Sample records for mutation trend analysis

  1. Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers

    PubMed Central

    Antoniou, Antonis C; Kartsonaki, Christiana; Sinilnikova, Olga M.; Soucy, Penny; McGuffog, Lesley; Healey, Sue; Lee, Andrew; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Cattaneo, Elisa; Barile, Monica; Pensotti, Valeria; Pasini, Barbara; Dolcetti, Riccardo; Giannini, Giuseppe; Laura Putignano, Anna; Varesco, Liliana; Radice, Paolo; Mai, Phuong L.; Greene, Mark H.; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben A.; Birk Jensen, Uffe; Crüger, Dorthe G.; Caligo, Maria A.; Laitman, Yael; Milgrom, Roni; Kaufman, Bella; Paluch-Shimon, Shani; Friedman, Eitan; Loman, Niklas; Harbst, Katja; Lindblom, Annika; Arver, Brita; Ehrencrona, Hans; Melin, Beatrice; Nathanson, Katherine L.; Domchek, Susan M.; Rebbeck, Timothy; Jakubowska, Ania; Lubinski, Jan; Gronwald, Jacek; Huzarski, Tomasz; Byrski, Tomasz; Cybulski, Cezary; Gorski, Bohdan; Osorio, Ana; Ramón y Cajal, Teresa; Fostira, Florentia; Andrés, Raquel; Benitez, Javier; Hamann, Ute; Hogervorst, Frans B.; Rookus, Matti A.; Hooning, Maartje J.; Nelen, Marcel R.; van der Luijt, Rob B.; van Os, Theo A.M.; van Asperen, Christi J.; Devilee, Peter; Meijers-Heijboer, Hanne E.J.; Gómez Garcia, Encarna B.; Peock, Susan; Cook, Margaret; Frost, Debra; Platte, Radka; Leyland, Jean; Gareth Evans, D.; Lalloo, Fiona; Eeles, Ros; Izatt, Louise; Adlard, Julian; Davidson, Rosemarie; Eccles, Diana; Ong, Kai-ren; Cook, Jackie; Douglas, Fiona; Paterson, Joan; John Kennedy, M.; Miedzybrodzka, Zosia; Godwin, Andrew; Stoppa-Lyonnet, Dominique; Buecher, Bruno; Belotti, Muriel; Tirapo, Carole; Mazoyer, Sylvie; Barjhoux, Laure; Lasset, Christine; Leroux, Dominique; Faivre, Laurence; Bronner, Myriam; Prieur, Fabienne; Nogues, Catherine; Rouleau, Etienne; Pujol, Pascal; Coupier, Isabelle; Frénay, Marc; Hopper, John L.; Daly, Mary B.; Terry, Mary B.; John, Esther M.; Buys, Saundra S.; Yassin, Yosuf; Miron, Alexander; Goldgar, David; Singer, Christian F.; Tea, Muy-Kheng; Pfeiler, Georg; Catharina Dressler, Anne; Hansen, Thomas v.O.; Jønson, Lars; Ejlertsen, Bent; Bjork Barkardottir, Rosa; Kirchhoff, Tomas; Offit, Kenneth; Piedmonte, Marion; Rodriguez, Gustavo; Small, Laurie; Boggess, John; Blank, Stephanie; Basil, Jack; Azodi, Masoud; Ewart Toland, Amanda; Montagna, Marco; Tognazzo, Silvia; Agata, Simona; Imyanitov, Evgeny; Janavicius, Ramunas; Lazaro, Conxi; Blanco, Ignacio; Pharoah, Paul D.P.; Sucheston, Lara; Karlan, Beth Y.; Walsh, Christine S.; Olah, Edith; Bozsik, Aniko; Teo, Soo-Hwang; Seldon, Joyce L.; Beattie, Mary S.; van Rensburg, Elizabeth J.; Sluiter, Michelle D.; Diez, Orland; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ruehl, Ina; Varon-Mateeva, Raymonda; Kast, Karin; Deissler, Helmut; Niederacher, Dieter; Arnold, Norbert; Gadzicki, Dorothea; Schönbuchner, Ines; Caldes, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomäki, Kristiina; Dumont, Martine; Chiquette, Jocelyne; Tischkowitz, Marc; Chen, Xiaoqing; Beesley, Jonathan; Spurdle, Amanda B.; Neuhausen, Susan L.; Chun Ding, Yuan; Fredericksen, Zachary; Wang, Xianshu; Pankratz, Vernon S.; Couch, Fergus; Simard, Jacques; Easton, Douglas F.; Chenevix-Trench, Georgia

    2011-01-01

    Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs11249433 at 1p11.2 and rs999737 in RAD51L1 at 14q24.1. Although previously identified breast cancer susceptibility variants have been shown to be associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers, the involvement of these SNPs to breast cancer susceptibility in mutation carriers is currently unknown. To address this, we genotyped these SNPs in BRCA1 and BRCA2 mutation carriers from 42 studies from the Consortium of Investigators of Modifiers of BRCA1/2. In the analysis of 14 123 BRCA1 and 8053 BRCA2 mutation carriers of European ancestry, the 6q25.1 SNPs (r2 = 0.14) were independently associated with the risk of breast cancer for BRCA1 mutation carriers [hazard ratio (HR) = 1.17, 95% confidence interval (CI): 1.11–1.23, P-trend = 4.5 × 10−9 for rs2046210; HR = 1.28, 95% CI: 1.18–1.40, P-trend = 1.3 × 10−8 for rs9397435], but only rs9397435 was associated with the risk for BRCA2 carriers (HR = 1.14, 95% CI: 1.01–1.28, P-trend = 0.031). SNP rs11249433 (1p11.2) was associated with the risk of breast cancer for BRCA2 mutation carriers (HR = 1.09, 95% CI: 1.02–1.17, P-trend = 0.015), but was not associated with breast cancer risk for BRCA1 mutation carriers (HR = 0.97, 95% CI: 0.92–1.02, P-trend = 0.20). SNP rs999737 (RAD51L1) was not associated with breast cancer risk for either BRCA1 or BRCA2 mutation carriers (P-trend = 0.27 and 0.30, respectively). The identification of SNPs at 6q25.1 associated with breast cancer risk for BRCA1 mutation carriers will lead to a better understanding of the biology of tumour development in these women. PMID:21593217

  2. Sex-specific incidence of EGFR mutation and its association with age and obesity in lung adenocarcinomas: a retrospective analysis.

    PubMed

    Kim, Hye-Ryoun; Kim, Seo Yun; Kim, Cheol Hyeon; Yang, Sung Hyun; Lee, Jae Cheol; Choi, Chang-Min; Na, Im Il

    2017-11-01

    Age and obesity are well-known risk factors for various cancers, but the potential roles of age and obesity in lung cancer, especially in those with activating EGFR mutations, have not been thoroughly evaluated. The aim of this retrospective study is to evaluate the associations between the sex-specific incidence of EGFR mutations and age and obesity. We conducted a retrospective study based on the data from 1378 lung adenocarcinoma cases. The degree of obesity was categorized by body mass index (BMI). The associations between EGFR mutational status and clinical factors, including stage, smoking history, age group (≤45 years, 46-55, 56-65 and >65), and BMI group (<18.5 kg/m 2 , 18.5-22.9, 23.0-24.9 and ≥25.0) were analyzed using logistic regression models for each sex. In men, the incidence of EGFR mutation was inversely associated with age (adjusted odds ratio [OR] for age group = 0.76, p-trend = 0.003) and positively associated with obesity (adjusted OR for BMI group = 1.23, p-trend = 0.04). In contrast, in women, the incidence of EGFR mutation was positively associated with age (adjusted OR for age group = 1.19, p-trend = 0.02). However, the incidence of EGFR mutation was not statistically associated with obesity (adjusted OR for BMI group = 1.03, p-trend = 0.76). Our data suggests that age and obesity may contribute to the sex-specific incidence of EGFR mutation in lung adenocarcinoma in different manners.

  3. Impact of KRAS codon subtypes from a randomised phase II trial of selumetinib plus docetaxel in KRAS mutant advanced non-small-cell lung cancer.

    PubMed

    Jänne, P A; Smith, I; McWalter, G; Mann, H; Dougherty, B; Walker, J; Orr, M C M; Hodgson, D R; Shaw, A T; Pereira, J R; Jeannin, G; Vansteenkiste, J; Barrios, C H; Franke, F A; Crinò, L; Smith, P

    2015-07-14

    Selumetinib (AZD6244, ARRY-142886)+docetaxel increases median overall survival (OS) and significantly improves progression-free survival (PFS) and objective response rate (ORR) compared with docetaxel alone in patients with KRAS mutant, stage IIIB/IV non-small-cell lung cancer (NSCLC; NCT00890825). Retrospective analysis of OS, PFS, ORR and change in tumour size at week 6 for different sub-populations of KRAS codon mutations. In patients receiving selumetinib+docetaxel and harbouring KRAS G12C or G12V mutations there were trends towards greater improvement in OS, PFS and ORR compared with other KRAS mutations. Different KRAS mutations in NSCLC may influence selumetinib/docetaxel sensitivity.

  4. Evidence for a link between TNFRSF11A and risk of breast cancer.

    PubMed

    Bonifaci, Núria; Palafox, Marta; Pellegrini, Pasquale; Osorio, Ana; Benítez, Javier; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Roversi, Gaia; Barile, Monica; Viel, Alessandra; Mariette, Frederique; Bernard, Loris; Radice, Paolo; Kaufman, Bella; Laitman, Yael; Milgrom, Roni; Friedman, Eitan; Sáez, María E; Climent, Fina; Soler, María Teresa; Diez, Orland; Balmaña, Judith; Lasa, Adriana; Ramón y Cajal, Teresa; Miramar, María-Dolores; de la Hoya, Miguel; Pérez-Segura, Pedro; Caldés, Trinidad; Moreno, Víctor; Urruticoechea, Ander; Brunet, Joan; Lázaro, Conxi; Blanco, Ignacio; Pujana, Miguel Angel; González-Suárez, Eva

    2011-10-01

    Intracellular signaling mediated by the receptor activator of nuclear factor-κB [Rank, encoded by the tumor necrosis factor receptor superfamily, member 11a (Tnfrsf11a) gene] is fundamental for mammary gland development in mice, regulating the expansion of stem and progenitor cell compartments. Conversely, Rank overexpression in mice promotes abnormal proliferation and impairs differentiation, leading to an increased incidence of tumorigenesis. Here, we show that a common genetic variant near the 5'-end of TNFRSF11A, rs7226991, is associated with breast cancer risk in the general population and among carriers of mutations in the breast cancer 2, early onset (BRCA2) gene. Akin to the results of the Cancer and Genetics Markers of Susceptibility initiative, combined analysis of rs7226991 in two Spanish case-control studies (1,365 controls and 1,323 cases in total) revealed a significant association with risk: odds ratio (OR) = 0.88, 95% confidence interval (CI) 0.78-0.98, P (trend) = 0.025. Subsequent examination of BRCA1 (n = 1,017) and BRCA2 (n = 885) mutation carriers revealed a consistent association in the latter group: weighted hazard ratio ((w)HR) = 0.70; 95% CI 0.55-0.88; and P (trend) = 0.003; compared to BRCA1 mutation carriers, (w)HR = 0.91; 95% CI 0.76-1.10; and P (trend) = 0.33. The results of this study need to be replicated in other populations and with larger numbers of BRCA1/2 mutation carriers.

  5. Impact of KRAS codon subtypes from a randomised phase II trial of selumetinib plus docetaxel in KRAS mutant advanced non-small-cell lung cancer

    PubMed Central

    Jänne, P A; Smith, I; McWalter, G; Mann, H; Dougherty, B; Walker, J; Orr, M C M; Hodgson, D R; Shaw, A T; Pereira, J R; Jeannin, G; Vansteenkiste, J; Barrios, C H; Franke, F A; Crinò, L; Smith, P

    2015-01-01

    Background: Selumetinib (AZD6244, ARRY-142886)+docetaxel increases median overall survival (OS) and significantly improves progression-free survival (PFS) and objective response rate (ORR) compared with docetaxel alone in patients with KRAS mutant, stage IIIB/IV non-small-cell lung cancer (NSCLC; NCT00890825). Methods: Retrospective analysis of OS, PFS, ORR and change in tumour size at week 6 for different sub-populations of KRAS codon mutations. Results: In patients receiving selumetinib+docetaxel and harbouring KRAS G12C or G12V mutations there were trends towards greater improvement in OS, PFS and ORR compared with other KRAS mutations. Conclusion: Different KRAS mutations in NSCLC may influence selumetinib/docetaxel sensitivity. PMID:26125448

  6. Circulating tumor DNA profiling reveals clonal evolution and real-time disease progression in advanced hepatocellular carcinoma.

    PubMed

    Cai, Zhi-Xiong; Chen, Geng; Zeng, Yong-Yi; Dong, Xiu-Qing; Lin, Min-Jie; Huang, Xin-Hui; Zhang, Da; Liu, Xiao-Long; Liu, Jing-Feng

    2017-09-01

    Circulating tumor DNA (ctDNA) provides a potential non-invasive biomarker for cancer diagnosis and prognosis, but whether it could reflect tumor heterogeneity and monitor therapeutic responses in hepatocellular carcinoma (HCC) is unclear. Focusing on 574 cancer genes known to harbor actionable mutations, we identified the mutation repertoire of HCC tissues, and monitored the corresponding ctDNA features in blood samples to evaluate its clinical significance. Analysis of 3 HCC patients' mutation profiles revealed that ctDNA could overcome tumor heterogeneity and provide information of tumor burden and prognosis. Further analysis was conducted on the 4th HCC case with multiple lesion samples and sequential plasma samples. We identified 160 subclonal SNVs in tumor tissues as well as matched peritumor tissues with PBMC as control. 96.9% of this patient's tissue mutations could be also detected in plasma samples. These subclonal SNVs were grouped into 9 clusters according to their trends of cellular prevalence shift in tumor tissues. Two clusters constituted of tumor stem somatic mutations showed circulating levels relating with cancer progression. Analysis of tumor somatic mutations revealed that circulating level of such tumor stem somatic mutations could reflect tumor burden and even predict prognosis earlier than traditional strategies. Furthermore, HCK (p.V174M), identified as a recurrent/metastatic related mutation site, could promote migration and invasion of HCC cells. Taken together, study of mutation profiles in biopsy and plasma samples in HCC patients showed that ctDNA could overcome tumor heterogeneity and real-time track the therapeutic responses in the longitudinal monitoring. © 2017 UICC.

  7. Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers

    PubMed Central

    2012-01-01

    Introduction Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2). Methods To evaluate whether these single nucleotide polymorphisms (SNPs) are associated with breast cancer risk for BRCA1 and BRCA2 carriers, we genotyped these SNPs in 12,599 BRCA1 and 7,132 BRCA2 mutation carriers and analysed the associations with breast cancer risk within a retrospective likelihood framework. Results Only SNP rs10771399 near PTHLH was associated with breast cancer risk for BRCA1 mutation carriers (per-allele hazard ratio (HR) = 0.87, 95% CI: 0.81 to 0.94, P-trend = 3 × 10-4). The association was restricted to mutations proven or predicted to lead to absence of protein expression (HR = 0.82, 95% CI: 0.74 to 0.90, P-trend = 3.1 × 10-5, P-difference = 0.03). Four SNPs were associated with the risk of breast cancer for BRCA2 mutation carriers: rs10995190, P-trend = 0.015; rs1011970, P-trend = 0.048; rs865686, 2df-P = 0.007; rs1292011 2df-P = 0.03. rs10771399 (PTHLH) was predominantly associated with estrogen receptor (ER)-negative breast cancer for BRCA1 mutation carriers (HR = 0.81, 95% CI: 0.74 to 0.90, P-trend = 4 × 10-5) and there was marginal evidence of association with ER-negative breast cancer for BRCA2 mutation carriers (HR = 0.78, 95% CI: 0.62 to 1.00, P-trend = 0.049). Conclusions The present findings, in combination with previously identified modifiers of risk, will ultimately lead to more accurate risk prediction and an improved understanding of the disease etiology in BRCA1 and BRCA2 mutation carriers. PMID:22348646

  8. In silico investigation of molecular effects caused by missense mutations in creatine transporter protein

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Schwatz, Charles; Alexov, Emil

    2011-03-01

    Creatine transporter (CT) protein, which is encoded by SLC6A8 gene, is essential for taking up the creatine in the cell, which in turn plays a key role in the spatial and temporal maintenance of energy in skeletal and cardiac muscle cells. It was shown that some missense mutations in CT cause mental retardation, while others are harmless non-synonymous single nucleoside polymorphism (nsSNP). Currently fifteen missense mutations in CT are known, among which twelve are disease-causing. Sequence analysis reveals that there is no clear trend distinguishing disease-causing from harmless missense mutations. Because of that, we built 3D model of the CT using highly homologous template and use the model to investigate the effects of mutations of CT stability and hydrogen bond network. It is demonstrated that disease-causing mutations affect the folding free energy and ionization states of titratable group in much greater extend as compared with harmless mutations. Supported by grants from NLM, NIH, grant numbers 1R03LM009748 and 1R03LM009748-S1.

  9. Correlation of somatic mutations and clinical outcome in melanoma patients treated with carboplatin, paclitaxel, and sorafenib

    PubMed Central

    Wilson, Melissa A.; Zhao, Fengmin; Letrero, Richard; D’Andrea, Kurt; Rimm, David L.; Kirkwood, John M.; Kluger, Harriet M.; Lee, Sandra J.; Schuchter, Lynn M.; Flaherty, Keith T.; Nathanson, Katherine L.

    2014-01-01

    Purpose Sorafenib is an inhibitor of VEGFR, PDGFR, and RAF kinases, amongst others. We assessed the association of somatic mutations with clinicopathologic features and clinical outcomes in patients with metastatic melanoma treated on E2603, comparing treatment with carboplatin, paclitaxel +/− sorafenib (CP vs. CPS). Experimental Design Pre-treatment tumor samples from 179 unique individuals enrolled on E2603 were analyzed. Genotyping was performed using a custom iPlex panel interrogating 74 mutations in 13 genes. Statistical analysis was performed using Fisher’s exact test, logistic regression, and Cox’s proportional-hazards models. Progression free survival and overall survival were estimated using Kaplan-Meier methods. Results BRAF and NRAS mutations were found at frequencies consistent with other metastatic melanoma cohorts. BRAF-mutant melanoma was associated with worse performance status, increased number of disease sites, and younger age at diagnosis; NRAS-mutant melanoma was associated with better performance status, fewer sites of disease, and female gender. BRAF and NRAS mutations were not significantly predictive of response or survival when treated with CPS vs. CP. However, patients with NRAS-mutant melanoma trended towards a worse response and PFS on CP than those with BRAF-mutant or WT/WT melanoma, an association that was reversed for this group on the CPS arm. Conclusions This study of somatic mutations in melanoma is the last prospectively collected phase III clinical trial population prior to the era of BRAF targeted therapy. A trend towards improved clinical response in patients with NRAS-mutant melanoma treated with CPS was observed, possibly due to sorafenib’s effect on CRAF. PMID:24714776

  10. LKB1/STK11 mutations in non-small cell lung cancer patients: Descriptive analysis and prognostic value.

    PubMed

    Facchinetti, Francesco; Bluthgen, Maria Virginia; Tergemina-Clain, Gabrielle; Faivre, Laura; Pignon, Jean-Pierre; Planchard, David; Remon, Jordi; Soria, Jean-Charles; Lacroix, Ludovic; Besse, Benjamin

    2017-10-01

    LKB1/STK11 (STK11) is among the most inactivated tumor-suppressor genes in non-small cell lung cancer (NSCLC). While evidence concerning the biologic role of STK11 is accumulating, its prognostic significance in advanced NSCLC has not been envisaged yet. This retrospective analysis included consecutive NSCLC patients with available STK11 information who underwent a platinum-based chemotherapy. STK11 mutational status was correlated to clinico-pathological and mutational features. Kaplan-Meier and Cox models were used for survival curves and multivariate analyses, respectively. Among the 302 patients included, 267 (89%) were diagnosed with stage IIIB/IV NSCLC and 25 (8%) harbored a STK11 mutation (STK11mut). No statistical differences were observed between STK11 status and clinico-pathological variables. We detected a significant correlation between STK11 and KRAS status (p=0.008); among the 25 STK11mut patients, 13 (52%) harbored a concomitant KRAS mutation. Overall survival (OS) was shorter for STK11mut (median OS=10.4months) compared to wild-type patients (STK11wt; median OS=17.3months) in univariate analysis (p=0.085). STK11 status did not impact upon OS in multivariate analysis (p=0.45) and non-significant results were observed for progression-free survival. The co-occurrence of KRAS and STK11 mutations suggest a trend toward detrimental effect in OS (p=0.12). In our cohort enriched for advanced NSCLC patients who received platinum-based chemotherapy, STK11 mutations were not specifically associated with clinico-pathological features and they did not impact upon survival. We confirm the positive correlation between STK11 and KRAS mutations. The co-occurrence of KRAS and STK11 mutations could label a more aggressive molecular subtype of NSCLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Genetic diversity of HA1 domain of heammaglutinin gene of influenza A(H1N1)pdm09 in Tunisia

    PubMed Central

    2013-01-01

    We present major results concerning isolation and determination of the nucleotide sequence of hemagglutinin (HA1) of the pandemic (H1N1)pdm09 influenza viruses found in Tunisia. Amino acid analysis revealed minor amino acid changes in the antigenic or receptor-binding domains. We found mutations that were also present in 1918 pandemic virus, which includes S183P in 4 and S185T mutation in 19 of 27 viruses analyzed from 2011, while none of the 2009 viruses carried these mutations. Also two specific amino acid differences into N-glycosylation sites (N288T and N276H) were detected. The phylogenetic analysis revealed that the majority of the Tunisian isolates clustered with clade A/St. Petersburg/27/2011 viruses characterized by D97N and S185T mutations. However it also reveals a trend of 2010 strains to accumulate amino acid variation and form new phylogenetic clade with three specific amino acid substitutions: V47I, E172K and K308E. PMID:23679923

  12. FGFR2 Point Mutations in 466 Endometrioid Endometrial Tumors: Relationship with MSI, KRAS, PIK3CA, CTNNB1 Mutations and Clinicopathological Features

    PubMed Central

    Powell, Matthew A.; Wellens, Candice L.; Gao, Feng; Mutch, David G.; Goodfellow, Paul J.; Pollock, Pamela M.

    2012-01-01

    Mutations in multiple oncogenes including KRAS, CTNNB1, PIK3CA and FGFR2 have been identified in endometrial cancer. The aim of this study was to provide insight into the clinicopathological features associated with patterns of mutation in these genes, a necessary step in planning targeted therapies for endometrial cancer. 466 endometrioid endometrial tumors were tested for mutations in FGFR2, KRAS, CTNNB1, and PIK3CA. The relationships between mutation status, tumor microsatellite instability (MSI) and clinicopathological features including overall survival (OS) and disease-free survival (DFS) were evaluated using Kaplan-Meier survival analysis and Cox proportional hazard models. Mutations were identified in FGFR2 (48/466); KRAS (87/464); CTNNB1 (88/454) and PIK3CA (104/464). KRAS and FGFR2 mutations were significantly more common, and CTNNB1 mutations less common, in MSI positive tumors. KRAS and FGFR2 occurred in a near mutually exclusive pattern (p = 0.05) and, surprisingly, mutations in KRAS and CTNNB1 also occurred in a near mutually exclusive pattern (p = 0.0002). Multivariate analysis revealed that mutation in KRAS and FGFR2 showed a trend (p = 0.06) towards longer and shorter DFS, respectively. In the 386 patients with early stage disease (stage I and II), FGFR2 mutation was significantly associated with shorter DFS (HR = 3.24; 95% confidence interval, CI, 1.35–7.77; p = 0.008) and OS (HR = 2.00; 95% CI 1.09–3.65; p = 0.025) and KRAS was associated with longer DFS (HR = 0.23; 95% CI 0.05–0.97; p = 0.045). In conclusion, although KRAS and FGFR2 mutations share similar activation of the MAPK pathway, our data suggest very different roles in tumor biology. This has implications for the implementation of anti-FGFR or anti-MEK biologic therapies. PMID:22383975

  13. Clinical Implications of Quantitative JAK2 V617F Analysis using Droplet Digital PCR in Myeloproliferative Neoplasms

    PubMed Central

    Lee, Eunyoung; Lee, Kyoung Joo; Park, Hyein; Chung, Jin Young; Lee, Mi-Na; Chang, Myung Hee; Yoo, Jongha; Lee, Hyewon

    2018-01-01

    Background JAK2 V617F is the most common mutation in myeloproliferative neoplasms (MPNs) and is a major diagnostic criterion. Mutation quantification is useful for classifying patients with MPN into subgroups and for prognostic prediction. Droplet digital PCR (ddPCR) can provide accurate and reproducible quantitative analysis of DNA. This study was designed to verify the correlation of ddPCR with pyrosequencing results in the diagnosis of MPN and to investigate clinical implications of the mutational burden. Methods Peripheral blood or bone marrow samples were obtained from 56 patients newly diagnosed with MPN or previously diagnosed with MPN but not yet indicated for JAK2 inhibitor treatment between 2012 and 2016. The JAK2 V617F mutation was detected by pyrosequencing as a diagnostic work-up. The same samples were used for ddPCR to determine the correlation between assays and establish a detection sensitivity cut-off. Clinical and hematologic aspects were reviewed. Results Forty-two (75%) and 46 (82.1%) patients were positive for JAK2 V617F by pyrosequencing and ddPCR, respectively. The mean mutated allele frequency at diagnosis was 37.5±30.1% and was 40.7±31.2% with ddPCR, representing a strong correlation (r=0.9712, P<0.001). Follow-up samples were available for 12 patients, including eight that were JAK2 V617F-positive. Of these, mutational burden reduction after treatment was observed in six patients (75%), consistent with trends of hematologic improvement. Conclusions Quantitative analysis of the JAK2 V617F mutation using ddPCR was highly correlated with pyrosequencing data and may reflect the clinical response to treatment. PMID:29214759

  14. Transmitted HIV drug resistance in antiretroviral-treatment-naive patients from Poland differs by transmission category and subtype.

    PubMed

    Parczewski, Miłosz; Leszczyszyn-Pynka, Magdalena; Witak-Jędra, Magdalena; Maciejewska, Katarzyna; Rymer, Weronika; Szymczak, Aleksandra; Szetela, Bartosz; Gąsiorowski, Jacek; Bociąga-Jasik, Monika; Skwara, Paweł; Garlicki, Aleksander; Grzeszczuk, Anna; Rogalska, Magdalena; Jankowska, Maria; Lemańska, Małgorzata; Hlebowicz, Maria; Barałkiewicz, Grażyna; Mozer-Lisewska, Iwona; Mazurek, Renata; Lojewski, Władyslaw; Grąbczewska, Edyta; Olczak, Anita; Jabłonowska, Elżbieta; Clark, Jeremy; Urbańska, Anna

    2015-01-01

    The surveillance of HIV-transmitted drug resistance mutations (t-DRMs), including temporal trends across subtypes and exposure groups, remains a priority in the current management of the epidemic worldwide. A cross-sectional analysis of 833 treatment-naive patients from 9 of 17 Polish HIV treatment centres. Partial pol sequences were used to analyse drug resistance with a general time reversible (GTR)-based maximum likelihood algorithm used for cluster/pair identification. Mutation frequencies and temporal trends were investigated. t-DRMs were observed in 9% of cases (5.8% for NRTI, 1.2% NNRTI and 2.0% PI mutations) and were more common among heterosexually infected (HET) individuals (13.4%) compared with MSM (8.3%, P = 0.03) or injection drug users (IDUs; 2.9%, P = 0.001) and in MSM compared with IDUs (P = 0.046). t-DRMs were more frequent in cases infected with the non-B variant (21.6%) compared with subtype B (6.6%, P < 0.001). With subtype B a higher mutation frequency was found in MSM compared with non-MSM cases (8.3% versus 1.8% for IDU + HET, P = 0.038), while non-B variants were associated with heterosexual exposure (30.4% for HET versus 4.8% for MSM, P = 0.019; versus 0 for IDU, P = 0.016). Trends in t-DRM frequencies were stable over time except for a decrease in NNRTI t-DRMs among MSM (P = 0.0662) and an NRTI t-DRM decrease in HET individuals (P = 0.077). With subtype B a higher frequency of sequence pairs/clusters in MSM (50.4%) was found compared with HET (P < 0.001) and IDUs (P = 0.015). Despite stable trends over time, patterns of t-DRMs differed notably between transmission categories and subtypes: subtype B was associated with MSM transmission and clustering while in non-B clades t-DRMs were more common and were associated with heterosexual infections. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. IgVH gene analysis suggests that peritoneal B cells do not contribute to the gut immune system in man.

    PubMed

    Boursier, Laurent; Farstad, Inger Nina; Mellembakken, Jan Roar; Brandtzaeg, Per; Spencer, Jo

    2002-09-01

    The contribution of peritoneal B cells to the intestinal lamina propria plasma cell population is well documented in mice, but unknown in humans. We have analyzed immunoglobulin (Ig) genes of human peritoneal B cells, because such genes show distinctive characteristics in mucosal B cells, particularly highly mutated variable regions. Here, we report the characteristics of variable region genes used by IgM, IgA and IgG in peritoneal cells. We focused on the properties of IgV(H)4-34 to allow comparisons of like-with-like between different isotypes and cells from different immune compartments. We observed that the IgM genes were mostly unmutated, and that the mutated subset had less mutations than would be expected in a mucosal B cell population. Likewise, the IgV(H)4-34 genes used by IgA and IgG from peritoneal B cells had significantly lower numbers of mutations than observed in the mucosal counterparts. Other trends observed, while not reaching statistical significance, followed the trend of peripheral B cells. The peritoneal B cell population had more IgA1 than IgA2 sequences, and there was no dominance of J(H)4 in the IgA from peritoneum or spleen, in contrast to the mucosal sequences. Overall, this study suggested that human peritoneal B cell are either peripheral or mixed in origin; they are unlikely to represent an inductive compartment for the mucosal B cell system.

  16. Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae.

    PubMed

    Benjak, Andrej; Avanzi, Charlotte; Singh, Pushpendra; Loiseau, Chloé; Girma, Selfu; Busso, Philippe; Fontes, Amanda N Brum; Miyamoto, Yuji; Namisato, Masako; Bobosha, Kidist; Salgado, Claudio G; da Silva, Moisés B; Bouth, Raquel C; Frade, Marco A C; Filho, Fred Bernardes; Barreto, Josafá G; Nery, José A C; Bührer-Sékula, Samira; Lupien, Andréanne; Al-Samie, Abdul R; Al-Qubati, Yasin; Alkubati, Abdul S; Bretzel, Gisela; Vera-Cabrera, Lucio; Sakho, Fatoumata; Johnson, Christian R; Kodio, Mamoudou; Fomba, Abdoulaye; Sow, Samba O; Gado, Moussa; Konaté, Ousmane; Stefani, Mariane M A; Penna, Gerson O; Suffys, Philip N; Sarno, Euzenir Nunes; Moraes, Milton O; Rosa, Patricia S; Baptista, Ida M F Dias; Spencer, John S; Aseffa, Abraham; Matsuoka, Masanori; Kai, Masanori; Cole, Stewart T

    2018-01-24

    Leprosy is a chronic human disease caused by the yet-uncultured pathogen Mycobacterium leprae. Although readily curable with multidrug therapy (MDT), over 200,000 new cases are still reported annually. Here, we obtain M. leprae genome sequences from DNA extracted directly from patients' skin biopsies using a customized protocol. Comparative and phylogenetic analysis of 154 genomes from 25 countries provides insight into evolution and antimicrobial resistance, uncovering lineages and phylogeographic trends, with the most ancestral strains linked to the Far East. In addition to known MDT-resistance mutations, we detect other mutations associated with antibiotic resistance, and retrace a potential stepwise emergence of extensive drug resistance in the pre-MDT era. Some of the previously undescribed mutations occur in genes that are apparently subject to positive selection, and two of these (ribD, fadD9) are restricted to drug-resistant strains. Finally, nonsense mutations in the nth excision repair gene are associated with greater sequence diversity and drug resistance.

  17. EGFR mutation detection in circulating cell-free DNA of lung adenocarcinoma patients: analysis of LUX-Lung 3 and 6

    PubMed Central

    Wu, Yi-Long; Sequist, Lecia V; Hu, Cheng-Ping; Feng, Jifeng; Lu, Shun; Huang, Yunchao; Li, Wei; Hou, Mei; Schuler, Martin; Mok, Tony; Yamamoto, Nobuyuki; O'Byrne, Kenneth; Hirsh, Vera; Gibson, Neil; Massey, Dan; Kim, Miyoung; Yang, James Chih-Hsin

    2017-01-01

    Background: In the Phase III LUX-Lung 3/6 (LL3/LL6) trials in epidermal growth factor receptor (EGFR) mutation-positive lung adenocarcinoma patients, we evaluated feasibility of EGFR mutation detection using circulating cell-free DNA (cfDNA) and prognostic and predictive utility of cfDNA positivity (cfDNA+). Methods: Paired tumour and blood samples were prospectively collected from randomised patients. Mutations were detected using cfDNA from serum (LL3) or plasma (LL6) by a validated allele-specific quantitative real-time PCR kit. Results: EGFR mutation detection rates in cfDNA were 28.6% (serum) and 60.5% (plasma). Mutation detection in blood was associated with advanced disease characteristics, including higher performance score, number of metastatic sites and bone/liver metastases, and poorer prognosis. In patients with common EGFR mutations, afatinib improved progression-free survival vs chemotherapy in cfDNA+ (LL3: HR, 0.35; P=0.0009; LL6: HR, 0.25; P<0.0001) and cfDNA− (LL3: HR, 0.46; P<0.0001; LL6: HR, 0.12; P<0.0001) cohorts. A trend towards overall survival benefit with afatinib was observed in cfDNA+ patients. Conclusions: Plasma cfDNA is a promising alternative to biopsy for EGFR testing. Detectable mutation in blood was associated with more advanced disease and poorer prognosis. Afatinib improved outcomes in EGFR mutation-positive patients regardless of blood mutation status. PMID:28006816

  18. A Comparison between CHEK2*1100delC/I157T Mutation Carrier and Noncarrier Breast Cancer Patients: A Clinicopathological Analysis.

    PubMed

    Huszno, Joanna; Budryk, Magdalena; Kołosza, Zofia; Tęcza, Karolina; Pamuła Piłat, Jolanta; Nowara, Elżbieta; Grzybowska, Ewa

    2016-01-01

    The suppressor gene CHEK2 encodes a cell cycle checkpoint kinase, involved in cell cycle regulation, apoptosis and response to DNA damage. The aim of this study was to analyze the differences between CHEK2 mutation carriers (CHEK2*1100delC/I157T) and noncarriers with respect to clinicopathological factors. We reviewed the medical records of 100 early breast cancer patients (46 mutation carriers and 54 noncarriers) who were treated with chemotherapy, hormonotherapy or trastuzumab. CHEK2 mutation carriers were older (>65 years) than noncarriers (17 vs. 7%; p = 0.215). Twenty-five (54%) of them had a history of cancer in the family. Gastric cancer in the family history was detected in 11% of mutation carriers and in 2% of noncarriers (p = 0.092). There was a trend for more frequent lymph node metastases in patients without the mutation in comparison to mutation carriers (46 vs. 28%; p = 0.098). Luminal B type breast cancer was detected more often in carriers (39 vs. 20%; p = 0.048). Breast-conserving treatment was also conducted more often in mutation carriers (57 vs. 31%; p = 0.015). Histologic grades G1/G2 were detected more frequently in mutation carriers (82 vs. 70%; p = 0.212). Mutation carriers were characterized by older age, a history of gastric cancer in the family, locally advanced disease, lower histologic grade and luminal B type breast cancer. © 2016 S. Karger AG, Basel.

  19. Survival According to BRAF-V600 Tumor Mutations – An Analysis of 437 Patients with Primary Melanoma

    PubMed Central

    Meckbach, Diana; Bauer, Jürgen; Pflugfelder, Annette; Meier, Friedegund; Busch, Christian; Eigentler, Thomas K.; Capper, David; von Deimling, Andreas; Mittelbronn, Michel; Perner, Sven; Ikenberg, Kristian; Hantschke, Markus; Büttner, Petra; Garbe, Claus; Weide, Benjamin

    2014-01-01

    The prognostic impact of BRAF-V600 tumor mutations in stage I/II melanoma patients has not yet been analyzed in detail. We investigated primary tumors of 437 patients diagnosed between 1989 and 2006 by Sanger sequencing. Mutations were detected in 38.7% of patients and were associated with age, histological subtype as well as mitotic rate. The mutational rate was 36.7% in patients with disease-free course and 51.7% in those with subsequent distant metastasis (p = 0.031). No difference in overall survival (p = 0.119) but a trend for worse distant-metastasis-free survival (p = 0.061) was observed in BRAF mutant compared to BRAF wild-type patients. Independent prognostic factors for overall survival were tumor thickness, mitotic rate and ulceration. An interesting significant prognostic impact was observed in patients with tumor thickness of 1 mm or less, with the mutation present in 6 of 7 patients dying from melanoma. In conclusion, no significant survival differences were found according to BRAF-V600 tumor mutations in patients with primary melanoma but an increasing impact of the mutational status was observed in the subgroup of patients with tumor thickness of 1 mm or less. A potential role of the mutational status as a prognostic factor especially in this subgroup needs to be investigated in larger studies. PMID:24475086

  20. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia

    NASA Astrophysics Data System (ADS)

    Xu, Min; Kang, Shichang; Wu, Hao; Yuan, Xu

    2018-05-01

    As abundant distribution of glaciers and snow, the Tianshan Mountains are highly vulnerable to changes in climate. Based on meteorological station records during 1960-2016, we detected the variations of air temperature and precipitation by using non-parametric method in the different sub-regions and different elevations of the Tianshan Mountains. The mutations of climate were investigated by Mann-Kendall abrupt change test in the sub-regions. The periodicity is examined by wavelet analysis employing a chi-square test and detecting significant time sections. The results show that the Tianshan Mountains experienced an overall rapid warming and wetting during study period, with average warming rate of 0.32 °C/10a and wet rate of 5.82 mm/10a, respectively. The annual and seasonal spatial variation of temperature showed different scales in different regions. The annual precipitation showed non-significant upward trend in 20 stations, and 6 stations showed a significant upward trend. The temperatures in the East Tianshan increased most rapidly at rates of 0.41 °C/10a. The increasing magnitudes of annual precipitation were highest in the Boertala Vally (8.07 mm/10a) and lowest in the East Tianshan (2.64 mm/10a). The greatest and weakest warming was below 500 m (0.42 °C/10a) and elevation of 1000-1500 m (0.23 °C/10a), respectively. The increasing magnitudes of annual precipitation were highest in the elevation of 1500 m-2000 m (9.22 mm/10a) and lowest in the elevation of below 500 m (3.45 mm/10a). The mutations of annual air temperature and precipitation occurred in 1995 and 1990, respectively. The large atmospheric circulation influenced on the mutations of climate. The significant periods of air temperature were 2.4-4.1 years, and annual precipitation was 2.5-7.4 years. Elevation dependency of temperature trend magnitude was not evidently in the Tianshan Mountains. The annual precipitation wetting trend was amplified with elevation in summer and autumn. The strong elevation dependence of precipitation increasing trend appeared in summer.

  1. Spatiotemporal mathematical modelling of mutations of the dhps gene in African Plasmodium falciparum.

    PubMed

    Flegg, Jennifer A; Patil, Anand P; Venkatesan, Meera; Roper, Cally; Naidoo, Inbarani; Hay, Simon I; Sibley, Carol Hopkins; Guerin, Philippe J

    2013-07-17

    Plasmodium falciparum has repeatedly evolved resistance to first-line anti-malarial drugs, thwarting efforts to control and eliminate the disease and in some period of time this contributed largely to an increase in mortality. Here a mathematical model was developed to map the spatiotemporal trends in the distribution of mutations in the P. falciparum dihydropteroate synthetase (dhps) gene that confer resistance to the anti-malarial sulphadoxine, and are a useful marker for the combination of alleles in dhfr and dhps that is highly correlated with resistance to sulphadoxine-pyrimethamine (SP). The aim of this study was to present a proof of concept for spatiotemporal modelling of trends in anti-malarial drug resistance that can be applied to monitor trends in resistance to components of artemisinin combination therapy (ACT) or other anti-malarials, as they emerge or spread. Prevalence measurements of single nucleotide polymorphisms in three codon positions of the dihydropteroate synthetase (dhps) gene from published studies of dhps mutations across Africa were used. A model-based geostatistics approach was adopted to create predictive surfaces of the dhps540E mutation over the spatial domain of sub-Saharan Africa from 1990-2010. The statistical model was implemented within a Bayesian framework and hence quantified the associated uncertainty of the prediction of the prevalence of the dhps540E mutation in sub-Saharan Africa. The maps presented visualize the changing prevalence of the dhps540E mutation in sub-Saharan Africa. These allow prediction of space-time trends in the parasite resistance to SP, and provide probability distributions of resistance prevalence in places where no data are available as well as insight on the spread of resistance in a way that the data alone do not allow. The results of this work will be extended to design optimal sampling strategies for the future molecular surveillance of resistance, providing a proof of concept for similar techniques to design optimal strategies to monitor resistance to ACT.

  2. Impact on disease-free survival of adjuvant erlotinib or gefitinib in patients with resected lung adenocarcinomas that harbor epidermal growth factor receptor (EGFR) mutations

    PubMed Central

    Janjigian, Yelena Y.; Park, Bernard J.; Zakowski, Maureen F.; Ladanyi, Marc; Pao, William; D’Angelo, Sandra P.; Kris, Mark G.; Shen, Ronglai; Zheng, Junting; Azzoli, Christopher G.

