Importance of DNA repair in tumor suppression
NASA Astrophysics Data System (ADS)
Brumer, Yisroel; Shakhnovich, Eugene I.
2004-12-01
The transition from a normal to cancerous cell requires a number of highly specific mutations that affect cell cycle regulation, apoptosis, differentiation, and many other cell functions. One hallmark of cancerous genomes is genomic instability, with mutation rates far greater than those of normal cells. In microsatellite instability (MIN tumors), these are often caused by damage to mismatch repair genes, allowing further mutation of the genome and tumor progression. These mutation rates may lie near the error catastrophe found in the quasispecies model of adaptive RNA genomes, suggesting that further increasing mutation rates will destroy cancerous genomes. However, recent results have demonstrated that DNA genomes exhibit an error threshold at mutation rates far lower than their conservative counterparts. Furthermore, while the maximum viable mutation rate in conservative systems increases indefinitely with increasing master sequence fitness, the semiconservative threshold plateaus at a relatively low value. This implies a paradox, wherein inaccessible mutation rates are found in viable tumor cells. In this paper, we address this paradox, demonstrating an isomorphism between the conservatively replicating (RNA) quasispecies model and the semiconservative (DNA) model with post-methylation DNA repair mechanisms impaired. Thus, as DNA repair becomes inactivated, the maximum viable mutation rate increases smoothly to that of a conservatively replicating system on a transformed landscape, with an upper bound that is dependent on replication rates. On a specific single fitness peak landscape, the repair-free semiconservative system is shown to mimic a conservative system exactly. We postulate that inactivation of post-methylation repair mechanisms is fundamental to the progression of a tumor cell and hence these mechanisms act as a method for the prevention and destruction of cancerous genomes.
Hadac, Jamie N; Leystra, Alyssa A; Paul Olson, Terrah J; Maher, Molly E; Payne, Susan N; Yueh, Alexander E; Schwartz, Alexander R; Albrecht, Dawn M; Clipson, Linda; Pasch, Cheri A; Matkowskyj, Kristina A; Halberg, Richard B; Deming, Dustin A
2015-10-01
Human colorectal cancers often possess multiple mutations, including three to six driver mutations per tumor. The timing of when these mutations occur during tumor development and progression continues to be debated. More advanced lesions carry a greater number of driver mutations, indicating that colon tumors might progress from adenomas to carcinomas through the stepwise accumulation of mutations following tumor initiation. However, mutations that have been implicated in tumor progression have been identified in normal-appearing epithelial cells of the colon, leaving the possibility that these mutations might be present before the initiation of tumorigenesis. We utilized mouse models of colon cancer to investigate whether tumorigenesis still occurs through the adenoma-to-carcinoma sequence when multiple mutations are present at the time of tumor initiation. To create a model in which tumors could concomitantly possess mutations in Apc, Kras, and Pik3ca, we developed a novel minimally invasive technique to administer an adenovirus expressing Cre recombinase to a focal region of the colon. Here, we demonstrate that the presence of these additional driver mutations at the time of tumor initiation results in increased tumor multiplicity and an increased rate of progression to invasive adenocarcinomas. These cancers can even metastasize to retroperitoneal lymph nodes or the liver. However, despite having as many as three concomitant driver mutations at the time of initiation, these tumors still proceed through the adenoma-to-carcinoma sequence. ©2015 American Association for Cancer Research.
Hadac, Jamie N.; Leystra, Alyssa A.; Olson, Terrah J. Paul; Maher, Molly E.; Payne, Susan N; Yueh, Alexander E.; Schwartz, Alexander R.; Albrecht, Dawn M.; Clipson, Linda; Pasch, Cheri A.; Matkowskyj, Kristina A.; Halberg, Richard B.; Deming, Dustin A.
2015-01-01
Human colorectal cancers often possess multiple mutations, including 3–6 driver mutations per tumor. The timing of when these mutations occur during tumor development and progression continues to be debated. More advanced lesions carry a greater number of driver mutations, indicating that colon tumors might progress from adenomas to carcinomas through the stepwise accumulation of mutations following tumor initiation. However, mutations that have been implicated in tumor progression have been identified in normal-appearing epithelial cells of the colon, leaving the possibility that these mutations might be present prior to the initiation of tumorigenesis. We utilized mouse models of colon cancer to investigate whether tumorigenesis still occurs through the adenoma-to-carcinoma sequence when multiple mutations are present at the time of tumor initiation. To create a model in which tumors could concomitantly possess mutations in Apc, Kras, and Pik3ca, we developed a novel minimally invasive technique to administer an adenovirus expressing Cre recombinase to a focal region of the colon. Here we demonstrate that the presence of these additional driver mutations at the time of tumor initiation results in increased tumor multiplicity and an increased rate of progression to invasive adenocarcinomas. These cancers can even metastasize to retroperitoneal lymph nodes or the liver. However, despite having as many as three concomitant driver mutations at the time of initiation, these tumors still proceed through the adenoma-to-carcinoma sequence. PMID:26276752
Yang, Meng; Topaloglu, Umit; Petty, W Jeffrey; Pagni, Matthew; Foley, Kristie L; Grant, Stefan C; Robinson, Mac; Bitting, Rhonda L; Thomas, Alexandra; Alistar, Angela T; Desnoyers, Rodwige J; Goodman, Michael; Albright, Carol; Porosnicu, Mercedes; Vatca, Mihaela; Qasem, Shadi A; DeYoung, Barry; Kytola, Ville; Nykter, Matti; Chen, Kexin; Levine, Edward A; Staren, Edgar D; D'Agostino, Ralph B; Petro, Robin M; Blackstock, William; Powell, Bayard L; Abraham, Edward; Pasche, Boris; Zhang, Wei
2017-05-04
Solid tumors residing in tissues and organs leave footprints in circulation through circulating tumor cells (CTCs) and circulating tumor DNAs (ctDNA). Characterization of the ctDNA portraits and comparison with tumor DNA mutational portraits may reveal clinically actionable information on solid tumors that is traditionally achieved through more invasive approaches. We isolated ctDNAs from plasma of patients of 103 lung cancer and 74 other solid tumors of different tissue origins. Deep sequencing using the Guardant360 test was performed to identify mutations in 73 clinically actionable genes, and the results were associated with clinical characteristics of the patient. The mutation profiles of 37 lung cancer cases with paired ctDNA and tumor genomic DNA sequencing were used to evaluate clonal representation of tumor in circulation. Five lung cancer cases with longitudinal ctDNA sampling were monitored for cancer progression or response to treatments. Mutations in TP53, EGFR, and KRAS genes are most prevalent in our cohort. Mutation rates of ctDNA are similar in early (I and II) and late stage (III and IV) cancers. Mutation in DNA repair genes BRCA1, BRCA2, and ATM are found in 18.1% (32/177) of cases. Patients with higher mutation rates had significantly higher mortality rates. Lung cancer of never smokers exhibited significantly higher ctDNA mutation rates as well as higher EGFR and ERBB2 mutations than ever smokers. Comparative analysis of ctDNA and tumor DNA mutation data from the same patients showed that key driver mutations could be detected in plasma even when they were present at a minor clonal population in the tumor. Mutations of key genes found in the tumor tissue could remain in circulation even after frontline radiotherapy and chemotherapy suggesting these mutations represented resistance mechanisms. Longitudinal sampling of five lung cancer cases showed distinct changes in ctDNA mutation portraits that are consistent with cancer progression or response to EGFR drug treatment. This study demonstrates that ctDNA mutation rates in the key tumor-associated genes are clinical parameters relevant to smoking status and mortality. Mutations in ctDNA may serve as an early detection tool for cancer. This study quantitatively confirms the hypothesis that ctDNAs in circulation is the result of dissemination of aggressive tumor clones and survival of resistant clones. This study supports the use of ctDNA profiling as a less-invasive approach to monitor cancer progression and selection of appropriate drugs during cancer evolution.
Evolution of Local Mutation Rate and Its Determinants.
Terekhanova, Nadezhda V; Seplyarskiy, Vladimir B; Soldatov, Ruslan A; Bazykin, Georgii A
2017-05-01
Mutation rate varies along the human genome, and part of this variation is explainable by measurable local properties of the DNA molecule. Moreover, mutation rates differ between orthologous genomic regions of different species, but the drivers of this change are unclear. Here, we use data on human divergence from chimpanzee, human rare polymorphism, and human de novo mutations to predict the substitution rate at orthologous regions of non-human mammals. We show that the local mutation rates are very similar between human and apes, implying that their variation has a strong underlying cryptic component not explainable by the known genomic features. Mutation rates become progressively less similar in more distant species, and these changes are partially explainable by changes in the local genomic features of orthologous regions, most importantly, in the recombination rate. However, they are much more rapid, implying that the cryptic component underlying the mutation rate is more ephemeral than the known genomic features. These findings shed light on the determinants of mutation rate evolution. local mutation rate, molecular evolution, recombination rate. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Saad, Nibal; Poudel, Aarati; Basnet, Alina; Gajra, Ajeet
2017-01-01
Adenocarcinoma is the most common type of non-small-cell lung cancer (NSCLC). Adenocarcinoma with epidermal growth factor receptor (EGFR) mutations accounts for 8%–30% of all cases of NSCLC depending on the geography and ethnicity. EGFR-mutated NSCLC usually responds to first-line therapy with EGFR tyrosine kinase inhibitors (TKIs). However, there is eventual loss of efficacy to TKIs due to development of resistance. The most frequent cause for resistance is a second EGFR mutation in exon 20 (T790M), which is encountered in up to 62% of patients. Osimertinib is one of the third-generation EGFR TKIs with a high selective potency against T790M mutants. In Phase I trial of osimertinib in advanced lung cancer after progression on EGFR TKIs, the response rate and disease control rate were 61% and 95%, respectively. A subsequent Phase II (AURA2) trial demonstrated a disease control rate of 92%, a response rate of 71%, a median duration of response of 7.8 months, and a median progression-free survival of 8.6 months. Osimertinib was approved by the US Food & Drug Administration in November 2015 for patients whose tumors exhibited T790M mutation and for those with progressive disease on other EGFR TKIs. In this review, we address the role of EGFR TKIs in the management of EGFR mutation lung cancer and the mechanisms of resistance to TKIs with a focus on the role of osimertinib. Data from completed trials of osimertinib, ongoing trials, as well as novel diagnostic methods to detect EGFR T790M mutation are reviewed. PMID:28367058
Saad, Nibal; Poudel, Aarati; Basnet, Alina; Gajra, Ajeet
2017-01-01
Adenocarcinoma is the most common type of non-small-cell lung cancer (NSCLC). Adenocarcinoma with epidermal growth factor receptor (EGFR) mutations accounts for 8%-30% of all cases of NSCLC depending on the geography and ethnicity. EGFR-mutated NSCLC usually responds to first-line therapy with EGFR tyrosine kinase inhibitors (TKIs). However, there is eventual loss of efficacy to TKIs due to development of resistance. The most frequent cause for resistance is a second EGFR mutation in exon 20 (T790M), which is encountered in up to 62% of patients. Osimertinib is one of the third-generation EGFR TKIs with a high selective potency against T790M mutants. In Phase I trial of osimertinib in advanced lung cancer after progression on EGFR TKIs, the response rate and disease control rate were 61% and 95%, respectively. A subsequent Phase II (AURA2) trial demonstrated a disease control rate of 92%, a response rate of 71%, a median duration of response of 7.8 months, and a median progression-free survival of 8.6 months. Osimertinib was approved by the US Food & Drug Administration in November 2015 for patients whose tumors exhibited T790M mutation and for those with progressive disease on other EGFR TKIs. In this review, we address the role of EGFR TKIs in the management of EGFR mutation lung cancer and the mechanisms of resistance to TKIs with a focus on the role of osimertinib. Data from completed trials of osimertinib, ongoing trials, as well as novel diagnostic methods to detect EGFR T790M mutation are reviewed.
Acquired mutations associated with ibrutinib resistance in Waldenström macroglobulinemia.
Xu, Lian; Tsakmaklis, Nicholas; Yang, Guang; Chen, Jiaji G; Liu, Xia; Demos, Maria; Kofides, Amanda; Patterson, Christopher J; Meid, Kirsten; Gustine, Joshua; Dubeau, Toni; Palomba, M Lia; Advani, Ranjana; Castillo, Jorge J; Furman, Richard R; Hunter, Zachary R; Treon, Steven P
2017-05-04
Ibrutinib produces high response rates and durable remissions in Waldenström macroglobulinemia (WM) that are impacted by MYD88 and CXCR4 WHIM mutations. Disease progression can develop on ibrutinib, although the molecular basis remains to be clarified. We sequenced sorted CD19 + lymphoplasmacytic cells from 6 WM patients who progressed after achieving major responses on ibrutinib using Sanger, TA cloning and sequencing, and highly sensitive and allele-specific polymerase chain reaction (AS-PCR) assays that we developed for Bruton tyrosine kinase ( BTK ) mutations. AS-PCR assays were used to screen patients with and without progressive disease on ibrutinib, and ibrutinib-naïve disease. Targeted next-generation sequencing was used to validate AS-PCR findings, assess for other BTK mutations, and other targets in B-cell receptor and MYD88 signaling. Among the 6 progressing patients, 3 had BTK Cys481 variants that included BTK Cys481Ser(c.1635G>C and c.1634T>A) and BTK Cys481Arg(c.1634T>C) Two of these patients had multiple BTK mutations. Screening of 38 additional patients on ibrutinib without clinical progression identified BTK Cys481 mutations in 2 (5.1%) individuals, both of whom subsequently progressed. BTK Cys481 mutations were not detected in baseline samples or in 100 ibrutinib-naive WM patients. Using mutated MYD88 as a tumor marker, BTK Cys481 mutations were subclonal, with a highly variable clonal distribution. Targeted deep-sequencing confirmed AS-PCR findings, and identified an additional BTK Cys481Tyr(c.1634G>A) mutation in the 2 patients with multiple other BTK Cys481 mutations, as well as CARD11 Leu878Phe(c.2632C>T) and PLCγ2 Tyr495His(c.1483T>C) mutations. Four of the 5 patients with BTK C481 variants were CXCR4 mutated. BTK Cys481 mutations are common in WM patients with clinical progression on ibrutinib, and are associated with mutated CXCR4 . © 2017 by The American Society of Hematology.
Garcia-Montero, Andres C; Jara-Acevedo, Maria; Alvarez-Twose, Ivan; Teodosio, Cristina; Sanchez-Muñoz, Laura; Muñiz, Carmen; Muñoz-Gonzalez, Javier I; Mayado, Andrea; Matito, Almudena; Caldas, Carolina; Morgado, Jose M; Escribano, Luis; Orfao, Alberto
2016-02-11
Multilineage involvement of bone marrow (BM) hematopoiesis by the somatic KIT D816V mutation is present in a subset of adult indolent systemic mastocytosis (ISM) patients in association with a poorer prognosis. Here, we investigated the potential involvement of BM mesenchymal stem cells (MSCs) from ISM patients by the KIT D816V mutation and its potential impact on disease progression and outcome. This mutation was investigated in highly purified BM MSCs and other BM cell populations from 83 ISM patients followed for a median of 116 months. KIT D816V-mutated MSCs were detected in 22 of 83 cases. All MSC-mutated patients had multilineage KIT mutation (100% vs 30%, P = .0001) and they more frequently showed involvement of lymphoid plus myeloid BM cells (59% vs 22%; P = .03) and a polyclonal pattern of inactivation of the X-chromosome of KIT-mutated BM mast cells (64% vs 0%; P = .01) vs other multilineage ISM cases. Moreover, presence of KIT-mutated MSCs was associated with more advanced disease features, a greater rate of disease progression (50% vs 17%; P = .04), and a shorter progression-free survival (P ≤ .003). Overall, these results support the notion that ISM patients with mutated MSCs may have acquired the KIT mutation in a common pluripotent progenitor cell, prior to differentiation into MSCs and hematopoietic precursor cells, before the X-chromosome inactivation process occurs. From a clinical point of view, acquisition of the KIT mutation in an earlier BM precursor cell confers a significantly greater risk for disease progression and a poorer outcome. © 2016 by The American Society of Hematology.
Experimental evolution in budding yeast
NASA Astrophysics Data System (ADS)
Murray, Andrew
2012-02-01
I will discuss our progress in analyzing evolution in the budding yeast, Saccharomyces cerevisiae. We take two basic approaches. The first is to try and examine quantitative aspects of evolution, for example by determining how the rate of evolution depends on the mutation rate and the population size or asking whether the rate of mutation is uniform throughout the genome. The second is to try to evolve qualitatively novel, cell biologically interesting phenotypes and track the mutations that are responsible for the phenotype. Our efforts include trying to alter cell morphology, evolve multicellularity, and produce a biological oscillator.
Nielsen, Camilla; Bojesen, Stig E.; Nordestgaard, Børge G.; Kofoed, Klaus F.; Birgens, Henrik S.
2014-01-01
Clinical significance of the JAK2V617F mutation in patients with a myeloproliferative neoplasm has been the target of intensive research in recent years. However, there is considerably uncertainty about prognosis in JAK2V617F positive individuals without overt signs of myeloproliferative disease. In this study, we tested the hypothesis that increased JAK2V617F somatic mutation burden is associated with myeloproliferative neoplasm progression rate in the general population. Among 49,488 individuals from the Copenhagen General Population Study, 63 (0.1%) tested positive for the JAK2V617F mutation in the time period 2003–2008. Of these, 48 were available for re-examination in 2012. Level of JAK2V617F mutation burden was associated with myeloproliferative neoplasm progression rate, consistent with a biological continuum of increasing JAK2V617F mutation burden across increasing severity of myeloproliferative neoplasm from no disease (n=8 at re-examination) through essential thrombocythemia (n=20) and polycythemia vera (n=13) to primary myelofibrosis (n=7). Among those diagnosed with a myeloproliferative neoplasm only at re-examination in 2012, in the preceding years JAK2V617F mutation burden increased by 0.55% per year, erythrocyte volume fraction increased by 1.19% per year, and erythrocyte mean corpuscular volume increased by 1.25% per year, while there was no change in platelet count or erythropoietin levels. Furthermore, we established a JAK2V617F mutation burden cut-off point of 2% indicative of disease versus no disease; however, individuals with a mutation burden below 2% may suffer from a latent form of myeloproliferative disease revealed by a slightly larger spleen and/or slightly higher lactic acid dehydrogenase concentration compared to controls. Of all 63 JAK2V617F positive individuals, 48 were eventually diagnosed with a myeloproliferative neoplasm. PMID:24907356
Longitudinal Psychiatric Symptoms in Prodromal Huntington's Disease: A Decade of Data.
Epping, Eric A; Kim, Ji-In; Craufurd, David; Brashers-Krug, Thomas M; Anderson, Karen E; McCusker, Elizabeth; Luther, Jolene; Long, Jeffrey D; Paulsen, Jane S
2016-02-01
Psychiatric symptoms are a significant aspect of Huntington's disease, an inherited neurodegenerative illness. The presentation of these symptoms is highly variable, and their course does not fully correlate with motor or cognitive disease progression. The authors sought to better understand the development and longitudinal course of psychiatric manifestations in individuals who carry the Huntington's disease mutation, starting from the prodromal period prior to motor diagnosis. Longitudinal measures for up to 10 years of psychiatric symptoms from the Symptom Checklist-90-Revised were obtained from 1,305 participants (1,007 carrying the Huntington's disease mutation and 298 without [classified as controls]) and 1,235 companions enrolled in the Neurobiological Predictors of Huntington's Disease (PREDICT-HD) study. Participants with the mutation were stratified into three groups according to probability of motor diagnosis within 5 years. Using linear mixed-effects regression models, differences in psychiatric symptoms at baseline and over time between the mutation-positive groups and the controls were compared, as well as between ratings by mutation-positive participants and their companions. Nineteen of 24 psychiatric measures (12 participant ratings and 12 companion ratings) were significantly higher at baseline and showed significant increases longitudinally in the individuals with the Huntington's disease mutation compared with controls. The differences were greatest in comparisons of symptom reports from companions compared with self-reports, especially in participants who were closest to motor diagnosis. The results indicate that psychiatric manifestations develop more often than previously thought in the Huntington's disease prodrome. Symptoms also increase with progression of disease severity. Greater symptom ratings by companions than by mutation-positive participants suggest decreasing awareness in those affected.
Skrzypski, Marcin; Szymanowska-Narloch, Amelia; Dziadziuszko, Rafał
2017-01-01
Non-small cell lung cancer (NSCLC) driven by activating mutations in epidermal growth factor receptor (EGFR) constitutes up to 10% of NSCLC cases. According to the NCCN recommendations, all patients (with the exception of smoking patients with squamous cell lung cancer) should be screened for the presence of activating EGFR mutations, i.e. deletion in exon 19 or point mutation L858R in exon 21, in order to select the group that benefits from EGFR tyrosine kinase inhibitors (EGFR TKIs) treatment. Among approved agents there are the 1 st generation reversible EGFR TKIs, erlotinib and gefitinib, and the 2 nd generation irreversible EGFR TKI, afatinib. The objective response rates to these drugs in randomised clinical trials were in the range of 56-74%, and median time to progression 9-13 months. The most common determinant of resistance to these drugs is the clonal expansion of cancer cells with T790M mutation (Thr790Met) in exon 20 of EGFR. Osimertinib (Tagrisso™), a 3 rd generation, irreversible EGFR tyrosine kinase inhibitor, constitutes a novel, highly efficacious treatment for NSCLC patients progressing on EGFR TKIs with T790M mutation confirmed as the resistance mechanism. Resistance mutation can be determined in tissue or liquid biopsy obtained after progression on EGFR TKIs. Osimertinib has a favourable toxicity profile, with mild rash and diarrhoea being the most common. In this article, we present three cases that were successfully treated with osimertinib after progression on 1st and 2nd generation EGFR TKIs.
Improved survival with vemurafenib in melanoma with BRAF V600E mutation.
Chapman, Paul B; Hauschild, Axel; Robert, Caroline; Haanen, John B; Ascierto, Paolo; Larkin, James; Dummer, Reinhard; Garbe, Claus; Testori, Alessandro; Maio, Michele; Hogg, David; Lorigan, Paul; Lebbe, Celeste; Jouary, Thomas; Schadendorf, Dirk; Ribas, Antoni; O'Day, Steven J; Sosman, Jeffrey A; Kirkwood, John M; Eggermont, Alexander M M; Dreno, Brigitte; Nolop, Keith; Li, Jiang; Nelson, Betty; Hou, Jeannie; Lee, Richard J; Flaherty, Keith T; McArthur, Grant A
2011-06-30
Phase 1 and 2 clinical trials of the BRAF kinase inhibitor vemurafenib (PLX4032) have shown response rates of more than 50% in patients with metastatic melanoma with the BRAF V600E mutation. We conducted a phase 3 randomized clinical trial comparing vemurafenib with dacarbazine in 675 patients with previously untreated, metastatic melanoma with the BRAF V600E mutation. Patients were randomly assigned to receive either vemurafenib (960 mg orally twice daily) or dacarbazine (1000 mg per square meter of body-surface area intravenously every 3 weeks). Coprimary end points were rates of overall and progression-free survival. Secondary end points included the response rate, response duration, and safety. A final analysis was planned after 196 deaths and an interim analysis after 98 deaths. At 6 months, overall survival was 84% (95% confidence interval [CI], 78 to 89) in the vemurafenib group and 64% (95% CI, 56 to 73) in the dacarbazine group. In the interim analysis for overall survival and final analysis for progression-free survival, vemurafenib was associated with a relative reduction of 63% in the risk of death and of 74% in the risk of either death or disease progression, as compared with dacarbazine (P<0.001 for both comparisons). After review of the interim analysis by an independent data and safety monitoring board, crossover from dacarbazine to vemurafenib was recommended. Response rates were 48% for vemurafenib and 5% for dacarbazine. Common adverse events associated with vemurafenib were arthralgia, rash, fatigue, alopecia, keratoacanthoma or squamous-cell carcinoma, photosensitivity, nausea, and diarrhea; 38% of patients required dose modification because of toxic effects. Vemurafenib produced improved rates of overall and progression-free survival in patients with previously untreated melanoma with the BRAF V600E mutation. (Funded by Hoffmann-La Roche; BRIM-3 ClinicalTrials.gov number, NCT01006980.).
Douillard, J-Y; Ostoros, G; Cobo, M; Ciuleanu, T; McCormack, R; Webster, A; Milenkova, T
2014-01-01
Background: Phase-IV, open-label, single-arm study (NCT01203917) to assess efficacy and safety/tolerability of first-line gefitinib in Caucasian patients with stage IIIA/B/IV, epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC). Methods: Treatment: gefitinib 250 mg day−1 until progression. Primary endpoint: objective response rate (ORR). Secondary endpoints: disease control rate (DCR), progression-free survival (PFS), overall survival (OS) and safety/tolerability. Pre-planned exploratory objective: EGFR mutation analysis in matched tumour and plasma samples. Results: Of 1060 screened patients with NSCLC (859 known mutation status; 118 positive, mutation frequency 14%), 106 with EGFR sensitising mutations were enrolled (female 70.8% adenocarcinoma 97.2% never-smoker 64.2%). At data cutoff: ORR 69.8% (95% confidence interval (CI) 60.5–77.7), DCR 90.6% (95% CI 83.5–94.8), median PFS 9.7 months (95% CI 8.5–11.0), median OS 19.2 months (95% CI 17.0–NC; 27% maturity). Most common adverse events (AEs; any grade): rash (44.9%), diarrhoea (30.8%); CTC (Common Toxicity Criteria) grade 3/4 AEs: 15% SAEs: 19%. Baseline plasma 1 samples were available in 803 patients (784 known mutation status; 82 positive; mutation frequency 10%). Plasma 1 EGFR mutation test sensitivity: 65.7% (95% CI 55.8–74.7). Conclusion: First-line gefitinib was effective and well tolerated in Caucasian patients with EGFR mutation-positive NSCLC. Plasma samples could be considered for mutation analysis if tumour tissue is unavailable. PMID:24263064
VPS53 mutations cause progressive cerebello-cerebral atrophy type 2 (PCCA2).
Feinstein, Miora; Flusser, Hagit; Lerman-Sagie, Tally; Ben-Zeev, Bruria; Lev, Dorit; Agamy, Orly; Cohen, Idan; Kadir, Rotem; Sivan, Sara; Leshinsky-Silver, Esther; Markus, Barak; Birk, Ohad S
2014-05-01
Progressive cerebello-cerebral atrophy (PCCA) leading to profound mental retardation, progressive microcephaly, spasticity and early onset epilepsy, was diagnosed in four non-consanguineous apparently unrelated families of Jewish Moroccan ancestry. Common founder mutation(s) were assumed. Genome-wide linkage analysis and whole exome sequencing were done, followed by realtime PCR and immunofluorescent microscopy. Genome-wide linkage analysis mapped the disease-associated gene to 0.5 Mb on chromosome 17p13.3. Whole exome sequencing identified only two mutations within this locus, which were common to the affected individuals: compound heterozygous mutations in VPS53, segregating as expected for autosomal recessive heredity within all four families, and common in Moroccan Jews (∼1:37 carrier rate). The Golgi-associated retrograde protein (GARP) complex is involved in the retrograde pathway recycling endocytic vesicles to Golgi; c.2084A>G and c.1556+5G>A VPS53 founder mutations are predicted to affect the C-terminal domain of VPS53, known to be critical to its role as part of this complex. Immunofluorescent microscopy demonstrated swollen and abnormally numerous CD63 positive vesicular bodies, likely intermediate recycling/late endosomes, in fibroblasts of affected individuals. Autosomal recessive PCCA type 2 is caused by VPS53 mutations.
Hepatitis B virus genetic mutations and evolution in liver diseases
Shen, Tao; Yan, Xin-Min
2014-01-01
Hepatitis B virus (HBV) belongs to the genus Orthohepadnavirus of the Hepadnaviridae family and is approximately 3.2 kb in length. Owing to a lack of proofreading capacity during reverse transcription and a high replication rate, HBV exhibits as quasispecies. To detect the genetic mutations of HBV, many methods with different sensitivities and throughputs were developed. According to documentary records, HBV mutation and evolution were important vial parameters in predicting disease progression and therapeutic outcome. In this review, we separately discussed the correlation between HBV genomic mutations in four open reading frames and liver disease progression. Since some of the results were controversial from different laboratories, it remains to be seen whether functional analyses will confirm their role in modifying the course of infection. PMID:24833874
Problems and solutions in the estimation of genetic risks from radiation and chemicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, W. L.
1980-01-01
Extensive investigations with mice on the effects of various physical and biological factors, such as dose rate, sex and cell stage, on radiation-induced mutation have provided an evaluation of the genetics hazards of radiation in man. The mutational results obtained in both sexes with progressive lowering of the radiation dose rate have permitted estimation of the mutation frequency expected under the low-level radiation conditions of most human exposure. Supplementing the studies on mutation frequency are investigations on the phenotypic effects of mutations in mice, particularly anatomical disorders of the skeleton, which allow an estimation of the degree of human handicapmore » associated with the occurrence of parallel defects in man. Estimation of the genetic risk from chemical mutagens is much more difficult, and the research is much less advanced. Results on transmitted mutations in mice indicate a poor correlation with mutation induction in non-mammalian organisms.« less
Knebel, Franciele H; Bettoni, Fabiana; Shimada, Andrea K; Cruz, Manoel; Alessi, João Victor; Negrão, Marcelo V; Reis, Luiz Fernando L; Katz, Artur; Camargo, Anamaria A
2017-06-01
Osimertinib is an EGFR-T790M-specific TKI, which has demonstrated impressive response rates in NSCLC, after failure to first-line anti-EGFR TKIs. However, acquired resistance to osimertinib is also observed and the molecular mechanisms of resistance are not yet fully understood. Monitoring and managing NSCLC patients who progressed on osimertinib is, therefore, emerging as an important clinical challenge. Sequential liquid biopsies were used to monitor a patient with EGFR-exon19del positive NSCLC, who received erlotinib and progressed through the acquisition of the EGFR-T790M mutation. Erlotinib was discontinued and osimertinib was initiated. Blood samples were collected at erlotinib progression and during osimertinib treatment for the detection of the activating (EGFR-exon19del) and resistance mutations (EGFR-T790M, EGFR-C797S, BRAF-V600E, METamp and ERBB2amp) in the plasma DNA using digital droplet PCR. Plasma levels of the activating EGFR-exon19del accurately paralleled the clinical and radiological progression of disease and allowed early detection of AR to osimertinib. Resistance to osimertinib coincided with the emergence of a small tumor cell subpopulation carrying the known EGFR-C797S resistance mutation and an additional subpopulation carrying amplified copies of EGFR-exon19del. Given the existence of multiple AR mechanisms, quantification of the original EGFR activation mutation, instead of the resistance mutations, can be efficiently used to monitor response to osimertinib, allowing early detection of AR. Absolute quantification of both activation and resistance mutations can provide important information on tumor clonal evolution upon progression to osimertinib. Selective amplification of the EGFR-exon19del allele may represent a novel resistance mechanism to osimertinib. Copyright © 2017 Elsevier B.V. All rights reserved.
Siena, S; Sartore-Bianchi, A; Garcia-Carbonero, R; Karthaus, M; Smith, D; Tabernero, J; Van Cutsem, E; Guan, X; Boedigheimer, M; Ang, A; Twomey, B; Bach, B A; Jung, A S; Bardelli, A
2018-01-01
Mutations in rat sarcoma (RAS) genes may be a mechanism of secondary resistance in epidermal growth factor receptor inhibitor-treated patients. Tumor-tissue biopsy testing has been the standard for evaluating mutational status; however, plasma testing of cell-free DNA has been shown to be a more sensitive method for detecting clonal evolution. Archival pre- and post-treatment tumor biopsy samples from a phase II study of panitumumab in combination with irinotecan in patients with metastatic colorectal cancer (mCRC) that also collected plasma samples before, during, and after treatment were analyzed for emergence of mutations during/post-treatment by next-generation sequencing and BEAMing. The rate of emergence of tumor tissue RAS mutations was 9.5% by next-generation sequencing (n = 21) and 6.3% by BEAMing (n = 16). Plasma testing of cell-free DNA by BEAMing revealed a mutant RAS emergence rate of 36.7% (n = 39). Exploratory outcomes analysis of plasma samples indicated that patients who had emergent RAS mutations at progression had similar median progression-free survival to those patients who remained wild-type at progression. Serial analysis of plasma samples showed that the first detected emergence of RAS mutations preceded progression by a median of 3.6 months (range, -0.3 to 7.5 months) and that there did not appear to be a mutant RAS allele frequency threshold that could predict near-term outcomes. This first prospective analysis in mCRC showed that serial plasma biopsies are more inclusive than tissue biopsies for evaluating global tumor heterogeneity; however, the clinical utility of plasma testing in mCRC remains to be further explored. NCT00891930. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
Shafie, Suraiya M.; Barria von-Bischhoffshausen, Fernando R.; Bateman, J. Bronwyn
2006-01-01
PURPOSE To document intrafamilial and interocular phenotypic variability of autosomal dominant cataract (ADC). DESIGN Prospective observational case series. METHODS We performed ophthalmologic examination in four Chilean ADC families. RESULTS The families exhibited variability with respect to morphology, location with the lens, color and density of cataracts among affected members. We documented asymmetry between eyes in the morphology, location within the lens, color and density of cataracts, and a variable rate of progression. CONCLUSIONS The cataracts in these families exhibit wide intrafamilial and interocular phenotypic variability, supporting the premise that the mutated genes are expressed differentially in individuals and between eyes; other genes or environmental factors may be the bases for this variability. Marked progression among some family members underscores the variable clinical course of a common mutation within a family. Like retinitis pigmentosa, classification of ADC will be most useful if based on the gene and specific mutation. PMID:16564818
Cai, Ling; Zhu, Jian-fei; Zhang, Xue-wen; Lin, Su-xia; Su, Xiao-dong; Lin, Peng; Chen, Kai; Zhang, Lan-jun
2014-11-01
We proposed to identify the efficacy of an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) using whole brain radiotherapy (WBRT)/stereotactic radiosurgery (SRS)/surgery in brain metastases from patients with non-small cell lung cancer (NSCLC) and clarify the association between treatment outcome and EGFR gene mutation status. A total of 282 patients with NSCLC brain metastases who underwent WBRT/SRS/surgery alone or in combination with TKI were enrolled in our study from 2003-2013. Amplification mutation refractory system technology was used to determine the EGFR mutation status in 109 tissue samples. EGFR mutation detection was performed in 109 patients with tumor tissues. The EGFR positive rate was 50 % (55/109), including 26 exon 19 deletions and 24 L858R mutations. The median follow-up time was 28 months. The median overall survival, median progression-free survival of intracranial disease, and median progression-free survival of extracranial disease was significantly longer for patients with TKI treatment (31.9 vs 17.0 months, P < 0.0001; 19.8 vs 12.0 months, P < 0.0001; and 19.6 vs 12.3 months, P < 0.0001; respectively). In subgroup analysis within the TKI group, patients harboring EGFR mutations had better extracranial disease control (20.4 vs 14.1 months, P = 0.032). Administration of TKI agents with conventional therapy compared with conventional therapy alone might be beneficial for overall survival, progression-free survival of intracranial disease and progression-free survival of extracranial disease in patients with brain metastases from NSCLC independent of EGFR mutations.
Exome-wide Sequencing Shows Low Mutation Rates and Identifies Novel Mutated Genes in Seminomas.
Cutcutache, Ioana; Suzuki, Yuka; Tan, Iain Beehuat; Ramgopal, Subhashini; Zhang, Shenli; Ramnarayanan, Kalpana; Gan, Anna; Lee, Heng Hong; Tay, Su Ting; Ooi, Aikseng; Ong, Choon Kiat; Bolthouse, Jonathan T; Lane, Brian R; Anema, John G; Kahnoski, Richard J; Tan, Patrick; Teh, Bin Tean; Rozen, Steven G
2015-07-01
Testicular germ cell tumors are the most common cancer diagnosed in young men, and seminomas are the most common type of these cancers. There have been no exome-wide examinations of genes mutated in seminomas or of overall rates of nonsilent somatic mutations in these tumors. The objective was to analyze somatic mutations in seminomas to determine which genes are affected and to determine rates of nonsilent mutations. Eight seminomas and matched normal samples were surgically obtained from eight patients. DNA was extracted from tissue samples and exome sequenced on massively parallel Illumina DNA sequencers. Single-nucleotide polymorphism chip-based copy number analysis was also performed to assess copy number alterations. The DNA sequencing read data were analyzed to detect somatic mutations including single-nucleotide substitutions and short insertions and deletions. The detected mutations were validated by independent sequencing and further checked for subclonality. The rate of nonsynonymous somatic mutations averaged 0.31 mutations/Mb. We detected nonsilent somatic mutations in 96 genes that were not previously known to be mutated in seminomas, of which some may be driver mutations. Many of the mutations appear to have been present in subclonal populations. In addition, two genes, KIT and KRAS, were affected in two tumors each with mutations that were previously observed in other cancers and are presumably oncogenic. Our study, the first report on exome sequencing of seminomas, detected somatic mutations in 96 new genes, several of which may be targetable drivers. Furthermore, our results show that seminoma mutation rates are five times higher than previously thought, but are nevertheless low compared to other common cancers. Similar low rates are seen in other cancers that also have excellent rates of remission achieved with chemotherapy. We examined the DNA sequences of seminomas, the most common type of testicular germ cell cancer. Our study identified 96 new genes in which mutations occurred during seminoma development, some of which might contribute to cancer development or progression. The study also showed that the rates of DNA mutations during seminoma development are higher than previously thought, but still lower than for other common solid-organ cancers. Such low rates are also observed among other cancers that, like seminomas, show excellent rates of disease remission after chemotherapy. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Comparison of algorithms for the detection of cancer-drivers at sub-gene resolution
Porta-Pardo, Eduard; Kamburov, Atanas; Tamborero, David; Pons, Tirso; Grases, Daniela; Valencia, Alfonso; Lopez-Bigas, Nuria; Getz, Gad; Godzik, Adam
2018-01-01
Understanding genetic events that lead to cancer initiation and progression remains one of the biggest challenges in cancer biology. Traditionally most algorithms for cancer driver identification look for genes that have more mutations than expected from the average background mutation rate. However, there is now a wide variety of methods that look for non-random distribution of mutations within proteins as a signal they have a driving role in cancer. Here we classify and review the progress of such sub-gene resolution algorithms, compare their findings on four distinct cancer datasets from The Cancer Genome Atlas and discuss how predictions from these algorithms can be interpreted in the emerging paradigms that challenge the simple dichotomy between driver and passenger genes. PMID:28714987
A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome
Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali
2017-01-01
Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene (ERCC6), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family. PMID:28848724
A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome.
Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali
2017-01-01
Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene ( ERCC6 ), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.
Eto, Tsugio; Miyake, Keisuke; Nosho, Katsuhiko; Ohmuraya, Masaki; Imamura, Yu; Arima, Kota; Kanno, Shinichi; Fu, Lingfeng; Kiyozumi, Yuki; Izumi, Daisuke; Sugihara, Hidetaka; Hiyoshi, Yukiharu; Miyamoto, Yuji; Sawayama, Hiroshi; Iwatsuki, Masaaki; Baba, Yoshifumi; Yoshida, Naoya; Furukawa, Toru; Araki, Kimi; Baba, Hideo; Ishimoto, Takatsugu
2018-05-13
RNF43 mutations are frequently detected in colorectal cancer cells and lead to a loss of function of the ubiquitin E3 ligase. Here, we investigated the clinical significance of RNF43 mutations in a large Japanese cohort and the role of RNF43 at various stages of colorectal cancer development and progression. Mutation analysis of the RNF43 gene locus using pyrosequencing technology detected RNF43 hotspot mutations in 1 (0.88%) of 113 colorectal polyp cases and 30 (6.45%) of 465 colorectal cancer cases. Moreover, patients with colorectal cancer harboring mutated RNF43 experienced a higher recurrence rate than those harboring non-mutated RNF43. In addition, the growth of RNF43 wild-type colorectal cancer cell lines was significantly increased by RNF43 silencing. We generated Rnf43 knock-out mice in a C57BL/6N background using the CRISPR-Cas9 system. Although intestinal organoids from the Rnf43 knock-out mice did not show continuous growth compared with those from the wild-type mice in the absence of R-spondin, an azoxymethane (AOM)/dextran sodium sulfate (DSS) mouse model demonstrated that the tumors were markedly larger in the Rnf43 knock-out mice than in the wild-type mice. These findings provide evidence that Wnt signaling activation by RNF43 mutations during the tumorigenic stage enhances tumor growth and promotes a high recurrence rate in colorectal cancer patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
McCoach, C E; Jimeno, A
2016-10-01
Oncogenic driver mutations in the epidermal growth factor receptor (EGFR) gene have provided a focus for effective targeted therapy. Unfortunately, all patients eventually develop resistance to frontline therapy with EGFR tyrosine kinase inhibitors (TKIs). The majority of patients develop a large subclonal population of tumor cells with a T790M mutation that renders these cells resistant to first-generation TKIs. Osimertinib is a third-generation EGFR TKI that was designed to overcome resistance from T790M mutations. This agent has demonstrated strong preclinical activity, and in the clinic it has demonstrated a high objective response rate and progression-free survival in patients with EGFR double mutations (L858R/T790M and exon 19 deletion/T790M). It is now approved by the FDA for patients who have a documented T790M mutation and who have progressed on a prior TKI. Osimertinib is also approved in the E.U. and Japan. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.
Increase of the spontaneous mutation rate in a long-term experiment with Drosophila melanogaster.
Avila, Victoria; Chavarrías, David; Sánchez, Enrique; Manrique, Antonio; López-Fanjul, Carlos; García-Dorado, Aurora
2006-05-01
In a previous experiment, the effect of 255 generations of mutation accumulation (MA) on the second chromosome viability of Drosophila melanogaster was studied using 200 full-sib MA1 lines and a large C1 control, both derived from a genetically homogeneous base population. At generation 265, one of those MA1 lines was expanded to start 150 new full-sib MA2 lines and a new C2 large control. After 46 generations, the rate of decline in mean viability in MA2 was approximately 2.5 times that estimated in MA1, while the average degree of dominance of mutations was small and nonsignificant by generation 40 and moderate by generation 80. In parallel, the inbreeding depression rate for viability and the amount of additive variance for two bristle traits in C2 were 2-3 times larger than those in C1. The results are consistent with a mutation rate in the line from which MA2 and C2 were derived about 2.5 times larger than that in MA1. The mean viability of C2 remained roughly similar to that of C1, but the rate of MA2 line extinction increased progressively, leading to mutational collapse, which can be ascribed to accelerated mutation and/or synergy after important deleterious accumulation.
Casartelli, Nicoletta; Di Matteo, Gigliola; Argentini, Claudio; Cancrini, Caterina; Bernardi, Stefania; Castelli, Guido; Scarlatti, Gabriella; Plebani, Anna; Rossi, Paolo; Doria, Margherita
2003-06-13
Evaluation of sequence evolution as well as structural defects and mutations of the human immunodeficiency virus-type 1 (HIV-1) nef gene in relation to disease progression in infected children. We examined a large number of nef alleles sequentially derived from perinatally HIV-1-infected children with different rates of disease progression: six non-progressors (NPs), four rapid progressors (RPs), and three slow progressors (SPs). Nef alleles (182 total) were isolated from patients' peripheral blood mononuclear cells (PBMCs), sequenced and analysed for their evolutionary pattern, frequency of mutations and occurrence of amino acid variations associated with different stages of disease. The evolution rate of the nef gene apparently correlated with CD4+ decline in all progression groups. Evidence for rapid viral turnover and positive selection for changes were found only in two SPs and two RPs respectively. In NPs, a higher proportion of disrupted sequences and mutations at various functional motifs were observed. Furthermore, NP-derived Nef proteins were often changed at residues localized in the folded core domain at cytotoxic T lymphocytes (CTL) epitopes (E(105), K(106), E(110), Y(132), K(164), and R(200)), while other residues outside the core domain are more often changed in RPs (A(43)) and SPs (N(173) and Y(214)). Our results suggest a link between nef gene functions and the progression rate in HIV-1-infected children. Moreover, non-progressor-associated variations in the core domain of Nef, together with the genetic analysis, suggest that nef gene evolution is shaped by an effective immune system in these patients.
Sato, Atsuko; Ouellet, Jean; Muneta, Takeshi; Glorieux, Francis H; Rauch, Frank
2016-05-01
Bisphosphonates are widely used to treat children with osteogenesis imperfecta (OI), a bone fragility disorder that is most often caused by mutations in COL1A1 or COL1A2. However, it is unclear whether this treatment decreases the risk of developing scoliosis. We retrospectively evaluated spine radiographs and charts of 437 patients (227 female) with OI caused by mutations in COL1A1 or COL1A2 and compared the relationship between scoliosis, genotype and bisphosphonate treatment history. At the last follow-up (mean age 11.9 [SD: 5.9] years), 242 (55%) patients had scoliosis. The prevalence of scoliosis was highest in OI type III (89%), followed by OI type IV (61%) and OI type I (36%). Moderate to severe scoliosis (Cobb angle ≥25°) was rare in individuals with COL1A1 haploinsufficiency mutations but was present in about two fifth of patients with triple helical glycine substitutions or C-propeptide mutations. During the first 2 to 4years of bisphosphonate therapy, patients with OI type III had lower Cobb angle progression rates than before bisphosphonate treatment, whereas in OI types I and IV bisphosphonate treatment was not associated with a change in Cobb angle progression rates. At skeletal maturity, the prevalence of scoliosis (Cobb angle >10°) was similar in patients who had started bisphosphonate treatment early in life (before 5.0years of age) and in patients who had started therapy later (after the age of 10.0years) or had never received bisphosphonate therapy. Bisphosphonate treatment decreased progression rate of scoliosis in OI type III but there was no evidence of a positive effect on scoliosis in OI types I and IV. The prevalence of scoliosis at maturity was not influenced by the bisphosphonate treatment history in any OI type. Copyright © 2016 Elsevier Inc. All rights reserved.
Remon, J; Caramella, C; Jovelet, C; Lacroix, L; Lawson, A; Smalley, S; Howarth, K; Gale, D; Green, E; Plagnol, V; Rosenfeld, N; Planchard, D; Bluthgen, M V; Gazzah, A; Pannet, C; Nicotra, C; Auclin, E; Soria, J C; Besse, B
2017-04-01
Approximately 50% of epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine kinase inhibitors (TKIs) will acquire resistance by the T790M mutation. Osimertinib is the standard of care in this situation. The present study assesses the efficacy of osimertinib when T790M status is determined in circulating cell-free tumour DNA (ctDNA) from blood samples in progressing advanced EGFR-mutant NSCLC patients. ctDNA T790M mutational status was assessed by Inivata InVision™ (eTAm-Seq™) assay in 48 EGFR-mutant advanced NSCLC patients with acquired resistance to EGFR TKIs without a tissue biopsy between April 2015 and April 2016. Progressing T790M-positive NSCLC patients received osimertinib (80 mg daily). The objectives were to assess the response rate to osimertinib according to Response Evaluation Criteria in Solid Tumours (RECIST) 1.1, the progression-free survival (PFS) on osimertinib, and the percentage of T790M positive in ctDNA. The ctDNA T790M mutation was detected in 50% of NSCLC patients. Among assessable patients, osimertinib gave a partial response rate of 62.5% and a stable disease rate of 37.5%. All responses were confirmed responses. After median follow up of 8 months, median PFS by RECIST criteria was not achieved (95% CI: 4-NA), with 6- and 12-months PFS of 66.7% and 52%, respectively. ctDNA from liquid biopsy can be used as a surrogate marker for T790M in tumour tissue. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Clinical Phenotypes and Prognostic Full-Field Electroretinographic Findings in Stargardt Disease
ZAHID, SARWAR; JAYASUNDERA, THIRAN; RHOADES, WILLIAM; BRANHAM, KARI; KHAN, NAHEED; NIZIOL, LESLIE M.; MUSCH, DAVID C.; HECKENLIVELY, JOHN R.
2013-01-01
PURPOSE To investigate the relationships between clinical and full-field electroretinographic (ERG) findings and progressive loss of visual function in Stargardt disease. DESIGN Retrospective cohort study. METHODS We performed a retrospective review of data from 198 patients with Stargardt disease. Measures of visual function over time, including visual acuity, quantified Goldmann visual fields, and full-field ERG data were recorded. Data were analyzed using SAS statistical software. Subgroup analyses were performed on 148 patients with ERG phenotypic data, 46 patients with longitudinal visual field data, and 92 patients with identified ABCA4 mutations (46 with 1 mutation, and 47 with 2 or more mutations). RESULTS Of 46 patients with longitudinal visual field data, 8 patients with faster central scotoma progression rates had significantly worse scotopic B-wave amplitudes at their initial assessment than 20 patients with stable scotomata (P = .014) and were more likely to have atrophy beyond the arcades (P = .047). Overall, 47.3% of patients exhibited abnormal ERG results, with rod–cone dysfunction in 14.2% of patients, cone–rod dysfunction in 17.6% of patients, and isolated cone dysfunction in 15.5% of patients. Abnormal values in certain ERG parameters were associated significantly with (maximum-stimulation A- and B-wave amplitudes) or tended toward (photopic and scotopic B-wave amplitudes) a higher mean rate of central scotoma progression compared with those patients with normal ERG values. Scotoma size and ERG parameters differed significantly between those with a single mutation versus those with multiple mutations. CONCLUSIONS Full-field ERG examination provides clinically relevant information regarding the severity of Stargardt disease, likelihood of central scotoma expansion, and visual acuity deterioration. Patients also may exhibit an isolated cone dystrophy on ERG examination. PMID:23219216
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagishita, Shigehiro; Horinouchi, Hidehito, E-mail: hhorinou@ncc.go.jp; Katsui Taniyama, Tomoko
Purpose: To determine the frequency and clinical significance of epidermal growth factor receptor (EGFR) mutations in patients with potentially curable stage III non–small-cell lung cancer (NSCLC) who are eligible for definitive chemoradiotherapy (CRT). Patients and Methods: Between January 2001 and December 2010, we analyzed the EGFR mutational status in consecutive NSCLC patients who were treated by CRT. The response rate, relapse-free survival, 2-year relapse-free rate, initial relapse sites, and overall survival of the patients were investigated. Results: A total of 528 patients received CRT at our hospital during the study period. Of these, 274 were diagnosed as having nonsquamous NSCLC. Sufficientmore » specimens for mutational analyses could be obtained from 198 of these patients. The proportion of patients with EGFR activating mutations was 17%. In addition to the well-known characteristics of patients carrying EGFR mutations (female, adenocarcinoma, and never/light smoker), the proportion of cases with smaller primary lesions (T1/2) was found to be higher in patients with EGFR mutations than in those with wild-type EGFR. Patients with EGFR mutations showed similar response rate, relapse-free survival, and 2-year relapse-free rates as compared to patients with wild-type EGFR. Local relapses as the site of initial relapse occurred significantly less frequently in patients with EGFR mutation (4% vs 21%; P=.045). Patients with EGFR mutations showed longer local control (adjusted hazard ratio 0.49; P=.043). After disease progression, a majority of the patients with EGFR mutations received EGFR tyrosine kinase inhibitors (62%), and these patients showed longer postprogression survival than those with wild-type EGFR. Conclusions: Our study is the first to show radiosensitive biology of EGFR-mutated tumors in definitive CRT with curative intent. This finding could serve as a credible baseline estimate of EGFR-mutated population in stage III nonsquamous NSCLC.« less
[Osimertinib (Tagrisso®): Activity, indication and modality of use in non-small cell lung cancer].
Giroux Leprieur, Etienne; Cortot, Alexis B; Cadranel, Jacques; Wislez, Marie
2016-10-01
The acquisition of a resistance EGFR mutation in exon 20 (T790M) occurs in half of the cases of secondary resistance to EGFR tyrosine kinase inhibitors (TKI), given in first-line treatment in advanced EGFR-mutated non-small cell lung cancers (NSCLC). Osimertinib (AZD9291, Tagrisso ® ) is a third-generation, irreversible EGFR TKI, active in case of T790M mutation. A large phase I trial showed the efficacy of osimertinib after failure of first-generation EGFR TKI (erlotinib, gefitinib), with response rate at 51% and up to 61% in case of T790M mutation. Progression-free survival was 9.6 months in case of T790M. Toxicity profile was acceptable, with mainly digestive (diarrhea) and skin (rash) side effects. Preliminary data from a phase II trial confirmed these efficacy and safety data. Screening of T790M mutation at the time of progression with TKI can be performed in circulating tumor DNA in plasma, with good diagnostic performances. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
Increase of the Spontaneous Mutation Rate in a Long-Term Experiment With Drosophila melanogaster
Ávila, Victoria; Chavarrías, David; Sánchez, Enrique; Manrique, Antonio; López-Fanjul, Carlos; García-Dorado, Aurora
2006-01-01
In a previous experiment, the effect of 255 generations of mutation accumulation (MA) on the second chromosome viability of Drosophila melanogaster was studied using 200 full-sib MA1 lines and a large C1 control, both derived from a genetically homogeneous base population. At generation 265, one of those MA1 lines was expanded to start 150 new full-sib MA2 lines and a new C2 large control. After 46 generations, the rate of decline in mean viability in MA2 was ∼2.5 times that estimated in MA1, while the average degree of dominance of mutations was small and nonsignificant by generation 40 and moderate by generation 80. In parallel, the inbreeding depression rate for viability and the amount of additive variance for two bristle traits in C2 were 2–3 times larger than those in C1. The results are consistent with a mutation rate in the line from which MA2 and C2 were derived about 2.5 times larger than that in MA1. The mean viability of C2 remained roughly similar to that of C1, but the rate of MA2 line extinction increased progressively, leading to mutational collapse, which can be ascribed to accelerated mutation and/or synergy after important deleterious accumulation. PMID:16547099
Clatot, Florian; Perdrix, Anne; Augusto, Laetitia; Beaussire, Ludivine; Delacour, Julien; Calbrix, Céline; Sefrioui, David; Viailly, Pierre-Julien; Bubenheim, Michael; Moldovan, Cristian; Alexandru, Cristina; Tennevet, Isabelle; Rigal, Olivier; Guillemet, Cécile; Leheurteur, Marianne; Gouérant, Sophie; Petrau, Camille; Théry, Jean-Christophe; Picquenot, Jean-Michel; Veyret, Corinne; Frébourg, Thierry; Jardin, Fabrice
2016-01-01
Purpose To assess the prognostic and predictive value of circulating ESR1 mutation and its kinetics before and after progression on aromatase inhibitor (AI) treatment. Patients and methods ESR1 circulating D538G and Y537S/N/C mutations were retrospectively analyzed by digital droplet PCR after first-line AI failure in patients treated consecutively from 2010 to 2012 for hormone receptor-positive metastatic breast cancer. Progression-free survival (PFS) and overall survival (OS) were analyzed according to circulating mutational status and subsequent lines of treatment. The kinetics of ESR1 mutation before (3 and 6 months) and after (3 months) AI progression were determined in the available archive plasmas. Results Circulating ESR1 mutations were found at AI progression in 44/144 patients included (30.6%). Median follow-up from AI initiation was 40 months (range 4-94). The median OS was decreased in patients with circulating ESR1 mutation than in patients without mutation (15.5 versus 23.8 months, P=0.0006). The median PFS was also significantly decreased in patients with ESR1 mutation than in patients without mutation (5.9 vs 7 months, P=0.002). After AI failure, there was no difference in outcome for patients receiving chemotherapy (n = 58) versus non-AI endocrine therapy (n=51) in patients with and without ESR1 mutation. ESR1 circulating mutations were detectable in 75% of all cases before AI progression, whereas the kinetics 3 months after progression did not correlate with outcome. Conclusion ESR1 circulating mutations are independent risk factors for poor outcome after AI failure, and are frequently detectable before clinical progression. Interventional studies based on ESR1 circulating status are warranted. PMID:27801670
Clatot, Florian; Perdrix, Anne; Augusto, Laetitia; Beaussire, Ludivine; Delacour, Julien; Calbrix, Céline; Sefrioui, David; Viailly, Pierre-Julien; Bubenheim, Michael; Moldovan, Cristian; Alexandru, Cristina; Tennevet, Isabelle; Rigal, Olivier; Guillemet, Cécile; Leheurteur, Marianne; Gouérant, Sophie; Petrau, Camille; Théry, Jean-Christophe; Picquenot, Jean-Michel; Veyret, Corinne; Frébourg, Thierry; Jardin, Fabrice; Sarafan-Vasseur, Nasrin; Di Fiore, Frédéric
2016-11-15
To assess the prognostic and predictive value of circulating ESR1 mutation and its kinetics before and after progression on aromatase inhibitor (AI) treatment. ESR1 circulating D538G and Y537S/N/C mutations were retrospectively analyzed by digital droplet PCR after first-line AI failure in patients treated consecutively from 2010 to 2012 for hormone receptor-positive metastatic breast cancer. Progression-free survival (PFS) and overall survival (OS) were analyzed according to circulating mutational status and subsequent lines of treatment. The kinetics of ESR1 mutation before (3 and 6 months) and after (3 months) AI progression were determined in the available archive plasmas. Circulating ESR1 mutations were found at AI progression in 44/144 patients included (30.6%). Median follow-up from AI initiation was 40 months (range 4-94). The median OS was decreased in patients with circulating ESR1 mutation than in patients without mutation (15.5 versus 23.8 months, P=0.0006). The median PFS was also significantly decreased in patients with ESR1 mutation than in patients without mutation (5.9 vs 7 months, P=0.002). After AI failure, there was no difference in outcome for patients receiving chemotherapy (n = 58) versus non-AI endocrine therapy (n=51) in patients with and without ESR1 mutation. ESR1 circulating mutations were detectable in 75% of all cases before AI progression, whereas the kinetics 3 months after progression did not correlate with outcome. ESR1 circulating mutations are independent risk factors for poor outcome after AI failure, and are frequently detectable before clinical progression. Interventional studies based on ESR1 circulating status are warranted.
Familial dysautonomia: History, genotype, phenotype and translational research.
Norcliffe-Kaufmann, Lucy; Slaugenhaupt, Susan A; Kaufmann, Horacio
2017-05-01
Familial dysautonomia (FD) is a rare neurological disorder caused by a splice mutation in the IKBKAP gene. The mutation arose in the 1500s within the small Jewish founder population in Eastern Europe and became prevalent during the period of rapid population expansion within the Pale of Settlement. The carrier rate is 1:32 in Jews descending from this region. The mutation results in a tissue-specific deficiency in IKAP, a protein involved in the development and survival of neurons. Patients homozygous for the mutations are born with multiple lesions affecting mostly sensory (afferent) fibers, which leads to widespread organ dysfunction and increased mortality. Neurodegenerative features of the disease include progressive optic atrophy and worsening gait ataxia. Here we review the progress made in the last decade to better understand the genotype and phenotype. We also discuss the challenges of conducting controlled clinical trials in this rare medically fragile population. Meanwhile, the search for better treatments as well as a neuroprotective agent is ongoing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Arrieta, Oscar; Cardona, Andrés Felipe; Corrales, Luis; Campos-Parra, Alma Delia; Sánchez-Reyes, Roberto; Amieva-Rivera, Eduardo; Rodríguez, July; Vargas, Carlos; Carranza, Hernán; Otero, Jorge; Karachaliou, Nikki; Astudillo, Horacio; Rosell, Rafael
2015-02-01
In non-small cell lung cancer (NSCLC), the association between common EGFR mutations (Del EX19/L858R) with EGFR tyrosine kinase inhibitors (EGFR-TKIs) has been well established. However, this has not been investigated for rare EGFR mutations or their impact on treatment response and outcome to EGFR TKIs (primary objective) and chemotherapy (secondary objective). In an observational prospective cohort, we analyzed 188 NSCLC patients from Mexico, Colombia and Costa Rica with EGFR mutations. As a first line of treatment, 66.5% received platinum-based chemotherapy. All patients received TKIs in first-line treatment or after progression to chemotherapy. The clinical-pathological characteristics as well as the f of common and rare EGFR mutations associated with treatment response were analyzed. Of all patients, 79.5% had common and 20.5% had rare EGFR mutations. Lepidic and acinar adenocarcinomas were associated with common EGFR mutations (p=0.010). Patients with common EGFR mutations had higher response rates to EGFR-TKIs than those who had rare EGFR mutations (63.8 vs 32.4%, p<0.001). Women had increased progression-free survival (PFS) to EGFR-TKIs than men (16.4 vs 9.5 months, p=0.02). The median PFS and overall survival (OS) were better in patients with common EGFR mutations (15.5 vs 3.9 months, p<0.001; and 37.3 vs 17.4 months, p<0.001) respectively. Our findings suggested that only patients with rare EGFR mutations could receive platinum-based chemotherapy as a first-line treatment, due to their low response rates and short PFS in response to EGFR-TKIs. Consequently, EGFR-TKIs could be reserved as a second- or third-line treatment. In patients with EGFR mutations, women have better PFS to EGFR-TKIs than men, and rare EGFR mutations are more frequent in high grade adenocarcinomas than in low grade tumors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Landscape of somatic mutations in 560 breast cancer whole-genome sequences
Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; ...
2016-05-02
Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less
Landscape of somatic mutations in 560 breast cancer whole-genome sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nik-Zainal, Serena; Davies, Helen; Staaf, Johan
Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less
Landscape of somatic mutations in 560 breast cancer whole genome sequences
Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; Ramakrishna, Manasa; Glodzik, Dominik; Zou, Xueqing; Martincorena, Inigo; Alexandrov, Ludmil B.; Martin, Sancha; Wedge, David C.; Van Loo, Peter; Ju, Young Seok; Smid, Marcel; Brinkman, Arie B; Morganella, Sandro; Aure, Miriam R.; Lingjærde, Ole Christian; Langerød, Anita; Ringnér, Markus; Ahn, Sung-Min; Boyault, Sandrine; Brock, Jane E.; Broeks, Annegien; Butler, Adam; Desmedt, Christine; Dirix, Luc; Dronov, Serge; Fatima, Aquila; Foekens, John A.; Gerstung, Moritz; Hooijer, Gerrit KJ; Jang, Se Jin; Jones, David R.; Kim, Hyung-Yong; King, Tari A.; Krishnamurthy, Savitri; Lee, Hee Jin; Lee, Jeong-Yeon; Li, Yilong; McLaren, Stuart; Menzies, Andrew; Mustonen, Ville; O’Meara, Sarah; Pauporté, Iris; Pivot, Xavier; Purdie, Colin A.; Raine, Keiran; Ramakrishnan, Kamna; Rodríguez-González, F. Germán; Romieu, Gilles; Sieuwerts, Anieta M.; Simpson, Peter T; Shepherd, Rebecca; Stebbings, Lucy; Stefansson, Olafur A; Teague, Jon; Tommasi, Stefania; Treilleux, Isabelle; Van den Eynden, Gert G.; Vermeulen, Peter; Vincent-Salomon, Anne; Yates, Lucy; Caldas, Carlos; van’t Veer, Laura; Tutt, Andrew; Knappskog, Stian; Tan, Benita Kiat Tee; Jonkers, Jos; Borg, Åke; Ueno, Naoto T; Sotiriou, Christos; Viari, Alain; Futreal, P. Andrew; Campbell, Peter J; Span, Paul N.; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E.; Thompson, Alastair M.; Birney, Ewan; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W.M.; Børresen-Dale, Anne-Lise; Richardson, Andrea L.; Kong, Gu; Thomas, Gilles; Stratton, Michael R.
2016-01-01
We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer. PMID:27135926
Hodi, F Stephen; Corless, Christopher L; Giobbie-Hurder, Anita; Fletcher, Jonathan A; Zhu, Meijun; Marino-Enriquez, Adrian; Friedlander, Philip; Gonzalez, Rene; Weber, Jeffrey S; Gajewski, Thomas F; O'Day, Steven J; Kim, Kevin B; Lawrence, Donald; Flaherty, Keith T; Luke, Jason J; Collichio, Frances A; Ernstoff, Marc S; Heinrich, Michael C; Beadling, Carol; Zukotynski, Katherine A; Yap, Jeffrey T; Van den Abbeele, Annick D; Demetri, George D; Fisher, David E
2013-09-10
Amplifications and mutations in the KIT proto-oncogene in subsets of melanomas provide therapeutic opportunities. We conducted a multicenter phase II trial of imatinib in metastatic mucosal, acral, or chronically sun-damaged (CSD) melanoma with KIT amplifications and/or mutations. Patients received imatinib 400 mg once per day or 400 mg twice per day if there was no initial response. Dose reductions were permitted for treatment-related toxicities. Additional oncogene mutation screening was performed by mass spectroscopy. Twenty-five patients were enrolled (24 evaluable). Eight patients (33%) had tumors with KIT mutations, 11 (46%) with KIT amplifications, and five (21%) with both. Median follow-up was 10.6 months (range, 3.7 to 27.1 months). Best overall response rate (BORR) was 29% (21% excluding nonconfirmed responses) with a two-stage 95% CI of 13% to 51%. BORR was significantly greater than the hypothesized null of 5% and statistically significantly different by mutation status (7 of 13 or 54% KIT mutated v 0% KIT amplified only). There were no statistical differences in rates of progression or survival by mutation status or by melanoma site. The overall disease control rate was 50% but varied significantly by KIT mutation status (77% mutated v 18% amplified). Four patients harbored pretreatment NRAS mutations, and one patient acquired increased KIT amplification after treatment. Melanomas that arise on mucosal, acral, or CSD skin should be assessed for KIT mutations. Imatinib can be effective when tumors harbor KIT mutations, but not if KIT is amplified only. NRAS mutations and KIT copy number gain may be mechanisms of therapeutic resistance to imatinib.
Pathak, Surajit; S, Sushmitha; Banerjee, Antara; Marotta, Francesco; Gopinath, Madhumala; Murugesan, Ramachandran; Zhang, Hong; B, Bhavani; Girigoswami, Agnishwar; Sollano, Jose; Sun, Xiao-Feng
2018-01-26
Colorectal cancer, fourth leading form of cancer worldwide and is increasing in alarming rate in the developing countries. Treating colorectal cancer has become a big challenge worldwide and several antibody therapies such as bevacizumab, panitumumab and cetuximab are being used with limited success. Moreover, mutation in KRAS gene which is linked with the colorectal cancer initiation and progression further interferes with the antibody therapies. Considering median progression free survival and overall survival in account, this review focuses to identify the most efficient antibody therapy in combination with chemotherapy (FOLFOX-4) in KRAS mutated colorectal cancer patients. The bevacizumab plus FOLFOX-4 therapy shows about 9.3 months and 8.7 months of progression free survival for KRAS wild and mutant type, respectively. The overall survival is about 34.8 months for wild type whereas for the mutant it is inconclusive for the same therapy. In comparison, panitumumab results in better progression-free survival which is about (9.6 months) and overall survival is about (23.9 months) for the wild type KRAS and the overall survival is about 15.5 months for the mutant KRAS . Cetuximab plus FOLFOX-4 therapy shows about 7.7 months and 5.5 months of progression-free survival for wild type KRAS and mutant type, respectively. Thus, panitumumab shows significant improvement in overall survival rate for wild type KRAS , validating as a cost effective therapeutic for colorectal cancer therapy. This review depicts that panitumumab along with FOLFOX-4 has a higher response in colorectal cancer patients than the either of the two monoclonal antibodies plus FOLFOX-4.
Vemurafenib for BRAF V600 mutated advanced melanoma: results of treatment beyond progression.
Scholtens, A; Geukes Foppen, M H; Blank, C U; van Thienen, J V; van Tinteren, H; Haanen, J B
2015-03-01
Selective BRAF inhibition (BRAFi) by vemurafenib or dabrafenib has become approved standard treatment in BRAF V600 mutated advanced stage melanoma. While the response rate is high, the response duration is limited with a progression-free survival (PFS) of 5-6months. Our observation of accelerated disease progression within some patients after stopping vemurafenib treatment has fostered the idea of treatment beyond progression (BRAFi TBP). In this retrospective study, we analysed 70 metastatic melanoma patients, treated at our institute, who experienced progression after prior objective response upon treatment with vemurafenib. Thirty-five patients that continued treatment beyond progression are compared with 35 patients who stopped BRAFi treatment at disease progression. Median overall survival beyond documented progression was found to be 5.2months versus 1.4months (95% confidence interval (CI): 3.8-7.4 versus 0.6-3.4; Log-Rank p=0.002) in favour of BRAFi TBP. In the multivariate survival analysis, stopping treatment at disease progression was significantly associated with shorter survival (hazard ratio: 1.92; 95% CI: 1.04-3.55; p=0.04). Our results suggest that continuing vemurafenib treatment beyond progression may be beneficial in advanced melanoma patients, who prior to progression responded to vemurafenib. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cappuzzo, Federico; Soo, Ross; Hochmair, Maximilian; Schuler, Martin; Lam, Kwok Chi; Stehle, Gerd; Cseh, Agnieszka; Lorence, Robert M; Linden, Stephan; Forman, Nicole D; Hilbe, Wolfgang; Jazieh, Abdul Rahman; Tsai, Chun-Ming
2018-01-29
A global afatinib named patient use program in non-small-cell lung carcinoma (NSCLC) commenced in 2010. Eligible NSCLC patients had progressed after clinical benefit on prior erlotinib/gefitinib and/or had activating EGFR/HER2 mutations, exhausted all other treatments, and were ineligible for afatinib trials. Data, as of January 2016, were reported on 3966 heavily pretreated NSCLC patients (41 countries; 6 continents). Among 2595/3966 (65.4%) patients with tumor EGFR status, 2407 (92.8%) were EGFR mutation positive. Median time to treatment failure (2862/3966 [72.2%] patients with available data) was 4.4 months. Among 1141/2862 (39.9%) patients with response reported, objective response rate was 23.4% (267/1141). Safety findings were as expected. Time to treatment failure durations and objective response rates were encouraging.
Abdolvahabi, Alireza; Shi, Yunhua; Rasouli, Sanaz; Croom, Corbin M; Aliyan, Amir; Martí, Angel A; Shaw, Bryan F
2017-06-21
Over 150 mutations in SOD1 (superoxide dismutase-1) cause amyotrophic lateral sclerosis (ALS), presumably by accelerating SOD1 amyloidogenesis. Like many nucleation processes, SOD1 fibrillization is stochastic (in vitro), which inhibits the determination of aggregation rates (and obscures whether rates correlate with patient phenotypes). Here, we diverged from classical chemical kinetics and used Kaplan-Meier estimators to quantify the probability of apo-SOD1 fibrillization (in vitro) from ∼10 3 replicate amyloid assays of wild-type (WT) SOD1 and nine ALS variants. The probability of apo-SOD1 fibrillization (expressed as a Hazard ratio) is increased by certain ALS-linked SOD1 mutations but is decreased or remains unchanged by other mutations. Despite this diversity, Hazard ratios of fibrillization correlated linearly with (and for three mutants, approximately equaled) Hazard ratios of patient survival (R 2 = 0.67; Pearson's r = 0.82). No correlation exists between Hazard ratios of fibrillization and age of initial onset of ALS (R 2 = 0.09). Thus, Hazard ratios of fibrillization might explain rates of disease progression but not onset. Classical kinetic metrics of fibrillization, i.e., mean lag time and propagation rate, did not correlate as strongly with phenotype (and ALS mutations did not uniformly accelerate mean rate of nucleation or propagation). A strong correlation was found, however, between mean ThT fluorescence at lag time and patient survival (R 2 = 0.93); oligomers of SOD1 with weaker fluorescence correlated with shorter survival. This study suggests that SOD1 mutations trigger ALS by altering a property of SOD1 or its oligomers other than the intrinsic rate of amyloid nucleation (e.g., oligomer stability; rates of intercellular propagation; affinity for membrane surfaces; and maturation rate).
Kolenc, Matej; Kobal, Jan; Podnar, Simon
2017-01-01
Although in Huntington's disease (HD) movement, cognition, and personality are most significantly affected, autonomic dysfunction should not be neglected. In women with HD sexual dysfunction has not been adequately studied yet. To report sexual dysfunction in a systematically studied cohort of female HD patients and compare it with controls of a similar age. In female HD patients and presymptomatic HD mutation carriers, we compared the Female Sexual Function Index (FSFI) questionnaire, neurologic assessment using the Unified Huntington's Disease Rating Scale (UHDRS) and the Total Functional Capacity (TFC). Of 44 female HD patients and 9 presymptomatic HD mutation carriers, 30 HD patients and 8 HD mutation carriers responded our invitation to complete FFSI questionnaire. Finally, 23 HD women with a partner were compared to 47 controls with a partner. HD patients had more problems with sexual arousal, lubrication, orgasm and sexual satisfaction. By contrast, we found no difference in sexual desire and pain. Sexual dysfunction progressed in parallel with the decline in the TFC; severe sexual dysfunction occurred with TFC <7/13. Our study demonstrated a significant impact of HD on female sexual function that progressed with patients' functional decline and impaired patients' quality of life. Sexual dysfunction may be caused by progression of the disease itself, side effects of medication, and comorbidities like depression or dementia.
The study of human mutation rates. Progress report, 1989--1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neel, J.V.
1992-12-01
We will describe recent developments regarding the question of induced mutations in the survivors of the atomic bombings of Hiroshima and Nagasaki. As part of that work we, describe some developments with respect to the Amerindian blood samples collected under DoE sponsorship between 1964 and 1982. Then developments regarding the application of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) to the study of genetic variation and mutation affecting protein characteristics. In particular, we will report on the identification and isolation of genes of especial interest as reflected in the behavior of the proteins which they encode.
Ma, X-H; Tian, T-D; Liu, H-M; Li, Q-J; Gao, Q-L; Li, L; Shi, B
2017-01-01
To evaluate the efficacy and safety of icotinib hydrochloride in the treatment of patients with advanced non-small cell lung cancer (NSCLC) and discuss the influence factors on efficacy. 120 treatment-experienced patients confirmed by pathology or cytology with stage III B-IV non-small cell lung cancer took icotinib hydrochloride and erlotinib orally until the occurrence of disease progression or serious adverse reactions. Then, the efficacy of icotinib hydrochloride and the related influence factors were analyzed. In icotinib hydrochloride group, the response rate and the disease control rate were 30.00% and 65.00%, and the median progression-free survival time was 179 days (95% CI: 103.21-254.78); in erlotinib group, the response rate and the disease control rate were 25.00% and 56.70%, and the median progression-free survival time was 121 days (95% CI: 95.05-146.94). Moreover, the objective response rate and the disease control rate of second-line therapy were both superior to the third-line and above therapy. The objective response rate of patients with complete response/partial response/stable disease after the first-line therapy was higher than that of patients without response after the first-line therapy (p<0.05), and the significant differences existed in the objective response rate and the disease control rate among mutant group, wild-type group, and unknown group (p<0.05). The response rate and the disease control rate of erythra group were higher than those of non-erythra group (p<0.05). It was showed in the univariate analysis that the progression-free survival was correlated with the smoking status and the epidermal growth factor receptor gene mutations. The icotinib hydrochloride is effective and safe in treating the treatment-experienced patients with advanced NSCLC, especially for patients with sensitive mutations.
Identification of a structurally novel BTK mutation that drives ibrutinib resistance in CLL.
Sharma, Shruti; Galanina, Natalie; Guo, Ailin; Lee, Jimmy; Kadri, Sabah; Van Slambrouck, Charles; Long, Bradley; Wang, Weige; Ming, Mei; Furtado, Larissa V; Segal, Jeremy P; Stock, Wendy; Venkataraman, Girish; Tang, Wei-Jen; Lu, Pin; Wang, Yue Lynn
2016-10-18
Ibrutinib (ibr), a first-in-class Bruton tyrosine kinase (BTK) inhibitor, has demonstrated high response rates in both relapsed/refractory and treatment naïve chronic lymphocytic leukemia (CLL). However, about 25% of patients discontinue ibrutinib therapy at a median follow-up of 20 months and many patients discontinue the treatment due to leukemia progression or Richter transformation. Mutations affecting the C481 residue of BTK disrupt ibrutinib binding and have been characterized by us and others as the most common mechanism of ibrutinib resistance. Thus far, all described BTK mutations are located in its kinase domain and mutations outside this domain have never been described. Herein, we report a patient whose CLL progressed, was salvaged with ibrutinib and then relapsed. Serial analysis of samples throughout patient's clinical course identified a structurally novel mutation (BTKT316A) in the SH2 domain, but not kinase domain, of Bruton tyrosine kinase which was associated with disease relapse. Functionally, cells carrying BTKT316A show resistance to ibrutinib at both cellular and molecular levels to a similar extent as BTKC481S. Our study lends further insight into the diverse mechanisms of ibrutinib resistance that has important implications for the development of next-generation BTK inhibitors as well as mutation detection in relapsed patients.
Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer.
Soria, Jean-Charles; Ohe, Yuichiro; Vansteenkiste, Johan; Reungwetwattana, Thanyanan; Chewaskulyong, Busyamas; Lee, Ki Hyeong; Dechaphunkul, Arunee; Imamura, Fumio; Nogami, Naoyuki; Kurata, Takayasu; Okamoto, Isamu; Zhou, Caicun; Cho, Byoung Chul; Cheng, Ying; Cho, Eun Kyung; Voon, Pei Jye; Planchard, David; Su, Wu-Chou; Gray, Jhanelle E; Lee, Siow-Ming; Hodge, Rachel; Marotti, Marcelo; Rukazenkov, Yuri; Ramalingam, Suresh S
2018-01-11
Osimertinib is an oral, third-generation, irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) that selectively inhibits both EGFR-TKI-sensitizing and EGFR T790M resistance mutations. We compared osimertinib with standard EGFR-TKIs in patients with previously untreated, EGFR mutation-positive advanced non-small-cell lung cancer (NSCLC). In this double-blind, phase 3 trial, we randomly assigned 556 patients with previously untreated, EGFR mutation-positive (exon 19 deletion or L858R) advanced NSCLC in a 1:1 ratio to receive either osimertinib (at a dose of 80 mg once daily) or a standard EGFR-TKI (gefitinib at a dose of 250 mg once daily or erlotinib at a dose of 150 mg once daily). The primary end point was investigator-assessed progression-free survival. The median progression-free survival was significantly longer with osimertinib than with standard EGFR-TKIs (18.9 months vs. 10.2 months; hazard ratio for disease progression or death, 0.46; 95% confidence interval [CI], 0.37 to 0.57; P<0.001). The objective response rate was similar in the two groups: 80% with osimertinib and 76% with standard EGFR-TKIs (odds ratio, 1.27; 95% CI, 0.85 to 1.90; P=0.24). The median duration of response was 17.2 months (95% CI, 13.8 to 22.0) with osimertinib versus 8.5 months (95% CI, 7.3 to 9.8) with standard EGFR-TKIs. Data on overall survival were immature at the interim analysis (25% maturity). The survival rate at 18 months was 83% (95% CI, 78 to 87) with osimertinib and 71% (95% CI, 65 to 76) with standard EGFR-TKIs (hazard ratio for death, 0.63; 95% CI, 0.45 to 0.88; P=0.007 [nonsignificant in the interim analysis]). Adverse events of grade 3 or higher were less frequent with osimertinib than with standard EGFR-TKIs (34% vs. 45%). Osimertinib showed efficacy superior to that of standard EGFR-TKIs in the first-line treatment of EGFR mutation-positive advanced NSCLC, with a similar safety profile and lower rates of serious adverse events. (Funded by AstraZeneca; FLAURA ClinicalTrials.gov number, NCT02296125 .).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komaki, Ritsuko, E-mail: rkomaki@mdanderson.org; Allen, Pamela K.; Wei, Xiong
Purpose: To test, in a single-arm, prospective, phase 2 trial, whether adding the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib to concurrent chemoradiotherapy for previously untreated, locally advanced, inoperable non-small cell lung cancer would improve survival and disease control without increasing toxicity. Methods and Materials: Forty-eight patients with previously untreated non-small cell lung cancer received intensity modulated radiation therapy (63 Gy/35 fractions) on Monday through Friday, with chemotherapy (paclitaxel 45 mg/m², carboplatin area under the curve [AUC] = 2) on Mondays, for 7 weeks. All patients also received the EGFR tyrosine kinase inhibitor erlotinib (150 mg orally 1/d) on Tuesday-Sunday for 7 weeks, followedmore » by consolidation paclitaxel–carboplatin. The primary endpoint was time to progression; secondary endpoints were overall survival (OS), toxicity, response, and disease control and whether any endpoint differed by EGFR mutation status. Results: Of 46 patients evaluable for response, 40 were former or never-smokers, and 41 were evaluable for EGFR mutations (37 wild-type [WT] and 4 mutated [all adenocarcinoma]). Median time to progression was 14.0 months and did not differ by EGFR status. Toxicity was acceptable (no grade 5, 1 grade 4, 11 grade 3). Twelve patients (26%) had complete responses (10 WT, 2 mutated), 27 (59%) partial (21 WT, 2 mutated, 4 unknown), and 7 (15%) none (6 WT, 2 mutated, 1 unknown) (P=.610). At 37.0 months' follow-up (range, 3.6-76.5 months) for all patients, median OS time was 36.5 months, and 1-, 2-, and 5-year OS rates were 82.6%, 67.4%, and 35.9%, respectively; none differed by mutation status. Twelve patients had no progression, and 34 had local and/or distant failure. Eleven of 27 distant failures were in the brain (7 WT, 3 mutated, 1 unknown). Conclusions: Toxicity and OS were promising, but time to progression did not meet expectations. The prevalence of distant failures underscores the need for effective systemic therapy.« less
Paulovich, A G; Armour, C D; Hartwell, L H
1998-01-01
In wild-type Saccharomyces cerevisiae, a checkpoint slows the rate of progression of an ongoing S phase in response to exposure to a DNA-alkylating agent. Mutations that eliminate S phase regulation also confer sensitivity to alkylating agents, leading us to suggest that, by regulating the S phase rate, cells are either better able to repair or better able to replicate damaged DNA. In this study, we determine the effects of mutations that impair S phase regulation on the ability of excision repair-defective cells to replicate irreparably UV-damaged DNA. We assay survival after UV irradiation, as well as the genetic consequences of replicating a damaged template, namely mutation and sister chromatid exchange induction. We find that RAD9, RAD17, RAD24, and MEC3 are required for UV-induced (although not spontaneous) mutagenesis, and that RAD9 and RAD17 (but not REV3, RAD24, and MEC3) are required for maximal induction of replication-dependent sister chromatid exchange. Therefore, checkpoint genes not only control cell cycle progression in response to damage, but also play a role in accommodating DNA damage during replication. PMID:9725831
Paulovich, A G; Armour, C D; Hartwell, L H
1998-09-01
In wild-type Saccharomyces cerevisiae, a checkpoint slows the rate of progression of an ongoing S phase in response to exposure to a DNA-alkylating agent. Mutations that eliminate S phase regulation also confer sensitivity to alkylating agents, leading us to suggest that, by regulating the S phase rate, cells are either better able to repair or better able to replicate damaged DNA. In this study, we determine the effects of mutations that impair S phase regulation on the ability of excision repair-defective cells to replicate irreparably UV-damaged DNA. We assay survival after UV irradiation, as well as the genetic consequences of replicating a damaged template, namely mutation and sister chromatid exchange induction. We find that RAD9, RAD17, RAD24, and MEC3 are required for UV-induced (although not spontaneous) mutagenesis, and that RAD9 and RAD17 (but not REV3, RAD24, and MEC3) are required for maximal induction of replication-dependent sister chromatid exchange. Therefore, checkpoint genes not only control cell cycle progression in response to damage, but also play a role in accommodating DNA damage during replication.
Heimer, G; Marek-Yagel, D; Eyal, E; Barel, O; Oz Levi, D; Hoffmann, C; Ruzzo, E K; Ganelin-Cohen, E; Lancet, D; Pras, E; Rechavi, G; Nissenkorn, A; Anikster, Y; Goldstein, D B; Ben Zeev, B
2015-10-01
Two unrelated patients, presenting with significant global developmental delay, severe progressive microcephaly, seizures, spasticity and thin corpus callosum (CC) underwent trio whole-exome sequencing. No candidate variant was found in any known genes related to the phenotype. However, crossing the data of the patients illustrated that they both manifested pathogenic variants in the SLC1A4 gene which codes the ASCT1 transporter of serine and other neutral amino acids. The Ashkenazi patient is homozygous for a deleterious missense c.766G>A, p.(E256K) mutation whereas the Ashkenazi-Iraqi patient is compound heterozygous for this mutation and a nonsense c.945delTT, p.(Leu315Hisfs*42) mutation. Structural prediction demonstrates truncation of significant portion of the protein by the nonsense mutation and speculates functional disruption by the missense mutation. Both mutations are extremely rare in general population databases, however, the missense mutation was found in heterozygous mode in 1:100 Jewish Ashkenazi controls suggesting a higher carrier rate among Ashkenazi Jews. We conclude that SLC1A4 is the disease causing gene of a novel neurologic disorder manifesting with significant intellectual disability, severe postnatal microcephaly, spasticity and thin CC. The role of SLC1A4 in the serine transport from astrocytes to neurons suggests a possible pathomechanism for this disease and implies a potential therapeutic approach. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Madic, Jordan; Remon, Jordi; Honoré, Aurélie; Girard, Romain; Rouleau, Etienne; André, Barbara; Besse, Benjamin; Droniou, Magali; Lacroix, Ludovic
2017-01-01
Over the past years, targeted therapies using tyrosine kinase inhibitors (TKI) have led to an increase in progression-free survival and response rate for a subgroup of non-small cell lung cancer (NSCLC) patients harbouring specific gene abnormalities compared with chemotherapy. However long-lasting tumor regression is rarely achieved, due to the development of resistant tumoral subclones, which requires alternative therapeutic approaches. Molecular profile at progressive disease is a challenge for making adaptive treatment decisions. The aim of this study was to monitor EGFR-mutant tumors over time based on the quantity of mutant DNA circulating in plasma (ctDNA), comparing two different methods, Crystal™ Digital™ PCR and Massive Parallel Sequencing (MPS). In plasma circulating cell free DNA (cfDNA) of 61 advanced NSCLC patients we found an overall correlation of 78% between mutated allelic fraction measured by Crystal Digital PCR and MPS. 7 additional samples with sensitizing mutations and 4 additional samples with the resistance mutation were detected with Crystal Digital PCR, but not with MPS. Monitoring levels of both mutation types over time showed a correlation between levels and trends of mutated ctDNA detected and clinical assessment of disease for the 6 patients tested. In conclusion, Crystal Digital PCR exhibited good performance for monitoring mutational status in plasma cfDNA, and also appeared as better suited to the detection of known mutations than MPS in terms of features such as time to results. PMID:28829811
Subbiah, Vivek; Kreitman, Robert J.; Wainberg, Zev A.; Cho, Jae Yong; Schellens, Jan H.M.; Soria, Jean Charles; Wen, Patrick Y.; Zielinski, Christoph; Cabanillas, Maria E.; Urbanowitz, Gladys; Mookerjee, Bijoyesh; Wang, Dazhe; Rangwala, Fatima
2018-01-01
Purpose We report the efficacy and safety of dabrafenib (BRAF inhibitor) and trametinib (MEK inhibitor) combination therapy in BRAF V600E–mutated anaplastic thyroid cancer, a rare, aggressive, and highly lethal malignancy with poor patient outcomes and no systemic therapies with clinical benefit. Methods In this phase II, open-label trial, patients with predefined BRAF V600E–mutated malignancies received dabrafenib 150 mg twice daily and trametinib 2 mg once daily until unacceptable toxicity, disease progression, or death. The primary end point was investigator-assessed overall response rate. Secondary end points included duration of response, progression-free survival, overall survival, and safety. Results Sixteen patients with BRAF V600E–mutated anaplastic thyroid cancer were evaluable (median follow-up, 47 weeks; range, 4 to 120 weeks). All patients had received prior radiation treatment and/or surgery, and six had received prior systemic therapy. The confirmed overall response rate was 69% (11 of 16; 95% CI, 41% to 89%), with seven ongoing responses. Median duration of response, progression-free survival, and overall survival were not reached as a result of a lack of events, with 12-month estimates of 90%, 79%, and 80%, respectively. The safety population was composed of 100 patients who were enrolled with seven rare tumor histologies. Common adverse events were fatigue (38%), pyrexia (37%), and nausea (35%). No new safety signals were detected. Conclusion Dabrafenib plus trametinib is the first regimen demonstrated to have robust clinical activity in BRAF V600E–mutated anaplastic thyroid cancer and was well tolerated. These findings represent a meaningful therapeutic advance for this orphan disease. PMID:29072975
Subbiah, Vivek; Kreitman, Robert J; Wainberg, Zev A; Cho, Jae Yong; Schellens, Jan H M; Soria, Jean Charles; Wen, Patrick Y; Zielinski, Christoph; Cabanillas, Maria E; Urbanowitz, Gladys; Mookerjee, Bijoyesh; Wang, Dazhe; Rangwala, Fatima; Keam, Bhumsuk
2018-01-01
Purpose We report the efficacy and safety of dabrafenib (BRAF inhibitor) and trametinib (MEK inhibitor) combination therapy in BRAF V600E-mutated anaplastic thyroid cancer, a rare, aggressive, and highly lethal malignancy with poor patient outcomes and no systemic therapies with clinical benefit. Methods In this phase II, open-label trial, patients with predefined BRAF V600E-mutated malignancies received dabrafenib 150 mg twice daily and trametinib 2 mg once daily until unacceptable toxicity, disease progression, or death. The primary end point was investigator-assessed overall response rate. Secondary end points included duration of response, progression-free survival, overall survival, and safety. Results Sixteen patients with BRAF V600E-mutated anaplastic thyroid cancer were evaluable (median follow-up, 47 weeks; range, 4 to 120 weeks). All patients had received prior radiation treatment and/or surgery, and six had received prior systemic therapy. The confirmed overall response rate was 69% (11 of 16; 95% CI, 41% to 89%), with seven ongoing responses. Median duration of response, progression-free survival, and overall survival were not reached as a result of a lack of events, with 12-month estimates of 90%, 79%, and 80%, respectively. The safety population was composed of 100 patients who were enrolled with seven rare tumor histologies. Common adverse events were fatigue (38%), pyrexia (37%), and nausea (35%). No new safety signals were detected. Conclusion Dabrafenib plus trametinib is the first regimen demonstrated to have robust clinical activity in BRAF V600E-mutated anaplastic thyroid cancer and was well tolerated. These findings represent a meaningful therapeutic advance for this orphan disease.
