism. FOXO3a, a transcription factor of the forkhead family, triggers apoptosis, but the mechanistic details involved in EGFR-TKI resistance and cancer stemness remain largely unclear. Here, we observed that a high level of FOXO3a was correlated with EGFR mutation-independent EGFR-TKI sensitivity, the suppression of cancer stemness, and better progression-free survival in lung cancer patients. The suppression of FOXO3a obviously increased gefitinib resistance and enhanced the stem-like properties of lung cancer cells; consistent overexpression of FOXO3a in gefitinib-resistant lung cancer cells reduced these effects. Moreover, we identified that miR-155 targeted the 3'UTR of FOXO3a and was transcriptionally regulated by NF-κB, leading to repressed FOXO3a expression and increased gefitinib resistance, as well as enhanced cancer stemness of lung cancer in vitro and in vivo. Our findings indicate that FOXO3a is a significant factor in EGFR mutation-independent gefitinib resistance and the stemness of lung cancer, and suggest that targeting the NF-κB/miR-155/FOXO3a pathway has potential therapeutic value in lung cancer with the acquisition of resistance to EGFR-TKIs.

  8. Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say-Barber-Biesecker variant of Ohdo syndrome.

    PubMed

    Clayton-Smith, Jill; O'Sullivan, James; Daly, Sarah; Bhaskar, Sanjeev; Day, Ruth; Anderson, Beverley; Voss, Anne K; Thomas, Tim; Biesecker, Leslie G; Smith, Philip; Fryer, Alan; Chandler, Kate E; Kerr, Bronwyn; Tassabehji, May; Lynch, Sally-Ann; Krajewska-Walasek, Malgorzata; McKee, Shane; Smith, Janine; Sweeney, Elizabeth; Mansour, Sahar; Mohammed, Shehla; Donnai, Dian; Black, Graeme

    2011-11-11

    Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS or Ohdo syndrome) is a multiple anomaly syndrome characterized by severe intellectual disability, blepharophimosis, and a mask-like facial appearance. A number of individuals with SBBYSS also have thyroid abnormalities and cleft palate. The condition usually occurs sporadically and is therefore presumed to be due in most cases to new dominant mutations. In individuals with SBBYSS, a whole-exome sequencing approach was used to demonstrate de novo protein-truncating mutations in the highly conserved histone acetyltransferase gene KAT6B (MYST4/MORF)) in three out of four individuals sequenced. Sanger sequencing was used to confirm truncating mutations of KAT6B, clustering in the final exon of the gene in all four individuals and in a further nine persons with typical SBBYSS. Where parental samples were available, the mutations were shown to have occurred de novo. During mammalian development KAT6B is upregulated specifically in the developing central nervous system, facial structures, and limb buds. The phenotypic features seen in the Qkf mouse, a hypomorphic Kat6b mutant, include small eyes, ventrally placed ears and long first digits that mirror the human phenotype. This is a further example of how perturbation of a protein involved in chromatin modification might give rise to a multisystem developmental disorder.

  9. Mutational analysis of hepatitis B virus pre-S1 (9–24) fusogenic peptide

    SciTech Connect

    Liu, Qiushi; Somiya, Masaharu; Shimada, Naohiko; Sakamoto, Wakako; Yoshimoto, Nobuo; Iijima, Masumi; Tatematsu, Kenji; Nakai, Tadashi; Okajima, Toshihide; Maruyama, Atsushi; Kuroda, Shuńichi

    2016-05-27

    A hollow nanoparticle known as a bio-nanocapsule (BNC) consisting of hepatitis B virus (HBV) envelope L protein and liposome (LP) can encapsulate drugs and genes and thereby deliver them in vitro and in vivo to human hepatic tissues, specifically by utilizing the HBV-derived infection machinery. Recently, we identified a low pH-dependent fusogenic domain at the N-terminal part of the pre-S1 region of the HBV L protein (amino acid residues 9 to 24; NPLGFFPDHQLDPAFG), which shows membrane destabilizing activity (i.e., membrane fusion, membrane disruption, and payload release) upon interaction with target LPs. In this study, instead of BNC and HBV, we generated LPs displaying a mutated form of the pre-S1 (9–24) peptide, and performed a membrane disruption assay using target LPs containing pyranine (fluorophore) and p-xylene-bis (N-pyridinium bromide) (DPX) as a quencher. The membrane disruption activity was found to correlate with the hydrophobicity of the whole structure, while the peptide retained a random-coil structure even under low pH condition. One large hydrophobic cluster (I) and one small hydrophobic cluster (II) residing in the peptide would be connected by the protonation of residues D16 and D20, and thereby exhibit strong membrane disruption activity in a low pH-dependent manner. Furthermore, the introduction of a positively charged residue enhanced the activity significantly, suggesting that a sole positively charged residue (H17) may be important for the interaction with target LPs by electrostatic interaction. Collectively, these results suggest that the pre-S1 (9–24) peptide may be involved in the endosomal escape of the BNC's payloads, as well as in the HBV uncoating process. -- Highlights: •Low pH-dependent fusogenic domain of hepatitis B virus pre-S1 region is analyzed. •The domain resides in pre-S1 (9–24) region, exhibiting random-coil structure. •Membrane disruption activity of the domain is mainly driven by its hydrophobicity.

  10. Different attenuated phenotypes of GM2 gangliosidosis variant B in Japanese patients with HEXA mutations at codon 499, and five novel mutations responsible for infantile acute form.

    PubMed

    Tanaka, Akemi; Hoang, Lan Thi Ngcok; Nishi, Yasuaki; Maniwa, Satoshi; Oka, Makio; Yamano, Tsunekazu

    2003-01-01

    Eight mutations of the alpha subunit of beta-hexosaminidase A gene ( HEXA) were identified in eight patients with GM2 gangliosidosis variant B. They were five missense mutations, two splice-site mutations, and one two-base deletion. Five of them, R252L (CGT-->CTT), N295S (AAT-->AAC), W420C (TGG-->TGT), IVS 13, +2A-->C, and del 265-266AC (exon 2), were novel mutations responsible for infantile acute form of GM2 gangliosidosis. Two missense mutations, R499H and R499C, were found in one allele of two patients with attenuated phenotypes. The patient with R499C showed a late infantile form, and the other patient with R499H showed a juvenile form. These two mutations have been reported previously in the patients of other ethnic groups, and they have been known to cause attenuated phenotypes. The milder phenotypes of GM2 gangliosidosis variant B, different from the infantile acute form, have not been reported so far in Japan, and this is the first report of Japanese patients with attenuated phenotypes and their molecular analysis.

  11. Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing | Office of Cancer Genomics

    Cancer.gov

    Abstract: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous cancer comprising at least two molecular subtypes that differ in gene expression and distribution of mutations. Recently, application of genome/exome sequencing and RNA-seq to DLBCL has revealed numerous genes that are recurrent targets of somatic point mutation in this disease.

  12. Family screening for a novel ATP7B gene mutation, c.2335T>G, in the South of Iran

    PubMed Central

    Manoochehri, J; Masoumi Dehshiri, R; Faraji, H; Mohammadi, S; Dastsooz, H; Moradi, T; Rezaei, E; Sadeghi, Kh; Fardaei, M

    2014-01-01

    Background Wilson disease (WD) is a rare autosomal recessive disorder, which leads to copper metabolism, due to mutations in ATP7B gene. The gene responsible for WD consists of 21 exons that span a genomic region of about 80 kb and encodes a copper transporting P-type ATPase (ATP7B), a protein consisting of 1465 amino acids. Identifying mutation in ATP7B gene is important to find carrier individuals for proper counseling. A novel mutation in exon 8 of ATP7B gene, c.2335T>G (p.Trp779Gly), with severe neuropsychiatric condition in the South of Iran, was recently identified. The aim of this study was to screen 120 individuals from a large family using a simple amplification refractory mutation system PCR (ARMS-PCR) for carrier screening in the South of Iran. Materials and Methods 120 individuals from family relatives of an index case in the Nasr Abad, south of Iran, were studied for screening of the c.2335T>G mutation. One patient with homozygous mutation and one homozygous normal individual were used as controls in this experiment. Results Altogether, 16 out of 120 (13.3%) individuals within this region had heterozygous mutation. One individual with homozygote mutation was also identified. Conclusion Identification of carriers in families with affected individuals is of great importance for counseling before marriage. The results of this study can be used for further counseling programs in this population. PMID:24734161

  13. Residues Critical for Duck Hepatitis B Virus Neutralization Are Involved in Host Cell Interaction

    PubMed Central

    Sunyach, Claire; Rollier, Christine; Robaczewska, Magdalena; Borel, Christelle; Barraud, Luc; Kay, Alan; Trépo, Christian; Will, Hans; Cova, Lucyna

    1999-01-01

    To date, no detailed analysis of the neutralization properties of duck hepatitis B virus (DHBV) has been reported, and it is not clear whether any of the known neutralization epitopes correspond to the viral receptor binding site or to sequences involved in the cell entry pathway. We demonstrate here that antibodies directed against two overlapping peptides (amino acids 83 to 97 and 93 to 107), covering the sequences of most DHBV pre-S neutralizing epitopes, both inhibit virus binding to primary duck hepatocytes and neutralize virus infectivity. An extensive mutagenesis of the motif 88WTP90, which is the shortest sequence of the epitope recognized by the virus-neutralizing monoclonal antibody (MAb) 900 was performed in order to define the amino acids involved in these interactions. Single point mutations within this epitope affected neither virus replication nor infectivity but abolished virus neutralization by MAb 900 completely. Interestingly, mutants with two and three consecutive residue replacements (SIP and SIH) within this epitope retained replication competence but were no longer infectious. The loss of infectivity of SIH and SIP mutant particles was associated with significantly reduced binding to primary duck hepatocytes and could be rescued by trans complementation with wild-type pre-S protein. Taken together, these results indicate that each amino acid of the DHBV pre-S sequence 88WTP90 is critical for recognition by the neutralizing MAb 900 and that replacement of the first two or all three residues strongly reduces virus interaction with hepatocytes and abrogates infectivity. These data imply that the motif 88WTP90 contains key residues which are critical for interaction with both the neutralizing MAb and the host cell. PMID:10074101

  14. Involvement of ESCRT-II in hepatitis B virus morphogenesis.

    PubMed

    Stieler, Jens T; Prange, Reinhild

    2014-01-01

    The hepatitis B virus (HBV) is an enveloped DNA virus that replicates via reverse transcription of its pregenomic RNA (pgRNA). Budding of HBV is supposed to occur at intracellular membranes and requires scission functions of the endosomal sorting complex required for transport (ESCRT) provided by ESCRT-III and VPS4. Here, we have investigated the impact of the upstream-acting ESCRT-I and ESCRT-II complexes in HBV morphogenesis. RNA interference knockdown of the ESCRT-I subunits TSG101 and VPS28 did not block, but rather stimulate virus release. In contrast, RNAi-mediated depletion of the ESCRT-II components EAP20, EAP30 and EAP45 greatly reduced virus egress. By analyzing different steps of the HBV maturation pathway, we find that the knockdown of ESCRT-II not only inhibited the production and/or release of enveloped virions, but also impaired intracellular nucleocapsid formation. Transcription/translation studies revealed that the depletion of ESCRT-II neither affected the synthesis and nuclear export of HBV-specific RNAs nor the expression of the viral core and envelope proteins. Moreover, the absence of ESCRT-II had no effects on the assembly capability and integrity of HBV core/capsids. However, the level of encapsidated pgRNA was significantly reduced in ESCRT-II-depleted cells, implicating that ESCRT-II directs steps accompanying the formation of replication-competent nucleocapsids, like e.g. assisting in RNA trafficking and encapsidation. In support of this, the capsid protein was found to interact and colocalize with ESCRT-II subunits in virus-producing cells. Together, these results indicate an essential role for ESCRT-II in the HBV life cycle and suggest that ESCRT-II functions prior to the final HBV budding reaction.

  15. Whole exome sequencing of relapsed/refractory patients expands the repertoire of somatic mutations in diffuse large B-cell lymphoma.

    PubMed

    Mareschal, Sylvain; Dubois, Sydney; Viailly, Pierre-Julien; Bertrand, Philippe; Bohers, Elodie; Maingonnat, Catherine; Jaïs, Jean-Philippe; Tesson, Bruno; Ruminy, Philippe; Peyrouze, Pauline; Copie-Bergman, Christiane; Fest, Thierry; Jo Molina, Thierry; Haioun, Corinne; Salles, Gilles; Tilly, Hervé; Lecroq, Thierry; Leroy, Karen; Jardin, Fabrice

    2016-03-01

    Despite the many efforts already spent to enumerate somatic mutations in diffuse large B-cell lymphoma (DLBCL), previous whole-genome and whole-exome studies conducted on patients of mixed outcomes failed at characterizing the 30% of patients who will relapse or resist current immunochemotherapies. To address this issue, we performed whole-exome sequencing of normal/tumoral DNA pairs in 14 relapsed/refractory (R/R) patients subclassified by full-transcriptome arrays (six activated B-cell like, three germinal center B-cell like, and five primary mediastinal B-cell lymphomas), from the LNH-03 LYSA clinical trial program. Aside from well-known DLBCL features, gene and pathway level recurrence analyses proposed several interesting leads including TBL1XR1 and activating mutations in IRF4 or in the insulin regulation pathway. Sequencing-based copy number analysis defined 23 short recurrently altered regions involving genes such as REL, CDKN2A, HYAL2, and TP53. Moreover, it highlighted mutations in genes such as GNA13, CARD11, MFHAS1, and PCLO as associated with secondary variant allele amplification events. The five primary mediastinal B-cell lymphomas (PMBL), while unexpected in a R/R cohort, showed a significantly higher mutation rate (P = 0.003) and provided many insights on this classical Hodgkin lymphoma related subtype. Novel genes such as XPO1, MFHAS1, and ITPKB were found particularly mutated, along with various cytokine-based signaling pathways. Among these analyses, somatic events in the NF-κB pathway were found preponderant in the three DLBCL subtypes, confirming its major implication in DLBCL aggressiveness and pinpointing several new candidate genes. © 2015 Wiley Periodicals, Inc.