    2013-01-01

    Background Patients with stage IV lung adenocarcinoma and EGFR mutation derive clinical benefit from treatment with EGFR tyrosine kinase inhibitors (TKI). Whether treatment with TKI improves outcomes in patients with resected lung adenocarcinoma and EGFR mutation is unknown. Methods Data were analyzed from a surgical database of patients with resected lung adenocarcinoma harboring EGFR exon 19 or 21 mutations. In a multivariate analysis, we evaluated the impact of treatment with adjuvant TKI. Results The cohort consists of 167 patients with completely resected stage I–III lung adenocarcinoma. 93 patients (56%) had exon 19 del, 74 patients (44%) had exon 21 mutations, 56 patients (33%) received perioperative TKI. In a multivariate analysis controlling for sex, stage, type of surgery and adjuvant platinum chemotherapy, the 2-year DFS was 89% for patients treated with adjuvant TKI compared with 72% in control group (hazard ratio [HR] = 0.53; 95% confidence interval [CI] 0.28 to 1.03; p = 0.06). The 2-year OS was 96% with adjuvant EGFR TKI and 90% in the group that did not receive TKI (HR 0.62; 95% CI 0.26 to 1.51; p = 0.296). Conclusions Compared to patients who did not receive adjuvant TKI, we observed a trend toward improvement in disease free survival among individuals with resected stages I–III lung adenocarcinomas harboring mutations in EGFR exons 19 or 21 who received these agents as adjuvant therapy. Based on these data, 320 patients are needed for a randomized trial to prospectively validate this DFS benefit. PMID:21150674

  3. National Prevalence and Trends of HIV Transmitted Drug Resistance in Mexico

    PubMed Central

    Avila-Ríos, Santiago; García-Morales, Claudia; Garrido-Rodríguez, Daniela; Ormsby, Christopher E.; Hernández-Juan, Ramón; Andrade-Villanueva, Jaime; González-Hernández, Luz A.; Torres-Escobar, Indiana; Navarro-Álvarez, Samuel; Reyes-Terán, Gustavo

    2011-01-01

    Background Transmitted drug resistance (TDR) remains an important concern for the management of HIV infection, especially in countries that have recently scaled-up antiretroviral treatment (ART) access. Methodology/Principal Findings We designed a study to assess HIV diversity and transmitted drug resistance (TDR) prevalence and trends in Mexico. 1655 ART-naïve patients from 12 Mexican states were enrolled from 2005 to 2010. TDR was assessed from plasma HIV pol sequences using Stanford scores and the WHO TDR surveillance mutation list. TDR prevalence fluctuations over back-projected dates of infection were tested. HIV subtype B was highly prevalent in Mexico (99.9%). TDR prevalence (Stanford score>15) in the country for the study period was 7.4% (95% CI, 6.2∶8.8) and 6.8% (95% CI, 5.7∶8.2) based on the WHO TDR surveillance mutation list. NRTI TDR was the highest (4.2%), followed by NNRTI (2.5%) and PI (1.7%) TDR. Increasing trends for NNRTI (p = 0.0456) and PI (p = 0.0061) major TDR mutations were observed at the national level. Clustering of viruses containing minor TDR mutations was observed with some apparent transmission pairs and geographical effects. Conclusions TDR prevalence in Mexico remains at the intermediate level and is slightly lower than that observed in industrialized countries. Whether regional variations in TDR trends are associated with differences in antiretroviral drug usage/ART efficacy or with local features of viral evolution remains to be further addressed. PMID:22110765

  4. Cetuximab treatment for metastatic colorectal cancer with KRAS p.G13D mutations improves progression-free survival

    PubMed Central

    OSUMI, HIROKI; SHINOZAKI, EIJI; OSAKO, MASAHIKO; KAWAZOE, YOSHIMASA; OBA, MASARU; MISAKA, TAKAHARU; GOTO, TAKASHI; KAMO, HITOMI; SUENAGA, MITSUKUNI; KUMEKAWA, YOSUKE; OGURA, MARIKO; OZAKA, MASATO; MATSUSAKA, SATOSHI; CHIN, KEISHO; HATAKE, KIYOHIKO; MIZUNUMA, NOBUYUKI

    2015-01-01

    A number of previous studies have reported that 30–50% of patients with colorectal cancer (CRC) harbor Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations, which is a major predictive biomarker of resistance to epidermal growth factor (EGFR)-targeted therapy. Treatment with an anti-EGFR inhibitor is recommended for patients with KRAS wild-type metastatic colorectal cancer (mCRC). A recent retrospective study of cetuximab reported that patients with KRAS p.G13D mutations had better outcomes compared with those with other mutations. The aim of this retrospective study was to assess the prevalence of KRAS p.G13D mutations and evaluate the effectiveness of cetuximab in mCRC patients with KRAS p.G13D or other KRAS mutations. We reviewed the clinical records of 98 mCRC patients with KRAS mutations who were treated between August, 2004 and January, 2011 in four hospitals located in Tokyo and Kyushu Island. We also investigated KRAS mutation subtypes and patient characteristics. In the patients who received cetuximab, univariate and multivariate analyses were performed to assess the effect of KRAS p.G13D mutations on progression-free survival (PFS) and overall survival (OS). Of the 98 patients, 23 (23.5%) had KRAS p.G13D-mutated tumors, whereas 75 (76.5%) had tumors harboring other mutations. Of the 31 patients who received cetuximab, 9 (29.0%) had KRAS p.G13D mutations and 22 (71.0%) had other mutations. There were no significant differences in age, gender, primary site, pathological type, history of chemotherapy, or the combined use of irinotecan between either of the patient subgroups. The univariate analysis revealed no significant difference in PFS or OS between the patients with KRAS p.G13D mutations and those with other mutations (median PFS, 4.5 vs. 2.8 months, respectively; P=0.65; and median OS, 15.3 vs. 8.9 months, respectively; P=0.51). However, the multivariate analysis revealed a trend toward better PFS among patients harboring p.G13D mutations (PFS: HR=0.29; 95% CI: 0.08–1.10; P=0.07; OS: HR=0.23; 95% CI: 0.04–1.54; P=0.13). In conclusion, treatment with cetuximab may be more clinically beneficial in mCRC patients with a KRAS p.G13D mutation, compared with those harboring other mutations. However, further investigation is required to clearly determine the benefits of cetuximab treatment in patients with KRAS p.G13D mutation-positive mCRC. PMID:26623049

  5. Ovarian cancer susceptibility alleles and risk of ovarian cancer in BRCA1 and BRCA2 mutation carriers.

    PubMed

    Ramus, Susan J; Antoniou, Antonis C; Kuchenbaecker, Karoline B; Soucy, Penny; Beesley, Jonathan; Chen, Xiaoqing; McGuffog, Lesley; Sinilnikova, Olga M; Healey, Sue; Barrowdale, Daniel; Lee, Andrew; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben A; Jensen, Uffe Birk; Skytte, Anne-Bine; Caligo, Maria A; Liljegren, Annelie; Lindblom, Annika; Olsson, Håkan; Kristoffersson, Ulf; Stenmark-Askmalm, Marie; Melin, Beatrice; Domchek, Susan M; Nathanson, Katherine L; Rebbeck, Timothy R; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Złowocka, Elżbieta; Gronwald, Jacek; Huzarski, Tomasz; Byrski, Tomasz; Cybulski, Cezary; Toloczko-Grabarek, Aleksandra; Osorio, Ana; Benitez, Javier; Duran, Mercedes; Tejada, Maria-Isabel; Hamann, Ute; Rookus, Matti; van Leeuwen, Flora E; Aalfs, Cora M; Meijers-Heijboer, Hanne E J; van Asperen, Christi J; van Roozendaal, K E P; Hoogerbrugge, Nicoline; Collée, J Margriet; Kriege, Mieke; van der Luijt, Rob B; Peock, Susan; Frost, Debra; Ellis, Steve D; Platte, Radka; Fineberg, Elena; Evans, D Gareth; Lalloo, Fiona; Jacobs, Chris; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Eccles, Diana; Cole, Trevor; Cook, Jackie; Paterson, Joan; Douglas, Fiona; Brewer, Carole; Hodgson, Shirley; Morrison, Patrick J; Walker, Lisa; Porteous, Mary E; Kennedy, M John; Pathak, Harsh; Godwin, Andrew K; Stoppa-Lyonnet, Dominique; Caux-Moncoutier, Virginie; de Pauw, Antoine; Gauthier-Villars, Marion; Mazoyer, Sylvie; Léoné, Mélanie; Calender, Alain; Lasset, Christine; Bonadona, Valérie; Hardouin, Agnès; Berthet, Pascaline; Bignon, Yves-Jean; Uhrhammer, Nancy; Faivre, Laurence; Loustalot, Catherine; Buys, Saundra; Daly, Mary; Miron, Alex; Terry, Mary Beth; Chung, Wendy K; John, Esther M; Southey, Melissa; Goldgar, David; Singer, Christian F; Tea, Muy-Kheng; Pfeiler, Georg; Fink-Retter, Anneliese; Hansen, Thomas v O; Ejlertsen, Bent; Johannsson, Oskar Th; Offit, Kenneth; Kirchhoff, Tomas; Gaudet, Mia M; Vijai, Joseph; Robson, Mark; Piedmonte, Marion; Phillips, Kelly-Anne; Van Le, Linda; Hoffman, James S; Ewart Toland, Amanda; Montagna, Marco; Tognazzo, Silvia; Imyanitov, Evgeny; Issacs, Claudine; Janavicius, Ramunas; Lazaro, Conxi; Blanco, Iganacio; Tornero, Eva; Navarro, Matilde; Moysich, Kirsten B; Karlan, Beth Y; Gross, Jenny; Olah, Edith; Vaszko, Tibor; Teo, Soo-Hwang; Ganz, Patricia A; Beattie, Mary S; Dorfling, Cecelia M; van Rensburg, Elizabeth J; Diez, Orland; Kwong, Ava; Schmutzler, Rita K; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Heidemann, Simone; Niederacher, Dieter; Preisler-Adams, Sabine; Gadzicki, Dorotehea; Varon-Mateeva, Raymonda; Deissler, Helmut; Gehrig, Andrea; Sutter, Christian; Kast, Karin; Fiebig, Britta; Schäfer, Dieter; Caldes, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomäki, Kristiina; Plante, Marie; Spurdle, Amanda B; Neuhausen, Susan L; Ding, Yuan Chun; Wang, Xianshu; Lindor, Noralane; Fredericksen, Zachary; Pankratz, V Shane; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Bonanni, Bernardo; Bernard, Loris; Dolcetti, Riccardo; Papi, Laura; Ottini, Laura; Radice, Paolo; Greene, Mark H; Mai, Phuong L; Andrulis, Irene L; Glendon, Gord; Ozcelik, Hilmi; Pharoah, Paul D P; Gayther, Simon A; Simard, Jacques; Easton, Douglas F; Couch, Fergus J; Chenevix-Trench, Georgia

    2012-04-01

    Germline mutations in BRCA1 and BRCA2 are associated with increased risks of breast and ovarian cancer. A genome-wide association study (GWAS) identified six alleles associated with risk of ovarian cancer for women in the general population. We evaluated four of these loci as potential modifiers of ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Four single-nucleotide polymorphisms (SNPs), rs10088218 (at 8q24), rs2665390 (at 3q25), rs717852 (at 2q31), and rs9303542 (at 17q21), were genotyped in 12,599 BRCA1 and 7,132 BRCA2 carriers, including 2,678 ovarian cancer cases. Associations were evaluated within a retrospective cohort approach. All four loci were associated with ovarian cancer risk in BRCA2 carriers; rs10088218 per-allele hazard ratio (HR) = 0.81 (95% CI: 0.67-0.98) P-trend = 0.033, rs2665390 HR = 1.48 (95% CI: 1.21-1.83) P-trend = 1.8 × 10(-4), rs717852 HR = 1.25 (95% CI: 1.10-1.42) P-trend = 6.6 × 10(-4), rs9303542 HR = 1.16 (95% CI: 1.02-1.33) P-trend = 0.026. Two loci were associated with ovarian cancer risk in BRCA1 carriers; rs10088218 per-allele HR = 0.89 (95% CI: 0.81-0.99) P-trend = 0.029, rs2665390 HR = 1.25 (95% CI: 1.10-1.42) P-trend = 6.1 × 10(-4). The HR estimates for the remaining loci were consistent with odds ratio estimates for the general population. The identification of multiple loci modifying ovarian cancer risk may be useful for counseling women with BRCA1 and BRCA2 mutations regarding their risk of ovarian cancer. © 2012 Wiley Periodicals, Inc.

  6. Ovarian Cancer Susceptibility Alleles and Risk of Ovarian Cancer in BRCA1 and BRCA2 Mutation Carriers

    PubMed Central

    Ramus, Susan J.; Antoniou, Antonis C; Kuchenbaecker, Karoline B.; Soucy, Penny; Beesley, Jonathan; Chen, Xiaoqing; McGuffog, Lesley; Sinilnikova, Olga M.; Healey, Sue; Barrowdale, Daniel; Lee, Andrew; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben A.; Jensen, Uffe Birk; Skytte, Anne-Bine; Caligo, Maria A.; Liljegren, Annelie; Lindblom, Annika; Olsson, Håkan; Kristoffersson, Ulf; Stenmark-Askmalm, Marie; Melin, Beatrice; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Złowocka, Elżbieta; Gronwald, Jacek; Huzarski, Tomasz; Byrski, Tomasz; Cybulski, Cezary; Toloczko-Grabarek, Aleksandra; Osorio, Ana; Benitez, Javier; Duran, Mercedes; Tejada, Maria-Isabel; Hamann, Ute; Rookus, Matti; van Leeuwen, Flora E.; Aalfs, Cora M.; Meijers-Heijboer, Hanne E.J.; van Asperen, Christi J.; van Roozendaal, K.E.P.; Hoogerbrugge, Nicoline; Collée, J. Margriet; Kriege, Mieke; van der Luijt, Rob B.; Peock, Susan; Frost, Debra; Ellis, Steve D.; Platte, Radka; Fineberg, Elena; Evans, D. Gareth; Lalloo, Fiona; Jacobs, Chris; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Eccles, Diana; Cole, Trevor; Cook, Jackie; Paterson, Joan; Douglas, Fiona; Brewer, Carole; Hodgson, Shirley; Morrison, Patrick J.; Walker, Lisa; Porteous, Mary E.; Kennedy, M. John; Pathak, Harsh; Godwin, Andrew K.; Stoppa-Lyonnet, Dominique; Caux-Moncoutier, Virginie; de Pauw, Antoine; Gauthier-Villars, Marion; Mazoyer, Sylvie; Léoné, Mélanie; Calender, Alain; Lasset, Christine; Bonadona, Valérie; Hardouin, Agnès; Berthet, Pascaline; Bignon, Yves-Jean; Uhrhammer, Nancy; Faivre, Laurence; Loustalot, Catherine; Buys, Saundra; Daly, Mary; Miron, Alex; Terry, Mary Beth; Chung, Wendy K.; John, Esther M; Southey, Melissa; Goldgar, David; Singer, Christian F; Tea, Muy-Kheng; Pfeiler, Georg; Fink-Retter, Anneliese; Hansen, Thomas v. O.; Ejlertsen, Bent; Johannsson, Oskar Th.; Offit, Kenneth; Kirchhoff, Tomas; Gaudet, Mia M.; Vijai, Joseph; Robson, Mark; Piedmonte, Marion; Phillips, Kelly-Anne; Van Le, Linda; Hoffman, James S; Toland, Amanda Ewart; Montagna, Marco; Tognazzo, Silvia; Imyanitov, Evgeny; Isaacs, Claudine; Janavicius, Ramunas; Lazaro, Conxi; Blanco, Ignacio; Tornero, Eva; Navarro, Matilde; Moysich, Kirsten B.; Karlan, Beth Y.; Gross, Jenny; Olah, Edith; Vaszko, Tibor; Teo, Soo-Hwang; Ganz, Patricia A.; Beattie, Mary S.; Dorfling, Cecelia M; van Rensburg, Elizabeth J; Diez, Orland; Kwong, Ava; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Heidemann, Simone; Niederacher, Dieter; Preisler-Adams, Sabine; Gadzicki, Dorotehea; Varon-Mateeva, Raymonda; Deissler, Helmut; Gehrig, Andrea; Sutter, Christian; Kast, Karin; Fiebig, Britta; Schäfer, Dieter; Caldes, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomäki, Kristiina; Plante, Marie; Spurdle, Amanda B.; Neuhausen, Susan L.; Ding, Yuan Chun; Wang, Xianshu; Lindor, Noralane; Fredericksen, Zachary; Pankratz, V. Shane; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Bonanni, Bernardo; Bernard, Loris; Dolcetti, Riccardo; Papi, Laura; Ottini, Laura; Radice, Paolo; Greene, Mark H.; Mai, Phuong L.; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Pharoah, Paul D.P.; Gayther, Simon A.; Simard, Jacques; Easton, Douglas F.; Couch, Fergus J.; Chenevix-Trench, Georgia

    2012-01-01

    Germline mutations in BRCA1 and BRCA2 are associated with increased risks of breast and ovarian cancer. A genome-wide association study (GWAS) identified six alleles associated with risk of ovarian cancer for women in the general population. We evaluated four of these loci as potential modifiers of ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Four single-nucleotide polymorphisms (SNPs), rs10088218 (at 8q24), rs2665390 (at 3q25), rs717852 (at 2q31), and rs9303542 (at 17q21), were genotyped in 12,599 BRCA1 and 7,132 BRCA2 carriers, including 2,678 ovarian cancer cases. Associations were evaluated within a retrospective cohort approach. All four loci were associated with ovarian cancer risk in BRCA2 carriers; rs10088218 per-allele hazard ratio (HR) = 0.81 (95% CI: 0.67–0.98) P-trend = 0.033, rs2665390 HR = 1.48 (95% CI: 1.21–1.83) P-trend = 1.8 × 10−4, rs717852 HR = 1.25 (95% CI: 1.10–1.42) P-trend = 6.6 × 10−4, rs9303542 HR = 1.16 (95% CI: 1.02–1.33) P-trend = 0.026. Two loci were associated with ovarian cancer risk in BRCA1 carriers; rs10088218 per-allele HR = 0.89 (95% CI: 0.81–0.99) P-trend = 0.029, rs2665390 HR = 1.25 (95% CI: 1.10–1.42) P-trend = 6.1 × 10−4. The HR estimates for the remaining loci were consistent with odds ratio estimates for the general population. The identification of multiple loci modifying ovarian cancer risk may be useful for counseling women with BRCA1 and BRCA2 mutations regarding their risk of ovarian cancer. PMID:22253144

  7. Effects of Sublethal Fungicides on Mutation Rates and Genomic Variation in Fungal Plant Pathogen, Sclerotinia sclerotiorum.

    PubMed

    Amaradasa, B Sajeewa; Everhart, Sydney E

    2016-01-01

    Pathogen exposure to sublethal doses of fungicides may result in mutations that may represent an important and largely overlooked mechanism of introducing new genetic variation into strictly clonal populations, including acquisition of fungicide resistance. We tested this hypothesis using the clonal plant pathogen, Sclerotinia sclerotiorum. Nine susceptible isolates were exposed independently to five commercial fungicides with different modes of action: boscalid (respiration inhibitor), iprodione (unclear mode of action), thiophanate methyl (inhibition of microtubulin synthesis) and azoxystrobin and pyraclostrobin (quinone outside inhibitors). Mycelium of each isolate was inoculated onto a fungicide gradient and sub-cultured from the 50-100% inhibition zone for 12 generations and experiment repeated. Mutational changes were assessed for all isolates at six neutral microsatellite (SSR) loci and for a subset of isolates using amplified fragment length polymorphisms (AFLPs). SSR analysis showed 12 of 85 fungicide-exposed isolates had a total of 127 stepwise mutations with 42 insertions and 85 deletions. Most stepwise deletions were in iprodione- and azoxystrobin-exposed isolates (n = 40/85 each). Estimated mutation rates were 1.7 to 60-fold higher for mutated loci compared to that expected under neutral conditions. AFLP genotyping of 33 isolates (16 non-exposed control and 17 fungicide exposed) generated 602 polymorphic alleles. Cluster analysis with principal coordinate analysis (PCoA) and discriminant analysis of principal components (DAPC) identified fungicide-exposed isolates as a distinct group from non-exposed control isolates (PhiPT = 0.15, P = 0.001). Dendrograms based on neighbor-joining also supported allelic variation associated with fungicide-exposure. Fungicide sensitivity of isolates measured throughout both experiments did not show consistent trends. For example, eight isolates exposed to boscalid had higher EC50 values at the end of the experiment, and when repeated, only one isolate had higher EC50 while most isolates showed no difference. Results of this support the hypothesis that sublethal fungicide stress increases mutation rates in a largely clonal plant pathogen under in vitro conditions. Collectively, this work will aid our understanding how non-lethal fungicide exposure may affect genomic variation, which may be an important mechanism of novel trait emergence, adaptation, and evolution for clonal organisms.

  8. Effects of Sublethal Fungicides on Mutation Rates and Genomic Variation in Fungal Plant Pathogen, Sclerotinia sclerotiorum

    PubMed Central

    Amaradasa, B. Sajeewa

    2016-01-01

    Pathogen exposure to sublethal doses of fungicides may result in mutations that may represent an important and largely overlooked mechanism of introducing new genetic variation into strictly clonal populations, including acquisition of fungicide resistance. We tested this hypothesis using the clonal plant pathogen, Sclerotinia sclerotiorum. Nine susceptible isolates were exposed independently to five commercial fungicides with different modes of action: boscalid (respiration inhibitor), iprodione (unclear mode of action), thiophanate methyl (inhibition of microtubulin synthesis) and azoxystrobin and pyraclostrobin (quinone outside inhibitors). Mycelium of each isolate was inoculated onto a fungicide gradient and sub-cultured from the 50–100% inhibition zone for 12 generations and experiment repeated. Mutational changes were assessed for all isolates at six neutral microsatellite (SSR) loci and for a subset of isolates using amplified fragment length polymorphisms (AFLPs). SSR analysis showed 12 of 85 fungicide-exposed isolates had a total of 127 stepwise mutations with 42 insertions and 85 deletions. Most stepwise deletions were in iprodione- and azoxystrobin-exposed isolates (n = 40/85 each). Estimated mutation rates were 1.7 to 60-fold higher for mutated loci compared to that expected under neutral conditions. AFLP genotyping of 33 isolates (16 non-exposed control and 17 fungicide exposed) generated 602 polymorphic alleles. Cluster analysis with principal coordinate analysis (PCoA) and discriminant analysis of principal components (DAPC) identified fungicide-exposed isolates as a distinct group from non-exposed control isolates (PhiPT = 0.15, P = 0.001). Dendrograms based on neighbor-joining also supported allelic variation associated with fungicide-exposure. Fungicide sensitivity of isolates measured throughout both experiments did not show consistent trends. For example, eight isolates exposed to boscalid had higher EC50 values at the end of the experiment, and when repeated, only one isolate had higher EC50 while most isolates showed no difference. Results of this support the hypothesis that sublethal fungicide stress increases mutation rates in a largely clonal plant pathogen under in vitro conditions. Collectively, this work will aid our understanding how non-lethal fungicide exposure may affect genomic variation, which may be an important mechanism of novel trait emergence, adaptation, and evolution for clonal organisms. PMID:27959950

  9. Trends in drug resistance mutations in antiretroviral-naïve intravenous drug users of Rio de Janeiro.

    PubMed

    Maia Teixeira, Sylvia Lopes; Bastos, Francisco Inácio; Hacker, Mariana A; Guimarães, Monick Lindenmeyer; Morgado, Mariza Gonçalves

    2006-06-01

    DNA sequencing of a pol gene fragment from drug-naive injecting drug users samples obtained at two time points of the Brazilian AIDS epidemic (Pre-HAART era: 1994 to early 1997, n = 27; post-HAART era: 1999-2001, n = 38) was undertaken to assess HIV-1 antiretroviral drug resistance mutations and subtyping profiles. Genotypic analysis revealed the presence of PR primary L90M, D30N, M46I, and V82A mutations in 7.9% of the post-HAART group, and a high frequency of secondary mutations (84.2%). Nucleoside RT-associated mutations were observed in 13.2%. In the pre-HAART group, a higher frequency of RT mutations was observed (22.2%) and no PR primary mutations were found, in agreement with the introduction of protease inhibitors (PIs) in therapy during the same period. The identification of 7.9% of drug-naive injecting drug users already bearing RT/PR primary resistance mutations in the post-HAART era group constitutes a major concern in terms of dissemination of drug resistant viruses. The resistance mutations profile of the individuals may reflect the context of antiretroviral treatment in Brazil at the sample collection periods (1994-1997 and 1999-2001). In spite of the differences observed in the drug resistance profiles, similar frequencies of subtype B (63.0 vs. 73.7%), F (22.2 vs. 10.5%), and recombinant B/F (14.8 vs. 15.8%) viruses were found, respectively, in the pre- and post-HAART groups.

  10. Exome sequencing of oral squamous cell carcinoma in users of Arabian snuff reveals novel candidates for driver genes.

    PubMed

    Al-Hebshi, Nezar Noor; Li, Shiyong; Nasher, Akram Thabet; El-Setouhy, Maged; Alsanosi, Rashad; Blancato, Jan; Loffredo, Christopher

    2016-07-15

    The study sought to identify genetic aberrations driving oral squamous cell carcinoma (OSCC) development among users of shammah, an Arabian preparation of smokeless tobacco. Twenty archival OSCC samples, 15 of which with a history of shammah exposure, were whole-exome sequenced at an average depth of 127×. Somatic mutations were identified using a novel, matched controls-independent filtration algorithm. CODEX and Exomedepth coupled with a novel, Database of Genomic Variant-based filter were employed to call somatic gene-copy number variations. Significantly mutated genes were identified with Oncodrive FM and the Youn and Simon's method. Candidate driver genes were nominated based on Gene Set Enrichment Analysis. The observed mutational spectrum was similar to that reported by the TCGA project. In addition to confirming known genes of OSCC (TP53, CDKNA2, CASP8, PIK3CA, HRAS, FAT1, TP63, CCND1 and FADD) the analysis identified several candidate novel driver events including mutations of NOTCH3, CSMD3, CRB1, CLTCL1, OSMR and TRPM2, amplification of the proto-oncogenes FOSL1, RELA, TRAF6, MDM2, FRS2 and BAG1, and deletion of the recently described tumor suppressor SMARCC1. Analysis also revealed significantly altered pathways not previously implicated in OSCC including Oncostatin-M signalling pathway, AP-1 and C-MYB transcription networks and endocytosis. There was a trend for higher number of mutations, amplifications and driver events in samples with history of shammah exposure particularly those that tested EBV positive, suggesting an interaction between tobacco exposure and EBV. The work provides further evidence for the genetic heterogeneity of oral cancer and suggests shammah-associated OSCC is characterized by extensive amplification of oncogenes. © 2016 UICC.

  11. Trends in Drug Resistance Prevalence, HIV-1 Variants and Clinical Status in HIV-1-infected Pediatric Population in Madrid: 1993 to 2015 Analysis.

    PubMed

    Rojas Sánchez, Patricia; Domínguez, Sara; Jiménez De Ory, Santiago; Prieto, Luis; Rojo, Pablo; Mellado, Pepa; Navarro, Marisa; Delgado, Rafael; Ramos, José Tomas; Holguín, África

    2018-03-01

    The expanded use of long-term antiretroviral treatments in infected children may exacerbate the problem of drug resistance mutations selection, which can compromise treatment efficiency. We describe the temporal trends of HIV drug resistance mutations and the HIV-1 variants during 23 years (1993 to March 2016) in the Madrid cohort of HIV-infected children and adolescents. We selected patients with at least one available HIV-1 pol sequence/genotypic resistance profile, establishing different groups according to the sampling year of first resistance data. We determined the prevalence of transmitted drug resistance mutations or acquired drug resistance mutations (DRM), the drug susceptibility among resistant viruses and HIV-1 variants characterized by phylogeny across time. A total of 245 pediatric patients were selected, being mainly female, Spanish native, perinatally infected and carrying HIV-1 subtype B. At first sampling, most pediatric patients were on antiretroviral therapy and heavily pretreated. During 1993 to 2016, transmitted drug resistance mutations was found in 13 (26%) of 50 naive children [non-nucleoside reverse transcriptase inhibitors (NNRTI), 14.6%; nucleoside reverse transcriptase inhibitors (NRTI), 10.4%; protease inhibitors, 8.7%]. DRM appeared in 139 (73.2%) of 190 pretreated patients (NRTI, 64.5%; NNRTI, 36%; protease inhibitors, 35.1%). DRM to NNRTI was higher in last 5 years. Non-B variants infected 14.5% of children and adolescents of the Madrid Cohort, being mainly intersubtype recombinants (76.5%), including complex unique recombinant strains. They caused 3.4% infections before 2000, rising to 85.7% during 2011 to 2016. Periodic surveillance resistance and molecular epidemiology studies in long-term pretreated HIV-infected pediatric populations are required to optimize treatment regimens. Results will permit a better understanding of long-time dynamics of viral resistance and HIV-1 variants in Spain.

  12. Premature primary tooth eruption in cognitive/motor-delayed ADNP-mutated children

    PubMed Central

    Gozes, I; Van Dijck, A; Hacohen-Kleiman, G; Grigg, I; Karmon, G; Giladi, E; Eger, M; Gabet, Y; Pasmanik-Chor, M; Cappuyns, E; Elpeleg, O; Kooy, R F; Bedrosian-Sermone, S

    2017-01-01

    A major flaw in autism spectrum disorder (ASD) management is late diagnosis. Activity-dependent neuroprotective protein (ADNP) is a most frequent de novo mutated ASD-related gene. Functionally, ADNP protects nerve cells against electrical blockade. In mice, complete Adnp deficiency results in dysregulation of over 400 genes and failure to form a brain. Adnp haploinsufficiency results in cognitive and social deficiencies coupled to sex- and age-dependent deficits in the key microtubule and ion channel pathways. Here, collaborating with parents/caregivers globally, we discovered premature tooth eruption as a potential early diagnostic biomarker for ADNP mutation. The parents of 44/54 ADNP-mutated children reported an almost full erupted dentition by 1 year of age, including molars and only 10 of the children had teeth within the normal developmental time range. Looking at Adnp-deficient mice, by computed tomography, showed significantly smaller dental sacs and tooth buds at 5 days of age in the deficient mice compared to littermate controls. There was only trending at 2 days, implicating age-dependent dysregulation of teething in Adnp-deficient mice. Allen Atlas analysis showed Adnp expression in the jaw area. RNA sequencing (RNAseq) and gene array analysis of human ADNP-mutated lymphoblastoids, whole-mouse embryos and mouse brains identified dysregulation of bone/nervous system-controlling genes resulting from ADNP mutation/deficiency (for example, BMP1 and BMP4). AKAP6, discovered here as a major gene regulated by ADNP, also links cognition and bone maintenance. To the best of our knowledge, this is the first time that early primary (deciduous) teething is related to the ADNP syndrome, providing for early/simple diagnosis and paving the path to early intervention/specialized treatment plan. PMID:28221363

  13. Similarity is not enough: Tipping points of Ebola Zaire mortalities

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2015-06-01

    In early 2014 an outbreak of a slightly mutated Zaire Ebola subtype appeared in West Africa which is less virulent than 1976 and 1994 strains. The numbers of cases per year appear to be ∼1000 times larger than the earlier strains, suggesting a greatly enhanced transmissibility. Although the fraction of the 2014 spike glycoprotein mutations is very small (∼3%), the mortality is significantly reduced, while the transmission appears to have increased strongly. Bioinformatic scaling had previously shown similar inversely correlated trends in virulence and transmission in N1 (H1N1) and N2 (H3N2) influenza spike glycoprotein mutations. These trends appear to be related to various external factors (migration, availability of pure water, and vaccination programs). The molecular mechanisms for Ebola's mutational response involve mainly changes in the disordered mucin-like domain (MLD) of its spike glycoprotein amino acids. The MLD has been observed to form the tip of an oligomeric amphiphilic wedge that selectively pries apart cell-cell interfaces via an oxidative mechanism.

  14. Differential effects of FGFR2 mutations on syndactyly and cleft palate in Apert syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaney, S.F.; Oldridge, M.; Wilkie, A.O.M.

    1996-05-01

    Apert syndrome is a distinctive human malformation characterized by craniosynostosis and severe syndactyly of the hands and feet. It is caused by specific missense substitutions involving adjacent amino acids (Ser252Trp or Pro253Arg) in the linker between the second and third extracellular immunoglobulin domains of fibroblast growth factor receptor 2 (FGFR2). We have developed a simple PCR assay for these mutations in genomic DNA, based on the creation of novel SfiI and BstUI restriction sites. Analysis of DNA from 70 unrelated patients with Apert syndrome showed that 45 had the Ser252Trp mutation and 25 had the Pro253Arg mutation. Phenotypic differences betweenmore » these two groups of patients were investigated. Significant differences were found for severity of syndactyly and presence of cleft palate. The syndactyly was more severe with the Pro253Arg mutation, for both the hands and the feet. In contrast, cleft palate was significantly more common in the Ser252Trp patients. No convincing differences were found in the prevalence of other malformations associated with Apert syndrome. We conclude that, although the phenotype attributable to the two mutations is very similar, there are subtle differences. The opposite trends for severity of syndactyly and cleft palate in relation to the two mutations may relate to the varying patterns of temporal and tissue-specific expression of different fibroblast growth factors, the ligands for FGFR2. 54 refs., 5 figs., 3 tabs.« less

  15. Experimental and molecular dynamics studies showed that CBP KIX mutation affects the stability of CBP:c-Myb complex.

    PubMed

    Odoux, Anne; Jindal, Darren; Tamas, Tamara C; Lim, Benjamin W H; Pollard, Drake; Xu, Wu

    2016-06-01

    The coactivators CBP (CREBBP) and its paralog p300 (EP300), two conserved multi-domain proteins in eukaryotic organisms, regulate gene expression in part by binding DNA-binding transcription factors. It was previously reported that the CBP/p300 KIX domain mutant (Y650A, A654Q, and Y658A) altered both c-Myb-dependent gene activation and repression, and that mice with these three point mutations had reduced numbers of platelets, B cells, T cells, and red blood cells. Here, our transient transfection assays demonstrated that mouse embryonic fibroblast cells containing the same mutations in the KIX domain and without a wild-type allele of either CBP or p300, showed decreased c-Myb-mediated transcription. Dr. Wright's group solved a 3-D structure of the mouse CBP:c-Myb complex using NMR. To take advantage of the experimental structure and function data and improved theoretical calculation methods, we performed MD simulations of CBP KIX, CBP KIX with the mutations, and c-Myb, as well as binding energy analysis for both the wild-type and mutant complexes. The binding between CBP and c-Myb is mainly mediated by a shallow hydrophobic groove in the center where the side-chain of Leu302 of c-Myb plays an essential role and two salt bridges at the two ends. We found that the KIX mutations slightly decreased stability of the CBP:c-Myb complex as demonstrated by higher binding energy calculated using either MM/PBSA or MM/GBSA methods. More specifically, the KIX mutations affected the two salt bridges between CBP and c-Myb (CBP-R646 and c-Myb-E306; CBP-E665 and c-Myb-R294). Our studies also revealed differing dynamics of the hydrogen bonds between CBP-R646 and c-Myb-E306 and between CBP-E665 and c-Myb-R294 caused by the CBP KIX mutations. In the wild-type CBP:c-Myb complex, both of the hydrogen bonds stayed relatively stable. In contrast, in the mutant CBP:c-Myb complex, hydrogen bonds between R646 and E306 showed an increasing trend followed by a decreasing trend, and hydrogen bonds of the E665:R294 pair exhibited a fast decreasing trend over time during MD simulations. In addition, our data showed that the KIX mutations attenuate CBP's hydrophobic interaction with Leu302 of c-Myb. Furthermore, our 500-ns MD simulations showed that CBP KIX with the mutations has a slightly lower potential energy than wild-type CBP. The CBP KIX structures with or without its interacting protein c-Myb are different for both wild-type and mutant CBP KIX, and this is likewise the case for c-Myb with or without CBP, suggesting that the presence of an interacting protein influences the structure of a protein. Taken together, these analyses will improve our understanding of the exact functions of CBP and its interaction with c-Myb. Published by Elsevier Ltd.

  16. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with I-131 radiation dose and other characteristics

    PubMed Central

    Leeman-Neill, Rebecca J.; Brenner, Alina V.; Little, Mark P.; Bogdanova, Tetiana I.; Hatch, Maureen; Zurnadzy, Liudmyla Y.; Mabuchi, Kiyohiko; Tronko, Mykola D.; Nikiforov, Yuri E.

    2012-01-01

    Background Childhood exposure to I-131 from the 1986 Chernobyl accident led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited. Methods We performed mutational analysis of 62 PTCs diagnosed in a Ukrainian cohort of patients who were <18 y.o. in 1986 and received 0.008-8.6 Gy of I-131 to the thyroid and explored associations between mutation types and I-131 dose and other characteristics. Results RET/PTC rearrangements were most common (35%), followed by BRAF (15%) and RAS (8%) point mutations. Two tumors carrying PAX8/PPARγ rearrangement were identified. We found a significant negative association with I-131 dose for BRAF and RAS point mutations and a significant concave association with I-131 dose, with an inflection point at 1.6 Gy and odds ratio 2.1, based on a linear-quadratic model for RET/PTC and PAX8/PPARγ rearrangements. The trends with dose were significantly different between tumors with point mutations and rearrangements. Compared to point mutations, rearrangements were associated with residence in the relatively iodine deficient Zhytomyr region, younger age at exposure or surgery, and male gender. Conclusions Our results provide the first demonstration of PAX8/PPARγ rearrangements in post-Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with I-131 dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and I-131 exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients. PMID:23436219

  17. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers.

    PubMed

    Kuchenbaecker, Karoline B; Hopper, John L; Barnes, Daniel R; Phillips, Kelly-Anne; Mooij, Thea M; Roos-Blom, Marie-José; Jervis, Sarah; van Leeuwen, Flora E; Milne, Roger L; Andrieu, Nadine; Goldgar, David E; Terry, Mary Beth; Rookus, Matti A; Easton, Douglas F; Antoniou, Antonis C; McGuffog, Lesley; Evans, D Gareth; Barrowdale, Daniel; Frost, Debra; Adlard, Julian; Ong, Kai-Ren; Izatt, Louise; Tischkowitz, Marc; Eeles, Ros; Davidson, Rosemarie; Hodgson, Shirley; Ellis, Steve; Nogues, Catherine; Lasset, Christine; Stoppa-Lyonnet, Dominique; Fricker, Jean-Pierre; Faivre, Laurence; Berthet, Pascaline; Hooning, Maartje J; van der Kolk, Lizet E; Kets, Carolien M; Adank, Muriel A; John, Esther M; Chung, Wendy K; Andrulis, Irene L; Southey, Melissa; Daly, Mary B; Buys, Saundra S; Osorio, Ana; Engel, Christoph; Kast, Karin; Schmutzler, Rita K; Caldes, Trinidad; Jakubowska, Anna; Simard, Jacques; Friedlander, Michael L; McLachlan, Sue-Anne; Machackova, Eva; Foretova, Lenka; Tan, Yen Y; Singer, Christian F; Olah, Edith; Gerdes, Anne-Marie; Arver, Brita; Olsson, Håkan

    2017-06-20

    The clinical management of BRCA1 and BRCA2 mutation carriers requires accurate, prospective cancer risk estimates. To estimate age-specific risks of breast, ovarian, and contralateral breast cancer for mutation carriers and to evaluate risk modification by family cancer history and mutation location. Prospective cohort study of 6036 BRCA1 and 3820 BRCA2 female carriers (5046 unaffected and 4810 with breast or ovarian cancer or both at baseline) recruited in 1997-2011 through the International BRCA1/2 Carrier Cohort Study, the Breast Cancer Family Registry and the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, with ascertainment through family clinics (94%) and population-based studies (6%). The majority were from large national studies in the United Kingdom (EMBRACE), the Netherlands (HEBON), and France (GENEPSO). Follow-up ended December 2013; median follow-up was 5 years. BRCA1/2 mutations, family cancer history, and mutation location. Annual incidences, standardized incidence ratios, and cumulative risks of breast, ovarian, and contralateral breast cancer. Among 3886 women (median age, 38 years; interquartile range [IQR], 30-46 years) eligible for the breast cancer analysis, 5066 women (median age, 38 years; IQR, 31-47 years) eligible for the ovarian cancer analysis, and 2213 women (median age, 47 years; IQR, 40-55 years) eligible for the contralateral breast cancer analysis, 426 were diagnosed with breast cancer, 109 with ovarian cancer, and 245 with contralateral breast cancer during follow-up. The cumulative breast cancer risk to age 80 years was 72% (95% CI, 65%-79%) for BRCA1 and 69% (95% CI, 61%-77%) for BRCA2 carriers. Breast cancer incidences increased rapidly in early adulthood until ages 30 to 40 years for BRCA1 and until ages 40 to 50 years for BRCA2 carriers, then remained at a similar, constant incidence (20-30 per 1000 person-years) until age 80 years. The cumulative ovarian cancer risk to age 80 years was 44% (95% CI, 36%-53%) for BRCA1 and 17% (95% CI, 11%-25%) for BRCA2 carriers. For contralateral breast cancer, the cumulative risk 20 years after breast cancer diagnosis was 40% (95% CI, 35%-45%) for BRCA1 and 26% (95% CI, 20%-33%) for BRCA2 carriers (hazard ratio [HR] for comparing BRCA2 vs BRCA1, 0.62; 95% CI, 0.47-0.82; P=.001 for difference). Breast cancer risk increased with increasing number of first- and second-degree relatives diagnosed as having breast cancer for both BRCA1 (HR for ≥2 vs 0 affected relatives, 1.99; 95% CI, 1.41-2.82; P<.001 for trend) and BRCA2 carriers (HR, 1.91; 95% CI, 1.08-3.37; P=.02 for trend). Breast cancer risk was higher if mutations were located outside vs within the regions bounded by positions c.2282-c.4071 in BRCA1 (HR, 1.46; 95% CI, 1.11-1.93; P=.007) and c.2831-c.6401 in BRCA2 (HR, 1.93; 95% CI, 1.36-2.74; P<.001). These findings provide estimates of cancer risk based on BRCA1 and BRCA2 mutation carrier status using prospective data collection and demonstrate the potential importance of family history and mutation location in risk assessment.

  18. Increased pfmdr1 gene copy number and the decline in pfcrt and pfmdr1 resistance alleles in Ghanaian Plasmodium falciparum isolates after the change of anti-malarial drug treatment policy.

    PubMed

    Duah, Nancy O; Matrevi, Sena A; de Souza, Dziedzom K; Binnah, Daniel D; Tamakloe, Mary M; Opoku, Vera S; Onwona, Christiana O; Narh, Charles A; Quashie, Neils B; Abuaku, Benjamin; Duplessis, Christopher; Kronmann, Karl C; Koram, Kwadwo A

    2013-10-30

    With the introduction of artemisinin-based combination therapy (ACT) in 2005, monitoring of anti-malarial drug efficacy, which includes the use of molecular tools to detect known genetic markers of parasite resistance, is important for first-hand information on the changes in parasite susceptibility to drugs in Ghana. This study investigated the Plasmodium falciparum multidrug resistance gene (pfmdr1) copy number, mutations and the chloroquine resistance transporter gene (pfcrt) mutations in Ghanaian isolates collected in seven years to detect the trends in prevalence of mutations. Archived filter paper blood blots collected from children aged below five years with uncomplicated malaria in 2003-2010 at sentinel sites were used. Using quantitative real-time polymerase chain reaction (qRT-PCR), 756 samples were assessed for pfmdr1 gene copy number. PCR and restriction fragment length polymorphism (RFLP) were used to detect alleles of pfmdr1 86 in 1,102 samples, pfmdr1 184, 1034, 1042 and 1246 in 832 samples and pfcrt 76 in 1,063 samples. Merozoite surface protein 2 (msp2) genotyping was done to select monoclonal infections for copy number analysis. The percentage of isolates with increased pfmdr1 copy number were 4, 27, 9, and 18% for 2003-04, 2005-06, 2007-08 and 2010, respectively. Significant increasing trends for prevalence of pfmdr1 N86 (×(2) = 96.31, p <0.001) and pfcrt K76 (×(2) = 64.50, p <0.001) and decreasing trends in pfmdr1 Y86 (x(2) = 38.52, p <0.001) and pfcrt T76 (x(2) = 43.49, p <0.001) were observed from 2003-2010. The pfmdr1 F184 and Y184 prevalence showed an increasing and decreasing trends respectively but were not significant (×(2) = 7.39,p=0.060; ×(2) = 7.49, p = 0.057 respectively). The pfmdr1 N86-F184-D1246 haplotype, which is alleged to be selected by artemether-lumefantrine showed a significant increasing trend (×(2) = 20.75, p < 0.001). Increased pfmdr1 gene copy number was observed in the isolates analysed and this finding has implications for the use of ACT in the country although no resistance has been reported. The decreasing trend in the prevalence of chloroquine resistance markers after change of treatment policy presents the possibility for future introduction of chloroquine as prophylaxis for malaria risk groups such as children and pregnant women in Ghana.

  19. The novel complex allele [A238V;F508del] of the CFTR gene: clinical phenotype and possible implications for cystic fibrosis etiological therapies.

    PubMed

    Diana, Anna; Polizzi, Angela Maria; Santostasi, Teresa; Ratclif, Luigi; Pantaleo, Maria Giuseppina; Leonetti, Giuseppina; Iusco, Danila Rosa; Gallo, Crescenzio; Conese, Massimo; Manca, Antonio

    2016-06-01

    Few mutations in cis have been annotated for F508del homozygous patients. Southern Italy patients who at a first analysis appeared homozygous for the F508del mutation (n=63) or compound heterozygous for the F508del and another mutation in the cystic fibrosis transmembrane conductance regulator gene (n=155) were searched for the A238V mutation in exon 6. The allelic frequency of the complex allele [A238V;F508del] was 0.04. When the whole data set was used (comprised also of 56 F508del/F508del and 34 F508del/other mutation controls), no differences reached the statistical significance in the clinical parameters, except chloride concentrations which were lower in [A238V;F508del]/other mutation compared with F508del/other mutation (P=0.03). The two study groups presented less complications than the control groups. Within the minimal data set (34 F508del/F508del, 27 F508del/other mutation, 4 [A238V;F508del]/F508del cases and 5 [A238V;F508del]/other mutation cases); that is, presenting all the variables in each patient, forced expiratory volume in 1 s and forced vital capacity presented a trend to lower levels in the study groups in comparison with the F508del/F508del group, and C-reactive protein approximated statistically significant higher levels in the [A238V;F508del]/other mutation as compared with F508del/F508del patients (P=0.09). The analysis of statistical dependence among the variables showed a significant anticorrelation between chloride and body mass index in the [A238V;F508del]/other mutation group. In conclusion, the complex allele [A238V;F508del] seems to be associated with less general complications than in the control groups, on the other hand possibly giving a worse pulmonary phenotype and higher systemic/local inflammatory response. These findings have implications for the correct recruitment and clinical response of F508del patients in the clinical trials testing the new etiological drugs for cystic fibrosis.

  20. Functional Proteomic Analysis of Signaling Networks and Response to Targeted Therapy

    DTIC Science & Technology

    2008-03-01

    of biochemical networks. Trends Biochemical Sci 31: 284–291. 56. Blinov ML, Faeder JR, Goldstein B , Hlavacek WS (2006) A network model of early events...activation is dependent on the nature of connectivity of the two receptors to B -Raf and C-Raf, which form a partially incoherent bifan. The incoherent bifan...Wooster, R., Stratton, M. R., and Futreal, P. A. (2002) Mutations of the BRaf gene in human cancer. Nature 417, 949–954 11. Goydos, J. S., Mann, B

  1. A Novel Founder Mutation in MYBPC3: Phenotypic Comparison With the Most Prevalent MYBPC3 Mutation in Spain.

    PubMed

    Sabater-Molina, María; Saura, Daniel; García-Molina Sáez, Esperanza; González-Carrillo, Josefa; Polo, Luis; Pérez-Sánchez, Inmaculada; Olmo, María Del Carmen; Oliva-Sandoval, María José; Barriales-Villa, Roberto; Carbonell, Pablo; Pascual-Figal, Domigo; Gimeno, Juan R

    2017-02-01

    Mutations in MYBPC3 are the cause of hypertrophic cardiomyopathy (HCM). Although most lead to a truncating protein, the severity of the phenotype differs. We describe the clinical phenotype of a novel MYBPC3 mutation, p.Pro108Alafs*9, present in 13 families from southern Spain and compare it with the most prevalent MYBPC3 mutation in this region (c.2308+1 G>A). We studied 107 relatives of 13 index cases diagnosed as HCM carriers of the p.Pro108Alafs*9 mutation. Pedigree analysis, clinical evaluation, and genotyping were performed. A total of 54 carriers of p.Pro108Alafs*9 were identified, of whom 39 had HCM. There were 5 cases of sudden death in the 13 families. Disease penetrance was greater as age increased and HCM patients were more frequently male and developed disease earlier than female patients. The phenotype was similar in p.Pro108Alafs*9 and in c.2308+1 G>A, but differences were found in several risk factors and in survival. There was a trend toward a higher left ventricular mass in p.Pro108Alafs*9 vs c.2308+1G>A. Cardiac magnetic resonance revealed a similar extent and pattern of fibrosis. The p.Pro108Alafs*9 mutation is associated with HCM, high penetrance, and disease onset in middle age. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  2. 2004: which HIV-1 drug resistance mutations are common in clinical practice?

    PubMed

    Cheung, Peter K; Wynhoven, Brian; Harrigan, P Richard

    2004-01-01

    The emergence of drug resistance remains a major problem for the treatment of HIV-infected patients. However, the variety of mutational patterns that evolve in clinical practice have made the application of resistance data to clinical decision-making challenging. Despite (or because of) an abundance of drug-resistance data from disparate sources, there is only limited information available describing the patterns of drug resistance which usually appear in the clinic. Here we attempt to address this issue by reviewing HIV drug resistance in the population of patients failing antiretroviral therapy in British Columbia, Canada from June 1996 to December 2003 as an example. Our findings suggest that, although hundreds of mutations have been associated with resistance, relatively few key mutations occur at a high frequency. For example, only the nucleoside reverse transcriptase inhibitor (NRTI) mutations M184V, M41L T215Y, D67N, K70R and L210W, non-nucleoside reverse transcriptase inhibitor (NNRTI) mutations K103N and Y181C, and protease inhibitor (PI) mutation L90M, occur in more than 10% of samples tested for resistance in this population. The introduction of new drugs allows for the selection of new mutations. Trends in the prevalence of resistance-associated mutations have generally followed trends in drug usage, but have not always mirrored them. The phenomenon of cross-resistance can play an important role in the efficacy of new antiretroviral agents, even before they become available. The extent of this cross-resistance depends in part on the prevalence of specific mutations in the population of individuals who have previously received antiretroviral therapy. Hence there is a need to determine which mutations are prevalent in the treated population. The tremendous capacity of HIV to adapt means that common resistance pathways are likely to change over time, and new pathways to resistance are likely to continue to be discovered in the future.

  3. Recent trends and patterns in HIV-1 transmitted drug resistance in the United Kingdom.

    PubMed

    Tostevin, A; White, E; Dunn, D; Croxford, S; Delpech, V; Williams, I; Asboe, D; Pozniak, A; Churchill, D; Geretti, A M; Pillay, D; Sabin, C; Leigh-Brown, A; Smit, E

    2017-03-01

    Transmission of drug-resistant HIV-1 has decreased in the UK since the early 2000s. This analysis reports recent trends and characteristics of transmitted drug resistance (TDR) in the UK from 2010 to 2013. Resistance tests conducted in antiretroviral treatment (ART)-naïve individuals between 2010 and 2013 were analysed for the presence of transmitted drug resistance mutations (TDRMs), defined as any mutations from a modified 2009 World Health Organization surveillance list, or a modified 2013 International Antiviral Society-USA list for integrase tests. Logistic regression was used to examine associations between demographics and the prevalence of TDRMs. TDRMs were observed in 1223 (7.5%) of 16 425 individuals; prevalence declined from 8.1% in 2010 to 6.6% in 2013 (P = 0.02). The prevalence of TDRMs was higher among men who have sex with men (MSM) compared with heterosexual men and women (8.7% versus 6.4%, respectively) with a trend for decreasing TDRMs among MSM (P = 0.008) driven by a reduction in nucleoside reverse transcriptase inhibitor (NRTI)-related mutations. The most frequently detected TDRMs were K103N (2.2%), T215 revertants (1.6%), M41L (0.9%) and L90M (0.7%). Predicted phenotypic resistance to first-line ART was highest to the nonnucleoside reverse transcriptase inhibitors (NNRTIs) rilpivirine and efavirenz (6.2% and 3.4%, respectively) but minimal to NRTIs, including tenofovir, and protease inhibitors (PIs). No major integrase TDRMs were detected among 101 individuals tested while ART-naïve. We observed a decrease in TDRMs in recent years. However, this was confined to the MSM population and rates remained stable in those with heterosexually acquired HIV infection. Resistance to currently recommended first-line ART, including integrase inhibitors, remained reassuringly low. © 2016 The Authors. HIV Medicine published by John Wiley & Sons Ltd on behalf of British HIV Association.