Screening for microsatellite instability target genes in colorectal cancers
Vilkki, S; Launonen, V; Karhu, A; Sistonen, P; Vastrik, I; Aaltonen, L
2002-01-01
Background: Defects in the DNA repair system lead to genetic instability because replication errors are not corrected. This type of genetic instability is a key event in the malignant progression of HNPCC and a subset of sporadic colon cancers and mutation rates are particularly high at short repetitive sequences. Somatic deletions of coding mononucleotide repeats have been detected, for example, in the TGFßRII and BAX genes, and recently many novel target genes for microsatellite instability (MSI) have been proposed. Novel target genes are likely to be discovered in the future. More data should be created on background mutation rates in MSI tumours to evaluate mutation rates observed in the candidate target genes. Methods: Mutation rates in 14 neutral intronic repeats were evaluated in MSI tumours. Bioinformatic searches combined with keywords related to cancer and tumour suppressor or CRC related gene homology were used to find new candidate MSI target genes. By comparison of mutation frequencies observed in intronic mononucleotide repeats versus exonic coding repeats of potential MSI target genes, the significance of the exonic mutations was estimated. Results: As expected, the length of an intronic mononucleotide repeat correlated positively with the number of slippages for both G/C and A/T repeats (p=0.0020 and p=0.0012, respectively). BRCA1, CtBP1, and Rb1 associated CtIP and other candidates were found in a bioinformatic search combined with keywords related to cancer. Sequencing showed a significantly increased mutation rate in the exonic A9 repeat of CtIP (25/109=22.9%) as compared with similar intronic repeats (p≤0.001). Conclusions: We propose a new candidate MSI target gene CtIP to be evaluated in further studies. PMID:12414815
Akram, Afia Muhammad; Iqbal, Zafar; Akhtar, Tanveer; Khalid, Ahmed Mukhtar; Sabar, Muhammad Farooq; Qazi, Mahmood Hussain; Aziz, Zeba; Sajid, Nadia; Aleem, Aamer; Rasool, Mahmood; Asif, Muhammad; Aloraibi, Saleh; Aljamaan, Khaled; Iqbal, Mudassar
2017-04-03
BCR-ABL kinase domain (K D ) mutations are well known for causing resistance against tyrosine kinase inhibitors (TKIs) and disease progression in chronic myeloid leukemia (CML). In recent years, compound BCR-ABL mutations have emerged as a new threat to CML patients by causing higher degrees of resistance involving multiple TKIs, including ponatinib. However, there are limited reports about association of compound BCR-ABL mutations with disease progression in imatinib (IM) sensitive CML patients. Therefore, we investigated presence of ABL-K D mutations in chronic phase (n = 41), late chronic phase (n = 33) and accelerated phase (n = 16) imatinib responders. Direct sequencing analysis was used for this purpose. Eleven patients (12.22%) in late-CP CML were detected having total 24 types of point mutations, out of which 8 (72.72%) harbored compound mutated sites. SH2 contact site mutations were dominant in our study cohort, with E355G (3.33%) being the most prevalent. Five patients (45%) all having compound mutated sites, progressed to advanced phases of disease during follow up studies. Two novel silent mutations G208G and E292E/E were detected in combination with other mutants, indicating limited tolerance for BCR-ABL1 kinase domain for missense mutations. However, no patient in early CP of disease manifested mutated ABL-K D . Occurrence of mutations was found associated with elevated platelet count (p = 0.037) and patients of male sex (p = 0.049). The median overall survival and event free survival of CML patients (n = 90) was 6.98 and 5.8 y respectively. The compound missense mutations in BCR-ABL kinase domain responsible to elicit disease progression, drug resistance or disease relapse in CML, can be present in yet Imatinib sensitive patients. Disease progression observed here, emphasizes the need of ABL-K D mutation screening in late chronic phase CML patients for improved clinical management of disease.
Miyauchi, Eisaku; Inoue, Akira; Kobayashi, Kunihiko; Maemondo, Makoto; Sugawara, Shunichi; Oizumi, Satoshi; Isobe, Hiroshi; Gemma, Akihiko; Saijo, Yasuo; Yoshizawa, Hirohisa; Hagiwara, Koichi; Nukiwa, Toshihiro
2015-07-01
Epidermal growth factor receptor tyrosine kinase inhibitors are effective as first-line therapy for advanced non-small cell lung cancer patients harboring epidermal growth factor receptor mutations. However, it is unknown whether second-line platinum-based chemotherapy after epidermal growth factor receptor tyrosine kinase inhibitor therapy could lead to better outcomes. We evaluated the efficacy of second-line platinum-based chemotherapy after gefitinib for advanced non-small cell lung cancers harboring epidermal growth factor receptor mutations (the NEJ002 study). Seventy-one non-small cell lung cancers, treated with gefitinib as first-line therapy and then receiving platinum-based chemotherapy as second-line therapy were evaluated in NEJ002. Patients were evaluated for antitumor response to second-line chemotherapy by computed tomography according to the criteria of the Response Evaluation Criteria in Solid Tumors group (version 1.0). Of the 71 patients receiving platinum-based chemotherapy after first-line gefitinib, a partial response was documented in 25.4% (18/71), stable disease in 43.7% (31/71) and progression of disease in 21.1% (15/71). The objective response and disease control rates were 25.4% (18/71) and 69% (49/71), respectively. There was no significant difference between first- and second-line chemotherapy in objective response and disease control rates for advanced non-small cell lung cancer harboring activating epidermal growth factor receptor mutations. In the analysis of epidermal growth factor receptor mutation types, the objective responses of deletions in exon 19 and a point mutation in exon 21 (L858R) were 27.3% (9/33) and 28.1% (9/32), respectively, but these differences between objective response rates were not significant. The efficacy of second-line platinum-based chemotherapy followed at progression by gefitinib was similar to first-line platinum-based chemotherapy, and epidermal growth factor receptor mutation types did not influence the efficacy of second-line platinum-based chemotherapy. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Jänne, P A; Smith, I; McWalter, G; Mann, H; Dougherty, B; Walker, J; Orr, M C M; Hodgson, D R; Shaw, A T; Pereira, J R; Jeannin, G; Vansteenkiste, J; Barrios, C H; Franke, F A; Crinò, L; Smith, P
2015-07-14
Selumetinib (AZD6244, ARRY-142886)+docetaxel increases median overall survival (OS) and significantly improves progression-free survival (PFS) and objective response rate (ORR) compared with docetaxel alone in patients with KRAS mutant, stage IIIB/IV non-small-cell lung cancer (NSCLC; NCT00890825). Retrospective analysis of OS, PFS, ORR and change in tumour size at week 6 for different sub-populations of KRAS codon mutations. In patients receiving selumetinib+docetaxel and harbouring KRAS G12C or G12V mutations there were trends towards greater improvement in OS, PFS and ORR compared with other KRAS mutations. Different KRAS mutations in NSCLC may influence selumetinib/docetaxel sensitivity.
Jiang, Tao; Li, Xuefei; Wang, Jianfei; Su, Chunxia; Han, Wenbo; Zhao, Chao; Wu, Fengying; Gao, Guanghui; Li, Wei; Chen, Xiaoxia; Li, Jiayu; Zhou, Fei; Zhao, Jing; Cai, Weijing; Zhang, Henghui; Du, Bo; Zhang, Jun; Ren, Shengxiang; Zhou, Caicun; Yu, Hui; Hirsch, Fred R.
2017-01-01
Rationale To investigate whether the mutational landscape of circulating cell-free DNA (cfDNA) could predict and dynamically monitor the response to first-line platinum-based chemotherapy in patients with advanced non-small-cell lung cancer (NSCLC). Methods Eligible patients were included and blood samples were collected from a phase III trial. Both cfDNA fragments and fragmented genomic DNA were extracted for enrichment in a 1.15M size panel covering exon regions of 1,086 genes. Molecular mutational burden (MMB) was calculated to investigate the relationship between molecular features of cfDNA and response to chemotherapy. Results In total, 52 eligible cases were enrolled and their blood samples were prospectively collected at baseline, every cycle of chemotherapy and time of disease progression. At baseline, alterations of 17 genes were found. Patients with partial response (PR) had significantly lower baseline MMB of these genes than those patients with either stable disease (SD) (P = 0.0006) or progression disease (PD) (P = 0.0074). Further analysis revealed that the mutational landscape of cfDNA from pretreatment blood samples were distinctly different among patients with PR vs. SD/PD. For patients with baseline TP53 mutation, those with PR experienced a significant reduction in MMB whereas patients with SD or PD experienced an increase after two, three or four cycles of chemotherapy. Furthermore, patients with low MMB had superior response rate and significantly longer progression-free survival than those with high MMB. Conclusion This study indicated that the mutational landscape of cfDNA has potential clinical value to predict the therapeutic response to first-line platinum-based doublet chemotherapy in NSCLC patients. At the single gene level, dynamic change of molecular mutational burden of TP53 is valuable to monitor efficacy (and, therefore, might aid in early recognition of resistance and relapse) in patients harboring this mutation at baseline. PMID:29187901
Davis, Marie Y.; Johnson, Catherine O.; Leverenz, James B.; Weintraub, Daniel; Trojanowski, John Q.; Chen-Plotkin, Alice; Van Deerlin, Vivianna M.; Quinn, Joseph F.; Chung, Kathryn A.; Peterson-Hiller, Amie L.; Rosenthal, Liana S.; Dawson, Ted M.; Albert, Marilyn S.; Goldman, Jennifer G.; Stebbins, Glenn T.; Bernard, Bryan; Wszolek, Zbigniew K.; Ross, Owen A.; Dickson, Dennis W.; Eidelberg, David; Mattis, Paul J.; Niethammer, Martin; Yearout, Dora; Hu, Shu-Ching; Cholerton, Brenna A.; Smith, Megan; Mata, Ignacio F.; Montine, Thomas J.; Edwards, Karen L.; Zabetian, Cyrus P.
2016-01-01
IMPORTANCE Parkinson disease (PD) is heterogeneous in symptom manifestation and rate of progression. Identifying factors that influence disease progression could provide mechanistic insight, improve prognostic accuracy, and elucidate novel therapeutic targets. OBJECTIVE To determine whether GBA mutations and the E326K polymorphism modify PD symptom progression. DESIGN, SETTING, AND PARTICIPANTS The entire GBA coding region was screened for mutations and E326K in 740 patients with PD enrolled at 7 sites from the PD Cognitive Genetics Consortium. Detailed longitudinal motor and cognitive assessments were performed with patients in the on state. MAIN OUTCOMES AND MEASURES Linear regression was used to test for an association between GBA genotype and motor progression, with the Movement Disorder Society–sponsored version of the Unified Parkinson’s Disease Rating Scale Part III (MDS-UPDRS III) score at the last assessment as the outcome and GBA genotype as the independent variable, with adjustment for levodopa equivalent dose, sex, age, disease duration, MDS-UPDRS III score at the first assessment, duration of follow-up, and site. Similar methods were used to examine the association between genotype and tremor and postural instability and gait difficulty (PIGD) scores. To examine the effect of GBA genotype on cognitive progression, patients were classified into those with conversion to mild cognitive impairment or dementia during the study (progression) and those without progression. The association between GBA genotype and progression status was then tested using logistic regression, adjusting for sex, age, disease duration, duration of follow-up, years of education, and site. RESULTS Of the total sample of 733 patients who underwent successful genotyping, 226 (30.8%) were women and 507 (69.2%) were men (mean [SD] age, 68.1 [8.8] years). The mean (SD) duration of follow-up was 3.0 (1.7) years. GBA mutations (β = 4.65; 95% CI, 1.72–7.58; P = .002), E326K (β = 3.42; 95% CI, 0.66–6.17; P = .02), and GBA variants combined as a single group (β = 4.01; 95% CI, 1.95–6.07; P = 1.5 × 10−4) were associated with a more rapid decline in MDS-UPDRS III score. Combined GBA variants (β = 0.38; 95% CI, 0.23–0.53; P = .01) and E326K (β = 0.64; 95% CI, 0.43–0.86; P = .002) were associated with faster progression in PIGD scores, but not in tremor scores. A significantly higher proportion of E326K carriers (10 of 21 [47.6%]; P = .01) and GBA variant carriers (15 of 39 [38.5%]; P = .04) progressed to mild cognitive impairment or dementia. CONCLUSIONS AND RELEVANCE GBA variants predict a more rapid progression of cognitive dysfunction and motor symptoms in patients with PD, with a greater effect on PIGD than tremor. Thus, GBA variants influence the heterogeneity in symptom progression observed in PD. PMID:27571329
Anforth, Rachael; Tembe, Varsha; Blumetti, Tatiana; Fernandez-Peñas, Pablo
2012-09-01
B-RAF inhibitors (BRAFi) have been shown to improve rates of overall and progression-free survival in patients with stage IV metastatic melanoma positive for the BRAF V600E mutation. However, the main drawback is the development of verrucal keratosis (hyperkeratotic papules with verruca-like characteristics with benign histological findings) and cutaneous squamous cell carcinomas (cuSCC). We have found upstream mutations in RAS as well as PIK3CA in both verrucal keratosis and cuSCC. This suggests that verrucal keratosis is an early clinical presentation of cuSCC in patients on BRAFi. © 2012 John Wiley & Sons A/S.
Lin, Chia-Chi; Shih, Jin-Yuan; Yu, Chong-Jen; Ho, Chao-Chi; Liao, Wei-Yu; Lee, Jih-Hsing; Tsai, Tzu-Hsiu; Su, Kang-Yi; Hsieh, Min-Shu; Chang, Yih-Leong; Bai, Ya-Ying; Huang, Derek De-Rui; Thress, Kenneth S; Yang, James Chih-Hsin
2018-02-01
Osimertinib is approved for the treatment of non-small-cell lung cancer in patients who develop the EGFR Thr790Met mutation after treatment with epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitors (TKIs). We assessed outcomes in patients with non-small-cell lung cancer and the EGFR Thr790Met mutation who were treated with osimertinib, a third-generation EGFR TKI, after previous treatment failure with one or more other EGFR TKIs. Eligible patients had been enrolled at one centre in the AURA study, had shown resistance to a previous EGFR TKI, and had EGFR-activating mutations and acquired Thr790Met mutation detectable in tumour tissue or plasma. Patients took 20-240 mg osimertinib per day until disease progression or development of intolerable side-effects. Plasma samples were collected every 6 weeks and tumour tissue biopsy was done at study entry and was optional after disease progression. We tested samples for resistance mechanisms, including EGFR-activating, Thr790Met, and Cys797Ser mutations, and assessed associations with overall survival, progression-free survival, and survival after disease progression. Of 71 patients enrolled in AURA, 53 were eligible for this analysis. Median progression-free survival was 11·1 months (95% CI 8·4-13·9) and overall survival was 16·9 months (11·7-29·1). 47 patients had disease progression. Median overall survival after osimertinib progression was 5·4 months (95% CI 4·1-10·0). Plasma samples were available for 40 patients after disease progression. 12 (30%) of these had the Thr790Met mutation (four of whom also had Cys797Ser mutations). Patients without detectable EGFR-activating mutations in plasma before treatment had the best overall and post-progression survival (22·4 months, 95% CI 15·6-not reached, and 10·8 months, 7·2-not reached, respectively). Loss of the Thr790Met mutation but presence of EGFR-activating mutations in plasma were associated with the shortest progression-free survival (median 2·6 months, 95% CI 1·3-not reached). In 22 post-progression tumour samples, we found one squamous cell and two small-cell transformations. We detected Thr790Met in nine (50%) of 18 samples, Cys797Ser in two (17%) of 12, cMET amplification in five (50%) of ten, BRAF mutation in one (8%) of 13, and KRAS mutation in one (8%) of 13. Heterogeneous resistance mechanisms developed in patients receiving osimertinib. Differences in resistance mechanisms might dictate future development strategies for osimertinib in clinical trials. AstraZeneca, Taiwan Ministry of Science and Technology. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ziv, Etay; Bergen, Michael; Yarmohammadi, Hooman; Boas, F Ed; Petre, E Nadia; Sofocleous, Constantinos T; Yaeger, Rona; Solit, David B; Solomon, Stephen B; Erinjeri, Joseph P
2017-04-04
To establish the relationship between common mutations in the MAPK and PI3K signaling pathways and local progression after radioembolization. Retrospective review of a HIPAA-compliant institutional review-board approved database identified 40 patients with chemo-refractory colorectal liver metastases treated with radioembolization who underwent tumor genotyping for hotspot mutations in 6 key genes in the MAPK/PI3K pathways (KRAS, NRAS, BRAF, MEK1, PIK3CA, and AKT1). Mutation status as well as clinical, tumor, and treatment variables were recorded. These factors were evaluated in relation to time to local progression (TTLP), which was calculated from time of radioembolization to first radiographic evidence of local progression. Predictors of outcome were identified using a proportional hazards model for both univariate and multivariate analysis with death as a competing risk. Sixteen patients (40%) had no mutations in either pathway, eighteen patients (45%) had mutations in the MAPK pathway, ten patients (25%) had mutations in the PI3K pathway and four patients (10%) had mutations in both pathways. The cumulative incidence of progression at 6 and 12 months was 33% and 55% for the PI3K mutated group compared with 76% and 92% in the PI3K wild type group. Mutation in the PI3K pathway was a significant predictor of longer TTLP in both univariate (p=0.031, sHR 0.31, 95% CI: 0.11-0.90) and multivariate (p=0.015, sHR=0.27, 95% CI: 0.096-0.77) analysis. MAPK pathway alterations were not associated with TTLP. PI3K pathway mutation predicts longer time to local progression after radioembolization of colorectal liver metastases.
Chiu, Chao-Hua; Chou, Teh-Ying; Chiang, Chi-Lu; Tsai, Chun-Ming
2014-10-01
There is no argument over using epidermal growth factor receptor (EGFR) mutation status to guide the frontline treatment for advanced lung adenocarcinoma (LADC); however, the role of the testing in lung squamous cell carcinoma (LSQC) remains controversial. Currently, the guidelines/consensus statements regarding EGFR mutation testing in LSQC are not consistent among different oncology societies. American Society of Clinical Oncology recommends performing EGFR mutation testing in all patients; European Society for Medical Oncology, College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology, and National Comprehensive Cancer Network suggest for some selected group. EGFR mutation is rarely found in LSQC; however, more importantly, it is not a valid predictive biomarker for EGFR tyrosine kinase inhibitors (EGFR-TKI) in LSQC as it has been shown in LADC. Available data showed that the response rate and progression-free survival in EGFR mutant LSQC patients treated with EGFR-TKI are not better than that observed in patients treated with platinum-doublet chemotherapy in the first-line setting. Therefore, in contrast to advanced LADC, EGFR mutation testing may not be necessarily performed upfront in advanced LSQC because not only the mutation rate is low, but also the predictive value is insufficient. For LSQC patients with known sensitizing-EGFR mutations, both conventional chemotherapy and EGFR-TKI are acceptable frontline treatment options.
Nakayama, Izuma; Shinozaki, Eiji; Matsushima, Tomohiro; Wakatsuki, Takeru; Ogura, Mariko; Ichimura, Takashi; Ozaka, Masato; Takahari, Daisuke; Suenaga, Mitsukuni; Chin, Keisho; Mizunuma, Nobuyuki; Yamaguchi, Kensei
2017-01-09
After analysis of minor RAS mutations (KRAS exon 3, 4/NRAS) in the FIRE-3 and PRIME studies, an expanded range of RAS mutations were established as a negative predictive marker for the efficacy of anti-EGFR antibody treatment. BRAF and PIK3CA mutations may be candidate biomarkers for anti-EGFR targeted therapies. However, it remains unknown whether RAS/PIK3CA/BRAF tumor mutations can predict the efficacy of bevacizumab in metastatic colorectal cancer. We assessed whether selection according to RAS/PIK3CA/BRAF mutational status could be beneficial for patients treated with bevacizumab as first-line treatment for metastatic colorectal cancer. Of the 1001 consecutive colorectal cancer patients examined for RAS, PIK3CA, and BRAF tumor mutations using a multiplex kit (Luminex®), we studied 90 patients who received combination chemotherapy with bevacizumab as first-line treatment for metastatic colorectal cancer. The objective response rate (ORR) and progression-free survival (PFS) were evaluated according to mutational status. The ORR was higher among patients with wild-type tumors (64.3%) compared to those with tumors that were only wild type with respect to KRAS exon 2 (54.8%), and the differences in ORR between patients with wild-type and mutant-type tumors were greater when considering only KRAS exon 2 mutations (6.8%) rather than RAS/PIK3CA/BRAF mutations (18.4%). There were no statistically significant differences in ORR or PFS between all wild-type tumors and tumors carrying any of the mutations. Multivariate analysis revealed that liver metastasis and RAS and BRAF mutations were independent negative factors for disease progression after first-line treatment with bevacizumab. Patient selection according to RAS/PIK3CA/BRAF mutations could help select patients who will achieve a better response to bevacizumab treatment. We found no clinical benefit of restricting combination therapy with bevacizumab for metastatic colorectal cancer patients with EGFR-wild type tumors.
Early progressive encephalopathy in boys and MECP2 mutations.
Kankirawatana, P; Leonard, H; Ellaway, C; Scurlock, J; Mansour, A; Makris, C M; Dure, L S; Friez, M; Lane, J; Kiraly-Borri, C; Fabian, V; Davis, M; Jackson, J; Christodoulou, J; Kaufmann, W E; Ravine, D; Percy, A K
2006-07-11
MECP2 mutations mainly occur in females with Rett syndrome. Mutations have been described in 11 boys with progressive encephalopathy: seven of nine with affected sisters and two de novo. The authors report four de novo occurrences: three pathogenic and one potentially pathogenic. Common features include failure to thrive, respiratory insufficiency, microcephaly, and abnormal motor control. MECP2 mutations should be assessed in boys with progressive encephalopathy and one or more of respiratory insufficiency, abnormal movements or tone, and intractable seizures.
Ang, J Sidney; Duffy, Supipi; Segovia, Romulo; Stirling, Peter C; Hieter, Philip
2016-11-01
Mutations that cause genome instability are considered important predisposing events that contribute to initiation and progression of cancer. Genome instability arises either due to defects in genes that cause an increased mutation rate (mutator phenotype), or defects in genes that cause chromosome instability (CIN). To extend the catalog of genome instability genes, we systematically explored the effects of gene overexpression on mutation rate, using a forward-mutation screen in budding yeast. We screened ∼5100 plasmids, each overexpressing a unique single gene, and characterized the five strongest mutators, MPH1 (mutator phenotype 1), RRM3, UBP12, PIF1, and DNA2 We show that, for MPH1, the yeast homolog of Fanconi Anemia complementation group M (FANCM), the overexpression mutator phenotype is distinct from that of mph1Δ. Moreover, while four of our top hits encode DNA helicases, the overexpression of 48 other DNA helicases did not cause a mutator phenotype, suggesting this is not a general property of helicases. For Mph1 overexpression, helicase activity was not required for the mutator phenotype; in contrast Mph1 DEAH-box function was required for hypermutation. Mutagenesis by MPH1 overexpression was independent of translesion synthesis (TLS), but was suppressed by overexpression of RAD27, a conserved flap endonuclease. We propose that binding of DNA flap structures by excess Mph1 may block Rad27 action, creating a mutator phenotype that phenocopies rad27Δ. We believe this represents a novel mutator mode-of-action and opens up new prospects to understand how upregulation of DNA repair proteins may contribute to mutagenesis. Copyright © 2016 by the Genetics Society of America.
Efficacy of Icotinib treatment in patients with stage IIIb/IV non-small cell lung cancer.
Qin, Na; Yang, Xinjie; Zhang, Quan; Li, Xi; Zhang, Hui; Lv, Jialin; Wu, Yuhua; Wang, Jinghui; Zhang, Shucai
2014-05-01
To evaluate the efficacy and safety of Icotinib - an orally administered, highly potent selective inhibitor of epidermal growth factor receptor (EGFR) and its active mutations, in the treatment of patients with advanced non-small cell lung cancer (NSCLC). A total of 101 patients with stage IIIb/IV NSCLC were treated with 125 mg Icotinib three times a day until disease progression or intolerable toxicity. Response rate was evaluated using response evaluation criteria in solid tumors and progression-free survival (PFS) was collected. The overall response rate (ORR) and disease control rate (DCR) were 37.6% (38/101) and 79.2% (80/101), respectively. The median PFS was 6.5 months. Multivariate analysis showed that female gender (P= 0.048, 95% confidence interval [CI] 1.010-6.016) and occurrence of rash (P= 0.002, 95% CI 1.667-9.809) were the independent predictive factors for ORR, while a performance status (PS) score of 0-1 (P= 0.001, 95% CI 0.024-0.402) and rash (P= 0.042, 95% CI 1.089-76.557) were the independent predictive factors for DCR. In addition, PS scores of 0-1 (P <0.001, 95% CI 0.135-0.509), and non-smoking (P= 0.017, 95% CI 0.342-0.900) were found to be independent influencing factors for PFS. Moreover, patients with EGFR mutations had better PFS than patients with wild type EGFR, while patients with EGFR exon 19 deletion had better survival than those with EGFR exon 21 mutation. The most common adverse effects of Icotinib were rash (35.6%) and diarrhea (17.8%), which was tolerable. Treatment of stage IIIb/IV NSCLC patients with Icotinib was effective and tolerable, specifically in patients with EGFR mutation.
Modeling dynamics for oncogenesis encompassing mutations and genetic instability.
Fassoni, Artur C; Yang, Hyun M
2018-06-27
Tumorigenesis has been described as a multistep process, where each step is associated with a genetic alteration, in the direction to progressively transform a normal cell and its descendants into a malignant tumour. Into this work, we propose a mathematical model for cancer onset and development, considering three populations: normal, premalignant and cancer cells. The model takes into account three hallmarks of cancer: self-sufficiency on growth signals, insensibility to anti-growth signals and evading apoptosis. By using a nonlinear expression to describe the mutation from premalignant to cancer cells, the model includes genetic instability as an enabling characteristic of tumour progression. Mathematical analysis was performed in detail. Results indicate that apoptosis and tissue repair system are the first barriers against tumour progression. One of these mechanisms must be corrupted for cancer to develop from a single mutant cell. The results also show that the presence of aggressive cancer cells opens way to survival of less adapted premalignant cells. Numerical simulations were performed with parameter values based on experimental data of breast cancer, and the necessary time taken for cancer to reach a detectable size from a single mutant cell was estimated with respect to some parameters. We find that the rates of apoptosis and mutations have a large influence on the pace of tumour progression and on the time it takes to become clinically detectable.
Jänne, P A; Smith, I; McWalter, G; Mann, H; Dougherty, B; Walker, J; Orr, M C M; Hodgson, D R; Shaw, A T; Pereira, J R; Jeannin, G; Vansteenkiste, J; Barrios, C H; Franke, F A; Crinò, L; Smith, P
2015-01-01
Background: Selumetinib (AZD6244, ARRY-142886)+docetaxel increases median overall survival (OS) and significantly improves progression-free survival (PFS) and objective response rate (ORR) compared with docetaxel alone in patients with KRAS mutant, stage IIIB/IV non-small-cell lung cancer (NSCLC; NCT00890825). Methods: Retrospective analysis of OS, PFS, ORR and change in tumour size at week 6 for different sub-populations of KRAS codon mutations. Results: In patients receiving selumetinib+docetaxel and harbouring KRAS G12C or G12V mutations there were trends towards greater improvement in OS, PFS and ORR compared with other KRAS mutations. Conclusion: Different KRAS mutations in NSCLC may influence selumetinib/docetaxel sensitivity. PMID:26125448
2017-01-01
Computational modeling has been applied to simulate the heterogeneity of cancer behavior. The development of Cervical Cancer (CC) is a process in which the cell acquires dynamic behavior from non-deleterious and deleterious mutations, exhibiting chromosomal alterations as a manifestation of this dynamic. To further determine the progression of chromosomal alterations in precursor lesions and CC, we introduce a computational model to study the dynamics of deleterious and non-deleterious mutations as an outcome of tumor progression. The analysis of chromosomal alterations mediated by our model reveals that multiple deleterious mutations are more frequent in precursor lesions than in CC. Cells with lethal deleterious mutations would be eliminated, which would mitigate cancer progression; on the other hand, cells with non-deleterious mutations would become dominant, which could predispose them to cancer progression. The study of somatic alterations through computer simulations of cancer progression provides a feasible pathway for insights into the transformation of cell mechanisms in humans. During cancer progression, tumors may acquire new phenotype traits, such as the ability to invade and metastasize or to become clinically important when they develop drug resistance. Non-deleterious chromosomal alterations contribute to this progression. PMID:28723940
Kumagai, Toru; Tomita, Yasuhiko; Nakatsuka, Shin-Ichi; Kimura, Madoka; Kunimasa, Kei; Inoue, Takako; Tamiya, Motohiro; Nishino, Kazumi; Susaki, Yoshiyuki; Kusu, Takashi; Tokunaga, Toshiteru; Okami, Jiro; Higashiyama, Masahiko; Imamura, Fumio
2018-04-01
Activating EGFR mutations, HER2, and HER3 are implicated in lung cancer; however, with the exception of EGFR gene amplification in lung adenocarcinoma harboring EGFR mutations, their involvement in disease progression during the early stages is poorly understood. In this paper, we focused on which receptor is correlated with lung adenocarcinoma progression in the presence or absence of EGFR mutation from stage 0 to IA1. HER2 and HER3 expression and activating EGFR mutations in surgically resected lung adenocarcinoma exhibiting ground glass nodules on chest computed tomography and re-classified to stage 0 and IA1 were examined by immunohistochemistry and peptide nucleic acid-locked nucleic acid PCR clamp method, respectively. HER2 and HER3 expression was detected in 22.2% and 86.1% of samples, respectively. The frequency of EGFR mutation was 45.7% and was not significantly different between stage 0 and IA1 (40.0% and 48.0%, respectively), suggesting that EGFR mutation does not correlate with cancer progression from stage 0 to IA1. HER2 expression also did not correlate to progression. However, not only the frequency, but also the intensity of HER3 expression was increased in stage IA1 lung adenocarcinoma, particularly in lung adenocarcinoma without EGFR mutation. HER3 tends to be intensively expressed during the progression of lung adenocarcinoma without EGFR mutation from carcinoma in situ to invasive carcinoma. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Corre, Romain; Gervais, Radj; Guisier, Florian; Tassy, Louis; Vinas, Florent; Lamy, Régine; Fraboulet, Gislaine; Greillier, Laurent; Doubre, Helene; Descourt, Renaud; Chouaid, Christos; Auliac, Jean-Bernard
2018-02-02
To assess efficacy and tolerance of EGFR tyrosine-kinase inhibitors (TKIs) for advanced EGFR-mutated non-small cell lung cancer (NSCLC) in octogenarians. Patients aged 80 years or older with EGFR-mutated NSCLC treated by EGFR TKI between January 2011 and March 2015 whatever the line of treatment were retrospectively selected. 20 centers retrospectively included 114 patients (women, 77.2%; Caucasians, 98.3%; mean age, 83.9 years). A performance status of 0-1 or 2-3 at diagnosis was reported for 71.6% and 28.4% of patients, respectively. Overall, 95.6% of patients had adenocarcinomas and histological stage at diagnosis was stage IV for 79.8% of patients. EGFR mutations were identified mainly on exon 19 (46.5%) and exon 21 (40.4%). A geriatric assessment was performed in 35.1% of patients. TKI treatment was administered to 97.3% of patients as first or second line of treatment. Overall response rate and disease control rate were 63.3% (69/109) and 78.9% (86/109), respectively. Median progression-free survival was 11.9 months (95% confidence interval [CI], 8.6-14.7) and median overall survival was 20.9 months (95% CI, 14.3-27.1). After progression, 36/95 (37.9%) patients received a new line of chemotherapy. Main toxicities were cutaneous for 66.7% of patients (grade 3-4, 10%), diarrhea for 56.0% (grade 3-4, 15%; grade 5, 2%) and others for 25.7% (grade 3-4, 41%). Octogenarians with EGFR-mutated NSCLC treated by EGFR TKI had clinical outcomes and toxicity profile comparable to younger patients. Geriatric assessment appeared to be underused in this population.
Plasma ESR1 Mutations and the Treatment of Estrogen Receptor-Positive Advanced Breast Cancer.
Fribbens, Charlotte; O'Leary, Ben; Kilburn, Lucy; Hrebien, Sarah; Garcia-Murillas, Isaac; Beaney, Matthew; Cristofanilli, Massimo; Andre, Fabrice; Loi, Sherene; Loibl, Sibylle; Jiang, John; Bartlett, Cynthia Huang; Koehler, Maria; Dowsett, Mitch; Bliss, Judith M; Johnston, Stephen R D; Turner, Nicholas C
2016-09-01
ESR1 mutations are selected by prior aromatase inhibitor (AI) therapy in advanced breast cancer. We assessed the impact of ESR1 mutations on sensitivity to standard therapies in two phase III randomized trials that represent the development of the current standard therapy for estrogen receptor-positive advanced breast cancer. In a prospective-retrospective analysis, we assessed ESR1 mutations in available archived baseline plasma from the SoFEA (Study of Faslodex Versus Exemestane With or Without Arimidex) trial, which compared exemestane with fulvestrant-containing regimens in patients with prior sensitivity to nonsteroidal AI and in baseline plasma from the PALOMA3 (Palbociclib Combined With Fulvestrant in Hormone Receptor-Positive HER2-Negative Metastatic Breast Cancer After Endocrine Failure) trial, which compared fulvestrant plus placebo with fulvestrant plus palbociclib in patients with progression after receiving prior endocrine therapy. ESR1 mutations were analyzed by multiplex digital polymerase chain reaction. In SoFEA, ESR1 mutations were found in 39.1% of patients (63 of 161), of whom 49.1% (27 of 55) were polyclonal, with rates of mutation detection unaffected by delays in processing of archival plasma. Patients with ESR1 mutations had improved progression-free survival (PFS) after taking fulvestrant (n = 45) compared with exemestane (n = 18; hazard ratio [HR], 0.52; 95% CI, 0.30 to 0.92; P = .02), whereas patients with wild-type ESR1 had similar PFS after receiving either treatment (HR, 1.07; 95% CI, 0.68 to 1.67; P = .77). In PALOMA3, ESR1 mutations were found in the plasma of 25.3% of patients (91 of 360), of whom 28.6% (26 of 91) were polyclonal, with mutations associated with acquired resistance to prior AI. Fulvestrant plus palbociclib improved PFS compared with fulvestrant plus placebo in both ESR1 mutant (HR, 0.43; 95% CI, 0.25 to 0.74; P = .002) and ESR1 wild-type patients (HR, 0.49; 95% CI, 0.35 to 0.70; P < .001). ESR1 mutation analysis in plasma after progression after prior AI therapy may help direct choice of further endocrine-based therapy. Additional confirmatory studies are required. © 2016 by American Society of Clinical Oncology.
NASA Astrophysics Data System (ADS)
Nair, D. R.
2017-12-01
The purpose of this project was to determine the effect of two mutated oncogenes on the survival rate from invasive breast carcinoma when in comparison to the mutation of a single oncogene on the survival rate. An oncogene is defined as a gene, that when mutated, can lead to cancer. The two oncogenes used in this project were human epidermal growth factor receptor 2 (HER2) and c-myc (MYC). HER2 and MYC are both oncogenes that contribute to the formation of cancer. HER2 proteins are receptors on breast cells, and when the HER2 gene is mutated, there is an overexpression of HER2 protein on the breast cell. This makes the breast cells proliferate uncontrollably. MYC is a gene that codes for a transcription factor that plays a role in cell cycle progression. The overexpression of MYC also leads to the proliferation of cells. I hypothesized that if there is a mutation in both the MYC and HER2 genes, then the survival rate of invasive breast carcinoma patients will be lower compared to patients with the mutations of only MYC or HER2. To test this hypothesis, we conducted individual gene searches in CBioPortal for HER2 in the datasets from the studies titled TCGA Nature 2012, TCGA Cell 2015, and TCGA Provisional. We conducted individual gene searches in CBioPortal for MYC in the same datasets. The survival rate data was then exported and analyzed for patients with mutations of either HER2 or MYC and with mutations of both genes. To determine the cases that had both HER2 and MYC mutations, we found the overlapping cases in both HER2 and MYC groups for all three datasets. We calculated the median of the survival data for cases where either HER2 or MYC was mutated and cases where both MYC and HER2 were mutated. From the first dataset, the median of MYC data was 95.53, HER2 data was 95.83, and both HER2 and MYC data was 91.24. In the second dataset, the median of MYC data was 92.17 , HER2 data was 93.5, and both HER2 and MYC data was 87.95 . In the third dataset, the median of MYC data was 92.18, HER2 data was 94.22, and both HER2 and MYC data was 89.45. The median survival rates all showed that cases with mutations in both genes had a lower survival rate than those with single mutations. My hypothesis was supported. Some sources of error are the fewer number of cases in the TCGA Nature 2012 dataset, making this data statistically insignificant.
Panel-based NGS Reveals Novel Pathogenic Mutations in Autosomal Recessive Retinitis Pigmentosa
Perez-Carro, Raquel; Corton, Marta; Sánchez-Navarro, Iker; Zurita, Olga; Sanchez-Bolivar, Noelia; Sánchez-Alcudia, Rocío; Lelieveld, Stefan H.; Aller, Elena; Lopez-Martinez, Miguel Angel; López-Molina, Mª Isabel; Fernandez-San Jose, Patricia; Blanco-Kelly, Fiona; Riveiro-Alvarez, Rosa; Gilissen, Christian; Millan, Jose M; Avila-Fernandez, Almudena; Ayuso, Carmen
2016-01-01
Retinitis pigmentosa (RP) is a group of inherited progressive retinal dystrophies (RD) characterized by photoreceptor degeneration. RP is highly heterogeneous both clinically and genetically, which complicates the identification of causative genes and mutations. Targeted next-generation sequencing (NGS) has been demonstrated to be an effective strategy for the detection of mutations in RP. In our study, an in-house gene panel comprising 75 known RP genes was used to analyze a cohort of 47 unrelated Spanish families pre-classified as autosomal recessive or isolated RP. Disease-causing mutations were found in 27 out of 47 cases achieving a mutation detection rate of 57.4%. In total, 33 pathogenic mutations were identified, 20 of which were novel mutations (60.6%). Furthermore, not only single nucleotide variations but also copy-number variations, including three large deletions in the USH2A and EYS genes, were identified. Finally seven out of 27 families, displaying mutations in the ABCA4, RP1, RP2 and USH2A genes, could be genetically or clinically reclassified. These results demonstrate the potential of our panel-based NGS strategy in RP diagnosis. PMID:26806561
Chen, H; Wang, H P; Zhang, L; Si, X Y
2017-01-01
Objective: To evaluate the safety and efficacy of icotinib as first-line therapy in Chinese non-small cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) sensitive mutations. Methods: Patients with stage ⅢB/Ⅳ NSCLC who had EGFR sensitive mutation and had no previous treatment were enrolled into this study. The response rates, progress free survival (PFS), overall survival (OS), and the safety were analyzed. Results: Ninety advanced adenocarcinoma patients were enrolled in this study, 44 patients had partial response (PR), 42 patients had stable disease (SD), 4 patients had progressive disease (PD), with an overall response rate (ORR) of 48.9%, and a disease control rate (DCR) of 95.6%. The median PFS was 14.9 months (95% CI 13.5-16.3) and the OS was 37.0 weeks (95% CI 27.9-46.1). Patients with brain metastases showed higher ORR( P =0.049). Patients with stage ⅢB had longer PFS than those with stage Ⅳ( P =0.007). The most common adverse events were grade 1-2 skin rash (38 patients, 40.9%). Other adverse events included dry skin, oral mucositis, diarrhea and liver function injury. Three patients withdrew because of severe liver injury or skin rash. No treatment related mortality occurred. Conclusions: Icotinib is effective and safe as first-line treatment for Chinese advanced NSCLC patients with EGFR sensitive mutation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grouse, L.H.; Ketterling, R.P.; Sommer, S.S.
Most mutations causing hemophilia B have arisen within the past 150 years. By correcting for multiple biases, the underlying rates of spontaneous germline mutation have been estimated in the factor IX gene. From these rates, an underlying pattern of mutation has emerged. To determine if this pattern compares to a underlying pattern found in the great apes, sequence changes were determined in intronic regions of the factor IX gene. The following species were studied: Gorilla gorilla, Pan troglodytes (chimpanzee), Pongo pygmacus (orangutan) and Homo sapiens. Intronic sequences at least 200 bp from a splice junction were randomly chosen, amplified bymore » cross-species PCR, and sequenced. These regions are expected to be subject to little if any selective pressure. Early diverged species of Old World monkeys were also studied to help determine the direction of mutational changes. A total of 62 sequence changes were observed. Initial data suggest that the average pattern since evolution of the great apes has a paucity of transitions at CpG dinucleotides and an excess of microinsertions to microdeletions when compared to the pattern observed in humans during the past 150 years (p<.05). A larger study is in progress to confirm these results.« less
Vemurafenib: in unresectable or metastatic melanoma.
Keating, Gillian M
2012-10-01
Vemurafenib is a first-in-class, small molecule BRAFV600E inhibitor. It is indicated in the US for the treatment of patients with unresectable or metastatic melanoma with the BRAFV600E mutation, and in the EU as monotherapy in adults with BRAFV600 mutation-positive unresectable or metastatic melanoma. Oral vemurafenib improved overall survival (OS) [co-primary endpoint] in patients with unresectable, previously untreated, BRAFV600E mutation-positive, stage IIIC or IV melanoma, according to the results of a randomized, open-label, multicenter, phase III trial (BRIM-3). With vemurafenib versus dacarbazine, the risk of death was significantly reduced by 63% in the interim OS analysis, and by 56%, 38%, and 30% in subsequent updated OS analyses. The median OS duration was 13.6 months in vemurafenib recipients and 9.7 months in dacarbazine recipients in the most recent OS analysis. In the phase III trial, progression-free survival (PFS) [co-primary endpoint] was also significantly improved in vemurafenib versus dacarbazine recipients (median PFS of 5.3 vs 1.6 months), with a significant reduction in the risk of death or disease progression of 74% in the final PFS analysis. Vemurafenib was also associated with a high overall response rate in patients with previously treated, BRAFV600 mutation-positive, stage IV melanoma, according to the results of a noncomparative, multicenter, phase II trial. Patients had received at least one prior systemic treatment for advanced disease (excluding BRAF inhibitors other than sorafenib or MEK inhibitors). The overall response rate (primary endpoint) was 53% (complete response rate of 6% and partial response rate of 47%), with a median duration of response of 6.7 months, and a median OS duration of 15.9 months. Oral vemurafenib was generally well tolerated in patients with metastatic melanoma, with cutaneous adverse events among the most commonly occurring adverse events. Cutaneous squamous cell carcinoma and/or keratoacanthoma were reported in 18% of vemurafenib recipients in the BRIM-3 trial.
HIV-1 Strategies of Immune Evasion
NASA Astrophysics Data System (ADS)
Castiglione, F.; Bernaschi, M.
We simulate the progression of the HIV-1 infection in untreated host organisms. The phenotype features of the virus are represented by the replication rate, the probability of activating the transcription, the mutation rate and the capacity to stimulate an immune response (the so-called immunogenicity). It is very difficult to study in-vivo or in-vitro how these characteristics of the virus influence the evolution of the disease. Therefore we resorted to simulations based on a computer model validated in previous studies. We observe, by means of computer experiments, that the virus continuously evolves under the selective pressure of an immune response whose effectiveness downgrades along with the disease progression. The results of the simulations show that immunogenicity is the most important factor in determining the rate of disease progression but, by itself, it is not sufficient to drive the disease to a conclusion in all cases.
Stock, Johanna; Kuenanz, Johannes; Glonke, Niklas; Sonntag, Joseph; Frese, Jenny; Tönshoff, Burkhard; Höcker, Britta; Hoppe, Bernd; Feldkötter, Markus; Pape, Lars; Lerch, Christian; Wygoda, Simone; Weber, Manfred; Müller, Gerhard-Anton; Gross, Oliver
2017-01-01
Patients with autosomal or X-linked Alport syndrome (AS) with heterozygous mutations in type IV collagen genes have a 1-20 % risk of progressing to end-stage renal disease during their lifetime. We evaluated the long-term renal outcome of patients at risk of progressive disease (chronic kidney disease stages 1-4) with/without nephroprotective therapy. This was a prospective, non-interventional, observational study which included data from a 4-year follow-up of AS patients with heterozygous mutations whose datasets had been included in an analysis of the 2010 database of the European Alport Registry. Using Kaplan-Meier estimates and logrank tests, we prospectively analyzed the updated datasets of 52 of these patients and 13 new datasets (patients added to the Registry after 2011). The effects of therapy, extrarenal symptoms and inheritance pattern on renal outcome were analyzed. The mean prospective follow-up was 46 ± 10 months, and the mean time on therapy was 8.4 ± 4.4 (median 7; range 2-18) years. The time from the appearance of the first symptom to diagnosis was 8.1 ± 14.2 (range 0-52) years. At the time of starting therapy, 5.4 % of patients had an estimated glomerular filtration rate of <60 ml/min, 67.6 % had proteinuria and 27.0 % had microalbuminuria. Therapeutic strategies included angiotensin-converting enzymer inhibitors (97.1 %), angiotensin receptor antagonists (1 patient), dual therapy (11.8 %) and statins (8.8 %). Among patients included in the prospective dataset, prevented the need for dialysis. Among new patients, no patient at risk for renal failure progressed to the next disease stage after 4 years follow-up; three patients even regressed to a lower stage during therapy. Treatment with blockers of the renin-angiotensin-aldosterone system prevents progressive renal failure in AS patients with heterozygous mutations in the genes causing AS. Considerable numbers of aging AS patients on dialysis may have heterozygous mutations in these genes (present in 1 % of total population) as underlying disease. Hence, greater alertness towards timely diagnosis and therapy has the potential to prevent progressive renal failure in most-if not all-AS patients with heterozygous mutations in the causal genes.
Telomere-related lung fibrosis is diagnostically heterogeneous but uniformly progressive
Newton, Chad A.; Batra, Kiran; Torrealba, Jose; Kozlitina, Julia; Glazer, Craig S.; Aravena, Carlos; Meyer, Keith; Raghu, Ganesh; Collard, Harold R.; Garcia, Christine Kim
2017-01-01
Heterozygous mutations in four telomere-related genes have been linked to pulmonary fibrosis, but little is known about similarities or differences of affected individuals. 115 patients with mutations in telomerase reverse transcriptase (TERT) (n=75), telomerase RNA component (TERC) (n=7), regulator of telomere elongation helicase 1 (RTEL1) (n=14) and poly(A)-specific ribonuclease (PARN) (n=19) were identified and clinical data were analysed. Approximately one-half (46%) had a multidisciplinary diagnosis of idiopathic pulmonary fibrosis (IPF); others had unclassifiable lung fibrosis (20%), chronic hypersensitivity pneumonitis (12%), pleuroparenchymal fibroelastosis (10%), interstitial pneumonia with autoimmune features (7%), an idiopathic interstitial pneumonia (4%) and connective tissue disease-related interstitial fibrosis (3%). Discordant interstitial lung disease diagnoses were found in affected individuals from 80% of families. Patients with TERC mutations were diagnosed at an earlier age than those with PARN mutations (51±11 years versus 64±8 years; p=0.03) and had a higher incidence of haematological comorbidities. The mean rate of forced vital capacity decline was 300 mL·year−1 and the median time to death or transplant was 2.87 years. There was no significant difference in time to death or transplant for patients across gene mutation groups or for patients with a diagnosis of IPF versus a non-IPF diagnosis. Genetic mutations in telomere related genes lead to a variety of interstitial lung disease (ILD) diagnoses that are universally progressive. PMID:27540018
Telomere-related lung fibrosis is diagnostically heterogeneous but uniformly progressive.
Newton, Chad A; Batra, Kiran; Torrealba, Jose; Kozlitina, Julia; Glazer, Craig S; Aravena, Carlos; Meyer, Keith; Raghu, Ganesh; Collard, Harold R; Garcia, Christine Kim
2016-12-01
Heterozygous mutations in four telomere-related genes have been linked to pulmonary fibrosis, but little is known about similarities or differences of affected individuals.115 patients with mutations in telomerase reverse transcriptase (TERT) (n=75), telomerase RNA component (TERC) (n=7), regulator of telomere elongation helicase 1 (RTEL1) (n=14) and poly(A)-specific ribonuclease (PARN) (n=19) were identified and clinical data were analysed.Approximately one-half (46%) had a multidisciplinary diagnosis of idiopathic pulmonary fibrosis (IPF); others had unclassifiable lung fibrosis (20%), chronic hypersensitivity pneumonitis (12%), pleuroparenchymal fibroelastosis (10%), interstitial pneumonia with autoimmune features (7%), an idiopathic interstitial pneumonia (4%) and connective tissue disease-related interstitial fibrosis (3%). Discordant interstitial lung disease diagnoses were found in affected individuals from 80% of families. Patients with TERC mutations were diagnosed at an earlier age than those with PARN mutations (51±11 years versus 64±8 years; p=0.03) and had a higher incidence of haematological comorbidities. The mean rate of forced vital capacity decline was 300 mL·year -1 and the median time to death or transplant was 2.87 years. There was no significant difference in time to death or transplant for patients across gene mutation groups or for patients with a diagnosis of IPF versus a non-IPF diagnosis.Genetic mutations in telomere related genes lead to a variety of interstitial lung disease (ILD) diagnoses that are universally progressive. Copyright ©ERS 2016.
Sands, Jacob; Li, Qianyi; Hornberger, John
2017-08-01
Third-generation tyrosine kinase inhibitors (TKIs) have proven effective in patients with the acquired EGFR T790M resistance mutation who progress on prior EGFR TKI therapy. Median progression-free survival (PFS) on a 3rd-gen TKI was 9-10 months for T790M+ patients compared to 2.8 months for T790M- patients. PFS is similar regardless of the specimen used to assess T790M, such as tissue, plasma, or urine ctDNA. This study aimed to assess the total cost of care of a urine-testing strategy (UTS) versus a tissue-testing strategy (TTS) for T790M detection, in patients with EGFR-mutation positive lung adenocarcinoma and progression on prior TKI therapy. Long-term outcomes and economic implications were assessed from a US payer perspective. Endpoints were PFS, overall survival (OS), medical resource use and related costs. We included published randomized drug trials and Medicare fee schedules. A state-transition analysis and Markov model tracked patients from stable disease to progression and death. Univariate and multivariate sensitivity analyses were performed to assess the robustness of findings and identify factors that most influenced outcomes and costs. UTS increased the rate of detection of patients with T790M mutation eligible for treatment with 3rd generation TKI by 7% compared with TTS; urine ctDNA testing detected T790M mutation in some patients for whom biopsy could not be performed or when tissue testing yielded indeterminate results. Due to enhanced targeting of TKI therapy, UTS increased PFS and OS by 0.44 and 0.35 months, respectively. UTS yields a savings of $1243-$1680 per patient due to avoidance of biopsy, potential biopsy-associated complications, and tissue-based molecular testing in approximately 55.6% of patients. Probability of T790M detection by tissue and cost of biopsy procedure were the most influential factors. UTS prolonged PFS/OS due to increased detection of T790M mutation and decreased biopsies and complication-related costs. Copyright © 2017. Published by Elsevier B.V.
Histological Transformation and Progression in Follicular Lymphoma: A Clonal Evolution Study.
Kridel, Robert; Chan, Fong Chun; Mottok, Anja; Boyle, Merrill; Farinha, Pedro; Tan, King; Meissner, Barbara; Bashashati, Ali; McPherson, Andrew; Roth, Andrew; Shumansky, Karey; Yap, Damian; Ben-Neriah, Susana; Rosner, Jamie; Smith, Maia A; Nielsen, Cydney; Giné, Eva; Telenius, Adele; Ennishi, Daisuke; Mungall, Andrew; Moore, Richard; Morin, Ryan D; Johnson, Nathalie A; Sehn, Laurie H; Tousseyn, Thomas; Dogan, Ahmet; Connors, Joseph M; Scott, David W; Steidl, Christian; Marra, Marco A; Gascoyne, Randy D; Shah, Sohrab P
2016-12-01
Follicular lymphoma (FL) is an indolent, yet incurable B cell malignancy. A subset of patients experience an increased mortality rate driven by two distinct clinical end points: histological transformation and early progression after immunochemotherapy. The nature of tumor clonal dynamics leading to these clinical end points is poorly understood, and previously determined genetic alterations do not explain the majority of transformed cases or accurately predict early progressive disease. We contend that detailed knowledge of the expansion patterns of specific cell populations plus their associated mutations would provide insight into therapeutic strategies and disease biology over the time course of FL clinical histories. Using a combination of whole genome sequencing, targeted deep sequencing, and digital droplet PCR on matched diagnostic and relapse specimens, we deciphered the constituent clonal populations in 15 transformation cases and 6 progression cases, and measured the change in clonal population abundance over time. We observed widely divergent patterns of clonal dynamics in transformed cases relative to progressed cases. Transformation specimens were generally composed of clones that were rare or absent in diagnostic specimens, consistent with dramatic clonal expansions that came to dominate the transformation specimens. This pattern was independent of time to transformation and treatment modality. By contrast, early progression specimens were composed of clones that were already present in the diagnostic specimens and exhibited only moderate clonal dynamics, even in the presence of immunochemotherapy. Analysis of somatic mutations impacting 94 genes was undertaken in an extension cohort consisting of 395 samples from 277 patients in order to decipher disrupted biology in the two clinical end points. We found 12 genes that were more commonly mutated in transformed samples than in the preceding FL tumors, including TP53, B2M, CCND3, GNA13, S1PR2, and P2RY8. Moreover, ten genes were more commonly mutated in diagnostic specimens of patients with early progression, including TP53, BTG1, MKI67, and XBP1. Our results illuminate contrasting modes of evolution shaping the clinical histories of transformation and progression. They have implications for interpretation of evolutionary dynamics in the context of treatment-induced selective pressures, and indicate that transformation and progression will require different clinical management strategies.
Histological Transformation and Progression in Follicular Lymphoma: A Clonal Evolution Study
Mottok, Anja; Boyle, Merrill; Tan, King; Meissner, Barbara; Bashashati, Ali; Roth, Andrew; Shumansky, Karey; Nielsen, Cydney; Giné, Eva; Moore, Richard; Morin, Ryan D.; Sehn, Laurie H.; Tousseyn, Thomas; Dogan, Ahmet; Scott, David W.; Steidl, Christian; Gascoyne, Randy D.; Shah, Sohrab P.
2016-01-01
Background Follicular lymphoma (FL) is an indolent, yet incurable B cell malignancy. A subset of patients experience an increased mortality rate driven by two distinct clinical end points: histological transformation and early progression after immunochemotherapy. The nature of tumor clonal dynamics leading to these clinical end points is poorly understood, and previously determined genetic alterations do not explain the majority of transformed cases or accurately predict early progressive disease. We contend that detailed knowledge of the expansion patterns of specific cell populations plus their associated mutations would provide insight into therapeutic strategies and disease biology over the time course of FL clinical histories. Methods and Findings Using a combination of whole genome sequencing, targeted deep sequencing, and digital droplet PCR on matched diagnostic and relapse specimens, we deciphered the constituent clonal populations in 15 transformation cases and 6 progression cases, and measured the change in clonal population abundance over time. We observed widely divergent patterns of clonal dynamics in transformed cases relative to progressed cases. Transformation specimens were generally composed of clones that were rare or absent in diagnostic specimens, consistent with dramatic clonal expansions that came to dominate the transformation specimens. This pattern was independent of time to transformation and treatment modality. By contrast, early progression specimens were composed of clones that were already present in the diagnostic specimens and exhibited only moderate clonal dynamics, even in the presence of immunochemotherapy. Analysis of somatic mutations impacting 94 genes was undertaken in an extension cohort consisting of 395 samples from 277 patients in order to decipher disrupted biology in the two clinical end points. We found 12 genes that were more commonly mutated in transformed samples than in the preceding FL tumors, including TP53, B2M, CCND3, GNA13, S1PR2, and P2RY8. Moreover, ten genes were more commonly mutated in diagnostic specimens of patients with early progression, including TP53, BTG1, MKI67, and XBP1. Conclusions Our results illuminate contrasting modes of evolution shaping the clinical histories of transformation and progression. They have implications for interpretation of evolutionary dynamics in the context of treatment-induced selective pressures, and indicate that transformation and progression will require different clinical management strategies. PMID:27959929
Cell-Free Plasma DNA-Guided Treatment With Osimertinib in Patients With Advanced EGFR-Mutated NSCLC.
Buder, Anna; Hochmair, Maximilian J; Schwab, Sophia; Bundalo, Tatjana; Schenk, Peter; Errhalt, Peter; Mikes, Romana E; Absenger, Gudrun; Patocka, Kurt; Baumgartner, Bernhard; Setinek, Ulrike; Burghuber, Otto C; Prosch, Helmut; Pirker, Robert; Filipits, Martin
2018-03-02
Osimertinib is standard treatment for patients with advanced EGFR T790M-mutated non-small-cell lung cancer who have been pre-treated with EGFR-tyrosine kinase inhibitors (TKIs). We studied whether cell-free plasma DNA for T790M detection can be used to select patients for osimertinib treatment in the clinical routine. From April 2015 to November 2016, we included 119 patients with advanced EGFR-mutated non-small-cell lung cancer who had progressed under treatment with an EGFR-TKI. The T790M mutation status was assessed in cell-free plasma DNA by droplet digital polymerase chain reaction in all patients and by tissue analyses in selected patients. T790M mutations were detected in 85 (93%) patients by analyses of cell-free plasma DNA and in 6 (7%) plasma-negative patients by tumor re-biopsy. Eighty-nine of 91 T790M-positive patients received osimertinib. Median progression-free survival (PFS) was 10.1 months (95% confidence interval [CI]: 8.1-12.1). Median survival was not reached and the 1-year survival was 64%. The response rate was 70% in T790M-positive patients (n = 91) in the intention-to-treat population. PFS trended to be shorter in patients with high T790M copy number (≥10 copies/mL) compared to those with low T790M copy number (<10 copies/mL) (hazard ratio for PFS = 1.72, 95% CI: 0.92-3.2, p = 0.09). A comparable trend was observed for overall survival (hazard ratio for overall survival = 2.16, 95% CI: 0.89-5.25, p = 0.09). No difference in response rate was observed based on T790M copy numbers. Plasma genotyping using digital polymerase chain reaction is clinically useful for the selection of patients who had progressed during first-line EGFR-TKI therapy for treatment with osimertinib. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Novel intra-genic large deletions of CTNNB1 gene identified in WT desmoid-type fibromatosis.
Colombo, Chiara; Urbini, Milena; Astolfi, Annalisa; Collini, Paola; Indio, Valentina; Belfiore, Antonino; Paielli, Nicholas; Perrone, Federica; Tarantino, Giuseppe; Palassini, Elena; Fiore, Marco; Pession, Andrea; Stacchiotti, Silvia; Pantaleo, Maria Abbondanza; Gronchi, Alessandro
2018-06-14
A wait and see approach for desmoid tumors (DT) has become part of the routine treatment strategy. However, predictive factors to select the risk of progressive disease are still lacking. A translational project was run in order to identify genomic signatures in patients enrolled within an Italian prospective observational study. Among 12 DT patients (ten CTNNB1-mutated and two WT) enrolled from our Institution only two patients (17%) showed a progressive disease. Tumor biopsies were collected for whole exome sequencing. Overall, DT exhibited low somatic sequence mutation rate and no additional recurrent mutation was found. In the two WT cases, two novel alterations were detected: a complex deletion of APC and a pathogenic mutation of LAMTOR2. Focusing on WT DT subtype, deep sequencing of CTNNB1, APC and LAMTOR2 was conducted on a retrospective series of 11 WT DT using a targeted approach. No other mutation of LAMTOR2 was detected, while APC was mutated in two cases. Low-frequency (mean reads of 16%) CTNNB1 mutations were discovered in five samples (45%) and two novel intra-genic deletions in CTNNB1 were detected in two cases. Both deletions and low frequency mutations of CTNNB1 were highly expressed. In conclusion, a minority of DT is WT for either CTNNB1, APC or any other gene involved in the WNT pathway. In this subgroup novel and hard to be detected molecular alterations in APC and CTNNB1 were discovered, contributing to explain a portion of the allegedly WT DT cases. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Villaruz, Liza C.; Ross, Jeffrey
2016-01-01
Abstract Molecular profiling and the discovery of drugs that target specific activating mutations have allowed the personalization of treatment for non‐small cell lung cancer (NSCLC). The epithelial growth factor receptor (EGFR) is frequently over‐expressed and/or aberrantly activated in different cancers, including NSCLC. The most common activating mutations of EGFR in NSCLC fall within the tyrosine kinase‐binding domain. Three oral EGFR tyrosine kinase inhibitors (TKIs) have been approved by the U.S. Food and Drug Administration (FDA) for first‐line use in patients with EGFR mutation‐positive NSCLC (exon 19 deletions or exon 21 [L858R] substitution mutations), as detected by an FDA‐approved test. However, disease progression is common and is often the result of secondary mutations, of which the EGFR T790M mutation is the most prevalent. Few options were available upon progression until the introduction of osimertinib, a kinase inhibitor that targets the T790M mutation, which was recently approved for use in patients with metastatic EGFR T790M mutation‐positive NSCLC, as detected by an FDA‐approved test, who progressed on or after EGFR TKI therapy. With the introduction of osimertinib, outcomes can now be improved in select patients. Therefore, performing a biopsy at progression to determine the underlying molecular cause of the acquired resistance is important for the enabling of individualized options that may provide the greatest opportunity for improved outcomes. This review discusses the latest updates in molecular testing at progression and outlines treatment options for this difficult‐to‐treat population. Implications for Practice. Although the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs)—gefitinib, erlotinib, and afatinib—have changed the treatment paradigm for non‐small cell lung cancer among those with EGFR mutation positive disease, most patients experience progression after approximately 12 months of treatment. Until recently, options were limited for patients who progressed, but improvements in molecular profiling and the approval of osimertinib, which targets the resistance mutation T790M, afford the opportunity for improved outcomes in many patients with this mutation. This article explains the options available after progression on initial EGFR TKI therapy and the importance of molecular testing at progression in making treatment decisions. PMID:27821794
Mok, Tony; Ladrera, Guia; Srimuninnimit, Vichien; Sriuranpong, Virote; Yu, Chong-Jen; Thongprasert, Sumitra; Sandoval-Tan, Jennifer; Lee, Jin Soo; Fuerte, Fatima; Shames, David S; Klughammer, Barbara; Truman, Matt; Perez-Moreno, Pablo; Wu, Yi-Long
2016-08-01
The FASTACT-2 study of intercalated erlotinib with chemotherapy in Asian patients found that EGFR mutations were the main driver behind the significant progression-free survival (PFS) benefit noted in the overall population. Further exploratory biomarker analyses were conducted to provide additional insight. This multicenter, randomized, placebo-controlled, double-blind, phase III study investigated intercalated first-line erlotinib or placebo with gemcitabine/platinum, followed by maintenance erlotinib or placebo, for patients with stage IIIB/IV non-small cell lung cancer (NSCLC). Provision of samples for biomarker analysis was encouraged but not mandatory. The following biomarkers were analyzed (in order of priority): EGFR mutation by cobas(®) test, KRAS mutation by cobas(®)KRAS test, HER2 by immunohistochemistry (IHC), HER3 by IHC, ERCC1 by IHC, EGFR gene copy number by fluorescence in-situ hybridization (FISH) and EGFR by IHC. All subgroups were assessed for PFS (primary endpoint), overall survival (OS), non-progression rate and objective response rate. Overall, 256 patients provided samples for analysis. Considerable overlap was noted among biomarkers, except for EGFR and KRAS mutations, which are mutually exclusive. Other than EGFR mutations (p<0.0001), no other biomarkers were significantly predictive of outcomes in a treatment-by-biomarker interaction test, although ERCC1 IHC-positive status was predictive of improved OS for the erlotinib arm versus placebo in EGFR wild-type patients (median 18.4 vs 9.5 months; hazard ratio [HR] HR=0.32, 95% confidence intervals [CI]: 0.14-0.69, p=0.0024). Activating EGFR mutations were predictive for improved treatment outcomes with a first-line intercalated regimen of chemotherapy and erlotinib in NSCLC. ERCC1 status may have some predictive value in EGFR wild-type disease, but requires further investigation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Genetic alterations in hepatocellular carcinoma: An update
Niu, Zhao-Shan; Niu, Xiao-Jun; Wang, Wen-Hong
2016-01-01
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although recent advances in therapeutic approaches for treating HCC have improved the prognoses of patients with HCC, this cancer is still associated with a poor survival rate mainly due to late diagnosis. Therefore, a diagnosis must be made sufficiently early to perform curative and effective treatments. There is a need for a deeper understanding of the molecular mechanisms underlying the initiation and progression of HCC because these mechanisms are critical for making early diagnoses and developing novel therapeutic strategies. Over the past decade, much progress has been made in elucidating the molecular mechanisms underlying hepatocarcinogenesis. In particular, recent advances in next-generation sequencing technologies have revealed numerous genetic alterations, including recurrently mutated genes and dysregulated signaling pathways in HCC. A better understanding of the genetic alterations in HCC could contribute to identifying potential driver mutations and discovering novel therapeutic targets in the future. In this article, we summarize the current advances in research on the genetic alterations, including genomic instability, single-nucleotide polymorphisms, somatic mutations and deregulated signaling pathways, implicated in the initiation and progression of HCC. We also attempt to elucidate some of the genetic mechanisms that contribute to making early diagnoses of and developing molecularly targeted therapies for HCC. PMID:27895396
Evolution on neutral networks accelerates the ticking rate of the molecular clock.
Manrubia, Susanna; Cuesta, José A
2015-01-06
Large sets of genotypes give rise to the same phenotype, because phenotypic expression is highly redundant. Accordingly, a population can accept mutations without altering its phenotype, as long as the genotype mutates into another one on the same set. By linking every pair of genotypes that are mutually accessible through mutation, genotypes organize themselves into neutral networks (NNs). These networks are known to be heterogeneous and assortative, and these properties affect the evolutionary dynamics of the population. By studying the dynamics of populations on NNs with arbitrary topology, we analyse the effect of assortativity, of NN (phenotype) fitness and of network size. We find that the probability that the population leaves the network is smaller the longer the time spent on it. This progressive 'phenotypic entrapment' entails a systematic increase in the overdispersion of the process with time and an acceleration in the fixation rate of neutral mutations. We also quantify the variation of these effects with the size of the phenotype and with its fitness relative to that of neighbouring alternatives. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Evolution on neutral networks accelerates the ticking rate of the molecular clock
Manrubia, Susanna; Cuesta, José A.
2015-01-01
Large sets of genotypes give rise to the same phenotype, because phenotypic expression is highly redundant. Accordingly, a population can accept mutations without altering its phenotype, as long as the genotype mutates into another one on the same set. By linking every pair of genotypes that are mutually accessible through mutation, genotypes organize themselves into neutral networks (NNs). These networks are known to be heterogeneous and assortative, and these properties affect the evolutionary dynamics of the population. By studying the dynamics of populations on NNs with arbitrary topology, we analyse the effect of assortativity, of NN (phenotype) fitness and of network size. We find that the probability that the population leaves the network is smaller the longer the time spent on it. This progressive ‘phenotypic entrapment’ entails a systematic increase in the overdispersion of the process with time and an acceleration in the fixation rate of neutral mutations. We also quantify the variation of these effects with the size of the phenotype and with its fitness relative to that of neighbouring alternatives. PMID:25392402
Hong, David S; Morris, Van K; El Osta, Badi; Sorokin, Alexey V; Janku, Filip; Fu, Siqing; Overman, Michael J; Piha-Paul, Sarina; Subbiah, Vivek; Kee, Bryan; Tsimberidou, Apostolia M; Fogelman, David; Bellido, Jorge; Shureiqi, Imad; Huang, Helen; Atkins, Johnique; Tarcic, Gabi; Sommer, Nicolas; Lanman, Richard; Meric-Bernstam, Funda; Kopetz, Scott
2016-12-01
In vitro, EGFR inhibition, combined with the BRAF inhibitor vemurafenib, causes synergistic cytotoxicity for BRAF V600E metastatic colorectal cancer, further augmented by irinotecan. The safety and efficacy of vemurafenib, irinotecan, and cetuximab in BRAF-mutated malignancies are not defined. In this 3+3 phase I study, patients with BRAF V600E -advanced solid cancers received cetuximab and irinotecan with escalating doses of vemurafenib. Nineteen patients (18 with metastatic colorectal cancer and 1 with appendiceal cancer) were enrolled. Three patients experienced dose-limiting toxicities. The MTD of vemurafenib was 960 mg twice daily. Six of 17 evaluable patients (35%) achieved a radiographic response by Response Evaluation Criteria in Solid Tumors 1.1 criteria, consistent with in vivo models demonstrating tumor regressions with the triplet regimen. Median progression-free survival was 7.7 months. BRAF V600E circulating cell-free DNA (cfDNA) trends correlated with radiographic changes, and acquired mutations from cfDNA in genes reactivating MAPK signaling were observed at progression. Vemurafenib, in combination with irinotecan and cetuximab, was well tolerated in patients with refractory, BRAF-mutated metastatic colorectal cancer, and both survival outcomes and response rates exceeded prior reports for vemurafenib and for irinotecan plus cetuximab in BRAF V600E metastatic colorectal cancer. In vivo models demonstrated regressions with the triplet, in contrast with vemurafenib and cetuximab alone. cfDNA predicted radiographic response and identified mutations reactivating the MAPK pathway upon progression. Cancer Discov; 6(12); 1352-65. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 1293. ©2016 American Association for Cancer Research.
Ceritinib in ALK-Rearranged Non–Small-Cell Lung Cancer
Shaw, Alice T.; Kim, Dong-Wan; Mehra, Ranee; Tan, Daniel S.W.; Felip, Enriqueta; Chow, Laura Q.M.; Camidge, D. Ross; Vansteenkiste, Johan; Sharma, Sunil; De Pas, Tommaso; Riely, Gregory J.; Solomon, Benjamin J.; Wolf, Juergen; Thomas, Michael; Schuler, Martin; Liu, Geoffrey; Santoro, Armando; Lau, Yvonne Y.; Goldwasser, Meredith; Boral, Anthony L.; Engelman, Jeffrey A.
2014-01-01
BACKGROUND Non–small-cell lung cancer (NSCLC) harboring the anaplastic lymphoma kinase gene (ALK) rearrangement is sensitive to the ALK inhibitor crizotinib, but resistance invariably develops. Ceritinib (LDK378) is a new ALK inhibitor that has shown greater antitumor potency than crizotinib in preclinical studies. METHODS In this phase 1 study, we administered oral ceritinib in doses of 50 to 750 mg once daily to patients with advanced cancers harboring genetic alterations in ALK. In an expansion phase of the study, patients received the maximum tolerated dose. Patients were assessed to determine the safety, pharmacokinetic properties, and antitumor activity of ceritinib. Tumor biopsies were performed before ceritinib treatment to identify resistance mutations in ALK in a group of patients with NSCLC who had had disease progression during treatment with crizotinib. RESULTS A total of 59 patients were enrolled in the dose-escalation phase. The maximum tolerated dose of ceritinib was 750 mg once daily; dose-limiting toxic events included diarrhea, vomiting, dehydration, elevated aminotransferase levels, and hypophosphatemia. This phase was followed by an expansion phase, in which an additional 71 patients were treated, for a total of 130 patients overall. Among 114 patients with NSCLC who received at least 400 mg of ceritinib per day, the overall response rate was 58% (95% confidence interval [CI], 48 to 67). Among 80 patients who had received crizotinib previously, the response rate was 56% (95% CI, 45 to 67). Responses were observed in patients with various resistance mutations in ALK and in patients without detectable mutations. Among patients with NSCLC who received at least 400 mg of ceritinib per day, the median progression-free survival was 7.0 months (95% CI, 5.6 to 9.5). CONCLUSIONS Ceritinib was highly active in patients with advanced, ALK-rearranged NSCLC, including those who had had disease progression during crizotinib treatment, regardless of the presence of resistance mutations in ALK. (Funded by Novartis Pharmaceuticals and others; ClinicalTrials.gov number, NCT01283516.) PMID:24670165
Role and Mechanism of Structural Variation in Progression of Breast Cancer
2013-09-01
mutations that occurred throughout tumor evolution, we identified 9 early nonsynonymous point mutations that occurred in cancer genes . Only five of...identified, are mutations in the TP53 gene suggesting its role as a driver mutation 5 • Our data also suggests that in the case of this one patient...generated by breakage-fusion- bridge cycles that promote repeated rounds of mutation within a chromosome arm, or from progressive amplification of genes that
Intratumoral heterogeneity and TERT promoter mutations in progressive/higher-grade meningiomas
Juratli, Tareq A.; Thiede, Christian; Koerner, Mara V.A.; Tummala, Shilpa S.; Daubner, Dirk; Shankar, Ganesh M.; Williams, Erik A.; Martinez-Lage, Maria; Soucek, Silke; Robel, Katja; Penson, Tristan; Krause, Mechthild; Appold, Steffen; Meinhardt, Matthias; Pinzer, Thomas; Miller, Julie J.; Krex, Dietmar; Ely, Heather A.; Silverman, Ian M.; Christiansen, Jason; Schackert, Gabriele; Wakimoto, Hiroaki; Kirsch, Matthias; Brastianos, Priscilla K.; Cahill, Daniel P.
2017-01-01
Background Recent studies have reported mutations in the telomerase reverse transcriptase promoter (TERTp) in meningiomas. We sought to determine the frequency, clonality and clinical significance of telomere gene alterations in a cohort of patients with progressive/higher-grade meningiomas. Methods We characterized 64 temporally- and regionally-distinct specimens from 26 WHO grade III meningioma patients. On initial diagnoses, the meningiomas spanned all WHO grades (3 grade I, 13 grade II and 10 grade III). The tumor samples were screened for TERTp and ATRX/DAXX mutations, and TERT rearrangements. Additionally, TERTp was sequenced in a separate cohort of 19 patients with radiation-associated meningiomas. We examined the impact of mutational status on patients’ progression and overall survival. Results Somatic TERTp mutations were detected in six patients (6/26 = 23%). Regional intratumoral heterogeneity in TERTp mutation status was noted. In 4 patients, TERTp mutations were detected in recurrent specimens but not in the available specimens of the first surgery. Additionally, a TERT gene fusion (LPCAT1-TERT) was found in one sample. In contrary, none of the investigated samples harbored an ATRX or DAXX mutation. In the cohort of radiation-induced meningiomas, TERTp mutation was detected in two patients (10.5%). Importantly, we found that patients with emergence of TERTp mutations had a substantially shorter OS than their TERTp wild-type counterparts (2.7 years, 95% CI 0.9 – 4.5 years versus 10.8 years, 95% CI 7.8 -12.8 years, p=0.003). Conclusions In progressive/higher-grade meningiomas,TERTp mutations are associated with poor survival, supporting a model in which selection of this alteration is a harbinger of aggressive tumor development. In addition, we observe spatial intratumoral heterogeneity of TERTp mutation status, consistent with this model of late emergence in tumor evolution. Thus, early detection of TERTp mutations may define patients with more aggressive meningiomas. Stratification for TERT alterations should be adopted in future clinical trials of progressive/higher-grade meningiomas. PMID:29312603
The stability of colorectal cancer mathematical models
NASA Astrophysics Data System (ADS)
Khairudin, Nur Izzati; Abdullah, Farah Aini
2013-04-01
Colorectal cancer is one of the most common types of cancer. To better understand about the kinetics of cancer growth, mathematical models are used to provide insight into the progression of this natural process which enables physicians and oncologists to determine optimal radiation and chemotherapy schedules and develop a prognosis, both of which are indispensable for treating cancer. This thesis investigates the stability of colorectal cancer mathematical models. We found that continuous saturating feedback is the best available model of colorectal cancer growth. We also performed stability analysis. The result shows that cancer progress in sequence of genetic mutations or epigenetic which lead to a very large number of cells population until become unbounded. The cell population growth initiate and its saturating feedback is overcome when mutation changes causing the net per-capita growth rate of stem or transit cells exceed critical threshold.
Characterisation of ATM mutations in Slavic Ataxia telangiectasia patients.
Soukupova, Jana; Pohlreich, Petr; Seemanova, Eva
2011-09-01
Ataxia telangiectasia (AT) is a genomic instability syndrome characterised, among others, by progressive cerebellar degeneration, oculocutaneous telangiectases, immunodeficiency, elevated serum alpha-phetoprotein level, chromosomal breakage, hypersensitivity to ionising radiation and increased cancer risk. This autosomal recessive disorder is caused by mutations in the ataxia telangiectasia mutated (ATM) gene coding for serine/threonine protein kinase with a crucial role in response to DNA double-strand breaks. We characterised genotype and phenotype of 12 Slavic AT patients from 11 families. Mutation analysis included sequencing of the entire coding sequence, adjacent intron regions, 3'UTR and 5'UTR of the ATM gene and multiplex ligation-dependent probe amplification (MLPA) for the detection of large deletions/duplications at the ATM locus. The high incidence of new and individual mutations demonstrates a marked mutational heterogeneity of AT in the Czech Republic. Our data indicate that sequence analysis of the entire coding region of ATM is sufficient for a high detection rate of mutations in ATM and that MLPA analysis for the detection of deletions/duplications seems to be redundant in the Slavic population.
Zhou, Juan; Ben, Suqin
2018-02-01
We compared the therapeutic effect of EGFR-tyrosine kinase inhibitors (TKIs) on 19Del and L858R mutations in advanced lung adenocarcinoma on cellular immune function and explored the factors influencing the curative effect and prognosis. Clinical efficacy in the selected 71 patients with lung adenocarcinoma, including 52 patients with 19Del and L858R mutations and 19 wild type patients treated with EGFR-TKIs was retrospectively analyzed. The response rate (RR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and cellular immune function were analyzed. The RR, DCR, PFS, and OS of the 19Del group were higher than those of the L858R group; however, there were no statistically significant differences between the groups. χ 2 test results revealed that gender, smoking, and EGFR mutations were associated with DCR. Log-rank analytical results showed that EGFR mutation type was correlated to PFS and OS. Multivariate analysis implied that disease control and mutation type of EGFR were independent prognostic factors of OS. Following TKI treatment, the number of CD3+, CD4+, and NK cells and the CD4+/CD8+ratio increased in both mutation groups; however the results were not statistically significant. There was also no significant difference in the upregulation of immunological function observed, with 46.43% in the 19Del mutation and 45.83% in the L858R mutation group. EGFR 19Del and L858R mutations are good biomarkers for predicting the clinical response of EGFR-TKIs. 19Del mutations may have a better clinical outcome. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Thermal Stability of Rhodopsin and Progression of Retinitis Pigmentosa
Liu, Monica Yun; Liu, Jian; Mehrotra, Devi; Liu, Yuting; Guo, Ying; Baldera-Aguayo, Pedro A.; Mooney, Victoria L.; Nour, Adel M.; Yan, Elsa C. Y.
2013-01-01
Over 100 point mutations in the rhodopsin gene have been associated with retinitis pigmentosa (RP), a family of inherited visual disorders. Among these, we focused on characterizing the S186W mutation. We compared the thermal properties of the S186W mutant with another RP-causing mutant, D190N, and with WT rhodopsin. To assess thermal stability, we measured the rate of two thermal reactions contributing to the thermal decay of rhodopsin as follows: thermal isomerization of 11-cis-retinal and hydrolysis of the protonated Schiff base linkage between the 11-cis-retinal chromophore and opsin protein. We used UV-visible spectroscopy and HPLC to examine the kinetics of these reactions at 37 and 55 °C for WT and mutant rhodopsin purified from HEK293 cells. Compared with WT rhodopsin and the D190N mutant, the S186W mutation dramatically increases the rates of both thermal isomerization and dark state hydrolysis of the Schiff base by 1–2 orders of magnitude. The results suggest that the S186W mutant thermally destabilizes rhodopsin by disrupting a hydrogen bond network at the receptor's active site. The decrease in the thermal stability of dark state rhodopsin is likely to be associated with higher levels of dark noise that undermine the sensitivity of rhodopsin, potentially accounting for night blindness in the early stages of RP. Further studies of the thermal stability of additional pathogenic rhodopsin mutations in conjunction with clinical studies are expected to provide insight into the molecular mechanism of RP and test the correlation between rhodopsin's thermal stability and RP progression in patients. PMID:23625926
Satouchi, Miyako; Tanaka, Hiroshi; Yoshioka, Hiroshige; Shimokawaji, Tadasuke; Mizuno, Keiko; Takeda, Koji; Yoshino, Ichiro; Seto, Takashi; Kurata, Takayasu; Tashiro, Naoki; Hagiwara, Koichi
2017-09-01
Detection of epidermal growth factor receptor (EGFR) gene mutations is essential in deciding therapeutic strategy in non-small cell lung cancer (NSCLC) patients at initial diagnosis. Moreover, in EGFR mutation-positive (EGFRm) NSCLC patients, re-biopsy at disease progression to clarify resistance mechanisms is also important. However, collecting histology samples is often difficult because of inaccessibility and invasiveness. In some cases, only cytology samples can be collected, and studies have reported that cytology samples are appropriate for EGFR gene mutation testing. The cobas ® EGFR Mutation Test (Roche Molecular Systems Inc., Branchburg, New Jersey, USA) is approved as a companion diagnostic for osimertinib, a third-generation EGFR-tyrosine kinase inhibitor approved in Japan. However, it is not clear whether the EGFR T790M mutation can be detected in cytology samples using this test. The primary objective of this study was to assess concordance of EGFR T790M gene mutation detection between histology and matched cytology samples using the cobas ® EGFR Mutation Test. We conducted a multicenter, observational study in Japan. Overall, 41 EGFRm NSCLC patients who had both histology and cytology samples collected at the same time at re-biopsy and with the results of EGFR mutation test using histology samples were enrolled. The EGFR mutation status of both sample types was tested using the cobas ® EGFR Mutation Test and the concordance rates were calculated. The EGFR T790M mutation detection rate in histology and cytology samples was 42.5% and 37.5%, respectively. The overall percent agreement between the histology and cytology samples was 91.7%. These data demonstrate that the cobas ® EGFR Mutation Test can detect the EGFR T790M mutation in both cytology and histology samples. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Nickerson, John M.; Gao, Feng-juan; Sun, Zhongmou; Chen, Xin-ya; Zhang, Shu-jie; Gao, Feng; Chen, Jun-yi; Luo, Yi; Wang, Yan; Sun, Xing-huai
2015-01-01
Glaucoma is a chronic neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Mitochondrial DNA (mtDNA) alterations have been documented as a key component of many neurodegenerative disorders. However, whether mtDNA alterations contribute to the progressive loss of RGCs and the mechanism whereby this phenomenon could occur are poorly understood. We investigated mtDNA alterations in RGCs using a rat model of chronic intraocular hypertension and explored the mechanisms underlying progressive RGC loss. We demonstrate that the mtDNA damage and mutations triggered by intraocular pressure (IOP) elevation are initiating, crucial events in a cascade leading to progressive RGC loss. Damage to and mutation of mtDNA, mitochondrial dysfunction, reduced levels of mtDNA repair/replication enzymes, and elevated reactive oxygen species form a positive feedback loop that produces irreversible mtDNA damage and mutation and contributes to progressive RGC loss, which occurs even after a return to normal IOP. Furthermore, we demonstrate that mtDNA damage and mutations increase the vulnerability of RGCs to elevated IOP and glutamate levels, which are among the most common glaucoma insults. This study suggests that therapeutic approaches that target mtDNA maintenance and repair and that promote energy production may prevent the progressive death of RGCs. PMID:25478814
Kanda, Shintaro; Horinouchi, Hidehito; Fujiwara, Yutaka; Nokihara, Hiroshi; Yamamoto, Noboru; Sekine, Ikuo; Kunitoh, Hideo; Kubota, Kaoru; Tamura, Tomohide; Ohe, Yuichiro
2015-09-01
In the first-line treatment of non-small cell lung cancer (NSCLC) harboring EGFR mutations, epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) has been shown to yield a longer progression-free survival (PFS) rate than platinum-doublet chemotherapy; however, after the initial response, most patients develop resistance to the EGFR-TKIs. We hypothesized that the insertion of platinum-doublet chemotherapy after the initial response to EGFR-TKIs might prevent the emergence of acquired resistance to EGFR-TKIs and prolong survival. We carried out a phase II study of the following first-line treatment for patients with advanced NSCLC harboring EGFR mutations. Gefitinib (250 mg) was administered on days 1-56. Then, after a two-week drug-free period, three cycles of cisplatin (80 mg/m2) and docetaxel (60 mg/m2) were administered on days 71, 92, and 113. Thereafter, gefitinib was re-started on day 134 and continued until disease progression. The primary endpoint was the two-year PFS rate. A total of 34 patients were enrolled. Of the 33 eligible patients and 12 achieved a two-year PFS. Thus, this therapeutic strategy met the criterion for usefulness. The 1-, 2-, 3-, and 5-year PFS rates were 67.0%, 40.2%, 36.9%, and 22.0%, respectively, and the median PFS was 19.5 months. The 1-, 2-, 3- and 5-year survival rates were 90.6%, 71.9%, 64.8%, and 36.5% respectively, and the median survival time was 48.0 months. These results indicate that the insertion of platinum-doublet chemotherapy might prevent the development of acquired resistance to EGFR-TKIs in patients with advanced NSCLC harboring EGFR mutations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Loomis, Kari D.; Zhu, Songyun; Yoon, Kyungsil; Johnson, Peter F.; Smart, Robert C.
2013-01-01
CCAAT/enhancer binding protein y (C/EBPα) is a basic leucine zipper transcription factor that inhibits cell cycle progression and regulates differentiation in various cell types. C/EBPα is inactivated by mutation in acute myeloid leukemia (AML) and is considered a human tumor suppressor in AML. Although C/EBPα mutations have not been observed in malignancies other than AML, greatly diminished expression of C/EBPα occurs in numerous human epithelial cancers including lung, liver, endometrial, skin, and breast, suggesting a possible tumor suppressor function. However, direct evidence for C/EBPα as an epithelial tumor suppressor is lacking due to the absence of C/EBPα mutations in epithelial tumors and the lethal effect of C/EBPα deletion in mouse model systems. To examine the function of C/EBPα in epithelial tumor development, an epidermal-specific C/EBPα knockout mouse was generated. The epidermal-specific C/EBPα knockout mice survived and displayed no detectable abnormalities in epidermal keratinocyte proliferation, differentiation, or apoptosis, showing that C/EBPα is dispensable for normal epidermal homeostasis. In spite of this, the epidermal-specific C/EBPα knockout mice were highly susceptible to skin tumor development involving oncogenic Ras. These mice displayed decreased tumor latency and striking increases in tumor incidence, multiplicity, growth rate, and the rate of malignant progression. Mice hemizygous for C/EBPα displayed an intermediate-enhanced tumor phenotype. Our results suggest that decreased expression of C/EBPα contributes to deregulation of tumor cell proliferation. C/EBPα had been proposed to block cell cycle progression through inhibition of E2F activity. We observed that C/EBPα blocked Ras-induced and epidermal growth factor-induced E2F activity in keratinocytes and also blocked Ras-induced cell transformation and cell cycle progression. Our study shows that C/EBPα is dispensable for epidermal homeostasis and provides genetic evidence that C/EBPα is a suppressor of epithelial tumorigenesis. PMID:17638888
Nicholas, Frank W; Hobbs, Matthew
2014-01-01
Within two years of the re-discovery of Mendelism, Bateson and Saunders had described six traits in non-laboratory animals (five in chickens and one in cattle) that show single-locus (Mendelian) inheritance. In the ensuing decades, much progress was made in documenting an ever-increasing number of such traits. In 1987 came the first discovery of a causal mutation for a Mendelian trait in non-laboratory animals: a non-sense mutation in the thyroglobulin gene (TG), causing familial goitre in cattle. In the years that followed, the rate of discovery of causal mutations increased, aided mightily by the creation of genome-wide microsatellite maps in the 1990s and even more mightily by genome assemblies and single-nucleotide polymorphism (SNP) chips in the 2000s. With sequencing costs decreasing rapidly, by 2012 causal mutations were being discovered in non-laboratory animals at a rate of more than one per week. By the end of 2012, the total number of Mendelian traits in non-laboratory animals with known causal mutations had reached 499, which was half the number of published single-locus (Mendelian) traits in those species. The distribution of types of mutations documented in non-laboratory animals is fairly similar to that in humans, with almost half being missense or non-sense mutations. The ratio of missense to non-sense mutations in non-laboratory animals to the end of 2012 was 193:78. The fraction of non-sense mutations (78/271 = 0.29) was not very different from the fraction of non-stop codons that are just one base substitution away from a stop codon (21/61 = 0.34). PMID:24372556
Sárosi, Veronika; Balikó, Zoltán; Smuk, Gábor; László, Terézia; Szabó, Mariann; Ruzsics, István; Mezősi, Emese
2016-10-01
In the last decades new therapeutic drugs have been developed for the treatment of non-small cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKIs) significantly increase the progression free survival (PFS) of patients with NSCLC carrying epidermal growth factor receptor (EGFR) mutations. This type of lung cancer occurs mainly among non-smoking women and Asian origin. However, the new ESMO guideline recommends EGFR mutation analysis in every patient with NSCLC, because in patients with activating EGFR mutation, TKIs should be considered as first line therapy. In our recent work, we analyzed data of patients with EGFR-mutant adenocarcinoma from January 2009. The number of patients investigated was 446, among them 44 cases were positive for EGFR mutation. The ratio of positive cases was 9.86 % that is lower than the average mutation rate in Europe and much lower than that found in Asia. The exon 19 deletion was detected in 61.4 % of the patients, while L858R point mutation in exon 21 was observed in 34.1 % of them. In one subject, both exon 19 and 21 mutations were present simultaneously. A rare mutation located in exon 21 was found in another patient. TKI therapy was conducted in 38 patients. The disease control rate by TKI therapy was 85.7 %; primary resistance was documented in five subjects. Non-smoking patients with EGFR mutant adenocarcinoma had the highest benefit from TKI treatment. Our data support the recommendation that EGFR mutation status should be defined in all cases of locally advanced or metastatic lung adenocarcinoma.
Nikolaev, Sergey I; Santoni, Federico; Vannier, Anne; Falconnet, Emilie; Giarin, Emanuela; Basso, Giuseppe; Hoischen, Alexander; Veltman, Joris A; Groet, Jurgen; Nizetic, Dean; Antonarakis, Stylianos E
2013-07-25
Some neonates with Down syndrome (DS) are diagnosed with self-regressing transient myeloproliferative disorder (TMD), and 20% to 30% of those progress to acute megakaryoblastic leukemia (AMKL). We performed exome sequencing in 7 TMD/AMKL cases and copy-number analysis in these and 10 additional cases. All TMD/AMKL samples contained GATA1 mutations. No exome-sequenced TMD/AMKL sample had other recurrently mutated genes. However, 2 of 5 TMD cases, and all AMKL cases, showed mutations/deletions other than GATA1, in genes proven as transformation drivers in non-DS leukemia (EZH2, APC, FLT3, JAK1, PARK2-PACRG, EXT1, DLEC1, and SMC3). One patient at the TMD stage revealed 2 clonal expansions with different GATA1 mutations, of which 1 clone had an additional driver mutation. Interestingly, it was the other clone that gave rise to AMKL after accumulating mutations in 7 other genes. Data suggest that GATA1 mutations alone are sufficient for clonal expansions, and additional driver mutations at the TMD stage do not necessarily predict AMKL progression. Later in infancy, leukemic progression requires "third-hit driver" mutations/somatic copy-number alterations found in non-DS leukemias. Putative driver mutations affecting WNT (wingless-related integration site), JAK-STAT (Janus kinase/signal transducer and activator of transcription), or MAPK/PI3K (mitogen-activated kinase/phosphatidylinositol-3 kinase) pathways were found in all cases, aberrant activation of which converges on overexpression of MYC.