  16. Genotypic Detection of rpoB and katG Gene Mutations Associated with Rifampicin and Isoniazid Resistance in Mycobacterium Tuberculosis Isolates: A Local Scenario (Kelantan).

    PubMed

    Ismail, Nurul-Ain; Ismail, Mohd Fazli; Noor, Siti Suraiya Md; Camalxaman, Siti Nazrina

    2016-01-01

    Drug resistant tuberculosis (DR-TB) remains a public health issue that is of major concern on a global scale. The characterisation of clinical isolates may provide key information regarding the underlying mechanisms of drug resistance, and helps to augment therapeutic options. This study aims to evaluate the frequency of gene mutations associated with Rifampicin (RIF) and Isoniazid (INH) resistance among nine clinical isolates. A total of nine drug resistant Mycobacterium tuberculosis clinical isolates were screened for genetic mutations in rpoB and katusing polymerase chain reaction (PCR) amplification and DNA sequencing. Genotypic analysis was performed to detect the mutations in the sequence of the target genes. Our findings reveal that 80% of the isolates possess mutations at codon 119 (His119Tyr) and 135 (Arg135Trp and Ser135Leu) within the rpoB gene; and 70% possess mutations in the katG gene at codon 238 with amino acid change (Leu238Arg). Findings from this study provide an overview of the current situation of RIF and INH resistance in a hospital Universiti Sains Malaysia (HUSM) located in Kelantan, Malaysia, which could facilitate molecular-based detection methods of drug-resistant strains. Further information regarding the molecular mechanisms involved in resistance in RR-/MDR-TB should be addressed in the near future.

  17. Genotypic Detection of rpoB and katG Gene Mutations Associated with Rifampicin and Isoniazid Resistance in Mycobacterium Tuberculosis Isolates: A Local Scenario (Kelantan)

    PubMed Central

    Ismail, Nurul-Ain; Ismail, Mohd Fazli; Noor, Siti Suraiya MD; Camalxaman, Siti Nazrina

    2016-01-01

    Background Drug resistant tuberculosis (DR-TB) remains a public health issue that is of major concern on a global scale. The characterisation of clinical isolates may provide key information regarding the underlying mechanisms of drug resistance, and helps to augment therapeutic options. This study aims to evaluate the frequency of gene mutations associated with Rifampicin (RIF) and Isoniazid (INH) resistance among nine clinical isolates. Methods A total of nine drug resistant Mycobacterium tuberculosis clinical isolates were screened for genetic mutations in rpoB and katusing polymerase chain reaction (PCR) amplification and DNA sequencing. Genotypic analysis was performed to detect the mutations in the sequence of the target genes. Results Our findings reveal that 80% of the isolates possess mutations at codon 119 (His119Tyr) and 135 (Arg135Trp and Ser135Leu) within the rpoB gene; and 70% possess mutations in the katG gene at codon 238 with amino acid change (Leu238Arg). Conclusion Findings from this study provide an overview of the current situation of RIF and INH resistance in a hospital Universiti Sains Malaysia (HUSM) located in Kelantan, Malaysia, which could facilitate molecular-based detection methods of drug-resistant strains. Further information regarding the molecular mechanisms involved in resistance in RR-/MDR-TB should be addressed in the near future. PMID:27540322

  18. blue cheese Mutations Define a Novel, Conserved Gene Involved in Progressive Neural Degeneration

    PubMed Central

    Finley, Kim D.; Edeen, Philip T.; Cumming, Robert C.; Mardahl-Dumesnil, Michelle D.; Taylor, Barbara J.; Rodriguez, Maria H.; Hwang, Calvin E.; Benedetti, Michael; McKeown, Michael

    2007-01-01

    A common feature of many human neurodegenerative diseases is the accumulation of insoluble ubiquitin-containing protein aggregates in the CNS. Although Drosophila has been helpful in understanding several human neurodegenerative disorders, a loss-of-function mutation has not been identified that leads to insoluble CNS protein aggregates. The study of Drosophila mutations may identify unique components that are associated with human degenerative diseases. The Drosophila blue cheese (bchs) gene defines such a novel degenerative pathway. bchs mutants have a reduced adult life span with the age-dependent formation of protein aggregates throughout the neuropil of the CNS. These inclusions contain insoluble ubiquitinated proteins and amyloid precursor-like protein. Progressive loss of CNS size and morphology along with extensive neuronal apoptosis occurs in aged bchs mutants. BCHS protein is widely expressed in the cytoplasm of CNS neurons and is present over the entire length of axonal projections. BCHS is nearly 3500 amino acids in size, with the last 1000 amino acids consisting of three functional protein motifs implicated in vesicle transport and protein processing. This region along with previously unidentified proteins encoded in the human, mouse, and nematode genomes shows striking homology along the full length of the BCHS protein. The high degree of conservation between Drosophila and human bchs suggests that study of the functional pathway of BCHS and associated mutant phenotype may provide useful insights into human neurodegenerative disorders. PMID:12598614

  19. Exome and genome sequencing of nasopharynx cancer identifies NF-κB pathway activating mutations

    PubMed Central

    Li, Yvonne Y; Chung, Grace T. Y.; Lui, Vivian W. Y.; To, Ka-Fai; Ma, Brigette B. Y.; Chow, Chit; Woo, John K, S.; Yip, Kevin Y.; Seo, Jeongsun; Hui, Edwin P.; Mak, Michael K. F.; Rusan, Maria; Chau, Nicole G.; Or, Yvonne Y. Y.; Law, Marcus H. N.; Law, Peggy P. Y.; Liu, Zoey W. Y.; Ngan, Hoi-Lam; Hau, Pok-Man; Verhoeft, Krista R.; Poon, Peony H. Y.; Yoo, Seong-Keun; Shin, Jong-Yeon; Lee, Sau-Dan; Lun, Samantha W. M.; Jia, Lin; Chan, Anthony W. H.; Chan, Jason Y. K.; Lai, Paul B. S.; Fung, Choi-Yi; Hung, Suet-Ting; Wang, Lin; Chang, Ann Margaret V.; Chiosea, Simion I.; Hedberg, Matthew L.; Tsao, Sai-Wah; van Hasselt, Andrew C.; Chan, Anthony T. C.; Grandis, Jennifer R.; Hammerman, Peter S.; Lo, Kwok-Wai

    2017-01-01

    Nasopharyngeal carcinoma (NPC) is an aggressive head and neck cancer characterized by Epstein-Barr virus (EBV) infection and dense lymphocyte infiltration. The scarcity of NPC genomic data hinders the understanding of NPC biology, disease progression and rational therapy design. Here we performed whole-exome sequencing (WES) on 111 micro-dissected EBV-positive NPCs, with 15 cases subjected to further whole-genome sequencing (WGS), to determine its mutational landscape. We identified enrichment for genomic aberrations of multiple negative regulators of the NF-κB pathway, including CYLD, TRAF3, NFKBIA and NLRC5, in a total of 41% of cases. Functional analysis confirmed inactivating CYLD mutations as drivers for NPC cell growth. The EBV oncoprotein latent membrane protein 1 (LMP1) functions to constitutively activate NF-κB signalling, and we observed mutual exclusivity among tumours with somatic NF-κB pathway aberrations and LMP1-overexpression, suggesting that NF-κB activation is selected for by both somatic and viral events during NPC pathogenesis. PMID:28098136

  20. Effects of hepatitis B virus precore and basal core promoter mutations on the expression of viral antigens: genotype B vs C.

    PubMed

    Liu, C-J; Cheng, H-R; Chen, C-L; Chen, T-C; Tseng, T-C; Wang, Z-L; Chen, P-J; Liu, C-H; Chen, D-S; Kao, J-H

    2011-10-01

    Hepatitis B virus (HBV) genotypes/mutants are known to affect natural outcomes. The virologic differences among HBV genotype, precore and basal core promoter (BCP) mutations were investigated. HBV strains were isolated from 18 hepatitis B e antigen (HBeAg)-positive patients (nine genotype B and nine genotype C). All had precore and BCP wild-type sequences. After cloning of full-length HBV genome, the effects of viral genotype, precore and BCP mutations singly or additively on the expression of viral DNA and antigens were investigated by mutagenesis and transfection assays in Huh7 cells. Significant findings included the following: (i) expression of intracellular core protein increased when precore or BCP mutation was introduced in genotype C strains; (ii) expression of intracellular surface protein was lower in genotype C precore wild-type strain compared with genotype B; (iii) precore mutation was associated with a lower extracellular expression level of HBV DNA; (iv) secretion of hepatitis B surface antigen in genotype C was lower than that in genotype B; and (v) secretion of HBeAg in genotype B was lower than that in genotype C. No additive effect was observed by combining precore and BCP mutations. Hence, HBV genotype and precore/BCP mutations correlate with intrahepatic expression of viral antigens in vitro.

  1. Activating somatic mutations in diffuse large B-cell lymphomas: lessons from next generation sequencing and key elements in the precision medicine era.

    PubMed

    Bohers, Elodie; Mareschal, Sylvain; Bertrand, Philippe; Viailly, Pierre Julien; Dubois, Sydney; Maingonnat, Catherine; Ruminy, Philippe; Tilly, Hervé; Jardin, Fabrice

    2015-05-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma, accounting for 30-40% of newly diagnosed non-Hodgkin lymphomas. Historically, DLBCL has been thought to involve recurrent translocations of the immunoglobulin heavy (IGH) locus and the deregulation of rearranged oncogenes. Whole exome sequencing (WES) of more than 200 DLBCLs has completely redefined the genetic landscape of the disease by identifying recurrent single nucleotide variants and providing new therapeutic opportunities in DLBCL molecular subtypes. Some of these somatic mutations target genes that play a crucial role in B-cell function (B cell receptor [BCR] signaling, nuclear factor κB [NF-κB] pathway, Toll-like receptor [TLR] signaling and phosphatidylinositol 3-kinase [PI3K] pathway), immunity, cell cycle/apoptosis or chromatin modification. In this review, following an overview of the somatic mutations reported in DLBCL, we focus on activating and clustered mutations targeting genes including MYD88, CD79A/B, EZH2 and CARD11 and discuss their clinical and therapeutic relevance in the precision medicine era.

  2. Hot-spot mutations in HBV pre-C region in HBeAg-negative patients with severe hepatitis B.

    PubMed

    Lin, Yu-Long; Hou, Jin-Lin; Wang, Zhan-Hui; Sun, Jian; Yan, Li; Luo, Kang-Xian

    2001-01-01

    OBJECTIVE: To investigate the association of hot-spot mutations in hepatitis B virus (HBV) pre-C region with the occurrence and outcome of severe hepatitis B. METHODS: A total of 68 patients with severe hepatitis B negative for hepatits B e antigen (HBeAg) were enrolled in this study, including 6 cases of acute, 38 cases of subacute and 24 chronic severe hepatitis B, with another 44 HBeAg-positive patients with chronic hepatitis B serving as control. Mismatch PCR and restriction fragment length polymorphism analysis were employed to examine the mutations of T1862 and A1896 in this 2 groups of patients. RESULTS: The mutation rates at A1896 and T1862 were 66.7% (4/6) and 0 (0/6) respectively in acute severe hepatitis B cases, 42.1% (16/38) and 15.8% (6/38) in subacute severe hepatitis, 25.0% (6/24) and 16.7% (4/24) in chronic severe hepatitis, and 45.5% (20/24) and 2.3% (1/44) in chronic hepatitis cases. There were significant differences in terms of T1862 mutation between patients with severe hepatitis and chronic hepatitis (P<0.01). CONCLUSION: T1862 mutation is closely related to the exacerbation of chronic hepatitis, while the role of A1896 mutation in this process requires further investigation.

  3. Comparison of Detection Rate and Mutational Pattern of Drug-Resistant Mutations Between a Large Cohort of Genotype B and Genotype C Hepatitis B Virus-Infected Patients in North China.

    PubMed

    Li, Xiaodong; Liu, Yan; Xin, Shaojie; Ji, Dong; You, Shaoli; Hu, Jinhua; Zhao, Jun; Wu, Jingjing; Liao, Hao; Zhang, Xin-Xin; Xu, Dongping

    2017-06-01

    The study aimed to investigate the association of prevalent genotypes in China (HBV/C and HBV/B) with HBV drug-resistant mutations. A total of 13,847 nucleos(t)ide analogue (NA)-treated patients with chronic HBV infection from North China were enrolled. HBV genotypes and resistant mutations were determined by direct sequencing and confirmed by clonal sequencing if necessary. HBV/B, HBV/C, and HBV/D occupied 14.3%, 84.9%, and 0.8% across the study population, respectively. NA usage had no significant difference between HBV/B- and HBV/C-infected patients. Lamivudine-resistant mutations were more frequently detected in HBV/C-infected patients, compared with HBV/B-infected patients (31.67% vs. 25.26%, p < 0.01). Adefovir- and entecavir-resistant mutation detection rates were similar, but the mutational pattern was different between the two genotypes. For adefovir-resistant mutations, HBV/C-infected patients had a higher detection rate of rtA181 V (HBV/C 5.29% vs. HBV/B 1.36%, p < 0.01) and a lower detection rate of rtN236T (2.70% vs. 6.54%, p < 0.01). For entecavir-resistant mutations, HBV/C-infected patients had a higher detection rate of rtM204 V/I+T184 substitution or S202G/C (3.66% vs. 2.16%, p < 0.01) and a lower detection rate of rtM204 V/I+M250 V/I/L substitution (0.67% vs. 1.46%, p < 0.01). Multidrug-resistant mutations (defined as coexistence of mutation to nucleoside and nucleotide analogues) were detected in 104 patients. HBV/C-infected patients had a higher detection rate of multidrug-resistant mutation than HBV/B-infected patients (0.83% vs. 0.35%, p < 0.05). The study for the first time clarified that HBV/C-infected patients had a higher risk to develop multidrug-resistant mutations, compared with HBV/B-infected patients; and HBV/C- and HBV/B-infected patients had different inclinations in the ETV-resistant mutational pattern.