  4. Phenotypic and genomic analysis of serotype 3 Sabin poliovirus vaccine produced in MRC-5 cell substrate.

    PubMed

    Alirezaie, Behnam; Taqavian, Mohammad; Aghaiypour, Khosrow; Esna-Ashari, Fatemeh; Shafyi, Abbas

    2011-05-01

    The cell substrate has a pivotal role in live virus vaccines production. It is necessary to evaluate the effects of the cell substrate on the properties of the propagated viruses, especially in the case of viruses which are unstable genetically such as polioviruses, by monitoring the molecular and phenotypical characteristics of harvested viruses. To investigate the presence/absence of mutation(s), the near full-length genomic sequence of different harvests of the type 3 Sabin strain of poliovirus propagated in MRC-5 cells were determined. The sequences were compared with genomic sequences of different virus seeds, vaccines, and OPV-like isolates. Nearly complete genomic sequencing results, however, revealed no detectable mutations throughout the genome RNA-plaque purified (RSO)-derived monopool of type 3 OPVs manufactured in MRC-5. Thirty-six years of experience in OPV production, trend analysis, and vaccine surveillance also suggest that: (i) different monopools of serotype 3 OPV produced in MRC-5 retained their phenotypic characteristics (temperature sensitivity and neuroattenuation), (ii) MRC-5 cells support the production of acceptable virus yields, (iii) OPV replicated in the MRC-5 cell substrate is a highly efficient and safe vaccine. These results confirm previous reports that MRC-5 is a desirable cell substrate for the production of OPV. Copyright © 2011 Wiley-Liss, Inc.

  5. Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer's disease.

    PubMed

    De Roeck, Arne; Van den Bossche, Tobi; van der Zee, Julie; Verheijen, Jan; De Coster, Wouter; Van Dongen, Jasper; Dillen, Lubina; Baradaran-Heravi, Yalda; Heeman, Bavo; Sanchez-Valle, Raquel; Lladó, Albert; Nacmias, Benedetta; Sorbi, Sandro; Gelpi, Ellen; Grau-Rivera, Oriol; Gómez-Tortosa, Estrella; Pastor, Pau; Ortega-Cubero, Sara; Pastor, Maria A; Graff, Caroline; Thonberg, Håkan; Benussi, Luisa; Ghidoni, Roberta; Binetti, Giuliano; de Mendonça, Alexandre; Martins, Madalena; Borroni, Barbara; Padovani, Alessandro; Almeida, Maria Rosário; Santana, Isabel; Diehl-Schmid, Janine; Alexopoulos, Panagiotis; Clarimon, Jordi; Lleó, Alberto; Fortea, Juan; Tsolaki, Magda; Koutroumani, Maria; Matěj, Radoslav; Rohan, Zdenek; De Deyn, Peter; Engelborghs, Sebastiaan; Cras, Patrick; Van Broeckhoven, Christine; Sleegers, Kristel

    2017-09-01

    Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer's disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)-control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5-41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD.

  6. Tumor markers and rectal cancer: support for an inflammation-related pathway

    PubMed Central

    Slattery, Martha L.; Wolff, Roger K.; Herrick, Jennifer; Caan, Bette J.; Samowitz, Wade

    2009-01-01

    Inflammation may be a key element in the etiology of colorectal cancer (CRC). In this study we examine associations between factors related to inflammation and specific rectal cancer mutations. A population-based study of 750 rectal cancer cases with interview and tumor DNA were compared to 1205 population-based controls. Study participants were from Utah and the Northern California Kaiser Permanente Medical Care Program. Tumor DNA was analyzed for TP53 and KRAS2 mutations and CpG Island methylator phenotype (CIMP). We assessed how these tumor markers were associated with use of anti-inflammatory drugs, polymorphisms in the IL6 genes (rs1800795 and rs1800796), and dietary antioxidants. Ibuprofen-type drugs, IL6 polymorphisms (rs1800796), and dietary alpha tocopherol and lycopene significantly altered likelihood of having a TP53 mutation. This was especially true for TP53 transversion mutations and dietary antioxidants (OR for beta carotene 0.51 95% CI 0.27,0.97, p trend 0.03; alpha tocopherol 0.41 95% CI 0.20,0.84, p trend 0.02) Beta carotene and ibuprofen significantly altered risk of KRAS2 tumors. The associations between lutein and tocopherol and TP53 and KRAS2 mutations were modified by IL6 genotype. These results suggest that inflammation-related factors may have unique associations with various rectal tumor markers. Many factors involved in an inflammation related pathway were associated with TP53 mutations and some dietary factors appeared to be modified by IL6 genotype. PMID:19452524

  7. Analysis of mutations in DNA gyrase and topoisomerase IV of Ureaplasma urealyticum and Ureaplasma parvum serovars resistant to fluoroquinolones.

    PubMed

    Piccinelli, Giorgio; Gargiulo, Franco; Biscaro, Valeria; Caccuri, Francesca; Caruso, Arnaldo; De Francesco, Maria Antonia

    2017-01-01

    This study aims to determine the prevalence of fluoroquinolone resistance of Ureaplasma biovars and serovars isolated from urogenital clinical samples and determine the underlying molecular mechanism for quinolone resistance for all resistant isolates. Of 105 samples confirmed as positive for U. urealyticum/U. parvum, 85 were resistant to quinolones by the Mycoplasma-IST2 kit. However, only 43 out of 85 quinolone resistant isolates had amino acid substitutions in GyrA, GyrB, ParC and ParE proteins underlining that this assay have mis-identified as fluoroquinolone resistant 42 isolates. The known ParC E87K and ParC S83L mutations were found in 1 and 10 isolates, respectively. An original mutation of ureaplasmal ParC (E87Q, 1 isolate) was found. Furthermore, we found a ParE R448K mutation in one isolate, already described. Among the additional alterations detected, the most prevalent mutation found was L176F in GyrA protein in 18 isolates with single infection and in 3 isolates with mixed ureaplasma infections. Mutations in GyrB (E502Q, 4 isolates), ParE (Q412K, Q412P, Q412T, 3 independent isolates), whose role is unknown, were also found. Other sporadic mutations in the four genes were identified. This investigation is the result of monitoring the data for molecular fluoroquinone resistance in Ureaplasma spp. in Italy. Resulting that this acquired resistance is high and that continued local epidemiological studies are essential to monitor and document their antimicrobial resistance trends. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Genetic progression in microsatellite instability high (MSI-H) colon cancers correlates with clinico-pathological parameters: A study of the TGRbetaRII, BAX, hMSH3, hMSH6, IGFIIR and BLM genes.

    PubMed

    Calin, G A; Gafà, R; Tibiletti, M G; Herlea, V; Becheanu, G; Cavazzini, L; Barbanti-Brodano, G; Nenci, I; Negrini, M; Lanza, G

    2000-05-20

    Colon carcinomas with microsatellite mutator phenotype exhibit specific genetic and clinico-pathological features. This report describes the analysis of 63 "microsatellite instability-high" (MSI-H) tumors for the presence of mutations in microsatellites located in the coding regions (CDRs) of 6 genes: TGFbetaRII, BAX, hMSH3, hMSH6, IGFIIR, and BLM. The following frequencies of mutations were detected: TGFbetaRII (70%), BAX (54%), hMSH3 (36.5%), IGFIIR (22%), hMSH6 (17.5%), and BLM (16%). The overall picture revealed combinations of mutations suggestive of a progressive order of accumulation, with mutations of TGFbetaRII and BAX first, followed by frameshifts in hMSH3, hMSH6, IGFIIR, and BLM. Correlations with 12 clinico-pathological parameters revealed that tumors with frameshifts in 1 or 2 CDRs were significantly better differentiated than tumors with frameshifts in more than 2 CDRs. We also found that mutations in the hMSH3 gene were significantly associated with decreased wall invasiveness and aneuploidy, and frameshifts in the BLM gene were significantly associated with the mucinous histotype. A trend toward an association between hMSH3 and IGFIIR with the medullary and conventional adenocarcinoma histotypes, respectively, was seen. Our results strengthen the concept that mutations in target genes have a role in the tumorigenic process of MSI-H tumors, and indicate that frameshifts in microsatellites located in CDRs occur in a limited number of combinations that could determine distinct clinico-pathological traits. Copyright 2000 Wiley-Liss, Inc.

  9. Longitudinal analysis of serum interleukin-18 in patients with familial Mediterranean fever carrying MEFV mutations in exon 10.

    PubMed

    Wada, Taizo; Toma, Tomoko; Miyazawa, Hanae; Koizumi, Eiko; Shirahashi, Tetsujiro; Matsuda, Yusuke; Yachie, Akihiro

    2018-04-01

    Familial Mediterranean fever (FMF) is an autoinflammatory disease caused by mutations in the MEFV gene. Mutations in exon 10 are associated with typical FMF phenotypes, and patients with exon 10 mutations have higher serum levels of interleukin (IL)-18 both during attacks and afebrile phases, compared to those without exon 10 mutations. However, longitudinal changes of serum IL-18 in FMF have not been fully characterized. We serially evaluated serum levels of pro-inflammatory cytokines, including IL-18, in 12 patients with FMF carrying exon 10 mutations, all of whom showed typical FMF attacks. Markedly high concentrations of IL-18 were observed in all patients at diagnosis (5099±6084pg/mL). Serum IL-18 levels declined progressively after colchicine treatment in 7 patients (group A), whereas 5 patients showed continued elevation of circulating IL-18, despite declines in IL-6 and neopterin (group B). The mean follow-up times in the two groups were 4.7±3.2 and 4.8±1.5 years, respectively. The mean serum IL-18 level at the last hospital visit in group B was 4190±2610 pg/mL. There were no differences in onset age, initial IL-18 levels, and colchicine doses between the groups. FMF attacks almost disappeared in both groups, but there were trends towards more frequent subtle symptoms such as abdominal discomfort in group B. Sustained elevation of serum IL-18 may suggest the presence of persistent subclinical inflammation. Therefore, longitudinal examination of serum IL-18 may contribute to better follow-up of FMF patients with exon 10 mutations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A European regulatory perspective on cystic fibrosis: current treatments, trends in drug development and translational challenges for CFTR modulators.

    PubMed

    Ponzano, Stefano; Nigrelli, Giulia; Fregonese, Laura; Eichler, Irmgard; Bertozzi, Fabio; Bandiera, Tiziano; Galietta, Luis J V; Papaluca, Marisa

    2018-06-30

    In this article we analyse the current authorised treatments and trends in early drug development for cystic fibrosis (CF) in the European Union for the time period 2000-2016. The analysis indicates a significant improvement in the innovation and development of new potential medicines for CF, shifting from products that act on the symptoms of the disease towards new therapies targeting the cause of CF. However, within these new innovative medicines, results for CF transmembrane conductance regulator (CFTR) modulators indicate that one major challenge for turning a CF concept product into an actual medicine for the benefit of patients resides in the fact that, although pre-clinical models have shown good predictability for certain mutations, a good correlation to clinical end-points or biomarkers ( e.g. forced expiratory volume in 1 s and sweat chloride) for all mutations has not yet been achieved. In this respect, the use of alternative end-points and innovative nonclinical models could be helpful for the understanding of those translational discrepancies. Collaborative endeavours to promote further research and development in these areas as well as early dialogue with the regulatory bodies available at the European competent authorities are recommended. Copyright ©ERS 2018.

  11. Increased pfmdr1 gene copy number and the decline in pfcrt and pfmdr1 resistance alleles in Ghanaian Plasmodium falciparum isolates after the change of anti-malarial drug treatment policy

    PubMed Central

    2013-01-01

    Background With the introduction of artemisinin-based combination therapy (ACT) in 2005, monitoring of anti-malarial drug efficacy, which includes the use of molecular tools to detect known genetic markers of parasite resistance, is important for first-hand information on the changes in parasite susceptibility to drugs in Ghana. This study investigated the Plasmodium falciparum multidrug resistance gene (pfmdr1) copy number, mutations and the chloroquine resistance transporter gene (pfcrt) mutations in Ghanaian isolates collected in seven years to detect the trends in prevalence of mutations. Methods Archived filter paper blood blots collected from children aged below five years with uncomplicated malaria in 2003–2010 at sentinel sites were used. Using quantitative real-time polymerase chain reaction (qRT-PCR), 756 samples were assessed for pfmdr1 gene copy number. PCR and restriction fragment length polymorphism (RFLP) were used to detect alleles of pfmdr1 86 in 1,102 samples, pfmdr1 184, 1034, 1042 and 1246 in 832 samples and pfcrt 76 in 1,063 samples. Merozoite surface protein 2 (msp2) genotyping was done to select monoclonal infections for copy number analysis. Results The percentage of isolates with increased pfmdr1 copy number were 4, 27, 9, and 18% for 2003–04, 2005–06, 2007–08 and 2010, respectively. Significant increasing trends for prevalence of pfmdr1 N86 (×2 = 96.31, p <0.001) and pfcrt K76 (×2 = 64.50, p <0.001) and decreasing trends in pfmdr1 Y86 (×2 = 38.52, p <0.001) and pfcrt T76 (×2 = 43.49, p <0.001) were observed from 2003–2010. The pfmdr1 F184 and Y184 prevalence showed an increasing and decreasing trends respectively but were not significant (×2 = 7.39,p=0.060; ×2 = 7.49, p = 0.057 respectively). The pfmdr1 N86-F184-D1246 haplotype, which is alleged to be selected by artemether-lumefantrine showed a significant increasing trend (×2 = 20.75, p < 0.001). Conclusion Increased pfmdr1 gene copy number was observed in the isolates analysed and this finding has implications for the use of ACT in the country although no resistance has been reported. The decreasing trend in the prevalence of chloroquine resistance markers after change of treatment policy presents the possibility for future introduction of chloroquine as prophylaxis for malaria risk groups such as children and pregnant women in Ghana. PMID:24172030

  12. Genetic evolution of Human Enterovirus A71 subgenotype C4 in Shenzhen, China, 1998-2013.

    PubMed

    He, Yaqing; Zou, Linjie; Chong, Marc Ka Chun; Men, Ruoting; Xu, Wenbo; Yang, Hong; Yao, Xiangjie; Chen, Long; Xian, Huixia; Zhang, Hailong; Luo, Min; Cheng, Jinquan; Ma, Hanwu; Feng, Qianjin; Huang, Yun; Wang, Yujie; Yeoh, Eng-Kiong; Zee, Benny Chung-Ying; Zhou, Yuanping; He, Ming-Liang; Wang, Maggie Haitian

    2016-06-01

    Human Enterovirus A71 (EV-A71) is one of the severest enteroviruses that causes hand, foot, and mouth disease (HFMD) among children. This study identified the mutations of EV-A71 VP1 amino acid residues over a number of years and explored the possible association of identified mutations and HFMD epidemic outbreaks in Shenzhen, China. A total of 3760 stool specimens were collected from HFMD patients by Shenzhen Centers for Disease Control and Prevention (CDC) between 1998 and 2013. In total 289 VP1 strains were sequenced in this study, and amino acids mutation frequency was calculated. There were 2040 China nationwide sequences downloaded from Genebank as replication data. In our samples, 1036 subjects (27.6%) were EV-A71 infected. Three amino acid positions on VP1 protein were found to have high mutation prevalence. These are Q22H, S283T, and A289H. Site 22 showed a fast mutation fixation in the year 2008, at the time of the large scale epidemic outbreak in Shenzhen. Analysis of the nationwide data replicated the same trend of mutation prevalence of the three sites. The switching from Q to H on site 22 of the EV-A71 VP1 strain might be associated with the HFMD outbreak in Shenzhen in 2008. The identified amino acid sites 22, 283 and 289 provided information for developing anti-viral drugs against EV-A71 in the future. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  13. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics.

    PubMed

    Leeman-Neill, Rebecca J; Brenner, Alina V; Little, Mark P; Bogdanova, Tetiana I; Hatch, Maureen; Zurnadzy, Liudmyla Y; Mabuchi, Kiyohiko; Tronko, Mykola D; Nikiforov, Yuri E

    2013-05-15

    Childhood exposure to iodine-131 from the 1986 nuclear accident in Chernobyl, Ukraine, led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited. Mutational analysis was performed on 62 PTCs diagnosed in a Ukrainian cohort of patients who were < 18 years old in 1986 and received 0.008 to 8.6 Gy of (131) I to the thyroid. Associations between mutation types and (131) I dose and other characteristics were explored. RET/PTC (ret proto-oncogene/papillary thyroid carcinoma) rearrangements were most common (35%), followed by BRAF (15%) and RAS (8%) point mutations. Two tumors carrying PAX8/PPARγ (paired box 8/peroxisome proliferator-activated receptor gamma) rearrangement were identified. A significant negative association with (131) I dose for BRAF and RAS point mutations and a significant concave association with (131) I dose, with an inflection point at 1.6 Gy and odds ratio of 2.1, based on a linear-quadratic model for RET/PTC and PAX8/PPARγ rearrangements were found. The trends with dose were significantly different between tumors with point mutations and rearrangements. Compared with point mutations, rearrangements were associated with residence in the relatively iodine-deficient Zhytomyr region, younger age at exposure or surgery, and male sex. These results provide the first demonstration of PAX8/PPARγ rearrangements in post-Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with (131) I dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and (131) I exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients. Copyright © 2013 American Cancer Society.

  14. BRAF Mutations in Advanced Cancers: Clinical Characteristics and Outcomes

    PubMed Central

    El-Osta, Hazem; Falchook, Gerald; Tsimberidou, Apostolia; Hong, David; Naing, Aung; Kim, Kevin; Wen, Sijin; Janku, Filip; Kurzrock, Razelle

    2011-01-01

    Background Oncogenic BRAF mutations have been found in diverse malignancies and activate RAF/MEK/ERK signaling, a critical pathway of tumorigenesis. We examined the clinical characteristics and outcomes of patients with mutant (mut) BRAF advanced cancer referred to phase 1 clinic. Methods We reviewed the records of 80 consecutive patients with mutBRAF advanced malignancies and 149 with wild-type (wt) BRAF (matched by tumor type) referred to the Clinical Center for Targeted Therapy and analyzed their outcome. Results Of 80 patients with mutBRAF advanced cancer, 56 had melanoma, 10 colorectal, 11 papillary thyroid, 2 ovarian and 1 esophageal cancer. Mutations in codon 600 were found in 77 patients (62, V600E; 13, V600K; 1, V600R; 1, unreported). Multivariate analysis showed less soft tissue (Odds ratio (OR) = 0.39, 95%CI: 0.20–0.77, P = 0.007), lung (OR = 0.38, 95%CI: 0.19–0.73, p = 0.004) and retroperitoneal metastases (OR = 0.34, 95%CI: 0.13–0.86, p = 0.024) and more brain metastases (OR = 2.05, 95%CI: 1.02–4.11, P = 0.043) in patients with mutBRAF versus wtBRAF. Comparing to the corresponding wtBRAF, mutBRAF melanoma patients had insignificant trend to longer median survival from diagnosis (131 vs. 78 months, p = 0.14), while mutBRAF colorectal cancer patients had an insignificant trend to shorter median survival from diagnosis (48 vs. 53 months, p = 0.22). In melanoma, V600K mutations in comparison to other BRAF mutations were associated with more frequent brain (75% vs. 36.3%, p = 0.02) and lung metastases (91.6% vs. 47.7%, p = 0.007), and shorter time from diagnosis to metastasis and to death (19 vs. 53 months, p = 0.046 and 78 vs. 322 months, p = 0.024 respectively). Treatment with RAF/MEK targeting agents (Hazard ratio (HR) = 0.16, 95%CI: 0.03–0.89, p = 0.037) and any decrease in tumor size after referral (HR = 0.07, 95%CI: 0.015–0.35, p = 0.001) correlated with longer survival in mutBRAF patients. Conclusions BRAF appears to be a druggable mutation that also defines subgroups of patients with phenotypic overlap, albeit with differences that correlate with histology or site of mutation. PMID:22039425

  15. Molecular evolution of HIV-1 integrase during the 20 years prior to the first approval of integrase inhibitors.

    PubMed

    Meixenberger, Karolin; Yousef, Kaveh Pouran; Smith, Maureen Rebecca; Somogyi, Sybille; Fiedler, Stefan; Bartmeyer, Barbara; Hamouda, Osamah; Bannert, Norbert; von Kleist, Max; Kücherer, Claudia

    2017-11-14

    Detailed knowledge of the evolutionary potential of polymorphic sites in a viral protein is important for understanding the development of drug resistance in the presence of an inhibitor. We therefore set out to analyse the molecular evolution of the HIV-1 subtype B integrase at the inter-patient level in Germany during a 20-year period prior to the first introduction of integrase strand inhibitors (INSTIs). We determined 337 HIV-1 integrase subtype B sequences (amino acids 1-278) from stored plasma samples of antiretroviral treatment-naïve individuals newly diagnosed with HIV-1 between 1986 and 2006. Shannon entropy was calculated to determine the variability at each amino acid position. Time trends in the frequency of amino acid variants were identified by linear regression. Direct coupling analysis was applied to detect covarying sites. Twenty-two time trends in the frequency of amino acid variants demonstrated either single amino acid exchanges or variation in the degree of polymorphy. Covariation was observed for 17 amino acid variants with a temporal trend. Some minor INSTI resistance mutations (T124A, V151I, K156 N, T206S, S230 N) and some INSTI-selected mutations (M50I, L101I, T122I, T124 N, T125A, M154I, G193E, V201I) were identified at overall frequencies >5%. Among these, the frequencies of L101I, T122I, and V201I increased over time, whereas the frequency of M154I decreased. Moreover, L101I, T122I, T124A, T125A, M154I, and V201I covaried with non-resistance-associated variants. Time-trending, covarying polymorphisms indicate that long-term evolutionary changes of the HIV-1 integrase involve defined clusters of possibly structurally or functionally associated sites independent of selective pressure through INSTIs at the inter-patient level. Linkage between polymorphic resistance- and non-resistance-associated sites can impact the selection of INSTI resistance mutations in complex ways. Identification of these sites can help in improving genotypic resistance assays, resistance prediction algorithms, and the development of new integrase inhibitors.

  16. Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review

    PubMed Central

    2014-01-01

    Background KRAS mutations in codons 12 and 13 are established predictive biomarkers for anti-EGFR therapy in colorectal cancer. Previous studies suggest that KRAS codon 61 and 146 mutations may also predict resistance to anti-EGFR therapy in colorectal cancer. However, clinicopathological, molecular, and prognostic features of colorectal carcinoma with KRAS codon 61 or 146 mutation remain unclear. Methods We utilized a molecular pathological epidemiology database of 1267 colon and rectal cancers in the Nurse’s Health Study and the Health Professionals Follow-up Study. We examined KRAS mutations in codons 12, 13, 61 and 146 (assessed by pyrosequencing), in relation to clinicopathological features, and tumor molecular markers, including BRAF and PIK3CA mutations, CpG island methylator phenotype (CIMP), LINE-1 methylation, and microsatellite instability (MSI). Survival analyses were performed in 1067 BRAF-wild-type cancers to avoid confounding by BRAF mutation. Cox proportional hazards models were used to compute mortality hazard ratio, adjusting for potential confounders, including disease stage, PIK3CA mutation, CIMP, LINE-1 hypomethylation, and MSI. Results KRAS codon 61 mutations were detected in 19 cases (1.5%), and codon 146 mutations in 40 cases (3.2%). Overall KRAS mutation prevalence in colorectal cancers was 40% (=505/1267). Of interest, compared to KRAS-wild-type, overall, KRAS-mutated cancers more frequently exhibited cecal location (24% vs. 12% in KRAS-wild-type; P < 0.0001), CIMP-low (49% vs. 32% in KRAS-wild-type; P < 0.0001), and PIK3CA mutations (24% vs. 11% in KRAS-wild-type; P < 0.0001). These trends were evident irrespective of mutated codon, though statistical power was limited for codon 61 mutants. Neither KRAS codon 61 nor codon 146 mutation was significantly associated with clinical outcome or prognosis in univariate or multivariate analysis [colorectal cancer-specific mortality hazard ratio (HR) = 0.81, 95% confidence interval (CI) = 0.29-2.26 for codon 61 mutation; colorectal cancer-specific mortality HR = 0.86, 95% CI = 0.42-1.78 for codon 146 mutation]. Conclusions Tumors with KRAS mutations in codons 61 and 146 account for an appreciable proportion (approximately 5%) of colorectal cancers, and their clinicopathological and molecular features appear generally similar to KRAS codon 12 or 13 mutated cancers. To further assess clinical utility of KRAS codon 61 and 146 testing, large-scale trials are warranted. PMID:24885062

  17. Tumor location and IDH1 mutation may predict intraoperative seizures during awake craniotomy.

    PubMed

    Gonen, Tal; Grossman, Rachel; Sitt, Razi; Nossek, Erez; Yanaki, Raneen; Cagnano, Emanuela; Korn, Akiva; Hayat, Daniel; Ram, Zvi

    2014-11-01

    Intraoperative seizures during awake craniotomy may interfere with patients' ability to cooperate throughout the procedure, and it may affect their outcome. The authors have assessed the occurrence of intraoperative seizures during awake craniotomy in regard to tumor location and the isocitrate dehydrogenase 1 (IDH1) status of the tumor. Data were collected in 137 consecutive patients who underwent awake craniotomy for removal of a brain tumor. The authors performed a retrospective analysis of the incidence of seizures based on the tumor location and its IDH1 mutation status, and then compared the groups for clinical variables and surgical outcome parameters. Tumor location was strongly associated with the occurrence of intraoperative seizures. Eleven patients (73%) with tumor located in the supplementary motor area (SMA) experienced intraoperative seizures, compared with 17 (13.9%) with tumors in the other three non-SMA brain regions (p < 0.0001). Interestingly, there was no significant association between history of seizures and tumor location (p = 0.44). Most of the patients (63.6%) with tumor in the SMA region harbored an IDH1 mutation compared with those who had tumors in non-SMA regions. Thirty-one of 52 patients (60%) with a preoperative history of seizures had an IDH1 mutation (p = 0.02), and 15 of 22 patients (68.2%) who experienced intraoperative seizures had an IDH1 mutation (p = 0.03). In a multivariate analysis, tumor location was found as a significant predictor of intraoperative seizures (p = 0.002), and a trend toward IDH1 mutation as such a predictor was found as well (p = 0.06). Intraoperative seizures were not associated with worse outcome. Patients with tumors located in the SMA are more prone to develop intraoperative seizures during awake craniotomy compared with patients who have a tumor in non-SMA frontal areas and other brain regions. The IDH1 mutation was more common in SMA region tumors compared with other brain regions, and may be an additional risk factor for the occurrence of intraoperative seizures.

  18. Expression, prognostic significance and mutational analysis of protein tyrosine phosphatase SHP-1 in chronic myeloid leukemia.

    PubMed

    Papadopoulou, Vasiliki; Kontandreopoulou, Elina; Panayiotidis, Panayiotis; Roumelioti, Maria; Angelopoulou, Maria; Kyriazopoulou, Lydia; Diamantopoulos, Panagiotis T; Vaiopoulos, George; Variami, Eleni; Kotsianidis, Ioannis; Athina Viniou, Nora

    2016-05-01

    The protein tyrosine phosphatase SHP-1 dephosphorylates BCR-ABL1, thereby serving as a potential control mechanism of BCR-ABL1 kinase activity. Pathways regulating SHP-1 expression, which could be exploited in the therapeutics of TKI-resistant chronic myeloid leukemia (CML), remain unknown. Moreover, the questions of whether there is any kind of SHP-1 deregulation in CML, contributing to disease initiation or evolution, as well as the question of prognostic significance of SHP-1, have not been definitively answered. This study shows moderately lower SHP-1 mRNA expression in chronic phase CML patients in comparison to healthy individuals and no change in SHP-1 mRNA levels after successful TKI treatment. Mutational analysis of the aminoterminal and phosphatase domains of SHP-1 in patients did not reveal genetic lesions. This study also found no correlation of SHP-1 expression at diagnosis with response to treatment, although a trend for lower SHP-1 expression was noted in the very small non-responders' group of the 3-month therapeutic milestone.

  19. Possible relevance of tumor-related genes mutation to malignant transformation of endometriosis.

    PubMed

    Ma, X; Hui, Y; Lin, L; Wu, Y; Zhang, X; Qin, X

    2016-01-01

    Despite studies have suggested that endometriosis has malignant potential, the molecular mechanism underlying the malignant transformation of endometriosis is poorly understood so far. Endometriosis-associated ovarian cancer (EAOC) or ovarian cancer arising from endometriosis (OCEM) may provide an ideal model for genetic studies. To investigate the genetic alterations during transformation of ovarian endometriosis into cancer, the authors analysed mutations of tumour-related genes (PTEN and p53) in EAOC cases (n=23, group 1), including 19 cases which were detected co-existence of endometriosis and cancer and four cases which fulfilled the histological criteria in malignant transformation of endometriosis (OCEMs), and in atypical hyperplasia ovarian endometriosis (aEMs) (n = 10, group 2), as well as in solitary ovarian endometriosis (EMs) (n = 20, group 3), simultaneously, to study the correlation of the two genes in the development and progression of the ovarian endometriosis malignancy. Each paraffin block was sliced into serial ten-µm-thick sections. Extracted DNA was amplified by nested PCR. Mutations of PTEN and p53 were examined by bidirectional DNA sequencing. It was acknowledged by experiments that the PTEN and p53 mutation frequency in EAOCs were significantly higher than that in aEMs and EMs. There was significant difference to compare EAOCs with EMs (p < 0.01, p < 0.05), and converse to compare with aEMs (p > 0.05), respectively. No definite involvement between the frequency of PTEN and p53 mutations in EAOCs and age difference, histological type, clinical stage, pathological grade, and whether accompanied by metastasis (p > 0.05); however, a decreasing trend of PTEN mutation with the increased age, decreased clinical stage and pathological grade, and when accompanied by metastasis was detected. Adversely, an increasing trend of p53 mutation was represented. In EAOCs group, the authors detected eight PTEN and four p53 mutation events, respectively. Moreover, one case occurred PTEN and p53 mutation simultaneously. With 23 EAOCs, two cases which fulfilled the histological criteria in malignant transformation of endometriosis, which may be a specific entity distinct from non-endometriosis-associated ovarian cancer, the authors named them the OCEMs, occurred PTEN or p53 mutation, respectively. The present study suggested that the mutation and functional incapacitation of certain tumor-related genes may be involved in malignant transformation of endometriosis. PTEN mutation is the pristine event, but p53 mutation is the late.

  20. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA)

    PubMed Central

    Mavaddat, Nasim; Barrowdale, Daniel; Andrulis, Irene L.; Domchek, Susan M.; Eccles, Diana; Nevanlinna, Heli; Ramus, Susan J.; Spurdle, Amanda; Robson, Mark; Sherman, Mark; Mulligan, Anna Marie; Couch, Fergus J.; Engel, Christoph; McGuffog, Lesley; Healey, Sue; Sinilnikova, Olga M.; Southey, Melissa C.; Terry, Mary Beth; Goldgar, David; O’Malley, Frances; John, Esther M.; Janavicius, Ramunas; Tihomirova, Laima; Hansen, Thomas v O; Nielsen, Finn C.; Osorio, Ana; Stavropoulou, Alexandra; Benítez, Javier; Manoukian, Siranoush; Peissel, Bernard; Barile, Monica; Volorio, Sara; Pasini, Barbara; Dolcetti, Riccardo; Putignano, Anna Laura; Ottini, Laura; Radice, Paolo; Hamann, Ute; Rashid, Muhammad U.; Hogervorst, Frans B.; Kriege, Mieke; van der Luijt, Rob B.; Peock, Susan; Frost, Debra; Evans, D. Gareth; Brewer, Carole; Walker, Lisa; Rogers, Mark T.; Side, Lucy E.; Houghton, Catherine; Weaver, JoEllen; Godwin, Andrew K.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Meindl, Alfons; Kast, Karin; Arnold, Norbert; Niederacher, Dieter; Sutter, Christian; Deissler, Helmut; Gadzicki, Doroteha; Preisler-Adams, Sabine; Varon-Mateeva, Raymonda; Schönbuchner, Ines; Gevensleben, Heidrun; Stoppa-Lyonnet, Dominique; Belotti, Muriel; Barjhoux, Laure; Isaacs, Claudine; Peshkin, Beth N.; Caldes, Trinidad; de al Hoya, Miguel; Cañadas, Carmen; Heikkinen, Tuomas; Heikkilä, Päivi; Aittomäki, Kristiina; Blanco, Ignacio; Lazaro, Conxi; Brunet, Joan; Agnarsson, Bjarni A.; Arason, Adalgeir; Barkardottir, Rosa B.; Dumont, Martine; Simard, Jacques; Montagna, Marco; Agata, Simona; D’Andrea, Emma; Yan, Max; Fox, Stephen; Rebbeck, Timothy R.; Rubinstein, Wendy; Tung, Nadine; Garber, Judy E.; Wang, Xianshu; Fredericksen, Zachary; Pankratz, Vernon S.; Lindor, Noralane M.; Szabo, Csilla; Offit, Kenneth; Sakr, Rita; Gaudet, Mia M.; Singer, Christian F.; Tea, Muy-Kheng; Rappaport, Christine; Mai, Phuong L.; Greene, Mark H.; Sokolenko, Anna; Imyanitov, Evgeny; Toland, Amanda Ewart; Senter, Leigha; Sweet, Kevin; Thomassen, Mads; Gerdes, Anne-Marie; Kruse, Torben; Caligo, Maria; Aretini, Paolo; Rantala, Johanna; von Wachenfeld, Anna; Henriksson, Karin; Steele, Linda; Neuhausen, Susan L.; Nussbaum, Bob; Beattie, Mary; Odunsi, Kunle; Sucheston, Lara; Gayther, Simon A; Nathanson, Kate; Gross, Jenny; Walsh, Christine; Karlan, Beth; Chenevix-Trench, Georgia; Easton, Douglas F.; Antoniou, Antonis C.

    2011-01-01

    Background Previous small studies found that BRCA1 and BRCA2 breast tumors differ in their pathology. Analysis of larger datasets of mutation carriers should allow further tumor characterization. Methods We used data from 4,325 BRCA1 and 2,568 BRCA2 mutation carriers to analyze the pathology of invasive breast, ovarian and contralateral breast cancers. Results There was strong evidence that the proportion of estrogen receptor (ER)-negative breast tumors decreased with age at diagnosis among BRCA1 (p-trend=1.2×10−5) but increased with age at diagnosis among BRCA2 carriers (p-trend=6.8×10−6). The proportion of triple negative tumors decreased with age at diagnosis in BRCA1 carriers but increased with age at diagnosis of BRCA2 carriers. In both BRCA1 and BRCA2 carriers, ER-negative tumors were of higher histological grade than ER-positive tumors (Grade 3 vs. Grade 1, p=1.2×10−13 for BRCA1 and p=0.001 for BRCA2). ER and progesterone receptor (PR) expression were independently associated with mutation carrier status (ER-positive odds ratio (OR) for BRCA2=9.4, 95%CI:7.0-12.6 and PR-positive OR=1.7, 95%CI:1.3-2.3, under joint analysis). Lobular tumors were more likely to be BRCA2-related (OR for BRCA2=3.3, 95%CI:2.4-4.4, p=4.4×10−14), and medullary tumors BRCA1-related (OR for BRCA2=0.25, 95%CI:0.18-0.35, p=2.3×10−15). ER-status of the first breast cancer was predictive of ER-status of asynchronous contralateral breast cancer (p=0.0004 for BRCA1; p=0.002 for BRCA2). There were no significant differences in ovarian cancer morphology between BRCA1 and BRCA2 carriers (serous:67%; mucinous:1%; endometriod:12%; clear-cell:2%). Conclusions/Impact Pathology characteristics of BRCA1 and BRCA2 tumors may be useful for improving risk prediction algorithms and informing clinical strategies for screening and prophylaxis. PMID:22144499

  1. Analysis of neurodegenerative Mendelian genes in clinically diagnosed Alzheimer Disease

    PubMed Central

    Fernández, Maria Victoria; Kim, Jong Hun; Budde, John P.; Black, Kathleen; Medvedeva, Alexandra; Saef, Ben; Del-Aguila, Jorge; Ibañez, Laura; Dube, Umber; Harari, Oscar; Norton, Joanne; Chasse, Rachel; Morris, John C.; Goate, Alison

    2017-01-01

    Alzheimer disease (AD), Frontotemporal lobar degeneration (FTD), Amyotrophic lateral sclerosis (ALS) and Parkinson disease (PD) have a certain degree of clinical, pathological and molecular overlap. Previous studies indicate that causative mutations in AD and FTD/ALS genes can be found in clinical familial AD. We examined the presence of causative and low frequency coding variants in the AD, FTD, ALS and PD Mendelian genes, in over 450 families with clinical history of AD and over 11,710 sporadic cases and cognitive normal participants from North America. Known pathogenic mutations were found in 1.05% of the sporadic cases, in 0.69% of the cognitively normal participants and in 4.22% of the families. A trend towards enrichment, albeit non-significant, was observed for most AD, FTD and PD genes. Only PSEN1 and PINK1 showed consistent association with AD cases when we used ExAC as the control population. These results suggest that current study designs may contain heterogeneity and contamination of the control population, and that current statistical methods for the discovery of novel genes with real pathogenic variants in complex late onset diseases may be inadequate or underpowered to identify genes carrying pathogenic mutations. PMID:29091718

  2. Analysis of neurodegenerative Mendelian genes in clinically diagnosed Alzheimer Disease.

    PubMed

    Fernández, Maria Victoria; Kim, Jong Hun; Budde, John P; Black, Kathleen; Medvedeva, Alexandra; Saef, Ben; Deming, Yuetiva; Del-Aguila, Jorge; Ibañez, Laura; Dube, Umber; Harari, Oscar; Norton, Joanne; Chasse, Rachel; Morris, John C; Goate, Alison; Cruchaga, Carlos

    2017-11-01

    Alzheimer disease (AD), Frontotemporal lobar degeneration (FTD), Amyotrophic lateral sclerosis (ALS) and Parkinson disease (PD) have a certain degree of clinical, pathological and molecular overlap. Previous studies indicate that causative mutations in AD and FTD/ALS genes can be found in clinical familial AD. We examined the presence of causative and low frequency coding variants in the AD, FTD, ALS and PD Mendelian genes, in over 450 families with clinical history of AD and over 11,710 sporadic cases and cognitive normal participants from North America. Known pathogenic mutations were found in 1.05% of the sporadic cases, in 0.69% of the cognitively normal participants and in 4.22% of the families. A trend towards enrichment, albeit non-significant, was observed for most AD, FTD and PD genes. Only PSEN1 and PINK1 showed consistent association with AD cases when we used ExAC as the control population. These results suggest that current study designs may contain heterogeneity and contamination of the control population, and that current statistical methods for the discovery of novel genes with real pathogenic variants in complex late onset diseases may be inadequate or underpowered to identify genes carrying pathogenic mutations.

  3. Deep sequencing of the LRRK2 gene in 14,002 individuals reveals evidence of purifying selection and independent origin of the p.Arg1628Pro mutation in Europe

    PubMed Central

    Rubio, Justin P.; Topp, Simon; Warren, Liling; St Jean, Pamela L.; Wegmann, Daniel; Kessner, Darren; Novembre, John; Shen, Judong; Fraser, Dana; Aponte, Jennifer; Nangle, Keith; Cardon, Lon R.; Ehm, Margaret G.; Chissoe, Stephanie L.; Whittaker, John C.; Nelson, Matthew R.; Mooser, Vincent E.

    2012-01-01

    Genetic variation in LRRK2 predisposes to Parkinson disease (PD), which underpins its development as a therapeutic target. Here, we aimed to identify novel genotype-phenotype associations that might support developing LRRK2 therapies for other conditions. We sequenced the 51 exons of LRRK2 in cases comprising 12 common diseases (n = 9,582), and in 4,420 population controls. We identified 739 single nucleotide variants (SNVs), 62% of which were observed in only one person, including 316 novel exonic variants. We found evidence of purifying selection for the LRRK2 gene and a trend suggesting that this is more pronounced in the central (ROC-COR-kinase) core protein domains of LRRK2 than the flanking domains. Population genetic analyses revealed that LRRK2 is not especially polymorphic or differentiated in comparison to 201 other drug target genes. Amongst Europeans, we identified 17 carriers (0.13%) of pathogenic LRRK2 mutations that were not significantly enriched within any disease or in those reporting a family history of PD. Analysis of pathogenic mutations within Europe reveals that the p.Arg1628Pro (c4883G>C) mutation arose independently in Europe and Asia. Taken together, these findings demonstrate how targeted deep sequencing can help to reveal fundamental characteristics of clinically important loci. PMID:22415848

  4. Deep sequencing of the LRRK2 gene in 14,002 individuals reveals evidence of purifying selection and independent origin of the p.Arg1628Pro mutation in Europe.

    PubMed

    Rubio, Justin P; Topp, Simon; Warren, Liling; St Jean, Pamela L; Wegmann, Daniel; Kessner, Darren; Novembre, John; Shen, Judong; Fraser, Dana; Aponte, Jennifer; Nangle, Keith; Cardon, Lon R; Ehm, Margaret G; Chissoe, Stephanie L; Whittaker, John C; Nelson, Matthew R; Mooser, Vincent E

    2012-07-01

    Genetic variation in LRRK2 predisposes to Parkinson disease (PD), which underpins its development as a therapeutic target. Here, we aimed to identify novel genotype-phenotype associations that might support developing LRRK2 therapies for other conditions. We sequenced the 51 exons of LRRK2 in cases comprising 12 common diseases (n = 9,582), and in 4,420 population controls. We identified 739 single-nucleotide variants, 62% of which were observed in only one person, including 316 novel exonic variants. We found evidence of purifying selection for the LRRK2 gene and a trend suggesting that this is more pronounced in the central (ROC-COR-kinase) core protein domains of LRRK2 than the flanking domains. Population genetic analyses revealed that LRRK2 is not especially polymorphic or differentiated in comparison to 201 other drug target genes. Among Europeans, we identified 17 carriers (0.13%) of pathogenic LRRK2 mutations that were not significantly enriched within any disease or in those reporting a family history of PD. Analysis of pathogenic mutations within Europe reveals that the p.Arg1628Pro (c4883G>C) mutation arose independently in Europe and Asia. Taken together, these findings demonstrate how targeted deep sequencing can help to reveal fundamental characteristics of clinically important loci. © 2012 Wiley Periodicals, Inc.

  5. Network Meta-Analysis of Erlotinib, Gefitinib, Afatinib and Icotinib in Patients with Advanced Non-Small-Cell Lung Cancer Harboring EGFR Mutations

    PubMed Central

    Zhao, Yuanyuan; Yang, Yunpeng; Hu, Zhihuang; Xue, Cong; Zhang, Jing; Zhang, Jianwei; Ma, Yuxiang; Zhou, Ting; Yan, Yue; Hou, Xue; Qin, Tao; Dinglin, Xiaoxiao; Tian, Ying; Huang, Peiyu; Huang, Yan; Zhao, Hongyun; Zhang, Li

    2014-01-01

    Background Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs) including erlotinib, gefitinib, afatinib and icotinib are currently available as treatment for patients with advanced non-small-cell lung cancer (NSCLC) who harbor EGFR mutations. However, no head to head trials between these TKIs in mutated populations have been reported, which provides room for indirect and integrated comparisons. Methods We searched electronic databases for eligible literatures. Pooled data on objective response rate (ORR), progression free survival (PFS), overall survival (OS) were calculated. Appropriate networks for different outcomes were established to incorporate all evidences. Multiple-treatments comparisons (MTCs) based on Bayesian network integrated the efficacy and specific toxicities of all included treatments. Results Twelve phase III RCTs that investigated EGFR-TKIs involving 1821 participants with EGFR mutation were included. For mutant patients, the weighted pooled ORR and 1-year PFS of EGFR-TKIs were significant superior to that of standard chemotherapy (ORR: 66.6% vs. 30.9%, OR 5.46, 95%CI 3.59 to 8.30, P<0.00001; 1-year PFS: 42.9% vs. 9.7%, OR 7.83, 95%CI 4.50 to 13.61; P<0.00001) through direct meta-analysis. In the network meta-analyses, no statistically significant differences in efficacy were found between these four TKIs with respect to all outcome measures. Trend analyses of rank probabilities revealed that the cumulative probabilities of being the most efficacious treatments were (ORR, 1-year PFS, 1-year OS, 2-year OS): erlotinib (51%, 38%, 14%, 19%), gefitinib (1%, 6%, 5%, 16%), afatinib (29%, 27%, 30%, 27%) and icotinib (19%, 29%, NA, NA), respectively. However, afatinib and erlotinib showed significant severer rash and diarrhea compared with gefitinib and icotinib. Conclusions The current study indicated that erlotinib, gefitinib, afatinib and icotinib shared equivalent efficacy but presented different efficacy-toxicity pattern for EGFR-mutated patients. Erlotinib and afatinib revealed potentially better efficacy but significant higher toxicities compared with gefitinib and icotinib. PMID:24533047

  6. Network meta-analysis of erlotinib, gefitinib, afatinib and icotinib in patients with advanced non-small-cell lung cancer harboring EGFR mutations.

    PubMed

    Liang, Wenhua; Wu, Xuan; Fang, Wenfeng; Zhao, Yuanyuan; Yang, Yunpeng; Hu, Zhihuang; Xue, Cong; Zhang, Jing; Zhang, Jianwei; Ma, Yuxiang; Zhou, Ting; Yan, Yue; Hou, Xue; Qin, Tao; Dinglin, Xiaoxiao; Tian, Ying; Huang, Peiyu; Huang, Yan; Zhao, Hongyun; Zhang, Li

    2014-01-01

    Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs) including erlotinib, gefitinib, afatinib and icotinib are currently available as treatment for patients with advanced non-small-cell lung cancer (NSCLC) who harbor EGFR mutations. However, no head to head trials between these TKIs in mutated populations have been reported, which provides room for indirect and integrated comparisons. We searched electronic databases for eligible literatures. Pooled data on objective response rate (ORR), progression free survival (PFS), overall survival (OS) were calculated. Appropriate networks for different outcomes were established to incorporate all evidences. Multiple-treatments comparisons (MTCs) based on Bayesian network integrated the efficacy and specific toxicities of all included treatments. Twelve phase III RCTs that investigated EGFR-TKIs involving 1821 participants with EGFR mutation were included. For mutant patients, the weighted pooled ORR and 1-year PFS of EGFR-TKIs were significant superior to that of standard chemotherapy (ORR: 66.6% vs. 30.9%, OR 5.46, 95%CI 3.59 to 8.30, P<0.00001; 1-year PFS: 42.9% vs. 9.7%, OR 7.83, 95%CI 4.50 to 13.61; P<0.00001) through direct meta-analysis. In the network meta-analyses, no statistically significant differences in efficacy were found between these four TKIs with respect to all outcome measures. Trend analyses of rank probabilities revealed that the cumulative probabilities of being the most efficacious treatments were (ORR, 1-year PFS, 1-year OS, 2-year OS): erlotinib (51%, 38%, 14%, 19%), gefitinib (1%, 6%, 5%, 16%), afatinib (29%, 27%, 30%, 27%) and icotinib (19%, 29%, NA, NA), respectively. However, afatinib and erlotinib showed significant severer rash and diarrhea compared with gefitinib and icotinib. The current study indicated that erlotinib, gefitinib, afatinib and icotinib shared equivalent efficacy but presented different efficacy-toxicity pattern for EGFR-mutated patients. Erlotinib and afatinib revealed potentially better efficacy but significant higher toxicities compared with gefitinib and icotinib.