A meta-analysis of prognostic value of KIT mutation status in gastrointestinal stromal tumors
Jiang, Zhiqiang; Zhang, Jian; Li, Zhi; Liu, Yingjun; Wang, Daohai; Han, Guangsen
2016-01-01
Numerous types of KIT mutations have been reported in gastrointestinal stromal tumors (GISTs); however, controversy still exists regarding their clinicopathological significance. In this study, we reviewed the publicly available literature to assess the data by a meta-analysis to characterize KIT mutations and different types of KIT mutations in prognostic prediction in patients with GISTs. Twenty-eight studies that included 4,449 patients were identified and analyzed. We found that KIT mutation status was closely correlated with size of tumors and different mitosis indexes, but not with tumor location. KIT mutation was also observed to be significantly correlated with tumor recurrence, metastasis, as well as the overall survival of patients. Interestingly, there was higher risk of progression in KIT exon 9-mutated patients than in exon 11-mutated patients. Five-year relapse-free survival (RFS) rate was significantly higher in KIT exon 11-deleted patients than in those with other types of KIT exon 11 mutations. In addition, RFS for 5 years was significantly worse in patients bearing KIT codon 557–558 deletions than in those bearing other KIT exon 11 deletions. Our results strongly support the hypothesis that KIT mutation status is another evaluable factor for prognosis prediction in GISTs. PMID:27350754
The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome.
Garrity, Deborah M; Childs, Sarah; Fishman, Mark C
2002-10-01
Holt-Oram syndrome is one of the autosomal dominant human "heart-hand" disorders, with a combination of upper limb malformations and cardiac defects. Holt-Oram syndrome is caused by mutations in the TBX5 gene, a member of a large family of T-box transcription factors that play important roles in cell-type specification and morphogenesis. In a screen for mutations affecting zebrafish cardiac function, we isolated the recessive lethal mutant heartstrings, which lacks pectoral fins and exhibits severe cardiac dysfunction, beginning with a slow heart rate and progressing to a stretched, non-functional heart. We mapped and cloned the heartstrings mutation and find it to encode the zebrafish ortholog of the TBX5 gene. The heartstrings mutation causes premature termination at amino acid 316. Homozygous mutant embryos never develop pectoral fin buds and do not express several markers of early fin differentiation. The total absence of any fin bud differentiation distinguishes heartstrings from most other mutations that affect zebrafish fin development, suggesting that Tbx5 functions very early in the pectoral fin induction pathway. Moderate reduction of Tbx5 by morpholino causes fin malformations, revealing an additional early requirement for Tbx5 in coordinating the axes of fin outgrowth. The heart of heartstrings mutant embryos appears to form and function normally through the early heart tube stage, manifesting only a slight bradycardia compared with wild-type siblings. However, the heart fails to loop and then progressively deteriorates, a process affecting the ventricle as well as the atrium. Relative to mammals, fish require lower levels of Tbx5 to produce malformed appendages and display whole-heart rather than atrial-predominant cardiac defects. However, the syndromic deficiencies of tbx5 mutation are remarkably well retained between fish and mammals.
Hou, Hsin-An; Lin, Yun-Chu; Kuo, Yuan-Yeh; Chou, Wen-Chien; Lin, Chien-Chin; Liu, Chieh-Yu; Chen, Chien-Yuan; Lin, Liang-In; Tseng, Mei-Hsuan; Huang, Chi-Fei; Chiang, Ying-Chieh; Liu, Ming-Chih; Liu, Chia-Wen; Tang, Jih-Luh; Yao, Ming; Huang, Shang-Yi; Ko, Bor-Sheng; Hsu, Szu-Chun; Wu, Shang-Ju; Tsay, Woei; Chen, Yao-Chang; Tien, Hwei-Fang
2015-02-01
Recently, mutations of the GATA binding protein 2 (GATA2) gene were identified in acute myeloid leukemia (AML) patients with CEBPA double mutations (CEBPA (double-mut)), but the interaction of this mutation with other genetic alterations and its dynamic changes during disease progression remain to be determined. In this study, 14 different missense GATA2 mutations, which were all clustered in the highly conserved N-terminal zinc finger 1 domain, were identified in 27.4, 6.7, and 1 % of patients with CEBPA (double-mut), CEBPA (single-mut), and CEBPA wild type, respectively. All but one patient with GATA2 mutation had concurrent CEBPA mutation. GATA2 mutations were closely associated with younger age, FAB M1 subtype, intermediate-risk cytogenetics, expression of HLA-DR, CD7, CD15, or CD34 on leukemic cells, and CEBPA mutation, but negatively associated with FAB M4 subtype, favorable-risk cytogenetics, and NPM1 mutation. Patients with GATA2 mutation had significantly better overall survival and relapse-free survival than those without GATA2 mutation. Sequential analysis showed that the original GATA2 mutations might be lost during disease progression in GATA2-mutated patients, while novel GATA2 mutations might be acquired at relapse in GATA2-wild patients. In conclusion, AML patients with GATA2 mutations had distinct clinic-biological features and a favorable prognosis. GATA2 mutations might be lost or acquired at disease progression, implying that it was a second hit in the leukemogenesis of AML, especially those with CEBPA mutation.
NASA Astrophysics Data System (ADS)
Basanta, David; Scott, Jacob G.; Rockne, Russ; Swanson, Kristin R.; Anderson, Alexander R. A.
2011-02-01
Recent advances in clinical medicine have elucidated two significantly different subtypes of glioblastoma which carry very different prognoses, both defined by mutations in isocitrate dehydrogenase-1 (IDH-1). The mechanistic consequences of this mutation have not yet been fully clarified, with conflicting opinions existing in the literature; however, IDH-1 mutation may be used as a surrogate marker to distinguish between primary and secondary glioblastoma multiforme (sGBM) from malignant progression of a lower grade glioma. We develop a mathematical model of IDH-1 mutated secondary glioblastoma using evolutionary game theory to investigate the interactions between four different phenotypic populations within the tumor: autonomous growth, invasive, glycolytic, and the hybrid invasive/glycolytic cells. Our model recapitulates glioblastoma behavior well and is able to reproduce two recent experimental findings, as well as make novel predictions concerning the rate of invasive growth as a function of vascularity, and fluctuations in the proportions of phenotypic populations that a glioblastoma will experience under different microenvironmental constraints.
Back to the future: revisiting HIV-1 lethal mutagenesis
Dapp, Michael J.; Patterson, Steven E.; Mansky, Louis M.
2012-01-01
The concept of eliminating HIV-1 infectivity by elevating the viral mutation rate was first proposed over a decade ago, even though the general concept had been conceived earlier for RNA viruses. Lethal mutagenesis was originally viewed as a novel chemotherapeutic approach for treating HIV-1 infection in which use of a viral mutagen would over multiple rounds of replication lead to the lethal accumulation of mutations, rendering the virus population non infectious – known as the slow mutation accumulation model. There have been limitations in obtaining good efficacy data with drug leads, leaving some doubt into clinical translation. More recent studies of the APOBEC3 proteins as well as new progress in the use of nucleoside analogs for inducing lethal mutagenesis have helped to refocus attention on rapid induction of HIV-1 lethal mutagenesis in a single or limited number of replication cycles leading to a rapid mutation accumulation model. PMID:23195922
Keating, Gillian M
2016-04-01
The MEK inhibitor cobimetinib (Cotellic(®)) is indicated for the treatment of patients with BRAF (V600) mutation-positive unresectable or metastatic melanoma, in combination with the BRAF inhibitor vemurafenib (Zelboraf(®)). In the pivotal coBRIM trial, previously untreated patients with BRAF (V600) mutation-positive unresectable, stage IIIC or stage IV melanoma received cobimetinib 60 mg once daily for the first 21 days of each 28-day cycle plus vemurafenib 960 mg twice daily or vemurafenib alone. Compared with vemurafenib alone, cobimetinib plus vemurafenib significantly prolonged progression-free survival (primary endpoint) and was associated with a significantly higher overall response rate and significantly prolonged overall survival. Cobimetinib plus vemurafenib had a manageable tolerability profile. In conclusion, cobimetinib plus vemurafenib is a valuable option for use in BRAF (V600) mutation-positive unresectable or metastatic melanoma.
Accumulation of neutral mutations in growing cell colonies with competition.
Sorace, Ron; Komarova, Natalia L
2012-12-07
Neutral mutations play an important role in many biological processes including cancer initiation and progression, the generation of drug resistance in bacterial and viral diseases as well as cancers, and the development of organs in multicellular organisms. In this paper we study how neutral mutants are accumulated in nonlinearly growing colonies of cells subject to growth constraints such as crowding or lack of resources. We investigate different types of growth control which range from "division-controlled" to "death-controlled" growth (and various mixtures of both). In division-controlled growth, the burden of handling overcrowding lies with the process of cell-divisions, the divisions slow down as the carrying capacity is approached. In death-controlled growth, it is death rate that increases to slow down expansion. We show that division-controlled growth minimizes the number of accumulated mutations, and death-controlled growth corresponds to the maximum number of mutants. We check that these results hold in both deterministic and stochastic settings. We further develop a general (deterministic) theory of neutral mutations and achieve an analytical understanding of the mutant accumulation in colonies of a given size in the absence of back-mutations. The long-term dynamics of mutants in the presence of back-mutations is also addressed. In particular, with equal forward- and back-mutation rates, if division-controlled and a death-controlled types are competing for space and nutrients, cells obeying division-controlled growth will dominate the population. Copyright © 2012 Elsevier Ltd. All rights reserved.
Odogwu, Lauretta; Mathieu, Luckson; Goldberg, Kirsten B; Blumenthal, Gideon M; Larkins, Erin; Fiero, Mallorie H; Rodriguez, Lisa; Bijwaard, Karen; Lee, Eunice Y; Philip, Reena; Fan, Ingrid; Donoghue, Martha; Keegan, Patricia; McKee, Amy; Pazdur, Richard
2018-03-01
On March 30, 2017, the U.S. Food and Drug Administration (FDA) approved osimertinib for the treatment of patients with metastatic, epidermal growth factor receptor (EGFR) T790M mutation-positive, non-small cell lung cancer (NSCLC), as detected by an FDA-approved test, whose disease has progressed following EGFR tyrosine kinase inhibitor (TKI) therapy. Approval was based on demonstration of a statistically significant difference in the primary endpoint of progression-free survival (PFS) when comparing osimertinib with chemotherapy in an international, multicenter, open-label, randomized trial (AURA3). In this confirmatory trial, which enrolled 419 patients, the PFS hazard ratio for osimertinib compared with chemotherapy per investigator assessment was 0.30 (95% confidence interval 0.23-0.41), p < .001, with median PFS of 10.1 months in the osimertinib arm and 4.4 months in the chemotherapy arm. Supportive efficacy data included PFS per blinded independent review committee demonstrating similar PFS results and an improved confirmed objective response rate per investigator assessment of 65% and 29%, with estimated median durations of response of 11.0 months and 4.2 months, in the osimertinib and chemotherapy arms, respectively. Patients received osimertinib 80 mg once daily and had a median duration of exposure of 8 months. The toxicity profile of osimertinib compared favorably with the profile of other approved EGFR TKIs and chemotherapy. The most common adverse drug reactions (>20%) in patients treated with osimertinib were diarrhea, rash, dry skin, nail toxicity, and fatigue. Herein, we review the benefit-risk assessment of osimertinib that led to regular approval, for patients with metastatic NSCLC harboring EGFR TKI whose disease has progressed on or after EGFR TKI therapy. Osimertinib administered to metastatic non-small cell lung cancer (NSCLC) patients harboring an EGFR T790M mutation, who have progressed on or following EGFR TKI therapy, demonstrated a substantial improvement over platinum-based doublet chemotherapy as well as durable intracranial responses. The ability to test for the T790M mutation in plasma using the FDA-approved cobas EGFR Mutation Test v2 (Roche, Basel, Switzerland) identifies patients with NSCLC tumors not amenable to biopsy. Since a 40% false-negative rate has been observed with the circulating tumor DNA test, re-evaluation of the feasibility of tissue biopsy is recommended to identify patients with a false-negative plasma test result who may benefit from osimertinib. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Taus, Álvaro; Camacho, Laura; Rocha, Pedro; Hardy-Werbin, Max; Pijuan, Lara; Piquer, Gabriel; López, Eva; Dalmases, Alba; Longarón, Raquel; Clavé, Sergi; Salido, Marta; Albanell, Joan; Bellosillo, Beatriz; Arriola, Edurne
2018-03-23
The assessment of epidermal growth factor receptor (EGFR) mutations is crucial for the management of patients with lung adenocarcinoma. Circulating tumor DNA (ctDNA)-based assessment offers advantages over tumor as a minimally invasive method able to capture tumor heterogeneity. Consecutive patients diagnosed with EGFR-mutant lung adenocarcinoma in tumor biopsy were included in this study. Plasma samples were obtained at different time points during the course of the disease. EGFR mutations in plasma were quantified using BEAMing (beads, emulsions, amplification, and magnetics) or digital PCR and were correlated with mutations in tumor and with radiologic response and progression. Two hundred twenty-one plasma samples from 33 patients were analyzed. EGFR mutations in plasma were detected in 83% of all patients and 100% of those with extrathoracic metastases. The dynamics of the EGFR mutation load predicted response in 93% and progression in 89% of cases well in advance of radiologic evaluation. Progression-free survival for patients in whom ctDNA was not detected in plasma during treatment was significantly longer than for those in whom ctDNA remained detectable (295 vs. 55 days; hazard ratio, 17.1; P < .001). The detection of EGFR mutations in ctDNA showed good correlation with that in tumor biopsy and predicted tumor response and progression in most patients. The liquid biopsy for ctDNA-based assessment of EGFR mutations is a reliable technique for diagnosis and follow-up in patients with EGFR-mutant lung adenocarcinoma in routine clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.
Wu, Ji-Hong; Zhang, Sheng-Hai; Nickerson, John M; Gao, Feng-Juan; Sun, Zhongmou; Chen, Xin-Ya; Zhang, Shu-Jie; Gao, Feng; Chen, Jun-Yi; Luo, Yi; Wang, Yan; Sun, Xing-Huai
2015-02-01
Glaucoma is a chronic neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Mitochondrial DNA (mtDNA) alterations have been documented as a key component of many neurodegenerative disorders. However, whether mtDNA alterations contribute to the progressive loss of RGCs and the mechanism whereby this phenomenon could occur are poorly understood. We investigated mtDNA alterations in RGCs using a rat model of chronic intraocular hypertension and explored the mechanisms underlying progressive RGC loss. We demonstrate that the mtDNA damage and mutations triggered by intraocular pressure (IOP) elevation are initiating, crucial events in a cascade leading to progressive RGC loss. Damage to and mutation of mtDNA, mitochondrial dysfunction, reduced levels of mtDNA repair/replication enzymes, and elevated reactive oxygen species form a positive feedback loop that produces irreversible mtDNA damage and mutation and contributes to progressive RGC loss, which occurs even after a return to normal IOP. Furthermore, we demonstrate that mtDNA damage and mutations increase the vulnerability of RGCs to elevated IOP and glutamate levels, which are among the most common glaucoma insults. This study suggests that therapeutic approaches that target mtDNA maintenance and repair and that promote energy production may prevent the progressive death of RGCs. Copyright © 2014 Elsevier Inc. All rights reserved.
Moreno-Fernandez, Maria E.; Giles, Daniel A.; Stankiewicz, Traci E.; Sheridan, Rachel; Karns, Rebekah; Cappelletti, Monica; Lampe, Kristin; Mukherjee, Rajib; Sina, Christian; Sallese, Anthony; Bridges, James P.; Hogan, Simon P.; Aronow, Bruce J.; Hoebe, Kasper
2018-01-01
Nonalcoholic fatty liver disease (NAFLD), a metabolic predisposition for development of hepatocellular carcinoma (HCC), represents a disease spectrum ranging from steatosis to steatohepatitis to cirrhosis. Acox1, a rate-limiting enzyme in peroxisomal fatty acid β-oxidation, regulates metabolism, spontaneous hepatic steatosis, and hepatocellular damage over time. However, it is unknown whether Acox1 modulates inflammation relevant to NAFLD pathogenesis or if Acox1-associated metabolic and inflammatory derangements uncover and accelerate potential for NAFLD progression. Here, we show that mice with a point mutation in Acox1 (Acox1Lampe1) exhibited altered cellular metabolism, modified T cell polarization, and exacerbated immune cell inflammatory potential. Further, in context of a brief obesogenic diet stress, NAFLD progression associated with Acox1 mutation resulted in significantly accelerated and exacerbated hepatocellular damage via induction of profound histological changes in hepatocytes, hepatic inflammation, and robust upregulation of gene expression associated with HCC development. Collectively, these data demonstrate that β-oxidation links metabolism and immune responsiveness and that a better understanding of peroxisomal β-oxidation may allow for discovery of mechanisms central for NAFLD progression. PMID:29563328
Tseng, Jeng-Sen; Yang, Tsung-Ying; Chen, Kun-Chieh; Hsu, Kuo-Hsuan; Huang, Yen-Hsiang; Su, Kang-Yi; Yu, Sung-Liang; Chang, Gee-Chen
2017-12-11
Epidermal growth factor receptor (EGFR) T790M mutation serves as an important predictor of osimertinib efficacy. However, little is known about how it works among patients with various timings of T790M emergence and treatment. Advanced EGFR-mutant lung adenocarcinoma patients with positive T790M mutation in tumor were retrospectively enrolled and observed to determine the outcomes of osimertinib treatment. We evaluated the association between patients' characteristics and the efficacy of osimertinib treatment, particularly with respect to the timing of T790M emergence and osimertinib prescription. A total of 91 patients were enrolled, including 14 (15.4%) with primary and 77 (84.6%) with acquired T790M mutation. The objective response rate and disease control rate were 60.9% and 85.1%, respectively. The median progression-free survival (PFS) and overall survival were 11.5 months (95% confidence interval [CI], 9.0 to 14.0) and 30.4 months (95% CI, 11.3 to 49.5), respectively. There was no significant difference in response rate and PFS between primary and acquired T790M populations. In the acquired T790M subgroup, patients who received osimertinib after T790M had been confirmed by rebiopsy had a longer PFS than those with intercalated treatments between rebiopsy and osimertinib prescription (14.0 months [95% CI, 9.0 to 18.9] vs. 7.2 months [95% CI, 3.7 to 10.8]; adjusted hazard ratio 0.48 [95% CI, 0.24 to 0.98; p=0.043]. Rebiopsy timing did not influence the outcome. Osimertinib prescription with intercalated treatment following rebiopsy but not the timing of T790M emergence influenced the treatment outcome. We suggest that it is better to start osimertinib treatment once T790M mutation has been confirmed by biopsy.
Efficacy of Icotinib treatment in patients with stage IIIb/IV non-small cell lung cancer
Qin, Na; Yang, Xinjie; Zhang, Quan; Li, Xi; Zhang, Hui; Lv, Jialin; Wu, Yuhua; Wang, Jinghui; Zhang, Shucai
2014-01-01
Background To evaluate the efficacy and safety of Icotinib – an orally administered, highly potent selective inhibitor of epidermal growth factor receptor (EGFR) and its active mutations, in the treatment of patients with advanced non-small cell lung cancer (NSCLC). Methods A total of 101 patients with stage IIIb/IV NSCLC were treated with 125 mg Icotinib three times a day until disease progression or intolerable toxicity. Response rate was evaluated using response evaluation criteria in solid tumors and progression-free survival (PFS) was collected. Results The overall response rate (ORR) and disease control rate (DCR) were 37.6% (38/101) and 79.2% (80/101), respectively. The median PFS was 6.5 months. Multivariate analysis showed that female gender (P= 0.048, 95% confidence interval [CI] 1.010–6.016) and occurrence of rash (P= 0.002, 95% CI 1.667–9.809) were the independent predictive factors for ORR, while a performance status (PS) score of 0–1 (P= 0.001, 95% CI 0.024–0.402) and rash (P= 0.042, 95% CI 1.089–76.557) were the independent predictive factors for DCR. In addition, PS scores of 0–1 (P <0.001, 95% CI 0.135–0.509), and non-smoking (P= 0.017, 95% CI 0.342–0.900) were found to be independent influencing factors for PFS. Moreover, patients with EGFR mutations had better PFS than patients with wild type EGFR, while patients with EGFR exon 19 deletion had better survival than those with EGFR exon 21 mutation. The most common adverse effects of Icotinib were rash (35.6%) and diarrhea (17.8%), which was tolerable. Conclusion Treatment of stage IIIb/IV NSCLC patients with Icotinib was effective and tolerable, specifically in patients with EGFR mutation. PMID:26767007
A novel ABCB11 mutation in an Iranian girl with progressive familial intrahepatic cholestasis
Saber, Sassan; Vazifehmand, Reza; Bagherizadeh, Iman; Kasiri, Mahbubeh
2013-01-01
Progressive familial intrahepatic cholestasis is an autosomal recessive liver disorder caused by (biallelic) mutations in the ATP8B1 of ABCB11 gene. A nine-year-old girl with cholestasis was referred for genetic counseling. She had a family history of cholestasis in two previous expired siblings. Genetic analysis of the ABCB11 gene led to the identification of a novel homozygous mutation in exon 25. The mutation 3593- A > G lead to a missense mutation at the amino acid level (His1198Arg). This mutation caused PFIC2 due to abnormal function in the bile salt export pump protein (BSEP). PMID:24339557
Brown, K; Buchmann, A; Balmain, A
1990-01-01
A number of mouse skin tumors initiated by the carcinogens N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), methylnitrosourea (MNU), 3-methylcholanthrene (MCA), and 7,12-dimethylbenz[a]anthracene (DMBA) have been shown to contain activated Ha-ras genes. In each case, the point mutations responsible for activation have been characterized. Results presented demonstrate the carcinogen-specific nature of these ras mutations. For each initiating agent, a distinct spectrum of mutations is observed. Most importantly, the distribution of ras gene mutations is found to differ between benign papillomas and carcinomas, suggesting that molecular events occurring at the time of initiation influence the probability with which papillomas progress to malignancy. This study provides molecular evidence in support of the existence of subsets of papillomas with differing progression frequencies. Thus, the alkylating agents MNNG and MNU induced exclusively G ---- A transitions at codon 12, with this mutation being found predominantly in papillomas. MCA initiation produced both codon 13 G ---- T and codon 61 A ---- T transversions in papillomas; only the G ---- T mutation, however, was found in carcinomas. These findings provide strong evidence that the mutational activation of Ha-ras occurs as a result of the initiation process and that the nature of the initiating event can affect the probability of progression to malignancy. Images PMID:2105486
Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary.
Ahmed, Ahmed Ashour; Etemadmoghadam, Dariush; Temple, Jillian; Lynch, Andy G; Riad, Mohamed; Sharma, Raghwa; Stewart, Colin; Fereday, Sian; Caldas, Carlos; Defazio, Anna; Bowtell, David; Brenton, James D
2010-05-01
Numerous studies have tested the association between TP53 mutations in ovarian cancer and prognosis but these have been consistently confounded by limitations in study design, methodology, and/or heterogeneity in the sample cohort. High-grade serous (HGS) carcinoma is the most clinically important histological subtype of ovarian cancer. As these tumours may arise from the ovary, Fallopian tube or peritoneum, they are collectively referred to as high-grade pelvic serous carcinoma (HGPSC). To identify the true prevalence of TP53 mutations in HGPSC, we sequenced exons 2-11 and intron-exon boundaries in tumour DNA from 145 patients. HGPSC cases were defined as having histological grade 2 or 3 and FIGO stage III or IV. Surprisingly, pathogenic TP53 mutations were identified in 96.7% (n = 119/123) of HGPSC cases. Molecular and pathological review of mutation-negative cases showed evidence of p53 dysfunction associated with copy number gain of MDM2 or MDM4, or indicated the exclusion of samples as being low-grade serous tumours or carcinoma of uncertain primary site. Overall, p53 dysfunction rate approached 100% of confirmed HGPSCs. No association between TP53 mutation and progression-free or overall survival was found. From this first comprehensive mapping of TP53 mutation rate in a homogeneous group of HGPSC patients, we conclude that mutant TP53 is a driver mutation in the pathogenesis of HGPSC cancers. Because TP53 mutation is almost invariably present in HGPSC, it is not of substantial prognostic or predictive significance. Copyright (c) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Azuara, Daniel; Santos, Cristina; Lopez-Doriga, Adriana; Grasselli, Julieta; Nadal, Marga; Sanjuan, Xavier; Marin, Fátima; Vidal, Joana; Montal, Robert; Moreno, Victor; Bellosillo, Beatriz; Argiles, Guillem; Elez, Elena; Dienstmann, Rodrigo; Montagut, Clara; Tabernero, Josep; Capellá, Gabriel; Salazar, Ramon
2016-05-01
The clinical significance of low-frequent RAS pathway-mutated alleles and the optimal sensitivity cutoff value in the prediction of response to anti-EGFR therapy in metastatic colorectal cancer (mCRC) patients remains controversial. We aimed to evaluate the added value of genotyping an extended RAS panel using a robust nanofluidic digital PCR (dPCR) approach. A panel of 34 hotspots, including RAS (KRAS and NRAS exons 2/3/4) and BRAF (V600E), was analyzed in tumor FFPE samples from 102 mCRC patients treated with anti-EGFR therapy. dPCR was compared with conventional quantitative PCR (qPCR). Response rates, progression-free survival (PFS), and overall survival (OS) were correlated to the mutational status and the mutated allele fraction. Tumor response evaluations were not available in 9 patients and were excluded for response rate analysis. Twenty-two percent of patients were positive for one mutation with qPCR (mutated alleles ranged from 2.1% to 66.6%). Analysis by dPCR increased the number of positive patients to 47%. Mutated alleles for patients only detected by dPCR ranged from 0.04% to 10.8%. An inverse correlation between the fraction of mutated alleles and radiologic response was observed. ROC analysis showed that a fraction of 1% or higher of any mutated alleles offered the best predictive value for all combinations of RAS and BRAF analysis. In addition, this threshold also optimized prediction both PFS and OS. We conclude that mutation testing using an extended gene panel, including RAS and BRAF with a threshold of 1% improved prediction of response to anti-EGFR therapy. Mol Cancer Ther; 15(5); 1106-12. ©2016 AACR. ©2016 American Association for Cancer Research.
High Resolution Melt analysis for mutation screening in PKD1 and PKD2
2011-01-01
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder. It is characterized by focal development and progressive enlargement of renal cysts leading to end-stage renal disease. PKD1 and PKD2 have been implicated in ADPKD pathogenesis but genetic features and the size of PKD1 make genetic diagnosis tedious. Methods We aim to prove that high resolution melt analysis (HRM), a recent technique in molecular biology, can facilitate molecular diagnosis of ADPKD. We screened for mutations in PKD1 and PKD2 with HRM in 37 unrelated patients with ADPKD. Results We identified 440 sequence variants in the 37 patients. One hundred and thirty eight were different. We found 28 pathogenic mutations (25 in PKD1 and 3 in PKD2 ) within 28 different patients, which is a diagnosis rate of 75% consistent with literature mean direct sequencing diagnosis rate. We describe 52 new sequence variants in PKD1 and two in PKD2. Conclusion HRM analysis is a sensitive and specific method for molecular diagnosis of ADPKD. HRM analysis is also costless and time sparing. Thus, this method is efficient and might be used for mutation pre-screening in ADPKD genes. PMID:22008521
Mann, Helen; Andersohn, Frank; Bodnar, Carolyn; Mitsudomi, Tetsuya; Mok, Tony S K; Yang, James Chih-Hsin; Hoyle, Christopher
2018-04-01
An adjusted indirect comparison was conducted to assess efficacy outcomes, particularly overall survival (OS), of osimertinib versus platinum-based doublet chemotherapy in patients with epidermal growth factor receptor-mutated (EGFRm) T790M mutation-positive non-small-cell lung cancer (NSCLC) who had progressed following an EGFR tyrosine kinase inhibitor (TKI). Analysis of treatment effect from two separate trials had the potential to more accurately estimate the magnitude of OS benefit due to absence of confounding due to treatment switching from the control arm to the osimertinib arm of the ongoing randomized control trial, AURA3. Two non-randomized individual datasets were compared: pooled patients from the AURA extension and AURA2 trials (osimertinib 80 mg, n = 405, with a confirmed T790M mutation using tissue samples), and patients from the control arm of the IMPRESS study (platinum-based doublet chemotherapy, n = 61, with a confirmed T790M mutation using plasma circulating tumour DNA [ctDNA]). A propensity score-based approach was used to account for differences in baseline demographics and disease characteristics. After adjustment for baseline differences between the two groups, osimertinib demonstrated a statistically significant improvement in progression-free survival (PFS) versus platinum-based doublet chemotherapy (hazard ratio [HR] = 0.278, 95% confidence interval [CI] 0.188-0.409, p < 0.0001; median PFS 10.9 vs. 5.3 months). Improvements were also observed for objective response rate (ORR) and disease control rate (DCR) (ORR: 64.3 vs. 33.3%; odds ratio [OR] = 5.31, 95% CI 2.47-11.40, p < 0.001; DCR: 92.1 vs. 75.0%; OR = 4.72, 95% CI 1.92-11.58, p < 0.001). Similar results were obtained for patients who received osimertinib as second-line treatment only. A statistically significant improvement in OS was observed for the osimertinib group (HR = 0.412, 95% CI 0.273-0.622, p < 0.0001). Median OS for osimertinib was not reached. In this indirect comparison, osimertinib showed a statistically significant improvement in efficacy outcomes versus platinum-based doublet chemotherapy in patients with EGFRm T790M NSCLC who had progressed after EGFR-TKI therapy.
McGuigan, David B.; Heon, Elise; Cideciyan, Artur V.; Ratnapriya, Rinki; Lu, Monica; Sumaroka, Alexander; Roman, Alejandro J.; Batmanabane, Vaishnavi; Garafalo, Alexandra V.; Stone, Edwin M.; Jacobson, Samuel G.
2017-01-01
Mutations in the EYS (eyes shut homolog) gene are a common cause of autosomal recessive (ar) retinitis pigmentosa (RP). Without a mammalian model of human EYS disease, there is limited understanding of details of disease expression and rates of progression of the retinal degeneration. We studied clinically and with chromatic static perimetry, spectral-domain optical coherence tomography (OCT), and en face autofluoresence imaging, a cohort of 15 patients (ages 12–51 at first visit), some of whom had longitudinal data of function and structure. Rod sensitivity was able to be measured by chromatic perimetry in most patients at their earliest visits and some patients retained patchy rod function into the fifth decade of life. As expected from RP, cone sensitivity persisted after rod function was no longer measurable. The photoreceptor nuclear layer of the central retina was abnormal except at the fovea in most patients at first visit. Perifoveal disease measured over a period of years indicated that photoreceptor structural loss was followed by dysmorphology of the inner retina and loss of retinal pigment epithelial integrity. Although there could be variability in severity, preliminary analyses of the rates of vision loss suggested that EYS is a more rapidly progressive disease than other ciliopathies causing arRP, such as USH2A and MAK. PMID:28704921
Kiura, Katsuyuki; Yoh, Kiyotaka; Katakami, Nobuyuki; Nogami, Naoyuki; Kasahara, Kazuo; Takahashi, Toshiaki; Okamoto, Isamu; Cantarini, Mireille; Hodge, Rachel; Uchida, Hirohiko
2018-04-01
Osimertinib is a potent, irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) selective for EGFR-TKI sensitizing (EGFRm) and T790M resistance mutations. The primary objective of the cytology cohort in the AURA study was to investigate safety and efficacy of osimertinib in pretreated Japanese patients with EGFR T790M mutation-positive non-small cell lung cancer (NSCLC), with screening EGFR T790M mutation status determined from cytology samples. The cytology cohort was included in the Phase I dose expansion component of the AURA study. Patients were enrolled based on a positive result of T790M by using cytology samples, and received osimertinib 80 mg in tablet form once daily until disease progression or until clinical benefit was no longer observed at the discretion of the investigator. Primary endpoint for efficacy was objective response rate (ORR) by investigator assessment. Twenty-eight Japanese patients were enrolled into the cytology cohort. At data cut-off (February 1, 2016), 12 (43%) were on treatment. Investigator-assessed ORR was 75% (95% confidence interval [CI] 55, 89) and median duration of response was 9.7 months (95% CI 3.8, not calculable [NC]). Median progression-free survival was 8.3 months (95% CI 4.2, NC) and disease control rate was 96% (95% CI 82, 100). The most common all-causality adverse events were paronychia (46%), dry skin (46%), diarrhea (36%) and rash (36%). Osimertinib provided clinical benefit with a manageable safety profile in patients with pretreated EGFR T790M mutation-positive NSCLC whose screening EGFR T790M mutation-positive status was determined from cytology samples. (ClinicalTrials.gov number NCT01802632). © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Corre, Romain; Gervais, Radj; Guisier, Florian; Tassy, Louis; Vinas, Florent; Lamy, Régine; Fraboulet, Gislaine; Greillier, Laurent; Doubre, Helene; Descourt, Renaud; Chouaid, Christos; Auliac, Jean-Bernard
2018-01-01
Objective To assess efficacy and tolerance of EGFR tyrosine-kinase inhibitors (TKIs) for advanced EGFR-mutated non-small cell lung cancer (NSCLC) in octogenarians. Patients and methods Patients aged 80 years or older with EGFR-mutated NSCLC treated by EGFR TKI between January 2011 and March 2015 whatever the line of treatment were retrospectively selected. Results 20 centers retrospectively included 114 patients (women, 77.2%; Caucasians, 98.3%; mean age, 83.9 years). A performance status of 0–1 or 2–3 at diagnosis was reported for 71.6% and 28.4% of patients, respectively. Overall, 95.6% of patients had adenocarcinomas and histological stage at diagnosis was stage IV for 79.8% of patients. EGFR mutations were identified mainly on exon 19 (46.5%) and exon 21 (40.4%). A geriatric assessment was performed in 35.1% of patients. TKI treatment was administered to 97.3% of patients as first or second line of treatment. Overall response rate and disease control rate were 63.3% (69/109) and 78.9% (86/109), respectively. Median progression-free survival was 11.9 months (95% confidence interval [CI], 8.6–14.7) and median overall survival was 20.9 months (95% CI, 14.3–27.1). After progression, 36/95 (37.9%) patients received a new line of chemotherapy. Main toxicities were cutaneous for 66.7% of patients (grade 3–4, 10%), diarrhea for 56.0% (grade 3–4, 15%; grade 5, 2%) and others for 25.7% (grade 3–4, 41%). Conclusions Octogenarians with EGFR-mutated NSCLC treated by EGFR TKI had clinical outcomes and toxicity profile comparable to younger patients. Geriatric assessment appeared to be underused in this population. PMID:29492192
STAG2 promotes error correction in mitosis by regulating kinetochore-microtubule attachments.
Kleyman, Marianna; Kabeche, Lilian; Compton, Duane A
2014-10-01
Mutations in the STAG2 gene are present in ∼20% of tumors from different tissues of origin. STAG2 encodes a subunit of the cohesin complex, and tumors with loss-of-function mutations are usually aneuploid and display elevated frequencies of lagging chromosomes during anaphase. Lagging chromosomes are a hallmark of chromosomal instability (CIN) arising from persistent errors in kinetochore-microtubule (kMT) attachment. To determine whether the loss of STAG2 increases the rate of formation of kMT attachment errors or decreases the rate of their correction, we examined mitosis in STAG2-deficient cells. STAG2 depletion does not impair bipolar spindle formation or delay mitotic progression. Instead, loss of STAG2 permits excessive centromere stretch along with hyperstabilization of kMT attachments. STAG2-deficient cells display mislocalization of Bub1 kinase, Bub3 and the chromosome passenger complex. Importantly, strategically destabilizing kMT attachments in tumor cells harboring STAG2 mutations by overexpression of the microtubule-destabilizing enzymes MCAK (also known as KIF2C) and Kif2B decreased the rate of lagging chromosomes and reduced the rate of chromosome missegregation. These data demonstrate that STAG2 promotes the correction of kMT attachment errors to ensure faithful chromosome segregation during mitosis. © 2014. Published by The Company of Biologists Ltd.
Differential Light-induced Responses in Sectorial Inherited Retinal Degeneration*
Ramon, Eva; Cordomí, Arnau; Aguilà, Mònica; Srinivasan, Sundaramoorthy; Dong, Xiaoyun; Moore, Anthony T.; Webster, Andrew R.; Cheetham, Michael E.; Garriga, Pere
2014-01-01
Retinitis pigmentosa (RP) is a group of genetically and clinically heterogeneous inherited degenerative retinopathies caused by abnormalities of photoreceptors or retinal pigment epithelium in the retina leading to progressive sight loss. Rhodopsin is the prototypical G-protein-coupled receptor located in the vertebrate retina and is responsible for dim light vision. Here, novel M39R and N55K variants were identified as causing an intriguing sector phenotype of RP in affected patients, with selective degeneration in the inferior retina. To gain insights into the molecular aspects associated with this sector RP phenotype, whose molecular mechanism remains elusive, the mutations were constructed by site-directed mutagenesis, expressed in heterologous systems, and studied by biochemical, spectroscopic, and functional assays. M39R and N55K opsins had variable degrees of chromophore regeneration when compared with WT opsin but showed no gross structural misfolding or altered trafficking. M39R showed a faster rate for transducin activation than WT rhodopsin with a faster metarhodopsinII decay, whereas N55K presented a reduced activation rate and an altered photobleaching pattern. N55K also showed an altered retinal release from the opsin binding pocket upon light exposure, affecting its optimal functional response. Our data suggest that these sector RP mutations cause different protein phenotypes that may be related to their different clinical progression. Overall, these findings illuminate the molecular mechanisms of sector RP associated with rhodopsin mutations. PMID:25359768
Won, J K; Keam, B; Koh, J; Cho, H J; Jeon, Y K; Kim, T M; Lee, S H; Lee, D S; Kim, D W; Chung, D H
2015-02-01
Epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) translocation are considered mutually exclusive in nonsmall-cell lung cancer (NSCLC). However, sporadic cases having concomitant EGFR and ALK alterations have been reported. The present study aimed to assess the prevalence of NSCLCs with concomitant EGFR and ALK alterations using mutation detection methods with different sensitivity and to propose an effective diagnostic and therapeutic strategy. A total of 1458 cases of lung cancer were screened for EGFR and ALK alterations by direct sequencing and flourescence in situ hybridization (FISH), respectively. For the 91 patients identified as having an ALK translocation, peptide nucleic acid (PNA)-clamping real-time PCR, targeted next-generation sequencing (NGS), and mutant-enriched NGS assays were carried out to detect EGFR mutation. EGFR mutations and ALK translocations were observed in 42.4% (612/1445) and 6.3% (91/1445) of NSCLCs by direct sequencing and FISH, respectively. Concomitant EGFR and ALK alterations were detected in four cases, which accounted for 4.4% (4/91) of ALK-translocated NSCLCs. Additional analyses for EGFR using PNA real-time PCR and ultra-deep sequencing by NGS, mutant-enriched NGS increased the detection rate of concomitant EGFR and ALK alterations to 8.8% (8/91), 12.1% (11/91), and 15.4% (14/91) of ALK-translocated NSCLCs, respectively. Of the 14 patients, 3 who were treated with gefitinib showed poor response to gefitinib with stable disease in one and progressive disease in two patients. However, eight patients who received ALK inhibitor (crizotinib or ceritinib) showed good response, with response rate of 87.5% (7/8 with partial response) and durable progression-free survival. A portion of NSCLC patients have concomitant EGFR and ALK alterations and the frequency of co-alteration detection increases when sensitive detection methods for EGFR mutation are applied. ALK inhibitors appear to be effective for patients with co-alterations. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Evolutionary dynamics of imatinib-treated leukemic cells by stochastic approach
NASA Astrophysics Data System (ADS)
Pizzolato, Nicola; Valenti, Davide; Adorno, Dominique Persano; Spagnolo, Bernardo
2009-09-01
The evolutionary dynamics of a system of cancerous cells in a model of chronic myeloid leukemia (CML) is investigated by a statistical approach. Cancer progression is explored by applying a Monte Carlo method to simulate the stochastic behavior of cell reproduction and death in a population of blood cells which can experience genetic mutations. In CML front line therapy is represented by the tyrosine kinase inhibitor imatinib which strongly affects the reproduction of leukemic cells only. In this work, we analyze the effects of a targeted therapy on the evolutionary dynamics of normal, first-mutant and cancerous cell populations. Several scenarios of the evolutionary dynamics of imatinib-treated leukemic cells are described as a consequence of the efficacy of the different modelled therapies. We show how the patient response to the therapy changes when a high value of the mutation rate from healthy to cancerous cells is present. Our results are in agreement with clinical observations. Unfortunately, development of resistance to imatinib is observed in a fraction of patients, whose blood cells are characterized by an increasing number of genetic alterations. We find that the occurrence of resistance to the therapy can be related to a progressive increase of deleterious mutations.
Molecular Biology of Lung Cancer
Nana-Sinkam, Serge Patrick
2013-01-01
Based on recent bench and clinical research, the treatment of lung cancer has been refined, with treatments allocated according to histology and specific molecular features. For example, targeting mutations such as epidermal growth factor receptor (EGFR) with tyrosine kinase inhibitors has been particularly successful as a treatment modality, demonstrating response rates in selected patients with adenocarcinoma tumors harboring EGFR mutations that are significantly higher than those for conventional chemotherapy. However, the development of new targeted therapies is, in part, highly dependent on an improved understanding of the molecular underpinnings of tumor initiation and progression, knowledge of the role of molecular aberrations in disease progression, and the development of highly reproducible platforms for high-throughput biomarker discovery and testing. In this article, we review clinically relevant research directed toward understanding the biology of lung cancer. The clinical purposes of this research are (1) to identify susceptibility variants and field molecular alterations that will promote the early detection of tumors and (2) to identify tumor molecular alterations that serve as therapeutic targets, prognostic biomarkers, or predictors of tumor response. We focus on research developments in the understanding of lung cancer somatic DNA mutations, chromosomal aberrations, epigenetics, and the tumor microenvironment, and how they can advance diagnostics and therapeutics. PMID:23649444
Brown, J R; Hillmen, P; O’Brien, S; Barrientos, J C; Reddy, N M; Coutre, S E; Tam, C S; Mulligan, S P; Jaeger, U; Barr, P M; Furman, R R; Kipps, T J; Cymbalista, F; Thornton, P; Caligaris-Cappio, F; Delgado, J; Montillo, M; DeVos, S; Moreno, C; Pagel, J M; Munir, T; Burger, J A; Chung, D; Lin, J; Gau, L; Chang, B; Cole, G; Hsu, E; James, D F; Byrd, J C
2018-01-01
In the phase 3 RESONATE study, ibrutinib demonstrated superior progression-free survival (PFS), overall survival (OS) and overall response rate (ORR) compared with ofatumumab in relapsed/refractory CLL patients with high-risk prognostic factors. We report updated results from RESONATE in these traditionally chemotherapy resistant high-risk genomic subgroups at a median follow-up of 19 months. Mutations were detected by Foundation One Heme Panel. Baseline mutations in the ibrutinib arm included TP53 (51%), SF3B1 (31%), NOTCH1 (28%), ATM (19%) and BIRC3 (14%). Median PFS was not reached, with 74% of patients randomized to ibrutinib alive and progression-free at 24 months. The improved efficacy of ibrutinib vs ofatumumab continues in all prognostic subgroups including del17p and del11q. No significant difference within the ibrutinib arm was observed for PFS across most genomic subtypes, although a subset carrying both TP53 mutation and del17p had reduced PFS compared with patients with neither abnormality. Reduced PFS or OS was not evident in patients with only del17p. PFS was significantly better for ibrutinib-treated patients in second-line vs later lines of therapy. The robust clinical activity of ibrutinib continues to show ongoing efficacy and acceptable safety consistent with prior reports, independent of various known high-risk mutations. PMID:28592889
2012-01-01
Background To evaluate the value of KRAS codon 13 mutations in patients with advanced colorectal cancer (advanced CRC) treated with oxaliplatin and fluoropyrimidines. Methods Tumor specimens from 201 patients with advanced CRC from a randomized, phase III trial comparing oxaliplatin/5-FU vs. oxaliplatin/capecitabine were retrospectively analyzed for KRAS mutations. Mutation data were correlated to response data (Overall response rate, ORR), progression-free survival (PFS) and overall survival (OS). Results 201 patients were analysed for KRAS mutation (61.2% males; mean age 64.2 ± 8.6 years). KRAS mutations were identified in 36.3% of tumors (28.8% in codon 12, 7.4% in codon 13). The ORR in codon 13 patients compared to codon 12 and wild type patients was significantly lower (p = 0.008). There was a tendency for a better overall survival in KRAS wild type patients compared to mutants (p = 0.085). PFS in all patients was not different in the three KRAS genetic groups (p = 0.72). However, we found a marked difference in PFS between patients with codon 12 and 13 mutant tumors treated with infusional 5-FU versus capecitabine based regimens. Conclusions Our data suggest that the type of KRAS mutation may be of clinical relevance under oxaliplatin combination chemotherapies without the addition of monoclonal antibodies in particular when overall response rates are important. Trial registration number 2002-04-017 PMID:22876876
Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer
Shen, Lanlan; Toyota, Minoru; Kondo, Yutaka; Lin, E; Zhang, Li; Guo, Yi; Hernandez, Natalie Supunpong; Chen, Xinli; Ahmed, Saira; Konishi, Kazuo; Hamilton, Stanley R.; Issa, Jean-Pierre J.
2007-01-01
Colon cancer has been viewed as the result of progressive accumulation of genetic and epigenetic abnormalities. However, this view does not fully reflect the molecular heterogeneity of the disease. We have analyzed both genetic (mutations of BRAF, KRAS, and p53 and microsatellite instability) and epigenetic alterations (DNA methylation of 27 CpG island promoter regions) in 97 primary colorectal cancer patients. Two clustering analyses on the basis of either epigenetic profiling or a combination of genetic and epigenetic profiling were performed to identify subclasses with distinct molecular signatures. Unsupervised hierarchical clustering of the DNA methylation data identified three distinct groups of colon cancers named CpG island methylator phenotype (CIMP) 1, CIMP2, and CIMP negative. Genetically, these three groups correspond to very distinct profiles. CIMP1 are characterized by MSI (80%) and BRAF mutations (53%) and rare KRAS and p53 mutations (16% and 11%, respectively). CIMP2 is associated with 92% KRAS mutations and rare MSI, BRAF, or p53 mutations (0, 4, and 31% respectively). CIMP-negative cases have a high rate of p53 mutations (71%) and lower rates of MSI (12%) or mutations of BRAF (2%) or KRAS (33%). Clustering based on both genetic and epigenetic parameters also identifies three distinct (and homogeneous) groups that largely overlap with the previous classification. The three groups are independent of age, gender, or stage, but CIMP1 and 2 are more common in proximal tumors. Together, our integrated genetic and epigenetic analysis reveals that colon cancers correspond to three molecularly distinct subclasses of disease. PMID:18003927
Fassan, Matteo; Indraccolo, Stefano; Calabrese, Fiorella; Favaretto, Adolfo; Bonanno, Laura; Polo, Valentina; Zago, Giulia; Lunardi, Francesca; Attili, Ilaria; Pavan, Alberto; Rugge, Massimo; Guarneri, Valentina; Conte, PierFranco; Pasello, Giulia
2017-01-01
Introduction Tyrosine-kinase inhibitors (TKIs) represent the best treatment for advanced non-small cell lung cancer (NSCLC) with common exon 19 deletion or exon 21 epidermal growth factor receptor mutation (EGFRm). This is an observational study investigating epidemiology, clinical features and treatment outcome of NSCLC cases harbouring rare/complex EGFRm. Results Among 764 non-squamous NSCLC cases with known EGFRm status, 26(3.4%) harboured rare/complex EGFRm. Patients receiving first-line TKIs (N = 17) achieved median Progression Free Survival (PFS) and Overall Survival (OS) of 53 (IC 95%, 2–105) and 84 (CI 95%, 27–141) weeks respectively, without significant covariate impact. Response Rate and Disease Control Rate (DCR) were 47% and 65%, respectively. Uncommon exon 19 mutations achieved longer OS and PFS and higher DCR compared with exon 18 and 20 mutations. No additional gene mutation was discovered by MassARRAY analysis. TKIs were globally well tolerated. Materials and methods A retrospective review of advanced non-squamous NSCLC harbouring rare/complex EGFRm referred to our Center between 2010 and 2015 was performed. Additional molecular pathways disregulation was explored in selected cases, through MassARRAY analysis. Conclusions Peculiar clinical features and lower TKIs sensitivity of uncommon/complex compared with common EGFRm were shown. Exon 19 EGFRm achieved the best TKIs treatment outcome, while the optimal treatment of exon 18 and 20 mutations should be further clarified. PMID:28427238
Lee, Vivian W Y; Schwander, Bjoern; Lee, Victor H F
2014-06-01
To compare the effectiveness and cost-effectiveness of erlotinib versus gefitinib as first-line treatment of epidermal growth factor receptor-activating mutation-positive non-small-cell lung cancer patients. DESIGN. Indirect treatment comparison and a cost-effectiveness assessment. Hong Kong. Those having epidermal growth factor receptor-activating mutation-positive non-small-cell lung cancer. Erlotinib versus gefitinib use was compared on the basis of four relevant Asian phase-III randomised controlled trials: one for erlotinib (OPTIMAL) and three for gefitinib (IPASS; NEJGSG; WJTOG). The cost-effectiveness assessment model simulates the transition between the health states: progression-free survival, progression, and death over a lifetime horizon. The World Health Organization criterion (incremental cost-effectiveness ratio <3 times of gross domestic product/capita:
Myers, Andrea P.; Filiaci, Virginia L.; Zhang, Yuping; Pearl, Michael; Behbakht, Kian; Makker, Vicky; Hanjani, Parviz; Zweizig, Susan; Burke, James J.; Downey, Gordon; Leslie, Kimberly K.; Van Hummelen, Paul; Birrer, Michael J.; Fleming, Gini F.
2016-01-01
Objective Rapamycin analogs have reproducible but modest efficacy in endometrial cancer (EC). Identification of molecular biomarkers that predict benefit could guide clinical development. Methods Fixed primary tissue and whole blood were collected prospectively from patients enrolled on GOG 248. DNA was isolated from macro-dissected tumors and blood; next–generation sequence analysis was performed on a panel of cancer related genes. Associations between clinical outcomes [response rate (RR) 20%; progression-free survival (PFS) median 4.9 months] and mutations (PTEN, PIK3CA, PIK3R1, KRAS, CTNNB1, AKT1, TSC1, TSC2, NF1, FBXW7) were explored. Results Sequencing data was obtained from tumors of 55 of the 73 enrolled pts. Mutation rates were consistent with published reports: mutations in PTEN (45%), PIK3CA (29%), PIK3R1 (24%), K-RAS (16%), CTNNB1 (18%) were common and mutations in AKT1 (4%), TSC1 (2%), TSC2 (2%), NF1 (9%) and FBXW7 (4%) were less common. Increased PFS (HR 0.16; 95% CI 0.01–0.78) and RR (response difference 0.83; 95% CI 0.03–0.99) were noted for AKT1 mutation. An increase in PFS (HR 0.46; 95% CI 0.20–0.97) but not RR (response difference 0.00, 95% CI −0.34–0.34) was identified for CTNNB1 mutation. Both patients with TSC mutations had an objective response. There were no statistically significant associations between mutations in PIK3CA, PTEN, PIK3R1, or KRAS and PFS or RR. Conclusions Mutations in AKT1, TSC1 and TSC2 are rare, but may predict clinical benefit from temsirolimus. CTNNB1 mutations were associated with longer PFS on temsirolimus. PMID:27016228
Spatial Moran models, II: cancer initiation in spatially structured tissue
Foo, J; Leder, K
2016-01-01
We study the accumulation and spread of advantageous mutations in a spatial stochastic model of cancer initiation on a lattice. The parameters of this general model can be tuned to study a variety of cancer types and genetic progression pathways. This investigation contributes to an understanding of how the selective advantage of cancer cells together with the rates of mutations driving cancer, impact the process and timing of carcinogenesis. These results can be used to give insights into tumor heterogeneity and the “cancer field effect,” the observation that a malignancy is often surrounded by cells that have undergone premalignant transformation. PMID:26126947
Adult cases of mitochondrial DNA depletion due to TK2 defect: an expanding spectrum.
Béhin, A; Jardel, C; Claeys, K G; Fagart, J; Louha, M; Romero, N B; Laforêt, P; Eymard, B; Lombès, A
2012-02-28
In this study we aim to demonstrate the occurrence of adult forms of TK2 mutations causing progressive mitochondrial myopathy with significant muscle mitochondrial DNA (mtDNA) depletion. Patients' investigations included serum creatine kinase, blood lactate, electromyographic, echocardiographic, and functional respiratory analyses as well as TK2 gene sequencing and TK2 activity measurement. Mitochondrial activities and mtDNA were analyzed in the patients' muscle biopsy. The 3 adult patients with TK2 mutations presented with slowly progressive myopathy compatible with a fairly normal life during decades. Apart from its much slower progression, these patients' phenotype closely resembled that of pediatric cases including early onset, absence of CNS symptoms, generalized muscle weakness predominating on axial and proximal muscles but affecting facial, ocular, and respiratory muscles, typical mitochondrial myopathy with a mosaic pattern of COX-negative and ragged-red fibers, combined mtDNA-dependent respiratory complexes deficiency and mtDNA depletion. In accordance with the disease's relatively slow progression, the residual mtDNA content was higher than that observed in pediatric cases. That difference was not explained by the type of the TK2 mutations or by the residual TK2 activity. TK2 mutations can cause mitochondrial myopathy with a slow progression. Comparison of patients with similar mutations but different disease progression might address potential mechanisms of mtDNA maintenance modulation.
Marfan syndrome: current perspectives
Pepe, Guglielmina; Giusti, Betti; Sticchi, Elena; Abbate, Rosanna; Gensini, Gian Franco; Nistri, Stefano
2016-01-01
Marfan syndrome (MFS) is a pleiotropic connective tissue disease inherited as an autosomal dominant trait, due to mutations in the FBN1 gene encoding fibrillin 1. It is an important protein of the extracellular matrix that contributes to the final structure of a microfibril. Few cases displaying an autosomal recessive transmission are reported in the world. The FBN1 gene, which is made of 66 exons, is located on chromosome 15q21.1. This review, after an introduction on the clinical manifestations that leads to the diagnosis of MFS, focuses on cardiovascular manifestations, pharmacological and surgical therapies of thoracic aortic aneurysm and/or dissection (TAAD), mechanisms underlying the progression of aneurysm or of acute dissection, and biomarkers associated with progression of TAADs. A Dutch group compared treatment with losartan, an angiotensin II receptor-1 blocker, vs no other additional treatment (COMPARE clinical trial). They observed that losartan reduces the aortic dilatation rate in patients with Marfan syndrome. Later on, they also reported that losartan exerts a beneficial effect on patients with Marfan syndrome carrying an FBN1 mutation that causes haploinsufficiency (quantitative mutation), while it has no significant effect on patients displaying dominant negative (qualitative) mutations. Moreover, a French group in a 3-year trial compared the administration of losartan vs placebo in patients with Marfan syndrome under treatment with beta-receptor blockers. They observed that losartan decreases blood pressure but has no effect on aortic diameter progression. Thus, beta-receptor blockers remain the gold standard therapy in patients with Marfan syndrome. Three potential biochemical markers are mentioned in this review: total homocysteine, serum transforming growth factor beta, and lysyl oxidase. Moreover, markers of oxidative stress measured in plasma, previously correlated with clinical features of Marfan syndrome, may be explored as potential biomarkers of clinical severity. PMID:27274304
Marfan syndrome: current perspectives.
Pepe, Guglielmina; Giusti, Betti; Sticchi, Elena; Abbate, Rosanna; Gensini, Gian Franco; Nistri, Stefano
2016-01-01
Marfan syndrome (MFS) is a pleiotropic connective tissue disease inherited as an autosomal dominant trait, due to mutations in the FBN1 gene encoding fibrillin 1. It is an important protein of the extracellular matrix that contributes to the final structure of a microfibril. Few cases displaying an autosomal recessive transmission are reported in the world. The FBN1 gene, which is made of 66 exons, is located on chromosome 15q21.1. This review, after an introduction on the clinical manifestations that leads to the diagnosis of MFS, focuses on cardiovascular manifestations, pharmacological and surgical therapies of thoracic aortic aneurysm and/or dissection (TAAD), mechanisms underlying the progression of aneurysm or of acute dissection, and biomarkers associated with progression of TAADs. A Dutch group compared treatment with losartan, an angiotensin II receptor-1 blocker, vs no other additional treatment (COMPARE clinical trial). They observed that losartan reduces the aortic dilatation rate in patients with Marfan syndrome. Later on, they also reported that losartan exerts a beneficial effect on patients with Marfan syndrome carrying an FBN1 mutation that causes haploinsufficiency (quantitative mutation), while it has no significant effect on patients displaying dominant negative (qualitative) mutations. Moreover, a French group in a 3-year trial compared the administration of losartan vs placebo in patients with Marfan syndrome under treatment with beta-receptor blockers. They observed that losartan decreases blood pressure but has no effect on aortic diameter progression. Thus, beta-receptor blockers remain the gold standard therapy in patients with Marfan syndrome. Three potential biochemical markers are mentioned in this review: total homocysteine, serum transforming growth factor beta, and lysyl oxidase. Moreover, markers of oxidative stress measured in plasma, previously correlated with clinical features of Marfan syndrome, may be explored as potential biomarkers of clinical severity.
Feasibility of re-biopsy and EGFR mutation analysis in patients with non-small cell lung cancer.
Kim, Tae-Ok; Oh, In-Jae; Kho, Bo Gun; Park, Ha Young; Chang, Jin Sun; Park, Cheol-Kyu; Shin, Hong-Joon; Lim, Jung-Hwan; Kwon, Yong-Soo; Kim, Yu-Il; Lim, Sung-Chul; Kim, Young-Chul; Choi, Yoo-Duk
2018-05-14
In cases of EGFR-tyrosine kinase inhibitor (TKI) failure, re-biopsy may be useful to understand resistance mechanisms and guide further treatment decisions. However, performing re-biopsy is challenging because of several hurdles. We assessed the feasibility of re-biopsy in advanced non-small cell lung cancer (NSCLC) patients in real-world clinical practice. We retrospectively reviewed the clinical and pathologic data of advanced NSCLC patients who experienced disease progression after previous treatment with EGFR-TKIs at a single tertiary hospital in Korea between January 2014 and December 2016. Re-biopsy specimens included small biopsy, surgical tissue, or liquid-based cytology. EGFR mutation was tested using peptide nucleic acid-mediated clamping PCR. Of the 230 NSCLC patients that experienced progression after EGFR-TKI therapy, 105 (45.7%) underwent re-biopsy. Re-biopsy was successfully performed in 94 (89.5%) patients, and 11 patients were diagnosed with no malignancy. The complication rate was 8.6%, including seven cases of pneumothorax. EGFR mutation testing was performed on 75 patients using re-biopsy specimens. Of the 57 patients who had sensitizing mutations at diagnosis, T790M mutations were found in 19 (33.3%), while 38 (66.7%) had no T790M mutation. Multivariate analysis showed that the re-biopsy group was younger (P = 0.002) and exhibited a previous response to EGFR-TKIs (P < 0.001). Re-biopsy in advanced NSCLC is feasible in real world clinical practice, particularly in younger patients and those who achieved a previous response to EGFR-TKIs. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Ko, Ryo; Kenmotsu, Hirotsugu; Serizawa, Masakuni; Koh, Yasuhiro; Wakuda, Kazushige; Ono, Akira; Taira, Tetsuhiko; Naito, Tateaki; Murakami, Haruyasu; Isaka, Mitsuhiro; Endo, Masahiro; Nakajima, Takashi; Ohde, Yasuhisa; Yamamoto, Nobuyuki; Takahashi, Kazuhisa; Takahashi, Toshiaki
2016-11-08
The majority of non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation eventually develop resistance to EGFR tyrosine kinase inhibitors (TKIs). Minimal information exists regarding genetic alterations in rebiopsy samples from Asian NSCLC patients who develop acquired resistance to EGFR-TKIs. We retrospectively reviewed the medical records of patients with NSCLC harboring EGFR mutations who had undergone rebiopsies after developing acquired resistance to EGFR-TKIs. We analyzed 27 practicable samples using a tumor genotyping panel to assess 23 hot-spot sites of genetic alterations in nine genes (EGFR, KRAS, BRAF, PIK3CA, NRAS, MEK1, AKT1, PTEN, and HER2), gene copy number of EGFR, MET, PIK3CA, FGFR1, and FGFR2, and ALK, ROS1, and RET fusions. Additionally, 34 samples were analyzed by commercially available EGFR mutation tests. Sixty-one patients underwent rebiopsy. Twenty-seven samples were analyzed using our tumor genotyping panel, and 34 samples were analyzed for EGFR mutations only by commercial clinical laboratories. Twenty-one patients (34 %) had EGFR T790M mutation. Using our tumor genotyping panel, MET gene copy number gain was observed in two of 27 (7 %) samples. Twenty patients received continuous treatment with EGFR-TKIs even after disease progression, and 11 of these patients had T790M mutation in rebiopsy samples. In contrast, only 10 of 41 patients who finished EGFR-TKI treatment at disease progression had T790M mutation. The frequency of T790M mutation in patients who received continuous treatment with EGFR-TKIs after disease progression was significantly higher than that in patients who finished EGFR-TKI treatment at disease progression (55 % versus 24 %, p = 0.018). The frequency of T790M mutation in this study was lower than that in previous reports examining western patients. These results suggest that continuous treatment with EGFR-TKI after disease progression may enhance the frequency of EGFR T790M mutation in rebiopsy samples.
Kubesova, B; Pavlova, S; Malcikova, J; Kabathova, J; Radova, L; Tom, N; Tichy, B; Plevova, K; Kantorova, B; Fiedorova, K; Slavikova, M; Bystry, V; Kissova, J; Gisslinger, B; Gisslinger, H; Penka, M; Mayer, J; Kralovics, R; Pospisilova, S; Doubek, M
2018-01-01
The multistep process of TP53 mutation expansion during myeloproliferative neoplasm (MPN) transformation into acute myeloid leukemia (AML) has been documented retrospectively. It is currently unknown how common TP53 mutations with low variant allele frequency (VAF) are, whether they are linked to hydroxyurea (HU) cytoreduction, and what disease progression risk they carry. Using ultra-deep next-generation sequencing, we examined 254 MPN patients treated with HU, interferon alpha-2a or anagrelide and 85 untreated patients. We found TP53 mutations in 50 cases (0.2–16.3% VAF), regardless of disease subtype, driver gene status and cytoreduction. Both therapy and TP53 mutations were strongly associated with older age. Over-time analysis showed that the mutations may be undetectable at diagnosis and slowly increase during disease course. Although three patients with TP53 mutations progressed to TP53-mutated or TP53-wild-type AML, we did not observe a significant age-independent impact on overall survival during the follow-up. Further, we showed that complete p53 inactivation alone led to neither blast transformation nor HU resistance. Altogether, we revealed patient's age as the strongest factor affecting low-burden TP53 mutation incidence in MPN and found no significant age-independent association between TP53 mutations and hydroxyurea. Mutations may persist at low levels for years without an immediate risk of progression. PMID:28744014
Datta, Gargi; Nieto, Luisa M; Davidson, Rebecca M; Mehaffy, Carolina; Pederson, Caroline; Dobos, Karen M; Strong, Michael
2016-05-01
Tuberculosis (TB) is one of the leading causes of death due to an infectious disease in the world. Understanding the mechanisms of drug resistance has become pivotal in the detection and treatment of newly emerging resistant TB cases. We have analyzed three pairs of Mycobacterium tuberculosis strains pre- and post-drug treatment to identify mutations involved in the progression of resistance to the drugs rifampicin and isoniazid. In the rifampicin resistant strain, we confirmed a mutation in rpoB (S450L) that is known to confer resistance to rifampicin. We discovered a novel L101R mutation in the katG gene of an isoniazid resistant strain, which may directly contribute to isoniazid resistance due to the proximity of the mutation to the katG isoniazid-activating site. Another isoniazid resistant strain had a rare mutation in the start codon of katG. We also identified a number of mutations in each longitudinal pair, such as toxin-antitoxin mutations that may influence the progression towards resistance or may play a role in compensatory fitness. These findings improve our knowledge of drug resistance progression during therapy and provide a methodology to monitor longitudinal strains using whole genome sequencing, polymorphism comparison, and functional annotation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zou, Qian; Zhan, Ping; Lv, Tangfeng; Song, Yong
2015-12-01
BIM deletion polymorphism is a germline that might lead to little or no BH3 expression, which affects epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) related apoptosis. Recent studies show that BIM deletion polymorphism might be a critical factor leading to the resistance of EGFR-TKIs in EGFR mutation-positive non-small cell lung cancer (NSCLC) patients. Thus, a meta-analysis was conducted by combing seven original eligible studies including 778 NSCLC patients to investigate a steady and reliable conclusion. Our study indicated that BIM deletion polymorphism was significantly associated with the poor objective response rate (ORR) of EGFR-TKIs in EGFR-mutated NSCLC patients [odds ratios (OR) =0.55, 95% confidence interval (CI), 0.33-0.92]. And disease control rate (DCR) in EGFR-mutate NSCLC patients treated with EGFR-TKIs was significantly decreased in patients with BIM deletion polymorphism (OR=0.55, 95% CI, 0.27-1.12). Moreover, the progression-free survival (PFS) of patients with BIM deletion polymorphism is shorter. These findings suggested that BIM deletion polymorphism might be a genetic cause of intrinsic resistance to TKI therapy and it could be emerged as an independent predictor to identify patients who would benefit from TKI targeted therapy in EGFR-mutated NSCLC.
Li, Xi; Qin, Na; Wang, Jinghui; Yang, Xinjie; Zhang, Xinyong; Lv, Jialin; Wu, Yuhua; Zhang, Hui; Nong, Jingying; Zhang, Quan; Zhang, Shucai
2015-12-01
Icotinib is the first self-developed small molecular drug in China for targeted therapy of lung cancer. Compared to the other two commercially available epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, gefitinib and erlotinib, icotinib is similar to them in chemical structure, mechanism of activity and therapeutic effects. To explore the efficacy and side effects of icotinib hydrochloride in the treatment of the advanced non-small cell lung cancer (NSCLC) patients with EGFR mutation and wild-type. Patients with advanced NSCLC who were treated with icotinib hydrochloride in Beijing Chest Hospital were retrospective analyzed from March 2009 to December 2014. The clinical data of 124 patients (99 with EGFR mutation and 25 with wild type) with advanced NSCLC were enrolled in this study. The patients' overall objective response rate (ORR) was 51.6 % and the disease control rate (DCR) was 79.8%; The patients with EGFR mutation, ORR was 63.6%, DCR was 93.9%. The ORR was 4.0% and the DCR was 24.0% in the wild-type patients. Median progression-free survival (PFS) with icotinib treatment in EGFR mutation patients was 10.5 months and 1.0 month in wild-type patients. The major adverse events were mild skin rash (30.6%) and diarrhea (16.1%). Monotherapy with icotinib hydrochloride is effective and tolerable for the advanced NSCLC EGFR mutation patients.
Batinica, M; Akgül, B; Silling, S; Mauch, C; Zigrino, P
2015-07-01
Merkel cell carcinoma (MCC) is a neuroendocrine cancer of the skin postulated to originate through Merkel cell polyomavirus (MCPyV) oncogenesis and/or by mutations in molecules implicated in the regulation of cell growth and survival. Despite the fact that MCPvV is detected more broadly within the population, only a part of the infected people also develop MCC. It is thus conceivable that together, virus and for example mutations, are necessary for disease development. However, apart from a correlation between MCPyV positivity or mutations and MCC development, less is known about the association of these factors with progressive disease. To analyze MCPyV positivity, load and integration in MCC as well as presence of mutations in PDGFRα and TP53 genes and correlate these with clinical features and disease progression to identify features with prognostic value for clinical progression. This is a study on a MCC population group of 64 patients. MCPyV positivity, load and integration in parallel to mutations in the PDGFRα and TP53 were analyzed on genomic DNA from MCC specimens. In addition, expression of PDGFRα, survivin and p53 proteins was analyzed by immunodetection in tissues specimens. All these parameters were analyzed as function of patient's disease progression status. 83% of MCCs were positive for the MCPyV and among these 36% also displayed virus-T integration. Viral load ranged from 0.006 to 943 viral DNA copies/β-globin gene and was highest in patients with progressive disease. We detected more than one mutation within the PDGFRα gene and identified two new SNPs in 36% of MCC patients, whereas no mutations were found in TP53 gene. Survivin was expressed in 78% of specimens. We could not correlate either mutations in PDGFR or expression of PDGFR, p53 and surviving either to the disease progression or to the MCPyV positivity. In conclusion, our data indicate that the viral positivity when associated with high viral load, correlates with poor disease outcome. Frequent mutations in the PDGFRα gene and high survivin expression were found in MCC independent of the viral positivity. These data suggest that these three factors independently contribute to Merkel cell carcinoma development and that only the viral load can be used as indicator of disease progression in virus positive patients. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
The progression rate of spinocerebellar ataxia type 2 changes with stage of disease.
Monte, Thais Lampert; Reckziegel, Estela da Rosa; Augustin, Marina Coutinho; Locks-Coelho, Lucas D; Santos, Amanda Senna P; Furtado, Gabriel Vasata; de Mattos, Eduardo Preusser; Pedroso, José Luiz; Barsottini, Orlando Póvoas; Vargas, Fernando Regla; Saraiva-Pereira, Maria-Luiza; Camey, Suzi Alves; Leotti, Vanessa Bielefeldt; Jardim, Laura Bannach
2018-01-25
Spinocerebellar ataxia type 2 (SCA2) affects several neurological structures, giving rise to multiple symptoms. However, only the natural history of ataxia is well known, as measured during the study duration. We aimed to describe the progression rate of ataxia, by the Scale for the Assessment and Rating of Ataxia (SARA), as well as the progression rate of the overall neurological picture, by the Neurological Examination Score for Spinocerebellar Ataxias (NESSCA), and not only during the study duration but also in a disease duration model. Comparisons between these models might allow us to explore whether progression is linear during the disease duration in SCA2; and to look for potential modifiers. Eighty-eight evaluations were prospectively done on 49 symptomatic subjects; on average (SD), study duration and disease duration models covered 13 (2.16) months and 14 (6.66) years of individuals' life, respectively. SARA progressed 1.75 (CI 95%: 0.92-2.57) versus 0.79 (95% CI 0.45 to 1.14) points/year in the study duration and disease duration models. NESSCA progressed 1.45 (CI 95%: 0.74-2.16) versus 0.41 (95% CI 0.24 to 0.59) points/year in the same models. In order to explain these discrepancies, the progression rates of the study duration model were plotted against disease duration. Then an acceleration was detected after 10 years of disease duration: SARA scores progressed 0.35 before and 2.45 points/year after this deadline (p = 0.013). Age at onset, mutation severity, and presence of amyotrophy, parkinsonism, dystonic manifestations and cognitive decline at baseline did not influence the rate of disease progression. NESSCA and SARA progression rates were not constant during disease duration in SCA2: early phases of disease were associated with slower progressions. Modelling of future clinical trials on SCA2 should take this phenomenon into account, since disease duration might impact on inclusion criteria, sample size, and study duration. Our database is available online and accessible to future studies aimed to compare the present data with other cohorts.
Day, Gregory S; Musiek, Erik S; Roe, Catherine M; Norton, Joanne; Goate, Alison M; Cruchaga, Carlos; Cairns, Nigel J; Morris, John C
2016-09-01
The amyloid hypothesis posits that disrupted β-amyloid homeostasis initiates the pathological process resulting in Alzheimer disease (AD). Autosomal dominant AD (ADAD) has an early symptomatic onset and is caused by single-gene mutations that result in overproduction of β-amyloid 42. To the extent that sporadic late-onset AD (LOAD) also results from dysregulated β-amyloid 42, the clinical phenotypes of ADAD and LOAD should be similar when controlling for the effects of age. To use a family with late-onset ADAD caused by a presenilin 1 (PSEN1) gene mutation to mitigate the potential confound of age when comparing ADAD and LOAD. This case-control study was conducted at the Knight Alzheimer Disease Research Center at Washington University, St Louis, Missouri, and other National Institutes of Aging-funded AD centers in the United States. Ten PSEN1 A79V mutation carriers from multiple generations of a family with late-onset ADAD and 12 noncarrier family members were followed up at the Knight Alzheimer Disease Research Center (1985-2015) and 1115 individuals with neuropathologically confirmed LOAD were included from the National Alzheimer Coordinating Center database (September 2005-December 2014). Data analysis was completed in January 2016, including Knight Alzheimer Disease Research Center patient data collected up until the end of 2015. Planned comparison of clinical characteristics between cohorts, including age at symptom onset, associated symptoms and signs, rates of progression, and disease duration. Of the PSEN1 A79V carriers in the family with late-onset ADAD, 4 were female (57%); among those with LOAD, 529 were female (47%). Seven mutation carriers (70%) developed AD dementia, while 3 were yet asymptomatic in their seventh and eighth decades of life. No differences were observed between mutation carriers and individuals with LOAD concerning age at symptom onset (mutation carriers: mean, 75 years [range, 63-77 years] vs those with LOAD: mean, 74 years [range, 60-101 years]; P = .29), presenting symptoms (memory loss in 7 of 7 mutation carriers [100%] vs 958 of 1063 individuals with LOAD [90.1%]; P ≥ .99) and duration (mutation carriers: mean, 9.9 years [range, 2.3-12.8 years] vs those with LOAD: 9 years [range, 1-27 years]; P = .73), and rate of progression of dementia (median annualized change in Clinical Dementia Rating-Sum of Boxes score, mutation carriers: 1.2 [range, 0.1-3.3] vs those with LOAD: 1.9 [range, -3.5 to 11.9]; P = .73). Early emergence of comorbid hallucinations and delusions were observed in 57% of individuals with ADAD (4 of 7) vs 19% of individuals with LOAD (137 of 706) (P = .03). Three of 12 noncarriers (25%) from the PSEN1 A79V family are potential phenocopies as they also developed AD dementia (median age at onset, 76.0 years). In this family, the amyloidogenic PSEN1 A79V mutation recapitulates the clinical attributes of LOAD. Previously reported clinical phenotypic differences between individuals with ADAD and LOAD may reflect age- or mutation-dependent effects.
Tavallaee, Mahkam; Steiner, David F; Zehnder, James L; Folkins, Ann K; Karam, Amer K
2018-04-03
Low-grade serous carcinomas only rarely coexist with or progress to high-grade tumors. We present a case of low-grade serous carcinoma with transformation to carcinosarcoma on recurrence in the lymph node. Identical BRAF V600E and telomerase reverse transcriptase promoter mutations were identified in both the original and recurrent tumor. Given that telomerase reverse transcriptase promotor mutations are thought to play a role in progression of other tumor types, the function of telomerase reverse transcriptase mutations in BRAF mutated low-grade serous carcinoma deserves investigation.
Galimberti, Daniela; Bertram, Kelly; Formica, Alessandra; Fenoglio, Chiara; Cioffi, Sara M G; Arighi, Andrea; Scarpini, Elio; Colosimo, Carlo
2016-05-04
Progranulin gene (GRN) mutations are characterized by heterogeneous presentations. Corticobasal syndrome (CBS) is often associated with GRN mutations, whereas association with progressive supranuclear palsy syndrome (PSPS) is rare. Plasma progranulin levels were evaluated in 34 patients, including 19 with PSPS, 12 with CBS, and 3 with mixed signs, with the purpose to screen for the presence of causal mutations, associated with low levels. We found undetectable levels in a patient with CBS. Sequencing confirmed the presence of the Thr272fs deletion. Progranulin mutation screening is suggested in cases of CBS, even in the absence of positive family history for dementia and/or movement disorders.
Milella, Michele; Nuzzo, Carmen; Bria, Emilio; Sperduti, Isabella; Visca, Paolo; Buttitta, Fiamma; Antoniani, Barbara; Merola, Roberta; Gelibter, Alain; Cuppone, Federica; D'Alicandro, Valerio; Ceribelli, Anna; Rinaldi, Massimo; Cianciulli, Anna; Felicioni, Lara; Malatesta, Sara; Marchetti, Antonio; Mottolese, Marcella; Cognetti, Francesco
2012-04-01
The optimal use of epidermal growth factor receptor (EGFR)-related molecular markers to prospectively identify tyrosine kinase inhibitor (TKI)-sensitive patients, particularly after a previous chemotherapy treatment, is currently under debate. We designed a prospective phase II study to evaluate the activity of EGFR-TKI in four different patient groups, according to the combination of molecular (EGFR gene mutations, EGFR gene copy number and protein expression, and phosphorylated AKT expression, pAKT) and clinicopathological (histology and smoking habits) factors. Correlations between molecular alterations and clinical outcome were also explored retrospectively for first-line chemotherapy and EGFR-TKI treatment. Patients who had progressed during or after first-line chemotherapy were prospectively assigned to EGFR-TKI treatment as follows: (G1) EGFR mutation (n = 12); (G2) highly polysomic/amplified EGFR (n = 18); (G3) EGFR and/or pAKT positive (n = 41); (G4) adenocarcinoma/bronchoalveolar carcinoma and no smoking history (n = 15). G1 and G4 had the best and second-best overall response rate (25% and 20%, respectively), whereas the worst outcome was observed in G2 (ORR, 6%; p = 0.05). Disease control was highest in G1 and G4 (>50%) and lowest in G3 (<20%) (p = 0.02). Patients selected by EGFR mutation or clinical parameters (G1 and G4) also had significantly better progression-free survival and overall survival (p = 0.02 and p = 0.01, respectively). Multivariate analysis confirmed the impact of sex, smoking history, EGFR/KRAS mutation, and pAKT on outcomes and allowed us to derive an efficient predictive model. Histology, EGFR mutations, and pAKT were independent predictors of response to first-line chemotherapy at retrospective analysis, whereas pAKT and human epidermal growth factor receptor 2 expression were the only independent predictors of progression-free survival and overall survival. Selection of patients based on either EGFR mutation or clinical characteristics seems an effective approach to optimize EGFR-TKI treatment in chemotherapy-pretreated non-small-cell lung cancer patients.
Takeda, Masayuki; Sakai, Kazuko; Hayashi, Hidetoshi; Tanaka, Kaoru; Tanizaki, Junko; Takahama, Takayuki; Haratani, Koji; Nishio, Kazuto; Nakagawa, Kazuhiko
2018-04-20
Unlike common epidermal growth factor receptor gene ( EGFR ) mutations that confer sensitivity to tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC), mutations in exon 20 of either EGFR or the human EGFR2 gene ( HER2 ) are associated with insensitivity to EGFR-TKIs, with treatment options for patients with such mutations being limited. Clinical characteristics, outcome of EGFR-TKI or nivolumab treatment, and the presence of coexisting mutations were reviewed for NSCLC patients with exon-20 mutations of EGFR or HER2 as detected by routine application of an amplicon-based next-generation sequencing panel. Between July 2013 and June 2017, 206 patients with pathologically confirmed lung cancer were screened for genetic alterations including HER2 and EGFR mutations. Ten patients harbored HER2 exon-20 insertions (one of whom also carried an exon-19 deletion of EGFR ), and 12 patients harbored EGFR exon-20 mutations. Five of the 13 patients with EGFR mutations were treated with EGFR-TKIs, two of whom manifested a partial response, two stable disease, and one progressive disease. Among the seven patients treated with nivolumab, one patient manifested a partial response, three stable disease, and three progressive disease, with most (86%) of these patients discontinuing treatment as a result of disease progression within 4 months. The H1047R mutation of PIK3CA detected in one patient was the only actionable mutation coexisting with the exon-20 mutations of EGFR or HER2 . Potentially actionable mutations thus rarely coexist with exon-20 mutations of EGFR or HER2 , and EGFR-TKIs and nivolumab show limited efficacy in patients with such exon-20 mutations.
Ma, MeiLi; Shi, ChunLei; Qian, JiaLin; Teng, JiaJun; Zhong, Hua; Han, BaoHui
2016-10-10
The aim of this study was to assess the effectiveness and accuracy of blood-based circulating-free tumor DNA on testing epidermal growth factor receptor (EGFR) gene mutations. In total, 219 non-small cell lung cancer patients in stages III-IV were enrolled into this study. All patients had tissue samples and matched plasma DNA samples. EGFR gene mutations were detected by the Amplification Refractory Mutation System (ARMS). We compared the mutations in tumor tissue samples with matched plasma samples and determined the correlation between EGFR mutation status and clinical pathologic characteristics. The overall concordance rate of EGFR mutation status between the 219 matched plasma and tissue samples was 82% (179/219). The sensitivity and specificity for the ARMS EGFR mutation test in the plasma compared with tumor tissue were 60% (54/90) and 97% (125/129), respectively. The positive predictive value was 93% (54/58) and the negative predictive value was 78% (125/161). The median overall survival was longer for those with EGFR mutations than for those without EGFR mutations both in tissue samples (23.98 vs. 12.16months; P<0.001) and in plasma (19.96 vs. 13.63months; P=0.009). For the 68 patients treated with EGFR- tyrosine kinase inhibitors (TKIs), the median progression-free survival (PFS) was significantly prolonged in the EGFR mutant group compared to the non-mutation group in tumor tissue samples (12.26months vs. 2.40months, P<0.001). In plasma samples, the PFS of the mutant group was longer than that of the non-mutant group. However, there was no significant difference between the two groups (10.88months vs. 9.89months, P=0.411). The detection of EGFR mutations in plasma using ARMS is relatively sensitive and highly specific. However, EGFR mutation status tested by ARMS in plasma cannot replace a tumor tissue biopsy. Positive EGFR mutation results detected in plasma are fairly reliable, but negative results are hampered by a high rate of false negatives. Copyright © 2016. Published by Elsevier B.V.
Rapid progression of familial amyloidotic polyneuropathy
Coelho, Teresa; Obici, Laura; Merlini, Giampaolo; Mincheva, Zoia; Suanprasert, Narupat; Bettencourt, Brian R.; Gollob, Jared A.; Gandhi, Pritesh J.; Litchy, William J.; Dyck, Peter J.
2015-01-01
Objectives: To assess the association between severity of neuropathy and disease stage, and estimate the rate of neuropathy progression in a retrospective cross-sectional analysis of a multinational population of patients with familial amyloidotic polyneuropathy (FAP). Methods: We characterize neuropathy severity and rate of progression in available patients with FAP in France, the United States, Portugal, and Italy. Neuropathy Impairment Scores (NIS), time from symptom onset to NIS measurement, polyneuropathy disability (PND) scores, FAP disease stage, and manual grip strength data were collected. We estimated neuropathy progression using Loess Fit and Gompertz Fit models. Results: For the 283 patients studied (mean age, 56.4 years), intercountry genotypic variation in the transthyretin (TTR) mutation was observed, with the majority of patients in Portugal (92%) having early-onset Val30Met-FAP. There was also marked intercountry variation in PND score, FAP stage, and TTR stabilizer use. NIS was associated with PND score (NIS 10 and 99 for scores I and IV, respectively; p < 0.0001) and FAP stage (NIS 14 and 99 for stages 1 and 3, respectively; p < 0.0001). In addition, there was an association between NIS and TTR genotype. The estimated rate of NIS progression for a population with a median NIS of 32 was 14.3 points/year; the corresponding estimated rate for the modified NIS+7 is 17.8 points/year. Conclusions: In a multinational population of patients with FAP, rapid neuropathic progression is observed and the severity of neuropathy is associated with functional scales of locomotion. PMID:26208957
Day, Gregory S; Musiek, Erik S; Roe, Catherine M; Norton, Joanne; Goate, Alison M; Cruchaga, Carlos; Cairns, Nigel J; Morris, John C
2016-01-01
Importance The “amyloid hypothesis” posits that disrupted amyloid-beta (Aβ) homeostasis initiates the pathological process resulting in Alzheimer disease (AD). Autosomal dominant Alzheimer disease (ADAD) has an early symptomatic onset and is caused by single gene mutations that result in overproduction of Aβ42. To the extent that “sporadic” late-onset Alzheimer disease (LOAD) also results from dysregulated Aβ42, the clinical phenotypes of ADAD and LOAD should be similar when controlling for the effects of age. Objective To use a family with late-onset ADAD caused by a presenilin 1 (PSEN1) mutation to mitigate the potential confound of age when comparing ADAD and LOAD. Design Case-control study of a family with late-onset ADAD and individuals with histopathologically-proven LOAD. Setting The Knight Alzheimer Disease Research Center, Washington University, St Louis, and other National Institutes of Aging-funded Alzheimer Disease Centers in the United States. Participants Ten PSEN1 A79V mutation carriers from multiple generations of a family with late-onset ADAD (median age-at-onset, 75.0 [63–77] years) and 12 noncarrier family members, followed at the Knight Alzheimer Disease Research Center (1985–2015); and 1115 individuals with neuropathologically confirmed LOAD (median age-at-onset, 74.0 [60–101] years) from the National Alzheimer Coordinating Center database (09/2005-12/14). Main Outcome and Measure Planned comparison of clinical characteristics between cohorts, including age at symptomatic onset, associated symptoms and signs, rates of progression, and disease duration. Results Seven (70%) mutation carriers developed AD dementia, while three are yet asymptomatic in their 7th and 8th decades of life. No differences were observed between mutation carriers and individuals with LOAD concerning age at symptomatic onset, presenting symptoms and duration, and rate of progression of dementia. Early emergence of comorbid hallucinations and delusions were observed in 57% of individuals with ADAD versus 19% of individuals with LOAD (p=.03). Three of twelve (25%) noncarriers from the PSEN1 A79V family are potential phenocopies as they also developed AD dementia (median age at onset=76.0 years). Conclusions and Relevance In this family, the amyloidogenic PSEN1 A79V mutation recapitulates the clinical attributes of LOAD. Previously reported clinical phenotypic differences between individuals with ADAD and LOAD may reflect age- or mutation-dependent effects. PMID:27454811
Molecular changes in thyroid neoplasia.
Jarzab, B; Włoch, J; Wiench, M
2001-01-01
All authors integrating the known facts into a model of thyroid carcinogenesis concur that two main histotypes of thyroid cancer exhibit different routes of molecular development. RET rearrangements are an initiating event in papillary carcinoma, and simultaneously the most characteristic mutation for this type of cancer. They are followed by further, not well recognized, mutations. RAS mutations are regarded as a crucial event in the development of follicular tumors already at the adenoma step, while in papillary cancer they belong to the spectrum of secondary mutations, enabling tumor progression. Aberrant DNA methylation, causing loss of P16 tumor supressor gene, may be a common event in both types of cancer. Aneuploidy is seen much more frequently in follicular than in papillary cancer, which also exhibits a low rate for loss of heterozygosity and microsatellite instability. Mutations of the P53 tumor supressor gene are a common feature of undifferentiated thyroid cancers and could be responsible for their aggressive phenotype. RET rearrangements have been proposed as identifying fingerprints for irradiation induced thyroid cancer in children. Our own data speak against this hypothesis. We noted a high frequency of RET/PTC3 mutations in a group of Polish children with papillary thyroid carcinoma, regarded as sporadic cancer.
OncoSimulR: genetic simulation with arbitrary epistasis and mutator genes in asexual populations.
Diaz-Uriarte, Ramon
2017-06-15
OncoSimulR implements forward-time genetic simulations of biallelic loci in asexual populations with special focus on cancer progression. Fitness can be defined as an arbitrary function of genetic interactions between multiple genes or modules of genes, including epistasis, restrictions in the order of accumulation of mutations, and order effects. Mutation rates can differ among genes, and can be affected by (anti)mutator genes. Also available are sampling from simulations (including single-cell sampling), plotting the genealogical relationships of clones and generating and plotting fitness landscapes. Implemented in R and C ++, freely available from BioConductor for Linux, Mac and Windows under the GNU GPL license. Version 2.5.9 or higher available from: http://www.bioconductor.org/packages/devel/bioc/html/OncoSimulR.html . GitHub repository at: https://github.com/rdiaz02/OncoSimul. ramon.diaz@iib.uam.es. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Gyanchandani, Rekha; Kota, Karthik J; Jonnalagadda, Amruth R; Minteer, Tanya; Knapick, Beth A; Oesterreich, Steffi; Brufsky, Adam M; Lee, Adrian V; Puhalla, Shannon L
2017-09-15
ESR1 mutations are frequently acquired in hormone-resistant metastatic breast cancer (MBC). CDK4/6 inhibition along with endocrine therapy is a promising strategy in hormone receptor-positive MBC. However, the incidence and impact of ESR1 mutations on clinical outcome in patients treated with CDK4/6 inhibitors have not been defined. In this study, we evaluated the frequency of ESR1 mutations in cfDNA from 16 patients with MBC undergoing palbociclib and letrozole therapy. Four common ESR1 mutations (D538G, Y537C, Y537N, and Y537S) were analyzed in serial blood draws using ddPCR. Mutation rate was 31.3% (5/16) (n=3; de novo , n=2; acquired). D538G was the most frequent mutation (n=3), followed by Y537N and Y537S (n=2). One patient showed multiple ESR1 mutations. Mutations were enriched during therapy. Progression-free survival (PFS) and overall survival (OS) were similar in patients with and without mutation detected at any given time during treatment. However, PFS was significantly shorter in patients with ESR1 mutation at initial blood draw (3.3 versus 9.0 months, P-value=0.038). In conclusion, ESR1 mutation prevalence is consistent with recent studies in hormone-refractory breast cancer. Further, treatment with palbociclib and letrozole does not prevent selection of ESR1 mutations in later lines of therapy. Larger studies are warranted to validate these findings.
Gyanchandani, Rekha; Kota, Karthik J.; Jonnalagadda, Amruth R.; Minteer, Tanya; Knapick, Beth A.; Oesterreich, Steffi; Brufsky, Adam M.; Lee, Adrian V.; Puhalla, Shannon L.