  4. Overview of hepatitis B virus mutations and their implications in the management of infection.

    PubMed

    Caligiuri, Patrizia; Cerruti, Rita; Icardi, Giancarlo; Bruzzone, Bianca

    2016-01-07

    Hepatitis B virus (HBV) affects approximately two billion people worldwide and more than 240 million people in the world are currently chronic carrier that could develop serious complications in the future, like liver cirrhosis and hepatocellular carcinoma. Although an extended HBV immunization program is being carried out since the early '80s, representing effective preventive measure, leading to a dramatic reduction of HBV hepatitis incidence, globally HBV infection still represents a major public health problem. The HBV virus is a DNA virus belongs to the Hepadnaviridae family. The HBV-DNA is a circular, partial double strand genome. All coding information is on the minus DNA strand and it is organized into four open reading frames. Despite hepatitis B virus is a DNA virus, it has a high mutation rate due to its replicative strategy, that leads to the production of many non-identical variants at each cycle of replication. In fact, it contains a polymerase without the proofreading activity, and uses an RNA intermediate (pgRNA) during its replication, so error frequencies are comparable to those seen in retroviruses and other RNA viruses rather than in more stable DNA viruses. Due to the low fidelity of the polymerase, the high replication rate and the overlapping reading frames, mutations occur throughout the genome and they have been identified both in the structural and not structural gene. The arise of mutations being to develop of a whole of viral variants called "quasi-species" and the prevalent population, which favors virus replication, was selected by viral fitness, host's immune pressure and external pressure, i.e., vaccination or antiviral therapy. Naturally occurring mutations were found both in acute and chronic subjects. In the present review we examine and discuss the most recent available data about HBV genetic variability and its significance.

  5. Overview of hepatitis B virus mutations and their implications in the management of infection

    PubMed Central

    Caligiuri, Patrizia; Cerruti, Rita; Icardi, Giancarlo; Bruzzone, Bianca

    2016-01-01

    Hepatitis B virus (HBV) affects approximately two billion people worldwide and more than 240 million people in the world are currently chronic carrier that could develop serious complications in the future, like liver cirrhosis and hepatocellular carcinoma. Although an extended HBV immunization program is being carried out since the early ‘80s, representing effective preventive measure, leading to a dramatic reduction of HBV hepatitis incidence, globally HBV infection still represents a major public health problem. The HBV virus is a DNA virus belongs to the Hepadnaviridae family. The HBV-DNA is a circular, partial double strand genome. All coding information is on the minus DNA strand and it is organized into four open reading frames. Despite hepatitis B virus is a DNA virus, it has a high mutation rate due to its replicative strategy, that leads to the production of many non-identical variants at each cycle of replication. In fact, it contains a polymerase without the proofreading activity, and uses an RNA intermediate (pgRNA) during its replication, so error frequencies are comparable to those seen in retroviruses and other RNA viruses rather than in more stable DNA viruses. Due to the low fidelity of the polymerase, the high replication rate and the overlapping reading frames, mutations occur throughout the genome and they have been identified both in the structural and not structural gene. The arise of mutations being to develop of a whole of viral variants called “quasi-species” and the prevalent population, which favors virus replication, was selected by viral fitness, host’s immune pressure and external pressure, i.e., vaccination or antiviral therapy. Naturally occurring mutations were found both in acute and chronic subjects. In the present review we examine and discuss the most recent available data about HBV genetic variability and its significance. PMID:26755866

  6. A point mutation in influenza B neuraminidase confers resistance to peramivir and loss of slow binding.

    PubMed

    Baum, Ellen Z; Wagaman, Pamela C; Ly, Linh; Turchi, Ignatius; Le, Jianhua; Bucher, Doris; Bush, Karen

    2003-06-01

    The influenza neuraminidase (NA) inhibitors peramivir, oseltamivir, and zanamivir are potent inhibitors of NAs from both influenza A and B strains. In general, these inhibitors are slow, tight binders of NA, exhibiting time-dependent inhibition. A mutant of influenza virus B/Yamagata/16/88 which was resistant to peramivir was generated by passage of the virus in tissue culture, in the presence of increasing concentrations (0.1-120 microM over 15 passages) of the compound. Whereas the wild type (WT) virus was inhibited by peramivir with an EC(50) value of 0.10 microM, virus isolated at passages 3 and 15 displayed EC(50) values of 10 and >50 microM, respectively. Passage 3 virus contained 3 hemagglutinin (HA) mutations, but no NA mutation. Passage 15 (P15R) virus contained an additional 3 HA mutations, plus the NA mutation His273Tyr. The mechanism of inhibition of WT and P15R NA by peramivir was examined in enzyme assays. The WT and P15R NAs displayed IC(50) values of 8.4+/-0.4 and 127+/-16 nM, respectively, for peramivir. Peramivir inhibited the WT enzyme in a time-dependent fashion, with a K(i) value of 0.066+/-0.002nM. In contrast, the P15R enzyme did not display the property of slow binding and was inhibited competitively with a K(i) value of 4.69+/-0.44nM. Molecular modeling suggested that His273 was relatively distant from peramivir (>5A) in the NA active site, but that Tyr273 introduced a repulsive interaction between the enzyme and inhibitor, which may have been responsible for peramivir resistance.

  7. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations.

    PubMed

    Wang, Yi; Ma, Cindy S; Ling, Yun; Bousfiha, Aziz; Camcioglu, Yildiz; Jacquot, Serge; Payne, Kathryn; Crestani, Elena; Roncagalli, Romain; Belkadi, Aziz; Kerner, Gaspard; Lorenzo, Lazaro; Deswarte, Caroline; Chrabieh, Maya; Patin, Etienne; Vincent, Quentin B; Müller-Fleckenstein, Ingrid; Fleckenstein, Bernhard; Ailal, Fatima; Quintana-Murci, Lluis; Fraitag, Sylvie; Alyanakian, Marie-Alexandra; Leruez-Ville, Marianne; Picard, Capucine; Puel, Anne; Bustamante, Jacinta; Boisson-Dupuis, Stéphanie; Malissen, Marie; Malissen, Bernard; Abel, Laurent; Hovnanian, Alain; Notarangelo, Luigi D; Jouanguy, Emmanuelle; Tangye, Stuart G; Béziat, Vivien; Casanova, Jean-Laurent

    2016-10-17

    Combined immunodeficiency (CID) refers to inborn errors of human T cells that also affect B cells because of the T cell deficit or an additional B cell-intrinsic deficit. In this study, we report six patients from three unrelated families with biallelic loss-of-function mutations in RLTPR, the mouse orthologue of which is essential for CD28 signaling. The patients have cutaneous and pulmonary allergy, as well as a variety of bacterial and fungal infectious diseases, including invasive tuberculosis and mucocutaneous candidiasis. Proportions of circulating regulatory T cells and memory CD4(+) T cells are reduced. Their CD4(+) T cells do not respond to CD28 stimulation. Their CD4(+) T cells exhibit a "Th2" cell bias ex vivo and when cultured in vitro, contrasting with the paucity of "Th1," "Th17," and T follicular helper cells. The patients also display few memory B cells and poor antibody responses. This B cell phenotype does not result solely from the T cell deficiency, as the patients' B cells fail to activate NF-κB upon B cell receptor (BCR) stimulation. Human RLTPR deficiency is a CID affecting at least the CD28-responsive pathway in T cells and the BCR-responsive pathway in B cells. © 2016 Wang et al.

  8. Destabilization of the IFT-B cilia core complex due to mutations in IFT81 causes a Spectrum of Short-Rib Polydactyly Syndrome

    PubMed Central

    Duran, Ivan; Taylor, S. Paige; Zhang, Wenjuan; Martin, Jorge; Forlenza, Kimberly N.; Spiro, Rhonda P.; Nickerson, Deborah A.; Bamshad, Michael; Cohn, Daniel H.; Krakow, Deborah

    2016-01-01

    Short-rib polydactyly syndromes (SRPS) and Asphyxiating thoracic dystrophy (ATD) or Jeune Syndrome are recessively inherited skeletal ciliopathies characterized by profound skeletal abnormalities and are frequently associated with polydactyly and multiorgan system involvement. SRPS are produced by mutations in genes that participate in the formation and function of primary cilia and usually result from disruption of retrograde intraflagellar (IFT) transport of the cilium. Herein we describe a new spectrum of SRPS caused by mutations in the gene IFT81, a key component of the IFT-B complex essential for anterograde transport. In mutant chondrocytes, the mutations led to low levels of IFT81 and mutant cells produced elongated cilia, had altered hedgehog signaling, had increased post-translation modification of tubulin, and showed evidence of destabilization of additional anterograde transport complex components. These findings demonstrate the importance of IFT81 in the skeleton, its role in the anterograde transport complex, and expand the number of loci associated with SRPS. PMID:27666822

  9. Destabilization of the IFT-B cilia core complex due to mutations in IFT81 causes a Spectrum of Short-Rib Polydactyly Syndrome.

    PubMed

    Duran, Ivan; Taylor, S Paige; Zhang, Wenjuan; Martin, Jorge; Forlenza, Kimberly N; Spiro, Rhonda P; Nickerson, Deborah A; Bamshad, Michael; Cohn, Daniel H; Krakow, Deborah

    2016-09-26

    Short-rib polydactyly syndromes (SRPS) and Asphyxiating thoracic dystrophy (ATD) or Jeune Syndrome are recessively inherited skeletal ciliopathies characterized by profound skeletal abnormalities and are frequently associated with polydactyly and multiorgan system involvement. SRPS are produced by mutations in genes that participate in the formation and function of primary cilia and usually result from disruption of retrograde intraflagellar (IFT) transport of the cilium. Herein we describe a new spectrum of SRPS caused by mutations in the gene IFT81, a key component of the IFT-B complex essential for anterograde transport. In mutant chondrocytes, the mutations led to low levels of IFT81 and mutant cells produced elongated cilia, had altered hedgehog signaling, had increased post-translation modification of tubulin, and showed evidence of destabilization of additional anterograde transport complex components. These findings demonstrate the importance of IFT81 in the skeleton, its role in the anterograde transport complex, and expand the number of loci associated with SRPS.

  10. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes.

    PubMed

    Tanaka, Yukinori; Kasahara, Ken; Hirose, Yutaka; Murakami, Kiriko; Kugimiya, Rie; Ochi, Kozo

    2013-07-01

    A subset of rifampin resistance (rpoB) mutations result in the overproduction of antibiotics in various actinomycetes, including Streptomyces, Saccharopolyspora, and Amycolatopsis, with H437Y and H437R rpoB mutations effective most frequently. Moreover, the rpoB mutations markedly activate (up to 70-fold at the transcriptional level) the cryptic/silent secondary metabolite biosynthetic gene clusters of these actinomycetes, which are not activated under general stressful conditions, with the exception of treatment with rare earth elements. Analysis of the metabolite profile demonstrated that the rpoB mutants produced many metabolites, which were not detected in the wild-type strains. This approach utilizing rifampin resistance mutations is characterized by its feasibility and potential scalability to high-throughput studies and would be useful to activate and to enhance the yields of metabolites for discovery and biochemical characterization.