  7. Exploring resistance mechanisms of HCV NS3/4A protease mutations to MK5172: insight from molecular dynamics simulations and free energy calculations.

    PubMed

    Guan, Yan; Sun, Huiyong; Pan, Peichen; Li, Youyong; Li, Dan; Hou, Tingjun

    2015-09-01

    Mutations at a number of key positions (Ala156, Asp168 and Arg155) of the HCV NS3/4A protease can induce medium to high resistance to MK5172. The emergence of the resistant mutations seriously compromises the antiviral therapy efficacy to hepatitis C. In this study, molecular dynamics (MD) simulations, free energy calculations and free energy decomposition were used to explore the interaction profiles of MK5172 with the wild-type (WT) and four mutated (R155K, D168A, D168V and A156T) HCV NS3/4A proteases. The binding free energies predicted by Molecular Mechanics/Generalized Born Solvent Area (MM/GBSA) are consistent with the trend of the experimental drug resistance data. The free energy decomposition analysis shows that the resistant mutants may change the protein-MK5172 interaction profiles, resulting in the unbalanced energetic distribution amongst the catalytic triad, the strand 135-139 and the strand 154-160. Moreover, umbrella sampling (US) simulations were employed to elucidate the unbinding processes of MK5172 from the active pockets of the WT HCV NS3/4A protease and the four mutants. The US simulations demonstrate that the dissociation pathways of MK5172 escaping from the binding pockets of the WT and mutants are quite different, and it is quite possible that MK5172 will be harder to get access to the correct binding sites of the mutated proteases, thereafter leading to drug resistance.

  8. Pathologic findings in breast, fallopian tube, and ovary specimens in non-BRCA hereditary breast and/or ovarian cancer syndromes: a study of 18 patients with deleterious germline mutations in RAD51C, BARD1, BRIP1, PALB2, MUTYH, or CHEK2.

    PubMed

    Schoolmeester, J Kenneth; Moyer, Ann M; Goodenberger, McKinsey L; Keeney, Gary L; Carter, Jodi M; Bakkum-Gamez, Jamie N

    2017-12-01

    Germline BRCA mutations account for a significant proportion of genetic/familial risk of breast and ovarian cancer (GBOC) susceptibility, but a broader spectrum of GBOC susceptibility genes has emerged in recent years. Genotype-to-phenotype correlations are known for some established forms of GBOC; however, whether such correlations exist for less common GBOC variants is unclear. We reviewed our institution's experience with non-BRCA GBOC, looking specifically for trends in pathologic and clinical features. Eighteen women with deleterious germline mutations in RAD51C (5 patients), BARD1 (1 patient), BRIP1 (2 patients), PALB2 (3 patients), MUTYH (2 patients), or CHEK2 (5 patients) were identified between January 2011 and December 2016. Thirteen (72%) of 18 patients developed carcinoma of the breast, fallopian tube, or ovary, with 1 patient developing 2 separate primary neoplasms. Twelve (86%) of 14 tumors occurred in the breast. One (7%) arose in the fallopian tube and another (7%) arose in the ovary. Evidence of genotype-phenotype correlation was not identified. However, some data suggest that the type of alteration in select genes may influence tumor behavior and patient outcome. In our PALB2 mutation cohort, 2 patients with frameshift mutations led to early onset and rapid progression to stage IV breast cancer in contrast to stage IA breast cancer in 1 patient with a nonsense mutation. Despite no apparent genotype-phenotype trends, our data indicate that some loss-of-function variants in PALB2 may lead to differences in tumor behavior and patient outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Punctuated Evolution of Influenza Virus Neuraminidase (A/H1N1) under Opposing Migration and Vaccination Pressures

    PubMed Central

    Phillips, J. C.

    2014-01-01

    Influenza virus contains two highly variable envelope glycoproteins, hemagglutinin (HA) and neuraminidase (NA). The structure and properties of HA, which is responsible for binding the virus to the cell that is being infected, change significantly when the virus is transmitted from avian or swine species to humans. Here we focus first on the simpler problem of the much smaller human individual evolutionary amino acid mutational changes in NA, which cleaves sialic acid groups and is required for influenza virus replication. Our thermodynamic panorama shows that very small amino acid changes can be monitored very accurately across many historic (1945–2011) Uniprot and NCBI strains using hydropathicity scales to quantify the roughness of water film packages. Quantitative sequential analysis is most effective with the fractal differential hydropathicity scale based on protein self-organized criticality (SOC). Our analysis shows that large-scale vaccination programs have been responsible for a very large convergent reduction in common influenza severity in the last century. Hydropathic analysis is capable of interpreting and even predicting trends of functional changes in mutation prolific viruses directly from amino acid sequences alone. An engineered strain of NA1 is described which could well be significantly less virulent than current circulating strains. PMID:25143953

  10. Evolution of Escherichia coli to 42 °C and subsequent genetic engineering reveals adaptive mechanisms and novel mutations.

    PubMed

    Sandberg, Troy E; Pedersen, Margit; LaCroix, Ryan A; Ebrahim, Ali; Bonde, Mads; Herrgard, Markus J; Palsson, Bernhard O; Sommer, Morten; Feist, Adam M

    2014-10-01

    Adaptive laboratory evolution (ALE) has emerged as a valuable method by which to investigate microbial adaptation to a desired environment. Here, we performed ALE to 42 °C of ten parallel populations of Escherichia coli K-12 MG1655 grown in glucose minimal media. Tightly controlled experimental conditions allowed selection based on exponential-phase growth rate, yielding strains that uniformly converged toward a similar phenotype along distinct genetic paths. Adapted strains possessed as few as 6 and as many as 55 mutations, and of the 144 genes that mutated in total, 14 arose independently across two or more strains. This mutational recurrence pointed to the key genetic targets underlying the evolved fitness increase. Genome engineering was used to introduce the novel ALE-acquired alleles in random combinations into the ancestral strain, and competition between these engineered strains reaffirmed the impact of the key mutations on the growth rate at 42 °C. Interestingly, most of the identified key gene targets differed significantly from those found in similar temperature adaptation studies, highlighting the sensitivity of genetic evolution to experimental conditions and ancestral genotype. Additionally, transcriptomic analysis of the ancestral and evolved strains revealed a general trend for restoration of the global expression state back toward preheat stressed levels. This restorative effect was previously documented following evolution to metabolic perturbations, and thus may represent a general feature of ALE experiments. The widespread evolved expression shifts were enabled by a comparatively scant number of regulatory mutations, providing a net fitness benefit but causing suboptimal expression levels for certain genes, such as those governing flagellar formation, which then became targets for additional ameliorating mutations. Overall, the results of this study provide insight into the adaptation process and yield lessons important for the future implementation of ALE as a tool for scientific research and engineering. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer.

    PubMed

    Risch, H A; McLaughlin, J R; Cole, D E; Rosen, B; Bradley, L; Kwan, E; Jack, E; Vesprini, D J; Kuperstein, G; Abrahamson, J L; Fan, I; Wong, B; Narod, S A

    2001-03-01

    A population-based series of 649 unselected incident cases of ovarian cancer diagnosed in Ontario, Canada, during 1995-96 was screened for germline mutations in BRCA1 and BRCA2. We specifically tested for 11 of the most commonly reported mutations in the two genes. Then, cases were assessed with the protein-truncation test (PTT) for exon 11 of BRCA1, with denaturing gradient gel electrophoresis for the remainder of BRCA1, and with PTT for exons 10 and 11 of BRCA2. No mutations were found in all 134 women with tumors of borderline histology. Among the 515 women with invasive cancers, we identified 60 mutations, 39 in BRCA1 and 21 in BRCA2. The total mutation frequency among women with invasive cancers, 11.7% (95% confidence interval [95%CI] 9.2%-14.8%), is higher than previous estimates. Hereditary ovarian cancers diagnosed at age <50 years were mostly (83%) due to BRCA1, whereas the majority (60%) of those diagnosed at age >60 years were due to BRCA2. Mutations were found in 19% of women reporting first-degree relatives with breast or ovarian cancer and in 6.5% of women with no affected first-degree relatives. Risks of ovarian, breast, and stomach cancers and leukemias/lymphomas were increased nine-, five-, six- and threefold, respectively, among first-degree relatives of cases carrying BRCA1 mutations, compared with relatives of noncarriers, and risk of colorectal cancer was increased threefold for relatives of cases carrying BRCA2 mutations. For carriers of BRCA1 mutations, the estimated penetrance by age 80 years was 36% for ovarian cancer and 68% for breast cancer. In breast-cancer risk for first-degree relatives, there was a strong trend according to mutation location along the coding sequence of BRCA1, with little evidence of increased risk for mutations in the 5' fifth, but 8.8-fold increased risk for mutations in the 3' fifth (95%CI 3.6-22.0), corresponding to a carrier penetrance of essentially 100%. Ovarian, colorectal, stomach, pancreatic, and prostate cancer occurred among first-degree relatives of carriers of BRCA2 mutations only when mutations were in the ovarian cancer-cluster region (OCCR) of exon 11, whereas an excess of breast cancer was seen when mutations were outside the OCCR. For cancers of all sites combined, the estimated penetrance of BRCA2 mutations was greater for males than for females, 53% versus 38%. Past studies may have underestimated the contribution of BRCA2 to ovarian cancer, because mutations in this gene cause predominantly late-onset cancer, and previous work has focused more on early-onset disease. If confirmed in future studies, the trend in breast-cancer penetrance, according to mutation location along the BRCA1 coding sequence, may have significant impact on treatment decisions for carriers of BRCA1-mutations. As well, BRCA2 mutations may prove to be a greater cause of cancer in male carriers than previously has been thought.

  12. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections

    PubMed Central

    Mingo, Janire; Erramuzpe, Asier; Luna, Sandra; Aurtenetxe, Olaia; Amo, Laura; Diez, Ibai; Schepens, Jan T. G.; Hendriks, Wiljan J. A. J.; Cortés, Jesús M.; Pulido, Rafael

    2016-01-01

    Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis. PMID:27548698

  13. Convection shapes the trade-off between antibiotic efficacy and the selection for resistance in spatial gradients.

    PubMed

    Gralka, Matti; Fusco, Diana; Martis, Stephen; Hallatschek, Oskar

    2017-07-19

    Since penicillin was discovered about 90 years ago, we have become used to using drugs to eradicate unwanted pathogenic cells. However, using drugs to kill bacteria, viruses or cancer cells has the serious side effect of selecting for mutant types that survive the drug attack. A crucial question therefore is how one could eradicate as many cells as possible for a given acceptable risk of drug resistance evolution. We address this general question in a model of drug resistance evolution in spatial drug gradients, which recent experiments and theories have suggested as key drivers of drug resistance. Importantly, our model takes into account the influence of convection, resulting for instance from blood flow. Using stochastic simulations, we study the fates of individual resistance mutations and quantify the trade-off between the killing of wild-type cells and the rise of resistance mutations: shallow gradients and convection into the antibiotic region promote wild-type death, at the cost of increasing the establishment probability of resistance mutations. We can explain these observed trends by modeling the adaptation process as a branching random walk. Our analysis reveals that the trade-off between death and adaptation depends on the relative length scales of the spatial drug gradient and random dispersal, and the strength of convection. Our results show that convection can have a momentous effect on the rate of establishment of new mutations, and may heavily impact the efficiency of antibiotic treatment.

  14. Convection shapes the trade-off between antibiotic efficacy and the selection for resistance in spatial gradients

    NASA Astrophysics Data System (ADS)

    Gralka, Matti; Fusco, Diana; Martis, Stephen; Hallatschek, Oskar

    2017-08-01

    Since penicillin was discovered about 90 years ago, we have become used to using drugs to eradicate unwanted pathogenic cells. However, using drugs to kill bacteria, viruses or cancer cells has the serious side effect of selecting for mutant types that survive the drug attack. A crucial question therefore is how one could eradicate as many cells as possible for a given acceptable risk of drug resistance evolution. We address this general question in a model of drug resistance evolution in spatial drug gradients, which recent experiments and theories have suggested as key drivers of drug resistance. Importantly, our model takes into account the influence of convection, resulting for instance from blood flow. Using stochastic simulations, we study the fates of individual resistance mutations and quantify the trade-off between the killing of wild-type cells and the rise of resistance mutations: shallow gradients and convection into the antibiotic region promote wild-type death, at the cost of increasing the establishment probability of resistance mutations. We can explain these observed trends by modeling the adaptation process as a branching random walk. Our analysis reveals that the trade-off between death and adaptation depends on the relative length scales of the spatial drug gradient and random dispersal, and the strength of convection. Our results show that convection can have a momentous effect on the rate of establishment of new mutations, and may heavily impact the efficiency of antibiotic treatment.

  15. Trends towards Lower Antimicrobial Susceptibility and Characterization of Acquired Resistance among Clinical Isolates of Brachyspira hyodysenteriae in Spain ▿

    PubMed Central

    Hidalgo, Álvaro; Carvajal, Ana; Vester, Birte; Pringle, Märit; Naharro, Germán; Rubio, Pedro

    2011-01-01

    The antimicrobial susceptibility of clinical isolates of Brachyspira hyodysenteriae in Spain was monitored, and the underlying molecular mechanisms of resistance were investigated. MICs of tylosin, tiamulin, valnemulin, lincomycin, and tylvalosin were determined for 87 B. hyodysenteriae isolates recovered from 2008 to 2009 by broth dilution. Domain V of the 23S rRNA gene and the ribosomal protein L3 gene were sequenced in 20 isolates for which the tiamulin MIC was ≥4 μg/ml, presenting decreased susceptibility, and in 18 tiamulin-susceptible isolates (MIC ≤ 0.125 μg/ml), and all isolates were typed by multiple-locus variable-number tandem repeats analysis. A comparison with antimicrobial susceptibility data from 2000 to 2007 showed an increase in pleuromutilin resistance over time, doubling the number of isolates with decreased susceptibility to tiamulin. No alteration in susceptibility was detected for lincomycin, and the MIC of tylosin remained high (MIC50 > 128 μg/ml). The decreased susceptibility to tylosin and lincomycin can be explained by mutations at position A2058 of the 23S rRNA gene (Escherichia coli numbering). A2058T was the predominant mutation, but A2058G also was found together with a change of the neighboring base pair at positions 2057 to 2611. The role of additional point mutations in the vicinity of the peptidyl transferase center and mutations in the L3 at amino acids 148 and 149 and their possible involvement in antimicrobial susceptibility are considered. An association between G2032A and high levels of tiamulin and lincomycin MICs was found, suggesting an increasing importance of this mutation in antimicrobial resistance of clinical isolates of B. hyodysenteriae. PMID:21555771

  16. Trends towards lower antimicrobial susceptibility and characterization of acquired resistance among clinical isolates of Brachyspira hyodysenteriae in Spain.

    PubMed

    Hidalgo, Álvaro; Carvajal, Ana; Vester, Birte; Pringle, Märit; Naharro, Germán; Rubio, Pedro

    2011-07-01

    The antimicrobial susceptibility of clinical isolates of Brachyspira hyodysenteriae in Spain was monitored, and the underlying molecular mechanisms of resistance were investigated. MICs of tylosin, tiamulin, valnemulin, lincomycin, and tylvalosin were determined for 87 B. hyodysenteriae isolates recovered from 2008 to 2009 by broth dilution. Domain V of the 23S rRNA gene and the ribosomal protein L3 gene were sequenced in 20 isolates for which the tiamulin MIC was ≥ 4 μg/ml, presenting decreased susceptibility, and in 18 tiamulin-susceptible isolates (MIC ≤ 0.125 μg/ml), and all isolates were typed by multiple-locus variable-number tandem repeats analysis. A comparison with antimicrobial susceptibility data from 2000 to 2007 showed an increase in pleuromutilin resistance over time, doubling the number of isolates with decreased susceptibility to tiamulin. No alteration in susceptibility was detected for lincomycin, and the MIC of tylosin remained high (MIC(50) > 128 μg/ml). The decreased susceptibility to tylosin and lincomycin can be explained by mutations at position A2058 of the 23S rRNA gene (Escherichia coli numbering). A2058T was the predominant mutation, but A2058G also was found together with a change of the neighboring base pair at positions 2057 to 2611. The role of additional point mutations in the vicinity of the peptidyl transferase center and mutations in the L3 at amino acids 148 and 149 and their possible involvement in antimicrobial susceptibility are considered. An association between G2032A and high levels of tiamulin and lincomycin MICs was found, suggesting an increasing importance of this mutation in antimicrobial resistance of clinical isolates of B. hyodysenteriae.

  17. Pan-Cancer Analysis of Mutation Hotspots in Protein Domains.

    PubMed

    Miller, Martin L; Reznik, Ed; Gauthier, Nicholas P; Aksoy, Bülent Arman; Korkut, Anil; Gao, Jianjiong; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris

    2015-09-23

    In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Use of mutation spectra analysis software.

    PubMed

    Rogozin, I; Kondrashov, F; Glazko, G

    2001-02-01

    The study and comparison of mutation(al) spectra is an important problem in molecular biology, because these spectra often reflect on important features of mutations and their fixation. Such features include the interaction of DNA with various mutagens, the function of repair/replication enzymes, and properties of target proteins. It is known that mutability varies significantly along nucleotide sequences, such that mutations often concentrate at certain positions, called "hotspots," in a sequence. In this paper, we discuss in detail two approaches for mutation spectra analysis: the comparison of mutation spectra with a HG-PUBL program, (FTP: sunsite.unc.edu/pub/academic/biology/dna-mutations/hyperg) and hotspot prediction with the CLUSTERM program (www.itba.mi.cnr.it/webmutation; ftp.bionet.nsc.ru/pub/biology/dbms/clusterm.zip). Several other approaches for mutational spectra analysis, such as the analysis of a target protein structure, hotspot context revealing, multiple spectra comparisons, as well as a number of mutation databases are briefly described. Mutation spectra in the lacI gene of E. coli and the human p53 gene are used for illustration of various difficulties of such analysis. Copyright 2001 Wiley-Liss, Inc.

  19. Significant associations between driver gene mutations and DNA methylation alterations across many cancer types

    PubMed Central

    Chen, Yun-Ching; Margolin, Gennady

    2017-01-01

    Recent evidence shows that mutations in several driver genes can cause aberrant methylation patterns, a hallmark of cancer. In light of these findings, we hypothesized that the landscapes of tumor genomes and epigenomes are tightly interconnected. We measured this relationship using principal component analyses and methylation-mutation associations applied at the nucleotide level and with respect to genome-wide trends. We found that a few mutated driver genes were associated with genome-wide patterns of aberrant hypomethylation or CpG island hypermethylation in specific cancer types. In addition, we identified associations between 737 mutated driver genes and site-specific methylation changes. Moreover, using these mutation-methylation associations, we were able to distinguish between two uterine and two thyroid cancer subtypes. The driver gene mutation–associated methylation differences between the thyroid cancer subtypes were linked to differential gene expression in JAK-STAT signaling, NADPH oxidation, and other cancer-related pathways. These results establish that driver gene mutations are associated with methylation alterations capable of shaping regulatory network functions. In addition, the methodology presented here can be used to subdivide tumors into more homogeneous subsets corresponding to underlying molecular characteristics, which could improve treatment efficacy. PMID:29125844

  20. The relationship between Obsessive-Compulsive symptoms and PARKIN genotype: The CORE-PD study

    PubMed Central

    Sharp, ME; Caccappolo, E; Mejia-Santana, H; Tang, M–X; Rosado, L; Orbe Reilly, M; Ruiz, D; Louis, ED; Comella, C; Nance, M; Bressman, S; Scott, WK; Tanner, C; Waters, C; Fahn, S; Cote, L; Ford, B; Rezak, M; Novak, K; Friedman, JH; Pfeiffer, R; Payami, H; Molho, E; Factor, SA; Nutt, J; Serrano, C; Arroyo, M; Pauciulo, MW; Nichols, WC; Clark, LN; Alcalay, RN; Marder, KS

    2014-01-01

    Background Few studies have systematically investigated the association between PARKIN genotype and psychiatric co-morbidities of PD. PARKIN-associated PD is characterized by severe nigral dopaminergic neuronal loss, a finding that may have implications for behaviors rooted in dopaminergic circuits such as obsessive-compulsive symptoms (OCS). Methods The Schedule of Compulsions and Obsessions Patient Inventory (SCOPI) was administered to 104 patients with early-onset PD and 257 asymptomatic first-degree relatives. Carriers of one and two PARKIN mutations were compared to non-carriers. Results Among patients, carriers scored lower than non-carriers in adjusted models (one-mutation: 13.9 point difference, p=0.03; two-mutation: 24.1, p=0.001), where lower scores indicate less OCS. Among asymptomatic relatives, there was a trend towards the opposite: mutation carriers scored higher than non-carriers (one mutation p = 0.05; two mutations p = 0.13). Conclusions First, there was a significant association between PARKIN mutation status and obsessive-compulsive symptom level in both PD and asymptomatics, suggesting that OCS might represent an early non-motor dopamine-dependent feature. Second, irrespective of disease status, heterozygotes were significantly different that non-carriers suggesting that PARKIN heterozygosity may contribute to phenotype. PMID:25393808

  1. Immune-escape mutations and stop-codons in HBsAg develop in a large proportion of patients with chronic HBV infection exposed to anti-HBV drugs in Europe.

    PubMed

    Colagrossi, Luna; Hermans, Lucas E; Salpini, Romina; Di Carlo, Domenico; Pas, Suzan D; Alvarez, Marta; Ben-Ari, Ziv; Boland, Greet; Bruzzone, Bianca; Coppola, Nicola; Seguin-Devaux, Carole; Dyda, Tomasz; Garcia, Federico; Kaiser, Rolf; Köse, Sukran; Krarup, Henrik; Lazarevic, Ivana; Lunar, Maja M; Maylin, Sarah; Micheli, Valeria; Mor, Orna; Paraschiv, Simona; Paraskevis, Dimitros; Poljak, Mario; Puchhammer-Stöckl, Elisabeth; Simon, François; Stanojevic, Maja; Stene-Johansen, Kathrine; Tihic, Nijaz; Trimoulet, Pascale; Verheyen, Jens; Vince, Adriana; Lepej, Snjezana Zidovec; Weis, Nina; Yalcinkaya, Tülay; Boucher, Charles A B; Wensing, Annemarie M J; Perno, Carlo F; Svicher, Valentina

    2018-06-01

    HBsAg immune-escape mutations can favor HBV-transmission also in vaccinated individuals, promote immunosuppression-driven HBV-reactivation, and increase fitness of drug-resistant strains. Stop-codons can enhance HBV oncogenic-properties. Furthermore, as a consequence of the overlapping structure of HBV genome, some immune-escape mutations or stop-codons in HBsAg can derive from drug-resistance mutations in RT. This study is aimed at gaining insight in prevalence and characteristics of immune-associated escape mutations, and stop-codons in HBsAg in chronically HBV-infected patients experiencing nucleos(t)ide analogues (NA) in Europe. This study analyzed 828 chronically HBV-infected European patients exposed to ≥ 1 NA, with detectable HBV-DNA and with an available HBsAg-sequence. The immune-associated escape mutations and the NA-induced immune-escape mutations sI195M, sI196S, and sE164D (resulting from drug-resistance mutation rtM204 V, rtM204I, and rtV173L) were retrieved from literature and examined. Mutations were defined as an aminoacid substitution with respect to a genotype A or D reference sequence. At least one immune-associated escape mutation was detected in 22.1% of patients with rising temporal-trend. By multivariable-analysis, genotype-D correlated with higher selection of ≥ 1 immune-associated escape mutation (OR[95%CI]:2.20[1.32-3.67], P = 0.002). In genotype-D, the presence of ≥ 1 immune-associated escape mutations was significantly higher in drug-exposed patients with drug-resistant strains than with wild-type virus (29.5% vs 20.3% P = 0.012). Result confirmed by analysing drug-naïve patients (29.5% vs 21.2%, P = 0.032). Strong correlation was observed between sP120T and rtM204I/V (P < 0.001), and their co-presence determined an increased HBV-DNA. At least one NA-induced immune-escape mutation occurred in 28.6% of patients, and their selection correlated with genotype-A (OR[95%CI]:2.03[1.32-3.10],P = 0.001). Finally, stop-codons are present in 8.4% of patients also at HBsAg-positions 172 and 182, described to enhance viral oncogenic-properties. Immune-escape mutations and stop-codons develop in a large fraction of NA-exposed patients from Europe. This may represent a potential threat for horizontal and vertical HBV transmission also to vaccinated persons, and fuel drug-resistance emergence.

  2. Prevalence and patterns of HIV transmitted drug resistance in Guatemala.

    PubMed

    Avila-Ríos, Santiago; Mejía-Villatoro, Carlos R; García-Morales, Claudia; Soto-Nava, Maribel; Escobar, Ingrid; Mendizabal, Ricardo; Girón, Amalia; García, Leticia; Reyes-Terán, Gustavo

    2011-12-01

    To assess human immunodeficiency virus (HIV) diversity and the prevalence of transmitted drug resistance (TDR) in Guatemala. One hundred forty-five antiretroviral treatment-naïve patients referred to the Roosevelt Hospital in Guatemala City were enrolled from October 2010 to March 2011. Plasma HIV pol sequences were obtained and TDR was assessed with the Stanford algorithm and the World Health Organization (WHO) TDR surveillance mutation list. HIV subtype B was highly prevalent in Guatemala (96.6%, 140/145), and a 2.8% (4/145) prevalence of BF1 recombinants and 0.7% (1/145) prevalence of subtype C viruses were found. TDR prevalence for the study period was 8.3% (12/145) with the Stanford database algorithm (score > 15) and the WHO TDR surveillance mutation list. Most TDR cases were associated with non-nucleoside reverse transcriptase inhibitors (NNRTIs) (83.3%, 10/12); a low prevalence of nucleoside reverse transcriptase inhibitors and protease inhibitors was observed in the cohort (< 1% for both families). Low selection of antiretroviral drug resistance mutations was found, except for NNRTI-associated mutations. Major NNRTI mutations such as K101E, K103N, and E138K showed higher frequencies than expected in ART-naïve populations. Higher literacy was associated with a greater risk of TDR (odds ratio 4.14, P = 0.0264). This study represents one of the first efforts to describe HIV diversity and TDR prevalence and trends in Guatemala. TDR prevalence in Guatemala was at the intermediate level. Most TDR cases were associated with NNRTIs. Further and continuous TDR surveillance is necessary to gain more indepth knowledge about TDR spread and trends in Guatemala and to optimize treatment outcomes in the country.

  3. Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers.

    PubMed

    Wang, Xianshu; Pankratz, V Shane; Fredericksen, Zachary; Tarrell, Robert; Karaus, Mary; McGuffog, Lesley; Pharaoh, Paul D P; Ponder, Bruce A J; Dunning, Alison M; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Sinilnikova, Olga M; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Houdayer, Claude; Hogervorst, Frans B L; Hooning, Maartje J; Ligtenberg, Marjolijn J; Spurdle, Amanda; Chenevix-Trench, Georgia; Schmutzler, Rita K; Wappenschmidt, Barbara; Engel, Christoph; Meindl, Alfons; Domchek, Susan M; Nathanson, Katherine L; Rebbeck, Timothy R; Singer, Christian F; Gschwantler-Kaulich, Daphne; Dressler, Catherina; Fink, Anneliese; Szabo, Csilla I; Zikan, Michal; Foretova, Lenka; Claes, Kathleen; Thomas, Gilles; Hoover, Robert N; Hunter, David J; Chanock, Stephen J; Easton, Douglas F; Antoniou, Antonis C; Couch, Fergus J

    2010-07-15

    Recent studies have identified single nucleotide polymorphisms (SNPs) that significantly modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Since these risk modifiers were originally identified as genetic risk factors for breast cancer in genome-wide association studies (GWASs), additional risk modifiers for BRCA1 and BRCA2 may be identified from promising signals discovered in breast cancer GWAS. A total of 350 SNPs identified as candidate breast cancer risk factors (P < 1 x 10(-3)) in two breast cancer GWAS studies were genotyped in 3451 BRCA1 and 2006 BRCA2 mutation carriers from nine centers. Associations with breast cancer risk were assessed using Cox models weighted for penetrance. Eight SNPs in BRCA1 carriers and 12 SNPs in BRCA2 carriers, representing an enrichment over the number expected, were significantly associated with breast cancer risk (P(trend) < 0.01). The minor alleles of rs6138178 in SNRPB and rs6602595 in CAMK1D displayed the strongest associations in BRCA1 carriers (HR = 0.78, 95% CI: 0.69-0.90, P(trend) = 3.6 x 10(-4) and HR = 1.25, 95% CI: 1.10-1.41, P(trend) = 4.2 x 10(-4)), whereas rs9393597 in LOC134997 and rs12652447 in FBXL7 showed the strongest associations in BRCA2 carriers (HR = 1.55, 95% CI: 1.25-1.92, P(trend) = 6 x 10(-5) and HR = 1.37, 95% CI: 1.16-1.62, P(trend) = 1.7 x 10(-4)). The magnitude and direction of the associations were consistent with the original GWAS. In subsequent risk assessment studies, the loci appeared to interact multiplicatively for breast cancer risk in BRCA1 and BRCA2 carriers. Promising candidate SNPs from GWAS were identified as modifiers of breast cancer risk in BRCA1 and BRCA2 carriers. Upon further validation, these SNPs together with other genetic and environmental factors may improve breast cancer risk assessment in these populations.

  4. Genome-wide methylation profiling identifies an essential role of reactive oxygen species in pediatric glioblastoma multiforme and validates a methylome specific for H3 histone family 3A with absence of G-CIMP/isocitrate dehydrogenase 1 mutation.

    PubMed

    Jha, Prerana; Pia Patric, Irene Rosita; Shukla, Sudhanshu; Pathak, Pankaj; Pal, Jagriti; Sharma, Vikas; Thinagararanjan, Sivaarumugam; Santosh, Vani; Suri, Vaishali; Sharma, Mehar Chand; Arivazhagan, Arimappamagan; Suri, Ashish; Gupta, Deepak; Somasundaram, Kumaravel; Sarkar, Chitra

    2014-12-01

    Pediatric glioblastoma multiforme (GBM) is rare, and there is a single study, a seminal discovery showing association of histone H3.3 and isocitrate dehydrogenase (IDH)1 mutation with a DNA methylation signature. The present study aims to validate these findings in an independent cohort of pediatric GBM, compare it with adult GBM, and evaluate the involvement of important functionally altered pathways. Genome-wide methylation profiling of 21 pediatric GBM cases was done and compared with adult GBM data (GSE22867). We performed gene mutation analysis of IDH1 and H3 histone family 3A (H3F3A), status evaluation of glioma cytosine-phosphate-guanine island methylator phenotype (G-CIMP), and Gene Ontology analysis. Experimental evaluation of reactive oxygen species (ROS) association was also done. Distinct differences were noted between methylomes of pediatric and adult GBM. Pediatric GBM was characterized by 94 hypermethylated and 1206 hypomethylated cytosine-phosphate-guanine (CpG) islands, with 3 distinct clusters, having a trend to prognostic correlation. Interestingly, none of the pediatric GBM cases showed G-CIMP/IDH1 mutation. Gene Ontology analysis identified ROS association in pediatric GBM, which was experimentally validated. H3F3A mutants (36.4%; all K27M) harbored distinct methylomes and showed enrichment of processes related to neuronal development, differentiation, and cell-fate commitment. Our study confirms that pediatric GBM has a distinct methylome compared with that of adults. Presence of distinct clusters and an H3F3A mutation-specific methylome indicate existence of epigenetic subgroups within pediatric GBM. Absence of IDH1/G-CIMP status further indicates that findings in adult GBM cannot be simply extrapolated to pediatric GBM and that there is a strong need for identification of separate prognostic markers. A possible role of ROS in pediatric GBM pathogenesis is demonstrated for the first time and needs further evaluation. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Temporal Variation Analysis on Climate of Dry-Hot Valley Since 1950s in Upper Yangtze River Basin, China

    NASA Astrophysics Data System (ADS)

    Sun, L.; Cai, Y.

    2017-12-01

    Climate of dry-hot valley areas regarding their long term temporal changes are seldom studied. In this paper, climate change in lower reach of Yalongjiang River, a typical dry-hot valley area locating in upper Yangtze River Basin, was analyzed. Ten single meteorological factors were used to investigate basic climatic characteristics, and two integrated index (i.e. relative evapotranspiration(AET/P), standard precipitation evapotranspiration index(SPEI)) were selected to reflect changes from human activities and gauge climate drought regime. Mann-Kendall mutation test was applied to identify mutation year, and variation trends were diagnosed with linear regression and distance average analysis. Mean values were tested to find if there were significant changes resulting from a large artificial reservoir constructed in 1999. Results of mutation test showed that minimum temperature, relative humidity, and AET/P in two stations changed significantly in 2000s. Temperature increased since 1990s, and other single index fluctuated in recent 50 years. Precipitation decreased and temperature increased in autumn significantly, while precipitation in summer decreased slightly. The variation of SPEI implied that the area was humid from 1980s to 2000s, but drought in 2010s. The results of mean test indicated that 56% meteorological index changed significantly, which might be related to the construction of the large reservoir. This research not only reveals the climate change in a dry-hot valley, but also helps study concerning human activities especially the construction of cascade reservoirs in the future in this area.

  6. Role of CFTR mutation analysis in the diagnostic algorithm for cystic fibrosis.

    PubMed

    Ratkiewicz, Michelle; Pastore, Matthew; McCoy, Karen Sharrock; Thompson, Rohan; Hayes, Don; Sheikh, Shahid Ijaz

    2017-04-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation identification is being used with increased frequency to aid in the diagnosis of cystic fibrosis (CF) in those suspected with CF. Aim of this study was to identify diagnostic outcomes when CFTR mutational analysis was used in CF diagnosis. CFTR mutational analysis results were also compared with sweat chloride results. This study was done on all patients at our institution who had CFTR mutation analysis over a sevenyear period since August 2006. A total of 315 patients underwent CFTR mutational analysis. Fifty-one (16.2%) patients had two mutations identified. Among them 32 had positive sweat chloride levels (≥60 mmol/L), while seven had borderline sweat chloride levels (40-59 mmol/L). An additional 70 patients (22.3%) had only one mutation identified. Among them eight had positive sweat chloride levels, and 17 had borderline sweat chloride levels. Fifty-five patients (17.5%) without CFTR mutations had either borderline (n=45) or positive (n=10) sweat chloride results. Three patients with a CF phenotype had negative CFTR analysis but elevated sweat chloride levels. In eighty-three patients (26.4%) CFTR mutational analysis was done without corresponding sweat chloride testing. Although CFTR mutation analysis has improved the diagnostic capability for CF, its use either as the first step or the only test to diagnose CFTR dysfunction should be discouraged and CF diagnostic guidelines need to be followed.

  7. Recent Trends in WRN Gene Mutation Patterns in Individuals with Werner Syndrome.

    PubMed

    Yamaga, Masaya; Takemoto, Minoru; Takada-Watanabe, Aki; Koizumi, Naoko; Kitamoto, Takumi; Sakamoto, Kenichi; Ishikawa, Takahiro; Koshizaka, Masaya; Maezawa, Yoshiro; Yokote, Koutaro

    2017-08-01

    To determine recent trends in mutation patterns in the WRN gene, which cause Werner syndrome (WS), a rare, inheritable progeroid syndrome in Japan. Retrospective cohort. Longitudinal survey of WS and literature search for case reports. Individuals whose genetic testing their facilities had requested between 2009 and October 2016 (N = 67). A nationwide epidemiological study was conducted from 2009 to 2011 to improve understanding of the pathology of WS and develop therapeutic guidelines. Since 2009, Chiba University Hospital consecutively evaluated the WRN gene in 67 individuals throughout Japan who had requested genetic testing. A literature search was also conducted for case reports on Japanese WS reported since 1997. A definitive diagnosis of WS was confirmed genetically in 50 of 67 participants. Through the literature search, 16 individuals diagnosed genetically with WS were identified. Of these 66 individuals with WS, 42 were homozygous for a WRN mutation, and 21 were compound heterozygotes. One novel mutant allele was identified in an individual with the compound heterozygous genotype. The proportion of compound heterozygotes (31.8%) was significantly greater than reported previously (14.2%), indicating that the incidence of consanguineous marriage of parents has decreased. The increased frequency of individuals with WS with the compound heterozygous genotype is a recent trend in Japan. A long-term follow-up study on WRN homozygotes and compound heterozygotes will allow the relationship between WRN genotype and clinical severity of WS to be evaluated in the future. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  8. Structure-functional prediction and analysis of cancer mutation effects in protein kinases.

    PubMed

    Dixit, Anshuman; Verkhivker, Gennady M

    2014-01-01

    A central goal of cancer research is to discover and characterize the functional effects of mutated genes that contribute to tumorigenesis. In this study, we provide a detailed structural classification and analysis of functional dynamics for members of protein kinase families that are known to harbor cancer mutations. We also present a systematic computational analysis that combines sequence and structure-based prediction models to characterize the effect of cancer mutations in protein kinases. We focus on the differential effects of activating point mutations that increase protein kinase activity and kinase-inactivating mutations that decrease activity. Mapping of cancer mutations onto the conformational mobility profiles of known crystal structures demonstrated that activating mutations could reduce a steric barrier for the movement from the basal "low" activity state to the "active" state. According to our analysis, the mechanism of activating mutations reflects a combined effect of partial destabilization of the kinase in its inactive state and a concomitant stabilization of its active-like form, which is likely to drive tumorigenesis at some level. Ultimately, the analysis of the evolutionary and structural features of the major cancer-causing mutational hotspot in kinases can also aid in the correlation of kinase mutation effects with clinical outcomes.

  9. Biological significance of TERT promoter mutation in papillary urothelial neoplasm of low malignant potential.

    PubMed

    Wang, Chung-Chieh; Huang, Chao-Yuan; Jhuang, Yu-Lin; Chen, Chih-Chi; Jeng, Yung-Ming

    2018-04-01

    Mutations in FGFR3 and the promoter region of the telomerase reverse transcriptase (TERT) gene have been found frequently in urothelial carcinoma of the urinary bladder. However, related data for papillary urothelial neoplasm of low malignant potential (PUNLMP) are limited. In this study, we investigated the mutation status of the TERT promoter, FGFR3 and HRAS in low-grade papillary urothelial neoplasms and evaluated their prognostic significance. The cases included in this study comprised 21 inverted papillomas, 30 PUNLMPs and 34 low-grade non-invasive papillary urothelial carcinomas (NIPUCs). TERT promoter mutations were observed in 10 (33%) PUNLMPs and 17 (50%) low-grade NIPUCs, but not in any inverted papilloma. FGFR3 mutations were observed more frequently in PUNLMP and low-grade NIPUC than in inverted papillomas (P = 0.009), whereas the opposite trend was noted for HRAS mutations (P < 0.001). Regarding the clinical outcome, TERT promoter mutation was associated with a higher recurrence rate in PUNLMP (P = 0.024) but not in low-grade NIPUC (P = 0.530). Notably, PUNLMP cases with TERT promoter mutations had a similar recurrence rate to that in low-grade NIPUC cases (P = 0.487). Our results suggest that the status of the TERT promoter mutation may serve as a biomarker of prognostic stratification in patients with PUNLMP. © 2017 John Wiley & Sons Ltd.

  10. Mutation analysis of the MECP2 gene in patients of Slavic origin with Rett syndrome: novel mutations and polymorphisms.

    PubMed

    Zahorakova, Daniela; Rosipal, Robert; Hadac, Jan; Zumrova, Alena; Bzduch, Vladimir; Misovicova, Nadezda; Baxova, Alice; Zeman, Jiri; Martasek, Pavel

    2007-01-01

    Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder in females, is caused mainly by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). Here we report mutation analysis of the MECP2 gene in 87 patients with RTT from the Czech and Slovak Republics, and Ukraine. The patients, all girls, with classical RTT were investigated for mutations using bi-directional DNA sequencing and conformation sensitive gel electrophoresis analysis of the coding sequence and exon/intron boundaries of the MECP2 gene. Restriction fragment length polymorphism analysis was performed to confirm the mutations that cause the creation or abolition of the restriction site. Mutation-negative cases were subsequently examined by multiple ligation-dependent probe amplification (MLPA) to identify large deletions. Mutation screening revealed 31 different mutations in 68 patients and 12 non-pathogenic polymorphisms. Six mutations have not been previously published: two point mutations (323T>A, 904C>T), three deletions (189_190delGA, 816_832del17, 1069delAGC) and one deletion/inversion (1063_1236del174;1189_1231inv43). MLPA analysis revealed large deletions in two patients. The detection rate was 78.16%. Our results confirm the high frequency of MECP2 mutations in females with RTT and provide data concerning the mutation heterogeneity in the Slavic population.

  11. Mutation Analysis in Classical Phenylketonuria Patients Followed by Detecting Haplotypes Linked to Some PAH Mutations.

    PubMed

    Dehghanian, Fatemeh; Silawi, Mohammad; Tabei, Seyed M B

    2017-02-01

    Deficiency of phenylalanine hydroxylase (PAH) enzyme and elevation of phenylalanine in body fluids cause phenylketonuria (PKU). The gold standard for confirming PKU and PAH deficiency is detecting causal mutations by direct sequencing of the coding exons and splicing involved sequences of the PAH gene. Furthermore, haplotype analysis could be considered as an auxiliary approach for detecting PKU causative mutations before direct sequencing of the PAH gene by making comparisons between prior detected mutation linked-haplotypes and new PKU case haplotypes with undetermined mutations. In this study, 13 unrelated classical PKU patients took part in the study detecting causative mutations. Mutations were identified by polymerase chain reaction (PCR) and direct sequencing in all patients. After that, haplotype analysis was performed by studying VNTR and PAHSTR markers (linked genetic markers of the PAH gene) through application of PCR and capillary electrophoresis (CE). Mutation analysis was performed successfully and the detected mutations were as follows: c.782G>A, c.754C>T, c.842C>G, c.113-115delTCT, c.688G>A, and c.696A>G. Additionally, PAHSTR/VNTR haplotypes were detected to discover haplotypes linked to each mutation. Mutation detection is the best approach for confirming PAH enzyme deficiency in PKU patients. Due to the relatively large size of the PAH gene and high cost of the direct sequencing in developing countries, haplotype analysis could be used before DNA sequencing and mutation detection for a faster and cheaper way via identifying probable mutated exons.

  12. Impact of Weight Loss at Presentation on Survival in Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR-TKI) Sensitive Mutant Advanced Non-small Cell Lung Cancer (NSCLC) Treated with First-line EGFR-TKI.

    PubMed

    Lin, Liping; Zhao, Juanjuan; Hu, Jiazhu; Huang, Fuxi; Han, Jianjun; He, Yan; Cao, Xiaolong

    2018-01-01

    Purpose The aim of this study is to evaluate the impact of weight loss at presentation on treatment outcomes of first-line EGFR-tyrosine kinase inhibitors (EGFR-TKI) in EGFR-TKI sensitive mutant NSCLC patients. Methods We retrospectively analyzed the clinical outcomes of 75 consecutive advanced NSCLC patients with EGFR-TKI sensitive mutations (exon 19 deletion or exon 21 L858R) received first-line gefitinib or erlotinib therapy according to weight loss status at presentation in our single center. Results Of 75 EGFR-TKI sensitive mutant NSCLC patients, 49 (65.3%) patients had no weight loss and 26 (34.7%) had weight loss at presentation, the objective response rate (ORR) to EGFR-TKI treatment were similar between the two groups (79.6% vs. 76.9%, p = 0.533). Patients without weight loss at presentation had significantly longer median progression free survival (PFS) (12.4 months vs. 7.6 months; hazard ratio [HR] 0.356, 95% confidence interval [CI] 0.212-0.596, p < 0.001) and overall survival (OS) (28.5 months vs. 20.7 months; HR 0.408, 95% CI 0.215-0.776, p = 0.006) than those with weight loss at presentation; moreover, the stratified analysis by EGFR-TKI sensitive mutation types also found similar trend between these two groups except for OS in EGFR exon 21 L858R mutation patients. Multivariate analysis identified weight loss at presentation and EGFR-TKI sensitive mutation types were independent predictive factors for PFS and OS. Conclusions Weight loss at presentation had a detrimental impact on PFS and OS in EGFR-TKI sensitive mutant advanced NSCLC patients treated with first-line EGFR-TKI. It should be considered as an important factor in the treatment decision or designing of EGFR-TKI clinical trials.

  13. Calreticulin mutation analysis in non-mutated Janus kinase 2 essential thrombocythemia patients in Chiang Mai University: analysis of three methods and clinical correlations.

    PubMed

    Rattarittamrong, Ekarat; Tantiworawit, Adisak; Kumpunya, Noppamas; Wongtagan, Ornkamon; Tongphung, Ratchanoo; Phusua, Arunee; Chai-Adisaksopha, Chatree; Hantrakool, Sasinee; Rattanathammethee, Thanawat; Norasetthada, Lalita; Charoenkwan, Pimlak; Lekawanvijit, Suree

    2018-03-09

    The primary objective was to determine the prevalence of calreticulin (CALR) mutation in patients with non-JAK2V617F mutated essential thrombocythemia (ET). The secondary objectives were to evaluate the accuracy of CALR mutation analysis by high-resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) compared with DNA sequencing and to compare clinical characteristics of CALR mutated and JAK2V617F mutated ET. This was a prospective cohort study involving ET patients registered at Chiang Mai University in the period September 2015-September 2017 who were aged more than 2 years, and did not harbor JAK2V617F mutation. The presence of CALR mutation was established by DNA sequencing, HRM, and real-time PCR for type 1 and type 2 mutation. Clinical data were compared with that from ET patients with mutated JAK2V617F. Twenty-eight patients were enrolled onto the study. CALR mutations were found in 10 patients (35.7%). Three patients had type 1 mutation, 5 patients had type 2 mutation, 1 patient had type 18 mutation, and 1 patients had novel mutations (c.1093 C-G, c.1098_1131 del, c.1135 G-A). HRM could differentiate between the types of mutation in complete agreement with DNA sequencing. Patients with a CALR mutation showed a significantly greater male predominance and had a higher platelet count when compared with 42 JAK2V617F patients. The prevalence of CALR mutation in JAK2V617F-negative ET in this study is 35.7%. HRM is an effective method of detecting CALR mutation and is a more advantageous method of screening for CALR mutation.

  14. Genetic Alterations and Their Clinical Implications in High-Recurrence Risk Papillary Thyroid Cancer.

    PubMed

    Lee, Min-Young; Ku, Bo Mi; Kim, Hae Su; Lee, Ji Yun; Lim, Sung Hee; Sun, Jong-Mu; Lee, Se-Hoon; Park, Keunchil; Oh, Young Lyun; Hong, Mineui; Jeong, Han-Sin; Son, Young-Ik; Baek, Chung-Hwan; Ahn, Myung-Ju

    2017-10-01

    Papillary thyroid carcinomas (PTCs) frequently involve genetic alterations. The objective of this study was to investigate genetic alterations and further explore the relationships between these genetic alterations and clinicopathological characteristics in a high-recurrence risk (node positive, N1) PTC group. Tumor tissue blocks were obtained from 240 surgically resected patients with histologically confirmed stage III/IV (pT3/4 or N1) PTCs. We screened gene fusions using NanoString's nCounter technology and mutational analysis was performed by direct DNA sequencing. Data describing the clinicopathological characteristics and clinical courses were retrospectively collected. Of the 240 PTC patients, 207 (86.3%) had at least one genetic alteration, including BRAF mutation in 190 patients (79.2%), PIK3CA mutation in 25 patients (10.4%), NTRK1/3 fusion in six patients (2.5%), and RET fusion in 24 patients (10.0%). Concomitant presence of more than two genetic alterations was seen in 36 patients (15%). PTCs harboring BRAF mutation were associated with RET wild-type expression (p=0.001). RET fusion genes have been found to occur with significantly higher frequency in N1b stage patients (p=0.003) or groups of patients aged 45 years or older (p=0.031); however, no significant correlation was found between other genetic alterations. There was no trend toward favorable recurrence-free survival or overall survival among patients lacking genetic alterations. In the selected high-recurrence risk PTC group, most patients had more than one genetic alteration. However, these known alterations could not entirely account for clinicopathological features of high-recurrence risk PTC.