2017-01-01
ESR1 mutations are frequently acquired in hormone-resistant metastatic breast cancer (MBC). CDK4/6 inhibition along with endocrine therapy is a promising strategy in hormone receptor-positive MBC. However, the incidence and impact of ESR1 mutations on clinical outcome in patients treated with CDK4/6 inhibitors have not been defined. In this study, we evaluated the frequency of ESR1 mutations in cfDNA from 16 patients with MBC undergoing palbociclib and letrozole therapy. Four common ESR1 mutations (D538G, Y537C, Y537N, and Y537S) were analyzed in serial blood draws using ddPCR. Mutation rate was 31.3% (5/16) (n=3; de novo, n=2; acquired). D538G was the most frequent mutation (n=3), followed by Y537N and Y537S (n=2). One patient showed multiple ESR1 mutations. Mutations were enriched during therapy. Progression-free survival (PFS) and overall survival (OS) were similar in patients with and without mutation detected at any given time during treatment. However, PFS was significantly shorter in patients with ESR1 mutation at initial blood draw (3.3 versus 9.0 months, P-value=0.038). In conclusion, ESR1 mutation prevalence is consistent with recent studies in hormone-refractory breast cancer. Further, treatment with palbociclib and letrozole does not prevent selection of ESR1 mutations in later lines of therapy. Larger studies are warranted to validate these findings. PMID:28978004
Haider, M Z; Devarajan, L V; Al-Essa, M; Srivastva, B S; Kumar, H; Azad, R; Rashwan, N
2001-04-01
Retinopathy of prematurity (ROP) is a retinal vascular disease that occurs in infants with short gestational age and low birth weight and may lead to retinal detachment and blindness. Missense mutations in the Norrie disease (ND) gene have been associated with the risk of progression to advanced stages in cases of ROP from the US and also in clinically similar ND and familial exudative vitreoretinopathy. We have screened two ND gene mutations, namely A105T and Val60Glu, by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele-specific PCR methods, respectively, in 210 Kuwaiti premature newborns to replicate these findings in a different ethnic group. In the Kuwaiti premature newborn cohort, 115 of 210 babies had no eye problems and served as controls, while 95 were cases of ROP. In 71 of 95 ROP cases, the disease regressed spontaneously on or before stage 3, while in 24 of 95 ROP cases the disease progressed to advanced stages 4 and 5. In case of missense mutation (A105T), the AA genotype was detected in 96% of controls compared with 87% of ROP cases (NS); similarly no significant difference was found between spontaneously regressed ROP cases and those who progressed to advanced stages. For the Val60Glu mutation, no significant association was detected between the genotype and progression of ROP to advanced stages. Unlike data from the US, our findings from a Kuwaiti cohort of ROP cases and controls suggest a lack of association between the two ND gene mutations (A105T and Val60Glu) and ROP and the risk of progression of the disease to advanced stages.
Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progression.
Nozaki, M.; Tada, M.; Kobayashi, H.; Zhang, C. L.; Sawamura, Y.; Abe, H.; Ishii, N.; Van Meir, E. G.
1999-01-01
Loss of function of the p53 tumor suppressor gene due to mutation occurs early in astrocytoma tumorigenesis in about 30-40% of cases. This is believed to confer a growth advantage to the cells, allowing them to clonally expand due to loss of the p53-controlled G1 checkpoint and apoptosis. Genetic instability due to the impaired ability of p53 to mediate DNA damage repair further facilitates the acquisition of new genetic abnormalities, leading to malignant progression of an astrocytoma into anaplastic astrocytoma. This is reflected by a high rate of p53 mutation (60-70%) in anaplastic astrocytomas. The cell cycle control gets further compromised in astrocytoma by alterations in one of the G1/S transition control genes, either loss of the p16/CDKN2 or RB genes or amplification of the cyclin D gene. The final progression process leading to glioblastoma multiforme seems to need additional genetic abnormalities in the long arm of chromosome 10; one of which is deletion and/or functional loss of the PTEN/MMAC1 gene. Glioblastomas also occur as primary (de novo) lesions in patients of older age, without p53 gene loss but with amplification of the epidermal growth factor receptor (EGFR) genes. In contrast to the secondary glioblastomas that evolve from astrocytoma cells with p53 mutations in younger patients, primary glioblastomas seem to be resistant to radiation therapy and thus show a poorer prognosis. The evaluation and design of therapeutic modalities aimed at preventing malignant progression of astrocytomas and glioblastomas should now be based on stratifying patients with astrocytic tumors according to their genetic diagnosis. PMID:11550308
Effects of icotinib on advanced non-small cell lung cancer with different EGFR phenotypes.
Pan, Huiyun; Liu, Rong; Li, Shengjie; Fang, Hui; Wang, Ziwei; Huang, Sheng; Zhou, Jianying
2014-09-01
Icotinib is the first oral epidermal growth factor receptor (EGFR) tyrosine kinase receptor inhibitor, which has been proven to exert significant inhibitory effects on non-small cell lung cancer in vitro. Clinical evidence has showed that the efficacy of Icotinib on retreating advanced non-small cell lung cancer is comparable to Gefitinib. However, different phenotypes of EGFR can affect the therapeutic outcomes of EGFR tyrosine kinase receptor inhibitor. Therefore, our study focused on efficacy and safety of Icotinib in patients with advanced non-small cell lung cancer of different EGPR phenotypes. Clinical data of patients with advanced non-small cell lung cancer who received Icotinib treatment from August, 2011 to May, 2013 were retrospectively analyzed. Kaplan-Meier analysis was used for survival analysis and comparison. 18 wild-type EGFR and 51 mutant type were found in a total of 69 patients. Objective response rate of patients with mutant type EGFR was 54.9 % and disease control rate was 86.3 %. Objective response rate of wild-type patients was 11.1 % (P = 0.0013 vs mutant type), disease control rate was 50.0 % (P = 0.0017). Median progression-free survival (PFS) of mutant type and wild-type patients were 9.7 and 2.6 months, respectively (P < 0.001). Median PFS of exon 19 mutated mutant patients was 11.3 months, mean PFS of exon 21 L858R mutated mutant patients was 8.7 months (P = 0.3145). Median overall survival (OS) of EGFR mutated patients had not reached. OS time of 13 wild-type patients was 12.9 months (P < 0.001). The common adverse reactions of Icotinib included rash, diarrhea, itching skin with occurrence rates of 24.6 % (17/69), 13.0 % (9/69), and 11.6 % (8/69), respectively. Most adverse reactions were grade I-II. Icotinib has great efficacy in EGFR mutated patients, making it an optimal regimen to treat EGFR mutated patients. Furthermore, most of adverse reactions associated with Icotinib treatment were tolerable.
Hopkins, Julia F; Denroche, Robert E; Aguiar, Jennifer A; Notta, Faiyaz; Connor, Ashton A; Wilson, Julie M; Stein, Lincoln D; Gallinger, Steven; Boutros, Paul C
2018-05-01
Somatic mutations have been found in the mitochondria in different types of cancer cells, but it is not clear whether these affect tumorigenesis or tumor progression. We analyzed mitochondrial genomes of 268 early-stage, resected pancreatic ductal adenocarcinoma tissues and paired non-tumor tissues. We defined a mitochondrial somatic mutation (mtSNV) as a position where the difference in heteroplasmy fraction between tumor and normal sample was ≥0.2. Our analysis identified 304 mtSNVs, with at least 1 mtSNV in 61% (164 of 268) of tumor samples. The noncoding control region had the greatest proportion of mtSNVs (60 of 304 mutations); this region contains sites that regulate mitochondrial DNA transcription and replication. Frequently mutated genes included ND5, RNR2, and CO1, plus 29 mutations in transfer RNA genes. mtSNVs in 2 separate mitochondrial genes (ND4 and ND6) were associated with shorter overall survival time. This association appeared to depend on the level of mtSNV heteroplasmy. Non-random co-occurrence between mtSNVs and mutations in nuclear genes indicates interactions between nuclear and mitochondrial DNA. In an analysis of primary tumors and metastases from 6 patients, we found tumors to accumulate mitochondrial mutational mutations as they progress. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Guo, J; Carvajal, R D; Dummer, R; Hauschild, A; Daud, A; Bastian, B C; Markovic, S N; Queirolo, P; Arance, A; Berking, C; Camargo, V; Herchenhorn, D; Petrella, T M; Schadendorf, D; Sharfman, W; Testori, A; Novick, S; Hertle, S; Nourry, C; Chen, Q; Hodi, F S
2017-06-01
The single-arm, phase II Tasigna Efficacy in Advanced Melanoma (TEAM) trial evaluated the KIT-selective tyrosine kinase inhibitor nilotinib in patients with KIT-mutated advanced melanoma without prior KIT inhibitor treatment. Forty-two patients with KIT-mutated advanced melanoma were enrolled and treated with nilotinib 400 mg twice daily. TEAM originally included a comparator arm of dacarbazine (DTIC)-treated patients; the design was amended to a single-arm trial due to an observed low number of KIT-mutated melanomas. Thirteen patients were randomized to DTIC before the protocol amendment removing this study arm. The primary endpoint was objective response rate (ORR), determined according to Response Evaluation Criteria In Solid Tumors. ORR was 26.2% (n = 11/42; 95% CI, 13.9%-42.0%), sufficient to reject the null hypothesis (ORR ≤10%). All observed responses were partial responses (PRs; median response duration, 7.1 months). Twenty patients (47.6%) had stable disease and 10 (23.8%) had progressive disease; 1 (2.4%) response was unknown. Ten of the 11 responding patients had exon 11 mutations, four with an L576P mutation. The median progression-free survival and overall survival were 4.2 and 18.0 months, respectively. Three of the 13 patients on DTIC achieved a PR, and another patient had a PR following switch to nilotinib. Nilotinib activity in patients with advanced KIT-mutated melanoma was similar to historical data from imatinib-treated patients. DTIC treatment showed potential activity, although the low patient number limits interpretation. Similar to previously reported results with imatinib, nilotinib showed greater activity among patients with an exon 11 mutation, including L576P, suggesting that nilotinib may be an effective treatment option for patients with specific KIT mutations. ClinicalTrials.gov, NCT01028222. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Russell, Theron A.; Ito, Masafumi; Ito, Mika; Yu, Richard N.; Martinson, Fred A.; Weiss, Jeffrey; Jameson, J. Larry
2003-01-01
Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder caused by mutations in the arginine vasopressin (AVP) precursor. The pathogenesis of FNDI is proposed to involve mutant protein–induced loss of AVP-producing neurons. We established murine knock-in models of two different naturally occurring human mutations that cause FNDI. A mutation in the AVP signal sequence [A(–1)T] is associated with a relatively mild phenotype or delayed presentation in humans. This mutation caused no apparent phenotype in mice. In contrast, heterozygous mice expressing a mutation that truncates the AVP precursor (C67X) exhibited polyuria and polydipsia by 2 months of age and these features of DI progressively worsened with age. Studies of the paraventricular and supraoptic nuclei revealed induction of the chaperone protein BiP and progressive loss of AVP-producing neurons relative to oxytocin-producing neurons. In addition, Avp gene products were not detected in the neuronal projections, suggesting retention of WT and mutant AVP precursors within the cell bodies. In summary, this murine model of FNDI recapitulates many features of the human disorder and demonstrates that expression of the mutant AVP precursor leads to progressive neuronal cell loss. PMID:14660745
Ignatius Ou, Sai-Hong; Azada, Michele; Hsiang, David J; Herman, June M; Kain, Tatiana S; Siwak-Tapp, Christina; Casey, Cameron; He, Jie; Ali, Siraj M; Klempner, Samuel J; Miller, Vincent A
2014-04-01
Acquired secondary mutations in the anaplastic lymphoma kinase (ALK) gene have been identified in ALK-rearranged (ALK+) non-small-cell lung cancer (NSCLC) patients who developed disease progression while on crizotinib treatment. Here, we identified a novel secondary acquired NSCLC ALK F1174V mutation by comprehensive next-generation sequencing in one ALK+ NSCLC patient who progressed on crizotinib after a prolonged partial response to crizotinib. In a second case, we identified a secondary acquired ALK G1202R, which also confers resistance to alectinib (CH5424802/RO5424802), a second-generation ALK inhibitor that can inhibit ALK gatekeeper L1196M mutation in vitro. ALK G1202R is located at the solvent front of the ALK kinase domain and exhibits a high level of resistance to all other ALK inhibitors currently in clinical development in vitro. Comprehensive genomic profiling of resistant tumor is increasingly important in tailoring treatment decisions after disease progression on crizotinib in ALK+ NSCLC given the promise of second-generation ALK inhibitors and other therapeutic strategies.
Wu, Yi-Long; Sequist, Lecia V; Hu, Cheng-Ping; Feng, Jifeng; Lu, Shun; Huang, Yunchao; Li, Wei; Hou, Mei; Schuler, Martin; Mok, Tony; Yamamoto, Nobuyuki; O'Byrne, Kenneth; Hirsh, Vera; Gibson, Neil; Massey, Dan; Kim, Miyoung; Yang, James Chih-Hsin
2017-01-01
Background: In the Phase III LUX-Lung 3/6 (LL3/LL6) trials in epidermal growth factor receptor (EGFR) mutation-positive lung adenocarcinoma patients, we evaluated feasibility of EGFR mutation detection using circulating cell-free DNA (cfDNA) and prognostic and predictive utility of cfDNA positivity (cfDNA+). Methods: Paired tumour and blood samples were prospectively collected from randomised patients. Mutations were detected using cfDNA from serum (LL3) or plasma (LL6) by a validated allele-specific quantitative real-time PCR kit. Results: EGFR mutation detection rates in cfDNA were 28.6% (serum) and 60.5% (plasma). Mutation detection in blood was associated with advanced disease characteristics, including higher performance score, number of metastatic sites and bone/liver metastases, and poorer prognosis. In patients with common EGFR mutations, afatinib improved progression-free survival vs chemotherapy in cfDNA+ (LL3: HR, 0.35; P=0.0009; LL6: HR, 0.25; P<0.0001) and cfDNA− (LL3: HR, 0.46; P<0.0001; LL6: HR, 0.12; P<0.0001) cohorts. A trend towards overall survival benefit with afatinib was observed in cfDNA+ patients. Conclusions: Plasma cfDNA is a promising alternative to biopsy for EGFR testing. Detectable mutation in blood was associated with more advanced disease and poorer prognosis. Afatinib improved outcomes in EGFR mutation-positive patients regardless of blood mutation status. PMID:28006816
Putcharoen, Opass; Lee, Sun Hee; Henrich, Timothy J.; Hu, Zixin; Vanichanan, Jakapat; Coakley, Eoin; Greaves, Wayne; Gulick, Roy M.; Kuritzkes, Daniel R.
2012-01-01
HIV CCR5 antagonists select for env gene mutations that enable virus entry via drug-bound coreceptor. To investigate the mechanisms responsible for viral adaptation to drug-bound coreceptor-mediated entry, we studied viral isolates from three participants who developed CCR5 antagonist resistance during treatment with vicriviroc (VCV), an investigational small-molecule CCR5 antagonist. VCV-sensitive and -resistant viruses were isolated from one HIV subtype C- and two subtype B-infected participants; VCV-resistant isolates had mutations in the V3 loop of gp120 and were cross-resistant to TAK-779, an investigational antagonist, and maraviroc (MVC). All three resistant isolates contained a 306P mutation but had variable mutations elsewhere in the V3 stem. We used a virus-cell β-lactamase (BlaM) fusion assay to determine the entry kinetics of recombinant viruses that incorporated full-length VCV-sensitive and -resistant envelopes. VCV-resistant isolates exhibited delayed entry rates in the absence of drug, relative to pretherapy VCV-sensitive isolates. The addition of drug corrected these delays. These findings were generalizable across target cell types with a range of CD4 and CCR5 surface densities and were observed when either population-derived or clonal envelopes were used to construct recombinant viruses. V3 loop mutations alone were sufficient to restore virus entry in the presence of drug, and the accumulation of V3 mutations during VCV therapy led to progressively higher rates of viral entry. We propose that the restoration of pre-CCR5 antagonist therapy HIV entry kinetics drives the selection of V3 loop mutations and may represent a common mechanism that underlies the emergence of CCR5 antagonist resistance. PMID:22090117
Casula, Milena; Muggiano, Antonio; Cossu, Antonio; Budroni, Mario; Caracò, Corrado; Ascierto, Paolo A; Pagani, Elena; Stanganelli, Ignazio; Canzanella, Sergio; Sini, Mariacristina; Palomba, Grazia; Palmieri, Giuseppe
2009-10-03
Several genetic alterations have been demonstrated to contribute to the development and progression of melanoma. In this study, we further investigated the impact of key-regulator genes in susceptibility and pathogenesis of such a disease. A large series (N = 846) of sporadic and familial cases originating from South Italy was screened for germline mutations in p16(CDKN2A), BRCA2, and MC1R genes by DHPLC analysis and automated DNA sequencing. Paired primary melanomas and lymph node metastases from same patients (N = 35) as well as melanoma cell lines (N = 18) were analyzed for somatic mutations in NRAS, BRAF, and p16(CDKN2A) genes. For melanoma susceptibility, investigations at germline level indicated that p16(CDKN2A) was exclusively mutated in 16/545 (2.9%) non-Sardinian patients, whereas BRCA2 germline mutations were observed in 4/91 (4.4%) patients from North Sardinia only. Two MC1R germline variants, Arg151Cys and Asp294His, were significantly associated with melanoma in Sardinia. Regarding genetic events involved in melanoma pathogenesis at somatic level, mutually-exclusive mutations of NRAS and BRAF genes were observed at quite same rate (about two thirds) in cultured and in vivo melanomas (either primary or metastatic lesions). Conversely, p16(CDKN2A) gene alterations were observed at increased rates moving from primary to metastatic melanomas and melanoma cell lines. Activation of the ERK gene product was demonstrated to be consistently induced by a combination of molecular alterations (NRAS/BRAF mutations and p16(CDKN2A) silencing). Our findings further clarified that: a) mutation prevalence in melanoma susceptibility genes may vary within each specific geographical area; b) multiple molecular events are accumulating during melanomagenesis.
IDH1 mutation diminishes aggressive phenotype in glioma stem cells.
Yao, Qi; Cai, Gang; Yu, Qi; Shen, Jianhong; Gu, Zhikai; Chen, Jian; Shi, Wei; Shi, Jinlong
2018-01-01
The R132H mutation in isocitrate dehydrogenase 1 (IDH1-R132H) is associated with better prognosis in glioma patients. Glioma stem cells (GSCs) in glioma are believed to be responsible for glioma growth and maintenance. However, the relation between the R132H mutation and GSCs is not fully understood. In the present study, GSC markers were detected in patients with IDH1-R132H or wild-type IDH1 (IDH1-wt) by tissue microarray immunohistochemistry (TMA-IHC). The relationship between the expression patterns of GSC markers and the clinicopathological characteristics in glioma were analyzed. To confirm this mutation's role in GSCs, the IDH1-R132H in GSCs isolated from glioblastoma patients with IDH1 mutations was overexpressed by using lentiviral constructs in vitro, and then the proliferation, differentiation, apoptosis, migration and invasion of the transfected GSCs were explored. At the molecular level, we detected Wnt/β-catenin signaling expression to verify its role in regulating the cellular properties of GSCs. The results showed that the positive rate of GSCs in patients with IDH1-R132H was significantly less than that in patients with IDH1-wt. The positive rate of GSCs was correlated with IDH1 mutation, TNM stage and poor overall survive. After transfection in vitro, IDH1-R132H overexpression led to reduced GSCs proliferation, migration and invasion, inducing apoptosis and improving GSC differentiation, accompanied by a significant reduction in activity of β-catenin. Several mediators, effectors and targets of the Wnt/β-catenin signaling were downregulated. The data demonstrate that IDH1 mutation reduces the malignant progression of glioma by causing a less aggressive phenotype of GSCs which are involved in the Wnt/β‑catenin signaling.
Katz, Jonathan S; Katzberg, Hans D; Woolley, Susan C; Marklund, Stefan L; Andersen, Peter M
2012-10-01
Mutations in the gene for superoxide dismutase type 1 cause amyotrophic lateral sclerosis (ALS), but are not thought to be associated with frontotemporal dementia (FTD). A lack of detailed case reports is one reason, among others, for this skepticism. This case report comments on a patient with familial ALS caused by I113T mutation in the SOD1 gene presenting with progressive cognitive and behavioral decline two years before developing progressive motor degeneration. In conclusion, this case provides evidence that SOD1 mutations can be associated with FTD.
Van Swearingen, Amanda E D; Siegel, Marni B; Deal, Allison M; Sambade, Maria J; Hoyle, Alan; Hayes, D Neil; Jo, Heejoon; Little, Paul; Dees, Elizabeth Claire; Muss, Hyman; Jolly, Trevor; Zagar, Timothy M; Patel, Nirali; Miller, C Ryan; Parker, Joel S; Smith, J Keith; Fisher, Julie; Shah, Nikita; Nabell, Lisle; Nanda, Rita; Dillon, Patrick; Abramson, Vandana; Carey, Lisa A; Anders, Carey K
2018-06-25
HER2 + breast cancer (BC) is an aggressive subtype with high rates of brain metastases (BCBM). Two-thirds of HER2 + BCBM demonstrate activation of the PI3K/mTOR pathway driving resistance to anti-HER2 therapy. This phase II study evaluated everolimus (E), a brain-permeable mTOR inhibitor, trastuzumab (T), and vinorelbine (V) in patients with HER2 + BCBM. Eligible patients had progressive HER2 + BCBM. The primary endpoint was intracranial response rate (RR); secondary objectives were CNS clinical benefit rate (CBR), extracranial RR, time to progression (TTP), overall survival (OS), and targeted sequencing of tumors from enrolled patients. A two-stage design distinguished intracranial RR of 5% versus 20%. 32 patients were evaluable for toxicity, 26 for efficacy. Intracranial RR was 4% (1 PR). CNS CBR at 6 mos was 27%; at 3 mos 65%. Median intracranial TTP was 3.9 mos (95% CI 2.2-5). OS was 12.2 mos (95% CI 0.6-20.2). Grade 3-4 toxicities included neutropenia (41%), anemia (16%), and stomatitis (16%). Mutations in TP53 and PIK3CA were common in BCBM. Mutations in the PI3K/mTOR pathway were not associated with response. ERBB2 amplification was higher in BCBM compared to primary BC; ERBB2 amplification in the primary BC trended toward worse OS. While intracranial RR to ETV was low in HER2 + BCBM patients, one-third achieved CNS CBR; TTP/OS was similar to historical control. No new toxicity signals were observed. Further analysis of the genomic underpinnings of BCBM to identify tractable prognostic and/or predictive biomarkers is warranted. (NCT01305941).
Nesbitt, Victoria; Pitceathly, Robert D S; Turnbull, Doug M; Taylor, Robert W; Sweeney, Mary G; Mudanohwo, Ese E; Rahman, Shamima; Hanna, Michael G; McFarland, Robert
2013-08-01
Population-based studies suggest the m.3243A>G mutation in MTTL1 is the most common disease-causing mtDNA mutation, with a carrier rate of 1 in 400 people. The m.3243A>G mutation is associated with several clinical syndromes including mitochondrial encephalopathy lactic acidosis and stroke-like episodes (MELAS), maternally inherited deafness and diabetes (MIDD) and progressive external ophthalmoplegia (PEO). Many patients affected by this mutation exhibit a clinical phenotype that does not fall within accepted criteria for the currently recognised classical mitochondrial syndromes. We have defined the phenotypic spectrum associated with the m.3243A>G mtDNA mutation in 129 patients, from 83 unrelated families, recruited to the Mitochondrial Disease Patient Cohort Study UK. 10% of patients exhibited a classical MELAS phenotype, 30% had MIDD, 6% MELAS/MIDD, 2% MELAS/chronic PEO (CPEO) and 5% MIDD/CPEO overlap syndromes. 6% had PEO and other features of mitochondrial disease not consistent with another recognised syndrome. Isolated sensorineural hearing loss occurred in 3%. 28% of patients demonstrated a panoply of clinical features, which were not consistent with any of the classical syndromes associated with the m.3243A>G mutation. 9% of individuals harbouring the mutation were clinically asymptomatic. Following this study we propose guidelines for screening and for the management of confirmed cases.
Huzmeli, Can; Candan, Ferhan; Bagci, Gokhan; Alaygut, Demet; Yilmaz, Ali; Gedikli, Asim; Bagci, Binnur; Timucin, Meryem; Sezgin, Ilhan; Kayatas, Mansur
2017-11-01
Primary glomerulopathies are those disorders that affect glomerular structure, function, or both in the absence of a multisystem disorder. We aimed to evaluate the frequency of MEFV gene mutation to show possible coexistence of FMF in patients diagnosed with biopsy-proven primary glomerulonephritis (GN). A total of 64 patients with biopsy-proven primary GN were included in the study. MEFV gene mutations examined retrospectively. The mean age of patients was 39.6 ± 13.4 (range 18-69), 35 of patients were female and 29 of patients were male. Of the 64 patients, 17 were mesangial proliferative glomerulonephritis (MsPGN), 15 were IgA nephropathy (IgAN), 12 were membranous glomerulonephritis (MGN), 11 were focal segmental glomerulosclerosis (FSGS), three were membranous proliferative glomerulonephritis (MPGN), three were immune complex glomerulonephritis (ICGN), two were minimal change disease (MCD), and one was IgM nephropathy (IgMN). MEFV gene mutation was detected in 35.9% (23) of these patients. The most frequently detected mutations were E148Q and M694V. Twelve cases (18.75% of GN patients) with MEFV gene mutation were diagnosed as FMF phenotype I. The frequency of MEFV gene mutation was detected at a high rate of 35.9%. Further studies with larger populations are needed to clarify the importance of these mutations on clinical progression of glomerulonephritis.
Huzmeli, Can; Candan, Ferhan; Alaygut, Demet; Bagci, Gokhan; Akkaya, Lale; Bagci, Binnur; Sozmen, Eser Yıldırım; Kurtulgan, Hande Kucuk; Kayatas, Mansur
2016-08-01
Fabry disease (FD) is a progressive, X-linked inherited disorder of glycosphingolipid metabolism due to deficient or absent lysosomal alpha-galactosidase A (AGALA) activity. FD and familial Mediterranean fever (FMF) have typical clinical similarities, and both diseases may progress to end-stage renal diseases. In this study, we aimed to determine the prevalence of FD in patients with FMF from Central Anatolia of Turkey. The study group consisted of 177 FMF patients, followed up by the Adult and Pediatric Nephrology Clinic of Cumhuriyet University Hospital. Screening for AGALA activity was performed by the dry blood spot method. Mutation analysis for GLA gene was carried out for patients having an AGALA enzyme activity value lower than the normal reference value. Low AGALA activity was detected in 23 (13 %) patients. Heterozygous GLA gene mutation c.[937G>T] p.[D313Y] was detected in one female patient (0.56 %). The patient was a 53-year-old female with proteinuria and who had undergone left nephrectomy; her glomerular filtration rate (GFR) by scintigraphy was found to be 70 ml/min. She had M694V mutation and no clinical manifestation of FD. In our study, the prevalence rate of FD was found as 0.56 % in FMF patients. The similarities between the symptoms of FMF and FD might lead to a diagnostic dilemma in physicians at countries where FMF is observed frequently. Although the prevalence of FD is rare, physicians should keep in mind that FD has an ambiguous symptomology pattern of FMF.
Bae, Ja Seong; Kim, Yourha; Jeon, Sora; Kim, Se Hee; Kim, Tae Jung; Lee, Sohee; Kim, Min-Hee; Lim, Dong Jun; Lee, Youn Soo; Jung, Chan Kwon
2016-02-09
Mutations in the TERT promoter, ALK rearrangement, and the BRAF V600E mutation are associated with aggressive clinicopathologic features in thyroid cancers. However, little is known about the impact of TERT promoter mutations and ALK rearrangement in thyroid cancer patients with a high prevalence of BRAF mutations. We performed Sanger sequencing to detect BRAF V600E and TERT promoter mutations and both immunohistochemistry and fluorescence in situ hybridization to identify ALK rearrangement on 243 thyroid cancers. TERT promoter mutations were not present in 192 well-differentiated thyroid carcinomas (WDTC) without distant metastasis or in 9 medullary carcinomas. However, the mutations did occur in 40 % (12/30) of WDTC with distant metastasis, 29 % (2/7) of poorly differentiated carcinomas and 60 % (3/5) of anaplastic carcinomas. ALK rearrangement was not present in all thyroid cancers. The BRAF V600E mutation was more frequently found in WDTC without distant metastasis than in WDTC with distant metastasis (p = 0.007). In the cohort of WDTC with distant metastasis, patients with wild-type BRAF and TERT promoter had a significantly higher response rate after radioiodine therapy (p = 0.024), whereas the BRAF V600E mutation was significantly correlated with progressive disease (p = 0.025). The TERT promoter mutation is an independent predictor for distant metastasis of WDTC, but ALK testing is not useful for clinical decision-making in Korean patients with a high prevalence of the BRAF V600E mutation. Radioiodine therapy for distant metastasis of WDTC is most effective in patients without BRAF V600E and TERT promoter mutations.
Mizuno, Takashi; Cloyd, Jordan M; Vicente, Diego; Omichi, Kiyohiko; Chun, Yun Shin; Kopetz, Scott E; Maru, Dipen; Conrad, Claudius; Tzeng, Ching-Wei D; Wei, Steven H; Aloia, Thomas A; Vauthey, Jean-Nicolas
2018-05-01
Dorsophilia protein, mothers against decapentaplegic homolog 4 (SMAD4) is a key mediator in the transforming growth factor (TGF)-β signaling pathway and SMAD4 gene mutations are thought to play a critical role in colorectal cancer (CRC) progression. However, little is known about its influence on survival in patients undergoing resection for colorectal liver metastases (CLM). Between 2005 and 2015, all patients with known SMAD4 mutation status who underwent resection of CLM were identified. Patients with SMAD4 mutation were compared to those with SMAD4 wild type. Next, the prognostic value of SMAD4 mutation was validated in a separate cohort of patients with synchronous stage IV CRC who underwent systemic therapy alone. Of 278 patients, 37 (13%) were SMAD4 mutant while 241 (87%) were wild type. Overall survival (OS) after hepatic resection was worse in SMAD4-mutant patients compared to SMAD4 wild type (OS rate at 3 years, 62% vs. 82%; P < 0.0001). Independent predictors for worse OS were poor differentiation (hazard ratio [HR] 2.586; P = 0.007), multiple tumors (HR 1.970; P = 0.01), diameter greater than 3 cm (HR 1.752; P = 0.017), R1 margin status (HR 2.452; P = 0.014), RAS mutation (HR 2.044; P = 0.002), and SMAD4 mutation (HR 2.773; P < 0.0001). Among 237 patients in the validation cohort, SMAD4-mutations were significantly associated with worse 3-year OS rate (22% vs. 38%; P = 0.012) and was an independent predictor for worse OS (HR, 1.647; P = 0.032). SMAD4 mutation is independently associated with worse outcomes among patients undergoing resection of CLM. Copyright © 2018 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.
Histone H2A is required for normal centromere function in Saccharomyces cerevisiae
Pinto, Inés; Winston, Fred
2000-01-01
Histones are structural and functional components of the eukaryotic chromosome, and their function is essential for normal cell cycle progression. In this work, we describe the characterization of two Saccharomyces cerevisiae cold-sensitive histone H2A mutants. Both mutants contain single amino acid replacements of residues predicted to be on the surface of the nucleosome and in close contact with DNA. We show that these H2A mutations cause an increase-in-ploidy phenotype, an increased rate of chromosome loss, and a defect in traversing the G2–M phase of the cell cycle. Moreover, these H2A mutations show genetic interactions with mutations in genes encoding kinetochore components. Finally, chromatin analysis of these H2A mutants has revealed an altered centromeric chromatin structure. Taken together, these results strongly suggest that histone H2A is required for proper centromere–kinetochore function during chromosome segregation. PMID:10747028
Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer.
Gandhi, Leena; Rodríguez-Abreu, Delvys; Gadgeel, Shirish; Esteban, Emilio; Felip, Enriqueta; De Angelis, Flávia; Domine, Manuel; Clingan, Philip; Hochmair, Maximilian J; Powell, Steven F; Cheng, Susanna Y-S; Bischoff, Helge G; Peled, Nir; Grossi, Francesco; Jennens, Ross R; Reck, Martin; Hui, Rina; Garon, Edward B; Boyer, Michael; Rubio-Viqueira, Belén; Novello, Silvia; Kurata, Takayasu; Gray, Jhanelle E; Vida, John; Wei, Ziwen; Yang, Jing; Raftopoulos, Harry; Pietanza, M Catherine; Garassino, Marina C
2018-04-16
Background First-line therapy for advanced non-small-cell lung cancer (NSCLC) that lacks targetable mutations is platinum-based chemotherapy. Among patients with a tumor proportion score for programmed death ligand 1 (PD-L1) of 50% or greater, pembrolizumab has replaced cytotoxic chemotherapy as the first-line treatment of choice. The addition of pembrolizumab to chemotherapy resulted in significantly higher rates of response and longer progression-free survival than chemotherapy alone in a phase 2 trial. Methods In this double-blind, phase 3 trial, we randomly assigned (in a 2:1 ratio) 616 patients with metastatic nonsquamous NSCLC without sensitizing EGFR or ALK mutations who had received no previous treatment for metastatic disease to receive pemetrexed and a platinum-based drug plus either 200 mg of pembrolizumab or placebo every 3 weeks for 4 cycles, followed by pembrolizumab or placebo for up to a total of 35 cycles plus pemetrexed maintenance therapy. Crossover to pembrolizumab monotherapy was permitted among the patients in the placebo-combination group who had verified disease progression. The primary end points were overall survival and progression-free survival, as assessed by blinded, independent central radiologic review. Results After a median follow-up of 10.5 months, the estimated rate of overall survival at 12 months was 69.2% (95% confidence interval [CI], 64.1 to 73.8) in the pembrolizumab-combination group versus 49.4% (95% CI, 42.1 to 56.2) in the placebo-combination group (hazard ratio for death, 0.49; 95% CI, 0.38 to 0.64; P<0.001). Improvement in overall survival was seen across all PD-L1 categories that were evaluated. Median progression-free survival was 8.8 months (95% CI, 7.6 to 9.2) in the pembrolizumab-combination group and 4.9 months (95% CI, 4.7 to 5.5) in the placebo-combination group (hazard ratio for disease progression or death, 0.52; 95% CI, 0.43 to 0.64; P<0.001). Adverse events of grade 3 or higher occurred in 67.2% of the patients in the pembrolizumab-combination group and in 65.8% of those in the placebo-combination group. Conclusions In patients with previously untreated metastatic nonsquamous NSCLC without EGFR or ALK mutations, the addition of pembrolizumab to standard chemotherapy of pemetrexed and a platinum-based drug resulted in significantly longer overall survival and progression-free survival than chemotherapy alone. (Funded by Merck; KEYNOTE-189 ClinicalTrials.gov number, NCT02578680 .).
Nana-Sinkam, Serge Patrick; Powell, Charles A
2013-05-01
Based on recent bench and clinical research, the treatment of lung cancer has been refined, with treatments allocated according to histology and specific molecular features. For example, targeting mutations such as epidermal growth factor receptor (EGFR) with tyrosine kinase inhibitors has been particularly successful as a treatment modality, demonstrating response rates in selected patients with adenocarcinoma tumors harboring EGFR mutations that are significantly higher than those for conventional chemotherapy. However, the development of new targeted therapies is, in part, highly dependent on an improved understanding of the molecular underpinnings of tumor initiation and progression, knowledge of the role of molecular aberrations in disease progression, and the development of highly reproducible platforms for high-throughput biomarker discovery and testing. In this article, we review clinically relevant research directed toward understanding the biology of lung cancer. The clinical purposes of this research are (1) to identify susceptibility variants and field molecular alterations that will promote the early detection of tumors and (2) to identify tumor molecular alterations that serve as therapeutic targets, prognostic biomarkers, or predictors of tumor response. We focus on research developments in the understanding of lung cancer somatic DNA mutations, chromosomal aberrations, epigenetics, and the tumor microenvironment, and how they can advance diagnostics and therapeutics.
Biallelic UFM1 and UFC1 mutations expand the essential role of ufmylation in brain development.
Nahorski, Michael S; Maddirevula, Sateesh; Ishimura, Ryosuke; Alsahli, Saud; Brady, Angela F; Begemann, Anaïs; Mizushima, Tsunehiro; Guzmán-Vega, Francisco J; Obata, Miki; Ichimura, Yoshinobu; Alsaif, Hessa S; Anazi, Shams; Ibrahim, Niema; Abdulwahab, Firdous; Hashem, Mais; Monies, Dorota; Abouelhoda, Mohamed; Meyer, Brian F; Alfadhel, Majid; Eyaid, Wafa; Zweier, Markus; Steindl, Katharina; Rauch, Anita; Arold, Stefan T; Woods, C Geoffrey; Komatsu, Masaaki; Alkuraya, Fowzan S
2018-06-02
The post-translational modification of proteins through the addition of UFM1, also known as ufmylation, plays a critical developmental role as revealed by studies in animal models. The recent finding that biallelic mutations in UBA5 (the E1-like enzyme for ufmylation) cause severe early-onset encephalopathy with progressive microcephaly implicates ufmylation in human brain development. More recently, a homozygous UFM1 variant was proposed as a candidate aetiology of severe early-onset encephalopathy with progressive microcephaly. Here, we establish a locus for severe early-onset encephalopathy with progressive microcephaly based on two families, and map the phenotype to a novel homozygous UFM1 mutation. This mutation has a significantly diminished capacity to form thioester intermediates with UBA5 and with UFC1 (the E2-like enzyme for ufmylation), with resulting impaired ufmylation of cellular proteins. Remarkably, in four additional families where eight children have severe early-onset encephalopathy with progressive microcephaly, we identified two biallelic UFC1 mutations, which impair UFM1-UFC1 intermediate formation with resulting widespread reduction of cellular ufmylation, a pattern similar to that observed with UFM1 mutation. The striking resemblance between UFM1- and UFC1-related clinical phenotype and biochemical derangements strongly argues for an essential role for ufmylation in human brain development. The hypomorphic nature of UFM1 and UFC1 mutations and the conspicuous depletion of biallelic null mutations in the components of this pathway in human genome databases suggest that it is necessary for embryonic survival, which is consistent with the embryonic lethal nature of knockout models for the orthologous genes.
Jenkins, Suzanne; Chih-Hsin Yang, James; Jänne, Pasi A; Thress, Kenneth S; Yu, Karen; Hodge, Rachel; Weston, Susie; Dearden, Simon; Patel, Sabina; Cantarini, Mireille; Shepherd, Frances A
2017-08-01
Osimertinib is an oral, central nervous system-active, EGFR tyrosine kinase inhibitor (TKI) for the treatment of EGFR T790M-positive advanced NSCLC. Here we have evaluated EGFR mutation frequencies in two phase II studies of osimertinib (AURA extension and AURA2). After progression while receiving their latest line of therapy, patients with EGFR mutation-positive advanced NSCLC provided tumor samples for mandatory central T790M testing for the study selection criteria. Tumor tissue mutation analysis for patient selection was performed with the Roche cobas EGFR Mutation Test (European Conformity-in vitro diagnostic, labeled investigational use only) (Roche Molecular Systems, Pleasanton, CA). Patients should not have been prescreened for T790M mutation status. The cobas test results were compared with those of the MiSeq next-generation sequencing system (Illumina, San Diego, CA), which was used as a reference method. Samples from 324 and 373 patients screened for AURA extension and AURA2, respectively, produced valid cobas test results. The T790M detection rates were similar between AURA extension and AURA2 (64% and 63%, respectively). The pooled T790M rate was 63%, with no difference by ethnicity (63% for Asian and non-Asian patients alike) or immediately prior treatment with an EGFR TKI (afatinib, 69%; erlotinib, 69%; and gefitinib, 63%). A higher proportion of patients had T790M detected against a background of exon 19 deletions versus L858R mutation (73% versus 58% [p = 0.0002]). In both trials the cobas test demonstrated high sensitivity (positive percent agreement) and specificity (negative percent agreement) for T790M detection when compared with the next-generation sequencing reference method: positive percent agreement of 91% versus 89% and negative percent agreement of 97% versus 98%. In both trials, the rate of detection of T790M mutation in patients with advanced NSCLC was approximately 63% and was unaffected by immediately prior treatment with an EGFR TKI or ethnicity. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Choueiri, Toni K.; Vaishampayan, Ulka; Rosenberg, Jonathan E.; Logan, Theodore F.; Harzstark, Andrea L.; Bukowski, Ronald M.; Rini, Brian I.; Srinivas, Sandy; Stein, Mark N.; Adams, Laurel M.; Ottesen, Lone H.; Laubscher, Kevin H.; Sherman, Laurie; McDermott, David F.; Haas, Naomi B.; Flaherty, Keith T.; Ross, Robert; Eisenberg, Peter; Meltzer, Paul S.; Merino, Maria J.; Bottaro, Donald P.; Linehan, W. Marston; Srinivasan, Ramaprasad
2013-01-01
Purpose Foretinib is an oral multikinase inhibitor targeting MET, VEGF, RON, AXL, and TIE-2 receptors. Activating mutations or amplifications in MET have been described in patients with papillary renal cell carcinoma (PRCC). We aimed to evaluate the efficacy and safety of foretinib in patients with PRCC. Patients and Methods Patients were enrolled onto the study in two cohorts with different dosing schedules of foretinib: cohort A, 240 mg once per day on days 1 through 5 every 14 days (intermittent arm); cohort B, 80 mg daily (daily dosing arm). Patients were stratified on the basis of MET pathway activation (germline or somatic MET mutation, MET [7q31] amplification, or gain of chromosome 7). The primary end point was overall response rate (ORR). Results Overall, 74 patients were enrolled, with 37 in each dosing cohort. ORR by Response Evaluation Criteria in Solid Tumors (RECIST) 1.0 was 13.5%, median progression-free survival was 9.3 months, and median overall survival was not reached. The presence of a germline MET mutation was highly predictive of a response (five of 10 v five of 57 patients with and without germline MET mutations, respectively). The most frequent adverse events of any grade associated with foretinib were fatigue, hypertension, gastrointestinal toxicities, and nonfatal pulmonary emboli. Conclusion Foretinib demonstrated activity in patients with advanced PRCC with a manageable toxicity profile and a high response rate in patients with germline MET mutations. PMID:23213094
Overlap between age-at-onset and disease-progression determinants in Huntington disease.
Aziz, N Ahmad; van der Burg, Jorien M M; Tabrizi, Sarah J; Landwehrmeyer, G Bernhard
2018-05-09
A fundamental but still unresolved issue regarding Huntington disease (HD) pathogenesis is whether the factors that determine age at onset are the same as those that govern disease progression. Because elucidation of this issue is crucial for the development as well as optimal timing of administration of novel disease-modifying therapies, we aimed to assess the extent of overlap between age-at-onset and disease-progression determinants in HD. Using observational data from Enroll-HD, the largest cohort of patients with HD worldwide, in this study we present, validate, and apply an intuitive method based on linear mixed-effect models to quantify the variability in the rate of disease progression in HD. A total of 3,411 patients with HD met inclusion criteria. We found that (1) about two-thirds of the rate of functional, motor, and cognitive progression in HD is determined by the same factors that also determine age at onset, with CAG repeat-dependent mechanisms having by far the largest effect; (2) although expanded HTT CAG repeat size had a large influence on average body weight, the rate of weight loss was largely independent of factors that determine age at onset in HD; and (3) about one-third of the factors that determine the rate of functional, motor, and cognitive progression are different from those that govern age at onset and need further elucidation. Our findings imply that targeting of CAG repeat-dependent mechanisms, for example through gene-silencing approaches, is likely to affect the rate of functional, motor, and cognitive impairment, but not weight loss, in manifest HD mutation carriers. Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Olar, Adriana; Raghunathan, Aditya; Albarracin, Constance T; Aldape, Kenneth D; Cahill, Daniel P; Powell, Suzanne Z; Goodman, J Clay; Fuller, Gregory N
2012-06-01
Advanced age and contrast enhancement portend a poor prognosis in diffuse glioma (DG). Diffuse glioma may present as nonenhancing tumors that rapidly progress in weeks to months to a pattern of ring enhancement, characteristic of glioblastoma (GBM). Mutations involving isocitrate dehydrogenase 1 (IDH1) have recently emerged as important diagnostic and prognostic markers in DG. R132H is the most common mutation, expressed in more than 80% of DG and secondary GBM but in less than 10% of primary GBM. Adults older than 50 years with nonenhancing, rapidly progressing DG were identified. A comparison group comprised randomly selected, age-matched patients with nonenhancing, nonprogressing DG. Isocitrate dehydrogenase 1 status was evaluated using anti-IDH1-R132H antibodies (Dianova, Hamburg, Germany). The results were correlated with the clinical outcomes. We identified 4 patients who presented with nonenhancing DG that rapidly progressed to ring-enhancing lesions that were subsequently diagnosed on surgical resection as GBM. This group showed absent IDH1-R132H expression, which is characteristic of primary GBM. The comparison group of 5 patients presented with nonenhancing, nonprogressing DG, and all 5 tumors showed IDH1-R132H expression. In conclusion, negative IDH1-R132H mutation status in nonenhancing DG of older adults is a poor prognostic factor associated with rapid progression to ring-enhancing GBM. The shorter interval of progression and negative IDH1-R132H mutation status suggest a similar molecular pathway as seen in primary GBM. Copyright © 2012 Elsevier Inc. All rights reserved.
Pharmacokinetic drug evaluation of osimertinib for the treatment of non-small cell lung cancer.
Rossi, Antonio; Muscarella, Lucia Anna; Di Micco, Concetta; Carbonelli, Cristiano; D'alessandro, Vito; Notarangelo, Stefano; Palomba, Giuseppe; Sanpaolo, Gerardo; Taurchini, Marco; Graziano, Paolo; Maiello, Evaristo
2017-12-01
First- and second-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, erlotinib, icotinib, and afatinib are the standard-of-care for first-line therapy of non-small-cell lung cancer (NSCLC) harboring activating EGFR mutations. Unfortunately, after initial activity of an average 9-13 months, disease progression has been reported in the majority of patients. In about 50% of cases the progression is due to the onset of the T790M mutation in exon 20 of the EGFR gene. Third-generation EGFR-TKIs targeting this mutation were investigated, with osimertinib the only reaching clinical practice. Areas covered: A structured search of bibliographic databases for peer-reviewed research literature and of main meetings using a focused review question addressing osimertinib, was undertaken. Expert opinion: Osimertinib is the standard-of-care for EGFR-mutated patients progressing to first-line EGFR-TKIs due to the acquired EGFR T790M mutation. Results from the head-to-head first-line trial comparing osimertinib versus gefitinib or erlotinib in activating EGFR mutations might change the front-line approach. Osimertinib in combination regimens, such as immunotherapy, and in adjuvant setting are ongoing. Thus, the strategic approach for the management of EGFR-mutated NSCLC patients will change further in the next few years.
Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia.
Yoshizato, Tetsuichi; Dumitriu, Bogdan; Hosokawa, Kohei; Makishima, Hideki; Yoshida, Kenichi; Townsley, Danielle; Sato-Otsubo, Aiko; Sato, Yusuke; Liu, Delong; Suzuki, Hiromichi; Wu, Colin O; Shiraishi, Yuichi; Clemente, Michael J; Kataoka, Keisuke; Shiozawa, Yusuke; Okuno, Yusuke; Chiba, Kenichi; Tanaka, Hiroko; Nagata, Yasunobu; Katagiri, Takamasa; Kon, Ayana; Sanada, Masashi; Scheinberg, Phillip; Miyano, Satoru; Maciejewski, Jaroslaw P; Nakao, Shinji; Young, Neal S; Ogawa, Seishi
2015-07-02
In patients with acquired aplastic anemia, destruction of hematopoietic cells by the immune system leads to pancytopenia. Patients have a response to immunosuppressive therapy, but myelodysplastic syndromes and acute myeloid leukemia develop in about 15% of the patients, usually many months to years after the diagnosis of aplastic anemia. We performed next-generation sequencing and array-based karyotyping using 668 blood samples obtained from 439 patients with aplastic anemia. We analyzed serial samples obtained from 82 patients. Somatic mutations in myeloid cancer candidate genes were present in one third of the patients, in a limited number of genes and at low initial variant allele frequency. Clonal hematopoiesis was detected in 47% of the patients, most frequently as acquired mutations. The prevalence of the mutations increased with age, and mutations had an age-related signature. DNMT3A-mutated and ASXL1-mutated clones tended to increase in size over time; the size of BCOR- and BCORL1-mutated and PIGA-mutated clones decreased or remained stable. Mutations in PIGA and BCOR and BCORL1 correlated with a better response to immunosuppressive therapy and longer and a higher rate of overall and progression-free survival; mutations in a subgroup of genes that included DNMT3A and ASXL1 were associated with worse outcomes. However, clonal dynamics were highly variable and might not necessarily have predicted the response to therapy and long-term survival among individual patients. Clonal hematopoiesis was prevalent in aplastic anemia. Some mutations were related to clinical outcomes. A highly biased set of mutations is evidence of Darwinian selection in the failed bone marrow environment. The pattern of somatic clones in individual patients over time was variable and frequently unpredictable. (Funded by Grant-in-Aid for Scientific Research and others.).
Guibert, Nicolas; Mazieres, Julien; Delaunay, Myriam; Casanova, Anne; Farella, Magali; Keller, Laura; Favre, Gilles; Pradines, Anne
2017-01-01
Objectives Pseudo-progression is a rare but worrying situation for both clinicians and patients during immunotherapy. Dedicated ir-RECIST criteria have been established to improve this situation. However, this can be sometimes considered inadequate and patients experiencing true progression may then receive inefficient treatments. Additional reliable tools to discriminate pseudo from true progression are thus needed. So far, no biomarker has been identified to distinguish pseudo from true progression. We hypothesize that biomarkers associated with the molecular characteristics of the tumor may be of interest. To avoid a tumor re-biopsy, circulating markers appear to be a less invasive and reproducible procedure. As ctDNA kinetics correlate with the response to treatment in KRAS-mutated adenocarcinoma, we anticipated that this analysis could be of interest. Materials and methods We monitored the level of KRAS-mutated ctDNA by digital droplet PCR in serial plasma samples from two patients who had experienced pseudo-progression and compared the variations with those from of a patient that had true progression. Results ctDNA showed rapid and dramatic decreases in pseudo-progressive patients, whereas it was strongly increased in the progressive patient. Conclusions ddPCR of ctDNA may thus be an additional tool to discriminate pseudo-progression from true progression for tumors that harbor an oncogenic addiction. PMID:28445137
Peng, Yaqin; Liu, Baoming; Hou, Jinlin; Sun, Jian; Hao, Ran; Xiang, Kuanhui; Yan, Ling; Zhang, Jiangbo; Zhuang, Hui; Li, Tong
2015-01-01
Mutations in HBV core promoter (CP) are suggested to affect viral replication and disease progression. We investigated CP deletion/insertion mutations (Del/Ins) in hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB) patients before and during antiviral treatment. Direct and clone sequencings were used for detection of CP Del/Ins in 12 patients. The dynamic changes of CP Del/Ins were tracked in these cases until week 48 of treatment. The effects of Del/Ins on CP activities and hepatitis B X protein (HBx) were analysed using luciferase assay and sequence comparison, respectively. Furthermore, 292 untreated HBeAg-positive CHB cases were also analysed. Twelve cases with multi-peak PCR direct sequencing electropherograms at baseline were confirmed to have CP Del/Ins by clone sequencing, with detection rates varying from 14.8% to 93.3% of clones analysed. Follow-up studies showed the detection rates of CP Del/Ins in patients decreased from 100% (12/12) at baseline to 16.7% (2/12) at week 48 of treatment (P<0.001), in parallel with a decline in HBV DNA, hepatitis B surface antigen (HBsAg), alanine aminotransferase (ALT) and aspartate transaminase (AST) levels along with an increase in HBeAg loss. Luciferase assay results showed distinct promoter activities among Del/Ins-harbouring CP sequences. Importantly, 71.8% (148/206) of Del/Ins sequences potentially resulted in HBx carboxy-terminal truncations. CP Del/Ins mutations were also found in 27.4% (80/292) of untreated cases. Naturally occurring complex of CP Del/Ins mutants existed in untreated HBeAg-positive CHB patients. These mutations would affect HBV transcription activities and integrity of HBx, which might correlate with disease progression. Their prevalence decreases on antiviral therapy in parallel with the decline in HBV DNA, HBsAg and ALT and AST levels.
Gidaro, Teresa; Modoni, Anna; Sabatelli, Mario; Tasca, Giorgio; Broccolini, Aldobrando; Mirabella, Massimiliano
2008-01-01
Mutations of the valosin-containing protein gene (VCP) are responsible for autosomal-dominant hereditary inclusion-body myopathy associated with frontotemporal dementia and Paget's disease of bone. We identified the p.R155C missense mutation in the VCP gene segregating in an Italian family with three affected siblings, two of whom had a progressive myopathy associated with dementia, whereas one exhibited a progressive myopathy and preclinical signs of Paget's disease of bone. Our study demonstrates that VCP mutations are found in patients of Italian background and may lead to a variable clinical phenotype even within the same kinship.
Young, Tim M; Blakely, Emma L; Swalwell, Helen; Carter, Janet E; Kartsounis, Luke D; O'Donovan, Dominic G; Turnbull, Douglass M; Taylor, Robert W; de Silva, Rajith N
2010-11-01
Mitochondrial diseases are characterized by wide phenotypic and genetic variability, but presentations in adults with akinetic rigidity and hyperkinetic movement disorders are rare. To describe clinically a subject with progressive neurodegeneration characterized by psychosis, dementia, and akinesia-rigidity, and to associate this phenotype with a novel mitochondrial transfer RNA(Phe) (tRNA(Phe)) (MTTF) mutation. Case description and detailed laboratory investigations of a 57-year-old woman at a university teaching hospital and a specialist mitochondrial diagnostic laboratory. Histopathological findings indicated that an underlying mitochondrial abnormality was responsible for the subject's progressive neurological disorder, with mitochondrial genome sequencing revealing a novel m.586G>A MTTF mutation. The clinical phenotypes associated with mitochondrial disorders may include akinesia-rigidity and psychosis. Our findings further broaden the spectrum of neurological disease associated with mitochondrial tRNA(Phe) mutations.
Kinsey, Conan; Balakrishnan, Vijaya; O’Dell, Michael R.; Huang, Jing Li; Newman, Laurel; Whitney-Miller, Christa L.; Hezel, Aram F.; Land, Hartmut
2014-01-01
Summary Mutations in p53 and RAS potently cooperate in oncogenic transformation and correspondingly these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA) and other human cancers. Previously we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression. PMID:24794439
Yang, Chih-Jen; Hung, Jen-Yu; Tsai, Ming-Ju; Wu, Kuan-Li; Liu, Ta-Chih; Chou, Shah-Hwa; Lee, Jui-Ying; Hsu, Jui-Sheng; Huang, Ming-Shyan; Chong, Inn-Wen
2017-05-10
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) such as gefitinib can provide better efficacy and prolonged progression free survival (PFS) than cytotoxic chemotherapy for metastatic lung non-squamous cell carcinoma harboring susceptible EGFR mutations when used as first-line therapy. Cytotoxic chemotherapy is regarded as being the standard therapy to overcome acquired resistance to an initial EGFR TKI. However, there is currently no consensus on how best to treat patients who develop resistance to both an initial EGFR TKI and chemotherapy. We enrolled stage IV lung adenocarcinoma patients with an EGFR mutation and who had developed acquired resistance to gefitinib and cytotoxic chemotherapy from two university-affiliated hospitals in Taiwan from June 2011 to December 2014. Basic demographic data, included Eastern Cooperative Oncology Group (ECOG) performance status were collected, and the response rate, progression-free survival (PFS) and overall survival (OS) were analyzed. Two hundred and nine patients with mutated EGFR and who took gefitinib as the first-line therapy were identified in the study period, of whom 86 received second-line cytotoxic chemotherapy, and 60 who received third-line therapy were eligible for this study. The patients who received cytotoxic chemotherapy had a significantly higher disease control rate than those who received erlotinib (73% vs. 46%, p = 0.0363), however there were no significant differences in PFS (2.9 months vs. 3.1 months, p = 0.9049) and OS (8.9 months vs. 7.9 months, p = 0.4956). Platinum- or pemetrexed-based chemotherapy provided similar PFS and OS as others did. The only significant poor prognostic factors for OS were old age (≥65 years) (HR = 5.97 [2.65-13.44], p < 0.0001) and poor performance status (ECOG ≥2) (HR = 5.84 [2.61-13.09], p < 0.0001). Retreatment with an EGFR TKI is not inferior to cytotoxic chemotherapy when used as salvage therapy for patients with adenocarcinoma with an EGFR mutation, especially if a third-generation EGFR TKI is not available, or if the reason for resistance is unknown or is not related to the T790M mutation. Old age and poor ECOG score were both poor prognostic factors in the salvage therapy.
Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma.
Mok, Tony S; Wu, Yi-Long; Thongprasert, Sumitra; Yang, Chih-Hsin; Chu, Da-Tong; Saijo, Nagahiro; Sunpaweravong, Patrapim; Han, Baohui; Margono, Benjamin; Ichinose, Yukito; Nishiwaki, Yutaka; Ohe, Yuichiro; Yang, Jin-Ji; Chewaskulyong, Busyamas; Jiang, Haiyi; Duffield, Emma L; Watkins, Claire L; Armour, Alison A; Fukuoka, Masahiro
2009-09-03
Previous, uncontrolled studies have suggested that first-line treatment with gefitinib would be efficacious in selected patients with non-small-cell lung cancer. In this phase 3, open-label study, we randomly assigned previously untreated patients in East Asia who had advanced pulmonary adenocarcinoma and who were nonsmokers or former light smokers to receive gefitinib (250 mg per day) (609 patients) or carboplatin (at a dose calculated to produce an area under the curve of 5 or 6 mg per milliliter per minute) plus paclitaxel (200 mg per square meter of body-surface area) (608 patients). The primary end point was progression-free survival. The 12-month rates of progression-free survival were 24.9% with gefitinib and 6.7% with carboplatin-paclitaxel. The study met its primary objective of showing the noninferiority of gefitinib and also showed its superiority, as compared with carboplatin-paclitaxel, with respect to progression-free survival in the intention-to-treat population (hazard ratio for progression or death, 0.74; 95% confidence interval [CI], 0.65 to 0.85; P<0.001). In the subgroup of 261 patients who were positive for the epidermal growth factor receptor gene (EGFR) mutation, progression-free survival was significantly longer among those who received gefitinib than among those who received carboplatin-paclitaxel (hazard ratio for progression or death, 0.48; 95% CI, 0.36 to 0.64; P<0.001), whereas in the subgroup of 176 patients who were negative for the mutation, progression-free survival was significantly longer among those who received carboplatin-paclitaxel (hazard ratio for progression or death with gefitinib, 2.85; 95% CI, 2.05 to 3.98; P<0.001). The most common adverse events were rash or acne (in 66.2% of patients) and diarrhea (46.6%) in the gefitinib group and neurotoxic effects (69.9%), neutropenia (67.1%), and alopecia (58.4%) in the carboplatin-paclitaxel group. Gefitinib is superior to carboplatin-paclitaxel as an initial treatment for pulmonary adenocarcinoma among nonsmokers or former light smokers in East Asia. The presence in the tumor of a mutation of the EGFR gene is a strong predictor of a better outcome with gefitinib. (ClinicalTrials.gov number, NCT00322452.) 2009 Massachusetts Medical Society
Peng, Yanyan; Shinde, Deepali N; Valencia, C Alexander; Mo, Jun-Song; Rosenfeld, Jill; Truitt Cho, Megan; Chamberlin, Adam; Li, Zhuo; Liu, Jie; Gui, Baoheng; Brockhage, Rachel; Basinger, Alice; Alvarez-Leon, Brenda; Heydemann, Peter; Magoulas, Pilar L; Lewis, Andrea M; Scaglia, Fernando; Gril, Solange; Chong, Shuk Ching; Bower, Matthew; Monaghan, Kristin G; Willaert, Rebecca; Plona, Maria-Renee; Dineen, Rich; Milan, Francisca; Hoganson, George; Helbig, Katherine L; Keller-Ramey, Jennifer; Harris, Belinda; Anderson, Laura C; Green, Torrian; Sukoff Rizzo, Stacey J; Kaylor, Julie; Chen, Jiani; Guan, Min-Xin; Sellars, Elizabeth; Sparagana, Steven P; Gibson, James B; Reinholdt, Laura G; Tang, Sha; Huang, Taosheng
2017-01-01
Abstract Iron–sulfur (Fe-S) clusters are ubiquitous cofactors essential to various cellular processes, including mitochondrial respiration, DNA repair, and iron homeostasis. A steadily increasing number of disorders are being associated with disrupted biogenesis of Fe–S clusters. Here, we conducted whole-exome sequencing of patients with optic atrophy and other neurological signs of mitochondriopathy and identified 17 individuals from 13 unrelated families with recessive mutations in FDXR, encoding the mitochondrial membrane-associated flavoprotein ferrodoxin reductase required for electron transport from NADPH to cytochrome P450. In vitro enzymatic assays in patient fibroblast cells showed deficient ferredoxin NADP reductase activity and mitochondrial dysfunction evidenced by low oxygen consumption rates (OCRs), complex activities, ATP production and increased reactive oxygen species (ROS). Such defects were rescued by overexpression of wild-type FDXR. Moreover, we found that mice carrying a spontaneous mutation allelic to the most common mutation found in patients displayed progressive gait abnormalities and vision loss, in addition to biochemical defects consistent with the major clinical features of the disease. Taken together, these data provide the first demonstration that germline, hypomorphic mutations in FDXR cause a novel mitochondriopathy and optic atrophy in humans. PMID:29040572
Peng, Yanyan; Shinde, Deepali N; Valencia, C Alexander; Mo, Jun-Song; Rosenfeld, Jill; Truitt Cho, Megan; Chamberlin, Adam; Li, Zhuo; Liu, Jie; Gui, Baoheng; Brockhage, Rachel; Basinger, Alice; Alvarez-Leon, Brenda; Heydemann, Peter; Magoulas, Pilar L; Lewis, Andrea M; Scaglia, Fernando; Gril, Solange; Chong, Shuk Ching; Bower, Matthew; Monaghan, Kristin G; Willaert, Rebecca; Plona, Maria-Renee; Dineen, Rich; Milan, Francisca; Hoganson, George; Powis, Zoe; Helbig, Katherine L; Keller-Ramey, Jennifer; Harris, Belinda; Anderson, Laura C; Green, Torrian; Sukoff Rizzo, Stacey J; Kaylor, Julie; Chen, Jiani; Guan, Min-Xin; Sellars, Elizabeth; Sparagana, Steven P; Gibson, James B; Reinholdt, Laura G; Tang, Sha; Huang, Taosheng
2017-12-15
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors essential to various cellular processes, including mitochondrial respiration, DNA repair, and iron homeostasis. A steadily increasing number of disorders are being associated with disrupted biogenesis of Fe-S clusters. Here, we conducted whole-exome sequencing of patients with optic atrophy and other neurological signs of mitochondriopathy and identified 17 individuals from 13 unrelated families with recessive mutations in FDXR, encoding the mitochondrial membrane-associated flavoprotein ferrodoxin reductase required for electron transport from NADPH to cytochrome P450. In vitro enzymatic assays in patient fibroblast cells showed deficient ferredoxin NADP reductase activity and mitochondrial dysfunction evidenced by low oxygen consumption rates (OCRs), complex activities, ATP production and increased reactive oxygen species (ROS). Such defects were rescued by overexpression of wild-type FDXR. Moreover, we found that mice carrying a spontaneous mutation allelic to the most common mutation found in patients displayed progressive gait abnormalities and vision loss, in addition to biochemical defects consistent with the major clinical features of the disease. Taken together, these data provide the first demonstration that germline, hypomorphic mutations in FDXR cause a novel mitochondriopathy and optic atrophy in humans. © The Author 2017. Published by Oxford University Press.
Etiology of Ibrutinib Discontinuation and Outcomes in Chronic Lymphocytic Leukemia Patients
Maddocks, Kami J.; Ruppert, Amy S.; Lozanski, Gerard; Heerema, Nyla A.; Zhao, Weiqiang; Abruzzo, Lynne; Lozanski, Arletta; Davis, Melanie; Gordon, Amber; Smith, Lisa L.; Mantel, Rose; Jones, Jeffrey A.; Flynn, Joseph M.; Jaglowski, Samantha M.; Andritsos, Leslie A.; Awan, Farrukh; Blum, Kristie A.; Grever, Michael R.; Johnson, Amy J.; Byrd, John C.; Woyach, Jennifer A.
2015-01-01
Importance The Bruton’s Tyrosine Kinase inhibitor ibrutinib is effective in patients with chronic lymphocytic leukemia (CLL). Reasons for discontinuation from this drug and outcomes following discontinuation have not been evaluated outside of clinical trials with relatively short follow-up. Objective To determine features associated with discontinuation of ibrutinib and outcomes. Design 308 patients participating in four sequential trials of ibrutinib were included. These trials accrued patients included in this analysis from May 2010 until April 2014, and data were locked in June 2014. Setting The Ohio State University Comprehensive Cancer Center Participants Patients with CLL enrolled on 4 sequential clinical trials. Main Outcome Measure Patients were evaluated for time to discontinuation, reasons for discontinuation, and survival following discontinuation. For patients who discontinued due to progression, targeted deep sequencing was performed in samples at baseline and relapse. Results With a median follow-up of 20 months, 232 patients remain on therapy, 31 have discontinued because of progression, and 45 have discontinued for other reasons. Disease progression includes Richter’s transformation or progressive CLL. Richter’s appeared to occur early and CLL progressions later (cumulative incidence at 12 months: 4.5% (95% CI: 2.0% to 7.0%) and 0.3% (95% CI: 0% to 1.0%), respectively). Median survival following Richter’s transformation was 3.5 months (95% CI: 0.3–6.0), and 17.6 months (95% CI: 4.7-not reached) following CLL progression. Sequencing on peripheral blood from 8 patients with Richter’s transformation revealed 2 with mutations in BTK, and a lymph node sample showed no mutations in BTK or PLCγ2. Deep sequencing on 11 patients with CLL progression revealed BTK or PLCγ2 mutations in all. These mutations were not identified pre-treatment in any patient. Conclusions and Relevance This single institution experience with ibrutinib confirms it to be an effective therapy and identifies, for the first time, baseline factors associated with ibrutinib discontinuation. Outcomes data show poor prognosis after discontinuation, especially for those patients with Richter’s transformation. Finally, sequencing data confirm initial reports associating mutations in BTK and PLCγ2 with progression and clearly show that CLL progressions are associated with these mutations, while Richter’s transformation is likely not. PMID:26182309
Hayashi, Hisamitsu; Sugiyama, Yuichi
2009-01-01
The reduced expression of the bile salt export pump (BSEP/ABCB11) at the canalicular membrane is associated with cholestasis-induced hepatotoxicity due to the accumulation of bile acids in hepatocytes. We demonstrated previously that 4-phenylbutyrate (4PBA) treatment, a U.S. Food and Drug Administration-approved drug for the treatment of urea cycle disorders, induces the cell-surface expression of BSEP by prolonging the degradation rate of cell-surface-resident BSEP. On the other hand, BSEP mutations, E297G and D482G, found in progressive familial intrahepatic cholestasis type 2 (PFIC2), reduced it by shortening the degradation rate of cell-surface-resident BSEP. Therefore, to help the development of the medical treatment of cholestasis, we investigated the underlying mechanism by which 4PBA and PFIC2-type mutations affect the BSEP degradation from cell surface, focusing on short-chain ubiquitination. In Madin-Darby canine kidney II (MDCK II) cells expressing BSEP and rat canalicular membrane vesicles, the molecular mass of the mature form of BSEP/Bsep shifted from 170 to 190 kDa after ubiquitin modification (molecular mass, 8 kDa). Ubiquitination susceptibility of BSEP/Bsep was reduced in vitro and in vivo by 4PBA treatment and, conversely, was enhanced by BSEP mutations E297G and D482G. Moreover, biotin-labeling studies using MDCK II cells demonstrated that the degradation of cell-surface-resident chimeric protein fusing ubiquitin to BSEP was faster than that of BSEP itself. In conclusion, BSEP/Bsep is modified with two to three ubiquitins, and its ubiquitination is modulated by 4PBA treatment and PFIC2-type mutations. Modulation of short-chain ubiquitination can regulate the change in the degradation rate of cell-surface-resident BSEP by 4PBA treatment and PFIC2-type mutations.
Alsop, Kathryn; Fereday, Sian; Meldrum, Cliff; deFazio, Anna; Emmanuel, Catherine; George, Joshy; Dobrovic, Alexander; Birrer, Michael J.; Webb, Penelope M.; Stewart, Colin; Friedlander, Michael; Fox, Stephen; Bowtell, David; Mitchell, Gillian
2012-01-01
Purpose The frequency of BRCA1 and BRCA2 germ-line mutations in women with ovarian cancer is unclear; reports vary from 3% to 27%. The impact of germ-line mutation on response requires further investigation to understand its impact on treatment planning and clinical trial design. Patients and Methods Women with nonmucinous ovarian carcinoma (n = 1,001) enrolled onto a population-based, case-control study were screened for point mutations and large deletions in both genes. Survival outcomes and responses to multiple lines of chemotherapy were assessed. Results Germ-line mutations were found in 14.1% of patients overall, including 16.6% of serous cancer patients (high-grade serous, 22.6%); 44% had no reported family history of breast or ovarian cancer. Patients carrying germ-line mutations had improved rates of progression-free and overall survival. In the relapse setting, patients carrying mutations more frequently responded to both platin- and nonplatin-based regimens than mutation-negative patients, even in patients with early relapse after primary treatment. Mutation-negative patients who responded to multiple cycles of platin-based treatment were more likely to carry somatic BRCA1/2 mutations. Conclusion BRCA mutation status has a major influence on survival in ovarian cancer patients and should be an additional stratification factor in clinical trials. Treatment outcomes in BRCA1/2 carriers challenge conventional definitions of platin resistance, and mutation status may be able to contribute to decision making and systemic therapy selection in the relapse setting. Our data, together with the advent of poly(ADP-ribose) polymerase inhibitor trials, supports the recommendation that germ-line BRCA1/2 testing should be offered to all women diagnosed with nonmucinous, ovarian carcinoma, regardless of family history. PMID:22711857
Roberts, Patrick J; Stinchcombe, Thomas E; Der, Channing J; Socinski, Mark A
2010-11-01
In patients with metastatic colorectal cancer, the predictive value of KRAS mutational status in the selection of patients for treatment with anti-epidermal growth factor (EGFR) monoclonal antibodies is established. In patients with non-small-cell lung cancer (NSCLC), the utility of determining KRAS mutational status to predict clinical benefit to anti-EGFR therapies remains unclear. This review will provide a brief description of Ras biology, provide an overview of aberrant Ras signaling in NSCLC, and summarize the clinical data for using KRAS mutational status as a negative predictive biomarker to anti-EGFR therapies. Retrospective investigations of KRAS mutational status as a negative predictor of clinical benefit from anti-EGFR therapies in NSCLC have been performed; however, small samples sizes as a result of low prevalence of KRAS mutations and the low rate of tumor sample collection have limited the strength of these analyses. Although an association between the presence of KRAS mutation and lack of response to EGFR tyrosine kinase inhibitors (TKIs) has been observed, it remains unclear whether there is an association between KRAS mutation and EGFR TKI progression-free and overall survival. Unlike colorectal cancer, KRAS mutations do not seem to identify patients who do not benefit from anti-EGFR monoclonal antibodies in NSCLC. The future value of testing for KRAS mutational status may be to exclude the possibility of an EGFR mutation or anaplastic lymphoma kinase translocation or to identify a molecular subset of patients with NSCLC in whom to pursue a drug development strategy that targets the KRAS pathway.
Mkaouar-Rebai, Emna; Chamkha, Imen; Kammoun, Fatma; Kammoun, Thouraya; Aloulou, Hajer; Hachicha, Mongia; Triki, Chahnez; Fakhfakh, Faiza
2009-07-01
Leigh syndrome is a progressive neurodegenerative disorder occurring in infancy and childhood characterized in most cases by a psychomotor retardation, optic atrophy, ataxia, dystonia, failure to thrive, seizures and respiratory failure. In this study, we performed a systematic sequence analysis of mitochondrial genes associated with LS in Tunisian patients. We sequenced the encoded complex I units: ND2, ND3, ND4, ND5 and ND6 genes and the mitochondrial ATPase 6, tRNA(Val), tRNA(Leu(UUR)), tRNA(Trp) and tRNA(Lys) genes in 10 unrelated patients with Leigh syndrome. We revealed the presence of 34 reported polymorphisms, nine novel nucleotide variants and two new mutations (T5523G and A5559G) in the tested patients. These two mutations were localized in two conserved regions of the tRNA(Trp) and affect, respectively, the D-stem and the T-stem of the mitochondrial tRNA leading to a disruption of the secondary structure of this tRNA. SSP-PCR analysis showed that the T5523G and A5559G mutations were present with respective heteroplasmic rates of 66% and 43 %. We report here the first mutational screening of mitochondrial mutations in Tunisian patients with Leigh syndrome which described two novel mutations associated with this disorder.
Christensen, Emil; Birkenkamp-Demtröder, Karin; Nordentoft, Iver; Høyer, Søren; van der Keur, Kirstin; van Kessel, Kim; Zwarthoff, Ellen; Agerbæk, Mads; Ørntoft, Torben Falck; Jensen, Jørgen Bjerggaard; Dyrskjøt, Lars
2017-06-01
Disease surveillance in patients with bladder cancer is important for early diagnosis of progression and metastasis and for optimised treatment. To develop urine and plasma assays for disease surveillance for patients with FGFR3 and PIK3CA tumour mutations. Droplet digital polymerase chain reaction (ddPCR) assays were developed and tumour DNA from two patient cohorts was screened for FGFR3 and PIK3CA hotspot mutations. One cohort included 363 patients with non-muscle-invasive bladder cancer (NMIBC). The other cohort included 468 patients with bladder cancer undergoing radical cystectomy (Cx). Urine supernatants (NMIBC n=216, Cx n=27) and plasma samples (NMIBC n=39, Cx n=27) from patients harbouring mutations were subsequently screened using ddPCR assays. Progression-free survival, recurrence-free survival, and overall survival were measured. Fisher's exact test, the Wilcoxon rank-sum test and Cox regression analysis were applied. In total, 36% of the NMIBC patients (129/363) and 11% of the Cx patients (44/403) harboured at least one FGFR3 or PIK3CA mutation. Screening of DNA from serial urine supernatants from the NMIBC cohort revealed that high levels of tumour DNA (tDNA) were associated with later disease progression in NMIBC (p=0.003). Furthermore, high levels of tDNA in plasma samples were associated with recurrence in the Cx cohort (p=0.016). A positive correlation between tDNA levels in urine and plasma was observed (correlation coefficient 0.6). The retrospective study design and low volumes of plasma available for analysis were limitations of the study. Increased levels of FGFR3 and PIK3CA mutated DNA in urine and plasma are indicative of later progression and metastasis in bladder cancer. Urine and plasma from patients with bladder cancer may be monitored for diagnosis of progression and metastasis using mutation assays. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Modeling cystic fibrosis disease progression in patients with the rare CFTR mutation P67L.
MacKenzie, Isobel E R; Paquette, Valerie; Gosse, Frances; George, Sheenagh; Chappe, Frederic; Chappe, Valerie
2017-05-01
The progression of cystic fibrosis (CF) in patients with the rare mutation P67L was examined to determine if it induced a milder form of CF compared to the common severe ΔF508 mutation. Parameters of lung function, level of bacterial infection, nutritional status and hospitalization were used to represent CF progression. Age at diagnosis and pancreatic status were used to assess CF presentation. Analysis of data from the CF Canada Registry collected over a 15-year period included 266 ΔF508/ΔF508 homozygote patients from CF clinics in Atlantic Canada and 26 compound heterozygote patients with the rare P67L mutation from clinics across Canada. Late age at diagnosis, high incidence of pancreatic sufficiency, maintained Body Mass Index (BMI) with age, delayed life-threatening bacterial infection, and fewer days in hospital were observed for P67L heterozygote patients included in this study. Although the decline of lung function did not differ from ΔF508 homozygotes, the fact that a greater proportion of P67L heterozygotes live to an older age suggests that lung function is not the primary factor determining CF progression for P67L heterozygote patients. The P67L mutation is associated with a mild disease, even when combined with the severe ΔF508 mutation. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Li, Xi; Yang, Xin-jie; Sun, Yi-fen; Qin, Na; Lü, Jia-lin; Wu, Yu-hua; Zhang, Hui; Zhang, Quan; Zhang, Shu-cai
2012-08-01
To explore the efficacy and side effects of icotinib hydrochloride in the treatment of patients with advanced non-small cell lung cancer (NSCLC). The efficacy and side effects of icotinib hydrochloride in treatment of 59 cases with stage IV NSCIC and followed-up from March 2009 to January 2012 were retrospectively analyzed. Twenty seven patients (45.8%) showed partial response (PR), 17 patients (28.8%) achieved SD, and 15 (25.4%) had progressive disease. The objective response rate (ORR) was 45.8% (27/59), and disease control rate (DCR) was 74.6% (44/59). Among the 23 patients with EGFR mutation, ORR was 73.9% (17/23), and DCR was 95.7% (22/23). Thirty six patients (61.0%) achieved remission of symptoms to varying degrees. The main symptoms relieved were cough, asthmatic suffocating, pain and hoarseness. The major adverse events were mild skin rash (35.6%) and diarrhea (15.3%). Others were dry skin, nausea and stomach problems. The efficacy of icotinib hydrochloride were related to the ECOG performance status, smoking history, EGFR mutation and rash significantly (P < 0.05). Monotherapy with icotinib hydrochloride is effective and tolerable for patients with advanced NSCLC, especially with EGFR mutation.
Wang, Y; Li, Y; Xia, L; Niu, K; Chen, X; Lu, D; Kong, R; Chen, Z; Sun, J
2018-03-01
Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) is the optimal treatment for EGFR-mutant advanced non-small cell lung cancer (NSCLC). However, most patients developed systemic or local progression due to acquired EGFR-TKI resistance. This retrospective study aimed to evaluate the feasibility of continued EGFR-TKI with concurrent radiotherapy (CTCRT) in patients with local progression after front-line EGFR-TKI treatment. Advanced NSCLC patients with active EGFR mutation who received EGFR-TKI were treated with CTCRT after local progression. Medical data were analyzed for time to progression (TTP), progression-free survival (PFS), tumor response rate, overall survival (OS) and adverse events. A total of 50 irradiated lesions from 44 patients were included. Median TTP and PFS of measurable lesions (n = 31) were both significantly prolonged after local radiotherapy (TTP1 + TTP2 vs. TTP1: 21.7 vs. 16.0 months, P = 0.010; PFS1 + PFS2 vs. PFS1: 21.3 vs. 16.0 months, P = 0.027). For all lesions (n = 50), objective response rate (ORR) and local tumor control rate (LCR) were 54.0 and 84.0%, respectively. Median OS was 26.6 months. There were no serious adverse events before or after radiotherapy. The treatment modality of CTCRT is considerable and effective for EGFR-mutant NSCLC patients even with local failure from front-line EGFR-TKI treatment.
Meloni, Ilaria; Bruttini, Mirella; Longo, Ilaria; Mari, Francesca; Rizzolio, Flavio; D’Adamo, Patrizia; Denvriendt, Koenraad; Fryns, Jean-Pierre; Toniolo, Daniela; Renieri, Alessandra
2000-01-01
Heterozygous mutations in the X-linked MECP2 gene cause Rett syndrome, a severe neurodevelopmental disorder of young females. Only one male presenting an MECP2 mutation has been reported; he survived only to age 1 year, suggesting that mutations in MECP2 are male lethal. Here we report a three-generation family in which two affected males showed severe mental retardation and progressive spasticity, previously mapped in Xq27.2-qter. Two obligate carrier females showed either normal or borderline intelligence, simulating an X-linked recessive trait. The two males and the two obligate carrier females presented a mutation in the MECP2 gene, demonstrating that, in males, MECP2 can be responsible for severe mental retardation associated with neurological disorders. PMID:10986043
Nishinarita, Noriko; Igawa, Satoshi; Kasajima, Masashi; Kusuhara, Seiichiro; Harada, Shinya; Okuma, Yuriko; Sugita, Keisuke; Ozawa, Takahiro; Fukui, Tomoya; Mitsufuji, Hisashi; Yokoba, Masanori; Katagiri, Masato; Kubota, Masaru; Sasaki, Jiichiro; Naoki, Katsuhiko
2018-04-26
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKIs) therapy has been recognized as the standard treatment for patients with non-small cell lung cancer (NSCLC) harboring EGFR mutations. However, resistance to EGFR-TKIs has been observed in certain subpopulations of these patients. We aimed to evaluate the impact of smoking history on the efficacy of EGFR-TKIs. The records of patients (n = 248) with NSCLC harboring activating EGFR mutations who were treated with gefitinib or erlotinib at our institution between March 2010 and June 2016 were retrospectively reviewed, and the treatment outcomes were evaluated. The overall response rate and median progression-free survival (PFS) were 59.7% and 10.7 months, respectively. The overall response rate was significantly higher in the ex- and nonsmokers than in the current smokers (64.6 vs. 51.1%, p = 0.038). PFS also differed significantly between the current smokers and the ex- and nonsmokers (12.4 vs. 7.4 months, p = 0.016). Multivariate analysis identified smoking history as an independent predictor of PFS and overall survival. The clinical data obtained in this study provide a valuable rationale for considering smoking history as a predictor of the efficacy of EGFR-TKI in NSCLC patients harboring activating EGFR mutations. © 2018 S. Karger AG, Basel.
Winqvist, Maria; Asklid, Anna; Andersson, PO; Karlsson, Karin; Karlsson, Claes; Lauri, Birgitta; Lundin, Jeanette; Mattsson, Mattias; Norin, Stefan; Sandstedt, Anna; Hansson, Lotta; Österborg, Anders
2016-01-01
Ibrutinib, a Bruton’s tyrosine kinase inhibitor is approved for relapsed/refractory and del(17p)/TP53 mutated chronic lymphocytic leukemia. Discrepancies between clinical trials and routine health-care are commonly observed in oncology. Herein we report real-world results for 95 poor prognosis Swedish patients treated with ibrutinib in a compassionate use program. Ninety-five consecutive patients (93 chronic lymphocytic leukemia, 2 small lymphocytic leukemia) were included in the study between May 2014 and May 2015. The median age was 69 years. 63% had del(17p)/TP53 mutation, 65% had Rai stage III/IV, 28% had lymphadenopathy ≥10cm. Patients received ibrutinib 420 mg once daily until progression. At a median follow-up of 10.2 months, the overall response rate was 84% (consistent among subgroups) and 77% remained progression-free. Progression-free survival and overall survival were significantly shorter in patients with del(17p)/TP53 mutation (P=0.017 and P=0.027, log-rank test); no other factor was significant in Cox proportional regression hazards model. Ibrutinib was well tolerated. Hematomas occurred in 46% of patients without any major bleeding. Seven patients had Richter’s transformation. This real-world analysis on consecutive chronic lymphocytic leukemia patients from a well-defined geographical region shows the efficacy and safety of ibrutinib to be similar to that of pivotal trials. Yet, del(17p)/TP53 mutation remains a therapeutic challenge. Since not more than half of our patients would have qualified for the pivotal ibrutinib trial (RESONATE), our study emphasizes that real-world results should be carefully considered in future with regards to new agents and new indications in chronic lymphocytic leukemia. PMID:27198718
Winqvist, Maria; Asklid, Anna; Andersson, P O; Karlsson, Karin; Karlsson, Claes; Lauri, Birgitta; Lundin, Jeanette; Mattsson, Mattias; Norin, Stefan; Sandstedt, Anna; Hansson, Lotta; Österborg, Anders
2016-12-01
Ibrutinib, a Bruton's tyrosine kinase inhibitor is approved for relapsed/refractory and del(17p)/TP53 mutated chronic lymphocytic leukemia. Discrepancies between clinical trials and routine health-care are commonly observed in oncology. Herein we report real-world results for 95 poor prognosis Swedish patients treated with ibrutinib in a compassionate use program. Ninety-five consecutive patients (93 chronic lymphocytic leukemia, 2 small lymphocytic leukemia) were included in the study between May 2014 and May 2015. The median age was 69 years. 63% had del(17p)/TP53 mutation, 65% had Rai stage III/IV, 28% had lymphadenopathy ≥10cm. Patients received ibrutinib 420 mg once daily until progression. At a median follow-up of 10.2 months, the overall response rate was 84% (consistent among subgroups) and 77% remained progression-free. Progression-free survival and overall survival were significantly shorter in patients with del(17p)/TP53 mutation (P=0.017 and P=0.027, log-rank test); no other factor was significant in Cox proportional regression hazards model. Ibrutinib was well tolerated. Hematomas occurred in 46% of patients without any major bleeding. Seven patients had Richter's transformation. This real-world analysis on consecutive chronic lymphocytic leukemia patients from a well-defined geographical region shows the efficacy and safety of ibrutinib to be similar to that of pivotal trials. Yet, del(17p)/TP53 mutation remains a therapeutic challenge. Since not more than half of our patients would have qualified for the pivotal ibrutinib trial (RESONATE), our study emphasizes that real-world results should be carefully considered in future with regards to new agents and new indications in chronic lymphocytic leukemia. Copyright© Ferrata Storti Foundation.
Mutation rate estimation for 15 autosomal STR loci in a large population from Mainland China.
Zhao, Zhuo; Zhang, Jie; Wang, Hua; Liu, Zhi-Peng; Liu, Ming; Zhang, Yuan; Sun, Li; Zhang, Hui
2015-09-01
STR, short tandem repeats, are well known as a type of powerful genetic marker and widely used in studying human population genetics. Compared with the conventional genetic markers, the mutation rate of STR is higher. Additionally, the mutations of STR loci do not lead to genetic inconsistencies between the genotypes of parents and children; therefore, the analysis of STR mutation is more suited to assess the population mutation. In this study, we focused on 15 autosomal STR loci. DNA samples from a total of 42,416 unrelated healthy individuals (19,037 trios) from the population of Mainland China collected between Jan 2012 and May 2014 were successfully investigated. In our study, the allele frequencies, paternal mutation rates, maternal mutation rates and average mutation rates were detected. Furthermore, we also investigated the relationship between paternal ages, maternal ages, area, the time of pregnancy and average mutation rate. We found that the paternal mutation rate was higher than the maternal mutation rate and the paternal, maternal, and average mutation rates had a positive correlation with paternal age, maternal age and the time of pregnancy respectively. Additionally, the average mutation rate of coastal areas was higher than that of inland areas.
Gattelli, Albana; Zimberlin, María N; Meiss, Roberto P; Castilla, Lucio H; Kordon, Edith C
2006-11-01
Mice harboring three mouse mammary tumor virus (MMTV) variants develop pregnancy-dependent (PD) tumors that progress to pregnancy-independent (PI) behavior through successive passages. Herein, we identified 10 predominant insertions in PI transplants from 8 independent tumor lines. These mutations were also detected in small cell populations in the early PD passages. In addition, we identified a new viral insertion upstream of the gene Rspo3, which is overexpressed in three of the eight independent tumor lines and codes for a protein very similar to the recently described protein encoded by Int7. This study suggests that during progression towards hormone independence, clonal expansion of cells with specific mutations might be more relevant than the occurrence of new MMTV insertions.
TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism.
Harley, Margaret E; Murina, Olga; Leitch, Andrea; Higgs, Martin R; Bicknell, Louise S; Yigit, Gökhan; Blackford, Andrew N; Zlatanou, Anastasia; Mackenzie, Karen J; Reddy, Kaalak; Halachev, Mihail; McGlasson, Sarah; Reijns, Martin A M; Fluteau, Adeline; Martin, Carol-Anne; Sabbioneda, Simone; Elcioglu, Nursel H; Altmüller, Janine; Thiele, Holger; Greenhalgh, Lynn; Chessa, Luciana; Maghnie, Mohamad; Salim, Mahmoud; Bober, Michael B; Nürnberg, Peter; Jackson, Stephen P; Hurles, Matthew E; Wollnik, Bernd; Stewart, Grant S; Jackson, Andrew P
2016-01-01
DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.
Diagnostic Challenges in Retinitis Pigmentosa: Genotypic Multiplicity and Phenotypic Variability
Chang, Susie; Vaccarella, Leah; Olatunji, Sunday; Cebulla, Colleen; Christoforidis, John
2011-01-01
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal disorders. Diagnosis can be challenging as more than 40 genes are known to cause non-syndromic RP and phenotypic expression can differ significantly resulting in variations in disease severity, age of onset, rate of progression, and clinical findings. We describe the clinical manifestations of RP, the more commonly known causative gene mutations, and the genotypic-phenotypic correlation of RP. PMID:22131872
Efficacy Outcome Measures for Clinical Trials of USH2A caused by the Common c.2299delG Mutation.
Calzetti, Giacomo; Levy, Richard A; Cideciyan, Artur V; Garafalo, Alexandra V; Roman, Alejandro J; Sumaroka, Alexander; Charng, Jason; Heon, Elise; Jacobson, Samuel G
2018-06-25
To determine the change in vision and retinal structure in patients with the common c.2299delG mutation in the USH2A gene in anticipation of clinical trials of therapy. Retrospective observational case series. Eighteen patients, homozygotes or compound heterozygotes with the c.2299delG mutation in USH2A, were studied with visual acuity, kinetic perimetry, dark- and light-adapted two-color static perimetry, optical coherence tomography (OCT) and autofluorescence (AF) imaging. Serial data were available for at least half of the patients depending on the parameter analyzed. The kinetics of disease progression in this specific molecular form of USH2A differed between the measured parameters. Visual acuity could remain normal for decades. Kinetic and light-adapted static perimetry across the entire visual field had similar rates of decline that were slower than those of rod-based perimetry. Horizontal OCT scans through the macula showed that IS/OS line width had a similar rate of constriction as co-localized AF imaging and cone-based light-adapted sensitivity extent. The rate of constriction of rod-based sensitivity extent across this same region was twice as rapid as that of cones. In patients with the c.2299delG mutation in USH2A, rod photoreceptors are the cells that express disease early and more aggressively than cones. Rod-based vision measurements in central or extracentral-peripheral retinal regions warrant monitoring in order to complete a clinical trial in a timely manner. Copyright © 2018. Published by Elsevier Inc.
Morava, Eva; Kühnisch, Jirko; Drijvers, Jefte M.; Robben, Joris H.; Cremers, Cor; van Setten, Petra; Branten, Amanda; Stumpp, Sabine; de Jong, Alphons; Voesenek, Krysta; Vermeer, Sascha; Heister, Angelien; Claahsen-van der Grinten, Hedi L.; O'Neill, Charles W.; Willemsen, Michèl A.; Lefeber, Dirk; Deen, Peter M. T.; Kornak, Uwe; Kremer, Hannie; Wevers, Ron A.