  11. Differences in resistance mutations among HIV-1 non-subtype B infections: a systematic review of evidence (1996–2008)

    PubMed Central

    2009-01-01

    Ninety percent of HIV-1-infected people worldwide harbour non-subtype B variants of HIV-1. Yet knowledge of resistance mutations in non-B HIV-1 and their clinical relevance is limited. Although a few reviews, editorials and perspectives have been published alluding to this lack of data among non-B subtypes, no systematic review has been performed to date. With this in mind, we conducted a systematic review (1996–2008) of all published studies performed on the basis of non-subtype B HIV-1 infections treated with antiretroviral drugs that reported genotype resistance tests. Using an established search string, 50 studies were deemed relevant for this review. These studies reported genotyping data from non-B HIV-1 infections that had been treated with either reverse transcriptase inhibitors or protease inhibitors. While most major resistance mutations in subtype B were also found in non-B subtypes, a few novel mutations in non-B subtypes were recognized. The main differences are reflected in the discoveries that: (i) the non-nucleoside reverse transcriptase inhibitor resistance mutation, V106M, has been seen in subtype C and CRF01_AE, but not in subtype B, (ii) the protease inhibitor mutations L89I/V have been reported in C, F and G subtypes, but not in B, (iii) a nelfinavir selected non-D30N containing pathway predominated in CRF01_AE and CRF02_AG, while the emergence of D30N is favoured in subtypes B and D, (iv) studies on thymidine analog-treated subtype C infections from South Africa, Botswana and Malawi have reported a higher frequency of the K65R resistance mutation than that typically seen with subtype B. Additionally, some substitutions that seem to impact non-B viruses differentially are: reverse transcriptase mutations G196E, A98G/S, and V75M; and protease mutations M89I/V and I93L. Polymorphisms that were common in non-B subtypes and that may contribute to resistance tended to persist or become more frequent after drug exposure. Some, but not all, are

  12. Mild recurrent neuropathy in CMT1B with a novel nonsense mutation in the extracellular domain of the MPZ gene

    PubMed Central

    Lagueny, A; Latour, P; Vital, A; Le Masson, G; Rouanet, M; Ferrer, X; Vital, C; Vandenberghe, A

    2001-01-01

    Clinical, electrophysiological, and neuropathological features are reported associated with a novel heterozygote point mutation in the extracellular domain of the MPZ gene, where a transversion at codon 71 in exon 3 leads to a codon stop: Glu71stop (ie GAA→TAA). A 36 year old woman developed a mild recurrent neuropathy after intensive manual work. The motor nerve conduction velocities were slow without conduction blocks and the nerve biopsy showed signs of demyelination-remyelination, axonal loss, and regular uncompacted myelin lamellae. She inherited the mutation from her father who displayed the same mutation with a normal phenotype. This nonsense mutation may cause a dosage difference of normal P0, and is probably underrepresented in the current mutation data bases. This report further extends the phenotype of MPZ mutations and also emphasises that mild phenotype of CMT1B may be more frequent than has been appreciated.

 PMID:11160475

  13. Biallelic Mutation of ARHGEF18, Involved in the Determination of Epithelial Apicobasal Polarity, Causes Adult-Onset Retinal Degeneration.

    PubMed

    Arno, Gavin; Carss, Keren J; Hull, Sarah; Zihni, Ceniz; Robson, Anthony G; Fiorentino, Alessia; Hardcastle, Alison J; Holder, Graham E; Cheetham, Michael E; Plagnol, Vincent; Moore, Anthony T; Raymond, F Lucy; Matter, Karl; Balda, Maria S; Webster, Andrew R

    2017-02-02

    Mutations in more than 250 genes are implicated in inherited retinal dystrophy; the encoded proteins are involved in a broad spectrum of pathways. The presence of unsolved families after highly parallel sequencing strategies suggests that further genes remain to be identified. Whole-exome and -genome sequencing studies employed here in large cohorts of affected individuals revealed biallelic mutations in ARHGEF18 in three such individuals. ARHGEF18 encodes ARHGEF18, a guanine nucleotide exchange factor that activates RHOA, a small GTPase protein that is a key component of tight junctions and adherens junctions. This biological pathway is known to be important for retinal development and function, as mutation of CRB1, encoding another component, causes retinal dystrophy. The retinal structure in individuals with ARHGEF18 mutations resembled that seen in subjects with CRB1 mutations. Five mutations were found on six alleles in the three individuals: c.808A>G (p.Thr270Ala), c.1617+5G>A (p.Asp540Glyfs(∗)63), c.1996C>T (p.Arg666(∗)), c.2632G>T (p.Glu878(∗)), and c.2738_2761del (p.Arg913_Glu920del). Functional tests suggest that each disease genotype might retain some ARHGEF18 activity, such that the phenotype described here is not the consequence of nullizygosity. In particular, the p.Thr270Ala missense variant affects a highly conserved residue in the DBL homology domain, which is required for the interaction and activation of RHOA. Previously, knock-out of Arhgef18 in the medaka fish has been shown to cause larval lethality which is preceded by retinal defects that resemble those seen in zebrafish Crumbs complex knock-outs. The findings described here emphasize the peculiar sensitivity of the retina to perturbations of this pathway, which is highlighted as a target for potential therapeutic strategies. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Investigation of Somatic GNAQ, GNA11, BAP1 and SF3B1 Mutations in Ophthalmic Melanocytomas.

    PubMed

    Francis, Jasmine H; Wiesner, Thomas; Milman, Tatyana; Won, Helen H; Lin, Amy; Lee, Vivian; Albert, Daniel M; Folberg, Robert; Berger, Michael F; Char, Devron H; Marr, Brian; Abramson, David H

    2016-04-01

    The aim of this study was to use massively parallel DNA sequencing to identify GNAQ/11, BAP1 and SF3B1 mutations in ophthalmic melanocytoma. Six ophthalmic melanocytoma specimens (1 iridociliary and 5 optic nerve) were profiled for genomic alterations in GNAQ/11, BAP1 and SF3B1 using a custom deep sequencing assay. This assay uses solution phase hybridization-based exon capture and deep-coverage massively parallel DNA sequencing to interrogate all protein-coding exons and select introns. The only iridociliary melanocytoma showed a mutation in GNAQ but not in BAP1. Of the 2 optic-nerve melanocytomas that developed into melanoma, one had a GNAQ mutation and both a BAP1 mutation and monosomy 3. The remaining 3 optic-nerve melanocytomas did not reveal mutations in GNAQ/11 or BAP1. SF3B1 mutations were not detected in any specimen. The presence of GNAQ mutation in some iridociliary and optic-nerve melanocytomas suggests a possible relationship between ophthalmic melanocytoma and other ophthalmic melanocytic neoplasms. BAP1 mutation may accompany the transformation of ophthalmic melanocytoma to melanoma.

  15. B-cell receptor configuration and mutational analysis of patients with chronic lymphocytic leukaemia and trisomy 12 reveal recurrent molecular abnormalities.

    PubMed

    Falisi, Erika; Novella, Elisabetta; Visco, Carlo; Guercini, Nicola; Maura, Francesco; Giaretta, Ilaria; Pomponi, Fabrizio; Nichele, Ilaria; Finotto, Silvia; Montaldi, Annamaria; Neri, Antonino; Rodeghiero, Francesco

    2014-03-01

    Trisomy 12 (+12) is the third most frequent cytogenetic aberration in chronic lymphocytic leukaemia (CLL) retrievable both as the sole chromosomal abnormality or in association with additional alterations. NOTCH1 mutations are known to be more prevalent among +12 patients, whereas mutations of FBXW7, a gene involved in NOTCH1 degradation, that lead to the constitutional activation of NOTCH1 have not been investigated in this setting. We analyzed a unicentric cohort of 44 +12 patients with CLL for mutations of TP53, NOTCH1 and FBXW7 genes, and we correlated them with B-cell receptor (BCR) configurations. FBXW7, TP53 and NOTCH1 mutations were identified in 4.5%, 6.8% and 18.2% of patients, respectively. FBXW7 and NOTCH1 mutations appeared in a mutually exclusive fashion, suggesting that both aberrations might affect the same biological pathway. We found that 44.1% of +12 CLL patients had stereotyped B-cell receptors, which is significantly higher than that observed in patients with CLL and no +12 (27%, p = 0.01). Subsets #1, #8, #10, #28 and #59 were the most represented stereotyped patterns, and IGHV4-39*01 was the gene configuration most commonly used. There was a significantly higher risk for Richter's syndrome (RS) transformation in patients with NOTCH1 or FBXW7 mutations, with four of the seven (57%) patients developing RS and characterized at least by one of the two abnormalities. These observations suggest that, similarly to the aberrations of NOTCH1, FBXW7 gene mutations may also result in cell proliferation and evasion from apoptosis in patients with +12 CLL. Together with the extremely high frequency of stereotyped BCRs and RS transformation, these abnormalities appear to cluster in these CLL patients with additional chromosome 12, suggesting a connection with the prognosis of the disease.

  16. CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro.

    PubMed

    van der Zee, Julie; Urwin, Hazel; Engelborghs, Sebastiaan; Bruyland, Marc; Vandenberghe, Rik; Dermaut, Bart; De Pooter, Tim; Peeters, Karin; Santens, Patrick; De Deyn, Peter P; Fisher, Elizabeth M; Collinge, John; Isaacs, Adrian M; Van Broeckhoven, Christine

    2008-01-15

    The charged multivesicular body protein 2B gene (CHMP2B) was recently associated with frontotemporal lobar degeneration (FTLD) linked to chromosome 3 in a Danish FTLD family (FTD-3). In this family, a mutation in the acceptor splice site of exon 6 produced two aberrant transcripts predicting two C-truncated CHMP2B proteins due to a read through of intron 5 (p.Met178ValfsX2) and a cryptic splicing event within exon 6 (p.Met178LeufsX30). Extensive mutation analysis of CHMP2B in Belgian patients (N = 146) identified one nonsense mutation in exon 5 (c.493C>T) in a familial FTLD patient, predicting a C-truncated protein p.Gln165X analogous to the Danish mutant proteins. Overexpression of Belgian p.Gln165X in human neuroblastoma SK-N-SH cells showed the formation of large, aberrant endosomal structures that were highly similar to those observed for Danish p.Met178ValfsX2. Together, these data suggest that C-truncating mutations in CHMP2B might underlie the pathogenic mechanism in FTLD by disturbing endosome function. We also describe a missense mutation in exon 5 of CHMP2B (p.Asn143Ser) in a familial patient with cortical basal degeneration. However, the pathogenic character of this mutation remains elusive.

  17. Precursor B-lymphoblastic lymphoma involving an intracardiac mass and myocardial infiltration: a case report.

    PubMed

    Manabe, Masahiro; Yoshii, Yumi; Mukai, Satoru; Sakamoto, Erina; Kanashima, Hiroshi; Nakao, Takafumi; Kubo, Yuki; Fukushima, Hiroko; Inoue, Takeshi; Yamane, Takahisa; Teshima, Hirofumi

    2012-01-01

    We report the case of a 17-year-old man with precursor B-lymphoblastic lymphoma involving an intracardiac mass and myocardial infiltration. Intensified chemotherapy followed by autologous peripheral blood stem cell transplantation resulted in long-term complete remission for over 5 years. As the most frequent sites of B-lymphoblastic lymphoma involvement are the skin, soft tissue, bone, and lymph nodes, reports of cases harboring cardiac involvement are relatively few. This is a rare case of B-lymphoblastic lymphoma displaying cardiac involvement, in which cardiac infiltration was one of the initial manifestations.

  18. Impact of "a" determinant mutations on detection of hepatitis B surface antigen (HBsAg) in HBV strains from Chinese patients with occult hepatitis B.

    PubMed

    Huang, Xiangyan; Ma, Chenyun; Zhang, Qiang; Shi, Qingfen; Huang, Tao; Liu, Chao; Li, Jie; Hollinger, F Blaine

    2017-10-01

    This study was designed to detect mutations that occur within the "a" determinant in the S gene of the hepatitis B virus (HBV) in patients with occult hepatitis B (OHB), and to analyze the influence of these mutations on expression and reactivity of the hepatitis B surface antigen (HBsAg). Twenty-three certified OHB samples were compared to 32 HBsAg positive samples from patients with chronic hepatitis B. The median HBV DNA levels in the OHB group were significantly lower than those in the control group (P < 0.0001). Mutations within the "a" determinant were analyzed by gene amplification and sequencing. This revealed mixed infections in which clones within a sample displayed either different mutations or mutations in association with clones that exhibited wild type amino acid patterns. Sequencing analysis also showed a significant difference between the proportions of amino acid mutations observed in the OHB and control groups. Seven recombinant S (rS) proteins with corresponding OHB mutations and three wild type alleles were expressed and purified in the Pichia pastoris expression system to preserve conformational attributes, and their reactivity analyzed using six commercial HBsAg assays. The OHB sera were HBsAg nonreactive while the rS proteins with corresponding OHB mutations were universally reactive. Thus, we postulate that the reduced binding affinity between mutated HBsAg and its antibody may not be as important in defining OHB as is the effect of specific mutations in the preS/S region of the genome that affect the synthesis and secretion of the S protein and/or the virion. © 2017 Wiley Periodicals, Inc.

  19. Mutation of Fnip1 is associated with B-cell deficiency, cardiomyopathy, and elevated AMPK activity

    PubMed Central

    Siggs, Owen M.; Stockenhuber, Alexander; Deobagkar-Lele, Mukta; Bull, Katherine R.; Crockford, Tanya L.; Kingston, Bethany L.; Crawford, Greg; Anzilotti, Consuelo; Steeples, Violetta; Ghaffari, Sahar; Czibik, Gabor; Bellahcene, Mohamed; Watkins, Hugh; Ashrafian, Houman; Davies, Benjamin; Woods, Angela; Carling, David; Yavari, Arash; Beutler, Bruce; Cornall, Richard J.

    2016-01-01

    Folliculin (FLCN) is a tumor-suppressor protein mutated in the Birt–Hogg–Dubé (BHD) syndrome, which associates with two paralogous proteins, folliculin-interacting protein (FNIP)1 and FNIP2, forming a complex that interacts with the AMP-activated protein kinase (AMPK). Although it is clear that this complex influences AMPK and other metabolic regulators, reports of its effects have been inconsistent. To address this issue, we created a recessive loss-of-function variant of Fnip1. Homozygous FNIP1 deficiency resulted in profound B-cell deficiency, partially restored by overexpression of the antiapoptotic protein BCL2, whereas heterozygous deficiency caused a loss of marginal zone B cells. FNIP1-deficient mice developed cardiomyopathy characterized by left ventricular hypertrophy and glycogen accumulation, with close parallels to mice and humans bearing gain-of-function mutations in the γ2 subunit of AMPK. Concordantly, γ2-specific AMPK activity was elevated in neonatal FNIP1-deficient myocardium, whereas AMPK-dependent unc-51–like autophagy activating kinase 1 (ULK1) phosphorylation and autophagy were increased in FNIP1-deficient B-cell progenitors. These data support a role for FNIP1 as a negative regulator of AMPK. PMID:27303042

  20. Complexity of the Class B Phenotype in Autosomal Dominant Retinitis Pigmentosa Due to Rhodopsin Mutations

    PubMed Central

    Jacobson, Samuel G.; McGuigan, David B.; Sumaroka, Alexander; Roman, Alejandro J.; Gruzensky, Michaela L.; Sheplock, Rebecca; Palma, Judy; Schwartz, Sharon B.; Aleman, Tomas S.; Cideciyan, Artur V.