  15. Differential analysis between somatic mutation and germline variation profiles reveals cancer-related genes.

    PubMed

    Przytycki, Pawel F; Singh, Mona

    2017-08-25

    A major aim of cancer genomics is to pinpoint which somatically mutated genes are involved in tumor initiation and progression. We introduce a new framework for uncovering cancer genes, differential mutation analysis, which compares the mutational profiles of genes across cancer genomes with their natural germline variation across healthy individuals. We present DiffMut, a fast and simple approach for differential mutational analysis, and demonstrate that it is more effective in discovering cancer genes than considerably more sophisticated approaches. We conclude that germline variation across healthy human genomes provides a powerful means for characterizing somatic mutation frequency and identifying cancer driver genes. DiffMut is available at https://github.com/Singh-Lab/Differential-Mutation-Analysis .

  16. Genome-wide methylation profiling identifies an essential role of reactive oxygen species in pediatric glioblastoma multiforme and validates a methylome specific for H3 histone family 3A with absence of G-CIMP/isocitrate dehydrogenase 1 mutation

    PubMed Central

    Jha, Prerana; Pia Patric, Irene Rosita; Shukla, Sudhanshu; Pathak, Pankaj; Pal, Jagriti; Sharma, Vikas; Thinagararanjan, Sivaarumugam; Santosh, Vani; Suri, Vaishali; Sharma, Mehar Chand; Arivazhagan, Arimappamagan; Suri, Ashish; Gupta, Deepak; Somasundaram, Kumaravel; Sarkar, Chitra

    2014-01-01

    Background Pediatric glioblastoma multiforme (GBM) is rare, and there is a single study, a seminal discovery showing association of histone H3.3 and isocitrate dehydrogenase (IDH)1 mutation with a DNA methylation signature. The present study aims to validate these findings in an independent cohort of pediatric GBM, compare it with adult GBM, and evaluate the involvement of important functionally altered pathways. Methods Genome-wide methylation profiling of 21 pediatric GBM cases was done and compared with adult GBM data (GSE22867). We performed gene mutation analysis of IDH1 and H3 histone family 3A (H3F3A), status evaluation of glioma cytosine–phosphate–guanine island methylator phenotype (G-CIMP), and Gene Ontology analysis. Experimental evaluation of reactive oxygen species (ROS) association was also done. Results Distinct differences were noted between methylomes of pediatric and adult GBM. Pediatric GBM was characterized by 94 hypermethylated and 1206 hypomethylated cytosine–phosphate–guanine (CpG) islands, with 3 distinct clusters, having a trend to prognostic correlation. Interestingly, none of the pediatric GBM cases showed G-CIMP/IDH1 mutation. Gene Ontology analysis identified ROS association in pediatric GBM, which was experimentally validated. H3F3A mutants (36.4%; all K27M) harbored distinct methylomes and showed enrichment of processes related to neuronal development, differentiation, and cell-fate commitment. Conclusions Our study confirms that pediatric GBM has a distinct methylome compared with that of adults. Presence of distinct clusters and an H3F3A mutation–specific methylome indicate existence of epigenetic subgroups within pediatric GBM. Absence of IDH1/G-CIMP status further indicates that findings in adult GBM cannot be simply extrapolated to pediatric GBM and that there is a strong need for identification of separate prognostic markers. A possible role of ROS in pediatric GBM pathogenesis is demonstrated for the first time and needs further evaluation. PMID:24997139

  17. Persistence of DNMT3A R882 mutations during remission does not adversely affect outcomes of patients with acute myeloid leukaemia.

    PubMed

    Bhatnagar, Bhavana; Eisfeld, Ann-Kathrin; Nicolet, Deedra; Mrózek, Krzysztof; Blachly, James S; Orwick, Shelley; Lucas, David M; Kohlschmidt, Jessica; Blum, William; Kolitz, Jonathan E; Stone, Richard M; Bloomfield, Clara D; Byrd, John C

    2016-10-01

    Somatic mutation of the DNMT3A gene at the arginine R882 site is common in acute myeloid leukaemia (AML). The prognostic significance of DNMT3A R882 mutation clearance, using traditional diagnostic next generation sequencing (NGS) methods, during complete remission (CR) in AML patients is controversial. We examined the impact of clearing DNMT3A R882 mutations at diagnosis to the detectable threshold of ˂3% during CR on outcome in 56 adult AML patients. Mutational remission, defined as clearance of pre-treatment DNMT3A R882 and all other AML-associated mutations to a variant allele frequency ˂3%, occurred in 14 patients whereas persistent DNMT3A R882 mutations were observed in 42 patients. There were no significant differences in disease-free or overall survival between patients with and without DNMT3A R882 mutation clearance. Patients with persistent DNMT3A R882 who cleared all other AML mutations and did not acquire new mutations (n = 30), trended towards longer disease-free survival (1·6 vs. 0·6 years, P = 0·06) than patients with persistence of DNMT3A R882, in addition to other mutations or acquisition of new AML-associated mutations, such as those in TET2, JAK2, ASXL1 and TP53 (n = 12). These data demonstrate that DNMT3A R882 mutations, as assessed by traditional NGS methods, persist in the majority of AML patients in CR. © 2016 John Wiley & Sons Ltd.

  18. Mutation supply and the repeatability of selection for antibiotic resistance

    NASA Astrophysics Data System (ADS)

    van Dijk, Thomas; Hwang, Sungmin; Krug, Joachim; de Visser, J. Arjan G. M.; Zwart, Mark P.

    2017-10-01

    Whether evolution can be predicted is a key question in evolutionary biology. Here we set out to better understand the repeatability of evolution, which is a necessary condition for predictability. We explored experimentally the effect of mutation supply and the strength of selective pressure on the repeatability of selection from standing genetic variation. Different sizes of mutant libraries of antibiotic resistance gene TEM-1 β-lactamase in Escherichia coli, generated by error-prone PCR, were subjected to different antibiotic concentrations. We determined whether populations went extinct or survived, and sequenced the TEM gene of the surviving populations. The distribution of mutations per allele in our mutant libraries followed a Poisson distribution. Extinction patterns could be explained by a simple stochastic model that assumed the sampling of beneficial mutations was key for survival. In most surviving populations, alleles containing at least one known large-effect beneficial mutation were present. These genotype data also support a model which only invokes sampling effects to describe the occurrence of alleles containing large-effect driver mutations. Hence, evolution is largely predictable given cursory knowledge of mutational fitness effects, the mutation rate and population size. There were no clear trends in the repeatability of selected mutants when we considered all mutations present. However, when only known large-effect mutations were considered, the outcome of selection is less repeatable for large libraries, in contrast to expectations. We show experimentally that alleles carrying multiple mutations selected from large libraries confer higher resistance levels relative to alleles with only a known large-effect mutation, suggesting that the scarcity of high-resistance alleles carrying multiple mutations may contribute to the decrease in repeatability at large library sizes.

  19. Hybridization alters spontaneous mutation rates in a parent-of-origin-dependent fashion in Arabidopsis.

    PubMed

    Bashir, Tufail; Sailer, Christian; Gerber, Florian; Loganathan, Nitin; Bhoopalan, Hemadev; Eichenberger, Christof; Grossniklaus, Ueli; Baskar, Ramamurthy

    2014-05-01

    Over 70 years ago, increased spontaneous mutation rates were observed in Drosophila spp. hybrids, but the genetic basis of this phenomenon is not well understood. The model plant Arabidopsis (Arabidopsis thaliana) offers unique opportunities to study the types of mutations induced upon hybridization and the frequency of their occurrence. Understanding the mutational effects of hybridization is important, as many crop plants are grown as hybrids. Besides, hybridization is important for speciation and its effects on genome integrity could be critical, as chromosomal rearrangements can lead to reproductive isolation. We examined the rates of hybridization-induced point and frameshift mutations as well as homologous recombination events in intraspecific Arabidopsis hybrids using a set of transgenic mutation detector lines that carry mutated or truncated versions of a reporter gene. We found that hybridization alters the frequency of different kinds of mutations. In general, Columbia (Col)×Cape Verde Islands and Col×C24 hybrid progeny had decreased T→G and T→A transversion rates but an increased C→T transition rate. Significant changes in frameshift mutation rates were also observed in some hybrids. In Col×C24 hybrids, there is a trend for increased homologous recombination rates, except for the hybrids from one line, while in Col×Cape Verde Islands hybrids, this rate is decreased. The overall genetic distance of the parents had no influence on mutation rates in the progeny, as closely related accessions on occasion displayed higher mutation rates than accessions that are separated farther apart. However, reciprocal hybrids had significantly different mutation rates, suggesting parent-of-origin-dependent effects on the mutation frequency.

  20. Spectrum of genetic variation at the ABCC6 locus in South Africans: Pseudoxanthoma elasticum patients and healthy individuals.

    PubMed

    Ramsay, Michèle; Greenberg, Tarryn; Lombard, Zane; Labrum, Robyn; Lubbe, Steven; Aron, Shaun; Marais, Anna-Susan; Terry, Sharon; Bercovitch, Lionel; Viljoen, Denis

    2009-06-01

    Pseudoxanthoma elasticum (PXE) is an autosomal recessive metabolic disorder with ectopic mineralization in the skin, eyes and cardiovascular system. PXE is caused by mutations in ABCC6. To examine 54 unrelated South African PXE patients for ABCC6 PXE causing mutations. Patients were screened for mutations in ABCC6 using two strategies. The first involved a comprehensive screening of all the ABCC6 exons and flanking regions by dHPLC or sequencing whereas the second involved screening patients only for the common PXE mutations. The ABCC6 gene was screened in ten white and ten black healthy unrelated South Africans in order to examine the level of common non-PXE associated variation. The Afrikaner founder mutation, R1339C, was present in 0.41 of white ABCC6 PXE alleles, confirming the founder effect and its presence in both Afrikaans- (34/63 PXE alleles) and English-speakers (4/28). Eleven mutations were detected in the white patients (of European origin), including two nonsense mutations, 6 missense mutations, two frameshift mutations and a large deletion mutation. The five "Coloured" patients (of mixed Khoisan, Malay, European and African origin) included three compound heterozygotes with R1339C as one of the mutations. The three black patients (sub-Saharan African origin) were all apparent homozygotes for the R1314W mutation. Blacks showed a trend towards a higher degree of neurtral variation (18 variants) when compared to whites (12 variants). Delineation of the ABCC6 mutation profile in South African PXE patients will be used as a guide for molecular genetic testing in a clinical setting and for genetic counselling.

  1. Structure-Functional Prediction and Analysis of Cancer Mutation Effects in Protein Kinases

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2014-01-01

    A central goal of cancer research is to discover and characterize the functional effects of mutated genes that contribute to tumorigenesis. In this study, we provide a detailed structural classification and analysis of functional dynamics for members of protein kinase families that are known to harbor cancer mutations. We also present a systematic computational analysis that combines sequence and structure-based prediction models to characterize the effect of cancer mutations in protein kinases. We focus on the differential effects of activating point mutations that increase protein kinase activity and kinase-inactivating mutations that decrease activity. Mapping of cancer mutations onto the conformational mobility profiles of known crystal structures demonstrated that activating mutations could reduce a steric barrier for the movement from the basal “low” activity state to the “active” state. According to our analysis, the mechanism of activating mutations reflects a combined effect of partial destabilization of the kinase in its inactive state and a concomitant stabilization of its active-like form, which is likely to drive tumorigenesis at some level. Ultimately, the analysis of the evolutionary and structural features of the major cancer-causing mutational hotspot in kinases can also aid in the correlation of kinase mutation effects with clinical outcomes. PMID:24817905

  2. Fragment analysis represents a suitable approach for the detection of hotspot c.7541_7542delCT NOTCH1 mutation in chronic lymphocytic leukemia.

    PubMed

    Vavrova, Eva; Kantorova, Barbara; Vonkova, Barbara; Kabathova, Jitka; Skuhrova-Francova, Hana; Diviskova, Eva; Letocha, Ondrej; Kotaskova, Jana; Brychtova, Yvona; Doubek, Michael; Mayer, Jiri; Pospisilova, Sarka

    2017-09-01

    The hotspot c.7541_7542delCT NOTCH1 mutation has been proven to have a negative clinical impact in chronic lymphocytic leukemia (CLL). However, an optimal method for its detection has not yet been specified. The aim of our study was to examine the presence of the NOTCH1 mutation in CLL using three commonly used molecular methods. Sanger sequencing, fragment analysis and allele-specific PCR were compared in the detection of the c.7541_7542delCT NOTCH1 mutation in 201 CLL patients. In 7 patients with inconclusive mutational analysis results, the presence of the NOTCH1 mutation was also confirmed using ultra-deep next generation sequencing. The NOTCH1 mutation was detected in 15% (30/201) of examined patients. Only fragment analysis was able to identify all 30 NOTCH1-mutated patients. Sanger sequencing and allele-specific PCR showed a lower detection efficiency, determining 93% (28/30) and 80% (24/30) of the present NOTCH1 mutations, respectively. Considering these three most commonly used methodologies for c.7541_7542delCT NOTCH1 mutation screening in CLL, we defined fragment analysis as the most suitable approach for detecting the hotspot NOTCH1 mutation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Of Mice and Men: Empirical Support for the Population-Based Social Epistasis Amplification Model (a Comment on ).

    PubMed

    Sarraf, Matthew Alexandar; Woodley Of Menie, Michael Anthony

    2017-01-01

    This commentary article offers new perspective on recent research investigating the behavioral and social ecological effects of a mutation related to autism spectrum disorders in mice. The authors explain the consistency of this research on mice with predictions advanced by a theory of the role of mutations in altering interorganismal gene-gene interactions (social epistasis) in social species including humans, known as the social epistasis amplification model. The potential significance of the mouse research for understanding contemporary human behavioral trends is explored.

  4. Frequency analysis and its spatiotemporal characteristics of precipitation extreme events in China during 1951-2010

    NASA Astrophysics Data System (ADS)

    Shao, Yuehong; Wu, Junmei; Ye, Jinyin; Liu, Yonghe

    2015-08-01

    This study investigates frequency analysis and its spatiotemporal characteristics of precipitation extremes based on annual maximum of daily precipitation (AMP) data of 753 observation stations in China during the period 1951-2010. Several statistical methods including L-moments, Mann-Kendall test (MK test), Student's t test ( t test) and analysis of variance ( F-test) are used to study different statistical properties related to frequency and spatiotemporal characteristics of precipitation extremes. The results indicate that the AMP series of most sites have no linear trends at 90 % confidence level, but there is a distinctive decrease trend in Beijing-Tianjin-Tangshan region. The analysis of abrupt changes shows that there are no significant changes in most sites, and no distinctive regional patterns within the mutation sites either. An important innovation different from the previous studies is the shift in the mean and the variance which are also studied in this paper in order to further analyze the changes of strong and weak precipitation extreme events. The shift analysis shows that we should pay more attention to the drought in North China and to the flood control and drought in South China, especially to those regions that have no clear trend and have a significant shift in the variance. More important, this study conducts the comprehensive analysis of a complete set of quantile estimates and its spatiotemporal characteristic in China. Spatial distribution of quantile estimation based on the AMP series demonstrated that the values gradually increased from the Northwest to the Southeast with the increment of duration and return period, while the increasing rate of estimation is smooth in the arid and semiarid region and is rapid in humid region. Frequency estimates of 50-year return period are in agreement with the maximum observations of AMP series in the most stations, which can provide more quantitative and scientific basis for decision making.

  5. Functions of key residues in the ligand-binding pocket of vitamin D receptor: Fragment molecular orbital interfragment interaction energy analysis

    NASA Astrophysics Data System (ADS)

    Yamagishi, Kenji; Yamamoto, Keiko; Yamada, Sachiko; Tokiwa, Hiroaki

    2006-03-01

    Fragment molecular orbital-interfragment interaction energy calculations of the vitamin D receptor (VDR)/1α,25-dihydroxyvitamin D 3 complex were utilized to assign functions of key residues of the VDR. Only one residue forms a significant interaction with the corresponding hydroxy group of the ligand, although two residues are located around each hydroxy group. The degradation of binding affinity for derivatives upon removal of a hydroxy group is closely related to the trend in the strength of the hydrogen bonds. Type II hereditary rickets due to an Arg274 point mutation is caused by the lack of the strongest hydrogen bond.

  6. Declining prevalence of HIV-1 drug resistance in antiretroviral treatment-exposed individuals in Western Europe.

    PubMed

    De Luca, Andrea; Dunn, David; Zazzi, Maurizio; Camacho, Ricardo; Torti, Carlo; Fanti, Iuri; Kaiser, Rolf; Sönnerborg, Anders; Codoñer, Francisco M; Van Laethem, Kristel; Vandamme, Anne-Mieke; Bansi, Loveleen; Ghisetti, Valeria; van de Vijver, David A M C; Asboe, David; Prosperi, Mattia C F; Di Giambenedetto, Simona

    2013-04-15

    HIV-1 drug resistance represents a major obstacle to infection and disease control. This retrospective study analyzes trends and determinants of resistance in antiretroviral treatment (ART)-exposed individuals across 7 countries in Europe. Of 20 323 cases, 80% carried at least one resistance mutation: these declined from 81% in 1997 to 71% in 2008. Predicted extensive 3-class resistance was rare (3.2% considering the cumulative genotype) and peaked at 4.5% in 2005, decreasing thereafter. The proportion of cases exhausting available drug options dropped from 32% in 2000 to 1% in 2008. Reduced risk of resistance over calendar years was confirmed by multivariable analysis.

  7. Mutational analysis of BRAF and KRAS in ovarian serous borderline (atypical proliferative) tumours and associated peritoneal implants

    PubMed Central

    Ardighieri, Laura; Zeppernick, Felix; Hannibal, Charlotte G; Vang, Russell; Cope, Leslie; Junge, Jette; Kjaer, Susanne K; Kurman, Robert J; Shih, Ie-Ming

    2014-01-01

    There is debate as to whether peritoneal implants associated with serous borderline tumours/atypical proliferative serous tumours (SBT/APSTs) of the ovary are derived from the primary ovarian tumour or arise independently in the peritoneum. We analysed 57 SBT/APSTs from 45 patients with advanced-stage disease identified from a nation-wide tumour registry in Denmark. Mutational analysis for hotspots in KRAS and BRAF was successful in 55 APSTs and demonstrated KRAS mutations in 34 (61.8%) and BRAF mutations in eight (14.5%). Mutational analysis was successful in 56 peritoneal implants and revealed KRAS mutations in 34 (60.7%) and BRAF mutations in seven (12.5%). Mutational analysis could not be performed in two primary tumours and in nine implants, either because DNA amplification failed or because there was insufficient tissue for mutational analysis. For these specimens we performed VE1 immunohistochemistry, which was shown to be a specific and sensitive surrogate marker for a V600E BRAF mutation. VE1 staining was positive in one of two APSTs and seven of nine implants. Thus, among 63 implants for which mutation status was known (either by direct mutational analysis or by VE1 immunohistochemistry), 34 (53.9%) had KRAS mutations and 14 (22%) had BRAF mutations, of which identical KRAS mutations were found in 34 (91%) of 37 SBT/APST–implant pairs and identical BRAF mutations in 14 (100%) of 14 SBT/APST–implant pairs. Wild-type KRAS and BRAF (at the loci investigated) were found in 11 (100%) of 11 SBT/APST–implant pairs. Overall concordance of KRAS and BRAF mutations was 95% in 59 of 62 SBT/APST–implant (non-invasive and invasive) pairs (p < 0.00001). This study provides cogent evidence that the vast majority of peritoneal implants, non-invasive and invasive, harbour the identical KRAS or BRAF mutations that are present in the associated SBT/APST, supporting the view that peritoneal implants are derived from the primary ovarian tumour. PMID:24307542

  8. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly

    PubMed Central

    Zink, Florian; Stacey, Simon N.; Norddahl, Gudmundur L.; Frigge, Michael L.; Magnusson, Olafur T.; Jonsdottir, Ingileif; Thorgeirsson, Thorgeir E.; Sigurdsson, Asgeir; Gudjonsson, Sigurjon A.; Gudmundsson, Julius; Jonasson, Jon G.; Tryggvadottir, Laufey; Jonsson, Thorvaldur; Helgason, Agnar; Gylfason, Arnaldur; Sulem, Patrick; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Gudbjartsson, Daniel F.; Masson, Gisli; Kong, Augustine

    2017-01-01

    Clonal hematopoiesis (CH) arises when a substantial proportion of mature blood cells is derived from a single dominant hematopoietic stem cell lineage. Somatic mutations in candidate driver (CD) genes are thought to be responsible for at least some cases of CH. Using whole-genome sequencing of 11 262 Icelanders, we found 1403 cases of CH by using barcodes of mosaic somatic mutations in peripheral blood, whether or not they have a mutation in a CD gene. We find that CH is very common in the elderly, trending toward inevitability. We show that somatic mutations in TET2, DNMT3A, ASXL1, and PPM1D are associated with CH at high significance. However, known CD mutations were evident in only a fraction of CH cases. Nevertheless, the highly prevalent CH we detect associates with increased mortality rates, risk for hematological malignancy, smoking behavior, telomere length, Y-chromosome loss, and other phenotypic characteristics. Modeling suggests some CH cases could arise in the absence of CD mutations as a result of neutral drift acting on a small population of active hematopoietic stem cells. Finally, we find a germline deletion in intron 3 of the telomerase reverse transcriptase (TERT) gene that predisposes to CH (rs34002450; P = 7.4 × 10−12; odds ratio, 1.37). PMID:28483762

  9. Soy consumption reduces the risk of non-small-cell lung cancers with epidermal growth factor receptor mutations among Japanese.

    PubMed

    Matsuo, Keitaro; Hiraki, Akio; Ito, Hidemi; Kosaka, Takayuki; Suzuki, Takeshi; Hirose, Kaoru; Wakai, Kenji; Yatabe, Yasushi; Mitsudomi, Tetsuya; Tajima, Kazuo

    2008-06-01

    Epidermal growth factor receptor (EGFR) mutations play substantial roles in genesis and proliferation of non-small-cell lung cancers (NSCLCs). We recently found that reproductive factors have a substantial impact on risk of development of NSCLCs featuring such EGFR mutations. Therefore, we explored the influence of dietary habits on NSCLC risk with reference to the EGFR mutational status. We conducted a case-control study using 353 patients with NSCLCs (122 EGFR mutated and 231 EGFR wild-type) and 1765 age-sex matched non-cancer control subjects. Dietary exposure was based on a semiquantitative food frequency questionnaire and impact of major food items, like meats, seafoods, vegetables and soybean products was assessed by multivariate logistic regression. Soybean products demonstrated a protective association with EGFR mutated, but not EGFR wild-type NSCLCs, with multivariate-adjusted odds ratios and 95% confidence intervals for the 2nd and 3rd tertile of soybean product consumption of 0.79 (0.50-1.27) and 0.56 (0.34-0.93) relative to those in the lowest tertile (trend P = 0.023). In conclusion, soy consumption may exert a protective association against the development of NSCLCs with EGFR mutations, providing possible insights into mechanisms of their genesis.

  10. Hyperinsulinism–hyperammonaemia syndrome: novel mutations in the GLUD1 gene and genotype–phenotype correlations

    PubMed Central

    Kapoor, Ritika R; Flanagan, Sarah E; Fulton, Piers; Chakrapani, Anupam; Chadefaux, Bernadette; Ben-Omran, Tawfeg; Banerjee, Indraneel; Shield, Julian P; Ellard, Sian; Hussain, Khalid

    2009-01-01

    Background Activating mutations in the GLUD1 gene (which encodes for the intra-mitochondrial enzyme glutamate dehydrogenase, GDH) cause the hyperinsulinism–hyperammonaemia (HI/HA) syndrome. Patients present with HA and leucine-sensitive hypoglycaemia. GDH is regulated by another intra-mitochondrial enzyme sirtuin 4 (SIRT4). Sirt4 knockout mice demonstrate activation of GDH with increased amino acid-stimulated insulin secretion. Objectives To study the genotype–phenotype correlations in patients with GLUD1 mutations. To report the phenotype and functional analysis of a novel mutation (P436L) in the GLUD1 gene associated with the absence of HA. Patients and methods Twenty patients with HI from 16 families had mutational analysis of the GLUD1 gene in view of HA (n=19) or leucine sensitivity (n=1). Patients negative for a GLUD1 mutation had sequence analysis of the SIRT4 gene. Functional analysis of the novel P436L GLUD1 mutation was performed. Results Heterozygous missense mutations were detected in 15 patients with HI/HA, 2 of which are novel (N410D and D451V). In addition, a patient with a normal serum ammonia concentration (21 μmol/l) was heterozygous for a novel missense mutation P436L. Functional analysis of this mutation confirms that it is associated with a loss of GTP inhibition. Seizure disorder was common (43%) in our cohort of patients with a GLUD1 mutation. No mutations in the SIRT4 gene were identified. Conclusion Patients with HI due to mutations in the GLUD1 gene may have normal serum ammonia concentrations. Hence, GLUD1 mutational analysis may be indicated in patients with leucine sensitivity; even in the absence of HA. A high frequency of epilepsy (43%) was observed in our patients with GLUD1 mutations. PMID:19690084

  11. Primary Drug Resistance in South Africa: Data from 10 Years of Surveys

    PubMed Central

    Manasa, Justen; Katzenstein, David; Cassol, Sharon; Newell, Marie-Louise

    2012-01-01

    Abstract HIV-1 transmitted drug resistance (TDR) could reverse the gains of antiretroviral rollout. To ensure that current first-line therapies remain effective, TDR levels in recently infected treatment-naive patients need to be monitored. A literature review and data mining exercise was carried out to determine the temporal trends in TDR in South Africa. In addition, 72 sequences from seroconvertors identified from Africa Centre's 2010 HIV surveillance round were also examined for TDR. Publicly available data on TDR were retrieved from GenBank, curated in RegaDB, and analyzed using the Calibrated Population Resistance Program. There was no evidence of TDR from the 2010 rural KwaZulu Natal samples. Ten datasets with a total of 1618 sequences collected between 2000 and 2010 were pooled to provide a temporal analysis of TDR. The year with the highest TDR rate was 2002 [6.67%, 95% confidence interval (CI): 3.09–13.79%; n=6/90]. After 2002, TDR levels returned to <5% (WHO low-level threshold) and showed no statistically significant increase in the interval between 2002 and 2010. The most common mutations were associated with NNRTI resistance, K103N, followed by Y181C and Y188C/L. Five sequences had multiple resistance mutations associated with NNRTI resistance. There is no evidence of TDR in rural KwaZulu-Natal. TDR levels in South Africa have remained low following a downward trend since 2003. Continuous vigilance in monitoring of TDR is needed as more patients are initiated and maintained onto antiretroviral therapy. PMID:22251009

  12. [Identification of a HPGD mutation in three families affected with primary hypertrophic osteoarthropathy].

    PubMed

    Zhang, Wanying; Wang, Tao; Huang, Shuaiwu; Zhao, Xiuli

    2018-04-10

    To detect mutation of HPGD gene among three pedigrees affected with primary hypertrophic osteoarthropathy (PHO) by DNA sequencing and high-resolution melting (HRM) analysis. Genomic DNA was extracted from peripheral blood samples collected from the pedigrees. PCR and direct sequencing were carried out to identify potential mutations of the HPGD gene. Amplicons containing the mutation spot were generated by nested PCR. The products were then subjected to HRM analysis using the HR-1 instrument. Direct sequencing was carried out in family members and healthy individuals to confirm the result of HRM analysis. A homozygous mutation c.310_311delCT was detected in 2 affected probands, while a heterozygous mutation c.310_311delCT was detected in the third proband. HRM analysis of the fragments encompassing HPGD exon 3 showed 3 curve patterns representing three different genotypes, i.e., the wild type, the c.310_311delCT homozygote, and the c.310_311delCT heterozygote. Result of DNA sequencing was consistent with that of the HRM analysis and phenotype of the subjects. The c.310_311delCT mutation may be the most prevalent mutation among Chinese population. HRM analysis has provided an optimized method for genetic testing of HPGD mutation for its simplicity, rapid turnover and high sensitivity.

  13. High-resolution melting analysis for prenatal diagnosis of beta-thalassemia in northern Thailand.

    PubMed

    Charoenkwan, Pimlak; Sirichotiyakul, Supatra; Phusua, Arunee; Suanta, Sudjai; Fanhchaksai, Kanda; Sae-Tung, Rattika; Sanguansermsri, Torpong

    2017-12-01

    High-resolution melting (HRM) analysis is a rapid mutation analysis which assesses the pattern of reduction of fluorescence signal after subjecting the amplified PCR product with saturated fluorescence dye to an increasing temperature. We used HRM analysis for prenatal diagnosis of beta-thalassemia disease in northern Thailand. Five PCR-HRM protocols were used to detect point mutations in five different segments of the beta-globin gene, and one protocol to detect the 3.4 kb beta-globin deletion. We sought to characterize the mutations in carriers and to enable prenatal diagnosis in 126 couples at risk of having a fetus with beta-thalassemia disease. The protocols identified 18 common mutations causing beta-thalassemia, including the rare codon 132 (A-T) mutation. Each mutation showed a specific HRM pattern and all results were in concordance with those from direct DNA sequencing or gap-PCR methods. In cases of beta-thalassemia disease resulting from homozygosity for a mutation or compound heterozygosity for two mutations on the same amplified segment, the HRM patterns were different to those of a single mutation and were specific for each combination. HRM analysis is a simple and useful method for mutation identification in beta-thalassemia carriers and prenatal diagnosis of beta-thalassemia in northern Thailand.

  14. Common and Rare EGFR and KRAS Mutations in a Dutch Non-Small-Cell Lung Cancer Population and Their Clinical Outcome

    PubMed Central

    Kerner, Gerald S. M. A.; Schuuring, Ed; Sietsma, Johanna; Hiltermann, Thijo J. N.; Pieterman, Remge M.; de Leede, Gerard P. J.; van Putten, John W. G.; Liesker, Jeroen; Renkema, Tineke E. J.; van Hengel, Peter; Platteel, Inge; Timens, Wim; Groen, Harry J. M.

    2013-01-01

    Introduction In randomly assigned studies with EGFR TKI only a minor proportion of patients with NSCLC have genetically profiled biopsies. Guidelines provide evidence to perform EGFR and KRAS mutation analysis in non-squamous NSCLC. We explored tumor biopsy quality offered for mutation testing, different mutations distribution, and outcome with EGFR TKI. Patient and Methods Clinical data from 8 regional hospitals were studied for patient and tumor characteristics, treatment and overall survival. Biopsies sent to the central laboratory were evaluated for DNA quality and subsequently analyzed for mutations in exons 18–21 of EGFR and exon 2 of KRAS by bidirectional sequence analysis. Results Tumors from 442 subsequent patients were analyzed. For 74 patients (17%) tumors were unsuitable for mutation analysis. Thirty-eight patients (10.9%) had EGFR mutations with 79% known activating mutations. One hundred eight patients (30%) had functional KRAS mutations. The mutation spectrum was comparable to the Cosmic database. Following treatment in the first or second line with EGFR TKI median overall survival for patients with EGFR (n = 14), KRAS (n = 14) mutations and wild type EGFR/KRAS (n = 31) was not reached, 20 and 9 months, respectively. Conclusion One out of every 6 tumor samples was inadequate for mutation analysis. Patients with EGFR activating mutations treated with EGFR-TKI have the longest survival. PMID:23922984

  15. iMARS--mutation analysis reporting software: an analysis of spontaneous cII mutation spectra.

    PubMed

    Morgan, Claire; Lewis, Paul D

    2006-01-31

    The sensitivity of any mutational assay is determined by the level at which spontaneous mutations occur in the corresponding untreated controls. Establishing the type and frequency at which mutations occur naturally within a test system is essential if one is to draw scientifically sound conclusions regarding chemically induced mutations. Currently, mutation-spectra analysis is laborious and time-consuming. Thus, we have developed iMARS, a comprehensive mutation-spectrum analysis package that utilises routinely used methodologies and visualisation tools. To demonstrate the use and capabilities of iMARS, we have analysed the distribution, types and sequence context of spontaneous base substitutions derived from the cII gene mutation assay in transgenic animals. Analysis of spontaneous mutation spectra revealed variation both within and between the transgenic rodent test systems Big Blue Mouse, MutaMouse and Big Blue Rat. The most common spontaneous base substitutions were G:C-->A:T transitions and G:C-->T:A transversions. All Big Blue Mouse spectra were significantly different from each other by distribution and nearly all by mutation type, whereas the converse was true for the other test systems. Twenty-eight mutation hotspots were observed across all spectra generally occurring in CG, GA/TC, GG and GC dinucleotides. A mutation hotspot at nucleotide 212 occurred at a higher frequency in MutaMouse and Big Blue Rat. In addition, CG dinucleotides were the most mutable in all spectra except two Big Blue Mouse spectra. Thus, spontaneous base-substitution spectra showed more variation in distribution, type and sequence context in Big Blue Mouse relative to spectra derived from MutaMouse and Big Blue Rat. The results of our analysis provide a baseline reference for mutation studies utilising the cII gene in transgenic rodent models. The potential differences in spontaneous base-substitution spectra should be considered when making comparisons between these test systems. The ease at which iMARS has allowed us to carry out an exhaustive investigation to assess mutation distribution, mutation type, strand bias, target sequences and motifs, as well as predict mutation hotspots provides us with a valuable tool in helping to distinguish true chemically induced hotspots from background mutations and gives a true reflection of mutation frequency.

  16. [Analysis of gene mutation in a Chinese family with Norrie disease].

    PubMed

    Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue

    2012-09-01

    To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.

  17. The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations

    PubMed Central

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-01-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  18. Extinction risk and eco-evolutionary dynamics in a variable environment with increasing frequency of extreme events

    PubMed Central

    Vincenzi, Simone

    2014-01-01

    One of the most dramatic consequences of climate change will be the intensification and increased frequency of extreme events. I used numerical simulations to understand and predict the consequences of directional trend (i.e. mean state) and increased variability of a climate variable (e.g. temperature), increased probability of occurrence of point extreme events (e.g. floods), selection pressure and effect size of mutations on a quantitative trait determining individual fitness, as well as the their effects on the population and genetic dynamics of a population of moderate size. The interaction among climate trend, variability and probability of point extremes had a minor effect on risk of extinction, time to extinction and distribution of the trait after accounting for their independent effects. The survival chances of a population strongly and linearly decreased with increasing strength of selection, as well as with increasing climate trend and variability. Mutation amplitude had no effects on extinction risk, time to extinction or genetic adaptation to the new climate. Climate trend and strength of selection largely determined the shift of the mean phenotype in the population. The extinction or persistence of the populations in an ‘extinction window’ of 10 years was well predicted by a simple model including mean population size and mean genetic variance over a 10-year time frame preceding the ‘extinction window’, although genetic variance had a smaller role than population size in predicting contemporary risk of extinction. PMID:24920116

  19. A Comprehensive Analysis of Common Genetic Variation Around Six Candidate Loci for Intrahepatic Cholestasis of Pregnancy

    PubMed Central

    Dixon, Peter H; Wadsworth, Christopher A; Chambers, Jennifer; Donnelly, Jennifer; Cooley, Sharon; Buckley, Rebecca; Mannino, Ramona; Jarvis, Sheba; Syngelaki, Argyro; Geenes, Victoria; Paul, Priyadarshini; Sothinathan, Meera; Kubitz, Ralf; Lammert, Frank; Tribe, Rachel M; Ch'ng, Chin Lye; Marschall, Hanns-Ulrich; Glantz, Anna; Khan, Shahid A; Nicolaides, Kypros; Whittaker, John; Geary, Michael; Williamson, Catherine

    2014-01-01

    OBJECTIVES: Intrahepatic cholestasis of pregnancy (ICP) has a complex etiology with a significant genetic component. Heterozygous mutations of canalicular transporters occur in a subset of ICP cases and a population susceptibility allele (p.444A) has been identified in ABCB11. We sought to expand our knowledge of the detailed genetic contribution to ICP by investigation of common variation around candidate loci with biological plausibility for a role in ICP (ABCB4, ABCB11, ABCC2, ATP8B1, NR1H4, and FGF19). METHODS: ICP patients (n=563) of white western European origin and controls (n=642) were analyzed in a case–control design. Single-nucleotide polymorphism (SNP) markers (n=83) were selected from the HapMap data set (Tagger, Haploview 4.1 (build 22)). Genotyping was performed by allelic discrimination assay on a robotic platform. Following quality control, SNP data were analyzed by Armitage's trend test. RESULTS: Cochran–Armitage trend testing identified six SNPs in ABCB11 together with six SNPs in ABCB4 that showed significant evidence of association. The minimum Bonferroni corrected P value for trend testing ABCB11 was 5.81×10−4 (rs3815676) and for ABCB4 it was 4.6×10−7(rs2109505). Conditional analysis of the two clusters of association signals suggested a single signal in ABCB4 but evidence for two independent signals in ABCB11. To confirm these findings, a second study was performed in a further 227 cases, which confirmed and strengthened the original findings. CONCLUSIONS: Our analysis of a large cohort of ICP cases has identified a key role for common variation around the ABCB4 and ABCB11 loci, identified the core associations, and expanded our knowledge of ICP susceptibility. PMID:24366234

  20. Analysis of the evolution of precipitation in the Haihe river basin of China under changing environment

    NASA Astrophysics Data System (ADS)

    Ding, Xiangyi; Liu, Jiahong; Gong, Jiaguo

    2018-02-01

    Precipitation is one of the important factors of water cycle and main sources of regional water resources. It is of great significance to analyze the evolution of precipitation under changing environment for identifying the evolution law of water resources, thus can provide a scientific reference for the sustainable utilization of water resources and the formulation of related policies and measures. Generally, analysis of the evolution of precipitation consists of three levels: analysis the observed precipitation change based on measured data, explore the possible factors responsible for the precipitation change, and estimate the change trend of precipitation under changing environment. As the political and cultural centre of China, the climatic conditions in the Haihe river basin have greatly changed in recent decades. This study analyses the evolution of precipitation in the basin under changing environment based on observed meteorological data, GCMs and statistical methods. Firstly, based on the observed precipitation data during 1961-2000 at 26 meteorological stations in the basin, the actual precipitation change in the basin is analyzed. Secondly, the observed precipitation change in the basin is attributed using the fingerprint-based attribution method, and the causes of the observed precipitation change is identified. Finally, the change trend of precipitation in the basin under climate change in the future is predicted based on GCMs and a statistical downscaling model. The results indicate that: 1) during 1961-2000, the precipitation in the basin showed a decreasing trend, and the possible mutation time was 1965; 2) natural variability may be the factor responsible for the observed precipitation change in the basin; 3) under climate change in the future, precipitation in the basin will slightly increase by 4.8% comparing with the average, and the extremes will not vary significantly.

  1. Life History Traits, Protein Evolution, and the Nearly Neutral Theory in Amniotes.

    PubMed

    Figuet, Emeric; Nabholz, Benoît; Bonneau, Manon; Mas Carrio, Eduard; Nadachowska-Brzyska, Krystyna; Ellegren, Hans; Galtier, Nicolas

    2016-06-01

    The nearly neutral theory of molecular evolution predicts that small populations should accumulate deleterious mutations at a faster rate than large populations. The analysis of nonsynonymous (dN) versus synonymous (dS) substitution rates in birds versus mammals, however, has provided contradictory results, questioning the generality of the nearly neutral theory. Here we analyzed the impact of life history traits, taken as proxies of the effective population size, on molecular evolutionary and population genetic processes in amniotes, including the so far neglected reptiles. We report a strong effect of species body mass, longevity, and age of sexual maturity on genome-wide patterns of polymorphism and divergence across the major groups of amniotes, in agreement with the nearly neutral theory. Our results indicate that the rate of protein evolution in amniotes is determined in the first place by the efficiency of purifying selection against deleterious mutations-and this is true of both radical and conservative amino acid changes. Interestingly, the among-species distribution of dN/dS in birds did not follow this general trend: dN/dS was not higher in large, long-lived than in small, short-lived species of birds. We show that this unexpected pattern is not due to a more narrow range of life history traits, a lack of correlation between traits and Ne, or a peculiar distribution of fitness effects of mutations in birds. Our analysis therefore highlights the bird dN/dS ratio as a molecular evolutionary paradox and a challenge for future research. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Comprehensive analysis of mutations in the hepatitis delta virus genome based on full-length sequencing in a nationwide cohort study and evolutionary pattern during disease progression.

    PubMed

    Shirvani-Dastgerdi, E; Amini-Bavil-Olyaee, S; Alavian, S Moayed; Trautwein, C; Tacke, F

    2015-05-01

    Delta hepatitis, caused by co-infection or super-infection of hepatitis D virus (HDV) in hepatitis B virus (HBV) -infected patients, is the most severe form of chronic hepatitis, often progressing to liver cirrhosis and liver failure. Although 15 million individuals are affected worldwide, molecular data on the HDV genome and its proteins, small and large delta antigen (S-/L-HDAg), are limited. We therefore conducted a nationwide study in HBV-HDV-infected patients from Iran and successfully amplified 38 HDV full genomes and 44 L-HDAg sequences from 34 individuals. Phylogenetic analyses of full-length HDV and L-HDAg isolates revealed that all strains clustered with genotype 1 and showed high genotypic distances to HDV genotypes 2 to 8, with a maximal distance to genotype 3. Longitudinal analyses in individual patients indicated a reverse evolutionary trend, especially in L-HDAg amino acid composition, over time. Besides multiple sequence variations in the hypervariable region of HDV, nucleotide substitutions preferentially occurred in the stabilizing P4 domain of the HDV ribozyme. A high rate of single amino acid changes was detected in structural parts of L-HDAg, whereas its post-translational modification sites were highly conserved. Interestingly, several non-synonymous mutations were positively selected that affected immunogenic epitopes of L-HDAg towards CD8 T-cell- and B-cell-driven immune responses. Hence, our comprehensive molecular analysis comprising a nationwide cohort revealed phylogenetic relationships and provided insight into viral evolution within individual hosts. Moreover, preferential areas of frequent mutations in the HDV ribozyme and antigen protein were determined in this study. Copyright © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Drug susceptibility of influenza A/H3N2 strains co-circulating during 2009 influenza pandemic: first report from Mumbai.

    PubMed

    Gohil, Devanshi J; Kothari, Sweta T; Shinde, Pramod S; Chintakrindi, Anand S; Meharunkar, Rhuta; Warke, Rajas V; Kanyalkar, Meena A; Chowdhary, Abhay S; Deshmukh, Ranjana A

    2015-01-01

    From its first instance in 1977, resistance to amantadine, a matrix (M2) inhibitor has been increasing among influenza A/H3N2, thus propelling the use of oseltamivir, a neuraminidase (NA) inhibitor as a next line drug. Information on drug susceptibility to amantadine and neuraminidase inhibitors for influenza A/H3N2 viruses in India is limited with no published data from Mumbai. This study aimed at examining the sensitivity to M2 and NA inhibitors of influenza A/H3N2 strains isolated from 2009 to 2011 in Mumbai. Nasopharyngeal swabs positive for influenza A/H3N2 virus were inoculated on Madin-Darby canine kidney (MDCK) cell line for virus isolation. Molecular analysis of NA and M2 genes was used to detect known mutations contributing to resistance. Resistance to neuraminidase was assayed using a commercially available chemiluminescence based NA-Star assay kit. Genotypically, all isolates were observed to harbor mutations known to confer resistance to amantadine. However, no know mutations conferring resistance to NA inhibitors were detected. The mean IC50 value for oseltamivir was 0.25 nM. One strain with reduced susceptibility to the neuraminidase inhibitor (IC₅₀=4.08 nM) was isolated from a patient who had received oseltamivir treatment. Phylogenetic analysis postulate the emergence of amantadine resistance in Mumbai may be due to genetic reassortment with the strains circulating in Asia and North America. Surveillance of drug susceptibility helped us to identify an isolate with reduced sensitivity to oseltamivir. Therefore, we infer that such surveillance would help in understanding possible trends underlying the emergence of resistant variants in humans. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Shifted termination assay (STA) fragment analysis to detect BRAF V600 mutations in papillary thyroid carcinomas

    PubMed Central

    2013-01-01

    Background BRAF mutation is an important diagnostic and prognostic marker in patients with papillary thyroid carcinoma (PTC). To be applicable in clinical laboratories with limited equipment, diverse testing methods are required to detect BRAF mutation. Methods A shifted termination assay (STA) fragment analysis was used to detect common V600 BRAF mutations in 159 PTCs with DNAs extracted from formalin-fixed paraffin-embedded tumor tissue. The results of STA fragment analysis were compared to those of direct sequencing. Serial dilutions of BRAF mutant cell line (SNU-790) were used to calculate limit of detection (LOD). Results BRAF mutations were detected in 119 (74.8%) PTCs by STA fragment analysis. In direct sequencing, BRAF mutations were observed in 118 (74.2%) cases. The results of STA fragment analysis had high correlation with those of direct sequencing (p < 0.00001, κ = 0.98). The LOD of STA fragment analysis and direct sequencing was 6% and 12.5%, respectively. In PTCs with pT3/T4 stages, BRAF mutation was observed in 83.8% of cases. In pT1/T2 carcinomas, BRAF mutation was detected in 65.9% and this difference was statistically significant (p = 0.007). Moreover, BRAF mutation was more frequent in PTCs with extrathyroidal invasion than tumors without extrathyroidal invasion (84.7% versus 62.2%, p = 0.001). To prepare and run the reactions, direct sequencing required 450 minutes while STA fragment analysis needed 290 minutes. Conclusions STA fragment analysis is a simple and sensitive method to detect BRAF V600 mutations in formalin-fixed paraffin-embedded clinical samples. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5684057089135749 PMID:23883275

  5. Variables that influence BRAF mutation probability: A next-generation sequencing, non-interventional investigation of BRAFV600 mutation status in melanoma.