2011-01-01
Context: Mutations in ANKH cause the highly divergent conditions familial chondrocalcinosis and craniometaphyseal dysplasia. The gene product ANK is supposed to regulate tissue mineralization by transporting pyrophosphate to the extracellular space. Objective: We evaluated several family members of a large consanguineous family with mental retardation, deafness, and ankylosis. We compared their skeletal, metabolic, and serological parameters to that of the autosomal recessive progressive ankylosis (ank) mouse mutant, caused by a loss-of-function mutation in the murine ortholog Ank. Participants: The studied patients had painful small joint soft-tissue calcifications, progressive spondylarthropathy, osteopenia, mild hypophosphatemia, mixed hearing loss, and mental retardation. Results: After mapping the disease gene to 5p15, we identified the novel homozygous ANK missense mutation L244S in all patients. Although L244 is a highly conserved amino acid, the mutated ANK protein was detected at normal levels at the plasma membrane in primary patient fibroblasts. The phenotype was highly congruent with the autosomal recessive progressive ankylosis (ank) mouse mutant. This indicates a loss-of-function effect of the L244S mutation despite normal ANK protein expression. Interestingly, our analyses revealed that the primary step of joint degeneration is fibrosis and mineralization of articular soft tissues. Moreover, heterozygous carriers of the L244S mutation showed mild osteoarthritis without metabolic alterations, pathological calcifications, or central nervous system involvement. Conclusion: Beyond the description of the first human progressive ankylosis phenotype, our results indicate that ANK influences articular soft tissues commonly involved in degenerative joint disorders. Furthermore, this human disorder provides the first direct evidence for a role of ANK in the central nervous system. PMID:20943778
Morava, Eva; Kühnisch, Jirko; Drijvers, Jefte M; Robben, Joris H; Cremers, Cor; van Setten, Petra; Branten, Amanda; Stumpp, Sabine; de Jong, Alphons; Voesenek, Krysta; Vermeer, Sascha; Heister, Angelien; Claahsen-van der Grinten, Hedi L; O'Neill, Charles W; Willemsen, Michèl A; Lefeber, Dirk; Deen, Peter M T; Kornak, Uwe; Kremer, Hannie; Wevers, Ron A
2011-01-01
Mutations in ANKH cause the highly divergent conditions familial chondrocalcinosis and craniometaphyseal dysplasia. The gene product ANK is supposed to regulate tissue mineralization by transporting pyrophosphate to the extracellular space. We evaluated several family members of a large consanguineous family with mental retardation, deafness, and ankylosis. We compared their skeletal, metabolic, and serological parameters to that of the autosomal recessive progressive ankylosis (ank) mouse mutant, caused by a loss-of-function mutation in the murine ortholog Ank. The studied patients had painful small joint soft-tissue calcifications, progressive spondylarthropathy, osteopenia, mild hypophosphatemia, mixed hearing loss, and mental retardation. After mapping the disease gene to 5p15, we identified the novel homozygous ANK missense mutation L244S in all patients. Although L244 is a highly conserved amino acid, the mutated ANK protein was detected at normal levels at the plasma membrane in primary patient fibroblasts. The phenotype was highly congruent with the autosomal recessive progressive ankylosis (ank) mouse mutant. This indicates a loss-of-function effect of the L244S mutation despite normal ANK protein expression. Interestingly, our analyses revealed that the primary step of joint degeneration is fibrosis and mineralization of articular soft tissues. Moreover, heterozygous carriers of the L244S mutation showed mild osteoarthritis without metabolic alterations, pathological calcifications, or central nervous system involvement. Beyond the description of the first human progressive ankylosis phenotype, our results indicate that ANK influences articular soft tissues commonly involved in degenerative joint disorders. Furthermore, this human disorder provides the first direct evidence for a role of ANK in the central nervous system.
Bollinger, Meredith K; Agnew, Amanda S; Mascara, Gerard P
2017-01-01
Osimertinib is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) approved for the treatment of metastatic EGFR T790M mutation-positive non-small cell lung cancer (NSCLC) in patients failing previous TKI therapy. The T790M mutation is an acquired resistance mechanism found in over half of patients with NSCLC progressing on first-generation TKIs. First- and second-generation TKIs do not inhibit the T790M mutation at clinically relevant concentrations. Osimertinib is selective for mutated forms of EGFR, including the TKI-sensitizing mutations L858R and exon 19 deletions, as well as the acquired T790M resistance mutation. In a trial comparing osimertinib to platinum doublet therapy among patients with the T790M mutation progressing on first-line TKI therapy, median progression-free survival was significantly longer in patients receiving osimertinib. Osimertinib has a favorable safety profile compared to platinum-doublet chemotherapy. Common adverse events include diarrhea, skin rash, dry skin, and paronychia; however, because it spares wild-type EGFR, these toxicities appear to occur with less frequency and severity compared to other TKIs. Serious, but rare, adverse events include pneumonitis, interstitial lung disease-like events, QT interval prolongation, and reduced ejection fraction. Osimertinib has the unique ability to distribute readily into brain tissue compared with other TKIs, giving it a potential role in the treatment and/or prevention of CNS metastases; future studies are warranted in this area. An ongoing study evaluating osimertinib versus first-generation TKIs as first-line treatment for patients with EGFR mutation-positive NSCLC may help to define the role of osimertinib as front-line therapy.
Jeske, Yvette W.; Ali, Shamshad; Byron, Sara A; Gao, Feng; Mannel, Robert S; Ghebre, Rahel G; DiSilvestro, Paul A; Lele, Shashikant B; Pearl, Michael L; Schmidt, Amy P; Lankes, Heather A; Ramirez, Nilsa C; Rasty, Golnar; Powell, Matthew; Goodfellow, Paul J; Pollock, Pamela M
2017-01-01
Purpose Activating FGFR2 mutations have been identified in ~10% of endometrioid endometrial cancers (ECs). We have previously reported that mutations in FGFR2 are associated with shorter disease free survival (DFS) in stage I/II EC patients. Here we sought to validate the prognostic importance of FGFR2 mutations in a large, multi-institutional patient cohort. Methods Tumors were collected as part of the GOG 210 clinical trial “Molecular Staging of Endometrial Cancer” where samples underwent rigorous pathological review and had more than three years of detailed clinical follow-up. DNA was extracted and four exons encompassing the FGFR2 mutation hotspots were amplified and sequenced. Results Mutations were identified in 144 of the 973 endometrioid ECs, of which 125 were classified as known activating mutations and were included in the statistical analyses. Consistent with FGFR2 having an association with more aggressive disease, FGFR2 mutations were more common in patients initially diagnosed with stage III/IV EC (29/170;17%) versus stage I/II EC (96/803; 12%; p = 0.07, Chi-square test). Additionally, incidence of progression (progressed, recurred or died from disease) was significantly more prevalent (32/125, 26%) among patients with FGFR2 mutation versus wild type (120/848, 14%; p < 0.001, Chi-square test). Using Cox regression analysis adjusting for known prognostic factors, patients with FGFR2 mutation had significantly (p < 0.025) shorter progression-free survival (PFS; HR 1.903; 95% CI 1.177–3.076) and endometrial cancer specific survival (ECS; HR 2.013; 95% CI 1.096–3.696). Conclusion In summary, our findings suggest that clinical trials testing the efficacy of FGFR inhibitors in the adjuvant setting to prevent recurrence and death are warranted. PMID:28314589
Frequency-dependent selection can lead to evolution of high mutation rates.
Rosenbloom, Daniel I S; Allen, Benjamin
2014-05-01
Theoretical and experimental studies have shown that high mutation rates can be advantageous, especially in novel or fluctuating environments. Here we examine how frequency-dependent competition may lead to fluctuations in trait frequencies that exert upward selective pressure on mutation rates. We use a mathematical model to show that cyclical trait dynamics generated by "rock-paper-scissors" competition can cause the mutation rate in a population to converge to a high evolutionarily stable mutation rate, reflecting a trade-off between generating novelty and reproducing past success. Introducing recombination lowers the evolutionarily stable mutation rate but allows stable coexistence between mutation rates above and below the evolutionarily stable rate. Even considering strong mutational load and ignoring the costs of faithful replication, evolution favors positive mutation rates if the selective advantage of prevailing in competition exceeds the ratio of recombining to nonrecombining offspring. We discuss a number of genomic mechanisms that may meet our theoretical requirements for the adaptive evolution of mutation. Overall, our results suggest that local mutation rates may be higher on genes influencing cyclical competition and that global mutation rates in asexual species may be higher in populations subject to strong cyclical competition.
Wu, Weiqing; Liu, Yang; Zhou, Qinghua; Wang, Qin; Luo, Fuwei; Xu, Zhiyong; Geng, Qian; Li, Peining; Zhang, Hui Z; Xie, Jiansheng
2017-07-01
Fanconi Anemia (FA) is a rare genetically heterogeneous disorder with 17 known complement groups caused by mutations in different genes. FA complementation group L (FA-L, OMIM #608111) occurred in 0.2% of all FA and only eight mutant variants in the FANCL gene were documented. Phenotype and genotype correlation in FANCL associated FA is still obscure. Here we describe a Chinese girl with FA-L caused by a novel homozygous mutation c.822_823insCTTTCAGG (p.Asp275LeufsX13) in the FANCL gene. The patient's clinical course was typical for FA with progression to bone marrow failure, and death from acute myelomonocytic leukemia (AML-M4) at 9 years of age. Mutation analysis also detected a likely somatic c.2608G > A (p.Gly870Ser) in the SETBP1 gene. Consistent copy number losses of 7q and 18p and gains of 3q and 21q and accumulated non-clonal single cell chromosomal abnormalities were detected in blood leukocytes as her FA progressed. This is the first Chinese FA-L case caused by a novel FANCL mutation. The somatic gene mutation and copy number aberrations could be used to monitor disease progression and the clinical findings provide further information for genotype-phenotype correlation for FA-L. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Mutation rates among RNA viruses
Drake, John W.; Holland, John J.
1999-01-01
The rate of spontaneous mutation is a key parameter in modeling the genetic structure and evolution of populations. The impact of the accumulated load of mutations and the consequences of increasing the mutation rate are important in assessing the genetic health of populations. Mutation frequencies are among the more directly measurable population parameters, although the information needed to convert them into mutation rates is often lacking. A previous analysis of mutation rates in RNA viruses (specifically in riboviruses rather than retroviruses) was constrained by the quality and quantity of available measurements and by the lack of a specific theoretical framework for converting mutation frequencies into mutation rates in this group of organisms. Here, we describe a simple relation between ribovirus mutation frequencies and mutation rates, apply it to the best (albeit far from satisfactory) available data, and observe a central value for the mutation rate per genome per replication of μg ≈ 0.76. (The rate per round of cell infection is twice this value or about 1.5.) This value is so large, and ribovirus genomes are so informationally dense, that even a modest increase extinguishes the population. PMID:10570172
Lim, Yu Jin; Chang, Ji Hyun; Kim, Hak-Jae; Keam, Bhumsuk; Kim, Tae Min; Kim, Dong-Wan; Paeng, Jin Chul; Kang, Keon Wook; Chung, June-Key; Jeon, Yoon Kyung; Chung, Doo Hyun; Wu, Hong-Gyun
2017-05-01
Although previous in vitro data have suggested a more radio-sensitive nature of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) cell lines, the clinical behavior according to the EGFR mutational status has not been well-established. In this study, we performed a comparative outcome analysis of EGFR-mutant and wild-type locally advanced NSCLC with chemoradiotherapy (CRT). A total of 102 patients with stage III nonsquamous NSCLC undergoing primary CRT were identified. Clinicopathologic characteristics, including the degree of glucose uptake, were evaluated. Failure patterns considering the radiation field and survival outcomes were compared according to the EGFR mutational status. Pre- and post-CRT maximum standardized uptake values were significantly lower in EGFR-mutant tumors (P = .010 and .018, respectively). The overall response rate was higher in the EGFR-mutant group compared with the wild-type (89% vs. 64%, respectively; P = .023). The 3-year overall survival rate was better with the genetic alteration (68.0% vs. 47.4%, P = .046), but the statistical significance did not remain in multivariate analysis (hazard ratio, 0.68; 95% confidence interval, 0.30-1.55). Considering the tumor progression inside or outside the radiation field, the EGFR-mutant group showed longer in-field time to progression (P = .002), even after adjusting for other related baseline variables (hazard ratio, 0.27; 95% confidence interval, 0.11-0.71). The differential metabolic activity, failure patterns, and prognosis suggest the distinct nature of the EGFR-mutant tumors. EGFR mutational status needs to be considered for more precise curative-intent treatment strategies of locally advanced nonsquamous NSCLC. Copyright © 2017 Elsevier Inc. All rights reserved.
Disease progression in C9orf72 mutation carriers.
Floeter, Mary K; Traynor, Bryan J; Farren, Jennifer; Braun, Laura E; Tierney, Michael; Wiggs, Edythe A; Wu, Tianxia
2017-07-18
To assess changes in 3 clinical measures, the Revised ALS Functional Rating Scale (ALSFRS-R), letter fluency, and Frontal Behavioral Inventory (FBI), over time in C9orf72 mutation carriers (C9+) with varied clinical phenotypes. Thirty-four unrelated participants with mutations in C9orf72 were enrolled in a prospective natural history study. Participants were classified as asymptomatic, amyotrophic lateral sclerosis (ALS), ALS-familial frontotemporal dementia (FTD), or behavioral-variant FTD by clinical diagnostic criteria. Diagnostic cognitive and motor tests were repeated at 6 and 18 months. The ALSFRS-R, letter fluency, and FBI were administered at baseline and follow-up visits at 6, 12, and 18 months. The clinical diagnosis of most patients did not change over the follow-up. ALSFRS-R scores correlated with measures of motor function. Letter fluency correlated with FBI and cognitive tests. ALSFRS-R, letter fluency, and FBI differed among the C9+ diagnostic subgroups at enrollment and worsened over follow-up in symptomatic patients, with different slopes among the subgroups. Most patients survived to the 6-month time point after enrollment. Survival of C9+ patients with ALS and C9+ patients with ALS-FTD declined over the 12- and 18-month follow-up. The pattern of scores of the ALSFRS-R, letter fluency, and FBI distinguished between ALS, ALS-FTD, and FTD presentations of C9orf72 mutation carriers and asymptomatic carriers. Longitudinal changes in these measures occurred with disease progression in a manner consistent with presenting phenotype. © 2017 American Academy of Neurology.
Wang, Ming-Dong; Little, Julian; Gomes, James; Cashman, Neil R; Krewski, Daniel
2017-07-01
Although amyotrophic lateral sclerosis (ALS) was identified as a neurological condition 150 years ago, risk factors related to the onset and progression of ALS remain largely unknown. Monogenic mutations in over 30 genes are associated with about 10% of ALS cases. The age at onset of ALS and disease types has been found to influence ALS progression. The present study was designed to identify additional putative risk factors associated with the onset and progression of ALS using systematic review and meta-analysis of observational studies. Risk factors that may be associated with ALS include: 1) genetic mutations, including the intermediate CAG repeat expansion in ATXN2; 2) previous exposure to heavy metals such as lead and mercury; 3) previous exposure to organic chemicals, such as pesticides and solvents; 4) history of electric shock; 5) history of physical trauma/injury (including head trauma/injury); 6) smoking (a weak risk factor for ALS in women); and 6) other risk factors, such as participating in professional sports, lower body mass index, lower educational attainment, or occupations requiring repetitive/strenuous work, military service, exposure to Beta-N-methylamino-l-alanin and viral infections. Risk factors that may be associated with ALS progression rate include: 1) nutritional status, including vitamin D deficiency; 2) comorbidities; 3) ethnicity and genetic factors; 4) lack of supportive care; and 4) smoking. The extent to which these associations may be causal is discussed, with further research recommended to strengthen the evidence on which determinations of causality may be based. Copyright © 2016. Published by Elsevier B.V.
Genetic alterations in seborrheic keratoses
Heidenreich, Barbara; Denisova, Evygenia; Rachakonda, Sivaramakrishna; Sanmartin, Onofre; Dereani, Timo; Hosen, Ismail; Nagore, Eduardo; Kumar, Rajiv
2017-01-01
Seborrheic keratoses are common benign epidermal lesions that are associated with increased age and sun-exposure. Those lesions despite harboring multiple somatic alterations in contrast to malignant tumors appear to be genetically stable. In order to investigate and characterize the presence of recurrent mutations, we performed exome sequencing on DNA from one seborrheic keratosis lesion and corresponding blood cells from the same patients with follow up investigation of alterations identified by exome sequencing in 24 additional lesions from as many patients. In addition we investigated alterations in all lesions at specific genes loci that included FGFR3, PIK3CA, HRAS, BRAF, CDKN2A and TERT and DHPH3 promoters. The exome sequencing data indicated three mutations per Mb of the targeted sequence. The mutational pattern depicted typical UV signature with majority of alterations being C>T and CC>TT base changes at dipyrimidinic sites. The FGFR3 mutations were the most frequent, detected in 12 of 25 (48%) lesions, followed by the PIK3CA (32%), TERT promoter (24%) and DPH3 promoter mutations (24%). TERT promoter mutations associated with increased age and were present mainly in the lesions excised from head and neck. Three lesions also carried alterations in CDKN2A. FGFR3, TERT and DPH3 expression did not correlate with mutations in the respective genes and promoters; however, increased FGFR3 transcript levels were associated with increased FOXN1 levels, a suggested positive feedback loop that stalls malignant progression. Thus, in this study we report overall mutation rate through exome sequencing and show the most frequent mutations seborrheic keratosis. PMID:28410231
Ringman, John M; Liang, Li-Jung; Zhou, Yan; Vangala, Sitaram; Teng, Edmond; Kremen, Sarah; Wharton, David; Goate, Alison; Marcus, Daniel S; Farlow, Martin; Ghetti, Bernardino; McDade, Eric; Masters, Colin L; Mayeux, Richard P; Rossor, Martin; Salloway, Stephen; Schofield, Peter R; Cummings, Jeffrey L; Buckles, Virginia; Bateman, Randall; Morris, John C
2015-04-01
Prior studies indicate psychiatric symptoms such as depression, apathy and anxiety are risk factors for or prodromal symptoms of incipient Alzheimer's disease. The study of persons at 50% risk for inheriting autosomal dominant Alzheimer's disease mutations allows characterization of these symptoms before progressive decline in a population destined to develop illness. We sought to characterize early behavioural features in carriers of autosomal dominant Alzheimer's disease mutations. Two hundred and sixty-one persons unaware of their mutation status enrolled in the Dominantly Inherited Alzheimer Network, a study of persons with or at-risk for autosomal dominant Alzheimer's disease, were evaluated with the Neuropsychiatric Inventory-Questionnaire, the 15-item Geriatric Depression Scale and the Clinical Dementia Rating Scale (CDR). Ninety-seven asymptomatic (CDR = 0), 25 mildly symptomatic (CDR = 0.5), and 33 overtly affected (CDR > 0.5) autosomal dominant Alzheimer's disease mutation carriers were compared to 106 non-carriers with regard to frequency of behavioural symptoms on the Neuropsychiatric Inventory-Questionnaire and severity of depressive symptoms on the Geriatric Depression Scale using generalized linear regression models with appropriate distributions and link functions. Results from the adjusted analyses indicated that depressive symptoms on the Neuropsychiatric Inventory-Questionnaire were less common in cognitively asymptomatic mutation carriers than in non-carriers (5% versus 17%, P = 0.014) and the odds of experiencing at least one behavioural sign in cognitively asymptomatic mutation carriers was lower than in non-carriers (odds ratio = 0.50, 95% confidence interval: 0.26-0.98, P = 0.042). Depression (56% versus 17%, P = 0.0003), apathy (40% versus 4%, P < 0.0001), disinhibition (16% versus 2%, P = 0.009), irritability (48% versus 9%, P = 0.0001), sleep changes (28% versus 7%, P = 0.003), and agitation (24% versus 6%, P = 0.008) were more common and the degree of self-rated depression more severe (mean Geriatric Depression Scale score of 2.8 versus 1.4, P = 0.006) in mildly symptomatic mutation carriers relative to non-carriers. Anxiety, appetite changes, delusions, and repetitive motor activity were additionally more common in overtly impaired mutation carriers. Similar to studies of late-onset Alzheimer's disease, we demonstrated increased rates of depression, apathy, and other behavioural symptoms in the mildly symptomatic, prodromal phase of autosomal dominant Alzheimer's disease that increased with disease severity. We did not identify any increased psychopathology in mutation carriers over non-carriers during the presymptomatic stage, suggesting these symptoms result when a threshold of neurodegeneration is reached rather than as life-long qualities. Unexpectedly, we found lower rates of depressive symptoms in cognitively asymptomatic mutation carriers. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wang, Jun; Wang, Baocheng; Chu, Huili; Yao, Yunfeng
2016-01-01
Identifying activating EGFR mutations is a useful predictive strategy that helps select a population of advanced non-small-cell lung cancer (NSCLC) patients for treatment with EGFR tyrosine kinase inhibitors (TKIs). Patients with sensitizing EGFR mutations (predominantly an in-frame deletion in exon 19 and an L858R substitution) are highly responsive to first-generation EGFR TKIs, such as gefitinib and erlotinib, and show improved progression-free survival without serious side effects. However, all patients with activating EGFR mutations who are initially responsive to EGFR TKIs eventually develop acquired resistance after a median progression-free survival of 10–16 months, followed by disease progression. Moreover, ~20%–30% of NSCLC patients have no objective tumor regression on initial EGFR TKI treatment, although they harbor an activating EGFR mutation. These patients represent an NSCLC subgroup that is defined as having intrinsic or primary resistance to EGFR TKIs. Different mechanisms of acquired EGFR TKI resistance have been identified, and several novel compounds have been developed to reverse acquired resistance, but little is known about EGFR TKI intrinsic resistance. In this review, we summarize the latest findings involving mechanisms of intrinsic resistance to EGFR TKIs in advanced NSCLC with activating EGFR mutations and present possible therapeutic strategies to overcome this resistance. PMID:27382309
Experimental evolution and the dynamics of genomic mutation rate modifiers.
Raynes, Y; Sniegowski, P D
2014-11-01
Because genes that affect mutation rates are themselves subject to mutation, mutation rates can be influenced by natural selection and other evolutionary forces. The population genetics of mutation rate modifier alleles has been a subject of theoretical interest for many decades. Here, we review experimental contributions to our understanding of mutation rate modifier dynamics. Numerous evolution experiments have shown that mutator alleles (modifiers that elevate the genomic mutation rate) can readily rise to high frequencies via genetic hitchhiking in non-recombining microbial populations. Whereas these results certainly provide an explanatory framework for observations of sporadically high mutation rates in pathogenic microbes and in cancer lineages, it is nonetheless true that most natural populations have very low mutation rates. This raises the interesting question of how mutator hitchhiking is suppressed or its phenotypic effect reversed in natural populations. Very little experimental work has addressed this question; with this in mind, we identify some promising areas for future experimental investigation.
Apatinib in the treatment of advanced lung adenocarcinoma with KRAS mutation.
Zeng, Da-Xiong; Wang, Chang-Guo; Huang, Jian-An; Jiang, Jun-Hong
2017-01-01
Activating KRAS mutations in lung adenocarcinoma are characterized with treatment resistance and poor prognosis. As a small molecule inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase, apatinib has been proven successful in advanced gastric cancer and breast cancer. In this study, we show the result of apatinib as salvage treatment in lung adenocarcinoma patients with KRAS mutation. Four advanced lung adenocarcinoma patients with KRAS mutation were orally administered apatinib (250 mg/d) after second-line treatment. One patient showed progressive disease, while 3 patients showed stable disease response to apatinib, with a median progression-free survival (PFS) of 3.8 months (1.5-5.5 months). The main toxicities were hoarseness and hemoptysis, which were manageable. Therefore, apatinib might be an optional choice for advanced lung adenocarcinoma patients with KRAS mutation in post second-line treatment.
Luebeck, E Georg; Moolgavkar, Suresh H; Liu, Amy Y; Boynton, Alanna; Ulrich, Cornelia M
2008-06-01
Folate is essential for nucleotide synthesis, DNA replication, and methyl group supply. Low-folate status has been associated with increased risks of several cancer types, suggesting a chemopreventive role of folate. However, recent findings on giving folic acid to patients with a history of colorectal polyps raise concerns about the efficacy and safety of folate supplementation and the long-term health effects of folate fortification. Results suggest that undetected precursor lesions may progress under folic acid supplementation, consistent with the role of folate role in nucleotide synthesis and cell proliferation. To better understand the possible trade-offs between the protective effects due to decreased mutation rates and possibly concomitant detrimental effects due to increased cell proliferation of folic acid, we used a biologically based mathematical model of colorectal carcinogenesis. We predict changes in cancer risk based on timing of treatment start and the potential effect of folic acid on cell proliferation and mutation rates. Changes in colorectal cancer risk in response to folic acid supplementation are likely a complex function of treatment start, duration, and effect on cell proliferation and mutations rates. Predicted colorectal cancer incidence rates under supplementation are mostly higher than rates without folic acid supplementation unless supplementation is initiated early in life (before age 20 years). To the extent to which this model predicts reality, it indicates that the effect on cancer risk when starting folic acid supplementation late in life is small, yet mostly detrimental. Experimental studies are needed to provide direct evidence for this dual role of folate in colorectal cancer and to validate and improve the model predictions.
Sefrioui, David; Perdrix, Anne; Sarafan-Vasseur, Nasrin; Dolfus, Claire; Dujon, Antoine; Picquenot, Jean-Michel; Delacour, Julien; Cornic, Marie; Bohers, Elodie; Leheurteur, Marianne; Rigal, Olivier; Tennevet, Isabelle; Thery, Jean-Christophe; Alexandru, Cristina; Guillemet, Cécile; Moldovan, Cristian; Veyret, Corinne; Frebourg, Thierry; Di Fiore, Frédéric; Clatot, Florian
2015-11-15
Acquired estrogen receptor gene (ESR1) mutations have been recently reported as a marker of resistance to aromatase inhibitors in hormone receptor positive metastatic breast cancer. We retrospectively considered seven patients treated for metastatic breast cancer with available samples from the primary tumor before any treatment, cryopreserved metastasis removed during progression and concomitant plasmas. All these seven patients were in disease progression after previous exposure to aromatase inhibitors for at least 6 months, and were assessed for ESR1 mutations detection in tumor and circulating DNA. For these patients, Sanger sequencing identified four metastases with clear ESR1 mutation and one possible, whereas digital PCR identified six mutated metastases. Then, under blind conditions and using digital PCR, corresponding circulating ESR1 mutations were successfully detected in four of these six metastatic breast cancer patients. Moreover, in two patients with serial blood samples following treatments exposure, the monitoring of circulating ESR1 mutations clearly predicted disease evolution. In the context of high interest for ESR1 mutations, our results highlight that these acquired recurrent mutations may be tracked in circulating tumor DNA and may be of clinical relevance for metastatic breast cancer patient monitoring. © 2015 UICC.
Osimertinib As First-Line Treatment of EGFR Mutation-Positive Advanced Non-Small-Cell Lung Cancer.
Ramalingam, Suresh S; Yang, James C-H; Lee, Chee Khoon; Kurata, Takayasu; Kim, Dong-Wan; John, Thomas; Nogami, Naoyuki; Ohe, Yuichiro; Mann, Helen; Rukazenkov, Yuri; Ghiorghiu, Serban; Stetson, Daniel; Markovets, Aleksandra; Barrett, J Carl; Thress, Kenneth S; Jänne, Pasi A
2018-03-20
Purpose The AURA study ( ClinicalTrials.gov identifier: NCT01802632) included two cohorts of treatment-naïve patients to examine clinical activity and safety of osimertinib (an epidermal growth factor receptor [EGFR] -tyrosine kinase inhibitor selective for EGFR-tyrosine kinase inhibitor sensitizing [ EGFRm] and EGFR T790M resistance mutations) as first-line treatment of EGFR-mutated advanced non-small-cell lung cancer (NSCLC). Patients and Methods Sixty treatment-naïve patients with locally advanced or metastatic EGFRm NSCLC received osimertinib 80 or 160 mg once daily (30 patients per cohort). End points included investigator-assessed objective response rate (ORR), progression-free survival (PFS), and safety evaluation. Plasma samples were collected at or after patients experienced disease progression, as defined by Response Evaluation Criteria in Solid Tumors (RECIST), to investigate osimertinib resistance mechanisms. Results At data cutoff (November 1, 2016), median follow-up was 19.1 months. Overall ORR was 67% (95% CI, 47% to 83%) in the 80-mg group, 87% (95% CI, 69% to 96%) in the 160-mg group, and 77% (95% CI, 64% to 87%) across doses. Median PFS time was 22.1 months (95% CI, 13.7 to 30.2 months) in the 80-mg group, 19.3 months (95% CI, 13.7 to 26.0 months) in the 160-mg group, and 20.5 months (95% CI, 15.0 to 26.1 months) across doses. Of 38 patients with postprogression plasma samples, 50% had no detectable circulating tumor DNA. Nine of 19 patients had putative resistance mechanisms, including amplification of MET (n = 1); amplification of EGFR and KRAS (n = 1); MEK1, KRAS, or PIK3CA mutation (n = 1 each); EGFR C797S mutation (n = 2); JAK2 mutation (n = 1); and HER2 exon 20 insertion (n = 1). Acquired EGFR T790M was not detected. Conclusion Osimertinib demonstrated a robust ORR and prolonged PFS in treatment-naïve patients with EGFRm advanced NSCLC. There was no evidence of acquired EGFR T790M mutation in postprogression plasma samples.
DOE R&D Accomplishments Database
Muller, H. J.
1960-05-31
Progress is reported in studies on the effects of radiation on the incidence of mutations in Drosophila. Results are summarized and the findings are interpreted. A list is included of papers published during the period. (C.H.)
Timing, rates and spectra of human germline mutation.
Rahbari, Raheleh; Wuster, Arthur; Lindsay, Sarah J; Hardwick, Robert J; Alexandrov, Ludmil B; Turki, Saeed Al; Dominiczak, Anna; Morris, Andrew; Porteous, David; Smith, Blair; Stratton, Michael R; Hurles, Matthew E
2016-02-01
Germline mutations are a driving force behind genome evolution and genetic disease. We investigated genome-wide mutation rates and spectra in multi-sibling families. The mutation rate increased with paternal age in all families, but the number of additional mutations per year differed by more than twofold between families. Meta-analysis of 6,570 mutations showed that germline methylation influences mutation rates. In contrast to somatic mutations, we found remarkable consistency in germline mutation spectra between the sexes and at different paternal ages. In parental germ line, 3.8% of mutations were mosaic, resulting in 1.3% of mutations being shared by siblings. The number of these shared mutations varied significantly between families. Our data suggest that the mutation rate per cell division is higher during both early embryogenesis and differentiation of primordial germ cells but is reduced substantially during post-pubertal spermatogenesis. These findings have important consequences for the recurrence risks of disorders caused by de novo mutations.
Clock-like mutational processes in human somatic cells
Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; Sale, Julian E.; Campbell, Peter J.; Nik-Zainal, Serena; Stratton, Michael R.
2016-01-01
During the course of a lifetime somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell’s genome. Some processes generate mutations throughout life at a constant rate in all individuals and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutation rates in different tissues. However, their mutation rates are not correlated indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This study provides the first survey of clock-like mutational processes operative in human somatic cells. PMID:26551669
Takata, Minoru; Murata, Hiroshi; Saida, Toshiaki
2010-02-01
The Clark model for melanoma progression emphasizes a series of histopathological changes beginning from benign melanocytic nevus to melanoma via dysplastic nevus. Several models of the genetic basis of melanoma development and progression are based on this Clark's multi-step model, and predict that the acquisition of a BRAF mutation can be a founder event in melanocytic neoplasia. However, our recent investigations have challenged this view, showing the polyclonality of BRAF mutations in melanocytic nevi. Furthermore, it is suggested that many melanomas, including acral and mucosal melanomas, arise de novo, not from melanocytic nevus. While mutations of the BRAF gene are frequent in melanomas on non-chronic sun damaged skin which are prevalent in Caucasians, acral and mucosal melanomas harbor mutations of the KIT gene as well as the amplifications of cyclin D1 or cyclin-dependent kinase 4 gene. Amplifications of the cyclin D1 gene are detected in normal-looking 'field melanocytes', which represent a latent progression phase of acral melanoma that precedes the stage of atypical melanocyte proliferation in the epidermis. Based on these observations, we propose an alternative genetic progression model for melanoma.
Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D.; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario
2016-01-01
The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma. Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines. We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK. Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%. Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression. Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants. In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression. PMID:27009842
Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario
2016-04-19
The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma.Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines.We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK.Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%.Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression.Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants.In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression.
Progressive myoclonic epilepsy as an adult-onset manifestation of Leigh syndrome due to m.14487T>C.
Dermaut, B; Seneca, S; Dom, L; Smets, K; Ceulemans, L; Smet, J; De Paepe, B; Tousseyn, S; Weckhuysen, S; Gewillig, M; Pals, P; Parizel, P; De Bleecker, J L; Boon, P; De Meirleir, L; De Jonghe, P; Van Coster, R; Van Paesschen, W; Santens, P
2010-01-01
m.14487T>C, a missense mutation (p.M63V) affecting the ND6 subunit of complex I of the mitochondrial respiratory chain, has been reported in isolated childhood cases with Leigh syndrome (LS) and progressive dystonia. Adult-onset phenotypes have not been reported. To determine the clinical-neurological spectrum and associated mutation loads in an extended m.14487T>C family. A genotype-phenotype correlation study of a Belgian five-generation family with 12 affected family members segregating m.14487T>C was carried out. Clinical and mutation load data were available for nine family members. Biochemical analysis of the respiratory chain was performed in three muscle biopsies. Heteroplasmic m.14487T>C levels (36-52% in leucocytes, 97-99% in muscle) were found in patients with progressive myoclonic epilepsy (PME) and dystonia or progressive hypokinetic-rigid syndrome. Patients with infantile LS were homoplasmic (99-100% in leucocytes, 100% in muscle). We found lower mutation loads (between 8 and 35% in blood) in adult patients with clinical features including migraine with aura, Leber hereditary optic neuropathy, sensorineural hearing loss and diabetes mellitus type 2. Despite homoplasmic mutation loads, complex I catalytic activity was only moderately decreased in muscle tissue. m.14487T>C resulted in a broad spectrum of phenotypes in our family. Depending on the mutation load, it caused severe encephalopathies ranging from infantile LS to adult-onset PME with dystonia. This is the first report of PME as an important neurological manifestation of an isolated mitochondrial complex I defect.
KOHYAMA, Moeko; KITAGAWA, Masato; KAMISHINA, Hiroaki; KOBATAKE, Yui; YABUKI, Akira; SAWA, Mariko; KAKITA, Shusaku; YAMATO, Osamu
2016-01-01
Canine degenerative myelopathy (DM) is an adult-onset, progressive neurodegenerative disease that occurs in multiple dog breeds. A DM-associated mutation of the canine superoxide dismutase 1 (SOD1) gene, designated as c.118G>A (p.E40K), has been implicated as one of pathogenetic determinants of the disease in many breeds, but it remains to be determined whether the c.118G>A mutation is responsible for development or progression of DM in Collies. Previously, a Rough Collie was diagnosed clinically and histopathologically as having DM in Japan, suggesting the possibility that the Collie breed may be predisposed to DM due to the high frequency of c.118G>A in Japan. In this study, accumulation and aggregate formation of SOD1 protein were retrospectively demonstrated in the spinal cord of the DM-affected dog by immunohistochemical analysis. Furthermore, a molecular epidemiological survey revealed a high carrier rate (27.6%) and mutant allele frequency (0.138) of c.118G>A in a population of Collies in Japan, suggesting that the Collie breed may be predisposed to DM associated with c.118G>A, and the prevention of DM in Collies in Japan should be addressed through epidemiological and genetic testing strategies. PMID:27941298
Alexander, Helen K.; Mayer, Stephanie I.; Bonhoeffer, Sebastian
2017-01-01
Abstract Mutation rate is a crucial evolutionary parameter that has typically been treated as a constant in population genetic analyses. However, the propensity to mutate is likely to vary among co-existing individuals within a population, due to genetic polymorphisms, heterogeneous environmental influences, and random physiological fluctuations. We review the evidence for mutation rate heterogeneity and explore its consequences by extending classic population genetic models to allow an arbitrary distribution of mutation rate among individuals, either with or without inheritance. With this general new framework, we rigorously establish the effects of heterogeneity at various evolutionary timescales. In a single generation, variation of mutation rate about the mean increases the probability of producing zero or many simultaneous mutations on a genome. Over multiple generations of mutation and selection, heterogeneity accelerates the appearance of both deleterious and beneficial multi-point mutants. At mutation-selection balance, higher-order mutant frequencies are likewise boosted, while lower-order mutants exhibit subtler effects; nonetheless, population mean fitness is always enhanced. We quantify the dependencies on moments of the mutation rate distribution and selection coefficients, and clarify the role of mutation rate inheritance. While typical methods of estimating mutation rate will recover only the population mean, analyses assuming mutation rate is fixed to this mean could underestimate the potential for multi-locus adaptation, including medically relevant evolution in pathogenic and cancerous populations. We discuss the potential to empirically parameterize mutation rate distributions, which have to date hardly been quantified. PMID:27836985
Gattelli, Albana; Zimberlin, María N.; Meiss, Roberto P.; Castilla, Lucio H.; Kordon, Edith C.
2006-01-01
Mice harboring three mouse mammary tumor virus (MMTV) variants develop pregnancy-dependent (PD) tumors that progress to pregnancy-independent (PI) behavior through successive passages. Herein, we identified 10 predominant insertions in PI transplants from 8 independent tumor lines. These mutations were also detected in small cell populations in the early PD passages. In addition, we identified a new viral insertion upstream of the gene Rspo3, which is overexpressed in three of the eight independent tumor lines and codes for a protein very similar to the recently described protein encoded by Int7. This study suggests that during progression towards hormone independence, clonal expansion of cells with specific mutations might be more relevant than the occurrence of new MMTV insertions. PMID:16971449
TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism
Leitch, Andrea; Higgs, Martin R.; Bicknell, Louise S.; Yigit, Gökhan; Blackford, Andrew N.; Zlatanou, Anastasia; Mackenzie, Karen J.; Reddy, Kaalak; Halachev, Mihail; McGlasson, Sarah; Reijns, Martin A. M.; Fluteau, Adeline; Martin, Carol-Anne; Sabbioneda, Simone; Elcioglu, Nursel H.; Altmüller, Janine; Thiele, Holger; Greenhalgh, Lynn; Chessa, Luciana; Maghnie, Mohamad; Salim, Mahmoud; Bober, Michael B.; Nürnberg, Peter; Jackson, Stephen P.; Hurles, Matthew E.; Wollnik, Bernd; Stewart, Grant S.; Jackson, Andrew P.
2015-01-01
DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism/Seckel syndrome. We establish that TRAIP relocalizes to sites of DNA damage where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to UV irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a novel component of the DNA damage response to replication-blocking DNA lesions. PMID:26595769
Mutant p53 expression in fallopian tube epithelium drives cell migration.
Quartuccio, Suzanne M; Karthikeyan, Subbulakshmi; Eddie, Sharon L; Lantvit, Daniel D; Ó hAinmhire, Eoghainín; Modi, Dimple A; Wei, Jian-Jun; Burdette, Joanna E
2015-10-01
Ovarian cancer is the fifth leading cause of cancer death among US women. Evidence supports the hypothesis that high-grade serous ovarian cancers (HGSC) may originate in the distal end of the fallopian tube. Although a heterogeneous disease, 96% of HGSC contain mutations in p53. In addition, the "p53 signature," or overexpression of p53 protein (usually associated with mutation), is a potential precursor lesion of fallopian tube derived HGSC suggesting an essential role for p53 mutation in early serous tumorigenesis. To further clarify p53-mutation dependent effects on cells, murine oviductal epithelial cells (MOE) were stably transfected with a construct encoding for the R273H DNA binding domain mutation in p53, the most common mutation in HGSC. Mutation in p53 was not sufficient to transform MOE cells but did significantly increase cell migration. A similar p53 mutation in murine ovarian surface epithelium (MOSE), another potential progenitor cell for serous cancer, was not sufficient to transform the cells nor change migration suggesting tissue specific effects of p53 mutation. Microarray data confirmed expression changes of pro-migratory genes in p53(R273H) MOE compared to parental cells, which could be reversed by suppressing Slug expression. Combining p53(R273H) with KRAS(G12V) activation caused transformation of MOE into high-grade sarcomatoid carcinoma when xenografted into nude mice. Elucidating the specific role of p53(R273H) in the fallopian tube will improve understanding of changes at the earliest stage of transformation. This information can help develop chemopreventative strategies to prevent the accumulation of additional mutations and reverse progression of the "p53 signature" thereby, improving survival rates. © 2015 UICC.
Lee, Ji Yun; Qing, Xu; Xiumin, Wei; Yali, Bai; Chi, Sangah; Bak, So Hyeon; Lee, Ho Yun; Sun, Jong-Mu; Lee, Se-Hoon; Ahn, Jin Seok; Cho, Eun Kyung; Kim, Dong-Wan; Kim, Hye Ryun; Min, Young Joo; Jung, Sin-Ho; Park, Keunchil; Mao, Mao; Ahn, Myung-Ju
2016-02-09
We hypothesized that plasma-based EGFR mutation analysis for NSCLC may be feasible for monitoring treatment response to EGFR TKIs and also predict drug resistance.Clinically relevant mutations including exon 19 deletion (ex19del), L858R and T790M were analyzed using droplet digital PCR (ddPCR) in longitudinally collected plasma samples (n = 367) from 81 NSCLC patients treated with EGFR TKI. Of a total 58 baseline cell-free DNA (cfDNA) samples available for ddPCR analysis, 43 (74.1%) had the same mutation in the matched tumors (clinical sensitivity: 70.8% [17/24] for L858R and 76.5% [26/34] for ex19del). The concordance rates of plasma with tissue-based results of EGFR mutations were 87.9% for L858R and 86.2% for ex19del. All 40 patients who were detected EGFR mutations at baseline showed a dramatic decrease of mutant copies (>50%) in plasma during the first two months after treatment. Median progression-free survival (PFS) was 10.1 months for patients with undetectable EGFR v 6.3 months for detectable EGFR mutations in blood after two-month treatment (HR 3.88, 95% CI 1.48-10.19, P = 0.006). We observed emerging resistance with early detection of T790M as a secondary mutation in 14 (28.6%) of 49 patients. Plasma-based EGFR mutation analysis using ddPCR can monitor treatment response to EGFR TKIs and can lead to early detection of EGFR TKIs resistance. Further studies confirming clinical implications of EGFR mutation in plasma are warranted to guide optimal therapeutic strategies upon knowledge of treatment response and resistance.
Clock-like mutational processes in human somatic cells
Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; ...
2015-11-09
During the course of a lifetime, somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell's genome. Some processes generate mutations throughout life at a constant rate in all individuals, and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutationmore » rates in different tissues. However, their mutation rates are not correlated, indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This paper provides the first survey of clock-like mutational processes operating in human somatic cells.« less
Rajendran, Barani Kumar; Deng, Chu-Xia
2017-01-01
Breast cancer is the second most frequently occurring form of cancer and is also the second most lethal cancer in women worldwide. A genetic mutation is one of the key factors that alter multiple cellular regulatory pathways and drive breast cancer initiation and progression yet nature of these cancer drivers remains elusive. In this article, we have reviewed various computational perspectives and algorithms for exploring breast cancer driver mutation genes. Using both frequency based and mutational exclusivity based approaches, we identified 195 driver genes and shortlisted 63 of them as candidate drivers for breast cancer using various computational approaches. Finally, we conducted network and pathway analysis to explore their functions in breast tumorigenesis including tumor initiation, progression, and metastasis. PMID:28477017
Identification of Genes Required for the Survival of Prostate Cancer Cells
2011-06-01
metastatic cancers (3). In contrast to localized prostate tumors, metastatic prostate cancer has only a 32% 5-year survival rate (4). For sustained...of the brain (34) and is p53-, p16-, and pRb- mutated (31). The PC-3 adenocarcinoma cell line was obtained from a grade IV androgen-independent...receptor-gamma ( PPAR -gamma) (52), both of which have been previously implicated in prostate cancer disease progression. 10 A. B
WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimura, Akari, E-mail: akari_yo@stu.musashino-u.ac.jp; Kobayashi, Yume; Tada, Shusuke
2014-09-12
Highlights: • The UV sensitivity of POLH{sup −/−} cells was suppressed by disruption of WRNIP1. • In WRNIP1{sup −/−/−}/POLH{sup −/−} cells, mutation frequencies and SCE after irradiation reduced. • WRNIP1 defect recovered rate of fork progression after irradiation in POLH{sup −/−} cells. • WRNIP1 functions upstream of Polη in the translesion DNA synthesis pathway. - Abstract: WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzedmore » the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH{sup −/−}) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation.« less
Klempner, Samuel J; Mehta, Pareen; Schrock, Alexa B; Ali, Siraj M; Ou, Sai-Hong Ignatius
2017-01-01
Acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) is a universal event and limits clinical efficacy. The third-generation EGFR inhibitor osimertinib is active in EGFR-mutant/T790M positive non-small-cell lung cancer. Mechanisms of acquired resistance are emerging, and here we describe a cis -oriented solvent-front EGFR G796S mutation as the resistance mechanism observed in a progression biopsy and circulating tumor DNA (ctDNA) from a patient with initial response followed by progression on osimertinib. This is one of the earliest reports of a sole solvent-front tertiary EGFR mutation as a resistance mechanism to osimertinib. Our case suggests a monoclonal resistance mechanism. We review the importance of the solvent-front residues across TKIs and describe known osimertinib resistance mechanisms. We observe that nearly all clinical osimertinib-resistant tertiary EGFR mutations are oriented in cis with EGFR T790M. This case highlights the importance of mutations affecting EGFR kinase domains and supports the feasibility of broad panel ctDNA assays for detection of novel acquired resistance and tumor heterogeneity in routine clinical care.
[Efficacy of icotinib for advanced non-small cell lung cancer patients with EGFR status identified].
Song, Zhengbo; Yu, Xinmin; Cai, Jufen; Shao, Lan; Lin, Baochai; He, Chunxiao; Zhang, Beibei; Zhang, Yiping
2013-03-01
As the first epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) in China, icotinib shows promising anticancer activity in vitro and vivo. The phase III clinical study (ICOGEN) showed that icotinib has a good efficacy and tolerability in Chinese patients with advanced non-small cell lung cancer (NSCLC) compared with gefitinib. This retrospective study aims to evaluate the efficacy and tolerability of icotinib monotherapy for advanced NSCLC patients with EGFR mutation and wild-type patients in our hospital. Patients with advanced NSCLC who were treated with icotinib in Zhejiang Cancer Hospital were retrospectively analyzed from August, 2011 to August, 2012. Survival was estimated using Kaplan-Meier analysis and Log-rank tests. The clinical data of 49 patients (13 with wild-type and 36 with EGFR mutation) with NSCLC were enrolled in the current study. The patients' overall objective response rate (ORR) was 58.3% and the disease control rate (DCR) in 36 EGFR mutation patients was 88.9%. The ORR was 7.7% and DCR was 53.8% in the wild-type patients. Median progression-free survival (PFS) with icotinib treatment in EGFR mutation patients was 9.5 months and 2.2 months in wild-type patients (P<0.001). Nineteen patients with EGFR mutation received icotinib as first-line and 17 in further-line treatment. The PFS was 9.5 months in the first-line and 8.5 months for second-line or further-line patients (P=0.41). Median overall survival (OS) in EGFR mutation patients was not reached, but was 12.6 months in wild-type patients. Most of the drug-related adverse events were mild (grade I or II) and reversible with no grade IV toxicity. Icotinib monotherapy showed significant antitumor activity in advanced NSCLC EGFR mutation patients. The toxicity was well tolerated and acceptable.
Santos, Cristina; Azuara, Daniel; Garcia-Carbonero, Rocio; Alfonso, Pilar Garcia; Carrato, Alfredo; Elez, Mª Elena; Gomez, Auxiliadora; Losa, Ferran; Montagut, Clara; Massuti, Bartomeu; Navarro, Valenti; Varela, Mar; Lopez-Doriga, Adriana; Moreno, Victor; Valladares, Manuel; Manzano, Jose Luis; Vieitez, Jose Maria; Aranda, Enrique; Sanjuan, Xavier; Tabernero, Josep; Capella, Gabriel; Salazar, Ramon
2017-09-01
In metastatic colorectal cancer (mCRC), recent studies have shown the importance to accurately quantify low-abundance mutations of the RAS pathway because anti-EGFR therapy may depend on certain mutation thresholds. We aimed to evaluate the added predictive value of an extended RAS panel testing using two commercial assays and a highly sensitive and quantitative digital PCR (dPCR). Tumor samples from 583 mCRC patients treated with anti-EGFR- ( n = 255) or bevacizumab- ( n = 328) based therapies from several clinical trials and retrospective series from the TTD/RTICC Spanish network were analyzed by cobas, therascreen , and dPCR. We evaluated concordance between techniques using the Cohen kappa index. Response rate, progression-free survival (PFS), and overall survival (OS) were correlated to the mutational status and the mutant allele fraction (MAF). Concordance between techniques was high when analyzing RAS and BRAF (Cohen kappa index around 0.75). We observed an inverse correlation between MAF and response in the anti-EGFR cohort ( P < 0.001). Likelihood ratio analysis showed that a fraction of 1% or higher of any mutated alleles offered the best predictive value. PFS and OS were significantly longer in RAS / BRAF wild-type patients, independently of the technique. However, the predictability of both PFS and OS were higher when we considered a threshold of 1% in the RAS scenario (HR = 1.53; CI 95%, 1.12-2.09 for PFS, and HR = 1.9; CI 95%, 1.33-2.72 for OS). Although the rate of mutations observed among techniques is different, RAS and BRAF mutational analysis improved prediction of response to anti-EGFR therapy. Additionally, dPCR with a threshold of 1% outperformed the other platforms. Mol Cancer Ther; 16(9); 1999-2007. ©2017 AACR . ©2017 American Association for Cancer Research.
Parent-progeny sequencing indicates higher mutation rates in heterozygotes.
Yang, Sihai; Wang, Long; Huang, Ju; Zhang, Xiaohui; Yuan, Yang; Chen, Jian-Qun; Hurst, Laurence D; Tian, Dacheng
2015-07-23
Mutation rates vary within genomes, but the causes of this remain unclear. As many prior inferences rely on methods that assume an absence of selection, potentially leading to artefactual results, we call mutation events directly using a parent-offspring sequencing strategy focusing on Arabidopsis and using rice and honey bee for replication. Here we show that mutation rates are higher in heterozygotes and in proximity to crossover events. A correlation between recombination rate and intraspecific diversity is in part owing to a higher mutation rate in domains of high recombination/diversity. Implicating diversity per se as a cause, we find an ∼3.5-fold higher mutation rate in heterozygotes than in homozygotes, with mutations occurring in closer proximity to heterozygous sites than expected by chance. In a genome that is a patchwork of heterozygous and homozygous domains, mutations occur disproportionately more often in the heterozygous domains. If segregating mutations predispose to a higher local mutation rate, clusters of genes dominantly under purifying selection (more commonly homozygous) and under balancing selection (more commonly heterozygous), might have low and high mutation rates, respectively. Our results are consistent with this, there being a ten times higher mutation rate in pathogen resistance genes, expected to be under positive or balancing selection. Consequently, we do not necessarily need to evoke extremely weak selection on the mutation rate to explain why mutational hot and cold spots might correspond to regions under positive/balancing and purifying selection, respectively.
Mutations, mutation rates, and evolution at the hypervariable VNTR loci of Yersinia pestis.
Vogler, Amy J; Keys, Christine E; Allender, Christopher; Bailey, Ira; Girard, Jessica; Pearson, Talima; Smith, Kimothy L; Wagner, David M; Keim, Paul
2007-03-01
VNTRs are able to discriminate among closely related isolates of recently emerged clonal pathogens, including Yersinia pestis the etiologic agent of plague, because of their great diversity. Diversity is driven largely by mutation but little is known about VNTR mutation rates, factors affecting mutation rates, or the mutational mechanisms. The molecular epidemiological utility of VNTRs will be greatly enhanced when this foundational knowledge is available. Here, we measure mutation rates for 43 VNTR loci in Y. pestis using an in vitro generated population encompassing approximately 96,000 generations. We estimate the combined 43-locus rate and individual rates for 14 loci. A comparison of Y. pestis and Escherichia coli O157:H7 VNTR mutation rates and products revealed a similar relationship between diversity and mutation rate in these two species. Likewise, the relationship between repeat copy number and mutation rate is nearly identical between these species, suggesting a generalized relationship that may be applicable to other species. The single- versus multiple-repeat mutation ratios and the insertion versus deletion mutation ratios were also similar, providing support for a general model for the mutations associated with VNTRs. Finally, we use two small sets of Y. pestis isolates to show how this general model and our estimated mutation rates can be used to compare alternate phylogenies, and to evaluate the significance of genotype matches, near-matches, and mismatches found in empirical comparisons with a reference database.
Allouchery, Violette; Beaussire, Ludivine; Perdrix, Anne; Sefrioui, David; Augusto, Laetitia; Guillemet, Cécile; Sarafan-Vasseur, Nasrin; Di Fiore, Frédéric; Clatot, Florian
2018-05-16
Detection of circulating ESR1 mutations is associated with acquired resistance to aromatase inhibitor (AI) in metastatic breast cancer. Until now, the presence of circulating ESR1 mutations at the end of adjuvant treatment by AI in early breast cancer had never been clearly established. In this context, the aim of the present study was to evaluate the circulating ESR1 mutation frequency at the end of adjuvant treatment and after relapse. This monocentric retrospective study was based on available stored plasmas and included all early breast cancer patients who completed at least 2 years of AI adjuvant treatment and experienced a documented relapse after the end of their treatment. Circulating ESR1 mutations (D538G, Y537S/N/C) were assessed by droplet digital PCR in plasma samples taken at the end of adjuvant treatment, at time of relapse and at time of progression under first line metastatic treatment. A total of 42 patients were included, with a median adjuvant AI exposure of 60 months (range 41-85). No circulating ESR1 mutation was detectable at the end of AI adjuvant therapy. At first relapse, 5.3% of the patients (2/38) had a detectable circulating ESR1 mutation. At time of progression on first-line metastatic treatment, 33% of the patients (7/21) under AI had a detectable circulating ESR1 mutation compared to none of the patients under chemotherapy (0/10). The two patients with a detectable ESR1 mutation at relapse were treated by AI and had an increase of their variant allele fraction at time of progression on first-line metastatic treatment. Circulating ESR1 mutation detection at the end of AI-based adjuvant treatment is not clinically useful. Circulating ESR1 mutation could be assessed as soon as first relapse to guide interventional studies.
Spontaneous Mutation Rate in the Smallest Photosynthetic Eukaryotes
Krasovec, Marc; Eyre-Walker, Adam; Sanchez-Ferandin, Sophie
2017-01-01
Abstract Mutation is the ultimate source of genetic variation, and knowledge of mutation rates is fundamental for our understanding of all evolutionary processes. High throughput sequencing of mutation accumulation lines has provided genome wide spontaneous mutation rates in a dozen model species, but estimates from nonmodel organisms from much of the diversity of life are very limited. Here, we report mutation rates in four haploid marine bacterial-sized photosynthetic eukaryotic algae; Bathycoccus prasinos, Ostreococcus tauri, Ostreococcus mediterraneus, and Micromonas pusilla. The spontaneous mutation rate between species varies from μ = 4.4 × 10−10 to 9.8 × 10−10 mutations per nucleotide per generation. Within genomes, there is a two-fold increase of the mutation rate in intergenic regions, consistent with an optimization of mismatch and transcription-coupled DNA repair in coding sequences. Additionally, we show that deviation from the equilibrium GC content increases the mutation rate by ∼2% to ∼12% because of a GC bias in coding sequences. More generally, the difference between the observed and equilibrium GC content of genomes explains some of the inter-specific variation in mutation rates. PMID:28379581
Giotopoulos, George; van der Weyden, Louise; Osaki, Hikari; Rust, Alistair G.; Gallipoli, Paolo; Meduri, Eshwar; Horton, Sarah J.; Chan, Wai-In; Foster, Donna; Prinjha, Rab K.; Pimanda, John E.; Tenen, Daniel G.; Vassiliou, George S.; Koschmieder, Steffen; Adams, David J.
2015-01-01
The introduction of highly selective ABL-tyrosine kinase inhibitors (TKIs) has revolutionized therapy for chronic myeloid leukemia (CML). However, TKIs are only efficacious in the chronic phase of the disease and effective therapies for TKI-refractory CML, or after progression to blast crisis (BC), are lacking. Whereas the chronic phase of CML is dependent on BCR-ABL, additional mutations are required for progression to BC. However, the identity of these mutations and the pathways they affect are poorly understood, hampering our ability to identify therapeutic targets and improve outcomes. Here, we describe a novel mouse model that allows identification of mechanisms of BC progression in an unbiased and tractable manner, using transposon-based insertional mutagenesis on the background of chronic phase CML. Our BC model is the first to faithfully recapitulate the phenotype, cellular and molecular biology of human CML progression. We report a heterogeneous and unique pattern of insertions identifying known and novel candidate genes and demonstrate that these pathways drive disease progression and provide potential targets for novel therapeutic strategies. Our model greatly informs the biology of CML progression and provides a potent resource for the development of candidate therapies to improve the dismal outcomes in this highly aggressive disease. PMID:26304963
Mutation rate evolution in replicator dynamics.
Allen, Benjamin; Rosenbloom, Daniel I Scholes
2012-11-01
The mutation rate of an organism is itself evolvable. In stable environments, if faithful replication is costless, theory predicts that mutation rates will evolve to zero. However, positive mutation rates can evolve in novel or fluctuating environments, as analytical and empirical studies have shown. Previous work on this question has focused on environments that fluctuate independently of the evolving population. Here we consider fluctuations that arise from frequency-dependent selection in the evolving population itself. We investigate how the dynamics of competing traits can induce selective pressure on the rates of mutation between these traits. To address this question, we introduce a theoretical framework combining replicator dynamics and adaptive dynamics. We suppose that changes in mutation rates are rare, compared to changes in the traits under direct selection, so that the expected evolutionary trajectories of mutation rates can be obtained from analysis of pairwise competition between strains of different rates. Depending on the nature of frequency-dependent trait dynamics, we demonstrate three possible outcomes of this competition. First, if trait frequencies are at a mutation-selection equilibrium, lower mutation rates can displace higher ones. Second, if trait dynamics converge to a heteroclinic cycle-arising, for example, from "rock-paper-scissors" interactions-mutator strains succeed against non-mutators. Third, in cases where selection alone maintains all traits at positive frequencies, zero and nonzero mutation rates can coexist indefinitely. Our second result suggests that relatively high mutation rates may be observed for traits subject to cyclical frequency-dependent dynamics.
Gonzalez-Moron, Dolores; Bueri, Jose; Kauffman, Marcelo Andres
2013-09-07
We described a case of a patient with autosomal dominant progressive external ophthalmoplegia (PEO) who presented with the acute onset dysphagia, quadriparesis, ptosis and respiratory insufficiency following a cardiac procedure and mimicking a myasthenic crisis. A pathogenic mutation in the C10orf2 (PEO1) gene was confirmed. The unusual presentation of our patient contributes to expand the clinical phenotype of PEO1 mutations and reinforces the need to consider mitochondrial myopathy as differential diagnosis of myasthenia gravis even in the case of acute onset symptoms.
A Novel Frameshift Mutation of the USH2A Gene in a Korean Patient with Usher Syndrome Type II.
Boo, Sung Hyun; Song, Min-Jung; Kim, Hee-Jin; Cho, Yang-Sun; Chu, Hosuk; Ko, Moon-Hee; Chung, Won-Ho; Kim, Jong-Won; Hong, Sung Hwa
2013-03-01
Usher syndrome type II (USH2) is the most common form of Usher syndrome, characterized by moderate to severe hearing impairment and progressive visual loss due to retinitis pigmentosa. It has been shown that mutations in the USH2A gene are responsible for USH2. The authors herein describe a 34-year-old Korean woman with the typical clinical manifestation of USH2; she had bilateral hearing disturbance and progressive visual deterioration, without vestibular dysfunction. Molecular genetic study of the USH2A gene revealed a novel frameshift mutation (c.2310delA; Glu771LysfsX17). She was heterozygous for this mutation, and no other mutation was found in USH2A, suggesting the possibility of an intronic or large genomic rearrangement mutation. To the best of our knowledge, this is the first report of a genetically confirmed case of USH2 in Korea. More investigations are needed to delineate genotype-phenotype correlations and ethnicity-specific genetic background of Usher syndrome.
The Report of Three Rare Cases of the Niemann-pick Disease in Birjand, South Khorasan, Eastern Iran.
Noroozi Asl, Samaneh; Vakili, Rahim; Ghaemi, Nosrat; Eshraghi, Peyman
2017-01-01
Niemann-Pick disease type C (NP-C) is a rare neurovisceral and irreversible disease leading to premature death and disabling neurological signs. This autosomal recessive disease with incidence rate of 1:120000 is caused by mutations in either the NPC1 or the NPC2 gene, which leads to accumulation of cholesterol in body tissues especially brain and progressive neurological symptoms. NP-C is characterized by nonspecific visceral, neurological and psychiatric manifestations in infants. The neurological involvement is typically proceeded by systemic signs (cholestatic jaundice in the neonatal period or isolated spleno-or hepatosplenomegaly in infancy or childhood). Early detection of NPC is important so that therapy with miglustat can delay onset of neurological symptoms and prolong survival. We describe here three infants from Birjand, South Khorasan, eastern Iran in 2016 with splenomegaly and different neurological signs that diagnosis was confirmed by genetic study. In all of them, NPC-509 was pathologically increased. They also had an unreported homozygous mutation (c.1415T>C, p.Leu472Pro) in exon 9 of the NPC1 gene. We found unreported homozygous mutation in NPC gene. Knowing this mutation is significant to our people. Genotype-phenotype correlations for this specific mutation needs to be further studied.
Rotthier, Annelies; Auer-Grumbach, Michaela; Janssens, Katrien; Baets, Jonathan; Penno, Anke; Almeida-Souza, Leonardo; Van Hoof, Kim; Jacobs, An; De Vriendt, Els; Schlotter-Weigel, Beate; Löscher, Wolfgang; Vondráček, Petr; Seeman, Pavel; De Jonghe, Peter; Van Dijck, Patrick; Jordanova, Albena; Hornemann, Thorsten; Timmerman, Vincent
2010-01-01
Hereditary sensory and autonomic neuropathy type I (HSAN-I) is an axonal peripheral neuropathy associated with progressive distal sensory loss and severe ulcerations. Mutations in the first subunit of the enzyme serine palmitoyltransferase (SPT) have been associated with HSAN-I. The SPT enzyme catalyzes the first and rate-limiting step in the de novo sphingolipid synthesis pathway. However, different studies suggest the implication of other genes in the pathology of HSAN-I. Therefore, we screened the two other known subunits of SPT, SPTLC2 and SPTLC3, in a cohort of 78 HSAN patients. No mutations were found in SPTLC3, but we identified three heterozygous missense mutations in the SPTLC2 subunit of SPT in four families presenting with a typical HSAN-I phenotype. We demonstrate that these mutations result in a partial to complete loss of SPT activity in vitro and in vivo. Moreover, they cause the accumulation of the atypical and neurotoxic sphingoid metabolite 1-deoxy-sphinganine. Our findings extend the genetic heterogeneity in HSAN-I and enlarge the group of HSAN neuropathies associated with SPT defects. We further show that HSAN-I is consistently associated with an increased formation of the neurotoxic 1-deoxysphinganine, suggesting a common pathomechanism for HSAN-I. PMID:20920666
Su, Chenghao; Lin, Yong; Mao, Qianguo; Wu, Daitze; Zhu, Lina; Najera, Isabel; Garcia-Alcalde, Fernando; Niu, Jianjun
2016-11-07
Mannose binding lectin (MBL) plays important role in the innate immunity of human. Mutations in the MBL2 gene can significantly change the serum level of MBL, and consequently alter the susceptibility and progression of infectious disease. However, the association between the MBL2 profile and the HBV mutation and quasispecies complexity has not yet been reported. Our approach includes the study of the MBL2 gene genotype as well as ultra-deep sequencing of the HBV viruses obtained from the plasma of 50 treatment naïve patients with chronic HBV infection. We found that the liver function was better among patients within the high MBL2 group with respect to those within the medium/low MBL2 group. Likewise, the number of mutations in the HBV X gene as well as the viral quasispecies complexity were significantly higher in medium/low MBL2 production group. Nucleotide substitution rates were also higher within the medium/low MBL2 production group in all positions described to have an influence in liver cancer development, except for A1499G. In this work we show that the MBL2 profile may have an impact on the HBV X gene mutations as well as on viral quasispecies complexity.
Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra
Shewaramani, Sonal; Finn, Thomas J.; Kassen, Rees; Rainey, Paul B.
2017-01-01
Oxidative stress is a major cause of mutation but little is known about how growth in the absence of oxygen impacts the rate and spectrum of mutations. We employed long-term mutation accumulation experiments to directly measure the rates and spectra of spontaneous mutation events in Escherichia coli populations propagated under aerobic and anaerobic conditions. To detect mutations, whole genome sequencing was coupled with methods of analysis sufficient to identify a broad range of mutational classes, including structural variants (SVs) generated by movement of repetitive elements. The anaerobically grown populations displayed a mutation rate nearly twice that of the aerobic populations, showed distinct asymmetric mutational strand biases, and greater insertion element activity. Consistent with mutation rate and spectra observations, genes for transposition and recombination repair associated with SVs were up-regulated during anaerobic growth. Together, these results define differences in mutational spectra affecting the evolution of facultative anaerobes. PMID:28103245
Effect of repeat copy number on variable-number tandem repeat mutations in Escherichia coli O157:H7.
Vogler, Amy J; Keys, Christine; Nemoto, Yoshimi; Colman, Rebecca E; Jay, Zack; Keim, Paul
2006-06-01
Variable-number tandem repeat (VNTR) loci have shown a remarkable ability to discriminate among isolates of the recently emerged clonal pathogen Escherichia coli O157:H7, making them a very useful molecular epidemiological tool. However, little is known about the rates at which these sequences mutate, the factors that affect mutation rates, or the mechanisms by which mutations occur at these loci. Here, we measure mutation rates for 28 VNTR loci and investigate the effects of repeat copy number and mismatch repair on mutation rate using in vitro-generated populations for 10 E. coli O157:H7 strains. We find single-locus rates as high as 7.0 x 10(-4) mutations/generation and a combined 28-locus rate of 6.4 x 10(-4) mutations/generation. We observed single- and multirepeat mutations that were consistent with a slipped-strand mispairing mutation model, as well as a smaller number of large repeat copy number mutations that were consistent with recombination-mediated events. Repeat copy number within an array was strongly correlated with mutation rate both at the most mutable locus, O157-10 (r2= 0.565, P = 0.0196), and across all mutating loci. The combined locus model was significant whether locus O157-10 was included (r2= 0.833, P < 0.0001) or excluded (r2= 0.452, P < 0.0001) from the analysis. Deficient mismatch repair did not affect mutation rate at any of the 28 VNTRs with repeat unit sizes of >5 bp, although a poly(G) homomeric tract was destabilized in the mutS strain. Finally, we describe a general model for VNTR mutations that encompasses insertions and deletions, single- and multiple-repeat mutations, and their relative frequencies based upon our empirical mutation rate data.
Claerhout, Sofie; Vandenbosch, Michiel; Nivelle, Kelly; Gruyters, Leen; Peeters, Anke; Larmuseau, Maarten H D; Decorte, Ronny
2018-05-01
Knowledge of Y-chromosomal short tandem repeat (Y-STR) mutation rates is essential to determine the most recent common ancestor (MRCA) in familial searching or genealogy research. Up to now, locus-specific mutation rates have been extensively examined especially for commercially available forensic Y-STRs, while haplogroup specific mutation rates have not yet been investigated in detail. Through 450 patrilineally related namesakes distributed over 212 deep-rooting genealogies, the individual mutation rates of 42 Y-STR loci were determined, including 27 forensic Y-STR loci from the Yfiler ® Plus kit and 15 additional Y-STR loci (DYS388, DYS426, DYS442, DYS447, DYS454, DYS455, DYS459a/b, DYS549, DYS607, DYS643, DYS724a/b and YCAIIa/b). At least 726 mutations were observed over 148,596 meiosis and individual Y-STR mutation rates varied from 2.83 × 10 -4 to 1.86 × 10 -2 . The mutation rate was significantly correlated with the average allele size, the complexity of the repeat motif sequence and the age of the father. Significant differences in average Y-STR mutations rates were observed when haplogroup 'I & J' (4.03 × 10 -3 mutations/generation) was compared to 'R1b' (5.35 × 10 -3 mutations/generation) and to the overall mutation rate (5.03 × 10 -3 mutations/generation). A difference in allele size distribution was identified as the only cause for these haplogroup specific mutation rates. The haplogroup specific mutation rates were also present within the commercially available Y-STR kits (Yfiler ® , PowerPlex ® Y23 System and Yfiler ® Plus). This observation has consequences for applications where an average Y-STR mutation rate is used, e.g. tMRCA estimations in familial searching and genealogy research. Copyright © 2018 Elsevier B.V. All rights reserved.
Improving patient outcomes to targeted therapies in melanoma.
Eroglu, Zeynep; Smalley, Keiran S M; Sondak, Vernon K
2016-06-01
The arrival of targeted therapies has led to significant improvements in clinical outcomes for patients with BRAFV600 mutated advanced melanoma over the past five years. In several clinical trials, BRAF and MEK inhibitors have shown improvement in progression free and overall survival, along with much higher tumor response rates in comparison to chemotherapy, with the combination of these drugs superior to monotherapy. These agents are also being tested in earlier-stage patients, in addition to alternative dosing regimens and in combinations with other therapeutics. Efforts are also ongoing to expand the success found with targeted therapies to other subtypes of melanoma, including NRAS and c-kit mutated melanomas, uveal melanomas, and BRAF/NRAS wild type melanomas. Expert Commentary: We aim to provide an overview of clinical outcomes with targeted therapies in melanoma patients.
Germline BRCA mutation in male carriers-ripe for precision oncology?
Leão, Ricardo Romão Nazário; Price, Aryeh Joshua; James Hamilton, Robert
2018-04-01
Prostate cancer (PC) is one of the known heritable cancers with individual variations attributed to genetic factors. BRCA1 and BRCA2 are tumour suppressor genes with crucial roles in repairing DNA and thereby maintaining genomic integrity. Germline BRCA mutations predispose to multiple familial tumour types including PC. We performed a Pubmed database search along with review of reference lists from prominent articles to capture papers exploring the association between BRCA mtuations and prostate cancer risk and prognosis. Articles were retrieved until May 2017 and filtered for relevance, and publication type. We explored familial PC genetics; discussed the discovery and magnitude of the association between BRCA mutations and PC risk and outcome; examined implications of factoring BRCA mutations into PC screening; and discussed the rationale for chemoprevention in this high-risk population. We confirmed that BRCA1/2 mutations confer an up to 4.5-fold and 8.3-fold increased risk of PC, respectively. BRCA2 mutations are associated with an increased risk of high-grade disease, progression to metastatic castration-resistant disease, and 5-year cancer-specific survival rates of 50 to 60%. Despite the growing body of research on DNA repair genes, deeper analysis is needed to understand the aetiological role of germline BRCA mutations in the natural history of PC. There is a need for awareness to screen for this marker of PC risk. There is similarly an opportunity for structured PC screening programs for BRCA mutation carriers. Finally, further research is required to identify potential chemopreventive strategies for this high-risk subgroup.
Mason, Emily F; Hornick, Jason L
2016-12-01
Gastrointestinal stromal tumors (GISTs) that lack kinase mutations often show loss of function of the succinate dehydrogenase (SDH) complex, due to germline mutation or promoter hypermethylation. SDH-deficient GISTs are exclusive to the stomach and have a multinodular architecture. It has been suggested that conventional risk stratification criteria may not predict outcome for this group of tumors, although data are limited. Here, we report the clinical, histologic, and genetic findings from a large cohort of 76 SDH-deficient GISTs diagnosed from 2005 to 2015, identified on the basis of histologic features or family history (45 female/31 male; mean age at diagnosis 32 y; range 11 to 71 y; 10 patients 50 y of age or above). Immunohistochemistry for SDHB and SDHA showed loss of SDHB in all cases and loss of SDHA in 28 (37%) tumors. Tumor size ranged from 1.9 to 22.5 cm; the primary tumor was multifocal in 29%. Mitotic rate ranged from 1 to 80 per 5 mm (median 5.5). Lymph node metastases were found at primary resection in 14 (18%) patients. Twenty-four patients (32%) had distant metastases at presentation, and 52 of 70 patients (74%) with follow-up developed distant metastases, most often to the liver, but also bone, lungs, breast, and brain. Applying conventional criteria (size and mitotic rate), 60% to 82% of patients with tumors ranging from very low risk to high risk for progressive disease developed distant metastases, regardless of the category. Carney-Stratakis syndrome and Carney triad were diagnosed in 6 and 8 patients, respectively. Of 35 patients tested, 26 harbored SDH mutations (11 SDHA, 8 SDHB, 6 SDHC, 1 SDHD). Follow-up data available for 70 patients ranged from 1 month to 39.3 years: 20 patients had no evidence of disease (mean 6.1 y), 32 were alive with metastases (mean 10.9 y), and 18 died of disease (mean 7.0 y after diagnosis). In summary, SDH-deficient GISTs account for approximately 8% of gastric GISTs and are associated with a high rate of distant metastasis, regardless of conventional risk category. Many affected patients have germline SDH mutations (most often SDHA). Identification of SDH-deficient GISTs is critical for prognostication and genetic counseling.
Ness, Rob W.; Morgan, Andrew D.; Vasanthakrishnan, Radhakrishnan B.; Colegrave, Nick; Keightley, Peter D.
2015-01-01
Describing the process of spontaneous mutation is fundamental for understanding the genetic basis of disease, the threat posed by declining population size in conservation biology, and much of evolutionary biology. Directly studying spontaneous mutation has been difficult, however, because new mutations are rare. Mutation accumulation (MA) experiments overcome this by allowing mutations to build up over many generations in the near absence of natural selection. Here, we sequenced the genomes of 85 MA lines derived from six genetically diverse strains of the green alga Chlamydomonas reinhardtii. We identified 6843 new mutations, more than any other study of spontaneous mutation. We observed sevenfold variation in the mutation rate among strains and that mutator genotypes arose, increasing the mutation rate approximately eightfold in some replicates. We also found evidence for fine-scale heterogeneity in the mutation rate, with certain sequence motifs mutating at much higher rates, and clusters of multiple mutations occurring at closely linked sites. There was little evidence, however, for mutation rate heterogeneity between chromosomes or over large genomic regions of 200 kbp. We generated a predictive model of the mutability of sites based on their genomic properties, including local GC content, gene expression level, and local sequence context. Our model accurately predicted the average mutation rate and natural levels of genetic diversity of sites across the genome. Notably, trinucleotides vary 17-fold in rate between the most and least mutable sites. Our results uncover a rich heterogeneity in the process of spontaneous mutation both among individuals and across the genome. PMID:26260971
Caso, Francesca; Agosta, Federica; Magnani, Giuseppe; Galantucci, Sebastiano; Spinelli, Edoardo G; Galimberti, Daniela; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo
2014-07-15
Little is known about the longitudinal changes of brain damage in patients with sporadic nonfluent/agrammatic variant of primary progressive aphasia (nfvPPA) and in progranulin (GRN) mutation carriers. This study reports the clinical and MRI longitudinal data of a patient with nfvPPA carrying GRN Cys157LysfsX97 mutation (GRN+). Voxel-based morphometry, tensor-based morphometry and diffusion tensor MRI were applied to evaluate gray matter (GM) and white matter (WM) changes over three years. The prominent clinical feature was motor speech impairment associated with only mild agrammatism. MRI demonstrated a progressive and severe GM atrophy of inferior fronto-insular-temporo-parietal regions with focal damage to frontotemporal and frontoparietal WM connections. This is the first report of longitudinal MRI data in a nfvPPA- GRN+ patient and this report offers new insights into the pathophysiology of the disease. Copyright © 2014 Elsevier B.V. All rights reserved.
The Novel Mouse Mutation Oblivion Inactivates the PMCA2 Pump and Causes Progressive Hearing Loss
de Angelis, Martin Hrabé; Fuchs, Helmut; Lim, Dmitry; Ortolano, Saida; Ingham, Neil J.; Brini, Marisa; Carafoli, Ernesto; Mammano, Fabio; Steel, Karen P.
2008-01-01
Progressive hearing loss is common in the human population, but we have few clues to the molecular basis. Mouse mutants with progressive hearing loss offer valuable insights, and ENU (N-ethyl-N-nitrosourea) mutagenesis is a useful way of generating models. We have characterised a new ENU-induced mouse mutant, Oblivion (allele symbol Obl), showing semi-dominant inheritance of hearing impairment. Obl/+ mutants showed increasing hearing impairment from post-natal day (P)20 to P90, and loss of auditory function was followed by a corresponding base to apex progression of hair cell degeneration. Obl/Obl mutants were small, showed severe vestibular dysfunction by 2 weeks of age, and were completely deaf from birth; sensory hair cells were completely degenerate in the basal turn of the cochlea, although hair cells appeared normal in the apex. We mapped the mutation to Chromosome 6. Mutation analysis of Atp2b2 showed a missense mutation (2630C→T) in exon 15, causing a serine to phenylalanine substitution (S877F) in transmembrane domain 6 of the PMCA2 pump, the resident Ca2+ pump of hair cell stereocilia. Transmembrane domain mutations in these pumps generally are believed to be incompatible with normal targeting of the protein to the plasma membrane. However, analyses of hair cells in cultured utricular maculae of Obl/Obl mice and of the mutant Obl pump in model cells showed that the protein was correctly targeted to the plasma membrane. Biochemical and biophysical characterisation showed that the pump had lost a significant portion of its non-stimulated Ca2+ exporting ability. These findings can explain the progressive loss of auditory function, and indicate the limits in our ability to predict mechanism from sequence alone. PMID:18974863
Genetic Progression of High Grade Prostatic Intraepithelial Neoplasia to Prostate Cancer.
Jung, Seung-Hyun; Shin, Sun; Kim, Min Sung; Baek, In-Pyo; Lee, Ji Youl; Lee, Sung Hak; Kim, Tae-Min; Lee, Sug Hyung; Chung, Yeun-Jun
2016-05-01
Although high grade prostatic intraepithelial neoplasia (HGPIN) is considered a neoplastic lesion that precedes prostate cancer (PCA), the genomic structures of HGPIN remain unknown. Identification of the genomic landscape of HGPIN and the genomic differences between HGPIN and PCA that may drive the progression to PCA. We analyzed 20 regions of paired HGPIN and PCA from six patients using whole-exome sequencing and array-comparative genomic hybridization. Somatic mutation and copy number alteration (CNA) profiles of paired HGPIN and PCA were measured and compared. The number of total mutations and CNAs of HGPINs were significantly fewer than those of PCAs. Mutations in FOXA1 and CNAs (1q and 8q gains) were detected in both HGPIN and PCA ('common'), suggesting their roles in early PCA development. Mutations in SPOP, KDM6A, and KMT2D were 'PCA-specific', suggesting their roles in HGPIN progression to PCA. The 8p loss was either 'common' or 'PCA-specific'. In-silico estimation of evolutionary ages predicted that HGPIN genomes were much younger than PCA genomes. Our data show that PCAs are direct descendants of HGPINs in most cases that require more genomic alterations to progress to PCA. The nature of heterogeneous HGPIN population that might attenuate genomic signals should further be studied. HGPIN genomes harbor relatively fewer mutations and CNAs than PCA but require additional hits for the progression. In this study, we suggest a systemic diagram from high grade prostatic intraepithelial neoplasia (HGPIN) to prostate cancer (PCA). Our results provide a clue to explain the long latency from HGPIN to PCA and provide useful information for the genetic diagnosis of HGPIN and PCA. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Molecular biomarkers for progression of intraductal papillary mucinous neoplasm of the pancreas.
Kuboki, Yuko; Shimizu, Kyoko; Hatori, Takashi; Yamamoto, Masakazu; Shibata, Noriyuki; Shiratori, Keiko; Furukawa, Toru
2015-03-01
We aimed to identify molecular biomarkers for assessing the progression of intraductal papillary mucinous neoplasm of the pancreas (IPMN). We retrospectively investigated molecular aberrations and their associations with clinicopathological features in 172 IPMNs. GNAS and KRAS mutations were detected in 48% and 56% of IPMNs, respectively. No mutations of EGFR, PIK3CA GNAO1, GNAQ, or GNAI2 were observed. Significant associations were observed between IPMN morphological types and GNAS mutations, KRAS mutations, the expression of phosphorylated MAPK (pMAPK), AKT, and phosphorylated AKT (pAKT), nuclear accumulation of β-catenin, SMAD4 loss, and TP53 overexpression; histological grades and the expression of EGFR, pMAPK, AKT, and pAKT, the nuclear β-catenin, SMAD4 loss, and TP53 overexpression; invasive phenotypes and KRAS mutations, the nuclear β-catenin, and SMAD4 loss; and prognosis and SMAD4 loss and TP53 overexpression. Multivariate analysis to compare prognostic impacts of multiple molecular features revealed that TP53 overexpression was an independent prognostic factor (P = 0.030; hazard ratio, 5.533). These results indicate that mutations in GNAS and KRAS, the expression of EGFR and pMAPK, the nuclear β-catenin, SMAD4 loss, and TP53 overexpression may be relevant for assessing the clinical course of IPMN, including its progression into different morphological types, invasion, and prognosis.
Montané, Lucia Sentchordi; Marín, Oliver R; Rivera-Pedroza, Carlos I; Vallespín, Elena; Del Pozo, Ángela; Heath, Karen E
2016-06-01
Progressive pseudorheumatoid dysplasia (PPD) is a rare autosomal recessive disorder characterized by spondyloepiphyseal dysplasia associated with pain and stiffness of multiple joints, enlargement of the interphalangeal joints, normal inflammatory parameters, and absence of extra-skeletal manifestations. Homozygous or compound heterozygous WISP3 mutations cause PPD. We report two siblings from a non-consanguineous Ecuadorian family with a late-onset spondyloepiphyseal dysplasia. Mutation screening was undertaken in the two affected siblings using a customized skeletal dysplasia next generation sequencing (NGS) panel and confirmed by Sanger sequencing. Two compound heterozygous mutations were identified in WISP3 exon 2, c.[190G>A];[197G>A] (p.[(Gly64Arg)];[(Ser66Asn)]) in the two siblings, both of which had been inherited. The p. (Gly64Arg) mutation has not been previously described whilst the p. (Ser66Asn) mutation has been reported in two PPD families. The two siblings presented with atypical PPD, as they presented during late childhood, yet the severity was different between them. The progression was particularly aggressive in the male sibling who suffered severe scoliosis by the age of 13 years. This case reaffirms the clinical heterogeneity of this disorder and the clinical utility of NGS to genetically diagnose skeletal dysplasias, enabling adequate management, monitorization, and genetic counseling. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Phase 2 study of sunitinib in patients with metastatic mucosal or acral melanoma.
Buchbinder, Elizabeth I; Sosman, Jeffrey A; Lawrence, Donald P; McDermott, David F; Ramaiya, Nikhil H; Van den Abbeele, Annick D; Linette, Gerald P; Giobbie-Hurder, Anita; Hodi, F Stephen
2015-11-15
Patients with mucosal and acral melanomas have limited treatment options and a poor prognosis. Mutations of the KIT oncogene in these melanoma subtypes provide a potential therapeutic target. A multicenter phase 2 trial of sunitinib was conducted in patients with unresectable stage III or IV melanoma of a mucosal or acral primary origin. Patients were treated in 2 cohorts: cohort A received sunitinib at a dose of 50 mg daily for 4 weeks of a 6-week cycle, and cohort B received sunitinib at a dose of 37.5 mg daily on a continuous basis. Dose reductions were permitted for treatment-related toxicities, and tumor assessments were performed every 2 months. Fifty-two patients were enrolled: 21 in cohort A and 31 in cohort B. Four patients had confirmed partial responses, which lasted 5 to 10 months (1 with a KIT mutation). In both cohorts, the proportion of patients alive and progression-free at 2 months was 52% (95% confidence interval, 38%-66%); this was significantly larger than the hypothesized null of 5%. There was no significant difference in response or overall survival between the 25% of patients with a KIT mutation and those without one (response rate, 7.7% vs 9.7%; overall survival, 6.4 vs 8.6 months). The overall disease control rate was 44%, and a high rate of toxicity was associated with the treatment. Sunitinib showed activity in the treatment of mucosal and acral melanoma that was not dependent on the presence of a KIT mutation. However, the medication was poorly tolerated, and there were no prolonged responses. Cancer 2015;121:4007-4015. © 2015 American Cancer Society. © 2015 American Cancer Society.
Emergence of EGFR G724S mutation in EGFR-mutant lung adenocarcinoma post progression on osimertinib.
Oztan, A; Fischer, S; Schrock, A B; Erlich, R L; Lovly, C M; Stephens, P J; Ross, J S; Miller, V; Ali, S M; Ou, S-H I; Raez, L E
2017-09-01
Mutations in the epidermal growth factor receptor (EGFR) are drivers for a subset of lung cancers. Osimertinib is a third-generation tyrosine kinase inhibitor (TKI) recently approved for the treatment of T790M-positive non-small cell lung cancer (NSCLC); however, acquired resistance to osimertinib is evident and resistance mechanisms remain incompletely defined. The EGFR G724S mutation was detected using hybrid-capture based comprehensive genomic profiling (CGP) and a hybrid-capture based circulating tumor DNA (ctDNA) assays in two cases of EGFR-driven lung adenocarcinoma in patients who had progressed on osimertinib treatment. This study demonstrates the importance of both tissue and blood based hybrid-capture based genomic profiling at disease progression to identifying novel resistance mechanisms in the clinic. Copyright © 2017 Elsevier B.V. All rights reserved.
Nicastro, Nicolas; Ranza, Emmanuelle; Antonarakis, Stylianos E; Horvath, Judit
2016-12-01
Progressive ataxia with palatal tremor (PAPT) is a syndrome caused by cerebellar and brainstem lesions involving the dentato-rubro-olivary tract and associated with hypertrophic olivary degeneration. Etiologies include acquired posterior fossa lesions (e.g. tumors, superficial siderosis, and inflammatory diseases) and genetic disorders, such as glial fibrillary acidic protein (GFAP) and polymerase gamma (POLG) mutations. We describe the case of a 52-year-old man who developed pure progressive ataxia and palatal tremor. Genetic analysis has shown that he is compound heterozygote for a known pathogenic (W748S) and a novel POLG variant (I1185N). Patients with POLG recessive mutations usually manifest a more complex clinical picture, including polyneuropathy and epilepsy; our case emphasizes the need to consider a genetic origin in a seemingly sporadic and pure PAPT.
Quinlan, Devin S.; Raman, Rahul; Tharakaraman, Kannan; Subramanian, Vidya; del Hierro, Gabriella; Sasisekharan, Ram
2017-01-01
Recently, progress has been made in the development of vaccines and monoclonal antibody cocktails that target the Ebola coat glycoprotein (GP). Based on the mutation rates for Ebola virus given its natural sequence evolution, these treatment strategies are likely to impose additional selection pressure to drive acquisition of mutations in GP that escape neutralization. Given the high degree of sequence conservation among GP of Ebola viruses, it would be challenging to determine the propensity of acquiring mutations in response to vaccine or treatment with one or a cocktail of monoclonal antibodies. In this study, we analyzed the mutability of each residue using an approach that captures the structural constraints on mutability based on the extent of its inter-residue interaction network within the three-dimensional structure of the trimeric GP. This analysis showed two distinct clusters of highly networked residues along the GP1-GP2 interface, part of which overlapped with epitope surfaces of known neutralizing antibodies. This network approach also permitted us to identify additional residues in the network of the known hotspot residues of different anti-Ebola antibodies that would impact antibody-epitope interactions. PMID:28397835
Clark, Jo-Anna B J; Tully, Sara J; Dawn Marshall, H
2014-12-01
Hereditary hyperplastic gingivitis (HHG) is an autosomal recessive disease that presents with progressive gingival proliferation in farmed silver foxes. Hereditary gingival fibromatosis (HGF) is an analogous condition in humans that is genetically heterogeneous with several known autosomal dominant loci. For one locus the causative mutation is in the Son of sevenless homologue 1 (SOS1) gene. For the remaining loci, the molecular mechanisms are unknown but Ras pathway involvement is suspected. Here we compare sequences for the SOS1 gene, and two adjacent genes in the Ras pathway, growth receptor bound protein 2 (GRB2) and epidermal growth factor receptor (EGFR), between HHG-affected and unaffected foxes. We conclude that the known HGF causative mutation does not cause HHG in foxes, nor do the coding regions or intron-exon boundaries of these three genes contain any candidate mutations for fox gum disease. Patterns of molecular evolution among foxes and other mammals reflect high conservation and strong functional constraints for SOS1 and GRB2 but reveal a lineage-specific pattern of variability in EGFR consistent with mutational rate differences, relaxed functional constraints, and possibly positive selection.
Militaru, Mariela S; Popp, Radu A; Trifa, Adrian P
2010-06-01
While classical hereditary haemochromatosis, usually associated with mutations in the HFE gene, has an adult age onset and a long, progressive evolution, juvenile haemochromatosis, most often associated with mutations in the HJV gene, is a more severe, rapidly progressive condition and has an onset before the age of 30. We report a 26-year old woman with a severe iron overload, affected by hypogonadotropic hypogonadism and moderate dilative cardiomyopathy, in whom the molecular analysis revealed a homozygous genotype for G320V mutation in the HJV gene. As juvenile haemochromatosis is a severe disease, death usually occurring from cardiac involvement, an efficient iron removal from the body strategy should be started as soon as possible, in order to prevent irreversible damage.
A novel mutation in PNPLA2 leading to neutral lipid storage disease with myopathy.
Ash, Daniel B; Papadimitriou, Dimitra; Hays, Arthur P; Dimauro, Salvatore; Hirano, Michio
2012-09-01
Mutations in PNPLA2, a gene encoding adipose triglyceride lipase, lead to neutral lipid storage disease with myopathy. To report the clinical and molecular features of a case of neutral lipid storage disease with myopathy resulting from a novel mutation in PNPLA2. Case report. University hospital. A 65-year-old man with progressive muscle weakness and high serum creatine kinase levels. Direct sequencing of the PNPLA2 gene. Identification of a novel homozygous mutation in the patient's PNPLA2 gene confirmed the suspected diagnosis of neutral lipid storage disease with myopathy. Screening of the PNPLA2 gene should be considered for patients presenting with high levels of creatine kinase, progressive muscle weakness, and systemic lipid accumulation. The presence of Jordans anomaly can be a strong diagnostic clue.
Hepatitis B virus pre-S/S variants in liver diseases.