    2016-01-01

    Purpose Previously, patients with RHO mutations and a class A phenotype were found to have severe early-onset loss of rod function, whereas patients with a class B phenotype retained rod function at least in certain retinal regions. Here class B patients were studied at different disease stages to understand the topographic details of the phenotype in preparation for therapies of this regionalized retinopathy. Methods A cohort of patients with RHO mutations and class B phenotype (n = 28; ages 10–80 years) were studied with rod and cone perimetry and optical coherence tomography (OCT). Results At least three components of the phenotype were identified in these cross-sectional studies. Patients could have hemifield dysfunction, pericentral loss of function, or a diffuse rod sensitivity loss across the visual field. Combinations of these different patterns were also found. Colocalized photoreceptor layer thicknesses were in agreement with the psychophysical results. Conclusions These disorders with regional retinal variation of severity require pre-evaluations before enrollment into clinical trials to seek answers to questions about where in the retina would be appropriate to deliver focal treatments, and, for retina-wide treatment strategies, where in the retina should be monitored for therapeutic efficacy (or safety). PMID:27654411

  1. CYP1B1 gene analysis in primary congenital glaucoma Brazilian patients: novel mutations and association with poor prognosis.

    PubMed

    Della Paolera, Maurício; de Vasconcellos, José Paulo Cabral; Umbelino, Cristiano Caixeta; Kasahara, Niro; Rocha, Mylene Neves; Richeti, Flávio; Costa, Vital Paulino; Tavares, Anderson; de Melo, Mônica Barbosa

    2010-03-01

    To determine the spectrum of CYP1B1 gene mutations in Brazilian patients with primary congenital glaucoma, and to correlate the presence of alterations in the CYP1B1 gene sequence with clinical aspects of the disease. Thirty nonrelated patients with primary congenital glaucoma were studied. Molecular analysis consisted of the codifying region sequencing (exons 2 and 3) and intron/exon boundaries. CYP1B1 gene mutations were present in 9 (30%) of the 30 patients. The structural changes in the CYP1B1 gene previously described in the literature and observed in our study were Q19X, P437L, A443G, g.4340delG, g.7901_79013delGAGTGCAGGCAGA, g.8182delG, and g.8214_8215delG. Three new mutations were observed: 4635delT, 4523delC, and L378Q, in addition to 3793T→C, R48G, A119S, L432V, D449D, and N453S polymorphisms. Patients carrying CYP1B1 gene mutations needed more surgical procedures to control intraocular pressure, either when both eyes were evaluated (P=0.003) or when the worst eye of the patient was analyzed (P=0.011). In relation to the number of affected eyes, all patients with mutations (n=9/9) developed bilateral glaucoma, whereas 11/21 patients without mutations in the CYP1B1 gene had bilateral glaucoma (P=0.013). In this group of primary congenital glaucoma patients, a 30% mutation frequency in the CYP1B1 gene was observed. The presence of mutations was associated with a more severe form of the disease, requiring more surgeries for intraocular pressure control and with a higher rate of bilateral cases.

  2. X region mutations of hepatitis B virus related to clinical severity

    PubMed Central

    Kim, Hong; Lee, Seoung-Ae; Kim, Bum-Joon

    2016-01-01

    Chronic hepatitis B virus (HBV) infection remains a major health problem, with more than 240 million people chronically infected worldwide and potentially 650000 deaths per year due to advanced liver diseases including liver cirrhosis and hepatocellular carcinoma (HCC). HBV-X protein (HBx) contributes to the biology and pathogenesis of HBV via stimulating virus replication or altering host gene expression related to HCC. The HBV X region contains only 465 bp encoding the 16.5 kDa HBx protein, which also contains several critical cis-elements such as enhancer II, the core promoter and the microRNA-binding region. Thus, mutations in this region may affect not only the HBx open reading frame but also the overlapped cis-elements. Recently, several types of HBx mutations significantly associated with clinical severity have been described, although the functional mechanism in most of these cases remains unsolved. This review article will mainly focus on the HBx mutations proven to be significantly related to clinical severity via epidemiological studies. PMID:27350725

  3. Hepatitis B and Hepatitis C Infection Biomarkers and TP53 Mutations in Hepatocellular Carcinomas from Colombia

    PubMed Central

    Navas, Maria-Cristina; Suarez, Iris; Carreño, Andrea; Uribe, Diego; Rios, Wilson Alfredo; Cortes-Mancera, Fabian; Martel, Ghyslaine; Vieco, Beatriz; Lozano, Diana; Jimenez, Carlos; Gouas, Doriane; Osorio, German; Hoyos, Sergio; Restrepo, Juan Carlos; Correa, Gonzalo; Jaramillo, Sergio; Lopez, Rocio; Bravo, Luis Eduardo; Arbelaez, Maria Patricia; Scoazec, Jean-Yves; Abedi-Ardekani, Behnoush; Santella, Regina M.; Chemin, Isabelle; Hainaut, Pierre

    2011-01-01

    Hepatocellular Carcinoma (HCC) is a leading cause of cancer-related death worldwide. Globally, the most important HCC risk factors are Hepatitis B Virus (HBV) and/or Hepatitis C Virus (HCV), chronic alcoholism, and dietary exposure to aflatoxins. We have described the epidemiological pattern of 202 HCC samples obtained from Colombian patients. Additionally we investigated HBV/HCV infections and TP53 mutations in 49 of these HCC cases. HBV biomarkers were detected in 58.1% of the cases; HBV genotypes F and D were characterized in three of the samples. The HCV biomarker was detected in 37% of the samples while HBV/HCV coinfection was found in 19.2%. Among TP53 mutations, 10.5% occur at the common aflatoxin mutation hotspot, codon 249. No data regarding chronic alcoholism was available from the cases. In conclusion, in this first study of HCC and biomarkers in a Colombian population, the main HCC risk factor was HBV infection. PMID:22114738

  4. Heterozygous mutations in HSD17B4 cause juvenile peroxisomal D-bifunctional protein deficiency.

    PubMed

    Amor, David J; Marsh, Ashley P L; Storey, Elsdon; Tankard, Rick; Gillies, Greta; Delatycki, Martin B; Pope, Kate; Bromhead, Catherine; Leventer, Richard J; Bahlo, Melanie; Lockhart, Paul J

    2016-12-01

    To determine the genetic cause of slowly progressive cerebellar ataxia, sensorineural deafness, and hypergonadotropic hypogonadism in 5 patients from 3 different families. The patients comprised 2 sib pairs and 1 sporadic patient. Clinical assessment included history, physical examination, and brain MRI. Linkage analysis was performed separately on the 2 sets of sib pairs using single nucleotide polymorphism microarrays, followed by analysis of the intersection of the regions. Exome sequencing was performed on 1 affected patient with variant filtering and prioritization undertaken using these intersected regions. Using a combination of sequencing technologies, we identified compound heterozygous mutations in HSD17B4 in all 5 affected patients. In all 3 families, peroxisomal D-bifunctional protein (DBP) deficiency was caused by compound heterozygosity for 1 nonsense/deletion mutation and 1 missense mutation. We describe 5 patients with juvenile DBP deficiency from 3 different families, bringing the total number of reported patients to 14, from 8 families. This report broadens and consolidates the phenotype associated with juvenile DBP deficiency.

  5. Heterozygous mutations in HSD17B4 cause juvenile peroxisomal D-bifunctional protein deficiency

    PubMed Central

    Amor, David J.; Marsh, Ashley P.L.; Storey, Elsdon; Tankard, Rick; Gillies, Greta; Delatycki, Martin B.; Pope, Kate; Bromhead, Catherine; Leventer, Richard J.; Bahlo, Melanie

    2016-01-01

    Objective: To determine the genetic cause of slowly progressive cerebellar ataxia, sensorineural deafness, and hypergonadotropic hypogonadism in 5 patients from 3 different families. Methods: The patients comprised 2 sib pairs and 1 sporadic patient. Clinical assessment included history, physical examination, and brain MRI. Linkage analysis was performed separately on the 2 sets of sib pairs using single nucleotide polymorphism microarrays, followed by analysis of the intersection of the regions. Exome sequencing was performed on 1 affected patient with variant filtering and prioritization undertaken using these intersected regions. Results: Using a combination of sequencing technologies, we identified compound heterozygous mutations in HSD17B4 in all 5 affected patients. In all 3 families, peroxisomal D-bifunctional protein (DBP) deficiency was caused by compound heterozygosity for 1 nonsense/deletion mutation and 1 missense mutation. Conclusions: We describe 5 patients with juvenile DBP deficiency from 3 different families, bringing the total number of reported patients to 14, from 8 families. This report broadens and consolidates the phenotype associated with juvenile DBP deficiency. PMID:27790638

  6. A tamB homolog is involved in maintenance of cell envelope integrity and stress resistance of Deinococcus radiodurans

    PubMed Central

    Yu, Jiangliu; Li, Tao; Dai, Shang; Weng, Yulan; Li, Jiulong; Li, Qinghao; Xu, Hong; Hua, Yuejin; Tian, Bing

    2017-01-01

    The translocation and assembly module (TAM) in bacteria consists of TamA and TamB that form a complex to control the transport and secretion of outer membrane proteins. Herein, we demonstrated that the DR_1462-DR_1461-DR_1460 gene loci on chromosome 1 of Deinococcus radiodurans, which lacks tamA homologs, is a tamB homolog (DR_146T) with two tamB motifs and a DUF490 motif. Mutation of DR_146T resulted in cell envelope peeling and a decrease in resistance to shear stress and osmotic pressure, as well as an increase in oxidative stress resistance, consistent with the phenotype of a surface layer (S-layer) protein SlpA (DR_2577) mutant, demonstrating the involvement of DR_146T in maintenance of cell envelope integrity. The 123 kDa SlpA was absent and only its fragments were present in the cell envelope of DR_146T mutant, suggesting that DR_146T might be involved in maintenance of the S-layer. A mutant lacking the DUF490 motif displayed only a slight alteration in phenotype compared with the wild type, suggesting DUF490 is less important than tamB motif for the function of DR_146T. These findings enhance our understanding of the properties of the multilayered envelope in extremophilic D. radiodurans, as well as the diversity and functions of TAMs in bacteria. PMID:28383523

  7. Identification and sequence analysis of genes involved in late steps in cobalamin (vitamin B12) synthesis in Rhodobacter capsulatus.

    PubMed Central

    Pollich, M; Klug, G

    1995-01-01

    A 6.4-kb region of a 6.8-kb BamHI fragment carrying Rhodobacter capsulatus genes involved in late steps of cobalamin synthesis has been sequenced. The nucleotide sequence and genetic analysis revealed that this fragment contains eight genes arranged in at least three operons. Five of these eight genes show homology to genes involved in the cobalamin synthesis of Pseudomonas denitrificans and Salmonella typhimurium. The arrangement of these homologous genes differs considerably in the three genera. Upstream of five overlapping genes (named bluFEDCB), a promoter activity could be detected by using lacZ fusions. This promoter shows no regulation by oxygen, vitamin B12 (cobalamin), or cobinamide. Disruption of the bluE gene by a Tn5 insertion (strain AH2) results in reduced expression of the puf and puc operons, which encode pigment-binding proteins of the photosynthetic apparatus. The mutant strain AH2 can be corrected to a wild-type-like phenotype by addition of vitamin B12 or cobinamide dicyanide. Disruption of the bluB gene by an interposon (strain BB1) also disturbs the formation of the photosynthetic apparatus. The mutation of strain BB1 can be corrected by vitamin B12 but not by cobinamide. We propose that a lack of cobalamin results in deregulation and a decreased formation of the photosynthetic apparatus. PMID:7635831

  8. Severe Undervirilisation in a 46,XY Case Due to a Novel Mutation in HSD17B3 Gene

    PubMed Central

    Alikaşifoğlu, Ayfer; Vurallı, Doğuş; Hiort, Olaf; Gönç, Nazlı; Özön, Alev; Kandemir, Nurgün

    2015-01-01

    17-β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) is an important enzyme involved in the final steps of androgen synthesis and is required for the development of normal male external genitalia. 46,XY individuals with deficiency of this enzyme present a wide clinical spectrum from a female appearance of the external genitalia through ambiguous genitalia to a predominantly male genitalia with micropenis or hypospadias. This paper reports a one-year-old 46,XY patient with 17β-HSD3 deficiency who presented with female external genitalia and bilaterally palpable gonads in the inguinal region. The low T/Δ4 ratio after human chorionic gonadotropin (hCG) stimulation suggested 17β-HSD3 deficiency. A homozygous mutation, c.761_762delAG, was determined at the intron 9/exon 10 splice site of the HSD17B3 gene. To the best of our knowledge, this mutation has not been reported thus far, but its localization and type would imply a complete disruption of the 17β-HSD3 which may explain the phenotype of our patient. PMID:26831562

  9. Severe Undervirilisation in a 46,XY Case Due to a Novel Mutation in HSD17B3 Gene.

    PubMed

    Alikaşifoğlu, Ayfer; Vurallı, Doğuş; Hiort, Olaf; Gönç, Nazlı; Özön, Alev; Kandemir, Nurgün

    2015-09-01

    17-β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) is an important enzyme involved in the final steps of androgen synthesis and is required for the development of normal male external genitalia. 46,XY individuals with deficiency of this enzyme present a wide clinical spectrum from a female appearance of the external genitalia through ambiguous genitalia to a predominantly male genitalia with micropenis or hypospadias. This paper reports a one-year-old 46,XY patient with 17β-HSD3 deficiency who presented with female external genitalia and bilaterally palpable gonads in the inguinal region. The low T/Δ4 ratio after human chorionic gonadotropin (hCG) stimulation suggested 17β-HSD3 deficiency. A homozygous mutation, c.761_762delAG, was determined at the intron 9/exon 10 splice site of the HSD17B3 gene. To the best of our knowledge, this mutation has not been reported thus far, but its localization and type would imply a complete disruption of the 17β-HSD3 which may explain the phenotype of our patient.