    PubMed

    Gaiser, Maria Rita; Skorokhod, Alexander; Gransheier, Diana; Weide, Benjamin; Koch, Winfried; Schif, Birgit; Enk, Alexander; Garbe, Claus; Bauer, Jürgen

    2017-01-01

    The incidence of melanoma, particularly in older patients, has steadily increased over the past few decades. Activating mutations of BRAF, the majority occurring in BRAFV600, are frequently detected in melanoma; however, the prognostic significance remains unclear. This study aimed to define the probability and distribution of BRAFV600 mutations, and the clinico-pathological factors that may affect BRAF mutation status, in patients with advanced melanoma using next-generation sequencing. This was a non-interventional, retrospective study of BRAF mutation testing at two German centers, in Heidelberg and Tübingen. Archival tumor samples from patients with histologically confirmed melanoma (stage IIIB, IIIC, IV) were analyzed using PCR amplification and deep sequencing. Clinical, histological, and mutation data were collected. The statistical influence of patient- and tumor-related characteristics on BRAFV600 mutation status was assessed using multiple logistic regression (MLR) and a prediction profiler. BRAFV600 mutation status was assessed in 453 samples. Mutations were detected in 57.6% of patients (n = 261), with 48.1% (n = 102) at the Heidelberg site and 66.0% (n = 159) at the Tübingen site. The decreasing influence of increasing age on mutation probability was quantified. A main effects MLR model identified age (p = 0.0001), center (p = 0.0004), and melanoma subtype (p = 0.014) as significantly influencing BRAFV600 mutation probability; ultraviolet (UV) exposure showed a statistical trend (p = 0.1419). An interaction model of age versus other variables showed that center (p<0.0001) and melanoma subtype (p = 0.0038) significantly influenced BRAF mutation probability; age had a statistically significant effect only as part of an interaction with both UV exposure (p = 0.0110) and melanoma subtype (p = 0.0134). This exploratory study highlights that testing center, melanoma subtype, and age in combination with UV exposure and melanoma subtype significantly influence BRAFV600 mutation probability in patients with melanoma. Further validation of this model, in terms of reproducibility and broader relevance, is required.

  6. Core Needle Lung Biopsy Specimens: Adequacy for EGFR and KRAS Mutational Analysis

    PubMed Central

    Zakowski, Maureen F.; Pao, William; Thornton, Raymond H.; Ladanyi, Marc; Kris, Mark G.; Rusch, Valerie W.; Rizvi, Naiyer A.

    2013-01-01

    OBJECTIVE The purpose of this study was to prospectively compare the adequacy of core needle biopsy specimens with the adequacy of specimens from resected tissue, the histologic reference standard, for mutational analysis of malignant tumors of the lung. SUBJECTS AND METHODS The first 18 patients enrolled in a phase 2 study of gefitinib for lung cancer in July 2004 through August 2005 underwent CT- or fluoroscopy-guided lung biopsy before the start of gefitinib therapy. Three weeks after gefitinib therapy, the patients underwent lung tumor resection. The results of EGFR and KRAS mutational analysis of the core needle biopsy specimens were compared with those of EGFR and KRAS mutational analysis of the surgical specimens. RESULTS Two specimens were unsatisfactory for mutational analysis. The results of mutational assay results of the other 16 specimens were the same as those of analysis of the surgical specimens obtained an average of 31 days after biopsy. CONCLUSION Biopsy with small (18- to 20-gauge) core needles can yield sufficient and reliable samples for mutational analysis. This technique is likely to become an important tool with the increasing use of pharmacotherapy based on the genetics of specific tumors in individual patients. PMID:20028932

  7. Cellular evidence for selfish spermatogonial selection in aged human testes.

    PubMed

    Maher, G J; Goriely, A; Wilkie, A O M

    2014-05-01

    Owing to a recent trend for delayed paternity, the genomic integrity of spermatozoa of older men has become a focus of increased interest. Older fathers are at higher risk for their children to be born with several monogenic conditions collectively termed paternal age effect (PAE) disorders, which include achondroplasia, Apert syndrome and Costello syndrome. These disorders are caused by specific mutations originating almost exclusively from the male germline, in genes encoding components of the tyrosine kinase receptor/RAS/MAPK signalling pathway. These particular mutations, occurring randomly during mitotic divisions of spermatogonial stem cells (SSCs), are predicted to confer a selective/growth advantage on the mutant SSC. This selective advantage leads to a clonal expansion of the mutant cells over time, which generates mutant spermatozoa at levels significantly above the background mutation rate. This phenomenon, termed selfish spermatogonial selection, is likely to occur in all men. In rare cases, probably because of additional mutational events, selfish spermatogonial selection may lead to spermatocytic seminoma. The studies that initially predicted the clonal nature of selfish spermatogonial selection were based on DNA analysis, rather than the visualization of mutant clones in intact testes. In a recent study that aimed to identify these clones directly, we stained serial sections of fixed testes for expression of melanoma antigen family A4 (MAGEA4), a marker of spermatogonia. A subset of seminiferous tubules with an appearance and distribution compatible with the predicted mutant clones were identified. In these tubules, termed 'immunopositive tubules', there is an increased density of spermatogonia positive for markers related to selfish selection (FGFR3) and SSC self-renewal (phosphorylated AKT). Here we detail the properties of the immunopositive tubules and how they relate to the predicted mutant clones, as well as discussing the utility of identifying the potential cellular source of PAE mutations. © 2013 American Society of Andrology and European Academy of Andrology.

  8. Detection of drug resistance mutations at low plasma HIV-1 RNA load in a European multicentre cohort study.

    PubMed

    Prosperi, Mattia C F; Mackie, Nicola; Di Giambenedetto, Simona; Zazzi, Maurizio; Camacho, Ricardo; Fanti, Iuri; Torti, Carlo; Sönnerborg, Anders; Kaiser, Rolf; Codoñer, Francisco M; Van Laethem, Kristel; Bansi, Loveleen; van de Vijver, David A M C; Geretti, Anna Maria; De Luca, Andrea

    2011-08-01

    Guidelines indicate a plasma HIV-1 RNA load of 500-1000 copies/mL as the minimal threshold for antiretroviral drug resistance testing. Resistance testing at lower viral load levels may be useful to guide timely treatment switches, although data on the clinical utility of this remain limited. We report here the influence of viral load levels on the probability of detecting drug resistance mutations (DRMs) and other mutations by routine genotypic testing in a large multicentre European cohort, with a focus on tests performed at a viral load <1000 copies/mL. A total of 16 511 HIV-1 reverse transcriptase and protease sequences from 11 492 treatment-experienced patients were identified, and linked to clinical data on viral load, CD4 T cell counts and antiretroviral treatment history. Test results from 3162 treatment-naive patients served as controls. Multivariable analysis was employed to identify predictors of reverse transcriptase and protease DRMs. Overall, 2500/16 511 (15.14%) test results were obtained at a viral load <1000 copies/mL. Individuals with viral load levels of 1000-10000 copies/mL showed the highest probability of drug resistance to any drug class. Independently from other measurable confounders, treatment-experienced patients showed a trend for DRMs and other mutations to decrease at viral load levels <500 copies/mL. Genotypic testing at low viral load may identify emerging antiretroviral drug resistance at an early stage, and thus might be successfully employed in guiding prompt management strategies that may reduce the accumulation of resistance and cross-resistance, viral adaptive changes, and larger viral load increases.

  9. Crystal digital droplet PCR for detection and quantification of circulating EGFR sensitizing and resistance mutations in advanced non-small cell lung cancer

    PubMed Central

    Madic, Jordan; Remon, Jordi; Honoré, Aurélie; Girard, Romain; Rouleau, Etienne; André, Barbara; Besse, Benjamin; Droniou, Magali; Lacroix, Ludovic

    2017-01-01

    Over the past years, targeted therapies using tyrosine kinase inhibitors (TKI) have led to an increase in progression-free survival and response rate for a subgroup of non-small cell lung cancer (NSCLC) patients harbouring specific gene abnormalities compared with chemotherapy. However long-lasting tumor regression is rarely achieved, due to the development of resistant tumoral subclones, which requires alternative therapeutic approaches. Molecular profile at progressive disease is a challenge for making adaptive treatment decisions. The aim of this study was to monitor EGFR-mutant tumors over time based on the quantity of mutant DNA circulating in plasma (ctDNA), comparing two different methods, Crystal™ Digital™ PCR and Massive Parallel Sequencing (MPS). In plasma circulating cell free DNA (cfDNA) of 61 advanced NSCLC patients we found an overall correlation of 78% between mutated allelic fraction measured by Crystal Digital PCR and MPS. 7 additional samples with sensitizing mutations and 4 additional samples with the resistance mutation were detected with Crystal Digital PCR, but not with MPS. Monitoring levels of both mutation types over time showed a correlation between levels and trends of mutated ctDNA detected and clinical assessment of disease for the 6 patients tested. In conclusion, Crystal Digital PCR exhibited good performance for monitoring mutational status in plasma cfDNA, and also appeared as better suited to the detection of known mutations than MPS in terms of features such as time to results. PMID:28829811

  10. Clinical evaluation and mutational analysis of GALK and GALE genes in patients with galactosemia in Greece: one novel mutation and two rare cases.

    PubMed

    Schulpis, Kleopatra H; Thodi, Georgia; Iakovou, Konstantinos; Chatzidaki, Maria; Dotsikas, Yannis; Molou, Elina; Triantafylli, Olga; Loukas, Yannis L

    2017-07-26

    Deficiencies of galactokinase (GALK) and UDP-epimerase (GALE) are implicated with galactose metabolic disorders. The aim of the study was the identification of mutations in GALK and GALE genes and clinical evaluation of patients. Five patients with GALK and five with GALE deficiency were picked up via the Neonatal Screening Program. Additionally, two females, 4 years old, were referred with late diagnosed galactosemia, as rare cases. Mutational analysis was conducted via Sanger sequencing, while in silico analysis tools were utilized for the novel mutation. Psychomotor and speech development tests were performed, as well. The mutation p.Pro28Thr was identified in both alleles in GALK-deficient patients of Roma (gypsy) origin, whereas the novel p.Asn39Ser was detected in two non-Roma patients. In GALE-deficient patients benign and/or likely benign mutations were found. Psychomotor and speech delay were determined in the Roma GALK patients. In each of the late diagnosed females, four mutations were identified in all galactosemia-related genes. The mutational spectrums of GALE- and GALK-deficient patients in Greece are presented for the first time along with a clinical evaluation. Mutational analysis in all galactosemia-related genes of symptomatic patients is highly recommended for future cases.

  11. Evidence and age-related distribution of mtDNA D-loop point mutations in skeletal muscle from healthy subjects and mitochondrial patients.

    PubMed

    Del Bo, Roberto; Bordoni, Andreina; Martinelli Boneschi, Filippo; Crimi, Marco; Sciacco, Monica; Bresolin, Nereo; Scarlato, Guglielmo; Comi, Giacomo Pietri

    2002-10-15

    The progressive accumulation of mitochondrial DNA (mtDNA) alterations, ranging from single mutations to large-scale deletions, in both the normal ageing process and pathological conditions is a relevant phenomenon in terms of frequency and heteroplasmic degree. Recently, two point mutations (A189G and T408A) within the Displacement loop (D-loop) region, the control region for mtDNA replication, were shown to occur in skeletal muscles from aged individuals. We evaluated the presence and the heteroplasmy levels of these two mutations in muscle biopsies from 91 unrelated individuals of different ages (21 healthy subjects and 70 patients affected by mitochondrial encephalomyopathies). Overall, both mutations significantly accumulate with age. However, a different relationship was discovered among the different subgroups of patients: a higher number of A189G positive subjects younger than 53 years was detected in the subgroup of multiple-deleted patients; furthermore, a trend towards an increased risk for the mutations was evidenced among patients carrying multiple deletions when compared to healthy controls. These findings support the idea that a common biological mechanism determines the accumulation of somatic point mutations in the D-loop region, both in healthy subjects and in mitochondrial myopathy patients. At the same time, it appears that disorders caused by mutations of nuclear genes controlling mtDNA replication (the "mtDNA multiple deletions" syndromes) present a temporal advantage to mutate in the D-loop region. This observation may be relevant to the definition of the molecular pathogenesis of these latter syndromes. Copyright 2002 Elsevier Science B.V.

  12. Novel compound heterozygous mutations in MYO7A in a Chinese family with Usher syndrome type 1.

    PubMed

    Liu, Fei; Li, Pengcheng; Liu, Ying; Li, Weirong; Wong, Fulton; Du, Rong; Wang, Lei; Li, Chang; Jiang, Fagang; Tang, Zhaohui; Liu, Mugen

    2013-01-01

    To identify the disease-causing mutation(s) in a Chinese family with autosomal recessive Usher syndrome type 1 (USH1). An ophthalmic examination and an audiometric test were conducted to ascertain the phenotype of two affected siblings. The microsatellite marker D11S937, which is close to the candidate gene MYO7A (USH1B locus), was selected for genotyping. From the DNA of the proband, all coding exons and exon-intron boundaries of MYO7A were sequenced to identify the disease-causing mutation(s). Restriction fragment length polymorphism (RFLP) analysis was performed to exclude the alternative conclusion that the mutations are non-pathogenic rare polymorphisms. Based on severe hearing impairment, unintelligible speech, and retinitis pigmentosa, a clinical diagnosis of Usher syndrome type 1 was made. The genotyping results did not exclude the USH1B locus, which suggested that the MYO7A gene was likely the gene associated with the disease-causing mutation(s) in the family. With direct DNA sequencing of MYO7A, two novel compound heterozygous mutations (c.3742G>A and c.6051+1G>A) of MYO7A were identified in the proband. DNA sequence analysis and RFLP analysis of other family members showed that the mutations cosegregated with the disease. Unaffected members, including the parents, uncle, and sister of the proband, carry only one of the two mutations. The mutations were not present in the controls (100 normal Chinese subjects=200 chromosomes) according to the RFLP analysis. In this study, we identified two novel mutations, c.3742G>A (p.E1248K) and c.6051+1G>A (donor splice site mutation in intron 44), of MYO7A in a Chinese non-consanguineous family with USH1. The mutations cosegregated with the disease and most likely cause the phenotype in the two affected siblings who carry these mutations compound heterozygously. Our finding expands the mutational spectrum of MYO7A.

  13. DHPLC-based mutation analysis of ENG and ALK-1 genes in HHT Italian population.

    PubMed

    Lenato, Gennaro M; Lastella, Patrizia; Di Giacomo, Marilena C; Resta, Nicoletta; Suppressa, Patrizia; Pasculli, Giovanna; Sabbà, Carlo; Guanti, Ginevra

    2006-02-01

    Hereditary haemorrhagic telangiectasia (HHT or Rendu-Osler-Weber syndrome) is an autosomal dominant disorder characterized by localized angiodysplasia due to mutations in endoglin, ALK-1 gene, and a still unidentified locus. The lack of highly recurrent mutations, locus heterogeneity, and the presence of mutations in almost all coding exons of the two genes makes the screening for mutations time-consuming and costly. In the present study, we developed a DHPLC-based protocol for mutation detection in ALK1 and ENG genes through retrospective analysis of known sequence variants, 20 causative mutations and 11 polymorphisms, and a prospective analysis on 47 probands with unknown mutation. Overall DHPLC analysis identified the causative mutation in 61 out 66 DNA samples (92.4%). We found 31 different mutations in the ALK1 gene, of which 15 are novel, and 20, of which 12 are novel, in the ENG gene, thus providing for the first time the mutational spectrum in a cohort of Italian HHT patients. In addition, we characterized the splicing pattern of ALK1 gene in lymphoblastoid cells, both in normal controls and in two individuals carrying a mutation in the non-invariant -3 position of the acceptor splice site upstream exon 6 (c.626-3C>G). Functional essay demonstrated the existence, also in normal individuals, of a small proportion of ALK1 alternative splicing, due to exon 5 skipping, and the presence of further aberrant splicing isoforms in the individuals carrying the c.626-3C>G mutation. 2006 Wiley-Liss, Inc.

  14. KRAS mutation analysis of washing fluid from endoscopic ultrasound-guided fine needle aspiration improves cytologic diagnosis of pancreatic ductal adenocarcinoma.

    PubMed

    Park, Joo Kyung; Lee, Yoon Jung; Lee, Jong Kyun; Lee, Kyu Taek; Choi, Yoon-La; Lee, Kwang Hyuck

    2017-01-10

    EUS-FNA becomes one of the most important diagnostic modalities for PDACs. However, acquired tissue specimens were sometimes insufficient to make a definite cytological diagnosis. On the other hand, KRAS mutation is the most frequently acquired genetic alteration found more than 90% of PDACs. To investigate the way to improve diagnostic accuracy for PDACs using both cytological examination and KRAS mutation analysis would be a great help. Therefore, the aims of this study were to evaluate usefulness of conventional cytological examination combined with KRAS mutation analysis with modified PCR technology to improve the sensitivity and the accuracy. We enrolled 43 patients with solid pancreatic masses and 86 EUS-FNA specimens were obtained. During the EUS-FNA, the needle catheter was flushed with 2 cc of saline and the washed fluid was collected for KRAS mutation analysis for the first 2 passes; PNAClamp™ KRAS Mutation Detection Kit. There were 46 specimens from the 23 PDACs and 40 specimens from the 20 other pancreatic diseases. The sensitivity, specificity and accuracy were as follows; conventional cytopathologic examination: 63%, 100% and 80%; combination of cytopathologic examination and K-ras mutation analysis: 87%, 100% and 93%. Furthermore, KRAS mutation was detected 11 out of 17 PDAC samples whose cytopathology results were inconclusive. KRAS mutation analysis with PNAClamp™ technique using washing fluid from EUS-FNA along with cytological examination may not only improve the diagnostic accuracy of PDACs, but also establish the platform using genetic analysis which would be helpful as diagnostic modality for PDACs.

  15. A protein domain-centric approach for the comparative analysis of human and yeast phenotypically relevant mutations

    PubMed Central

    2013-01-01

    Background The body of disease mutations with known phenotypic relevance continues to increase and is expected to do so even faster with the advent of new experimental techniques such as whole-genome sequencing coupled with disease association studies. However, genomic association studies are limited by the molecular complexity of the phenotype being studied and the population size needed to have adequate statistical power. One way to circumvent this problem, which is critical for the study of rare diseases, is to study the molecular patterns emerging from functional studies of existing disease mutations. Current gene-centric analyses to study mutations in coding regions are limited by their inability to account for the functional modularity of the protein. Previous studies of the functional patterns of known human disease mutations have shown a significant tendency to cluster at protein domain positions, namely position-based domain hotspots of disease mutations. However, the limited number of known disease mutations remains the main factor hindering the advancement of mutation studies at a functional level. In this paper, we address this problem by incorporating mutations known to be disruptive of phenotypes in other species. Focusing on two evolutionarily distant organisms, human and yeast, we describe the first inter-species analysis of mutations of phenotypic relevance at the protein domain level. Results The results of this analysis reveal that phenotypic mutations from yeast cluster at specific positions on protein domains, a characteristic previously revealed to be displayed by human disease mutations. We found over one hundred domain hotspots in yeast with approximately 50% in the exact same domain position as known human disease mutations. Conclusions We describe an analysis using protein domains as a framework for transferring functional information by studying domain hotspots in human and yeast and relating phenotypic changes in yeast to diseases in human. This first-of-a-kind study of phenotypically relevant yeast mutations in relation to human disease mutations demonstrates the utility of a multi-species analysis for advancing the understanding of the relationship between genetic mutations and phenotypic changes at the organismal level. PMID:23819456

  16. Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor.

    PubMed

    Dong, Chongmei; Vincent, Kate; Sharp, Peter

    2009-12-04

    TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful tool for reverse genetics, combining traditional chemical mutagenesis with high-throughput PCR-based mutation detection to discover induced mutations that alter protein function. The most popular mutation detection method for TILLING is a mismatch cleavage assay using the endonuclease CelI. For this method, locus-specific PCR is essential. Most wheat genes are present as three similar sequences with high homology in exons and low homology in introns. Locus-specific primers can usually be designed in introns. However, it is sometimes difficult to design locus-specific PCR primers in a conserved region with high homology among the three homoeologous genes, or in a gene lacking introns, or if information on introns is not available. Here we describe a mutation detection method which combines High Resolution Melting (HRM) analysis of mixed PCR amplicons containing three homoeologous gene fragments and sequence analysis using Mutation Surveyor software, aimed at simultaneous detection of mutations in three homoeologous genes. We demonstrate that High Resolution Melting (HRM) analysis can be used in mutation scans in mixed PCR amplicons containing three homoeologous gene fragments. Combining HRM scanning with sequence analysis using Mutation Surveyor is sensitive enough to detect a single nucleotide mutation in the heterozygous state in a mixed PCR amplicon containing three homoeoloci. The method was tested and validated in an EMS (ethylmethane sulfonate)-treated wheat TILLING population, screening mutations in the carboxyl terminal domain of the Starch Synthase II (SSII) gene. Selected identified mutations of interest can be further analysed by cloning to confirm the mutation and determine the genomic origin of the mutation. Polyploidy is common in plants. Conserved regions of a gene often represent functional domains and have high sequence similarity between homoeologous loci. The method described here is a useful alternative to locus-specific based methods for screening mutations in conserved functional domains of homoeologous genes. This method can also be used for SNP (single nucleotide polymorphism) marker development and eco-TILLING in polyploid species.

  17. Genomic Context Analysis of de Novo STXBP1 Mutations Identifies Evidence of Splice Site DNA-Motif Associated Hotspots.

    PubMed

    Uddin, Mohammed; Woodbury-Smith, Marc; Chan, Ada J S; Albanna, Ammar; Minassian, Berge; Boelman, Cyrus; Scherer, Stephen W

    2018-03-28

    Mutations within STXBP1 have been associated with a range of neurodevelopmental disorders implicating the pleotropic impact of this gene. Although the frequency of de novo mutations within STXBP1 for selective cohorts with early onset epileptic encephalopathy is more than 1%, there is no evidence for a hotspot within the gene. In this study, we analyzed the genomic context of de novo STXBP1 mutations to examine whether certain motifs indicated a greater risk of mutation. Through a comprehensive context analysis of 136 de novo /rare mutation (SNV/Indels) sites in this gene, strikingly 26.92% of all SNV mutations occurred within 5bp upstream or downstream of a 'GTA' motif ( P < 0.0005). This implies a genomic context modulated mutagenesis. Moreover, 51.85% (14 out of 27) of the 'GTA' mutations are splicing compared to 14.70% (20 out of 136) of all reported mutations within STXBP1 We also noted that 11 of these 14 'GTA' associated mutations are de novo in origin. Our analysis provides strong evidence of DNA motif modulated mutagenesis for STXBP1 de novo splicing mutations. Copyright © 2018 Uddin et al.

  18. Analysis of ESR1 and PIK3CA mutations in plasma cell-free DNA from ER-positive breast cancer patients.

    PubMed

    Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Tomiguchi, Mai; Sueta, Aiko; Murakami, Keiichi; Omoto, Yoko; Iwase, Hirotaka

    2017-08-08

    The measurement of ESR1 and PIK3CA mutations in plasma cell-free DNA (cfDNA) has been studied as a non-invasive method to quickly assess and monitor endocrine therapy (ET) resistant metastatic breast cancer (MBC) patients. The subjects of this retrospective study were a total of 185 plasma samples from 86 estrogen receptor-positive BC patients, of which 151 plasma samples were from 69 MBC patients and 34 plasma samples were from 17 primary BC (PBC) patients. We developed multiplex droplet digital PCR assays to verify the clinical significance of ESR1 and PIK3CA mutations both in a snapshot and serially in these patients. cfDNA ESR1 and PIK3CA mutations were found in 28.9% and 24.6 % of MBC patients, respectively. The relation between ESR1 or PIK3CA mutations and clinical features showed that ESR1 mutations occurred mostly in patients previously treated by ET, which was not the case for PIK3CA mutations. The analysis of the clinical impact of those mutations on subsequent lines of treatment for the 69 MBC patients revealed that both ESR1 and PIK3CA mutations detection were related to a shorter duration of ET effectiveness in univariate analysis but only for ESR1 mutations in multivariate analysis. The monitoring of cfDNA in a subset of 52 patients showed that loss of ESR1 mutations was related to a longer duration of response, which was not the case for PIK3CA mutations. We have demonstrated the clinical significance of on-treatment ESR1 mutations both in a snapshot and serially in comparison with PIK3CA mutations.

  19. Analysis of ESR1 and PIK3CA mutations in plasma cell-free DNA from ER-positive breast cancer patients

    PubMed Central

    Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Tomiguchi, Mai; Sueta, Aiko; Murakami, Keiichi; Omoto, Yoko; Iwase, Hirotaka

    2017-01-01

    Background The measurement of ESR1 and PIK3CA mutations in plasma cell-free DNA (cfDNA) has been studied as a non-invasive method to quickly assess and monitor endocrine therapy (ET) resistant metastatic breast cancer (MBC) patients. Methods The subjects of this retrospective study were a total of 185 plasma samples from 86 estrogen receptor-positive BC patients, of which 151 plasma samples were from 69 MBC patients and 34 plasma samples were from 17 primary BC (PBC) patients. We developed multiplex droplet digital PCR assays to verify the clinical significance of ESR1 and PIK3CA mutations both in a snapshot and serially in these patients. Results cfDNA ESR1 and PIK3CA mutations were found in 28.9% and 24.6 % of MBC patients, respectively. The relation between ESR1 or PIK3CA mutations and clinical features showed that ESR1 mutations occurred mostly in patients previously treated by ET, which was not the case for PIK3CA mutations. The analysis of the clinical impact of those mutations on subsequent lines of treatment for the 69 MBC patients revealed that both ESR1 and PIK3CA mutations detection were related to a shorter duration of ET effectiveness in univariate analysis but only for ESR1 mutations in multivariate analysis. The monitoring of cfDNA in a subset of 52 patients showed that loss of ESR1 mutations was related to a longer duration of response, which was not the case for PIK3CA mutations. Conclusions We have demonstrated the clinical significance of on-treatment ESR1 mutations both in a snapshot and serially in comparison with PIK3CA mutations. PMID:28881720

  20. Novel USH2A compound heterozygous mutations cause RP/USH2 in a Chinese family.

    PubMed

    Liu, Xiaowen; Tang, Zhaohui; Li, Chang; Yang, Kangjuan; Gan, Guanqi; Zhang, Zibo; Liu, Jingyu; Jiang, Fagang; Wang, Qing; Liu, Mugen

    2010-03-17

    To identify the disease-causing gene in a four-generation Chinese family affected with retinitis pigmentosa (RP). Linkage analysis was performed with a panel of microsatellite markers flanking the candidate genetic loci of RP. These loci included 38 known RP genes. The complete coding region and exon-intron boundaries of Usher syndrome 2A (USH2A) were sequenced with the proband DNA to screen the disease-causing gene mutation. Restriction fragment length polymorphism (RFLP) analysis and direct DNA sequence analysis were done to demonstrate co-segregation of the USH2A mutations with the family disease. One hundred normal controls were used without the mutations. The disease-causing gene in this Chinese family was linked to the USH2A locus on chromosome 1q41. Direct DNA sequence analysis of USH2A identified two novel mutations in the patients: one missense mutation p.G1734R in exon 26 and a splice site mutation, IVS32+1G>A, which was found in the donor site of intron 32 of USH2A. Neither the p.G1734R nor the IVS32+1G>A mutation was found in the unaffected family members or the 100 normal controls. One patient with a homozygous mutation displayed only RP symptoms until now, while three patients with compound heterozygous mutations in the family of study showed both RP and hearing impairment. This study identified two novel mutations: p.G1734R and IVS32+1G>A of USH2A in a four-generation Chinese RP family. In this study, the heterozygous mutation and the homozygous mutation in USH2A may cause Usher syndrome Type II or RP, respectively. These two mutations expand the mutant spectrum of USH2A.

  1. Null missense ABCR (ABCA4) mutations in a family with stargardt disease and retinitis pigmentosa.

    PubMed

    Shroyer, N F; Lewis, R A; Yatsenko, A N; Lupski, J R

    2001-11-01

    To determine the type of ABCR mutations that segregate in a family that manifests both Stargardt disease (STGD) and retinitis pigmentosa (RP), and the functional consequences of the underlying mutations. Direct sequencing of all 50 exons and flanking intronic regions of ABCR was performed for the STGD- and RP-affected relatives. RNA hybridization, Western blot analysis, and azido-adenosine triphosphate (ATP) labeling was used to determine the effect of disease-associated ABCR mutations in an in vitro assay system. Compound heterozygous missense mutations were identified in patients with STGD and RP. STGD-affected individual AR682-03 was compound heterozygous for the mutation 2588G-->C and a complex allele, [W1408R; R1640W]. RP-affected individuals AR682-04 and-05 were compound heterozygous for the complex allele [W1408R; R1640W] and the missense mutation V767D. Functional analysis of the mutation V767D by Western blot and ATP binding revealed a severe reduction in protein expression. In vitro analysis of ABCR protein with the mutations W1408R and R1640W showed a moderate effect of these individual mutations on expression and ATP-binding; the complex allele [W1408R; R1640W] caused a severe reduction in protein expression. These data reveal that missense ABCR mutations may be associated with RP. Functional analysis reveals that the RP-associated missense ABCR mutations are likely to be functionally null. These studies of the complex allele W1408R; R1640W suggest a synergistic effect of the individual mutations. These data are congruent with a model in which RP is associated with homozygous null mutations and with the notion that severity of retinal disease is inversely related to residual ABCR activity.

  2. Mutation testing in Treacher Collins Syndrome.

    PubMed

    Ellis, P E; Dawson, M; Dixon, M J

    2002-12-01

    To report on a study where 97 subjects were screened for mutations in the Treacher Collins syndrome (TCS) gene TCOF1. Ninety-seven subjects with a clinical diagnosis of TCS were screened for potential mutations in TCOF1, by means of single strand conformation polymorphism (SSCP) analysis. In those subjects where potential mutations were detected, sequence analysis was performed to determine the site and type of mutation present. Thirty-six TCS-specific mutations are reported including 27 deletions, six point mutations, two splice junction mutations, and one insertion/deletion. This brings the total number of mutations reported to date to 105. The importance of detection of these mutations is mainly in postnatal diagnosis and genetic counselling. Knowledge of the family specific mutation may also be used in prenatal diagnosis to confirm whether the foetus is affected or not, and give the parents the choice of whether to continue with the pregnancy.

  3. CCR4 frameshift mutation identifies a distinct group of adult T cell leukaemia/lymphoma with poor prognosis.

    PubMed

    Yoshida, Noriaki; Miyoshi, Hiroaki; Kato, Takeharu; Sakata-Yanagimoto, Mamiko; Niino, Daisuke; Taniguchi, Hiroaki; Moriuchi, Yukiyoshi; Miyahara, Masaharu; Kurita, Daisuke; Sasaki, Yuya; Shimono, Joji; Kawamoto, Keisuke; Utsunomiya, Atae; Imaizumi, Yoshitaka; Seto, Masao; Ohshima, Koichi

    2016-04-01

    Adult T cell leukaemia/lymphoma (ATLL) is an intractable T cell neoplasm caused by human T cell leukaemia virus type 1. Next-generation sequencing-based comprehensive mutation studies have revealed recurrent somatic CCR4 mutations in ATLL, although clinicopathological findings associated with CCR4 mutations remain to be delineated. In the current study, 184 cases of peripheral T cell lymphoma, including 113 cases of ATLL, were subjected to CCR4 mutation analysis. This sequence analysis identified mutations in 27% (30/113) of cases of ATLL and 9% (4/44) of cases of peripheral T cell lymphoma not otherwise specified. Identified mutations included nonsense (NS) and frameshift (FS) mutations. No significant differences in clinicopathological findings were observed between ATLL cases stratified by presence of CCR4 mutation. All ATLL cases with CCR4 mutations exhibited cell-surface CCR4 positivity. Semi-quantitative CCR4 protein analysis of immunohistochemical sections revealed higher CCR4 expression in cases with NS mutations of CCR4 than in cases with wild-type (WT) CCR4. Furthermore, among ATLL cases, FS mutation was significantly associated with a poor prognosis, compared with NS mutation and WT CCR4. These results suggest that CCR4 mutation is an important determinant of the clinical course in ATLL cases, and that NS and FS mutations of CCR4 behave differently with respect to ATLL pathophysiology. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  4. Mutational Signatures in Cancer (MuSiCa): a web application to implement mutational signatures analysis in cancer samples.

    PubMed

    Díaz-Gay, Marcos; Vila-Casadesús, Maria; Franch-Expósito, Sebastià; Hernández-Illán, Eva; Lozano, Juan José; Castellví-Bel, Sergi

    2018-06-14

    Mutational signatures have been proved as a valuable pattern in somatic genomics, mainly regarding cancer, with a potential application as a biomarker in clinical practice. Up to now, several bioinformatic packages to address this topic have been developed in different languages/platforms. MutationalPatterns has arisen as the most efficient tool for the comparison with the signatures currently reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. However, the analysis of mutational signatures is nowadays restricted to a small community of bioinformatic experts. In this work we present Mutational Signatures in Cancer (MuSiCa), a new web tool based on MutationalPatterns and built using the Shiny framework in R language. By means of a simple interface suited to non-specialized researchers, it provides a comprehensive analysis of the somatic mutational status of the supplied cancer samples. It permits characterizing the profile and burden of mutations, as well as quantifying COSMIC-reported mutational signatures. It also allows classifying samples according to the above signature contributions. MuSiCa is a helpful web application to characterize mutational signatures in cancer samples. It is accessible online at http://bioinfo.ciberehd.org/GPtoCRC/en/tools.html and source code is freely available at https://github.com/marcos-diazg/musica .

  5. INPP4B promotes cell survival via SGK3 activation in NPM1-mutated leukemia.

    PubMed

    Jin, Hongjun; Yang, Liyuan; Wang, Lu; Yang, Zailin; Zhan, Qian; Tao, Yao; Zou, Qin; Tang, Yuting; Xian, Jingrong; Zhang, Shuaishuai; Jing, Yipei; Zhang, Ling

    2018-01-17

    Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1) has been recognized as a distinct leukemia entity in the 2016 World Health Organization (WHO) classification. The genetic events underlying oncogenesis in NPM1-mutated AML that is characterized by a normal karyotype remain unclear. Inositol polyphosphate 4-phosphatase type II (INPP4B), a new factor in the phosphoinositide-3 kinase (PI3K) pathway-associated cancers, has been recently found a clinically relevant role in AML. However, little is known about the specific mechanistic function of INPP4B in NPM1-mutated AML. The INPP4B expression levels in NPM1-mutated AML primary blasts and AML OCI-AML3 cell lines were determined by qRT-PCR and western blotting. The effect of INPP4B knockdown on OCI-AML3 leukemia cell proliferation was evaluated, using the Cell Counting Kit-8 and colony formation assay. After INPP4B overexpression or knockdown, the activation of serum and glucocorticoid-regulated kinase 3 (SGK3) and AKT was assessed. The effects of PI3K signaling pathway inhibitors on the levels of p-SGK3 in OCI-AML3 cells were tested. The mass of PI (3,4) P 2 and PI (3) P was analyzed by ELISA upon INPP4B overexpression. Knockdown of SGK3 by RNA interference and a rescue assay were performed to confirm the critical role of SGK3 in INPP4B-mediated cell survival. In addition, the molecular mechanism underlying INPP4B expression in NPM1-mutated leukemia cells was explored. Finally, Kaplan-Meier survival analysis was conducted on the NPM1-mutated AML cohort stratified into quartiles for INPP4B expression in The Cancer Genome Atlas (TCGA) dataset. High expression of INPP4B was observed in NPM1-mutated AML. Knockdown of INPP4B repressed cell proliferation in OCI-AML3 cells, whereas recovered INPP4B rescued this inhibitory effect in vitro. Mechanically, INPP4B enhanced phosphorylated SGK3 (p-SGK3) status, but did not affect AKT activation. SGK3 was required for INPP4B-induced cell proliferation in OCI-AML3 cells. High levels of INPP4B were at least partially caused by the NPM1 mutant via ERK/Ets-1 signaling. Finally, high expression of INPP4B showed a trend towards lower overall survival and event-free survival in NPM1-mutated AML patients. Our results indicate that INPP4B promotes leukemia cell survival via SGK3 activation, and INPP4B might be a potential target in the treatment of NPM1-mutated AML.

  6. Genetic Profiles of Korean Patients With Glucose-6-Phosphate Dehydrogenase Deficiency

    PubMed Central

    Lee, Jaewoong; Choi, Hayoung; Kim, Jiyeon; Kwon, Ahlm; Jang, Woori; Chae, Hyojin; Kim, Myungshin; Kim, Yonggoo; Lee, Jae Wook; Chung, Nack-Gyun

    2017-01-01

    Background We describe the genetic profiles of Korean patients with glucose-6-phosphate dehydrogenase (G6PD) deficiencies and the effects of G6PD mutations on protein stability and enzyme activity on the basis of in silico analysis. Methods In parallel with a genetic analysis, the pathogenicity of G6PD mutations detected in Korean patients was predicted in silico. The simulated effects of G6PD mutations were compared to the WHO classes based on G6PD enzyme activity. Four previously reported mutations and three newly diagnosed patients with missense mutations were estimated. Results One novel mutation (p.Cys385Gly, labeled G6PD Kangnam) and two known mutations [p.Ile220Met (G6PD São Paulo) and p.Glu416Lys (G6PD Tokyo)] were identified in this study. G6PD mutations identified in Koreans were also found in Brazil (G6PD São Paulo), Poland (G6PD Seoul), United States of America (G6PD Riley), Mexico (G6PD Guadalajara), and Japan (G6PD Tokyo). Several mutations occurred at the same nucleotide, but resulted in different amino acid residue changes in different ethnic populations (p.Ile380 variant, G6PD Calvo Mackenna; p.Cys385 variants, Tomah, Madrid, Lynwood; p.Arg387 variant, Beverly Hills; p.Pro396 variant, Bari; and p.Pro396Ala in India). On the basis of the in silico analysis, Class I or II mutations were predicted to be highly deleterious, and the effects of one Class IV mutation were equivocal. Conclusions The genetic profiles of Korean individuals with G6PD mutations indicated that the same mutations may have arisen by independent mutational events, and were not derived from shared ancestral mutations. The in silico analysis provided insight into the role of G6PD mutations in enzyme function and stability. PMID:28028996

  7. Genetic Profiles of Korean Patients With Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Lee, Jaewoong; Park, Joonhong; Choi, Hayoung; Kim, Jiyeon; Kwon, Ahlm; Jang, Woori; Chae, Hyojin; Kim, Myungshin; Kim, Yonggoo; Lee, Jae Wook; Chung, Nack Gyun; Cho, Bin

    2017-03-01

    We describe the genetic profiles of Korean patients with glucose-6-phosphate dehydrogenase (G6PD) deficiencies and the effects of G6PD mutations on protein stability and enzyme activity on the basis of in silico analysis. In parallel with a genetic analysis, the pathogenicity of G6PD mutations detected in Korean patients was predicted in silico. The simulated effects of G6PD mutations were compared to the WHO classes based on G6PD enzyme activity. Four previously reported mutations and three newly diagnosed patients with missense mutations were estimated. One novel mutation (p.Cys385Gly, labeled G6PD Kangnam) and two known mutations [p.Ile220Met (G6PD São Paulo) and p.Glu416Lys (G6PD Tokyo)] were identified in this study. G6PD mutations identified in Koreans were also found in Brazil (G6PD São Paulo), Poland (G6PD Seoul), United States of America (G6PD Riley), Mexico (G6PD Guadalajara), and Japan (G6PD Tokyo). Several mutations occurred at the same nucleotide, but resulted in different amino acid residue changes in different ethnic populations (p.Ile380 variant, G6PD Calvo Mackenna; p.Cys385 variants, Tomah, Madrid, Lynwood; p.Arg387 variant, Beverly Hills; p.Pro396 variant, Bari; and p.Pro396Ala in India). On the basis of the in silico analysis, Class I or II mutations were predicted to be highly deleterious, and the effects of one Class IV mutation were equivocal. The genetic profiles of Korean individuals with G6PD mutations indicated that the same mutations may have arisen by independent mutational events, and were not derived from shared ancestral mutations. The in silico analysis provided insight into the role of G6PD mutations in enzyme function and stability.

  8. Extinction risk and eco-evolutionary dynamics in a variable environment with increasing frequency of extreme events.

    PubMed

    Vincenzi, Simone

    2014-08-06

    One of the most dramatic consequences of climate change will be the intensification and increased frequency of extreme events. I used numerical simulations to understand and predict the consequences of directional trend (i.e. mean state) and increased variability of a climate variable (e.g. temperature), increased probability of occurrence of point extreme events (e.g. floods), selection pressure and effect size of mutations on a quantitative trait determining individual fitness, as well as the their effects on the population and genetic dynamics of a population of moderate size. The interaction among climate trend, variability and probability of point extremes had a minor effect on risk of extinction, time to extinction and distribution of the trait after accounting for their independent effects. The survival chances of a population strongly and linearly decreased with increasing strength of selection, as well as with increasing climate trend and variability. Mutation amplitude had no effects on extinction risk, time to extinction or genetic adaptation to the new climate. Climate trend and strength of selection largely determined the shift of the mean phenotype in the population. The extinction or persistence of the populations in an 'extinction window' of 10 years was well predicted by a simple model including mean population size and mean genetic variance over a 10-year time frame preceding the 'extinction window', although genetic variance had a smaller role than population size in predicting contemporary risk of extinction. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics

    PubMed Central

    King, Amy C.; Kavosi, Mania; Wang, Mengmeng; O'Hara, Denise M.; Tchistiakova, Lioudmila; Katragadda, Madan

    2018-01-01

    ABSTRACT A large body of data exists demonstrating that neonatal Fc receptor (FcRn) binding of an IgG via its Fc CH2-CH3 interface trends with the pharmacokinetics (PK) of IgG. We have observed that PK of IgG molecules vary widely, even when they share identical Fc domains. This led us to hypothesize that domains distal from the Fc could contribute to FcRn binding and affect PK. In this study, we explored the role of these IgG domains in altering the affinity between IgG and FcRn. Using a surface plasmon resonance-based assay developed to examine the steady-state binding affinity (KD) of IgG molecules to FcRn, we dissected the contributions of IgG domains in modulating the affinity between FcRn and IgG. Through analysis of a broad collection of therapeutic antibodies containing more than 50 unique IgG molecules, we demonstrated that variable domains, and in particular complementarity-determining regions (CDRs), significantly alter binding affinity to FcRn in vitro. Furthermore, a panel of IgG molecules differing only by 1–5 mutations in CDRs altered binding affinity to FcRn in vitro, by up to 79-fold, and the affinity values correlated with calculated isoelectric point values of both variable domains and CDR-L3. In addition, tighter affinity values trend with faster in vivo clearance of a set of IgG molecules differing only by 1–3 mutations in human FcRn transgenic mice. Understanding the role of CDRs in modulation of IgG affinity to FcRn in vitro and their effect on PK of IgG may have far-reaching implications in the optimization of IgG therapeutics. PMID:28991504

  10. Pyrosequencing analysis for detection of a BRAFV600E mutation in an FNAB specimen of thyroid nodules.

    PubMed

    Kim, Suk Kyeong; Kim, Dong-Lim; Han, Hye Seung; Kim, Wan Seop; Kim, Seung Ja; Moon, Won Jin; Oh, Seo Young; Hwang, Tae Sook

    2008-06-01

    Fine-needle aspiration biopsy (FNAB) is the primary means of distinguishing benign from malignant and of guiding therapeutic intervention in thyroid nodules. However, 10% to 30% of cases with indeterminate cytology in FNAB need other diagnostic tools to refine diagnosis. We compared the pyrosequencing method with the conventional direct DNA sequencing analysis and investigated the usefulness of preoperative BRAF mutation analysis as an adjunct diagnostic tool with routine FNAB. A total of 103 surgically confirmed patients' FNA slides were recruited and DNA was extracted after atypical cells were scraped from the slides. BRAF mutation was analyzed by pyrosequencing and direct DNA sequencing. Sixty-three (77.8%) of 81 histopathologically diagnosed malignant nodules revealed positive BRAF mutation on pyrosequencing analysis. In detail, 63 (84.0%) of 75 papillary thyroid carcinoma (PTC) samples showed positive BRAF mutation, whereas 3 follicular thyroid carcinomas, 1 anaplastic carcinoma, 1 medullary thyroid carcinoma, and 1 metastatic lung carcinoma did not show BRAF mutation. None of 22 benign nodules had BRAF mutation in both pyrosequencing and direct DNA sequencing. Out of 27 thyroid nodules classified as 'indeterminate' on cytologic examination preoperatively, 21 (77.8%) cases turned out to be malignant: 18 PTCs (including 2 follicular variant types) and 3 follicular thyroid carcinomas. Among these, 13 (61.9%) classic PTCs had BRAF mutation. None of 6 benign nodules, including 3 follicular adenomas and 3 nodular hyperplasias, had BRAF mutation. Among 63 PTCs with positive BRAF mutation detected by pyrosequencing analysis, 3 cases did not show BRAF mutation by direct DNA sequencing. Although it was not statistically significant, pyrosequencing was superior to direct DNA sequencing in detecting the BRAF mutation of thyroid nodules (P=0.25). Detecting BRAF mutation by pyrosequencing is more sensitive, faster, and less expensive than direct DNA sequencing and is proposed as an adjunct diagnostic tool in evaluating thyroid nodules of indeterminate cytology.

  11. [Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is caused by a mutation in TFG].

    PubMed

    Ishiura, Hiroyuki; Tsuji, Shoji

    2013-01-01

    Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is an autosomal dominant neurodegenerative disease characterized by proximal predominant weakness and muscle atrophy accompanied by distal sensory disturbance. Linkage analysis using 4 families identified a region on chromosome 3 showing a LOD score exceeding 4. Further refinement of candidate region was performed by haplotype analysis using high-density SNP data, resulting in a minimum candidate region spanning 3.3 Mb. Exome analysis of an HMSN-P patient revealed a mutation (c.854C>T, p.Pro285Leu) in TRK-fused gene (TFG). The identical mutation was found in the four families, which cosegregated with the disease. The mutation was neither found in Japanese control subjects nor public databases. Detailed haplotype analysis suggested two independent origins of the mutation. These findings indicate that the mutation in TFG causes HMSN-P.

  12. Pitfalls in molecular analysis for mismatch repair deficiency in a family with biallelic pms2 germline mutations.

    PubMed

    Leenen, C H M; Geurts-Giele, W R R; Dubbink, H J; Reddingius, R; van den Ouweland, A M; Tops, C M J; van de Klift, H M; Kuipers, E J; van Leerdam, M E; Dinjens, W N M; Wagner, A

    2011-12-01

    Heterozygous germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause Lynch syndrome. Biallelic mutations in the MMR genes are associated with a childhood cancer syndrome [constitutional mismatch repair deficiency (CMMR-D)]. This is predominantly characterized by hematological malignancies and tumors of the bowel and brain, often associated with signs of neurofibromatosis type 1 (NF1). Diagnostic strategies for selection of patients for MMR gene analysis include analysis of microsatellite instability (MSI) and immunohistochemical (IHC) analysis of MMR proteins in tumor tissue. We report the clinical characterization and molecular analyses of tumor specimens from a family with biallelic PMS2 germline mutations. This illustrates the pitfalls of present molecular screening strategies. Tumor tissues of five family members were analyzed for MSI and IHC. MSI was observed in only one of the analyzed tissues. However, IHC analysis of brain tumor tissue of the index patient and his sister showed absence of PMS2 expression, and germline mutation analyses showed biallelic mutations in PMS2: p.Ser46IIe and p.Pro246fs. The same heterozygous mutations were confirmed in the father and mother, respectively. These data support the conclusion that in case of a clinical phenotype of CMMR-D, it is advisable to routinely combine MSI analysis with IHC analysis for the expression of MMR proteins. With inconclusive or conflicting results, germline mutation analysis of the MMR genes should be considered after thorough counselling of the patients and/or their relatives. © 2011 John Wiley & Sons A/S.