Chen, Bing-Fang
2018-04-14
Chronic hepatitis B is a global health problem. The clinical outcomes of chronic hepatitis B infection include asymptomatic carrier state, chronic hepatitis (CH), liver cirrhosis (LC), and hepatocellular carcinoma (HCC). Because of the spontaneous error rate inherent to viral reverse transcriptase, the hepatitis B virus (HBV) genome evolves during the course of infection under the antiviral pressure of host immunity. The clinical significance of pre-S/S variants has become increasingly recognized in patients with chronic HBV infection. Pre-S/S variants are often identified in hepatitis B carriers with CH, LC, and HCC, which suggests that these naturally occurring pre-S/S variants may contribute to the development of progressive liver damage and hepatocarcinogenesis. This paper reviews the function of the pre-S/S region along with recent findings related to the role of pre-S/S variants in liver diseases. According to the mutation type, five pre-S/S variants have been identified: pre-S deletion, pre-S point mutation, pre-S1 splice variant, C-terminus S point mutation, and pre-S/S nonsense mutation. Their associations with HBV genotype and the possible pathogenesis of pre-S/S variants are discussed. Different pre-S/S variants cause liver diseases through different mechanisms. Most cause the intracellular retention of HBV envelope proteins and induction of endoplasmic reticulum stress, which results in liver diseases. Pre-S/S variants should be routinely determined in HBV carriers to help identify individuals who may be at a high risk of less favorable liver disease progression. Additional investigations are required to explore the molecular mechanisms of the pre-S/S variants involved in the pathogenesis of each stage of liver disease.
Horizontal Gaze Palsy and Progressive Scoliosis With ROBO 3 Mutations in Patients From Cape Verde.
Mendes Marques, Nadine B P S; Barros, Sandra R; Miranda, Ana F; Nobre Cardoso, João; Parreira, Sónia; Fonseca, Teresa; Donaire, Nelvia M; Campos, Nuno
2017-06-01
Horizontal gaze palsy with progressive scoliosis (HGPPS) is a rare and autosomal recessive syndrome. We describe 2 cases of HGPPS which are the first documented in patients of African ancestry from an isolated population in Cape Verde. They demonstrated typical findings on neuro-ophthalmic examination and brain magnetic resonance imaging. One patient had novel heterozymous mutations of the ROB0 3 gene.
Tsuda, Takeshi; Fitzgerald, Kristi; Scavena, Mena; Gidding, Samuel; Cox, Mary O; Marks, Harold; Flanigan, Kevin M; Moore, Steven A
2015-03-01
We report a family in which two male siblings with Becker muscular dystrophy (BMD) developed severe dilated cardiomyopathy (DCM) and progressive heart failure (HF) at age 11 years; one died at age 14 years while awaiting heart transplant and the other underwent left ventricular assist device implantation at the same age. Genetic analysis of one sibling showed a novel frameshift mutation in exon 27 of Duchenne muscular dystrophy (DMD) gene (c.3779_3785delCTTTGGAinsGG), in which seven base pairs are deleted and two are inserted. Although this predicts an amino-acid substitution and premature termination (p.Thr1260Argfs*8), muscle biopsy dystrophin immunostaining instead indicates that the mutation is more likely to alter splicing. Despite relatively preserved skeletal muscular performance, both the siblings developed progressive HF secondary to early-onset DCM. In addition, their 7-year-old nephew with delayed gross motor development, mild proximal muscle weakness and markedly elevated serum creatine kinase level (>13 000 IU l(-1)) at 16 months was recently demonstrated to have the familial DMD mutation. Here, we report a novel genotype of BMD with early-onset DCM and progressive lethal HF during early adolescence.
Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2
Foley, A. Reghan; Menezes, Manoj P.; Pandraud, Amelie; Gonzalez, Michael A.; Al-Odaib, Ahmad; Abrams, Alexander J.; Sugano, Kumiko; Yonezawa, Atsushi; Manzur, Adnan Y.; Burns, Joshua; Hughes, Imelda; McCullagh, B. Gary; Jungbluth, Heinz; Lim, Ming J.; Lin, Jean-Pierre; Megarbane, Andre; Urtizberea, J. Andoni; Shah, Ayaz H.; Antony, Jayne; Webster, Richard; Broomfield, Alexander; Ng, Joanne; Mathew, Ann A.; O’Byrne, James J.; Forman, Eva; Scoto, Mariacristina; Prasad, Manish; O’Brien, Katherine; Olpin, Simon; Oppenheim, Marcus; Hargreaves, Iain; Land, John M.; Wang, Min X.; Carpenter, Kevin; Horvath, Rita; Straub, Volker; Lek, Monkol; Gold, Wendy; Farrell, Michael O.; Brandner, Sebastian; Phadke, Rahul; Matsubara, Kazuo; McGarvey, Michael L.; Scherer, Steven S.; Baxter, Peter S.; King, Mary D.; Clayton, Peter; Rahman, Shamima; Reilly, Mary M.; Ouvrier, Robert A.; Christodoulou, John; Züchner, Stephan; Muntoni, Francesco
2014-01-01
Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms. PMID:24253200
Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2.
Foley, A Reghan; Menezes, Manoj P; Pandraud, Amelie; Gonzalez, Michael A; Al-Odaib, Ahmad; Abrams, Alexander J; Sugano, Kumiko; Yonezawa, Atsushi; Manzur, Adnan Y; Burns, Joshua; Hughes, Imelda; McCullagh, B Gary; Jungbluth, Heinz; Lim, Ming J; Lin, Jean-Pierre; Megarbane, Andre; Urtizberea, J Andoni; Shah, Ayaz H; Antony, Jayne; Webster, Richard; Broomfield, Alexander; Ng, Joanne; Mathew, Ann A; O'Byrne, James J; Forman, Eva; Scoto, Mariacristina; Prasad, Manish; O'Brien, Katherine; Olpin, Simon; Oppenheim, Marcus; Hargreaves, Iain; Land, John M; Wang, Min X; Carpenter, Kevin; Horvath, Rita; Straub, Volker; Lek, Monkol; Gold, Wendy; Farrell, Michael O; Brandner, Sebastian; Phadke, Rahul; Matsubara, Kazuo; McGarvey, Michael L; Scherer, Steven S; Baxter, Peter S; King, Mary D; Clayton, Peter; Rahman, Shamima; Reilly, Mary M; Ouvrier, Robert A; Christodoulou, John; Züchner, Stephan; Muntoni, Francesco; Houlden, Henry
2014-01-01
Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms.
An, Juan; Tang, Chuan-Hao; Wang, Na; Liu, Yi; Lv, Jin; Xu, Bin; Li, Xiao-Yan; Guo, Wan-Feng; Gao, Hong-Jun; He, Kun; Liu, Xiao-Qing
2018-01-01
Epidermal growth factor receptor (EGFR) mutation is an important predictor for response to personalized treatments of patients with advanced non-small-cell lung cancer (NSCLC). However its usage is limited due to the difficult of obtaining tissue specimens. A novel prediction system using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been reported to be a perspective tool in European countries to identify patients who are likely to benefit from EGFR tyrosine kinase inhibitor (TKI) treatment. In the present study, MALDI-TOF MS was used on pretreatment serum samples of patients with advanced non-small-cell lung cancer to discriminate the spectra between disease control and disease progression groups in one cohort of Chinese patients. The candidate features for classification were subsequently validated in a blinded fashion in another set of patients. The correlation between plasma EGFR mutation status and the intensities of representative spectra for classification was evaluated. A total of 103 patients that were treated with EGFR-TKIs were included. It was determined that 8 polypeptides peaks were significant different between the disease control and disease progression group. A total of 6 polypeptides were established in the classification algorithm. The sensitivity of the algorithm to predict treatment responses was 76.2% (16/21) and the specificity was 81.8% (18/22). The accuracy rate of the algorithm was 79.1% (34/43). A total of 3 polypeptides were significantly correlated with EGFR mutations (P=0.04, P=0.03 and P=0.04, respectively). The present study confirmed that MALDI-TOF MS analysis can be used to predict responses to EGFR-TKI treatment of the Asian population where the EGFR mutation status differs from the European population. Furthermore, the expression intensities of the three polypeptides in the classification model were associated with EGFR mutation. PMID:29844828
Camus, Vincent; Stamatoullas, Aspasia; Mareschal, Sylvain; Viailly, Pierre-Julien; Sarafan-Vasseur, Nasrin; Bohers, Elodie; Dubois, Sydney; Picquenot, Jean Michel; Ruminy, Philippe; Maingonnat, Catherine; Bertrand, Philippe; Cornic, Marie; Tallon-Simon, Valérie; Becker, Stéphanie; Veresezan, Liana; Frebourg, Thierry; Vera, Pierre; Bastard, Christian; Tilly, Hervé; Jardin, Fabrice
2016-09-01
Classical Hodgkin lymphoma is one of the most common lymphomas and shares clinical and genetic features with primary mediastinal B-cell lymphoma. In this retrospective study, we analyzed the recurrent hotspot mutation of the exportin 1 (XPO1, p.E571K) gene, previously identified in primary mediastinal B-cell lymphoma, in biopsies and plasma circulating cell-free DNA from patients with classical Hodgkin lymphoma using a highly sensitive digital PCR technique. A total of 94 patients were included in the present study. This widely expressed XPO1 E571K mutation is present in one quarter of classical Hodgkin lymphoma patients (24.2%). Mutated and wild-type classical Hodgkin lymphomas were similar regarding the main clinical features. Patients with a detectable XPO1 mutation at the end of treatment displayed a tendency toward shorter progression-free survival, as compared to patients with undetectable mutation in plasma cell-free DNA (2-year progression-free survival: 57.1%, 95% confidence interval: 30.1-100% versus 2-year progression-free survival: 90.5%, 95% confidence interval: 78.8-100%, respectively, P=0.0601). To conclude, the detection of the XPO1 E571K mutation in biopsy and plasma cell-free DNA by digital PCR may be used as a novel biomarker in classical Hodgkin lymphoma for both diagnosis and minimal residual disease, and pinpoints a crucial role of XPO1 in classical Hodgkin lymphoma pathogenesis. The detection of somatic mutation in the plasma cell-free DNA of patients represents a major technological advance in the context of liquid biopsies and noninvasive management of classical Hodgkin lymphoma. Copyright© Ferrata Storti Foundation.
Stephen, Joshi; Nampoothiri, Sheela; Banerjee, Aditi; Tolman, Nathanial J; Penninger, Josef Martin; Elling, Ullrich; Agu, Chukwuma A; Burke, John D; Devadathan, Kalpana; Kannan, Rajesh; Huang, Yan; Steinbach, Peter J; Martinis, Susan A; Gahl, William A; Malicdan, May Christine V
2018-04-01
Progressive microcephaly and neurodegeneration are genetically heterogenous conditions, largely associated with genes that are essential for the survival of neurons. In this study, we interrogate the genetic etiology of two siblings from a non-consanguineous family with severe early onset of neurological manifestations. Whole exome sequencing identified novel compound heterozygous mutations in VARS that segregated with the proband: a missense (c.3192G>A; p.Met1064Ile) and a splice site mutation (c.1577-2A>G). The VARS gene encodes cytoplasmic valyl-tRNA synthetase (ValRS), an enzyme that is essential during eukaryotic translation. cDNA analysis on patient derived fibroblasts revealed that the splice site acceptor variant allele led to nonsense mediated decay, thus resulting in a null allele. Three-dimensional modeling of ValRS predicts that the missense mutation lies in a highly conserved region and could alter side chain packing, thus affecting tRNA binding or destabilizing the interface between the catalytic and tRNA binding domains. Further quantitation of the expression of VARS showed remarkably reduced levels of mRNA and protein in skin derived fibroblasts. Aminoacylation experiments on patient derived cells showed markedly reduced enzyme activity of ValRS suggesting the mutations to be loss of function. Bi-allelic mutations in cytoplasmic amino acyl tRNA synthetases are well-known for their role in neurodegenerative disorders, yet human disorders associated with VARS mutations have not yet been clinically well characterized. Our study describes the phenotype associated with recessive VARS mutations and further functional delineation of the pathogenicity of novel variants identified, which widens the clinical and genetic spectrum of patients with progressive microcephaly.
Kawamura, Takahisa; Kenmotsu, Hirotsugu; Omori, Shota; Nakashima, Kazuhisa; Wakuda, Kazushige; Ono, Akira; Naito, Tateaki; Murakami, Haruyasu; Omae, Katsuhiro; Mori, Keita; Tanigawara, Yusuke; Nakajima, Takashi; Ohde, Yasuhisa; Endo, Masahiro; Takahashi, Toshiaki
2018-03-01
T790M, a secondary epidermal growth factor receptor (EGFR) mutation, accounts for approximately 50% of acquired resistance to EGFR-tyrosine kinase inhibitors (TKIs). To facilitate the use of third-generation EGFR-TKIs to potentially overcome T790M-mediated resistance, we evaluated the clinical factors influencing the incidence of T790M mutation. We retrospectively screened patients with non-small-cell lung cancer harboring EGFR mutations with progressive disease who were rebiopsied between January 2013 and December 2016. Factors influencing T790M status were evaluated by univariate and multivariate analysis. Among 131 rebiopsied patients for whom EGFR mutation status was available, 58 (44%) had T790M mutations. Patient characteristics at rebiopsy were not significantly different between T790M-positive and -negative groups, except for surgical history (postsurgery recurrence). Total duration of EGFR-TKI treatment before rebiopsy, TKI-free interval, EGFR-TKI treatment history immediately before rebiopsy, continuation of initial EGFR-TKI beyond progressive disease, progression-free survival after initial TKI treatment, and rebiopsy site (other than fluid samples) significantly influenced T790M status. The incidence of T790M mutation was shown by multivariate analysis to be significantly higher in patients with postsurgery recurrence and total duration of EGFR-TKI treatment ≥ 1 year before rebiopsy (odds ratio, 4.2; 95% confidence interval, 1.3-15.7 and odds ratio, 4.4; 95% confidence interval, 1.1-19.8, respectively). Postsurgery recurrence and longer total duration of EGFR-TKI treatment before rebiopsy may represent useful predictive markers for T790M detection. In patients with these clinical factors, rebiopsies are more recommended to detect T790M mutation. Copyright © 2017 Elsevier Inc. All rights reserved.
mTOR at the Transmitting and Receiving Ends in Tumor Immunity
Guri, Yakir; Nordmann, Thierry M.; Roszik, Jason
2018-01-01
Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis. PMID:29662490
mTOR at the Transmitting and Receiving Ends in Tumor Immunity.
Guri, Yakir; Nordmann, Thierry M; Roszik, Jason
2018-01-01
Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis.
Dialdestoro, Kevin; Sibbesen, Jonas Andreas; Maretty, Lasse; Raghwani, Jayna; Gall, Astrid; Kellam, Paul; Pybus, Oliver G.; Hein, Jotun; Jenkins, Paul A.
2016-01-01
Human immunodeficiency virus (HIV) is a rapidly evolving pathogen that causes chronic infections, so genetic diversity within a single infection can be very high. High-throughput “deep” sequencing can now measure this diversity in unprecedented detail, particularly since it can be performed at different time points during an infection, and this offers a potentially powerful way to infer the evolutionary dynamics of the intrahost viral population. However, population genomic inference from HIV sequence data is challenging because of high rates of mutation and recombination, rapid demographic changes, and ongoing selective pressures. In this article we develop a new method for inference using HIV deep sequencing data, using an approach based on importance sampling of ancestral recombination graphs under a multilocus coalescent model. The approach further extends recent progress in the approximation of so-called conditional sampling distributions, a quantity of key interest when approximating coalescent likelihoods. The chief novelties of our method are that it is able to infer rates of recombination and mutation, as well as the effective population size, while handling sampling over different time points and missing data without extra computational difficulty. We apply our method to a data set of HIV-1, in which several hundred sequences were obtained from an infected individual at seven time points over 2 years. We find mutation rate and effective population size estimates to be comparable to those produced by the software BEAST. Additionally, our method is able to produce local recombination rate estimates. The software underlying our method, Coalescenator, is freely available. PMID:26857628
Nath, Aritro; Chan, Christina
2016-01-01
Reprogramming of cellular metabolism is a hallmark feature of cancer cells. While a distinct set of processes drive metastasis when compared to tumorigenesis, it is yet unclear if genetic alterations in metabolic pathways are associated with metastatic progression of human cancers. Here, we analyzed the mutation, copy number variation and gene expression patterns of a literature-derived model of metabolic genes associated with glycolysis (Warburg effect), fatty acid metabolism (lipogenesis, oxidation, lipolysis, esterification) and fatty acid uptake in >9000 primary or metastatic tumor samples from the multi-cancer TCGA datasets. Our association analysis revealed a uniform pattern of Warburg effect mutations influencing prognosis across all tumor types, while copy number alterations in the electron transport chain gene SCO2, fatty acid uptake (CAV1, CD36) and lipogenesis (PPARA, PPARD, MLXIPL) genes were enriched in metastatic tumors. Using gene expression profiles, we established a gene-signature (CAV1, CD36, MLXIPL, CPT1C, CYP2E1) that strongly associated with epithelial-mesenchymal program across multiple cancers. Moreover, stratification of samples based on the copy number or expression profiles of the genes identified in our analysis revealed a significant effect on patient survival rates, thus confirming prominent roles of fatty acid uptake and metabolism in metastatic progression and poor prognosis of human cancers. PMID:26725848
Nath, Aritro; Chan, Christina
2016-01-04
Reprogramming of cellular metabolism is a hallmark feature of cancer cells. While a distinct set of processes drive metastasis when compared to tumorigenesis, it is yet unclear if genetic alterations in metabolic pathways are associated with metastatic progression of human cancers. Here, we analyzed the mutation, copy number variation and gene expression patterns of a literature-derived model of metabolic genes associated with glycolysis (Warburg effect), fatty acid metabolism (lipogenesis, oxidation, lipolysis, esterification) and fatty acid uptake in >9000 primary or metastatic tumor samples from the multi-cancer TCGA datasets. Our association analysis revealed a uniform pattern of Warburg effect mutations influencing prognosis across all tumor types, while copy number alterations in the electron transport chain gene SCO2, fatty acid uptake (CAV1, CD36) and lipogenesis (PPARA, PPARD, MLXIPL) genes were enriched in metastatic tumors. Using gene expression profiles, we established a gene-signature (CAV1, CD36, MLXIPL, CPT1C, CYP2E1) that strongly associated with epithelial-mesenchymal program across multiple cancers. Moreover, stratification of samples based on the copy number or expression profiles of the genes identified in our analysis revealed a significant effect on patient survival rates, thus confirming prominent roles of fatty acid uptake and metabolism in metastatic progression and poor prognosis of human cancers.
Schayek, Hagit; Seti, Hila; Greenberg, Norman M; Sun, Shihua; Werner, Haim; Plymate, Stephen R
2010-07-29
The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF-IR) expression. To investigate the differential effects of wild type (wt) and mutant AR on IGF-IR levels we employed a series of isogenic prostate-derived cell lines and human xenografts. We show that basal and phosphorylated IGF-IR levels progressively decreased as prostate cancer cells became more tumorigenic and metastatic. In addition, we show that wt, but not mutant, AR along with dihydrotestosterone treatment increased IGF-IR promoter activity and endogenous IGF-IR levels. ChIP analysis show enhanced AR binding to the IGF-IR promoter in AR-overexpressing cells. Finally, wt AR-overexpressing cells display an enhanced proliferation rate. In summary, we provide evidence that activated wt AR enhances IGF-IR transcription in prostate cancer cells via a mechanism that involves AR binding to the IGF-IR promoter. AR mutations alter the ability of the mutated protein to regulate IGF-IR expression. Our results suggest that prostate cancer progression is associated with a decrease in IGF-IR expression that could be the result of impaired ability of AR to stimulate IGF-IR gene expression. 2010 Elsevier Ireland Ltd. All rights reserved.
Schayek, Hagit; Seti, Hila; Greenberg, Norman M.; Sun, Shihua; Werner, Haim; Plymate, Stephen R.
2010-01-01
The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF-IR) expression. To investigate the differential effects of wild type (wt) and mutant AR on IGF-IR levels we employed a series of isogenic prostate-derived cell lines and human xenografts. We show that basal and phosphorylated IGF-IR levels progressively decreased as prostate cancer cells became more tumorigenic and metastatic. In addition, we show that wt, but not mutant, AR along with dihydrotestosterone treatment increased IGF-IR promoter activity and endogenous IGF-IR levels. ChIP analysis show enhanced AR binding to the IGF-IR promoter in AR-overexpressing cells. Finally, wt AR-overexpressing cells display an enhanced proliferation rate. In summary, we provide evidence that activated wt AR enhances IGF-IR transcription in prostate cancer cells via a mechanism that involves AR binding to the IGF-IR promoter. AR mutations alter the ability of the mutated protein to regulate IGF-IR expression. Our results suggest that prostate cancer progression is associated with a decrease in IGF-IR expression that could be the result of impaired ability of AR to stimulate IGF-IR gene expression. PMID:20417685
Erdogan, Bulent; Kodaz, Hilmi; Karabulut, Senem; Cinkaya, Ahmet; Tozkir, Hilmi; Tanriverdi, Ozgur; Cabuk, Devrim; Hacioglu, Muhammed Bekir; Turkmen, Esma; Hacibekiroglu, Ilhan; Uzunoglu, Sernaz; Cicin, Irfan
2016-11-10
Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR) function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01), however, smoking status had no impact on the response rate (p = 0.1). The EGFR-mutant active smokers progressed earlier than the non-smokers (p < 0.01). The overall survival (OS) of the non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively). Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49) but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01).The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03). Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively). Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.
Jiang, Xiaowen; Wang, Wenxian; Zhang, Yiping
2016-04-20
Targeted therapy has become an indispensable therapy method in advanced non-small cell lung cancer (NSCLC) treatment. Epithelial growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) can significantly prolong the survival of patients harboring EGFR gene mutation. Icotinb is China's first EGFR-TKI with independent intellectual property rights. The aim of this study is to investigate the clinical characteristics about the beneficiary of advanced NSCLC patients with EGFR Common mutation who were treated with Icotinib. Retrospectively collect the data about beneficiary [progression-free survival (PFS)≥6 months] and analysis of the related risk factors for prognosis. From September 1, 2011 to September 30, 2015, 231 cases of advanced NSCLC beneficiary with EGFR common mutation were enrolled for treatment with icotinib in Zhejiang Cancer Hospital. The one year benefit rate was 67.9% in the group treated with Icotinib as first line, and in the groupas second line or above was 53.6%, which is statisticallysignificant. The two years benefit rate was 18.7% and 9.3%, respectively. The median PFS of first line group and the second line or above was 16.7 and 12.4 months, respectively. The presence of brain metastasis (P=0.010), Prior chemotherapy (P=0.001), Eastern Cooperative Oncology Group (ECOG) score (P=0.001) were the main factors influencing the prognosis. The most common adverse were skin rashes (51 cases, 22.1%) and diarrhea (27 cases, 11.7%). Icotinib offers long-term clinical benefit and good tolerance for advanced NSCLC harboring EGFR gene mutation. Its advantage groups in addition to the patients with brain metastases and better ECOG score, the curative effect of patients with the first-line treatment is superior to second or further line. .
Di Fiore, F; Blanchard, F; Charbonnier, F; Le Pessot, F; Lamy, A; Galais, M P; Bastit, L; Killian, A; Sesboüé, R; Tuech, J J; Queuniet, A M; Paillot, B; Sabourin, J C; Michot, F; Michel, P; Frebourg, T
2007-01-01
The predictive value of KRAS mutation in metastatic colorectal cancer (MCRC) patients treated with cetuximab plus chemotherapy has recently been suggested. In our study, 59 patients with a chemotherapy-refractory MCRC treated with cetuximab plus chemotherapy were included and clinical response was evaluated according to response evaluation criteria in solid tumours (RECIST). Tumours were screened for KRAS mutations using first direct sequencing, then two sensitive methods based on SNaPshot and PCR-ligase chain reaction (LCR) assays. Clinical response was evaluated according to gene mutations using the Fisher exact test. Times to progression (TTP) were calculated using the Kaplan–Meier method and compared with log-rank test. A KRAS mutation was detected in 22 out of 59 tumours and, in six cases, was missed by sequencing analysis but detected using the SNaPshot and PCR-LCR assays. Remarkably, no KRAS mutation was found in the 12 patients with clinical response. KRAS mutation was associated with disease progression (P=0.0005) and TTP was significantly decreased in mutated KRAS patients (3 vs 5.5 months, P=0.015). Our study confirms that KRAS mutation is highly predictive of a non-response to cetuximab plus chemotherapy in MCRC and highlights the need to use sensitive molecular methods, such as SNaPshot or PCR-LCR assays, to ensure an efficient mutation detection. PMID:17375050
Liu, Z-J; Lin, H-X; Liu, G-L; Tao, Q-Q; Ni, W; Xiao, B-G; Wu, Z-Y
2017-09-01
Juvenile amyotrophic lateral sclerosis (JALS) occurs at an age of onset below 25 years with a heterogeneous disease onset location, variable progression and survival time. To investigate whether an ALS gene profile could resolve any aspects of clinical symptom heterogeneity, we have used targeted sequencing technology in a cohort of 12 JALS patients of Chinese descent. We detected 5 likely pathogenic mutations, 2 in familial probands and 3 in sporadic patients. One was a known TARDBP mutation (p.G348V) and 4 were FUS frameshift mutations including a known p.Gln519Ilefs*9 mutation and 3 novel mutations, p.Gly515Valfs*14, p.Gly486Profs*30, and p.Arg498Alafs*32. Of the 4 FUS mutations, 2 were able to be confirmed as de novo mutations. The TARDBP mutation carrier showed a classic ALS phenotype. All patients with FUS mutations experienced limb weakness at an early age and developed bulbar symptoms during the disease course. FUS mutations have previously been associated with increased JALS disease progression, however, we found a large range 12 to 84 months in disease survival (mean 58.2 months). Our results justify future screening for variants in FUS as it remains the most frequent genetic determinant of early onset, JALS (found in 30% of our patients). © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A Constant Rate of Spontaneous Mutation in DNA-Based Microbes
NASA Astrophysics Data System (ADS)
Drake, John W.
1991-08-01
In terms of evolution and fitness, the most significant spontaneous mutation rate is likely to be that for the entire genome (or its nonfrivolous fraction). Information is now available to calculate this rate for several DNA-based haploid microbes, including bacteriophages with single- or double-stranded DNA, a bacterium, a yeast, and a filamentous fungus. Their genome sizes vary by ≈6500-fold. Their average mutation rates per base pair vary by ≈16,000-fold, whereas their mutation rates per genome vary by only ≈2.5-fold, apparently randomly, around a mean value of 0.0033 per DNA replication. The average mutation rate per base pair is inversely proportional to genome size. Therefore, a nearly invariant microbial mutation rate appears to have evolved. Because this rate is uniform in such diverse organisms, it is likely to be determined by deep general forces, perhaps by a balance between the usually deleterious effects of mutation and the physiological costs of further reducing mutation rates.
Smith, Thomas; Ho, Gladys; Christodoulou, John; Price, Elizabeth Ann; Onadim, Zerrin; Gauthier-Villars, Marion; Dehainault, Catherine; Houdayer, Claude; Parfait, Beatrice; van Minkelen, Rick; Lohman, Dietmar; Eyre-Walker, Adam
2016-05-01
We have investigated whether the mutation rate varies between genes and sites using de novo mutations (DNMs) from three genes associated with Mendelian diseases (RB1, NF1, and MECP2). We show that the relative frequency of mutations at CpG dinucleotides relative to non-CpG sites varies between genes and relative to the genomic average. In particular we show that the rate of transition mutation at CpG sites relative to the rate of non-CpG transversion is substantially higher in our disease genes than amongst DNMs in general; the rate of CpG transition can be several hundred-fold greater than the rate of non-CpG transversion. We also show that the mutation rate varies significantly between sites of a particular mutational type, such as non-CpG transversion, within a gene. We estimate that for all categories of sites, except CpG transitions, there is at least a 30-fold difference in the mutation rate between the 10% of sites with the highest and lowest mutation rates. However, our best estimate is that the mutation rate varies by several hundred-fold variation. We suggest that the presence of hypermutable sites may be one reason certain genes are associated with disease. © 2016 WILEY PERIODICALS, INC.
Casali, Paolo G; Zalcberg, John; Le Cesne, Axel; Reichardt, Peter; Blay, Jean-Yves; Lindner, Lars H; Judson, Ian R; Schöffski, Patrick; Leyvraz, Serge; Italiano, Antoine; Grünwald, Viktor; Pousa, Antonio Lopez; Kotasek, Dusan; Sleijfer, Stefan; Kerst, Jan M; Rutkowski, Piotr; Fumagalli, Elena; Hogendoorn, Pancras; Litière, Saskia; Marreaud, Sandrine; van der Graaf, Winette; Gronchi, Alessandro; Verweij, Jaap
2017-05-20
Purpose To report on the long-term results of a randomized trial comparing a standard dose (400 mg/d) versus a higher dose (800 mg/d) of imatinib in patients with metastatic or locally advanced GI stromal tumors (GISTs). Patients and Methods Eligible patients with advanced CD117-positive GIST from 56 institutions in 13 countries were randomly assigned to receive either imatinib 400 mg or 800 mg daily. Patients on the 400-mg arm were allowed to cross over to 800 mg upon progression. Results Between February 2001 and February 2002, 946 patients were accrued. Median age was 60 years (range, 18 to 91 years). Median follow-up time was 10.9 years. Median progression-free survival times were 1.7 and 2.0 years in the 400- and 800-mg arms, respectively (hazard ratio, 0.91; P = .18), and median overall survival time was 3.9 years in both treatment arms. The estimated 10-year progression-free survival rates were 9.5% and 9.2% for the 400- and 800-mg arms, respectively, and the estimated 10-year overall survival rates were 19.4% and 21.5%, respectively. At multivariable analysis, age (< 60 years), performance status (0 v ≥ 1), size of the largest lesion (smaller), and KIT mutation (exon 11) were significant prognostic factors for the probability of surviving beyond 10 years. Conclusion This trial was carried out on a worldwide intergroup basis, at the beginning of the learning curve of the use of imatinib, in a large population of patients with advanced GIST. With a long follow-up, 6% of patients are long-term progression free and 13% are survivors. Among clinical prognostic factors, only performance status, KIT mutation, and size of largest lesion predicted long-term outcome, likely pointing to a lower burden of disease. Genomic and/or immune profiling could help understand long-term survivorship. Addressing secondary resistance remains a therapeutic challenge.
Dynamic of mutational events in variable number tandem repeats of Escherichia coli O157:H7.
Bustamante, A V; Sanso, A M; Segura, D O; Parma, A E; Lucchesi, P M A
2013-01-01
VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10(-05) to 1.8 × 10(-03) mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10(-03) mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study.
Chen, Qianting; Dai, Congling; Zhang, Qianjun; Du, Juan; Li, Wen
2016-10-01
To study the prediction performance evaluation with five kinds of bioinformatics software (SIFT, PolyPhen2, MutationTaster, Provean, MutationAssessor). From own database for genetic mutations collected over the past five years, Chinese literature database, Human Gene Mutation Database, and dbSNP, 121 missense mutations confirmed by functional studies, and 121 missense mutations suspected to be pathogenic by pedigree analysis were used as positive gold standard, while 242 missense mutations with minor allele frequency (MAF)>5% in dominant hereditary diseases were used as negative gold standard. The selected mutations were predicted with the five software. Based on the results, the performance of the five software was evaluated for their sensitivity, specificity, positive predict value, false positive rate, negative predict value, false negative rate, false discovery rate, accuracy, and receiver operating characteristic curve (ROC). In terms of sensitivity, negative predictive value and false negative rate, the rank was MutationTaster, PolyPhen2, Provean, SIFT, and MutationAssessor. For specificity and false positive rate, the rank was MutationTaster, Provean, MutationAssessor, SIFT, and PolyPhen2. For positive predict value and false discovery rate, the rank was MutationTaster, Provean, MutationAssessor, PolyPhen2, and SIFT. For area under the ROC curve (AUC) and accuracy, the rank was MutationTaster, Provean, PolyPhen2, MutationAssessor, and SIFT. The prediction performance of software may be different when using different parameters. Among the five software, MutationTaster has the best prediction performance.
Shibata, Darryl K; Kern, Scott E
2008-01-01
Cancer stem cells either could be rare or common in tumors, constituting the major distinction between the two fundamentally opposed theoretical models of tumor progression: A newer and restrictive stem cell propagation model, in which the stem cells are a small and special minority of the tumor cells, and a standard older model, an unrestricted cell proliferation theory, in which many or most tumor cells are capable of indefinite generations of cell division. Stem cells of tumors are difficult to quantitate using functional assays, and the validity of the most common assays is seriously questioned. Nonetheless, stem cells are an essential component of any tumorigenesis model. Alternative approaches to studying tumor stem cells should be explored. Cell populations can be conceived of as having a genealogy, a relationship of cells to their ancestral lineage, from the zygote to the adult cells or neoplasms. Models using ancestral trees thus offer an anatomic and genetic means to "observe" stem cells independent of artificial conditions. Ancestral trees broaden our attention backward along a lineage, to the zygote stage, and thereby add insight into how the mutations of tumors accumulate. It is possible that a large fraction of mutations in a tumor originate from normal, endogenous, replication errors (nearly all being passenger mutations) occurring prior to the emergence of the first transformed cell. Trees can be constructed from experimental measurements - molecular clocks - of real human tissues and tumors. Detailed analysis of single-cell methylation patterns, heritable yet slightly plastic, now can provide this information in the necessary depth. Trees based on observations of molecular clocks may help us to distinguish between competing theories regarding the proliferative properties among cells of actual human tumors, to observe subtle and difficult phenomena such as the extinction of stem lineages, and to address the origins and rates of mutations in various normal, hormone-stimulated, aging, or neoplastic tissues. The simple concept that cancers arise from the transformation of a normal stem cell, the stem cell origination theory, is sometimes superficially and confusingly referred to as "the stem cell theory". This concept is compatible with but not a requisite assumption for both of the major competing theories of tumor progression, and plays essentially no role in clarifying the nature of tumor progression.
Krašovec, Rok; Richards, Huw; Gifford, Danna R; Hatcher, Charlie; Faulkner, Katy J; Belavkin, Roman V; Channon, Alastair; Aston, Elizabeth; McBain, Andrew J; Knight, Christopher G
2017-08-01
Rates of random, spontaneous mutation can vary plastically, dependent upon the environment. Such plasticity affects evolutionary trajectories and may be adaptive. We recently identified an inverse plastic association between mutation rate and population density at 1 locus in 1 species of bacterium. It is unknown how widespread this association is, whether it varies among organisms, and what molecular mechanisms of mutagenesis or repair are required for this mutation-rate plasticity. Here, we address all 3 questions. We identify a strong negative association between mutation rate and population density across 70 years of published literature, comprising hundreds of mutation rates estimated using phenotypic markers of mutation (fluctuation tests) from all domains of life and viruses. We test this relationship experimentally, determining that there is indeed density-associated mutation-rate plasticity (DAMP) at multiple loci in both eukaryotes and bacteria, with up to 23-fold lower mutation rates at higher population densities. We find that the degree of plasticity varies, even among closely related organisms. Nonetheless, in each domain tested, DAMP requires proteins scavenging the mutagenic oxidised nucleotide 8-oxo-dGTP. This implies that phenotypic markers give a more precise view of mutation rate than previously believed: having accounted for other known factors affecting mutation rate, controlling for population density can reduce variation in mutation-rate estimates by 93%. Widespread DAMP, which we manipulate genetically in disparate organisms, also provides a novel trait to use in the fight against the evolution of antimicrobial resistance. Such a prevalent environmental association and conserved mechanism suggest that mutation has varied plastically with population density since the early origins of life.
Gifford, Danna R.; Hatcher, Charlie; Faulkner, Katy J.; Belavkin, Roman V.; Channon, Alastair; Aston, Elizabeth; McBain, Andrew J.
2017-01-01
Rates of random, spontaneous mutation can vary plastically, dependent upon the environment. Such plasticity affects evolutionary trajectories and may be adaptive. We recently identified an inverse plastic association between mutation rate and population density at 1 locus in 1 species of bacterium. It is unknown how widespread this association is, whether it varies among organisms, and what molecular mechanisms of mutagenesis or repair are required for this mutation-rate plasticity. Here, we address all 3 questions. We identify a strong negative association between mutation rate and population density across 70 years of published literature, comprising hundreds of mutation rates estimated using phenotypic markers of mutation (fluctuation tests) from all domains of life and viruses. We test this relationship experimentally, determining that there is indeed density-associated mutation-rate plasticity (DAMP) at multiple loci in both eukaryotes and bacteria, with up to 23-fold lower mutation rates at higher population densities. We find that the degree of plasticity varies, even among closely related organisms. Nonetheless, in each domain tested, DAMP requires proteins scavenging the mutagenic oxidised nucleotide 8-oxo-dGTP. This implies that phenotypic markers give a more precise view of mutation rate than previously believed: having accounted for other known factors affecting mutation rate, controlling for population density can reduce variation in mutation-rate estimates by 93%. Widespread DAMP, which we manipulate genetically in disparate organisms, also provides a novel trait to use in the fight against the evolution of antimicrobial resistance. Such a prevalent environmental association and conserved mechanism suggest that mutation has varied plastically with population density since the early origins of life. PMID:28837573
Bashir, Tufail; Sailer, Christian; Gerber, Florian; Loganathan, Nitin; Bhoopalan, Hemadev; Eichenberger, Christof; Grossniklaus, Ueli; Baskar, Ramamurthy
2014-05-01
Over 70 years ago, increased spontaneous mutation rates were observed in Drosophila spp. hybrids, but the genetic basis of this phenomenon is not well understood. The model plant Arabidopsis (Arabidopsis thaliana) offers unique opportunities to study the types of mutations induced upon hybridization and the frequency of their occurrence. Understanding the mutational effects of hybridization is important, as many crop plants are grown as hybrids. Besides, hybridization is important for speciation and its effects on genome integrity could be critical, as chromosomal rearrangements can lead to reproductive isolation. We examined the rates of hybridization-induced point and frameshift mutations as well as homologous recombination events in intraspecific Arabidopsis hybrids using a set of transgenic mutation detector lines that carry mutated or truncated versions of a reporter gene. We found that hybridization alters the frequency of different kinds of mutations. In general, Columbia (Col)×Cape Verde Islands and Col×C24 hybrid progeny had decreased T→G and T→A transversion rates but an increased C→T transition rate. Significant changes in frameshift mutation rates were also observed in some hybrids. In Col×C24 hybrids, there is a trend for increased homologous recombination rates, except for the hybrids from one line, while in Col×Cape Verde Islands hybrids, this rate is decreased. The overall genetic distance of the parents had no influence on mutation rates in the progeny, as closely related accessions on occasion displayed higher mutation rates than accessions that are separated farther apart. However, reciprocal hybrids had significantly different mutation rates, suggesting parent-of-origin-dependent effects on the mutation frequency.
P18 tumor suppressor gene and progression of oligodendrogliomas to anaplasia.
He, J; Hoang-Xuan, K; Marie, Y; Leuraud, P; Mokhtari, K; Kujas, M; Delattre, J Y; Sanson, M
2000-09-26
P18INK4C is a good candidate to be the tumor suppressor gene involved in oligodendrogliomas on 1p32. Loss of heterozygosity on 1p, mutation(s), homozygous deletion(s), and expression of p18 in 30 oligodendroglial tumors were investigated. Loss of heterozygosity on 1p was found in 15 tumors. A p18 mutation was found at an recurrence of an anaplastic oligodendroglioma, but not in the primary, low-grade tumor. No homozygous deletions were found and p18 was expressed in all cases. These results show that p18 alteration is involved in tumor progression in a subset of oligodendrogliomas.
Vandenberghe, Peter; Beel, Karolien
2011-01-01
Over the past decade, enormous progress has been made in the understanding of severe congenital neutropenia (SCN), by identification of several causal gene mutations: in ELANE, GFI1, HAX1, WAS and G3PC3. SCN is a preleukemic condition, independent of the genetic subtype. Acquired CSF3R mutations are specific for SCN and are strongly associated with malignant progression. In this review, we describe the known genetic subtypes of SCN, their molecular basis and clinical presentation and summarize the available evidence on CSF3R mutations and monosomy 7 in malignant conversion. PMID:22053285
Odogwu, Lauretta; Mathieu, Luckson; Goldberg, Kirsten B.; Blumenthal, Gideon M.; Larkins, Erin; Fiero, Mallorie H.; Rodriguez, Lisa; Bijwaard, Karen; Lee, Eunice Y.; Philip, Reena; Fan, Ingrid; Donoghue, Martha; Keegan, Patricia; McKee, Amy; Pazdur, Richard
2017-01-01
Abstract On March 30, 2017, the U.S. Food and Drug Administration (FDA) approved osimertinib for the treatment of patients with metastatic, epidermal growth factor receptor (EGFR) T790M mutation‐positive, non‐small cell lung cancer (NSCLC), as detected by an FDA‐approved test, whose disease has progressed following EGFR tyrosine kinase inhibitor (TKI) therapy. Approval was based on demonstration of a statistically significant difference in the primary endpoint of progression‐free survival (PFS) when comparing osimertinib with chemotherapy in an international, multicenter, open‐label, randomized trial (AURA3). In this confirmatory trial, which enrolled 419 patients, the PFS hazard ratio for osimertinib compared with chemotherapy per investigator assessment was 0.30 (95% confidence interval 0.23–0.41), p < .001, with median PFS of 10.1 months in the osimertinib arm and 4.4 months in the chemotherapy arm. Supportive efficacy data included PFS per blinded independent review committee demonstrating similar PFS results and an improved confirmed objective response rate per investigator assessment of 65% and 29%, with estimated median durations of response of 11.0 months and 4.2 months, in the osimertinib and chemotherapy arms, respectively. Patients received osimertinib 80 mg once daily and had a median duration of exposure of 8 months. The toxicity profile of osimertinib compared favorably with the profile of other approved EGFR TKIs and chemotherapy. The most common adverse drug reactions (>20%) in patients treated with osimertinib were diarrhea, rash, dry skin, nail toxicity, and fatigue. Herein, we review the benefit‐risk assessment of osimertinib that led to regular approval, for patients with metastatic NSCLC harboring EGFR TKI whose disease has progressed on or after EGFR TKI therapy. Implications for Practice. Osimertinib administered to metastatic non‐small cell lung cancer (NSCLC) patients harboring an EGFR T790M mutation, who have progressed on or following EGFR TKI therapy, demonstrated a substantial improvement over platinum‐based doublet chemotherapy as well as durable intracranial responses. The ability to test for the T790M mutation in plasma using the FDA‐approved cobas EGFR Mutation Test v2 (Roche, Basel, Switzerland) identifies patients with NSCLC tumors not amenable to biopsy. Since a 40% false‐negative rate has been observed with the circulating tumor DNA test, re‐evaluation of the feasibility of tissue biopsy is recommended to identify patients with a false‐negative plasma test result who may benefit from osimertinib. PMID:29242281
Conserved mechanisms of tumorigenesis in the Drosophila adult midgut.
Martorell, Òscar; Merlos-Suárez, Anna; Campbell, Kyra; Barriga, Francisco M; Christov, Christo P; Miguel-Aliaga, Irene; Batlle, Eduard; Casanova, Jordi; Casali, Andreu
2014-01-01
Whereas the series of genetic events leading to colorectal cancer (CRC) have been well established, the precise functions that these alterations play in tumor progression and how they disrupt intestinal homeostasis remain poorly characterized. Activation of the Wnt/Wg signaling pathway by a mutation in the gene APC is the most common trigger for CRC, inducing benign lesions that progress to carcinomas due to the accumulation of other genetic alterations. Among those, Ras mutations drive tumour progression in CRC, as well as in most epithelial cancers. As mammalian and Drosophila's intestines share many similarities, we decided to explore the alterations induced in the Drosophila midgut by the combined activation of the Wnt signaling pathway with gain of function of Ras signaling in the intestinal stem cells. Here we show that compound Apc-Ras clones, but not clones bearing the individual mutations, expand as aggressive intestinal tumor-like outgrowths. These lesions reproduce many of the human CRC hallmarks such as increased proliferation, blockade of cell differentiation and cell polarity and disrupted organ architecture. This process is followed by expression of tumoral markers present in human lesions. Finally, a metabolic behavioral assay shows that these flies suffer a progressive deterioration in intestinal homeostasis, providing a simple readout that could be used in screens for tumor modifiers or therapeutic compounds. Taken together, our results illustrate the conservation of the mechanisms of CRC tumorigenesis in Drosophila, providing an excellent model system to unravel the events that, upon mutation in Apc and Ras, lead to CRC initiation and progression.
Effect of Repeat Copy Number on Variable-Number Tandem Repeat Mutations in Escherichia coli O157:H7
Vogler, Amy J.; Keys, Christine; Nemoto, Yoshimi; Colman, Rebecca E.; Jay, Zack; Keim, Paul
2006-01-01
Variable-number tandem repeat (VNTR) loci have shown a remarkable ability to discriminate among isolates of the recently emerged clonal pathogen Escherichia coli O157:H7, making them a very useful molecular epidemiological tool. However, little is known about the rates at which these sequences mutate, the factors that affect mutation rates, or the mechanisms by which mutations occur at these loci. Here, we measure mutation rates for 28 VNTR loci and investigate the effects of repeat copy number and mismatch repair on mutation rate using in vitro-generated populations for 10 E. coli O157:H7 strains. We find single-locus rates as high as 7.0 × 10−4 mutations/generation and a combined 28-locus rate of 6.4 × 10−4 mutations/generation. We observed single- and multirepeat mutations that were consistent with a slipped-strand mispairing mutation model, as well as a smaller number of large repeat copy number mutations that were consistent with recombination-mediated events. Repeat copy number within an array was strongly correlated with mutation rate both at the most mutable locus, O157-10 (r2 = 0.565, P = 0.0196), and across all mutating loci. The combined locus model was significant whether locus O157-10 was included (r2 = 0.833, P < 0.0001) or excluded (r2 = 0.452, P < 0.0001) from the analysis. Deficient mismatch repair did not affect mutation rate at any of the 28 VNTRs with repeat unit sizes of >5 bp, although a poly(G) homomeric tract was destabilized in the mutS strain. Finally, we describe a general model for VNTR mutations that encompasses insertions and deletions, single- and multiple-repeat mutations, and their relative frequencies based upon our empirical mutation rate data. PMID:16740932
The Emergent Landscape of Detecting EGFR Mutations Using Circulating Tumor DNA in Lung Cancer
Wei, Fang; Wong, David T.; Su, Wu-Chou
2015-01-01
The advances in targeted therapies for lung cancer are based on the evaluation of specific gene mutations especially the epidermal growth factor receptor (EGFR). The assays largely depend on the acquisition of tumor tissue via biopsy before the initiation of therapy or after the onset of acquired resistance. However, the limitations of tissue biopsy including tumor heterogeneity and insufficient tissues for molecular testing are impotent clinical obstacles for mutation analysis and lung cancer treatment. Due to the invasive procedure of tissue biopsy and the progressive development of drug-resistant EGFR mutations, the effective initial detection and continuous monitoring of EGFR mutations are still unmet requirements. Circulating tumor DNA (ctDNA) detection is a promising biomarker for noninvasive assessment of cancer burden. Recent advancement of sensitive techniques in detecting EGFR mutations using ctDNA enables a broad range of clinical applications, including early detection of disease, prediction of treatment responses, and disease progression. This review not only introduces the biology and clinical implementations of ctDNA but also includes the updating information of recent advancement of techniques for detecting EGFR mutation using ctDNA in lung cancer. PMID:26448936
High mutation rates limit evolutionary adaptation in Escherichia coli
Wagner, Andreas
2018-01-01
Mutation is fundamental to evolution, because it generates the genetic variation on which selection can act. In nature, genetic changes often increase the mutation rate in systems that range from viruses and bacteria to human tumors. Such an increase promotes the accumulation of frequent deleterious or neutral alleles, but it can also increase the chances that a population acquires rare beneficial alleles. Here, we study how up to 100-fold increases in Escherichia coli’s genomic mutation rate affect adaptive evolution. To do so, we evolved multiple replicate populations of asexual E. coli strains engineered to have four different mutation rates for 3000 generations in the laboratory. We measured the ability of evolved populations to grow in their original environment and in more than 90 novel chemical environments. In addition, we subjected the populations to whole genome population sequencing. Although populations with higher mutation rates accumulated greater genetic diversity, this diversity conveyed benefits only for modestly increased mutation rates, where populations adapted faster and also thrived better than their ancestors in some novel environments. In contrast, some populations at the highest mutation rates showed reduced adaptation during evolution, and failed to thrive in all of the 90 alternative environments. In addition, they experienced a dramatic decrease in mutation rate. Our work demonstrates that the mutation rate changes the global balance between deleterious and beneficial mutational effects on fitness. In contrast to most theoretical models, our experiments suggest that this tipping point already occurs at the modest mutation rates that are found in the wild. PMID:29702649
Matrix Disruptions, Growth, and Degradation of Cartilage with Impaired Sulfation*
Mertz, Edward L.; Facchini, Marcella; Pham, Anna T.; Gualeni, Benedetta; De Leonardis, Fabio; Rossi, Antonio; Forlino, Antonella
2012-01-01
Diastrophic dysplasia (DTD) is an incurable recessive chondrodysplasia caused by mutations in the SLC26A2 transporter responsible for sulfate uptake by chondrocytes. The mutations cause undersulfation of glycosaminoglycans in cartilage. Studies of dtd mice with a knock-in Slc26a2 mutation showed an unusual progression of the disorder: net undersulfation is mild and normalizing with age, but the articular cartilage degrades with age and bones develop abnormally. To understand underlying mechanisms, we studied newborn dtd mice. We developed, verified and used high-definition infrared hyperspectral imaging of cartilage sections at physiological conditions, to quantify collagen and its orientation, noncollagenous proteins, and chondroitin chains, and their sulfation with 6-μm spatial resolution and without labeling. We found that chondroitin sulfation across the proximal femur cartilage varied dramatically in dtd, but not in the wild type. Corresponding undersulfation of dtd was mild in most regions, but strong in narrow articular and growth plate regions crucial for bone development. This undersulfation correlated with the chondroitin synthesis rate measured via radioactive sulfate incorporation, explaining the sulfation normalization with age. Collagen orientation was reduced, and the reduction correlated with chondroitin undersulfation. Such disorientation involved the layer of collagen covering the articular surface and protecting cartilage from degradation. Malformation of this layer may contribute to the degradation progression with age and to collagen and proteoglycan depletion from the articular region, which we observed in mice already at birth. The results provide clues to in vivo sulfation, DTD treatment, and cartilage growth. PMID:22556422
Hankey, William; Frankel, Wendy L; Groden, Joanna
2018-03-01
The acquisition of biallelic mutations in the APC gene is a rate-limiting step in the development of most colorectal cancers and occurs in the earliest lesions. APC encodes a 312-kDa protein that localizes to multiple subcellular compartments and performs diverse functions. APC participates in a cytoplasmic complex that promotes the destruction of the transcriptional licensing factor β-catenin; APC mutations that abolish this function trigger constitutive activation of the canonical WNT signaling pathway, a characteristic found in almost all colorectal cancers. By negatively regulating canonical WNT signaling, APC counteracts proliferation, promotes differentiation, facilitates apoptosis, and suppresses invasion and tumor progression. APC further antagonizes canonical WNT signaling by interacting with and counteracting β-catenin in the nucleus. APC also suppresses tumor initiation and progression in the colorectal epithelium through functions that are independent of canonical WNT signaling. APC regulates the mitotic spindle to facilitate proper chromosome segregation, localizes to the cell periphery and cell protrusions to establish cell polarity and appropriate directional migration, and inhibits DNA replication by interacting directly with DNA. Mutations in APC are often frameshifts, insertions, or deletions that introduce premature stop codons and lead to the production of truncated APC proteins that lack its normal functions and possess tumorigenic properties. Therapeutic approaches in development for the treatment of APC-deficient tumors are focused on the inhibition of canonical WNT signaling, especially through targets downstream of APC in the pathway, or on the restoration of wild-type APC expression.
High Mitochondrial DNA Stability in B-Cell Chronic Lymphocytic Leukemia
Cerezo, María; Bandelt, Hans-Jürgen; Martín-Guerrero, Idoia; Ardanaz, Maite; Vega, Ana; Carracedo, Ángel; García-Orad, África; Salas, Antonio
2009-01-01
Background Chronic Lymphocytic Leukemia (CLL) leads to progressive accumulation of lymphocytes in the blood, bone marrow, and lymphatic tissues. Previous findings have suggested that the mtDNA could play an important role in CLL. Methodology/Principal Findings The mitochondrial DNA (mtDNA) control-region was analyzed in lymphocyte cell DNA extracts and compared with their granulocyte counterpart extract of 146 patients suffering from B-Cell CLL; B-CLL (all recruited from the Basque country). Major efforts were undertaken to rule out methodological artefacts that would render a high false positive rate for mtDNA instabilities and thus lead to erroneous interpretation of sequence instabilities. Only twenty instabilities were finally confirmed, most of them affecting the homopolymeric stretch located in the second hypervariable segment (HVS-II) around position 310, which is well known to constitute an extreme mutational hotspot of length polymorphism, as these mutations are frequently observed in the general human population. A critical revision of the findings in previous studies indicates a lack of proper methodological standards, which eventually led to an overinterpretation of the role of the mtDNA in CLL tumorigenesis. Conclusions/Significance Our results suggest that mtDNA instability is not the primary causal factor in B-CLL. A secondary role of mtDNA mutations cannot be fully ruled out under the hypothesis that the progressive accumulation of mtDNA instabilities could finally contribute to the tumoral process. Recommendations are given that would help to minimize erroneous interpretation of sequencing results in mtDNA studies in tumorigenesis. PMID:19924307
Escribano, Luis; Alvarez-Twose, Iván; Sánchez-Muñoz, Laura; Garcia-Montero, Andres; Núñez, Rosa; Almeida, Julia; Jara-Acevedo, Maria; Teodósio, Cristina; García-Cosío, Mónica; Bellas, Carmen; Orfao, Alberto
2009-09-01
Indolent systemic mastocytosis is a group of rare diseases for which reliable predictors of progression and outcome are still lacking. Here we investigate the prognostic impact of the clinical, biological, phenotypic, histopathological, and molecular disease characteristics in adults with indolent systemic mastocytosis, who were followed using conservative therapy. A total of 145 consecutive patients were prospectively followed between January 1983 and July 2008; in addition, from 1967 to 1983, 20 patients were retrospectively studied. Multivariate analysis showed that serum beta2-microglobulin (P = .003) together with the presence of mast/stem cell growth factor receptor gene (KIT) mutation in mast cells plus myeloid and lymphoid hematopoietic lineages (P = .02) was the best combination of independent parameters for predicting disease progression (cumulative probability of disease progression of 1.7% +/- 1.2% at 5-10 years and of 8.4% +/- 5.0% at 20-25 years). Regarding overall survival, the best predictive model included age >60 years (P = .005) and development of an associated clonal hematological non-mast cell disorder (P = .03) with a cumulative probability of death of 2.2% +/- 1.3% at 5 years and of 11% +/- 5.9% at 25 years. Indolent systemic mastocytosis in adults has a low disease progression rate, and the great majority of patients have a normal life expectancy, with the presence of KIT mutation in all hematopoietic lineages and increased serum beta2-microglobulin the most powerful independent parameters for predicting transformation into a more aggressive form of the disease.
BRCA2 Mutation as a Possible Cause of Poor Response to 177Lu-PSMA Therapy.
Ahmadzadehfar, Hojjat; Gaertner, Florian; Lossin, Philipp S; Schwarz, Bettina; Essler, Markus
2018-05-14
We present the case of a 66-year-old man with castration-resistant prostate cancer, with an increasing prostate-specific antigen level, and a progressive disease during Lu-PSMA radionuclide therapy. Because the patient had a BRCA2 mutation, poly-ADP ribose polymerase inhibitor therapy was started. The patient showed a dramatic subjective and biological response to this therapy with a progression-free survival of 5 months.
A Novel Frameshift Mutation of the USH2A Gene in a Korean Patient with Usher Syndrome Type II
Boo, Sung Hyun; Song, Min-Jung; Cho, Yang-Sun; Chu, Hosuk; Ko, Moon-Hee; Chung, Won-Ho; Kim, Jong-Won
2013-01-01
Usher syndrome type II (USH2) is the most common form of Usher syndrome, characterized by moderate to severe hearing impairment and progressive visual loss due to retinitis pigmentosa. It has been shown that mutations in the USH2A gene are responsible for USH2. The authors herein describe a 34-year-old Korean woman with the typical clinical manifestation of USH2; she had bilateral hearing disturbance and progressive visual deterioration, without vestibular dysfunction. Molecular genetic study of the USH2A gene revealed a novel frameshift mutation (c.2310delA; Glu771LysfsX17). She was heterozygous for this mutation, and no other mutation was found in USH2A, suggesting the possibility of an intronic or large genomic rearrangement mutation. To the best of our knowledge, this is the first report of a genetically confirmed case of USH2 in Korea. More investigations are needed to delineate genotype-phenotype correlations and ethnicity-specific genetic background of Usher syndrome. PMID:23526569
Wolf, Joachim; Obermaier-Kusser, Bert; Jacobs, Martina; Milles, Cornelia; Mörl, Mario; von Pein, Harald D; Grau, Armin J; Bauer, Matthias F
2012-05-15
We report a novel heteroplasmic point mutation G8299A in the gene for mitochondrial tRNA(Lys) in a patient with progressive external ophthalmoplegia complicated by recurrent respiratory insufficiency. Biochemical analysis of respiratory chain complexes in muscle homogenate showed a combined complex I and IV deficiency. The transition does not represent a known neutral polymorphism and affects a position in the tRNA acceptor stem which is conserved in primates, leading to a destabilization of this functionally important domain. In vitro analysis of an essential maturation step of the tRNA transcript indicates the probable pathogenicity of this mutation. We hypothesize that there is a causal relationship between the novel G8299A transition and progressive external ophthalmoplegia with recurrent respiratory failure due to a depressed respiratory drive. Copyright © 2012 Elsevier B.V. All rights reserved.
Dynamic of Mutational Events in Variable Number Tandem Repeats of Escherichia coli O157:H7
Bustamante, A. V.; Sanso, A. M.; Segura, D. O.; Parma, A. E.; Lucchesi, P. M. A.
2013-01-01
VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10−05 to 1.8 × 10−03 mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10−03 mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study. PMID:24093095
Mutation rates at 42 Y chromosomal short tandem repeats in Chinese Han population in Eastern China.
Wu, Weiwei; Ren, Wenyan; Hao, Honglei; Nan, Hailun; He, Xin; Liu, Qiuling; Lu, Dejian
2018-01-31
Mutation analysis of 42 Y chromosomal short tandem repeats (Y-STRs) loci was performed using a sample of 1160 father-son pairs from the Chinese Han population in Eastern China. The results showed that the average mutation rate across the 42 Y-STR loci was 0.0041 (95% CI 0.0036-0.0047) per locus per generation. The locus-specific mutation rates varied from 0.000 to 0.0190. No mutation was found at DYS388, DYS437, DYS448, DYS531, and GATA_H4. DYS627, DYS570, DYS576, and DYS449 could be classified as rapidly mutating Y-STRs, with mutation rates higher than 1.0 × 10 -2 . DYS458, DYS630, and DYS518 were moderately mutating Y-STRs, with mutation rates ranging from 8 × 10 -3 to 1 × 10 -2 . Although the characteristics of the Y-STR mutations were consistent with those in previous studies, mutation rate differences between our data and previous published data were found at some rapidly mutating Y-STRs. The single-copy loci located on the short arm of the Y chromosome (Yp) showed relatively higher mutation rates more frequently than the multi-copy loci. These results will not only extend the data for Y-STR mutations but also be important for kinship analysis, paternal lineage identification, and family relationship reconstruction in forensic Y-STR analysis.
Global Characterization of Protein-Altering Mutations in Prostate Cancer
2012-08-01
observed, and assess prevalence; (3) Perform integrative analyses of somatic mutation with gene expression and copy number change data collected on the...v) completed CGH assays on 200 prostate cancers; (vi) initiated the integrated analyses of gene expression, copy number and mutation in prostate...histories of individual mutations within the progression of the cancer in which it was observed, and to assess the prevalence of candidate cancer genes
Belostotsky, Ruth; Ben-Shalom, Efrat; Rinat, Choni; Becker-Cohen, Rachel; Feinstein, Sofia; Zeligson, Sharon; Segel, Reeval; Elpeleg, Orly; Nassar, Suheir; Frishberg, Yaacov
2011-02-11
An uncharacterized multisystemic mitochondrial cytopathy was diagnosed in two infants from consanguineous Palestinian kindred living in a single village. The most significant clinical findings were tubulopathy (hyperuricemia, metabolic alkalosis), pulmonary hypertension, and progressive renal failure in infancy (HUPRA syndrome). Analysis of the consanguineous pedigree suggested that the causative mutation is in the nuclear DNA. By using genome-wide SNP homozygosity analysis, we identified a homozygous identity-by-descent region on chromosome 19 and detected the pathogenic mutation c.1169A>G (p.Asp390Gly) in SARS2, encoding the mitochondrial seryl-tRNA synthetase. The same homozygous mutation was later identified in a third infant with HUPRA syndrome. The carrier rate of this mutation among inhabitants of this Palestinian isolate was found to be 1:15. The mature enzyme catalyzes the ligation of serine to two mitochondrial tRNA isoacceptors: tRNA(Ser)(AGY) and tRNA(Ser)(UCN). Analysis of amino acylation of the two target tRNAs, extracted from immortalized peripheral lymphocytes derived from two patients, revealed that the p.Asp390Gly mutation significantly impacts on the acylation of tRNA(Ser)(AGY) but probably not that of tRNA(Ser)(UCN). Marked decrease in the expression of the nonacylated transcript and the complete absence of the acylated tRNA(Ser)(AGY) suggest that this mutation leads to significant loss of function and that the uncharged transcripts undergo degradation. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Loeffler, David A; Klaver, Andrea C; Coffey, Mary P; Aasly, Jan O; LeWitt, Peter A
2017-01-01
Mutations in the leucine-rich repeat kinase 2 ( LRRK2 ) gene are the most frequent cause of inherited Parkinson's disease (PD). The most common PD-associated LRRK2 mutation, G2019S, induces increased production of reactive oxygen species in vitro . We therefore hypothesized that individuals with PD-associated LRRK2 mutations might have increased concentrations of oxidative stress markers and/or decreased total antioxidant capacity (TAC) in their cerebrospinal fluid (CSF). We measured two oxidative stress markers, namely 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-isoprostane (8-ISO), and TAC in CSF from LRRK2 mutation-bearing PD patients ( LRRK2 PD = 19), sporadic PD patients (sPD = 31), and healthy control subjects with or without these mutations ( LRRK2 CTL = 30, CTL = 27). 8-OHdG and 8-ISO levels were increased in LRRK2 CTL subjects, while TAC was similar between groups. 8-ISO was negatively correlated, and TAC was positively correlated, with Montreal Cognitive Assessment scores in LRRK2 PD, LRRK2 CTL, and CTL subjects. Correlations in both groups of PD patients between the two oxidative stress markers and Unified Parkinson Disease Rating Scale Total scores were weak, while TAC was negatively correlated with these scores. These findings suggest that oxidative stress may be increased in the CNS in healthy individuals with PD-associated LRRK2 mutations. Further, TAC may decrease in the CNS with the progression of PD, and when cognitive impairment is present regardless of the presence or absence of PD.
Loeffler, David A.; Klaver, Andrea C.; Coffey, Mary P.; Aasly, Jan O.; LeWitt, Peter A.
2017-01-01
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of inherited Parkinson’s disease (PD). The most common PD-associated LRRK2 mutation, G2019S, induces increased production of reactive oxygen species in vitro. We therefore hypothesized that individuals with PD-associated LRRK2 mutations might have increased concentrations of oxidative stress markers and/or decreased total antioxidant capacity (TAC) in their cerebrospinal fluid (CSF). We measured two oxidative stress markers, namely 8-hydroxy-2′-deoxyguanosine (8-OHdG) and 8-isoprostane (8-ISO), and TAC in CSF from LRRK2 mutation-bearing PD patients (LRRK2 PD = 19), sporadic PD patients (sPD = 31), and healthy control subjects with or without these mutations (LRRK2 CTL = 30, CTL = 27). 8-OHdG and 8-ISO levels were increased in LRRK2 CTL subjects, while TAC was similar between groups. 8-ISO was negatively correlated, and TAC was positively correlated, with Montreal Cognitive Assessment scores in LRRK2 PD, LRRK2 CTL, and CTL subjects. Correlations in both groups of PD patients between the two oxidative stress markers and Unified Parkinson Disease Rating Scale Total scores were weak, while TAC was negatively correlated with these scores. These findings suggest that oxidative stress may be increased in the CNS in healthy individuals with PD-associated LRRK2 mutations. Further, TAC may decrease in the CNS with the progression of PD, and when cognitive impairment is present regardless of the presence or absence of PD. PMID:28420983
Stochastic demography and the neutral substitution rate in class-structured populations.
Lehmann, Laurent
2014-05-01
The neutral rate of allelic substitution is analyzed for a class-structured population subject to a stationary stochastic demographic process. The substitution rate is shown to be generally equal to the effective mutation rate, and under overlapping generations it can be expressed as the effective mutation rate in newborns when measured in units of average generation time. With uniform mutation rate across classes the substitution rate reduces to the mutation rate.
Lesage, Suzanne; Drouet, Valérie; Majounie, Elisa; Deramecourt, Vincent; Jacoupy, Maxime; Nicolas, Aude; Cormier-Dequaire, Florence; Hassoun, Sidi Mohamed; Pujol, Claire; Ciura, Sorana; Erpapazoglou, Zoi; Usenko, Tatiana; Maurage, Claude-Alain; Sahbatou, Mourad; Liebau, Stefan; Ding, Jinhui; Bilgic, Basar; Emre, Murat; Erginel-Unaltuna, Nihan; Guven, Gamze; Tison, François; Tranchant, Christine; Vidailhet, Marie; Corvol, Jean-Christophe; Krack, Paul; Leutenegger, Anne-Louise; Nalls, Michael A.; Hernandez, Dena G.; Heutink, Peter; Gibbs, J. Raphael; Hardy, John; Wood, Nicholas W.; Gasser, Thomas; Durr, Alexandra; Deleuze, Jean-François; Tazir, Meriem; Destée, Alain; Lohmann, Ebba; Kabashi, Edor; Singleton, Andrew; Corti, Olga; Brice, Alexis; Lesage, Suzanne; Tison, François; Vidailhet, Marie; Corvol, Jean-Christophe; Agid, Yves; Anheim, Mathieu; Bonnet, Anne-Marie; Borg, Michel; Broussolle, Emmanuel; Damier, Philippe; Destée, Alain; Dürr, Alexandra; Durif, Franck; Krack, Paul; Klebe, Stephan; Lohmann, Ebba; Martinez, Maria; Pollak, Pierre; Rascol, Olivier; Tranchant, Christine; Vérin, Marc; Viallet, François; Brice, Alexis; Lesage, Suzanne; Majounie, Elisa; Tison, François; Vidailhet, Marie; Corvol, Jean Christophe; Nalls, Michael A.; Hernandez, Dena G.; Gibbs, J. Raphael; Dürr, Alexandra; Arepalli, Sampath; Barker, Roger A.; Ben-Shlomo, Yoav; Berg, Daniela; Bettella, Francesco; Bhatia, Kailash; de Bie, Rob M.A.; Biffi, Alessandro; Bloem, Bastiaan R.; Bochdanovits, Zoltan; Bonin, Michael; Lesage, Suzanne; Tison, François; Vidailhet, Marie; Corvol, Jean-Christophe; Agid, Yves; Anheim, Mathieu; Bonnet, Anne-Marie; Borg, Michel; Broussolle, Emmanuel; Damier, Philippe; Destée, Alain; Dürr, Alexandra; Durif, Franck; Krack, Paul; Klebe, Stephan; Lohmann, Ebba; Martinez, Maria; Pollak, Pierre; Rascol, Olivier; Tranchant, Christine; Vérin, Marc; Bras, Jose M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chen, Honglei; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Dong, Jing; Durif, Frank; Edkins, Sarah; Escott-Price, Valentina; Evans, Jonathan R.; Foltynie, Thomas; Gao, Jianjun; Gardner, Michelle; Goate, Alison; Gray, Emma; Guerreiro, Rita; Harris, Clare; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holmans, Peter; Holton, Janice; Hu, Michèle; Huang, Xuemei; Huber, Heiko; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; Jónsson, Pálmi V.; Kilarski, Laura L.; Jansen, Iris E.; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; Lubbe, Steven; Lungu, Codrin; Martinez, María; Mätzler, Walter; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morrison, Karen E.; Mudanohwo, Ese; O’Sullivan, Sean S.; Owen, Michael J.; Pearson, Justin; Perlmutter, Joel S.; Pétursson, Hjörvar; Plagnol, Vincent; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Saad, Mohamad; Simón-Sánchez, Javier; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Schulte, Claudia; Sharma, Manu; Shaw, Karen; Sheerin, Una-Marie; Shoulson, Ira; Shulman, Joshua; Sidransky, Ellen; Spencer, Chris C.A.; Stefánsson, Hreinn; Stefánsson, Kári; Stockton, Joanna D.; Strange, Amy; Talbot, Kevin; Tanner, Carlie M.; Tashakkori-Ghanbaria, Avazeh; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Wurster, Isabel; Williams, Nigel; Morris, Huw R.; Heutink, Peter; Hardy, John; Wood, Nicholas W.; Gasser, Thomas; Singleton, Andrew B.; Brice, Alexis
2016-01-01
Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression. PMID:26942284
Rates of spontaneous mutation among RNA viruses.
Drake, J W
1993-01-01
Simple methods are presented to estimate rates of spontaneous mutation from mutant frequencies and population parameters in RNA viruses. Published mutant frequencies yield a wide range of mutation rates per genome per replication, mainly because mutational targets have usually been small and, thus, poor samples of the mutability of the average base. Nevertheless, there is a clear central tendency for lytic RNA viruses (bacteriophage Q beta, poliomyelitis, vesicular stomatitis, and influenza A) to display rates of spontaneous mutation of approximately 1 per genome per replication. This rate is some 300-fold higher than previously reported for DNA-based microbes. Lytic RNA viruses thus mutate at a rate close to the maximum value compatible with viability. Retroviruses (spleen necrosis, murine leukemia, Rous sarcoma), however, mutate at an average rate about an order of magnitude lower than lytic RNA viruses. PMID:8387212
Determining Mutation Rates in Bacterial Populations
Rosche, William A.; Foster, Patricia L.
2010-01-01
When properly determined, spontaneous mutation rates are a more accurate and biologically meaningful reflection of the underlying mutagenic mechanism than are mutation frequencies. Because bacteria grow exponentially and mutations arise stochastically, methods to estimate mutation rates depend on theoretical models that describe the distribution of mutant numbers among parallel cultures, as in the original Luria-Delbrück fluctuation analysis. An accurate determination of mutation rate depends on understanding the strengths and limitations of these methods, and how to design fluctuation assays to optimize a given method. In this paper we describe a number of methods to estimate mutation rates, give brief accounts of their derivations, and discuss how they behave under various experimental conditions. PMID:10610800
Pan, Wei; Yang, Yan; Zhu, Hongcheng; Zhang, Youcheng; Zhou, Rongping; Sun, Xinchen
2016-01-01
Mutation of oncogene KRAS is common in non-small cell lung cancer (NSCLC), however, its clinical significance is still controversial. Independent studies evaluating its prognostic and predictive value usually drew inconsistent conclusions. Hence, We performed a meta-analysis with 41 relative publications, retrieved from multi-databases, to reconcile these controversial results and to give an overall impression of KRAS mutation in NSCLC. According to our findings, KRAS mutation was significantly associated with worse overall survival (OS) and disease-free survival (DFS) in early stage resected NSCLC (hazard ratio or HR=1.56 and 1.57, 95% CI 1.39-1.76 and 1.17-2.09 respectively), and with inferior outcomes of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) treatment and chemotherapy (relative risk or RR=0.21 and 0.66 for objective response rate or ORR, 95% CI 0.12-0.39 and 0.54-0.81 respectively; HR=1.46 and 1.30 for progression-free survival or PFS, 95%CI 1.23-1.74 and 1.14-1.50 respectively) in advanced NSCLC. When EGFR mutant patients were excluded, KRAS mutation was still significantly associated with worse OS and PFS of EGFR-TKIs (HR=1.40 and 1.35, 95 % CI 1.21-1.61 and 1.11-1.64). Although KRAS mutant patients presented worse DFS and PFS of chemotherapy (HR=1.33 and 1.11, 95% CI 0.97-1.84 and 0.95-1.30), and lower response rate to EGFR-TKIs or chemotherapy (RR=0.55 and 0.88, 95 % CI 0.27-1.11 and 0.76-1.02), statistical differences were not met. In conclusion, KRAS mutation is a weak, but valid predictor for poor prognosis and treatment outcomes in NSCLC. There's a need for developing target therapies for KRAS mutant lung cancer and other tumors. PMID:26840022
Association of a novel point mutation in MSH2 gene with familial multiple primary cancers.
Hu, Hai; Li, Hong; Jiao, Feng; Han, Ting; Zhuo, Meng; Cui, Jiujie; Li, Yixue; Wang, Liwei
2017-10-03
Multiple primary cancers (MPC) have been identified as two or more cancers without any subordinate relationship that occur either simultaneously or metachronously in the same or different organs of an individual. Lynch syndrome is an autosomal dominant genetic disorder that increases the risk of many types of cancers. Lynch syndrome patients who suffer more than two cancers can also be considered as MPC; patients of this kind provide unique resources to learn how genetic mutation causes MPC in different tissues. We performed a whole genome sequencing on blood cells and two tumor samples of a Lynch syndrome patient who was diagnosed with five primary cancers. The mutational landscape of the tumors, including somatic point mutations and copy number alternations, was characterized. We also compared Lynch syndrome with sporadic cancers and proposed a model to illustrate the mutational process by which Lynch syndrome progresses to MPC. We revealed a novel pathologic mutation on the MSH2 gene (G504 splicing) that associates with Lynch syndrome. Systematical comparison of the mutation landscape revealed that multiple cancers in the proband were evolutionarily independent. Integrative analysis showed that truncating mutations of DNA mismatch repair (MMR) genes were significantly enriched in the patient. A mutation progress model that included germline mutations of MMR genes, double hits of MMR system, mutations in tissue-specific driver genes, and rapid accumulation of additional passenger mutations was proposed to illustrate how MPC occurs in Lynch syndrome patients. Our findings demonstrate that both germline and somatic alterations are driving forces of carcinogenesis, which may resolve the carcinogenic theory of Lynch syndrome.
Big Bang Tumor Growth and Clonal Evolution.
Sun, Ruping; Hu, Zheng; Curtis, Christina
2018-05-01
The advent and application of next-generation sequencing (NGS) technologies to tumor genomes has reinvigorated efforts to understand clonal evolution. Although tumor progression has traditionally been viewed as a gradual stepwise process, recent studies suggest that evolutionary rates in tumors can be variable with periods of punctuated mutational bursts and relative stasis. For example, Big Bang dynamics have been reported, wherein after transformation, growth occurs in the absence of stringent selection, consistent with effectively neutral evolution. Although first noted in colorectal tumors, effective neutrality may be relatively common. Additionally, punctuated evolution resulting from mutational bursts and cataclysmic genomic alterations have been described. In this review, we contrast these findings with the conventional gradualist view of clonal evolution and describe potential clinical and therapeutic implications of different evolutionary modes and tempos. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
Mellema, Wouter W; Masen-Poos, Lucie; Smit, Egbert F; Hendriks, Lizza E L; Aerts, Joachim G; Termeer, Arien; Goosens, Martijn J; Smit, Hans J M; van den Heuvel, Michel M; van der Wekken, Anthonie J; Herder, Gerarda J M; Krouwels, Frans H; Stigt, Jos A; van den Borne, Ben E E M; Haitjema, Tjeerd J; Staal-Van den Brekel, Agnes J; van Heemst, Robbert C; Pouw, Ellen; Dingemans, Anne-Marie C
2015-11-01
As suggested by in-vitro data, we hypothesize that subtypes of KRAS mutated non-small cell lung cancer (NSCLC) respond differently to chemotherapy regimens. Patients with advanced NSCLC and known KRAS mutation, treated with first-line platinum-based chemotherapy, were retrieved from hospital databases. to investigate overall response rate (ORR), progression free survival (PFS) and overall survival (OS) between different types of platinum-based chemotherapy per type of KRAS mutation. 464 patients from 17 hospitals, treated between 2000 and 2013, were included. The majority of patients had stage IV disease (93%), had a history of smoking (98%) and known with an adenocarcinoma (91%). Most common types of KRAS mutation were G12C (46%), G12V (20%) and G12D (10%). Platinum was combined with pemetrexed (n=334), taxanes (n=68) or gemcitabine (n=62). Patients treated with taxanes had a significant improved ORR (50%) compared to pemetrexed (21%) or gemcitabine (25%; p<0.01). Patients treated with bevacizumab in addition to taxanes (n=38) had the highest ORR (62%). The PFS was significantly improved in patients treated with taxanes compared to pemetrexed (HR=0.72, p=0.02), but not OS (HR=0.87, p=0.41). In patients with G12V, significantly improved ORR (p<0.01) was observed for taxanes, but not PFS or OS. Patients with G12C or G12D mutation had comparable ORR, PFS and OS in all treatment groups. KRAS mutated NSCLC patients treated with taxane-based chemotherapy had best ORR. Response to chemotherapy regimens was different in types of KRAS mutation. Especially patients with G12V had better response to taxane treatment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
CLINICAL PRESENTATION AND DISEASE COURSE OF USHER SYNDROME BECAUSE OF MUTATIONS IN MYO7A OR USH2A.
Testa, Francesco; Melillo, Paolo; Bonnet, Crystel; Marcelli, Vincenzo; de Benedictis, Antonella; Colucci, Raffaella; Gallo, Beatrice; Kurtenbach, Anne; Rossi, Settimio; Marciano, Elio; Auricchio, Alberto; Petit, Christine; Zrenner, Eberhart; Simonelli, Francesca
2017-08-01
To evaluate differences in the visual phenotype and natural history of Usher syndrome caused by mutations in MYO7A or USH2A, the most commonly affected genes of Usher syndrome Type I (USH1) and Type II (USH2), respectively. Eighty-eight patients with a clinical diagnosis of USH1 (26 patients) or USH2 (62 patients) were retrospectively evaluated. Of these, 48 patients had 2 disease-causing mutations in MYO7A (10 USH1 patients), USH2A (33 USH2 patients), and other USH (5 patients) genes. Clinical investigation included best-corrected visual acuity, Goldmann visual field, fundus photography, electroretinography, and audiologic and vestibular assessments. Longitudinal analysis was performed over a median follow-up time of 3.5 years. Patients carrying mutations in MYO7A had a younger age of onset of hearing and visual impairments than those carrying mutations in USH2A, leading to an earlier diagnosis of the disease in the former patients. Longitudinal analysis showed that visual acuity and visual field decreased more rapidly in subjects carrying MYO7A mutations than in those carrying USH2A mutations (mean annual exponential rates of decline of 3.92 vs. 3.44% and of 8.52 vs. 4.97%, respectively), and the former patients reached legal blindness on average 15 years earlier than the latter. The current study confirmed a more severe progression of the retinal disease in USH1 patients rather than in USH2 patients. Furthermore, most visual symptoms (i.e., night blindness, visual acuity worsening) occurred at an earlier age in USH1 patients carrying mutations in MYO7A.
Trimarco, Amelia; Torella, Annalaura; Piluso, Giulio; Maria Ventriglia, Vega; Politano, Luisa; Nigro, Vincenzo
2008-06-01
Duchenne (DMD) and Becker (BMD) muscular dystrophies are caused by mutations in the dystrophin gene. Despite the progress in the technologies of mutation detection, the disease of one third of patients escapes molecular definition because the labor and expense involved has precluded analyzing the entire gene. Novel techniques with higher detection rates, such as multiplex ligation-dependent probe amplification and multiplex amplifiable probe hybridization, have been introduced. We approached the challenge of multiplexing by modifying the PCR chemistry. We set up a rapid protocol that analyzes all dystrophin exons and flanking introns (57.5 kb). We grouped exons according to their effect on the reading frame and ran 2 PCR reactions for DMD mutations and 2 reactions for BMD mutations under the same conditions. The PCR products are evenly spaced logarithmically on the gel (Log-PCR) in an order that reproduces their chromosomal locations. This strategy enables both simultaneous mapping of all the mutation borders and distinguishing between DMD and BMD. As a proof of principle, we reexamined samples from 506 patients who had received a DMD or BMD diagnosis. We observed gross rearrangements in 428 of the patients (84.6%; 74.5% deletions and 10.1% duplications). We also recognized a much broader spectrum of mutations and identified 14.6% additional cases. This study is the first exhaustive investigation of this subject and has made possible the development of a cost-effective test for diagnosing a larger proportion of cases. The benefit of this approach may allow more focused efforts for discovering small or deep-intronic mutations among the few remaining undiagnosed cases. The same protocol can be extended to set up Log-PCRs for other high-throughput applications.
Deriving a Mutation Index of Carcinogenicity Using Protein Structure and Protein Interfaces
Hakas, Jarle; Pearl, Frances; Zvelebil, Marketa
2014-01-01
With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/. PMID:24454733
Isocitrate dehydrogenase mutations in gliomas
Waitkus, Matthew S.; Diplas, Bill H.; Yan, Hai
2016-01-01
Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate α-ketoglutarate (αKG), but recurrent mutations at Arg132 of IDH1 and Arg172 of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of αKG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits αKG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy. PMID:26188014
Sanjuán, Rafael; Domingo-Calap, Pilar
2016-12-01
The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.
Population-Scale Sequencing Data Enable Precise Estimates of Y-STR Mutation Rates
Willems, Thomas; Gymrek, Melissa; Poznik, G. David; Tyler-Smith, Chris; Erlich, Yaniv
2016-01-01
Short tandem repeats (STRs) are mutation-prone loci that span nearly 1% of the human genome. Previous studies have estimated the mutation rates of highly polymorphic STRs by using capillary electrophoresis and pedigree-based designs. Although this work has provided insights into the mutational dynamics of highly mutable STRs, the mutation rates of most others remain unknown. Here, we harnessed whole-genome sequencing data to estimate the mutation rates of Y chromosome STRs (Y-STRs) with 2–6 bp repeat units that are accessible to Illumina sequencing. We genotyped 4,500 Y-STRs by using data from the 1000 Genomes Project and the Simons Genome Diversity Project. Next, we developed MUTEA, an algorithm that infers STR mutation rates from population-scale data by using a high-resolution SNP-based phylogeny. After extensive intrinsic and extrinsic validations, we harnessed MUTEA to derive mutation-rate estimates for 702 polymorphic STRs by tracing each locus over 222,000 meioses, resulting in the largest collection of Y-STR mutation rates to date. Using our estimates, we identified determinants of STR mutation rates and built a model to predict rates for STRs across the genome. These predictions indicate that the load of de novo STR mutations is at least 75 mutations per generation, rivaling the load of all other known variant types. Finally, we identified Y-STRs with potential applications in forensics and genetic genealogy, assessed the ability to differentiate between the Y chromosomes of father-son pairs, and imputed Y-STR genotypes. PMID:27126583
Rates and Genomic Consequences of Spontaneous Mutational Events in Drosophila melanogaster
Schrider, Daniel R.; Houle, David; Lynch, Michael; Hahn, Matthew W.
2013-01-01
Because spontaneous mutation is the source of all genetic diversity, measuring mutation rates can reveal how natural selection drives patterns of variation within and between species. We sequenced eight genomes produced by a mutation-accumulation experiment in Drosophila melanogaster. Our analysis reveals that point mutation and small indel rates vary significantly between the two different genetic backgrounds examined. We also find evidence that ∼2% of mutational events affect multiple closely spaced nucleotides. Unlike previous similar experiments, we were able to estimate genome-wide rates of large deletions and tandem duplications. These results suggest that, at least in inbred lines like those examined here, mutational pressures may result in net growth rather than contraction of the Drosophila genome. By comparing our mutation rate estimates to polymorphism data, we are able to estimate the fraction of new mutations that are eliminated by purifying selection. These results suggest that ∼99% of duplications and deletions are deleterious—making them 10 times more likely to be removed by selection than nonsynonymous mutations. Our results illuminate not only the rates of new small- and large-scale mutations, but also the selective forces that they encounter once they arise. PMID:23733788
Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; Castro Junior, Gilberto de
2015-01-01
Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.
Hilado, Mark A; Randhawa, Ruvdeep S
2018-06-02
Proopiomelanocortin (POMC) is a complex polypeptide that produces a variety of biologically active substances via cleavage in a tissue-specific manner [Challis BG, Millington GW. Proopiomelanocortin deficiency. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle, 1993-2018], yielding several products including adrenocorticotrophic (ACTH) and melanocyte stimulating hormones (MSH). These peptides have roles in the regulation of food intake, energy homeostasis, adrenal steroidogenesis, melanocyte stimulation and immune modulation. Rare mutations in the POMC gene can lead to ACTH deficiency and thus isolated hypocortisolism. The first cases of POMC mutation were documented by Krude et al. in 1998 [Krude H, Biebermann H, Luck W, Horn R, Brabant G, et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 1998;19:155-7]. Mutations in the POMC gene were linked with a clinical phenotype of adrenal insufficiency, red hair pigmentation, early onset and rapidly progressive obesity, early onset type 2 diabetes, hypothyroidism, hypogonadism and growth hormone deficiency. We describe a prepubertal Hispanic boy with a novel homozygous POMC mutation with severe obesity, hypothyroidism, adrenal insufficiency and abnormal reddish hair pigmentation. The patient presented as a 2-year-old with exponential weight gain, abnormal thyroid labs and speech delay. Laboratory testing demonstrated central adrenal insufficiency and genetic testing confirmed a homozygous mutation (nucleotide change c.20_21ins25) in exon 3 of the POMC gene. Replacement therapy with thyroid hormone and hydrocortisone was coupled to a slight decrease in the rate of weight gain, although hyperphagia persisted. Parent-directed nutrition and activity education as well as attempts to restrict access to food resulted in a plateau of the body mass index (BMI). At 4 years of age, metformin treatment was initiated with the patient showing evolving signs of insulin resistance and failure of lifestyle/dietary intervention to adequately decrease the BMI. Over a 3-year metformin treatment span, the BMI decreased from 34.9 kg/m2 to 32.9 kg/m2. We demonstrate a possible role for metformin in stemming progressive weight gain, thereby impacting the early onset obesity due to hyperphagia.
Makishima, Hideki; Jankowska, Anna M.; McDevitt, Michael A.; O'Keefe, Christine; Dujardin, Simon; Cazzolli, Heather; Przychodzen, Bartlomiej; Prince, Courtney; Nicoll, John; Siddaiah, Harish; Shaik, Mohammed; Szpurka, Hadrian; Hsi, Eric; Advani, Anjali; Paquette, Ronald
2011-01-01
Progression of chronic myelogenous leukemia (CML) to accelerated (AP) and blast phase (BP) is because of secondary molecular events, as well as additional cytogenetic abnormalities. On the basis of the detection of JAK2, CBL, CBLB, TET2, ASXL1, and IDH1/2 mutations in myelodysplastic/myeloproliferative neoplasms, we hypothesized that they may also contribute to progression in CML. We screened these genes for mutations in 54 cases with CML (14 with chronic phase, 14 with AP, 20 with myeloid, and 6 with nonmyeloid BP). We identified 1 CBLB and 2 TET2 mutations in AP, and 1 CBL, 1 CBLB, 4 TET2, 2 ASXL1, and 2 IDH family mutations in myeloid BP. However, none of these mutations were found in chronic phase. No cases with JAK2V617F mutations were found. In 2 cases, TET2 mutations were found concomitant with CBLB mutations. By single nucleotide polymorphism arrays, uniparental disomy on chromosome 5q, 8q, 11p, and 17p was found in AP and BP but not involving 4q24 (TET2) or 11q23 (CBL). Microdeletions on chromosomes 17q11.2 and 21q22.12 involved tumor associated genes NF1 and RUNX1, respectively. Our results indicate that CBL family, TET2, ASXL1, and IDH family mutations and additional cryptic karyotypic abnormalities can occur in advanced phase CML. PMID:21346257
Landry, Nichole K.; El-Achkar, Tarek M.; Lieske, John C.
2017-01-01
Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys’ thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies. PMID:29145399
Ma, Lijie; Liu, Yan; Landry, Nichole K; El-Achkar, Tarek M; Lieske, John C; Wu, Xue-Ru
2017-01-01
Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys' thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies.
Discovery of Genomic Breakpoints Affecting Breast Cancer Progression and Prognosis
2010-10-01
mutations compared to those detected by the 5Kbp method alone. Fosmid diTag method also reveals much higher proportion of gene fusions and truncations...observed highly similar structural mutational spectra affecting different sets of genes , pointing to similar histories of genomic instability against... mutations have been identified in non-BRCA1/2 multiethnic breast cancer cases (45,46), no truncating mutation of the RAP80 gene in breast cancer has
A Genetic Interaction Screen for Breast Cancer Progression Driver Genes
2013-06-01
analysis of genetic alterations in human breast cancers has revealed that individual tumors accumulate mutations in approximately ninety different genes ...cancer. We performed a screen to test the roles of seventy breast cancer mutated genes in mouse mammary tumorigenesis using the MMTV-PyVT mouse breast...cancer model and piggyBac insertional mutation strains. We found that insertional mutations in 23 genes altered the onset of tumor formation and four
Large-scale sequencing efforts are uncovering the complexity of cancer genomes, which are composed of causal "driver" mutations that promote tumor progression along with many more pathologically neutral "passenger" events. The majority of mutations, both in known cancer drivers and uncharacterized genes, are generally of low occurrence, highlighting the need to functionally annotate the long tail of infrequent mutations present in heterogeneous cancers.
Su, Fei; Zheng, Ke; Fu, Yiyun; Wu, Qian; Tang, Yuan; Wang, Weiya; Jiang, Lili
2018-05-20
Epidermal growth factor receptor (EGFR) gene mutation is closely related to the EGFR-TKI target treatment and prognosis of lung adenocarcinoma patients. The mutation status of EGFR is limited by tissue detection. The purpose of this study was to investigate the difference of EGFR mutants in plasmacirculating cell-free DNA (cfDNA) obtained from patients with non-small cell lung cancer (NSCLC) in three groups: pre-therapy, after traditional chemotherapy and targeted therapy. The aim of this study was to analyze whether the plasma cfDNA could effectively determine the EGFR mutations and monitor the drug resistant gene T790M, as well as its prognostic prediction value in patients with targeted therapy. ARMS (amplification refractory mutation system)-PCR was used to detect EGFR mutations in 107 (50 of pre-therapy, 29 after traditional chemotherapy and 28 after targeted therapy) cases of paired plasma and tumor tissue specimens, followed by comparing their concordance. The sensitivity, specificity and the prognostic value of plasma cfDNA detection were also observed. The total rate of EGFR mutation was 56% (60/107) in all plasma samples and 77.6% (83/107) in corresponding tumor tissues. Completely the same mutants and wild-type EGFR were found in 68.2% cases of paired specimens. The sensitivity of plasma cfDNA detection was 72.3% and the specificity was up to 100%. Patients were sub-categorized according to therapy. The results showed that the highest consistent rate of cfDNA and tumor tissues was found in the group of pre-therapy (74%, 37/50). Whereas, the lowest consistent rate was observed in the targeted therapy group (57.1%, 16/28). It indicated that the targeted treatment could change the EGFR status in plasma cfDNA. Further analyses on inconsistent cases in this group revealed that 50% of them were compound EGFR mutations with T790M. Thereby, it suggested that targeted therapy might induce the emergence of drug resistance gene T790M. This speculation was confirmed by survival analyses. Based on plasma cfDNA results, patients with T790M mutant had significantly worse progression-free survival (PFS) and overall survival (OS). For EGFR testing, ARMS-PCR on plasma cfDNA is a promising methodology with the highest specificity and effective sensitivity. It is useful for EGFR testing in patients before treatment, especially the late-stage patients. Simultaneously, plasma cfDNA could be used to monitor the drug resistant mutation, T790M status and predict prognosis after targeted therapy.