  10. Different functional sensitivity to mutation at intersubunit interfaces involved in consecutive stages of foot-and-mouth disease virus assembly.

    PubMed

    Rincón, Verónica; Rodríguez-Huete, Alicia; Mateu, Mauricio G

    2015-09-01

    Small spherical viruses are paradigms of supramolecular self-assembly. Identifying the specific structural determinants for virus assembly provides guidelines to develop new antiviral drugs or engineer modified viral particles for medical or technological applications. However, very few systematic studies have been carried out so far to identify those chemical groups at interfaces between virus capsid subunits that are important for viral assembly and function. Foot-and-mouth disease virus (FMDV) and other picornaviruses are assembled in a stepwise process in which different protein-protein interfaces are formed: 5 protomeric subunits oligomerize to form a pentameric intermediate, and 12 of these stable pentameric building blocks associate to form a labile capsid. In this study, a systematic mutational analysis revealed that very few amino acid side chains involved in substantial interactions between protomers within each pentamer are individually required for virus infectivity. This result contrasts sharply with the previous finding that most amino acid side chains involved in interactions between pentamers during the next assembly step are individually required for infectivity. The dramatic difference in sensitivity to single mutations between the two types of protein-protein interfaces in FMDV is discussed in terms of possible structural strategies for achieving self-assembly and genome uncoating in the face of diverse selective constraints.

  11. Newly observed thalamic involvement and mutations of the HEXA gene in a Korean patient with juvenile GM2 gangliosidosis.

    PubMed

    Lee, Soon Min; Lee, Min Jung; Lee, Joon Soo; Kim, Heung Dong; Lee, Jin Sung; Kim, Jinna; Lee, Seung Koo; Lee, Young Mock

    2008-09-01

    Neuroimaging studies of patients with GM2 gangliosidosis are rare. The thalamus and basal ganglia are principally involved in patients affected by the infantile form of GM2 gangliosidosis. Unlike in the infantile form, in juvenile or adult type GM2 gangliosidosis, progressive cortical and cerebellar atrophy is the main abnormality seen on conventional magnetic resonance imaging (MRI); no basal ganglial or thalamic impairment were observed. This report is of a Korean girl with subacute onset, severe deficiency of hexosaminidase A activity and mutations (Arg137Term, Ala246Thr) of the HEXA gene. A 3.5-year-old girl who was previously in good health was evaluated for hypotonia and ataxia 3 months ago and showed progressive developmental deterioration, including cognitive decline. Serial brain MRI showed progressive overall volume decrease of the entire brain and thalamic atrophy. Fluorine-18 FDG PET scan showed severe decreased uptake in bilateral thalamus and diffuse cerebral cortex. We suggest, through our experience, that the thalamic involvement in MR imaging and FDG-PET can be observed in the juvenile form of GM2 gangliosidosis, and we suspect the association of mutations in the HEXA gene.

  12. Novel and prevalent CYP11B1 gene mutations in Turkish patients with 11-β hydroxylase deficiency.

    PubMed

    Kandemir, Nurgun; Yilmaz, Didem Yucel; Gonc, E Nazli; Ozon, Alev; Alikasifoglu, Ayfer; Dursun, Ali; Ozgul, R Koksal

    2017-01-01

    11β-Hydroxylase deficiency is the second most frequent type of congenital adrenal hyperplasia and is more common in those of Turkish descent than in other populations. The purpose of this study is to examine the spectrum of CYP11B1 gene mutations in Turkish patients with 11β-hydroxylase deficiency. Twenty-eight patients from 24 families, ages ranging from 0.1 to 7 years, were included in the study. Clinical diagnosis was based on virilization and high levels of 11-deoxycortisol. Twenty-six cases exhibited the classical and 2 cases the non-classical form. Mutation screening of 9 CYP11B1 exons was performed by direct DNA sequence analysis, specifically amplifying CYP11B1 gene fragments while avoiding simultaneous amplification of homologous CYP11B2 gene sequences. Seventeen different mutations were detected, 6 of which are novel (p.Gln189Hisfs*70, p.Glu198Gly, p.Thr318Lys, p.Gly446Ser, IVS8+5G>C and exon 3-5 del). All of the identified mutations resulted in the classical form with severe virilization, except for the p.Gly446Ser mutation, which caused a late-onset type of 11β-hydroxylase deficiency. The c.954G>A;p.Thr318Thr mutation was the most common in our cohort, with an allele frequency of 14.6%.Of the CYP11B1 gene mutations detected, 75% were found in exons 3, 5 and 7 and the half of the mutations were nonsense, splice site, deletion or insertion mutations, causing severe virilization in female patients. The findings are important for genetic counseling and the prenatal diagnosis of Turkish patients with 11β-hydroxylase deficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Exploration of the role of gene mutations in myelodysplastic syndromes through a sequencing design involving a small number of target genes

    PubMed Central

    Xu, Feng; Wu, Ling-Yun; He, Qi; Wu, Dong; Zhang, Zheng; Song, Lu-Xi; Zhao, You-Shan; Su, Ji-Ying; Zhou, Li-Yu; Guo, Juan; Chang, Chun-Kang; Li, Xiao

    2017-01-01

    Novel sequencing designs are necessary to supplement the recognized knowledge of myelodysplastic syndrome (MDS)-related genomic alterations. In this study, we sequenced 28 target genes in 320 Chinese MDS patients but obtained 77.2% of recall factors and 82.8% of genetic abnormalities (including karyotype abnormalities). In addition to known relationships among mutations, some specific chromosomal abnormalities were found to link to specific gene mutations. Trisomy 8 tended to be linked to U2AF1 and ZRSR2 mutations, and 20q- exhibited higher SRSF2/WT1 and U2AF1 mutation frequency. Chromosome 7 involvement accounted for up to 50% of RUNX1 mutations and 37.5% of SETBP1 mutations. Patients carrying a complex karyotype were prone to present TP53 mutations (36.1%). However, individuals with normal karyotypes rarely possessed mutations in the TP53, RUNX1 and U2AF1. Moreover, DNMT3A, TP53, SRSF2, STAG2, ROBO1/2 and WT1 predicted poor survival and high AML transformation. By integrating these predictors into international prognostic scoring system (IPSS) or revised IPSS, we built a set of mutation-based prognostic risk models. These models could layer different degrees of risk in patients more satisfactorily. In summary, this sequencing design was able to detect a number of gene mutations and could be used to stratify patients with varied prognostic risk. PMID:28220884

  14. Exploration of the role of gene mutations in myelodysplastic syndromes through a sequencing design involving a small number of target genes.

    PubMed

    Xu, Feng; Wu, Ling-Yun; He, Qi; Wu, Dong; Zhang, Zheng; Song, Lu-Xi; Zhao, You-Shan; Su, Ji-Ying; Zhou, Li-Yu; Guo, Juan; Chang, Chun-Kang; Li, Xiao

    2017-02-21

    Novel sequencing designs are necessary to supplement the recognized knowledge of myelodysplastic syndrome (MDS)-related genomic alterations. In this study, we sequenced 28 target genes in 320 Chinese MDS patients but obtained 77.2% of recall factors and 82.8% of genetic abnormalities (including karyotype abnormalities). In addition to known relationships among mutations, some specific chromosomal abnormalities were found to link to specific gene mutations. Trisomy 8 tended to be linked to U2AF1 and ZRSR2 mutations, and 20q- exhibited higher SRSF2/WT1 and U2AF1 mutation frequency. Chromosome 7 involvement accounted for up to 50% of RUNX1 mutations and 37.5% of SETBP1 mutations. Patients carrying a complex karyotype were prone to present TP53 mutations (36.1%). However, individuals with normal karyotypes rarely possessed mutations in the TP53, RUNX1 and U2AF1. Moreover, DNMT3A, TP53, SRSF2, STAG2, ROBO1/2 and WT1 predicted poor survival and high AML transformation. By integrating these predictors into international prognostic scoring system (IPSS) or revised IPSS, we built a set of mutation-based prognostic risk models. These models could layer different degrees of risk in patients more satisfactorily. In summary, this sequencing design was able to detect a number of gene mutations and could be used to stratify patients with varied prognostic risk.

  15. A mutation in arylsulfatase B gene causes mucopolysuccharidosis VI in rats

    SciTech Connect

    Kunieda, T.; Ikadai, H.; Desnick, R.J.

    1994-09-01

    Mucopolysuccharidosis (MPS) type VI comprises a group of autosomal recessive disorders caused by the deficiency of arylsulfatase B (ARSB) and subsequent lysosomal storage of glucosaminoglycans. We have identified a mutant rat strain that has remarkable similarites to human MPS VI. Recently, we have localized the autosomal recessive gene for the mutant phenotype on rat chromosome 2 by linkage analysis. The rat chromosome 2 is syntenic with the human and mouse chromosomes on which ARSB genes were assigned. Thus the mutant rats were expected to have a mutation in the ARSB gene. A normal rat liver cDNA library was screened using the cat ARSB cDNA as a probe, and clones which cover almost all of the complete ARSB open reading frame were isolated. The nucleotide sequence and amino acid sequence of the rat ARSB sequence showed 80% and 85% similarities with the human ARSB gene, respectively. The ARSB gene was assigned to rat chromosome 2 by using a rat-mouse hybrid cell panel, confirming the linkage analysis. Based on the nucleotide sequence of the normal rat ARSB gene, RT-PCR using liver RNA of the mutant rat was carried out to isolate the cDNA of the mutant rat ARSB gene. By sequencing several independent clones, the cDNA of the mutant rat was found to have a one base insertion at nucleotide 507, resulting in a frameshift mutation in the coding region of the rat ARSB gene, which introduces a stop codon in position 258 of the putative ARSB polypeptide. All affected MPS VI rats were homozygous for the mutant allele, while all phenotypically normal rats were heterozygous or homozygous for the wild type allele, indicating a perfect correspondence between the MPS VI phenotype and the genotype of the mutation. We conclude that the mutation in the ARSB gene is responsible for MPS VI in the rat, and that the mutant rat is an excellent model for study of human MPS VI pathogenesis and treatment.

  16. Biochemically Silent Abdominal Paragangliomas in Patients with Mutations in the Succinate Dehydrogenase Subunit B Gene

    PubMed Central

    Timmers, Henri J. L. M.; Pacak, Karel; Huynh, Thanh T.; Abu-Asab, Mones; Tsokos, Maria; Merino, Maria J.; Baysal, Bora E.; Adams, Karen T.; Eisenhofer, Graeme

    2008-01-01

    Context: Patients with adrenal and extra-adrenal abdominal paraganglioma (PGL) almost invariably have increased plasma and urine concentrations of metanephrines, the O-methylated metabolites of catecholamines. We report four cases of biochemically silent abdominal PGL, in which metanephrines were normal despite extensive disease. Objective: Our objective was to identify the mechanism underlying the lack of catecholamine hypersecretion and metabolism to metanephrines in biochemically silent PGL. Design: This is a descriptive study. Setting: The study was performed at a referral center. Patients: One index case and three additional patients with large abdominal PGL and metastases but with the lack of evidence of catecholamine production, six patients with metastatic catecholamine-producing PGL and a mutation of the succinate dehydrogenase subunit B (SDHB) gene, and 136 random patients with catecholamine-producing PGL were included in the study. Main Outcome Measures: Plasma, urine, and tumor tissue concentrations of catecholamines and metabolites were calculated with electron microscopy and tyrosine hydroxylase immunohistochemistry. Results: All four patients with biochemically silent PGL had an underlying SDHB mutation. In the index case, the tumor tissue concentration of catecholamines (1.8 nmol/g) was less than 0.01% that of the median (20,410 nmol/g) for the 136 patients with catecholamine-producing tumors. Electron microscopy showed the presence of normal secretory granules in all four biochemically silent PGLs. Tyrosine hydroxylase immunoreactivity was negligible in the four biochemically silent PGLs but abundant in catecholamine-producing PGLs. Conclusions: Patients with SDHB mutations may present with biochemically silent abdominal PGLs due to defective catecholamine synthesis resulting from the absence of tyrosine hydroxylase. Screening for tumors in patients with SDHB mutations should not be limited to biochemical tests of catecholamine excess. PMID

  17. Microarray for Hepatitis B Virus Genotyping and Detection of 994 Mutations along the Genome ▿ †

    PubMed Central

    Gauthier, Marie; Bonnaud, Bertrand; Arsac, Maud; Lavocat, Fabien; Maisetti, Jérôme; Kay, Alan; Simon, François; Zoulim, Fabien; Vernet, Guy

    2010-01-01

    Genome analysis of hepatitis B virus (HBV) in patient sera is helpful for monitoring treatment. We developed an improved version of a DNA microarray to identify HBV genotypes and to detect mutations of interest in the S, Pol, Core, and X genes. It includes an automated software analysis of fluorescence values for simpler, more robust data interpretation. In this version, probes were added to identify genotype H, to analyze 155 additional positions, and to detect 561 additional polymorphisms. Sequences were added to the alignments to resolve hybridization problems due to natural polymorphisms in the vicinity of important codons. The duplex PCR protocol allowed whole-genome analysis in a single tube. An alternative nested-PCR protocol allowed genotyping and mutations in S and reverse transcriptase (rt) genes in patients with low viral loads, as demonstrated in patients with less than 400 HBV genome copies/ml. Reproducibility was high, with variation coefficients lower than 3%. Only 0.57% of 20,771 codons from 253 samples could not be identified. The concordance with Sanger sequencing for the identification of codons improved from 92.8% to 95.7% with the improved version. Concordance was higher than 91% for codons associated with resistance to lamivudine, emtricitabine, telbivudine, famciclovir, entecavir, and tenofovir with vaccine escape and for pre-Core mutants. Concordance was lower for adefovir resistance mutations (68.6%) and mutations in the basal core promoter (60.3%), probably because hybridization efficiency was affected by the low GC content of the probes. A concordance of 93.7% with sequencing for genotype identification was observed in 190 specimens, lower than that obtained with the first version, possibly due to mixed virus populations. PMID:20826635

  18. Influenza viruses with B/Yamagata- and B/Victoria-like neuraminidases are differentially affected by mutations that alter antiviral susceptibility.