  13. Identification of a novel CLRN1 gene mutation in Usher syndrome type 3: two case reports.

    PubMed

    Yoshimura, Hidekane; Oshikawa, Chie; Nakayama, Jun; Moteki, Hideaki; Usami, Shin-Ichi

    2015-05-01

    This study examines the CLRN1 gene mutation analysis in Japanese patients who were diagnosed with Usher syndrome type 3 (USH3) on the basis of clinical findings. Genetic analysis using massively parallel DNA sequencing (MPS) was conducted to search for 9 causative USH genes in 2 USH3 patients. We identified the novel pathogenic mutation in the CLRN1 gene in 2 patients. The missense mutation was confirmed by functional prediction software and segregation analysis. Both patients were diagnosed as having USH3 caused by the CLRN1 gene mutation. This is the first report of USH3 with a CLRN1 gene mutation in Asian populations. Validating the presence of clinical findings is imperative for properly differentiating among USH subtypes. In addition, mutation screening using MPS enables the identification of causative mutations in USH. The clinical diagnosis of this phenotypically variable disease can then be confirmed. © The Author(s) 2015.

  14. Mutation rates at 42 Y chromosomal short tandem repeats in Chinese Han population in Eastern China.

    PubMed

    Wu, Weiwei; Ren, Wenyan; Hao, Honglei; Nan, Hailun; He, Xin; Liu, Qiuling; Lu, Dejian

    2018-01-31

    Mutation analysis of 42 Y chromosomal short tandem repeats (Y-STRs) loci was performed using a sample of 1160 father-son pairs from the Chinese Han population in Eastern China. The results showed that the average mutation rate across the 42 Y-STR loci was 0.0041 (95% CI 0.0036-0.0047) per locus per generation. The locus-specific mutation rates varied from 0.000 to 0.0190. No mutation was found at DYS388, DYS437, DYS448, DYS531, and GATA_H4. DYS627, DYS570, DYS576, and DYS449 could be classified as rapidly mutating Y-STRs, with mutation rates higher than 1.0 × 10 -2 . DYS458, DYS630, and DYS518 were moderately mutating Y-STRs, with mutation rates ranging from 8 × 10 -3 to 1 × 10 -2 . Although the characteristics of the Y-STR mutations were consistent with those in previous studies, mutation rate differences between our data and previous published data were found at some rapidly mutating Y-STRs. The single-copy loci located on the short arm of the Y chromosome (Yp) showed relatively higher mutation rates more frequently than the multi-copy loci. These results will not only extend the data for Y-STR mutations but also be important for kinship analysis, paternal lineage identification, and family relationship reconstruction in forensic Y-STR analysis.

  15. An insight to the molecular interactions of the FDA approved HIV PR drugs against L38L↑N↑L PR mutant

    NASA Astrophysics Data System (ADS)

    Sanusi, Zainab K.; Govender, Thavendran; Maguire, Glenn E. M.; Maseko, Sibusiso B.; Lin, Johnson; Kruger, Hendrik G.; Honarparvar, Bahareh

    2018-03-01

    The aspartate protease of the human immune deficiency type-1 virus (HIV-1) has become a crucial antiviral target in which many useful antiretroviral inhibitors have been developed. However, it seems the emergence of new HIV-1 PR mutations enhances drug resistance, hence, the available FDA approved drugs show less activity towards the protease. A mutation and insertion designated L38L↑N↑L PR was recently reported from subtype of C-SA HIV-1. An integrated two-layered ONIOM (QM:MM) method was employed in this study to examine the binding affinities of the nine HIV PR inhibitors against this mutant. The computed binding free energies as well as experimental data revealed a reduced inhibitory activity towards the L38L↑N↑L PR in comparison with subtype C-SA HIV-1 PR. This observation suggests that the insertion and mutations significantly affect the binding affinities or characteristics of the HIV PIs and/or parent PR. The same trend for the computational binding free energies was observed for eight of the nine inhibitors with respect to the experimental binding free energies. The outcome of this study shows that ONIOM method can be used as a reliable computational approach to rationalize lead compounds against specific targets. The nature of the intermolecular interactions in terms of the host-guest hydrogen bond interactions is discussed using the atoms in molecules (AIM) analysis. Natural bond orbital analysis was also used to determine the extent of charge transfer between the QM region of the L38L↑N↑L PR enzyme and FDA approved drugs. AIM analysis showed that the interaction between the QM region of the L38L↑N↑L PR and FDA approved drugs are electrostatic dominant, the bond stability computed from the NBO analysis supports the results from the AIM application. Future studies will focus on the improvement of the computational model by considering explicit water molecules in the active pocket. We believe that this approach has the potential to provide information that will aid in the design of much improved HIV-1 PR antiviral drugs.

  16. Variation of Temperature and Precipitation in Urban Agglomeration and Prevention Suggestion of Waterlogging in Middle and Lower Reaches of Yangtze River

    NASA Astrophysics Data System (ADS)

    Na, Liu; Youjie, Jin; Jiaqi, Dai

    2018-03-01

    The variation trend of temperature and precipitation during flood season in the middle and lower reaches of the Yangtze River basin in recent 50 years and change characteristics of rainfall in five typical flood prone cities are analysed. Aiming at waterlogging problems in the urban agglomeration of middle and lower reaches of the Yangtze River, the comprehensive prevention and control suggestions are put forward. The results showed that: the temperature trend in the basin decreased and then increased, and the precipitation showed a downward-rising-downward trend, no mutation occurred; The incidence of heavy rainfall events in the five typical cities with daily rainfall more than 50mm showed an upward trend, and increased significantly after 2002. The intensity of precipitation increased gradually. Climate change makes urban agglomeration waterlogging disasters become increasingly prominent in the middle and lower reaches of the Yangtze River.

  17. Somatic mutation detection in human biomonitoring.

    PubMed

    Olsen, L S; Nielsen, L R; Nexø, B A; Wassermann, K

    1996-06-01

    Somatic cell gene mutation arising in vivo may be considered to be a biomarker for genotoxicity. Assays detecting mutations of the haemoglobin and glycophorin A genes in red blood cells and of the hypoxanthine-guanine phosphoribosyltransferase and human leucocyte antigenes in T-lymphocytes are available in humans. This MiniReview describes these assays and their application to studies of individuals exposed to genotoxic agents. Moreover, with the implementation of techniques of molecular biology mutation spectra can now be defined in addition to the quantitation of in vivo mutant frequencies. We describe current screening methods for unknown mutations, including the denaturing gradient gel electrophoresis, single strand conformation polymorphism analysis, heteroduplex analysis, chemical modification techniques and enzymatic cleavage methods. The advantage of mutation detection as a biomarker is that it integrates exposure and sensitivity in one measurement. With the analysis of mutation spectra it may thus be possible to identify the causative genotoxic agent.

  18. Norrie disease: first mutation report and prenatal diagnosis in an Indian family.

    PubMed

    Ghosh, Manju; Sharma, Shipra; Shastri, Shivaram; Arora, Sadhna; Shukla, Rashmi; Gupta, Neerja; Deka, Deepika; Kabra, Madhulika

    2012-11-01

    Norrie Disease (ND) is a rare X-linked recessive disorder characterised by congenital blindness due to severe retinal dysgenesis. Hearing loss and intellectual disability is present in 30-50 % cases. ND is caused by mutations in the NDP gene, located at Xp11.3. The authors describe mutation analysis of a proband with ND and subsequently prenatal diagnosis. Sequence analysis of the NDP gene revealed a hemizygous missense mutation arginine to serine in codon 41 (p.Arg41Ser) in the affected child. Mother was carrier for the mutation. In a subsequent di-chorionic di-amniotic pregnancy, the authors performed prenatal diagnosis by mutation analysis on chorionic villi sample at 11 wk of gestation. The fetuses were unaffected. This is a first mutation report and prenatal diagnosis of a familial case of Norrie disease from India. The importance of genetic testing of Norrie disease for confirmation, carrier testing, prenatal diagnosis and genetic counseling is emphasized.

  19. Identification of mutations in Colombian patients affected with Fabry disease.

    PubMed

    Uribe, Alfredo; Mateus, Heidi Eliana; Prieto, Juan Carlos; Palacios, Maria Fernanda; Ospina, Sandra Yaneth; Pasqualim, Gabriela; da Silveira Matte, Ursula; Giugliani, Roberto

    2015-12-15

    Fabry Disease (FD) is an X-linked inborn error of glycosphingolipid catabolism, caused by a deficiency of the lisosomal α-galactosidase A (AGAL). The disorder leads to a vascular disease secondary to the involvement of kidney, heart and the central nervous system. The mutation analysis is a valuable tool for diagnosis and genetic counseling. Although more than 600 mutations have been identified, most mutations are private. Our objective was to describe the analysis of nine Colombian patients with Fabry disease by automated sequencing of the seven exons of the GLA gene. Two novel mutations were identified in two patients affected with the classical subtype of FD, in addition to other 6 mutations previously reported. The present study confirms the heterogeneity of mutations in Fabry disease and the importance of molecular analysis for genetic counseling, female heterozygotes detection as well as therapeutic decisions. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Mutated form (G52E) of inactive diphtheria toxin CRM197: molecular simulations clearly display effect of the mutation to NAD binding.

    PubMed

    Salmas, Ramin Ekhteiari; Mestanoglu, Mert; Unlu, Ayhan; Yurtsever, Mine; Durdagi, Serdar

    2016-11-01

    Mutated form (G52E) of diphtheria toxin (DT) CRM197 is an inactive and nontoxic enzyme. Here, we provided a molecular insight using comparative molecular dynamics (MD) simulations to clarify the influence of a single point mutation on overall protein and active-site loop. Post-processing MD analysis (i.e. stability, principal component analysis, hydrogen-bond occupancy, etc.) is carried out on both wild and mutated targets to investigate and to better understand the mechanistic differences of structural and dynamical properties on an atomic scale especially at nicotinamide adenine dinucleotide (NAD) binding site when a single mutation (G52E) happens at the DT. In addition, a docking simulation is performed for wild and mutated forms. The docking scoring analysis and docking poses results revealed that mutant form is not able to properly accommodate the NAD molecule.

  1. Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers.

    PubMed

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S; Garcia-Closas, Montserrat; Sherman, Mark E; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P; Khan, Javed; Chanock, Stephen

    2011-01-17

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  2. Detection of Somatic Mutations by High-Resolution DNA Melting (HRM) Analysis in Multiple Cancers

    PubMed Central

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S.; Garcia-Closas, Montserrat; Sherman, Mark E.; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P.; Khan, Javed; Chanock, Stephen

    2011-01-01

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples. PMID:21264207

  3. Digital PCR Improves Mutation Analysis in Pancreas Fine Needle Aspiration Biopsy Specimens.

    PubMed

    Sho, Shonan; Court, Colin M; Kim, Stephen; Braxton, David R; Hou, Shuang; Muthusamy, V Raman; Watson, Rabindra R; Sedarat, Alireza; Tseng, Hsian-Rong; Tomlinson, James S

    2017-01-01

    Applications of precision oncology strategies rely on accurate tumor genotyping from clinically available specimens. Fine needle aspirations (FNA) are frequently obtained in cancer management and often represent the only source of tumor tissues for patients with metastatic or locally advanced diseases. However, FNAs obtained from pancreas ductal adenocarcinoma (PDAC) are often limited in cellularity and/or tumor cell purity, precluding accurate tumor genotyping in many cases. Digital PCR (dPCR) is a technology with exceptional sensitivity and low DNA template requirement, characteristics that are necessary for analyzing PDAC FNA samples. In the current study, we sought to evaluate dPCR as a mutation analysis tool for pancreas FNA specimens. To this end, we analyzed alterations in the KRAS gene in pancreas FNAs using dPCR. The sensitivity of dPCR mutation analysis was first determined using serial dilution cell spiking studies. Single-cell laser-microdissection (LMD) was then utilized to identify the minimal number of tumor cells needed for mutation detection. Lastly, dPCR mutation analysis was performed on 44 pancreas FNAs (34 formalin-fixed paraffin-embedded (FFPE) and 10 fresh (non-fixed)), including samples highly limited in cellularity (100 cells) and tumor cell purity (1%). We found dPCR to detect mutations with allele frequencies as low as 0.17%. Additionally, a single tumor cell could be detected within an abundance of normal cells. Using clinical FNA samples, dPCR mutation analysis was successful in all preoperative FNA biopsies tested, and its accuracy was confirmed via comparison with resected tumor specimens. Moreover, dPCR revealed additional KRAS mutations representing minor subclones within a tumor that were not detected by the current clinical gold standard method of Sanger sequencing. In conclusion, dPCR performs sensitive and accurate mutation analysis in pancreas FNAs, detecting not only the dominant mutation subtype, but also the additional rare mutation subtypes representing tumor heterogeneity.

  4. Digital PCR Improves Mutation Analysis in Pancreas Fine Needle Aspiration Biopsy Specimens

    PubMed Central

    Court, Colin M.; Kim, Stephen; Braxton, David R.; Hou, Shuang; Muthusamy, V. Raman; Watson, Rabindra R.; Sedarat, Alireza; Tseng, Hsian-Rong; Tomlinson, James S.

    2017-01-01

    Applications of precision oncology strategies rely on accurate tumor genotyping from clinically available specimens. Fine needle aspirations (FNA) are frequently obtained in cancer management and often represent the only source of tumor tissues for patients with metastatic or locally advanced diseases. However, FNAs obtained from pancreas ductal adenocarcinoma (PDAC) are often limited in cellularity and/or tumor cell purity, precluding accurate tumor genotyping in many cases. Digital PCR (dPCR) is a technology with exceptional sensitivity and low DNA template requirement, characteristics that are necessary for analyzing PDAC FNA samples. In the current study, we sought to evaluate dPCR as a mutation analysis tool for pancreas FNA specimens. To this end, we analyzed alterations in the KRAS gene in pancreas FNAs using dPCR. The sensitivity of dPCR mutation analysis was first determined using serial dilution cell spiking studies. Single-cell laser-microdissection (LMD) was then utilized to identify the minimal number of tumor cells needed for mutation detection. Lastly, dPCR mutation analysis was performed on 44 pancreas FNAs (34 formalin-fixed paraffin-embedded (FFPE) and 10 fresh (non-fixed)), including samples highly limited in cellularity (100 cells) and tumor cell purity (1%). We found dPCR to detect mutations with allele frequencies as low as 0.17%. Additionally, a single tumor cell could be detected within an abundance of normal cells. Using clinical FNA samples, dPCR mutation analysis was successful in all preoperative FNA biopsies tested, and its accuracy was confirmed via comparison with resected tumor specimens. Moreover, dPCR revealed additional KRAS mutations representing minor subclones within a tumor that were not detected by the current clinical gold standard method of Sanger sequencing. In conclusion, dPCR performs sensitive and accurate mutation analysis in pancreas FNAs, detecting not only the dominant mutation subtype, but also the additional rare mutation subtypes representing tumor heterogeneity. PMID:28125707

  5. The three stages of epilepsy in patients with CDKL5 mutations.

    PubMed

    Bahi-Buisson, Nadia; Kaminska, Anna; Boddaert, Nathalie; Rio, Marlène; Afenjar, Alexandra; Gérard, Marion; Giuliano, Fabienne; Motte, Jacques; Héron, Delphine; Morel, Marie Ange N'guyen; Plouin, Perrine; Richelme, Christian; des Portes, Vincent; Dulac, Olivier; Philippe, Christophe; Chiron, Catherine; Nabbout, Rima; Bienvenu, Thierry

    2008-06-01

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene are responsible for a severe encephalopathy with early epilepsy. So far, the electroclinical phenotype remains largely unknown and no clear genotype-phenotype correlations have been established. To characterize the epilepsy associated with CDKL5 mutations and to look for a relationship between the genotype and the course of epilepsy. We retrospectively analyzed the electroclinical phenotypes of 12 patients aged from 2.5 to 19 years diagnosed with pathogenic CDKL5 mutations and one patient with a novel intronic sequence variation of uncertain pathogenicity and examined whether the severity of the epilepsy was linked to the type and location of mutations. The epilepsy course reveals three successive stages: (Stage I) early epilepsy (onset 1-10 weeks) with normal interictal electroencephalogram (EEG) (10/13) despite frequent convulsive seizures; (Stage II) epileptic encephalopathy with infantile spasms (8/8) and hypsarrhythmia (8/8). At the age of evaluation, seven patients were seizure free and six had developed refractory epilepsy (stage III) with tonic seizures and myoclonia (5/6). Interestingly, the patients carrying a CDKL5 mutations causing a truncation of the catalytic domain tended to develop a more frequent refractory epilepsy than patients with mutations located downstream (4/6, 66.6% versus 1/6, 16%) although, these trends are not yet significant. Our data contribute to a better definition of the epileptic phenotype in CDKL5 mutations, and might give some clues to a potential relationship between the phenotype and the genotype in these patients.

  6. Do BRCA1/2 mutation carriers have an earlier onset of natural menopause?

    PubMed

    van Tilborg, Theodora C; Broekmans, Frank J; Pijpe, Anouk; Schrijver, Lieske H; Mooij, Thea M; Oosterwijk, Jan C; Verhoef, Senno; Gómez Garcia, Encarna B; van Zelst-Stams, Wendy A; Adank, Muriel A; van Asperen, Christi J; van Doorn, Helena C; van Os, Theo A; Bos, Anna M; Rookus, Matti A; Ausems, Margreet G

    2016-08-01

    It has been hypothesized that BRCA1/2 mutation carriers have an earlier age at natural menopause (ANM), although to date findings are inconclusive. This study assessed the influence of BRCA mutation status on ANM, and aimed to explore the reasons of inconsistency in the literature. Cross-sectional assessment from an ongoing nationwide cohort study among members of BRCA1/2 mutated families. Information was obtained by a standardized questionnaire. Kaplan-Meier curves were constructed, and Cox regression was used to assess the association between BRCA1/2 mutation status and ANM. Adjustments were made for birth cohort, family, smoking, use of hormonal contraceptives, and parity. A total of 1,208 BRCA1/2 mutation carriers and 2,211 proven noncarriers were included. Overall, no association was found between BRCA1/2 mutation status and ANM (adjusted hazard ratio [HR] = 1.06 [95% CI, 0.87-1.30]). We examined if the null finding was due to informative censoring by uptake of risk-reducing salpingo-oophorectomy. Indeed, within the oldest birth cohort, in which the percentage of surgical menopause events was lowest and comparable between carriers and noncarriers, the HR for earlier natural menopause in carriers was 1.45 (95% CI, 1.09-1.94). The second oldest birth cohort, however, demonstrated a decreased HR (0.67 [95% CI, 0.46-0.98]), and thus no trend over birth cohorts was found. Various types of selection bias hamper the comparison of ANM between BRCA1/2 mutation carriers and noncarriers, genetically tested in the clinic.

  7. Mutational analysis of the HGO gene in Finnish alkaptonuria patients

    PubMed Central

    de Bernabe, D. B.-V.; Peterson, P.; Luopajarvi, K.; Matintalo, P.; Alho, A.; Konttinen, Y.; Krohn, K.; de Cordoba, S. R.; Ranki, A.

    1999-01-01

    Alkaptonuria (AKU), the prototypic inborn error of metabolism, has recently been shown to be caused by loss of function mutations in the homogentisate-1,2-dioxygenase gene (HGO). So far 17 mutations have been characterised in AKU patients of different ethnic origin. We describe three novel mutations (R58fs, R330S, and H371R) and one common AKU mutation (M368V), detected by mutational and polymorphism analysis of the HGO gene in five Finnish AKU pedigrees. The three novel AKU mutations are most likely specific for the Finnish population and have originated recently.


Keywords: alkaptonuria; homogentisate-1,2-dioxygenase; Finland PMID:10594001

  8. Prediction of BRCA Mutations Using the BRCAPRO Model in Clinic-Based African American, Hispanic, and Other Minority Families in the United States

    PubMed Central

    Huo, Dezheng; Senie, Ruby T.; Daly, Mary; Buys, Saundra S.; Cummings, Shelly; Ogutha, Jacqueline; Hope, Kisha; Olopade, Olufunmilayo I.

    2009-01-01

    Purpose BRCAPRO, a BRCA mutation carrier prediction model, was developed on the basis of studies in individuals of Ashkenazi Jewish and European ancestry. We evaluated the performance of the BRCAPRO model among clinic-based minority families. We also assessed the clinical utility of mutation status of probands (the first individual tested in a family) in the recommendation of BRCA mutation testing for other at-risk family members. Patients and Methods A total of 292 minority families with at least one member who was tested for BRCA mutations were identified through the Breast Cancer Family Registry and the University of Chicago. Using the BRCAPRO model, the predicted likelihood of carrying BRCA mutations was generated. Area under the receiver operating characteristic curves (AUCs) were calculated. Results There were 104 African American, 130 Hispanic, 37 Asian-American, and 21 other minority families. The AUC was 0.748 (95% CI, 0.672 to 0.823) for all minorities combined. There was a statistically nonsignificant trend for BRCAPRO to perform better in Hispanic families than in other minority families. After taking into account the mutation status of probands, BRCAPRO performance in additional tested family members was improved: the AUC increased from 0.760 to 0.902. Conclusion The findings support the use of BRCAPRO in pretest BRCA mutation prediction among minority families in clinical settings, but there is room for improvement in ethnic groups other than Hispanics. Knowledge of the mutation status of the proband provides additional predictive value, which may guide genetic counselors in recommending BRCA testing of additional relatives when a proband has tested negative. PMID:19188678

  9. The methylenetetrahydrofolate reductase C677T mutation induces cell-specific changes in genomic DNA methylation and uracil misincorporation: A possible molecular basis for the site-specific cancer risk modification

    PubMed Central

    Sohn, Kyoung-Jin; Jang, Hyeran; Campan, Mihaela; Weisenberger, Daniel J.; Dickhout, Jeffrey; Wang, Yi-Cheng; Cho, Robert C.; Yates, Zoe; Lucock, Mark; Chiang, En-Pei; Austin, Richard C.; Choi, Sang-Woon; Laird, Peter W.; Kim, Young-In

    2009-01-01

    The C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene is associated with a decreased risk of colon cancer while it may increase the risk of breast cancer. This polymorphism is associated with changes in intracellular folate cofactors, which may affect DNA methylation and synthesis via altered one-carbon transfer reactions. We investigated the effect of this mutation on DNA methylation and uracil misincorporation and its interaction with exogenous folate in further modulating these biomarkers of one-carbon transfer reactions in an in vitro model of the MTHFR 677T mutation in HCT116 colon and MDA-MB-435 breast adenocarcinoma cells. In HCT116 cells, the MTHFR 677T mutation was associated with significantly increased genomic DNA methylation when folate supply was adequate or high; however, in the setting of folate insufficiency, this mutation was associated with significantly decreased genomic DNA methylation. In contrast, in MDA-MB-435 cells, the MTHFR 677T mutation was associated with significantly decreased genomic DNA methylation when folate supply was adequate or high and with no effect when folate supply was low. The MTHFR 677T mutation was associated with a nonsignificant trend toward decreased and increased uracil misincorporation in HCT116 and MDA-MB-435 cells, respectively. Our data demonstrate for the first time a functional consequence of changes in intracellular folate cofactors resulting from the MTHFR 677T mutation in cells derived from the target organs of interest, thus providing a plausible cellular mechanism that may partly explain the site-specific modification of colon and breast cancer risks associated with the MTHFR C677T mutation. PMID:19123462

  10. Novel compound heterozygous mutations in MYO7A in a Chinese family with Usher syndrome type 1

    PubMed Central

    Liu, Fei; Li, Pengcheng; Liu, Ying; Li, Weirong; Wong, Fulton; Du, Rong; Wang, Lei; Li, Chang; Jiang, Fagang; Tang, Zhaohui

    2013-01-01

    Purpose To identify the disease-causing mutation(s) in a Chinese family with autosomal recessive Usher syndrome type 1 (USH1). Methods An ophthalmic examination and an audiometric test were conducted to ascertain the phenotype of two affected siblings. The microsatellite marker D11S937, which is close to the candidate gene MYO7A (USH1B locus), was selected for genotyping. From the DNA of the proband, all coding exons and exon-intron boundaries of MYO7A were sequenced to identify the disease-causing mutation(s). Restriction fragment length polymorphism (RFLP) analysis was performed to exclude the alternative conclusion that the mutations are non-pathogenic rare polymorphisms. Results Based on severe hearing impairment, unintelligible speech, and retinitis pigmentosa, a clinical diagnosis of Usher syndrome type 1 was made. The genotyping results did not exclude the USH1B locus, which suggested that the MYO7A gene was likely the gene associated with the disease-causing mutation(s) in the family. With direct DNA sequencing of MYO7A, two novel compound heterozygous mutations (c.3742G>A and c.6051+1G>A) of MYO7A were identified in the proband. DNA sequence analysis and RFLP analysis of other family members showed that the mutations cosegregated with the disease. Unaffected members, including the parents, uncle, and sister of the proband, carry only one of the two mutations. The mutations were not present in the controls (100 normal Chinese subjects=200 chromosomes) according to the RFLP analysis. Conclusions In this study, we identified two novel mutations, c.3742G>A (p.E1248K) and c.6051+1G>A (donor splice site mutation in intron 44), of MYO7A in a Chinese non-consanguineous family with USH1. The mutations cosegregated with the disease and most likely cause the phenotype in the two affected siblings who carry these mutations compound heterozygously. Our finding expands the mutational spectrum of MYO7A. PMID:23559863

  11. Landscape of somatic mutations in 560 breast cancer whole-genome sequences

    DOE PAGES

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; ...

    2016-05-02

    Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less

  12. Landscape of somatic mutations in 560 breast cancer whole-genome sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan

    Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less

  13. Landscape of somatic mutations in 560 breast cancer whole genome sequences

    PubMed Central

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; Ramakrishna, Manasa; Glodzik, Dominik; Zou, Xueqing; Martincorena, Inigo; Alexandrov, Ludmil B.; Martin, Sancha; Wedge, David C.; Van Loo, Peter; Ju, Young Seok; Smid, Marcel; Brinkman, Arie B; Morganella, Sandro; Aure, Miriam R.; Lingjærde, Ole Christian; Langerød, Anita; Ringnér, Markus; Ahn, Sung-Min; Boyault, Sandrine; Brock, Jane E.; Broeks, Annegien; Butler, Adam; Desmedt, Christine; Dirix, Luc; Dronov, Serge; Fatima, Aquila; Foekens, John A.; Gerstung, Moritz; Hooijer, Gerrit KJ; Jang, Se Jin; Jones, David R.; Kim, Hyung-Yong; King, Tari A.; Krishnamurthy, Savitri; Lee, Hee Jin; Lee, Jeong-Yeon; Li, Yilong; McLaren, Stuart; Menzies, Andrew; Mustonen, Ville; O’Meara, Sarah; Pauporté, Iris; Pivot, Xavier; Purdie, Colin A.; Raine, Keiran; Ramakrishnan, Kamna; Rodríguez-González, F. Germán; Romieu, Gilles; Sieuwerts, Anieta M.; Simpson, Peter T; Shepherd, Rebecca; Stebbings, Lucy; Stefansson, Olafur A; Teague, Jon; Tommasi, Stefania; Treilleux, Isabelle; Van den Eynden, Gert G.; Vermeulen, Peter; Vincent-Salomon, Anne; Yates, Lucy; Caldas, Carlos; van’t Veer, Laura; Tutt, Andrew; Knappskog, Stian; Tan, Benita Kiat Tee; Jonkers, Jos; Borg, Åke; Ueno, Naoto T; Sotiriou, Christos; Viari, Alain; Futreal, P. Andrew; Campbell, Peter J; Span, Paul N.; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E.; Thompson, Alastair M.; Birney, Ewan; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W.M.; Børresen-Dale, Anne-Lise; Richardson, Andrea L.; Kong, Gu; Thomas, Gilles; Stratton, Michael R.

    2016-01-01

    We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer. PMID:27135926

  14. Evolution, mutations, and human longevity: European royal and noble families.

    PubMed

    Gavrilova, N S; Gavrilov, L A; Evdokushkina, G N; Semyonova, V G; Gavrilova, A L; Evdokushkina, N N; Kushnareva, Y E; Kroutko, V N; Andreyev AYu

    1998-08-01

    The evolutionary theory of aging predicts that the equilibrium gene frequency for deleterious mutations should increase with age at onset of mutation action because of weaker (postponed) selection against later-acting mutations. According to this mutation accumulation hypothesis, one would expect the genetic variability for survival (additive genetic variance) to increase with age. The ratio of additive genetic variance to the observed phenotypic variance (the heritability of longevity) can be estimated most reliably as the doubled slope of the regression line for offspring life span on paternal age at death. Thus, if longevity is indeed determined by late-acting deleterious mutations, one would expect this slope to become steeper at higher paternal ages. To test this prediction of evolutionary theory of aging, we computerized and analyzed the most reliable and accurate genealogical data on longevity in European royal and noble families. Offspring longevity for each sex (8409 records for males and 3741 records for females) was considered as a dependent variable in the multiple regression model and as a function of three independent predictors: paternal age at death (for estimation of heritability of life span), paternal age at reproduction (control for parental age effects), and cohort life expectancy (control for cohort and secular trends and fluctuations). We found that the regression slope for offspring longevity as a function of paternal longevity increases with paternal longevity, as predicted by the evolutionary theory of aging and by the mutation accumulation hypothesis in particular.

  15. Genetic analysis of leukemic transformation of chronic myeloproliferative neoplasms

    PubMed Central

    Abdel-Wahab, Omar; Manshouri, Taghi; Patel, Jay; Harris, Kelly; Yao, JinJuan; Hedvat, Cyrus; Heguy, Adriana; Bueso-Ramos, Carlos; Kantarjian, Hagop; Levine, Ross L.; Verstovsek, Srdan

    2009-01-01

    The genetic events which contribute to transformation of myeloproliferative neoplasms (MPN) to acute myeloid leukemia (AML) are not well characterized. We investigated the role of JAK2, TET2, ASXL1, and IDH1 mutations in leukemic transformation of MPNs through mutational analysis of 63 patients with AML secondary to a preexisting MPN (sAML). We identified frequent TET2 (26.3%), ASXL1 (19.3%), IDH1 (9.5%), and JAK2 (36.8%) mutations in sAML; all possible mutational combinations of these genes were observed. Analysis of 14 patients for which paired samples from MPN and sAML were available demonstrated TET2 mutations were frequently acquired at leukemic transformation (6/14=43%). In contrast, ASXL1 mutations were almost always detected in both the MPN and AML clones from individual patients. A case was also observed where TET2 and ASXL1 mutations were found before the patient acquired a JAK2 mutation or developed clinical evidence of MPN. We conclude that mutations in TET2, ASXL1, and IDH1 are common in sAML derived from a pre-existing MPN. Although TET2/ASXL1 mutations may precede acquisition of JAK2 mutations by the MPN clone, mutations in TET2, but not ASXL1, are commonly acquired at the time of leukemic transformation. These data suggest the mutational order of events in MPN and sAML varies in different patients, and that TET2 and ASXL1 mutations have distinct roles in MPN pathogenesis and leukemic transformation. The presence of sAML with no pre-existing JAK2/TET2/ASXL1/IDH1 mutations indicates the existence of other mutations necessary for leukemic transformation. PMID:20068184

  16. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients.

    PubMed

    Taly, Valerie; Pekin, Deniz; Benhaim, Leonor; Kotsopoulos, Steve K; Le Corre, Delphine; Li, Xinyu; Atochin, Ivan; Link, Darren R; Griffiths, Andrew D; Pallier, Karine; Blons, Hélène; Bouché, Olivier; Landi, Bruno; Hutchison, J Brian; Laurent-Puig, Pierre

    2013-12-01

    Multiplex digital PCR (dPCR) enables noninvasive and sensitive detection of circulating tumor DNA with performance unachievable by current molecular-detection approaches. Furthermore, picodroplet dPCR facilitates simultaneous screening for multiple mutations from the same sample. We investigated the utility of multiplex dPCR to screen for the 7 most common mutations in codons 12 and 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) oncogene from plasma samples of patients with metastatic colorectal cancer. Fifty plasma samples were tested from patients for whom the primary tumor biopsy tissue DNA had been characterized by quantitative PCR. Tumor characterization revealed that 19 patient tumors had KRAS mutations. Multiplex dPCR analysis of the plasma DNA prepared from these samples identified 14 samples that matched the mutation identified in the tumor, 1 sample contained a different KRAS mutation, and 4 samples had no detectable mutation. Among the tumor samples that were wild type for KRAS, 2 KRAS mutations were identified in the corresponding plasma samples. Duplex dPCR (i.e., wild-type and single-mutation assay) was also used to analyze plasma samples from patients with KRAS-mutated tumors and 5 samples expected to contain the BRAF (v-raf murine sarcoma viral oncogene homolog B) V600E mutation. The results for the duplex analysis matched those for the multiplex analysis for KRAS-mutated samples and, owing to its higher sensitivity, enabled detection of 2 additional samples with low levels of KRAS-mutated DNA. All 5 samples with BRAF mutations were detected. This work demonstrates the clinical utility of multiplex dPCR to screen for multiple mutations simultaneously with a sensitivity sufficient to detect mutations in circulating DNA obtained by noninvasive blood collection.

  17. Identification and analysis of mutational hotspots in oncogenes and tumour suppressors.

    PubMed

    Baeissa, Hanadi; Benstead-Hume, Graeme; Richardson, Christopher J; Pearl, Frances M G

    2017-03-28

    The key to interpreting the contribution of a disease-associated mutation in the development and progression of cancer is an understanding of the consequences of that mutation both on the function of the affected protein and on the pathways in which that protein is involved. Protein domains encapsulate function and position-specific domain based analysis of mutations have been shown to help elucidate their phenotypes. In this paper we examine the domain biases in oncogenes and tumour suppressors, and find that their domain compositions substantially differ. Using data from over 30 different cancers from whole-exome sequencing cancer genomic projects we mapped over one million mutations to their respective Pfam domains to identify which domains are enriched in any of three different classes of mutation; missense, indels or truncations. Next, we identified the mutational hotspots within domain families by mapping small mutations to equivalent positions in multiple sequence alignments of protein domainsWe find that gain of function mutations from oncogenes and loss of function mutations from tumour suppressors are normally found in different domain families and when observed in the same domain families, hotspot mutations are located at different positions within the multiple sequence alignment of the domain. By considering hotspots in tumour suppressors and oncogenes independently, we find that there are different specific positions within domain families that are particularly suited to accommodate either a loss or a gain of function mutation. The position is also dependent on the class of mutation.We find rare mutations co-located with well-known functional mutation hotspots, in members of homologous domain superfamilies, and we detect novel mutation hotspots in domain families previously unconnected with cancer. The results of this analysis can be accessed through the MOKCa database (http://strubiol.icr.ac.uk/extra/MOKCa).

  18. Beta thalassemia in 31,734 cases with HBB gene mutations: Pathogenic and structural analysis of the common mutations; Iran as the crossroads of the Middle East.

    PubMed

    Mahdieh, Nejat; Rabbani, Bahareh

    2016-11-01

    Thalassemia is one of the most common single gene disorders worldwide. Nearly 80 to 90 million with minor beta thalassemia and 60-70 thousand affected infants are born annually worldwide. A comprehensive search on several databases including PubMed, InterScience, British Library Direct, and Science Direct was performed extracting papers about mutation detection and frequency of beta thalassemia. All papers reporting on the mutation frequency of beta thalassemia patients were selected to analyze the frequency of mutations in different regions and various ethnicities. Mutations of 31,734 individuals were identified. Twenty common mutations were selected for further analysis. Genotype-phenotype correlation, interactome, and in silico analyses of the mutations were performed using available bioinformatics tools. Secondary structure prediction was achieved for two common mutations with online tools. The mutations were also common among the countries neighboring Iran, which are responsible for 71% to 98% of mutations. Computational analyses could be used in addition to segregation and expression analysis to assess the extent of pathogenicity of the variant. The genetics of beta thalassemia in Iran is more extensively heterogeneous than in neighboring countries. Some common mutations have arisen historically from Iran and moved to other populations due to population migrations. Also, due to genetic drift, the frequencies of some mutations have increased in small populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects.

    PubMed

    Granados-Riveron, Javier T; Ghosh, Tushar K; Pope, Mark; Bu'Lock, Frances; Thornborough, Christopher; Eason, Jacqueline; Kirk, Edwin P; Fatkin, Diane; Feneley, Michael P; Harvey, Richard P; Armour, John A L; David Brook, J

    2010-10-15

    Congenital heart defects (CHD) are collectively the most common form of congenital malformation. Studies of human cases and animal models have revealed that mutations in several genes are responsible for both familial and sporadic forms of CHD. We have previously shown that a mutation in MYH6 can cause an autosomal dominant form of atrial septal defect (ASD), whereas others have identified mutations of the same gene in patients with hypertrophic and dilated cardiomyopathy. In the present study, we report a mutation analysis of MYH6 in patients with a wide spectrum of sporadic CHD. The mutation analysis of MYH6 was performed in DNA samples from 470 cases of isolated CHD using denaturing high-performance liquid chromatography and sequence analysis to detect point mutations and small deletions or insertions, and multiplex amplifiable probe hybridization to detect partial or complete copy number variations. One non-sense mutation, one splicing site mutation and seven non-synonymous coding mutations were identified. Transfection of plasmids encoding mutant and non-mutant green fluorescent protein-MYH6 fusion proteins in mouse myoblasts revealed that the mutations A230P and A1366D significantly disrupt myofibril formation, whereas the H252Q mutation significantly enhances myofibril assembly in comparison with the non-mutant protein. Our data indicate that functional variants of MYH6 are associated with cardiac malformations in addition to ASD and provide a novel potential mechanism. Such phenotypic heterogeneity has been observed in other genes mutated in CHD.

  20. Identification of novel BRCA founder mutations in Middle Eastern breast cancer patients using capture and Sanger sequencing analysis.

    PubMed

    Bu, Rong; Siraj, Abdul K; Al-Obaisi, Khadija A S; Beg, Shaham; Al Hazmi, Mohsen; Ajarim, Dahish; Tulbah, Asma; Al-Dayel, Fouad; Al-Kuraya, Khawla S

    2016-09-01

    Ethnic differences of breast cancer genomics have prompted us to investigate the spectra of BRCA1 and BRCA2 mutations in different populations. The prevalence and effect of BRCA 1 and BRCA 2 mutations in Middle Eastern population is not fully explored. To characterize the prevalence of BRCA mutations in Middle Eastern breast cancer patients, BRCA mutation screening was performed in 818 unselected breast cancer patients using Capture and/or Sanger sequencing. 19 short tandem repeat (STR) markers were used for founder mutation analysis. In our study, nine different types of deleterious mutation were identified in 28 (3.4%) cases, 25 (89.3%) cases in BRCA 1 and 3 (10.7%) cases in BRCA 2. Seven recurrent mutations identified accounted for 92.9% (26/28) of all the mutant cases. Haplotype analysis was performed to confirm c.1140 dupG and c.4136_4137delCT mutations as novel putative founder mutation, accounting for 46.4% (13/28) of all BRCA mutant cases and 1.6% (13/818) of all the breast cancer cases, respectively. Moreover, BRCA 1 mutation was significantly associated with BRCA 1 protein expression loss (p = 0.0005). Our finding revealed that a substantial number of BRCA mutations were identified in clinically high risk breast cancer from Middle East region. Identification of the mutation spectrum, prevalence and founder effect in Middle Eastern population facilitates genetic counseling, risk assessment and development of cost-effective screening strategy. © 2016 UICC.

  1. GATA3 mutation in a family with hypoparathyroidism, deafness and renal dysplasia syndrome.

    PubMed

    Zhu, Zi-Yang; Zhou, Qiao-Li; Ni, Shi-Ning; Gu, Wei

    2014-08-01

    The hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome is an autosomal dominant disorder primarily caused by GATA3 gene mutation. We report here a case that both of a Chinese boy and his father had HDR syndrome which caused by a novel mutation of GATA3. Polymerase chain reaction and DNA sequencing was performed to detect the exons of the GATA3 gene for mutation analysis. Sequence analysis of GATA3 revealed a heterozygous nonsense mutation in this family: a mutation of GATA3 at exon 2 (c.515C >A) that resulted in a premature stop at codon 172 (p.S172X) with a loss of two zinc finger domains. We identified a novel nonsense mutation which will expand the spectrum of HDR-associated GATA3 mutations.

  2. The Influence of Higher-Order Epistasis on Biological Fitness Landscape Topography

    NASA Astrophysics Data System (ADS)

    Weinreich, Daniel M.; Lan, Yinghong; Jaffe, Jacob; Heckendorn, Robert B.

    2018-07-01

    The effect of a mutation on the organism often depends on what other mutations are already present in its genome. Geneticists refer to such mutational interactions as epistasis. Pairwise epistatic effects have been recognized for over a century, and their evolutionary implications have received theoretical attention for nearly as long. However, pairwise epistatic interactions themselves can vary with genomic background. This is called higher-order epistasis, and its consequences for evolution are much less well understood. Here, we assess the influence that higher-order epistasis has on the topography of 16 published, biological fitness landscapes. We find that on average, their effects on fitness landscape declines with order, and suggest that notable exceptions to this trend may deserve experimental scrutiny. We conclude by highlighting opportunities for further theoretical and experimental work dissecting the influence that epistasis of all orders has on fitness landscape topography and on the efficiency of evolution by natural selection.

  3. The Influence of Higher-Order Epistasis on Biological Fitness Landscape Topography

    NASA Astrophysics Data System (ADS)

    Weinreich, Daniel M.; Lan, Yinghong; Jaffe, Jacob; Heckendorn, Robert B.

    2018-02-01

    The effect of a mutation on the organism often depends on what other mutations are already present in its genome. Geneticists refer to such mutational interactions as epistasis. Pairwise epistatic effects have been recognized for over a century, and their evolutionary implications have received theoretical attention for nearly as long. However, pairwise epistatic interactions themselves can vary with genomic background. This is called higher-order epistasis, and its consequences for evolution are much less well understood. Here, we assess the influence that higher-order epistasis has on the topography of 16 published, biological fitness landscapes. We find that on average, their effects on fitness landscape declines with order, and suggest that notable exceptions to this trend may deserve experimental scrutiny. We conclude by highlighting opportunities for further theoretical and experimental work dissecting the influence that epistasis of all orders has on fitness landscape topography and on the efficiency of evolution by natural selection.

  4. Time trends in HIV-1 transmitted drug resistance mutation frequency in Poland.

    PubMed

    Parczewski, Milosz; Witak-Jedra, Magdalena; Maciejewska, Katarzyna; Bociaga-Jasik, Monika; Skwara, Pawel; Garlicki, Aleksander; Grzeszczuk, Anna; Rogalska, Magdalena; Jankowska, Maria; Lemanska, Malgorzata; Hlebowicz, Maria; Baralkiewicz, Grazyna; Mozer-Lisewska, Iwona; Mazurek, Renata; Lojewski, Wladyslaw; Grabczewska, Edyta; Olczak, Anita; Jablonowska, Elzbieta; Rymer, Weronika; Szymczak, Aleksandra; Szetela, Bartosz; Gasiorowski, Jacek; Knysz, Brygida; Urbanska, Anna; Leszczyszyn-Pynka, Magdalena

    2014-01-01

    In Poland, the HIV epidemic has shifted recently from being predominantly related to injection drug use (IDU) to being driven by transmissions among men-who-have-sex-with-men (MSM). The number of new HIV cases has increased in the recent years, while no current data on the transmitted drug resistance associated mutations (tDRM) frequency trend over time are available from 2010. In this study, we analyze the temporal trends in the spread of tDRM from 2008 to 2013. Partial pol sequences from 833 antiretroviral treatment-naive individuals of European descent (Polish origin) linked to care in 9 of 17 Polish HIV treatment centres were analyzed. Drug resistance interpretation was performed according to WHO surveillance recommendations, subtyping with REGA genotyping 2.0 tool. Time trends were examined for the frequency of t-DRM across subtypes and transmission groups using logistic regression (R statistical platform, v. 3.1.0). Frequency of tDRM proved stable over time, with mutation frequency change from 11.3% in 2008 to 8.3% in 2013 [OR: 0.91 (95% CI 0.80-1,05), p=0.202] (Figure 1a). Also, no significant differences over time were noted for the subtype B (decrease from 8.4% 2008 to 6.2% in 2013 [OR: 0.94 (95% CI 0.79-1.11), p=0.45] and across non-B variants [change from 22.6% 2008 to 23.1% in 2013, OR: 0.94 (95% CI 0.75-1.19), p=0.62]. When patient groups were stratified according to transmission route, in MSM there was a trend for a NNRTI t-DRM decrease (from 6.8% 2008 to 1% in 2013, OR: 0.61 (95% CI 0.34-1.02), p=0.0655, slope -0.74%/year) (Figure 1b), related to the subtype B infected MSM (decrease from 7% 2008 to 1% in 2013, OR: 0.61 (95% CI 0.34-1.03), p=0.0662, slope -0.75%/year). Overall tDRM frequency decrease was also noted for the heterosexually infected patients [from 17.6% 2008 to 10.3% in 2013, OR: 0.83 (95% CI 0.67-1.02, p=0.077, slope -2.041%/year)] but did not associate with drug class (Figure 1c). In IDUs, the trends in t-DRM frequency were not significant over time (change from 1.9% in 2008 to 0 in 2013 [OR:1.24 (95% CI 0.73-2.26), p=0.4)]. The frequency of t-DRM in Poland is generally stable over time. Decrease in the overall tDRM frequency in heterosexual infected cases and NNRTI resistance in subtype B infected MSM may be related to the higher treatment efficacy of current cART.

  5. Epidermal growth factor receptor mutations in adenocarcinoma in situ and minimally invasive adenocarcinoma detected using mutation-specific monoclonal antibodies.

    PubMed

    Nakamura, Haruhiko; Koizumi, Hirotaka; Kimura, Hiroyuki; Marushima, Hideki; Saji, Hisashi; Takagi, Masayuki

    2016-09-01

    Epidermal growth factor receptor (EGFR) mutation rates in adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) were studied using both DNA analysis and mutation-specific immunohistochemistry. The peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp method was used to detect mutations in exons 18, 19, 20, and 21 of the EGFR gene in DNA samples extracted from paraffin-embedded tissue sections. Simultaneously, immunohistochemical analysis with two EGFR mutation-specific monoclonal antibodies was used to identify proteins resulting from an in-frame deletion in exon 19 (E746_A750del) and a point mutation replacing leucine with arginine at codon 858 of exon 21 (L858R). Forty-three tumors (22 AIS and 21 MIA) were examined. The EGFR mutation rate in AIS detected by DNA analysis was 27.3% (L858R, 5/22; exon 19 deletion,1/22), whereas that detected in MIA was 42.9% (L858R,4/21; exon 19 deletion,5/21). Mutations detected by immunohistochemical analysis included 22.7% (L858R, 4/22; exon 19 deletion, 1/22) in AIS and 42.9% (L858R, 4/21; exon 19 deletion, 5/21) in MIA. Although some results were contradictory, concordant results were obtained using both assays in 38 of 43 cases (88.4%). DNA and immunohistochemical analyses revealed similar EGFR mutation rates in both MIA and AIS, suggesting that mutation-specific monoclonal antibodies are useful to confirm DNA assay results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. DETECTION OF K-RAS AND P53 MUTATIONS IN SPUTUM SAMPLES OF LUNG CANCER PATIENTS USING LASER CAPTURE MICRODISSECTION MICROSCOPE AND MUTATION ANALYSIS

    EPA Science Inventory

    Detection of K-ras and p53 Mutations in Sputum Samples of Lung Cancer Patients Using Laser Capture Microdissection Microscope and Mutation Analysis

    Phouthone Keohavong a,*, Wei-Min Gao a, Kui-Cheng Zheng a, Hussam Mady b, Qing Lan c, Mona Melhem b, and Judy Mumford d.
    <...