2018-02-20
ATM Gene Mutation; BRCA1 Gene Mutation; BRCA2 Gene Mutation; Castration Levels of Testosterone; Castration-Resistant Prostate Carcinoma; Homologous Recombination Deficiency; Prostate Carcinoma Metastatic in the Bone; PSA Level Greater Than or Equal to Two; PSA Progression; Stage IV Prostate Adenocarcinoma AJCC v7
Role of epistasis on the fixation probability of a non-mutator in an adapted asexual population.
James, Ananthu
2016-10-21
The mutation rate of a well adapted population is prone to reduction so as to have a lower mutational load. We aim to understand the role of epistatic interactions between the fitness affecting mutations in this process. Using a multitype branching process, the fixation probability of a single non-mutator emerging in a large asexual mutator population is analytically calculated here. The mutator population undergoes deleterious mutations at constant, but at a much higher rate than that of the non-mutator. We find that antagonistic epistasis lowers the chances of mutation rate reduction, while synergistic epistasis enhances it. Below a critical value of epistasis, the fixation probability behaves non-monotonically with variation in the mutation rate of the background population. Moreover, the variation of this critical value of the epistasis parameter with the strength of the mutator is discussed in the appendix. For synergistic epistasis, when selection is varied, the fixation probability reduces overall, with damped oscillations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yan, Tao; Seo, Yuji; Kinsella, Timothy J
2009-11-15
MLH1 is a key DNA mismatch repair (MMR) protein involved in maintaining genomic stability by participating in the repair of endogenous and exogenous mispairs in the daughter strands during S phase. Exogenous mispairs can result following treatment with several classes of chemotherapeutic drugs, as well as with ionizing radiation. In this study, we investigated the role of the MLH1 protein in determining the cellular and molecular responses to prolonged low-dose rate ionizing radiation (LDR-IR), which is similar to the clinical use of cancer brachytherapy. An isogenic pair of MMR(+) (MLH1(+)) and MMR(-) (MLH1(-)) human colorectal cancer HCT116 cells was exposed to prolonged LDR-IR (1.3-17 cGy/h x 24-96 h). The clonogenic survival and gene mutation rates were examined. Cell cycle distribution was analyzed with flow cytometry. Changes in selected DNA damage repair proteins, DNA damage response proteins, and cell death marker proteins were examined with Western blotting. MLH1(+) HCT116 cells showed greater radiosensitivity with enhanced expression of apoptotic and autophagic markers, a reduced HPRT gene mutation rate, and more pronounced cell cycle alterations (increased late-S population and a G(2)/M arrest) following LDR-IR compared with MLH1(-) HCT116 cells. Importantly, a progressive increase in MLH1 protein levels was found in MLH1(+) cells during prolonged LDR-IR, which was temporally correlated with a progressive decrease in Rad51 protein (involved in homologous recombination) levels. MLH1 status significantly affects cellular responses to prolonged LDR-IR. MLH1 may enhance cell radiosensitivity to prolonged LDR-IR through inhibition of homologous recombination (through inhibition of Rad51).
Arezi, Bahram; McKinney, Nancy; Hansen, Connie; Cayouette, Michelle; Fox, Jeffrey; Chen, Keith; Lapira, Jennifer; Hamilton, Sarah; Hogrefe, Holly
2014-01-01
Faster-cycling PCR formulations, protocols, and instruments have been developed to address the need for increased throughput and shorter turn-around times for PCR-based assays. Although run times can be cut by up to 50%, shorter cycle times have been correlated with lower detection sensitivity and increased variability. To address these concerns, we applied Compartmentalized Self Replication (CSR) to evolve faster-cycling mutants of Taq DNA polymerase. After five rounds of selection using progressively shorter PCR extension times, individual mutations identified in the fastest-cycling clones were randomly combined using ligation-based multi-site mutagenesis. The best-performing combinatorial mutants exhibit 35- to 90-fold higher affinity (lower Kd ) for primed template and a moderate (2-fold) increase in extension rate compared to wild-type Taq. Further characterization revealed that CSR-selected mutations provide increased resistance to inhibitors, and most notably, enable direct amplification from up to 65% whole blood. We discuss the contribution of individual mutations to fast-cycling and blood-resistant phenotypes.
Morodomi, Yosuke; Takenoyama, Mitsuhiro; Inamasu, Eiko; Toyozawa, Ryo; Kojo, Miyako; Toyokawa, Gouji; Shiraishi, Yoshimasa; Takenaka, Tomoyoshi; Hirai, Fumihiko; Yamaguchi, Masafumi; Taguchi, Kenichi; Seto, Takashi; Sugio, Kenji; Ichinose, Yukito
2014-07-01
Although patients with the echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase gene (EML4-ALK) re-arrangement and epidermal growth factor gene EGFR mutations have proven sensitive to specific inhibitors, there is currently no consensus regarding the sensitivity of non-small cell lung cancer (NSCLC) patients with such mutations to cytotoxic chemotherapy. The responses to first-line cytotoxic chemotherapy were retrospectively compared between advanced or postoperative recurrent patients with non-squamous NSCLC who harbor the EML4-ALK fusion gene (ALK+), EGFR mutation (EGFR+), or neither abnormality (wild-type). Data for 22 ALK+, 30 EGFR+, and 60 wild-type patients were analyzed. The ALK+ group had a significantly lower response rate than the other two groups. Progression-free survival was significantly shorter in the ALK+ cohort compared to the EGFR+ (p<0.001) and wild-type cohorts (p=0.0121). NSCLC patients with the EML4-ALK fusion gene might be relatively insensitivite to cytotoxic chemotherapy. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Cellular replication limits in the Luria-Delbrück mutation model
NASA Astrophysics Data System (ADS)
Rodriguez-Brenes, Ignacio A.; Wodarz, Dominik; Komarova, Natalia L.
2016-08-01
Originally developed to elucidate the mechanisms of natural selection in bacteria, the Luria-Delbrück model assumed that cells are intrinsically capable of dividing an unlimited number of times. This assumption however, is not true for human somatic cells which undergo replicative senescence. Replicative senescence is thought to act as a mechanism to protect against cancer and the escape from it is a rate-limiting step in cancer progression. Here we introduce a Luria-Delbrück model that explicitly takes into account cellular replication limits in the wild type cell population and models the emergence of mutants that escape replicative senescence. We present results on the mean, variance, distribution, and asymptotic behavior of the mutant population in terms of three classical formulations of the problem. More broadly the paper introduces the concept of incorporating replicative limits as part of the Luria-Delbrück mutational framework. Guidelines to extend the theory to include other types of mutations and possible applications to the modeling of telomere crisis and fluctuation analysis are also discussed.
Targeted therapy according to next generation sequencing-based panel sequencing.
Saito, Motonobu; Momma, Tomoyuki; Kono, Koji
2018-04-17
Targeted therapy against actionable gene mutations shows a significantly higher response rate as well as longer survival compared to conventional chemotherapy, and has become a standard therapy for many cancers. Recent progress in next-generation sequencing (NGS) has enabled to identify huge number of genetic aberrations. Based on sequencing results, patients recommend to undergo targeted therapy or immunotherapy. In cases where there are no available approved drugs for the genetic mutations detected in the patients, it is recommended to be facilitate the registration for the clinical trials. For that purpose, a NGS-based sequencing panel that can simultaneously target multiple genes in a single investigation has been used in daily clinical practice. To date, various types of sequencing panels have been developed to investigate genetic aberrations with tumor somatic genome variants (gain-of-function or loss-of-function mutations, high-level copy number alterations, and gene fusions) through comprehensive bioinformatics. Because sequencing panels are efficient and cost-effective, they are quickly being adopted outside the lab, in hospitals and clinics, in order to identify personal targeted therapy for individual cancer patients.
Liu, Chun-Jen; Kao, Jia-Horng
2013-05-01
Clinical outcomes of chronic hepatitis B virus (HBV) infection vary widely. In addition to host factors, several viral factors including HBV genotype, viral load, specific viral mutations and quantitative HBsAg levels, have been associated with disease outcomes. Among viral factors, HBV genotype correlates with not only the clinical outcomes, but also with the response to interferon treatment. Currently, 10 HBV genotypes have been identified. Compared with genotype A and B cases, patients with genotypes C and D have lower rates and usually delayed onset of spontaneous HBeAg seroconversion. HBV-genotype C has a higher frequency of basal core promoter (BCP) A1762T/G1764A mutation and preS deletion, and a higher viral load than genotype B. Similarly, genotype D has a higher prevalence of BCP A1762T/G1764A mutation than genotype A. These observations suggest pathogenic differences between HBV genotypes. Genotyping of HBV can help practicing physicians identify chronic hepatitis B patients at risk of disease progression. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Lowery, Maeve A; Kelsen, David P; Capanu, Marinela; Smith, Sloane C; Lee, Jonathan W; Stadler, Zsofia K; Moore, Malcolm J; Kindler, Hedy L; Golan, Talia; Segal, Amiel; Maynard, Hannah; Hollywood, Ellen; Moynahan, MaryEllen; Salo-Mullen, Erin E; Do, Richard Kinh Gian; Chen, Alice P; Yu, Kenneth H; Tang, Laura H; O'Reilly, Eileen M
2018-01-01
BRCA-associated cancers have increased sensitivity to poly(ADP-ribose) polymerase inhibitors (PARPis). This single arm, non-randomised, multicentre phase II trial evaluated the response rate of veliparib in patients with previously treated BRCA1/2- or PALB2-mutant pancreatic adenocarcinoma (PDAC). Patients with stage III/IV PDAC and known germline BRCA1/2 or PALB2 mutation, 1-2 lines of treatment, Eastern Cooperative Oncology Group 0-2, were enrolled. Veliparib was dosed at a volume of 300 mg twice-daily (N = 3), then 400 mg twice-daily (N = 15) days 1-28. The primary end-point was to determine the response rate of veliparib; secondary end-points included progression-free survival (PFS), duration of response, overall survival (OS) and safety. Sixteen patients were enrolled; male N = 8 (50%). Median age was 52 years (range 43-77). Five (31%) had a BRCA1 and 11 (69%) had a BRCA2 mutation. Fourteen (88%) patients had received prior platinum-based therapy. No confirmed partial responses (PRs) were seen: one (6%) unconfirmed PR was observed at 4 months with disease progression (PD) at 6 months; four (25%) had stable disease (SD), whereas 11 (69%) had PD as best response including one with clinical PD. Median PFS was 1.7 months (95% confidence interval [CI] 1.57-1.83) and median OS was 3.1 months (95% CI 1.9-4.1). Six (38%) patients had grade III toxicity, including fatigue (N = 3), haematology (N = 2) and nausea (N = 1). Veliparib was well tolerated, but no confirmed response was observed although four (25%) patients remained on study with SD for ≥ 4 months. Additional strategies in this population are needed, and ongoing trials are evaluating PARPis combined with chemotherapy (NCT01585805) and as a maintenance strategy (NCT02184195). Copyright © 2017 Elsevier Ltd. All rights reserved.
Disease course in patients with autosomal recessive retinitis pigmentosa due to the USH2A gene.
Sandberg, Michael A; Rosner, Bernard; Weigel-DiFranco, Carol; McGee, Terri L; Dryja, Thaddeus P; Berson, Eliot L
2008-12-01
To estimate the mean rates of ocular function loss in patients with autosomal recessive retinitis pigmentosa due to USH2A mutations. In 125 patients with USH2A mutations, longitudinal regression was used to estimate mean rates of change in Snellen visual acuity, Goldmann visual field area (V4e white test light), and 30-Hz (cone) full-field electroretinogram amplitude. These rates were compared with those of previously studied cohorts with dominant retinitis pigmentosa due to RHO mutations and with X-linked retinitis pigmentosa due to RPGR mutations. Rates of change in patients with the Cys759Phe mutation, the USH2A mutation associated with nonsyndromic disease, were compared with rates of change in patients with the Glu767fs mutation, the most common USH2A mutation associated with Usher syndrome type II (i.e., retinitis pigmentosa and hearing loss). Mean annual exponential rates of decline for the USH2A patients were 2.6% for visual acuity, 7.0% for visual field area, and 13.2% for electroretinogram amplitude. The rate of acuity loss fell between the corresponding rates for the RHO and RPGR patients, whereas the rates for field and ERG amplitude loss were faster than those for the RHO and RPGR patients. No significant differences were found for patients with the Cys759Phe mutation versus patients with the Glu767fs mutation. On average, USH2A patients lose visual acuity faster than RHO patients and slower than RPGR patients. USH2A patients lose visual field and cone electroretinogram amplitude faster than patients with RHO or RPGR mutations. Patients with a nonsyndromic USH2A mutation have the same retinal disease course as patients with syndromic USH2A disease.
Recent progress in the genetics of motor neuron disease.
Finsterer, Josef; Burgunder, Jean-Marc
2014-02-01
Genetic background and pathogenesis of motor neuron diseases (MNDs) have been increasingly elucidated over recent years. To give an overview about publications during the last year concerning the genetic background and phenotypic manifestations of MNDs, such as familial or sporadic amyotrophic lateral sclerosis (fALS, sALS), spinal muscular atrophies (SMA), bulbospinal muscular atrophy (BSMA), and unclassified MNDs. Pubmed search for literature about ALS, SMA, and BSMA for the period 10/2012 to 9/2013. An increasing number of mutated genes is recognised in fALS but also sALS patients. Genes mutated in sALS include C9orf72, SOD1, TARDBP, FUS, UBQL2, SQSTM1, DCTN1, and UNC13A. Juvenile (onset <20y) and adult ALS (early onset 20-60y, late onset >60y) are differentiated. Juvenile fALS is most frequently caused by mutations in ALS2, SETX, spatacsin, or Sigmar1 and adult fALS by mutations in C9orf72, SOD1, TARDBP, and FUS. Onset, phenotype, progression, and outcome of ALS are variable between different mutations, different genes, and different countries. Differentiation between sALS and fALS cases becomes artificial. Further progress has been made over the last year in the clarification and understanding of the aetiology and pathogenesis of MNDs. However, further effort is needed to answer the many remaining questions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Heterogeneity-based, multiple mechanisms in the resistance to osimertinib (AZD9291): A case report.
Liu, Yutao; Hao, Xuezhi; Hu, Xingsheng; Li, Junling; Wang, Yan; Wang, Hongyu; Xing, Puyuan; Li, Weihua; Ying, Jianming; Han, Xiaohong; Shi, Yuankai
2018-04-01
Osimertinib is a novel, irreversible, mutant-selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor targeting EGFR mutations and the EGFR T790 mutation. Here, we report a woman with EGFR-mutated lung adenocarcinoma who, after 23-month treatment with gefitinib, developed the EGFR T790M mutation, which converted the T790M status from positive to negative before osimertinib treatment and developed MET amplification, leading to rapid progression on osimertinib in two months. Subsequent treatment with crizotinib and c-Met inhibitor plus gefitinib also failed to improve the clinical outcome, suggesting the potential existence of another resistance mechanism. Our findings revealed the underlying multiple and heterogeneous mechanisms in resistance to osimertinib, suggesting combination strategies should be considered post-osimertinib progression. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Zhou, Fusheng; Fu, Hongyang; Liu, Linghua; Cui, Yong; Zhang, Zhengzhong; Chang, Ruixue; Yue, Zhen; Yang, Sen; Zhang, Xuejun
2014-09-01
Progressive symmetric erythrokeratodermia (PSEK) is characterized by symmetric and growing erythematous hyperkeratotic patches over the body shortly after birth, particularly trunk and limbs, the buttocks, and the face, sometimes together with palmoplantar keratoderma (PPK). The GJB2, GJB3, GJB4, GJB6, ARS (Component B), and LOR gene mutation might contribute to PSEK manifestation. This study aimed to identify sequence alteration of these genes in a Chinese PSEK patient with pseudoainhum. Genomic DNA was purified from the patient's peripheral blood. Mutation analysis of target genes was performed by direct sequencing using ABI 3730 sequencer No exonic mutations was identified in the aforementioned genes. The result underlines the genetic heterogeneity of PSEK and other related erythrokeratodermas. © 2014 The International Society of Dermatology.
Ribeiro, Raquel; Gilberto, Samuel; Gomes, Ricardo A.; Ferreira, António; Mateus, Élia; Barroso, Eduardo; Coelho, Ana V.; Freire, Ana Ponces; Cordeiro, Carlos
2015-01-01
Transthyretin amyloidosis is a conformational pathology characterized by the extracellular formation of amyloid deposits and the progressive impairment of the peripheral nervous system. Point mutations in this tetrameric plasma protein decrease its stability and are linked to disease onset and progression. Since non-mutated transthyretin also forms amyloid in systemic senile amyloidosis and some mutation bearers are asymptomatic throughout their lives, non-genetic factors must also be involved in transthyretin amyloidosis. We discovered, using a differential proteomics approach, that extracellular chaperones such as fibrinogen, clusterin, haptoglobin, alpha-1-anti-trypsin and 2-macroglobulin are overrepresented in transthyretin amyloidosis. Our data shows that a complex network of extracellular chaperones are over represented in human plasma and we speculate that they act synergistically to cope with amyloid prone proteins. Proteostasis may thus be as important as point mutations in transthyretin amyloidosis. PMID:26147092
Antisense oligonucleotide therapeutics for iron-sulphur cluster deficiency myopathy.
Kollberg, Gittan; Holme, Elisabeth
2009-12-01
Iron-sulphur cluster deficiency myopathy is caused by a deep intronic mutation in ISCU resulting in inclusion of a cryptic exon in the mature mRNA. ISCU encodes the iron-sulphur cluster assembly protein IscU. Iron-sulphur clusters are essential for most basic redox transformations including the respiratory-chain function. Most patients are homozygous for the mutation with a phenotype characterized by a non-progressive myopathy with childhood onset of early fatigue, dyspnoea and palpitation on trivial exercise. A more severe phenotype with early onset of a slowly progressive severe muscle weakness, severe exercise intolerance and cardiomyopathy is caused by a missense mutation in compound with the intronic mutation. Treatment of cultured fibroblasts derived from three homozygous patients with an antisense phosphorodiamidate morpholino oligonucleotide for 48 h resulted in 100% restoration of the normal splicing pattern. The restoration was stable and after 21 days the correctly spliced mRNA still was the dominating RNA species.
Schrempf, Dominik; Hobolth, Asger
2017-04-01
Recently, Burden and Tang (2016) provided an analytical expression for the stationary distribution of the multivariate neutral Wright-Fisher model with low mutation rates. In this paper we present a simple, alternative derivation that illustrates the approximation. Our proof is based on the discrete multivariate boundary mutation model which has three key ingredients. First, the decoupled Moran model is used to describe genetic drift. Second, low mutation rates are assumed by limiting mutations to monomorphic states. Third, the mutation rate matrix is separated into a time-reversible part and a flux part, as suggested by Burden and Tang (2016). An application of our result to data from several great apes reveals that the assumption of stationarity may be inadequate or that other evolutionary forces like selection or biased gene conversion are acting. Furthermore we find that the model with a reversible mutation rate matrix provides a reasonably good fit to the data compared to the one with a non-reversible mutation rate matrix. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Yang, Yingjie; Ren, Jie; Zhang, Qizhu
2016-02-01
HPV-16 varies geographically and is correlated with cervical cancer genesis and progression. This study aimed to determine the distribution of HPV-16 E6/E7 genetic variation in patients with invasive cervical cancer or precancer in Guizhou Province, China. A case-control study was designed, and the distribution of HPV-16 E6/E7 genetic variation was compared among women with cervical cancer, precancer, and sexually active without cervical lesion. HPV infection was detected through flow-through hybridization and gene chip techniques to determine the prevalence of HPV 16 E6/E7 genetic variation. Among 90 specimens (30 cervical cancer, 30 precancer, 30 controls), 81 were subjected to HPV-16 E6/E7 gene sequencing. The rates of DNA sequence mutation and amino acid mutation were 76.5% (62/81) and 66.7% (54/81), respectively. Both E6 and E7 genes showed higher mutation rate than their prototypes. The prevalence of E6/E7 mutation significantly differed between the cervical cancer and the controls (P < 0.05) and between the cervical precancer and the controls (P < 0.05). Mutations were simultaneously detected at the E6-D32E (T96A) and E7-M28V (A82G)/L94P (T281C) sites of the amino acid sequence. The most common genetic variation was D32E/M28V/L94P, which accounted for 35.8% of the cases (29/81). D32E/M28V/L94P mutation was higher in the cervical cancer and precancer compared with the prototype. HPV-16 E6/E7 genetic variations, such as D32E/M28V/L94P, are more prevalent in cervical cancer or precancer than those in the controls. The possible correlation between genetic variation and cancerigenesis may be used to design an HPV vaccine for cervical carcinoma. © 2015 Wiley Periodicals, Inc.
Survival of Patients with Cystic Fibrosis Depending on Mutation Type and Nutritional Status.
Szwed, A; John, A; Goździk-Spychalska, J; Czaiński, W; Czerniak, W; Ratajczak, J; Batura-Gabryel, H
2018-01-01
The purpose of the study was to evaluate the influence of nutrition and of the severity of mutation type on survival rate in cystic fibrosis (CF) patients. Data were longitudinally collected from 60 hospitalized adult CF patients, aged 18-50. The variables consisted of body mass index (BMI) ratio, Cole's BMI cut-off points, severity of mutation type, and survival rate of CF patients. We found that the mean BMI was strongly associated with the severity of mutation type and was significantly lower in patients with severe mutations of grade I and II. The mutation type significantly affected the patients' survival rate; survival was greater in patients with mild and undefined mutation types. The BMI and Cole's cut-off points also had a significant influence on survival rate. CF patients, who suffered from malnutrition and emaciation, had a shorter survival rate than those with proper nutritional status. In conclusion, the study findings confirmed a significant effect of nutritional status and of mutation type on survival rate of CF patients.
Accumulation of Spontaneous Mutations in the Ciliate Tetrahymena thermophila
Long, Hong-An; Paixão, Tiago; Azevedo, Ricardo B. R.; Zufall, Rebecca A.
2013-01-01
Knowledge of the rate and fitness effects of mutations is essential for understanding the process of evolution. Mutations are inherently difficult to study because they are rare and are frequently eliminated by natural selection. In the ciliate Tetrahymena thermophila, mutations can accumulate in the germline genome without being exposed to selection. We have conducted a mutation accumulation (MA) experiment in this species. Assuming that all mutations are deleterious and have the same effect, we estimate that the deleterious mutation rate per haploid germline genome per generation is U = 0.0047 (95% credible interval: 0.0015, 0.0125), and that germline mutations decrease fitness by s = 11% when expressed in a homozygous state (95% CI: 4.4%, 27%). We also estimate that deleterious mutations are partially recessive on average (h = 0.26; 95% CI: –0.022, 0.62) and that the rate of lethal mutations is <10% of the deleterious mutation rate. Comparisons between the observed evolutionary responses in the germline and somatic genomes and the results from individual-based simulations of MA suggest that the two genomes have similar mutational parameters. These are the first estimates of the deleterious mutation rate and fitness effects from the eukaryotic supergroup Chromalveolata and are within the range of those of other eukaryotes. PMID:23934880
Ishchenko, Yevheniia; Novosolova, Nataliia; Khafizov, Kamil; Bart, Geneviève; Timonina, Arina; Fayuk, Dmitriy; Skorinkin, Andrei; Giniatullin, Rashid
2017-07-05
Serine 275, a conserved residue of the left flipper region of ATP-gated P2X3 receptors, plays a key role in both agonist binding and receptor desensitization. It is conserved in most of the P2X receptors except P2X7 and P2X6. By combining experimental patch-clamp and modeling approaches, we explored the role of the corresponding residue in the rat P2X7 receptor (rP2X7) by replacing the phenylalanine at position 288 with serine and characterizing the membrane currents generated by either the wild-type (WT) or the mutated rP2X7 receptor. F288S, an rP2X7 mutation, slowed the deactivation subsequent to 2 and 20 s applications of 1 mM ATP. F288S also prevented sensitization (a progressive current growth) observed with the WT in response to a 20 s application of 1 mM ATP. Increasing the ATP concentration to 5 mM promoted sensitization also in the mutated rP2X7 receptor, accelerating the deactivation rate to typical WT values. YO-PRO1 uptake in cells expressing either the WT or the F288S P2X7 receptor was consistent with recorded membrane current data. Interestingly, in the human P2X7 (hP2X7) receptor, substitution Y288S did not change the deactivation rate, while the Y288F mutant generated a "rat-like" phenotype with a fast deactivation rate. Our combined experimental, kinetic, and molecular modeling data suggest that the rat F288S novel phenotype is due to a slower rate of ATP binding and/or unbinding and stabilization of nonsensitized receptor states.
A CNGB1 Frameshift Mutation in Papillon and Phalène Dogs with Progressive Retinal Atrophy
Ahonen, Saija J.; Arumilli, Meharji; Lohi, Hannes
2013-01-01
Progressive retinal degenerations are the most common causes of complete blindness both in human and in dogs. Canine progressive retinal atrophy (PRA) or degeneration resembles human retinitis pigmentosa (RP) and is characterized by a progressive loss of rod photoreceptor cells followed by a loss of cone function. The primary clinical signs are detected as vision impairment in a dim light. Although several genes have been associated with PRAs, there are still PRAs of unknown genetic cause in many breeds, including Papillons and Phalènes. We have performed a genome wide association and linkage studies in cohort of 6 affected Papillons and Phalènes and 14 healthy control dogs to map a novel PRA locus on canine chromosome 2, with a 1.9 Mb shared homozygous region in the affected dogs. Parallel exome sequencing of a trio identified an indel mutation, including a 1-bp deletion, followed by a 6-bp insertion in the CNGB1 gene. This mutation causes a frameshift and premature stop codon leading to probable nonsense mediated decay (NMD) of the CNGB1 mRNA. The mutation segregated with the disease and was confirmed in a larger cohort of 145 Papillons and Phalènes (PFisher = 1.4×10−8) with a carrier frequency of 17.2 %. This breed specific mutation was not present in 334 healthy dogs from 10 other breeds or 121 PRA affected dogs from 44 other breeds. CNGB1 is important for the photoreceptor cell function its defects have been previously associated with retinal degeneration in both human and mouse. Our study indicates that a frameshift mutation in CNGB1 is a cause of PRA in Papillons and Phalènes and establishes the breed as a large functional animal model for further characterization of retinal CNGB1 biology and possible retinal gene therapy trials. This study enables also the development of a genetic test for breeding purposes. PMID:24015210
RNA Recombination Enhances Adaptability and Is Required for Virus Spread and Virulence.
Xiao, Yinghong; Rouzine, Igor M; Bianco, Simone; Acevedo, Ashley; Goldstein, Elizabeth Faul; Farkov, Mikhail; Brodsky, Leonid; Andino, Raul
2016-04-13
Mutation and recombination are central processes driving microbial evolution. A high mutation rate fuels adaptation but also generates deleterious mutations. Recombination between two different genomes may resolve this paradox, alleviating effects of clonal interference and purging deleterious mutations. Here we demonstrate that recombination significantly accelerates adaptation and evolution during acute virus infection. We identified a poliovirus recombination determinant within the virus polymerase, mutation of which reduces recombination rates without altering replication fidelity. By generating a panel of variants with distinct mutation rates and recombination ability, we demonstrate that recombination is essential to enrich the population in beneficial mutations and purge it from deleterious mutations. The concerted activities of mutation and recombination are key to virus spread and virulence in infected animals. These findings inform a mathematical model to demonstrate that poliovirus adapts most rapidly at an optimal mutation rate determined by the trade-off between selection and accumulation of detrimental mutations. Copyright © 2016 Elsevier Inc. All rights reserved.
Shen, Yan-Wei; Zhang, Xiao-Man; Li, Shu-Ting; Lv, Meng; Yang, Jiao; Wang, Fan; Chen, Zhe-Ling; Wang, Bi-Yuan; Li, Pan; Chen, Ling; Yang, Jin
2016-01-01
Several clinical trials have proven that icotinib hydrochloride, a novel epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor, exhibits encouraging efficacy and tolerability in patients with advanced non-small-cell lung cancer (NSCLC) who failed previous chemotherapy. This study was performed to assess the efficacy and toxicity of icotinib as first-line therapy for patients with advanced pulmonary adenocarcinoma with EGFR-sensitive mutation. Thirty-five patients with advanced NSCLC with EGFR-sensitive mutation who were sequentially admitted to the First Affiliated Hospital of Xi'an Jiaotong University from March 2012 to March 2014 were enrolled into our retrospective research. All patients were administered icotinib as first-line treatment. The tumor responses were evaluated using Response Evaluation Criteria in Solid Tumors (RECIST, version 1.1). Among the 35 patients, the tumor objective response rate (ORR) and disease control rate were 62.9% (22/35) and 88.6% (31/35), respectively. The median progression-free survival was 11.0 months (95% confidence interval [CI]: 10.2-11.8 months), and median overall survival was 21.0 months (95% CI: 20.1-21.9 months). The most common drug-related toxicities were rashes (eleven patients) and diarrhea (nine patients), but these were generally manageable and reversible. Icotinib monotherapy is effective and tolerable as first-line treatment for patients with advanced lung adenocarcinoma with EGFR-sensitive mutation.
Schiavon, Gaia; Hrebien, Sarah; Garcia-Murillas, Isaac; Cutts, Rosalind J; Pearson, Alex; Tarazona, Noelia; Fenwick, Kerry; Kozarewa, Iwanka; Lopez-Knowles, Elena; Ribas, Ricardo; Nerurkar, Ashutosh; Osin, Peter; Chandarlapaty, Sarat; Martin, Lesley-Ann; Dowsett, Mitch; Smith, Ian E; Turner, Nicholas C.
2016-01-01
Acquired ESR1 mutations are a major mechanism of resistance to aromatase inhibitors (AI). We developed ultra-high sensitivity multiplexed digital PCR assays for ESR1 mutations in circulating tumor DNA (ctDNA) and used these to investigate the clinical relevance and origin of ESR1 mutations in a cohort of 171 women with advanced breast cancer. ESR1 mutation status in ctDNA showed high concordance with contemporaneous tumor biopsies, and could be assessed in samples shipped at room temperature in preservative tubes without loss of accuracy. ESR1 mutations were found exclusively in patients with estrogen receptor positive breast cancer previously exposed to AI. Patients with ESR1 mutations had a substantially shorter progression-free survival on subsequent AI-based therapy (HR 3.1, 95%CI 1.9-23.1, log rank p=0.0041). ESR1 mutation prevalence differed markedly between patients that were first exposed to AI during the adjuvant and metastatic settings (5.8% (3/52) vs 36.4% (16/44) respectively, p=0.0002). In an independent cohort, ESR1 mutations were identified in 0% (0/32, 95%CI 0-10.9%) tumor biopsies taken after progression on adjuvant AI. In a patient with serial samples taken during metastatic treatment, ESR1 mutation was selected during metastatic AI therapy, to become the dominant clone in the cancer. ESR1 mutations can be robustly identified with ctDNA analysis and predict for resistance to subsequent AI therapy. ESR1 mutations are rarely acquired during adjuvant AI therapy, but are commonly selected by therapy for metastatic disease, providing evidence that the mechanisms of resistance to targeted therapy may be substantially different between the treatment of micro-metastatic and overt metastatic cancer. PMID:26560360
Schiavon, Gaia; Hrebien, Sarah; Garcia-Murillas, Isaac; Cutts, Rosalind J; Pearson, Alex; Tarazona, Noelia; Fenwick, Kerry; Kozarewa, Iwanka; Lopez-Knowles, Elena; Ribas, Ricardo; Nerurkar, Ashutosh; Osin, Peter; Chandarlapaty, Sarat; Martin, Lesley-Ann; Dowsett, Mitch; Smith, Ian E; Turner, Nicholas C
2015-11-11
Acquired ESR1 mutations are a major mechanism of resistance to aromatase inhibitors (AIs). We developed ultra high-sensitivity multiplex digital polymerase chain reaction assays for ESR1 mutations in circulating tumor DNA (ctDNA) and investigated the clinical relevance and origin of ESR1 mutations in 171 women with advanced breast cancer. ESR1 mutation status in ctDNA showed high concordance with contemporaneous tumor biopsies and was accurately assessed in samples shipped at room temperature in preservative tubes. ESR1 mutations were found exclusively in estrogen receptor-positive breast cancer patients previously exposed to AI. Patients with ESR1 mutations had a substantially shorter progression-free survival on subsequent AI-based therapy [hazard ratio, 3.1; 95% confidence interval (CI), 1.9 to 23.1; P = 0.0041]. ESR1 mutation prevalence differed markedly between patients who were first exposed to AI during the adjuvant and metastatic settings [5.8% (3 of 52) versus 36.4% (16 of 44), respectively; P = 0.0002]. In an independent cohort, ESR1 mutations were identified in 0% (0 of 32; 95% CI, 0 to 10.9) tumor biopsies taken after progression on adjuvant AI. In a patient with serial sampling, ESR1 mutation was selected during metastatic AI therapy to become the dominant clone in the cancer. ESR1 mutations can be robustly identified with ctDNA analysis and predict for resistance to subsequent AI therapy. ESR1 mutations are rarely acquired during adjuvant AI but are commonly selected by therapy for metastatic disease, providing evidence that mechanisms of resistance to targeted therapy may be substantially different between the treatment of micrometastatic and overt metastatic cancer. Copyright © 2015, American Association for the Advancement of Science.
Kim, Min Kyeong; Woo, Sang Myung; Park, Boram; Yoon, Kyong-Ah; Kim, Yun-Hee; Joo, Jungnam; Lee, Woo Jin; Han, Sung-Sik; Park, Sang-Jae; Kong, Sun-Young
2018-04-01
Cell-free DNA (cfDNA) is known to provide potential biomarkers for predicting clinical outcome, but its value in pancreatic ductal adenocarcinoma (PDAC) has not been fully evaluated. The aim of this study was to evaluate the clinical applicability of quantitative analysis of multiplex KRAS mutations in cell-free DNA from patients with PDAC. A total of 106 patients with PDAC were enrolled in this prospective study. The concentration and fraction of KRAS mutations were determined through multiplex detection of KRAS mutations in plasma samples by use of a droplet digital PCR kit (Bio-Rad). KRAS mutations were detected in 96.1% of tissue samples. Eighty patients (80.5%) harbored KRAS mutations in cfDNA, with a median KRAS mutation concentration of 0.165 copies/μL and a median fractional abundance of 0.415%. Multivariable analyses demonstrated that the KRAS mutation concentration [hazard ratio (HR), 2.08; 95% CI, 1.20-3.63] and KRAS fraction (HR, 1.73; 95% CI, 1.02-2.95) were significant factors for progression-free survival. KRAS mutation concentration (HR, 1.97; 95% CI, 1.05-3.67) also had prognostic implications for overall survival. Subgroup analyses showed that KRAS mutation concentration and fractional abundance significantly affected progression-free survival in resectable PDAC ( P = 0.016). Moreover, when combined with the cancer biomarker CA19-9, the KRAS mutation concentration in cfDNA showed additive benefits for the prediction of overall survival. This study demonstrates that multiplex detection of KRAS mutations in plasma cfDNA is clinically relevant, providing a potential candidate biomarker for prognosis of PDAC. © 2018 American Association for Clinical Chemistry.
Evaluation of the kinase domain of c-KIT in canine cutaneous mast cell tumors
Webster, Joshua D; Kiupel, Matti; Yuzbasiyan-Gurkan, Vilma
2006-01-01
Background Mutations in the c-KIT proto-oncogene have been implicated in the progression of several neoplastic diseases, including gastrointestinal stromal tumors and mastocytosis in humans, and cutaneous mast cell tumors (MCTs) in canines. Mutations in human mastocytosis patients primarily occur in c-KIT exon 17, which encodes a portion of its kinase domain. In contrast, deletions and internal tandem duplication (ITD) mutations are found in the juxtamembrane domain of c-KIT in approximately 15% of canine MCTs. In addition, ITD c-KIT mutations are significantly associated with aberrant KIT protein localization in canine MCTs. However, some canine MCTs have aberrant KIT localization but lack ITD c-KIT mutations, suggesting that other mutations or other factors may be responsible for aberrant KIT localization in these tumors. Methods In order to characterize the prevalence of mutations in the phospho-transferase portion of c-KIT's kinase domain in canine MCTs exons 16–20 of 33 canine MCTs from 33 dogs were amplified and sequenced. Additionally, in order to determine if mutations in c-KIT exon 17 are responsible for aberrant KIT localization in MCTs that lack juxtamembrane domain c-KIT mutations, c-KIT exon 17 was amplified and sequenced from 18 canine MCTs that showed an aberrant KIT localization pattern but did not have ITD c-KIT mutations. Results No mutations or polymorphisms were identified in exons 16–20 of any of the MCTs examined. Conclusion In conclusion, mutations in the phospho-transferase portion of c-KIT's kinase domain do not play an important role in the progression of canine cutaneous MCTs, or in the aberrant localization of KIT in canine MCTs. PMID:16579858
Michot, Pauline; Chahory, Sabine; Marete, Andrew; Grohs, Cécile; Dagios, Dimitri; Donzel, Elise; Aboukadiri, Abdelhak; Deloche, Marie-Christine; Allais-Bonnet, Aurélie; Chambrial, Matthieu; Barbey, Sarah; Genestout, Lucie; Boussaha, Mekki; Danchin-Burge, Coralie; Fritz, Sébastien; Boichard, Didier; Capitan, Aurélien
2016-08-10
Domestication and artificial selection have resulted in strong genetic drift, relaxation of purifying selection and accumulation of deleterious mutations. As a consequence, bovine breeds experience regular outbreaks of recessive genetic defects which might represent only the tip of the iceberg since their detection depends on the observation of affected animals with distinctive symptoms. Thus, recessive mutations resulting in embryonic mortality or in non-specific symptoms are likely to be missed. The increasing availability of whole-genome sequences has opened new research avenues such as reverse genetics for their investigation. Our aim was to characterize the genetic load of 15 European breeds using data from the 1000 bull genomes consortium and prove that widespread harmful mutations remain to be detected. We listed 2489 putative deleterious variants (in 1923 genes) segregating at a minimal frequency of 5 % in at least one of the breeds studied. Gene enrichment analysis showed major enrichment for genes related to nervous, visual and auditory systems, and moderate enrichment for genes related to cardiovascular and musculoskeletal systems. For verification purposes, we investigated the phenotypic consequences of a frameshift variant in the retinitis pigmentosa-1 gene segregating in several breeds and at a high frequency (27 %) in Normande cattle. As described in certain human patients, clinical and histological examination revealed that this mutation causes progressive degeneration of photoreceptors leading to complete blindness in homozygotes. We established that the deleterious allele was even more frequent in the Normande breed before 1975 (>40 %) and has been progressively counter-selected likely because of its associated negative effect on udder morphology. Finally, using identity-by-descent analysis we demonstrated that this mutation resulted from a unique ancestral event that dates back to ~2800 to 4000 years. We provide a list of mutations that likely represent a substantial part of the genetic load of domestication in European cattle. We demonstrate that they accumulated non-randomly and that genes related to cognition and sensory functions are particularly affected. Finally, we describe an ancestral deleterious variant segregating in different breeds causing progressive retinal degeneration and irreversible blindness in adult animals.
Ras mutation cooperates with β-catenin activation to drive bladder tumourigenesis.
Ahmad, I; Patel, R; Liu, Y; Singh, L B; Taketo, M M; Wu, X-R; Leung, H Y; Sansom, O J
2011-03-03
Mutations in the Ras family of proteins (predominantly in H-Ras) occur in approximately 40% of urothelial cell carcinoma (UCC). However, relatively little is known about subsequent mutations/pathway alterations that allow tumour progression. Indeed, expressing mutant H-Ras within the mouse bladder does not lead to tumour formation, unless this is expressed at high levels. The Wnt signalling pathway is deregulated in approximately 25% of UCC, so we examined if this correlated with the activation of MAPK signalling in human UCC and found a significant correlation. To test the functional significance of this association we examined the impact of combining Ras mutation (H-Ras(Q61L) or K-Ras(G12D)) with an activating β-catenin mutation within the mouse bladder using Cre-LoxP technology. Although alone, neither Ras mutation nor β-catenin activation led to UCC (within 12 months), mice carrying both mutations rapidly developed UCC. Mechanistically this was associated with reduced levels of p21 with dependence on the MAPK signalling pathway. Moreover, tumours from these mice were sensitive to MEK inhibition. Importantly, in human UCC there was a negative correlation between levels of p-ERK and p21 suggesting that p21 accumulation may block tumour progression following Ras mutation. Taken together these data definitively show Ras pathway activation strongly cooperates with Wnt signalling to drive UCC in vivo.
Hensman Moss, Davina J; Pardiñas, Antonio F; Langbehn, Douglas; Lo, Kitty; Leavitt, Blair R; Roos, Raymund; Durr, Alexandra; Mead, Simon; Holmans, Peter; Jones, Lesley; Tabrizi, Sarah J
2017-09-01
Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008-11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003-13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10 -10 ) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10 -8 DHFR p=8·37 × 10 -7 MTRNR2L2 p=2·15 × 10 -9 ) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10 -4 DHFR p=8·45 × 10 -4 MTRNR2L2 p=1·20 × 10 -3 ). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10 -8 ), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16-0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06-0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation. The European Commission FP7 NeurOmics project; CHDI Foundation; the Medical Research Council UK; the Brain Research Trust; and the Guarantors of Brain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fixation probability of a nonmutator in a large population of asexual mutators.
Jain, Kavita; James, Ananthu
2017-11-21
In an adapted population of mutators in which most mutations are deleterious, a nonmutator that lowers the mutation rate is under indirect selection and can sweep to fixation. Using a multitype branching process, we calculate the fixation probability of a rare nonmutator in a large population of asexual mutators. We show that when beneficial mutations are absent, the fixation probability is a nonmonotonic function of the mutation rate of the mutator: it first increases sublinearly and then decreases exponentially. We also find that beneficial mutations can enhance the fixation probability of a nonmutator. Our analysis is relevant to an understanding of recent experiments in which a reduction in the mutation rates has been observed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ou, Sai-Hong Ignatius; Cui, Jean; Schrock, Alexa B; Goldberg, Michael E; Zhu, Viola W; Albacker, Lee; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M
2017-06-01
Acquired epidermal growth factor receptor (EGFR) resistance mutations to osimertinib are common, including the EGFR C797S that abolishes the covalent binding of osimertinib to EGFR. Here we report the emergence of novel EGFR solvent front mutations at Gly796 (G796S/R) in addition to a hinge pocket L792F/H mutations, and C797S/G all in cis with T790M in a single patient on progression on osimertinib as detected by plasma circulating tumor DNA (ctDNA) assay in the course of clinical care. A 69-year-old Caucasian female former light-smoker presented with stage IV EGFR L858R positive adenocarcinoma who developed EGFR T790M mutation after 8 month treatment of erlotinib. The patient was initiated on osimertinib with disease shrinkage after 2 months, but tumor regrowth was observed after 5 months of osimertinib treatment. Assay of plasma ctDNA at this time revealed these different secondary resistance mutations all in trans with each other including distinct mutations at the same codon producing different amino acid changes: G796S/R (mutant allele frequency [MAF]; 14.4%), C797S/G (MAF: 2.26%), L792F/H (MAF: 0.36%), and V802F (MAF: 0.40%), in addition to the pre-existing L858R (MAF:17.9%) and T790M (MAF:18.2%) but all in cis with T790M. The G796S/R mutations are homologous with known reported solvent front mutations in ALK G1202R, ROS1 G2032R, TrkA G595R and TrkC G623R, all of which are associated with acquired resistance to type I TKIs. In silico modeling revealed mutation at G796 interferes with osimertinib binding to the EGFR kinase domain at the phenyl aromatic ring position as this residue forms a narrow "hydrophobic sandwich" with L718, while L792F/H mutation interferes with osimertinib binding at the methoxyl group on the phenyl ring. Multiple resistance mutations at differing allele frequencies including novel EGFR solvent front mutations can emerge in a single patient with progression on osimertinib potentially due to tumor hetereogeneity and definitely present a significant therapeutic and drug development challenge. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spellman, Paul T.; Heiser, Laura; Gray, Joe W.
2009-06-18
Breast cancer is predominantly a disease of the genome with cancers arising and progressing through accumulation of aberrations that alter the genome - by changing DNA sequence, copy number, and structure in ways that that contribute to diverse aspects of cancer pathophysiology. Classic examples of genomic events that contribute to breast cancer pathophysiology include inherited mutations in BRCA1, BRCA2, TP53, and CHK2 that contribute to the initiation of breast cancer, amplification of ERBB2 (formerly HER2) and mutations of elements of the PI3-kinase pathway that activate aspects of epidermal growth factor receptor (EGFR) signaling and deletion of CDKN2A/B that contributes tomore » cell cycle deregulation and genome instability. It is now apparent that accumulation of these aberrations is a time-dependent process that accelerates with age. Although American women living to an age of 85 have a 1 in 8 chance of developing breast cancer, the incidence of cancer in women younger than 30 years is uncommon. This is consistent with a multistep cancer progression model whereby mutation and selection drive the tumor's development, analogous to traditional Darwinian evolution. In the case of cancer, the driving events are changes in sequence, copy number, and structure of DNA and alterations in chromatin structure or other epigenetic marks. Our understanding of the genetic, genomic, and epigenomic events that influence the development and progression of breast cancer is increasing at a remarkable rate through application of powerful analysis tools that enable genome-wide analysis of DNA sequence and structure, copy number, allelic loss, and epigenomic modification. Application of these techniques to elucidation of the nature and timing of these events is enriching our understanding of mechanisms that increase breast cancer susceptibility, enable tumor initiation and progression to metastatic disease, and determine therapeutic response or resistance. These studies also reveal the molecular differences between cancer and normal that may be exploited to therapeutic benefit or that provide targets for molecular assays that may enable early cancer detection, and predict individual disease progression or response to treatment. This chapter reviews current and future directions in genome analysis and summarizes studies that provide insights into breast cancer pathophysiology or that suggest strategies to improve breast cancer management.« less
Matthews, Christine; Catherwood, Mark A; Morris, T C M; Kettle, Paul J; Drake, Mary B; Gilmore, William S; Alexander, H Denis
2006-10-01
Serum thymidine kinase (TK) levels have been shown to be correlated with survival in many malignancies, including chronic lymphocytic leukaemia (CLL). This study was designed to investigate associations between TK levels and other prognostic markers, in newly and previously diagnosed Binet stage A patients. Furthermore, the use of serum TK measurement to identify subcategories of disease within those defined by IgV(H) mutational status, gene usage and chromosomal aberrations was investigated. Ninety-one CLL patients were enrolled. Serum TK levels were measured using a radioenzyme assay. IgV(H) mutational status and V(H) gene usage were determined using BIOMED-2 primers and protocol. Recurring chromosomal abnormalities were detected by interphase fluorescent in situ hybridisation (FISH). Flow cytometry and reverse transcriptase polymerase chain reaction (RT-PCR) determined CD38 and Zap-70 expression, respectively. Significantly higher serum TK levels were found in IgV(H) unmutated, compared with IgV(H) mutated, patients (P < 0.001). Elevated TK levels were also found in patients with CD38 and Zap-70 positivity (P = 0.004, P < 0.001, respectively), short lymphocyte doubling time (LDT) (P = 0.044) and poor or intermediate prognosis chromosomal aberrations (P < 0.001). A TK level of >8.5 U/L best identified patients with progressive disease. Elevated TK levels could identify patients categorised, at diagnosis, into good prognosis subgroups by the various biological markers (mutated IgV(H), good prognosis chromosomal aberrations, Zap-70(-) and CD38(-)) who subsequently showed disease progression. Additionally, patients with V(H)3-21 gene usage showed high TK levels, irrespective of mutational status, and serum TK measurement retained predictive power as disease progressed in all subcategories studied.
Kim, Donghoon; Hwang, Heehong; Choi, Seulah; Kwon, Sang Ho; Lee, Suhyun; Park, Jae Hong; Kim, SangMin; Ko, Han Seok
2018-04-27
Heterozygous mutations in glucocerebrosidase 1 (GBA1) are a major genetic risk factor for Parkinson's disease and Dementia with Lewy bodies. Mutations in GBA1 leads to GBA1 enzyme deficiency, and GBA1-associated parkinsonism has an earlier age of onset and more progressive parkinsonism. To investigate a potential influence of GBA1 deficiency caused by mutations in GBA1 on the disease progression of PD, GBA1 mice carrying D409H knock-in mutation were crossbred with the human A53T (hA53T) α-synuclein transgenic mice. Here, we show that GBA1 enzyme activity plays a significant role in the hA53T α-synuclein induced α-synucleinopathy. The expression of D409H GBA1 markedly shortens the lifespan of hA53T α-synuclein transgenic mice. Moreover, D409H GBA1 expression exacerbates the formation of insoluble aggregates of α-synuclein, glial activation, neuronal degeneration, and motor abnormalities in the hA53T α-synuclein transgenic mice. Interestingly, the expression of D409H GBA1 results in the loss of dopaminergic neurons in the substantia nigra pars compacta of hA53T transgenic mice. Taken together, these results indicate that GBA1 deficiency due to D409H mutation affects the disease onset and course in hA53T α-synuclein transgenic mice. Therefore, strategies aimed to maintain GBA1 enzyme activity could be employed to develop an effective novel therapy for GBA1 linked-PD and related α-synucleinopathies.
Confounders of mutation-rate estimators: selection and phenotypic lag in Thermus thermophilus
Kissling, Grace E.; Grogan, Dennis W.; Drake, John W.
2015-01-01
In a recent description of the rate and character of spontaneous mutation in the hyperthermophilic bacterium Thermus thermophilus, the mutation rate was observed to be substantially lower than seen in several mesophiles. Subsequently, a report appeared indicating that this bacterium maintains an average of about 4.5 genomes per cell. This number of genomes might result in a segregation lag for the expression of a recessive mutation and might therefore lead to an underestimate of the rate of mutation. Here we describe some kinds of problems that may arise when estimating mutation rates and outline ways to adjust the rates accordingly. The emphasis is mainly on differential rates of growth of mutants versus their parents and on various kinds of phenotypic lag. We then apply these methods to the T. thermophilus data and conclude that there is as yet no reliable impact on a previously described rate. PMID:23916418
Characteristic brain MRI findings in ataxia-neuropathy spectrum related to POLG mutation
Henao, Adriana I; Pira, Sonia; Vargas, Sergio A; Montoya, Jorge; Castillo, Mauricio
2016-01-01
Patients with mutations in the polymerase gamma gene (POLG) may present with progressive ataxia and in such situations neuroimaging findings may suggest the diagnosis. Herein we report a patient with a POLG gene W748S homozygous mutation and characteristic lesions in the thalamus, cerebellum and inferior olivary nucleus seen on magnetic resonance imaging. PMID:26755490
Characteristic brain MRI findings in ataxia-neuropathy spectrum related to POLG mutation.
Henao, Adriana I; Pira, Sonia; Herrera, Diego A; Vargas, Sergio A; Montoya, Jorge; Castillo, Mauricio
2016-02-01
Patients with mutations in the polymerase gamma gene (POLG) may present with progressive ataxia and in such situations neuroimaging findings may suggest the diagnosis. Herein we report a patient with a POLG gene W748S homozygous mutation and characteristic lesions in the thalamus, cerebellum and inferior olivary nucleus seen on magnetic resonance imaging. © The Author(s) 2016.
Leda, Ana Rachel; Hunter, James; Oliveira, Ursula Castro; Azevedo, Inacio Junqueira; Sucupira, Maria Cecilia Araripe; Diaz, Ricardo Sobhie
2018-04-19
The presence of minority transmitted drug resistance mutations was assessed using ultra-deep sequencing and correlated with disease progression among recently HIV-1-infected individuals from Brazil. Samples at baseline during recent infection and 1 year after the establishment of the infection were analysed. Viral RNA and proviral DNA from 25 individuals were subjected to ultra-deep sequencing of the reverse transcriptase and protease regions of HIV-1. Viral strains carrying transmitted drug resistance mutations were detected in 9 out of the 25 patients, for all major antiretroviral classes, ranging from one to five mutations per patient. Ultra-deep sequencing detected strains with frequencies as low as 1.6% and only strains with frequencies >20% were detected by population plasma sequencing (three patients). Transmitted drug resistance strains with frequencies <14.8% did not persist upon established infection. The presence of transmitted drug resistance mutations was negatively correlated with the viral load and with CD4+ T cell count decay. Transmitted drug resistance mutations representing small percentages of the viral population do not persist during infection because they are negatively selected in the first year after HIV-1 seroconversion.
Novel Compound Heterozygous Mutations Expand the Recognized Phenotypes of FARS2-Linked Disease.
Walker, Melissa A; Mohler, Kyle P; Hopkins, Kyle W; Oakley, Derek H; Sweetser, David A; Ibba, Michael; Frosch, Matthew P; Thibert, Ronald L
2016-08-01
Mutations in mitochondrial aminoacyl-tRNA synthetases are an increasingly recognized cause of human diseases, often arising in individuals with compound heterozygous mutations and presenting with system-specific phenotypes, frequently neurologic. FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase (mtPheRS), perturbations of which have been reported in 6 cases of an infantile, lethal disease with refractory epilepsy and progressive myoclonus. Here the authors report the case of juvenile onset refractory epilepsy and progressive myoclonus with compound heterozygous FARS2 mutations. The authors describe the clinical course over 6 years of care at their institution and diagnostic studies including electroencephalogram (EEG), brain magnetic resonance imaging (MRI), serum and cerebrospinal fluid analyses, skeletal muscle biopsy histology, and autopsy gross and histologic findings, which include features shared with Alpers-Huttenlocher syndrome, Leigh syndrome, and a previously published case of FARS2 mutation associated infantile onset disease. The authors also present structure-guided analysis of the relevant mutations based on published mitochondrial phenylalanyl transfer RNA synthetase and related protein crystal structures as well as biochemical analysis of the corresponding recombinant mutant proteins. © The Author(s) 2016.
Mu, Luyan; Xu, Wanzhen; Li, Qingla; Ge, Haitao; Bao, Hongbo; Xia, Songsong; Ji, Jingjing; Jiang, Jie; Song, Yuwen; Gao, Qiang
2017-01-01
IDH1 R132H mutation is an important marker of survival in patients with gliomas. Although there are many changes of genes in tumour malignant progression, IDH1 R132H mutation status in glioma progression remained unclear. Here, an in-depth characterization of IDH1 R132H mutations were assessed by immunohistochemistry in 55 paired primary-recurrent astrocytomas tissues, including 5 paired primary pilocytic astrocytoma (pPA, WHO grade I), 35 paired primary low grade astrocytoma (pLGA, WHO grade II and III) and 15 paired primary high grade astrocytoma (pHGA/ Glioblastoma, WHO grade IV). Meanwhile, the DNA was isolated from paired samples, and PCR amplification was used for IDH1 exon4 sequencing. Nonparametric test, KM and Cox models were used to examine the statistical difference and survival function. We found that the percent of IDH1 R132H mutation was 68.6% (24/35) in pLGA group, but no IDH1 mutation was found in pPA and pHGA groups. Meanwhile, the results from immunohistochemistry and DNA sequencing showed that, compared with primary astrocytoma, there was no change of IDH1 status in recurrent astrocytoma whatever tumour pathological grade raise or indolent. The pPA group has the longest recurrence-free period (RFP) and overall survival (OS) in three groups ( p<0.01 ), while the pHGA group has the shortest ones ( p<0.01 ). In pLGA group, the IDH1 R132H mutation subgroup has longer RFP than IDH1 wild type subgroup ( p<0.01 ), but the OS has no statistical difference between two subgroups ( p>0.6 ). Additionally, IDH1 R132H mutation independently predicted a long RFP in patients with pLGA (HR 1.073, 95% CI 0.151-0.775, p<0.01 ).
Mu, Luyan; Xu, Wanzhen; Li, Qingla; Ge, Haitao; Bao, Hongbo; Xia, Songsong; Ji, Jingjing; Jiang, Jie; Song, Yuwen; Gao, Qiang
2017-01-01
IDH1 R132H mutation is an important marker of survival in patients with gliomas. Although there are many changes of genes in tumour malignant progression, IDH1 R132H mutation status in glioma progression remained unclear. Here, an in-depth characterization of IDH1 R132H mutations were assessed by immunohistochemistry in 55 paired primary-recurrent astrocytomas tissues, including 5 paired primary pilocytic astrocytoma (pPA, WHO grade I), 35 paired primary low grade astrocytoma (pLGA, WHO grade II and III) and 15 paired primary high grade astrocytoma (pHGA/ Glioblastoma, WHO grade IV). Meanwhile, the DNA was isolated from paired samples, and PCR amplification was used for IDH1 exon4 sequencing. Nonparametric test, KM and Cox models were used to examine the statistical difference and survival function. We found that the percent of IDH1 R132H mutation was 68.6% (24/35) in pLGA group, but no IDH1 mutation was found in pPA and pHGA groups. Meanwhile, the results from immunohistochemistry and DNA sequencing showed that, compared with primary astrocytoma, there was no change of IDH1 status in recurrent astrocytoma whatever tumour pathological grade raise or indolent. The pPA group has the longest recurrence-free period (RFP) and overall survival (OS) in three groups (p<0.01), while the pHGA group has the shortest ones (p<0.01). In pLGA group, the IDH1 R132H mutation subgroup has longer RFP than IDH1 wild type subgroup (p<0.01), but the OS has no statistical difference between two subgroups (p>0.6). Additionally, IDH1 R132H mutation independently predicted a long RFP in patients with pLGA (HR 1.073, 95% CI 0.151-0.775, p<0.01). PMID:28928859
Downs, Louise M; Hitti, Rebekkah; Pregnolato, Silvia; Mellersh, Cathryn S
2014-03-01
To assess the extent of progressive retinal atrophy (PRA) genetic heterogeneity within and between domestic dog breeds. DNA from 231 dogs with PRA, representing 36 breeds, was screened for 17 mutations previously associated with PRA in at least one breed of dog. Screening methods included amplified fragment size discrimination using gel electrophoresis or detection of fluorescence, (TaqMan(®) ; Life Technologies, Carlsbad, CA, USA) allelic discrimination, and Sanger sequencing. Of the 231 dogs screened, 129 were homozygous for a PRA-associated mutation, 29 dogs were carriers, and 73 were homozygous for the wild-type allele at all loci tested. In two of the 129 dogs, homozygous mutations were identified that had not previously been observed in the respective breeds: one Chinese Crested dog was homozygous for the RCD3-associated mutation usually found in the Cardigan Welsh Corgi, and one Standard Poodle was homozygous for the RCD4-associated mutation previously reported to segregate in Gordon and Irish Setters. In the majority of the breeds (15/21) in which a PRA-associated mutation is known to segregate, cases were identified that did not carry any of the known PRA-associated mutations. Progressive retinal atrophy in the dog displays significant genetic heterogeneity within as well as between breeds. There are also several instances where PRA-associated mutations segregate among breeds with no known close ancestry. © 2013 American College of Veterinary Ophthalmologists.
The role of bile salt export pump mutations in progressive familial intrahepatic cholestasis type II
Wang, Lin; Soroka, Carol J.; Boyer, James L.
2002-01-01
PFIC II is a subtype of progressive familial intrahepatic cholestasis (PFIC) that is associated with mutations in the ABCB11 gene encoding the bile salt export pump (BSEP). However it is not known how these mutations cause this disease. To evaluate these mechanisms, we introduced seven PFIC II–associated missense mutations into rat Bsep and assessed their effects on Bsep membrane localization and transport function in MDCK and Sf9 cells, respectively. Five mutations, G238V, E297G, G982R, R1153C, and R1268Q, prevented the protein from trafficking to the apical membrane, and E297G, G982R, R1153C, and R1268Q also abolished taurocholate transport activity, possibly by causing Bsep to misfold. Mutation C336S affected neither Bsep transport activity nor the apical trafficking of Bsep, suggesting that this mutation alone may not cause this disease. D482G did not affect the apical expression but partially decreased the transport activity of Bsep. Mutant G238V was rapidly degraded in both MDCK and Sf9 cells, and proteasome inhibitor resulted in intracellular accumulation of this and other mutants, suggesting proteasome-mediated degradation plays an important role in expression of these PFIC II mutants. Our studies highlight the heterogeneous nature of PFIC II mutations and illustrate the significance of these mutations in the function and expression of Bsep. PMID:12370274
Ou, Sai-Hong; Milliken, Jeffrey C; Azada, Michele C; Miller, Vincent A; Ali, Siraj M; Klempner, Samuel J
2016-01-01
Many acquired resistant mutations to the anaplastic lymphoma kinase (ALK) gene have been identified during treatment of ALK-rearranged non-small cell lung cancer (NSCLC) patients with crizotinib, ceritinib, and alectinib. These various acquired resistant ALK mutations confer differential sensitivities to various ALK inhibitors and may provide guidance on how to sequence the use of many of the second generation ALK inhibitors. We described a patient who developed an acquired ALK F1174V resistant mutation on progression from crizotinib that responded to alectinib for 18 months but then developed an acquired ALK I1171S mutation to alectinib. Both tumor samples had essentially the same genomic profile by comprehensive genomic profiling otherwise. This is the first patient report that demonstrates ALK F1174V mutation is sensitive to alectinib and further confirms missense acquired ALK I1171 mutation is resistant to alectinib. Sequential tumor re-biopsy for comprehensive genomic profiling (CGP) is important to appreciate the selective pressure during treatment with various ALK inhibitors underpinning the evolution of the disease course of ALK+NSCLC patients while on treatment with the various ALK inhibitors. This approach will likely help inform the optimal sequencing strategy as more ALK inhibitors become available. This case report also validates the importance of developing structurally distinct ALK inhibitors for clinical use to overcome non-cross resistant ALK mutations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Lysosomal acid lipase deficiency--an under-recognized cause of dyslipidaemia and liver dysfunction.
Reiner, Željko; Guardamagna, Ornella; Nair, Devaki; Soran, Handrean; Hovingh, Kees; Bertolini, Stefano; Jones, Simon; Ćorić, Marijana; Calandra, Sebastiano; Hamilton, John; Eagleton, Terence; Ros, Emilio
2014-07-01
Lysosomal acid lipase deficiency (LAL-D) is a rare autosomal recessive lysosomal storage disease caused by deleterious mutations in the LIPA gene. The age at onset and rate of progression vary greatly and this may relate to the nature of the underlying mutations. Patients presenting in infancy have the most rapidly progressive disease, developing signs and symptoms in the first weeks of life and rarely surviving beyond 6 months of age. Children and adults typically present with some combination of dyslipidaemia, hepatomegaly, elevated transaminases, and microvesicular hepatosteatosis on biopsy. Liver damage with progression to fibrosis, cirrhosis and liver failure occurs in a large proportion of patients. Elevated low-density lipoprotein cholesterol levels and decreased high-density lipoprotein cholesterol levels are common features, and cardiovascular disease may manifest as early as childhood. Given that these clinical manifestations are shared with other cardiovascular, liver and metabolic diseases, it is not surprising that LAL-D is under-recognized in clinical practice. This article provides practical guidance to lipidologists, endocrinologists, cardiologists and hepatologists on how to recognize individuals with this life-limiting disease. A diagnostic algorithm is proposed with a view to achieving definitive diagnosis using a recently developed blood test for lysosomal acid lipase. Finally, current management options are reviewed in light of the ongoing development of enzyme replacement therapy with sebelipase alfa (Synageva BioPharma Corp., Lexington, MA, USA), a recombinant human lysosomal acid lipase enzyme. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Rates of spontaneous mutation.
Drake, J W; Charlesworth, B; Charlesworth, D; Crow, J F
1998-01-01
Rates of spontaneous mutation per genome as measured in the laboratory are remarkably similar within broad groups of organisms but differ strikingly among groups. Mutation rates in RNA viruses, whose genomes contain ca. 10(4) bases, are roughly 1 per genome per replication for lytic viruses and roughly 0.1 per genome per replication for retroviruses and a retrotransposon. Mutation rates in microbes with DNA-based chromosomes are close to 1/300 per genome per replication; in this group, therefore, rates per base pair vary inversely and hugely as genome sizes vary from 6 x 10(3) to 4 x 10(7) bases or base pairs. Mutation rates in higher eukaryotes are roughly 0.1-100 per genome per sexual generation but are currently indistinguishable from 1/300 per cell division per effective genome (which excludes the fraction of the genome in which most mutations are neutral). It is now possible to specify some of the evolutionary forces that shape these diverse mutation rates. PMID:9560386
Twenty years of audiology in a patient with Norrie disease.
Halpin, Chris; Sims, Katherine
2008-11-01
To describe disease progression and treatment outcomes over a 20-year period (ages 5-25) in a young man with Norrie disease (occuloacousticocerebral dysplasia), ND; OMIM #310600. Affected individuals are born blind and develop progressive sensory loss with onset in adolescence. This disease is X-linked and has been associated with mutations of the NDP gene (Xp11.4). The patient was followed using repeated audiograms, as well as reports of educational progress and hearing aid use. The specific mutation was found by molecular analysis. The patient demonstrated progressive sensory loss with good preservation of word recognition. The loss was initially high frequency and asymmetric in adolescence and became more severe, more symmetric and affected practically all frequencies by the end of childhood. Educational progress was affected by the cognitive effects of the syndrome, and hearing aid use was very effective. A bilateral progressive sensory loss with good preservation of word recognition was documented in detail. The residual word recognition supported good use of hearing aids in this case.
Functional connectivity in autosomal dominant and late-onset Alzheimer disease.
Thomas, Jewell B; Brier, Matthew R; Bateman, Randall J; Snyder, Abraham Z; Benzinger, Tammie L; Xiong, Chengjie; Raichle, Marcus; Holtzman, David M; Sperling, Reisa A; Mayeux, Richard; Ghetti, Bernardino; Ringman, John M; Salloway, Stephen; McDade, Eric; Rossor, Martin N; Ourselin, Sebastien; Schofield, Peter R; Masters, Colin L; Martins, Ralph N; Weiner, Michael W; Thompson, Paul M; Fox, Nick C; Koeppe, Robert A; Jack, Clifford R; Mathis, Chester A; Oliver, Angela; Blazey, Tyler M; Moulder, Krista; Buckles, Virginia; Hornbeck, Russ; Chhatwal, Jasmeer; Schultz, Aaron P; Goate, Alison M; Fagan, Anne M; Cairns, Nigel J; Marcus, Daniel S; Morris, John C; Ances, Beau M
2014-09-01
Autosomal dominant Alzheimer disease (ADAD) is caused by rare genetic mutations in 3 specific genes in contrast to late-onset Alzheimer disease (LOAD), which has a more polygenetic risk profile. To assess the similarities and differences in functional connectivity changes owing to ADAD and LOAD. We analyzed functional connectivity in multiple brain resting state networks (RSNs) in a cross-sectional cohort of participants with ADAD (n = 79) and LOAD (n = 444), using resting-state functional connectivity magnetic resonance imaging at multiple international academic sites. For both types of AD, we quantified and compared functional connectivity changes in RSNs as a function of dementia severity measured by the Clinical Dementia Rating Scale. In ADAD, we qualitatively investigated functional connectivity changes with respect to estimated years from onset of symptoms within 5 RSNs. A decrease in functional connectivity with increasing Clinical Dementia Rating scores were similar for both LOAD and ADAD in multiple RSNs. Ordinal logistic regression models constructed in one type of Alzheimer disease accurately predicted clinical dementia rating scores in the other, further demonstrating the similarity of functional connectivity loss in each disease type. Among participants with ADAD, functional connectivity in multiple RSNs appeared qualitatively lower in asymptomatic mutation carriers near their anticipated age of symptom onset compared with asymptomatic mutation noncarriers. Resting-state functional connectivity magnetic resonance imaging changes with progressing AD severity are similar between ADAD and LOAD. Resting-state functional connectivity magnetic resonance imaging may be a useful end point for LOAD and ADAD therapy trials. Moreover, the disease process of ADAD may be an effective model for the LOAD disease process.
Giesecke, Claudia; Meyer, Tim; Durek, Pawel; Maul, Jochen; Preiß, Jan; Jacobs, Joannes F M; Thiel, Andreas; Radbruch, Andreas; Ullrich, Reiner; Dörner, Thomas
2018-06-15
There are currently limited insights into the progression of human primary humoral immunity despite numerous studies in experimental models. In this study, we analyzed a primary and related secondary parenteral keyhole limpet hemocyanin (KLH) immunization in five human adults. The primary challenge elicited discordant KLH-specific serum and blood effector B cell responses (i.e., dominant serum KLH-specific IgG and IgM levels versus dominant KLH-specific IgA plasmablast frequencies). Single-cell IgH sequencing revealed early appearance of highly (>15 mutations) mutated circulating KLH-specific plasmablasts 2 wk after primary KLH immunization, with simultaneous KLH-specific plasmablasts carrying non- and low-mutated IgH sequences. The data suggest that the highly mutated cells might originate from cross-reactive memory B cells (mBCs) rather than from the naive B cell repertoire, consistent with previous reported mutation rates and the presence of KLH-reactive mBCs in naive vaccinees prior to immunization. Whereas upon secondary immunization, serum Ab response kinetics and plasmablast mutation loads suggested the exclusive reactivation of KLH-specific mBCs, we, however, detected only little clonal overlap between the peripheral KLH-specific secondary plasmablast IgH repertoire and the primary plasmablast and mBC repertoire, respectively. Our data provide novel mechanistic insights into human humoral immune responses and suggest that primary KLH immunization recruits both naive B cells and cross-reactive mBCs, whereas secondary challenge exclusively recruits from a memory repertoire, with little clonal overlap with the primary response. Copyright © 2018 by The American Association of Immunologists, Inc.
Imai, Hisao; Kuwako, Tomohito; Kaira, Kyoichi; Masuda, Tomomi; Miura, Yosuke; Seki, Kaori; Sakurai, Reiko; Utsugi, Mitsuyoshi; Shimizu, Kimihiro; Sunaga, Noriaki; Tomizawa, Yoshio; Ishihara, Shinichi; Ishizuka, Takao; Mogi, Akira; Hisada, Takeshi; Minato, Koichi; Takise, Atsushi; Saito, Ryusei; Yamada, Masanobu
2017-03-01
In patients with epidermal growth factor receptor (EGFR)-mutated, advanced, non-small cell lung cancer (NSCLC), common gefitinib-sensitive EGFR mutations that predict a greater response to therapy include the exon 19 deletion and L858R point mutation. The objective of this study was to evaluate whether body surface area (BSA), body weight (BW), and body mass index (BMI) affect gefitinib efficacy in such patients. The medical charts of 138 consecutive patients with advanced NSCLC harboring sensitive EGFR mutations, who underwent gefitinib treatment, were reviewed. The median BSA and BW were used as cutoff values to evaluate their impact on gefitinib efficacy. BMI was categorized as underweight (<18.5 kg/m 2 ), normal (18.5-25 kg/m 2 ), and overweight (≥25 kg/m 2 ). The median BSA and BW were 1.48 m 2 and 53 kg, respectively. The overall response rate, progression-free survival (PFS), and overall survival (OS) were 65.2%, 12.2, and 24.2 months, respectively. There were no significant differences in clinical outcomes according to BSA, BW, or BMI alone. Subgroup analysis based on the mutation type and BSA revealed no significant differences in PFS between the groups; however, the median OS in those with exon 19 deletion combined with low BSA was significantly favorable compared with the other groups. Gefitinib efficacy in patients with NSCLC harboring sensitive EGFR mutations did not differ according to BSA, BW, and BMI. However, OS was superior in patients with both the exon 19 deletion and low BSA.
Behringer, Megan G.; Hall, David W.
2015-01-01
We accumulated mutations for 1952 generations in 79 initially identical, haploid lines of the fission yeast Schizosaccharomyces pombe, and then performed whole-genome sequencing to determine the mutation rates and spectrum. We captured 696 spontaneous mutations across the 79 mutation accumulation (MA) lines. We compared the mutation spectrum and rate to a recently published equivalent experiment on the same species, and to another model ascomycetous yeast, the budding yeast Saccharomyces cerevisiae. While the two species are approximately 600 million years diverged from each other, they share similar life histories, genome size and genomic G/C content. We found that Sc. pombe and S. cerevisiae have similar mutation rates, but Sc. pombe exhibits a stronger insertion bias. Intriguingly, we observed an increased mutation rate at cytosine nucleotides, specifically CpG nucleotides, which is also seen in S. cerevisiae. However, the absence of methylation in Sc. pombe and the pattern of mutation at these sites, primarily C → A as opposed to C → T, strongly suggest that the increased mutation rate is not caused by deamination of methylated cytosines. This result implies that the high mutability of CpG dinucleotides in other species may be caused in part by a methylation-independent mechanism. Many of our findings mirror those seen in the recent study, despite the use of different passaging conditions, indicating that MA is a reliable method for estimating mutation rates and spectra. PMID:26564949
THE MOLECULAR PATHOLOGY OF MELANOMA: AN INTEGRATED TAXONOMY OF MELANOCYTIC NEOPLASIA
Bastian, Boris C.
2016-01-01
Melanomas are comprised of multiple biologically distinct categories, which differ in cell of origin, age of onset, clinical and histologic presentation, pattern of metastasis, ethnic distribution, causative role of UV radiation, predisposing germ line alterations, mutational processes, and patterns of somatic mutations. Neoplasms are initiated by gain of function mutations in one of several primary oncogenes, typically leading to benign melanocytic nevi with characteristic histologic features. The progression of nevi is restrained by multiple tumor suppressive mechanisms. Secondary genetic alterations override these barriers and promote intermediate or overtly malignant tumors along distinct progression trajectories. The current knowledge about pathogenesis, clinical, histological and genetic features of primary melanocytic neoplasms is reviewed and integrated into a taxonomic framework. PMID:24460190
Hundallah, Khaled; Alenizi, Asma'a; AlHashem, Amal; Tabarki, Brahim
2016-07-01
Recently, de novo loss- or gain-of-function mutations in the KCNA2 gene; have been described in individuals with epileptic encephalopathy, ataxia or intellectual disability. In this report, we describe a further case of KCNA2-early-onset epileptic encephalopathy. The patient presented since birth with intractable seizures, progressive microcephaly, developmental delay, and progressive brain atrophy. Whole-exome sequencing showed a novel de novo mutation in the KCNA2 gene: c.1120A > G (p.Thr374Ala). This case expands the genotypic and phenotypic disease spectrum of this genetic form of KCNA2-early onset epileptic encephalopathy. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Coordinated Changes in Mutation and Growth Rates Induced by Genome Reduction.
Nishimura, Issei; Kurokawa, Masaomi; Liu, Liu; Ying, Bei-Wen
2017-07-05
Genome size is determined during evolution, but it can also be altered by genetic engineering in laboratories. The systematic characterization of reduced genomes provides valuable insights into the cellular properties that are quantitatively described by the global parameters related to the dynamics of growth and mutation. In the present study, we analyzed a small collection of W3110 Escherichia coli derivatives containing either the wild-type genome or reduced genomes of various lengths to examine whether the mutation rate, a global parameter representing genomic plasticity, was affected by genome reduction. We found that the mutation rates of these cells increased with genome reduction. The correlation between genome length and mutation rate, which has been reported for the evolution of bacteria, was also identified, intriguingly, for genome reduction. Gene function enrichment analysis indicated that the deletion of many of the genes encoding membrane and transport proteins play a role in the mutation rate changes mediated by genome reduction. Furthermore, the increase in the mutation rate with genome reduction was highly associated with a decrease in the growth rate in a nutrition-dependent manner; thus, poorer media showed a larger change that was of higher significance. This negative correlation was strongly supported by experimental evidence that the serial transfer of the reduced genome improved the growth rate and reduced the mutation rate to a large extent. Taken together, the global parameters corresponding to the genome, growth, and mutation showed a coordinated relationship, which might be an essential working principle for balancing the cellular dynamics appropriate to the environment. IMPORTANCE Genome reduction is a powerful approach for investigating the fundamental rules for living systems. Whether genetically disturbed genomes have any specific properties that are different from or similar to those of natively evolved genomes has been under investigation. In the present study, we found that Escherichia coli cells with reduced genomes showed accelerated nucleotide substitution errors (mutation rates), although these cells retained the normal DNA mismatch repair systems. Intriguingly, this finding of correlation between reduced genome size and a higher mutation rate was consistent with the reported evolution of mutation rates. Furthermore, the increased mutation rate was quantitatively associated with a decreased growth rate, indicating that the global parameters related to the genome, growth, and mutation, which represent the amount of genetic information, the efficiency of propagation, and the fidelity of replication, respectively, are dynamically coordinated. Copyright © 2017 Nishimura et al.
Adult polyglucosan body disease presenting as a unilateral progressive plexopathy.
Naddaf, Elie; Kassardjian, Charles D; Kurt, Yasemin Gulcan; Akman, Hasan Orhan; Windebank, Anthony J
2016-06-01
Adult polyglucosan body disease (APBD) usually presents with progressive spastic paraparesis, neurogenic bladder, and distal lower limb sensory abnormalities. It is caused by mutations in the glycogen branching enzyme gene (GBE1). We describe a woman with an unusual phenotype manifesting as progressive left brachial more than lumbosacral plexopathies, with central sensory and corticospinal tract involvement. Magnetic resonance imaging of the brain and cervical spine showed abnormal T2 signal within the ventral pons and medulla bilaterally, involving the pyramidal tracts and the medial leminisci. There was also medullary and cervical spine atrophy. On nerve biopsy, large polyglucosan bodies were noted in the endoneurium. The patient was found to be compound heterozygous for 2 novel mutations in GBE1. Peripheral blood leukocyte GBE activity was markedly reduced to 7% of normal, confirming the diagnosis of APBD. In this report we describe a new phenotype of APBD associated with 2 novel mutations. Muscle Nerve 53: 976-981, 2016. © 2016 Wiley Periodicals, Inc.
Baranello, Giovanni; Alfei, Enrico; Martinelli, Diego; Rizzetto, Manuela; Cazzaniga, Fabiana; Dionisi-Vici, Carlo; Gellera, Cinzia; Castellotti, Barbara
2014-09-01
Hyperargininemia due to mutations in ARG1 gene is an autosomal recessive inborn error of metabolism caused by a defect in the final step of the urea cycle. Common clinical presentation is a variable association of progressive spastic paraparesis, epilepsy, and cognitive deficits. We describe the clinical history of an Italian child presenting progressive spastic paraparesis, carrying a new homozygous missense mutation in the ARG1 gene. A detailed clinical, biochemical, and neurophysiological follow-up after 7 months of sodium benzoate therapy is reported. Laboratory findings, gait abnormalities, spastic paraparesis, and electroencephalographic and neurophysiological abnormalities remained quite stable over the follow-up. Conversely, a mild cognitive deterioration has been detected by means of the neuropsychologic assessment. Further longitudinal studies by means of longer follow-up and using clinical, biochemical, radiological, and neurophysiological assessments are needed in such patients to describe natural history and monitor the effects of treatments. Copyright © 2014 Elsevier Inc. All rights reserved.
Hereditary inclusion-body myopathy: clues on pathogenesis and possible therapy.
Broccolini, Aldobrando; Gidaro, Teresa; Morosetti, Roberta; Mirabella, Massimiliano
2009-09-01
Hereditary inclusion-body myopathy (h-IBM), or distal myopathy with rimmed vacuoles (DMRV), is an autosomal recessive disorder with onset in early adult life and a progressive course leading to severe disability. h-IBM/DMRV is due to mutations of a gene (GNE) that codes for a rate-limiting enzyme in the sialic acid biosynthetic pathway. Despite the identification of the causative gene defect, it has not been unambiguously clarified how GNE gene mutations impair muscle metabolism. Although numerous studies have indicated a key role of hyposialylation of glycoproteins in h-IBM/DMRV pathogenesis, others have demonstrated new and unpredicted functions of the GNE gene, outside the sialic acid biosynthetic pathway, that may also be relevant. This review illustrates the clinical and pathologic characteristics of h-IBM/DMRV and the main clues available to date concerning the possible pathogenic mechanisms and therapeutic perspectives of this disorder.
Whole organism lineage tracing by combinatorial and cumulative genome editing
McKenna, Aaron; Findlay, Gregory M.; Gagnon, James A.; Horwitz, Marshall S.; Schier, Alexander F.; Shendure, Jay
2016-01-01
Multicellular systems develop from single cells through distinct lineages. However, current lineage tracing approaches scale poorly to whole, complex organisms. Here we use genome editing to progressively introduce and accumulate diverse mutations in a DNA barcode over multiple rounds of cell division. The barcode, an array of CRISPR/Cas9 target sites, marks cells and enables the elucidation of lineage relationships via the patterns of mutations shared between cells. In cell culture and zebrafish, we show that rates and patterns of editing are tunable, and that thousands of lineage-informative barcode alleles can be generated. By sampling hundreds of thousands of cells from individual zebrafish, we find that most cells in adult organs derive from relatively few embryonic progenitors. In future analyses, genome editing of synthetic target arrays for lineage tracing (GESTALT) can be used to generate large-scale maps of cell lineage in multicellular systems for normal development and disease. PMID:27229144
Prognostic value of a CCR5 defective allele in pediatric HIV-1 infection.
Romiti, M. L.; Colognesi, C.; Cancrini, C.; Mas, A.; Berrino, M.; Salvatori, F.; Orlandi, P.; Jansson, M.; Palomba, E.; Plebani, A.; Bertran, J. M.; Hernandez, M.; de Martino, M.; Amoroso, A.; Tovo, P. A.; Rossi, P.; Espanol, T.; Scarlatti, G.
2000-01-01
BACKGROUND: A deletion of 32 base pairs in the CCR5 gene (delta32 CCR5) has been linked to resistance to HIV-1 infection in exposed adults and to the delay of disease progression in infected adults. MATERIALS AND METHODS: To determine the role of delta32 CCR5 in disease progression of HIV-1 infected children born to seropositive mothers, we studied a polymerase chain reaction in 301 HIV-1 infected, 262 HIV-1 exposed-uninfected and 47 HIV-1 unexposed-uninfected children of Spanish and Italian origin. Infected children were further divided into two groups according to their rate of HIV-1 disease progression: rapid progressors who developed severe clinical and/or immunological conditions within the second year of life, and delayed progressors with any other evolution of disease. Among the latter were the long-term, non-progressors (LTNP) who presented with mild or no symptoms of HIV-1 infection above 8 years of age. Viral phenotype was studied for 45 delayed progressors. RESULTS: No correlation was found between delta32 CCR5 and mother-to-child transmission of HIV-1. However, the frequency of the deletion was substantially higher in LTNP, compared with delayed (p = 0.019) and rapid progressors (p = 0.0003). In children carrying the delta32 CCRS mutation, the presence of MT-2 tropic virus isolate was associated with a severe immune suppression (p = 0.028); whereas, the presence of MT-2 negative viruses correlated with LTNP (p = 0.010). CONCLUSIONS: Given the rapidity and simplicity of the assay, the delta32 CCR5 mutation may be a useful predictive marker to identify children with delayed disease progression who, consequently, may not require immediate antiretroviral treatment. PMID:10803406
Prognostic value of a CCR5 defective allele in pediatric HIV-1 infection.
Romiti, M L; Colognesi, C; Cancrini, C; Mas, A; Berrino, M; Salvatori, F; Orlandi, P; Jansson, M; Palomba, E; Plebani, A; Bertran, J M; Hernandez, M; de Martino, M; Amoroso, A; Tovo, P A; Rossi, P; Espanol, T; Scarlatti, G
2000-01-01
A deletion of 32 base pairs in the CCR5 gene (delta32 CCR5) has been linked to resistance to HIV-1 infection in exposed adults and to the delay of disease progression in infected adults. To determine the role of delta32 CCR5 in disease progression of HIV-1 infected children born to seropositive mothers, we studied a polymerase chain reaction in 301 HIV-1 infected, 262 HIV-1 exposed-uninfected and 47 HIV-1 unexposed-uninfected children of Spanish and Italian origin. Infected children were further divided into two groups according to their rate of HIV-1 disease progression: rapid progressors who developed severe clinical and/or immunological conditions within the second year of life, and delayed progressors with any other evolution of disease. Among the latter were the long-term, non-progressors (LTNP) who presented with mild or no symptoms of HIV-1 infection above 8 years of age. Viral phenotype was studied for 45 delayed progressors. No correlation was found between delta32 CCR5 and mother-to-child transmission of HIV-1. However, the frequency of the deletion was substantially higher in LTNP, compared with delayed (p = 0.019) and rapid progressors (p = 0.0003). In children carrying the delta32 CCRS mutation, the presence of MT-2 tropic virus isolate was associated with a severe immune suppression (p = 0.028); whereas, the presence of MT-2 negative viruses correlated with LTNP (p = 0.010). Given the rapidity and simplicity of the assay, the delta32 CCR5 mutation may be a useful predictive marker to identify children with delayed disease progression who, consequently, may not require immediate antiretroviral treatment.
Mei, Zhu; Shao, Yang W; Lin, Peinan; Cai, Xiaomin; Wang, Biao; Ding, Yan; Ma, Xiangyuan; Wu, Xue; Xia, Yewei; Zhu, Dongqin; Shu, Yongqian; Fu, Zan; Gu, Yanhong
2018-04-27
Cetuximab, an anti-EGFR monoclonal antibody, is used in combination with chemotherapy in clinic to enhance the outcome in metastatic colorectal cancer (mCRC) patients with only ~ 20% response rate. To date only activating mutations in KRAS and NRAS have been identified as poor prognosis biomarkers in cetuximab-based treatment, which makes an urgent need for identification of novel prognosis biomarkers to precisely predict patients' response in order to maximize the benefit. In this study, we analysed the mutation profiles of 33 Chinese mCRC patients using comprehensive next-generation sequencing (NGS) targeting 416 cancer-relevant genes before cetuximab treatment. Upon receiving cetuximab-based therapy, patients were evaluated for drug response, and the progression-free survival (PFS) was monitored. The association of specific genetic alterations and cetuximab efficacy was analyzed. Patients carrying SMAD4 mutations (SMAD4 mut , n = 8) or NF1 mutations (NF1 mut , n = 4) had significantly shorter PFS comparing to those carrying wildtype SMAD4 (SMAD4 wt , n = 25) (P = 0.0081) or wildtype NF1 (NF1 wt , n = 29) (P = 0.0028), respectively. None of the SMAD4 mut or NF1 mut patients showed response to cetuximab when assessed at 12-week post-treatment. Interestingly, two patients carrying both SMAD4 mut and NF1 mut showed the shortest PFS among all the patients. Our results demonstrated that SMAD4 and NF1 mutations can serve as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese mCRC patients.
Wang, Lulu; Li, Yan; Li, Luchun; Wu, Zhijuan; Yang, Dan; Ma, Huiwen; Wang, Donglin
2018-01-01
This study was conducted to compare the efficacy of a combination of icotinib and chemotherapy with icotinib or chemotherapy alone in untreated non-small cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR)-sensitive mutations and to analyze the curative effect of different treatments on different genetic mutations (EGFR 19 exon deletion and L858R mutation) in a real-life setting. One hundred ninety-one patients were studied in this retrospective analysis from January 2013 to December 2015. The baseline characteristics, curative effects and adverse events of patients were analyzed. The primary endpoint was progression free survival (PFS). Longer PFS and overall survival (OS), and better objective response rate (ORR) were observed in the combination group compared to icotinib or chemotherapy along. For patients with an EGFR 19 exon deletion, the PFS, OS, and ORR in the combination group were superior to those in the icotinib or chemotherapy group. For the patients with the EGFR L858R mutation, better PFS and ORR were observed in the combination group, but OS was not obviously prolonged. Grade 3 or 4 adverse events were most commonly reported with combination therapy or chemotherapy alone. No possible drug-related interstitial lung disease or of drug related deaths occurred. The combination of icotinib and chemotherapy in patients with untreated NSCLC harboring sensitive EGFR mutations resulted in improved PFS and OS, especially in those who harbored the EGFR exon 19 deletion.
Wang, Lulu; Li, Yan; Li, Luchun; Wu, Zhijuan; Yang, Dan; Ma, Huiwen; Wang, Donglin
2018-01-01
Purpose This study was conducted to compare the efficacy of a combination of icotinib and chemotherapy with icotinib or chemotherapy alone in untreated non-small cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR)-sensitive mutations and to analyze the curative effect of different treatments on different genetic mutations (EGFR 19 exon deletion and L858R mutation) in a real-life setting. Patients and methods One hundred ninety-one patients were studied in this retrospective analysis from January 2013 to December 2015. The baseline characteristics, curative effects and adverse events of patients were analyzed. The primary endpoint was progression free survival (PFS). Results Longer PFS and overall survival (OS), and better objective response rate (ORR) were observed in the combination group compared to icotinib or chemotherapy along. For patients with an EGFR 19 exon deletion, the PFS, OS, and ORR in the combination group were superior to those in the icotinib or chemotherapy group. For the patients with the EGFR L858R mutation, better PFS and ORR were observed in the combination group, but OS was not obviously prolonged. Grade 3 or 4 adverse events were most commonly reported with combination therapy or chemotherapy alone. No possible drug-related interstitial lung disease or of drug related deaths occurred. Conclusion The combination of icotinib and chemotherapy in patients with untreated NSCLC harboring sensitive EGFR mutations resulted in improved PFS and OS, especially in those who harbored the EGFR exon 19 deletion. PMID:29731642
Similar Mutation Rates but Highly Diverse Mutation Spectra in Ascomycete and Basidiomycete Yeasts.
Long, Hongan; Behringer, Megan G; Williams, Emily; Te, Ronald; Lynch, Michael
2016-12-01
Yeast species are extremely diverse and not monophyletic. Because the majority of yeast research focuses on ascomycetes, the mutational determinants of genetic diversity across yeast species are not well understood. By combining mutation-accumulation techniques with whole-genome sequencing, we resolved the genomic mutation rate and spectrum of the oleaginous (oil-producing) ‘red yeast’ Rhodotorula toruloides, the first such study in the fungal phylum Basidiomycota. We find that the mutation spectrum is quite different from what has been observed in all other studied unicellular eukaryotes, but similar to that in most bacteria—a predominance of transitions relative to transversions. Rhodotorula toruloides has a significantly higher A:T→G:C transition rate—possibly elevated by the abundant flanking G/C nucleotides in the GC-rich genome, as well as a much lower G:C→T:A transversion rate. In spite of these striking differences, there are substantial consistencies between R. toruloides and the ascomycete model yeasts: a spontaneous base-substitution mutation rate of 1.90 × 10 −10 per site per cell division as well as an elevated mutation rate at non-methylated 5'CpG3' sites. These results imply the evolution of variable mutation spectra in the face of similar mutation rates in yeasts.