    PubMed

    Farrukee, Rubaiyea; Leang, Sook-Kwan; Butler, Jeff; Lee, Raphael T C; Maurer-Stroh, Sebastian; Tilmanis, Danielle; Sullivan, Sheena; Mosse, Jennifer; Barr, Ian G; Hurt, Aeron C

    2015-07-01

    The burden of disease due to influenza B is often underestimated. Clinical studies have shown that oseltamivir, a widely used neuraminidase inhibitor (NAI) antiviral drug, may have reduced effectiveness against influenza B viruses. Therefore, it is important to study the effect of neuraminidase mutations in influenza B viruses that may further reduce NAI susceptibility, and to determine whether these mutations have the same effect in the two lineages of influenza B viruses that are currently circulating (B/Yamagata-like and B/Victoria-like). We characterized the effect of 16 amino acid substitutions across five framework residues and four monomeric interface residues on the susceptibility to four different NAIs (oseltamivir, zanamivir, peramivir and laninamivir). Framework residue mutations E117A and E117G conferred highly reduced inhibition to three of the four NAIs, but substantially reduced neuraminidase activity, whereas other framework mutations retained a greater level of NA activity. Mutations E105K, P139S and G140R of the monomeric interface were also found to cause highly reduced inhibition, but, interestingly, their effect was substantially greater in a B/Victoria-like neuraminidase than in a B/Yamagata-like neuraminidase, with some susceptibility values being up to 1000-fold different between lineages. The frequency and the effect of key neuraminidase mutations on neuraminidase activity and NAI susceptibility can differ substantially between the two influenza B lineages. Therefore, future surveillance, analysis and interpretation of influenza B virus NAI susceptibility should consider the B lineage of the neuraminidase in the same manner as already occurs for different influenza A neuraminidase subtypes. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Mutations of the human interferon alpha-2b (hIFN-α2b) gene in occupationally protracted low dose radiation exposed personnel.

    PubMed

    Shahid, Saman; Mahmood, Nasir; Chaudhry, Muhammad Nawaz; Sheikh, Shaharyar; Ahmad, Nauman

    2015-05-01

    Ionizing radiations impact human tissues by affecting the DNA bases which constitute genes. Human interferon alpha 2b gene synthesizes a protein which is an important anticancerous, immunomodulatory, anti-proliferative and antiviral protein. This study was aimed to identify interferon alpha-2b mutations as a consequence of the use of occupational chronic low dose radiation by hospital radiation exposed workers. A molecular analysis was done in which DNAs were extracted from blood samples from radiology, radiotherapy and nuclear medicine workers. The gene was amplified through polymerase chain reaction and further genetic data from sequencing results analyzed by bioinformatics tools in order to determine as to how mutations in interferon alpha 2b sequences will lead to changes in human interferon alpha-2b protein. A total of 41% gene mutations was detected among all radiation exposed workers in which higher percentage (5.4%) of base insertion mutations and 14% frameshift mutations were found in radiology workers. The chronic use of low dose of radiations by occupational workers has a significant correlation with mutational effects on interferon alpha 2b gene, further evident by depressed interferon alpha levels in serum. This can lead to depressed immunity in radiation exposed workers. Hematological profiling of this group also showed hyperimmune response in the form of lymphocytosis.

  20. The human nucleophosmin 1 mutation A inhibits myeloid differentiation of leukemia cells by modulating miR-10b

    PubMed Central

    Zou, Qin; Tan, Shi; Yang, Zailin; Wang, Juan; Xian, Jingrong; Zhang, Shuaishuai; Jin, Hongjun; Yang, Liyuan; Wang, Lu; Zhang, Ling

    2016-01-01

    Mutations in the nucleophosmin 1 (NPM1) gene are the most frequent genetic alteration in acute myeloid leukemia (AML). Here, we showed that enforced expression of NPM1 mutation type A (NPM1-mA) inhibits myeloid differentiation of leukemia cells, whereas knockdown of NPM1-mA has the opposite effect. Our analyses of normal karyotype AML samples from The Cancer Genome Atlas (TCGA) dataset revealed that miR-10b is commonly overexpressed in NPM1-mutated AMLs. We also found high expression of miR-10b in primary NPM1-mutated AML blasts and NPM1-mA positive OCI-AML3 cells. In addition, NPM1-mA knockdown enhanced myeloid differentiation, while induced expression of miR-10b reversed this effect. Finally, we showed that KLF4 is downregulated in NPM1-mutated AMLs. These results demonstrated that miR-10b exerts its effects by repressing the translation of KLF4 and that NPM1-mA inhibits myeloid differentiation through the miR-10b/KLF4 axis. This sheds new light on the effect of NPM1 mutations' on leukemogenesis. PMID:27669739

  1. Anderson or chylomicron retention disease: molecular impact of five mutations in the SAR1B gene on the structure and the functionality of Sar1b protein.

    PubMed

    Charcosset, Mathilde; Sassolas, Agnès; Peretti, Noël; Roy, Claude C; Deslandres, Colette; Sinnett, Daniel; Levy, Emile; Lachaux, Alain

    2008-01-01

    Anderson disease (and/or chylomicron retention disease-CMRD) is a rare, autosomic recessive disorder characterized by chronic diarrhea, failure to thrive, and hypocholesterolemia in childhood. The specific molecular defect was identified in 2003 and consists of mutations in the SAR1B gene which encodes for intracellular Sar1b protein. To date, only 8 mutations in six families have been described. We report here 15 new cases of CMRD among 8 families from France and Canada. We identified three unique homozygous mutations of SAR1B gene in French families originated from Turkey, Algeria and Portugal: a stop codon in exon 6 (c.364G>T, p.Glu122X), a whole deletion of exon 2 (c. 1-4482_58+1406 del 5946 ins15bp) and a missense mutation in exon 7 (c.554G>T, p.Gly185Val). The 2 missense mutations found in the 5 French-Canadian families had already been described in the eight previously published mutations: c.409G>A (p.Asp137Asn) and c.537T>A (p.Ser179Arg). In an attempt to explain the functional impairment of mutated proteins, computational analysis and sequence alignment were performed. The nonsense mutation and the whole deletion of exon 2 produced truncated proteins, the missense mutations probably non-functional proteins. All the affected children presented with similar phenotype at onset; the absence of phenotype-genotype correlation was discussed. A determination of the specific mutation in Anderson disease or CMRD is required to ensure diagnosis and allow prompt therapeutic intervention in these children.

  2. Detection of hepatitis B virus genotypic resistance mutations by coamplification at lower denaturation temperature-PCR coupled with sanger sequencing.

    PubMed

    Liu, Can; Lin, Jinpiao; Chen, Huijuan; Shang, Hongyan; Jiang, Ling; Chen, Jing; Ye, Yang; Yang, Bin; Ou, Qishui

    2014-08-01

    Mutations in the reverse transcriptase (rt) region of the DNA polymerase gene are the primary cause of hepatitis B virus (HBV) drug resistance. In this study, we established a novel method that couples coamplification at lower denaturation temperature (COLD)-PCR and Sanger sequencing, and we applied it to the detection of known and unknown HBV mutations. Primers were designed based on the common mutations in the HBV rt sequence at positions 180 to 215. The critical denaturation temperature (Tc) was established as a denaturing temperature for both fast and full COLD-PCR procedures. For single mutations, when a melting temperature (Tm)-reducing mutation occurred (e.g., C-G → T-A), the sensitivities of fast and full COLD-PCR for mutant detection were 1% and 2%, respectively; when the mutation caused no change in Tm (e.g., C-G → G-C) or raised Tm (e.g., T-A → C-G), only full COLD-PCR improved the sensitivity for mutant detection (2%). For combination mutations, the sensitivities of both full and fast COLD-PCR were increased to 0.5%. The limits of detection for fast and full COLD-PCR were 50 IU/ml and 100 IU/ml, respectively. In 30 chronic hepatitis B (CHB) cases, no mutations were detected by conventional PCR, whereas 18 mutations were successfully detected by COLD-PCR, including low-prevalence mutations (<10%), as confirmed by ultradeep pyrosequencing. In conclusion, COLD-PCR provides a highly sensitive, simple, inexpensive, and practical tool for significantly improving amplification efficacy and detecting low-level mutations in clinical CHB cases. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Detection of Hepatitis B Virus Genotypic Resistance Mutations by Coamplification at Lower Denaturation Temperature-PCR Coupled with Sanger Sequencing

    PubMed Central

    Liu, Can; Lin, Jinpiao; Chen, Huijuan; Shang, Hongyan; Jiang, Ling; Chen, Jing; Ye, Yang

    2014-01-01

    Mutations in the reverse transcriptase (rt) region of the DNA polymerase gene are the primary cause of hepatitis B virus (HBV) drug resistance. In this study, we established a novel method that couples coamplification at lower denaturation temperature (COLD)-PCR and Sanger sequencing, and we applied it to the detection of known and unknown HBV mutations. Primers were designed based on the common mutations in the HBV rt sequence at positions 180 to 215. The critical denaturation temperature (Tc) was established as a denaturing temperature for both fast and full COLD-PCR procedures. For single mutations, when a melting temperature (Tm)-reducing mutation occurred (e.g., C-G→T-A), the sensitivities of fast and full COLD-PCR for mutant detection were 1% and 2%, respectively; when the mutation caused no change in Tm (e.g., C-G→G-C) or raised Tm (e.g., T-A→C-G), only full COLD-PCR improved the sensitivity for mutant detection (2%). For combination mutations, the sensitivities of both full and fast COLD-PCR were increased to 0.5%. The limits of detection for fast and full COLD-PCR were 50 IU/ml and 100 IU/ml, respectively. In 30 chronic hepatitis B (CHB) cases, no mutations were detected by conventional PCR, whereas 18 mutations were successfully detected by COLD-PCR, including low-prevalence mutations (<10%), as confirmed by ultradeep pyrosequencing. In conclusion, COLD-PCR provides a highly sensitive, simple, inexpensive, and practical tool for significantly improving amplification efficacy and detecting low-level mutations in clinical CHB cases. PMID:24899029

  4. Isolation of rpoB mutations causing rifampicin resistance in Bacillus subtilis spores exposed to simulated Martian surface conditions.

    PubMed

    Perkins, Amy E; Schuerger, Andrew C; Nicholson, Wayne L

    2008-12-01

    ABSTRACT Bacterial spores are considered prime candidates for Earth-to-Mars transport by natural processes and human spaceflight activities. Previous studies have shown that exposure of Bacillus subtilis spores to ultrahigh vacuum (UHV) characteristic of space both increased the spontaneous mutation rate and altered the spectrum of mutation in various marker genes; but, to date, mutagenesis studies have not been performed on spores exposed to milder low pressures encountered in the martian environment. Mutations to rifampicin-resistance (Rif(R)) were isolated in B. subtilis spores exposed to simulated martian atmosphere (99.9% CO(2), 710 Pa) for 21 days in a Mars Simulation Chamber (MSC) and compared to parallel Earth controls. Exposure in the MSC reduced spore viability by approximately 67% compared to Earth controls, but this decrease was not statistically significant (P = 0.3321). The frequency of mutation to Rif(R) was also not significantly increased in the MSC compared to Earth-exposed spores (P = 0.479). Forty-two and 51 Rif(R) mutant spores were isolated from the MSC- and Earth-exposed controls, respectively. Nucleotide sequencing located the Rif(R) mutations in the rpoB gene encoding the beta subunit of RNA polymerase at residue V135F of the N-cluster and at residues Q469K/L, H482D/P/R/Y, and S487L in Cluster I. No mutations were found in rpoB Clusters II or III. Two new alleles, Q469L and H482D, previously unreported in B. subtilis rpoB, were isolated from spores exposed in the MSC; otherwise, only slight differences were observed in the spectra of spontaneous Rif(R) mutations from spores exposed to Earth vs. the MSC. However, both spectra are distinctly different from Rif(R) mutations previously reported arising from B. subtilis spores exposed to simulated space vacuum.