Methods for Determining Spontaneous Mutation Rates
Foster, Patricia L.
2007-01-01
Spontaneous mutations arise as a result of cellular processes that act upon or damage DNA. Accurate determination of spontaneous mutation rates can contribute to our understanding of these processes and the enzymatic pathways that deal with them. The methods that are used to calculate mutation rates are based on the model for the expansion of mutant clones originally described by Luria and Delbrück and extended by Lea and Coulson. The accurate determination of mutation rates depends on understanding the strengths and limitations of these methods and how to optimize a fluctuation assay for a given method. This chapter describes the proper design of a fluctuation assay, several of the methods used to calculate mutation rates, and ways to evaluate the results statistically. PMID:16793403
H3.1 K36M mutation in a congenital-onset soft tissue neoplasm.
Kernohan, Kristin D; Grynspan, David; Ramphal, Raveena; Bareke, Eric; Wang, You Chang; Nizalik, Elizabeth; Ragoussis, Jiannis; Jabado, Nada; Boycott, Kym M; Majewski, Jacek; Sawyer, Sarah L
2017-12-01
We describe a patient who presented with a congenital soft tissue lesion initially diagnosed as infantile fibromatosis at 15 days of age. Unusually, the mass demonstrated malignant progression leading to death at 20 months of age. Biological progression to malignancy is not known to occur in fibromatosis, and fibrosarcoma is not known to progress from a benign lesion. Whole-exome sequencing of the tumor identified a driver mutation in histone H3.1 at lysine (K)36. Our findings support the link between oncohistones and infantile soft tissue tumors and provide additional evidence for the oncogenic effects of p.K36M in H3 variants. © 2017 Wiley Periodicals, Inc.
Clinical Implications of ESR1 Mutations in Hormone Receptor-Positive Advanced Breast Cancer
Reinert, Tomas; Saad, Everardo D.; Barrios, Carlos H.; Bines, José
2017-01-01
Hormone receptor-positive breast cancer is the most frequent breast cancer subtype. Endocrine therapy (ET) targeting the estrogen receptor (ER) pathway represents the main initial therapeutic approach. The major strategies include estrogen deprivation and the use of selective estrogen modulators or degraders, which show efficacy in the management of metastatic and early-stage disease. However, clinical resistance associated with progression of disease remains a significant therapeutic challenge. Mutations of the ESR1 gene, which encodes the ER, have been increasingly recognized as an important mechanism of ET resistance, with a prevalence that ranges from 11 to 39%. The majority of these mutations are located within the ligand-binding domain and result in an estrogen-independent constitutive activation of the ER and, therefore, resistance to estrogen deprivation therapy such as aromatase inhibition. ESR1 mutations, most often detected from liquid biopsies, have been consistently associated with a worse outcome and are being currently evaluated as a potential biomarker to guide therapeutic decisions. At the same time, targeted therapy directed to ESR1-mutated clones is an appealing concept with preclinical and clinical work in progress. PMID:28361033
Mutation in GM2A Leads to a Progressive Chorea-dementia Syndrome
Salih, Mustafa A.; Seidahmed, Mohammed Z.; El Khashab, Heba Y.; Hamad, Muddathir H. A.; Bosley, Thomas M.; Burn, Sabrina; Myers, Angela; Landsverk, Megan L.; Crotwell, Patricia L.; Bilguvar, Kaya; Mane, Shrikant; Kruer, Michael C.
2015-01-01
Background The etiology of many cases of childhood-onset chorea remains undetermined, although advances in genomics are revealing both new disease-associated genes and variant phenotypes associated with known genes. Methods We report a Saudi family with a neurodegenerative course dominated by progressive chorea and dementia in whom we performed homozygosity mapping and whole exome sequencing. Results We identified a homozygous missense mutation in GM2A within a prominent block of homozygosity. This mutation is predicted to impair protein function. Discussion Although discovered more than two decades ago, to date, only five patients with this rare form of GM2 gangliosidosis have been reported. The phenotype of previously described GM2A patients has been typified by onset in infancy, profound hypotonia and impaired volitional movement, intractable seizures, hyperacusis, and a macular cherry red spot. Our findings expand the phenotypic spectrum of GM2A mutation-positive gangliosidosis to include generalized chorea without macular findings or hyperacusis and highlight how mutations in neurodegenerative disease genes may present in unexpected ways. PMID:26203402
Goyal, Lipika; Saha, Supriya K.; Liu, Leah Y.; Siravegna, Giulia; Leshchiner, Ignaty; Ahronian, Leanne G.; Lennerz, Jochen K.; Vu, Phuong; Deshpande, Vikram; Kambadakone, Avinash; Mussolin, Benedetta; Reyes, Stephanie; Henderson, Laura; Sun, Jiaoyuan Elisabeth; Van Seventer, Emily E.; Gurski, Joseph M.; Baltschukat, Sabrina; Schacher-Engstler, Barbara; Barys, Louise; Stamm, Christelle; Furet, Pascal; Ryan, David P.; Stone, James R.; Iafrate, A. John; Getz, Gad; Porta, Diana Graus; Tiedt, Ralph; Bardelli, Alberto; Juric, Dejan; Corcoran, Ryan B.; Bardeesy, Nabeel; Zhu, Andrew X.
2017-01-01
Genetic alterations in the fibroblast growth factor receptor (FGFR) pathway are promising therapeutic targets in many cancers, including intrahepatic cholangiocarcinoma (ICC). The FGFR inhibitor BGJ398 displayed encouraging efficacy in patients with FGFR2 fusion-positive ICC in a phase II trial, but the durability of response was limited in some patients. Here, we report the molecular basis for acquired resistance to BGJ398 in three patients via integrative genomic characterization of cell-free circulating tumor DNA (cfDNA), primary tumors, and metastases. Serial analysis of cfDNA demonstrated multiple recurrent point mutations in the FGFR2 kinase domain at progression. Accordingly, biopsy of post-progression lesions and rapid autopsy revealed marked inter- and intra-lesional heterogeneity, with different FGFR2 mutations in individual resistant clones. Molecular modeling and in vitro studies indicated that each mutation lead to BGJ398 resistance and was surmountable by structurally distinct FGFR inhibitors. Thus, polyclonal secondary FGFR2 mutations represent an important clinical resistance mechanism that may guide development of future therapeutic strategies. PMID:28034880
Scoliosis in Rett Syndrome: Progression, Comorbidities, and Predictors.
Killian, John T; Lane, Jane B; Lee, Hye-Seung; Skinner, Steve A; Kaufmann, Walter E; Glaze, Daniel G; Neul, Jeffrey L; Percy, Alan K
2017-05-01
Scoliosis is prominent in Rett syndrome (RTT). Following the prior report from the US Natural History Study, the onset and progression of severe scoliosis (≥40° Cobb angle) and surgery were examined regarding functional capabilities and specific genotypes, addressing the hypothesis that abnormal muscle tone, poor oral feeding, puberty, and delays or absence of sitting balance and ambulation may be responsible for greater risk in RTT. The multicenter RTT Natural History Study gathered longitudinal data for classic RTT, including mutation type, scoliosis, muscle tone, sitting, ambulation, hand function, and feeding. Cox regression models were used to examine the association between scoliosis and functional characteristics. All analyses utilized SAS 9.4; two-sided P values of <0.05 were considered significant. A total of 913 females with classic RTT were included. Scoliosis frequency and severity increased with age. Severe scoliosis was found in 251 participants (27%), 113 of whom developed severe scoliosis during the follow-up assessments; 168 (18%) had surgical correction. Severe MECP2 mutations (R106W, R168X, R255X, R270X, and large deletions) showed a higher proportion of scoliosis. Individuals developing severe scoliosis or requiring surgery were less likely to sit, ambulate, or use their hands and were more likely to have begun puberty. Significant differences were absent for epilepsy rates, sleep problems, or constipation. Scoliosis requires vigilance regarding the risk factors noted, particularly specific mutations and the role of puberty and motor abilities. Bracing is recommended for moderate curves and surgery for severe curves in accordance with published guidelines for scoliosis management. Copyright © 2017 Elsevier Inc. All rights reserved.
Hankey, William; Frankel, Wendy L.
2018-01-01
The acquisition of biallelic mutations in the APC gene is a rate-limiting step in the development of most colorectal cancers and occurs in the earliest lesions. APC encodes a 312-kDa protein that localizes to multiple subcellular compartments and performs diverse functions. APC participates in a cytoplasmic complex that promotes the destruction of the transcriptional licensing factor β-catenin; APC mutations that abolish this function trigger constitutive activation of the canonical WNT signaling pathway, a characteristic found in almost all colorectal cancers. By negatively regulating canonical WNT signaling, APC counteracts proliferation, promotes differentiation, facilitates apoptosis and suppresses invasion and tumor progression. APC further antagonizes canonical WNT signaling by interacting with and counteracting β-catenin in the nucleus. APC also suppresses tumor initiation and progression in the colorectal epithelium through functions that are independent of canonical WNT signaling. APC regulates the mitotic spindle to facilitate proper chromosome segregation, localizes to the cell periphery and cell protrusions to establish cell polarity and appropriate directional migration, and inhibits DNA replication by interacting directly with DNA. Mutations in APC are often frameshifts, insertions or deletions that introduce premature stop codons and lead to the production of truncated APC proteins that lack its normal functions and possess tumorigenic properties. Therapeutic approaches in development for the treatment of APC-deficient tumors are focused on the inhibition of canonical WNT signaling, especially through targets downstream of APC in the pathway, or on the restoration of wild-type APC expression. PMID:29318445
The application of a linear algebra to the analysis of mutation rates.
Jones, M E; Thomas, S M; Clarke, K
1999-07-07
Cells and bacteria growing in culture are subject to mutation, and as this mutation is the ultimate substrate for selection and evolution, the factors controlling the mutation rate are of some interest. The mutational event is not observed directly, but is inferred from the phenotype of the original mutant or of its descendants; the rate of mutation is inferred from the number of such mutant phenotypes. Such inference presumes a knowledge of the probability distribution for the size of a clone arising from a single mutation. We develop a mathematical formulation that assists in the design and analysis of experiments which investigate mutation rates and mutant clone size distribution, and we use it to analyse data for which the classical Luria-Delbrück clone-size distribution must be rejected. Copyright 1999 Academic Press.
Yeh, Chun-Nan; Chen, Ming-Huang; Chen, Yen-Yang; Yang, Ching-Yao; Yen, Chueh-Chuan; Tzen, Chin-Yuan; Chen, Li-Tzong; Chen, Jen-Shi
2017-07-04
Gastrointestinal stromal tumors (GISTs) are caused by the constitutive activation of KIT or platelet-derived growth factor receptor alpha (PDGFRA) mutations. Imatinib selectively inhibits KIT and PDGFR, leading to disease control for 80%-90% of patients with metastatic GIST. Imatinib resistance can occur within a median of 2-3 years due to secondary mutations in KIT. According to preclinical studies, both imatinib and sunitinib are ineffective against exon 17 mutations. However, the treatment efficacy of regorafenib for patients with GIST with exon 17 mutations is still unknown. Documented patients with GIST with exon 17 mutations were enrolled in this study. Patients received 160 mg of oral regorafenib daily on days 1-21 of a 28-day cycle. The primary end point of this trial was the clinical benefit rate (CBR; i.e., complete or partial response [PR], as well as stable disease [SD]) at 16 weeks. The secondary end points of this study included progression free survival (PFS), overall survival, and safety. Between June 2014 to May 2016, 18 patients were enrolled (15 of which were eligible for response evaluation). The CBR at 16 weeks was 93.3% (14 of 15; 6 PR and 8 SD). The median PFS was 22.1 months. The most common grade 3 toxicities were hand-and-foot skin reactions (10 of 18; 55.6%), followed by hypertension (5 of 18; 27.8%). Regorafenib significantly prolonged PFS in patients with advanced GIST harboring secondary mutations of exon 17. A phase III trial of regorafenib versus placebo is warranted. This trial is registered at ClinicalTrials.gov in November 2015, number NCT02606097.Key message: This phase II trial was conducted to assess the efficacy and safety of regorafenib in patients with GIST with exon 17 mutations. The results provide strong evidence that regorafenib significantly prolonged PFS in patients with advanced GIST harboring secondary mutations of exon 17.
Clonal Architecture of Secondary Acute Myeloid Leukemia
Walter, Matthew J.; Shen, Dong; Ding, Li; Shao, Jin; Koboldt, Daniel C.; Chen, Ken; Larson, David E.; McLellan, Michael D.; Dooling, David; Abbott, Rachel; Fulton, Robert; Magrini, Vincent; Schmidt, Heather; Kalicki-Veizer, Joelle; O’Laughlin, Michelle; Fan, Xian; Grillot, Marcus; Witowski, Sarah; Heath, Sharon; Frater, John L.; Eades, William; Tomasson, Michael; Westervelt, Peter; DiPersio, John F.; Link, Daniel C.; Mardis, Elaine R.; Ley, Timothy J.; Wilson, Richard K.; Graubert, Timothy A.
2012-01-01
BACKGROUND The myelodysplastic syndromes are a group of hematologic disorders that often evolve into secondary acute myeloid leukemia (AML). The genetic changes that underlie progression from the myelodysplastic syndromes to secondary AML are not well understood. METHODS We performed whole-genome sequencing of seven paired samples of skin and bone marrow in seven subjects with secondary AML to identify somatic mutations specific to secondary AML. We then genotyped a bone marrow sample obtained during the antecedent myelodysplastic-syndrome stage from each subject to determine the presence or absence of the specific somatic mutations. We identified recurrent mutations in coding genes and defined the clonal architecture of each pair of samples from the myelodysplastic-syndrome stage and the secondary-AML stage, using the allele burden of hundreds of mutations. RESULTS Approximately 85% of bone marrow cells were clonal in the myelodysplastic-syndrome and secondary-AML samples, regardless of the myeloblast count. The secondary-AML samples contained mutations in 11 recurrently mutated genes, including 4 genes that have not been previously implicated in the myelodysplastic syndromes or AML. In every case, progression to acute leukemia was defined by the persistence of an antecedent founding clone containing 182 to 660 somatic mutations and the outgrowth or emergence of at least one subclone, harboring dozens to hundreds of new mutations. All founding clones and subclones contained at least one mutation in a coding gene. CONCLUSIONS Nearly all the bone marrow cells in patients with myelodysplastic syndromes and secondary AML are clonally derived. Genetic evolution of secondary AML is a dynamic process shaped by multiple cycles of mutation acquisition and clonal selection. Recurrent gene mutations are found in both founding clones and daughter subclones. (Funded by the National Institutes of Health and others.) PMID:22417201
Tresoldi, Eleonora; Romiti, Maria Luisa; Boniotto, Michele; Crovella, Sergio; Salvatori, Francesca; Palomba, Elvia; Pastore, Angela; Cancrini, Caterina; de Martino, Maurizio; Plebani, Anna; Castelli, Guido; Rossi, Paolo; Tovo, Pier Angelo; Amoroso, Antonio; Scarlatti, Gabriella
2002-03-01
A mutation of the stromal cell-derived factor 1 gene (SDF-1 3'A) was shown to protect adults exposed to human immunodeficiency virus type 1 (HIV-1) from infection and to affect HIV disease progression in adults. The presence of this mutation in HIV-1-infected Kenyan children did not predict mother-to-child virus transmission. The SDF-1 3'A polymorphism was studied in 256 HIV-1-infected, 118 HIV-1-exposed but uninfected, and 170 unexposed and uninfected children of Italian origin, and the frequency of SDF-1 3'A heterozygosity and homozygosity in each of the 3 groups was similar. Of the 256 HIV-1-infected children, 194 were regularly followed up and were assigned to groups according to disease progression. The frequency of the SDF-1 3'A allele was substantially lower among children with long-term nonprogression than among children with rapid (P =.0329) or delayed (P =.0375) progression. We show that the presence of the SDF-1 3'A gene correlates with accelerated disease progression in HIV-1-infected children born to seropositive mothers but does not protect against mother-to-child HIV-1 transmission.
Ueda, Takehiro; Kanda, Fumio; Nishiyama, Masahiro; Nishigori, Chikako; Toda, Tatsushi
2017-10-15
Xeroderma pigmentosum (XP) is an inherited congenital disease presenting with dermatological and neurological manifestations. In Japan, XP complementation group A (XP-A) is most frequently observed in eight clinical subtypes, and the homozygous founder mutation, IVS3-1G>C in XPA, suffer from severe manifestations including progressive brain atrophy since childhood. In this study, we used magnetic resonance imaging (MRI) and applied volumetric analysis to elucidate the start and the progression of the brain atrophy in these patients. Twelve Japanese patients with XP-A carrying the founder mutation and seven controls were included. MRI was performed for each patient once or more. Three-dimensional T1 weighted images were segmented to gray matter, white matter, and cerebrospinal fluid, and each volume was calculated. Conventional MRI demonstrated progressive whole brain atrophy in patients with XP-A. Moreover, volumetric analysis showed that reductions of total gray matter volumes (GMV) and total brain volumes (TBV) started at the age of five. The slope of reduction was similar in all cases. The GMV and TBV values in controls were higher than those in XP-A cases after the age of five. This is the first quantitative report presenting with the progression of brain atrophy in patients with XP-A. It is revealed that the brain atrophy started from early childhood in Japanese patients with XP-A carrying the homozygous founder mutation. Copyright © 2017 Elsevier B.V. All rights reserved.
Mutation and prognostic analyses of PIK3CA in patients with completely resected lung adenocarcinoma.
Song, Zhengbo; Yu, Xinmin; Zhang, Yiping
2016-10-01
PIK3CA mutation represents a clinical subset of diverse carcinomas. We explored the status of PIK3CA mutation and evaluated its genetic variability, treatment, and prognosis in patients with lung adenocarcinoma. A total of 810 patients with completely resected lung adenocarcinoma were recruited between 2008 and 2013. The status of PIK3CA mutation and other three genes, that is, EGFR mutation, KRAS mutation and ALK fusion were examined by reverse transcription-polymerase chain reaction (RT-PCR). Survival curves were plotted with the Kaplan-Meier method and log-rank for comparison. Cox proportional hazard model was performed for multivariate analysis. Among the 810 patients, 23 cases of PIK3CA mutation were identified with a frequency of 2.8%. There were 14 men and 9 women with a median age of 61 years. Seventeen tumors revealed concurrent gene abnormalities of EGFR mutation (n = 12), KRAS mutation (n = 3), and ALK fusion (n = 2). Seven patients with EGFR & PIK3CA mutations recurred and administrated of EGFR-TKIs yielded a median progression free-survival of 6.0 months. Among four eviromous-treated patients, stable disease was observed in three patients with a median Progression-free survival (PFS) of 3.5 months. Patients with and without PIK3CA mutation had different overall survivals (32.2 vs. 49.6 months, P = 0.003). Multivariate analysis revealed that PIK3CA mutation was an independent predictor of poor overall survival (HR = 2.37, P = 0.017). The frequency of PIK3CA mutation was around 2.8% in the Chinese patients of lung adenocarcinoma. PIK3CA mutation was associated with reduced PFS of EGFR-TKIs treatment and shorter overall survival. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Li, Yuping; Xu, Hanyan; Su, Shanshan; Ye, Junru; Chen, Junjie; Jin, Xuru; Lin, Quan; Zhang, Dongqing; Ye, Caier; Chen, Chengshui
2017-01-01
Circulating tumor DNA (ctDNA) is a promising biomarker for noninvasive epidermal growth factor receptor (EGFR) mutations detection in lung cancer patients, but the existing methods have limitations in sensitivity or in availability. In this study, we evaluated the performance of a novel assay called ADx-SuperARMS in detecting EGFR mutations in plasma cell-free DNA from patients with advanced lung adenocarcinoma. A total of 109 patients with metastatic advanced adenocarcinoma were recruited who provided both blood samples and matched tumor tissue samples. EGFR mutation status in plasma samples were tested with ADx-SuperARMS EGFR assay and tumor tissue samples were tested with ADx-ARMS EGFR assay. The clinical sensitivity, specificity, positive prediction value (PPV), and negative prediction value (NPV) of ADx-SuperARMS EGFR assay were calculated by using EGFR mutation status in tumor tissue as standard reference. A receiver operating characteristic (ROC) analysis was implemented and an area under the curve (AUC) was calculated to evaluate sensitivity and specificity of exon 19 deletion (E19Del) and L858R mutation detection. The objective response rate (ORR) were calculated according to the EGFR mutation status determined by ADx-superARMS as well. 0.2% analytical sensitivity and 100% specificity of the ADx-SuperARMS EGFR assays for EGFR E19Del, L858R, and T790M mutants were confirmed by using a series of diluted cell line DNA. In the clinical study, EGFR mutations were detected in 45.9% (50/109) of the plasma samples and in 56.9% (62/109) of the matched tumor tissue samples. The sensitivity, specificity, PPV and NPV of the ADx-SuperARMS EGFR assay for plasma EGFR mutation detection were 82.0% (50/61), 100% (48/48), 100% (50/50), and 81.4% (48/59), respectively. In ROC analysis, ADx-SuperARMS achieved sensitivity and specificity of 88% and 99% in E19Dels as well as sensitivity and specificity of 89% and 100% in L858R, respectively. Among the 35 patients who were plasma EGFR mutation positive and treated with first generation of EGFR-tyrosine kinase inhibitors (TKIs), 23 (65.7%) achieved partial response, 11 (31.4%) sustained disease, and 1 (2.9%) progressive disease. The ORR and disease control rate (DCR) were 65.7% and 97.1%, respectively. ADx-SuperARMS EGFR assay is likely to be a highly sensitive and specific method to noninvasively detect plasma EGFR mutations of patients with advanced lung adenocarcinoma. The EGFR mutations detected by ADx-SuperARMS EGFR assay could predict the efficacy of the treatment with first generation of EGFR-TKIs. Hence, EGFR blood testing with ADx-SuperARMS could address the unmet clinical needs.
Rate of de novo mutations and the importance of father's age to disease risk.
Kong, Augustine; Frigge, Michael L; Masson, Gisli; Besenbacher, Soren; Sulem, Patrick; Magnusson, Gisli; Gudjonsson, Sigurjon A; Sigurdsson, Asgeir; Jonasdottir, Aslaug; Jonasdottir, Adalbjorg; Wong, Wendy S W; Sigurdsson, Gunnar; Walters, G Bragi; Steinberg, Stacy; Helgason, Hannes; Thorleifsson, Gudmar; Gudbjartsson, Daniel F; Helgason, Agnar; Magnusson, Olafur Th; Thorsteinsdottir, Unnur; Stefansson, Kari
2012-08-23
Mutations generate sequence diversity and provide a substrate for selection. The rate of de novo mutations is therefore of major importance to evolution. Here we conduct a study of genome-wide mutation rates by sequencing the entire genomes of 78 Icelandic parent-offspring trios at high coverage. We show that in our samples, with an average father's age of 29.7, the average de novo mutation rate is 1.20 × 10(-8) per nucleotide per generation. Most notably, the diversity in mutation rate of single nucleotide polymorphisms is dominated by the age of the father at conception of the child. The effect is an increase of about two mutations per year. An exponential model estimates paternal mutations doubling every 16.5 years. After accounting for random Poisson variation, father's age is estimated to explain nearly all of the remaining variation in the de novo mutation counts. These observations shed light on the importance of the father's age on the risk of diseases such as schizophrenia and autism.
Adaptive tuning of mutation rates allows fast response to lethal stress in Escherichia coli
Swings, Toon; Van den Bergh, Bram; Wuyts, Sander; Oeyen, Eline; Voordeckers, Karin; Verstrepen, Kevin J; Fauvart, Maarten; Verstraeten, Natalie; Michiels, Jan
2017-01-01
While specific mutations allow organisms to adapt to stressful environments, most changes in an organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in cellular mutation rates as a response to changes in selective pressure. We show that hypermutation independently evolves when different Escherichia coli cultures adapt to high ethanol stress. Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation rate. Specifically, population mutation rates rise when cells experience higher stress and decline again once cells are adapted. Interestingly, we identified cellular mortality as the major force driving the quick evolution of mutation rates. Together, these findings show how organisms balance robustness and evolvability and help explain the prevalence of hypermutation in various settings, ranging from emergence of antibiotic resistance in microbes to cancer relapses upon chemotherapy. DOI: http://dx.doi.org/10.7554/eLife.22939.001 PMID:28460660
Genetics Home Reference: progressive osseous heteroplasia
... Sources for This Page Adegbite NS, Xu M, Kaplan FS, Shore EM, Pignolo RJ. Diagnostic and mutational ... Pignolo RJ, Ramaswamy G, Fong JT, Shore EM, Kaplan FS. Progressive osseous heteroplasia: diagnosis, treatment, and prognosis. ...
An evolutionary reduction principle for mutation rates at multiple Loci.
Altenberg, Lee
2011-06-01
A model of mutation rate evolution for multiple loci under arbitrary selection is analyzed. Results are obtained using techniques from Karlin (Evolutionary Biology, vol. 14, pp. 61-204, 1982) that overcome the weak selection constraints needed for tractability in prior studies of multilocus event models.A multivariate form of the reduction principle is found: reduction results at individual loci combine topologically to produce a surface of mutation rate alterations that are neutral for a new modifier allele. New mutation rates survive if and only if they fall below this surface-a generalization of the hyperplane found by Zhivotovsky et al. (Proc. Natl. Acad. Sci. USA 91, 1079-1083, 1994) for a multilocus recombination modifier. Increases in mutation rates at some loci may evolve if compensated for by decreases at other loci. The strength of selection on the modifier scales in proportion to the number of germline cell divisions, and increases with the number of loci affected. Loci that do not make a difference to marginal fitnesses at equilibrium are not subject to the reduction principle, and under fine tuning of mutation rates would be expected to have higher mutation rates than loci in mutation-selection balance.Other results include the nonexistence of 'viability analogous, Hardy-Weinberg' modifier polymorphisms under multiplicative mutation, and the sufficiency of average transmission rates to encapsulate the effect of modifier polymorphisms on the transmission of loci under selection. A conjecture is offered regarding situations, like recombination in the presence of mutation, that exhibit departures from the reduction principle. Constraints for tractability are: tight linkage of all loci, initial fixation at the modifier locus, and mutation distributions comprising transition probabilities of reversible Markov chains.
Sample features associated with success rates in population-based EGFR mutation testing.
Shiau, Carolyn J; Babwah, Jesse P; da Cunha Santos, Gilda; Sykes, Jenna R; Boerner, Scott L; Geddie, William R; Leighl, Natasha B; Wei, Cuihong; Kamel-Reid, Suzanne; Hwang, David M; Tsao, Ming-Sound
2014-07-01
Epidermal growth factor receptor (EGFR) mutation testing has become critical in the treatment of patients with advanced non-small-cell lung cancer. This study involves a large cohort and epidemiologically unselected series of EGFR mutation testing for patients with nonsquamous non-small-cell lung cancer in a North American population to determine sample-related factors that influence success in clinical EGFR testing. Data from consecutive cases of Canadian province-wide testing at a centralized diagnostic laboratory for a 24-month period were reviewed. Samples were tested for exon-19 deletion and exon-21 L858R mutations using a validated polymerase chain reaction method with 1% to 5% detection sensitivity. From 2651 samples submitted, 2404 samples were tested with 2293 samples eligible for analysis (1780 histology and 513 cytology specimens). The overall test-failure rate was 5.4% with overall mutation rate of 20.6%. No significant differences in the failure rate, mutation rate, or mutation type were found between histology and cytology samples. Although tumor cellularity was significantly associated with test-success or mutation rates in histology and cytology specimens, respectively, mutations could be detected in all specimen types. Significant rates of EGFR mutation were detected in cases with thyroid transcription factor (TTF)-1-negative immunohistochemistry (6.7%) and mucinous component (9.0%). EGFR mutation testing should be attempted in any specimen, whether histologic or cytologic. Samples should not be excluded from testing based on TTF-1 status or histologic features. Pathologists should report the amount of available tumor for testing. However, suboptimal samples with a negative EGFR mutation result should be considered for repeat testing with an alternate sample.
Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; de Castro, Gilberto
2015-01-01
Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757
Tserga, Aggeliki; Chatziandreou, Ilenia; Michalopoulos, Nicolaos V; Patsouris, Efstratios; Saetta, Angelica A
2016-07-01
Deregulation of phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is closely associated with cancer development and cancer progression. PIK3CA, AKT1, and PTEN are the fundamental molecules of the PI3K/AKT pathway with increased mutation rates in cancer cases leading to aberrant regulation of the pathway. Even though molecular alterations of the PI3K/AKT pathway have been studied in breast cancer, correlations between specific molecular alterations and clinicopathological features remain contradictory. In this study, we examined mutations of the PI3K/AKT pathway in 75 breast carcinomas using high-resolution melting analysis and pyrosequencing, in parallel with analysis of relative expression of PIK3CA and AKT2 genes. Mutations of PIK3CA were found in our cohort in 21 cases (28 %), 10 (13 %) in exon 9 and 11(15 %) in exon 20. Mutation frequency of AKT1 and PTEN genes was 4 and 3 %, respectively. Overall, alterations in the PI3K/AKT signaling cascade were detected in 35 % of the cases. Furthermore, comparison of 50 breast carcinomas with adjacent normal tissues showed elevated PIK3CA messenger RNA (mRNA) levels in 18 % of tumor cases and elevated AKT2 mRNA levels in 14 %. Our findings, along with those of previous studies, underline the importance of the PI3K/AKT pathway components as potential biomarkers for breast carcinogenesis.
Kaneko, Masahiko; Maruta, Masaki; Shikata, Hisaharu; Hanayama, Masakazu; Ikebe, Tadayoshi
2015-11-01
Streptococcus pyogenes (group A streptococcus) is an aerobic gram-positive coccus that causes infections ranging from non-invasive pharyngitis to severely invasive necrotizing fasciitis. Mutations in csrS/csrR and rgg, negative regulator genes of group A streptococcus, are crucial factors in the pathogenesis of streptococcal toxic shock syndrome, which is a severe, invasive infection characterized by sudden onset of shock and multiorgan failure, resulting in a high mortality rate. Here we present a case of group A streptococcal bacteremia in a 28-year-old Japanese woman with no relevant previous medical history. The patient developed progressive abdominal symptoms that may have been due to spontaneous bacterial peritonitis, followed by a state of shock, which did not fulfill the proposed criteria for streptococcal toxic shock. The isolate was found to harbor a mutation in the negative regulator csrS gene, whereas the csrR and rgg genes were intact. It was noteworthy that this strain carrying a csrS mutation had caused group A streptococcal bacteremia characterized by acute abdomen as the presenting symptom in a young individual who had been previously healthy. This case indicates that group A streptococcus with csrS mutations has potential virulence factors that are associated with the onset of group A streptococcal bacteremia that does not meet the diagnostic criteria for streptococcal toxic shock syndrome. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Rates of Spontaneous Mutation in Bacteriophage T4 Are Independent of Host Fidelity Determinants
Santos, M. E.; Drake, J. W.
1994-01-01
Bacteriophage T4 encodes most of the genes whose products are required for its DNA metabolism, and host (Escherichia coli) genes can only infrequently complement mutationally inactivated T4 genes. We screened the following host mutator mutations for effects on spontaneous mutation rates in T4: mutT (destruction of aberrant dGTPs), polA, polB and polC (DNA polymerases), dnaQ (exonucleolytic proofreading), mutH, mutS, mutL and uvrD (methyl-directed DNA mismatch repair), mutM and mutY (excision repair of oxygen-damaged DNA), mutA (function unknown), and topB and osmZ (affecting DNA topology). None increased T4 spontaneous mutation rates within a resolving power of about twofold (nor did optA, which is not a mutator but overexpresses a host dGTPase). Previous screens in T4 have revealed strong mutator mutations only in the gene encoding the viral DNA polymerase and proofreading 3'-exonuclease, plus weak mutators in several polymerase accessory proteins or determinants of dNTP pool sizes. T4 maintains a spontaneous mutation rate per base pair about 30-fold greater than that of its host. Thus, the joint high fidelity of insertion by T4 DNA polymerase and proofreading by its associated 3'-exonuclease appear to determine the T4 spontaneous mutation rate, whereas the host requires numerous additional systems to achieve high replication fidelity. PMID:7851754
Chopera, Denis R.; Ntale, Roman; Ndabambi, Nonkululeko; Garrett, Nigel; Gray, Clive M.; Matten, David; Karim, Quarraisha Abdool; Karim, Salim Abdool; Williamson, Carolyn
2016-01-01
Objective HIV-1 escape from cytotoxic T-lymphocytes (CTL) results in the accumulation of HLA-associated mutations in the viral genome. To understand the contribution of early escape to disease progression, this study investigated the evolution and pathogenic implications of CTL escape in a cohort followed from infection for five years. Methods Viral loads and CD4+ counts were monitored in 78 subtype C infected individuals from onset of infection until CD4+ decline to <350 cells/μl or five years post-infection. The gag gene was sequenced and HLA-associated changes between enrolment and 12 months post-infection were mapped. Results HLA-associated escape mutations were identified in 48 (62%) of the participants and were associated with CD4+ decline to <350 copies/ml (p=0.05). Escape mutations in variable Gag proteins (p17 and p7p6) had a greater impact on disease progression than escape in more conserved regions (p24) (p=0.03). The association between HLA-associated escape mutations and CD4+ decline was independent of protective HLA allele (B*57, B*58:01, B*81) expression. Conclusion The high frequency of escape contributed to rapid disease progression in this cohort. While HLA-adaption in both conserved and variable Gag domains in the first year of infection was detrimental to long term clinical outcome, escape in variable domains had greater impact. PMID:27755110
Progranulin-Associated Primary Progressive Aphasia: A Distinct Phenotype?
ERIC Educational Resources Information Center
Rohrer, Jonathan D.; Crutch, Sebastian J.; Warrington, Elizabeth K.; Warren, Jason D.
2010-01-01
The neuropsychological features of the primary progressive aphasia (PPA) syndromes continue to be defined. Here we describe a detailed neuropsychological case study of a patient with a mutation in the progranulin ("GRN") gene who presented with progressive word-finding difficulty. Key neuropsychological features in this case included gravely…
Efficacy of icotinib in lung squamous-cell cancer: A real-world experience from single institution.
Xu, Jianping; Liu, Xiaoyan; Yang, Sheng; Zhang, Xiangru; Shi, Yuankai
2017-12-01
Squamous cell carcinoma is a less common type of nonsmall cell lung cancer (NSCLC) which associates with a poor clinical prognosis and lacks specific therapy. This study aimed to evaluate the efficacy and safety of icotinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has proven to be effective in EGFR-mutated NSCLC, in patients with lung squamous-cell cancer. Retrospective analysis was conducted in patients who had advanced lung squamous-cell cancer confirmed by cytology or histology. Patients were treated orally with icotinib (125 mg, three times daily) until event of unacceptable toxicity, disease progression or death. The primary endpoint was overall survival. The secondary endpoints were progression-free survival, overall response rate and disease control rate. Between January 2014 and May 2016, 20 patients were enrolled and evaluated for the efficacy and safety of icotinib. Overall, the median overall survival and progression-free survival were 9.93 months (95% confidence interval (CI): 3.46-16.40) and 3.0 months (95% CI: 0.00-8.35), respectively. The overall response rate and disease control rate were 20% and 70%, respectively. For treatment-naive patients (n = 11), the overall survival and progression-free survival were 9.93 months (95% CI: 0.00-23.49) and 6.27 months (95% CI: 0.00-12.61); the response rate and disease control rate were 27.3% and 54.5%, respectively. The overall survival and progression-free survival of patients treated with second- or multiple-line icotinib treatment (n = 9) were 6.5 months (95% CI: 0.80-12.20) and 1.2 months (95% CI: 1.10-1.30). A total of 11 patients experienced at least one treatment-related adverse event, most of which were mild to moderate. The most common manifestations were rash (n = 6, 30%) followed by diarrhea (n = 2, 10%). Icotinib has demonstrated a favorable efficacy and safety profile in patients with advanced lung squamous-cell cancer. © 2017 John Wiley & Sons Australia, Ltd.
Osimertinib: A Review in T790M-Positive Advanced Non-Small Cell Lung Cancer.
Lamb, Yvette N; Scott, Lesley J
2017-08-01
Osimertinib (Tagrisso™) is an oral, CNS-active, third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) that targets EGFR TKI-sensitizing mutations and, crucially, the T790M mutation that often underlies acquired resistance to EGFR TKI therapy. Osimertinib has been approved in numerous countries for use in patients with T790M-positive advanced NSCLC. In the pivotal, international AURA3 trial in patients with T790M-positive advanced NSCLC who had disease progression after EGFR TKI therapy, osimertinib treatment significantly prolonged progression-free survival (PFS; primary endpoint) compared with platinum-pemetrexed therapy at the time of the primary analysis. PFS results were consistent across predefined subgroups of patients, including those with CNS metastases at baseline. There was no difference between treatment groups in overall survival at 26% maturity. Objective response rates (ORRs) and patient-reported outcomes for prespecified symptoms were also significantly improved with osimertinib relative to platinum-pemetrexed, with CNS ORRs in patients with CNS metastases more than twofold higher in the osimertinib than in the platinum-pemetrexed group. Osimertinib had a manageable tolerability profile, with relatively few patients permanently discontinuing treatment because of adverse events (AEs). With limited treatment options available in this setting, osimertinib is an important option in adult patients with advanced EGFR T790M-positive NSCLC.
Lesage, Suzanne; Drouet, Valérie; Majounie, Elisa; Deramecourt, Vincent; Jacoupy, Maxime; Nicolas, Aude; Cormier-Dequaire, Florence; Hassoun, Sidi Mohamed; Pujol, Claire; Ciura, Sorana; Erpapazoglou, Zoi; Usenko, Tatiana; Maurage, Claude-Alain; Sahbatou, Mourad; Liebau, Stefan; Ding, Jinhui; Bilgic, Basar; Emre, Murat; Erginel-Unaltuna, Nihan; Guven, Gamze; Tison, François; Tranchant, Christine; Vidailhet, Marie; Corvol, Jean-Christophe; Krack, Paul; Leutenegger, Anne-Louise; Nalls, Michael A; Hernandez, Dena G; Heutink, Peter; Gibbs, J Raphael; Hardy, John; Wood, Nicholas W; Gasser, Thomas; Durr, Alexandra; Deleuze, Jean-François; Tazir, Meriem; Destée, Alain; Lohmann, Ebba; Kabashi, Edor; Singleton, Andrew; Corti, Olga; Brice, Alexis
2016-03-03
Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Przytycki, Pawel F; Singh, Mona
2017-08-25
A major aim of cancer genomics is to pinpoint which somatically mutated genes are involved in tumor initiation and progression. We introduce a new framework for uncovering cancer genes, differential mutation analysis, which compares the mutational profiles of genes across cancer genomes with their natural germline variation across healthy individuals. We present DiffMut, a fast and simple approach for differential mutational analysis, and demonstrate that it is more effective in discovering cancer genes than considerably more sophisticated approaches. We conclude that germline variation across healthy human genomes provides a powerful means for characterizing somatic mutation frequency and identifying cancer driver genes. DiffMut is available at https://github.com/Singh-Lab/Differential-Mutation-Analysis .
Low Base-Substitution Mutation Rate in the Germline Genome of the Ciliate Tetrahymena thermophila
2016-09-15
generations of mutation accumulation (MA). We applied an existing mutation-calling pipeline and developed a new probabilistic mutation detection approach...noise introduced by mismapped reads. We used both our new method and an existing mutation-calling pipeline (Sung, Tucker, et al. 2012) to analyse the...and larger MA experiments will be required to confidently estimate the mutational spectrum of a species with such a low mutation rate. Materials and
Rapid evolution of the human mutation spectrum
Harris, Kelley; Pritchard, Jonathan K
2017-01-01
DNA is a remarkably precise medium for copying and storing biological information. This high fidelity results from the action of hundreds of genes involved in replication, proofreading, and damage repair. Evolutionary theory suggests that in such a system, selection has limited ability to remove genetic variants that change mutation rates by small amounts or in specific sequence contexts. Consistent with this, using SNV variation as a proxy for mutational input, we report here that mutational spectra differ substantially among species, human continental groups and even some closely related populations. Close examination of one signal, an increased TCC→TTC mutation rate in Europeans, indicates a burst of mutations from about 15,000 to 2000 years ago, perhaps due to the appearance, drift, and ultimate elimination of a genetic modifier of mutation rate. Our results suggest that mutation rates can evolve markedly over short evolutionary timescales and suggest the possibility of mapping mutational modifiers. DOI: http://dx.doi.org/10.7554/eLife.24284.001 PMID:28440220
Mutant POLG2 Disrupts DNA Polymerase γ Subunits and Causes Progressive External Ophthalmoplegia
Longley, Matthew J.; Clark, Susanna; Yu Wai Man, Cynthia; Hudson, Gavin; Durham, Steve E.; Taylor, Robert W.; Nightingale, Simon; Turnbull, Douglass M.; Copeland, William C.; Chinnery, Patrick F.
2006-01-01
DNA polymerase γ (pol γ) is required to maintain the genetic integrity of the 16,569-bp human mitochondrial genome (mtDNA). Mutation of the nuclear gene for the catalytic subunit of pol γ (POLG) has been linked to a wide range of mitochondrial diseases involving mutation, deletion, and depletion of mtDNA. We describe a heterozygous dominant mutation (c.1352G→A/p.G451E) in POLG2, the gene encoding the p55 accessory subunit of pol γ, that causes progressive external ophthalmoplegia with multiple mtDNA deletions and cytochrome c oxidase (COX)–deficient muscle fibers. Biochemical characterization of purified, recombinant G451E-substituted p55 protein in vitro revealed incomplete stimulation of the catalytic subunit due to compromised subunit interaction. Although G451E p55 retains a wild-type ability to bind DNA, it fails to enhance the DNA-binding strength of the p140-p55 complex. In vivo, the disease most likely arises through haplotype insufficiency or heterodimerization of the mutated and wild-type proteins, which promote mtDNA deletions by stalling the DNA replication fork. The progressive accumulation of mtDNA deletions causes COX deficiency in muscle fibers and results in the clinical phenotype. PMID:16685652
Matilainen, Sanna; Isohanni, Pirjo; Euro, Liliya; Lönnqvist, Tuula; Pihko, Helena; Kivelä, Tero; Knuutila, Sakari; Suomalainen, Anu
2015-01-01
Mutations in SUCLA2, encoding the ß-subunit of succinyl-CoA synthetase of Krebs cycle, are one cause of mitochondrial DNA depletion syndrome. Patients have been reported to have severe progressive childhood-onset encephalomyopathy, and methylmalonic aciduria, often leading to death in childhood. We studied two families, with children manifesting with slowly progressive mitochondrial encephalomyopathy, hearing impairment and transient methylmalonic aciduria, without mtDNA depletion. The other family also showed dominant inheritance of bilateral retinoblastoma, which coexisted with mitochondrial encephalomyopathy in one patient. We found a variant in SUCLA2 leading to Asp333Gly change, homozygous in one patient and compound heterozygous in one. The latter patient also carried a deletion of 13q14 of the other allele, discovered with molecular karyotyping. The deletion spanned both SUCLA2 and RB1 gene regions, leading to manifestation of both mitochondrial disease and retinoblastoma. We made a homology model for human succinyl-CoA synthetase and used it for structure–function analysis of all reported pathogenic mutations in SUCLA2. On the basis of our model, all previously described mutations were predicted to result in decreased amounts of incorrectly assembled protein or disruption of ADP phosphorylation, explaining the severe early lethal manifestations. However, the Asp333Gly change was predicted to reduce the activity of the otherwise functional enzyme. On the basis of our findings, SUCLA2 mutations should be analyzed in patients with slowly progressive encephalomyopathy, even in the absence of methylmalonic aciduria or mitochondrial DNA depletion. In addition, an encephalomyopathy in a patient with retinoblastoma suggests mutations affecting SUCLA2. PMID:24986829
Kobayashi, Keigo; Nakachi, Ichiro; Naoki, Katsuhiko; Satomi, Ryosuke; Nakamura, Morio; Inoue, Takashi; Tateno, Hiroki; Sakamaki, Fumio; Sayama, Koichi; Terashima, Takeshi; Koh, Hidefumi; Abe, Takayuki; Nishino, Makoto; Arai, Daisuke; Yasuda, Hiroyuki; Kawada, Ichiro; Soejima, Kenzo; Betsuyaku, Tomoko
2018-05-01
Nivolumab, an immune checkpoint inhibitor, is now a standard treatment for previously treated advanced non-small-cell lung cancer based on the results from phase III clinical trials. We evaluated the real-world efficacy and safety of nivolumab in a nonselected population and identified the clinical characteristics that influence efficacy. A total of 142 patients with advanced non-small-cell lung cancer who were administered nivolumab at Keio University and affiliated hospitals in Japan from January to July 2016 were enrolled. The treatment efficacy and adverse events were retrospectively reviewed, and the clinical characteristics associated with the nivolumab response were evaluated using univariate and stratified analyses and the Cochran-Mantel-Haenszel test. The objective response rate was 17.0% (95% confidence interval [CI], 12.0%-24.0%), the median progression-free survival (PFS) was 58 days (95% CI, 50-67 days), and the proportion of patients with adverse events of any grade was 45.0%. EGFR/ALK mutation status was inversely associated with the treatment response (P < .05), and the difference in PFS for the mutation-positive versus mutation-negative patients was statistically significant (49 vs. 63 days; hazard ratio, 1.9; 95% CI, 1.1-5.2; P = .029). Previous radiotherapy also had a positive association with the treatment response (P = .012). The objective response rate, PFS, and adverse event profiles were comparable to those observed in previous clinical trials. EGFR/ALK mutation-negative status and previous radiotherapy might be key clinical characteristics associated with a positive treatment response. Our findings could aid in the efficient immunotherapeutic management of lung cancer. Copyright © 2018 Elsevier Inc. All rights reserved.
Modulating Beta-Cardiac Myosin Function at the Molecular and Tissue Levels
Tang, Wanjian; Blair, Cheavar A.; Walton, Shane D.; Málnási-Csizmadia, András; Campbell, Kenneth S.; Yengo, Christopher M.
2017-01-01
Inherited cardiomyopathies are a common form of heart disease that are caused by mutations in sarcomeric proteins with beta cardiac myosin (MYH7) being one of the most frequently affected genes. Since the discovery of the first cardiomyopathy associated mutation in beta-cardiac myosin, a major goal has been to correlate the in vitro myosin motor properties with the contractile performance of cardiac muscle. There has been substantial progress in developing assays to measure the force and velocity properties of purified cardiac muscle myosin but it is still challenging to correlate results from molecular and tissue-level experiments. Mutations that cause hypertrophic cardiomyopathy are more common than mutations that lead to dilated cardiomyopathy and are also often associated with increased isometric force and hyper-contractility. Therefore, the development of drugs designed to decrease isometric force by reducing the duty ratio (the proportion of time myosin spends bound to actin during its ATPase cycle) has been proposed for the treatment of hypertrophic cardiomyopathy. Para-Nitroblebbistatin is a small molecule drug proposed to decrease the duty ratio of class II myosins. We examined the impact of this drug on human beta cardiac myosin using purified myosin motor assays and studies of permeabilized muscle fiber mechanics. We find that with purified human beta-cardiac myosin para-Nitroblebbistatin slows actin-activated ATPase and in vitro motility without altering the ADP release rate constant. In permeabilized human myocardium, para-Nitroblebbistatin reduces isometric force, power, and calcium sensitivity while not changing shortening velocity or the rate of force development (ktr). Therefore, designing a drug that reduces the myosin duty ratio by inhibiting strong attachment to actin while not changing detachment can cause a reduction in force without changing shortening velocity or relaxation. PMID:28119616
Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations
Good, Benjamin H.; Rouzine, Igor M.; Balick, Daniel J.; Hallatschek, Oskar; Desai, Michael M.
2012-01-01
When large asexual populations adapt, competition between simultaneously segregating mutations slows the rate of adaptation and restricts the set of mutations that eventually fix. This phenomenon of interference arises from competition between mutations of different strengths as well as competition between mutations that arise on different fitness backgrounds. Previous work has explored each of these effects in isolation, but the way they combine to influence the dynamics of adaptation remains largely unknown. Here, we describe a theoretical model to treat both aspects of interference in large populations. We calculate the rate of adaptation and the distribution of fixed mutational effects accumulated by the population. We focus particular attention on the case when the effects of beneficial mutations are exponentially distributed, as well as on a more general class of exponential-like distributions. In both cases, we show that the rate of adaptation and the influence of genetic background on the fixation of new mutants is equivalent to an effective model with a single selection coefficient and rescaled mutation rate, and we explicitly calculate these effective parameters. We find that the effective selection coefficient exactly coincides with the most common fixed mutational effect. This equivalence leads to an intuitive picture of the relative importance of different types of interference effects, which can shift dramatically as a function of the population size, mutation rate, and the underlying distribution of fitness effects. PMID:22371564
Genome-Wide Mutation Rate Response to pH Change in the Coral Reef Pathogen Vibrio shilonii AK1.
Strauss, Chloe; Long, Hongan; Patterson, Caitlyn E; Te, Ronald; Lynch, Michael
2017-08-22
Recent application of mutation accumulation techniques combined with whole-genome sequencing (MA/WGS) has greatly promoted studies of spontaneous mutation. However, such explorations have rarely been conducted on marine organisms, and it is unclear how marine habitats have influenced genome stability. This report resolves the mutation rate and spectrum of the coral reef pathogen Vibrio shilonii , which causes coral bleaching and endangers the biodiversity maintained by coral reefs. We found that its mutation rate and spectrum are highly similar to those of other studied bacteria from various habitats, despite the saline environment. The mutational properties of this marine bacterium are thus controlled by other general evolutionary forces such as natural selection and genetic drift. We also found that as pH drops, the mutation rate decreases and the mutation spectrum is biased in the direction of generating G/C nucleotides. This implies that evolutionary features of this organism and perhaps other marine microbes might be altered by the increasingly acidic ocean water caused by excess CO 2 emission. Nonetheless, further exploration is needed as the pH range tested in this study was rather narrow and many other possible mutation determinants, such as carbonate increase, are associated with ocean acidification. IMPORTANCE This study explored the pH dependence of a bacterial genome-wide mutation rate. We discovered that the genome-wide rates of appearance of most mutation types decrease linearly and that the mutation spectrum is biased in generating more G/C nucleotides with pH drop in the coral reef pathogen V. shilonii . Copyright © 2017 Strauss et al.
INS-gene mutations: from genetics and beta cell biology to clinical disease.
Liu, Ming; Sun, Jinhong; Cui, Jinqiu; Chen, Wei; Guo, Huan; Barbetti, Fabrizio; Arvan, Peter
2015-04-01
A growing list of insulin gene mutations causing a new form of monogenic diabetes has drawn increasing attention over the past seven years. The mutations have been identified in the untranslated regions of the insulin gene as well as the coding sequence of preproinsulin including within the signal peptide, insulin B-chain, C-peptide, insulin A-chain, and the proteolytic cleavage sites both for signal peptidase and the prohormone convertases. These mutations affect a variety of different steps of insulin biosynthesis in pancreatic beta cells. Importantly, although many of these mutations cause proinsulin misfolding with early onset autosomal dominant diabetes, some of the mutant alleles appear to engage different cellular and molecular mechanisms that underlie beta cell failure and diabetes. In this article, we review the most recent advances in the field and discuss challenges as well as potential strategies to prevent/delay the development and progression of autosomal dominant diabetes caused by INS-gene mutations. It is worth noting that although diabetes caused by INS gene mutations is rare, increasing evidence suggests that defects in the pathway of insulin biosynthesis may also be involved in the progression of more common types of diabetes. Collectively, the (pre)proinsulin mutants provide insightful molecular models to better understand the pathogenesis of all forms of diabetes in which preproinsulin processing defects, proinsulin misfolding, and ER stress are involved. Copyright © 2014 Elsevier Ltd. All rights reserved.
INS-gene mutations: From genetics and beta cell biology to clinical disease
Liu, Ming; Sun, Jinhong; Cui, Jinqiu; Chen, Wei; Guo, Huan; Barbetti, Fabrizio; Arvan, Peter
2015-01-01
A growing list of insulin gene mutations causing a new form of monogenic diabetes has drawn increasing attention over the past seven years. The mutations have been identified in the untranslated regions of the insulin gene as well as the coding sequence of preproinsulin including within the signal peptide, insulin B-chain, C-peptide, insulin A-chain, and the proteolytic cleavage sites both for signal peptidase and the prohormone convertases. These mutations affect a variety of different steps of insulin biosynthesis in pancreatic beta cells. Importantly, although many of these mutations cause proinsulin misfolding with early onset autosomal dominant diabetes, some of the mutant alleles appear to engage different cellular and molecular mechanisms that underlie beta cell failure and diabetes. In this article, we review the most recent advances in the field and discuss challenges as well as potential strategies to prevent/delay the development and progression of autosomal dominant diabetes caused by INS-gene mutations. It is worth noting that although diabetes caused by INS gene mutations is rare, increasing evidence suggests that defects in the pathway of insulin biosynthesis may also be involved in the progression of more common types of diabetes. Collectively, the (pre)proinsulin mutants provide insightful molecular models to better understand the pathogenesis of all forms of diabetes in which preproinsulin processing defects, proinsulin misfolding, and ER stress are involved. PMID:25542748
Cai, Zhi-Xiong; Chen, Geng; Zeng, Yong-Yi; Dong, Xiu-Qing; Lin, Min-Jie; Huang, Xin-Hui; Zhang, Da; Liu, Xiao-Long; Liu, Jing-Feng
2017-09-01
Circulating tumor DNA (ctDNA) provides a potential non-invasive biomarker for cancer diagnosis and prognosis, but whether it could reflect tumor heterogeneity and monitor therapeutic responses in hepatocellular carcinoma (HCC) is unclear. Focusing on 574 cancer genes known to harbor actionable mutations, we identified the mutation repertoire of HCC tissues, and monitored the corresponding ctDNA features in blood samples to evaluate its clinical significance. Analysis of 3 HCC patients' mutation profiles revealed that ctDNA could overcome tumor heterogeneity and provide information of tumor burden and prognosis. Further analysis was conducted on the 4th HCC case with multiple lesion samples and sequential plasma samples. We identified 160 subclonal SNVs in tumor tissues as well as matched peritumor tissues with PBMC as control. 96.9% of this patient's tissue mutations could be also detected in plasma samples. These subclonal SNVs were grouped into 9 clusters according to their trends of cellular prevalence shift in tumor tissues. Two clusters constituted of tumor stem somatic mutations showed circulating levels relating with cancer progression. Analysis of tumor somatic mutations revealed that circulating level of such tumor stem somatic mutations could reflect tumor burden and even predict prognosis earlier than traditional strategies. Furthermore, HCK (p.V174M), identified as a recurrent/metastatic related mutation site, could promote migration and invasion of HCC cells. Taken together, study of mutation profiles in biopsy and plasma samples in HCC patients showed that ctDNA could overcome tumor heterogeneity and real-time track the therapeutic responses in the longitudinal monitoring. © 2017 UICC.
Dichloroacetate treatment in Leigh syndrome caused by mitochondrial DNA mutation.
Takanashi, J; Sugita, K; Tanabe, Y; Maemoto, T; Niimi, H
1997-01-01
Sodium dichloroacetate (DCA) was administered to a 1-year-old female case of Leigh syndrome, who had a T > G point mutation at nt 8993 of mitochondrial DNA. Her biochemical and clinical symptoms improved gradually, but proton magnetic resonance spectroscopy revealed reduction of the N-acetylaspartate/creatine ratio, and magnetic resonance imaging showed progressive cerebral atrophy despite the DCA therapy. These results suggest that DCA therapy may not retard the progress of the primary disease in Leigh syndrome, but produced clinical improvement most likely by reducing toxic accumulation of lactate.
López-Carrasco, Amparo; Ballesteros, Cristina; Sentandreu, Vicente; Delgado, Sonia; Gago-Zachert, Selma; Flores, Ricardo; Sanjuán, Rafael
2017-09-01
Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-replicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses.
Ballesteros, Cristina; Sentandreu, Vicente; Gago-Zachert, Selma
2017-01-01
Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-replicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses. PMID:28910391
Zhang, Xue; Zhang, Chong; Zhou, Qian-Qian; Zhang, Xiao-Fei; Wang, Li-Yan; Chang, Hai-Bo; Li, He-Ping; Oda, Yoshimitsu; Xing, Xin-Hui
2015-07-01
DNA damage is the dominant source of mutation, which is the driving force of evolution. Therefore, it is important to quantitatively analyze the DNA damage caused by different mutagenesis methods, the subsequent mutation rates, and their relationship. Atmospheric and room temperature plasma (ARTP) mutagenesis has been used for the mutation breeding of more than 40 microorganisms. However, ARTP mutagenesis has not been quantitatively compared with conventional mutation methods. In this study, the umu test using a flow-cytometric analysis was developed to quantify the DNA damage in individual viable cells using Salmonella typhimurium NM2009 as the model strain and to determine the mutation rate. The newly developed method was used to evaluate four different mutagenesis systems: a new ARTP tool, ultraviolet radiation, 4-nitroquinoline-1-oxide (4-NQO), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The mutation rate was proportional to the corresponding SOS response induced by DNA damage. ARTP caused greater DNA damage to individual living cells than the other conventional mutagenesis methods, and the mutation rate was also higher. By quantitatively comparing the DNA damage and consequent mutation rate after different types of mutagenesis, we have shown that ARTP is a potentially powerful mutagenesis tool with which to improve the characteristics of microbial cell factories.
The rate and character of spontaneous mutation in an RNA virus.
Malpica, José M; Fraile, Aurora; Moreno, Ignacio; Obies, Clara I; Drake, John W; García-Arenal, Fernando
2002-01-01
Estimates of spontaneous mutation rates for RNA viruses are few and uncertain, most notably due to their dependence on tiny mutation reporter sequences that may not well represent the whole genome. We report here an estimate of the spontaneous mutation rate of tobacco mosaic virus using an 804-base cognate mutational target, the viral MP gene that encodes the movement protein (MP). Selection against newly arising mutants was countered by providing MP function from a transgene. The estimated genomic mutation rate was on the lower side of the range previously estimated for lytic animal riboviruses. We also present the first unbiased riboviral mutational spectrum. The proportion of base substitutions is the same as that in a retrovirus but is lower than that in most DNA-based organisms. Although the MP mutant frequency was 0.02-0.05, 35% of the sequenced mutants contained two or more mutations. Therefore, the mutation process in populations of TMV and perhaps of riboviruses generally differs profoundly from that in populations of DNA-based microbes and may be strongly influenced by a subpopulation of mutator polymerases. PMID:12524327
Subclones dominate at MDS progression following allogeneic hematopoietic cell transplant
Jacoby, Meagan A.; Duncavage, Eric J.; Chang, Gue Su; Miller, Christopher A.; Shao, Jin; Elliott, Kevin; Robinson, Joshua; Fulton, Robert S.; Fronick, Catrina C.; O’Laughlin, Michelle; Heath, Sharon E.; Welch, John S.; Link, Daniel C.; DiPersio, John F.; Westervelt, Peter; Ley, Timothy J.; Graubert, Timothy A.; Walter, Matthew J.
2018-01-01
Allogeneic hematopoietic cell transplantation (alloHCT) is a potentially curative treatment for myelodysplastic syndromes (MDS), but patients who relapse after transplant have poor outcomes. In order to understand the contribution of tumor clonal evolution to disease progression,we applied exome and error-corrected targeted sequencing coupled with copy number analysis to comprehensively define changes in the clonal architecture of MDS in response to therapy using 51 serially acquired tumor samples from 9 patients who progressed after an alloHCT. We show that small subclones before alloHCT can drive progression after alloHCT. Notably, at least one subclone expanded or emerged at progression in all patients. Newly acquired structural variants (SVs) were present in an emergent/expanding subclone in 8 of 9 patients at progression, implicating the acquisition of SVs as important late subclonal progression events. In addition, pretransplant therapy with azacitidine likely influenced the mutation spectrum and evolution of emergent subclones after alloHCT. Although subclone evolution is common, founding clone mutations are always present at progression and could be detected in the bone marrow as early as 30 and/or 100 days after alloHCT in 6 of 8 (75%) patients, often prior to clinical progression. In conclusion, MDS progression after alloHCT is characterized by subclonal expansion and evolution, which can be influenced by pretransplant therapy. PMID:29515031
Direct estimate of the spontaneous germ line mutation rate in African green monkeys.
Pfeifer, Susanne P
2017-12-01
Here, I provide the first direct estimate of the spontaneous mutation rate in an Old World monkey, using a seven individual, three-generation pedigree of African green monkeys. Eight de novo mutations were identified within ∼1.5 Gbp of accessible genome, corresponding to an estimated point mutation rate of 0.94 × 10 -8 per site per generation, suggesting an effective population size of ∼12000 for the species. This estimation represents a significant improvement in our knowledge of the population genetics of the African green monkey, one of the most important nonhuman primate models in biomedical research. Furthermore, by comparing mutation rates in Old World monkeys with the only other direct estimates in primates to date-humans and chimpanzees-it is possible to uniquely address how mutation rates have evolved over longer time scales. While the estimated spontaneous mutation rate for African green monkeys is slightly lower than the rate of 1.2 × 10 -8 per base pair per generation reported in chimpanzees, it is similar to the lower range of rates of 0.96 × 10 -8 -1.28 × 10 -8 per base pair per generation recently estimated from whole genome pedigrees in humans. This result suggests a long-term constraint on mutation rate that is quite different from similar evidence pertaining to recombination rate evolution in primates. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Genetics Home Reference: progressive familial heart block
... Le Marec H, Roden DM, Mochizuki N, Schott JJ, Delmar M. A connexin40 mutation associated with a ... P, Mansourati J, Victor J, Nguyen JM, Schott JJ, Boisseau P, Escande D, Le Marec H. Progressive ...
BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma.
Colombino, Maria; Capone, Mariaelena; Lissia, Amelia; Cossu, Antonio; Rubino, Corrado; De Giorgi, Vincenzo; Massi, Daniela; Fonsatti, Ester; Staibano, Stefania; Nappi, Oscar; Pagani, Elena; Casula, Milena; Manca, Antonella; Sini, Mariacristina; Franco, Renato; Botti, Gerardo; Caracò, Corrado; Mozzillo, Nicola; Ascierto, Paolo A; Palmieri, Giuseppe
2012-07-10
The prevalence of BRAF, NRAS, and p16CDKN2A mutations during melanoma progression remains inconclusive. We investigated the prevalence and distribution of mutations in these genes in different melanoma tissues. In all, 291 tumor tissues from 132 patients with melanoma were screened. Paired samples of primary melanomas (n = 102) and synchronous or asynchronous metastases from the same patients (n = 165) were included. Tissue samples underwent mutation analysis (automated DNA sequencing). Secondary lesions included lymph nodes (n = 84), and skin (n = 36), visceral (n = 25), and brain (n = 44) sites. BRAF/NRAS mutations were identified in 58% of primary melanomas (43% BRAF; 15% NRAS); 62% in lymph nodes, 61% subcutaneous, 56% visceral, and 70% in brain sites. Mutations were observed in 63% of metastases (48% BRAF; 15% NRAS), a nonsignificant increase in mutation frequency after progression from primary melanoma. Of the paired samples, lymph nodes (93% consistency) and visceral metastases (96% consistency) presented a highly similar distribution of BRAF/NRAS mutations versus primary melanomas, with a significantly less consistent pattern in brain (80%) and skin metastases (75%). This suggests that independent subclones are generated in some patients. p16CDKN2A mutations were identified in 7% and 14% of primary melanomas and metastases, with a low consistency (31%) between secondary and primary tumor samples. In the era of targeted therapies, assessment of the spectrum and distribution of alterations in molecular targets among patients with melanoma is needed. Our findings about the prevalence of BRAF/NRAS/p16CDKN2A mutations in paired tumor lesions from patients with melanoma may be useful in the management of this disease.
Polívka, Jiří; Pešta, Martin; Pitule, Pavel; Hes, Ondřej; Holubec, Luboš; Polívka, Jiří; Kubíková, Tereza; Tonar, Zbyněk
2018-01-01
Introduction Glioblastoma multiforme (GBM) represents the most malignant primary brain tumor characterized by pathological vascularization. Mutations in isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) were observed in GBM. We aimed to assess the intra-tumor hypoxia, angiogenesis and microvessel formation in GBM and to find their associations with IDH1 mutation status and patients prognosis. Methods 52 patients with a diagnosis of GBM were included into the study. IDH1 R132H mutation was assessed by RT-PCR from FFPE tumor samples obtained during surgery. The expression of markers of hypoxia (HIF2α), angiogenesis (VEGF), tumor microvascularity (CD31, CD34, vWF, CD105), and proliferation (Ki-67) were assessed immunohistochemically (IHC). IDH1 mutation and IHC markers were correlated with the patient survival. Results 20 from 52 GBM tumor samples comprised IDH1 R132H mutation (38.5%). The majority of mutated tumors were classified as secondary glioblastomas (89.9%). Patients with IDH1 mutated tumors experienced better progression-free survival (P = 0.037) as well as overall survival (P = 0.035) compared with wild type tumors. The significantly lower expression of VEGF was observed in GBM with IDH1 mutation than in wild type tumors (P = 0.01). No such association was found for microvascular markers. The increased expression of newly-formed microvessels (ratio CD105/CD31) in tumor samples was associated with worse patient’s progression-free survival (P = 0.026). Summary No increase in HIF/VEGF-mediated angiogenesis was observed in IDH1-mutated GBM compared with IDH1 wild type tumors. The histological assessment of the portion of newly-formed microvessels in tumor tissue can be used for the prediction of GBM patient’s prognosis. PMID:29662659
Coordinated Changes in Mutation and Growth Rates Induced by Genome Reduction
Nishimura, Issei; Kurokawa, Masaomi; Liu, Liu
2017-01-01
ABSTRACT Genome size is determined during evolution, but it can also be altered by genetic engineering in laboratories. The systematic characterization of reduced genomes provides valuable insights into the cellular properties that are quantitatively described by the global parameters related to the dynamics of growth and mutation. In the present study, we analyzed a small collection of W3110 Escherichia coli derivatives containing either the wild-type genome or reduced genomes of various lengths to examine whether the mutation rate, a global parameter representing genomic plasticity, was affected by genome reduction. We found that the mutation rates of these cells increased with genome reduction. The correlation between genome length and mutation rate, which has been reported for the evolution of bacteria, was also identified, intriguingly, for genome reduction. Gene function enrichment analysis indicated that the deletion of many of the genes encoding membrane and transport proteins play a role in the mutation rate changes mediated by genome reduction. Furthermore, the increase in the mutation rate with genome reduction was highly associated with a decrease in the growth rate in a nutrition-dependent manner; thus, poorer media showed a larger change that was of higher significance. This negative correlation was strongly supported by experimental evidence that the serial transfer of the reduced genome improved the growth rate and reduced the mutation rate to a large extent. Taken together, the global parameters corresponding to the genome, growth, and mutation showed a coordinated relationship, which might be an essential working principle for balancing the cellular dynamics appropriate to the environment. PMID:28679744
NASA Astrophysics Data System (ADS)
2009-01-01
Ultra-fast Energy Transfer from Monomer to Dimer within a Trimeric Molecule New Progress in Heterogeneous Catalysis Research Key Progress in Research on Terrestrial Carbon Cycle in China A New Progress in Research on the Mechanism of Bio-Invasion New Findings in Anti-viral infection and Control of Inflammation Major Headway in Avian Origin Research New Progress in Gold-Nanoparticle-Based Biochips Topological Insulator Research Made Important Progress Major Progress in Biodiversity Achieved New Developments of Direct Methods in Protein Crystallography Major Progress in China-UK Collaboration on the Causal Relationship between Volcanic Activity and Biological Distinction News in Brief: NSFC set up "Research Fund for Young Foreign Scholars" How Often Does Human DNA Mutate? Research Progress on Colossal Anisotropic Magneto Resistive Effect
Kindler syndrome: extension of FERMT1 mutational spectrum and natural history.
Has, Cristina; Castiglia, Daniele; del Rio, Marcela; Diez, Marta Garcia; Piccinni, Eugenia; Kiritsi, Dimitra; Kohlhase, Jürgen; Itin, Peter; Martin, Ludovic; Fischer, Judith; Zambruno, Giovanna; Bruckner-Tuderman, Leena
2011-11-01
Mutations in the FERMT1 gene (also known as KIND1), encoding the focal adhesion protein kindlin-1, underlie the Kindler syndrome (KS), an autosomal recessive skin disorder with an intriguing progressive phenotype comprising skin blistering, photosensitivity, progressive poikiloderma with extensive skin atrophy, and propensity to skin cancer. Herein we review the clinical and genetic data of 62 patients, and delineate the natural history of the disorder, for example, age at onset of symptoms, or risk of malignancy. Although most mutations are predicted to lead to premature termination of translation, and to loss of kindlin-1 function, significant clinical variability is observed among patients. There is an association of FERMT1 missense and in-frame deletion mutations with milder disease phenotypes, and later onset of complications. Nevertheless, the clinical variability is not fully explained by genotype-phenotype correlations. Environmental factors and yet unidentified modifiers may play a role. Better understanding of the molecular pathogenesis of KS should enable the development of prevention strategies for disease complications. © 2011 Wiley Periodicals, Inc.
Kawabata, Shigeru; Mercado-Matos, José R; Hollander, M Christine; Donahue, Danielle; Wilson, Willie; Regales, Lucia; Butaney, Mohit; Pao, William; Wong, Kwok-Kin; Jänne, Pasi A; Dennis, Phillip A
2014-06-26
Lung cancer in never-smokers is an important disease often characterized by mutations in epidermal growth factor receptor (EGFR), yet risk reduction measures and effective chemopreventive strategies have not been established. We identify mammalian target of rapamycin (mTOR) as potentially valuable target for EGFR mutant lung cancer. mTOR is activated in human lung cancers with EGFR mutations, and this increases with acquisition of T790M mutation. In a mouse model of EGFR mutant lung cancer, mTOR activation is an early event. As a single agent, the mTOR inhibitor rapamycin prevents tumor development, prolongs overall survival, and improves outcomes after treatment with an irreversible EGFR tyrosine kinase inhibitor (TKI). These studies support clinical testing of mTOR inhibitors in order to prevent the development and progression of EGFR mutant lung cancers. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Zhou, Lin; He, Jiazhuo; Xiong, Weijie; Liu, Yongmei; Xiang, Jing; Yu, Qin; Liang, Maozhi; Zhou, Xiaojuan; Ding, Zhenyu; Huang, Meijuan; Ren, Li; Zhu, Jiang; Li, Lu; Hou, Mei; Ding, Lieming; Tan, Fenlai; Lu, You
2016-06-01
Whole-brain radiation therapy (WBRT) and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are both treatment options for EGFR-mutated non-small cell lung cancer (NSCLC) patients with brain metastases. However, the dose-escalation toxicity and efficacy of combination therapy, and the effect of WBRT on cerebrospinal fluid (CSF) penetration of EGFR-TKIs are still unclear. EGFR-mutated NSCLC patients with brain metastases were enrolled in this study, and the cohorts were constructed with a 3+3 design. The patients received icotinib with escalating doses (125-625mg, tid), and the concurrent WBRT (37.5Gy/15f/3weeks) started a week later. The CSF penetration rates of icotinib were tested before, immediately after, and 4 weeks after WBRT, respectively. Potential toxicities and benefits from dose-escalation treatment were analyzed. Fifteen patients were included in this study, 3 at each dose level from 125mg-375mg and 6 at 500mg with 3 occurred dose-limiting toxicities. The maximal tolerated dose of icotinib was 375mg tid in this combination therapy. There was a significant correlation between icotinib concentration in the CSF and plasma (R(2)=0.599, P<0.001). The CSF penetration rate of icotinib, from 1.2% to 9.7%, reached a maximum at 375mg (median, 6.1%). There was no significant difference for CSF penetration rates among the three test points (median, 4.1% vs. 2.8% vs. 2.8%, P=0.16). The intracranial objective response rate and median intracranial progression free survival are 80% and 18.9 months. WBRT plus concurrent icotinib is well tolerated in EGFR-mutated NSCLC patients with brain metastases, up to an icotinib dose of 375mg tid. The icotinib CSF concentration seemed to have a potential ceiling effect with the dose escalation, and WBRT seemed to have no significant impact on CSF penetration of icotinib till 4 weeks after the treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Aston, Elizabeth; Channon, Alastair; Day, Charles; Knight, Christopher G.
2013-01-01
Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the exponential model has significant potential in aiding population management to prevent local (and global) extinction events. PMID:24386200
Xiao, Sulong; Tian, Zhenyu; Wang, Yufei; Si, Longlong; Zhang, Lihe; Zhou, Demin
2018-05-01
Viral infections cause many serious human diseases with high mortality rates. New drug-resistant strains are continually emerging due to the high viral mutation rate, which makes it necessary to develop new antiviral agents. Compounds of plant origin are particularly interesting. The pentacyclic triterpenoids (PTs) are a diverse class of natural products from plants composed of three terpene units. They exhibit antitumor, anti-inflammatory, and antiviral activities. Oleanolic, betulinic, and ursolic acids are representative PTs widely present in nature with a broad antiviral spectrum. This review focuses on the recent literatures in the antiviral efficacy of this class of phytochemicals and their derivatives. In addition, their modes of action are also summarized. © 2018 Wiley Periodicals, Inc.
Plaschke, Jens; Krüger, Stefan; Jeske, Birgit; Theissig, Franz; Kreuz, Friedmar R; Pistorius, Steffen; Saeger, Hans D; Iaccarino, Ingram; Marra, Giancarlo; Schackert, Hans K
2004-02-01
Mononucleotide repeat sequences are particularly prone to frameshift mutations in tumors with biallelic inactivation of the mismatch repair (MMR) genes MLH1 or MSH2. In these tumors, several genes harboring mononucleotide repeats in their coding region have been proposed as targets involved in tumor progression, among which are also the MMR genes MSH3 and MSH6. We have analyzed the expression of the MSH3 and MSH6 proteins by immunohistochemistry in 31 colorectal carcinomas in which MLH1 was inactivated. Loss of MSH3 expression was identified in 15 tumors (48.5%), whereas all tumors expressed MSH6. Frameshift mutations at coding microsatellites were more frequent in MSH3 (16 of 31) than in MSH6 (3 of 31; Fisher's exact test, P < 0.001). Frameshift mutations and allelic losses of MSH3 were more frequent in MSH3-negative tumors compared with those with normal expression (22 mutations in 30 alleles versus 8 mutations in 28 alleles; chi(2), P = 0.001). Biallelic inactivation was evident or inferred for 60% of MSH3-negative tumors but none of the tumors with normal MSH3 expression. In contrast, we did not identify frameshift mutations in the (A)8 tract of MSH3 in a control group of 18 colorectal carcinomas in which the MMR deficiency was based on the inactivation of MSH2. As it has been suggested that mutations of MSH3 might play a role in tumor progression, we studied the association between MSH3 expression and disease stage assessed by lymph node and distant metastases status. Dukes stages C and D were more frequent in primary tumors with loss of MSH3 expression (9 of 13), compared with tumors with retained expression (1 of 14; Fisher's exact test, P = 0.001), suggesting that MSH3 abrogation may be a predictor of metastatic disease or even favor tumor cell spread in MLH1-deficient colorectal cancers.
Cancer Evolution: Mathematical Models and Computational Inference
Beerenwinkel, Niko; Schwarz, Roland F.; Gerstung, Moritz; Markowetz, Florian
2015-01-01
Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy. PMID:25293804
2013-01-01
Background Retrospective analyses in the West suggest that mutations in KRAS codons 61 and 146, BRAF, NRAS, and PIK3CA are negative predictive factors for cetuximab treatment in colorectal cancer patients. We developed a novel multiplex kit detecting 36 mutations in KRAS codons 61 and 146, BRAF, NRAS, and PIK3CA using Luminex (xMAP) assay in a single reaction. Methods Tumor samples and clinical data from Asian colorectal cancer patients treated with cetuximab were collected. We investigated KRAS, BRAF, NRAS, and PIK3CA mutations using both the multiplex kit and direct sequencing methods, and evaluated the concordance between the 2 methods. Objective response, progression-free survival (PFS), and overall survival (OS) were also evaluated according to mutational status. Results In total, 82 of 83 samples (78 surgically resected specimens and 5 biopsy specimens) were analyzed using both methods. All multiplex assays were performed using 50 ng of template DNA. The concordance rate between the methods was 100%. Overall, 49 (59.8%) patients had all wild-type tumors, 21 (25.6%) had tumors harboring KRAS codon 12 or 13 mutations, and 12 (14.6%) had tumors harboring KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutations. The response rates in these patient groups were 38.8%, 4.8%, and 0%, respectively. Median PFS in these groups was 6.1 months (95% confidence interval (CI): 3.1–9.2), 2.7 months (1.2–4.2), and 1.6 months (1.5–1.7); median OS was 13.8 months (9.2–18.4), 8.2 months (5.7–10.7), and 6.3 months (1.3–11.3), respectively. Statistically significant differences in both PFS and OS were found between patients with all wild-type tumors and those with KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutations (PFS: 95% CI, 0.11–0.44; P < 0.0001; OS: 95% CI, 0.15–0.61; P < 0.0001). Conclusions Our newly developed multiplex kit is practical and feasible for investigation of a range of sample types. Moreover, mutations in KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA detected in Asian patients were not predictive of clinical benefits from cetuximab treatment, similar to the result obtained in European studies. PMID:24006859
Molecular evolution and thermal adaptation
NASA Astrophysics Data System (ADS)
Chen, Peiqiu
2011-12-01
In this thesis, we address problems in molecular evolution, thermal adaptation, and the kinetics of adaptation of bacteria and viruses to elevated environmental temperatures. We use a nearly neutral fitness model where the replication speed of an organism is proportional to the copy number of folded proteins. Our model reproduces the distribution of stabilities of natural proteins in excellent agreement with experiment. We find that species with high mutation rates tend to have less stable proteins compared to species with low mutation rate. We found that a broad distribution of protein stabilities observed in the model and in experiment is the key determinant of thermal response for viruses and bacteria. Our results explain most of the earlier experimental observations: striking asymmetry of thermal response curves, the absence of evolutionary trade-off which was expected but not found in experiments, correlation between denaturation temperature for several protein families and the Optimal Growth Temperature (OGT) of their carrier organisms, and proximity of bacterial or viral OGTs to their evolutionary temperatures. Our theory quantitatively and with high accuracy described thermal response curves for 35 bacterial species. The model also addresses the key to adaptation is in weak-link genes (WLG), which encode least thermodynamically stable essential proteins in the proteome. We observe, as in experiment, a two-stage adaptation process. The first stage is a Luria-Delbruck type of selection, whereby rare WLG alleles, whose proteins are more stable than WLG proteins of the majority of the population (either due to standing genetic variation or due to an early acquired mutation), rapidly rise to fixation. The second stage constitutes subsequent slow accumulation of mutations in an adapted population. As adaptation progresses, selection regime changes from positive to neutral: Selection coefficient of beneficial mutations scales as a negative power of number of generations. Diversity plays an important role in thermal adaptation: While monoclonal strains adapt via acquisition and rapid fixation of new early mutations, wild population adapt via standing genetic variations, and they are more robust against thermal shocks due to greater diversity within the initial population.
Common mutation underlying primary hyperoxaluria type1 in three Indian children
Chanchlani, R.; Sinha, A.; Gulati, A.; Agarwal, V.; Bagga, A.
2012-01-01
Primary hyperoxaluria is an autosomal recessive disorder caused by deficiency of alanine-glyoxylate aminotransferase, which is encoded by the AGXT gene. We report three Indian children with primary hyperoxaluria type1 having a common mutation in this gene. All patients had evidence of chronic kidney disease at the time of diagnosis, with subsequent progression to end-stage renal disease. The detection of an identical mutation in the AGXT gene suggests that specific genetic screening for this mutation may be useful when considering the diagnosis of primary hyperoxaluria type1. PMID:23439734
Common mutation underlying primary hyperoxaluria type1 in three Indian children.
Chanchlani, R; Sinha, A; Gulati, A; Agarwal, V; Bagga, A
2012-11-01
Primary hyperoxaluria is an autosomal recessive disorder caused by deficiency of alanine-glyoxylate aminotransferase, which is encoded by the AGXT gene. We report three Indian children with primary hyperoxaluria type1 having a common mutation in this gene. All patients had evidence of chronic kidney disease at the time of diagnosis, with subsequent progression to end-stage renal disease. The detection of an identical mutation in the AGXT gene suggests that specific genetic screening for this mutation may be useful when considering the diagnosis of primary hyperoxaluria type1.
van Egmond, Martje E; Weijenberg, Amerins; van Rijn, Margreet E; Elting, Jan Willem J; Gelauff, Jeannette M; Zutt, Rodi; Sival, Deborah A; Lambrechts, Roald A; Tijssen, Marina A J; Brouwer, Oebele F; de Koning, Tom J
2017-03-07
North Sea Progressive Myoclonus Epilepsy is a rare and severe disorder caused by mutations in the GOSR2 gene. It is clinically characterized by progressive myoclonus, seizures, early-onset ataxia and areflexia. As in other progressive myoclonus epilepsies, the efficacy of antiepileptic drugs is disappointingly limited in North Sea Progressive Myoclonus Epilepsy. The ketogenic diet and the less restrictive modified Atkins diet have been proven to be effective in other drug-resistant epilepsy syndromes, including those with myoclonic seizures. Our aim was to evaluate the efficacy of the modified Atkins diet in patients with North Sea Progressive Myoclonus Epilepsy. Four North Sea Progressive Myoclonus Epilepsy patients (aged 7-20 years) participated in an observational, prospective, open-label study on the efficacy of the modified Atkins diet. Several clinical parameters were assessed at baseline and again after participants had been on the diet for 3 months. The primary outcome measure was health-related quality of life, with seizure frequency and blinded rated myoclonus severity as secondary outcome measures. Ketosis was achieved within 2 weeks and all patients completed the 3 months on the modified Atkins diet. The diet was well tolerated by all four patients. Health-related quality of life improved considerably in one patient and showed sustained improvement during long-term follow-up, despite the progressive nature of the disorder. Health-related quality of life remained broadly unchanged in the other three patients and they did not continue the diet. Seizure frequency remained stable and blinded rating of their myoclonus showed improvement, albeit modest, in all patients. This observational, prospective study shows that some North Sea Progressive Myoclonus Epilepsy patients may benefit from the modified Atkins diet with sustained health-related quality of life improvement. Not all our patients continued on the diet, but nonetheless we show that the modified Atkins diet might be considered as a possible treatment in this devastating disorder.
Yu, Jiang-Yong; Yu, Si-Fan; Wang, Shu-Hang; Bai, Hua; Zhao, Jun; An, Tong-Tong; Duan, Jian-Chun; Wang, Jie
2016-03-21
Epidermal growth factor receptor (EGFR) mutations, including a known exon 19 deletion (19 del) and exon 21 L858R point mutation (L858R mutation), are strong predictors of the response to EGFR tyrosine kinase inhibitor (EGFR-TKI) treatment in lung adenocarcinoma. However, whether patients carrying EGFR 19 del and L858R mutations exhibit different responsiveness to EGFR-TKIs and what are the potential mechanism for this difference remain controversial. This study aimed to investigate the clinical outcomes of EGFR-TKI treatment in patients with EGFR 19 del and L858R mutations and explore the genetic heterogeneity of tumors with the two mutation subtypes. Of 1127 patients with advanced lung adenocarcinoma harboring EGFR 19 del or L858R mutations, 532 received EGFR-TKI treatment and were included in this study. EGFR 19 del and L858R mutations were detected by using denaturing high-performance liquid chromatography (DHPLC). T790M mutation, which is a common resistant mutation on exon 20 of EGFR, was detected by amplification refractory mutation system (ARMS). Next-generation sequencing (NGS) was used to explore the genetic heterogeneity of tumors with EGFR 19 del and L858R mutations. Of the 532 patients, 319 (60.0%) had EGFR 19 del, and 213 (40.0%) had L858R mutations. The patients with EGFR 19 del presented a significantly higher overall response rate (ORR) for EGFR-TKI treatment (55.2% vs. 43.7%, P = 0.017) and had a longer progression-free survival (PFS) after first-line EGFR-TKI treatment (14.4 vs. 11.4 months, P = 0.034) compared with those with L858R mutations. However, no statistically significant difference in overall survival (OS) was observed between the two groups of patients. T790M mutation status was analyzed in 88 patients before EGFR-TKI treatment and 134 after EGFR-TKI treatment, and there was no significant difference in the co-existence of T790M mutation with EGFR 19 del and L858R mutations before EGFR-TKI treatment (5.6% vs. 8.8%, P = 0.554) or after treatment (24.4% vs. 35.4%, P = 0.176). In addition, 24 patients with EGFR 19 del and 19 with L858R mutations were analyzed by NGS, and no significant difference in the presence of multiple somatic mutations was observed between the two genotypes. Patients with EGFR 19 del exhibit longer PFS and higher ORR compared with those with L858R mutations. Whether the heterogeneity of tumors with EGFR 19 del and L858R mutations contribute to a therapeutic response difference needs further investigation.
Imai, Hisao; Minemura, Hiroyuki; Sugiyama, Tomohide; Yamada, Yutaka; Kaira, Kyoichi; Kanazawa, Kenya; Kasai, Takashi; Kaburagi, Takayuki; Minato, Koichi
2018-05-08
Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) is effective as first-line chemotherapy for patients with advanced non-small-cell lung cancer (NSCLC) harboring sensitive EGFR mutations. However, whether the efficacy of second-line cytotoxic drug chemotherapy after first-line EGFR-TKI treatment is similar to that of first-line cytotoxic drug chemotherapy in elderly patients aged ≥ 75 years harboring sensitive EGFR mutations is unclear. Therefore, we aimed to investigate the efficacy and safety of cytotoxic drug chemotherapy after first-line EGFR-TKI treatment in elderly patients with NSCLC harboring sensitive EGFR mutations. We retrospectively evaluated the clinical effects and safety profiles of second-line cytotoxic drug chemotherapy after first-line EGFR-TKI treatment in elderly patients with NSCLC harboring sensitive EGFR mutations (exon 19 deletion/exon 21 L858R mutation). Between April 2008 and December 2015, 78 elderly patients with advanced NSCLC harboring sensitive EGFR mutations received first-line EGFR-TKI at four Japanese institutions. Baseline characteristics, regimens, responses to first- and second-line treatments, whether or not patients received subsequent treatment, and if not, the reasons for non-administration were recorded. Overall, 20 patients with a median age of 79.5 years (range 75-85 years) were included in our analysis. The overall response, disease control, median progression-free survival, and overall survival rates were 15.0, 60.0%, 2.4, and 13.2 months, respectively. Common adverse events included leukopenia, neutropenia, anemia, thrombocytopenia, malaise, and anorexia. Major grade 3 or 4 toxicities included leukopenia (25.0%) and neutropenia (45.0%). No treatment-related deaths were noted. Second-line cytotoxic drug chemotherapy after first-line EGFR-TKI treatment among elderly patients with NSCLC harboring sensitive EGFR mutations was effective and safe and showed equivalent outcomes to first-line cytotoxic drug chemotherapy.
Markóczy, Zsolt; Sárosi, Veronika; Kudaba, Iveta; Gálffy, Gabriella; Turay, Ülkü Yilmaz; Demirkazik, Ahmet; Purkalne, Gunta; Somfay, Attila; Pápai-Székely, Zsolt; Rásó, Erzsébet; Ostoros, Gyula
2018-05-25
Erlotinib is approved for the first line treatment of epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer. Since the number of prospective studies in Caucasian patients treated in routine clinical setting is limited we conducted a multicenter, phase IV clinical trial to determine the efficacy and safety of erlotinib and to demonstrate the feasibility of the validated standardized companion diagnostic method of EGFR mutation detection. 651 chemonaive, cytologically or histologically verified advanced stage lung adenocarcinoma patients from Hungary, Turkey and Latvia were screened for exon19 microdeletions and exon21 L858R EGFR mutations using the companion diagnostic EGFR test. EGFR mutation-positive, locally advanced or metastatic lung adenocarcinoma patients received as first line treatment erlotinib at 150 mg/day. The primary endpoint was progression-free survival (PFS). 62 EGFR mutation-positive patients (9.5% of screened) were included in the safety/intent-to-treat cohort. Median PFS was 12.8 months (95%CI, 9.9-15.8), objective response rate and one-year survival was 66.1% and 82.5%, respectively. Most frequent treatment related adverse events were diarrhoea and rash. Eastern Oncology Cooperative Group Performance Status (ECOG PS), smoking status and M1a/M1b disease stage were significant prognosticators of PFS (p = 0.017, p = 0.045 and p = 0.002, respectively). There was no significant difference in PFS between the subgroups stratified by gender, age or exon19 vs exon21 mutation. Our study confirmed the efficacy and safety of first line erlotinib monotherapy in Caucasian patients with locally advanced or metastatic lung adenocarcinoma carrying activating EGFR mutations based on the screening with the approved companion diagnostic procedure. ClinicalTrials.gov Identifier: NCT01609543.
Bonhoeffer, Sebastian
2018-01-01
The stress-induced mutagenesis hypothesis postulates that in response to stress, bacteria increase their genome-wide mutation rate, in turn increasing the chances that a descendant is able to better withstand the stress. This has implications for antibiotic treatment: exposure to subinhibitory doses of antibiotics has been reported to increase bacterial mutation rates and thus probably the rate at which resistance mutations appear and lead to treatment failure. More generally, the hypothesis posits that stress increases evolvability (the ability of a population to generate adaptive genetic diversity) and thus accelerates evolution. Measuring mutation rates under stress, however, is problematic, because existing methods assume there is no death. Yet subinhibitory stress levels may induce a substantial death rate. Death events need to be compensated by extra replication to reach a given population size, thus providing more opportunities to acquire mutations. We show that ignoring death leads to a systematic overestimation of mutation rates under stress. We developed a system based on plasmid segregation that allows us to measure death and division rates simultaneously in bacterial populations. Using this system, we found that a substantial death rate occurs at the tested subinhibitory concentrations previously reported to increase mutation rate. Taking this death rate into account lowers and sometimes removes the signal for stress-induced mutagenesis. Moreover, even when antibiotics increase mutation rate, we show that subinhibitory treatments do not increase genetic diversity and evolvability, again because of effects of the antibiotics on population dynamics. We conclude that antibiotic-induced mutagenesis is overestimated because of death and that understanding evolvability under stress requires accounting for the effects of stress on population dynamics as much as on mutation rate. Our goal here is dual: we show that population dynamics and, in particular, the numbers of cell divisions are crucial but neglected parameters in the evolvability of a population, and we provide experimental and computational tools and methods to study evolvability under stress, leading to a reassessment of the magnitude and significance of the stress-induced mutagenesis paradigm. PMID:29750784