  5. Identification of a single ancestral CYP1B1 mutation in Slovak Gypsies (Roms) affected with primary congenital glaucoma

    PubMed Central

    Plasilova, M.; Stoilov, I.; Sarfarazi, M.; Kadasi, L.; Ferakova, E.; Ferak, V.

    1999-01-01

    Primary congenital glaucoma (PCG) is an autosomal recessive eye disease that occurs at an unusually high frequency in the ethnic isolate of Roms (Gypsies) in Slovakia. Recently, we linked the disease in this population to the GLC3A locus on 2p21. At this locus, mutations in the cytochrome P4501B1 (CYP1B1) gene have been identified as a molecular basis for this condition. Here, we report the results of CYP1B1 mutation screening of 43 PCG patients from 26 Slovak Rom families. A homozygous G→A transition at nucleotide 1505 in the highly conserved region of exon 3 was detected in all families. This mutation results in the E387K substitution, which affects the conserved K helix region of the cytochrome P450 molecule. Determination of the CYP1B1 polymorphic background showed a common DNA haplotype in all patients, thus indicating that the E387K mutation in Roms has originated from a single ancestral mutational event. The Slovak Roms represent the first population in which PCG is found to result from a single mutation in the CYP1B1 gene, so that a founder effect is the most plausible explanation of its increased incidence. An ARMS-PCR assay has been developed for fast detection of this mutation, thus allowing direct DNA based prenatal diagnosis as well as gene carrier detection in this particular population. Screening of 158 healthy Roms identified 17 (10.8%) mutation carriers, indicating that the frequency of PCG in this population may be even higher than originally estimated.


Keywords: primary congenital glaucoma (PCG); cytochrome P4501B1; Roms (Gypsies); founder effect PMID:10227395

  6. Isolation of rpoB Mutations Causing Rifampicin Resistance in Bacillus subtilis Spores Exposed to Simulated Martian Surface Conditions

    NASA Astrophysics Data System (ADS)

    Perkins, Amy E.; Schuerger, Andrew C.; Nicholson, Wayne L.

    2008-12-01

    Bacterial spores are considered prime candidates for Earth-to-Mars transport by natural processes and human spaceflight activities. Previous studies have shown that exposure of Bacillus subtilis spores to ultrahigh vacuum (UHV) characteristic of space both increased the spontaneous mutation rate and altered the spectrum of mutation in various marker genes; but, to date, mutagenesis studies have not been performed on spores exposed to milder low pressures encountered in the martian environment. Mutations to rifampicin-resistance (RifR) were isolated in B. subtilis spores exposed to simulated martian atmosphere (99.9% CO2, 710 Pa) for 21 days in a Mars Simulation Chamber (MSC) and compared to parallel Earth controls. Exposure in the MSC reduced spore viability by ˜67% compared to Earth controls, but this decrease was not statistically significant (P = 0.3321). The frequency of mutation to RifR was also not significantly increased in the MSC compared to Earth-exposed spores (P = 0.479). Forty-two and 51 RifR mutant spores were isolated from the MSC- and Earth-exposed controls, respectively. Nucleotide sequencing located the RifR mutations in the rpoB gene encoding the β subunit of RNA polymerase at residue V135F of the N-cluster and at residues Q469K/L, H482D/P/R/Y, and S487L in Cluster I. No mutations were found in rpoB Clusters II or III. Two new alleles, Q469L and H482D, previously unreported in B. subtilis rpoB, were isolated from spores exposed in the MSC; otherwise, only slight differences were observed in the spectra of spontaneous RifR mutations from spores exposed to Earth vs. the MSC. However, both spectra are distinctly different from RifR mutations previously reported arising from B. subtilis spores exposed to simulated space vacuum.

  7. Mutation spectrum of CYP1B1 and MYOC genes in Korean patients with primary congenital glaucoma

    PubMed Central

    Kim, Hee-Jung; Suh, Wool; Park, Sung Chul; Kim, Chan Yun; Park, Ki Ho; Kook, Michael S.; Kim, Yong Yeon; Kim, Chang-Sik; Park, Chan Kee; Ki, Chang-Seok

    2011-01-01

    Purpose To elucidate the incidence of cytochrome P450 1B1 (CYP1B1) and myocillin (MYOC) mutations in Korean patients with primary congenital glaucoma (PCG). Methods Genomic DNA was collected from peripheral blood of 85 unrelated Korean patients who were diagnosed as having PCG by standard ophthalmological examinations and screened for mutations in the CYP1B1 and MYOC genes by using bi-directional sequencing. Results Among 85 patients with PCG, 22 patients (22/85; 25.9%) had either one (n=11) or two (n=11) mutant alleles of the CYP1B1 gene. Among 11 different CYP1B1 mutations identified, a frameshift mutation (c.970_971dupAT; p.T325SfsX104) was the most frequent mutant allele (6/33; 18.2%) while p.G329S and p.V419Gfs11X were novel. In the MYOC gene, two variants of unknown significance (p.L228S and p.E240G) were identified in two PCG patients (2/85; 2.4%), respectively. No patient had mutations in both genes. Conclusions Although CYP1B1 mutations are major causes of PCG in Korea, ~70% of PCG patients have neither CYP1B1 nor MYOC mutations suggesting a high degree of genetic heterogeneity. Furthermore, the fact that 11 out of 22 patients had only one mutant allele in the CYP1B1 gene necessitates further investigation for other genetic backgrounds underlying PCG. PMID:21850185

  8. Intragenic GNAS deletion involving exon A/B in pseudohypoparathyroidism type 1A resulting in an apparent loss of exon A/B methylation: potential for misdiagnosis of pseudohypoparathyroidism type 1B.

    PubMed

    Fernandez-Rebollo, Eduardo; García-Cuartero, Beatriz; Garin, Intza; Largo, Cristina; Martínez, Francisco; Garcia-Lacalle, Concepcion; Castaño, Luis; Bastepe, Murat; Pérez de Nanclares, Guiomar

    2010-02-01

    Several endocrine diseases that share resistance to PTH are grouped under the term pseudohypoparathyroidism (PHP). Patients with PHP type Ia show additional hormone resistance, defective erythrocyte G(s)alpha activity, and dysmorphic features termed Albright's hereditary osteodystrophy (AHO). Patients with PHP-Ib show less diverse hormone resistance and normal G(s)alpha activity; AHO features are typically absent in PHP-Ib. Mutations affecting G(s)alpha coding exons of GNAS and epigenetic alterations in the same gene are associated with PHP-Ia and -Ib, respectively. The epigenetic GNAS changes in familial PHP-Ib are caused by microdeletions near or within GNAS but without involving G(s)alpha coding exons. We sought to identify the molecular defect in a patient who was diagnosed with PHP-Ia based on clinical presentation (hormone resistance and AHO) but displayed the molecular features typically associated with PHP-Ib (loss of methylation at exon A/B) without previously described genetic mutations. Microsatellite typing, comparative genome hybridization, and allelic dosage were performed for proband and her parents. Comparative genome hybridization revealed a deletion of 30,431 bp extending from the intronic region between exons XL and A/B to intron 5. The same mutation was also demonstrated, by PCR, in the patient's mother, but polymorphism and allele dosage analyses indicated that she had this mutation in a mosaic manner. We discovered a novel multiexonic GNAS deletion transmitted to our patient from her mother who is mosaic for this mutation. The deletion led to different phenotypic manifestations in the two generation and appeared, in the patient, as loss of GNAS imprinting.

  9. Mutations in rpoB and katG genes in Mycobacterium isolates from the Southeast of Mexico.

    PubMed

    Zenteno-Cuevas, R; Zenteno, J C; Cuellar, A; Cuevas, B; Sampieri, C L; Riviera, J E; Parissi, A

    2009-05-01

    The most frequent mutations associated with rifampin and isoniazid resistance in Mycobacterium are the substitutions at codons 531 and 315 in the rpoB and katG genes, respectively. Hence, the aim of this study was to characterize these mutations in Mycobacterium isolates from patients suspected to be infected with drug-resistant (DR) pulmonary tuberculosis (TB) in Veracruz, Mexico. Drug susceptibility testing of 25 clinical isolates revealed that five were susceptible while 20 (80%) were DR (15% of the annual prevalence for Veracruz). Of the DR isolates, 15 (75%) were resistant to rifampin, 17 (85%) to isoniazid and 15 (75%) were resistant to both drugs (MDR). Sequencing analysis performed in the isolates showed that 14 (93%) had mutations in the rpoB gene; seven of these (47%) exhibited a mutation at 531 (S-->L). Ten (58%) of the 20 resistant isolates showed mutations in katG; nine (52%) of these 10 exhibited a mutation at 315 (S-->T). In conclusion, the DR profile of the isolates suggests a significant number of different DR-TB strains with a low frequency of mutation at codons 531 and 315 in rpoB and katG, respectively. This result leads us to consider different regions of the same genes, as well as other genes for further analysis, which is important if a genetic-based diagnosis of DR-TB is to be developed for this region.

  10. Convergent Evolution of Head Crests in Two Domesticated Columbids Is Associated with Different Missense Mutations in EphB2

    PubMed Central

    Vickrey, Anna I.; Domyan, Eric T.; Horvath, Martin P.; Shapiro, Michael D.

    2015-01-01

    Head crests are important display structures in wild bird species and are also common in domesticated lineages. Many breeds of domestic rock pigeon (Columba livia) have crests of reversed occipital feathers, and this recessive trait is associated with a nonsynonymous coding mutation in the intracellular kinase domain of EphB2 (Ephrin receptor B2). The domestic ringneck dove (Streptopelia risoria) also has a recessive crested morph with reversed occipital feathers, and interspecific crosses between crested doves and pigeons produce crested offspring, suggesting a similar genetic basis for this trait in both species. We therefore investigated EphB2 as a candidate for the head crest phenotype of ringneck doves and identified a nonsynonymous coding mutation in the intracellular kinase domain that is significantly associated with the crested morph. This mutation is over 100 amino acid positions away from the crest mutation found in rock pigeons, yet both mutations are predicted to negatively affect the function of ATP-binding pocket. Furthermore, bacterial toxicity assays suggest that “crest” mutations in both species severely impact kinase activity. We conclude that head crests are associated with different mutations in the same functional domain of the same gene in two different columbid species, thereby representing striking evolutionary convergence in morphology and molecules. PMID:26104009

  11. Convergent Evolution of Head Crests in Two Domesticated Columbids Is Associated with Different Missense Mutations in EphB2.

    PubMed

    Vickrey, Anna I; Domyan, Eric T; Horvath, Martin P; Shapiro, Michael D

    2015-10-01

    Head crests are important display structures in wild bird species and are also common in domesticated lineages. Many breeds of domestic rock pigeon (Columba livia) have crests of reversed occipital feathers, and this recessive trait is associated with a nonsynonymous coding mutation in the intracellular kinase domain of EphB2 (Ephrin receptor B2). The domestic ringneck dove (Streptopelia risoria) also has a recessive crested morph with reversed occipital feathers, and interspecific crosses between crested doves and pigeons produce crested offspring, suggesting a similar genetic basis for this trait in both species. We therefore investigated EphB2 as a candidate for the head crest phenotype of ringneck doves and identified a nonsynonymous coding mutation in the intracellular kinase domain that is significantly associated with the crested morph. This mutation is over 100 amino acid positions away from the crest mutation found in rock pigeons, yet both mutations are predicted to negatively affect the function of ATP-binding pocket. Furthermore, bacterial toxicity assays suggest that "crest" mutations in both species severely impact kinase activity. We conclude that head crests are associated with different mutations in the same functional domain of the same gene in two different columbid species, thereby representing striking evolutionary convergence in morphology and molecules. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Wilson's disease in Southern Brazil: genotype-phenotype correlation and description of two novel mutations in ATP7B gene.

    PubMed

    Bem, Ricardo Schmitt de; Raskin, Salmo; Muzzillo, Dominique Araújo; Deguti, Marta Mitiko; Cançado, Eduardo Luiz Rachid; Araújo, Thiago Ferreira; Nakhle, Maria Cristina; Barbosa, Egberto Reis; Munhoz, Renato Puppi; Teive, Hélio Afonso Ghizoni

    2013-08-01

    Wilson's disease (WD) is an inborn error of metabolism caused by abnormalities of the copper-transporting protein encoding gene ATP7B. In this study, we examined ATP7B for mutations in a group of patients living in southern Brazil. 36 WD subjects were studied and classified according to their clinical and epidemiological data. In 23 subjects the ATP7B gene was analyzed. Fourteen distinct mutations were detected in at least one of the alleles. The c.3207C>A substitution at exon 14 was the most common mutation (allelic frequency=37.1%) followed by the c.3402delC at exon 15 (allelic frequency=11.4%). The mutations c.2018-2030del13 at exon 7 and c.4093InsT at exon 20 are being reported for the first time. The c.3207C>A substitution at exon 14, was the most common mutation, with an allelic frequency of 37.1%. This mutation is the most common mutation described in Europe.

  13. The spectrum of aldolase B (ALDOB) mutations and the prevalence of hereditary fructose intolerance in Central Europe.

    PubMed

    Santer, René; Rischewski, Johannes; von Weihe, Michaela; Niederhaus, Marko; Schneppenheim, Sonja; Baerlocher, Kurt; Kohlschütter, Alfried; Muntau, Ania; Posselt, Hans-Georg; Steinmann, Beat; Schneppenheim, Reinhard

    2005-06-01

    We investigated the molecular basis of hereditary fructose intolerance (HFI) in 80 patients from 72 families by means of a PCR-based mutation screening strategy, consisting of heteroduplex analysis, restriction enzyme digest, DNA single strand electrophoresis, and