  7. Prognostic significance of SRSF2 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysis.

    PubMed

    Arbab Jafari, Pourya; Ayatollahi, Hossein; Sadeghi, Ramin; Sheikhi, Maryam; Asghari, Amir

    2018-05-14

    Serine/arginine-rich splicing factor 2 (SRSF2) mutations were detected frequently in myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML) patients. However, its prognostic value has not yet been fully clarified. In this meta-analysis, Hazard Ratio (HR) and 95% confidence interval (CI) for overall-survival (OS) were chosen to evaluate the prognostic impact of SRSF2 mutations and to compare SRSF2 mutations to those with wild-type. A total of 2056 patients from 12 studies were obtained. The pooled HRs for OSsuggested that patients with MDS had a poorer prognosis (HR = 1.780, 95% CI (1.410-2.249)), while analysis on SRSF2 mutations revealed no significant effect on the prognosis of CMML patients (HR = 1.091, 95% CI (0.925-1.286)). The frequency of SRSF2 mutations was found to be 11.5% and 39.8% in patients with MDS and CMML, respectively. This meta-analysis suggests that SRSF2 has a poor prognosis in patients with MDS, but no prognosis impact on patients with CMML. In conclusion, SRSF2 mutations were significantly related to the shorter OS in patients with MDS which may consider as an adverse prognostic risk factor. Whereas, analysis did not show any prognostic effect on OS of CMML patients with SRSF2 mutations.

  8. Increasing the yield in targeted next-generation sequencing by implicating CNV analysis, non-coding exons and the overall variant load: the example of retinal dystrophies.

    PubMed

    Eisenberger, Tobias; Neuhaus, Christine; Khan, Arif O; Decker, Christian; Preising, Markus N; Friedburg, Christoph; Bieg, Anika; Gliem, Martin; Charbel Issa, Peter; Holz, Frank G; Baig, Shahid M; Hellenbroich, Yorck; Galvez, Alberto; Platzer, Konrad; Wollnik, Bernd; Laddach, Nadja; Ghaffari, Saeed Reza; Rafati, Maryam; Botzenhart, Elke; Tinschert, Sigrid; Börger, Doris; Bohring, Axel; Schreml, Julia; Körtge-Jung, Stefani; Schell-Apacik, Chayim; Bakur, Khadijah; Al-Aama, Jumana Y; Neuhann, Teresa; Herkenrath, Peter; Nürnberg, Gudrun; Nürnberg, Peter; Davis, John S; Gal, Andreas; Bergmann, Carsten; Lorenz, Birgit; Bolz, Hanno J

    2013-01-01

    Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover "hidden mutations" such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5' exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5'-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading.

  9. Molecular and epidemiological analysis of pandemic and post-pandemic influenza A(H1N1)pdm09 virus from central India.

    PubMed

    Sahu, Mahima; Singh, Neeru; Shukla, Mohan K; Potdar, Varhsa A; Sharma, Ravendra K; Sahare, Lalit Kumar; Ukey, Mahendra J; Barde, Pradip V

    2018-03-01

    Influenza A(H1N1)pdm09 virus pandemic struck India in 2009 and continues to cause outbreaks in its post-pandemic phase. Diminutive information is available about influenza A(H1N1)pdm09 from central India. This observational study presents epidemiological and molecular findings for the period of 6 years. Throat swab samples referred from districts of Madhya Pradesh were subjected to diagnosis of influenza A(H1N1)pdm09 following WHO guidelines. Clinical and epidemiological data were recorded and analyzed. Hemagglutinin (HA) gene sequencing and phylogenetic analysis were performed. The H275Y mutation responsible for antiviral resistance was tested using allelic real-time RT-PCR. Out of 7365 tested samples, 2406 (32.7%) were positive for influenza A(H1N1)pdm09, of which 363 (15.08%) succumbed to infection. Significant trends were observed in positivity (χ 2  = 50.8; P < 0.001) and mortality (χ 2  = 24.4; P < 0.001) with increasing age. Mutations having clinical and epidemiological importance were detected. Phylogenetic analysis of HA gene sequences revealed that clade 7, 6A, and 6B viruses were in circulation. Oseltamivir resistance was detected in three fatal cases. Influenza A(H1N1)pdm09 viruses having genetic diversity were detected from central India and continues to be a concern for public health. This study highlights the need of year-round monitoring by establishment of strong molecular and clinical surveillance program. © 2017 Wiley Periodicals, Inc.

  10. Analysis of gene mutations among South Indian patients with maple syrup urine disease: identification of four novel mutations.

    PubMed

    Narayanan, M P; Menon, Krishnakumar N; Vasudevan, D M

    2013-10-01

    Maple syrup urine disease (MSUD) is predominantly caused by mutations in the BCKDHA, BCKDHB and DBT genes, which encode for the E1alpha, E1beta and E2 subunits of the branched-chain alpha-keto acid dehydrogenase complex, respectively. Because disease causing mutations play a major role in the development of the disease, prenatal diagnosis at gestational level may have significance in making decisions by parents. Thus, this study was aimed to screen South Indian MSUD patients for mutations and assess the genotype-phenotype correlation. Thirteen patients diagnosed with MSUD by conventional biochemical screening such as urine analysis by DNPH test, thin layer chromatography for amino acids and blood amino acid quantification by HPLC were selected for mutation analysis. The entire coding regions of the BCKDHA, BCKDHB and DBT genes were analyzed for mutations by PCR-based direct DNA sequencing. BCKDHA and BCKDHB mutations were seen in 43% of the total ten patients, while disease-causing DBT gene mutation was observed only in 14%. Three patients displayed no mutations. Novel mutations were c.130C>T in BCKDHA gene, c. 599C>T and c.121_122delAC in BCKDHB gene and c.190G>A in DBT gene. Notably, patients harbouring these mutations were non-responsive to thiamine supplementation and other treatment regimens and might have a worse prognosis as compared to the patients not having such mutations. Thus, identification of these mutations may have a crucial role in the treatment as well as understanding the molecular mechanisms in MSUD.

  11. Epidermal growth factor receptor and anaplastic lymphoma kinase testing and mutation prevalence in patients with advanced non-small cell lung cancer in Switzerland: A comprehensive evaluation of real world practices.

    PubMed

    Ess, S M; Herrmann, C; Frick, H; Krapf, M; Cerny, T; Jochum, W; Früh, M

    2017-11-01

    In order to improve outcomes, identification of the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) genes has become crucial in advanced non-small-cell lung cancer (NSCLC). The aim of the present study is to analyse time trends and frequency of testing, factors affecting testing as well as prevalence of mutations in the Swiss population. We analysed EGFR and ALK testing in a cohort of patients with newly diagnosed metastasised non-squamous NSCLC in the catchment area of the cancer registry Eastern Switzerland in the years 2008-2014. We analysed prevalence of mutations and studied clinicopathological characteristics and survival of tested and non-tested patients and of patients with and without mutations. Among 718 patients identified, 11% (51/447) harboured an EGFR mutation in the exons 18, 19 or 21 and further 12% (31/265) showed a positive test result for ALK rearrangements. In non-smokers the proportions of mutations were 31% and 23% respectively. Testing rates increased over time and reached 79% in 2014. We observed significantly lower testing rates and poorer survival in elderly, patients with limited life expectancy and patients treated at hospitals not involved in clinical research. Outcomes can be further improved in a considerable proportion of patients with advanced non-squamous NSCLC. © 2017 John Wiley & Sons Ltd.

  12. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia.

    PubMed

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W; Papadopoulos, Nickolas; Malek, Sami N

    2011-11-24

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML.

  13. MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer

    PubMed Central

    Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L.

    2016-01-01

    The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. PMID:26590264

  14. Development and inter-laboratory validation of unlabeled probe melting curve analysis for detection of JAK2 V617F mutation in polycythemia vera.

    PubMed

    Wu, Zhiyuan; Yuan, Hong; Zhang, Xinju; Liu, Weiwei; Xu, Jinhua; Zhang, Wei; Guan, Ming

    2011-01-01

    JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex) in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type) covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.

  15. Differential effects of severe vs mild GBA mutations on Parkinson disease.

    PubMed

    Gan-Or, Ziv; Amshalom, Idan; Kilarski, Laura L; Bar-Shira, Anat; Gana-Weisz, Mali; Mirelman, Anat; Marder, Karen; Bressman, Susan; Giladi, Nir; Orr-Urtreger, Avi

    2015-03-03

    To better define the genotype-phenotype correlations between the type of GBA (glucosidase, beta, acid) mutation, severe or mild, and the risk and age at onset (AAO), and potential mechanism of Parkinson disease (PD). We analyzed 1,000 patients of Ashkenazi-Jewish descent with PD for 7 founder GBA mutations, and conducted a meta-analysis of risk and AAO according to GBA genotype (severe or mild mutation). The meta-analysis included 11,453 patients with PD and 14,565 controls from worldwide populations. The statistical analysis was done with and without continuity correction (constant or empirical), considering biases that could potentially affect the results. Among Ashkenazi-Jewish patients with PD, the odds ratios for PD were 2.2 and 10.3 for mild and severe GBA mutation carriers, respectively. The observed frequency of severe GBA mutation carriers among patients with PD was more than 4-fold than expected (4.4% vs 0.9%, respectively, p < 0.0001, Fisher exact test). In the different models of the meta-analysis, the odds ratios for PD ranged between 2.84 and 4.94 for mild GBA mutation carriers and 9.92 and 21.29 for severe GBA mutation carriers (p < 1 × 10(-6) for all analyses). Pooled analysis demonstrated AAO of 53.1 (±11.2) and 58.1 (±10.6) years for severe and mild GBA mutation carriers, respectively (p = 4.3 × 10(-5)). These data demonstrate that mild and severe heterozygous GBA mutations differentially affect the risk and the AAO of PD. Our results have important implications for genetic counseling and clinical follow-up. © 2015 American Academy of Neurology.

  16. A single center analysis of nucleophosmin in acute myeloid leukemia: value of combining immunohistochemistry with molecular mutation analysis.

    PubMed

    Woolthuis, Carolien M; Mulder, André B; Verkaik-Schakel, Rikst Nynke; Rosati, Stefano; Diepstra, Arjan; van den Berg, Eva; Schuringa, Jan Jacob; Vellenga, Edo; Kluin, Philip M; Huls, Gerwin

    2013-10-01

    Mutations of nucleophosmin 1 are frequently found in acute myeloid leukemia and lead to aberrant cytoplasmic accumulation of nucleophosmin protein. Immunohistochemical staining is therefore recommended as the technique of choice in front-line screening. In this study, we assessed the sensitivity and specificity of immunohistochemistry on formalin-fixed bone marrow biopsies compared with gold standard molecular analysis to predict nucleophosmin 1 mutation status in 119 patients with acute myeloid leukemia. Discrepant cases were further characterized by gene expression analyses and fluorescence in situ hybridization. A large overlap between both methods was observed. Nevertheless, nine patients demonstrated discordant results at initial screening. Five cases demonstrated nuclear staining of nucleophosmin 1 by immunohistochemistry, but a nucleophosmin 1 mutation by molecular analysis. In two cases this could be attributed to technical issues and in three cases minor subpopulations of myeloblasts had not been discovered initially. All tested cases exhibited the characteristic nucleophosmin-mutated gene expression pattern. Four cases had cytoplasmic nucleophosmin 1 staining and a nucleophosmin-mutated gene expression pattern without a detectable nucleophosmin 1 mutation. In two of these cases we found the chromosomal translocation t(3;5)(q25;q35) encoding the NPM-MLF1 fusion protein. In the other discrepant cases the aberrant cytoplasmic nucleophosmin staining and gene expression could not be explained. In total six patients (5%) had true discordant results between immunohistochemistry and mutation analysis. We conclude that cytoplasmic nucleophosmin localization is not always caused by a conventional nucleophosmin 1 mutation and that in the screening for nucleophosmin 1 abnormalities, most information will be obtained by combining immunohistochemistry with molecular analysis.

  17. A single center analysis of nucleophosmin in acute myeloid leukemia: value of combining immunohistochemistry with molecular mutation analysis

    PubMed Central

    Woolthuis, Carolien M.; Mulder, André B.; Verkaik-Schakel, Rikst Nynke; Rosati, Stefano; Diepstra, Arjan; van den Berg, Eva; Schuringa, Jan Jacob; Vellenga, Edo; Kluin, Philip M.; Huls, Gerwin

    2013-01-01

    Mutations of nucleophosmin 1 are frequently found in acute myeloid leukemia and lead to aberrant cytoplasmic accumulation of nucleophosmin protein. Immunohistochemical staining is therefore recommended as the technique of choice in front-line screening. In this study, we assessed the sensitivity and specificity of immunohistochemistry on formalin-fixed bone marrow biopsies compared with gold standard molecular analysis to predict nucleophosmin 1 mutation status in 119 patients with acute myeloid leukemia. Discrepant cases were further characterized by gene expression analyses and fluorescence in situ hybridization. A large overlap between both methods was observed. Nevertheless, nine patients demonstrated discordant results at initial screening. Five cases demonstrated nuclear staining of nucleophosmin 1 by immunohistochemistry, but a nucleophosmin 1 mutation by molecular analysis. In two cases this could be attributed to technical issues and in three cases minor subpopulations of myeloblasts had not been discovered initially. All tested cases exhibited the characteristic nucleophosmin-mutated gene expression pattern. Four cases had cytoplasmic nucleophosmin 1 staining and a nucleophosmin-mutated gene expression pattern without a detectable nucleophosmin 1 mutation. In two of these cases we found the chromosomal translocation t(3;5)(q25;q35) encoding the NPM-MLF1 fusion protein. In the other discrepant cases the aberrant cytoplasmic nucleophosmin staining and gene expression could not be explained. In total six patients (5%) had true discordant results between immunohistochemistry and mutation analysis. We conclude that cytoplasmic nucleophosmin localization is not always caused by a conventional nucleophosmin 1 mutation and that in the screening for nucleophosmin 1 abnormalities, most information will be obtained by combining immunohistochemistry with molecular analysis. PMID:23716555

  18. Analysis of KRAS and BRAF genes mutation in the central nervous system metastases of non-small cell lung cancer.

    PubMed

    Nicoś, Marcin; Krawczyk, Paweł; Jarosz, Bożena; Sawicki, Marek; Szumiłło, Justyna; Trojanowski, Tomasz; Milanowski, Janusz

    2016-05-01

    KRAS mutations are associated with tumor resistance to EGFR TKIs (erlotinib, gefitinib) and to monoclonal antibody against EGFR (cetuximab). Targeted treatment of mutated RAS patients is still considered as a challenge. Inhibitors of c-Met (onartuzumab or tiwantinib) and MEK (selumetinib-a dual inhibitor of MEK1 and MEK2) signaling pathways showed activity in patients with mutations in KRAS that can became an effective approach in carriers of such disorders. BRAF mutation is very rare in patients with NSCLC, and its presence is associated with sensitivity of tumor cells to BRAF inhibitors (vemurafenib, dabrafenib). In the present study, the frequency and type of KRAS and BRAF mutation were assessed in 145 FFPE tissue samples from CNS metastases of NSCLC. In 30 patients, material from the primary tumor was simultaneously available. Real-time PCR technique with allele-specific molecular probe (KRAS/BRAF Mutation Analysis Kit, Entrogen, USA) was used for molecular tests. KRAS mutations were detected in 21.4 % of CNS metastatic lesions and in 23.3 % of corresponding primary tumors. Five mutations were identified both in primary and in metastatic lesions, while one mutation only in primary tumor and one mutation only in the metastatic tumor. Most of mutations were observed in codon 12 of KRAS; however, an individual patient had diagnosed a rare G13D and Q61R substitutions. KRAS mutations were significantly more frequent in adenocarcinoma patients and smokers. Additional analysis indicated one patient with rare coexistence of KRAS and DDR2 mutations. BRAF mutation was not detected in the examined materials. KRAS frequency appears to be similar in primary and CNS.

  19. Breast and ovarian cancer risks to carriers of the BRCA1 5382insC and 185delAG and BRCA2 6174delT mutations: a combined analysis of 22 population based studies

    PubMed Central

    Antoniou, A; Pharoah, P; Narod, S; Risch, H; Eyfjord, J; Hopper, J; Olsson, H; Johannsson, O; Borg, A; Pasini, B; Radice, P; Manoukian, S; Eccles, D; Tang, N; Olah, E; Anton-Culver, H; Warner, E; Lubinski, J; Gronwald, J; Gorski, B; Tulinius, H; Thorlacius, S; Eerola, H; Nevanlinna, H; Syrjakoski, K; Kallioniemi, O; Thompson, D; Evans, C; Peto, J; Lalloo, F; Evans, D; Easton, D

    2005-01-01

    A recent report estimated the breast cancer risks in carriers of the three Ashkenazi founder mutations to be higher than previously published estimates derived from population based studies. In an attempt to confirm this, the breast and ovarian cancer risks associated with the three Ashkenazi founder mutations were estimated using families included in a previous meta-analysis of populatrion based studies. The estimated breast cancer risks for each of the founder BRCA1 and BRCA2 mutations were similar to the corresponding estimates based on all BRCA1 or BRCA2 mutations in the meta-analysis. These estimates appear to be consistent with the observed prevalence of the mutations in the Ashkenazi Jewish population. PMID:15994883

  20. Structural Analysis of Single-Point Mutations Given an RNA Sequence: A Case Study with RNAMute

    NASA Astrophysics Data System (ADS)

    Churkin, Alexander; Barash, Danny

    2006-12-01

    We introduce here for the first time the RNAMute package, a pattern-recognition-based utility to perform mutational analysis and detect vulnerable spots within an RNA sequence that affect structure. Mutations in these spots may lead to a structural change that directly relates to a change in functionality. Previously, the concept was tried on RNA genetic control elements called "riboswitches" and other known RNA switches, without an organized utility that analyzes all single-point mutations and can be further expanded. The RNAMute package allows a comprehensive categorization, given an RNA sequence that has functional relevance, by exploring the patterns of all single-point mutants. For illustration, we apply the RNAMute package on an RNA transcript for which individual point mutations were shown experimentally to inactivate spectinomycin resistance in Escherichia coli. Functional analysis of mutations on this case study was performed experimentally by creating a library of point mutations using PCR and screening to locate those mutations. With the availability of RNAMute, preanalysis can be performed computationally before conducting an experiment.

  1. Hereditary cancer genes are highly susceptible to splicing mutations

    PubMed Central

    Soemedi, Rachel; Maguire, Samantha; Murray, Michael F.; Monaghan, Sean F.

    2018-01-01

    Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5′ and 3′ splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77%) of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36%) of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing. PMID:29505604

  2. A multidisciplinary approach for the diagnosis of hypocalcified amelogenesis imperfecta in two Chilean families.

    PubMed

    Urzúa, Blanca; Ortega-Pinto, Ana; Farias, Daniela Adorno; Franco, Eugenia; Morales-Bozo, Irene; Moncada, Gustavo; Escobar-Pezoa, Nicolás; Scholz, Ursula; Cifuentes, Victor

    2012-01-01

    The purpose of this study was to conduct a multidisciplinary analysis of a specific type of tooth enamel disturbance (amelogenesis imperfecta) affecting two Chilean families to obtain a precise diagnosis and to investigate possible underlying mutations. Two non-related families affected with amelogenesis imperfecta were evaluated with clinical, radiographic and histopathological methods. Furthermore, pedigrees of both families were constructed and the presence of eight mutations in the enamelin gene (ENAM) and three mutations in the enamelysin gene (MMP-20) were investigated by PCR and direct sequencing. In the two affected patients, the dental malformation presented as soft and easily disintegrated enamel and exposed dark dentin. Neither of the affected individuals presented with a dental and skeletal open bite. Histologically, a high level of an organic matrix with prismatic organization was found. Genetic analysis indicated that the condition is autosomal recessive in one family and either autosomal recessive or due to a new mutation in the other family. Molecular mutational analysis revealed that none of the eight mutations previously described in the ENAM gene or the three mutations in the MMP-20 gene were present in the probands. A multidisciplinary analysis allowed for a diagnosis of hypocalcified amelogenesis imperfecta, Witkop type III, which was unrelated to previously described mutations in the ENAM or MMP-20 genes.

  3. An Usher syndrome type 1 patient diagnosed before the appearance of visual symptoms by MYO7A mutation analysis.

    PubMed

    Yoshimura, Hidekane; Iwasaki, Satoshi; Kanda, Yukihiko; Nakanishi, Hiroshi; Murata, Toshinori; Iwasa, Yoh-ichiro; Nishio, Shin-ya; Takumi, Yutaka; Usami, Shin-ichi

    2013-02-01

    Usher syndrome type 1 (USH1) appears to have only profound non-syndromic hearing loss in childhood and retinitis pigmentosa develops in later years. This study examined the frequency of USH1 before the appearance of visual symptoms in Japanese deaf children by MYO7A mutation analysis. We report the case of 6-year-old male with profound hearing loss, who did not have visual symptoms. The frequency of MYO7A mutations in profound hearing loss children is also discussed. We sequenced all exons of the MYO7A gene in 80 Japanese children with severe to profound non-syndromic HL not due to mutations of the GJB2 gene (ages 0-14 years). A total of nine DNA variants were found and six of them were presumed to be non-pathogenic variants. In addition, three variants of them were found in two patients (2.5%) with deafness and were classified as possible pathogenic variants. Among them, at least one nonsense mutation and one missense mutation from the patient were confirmed to be responsible for deafness. After MYO7A mutation analysis, the patient was diagnosed with RP, and therefore, also diagnosed with USH1. This is the first case report to show the advantage of MYO7A mutation analysis to diagnose USH1 before the appearance of visual symptoms. We believed that MYO7A mutation analysis is valid for the early diagnosis of USH1. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Plasma micronutrients, trace elements, and breast cancer in BRCA1 mutation carriers: an exploratory study.

    PubMed

    Kotsopoulos, Joanne; Sukiennicki, Grzegorz; Muszyńska, Magdalena; Gackowski, Daniel; Kąklewski, Krzysztof; Durda, Katarzyna; Jaworska, Katarzyna; Huzarski, Tomasz; Gronwald, Jacek; Byrski, Tomasz; Ashuryk, Oleg; Dębniak, Tadeusz; Tołoczko-Grabarek, Aleksandra; Stawicka, Małgorzata; Godlewski, Dariusz; Oliński, Ryszard; Jakubowska, Anna; Narod, Steven A; Lubinski, Jan

    2012-07-01

    Few studies have evaluated the role of micronutrients or trace elements in breast cancer development among BRCA1 mutation carriers. To investigate a possible role of dietary and environmental exposures on cancer risk, we undertook an exploratory study, using a matched case-control design (n = 48 cases and 96 controls), to evaluate the relationships between plasma levels of 14 micronutrients and breast cancer risk among BRCA1 mutation carriers in Poland. We estimated the univariate odds ratios (OR) and 95 % confidence intervals (CI) for breast cancer associated with plasma levels for each of 14 micronutrients. Of the 14 analytes quantified, significant differences between cases and controls were seen for two (iron and retinol; p = 0.009 and p = 0.03, respectively). Women in the highest tertile of plasma iron had a 57 % lower risk, compared with those in the lowest quartile (OR = 0.43; 95 % CI 0.18-1.04; p for trend = 0.06). Increasing antimony levels were associated with an increased risk of breast cancer (p for trend = 0.05). Women in the highest tertile had a 2.43-fold increase in breast cancer risk compared with women in the lowest tertile (OR = 2.43; 95 % CI 1.00-5.91). This study provides some preliminary evidence regarding a role of diet, specifically iron and antimony, in the etiology of BRCA1-associated breast cancer. Prospective studies are necessary to confirm these findings.

  5. The application of a linear algebra to the analysis of mutation rates.

    PubMed

    Jones, M E; Thomas, S M; Clarke, K

    1999-07-07

    Cells and bacteria growing in culture are subject to mutation, and as this mutation is the ultimate substrate for selection and evolution, the factors controlling the mutation rate are of some interest. The mutational event is not observed directly, but is inferred from the phenotype of the original mutant or of its descendants; the rate of mutation is inferred from the number of such mutant phenotypes. Such inference presumes a knowledge of the probability distribution for the size of a clone arising from a single mutation. We develop a mathematical formulation that assists in the design and analysis of experiments which investigate mutation rates and mutant clone size distribution, and we use it to analyse data for which the classical Luria-Delbrück clone-size distribution must be rejected. Copyright 1999 Academic Press.

  6. Cost-effective PKHD1 genetic testing for autosomal recessive polycystic kidney disease.

    PubMed

    Krall, Paola; Pineda, Cristina; Ruiz, Patricia; Ejarque, Laia; Vendrell, Teresa; Camacho, Juan Antonio; Mendizábal, Santiago; Oliver, Artur; Ballarín, José; Torra, Roser; Ars, Elisabet

    2014-02-01

    Genetic diagnosis of autosomal recessive polycystic kidney disease (ARPKD) is challenging due to the length and allelic heterogeneity of the PKHD1 gene. Mutations appear to be clustered at specific exons, depending on the geographic origin of the patient. We aimed to identify the PKHD1 exons most likely mutated in Spanish ARPKD patients. Mutation analysis was performed in 50 ARPKD probands and nine ARPKD-suspicious patients by sequencing PKHD1 exons arranged by their reported mutation frequency. Haplotypes containing the most frequent mutations were analyzed. Other PKD genes (HNF1B, PKD1, PKD2) were sequenced in PKHD1-negative cases. Thirty-six different mutations (concentrated in 24 PKHD1 exons) were detected, giving a mutation detection rate of 86%. The screening of five exons (58, 32, 34, 36, 37) yielded a 54% chance of detecting one mutation; the screening of nine additional exons (3, 9, 39, 61, 5, 22, 26, 41, 57) increased the chance to 76%. The c.9689delA mutation was present in 17 (34%) patients, all of whom shared the same haplotype. Two HNF1B mutations and one PKD1 variant were detected in negative cases. Establishing a PKHD1 exon mutation profile in a specific population and starting the analysis with the most likely mutated exons might significantly enhance the efficacy of genetic testing in ARPKD. Analysis of other PKD genes might be considered, especially in suspicious cases.

  7. Mutational analysis of genes coding for cell surface proteins in colorectal cancer cell lines reveal novel altered pathways, druggable mutations and mutated epitopes for targeted therapy

    PubMed Central

    Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.

    2014-01-01

    We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853

  8. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome.

    PubMed

    van der Klift, Heleen M; Mensenkamp, Arjen R; Drost, Mark; Bik, Elsa C; Vos, Yvonne J; Gille, Hans J J P; Redeker, Bert E J W; Tiersma, Yvonne; Zonneveld, José B M; García, Encarna Gómez; Letteboer, Tom G W; Olderode-Berends, Maran J W; van Hest, Liselotte P; van Os, Theo A; Verhoef, Senno; Wagner, Anja; van Asperen, Christi J; Ten Broeke, Sanne W; Hes, Frederik J; de Wind, Niels; Nielsen, Maartje; Devilee, Peter; Ligtenberg, Marjolijn J L; Wijnen, Juul T; Tops, Carli M J

    2016-11-01

    Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are applied to overcome problematic PMS2 mutation analysis due to the presence of pseudogenes and frequent gene conversion events. Here, we determined PMS2 mutation detection yield and mutation spectrum in a nationwide cohort of 396 probands. Furthermore, we studied concordance between tumor IHC/MSI (immunohistochemistry/microsatellite instability) profile and mutation carrier state. Overall, we found 52 different pathogenic PMS2 variants explaining 121 Lynch syndrome and nine CMMRD patients. In vitro mismatch repair assays suggested pathogenicity for three missense variants. Ninety-one PMS2 mutation carriers (70%) showed isolated loss of PMS2 in their tumors, for 31 (24%) no or inconclusive IHC was available, and eight carriers (6%) showed discordant IHC (presence of PMS2 or loss of both MLH1 and PMS2). Ten cases with isolated PMS2 loss (10%; 10/97) harbored MLH1 mutations. We confirmed that recently improved mutation analysis provides a high yield of PMS2 mutations in patients with isolated loss of PMS2 expression. Application of universal tumor prescreening methods will however miss some PMS2 germline mutation carriers. © 2016 WILEY PERIODICALS, INC.

  9. Development of a practical NF1 genetic testing method through the pilot analysis of five Japanese families with neurofibromatosis type 1.

    PubMed

    Okumura, Akiko; Ozaki, Mamoru; Niida, Yo

    2015-08-01

    Mutation analysis of NF1, the responsible gene for neurofibromatosis type 1 (NF1), is still difficult due to its large size, lack of mutational hotspots, the presence of many pseudogenes, and its wide spectrum of mutations. To develop a simple and inexpensive NF1 genetic testing for clinical use, we analyzed five Japanese families with NF1 as a pilot study. Our original method, CEL endonuclease mediated heteroduplex incision with polyacrylamide gel electrophoresis and silver staining (CHIPS) was optimized for NF1 mutation screening, and reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the effect of transcription. Also, we employed DNA microarray analysis to evaluate the break points of the large deletion. A new nonsense mutation, p.Gln209(∗), was detected in family 1 and the splicing donor site mutation, c.2850+1G>T, was detected in family 2. In family 3, c.4402A>G was detected in exon 34 and the p.Ser1468Gly missense mutation was predicted. However mRNA analysis revealed that this substitution created an aberrant splicing acceptor site, thereby causing the p.Phe1457(∗) nonsense mutation. In the other two families, type-1 and unique NF1 microdeletions were detected by DNA microarray analysis. Our results show that the combination of CHIPS and RT-PCR effectively screen and characterize NF1 point mutations, and both DNA and RNA level analysis are required to understand the nature of the NF1 mutation. Our results also suggest the possibility of a higher incidence and unique profile of NF1 large deletions in the Japanese population as compared to previous studies performed in Europe. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  10. High resolution melting analysis for epidermal growth factor receptor mutations in formalin-fixed paraffin-embedded tissue and plasma free DNA from non-small cell lung cancer patients.

    PubMed

    Jing, Chang-Wen; Wang, Zhuo; Cao, Hai-Xia; Ma, Rong; Wu, Jian-Zhong

    2014-01-01

    The aim of the research was to explore a cost effective, fast, easy to perform, and sensitive method for epidermal growth factor receptor (EGFR) mutation testing. High resolution melting analysis (HRM) was introduced to evaluate the efficacy of the analysis for dectecting EGFR mutations in exons 18 to 21 using formalin-fixed paraffin-embedded (FFPE) tissues and plasma free DNA from 120 patients. The total EGFR mutation rate was 37.5% (45/120) detected by direct sequencing. There were 48 mutations in 120 FFPE tissues assessed by HRM. For plasma free DNA, the EGFR mutation rate was 25.8% (31/120). The sensitivity of HRM assays in FFPE samples was 100% by HRM. There was a low false-positive mutation rate but a high false-negative rate in plasma free DNA detected by HRM. Our results show that HRM analysis has the advantage of small tumor sample need. HRM applied with plasma free DNA showed a high false-negative rate but a low false-positive rate. Further research into appropriate methods and analysis needs to be performed before HRM for plasma free DNA could be accepted as an option in diagnostic or screening settings.

  11. Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms.

    PubMed

    Pietra, Daniela; Brisci, Angela; Rumi, Elisa; Boggi, Sabrina; Elena, Chiara; Pietrelli, Alessandro; Bordoni, Roberta; Ferrari, Maurizio; Passamonti, Francesco; De Bellis, Gianluca; Cremonesi, Laura; Cazzola, Mario

    2011-04-01

    Somatic mutations of MPL exon 10, mainly involving a W515 substitution, have been described in JAK2 (V617F)-negative patients with essential thrombocythemia and primary myelofibrosis. We used direct sequencing and high-resolution melt analysis to identify mutations of MPL exon 10 in 570 patients with myeloproliferative neoplasms, and allele specific PCR and deep sequencing to further characterize a subset of mutated patients. Somatic mutations were detected in 33 of 221 patients (15%) with JAK2 (V617F)-negative essential thrombocythemia or primary myelofibrosis. Only one patient with essential thrombocythemia carried both JAK2 (V617F) and MPL (W515L). High-resolution melt analysis identified abnormal patterns in all the MPL mutated cases, while direct sequencing did not detect the mutant MPL in one fifth of them. In 3 cases carrying double MPL mutations, deep sequencing analysis showed identical load and location in cis of the paired lesions, indicating their simultaneous occurrence on the same chromosome.

  12. Prenatal diagnosis in a cystic fibrosis family: a combined molecular strategy for a precise diagnosis.

    PubMed

    Chávez-Saldaña, Margarita; García-Cavazos, Ricardo; Vigueras, Rosa María; Orozco, Lorena

    2011-01-01

    The high genetic heterogeneity in populations with a wide spectrum of mutations in the CF transmembrane conductance regulator gene (CFTR), makes the detection of mutations a very hard and difficult task, thereby limiting the accurate diagnosis of the disease, mainly in patients with uncharacterized mutations. Molecular strategies, like targeted identification of the most frequent CFTR mutations in Mexican population combined with linkage analysis using markers, is very useful for carrier detection and for prenatal diagnosis in affected families with CF. In this paper we show that the combination of methodologies was a crucial alternative to reach a precise prenatal CF diagnosis. We documented CF diagnosis in a 14th-week fetus combining the screening of the most common mutations in Mexican population with linkage analysis of two extragenic polymorphisms (XV2C/TaqI and KM19/PstI). We determined that the fetus inherited the PG542X mutation from its mother and an unknown mutation from its father through the chromosomal phases analysis.

  13. Prenatal diagnosis of fetal glutaric aciduria type 1 with rare compound heterozygous mutations in GCDH gene.

    PubMed

    Peng, Hsiu-Huei; Shaw, Sheng-Wen; Huang, Kuan-Gen

    2018-02-01

    Glutaric aciduria type 1 is a rare disease, with the estimated prevalence about 1 in 100,000 newborns. GCDH gene mutation can lead to glutaric acid and 3- OH glutaric acid accumulation, with clinical manifestation of neuronal damage, brain atrophy, microencephalic macrocephaly, decreased coordination of swallowing, poor muscle coordination, spasticity, and severe dystonic movement disorder. A 22-year-old female, Gravida 4 Para 2, is pregnancy at 13 weeks of gestational age. Her first child is normal, however, the second child was diagnosed as glutaric aciduria type I after birth. She came to our hospital for prenatal genetic counselling of her fetus at 13 weeks of gestational age. We performed GCDH gene mutation analysis of maternal blood showed IVS 3 + 1 G > A heterozygous mutation, GCDH gene mutation analysis of paternal blood showed c. 1240 G > A heterozygous mutation, and the second child has compound heterozygous IVS 3 + 1 G > A and c. 1240 G > A mutations. Later, we performed amniocentesis at 16 weeks of gestational age for chromosome study and GCDH gene mutation analysis for the fetus. The fetal chromosome study showed normal karyotype, however, GCDH gene mutation analysis showed compound heterozygous IVS 3 + 1 G > A and c. 1240 G > A mutations. The couple decided to termination of pregnancy thereafter. Glutaric acidemia type 1 is an autosomal recessive disorder because of pathogenic mutations in the GCDH gene. Early diagnosis and therapy of glutaric acidemia type 1 can reduce the risk of neuronal damage and acute dystonia. We report a case of prenatal diagnosis of fetal glutaric aciduria type 1 with rare compound heterozygous GCDH gene mutation at IVS 3 + 1 G > A and c. 1240 G > A mutations, which provide better genetic counselling for the couples. Copyright © 2018. Published by Elsevier B.V.

  14. Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies

    PubMed Central

    Eisenberger, Tobias; Neuhaus, Christine; Khan, Arif O.; Decker, Christian; Preising, Markus N.; Friedburg, Christoph; Bieg, Anika; Gliem, Martin; Issa, Peter Charbel; Holz, Frank G.; Baig, Shahid M.; Hellenbroich, Yorck; Galvez, Alberto; Platzer, Konrad; Wollnik, Bernd; Laddach, Nadja; Ghaffari, Saeed Reza; Rafati, Maryam; Botzenhart, Elke; Tinschert, Sigrid; Börger, Doris; Bohring, Axel; Schreml, Julia; Körtge-Jung, Stefani; Schell-Apacik, Chayim; Bakur, Khadijah; Al-Aama, Jumana Y.; Neuhann, Teresa; Herkenrath, Peter; Nürnberg, Gudrun; Nürnberg, Peter; Davis, John S.; Gal, Andreas; Bergmann, Carsten; Lorenz, Birgit; Bolz, Hanno J.

    2013-01-01

    Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover “hidden mutations” such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5′ exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5′-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading. PMID:24265693

  15. Cost-effectiveness analysis of EGFR mutation testing in patients with non-small cell lung cancer (NSCLC) with gefitinib or carboplatin-paclitaxel.

    PubMed

    Arrieta, Oscar; Anaya, Pablo; Morales-Oyarvide, Vicente; Ramírez-Tirado, Laura Alejandra; Polanco, Ana C

    2016-09-01

    Assess the cost-effectiveness of an EGFR-mutation testing strategy for advanced NSCLC in first-line therapy with either gefitinib or carboplatin-paclitaxel in Mexican institutions. Cost-effectiveness analysis using a discrete event simulation (DES) model to simulate two therapeutic strategies in patients with advanced NSCLC. Strategy one included patients tested for EGFR-mutation and therapy given accordingly. Strategy two included chemotherapy for all patients without testing. All results are presented in 2014 US dollars. The analysis was made with data from the Mexican frequency of EGFR-mutation. A univariate sensitivity analysis was conducted on EGFR prevalence. Progression-free survival (PFS) transition probabilities were estimated on data from the IPASS and simulated with a Weibull distribution, run with parallel trials to calculate a probabilistic sensitivity analysis. PFS of patients in the testing strategy was 6.76 months (95 % CI 6.10-7.44) vs 5.85 months (95 % CI 5.43-6.29) in the non-testing group. The one-way sensitivity analysis showed that PFS has a direct relationship with EGFR-mutation prevalence, while the ICER and testing cost have an inverse relationship with EGFR-mutation prevalence. The probabilistic sensitivity analysis showed that all iterations had incremental costs and incremental PFS for strategy 1 in comparison with strategy 2. There is a direct relationship between the ICER and the cost of EGFR testing, with an inverse relationship with the prevalence of EGFR-mutation. When prevalence is >10 % ICER remains constant. This study could impact Mexican and Latin American health policies regarding mutation detection testing and treatment for advanced NSCLC.

  16. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis.

    PubMed

    Zou, Zhang-Yu; Zhou, Zhi-Rui; Che, Chun-Hui; Liu, Chang-Yun; He, Rao-Li; Huang, Hua-Pin

    2017-07-01

    Genetic studies have shown that C9orf72 , SOD1 , TARDBP and FUS are the most common mutated genes in amyotrophic lateral sclerosis (ALS). Here, we performed a meta-analysis to determine the mutation frequencies of these major ALS-related genes in patients with ALS. We performed an extensive literature research to identify all original articles reporting frequencies of C9orf72 , SOD1 , TARDBP and FUS mutations in ALS. The mutation frequency and effect size of each study were combined. Possible sources of heterogeneity across studies were determined by meta-regression, sensitivity analysis and subgroup analysis. 111 studies were included in the meta-analysis. The overall pooled mutation frequencies of these major ALS-related genes were 47.7% in familial amyotrophic lateral sclerosis (FALS) and 5.2% in sporadic ALS (SALS). A significant difference was identified regarding the frequencies of mutations in major ALS genes between European and Asian patients. In European populations, the most common mutations were the C9orf72 repeat expansions (FALS 33.7%, SALS 5.1%), followed by SOD1 (FALS 14.8%, SALS 1.2%), TARDBP (FALS 4.2%, SALS 0.8%) and FUS mutations (FALS 2.8%, SALS 0.3%), while in Asian populations the most common mutations were SOD1 mutations (FALS 30.0%, SALS 1.5%), followed by FUS (FALS 6.4%, SALS 0.9%), C9orf72 (FALS 2.3%, SALS 0.3%) and TARDBP (FALS 1.5%, SALS 0.2%) mutations. These findings demonstrated that the genetic architecture of ALS in Asian populations is distinct from that in European populations, which need to be given appropriate consideration when performing genetic testing of patients with ALS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. The p16INK4alpha/p19ARF gene mutations are infrequent and are mutually exclusive to p53 mutations in Indian oral squamous cell carcinomas.

    PubMed

    Kannan, K; Munirajan, A K; Krishnamurthy, J; Bhuvarahamurthy, V; Mohanprasad, B K; Panishankar, K H; Tsuchida, N; Shanmugam, G

    2000-03-01

    Eighty-seven untreated primary oral squamous cell carcinomas (SCCs) associated with betel quid and tobacco chewing from Indian patients were analysed for the presence of mutations in the commonly shared exon 2 of p16INK4alpha/p19ARF genes. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and sequencing analysis were used to detect mutations. SSCP analysis indicated that only 9% (8/87) of the tumours had mutation in p16INK4alpha/p19ARF genes. Seventy-two tumours studied here were previously analysed for p53 mutations and 21% (15/72) of them were found to have mutations in p53 gene. Only one tumour was found to have mutation at both p53 and p16INK4alpha/p19ARF genes. Thus, the mutation rates observed were 21% for p53, 9% for p16INK4alpha/p19ARF, and 1% for both. Sequencing analysis revealed two types of mutations; i) G to C (GCAG to CCAG) transversion type mutation at intron 1-exon 2 splice junction and ii) another C to T transition type mutation resulting in CGA to TGA changing arginine to a termination codon at p16INK4alpha gene codon 80 and the same mutation will alter codon 94 of p19ARF gene from CCG to CTG (proline to leucine). These results suggest that p16INK4alpha/p19ARF mutations are less frequent than p53 mutations in Indian oral SCCs. The p53 and p16INK4alpha/p19ARF mutational events are independent and are mutually exclusive suggesting that mutational inactivation of either p53 or p16INK4alpha/p19ARF may alleviate the need for the inactivation of the other gene.

  18. Presence of a consensus DNA motif at nearby DNA sequence of the mutation susceptible CG nucleotides.

    PubMed

    Chowdhury, Kaushik; Kumar, Suresh; Sharma, Tanu; Sharma, Ankit; Bhagat, Meenakshi; Kamai, Asangla; Ford, Bridget M; Asthana, Shailendra; Mandal, Chandi C

    2018-01-10

    Complexity in tissues affected by cancer arises from somatic mutations and epigenetic modifications in the genome. The mutation susceptible hotspots present within the genome indicate a non-random nature and/or a position specific selection of mutation. An association exists between the occurrence of mutations and epigenetic DNA methylation. This study is primarily aimed at determining mutation status, and identifying a signature for predicting mutation prone zones of tumor suppressor (TS) genes. Nearby sequences from the top five positions having a higher mutation frequency in each gene of 42 TS genes were selected from a cosmic database and were considered as mutation prone zones. The conserved motifs present in the mutation prone DNA fragments were identified. Molecular docking studies were done to determine putative interactions between the identified conserved motifs and enzyme methyltransferase DNMT1. Collective analysis of 42 TS genes found GC as the most commonly replaced and AT as the most commonly formed residues after mutation. Analysis of the top 5 mutated positions of each gene (210 DNA segments for 42 TS genes) identified that CG nucleotides of the amino acid codons (e.g., Arginine) are most susceptible to mutation, and found a consensus DNA "T/AGC/GAGGA/TG" sequence present in these mutation prone DNA segments. Similar to TS genes, analysis of 54 oncogenes not only found CG nucleotides of the amino acid Arg as the most susceptible to mutation, but also identified the presence of similar consensus DNA motifs in the mutation prone DNA fragments (270 DNA segments for 54 oncogenes) of oncogenes. Docking studies depicted that, upon binding of DNMT1 methylates to this consensus DNA motif (C residues of CpG islands), mutation was likely to occur. Thus, this study proposes that DNMT1 mediated methylation in chromosomal DNA may decrease if a foreign DNA segment containing this consensus sequence along with CG nucleotides is exogenously introduced to dividing cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Impact of tissue type and content of neoplastic cells of samples on the quality of epidermal growth factor receptor mutation analysis among patients with lung adenocarcinoma

    PubMed Central

    PALIOGIANNIS, PANAGIOTIS; ATTENE, FEDERICO; COSSU, ANTONIO; DEFRAIA, EFISIO; PORCU, GIUSEPPE; CARTA, ANNAMARIA; SOTGIU, MARIA IGNAZIA; PAZZOLA, ANTONIO; CORDERO, LORENZO; CAPELLI, FRANCESCA; FADDA, GIOVANNI MARIA; ORTU, SALVATORE; SOTGIU, GIOVANNI; PALOMBA, GRAZIA; SINI, MARIA CRISTINA; PALMIERI, GIUSEPPE; COLOMBINO, MARIA

    2015-01-01

    Assessment of the epidermal growth factor receptor (EGFR) mutational status has become crucial in recent years in the molecular classification of patients with lung cancer. The impact of the type and quantity of malignant cells of the neoplastic specimen on the quality of mutation analysis remains to be elucidated, and only empirical and sporadic data are available. The aim of the present study was to investigate the impact of tissue type and content of neoplastic cells in the specimen on the quality of EGFR mutation analysis among patients with lung adenocarcinoma. A total of 515 patients with histologically-confirmed disease were included in the present study. Formalin-fixed paraffin embedded tissue samples were used for the mutation analysis and the content of the neoplastic cells was evaluated using light microscopy. Genomic DNA was isolated using a standard protocol. The coding sequences and splice junctions of exons 18, 19 and 21 in the EGFR gene were then screened for mutations by direct automated sequencing. The mean age of the patients examined was 64.9 years and 357 (69.3%) were male. A total of 429 tissue samples (83.3%) were obtained by biopsy and the remaining samples were obtained by surgery. A total of 456 samples (88.5%) were observed from primary lung adenocarcinomas, while 59 (11.5%) were from metastatic lesions. EGFR mutations occurred in 59 cases (11.5%); exon 18 mutations were detected in one case (1.7%), whereas exon 19 and 21 mutations were detected in 30 (51%) and 28 (47.3%) cases, respectively. EGFR mutations were more frequent in females and patients that had never smoked. The distribution of the mutations among primary and metastatic tissues exhibited no significant differences in the proportions of EGFR mutations detected. However, a statistically significant difference in the number of mutations detected was found between samples with at least 50% of neoplastic cells (450 cases-57 mutations; 12.7%) and those with <50% of neoplastic cells (65 cases-2 mutations; 3.1%). PMID:25683726

  20. KRAS, NRAS and BRAF mutations in Greek and Romanian patients with colorectal cancer: a cohort study

    PubMed Central

    Negru, Serban; Papadopoulou, Eirini; Apessos, Angela; Stanculeanu, Dana Lucia; Ciuleanu, Eliade; Volovat, Constantin; Croitoru, Adina; Kakolyris, Stylianos; Aravantinos, Gerasimos; Ziras, Nikolaos; Athanasiadis, Elias; Touroutoglou, Nikolaos; Pavlidis, Nikolaos; Kalofonos, Haralabos P; Nasioulas, George

    2014-01-01

    Objectives Treatment decision-making in colorectal cancer is often guided by tumour tissue molecular analysis. The aim of this study was the development and validation of a high-resolution melting (HRM) method for the detection of KRAS, NRAS and BRAF mutations in Greek and Romanian patients with colorectal cancer and determination of the frequency of these mutations in the respective populations. Setting Diagnostic molecular laboratory located in Athens, Greece. Participants 2425 patients with colorectal cancer participated in the study. Primary and secondary outcome measures 2071 patients with colorectal cancer (1699 of Greek and 372 of Romanian origin) were analysed for KRAS exon 2 mutations. In addition, 354 tumours from consecutive patients (196 Greek and 161 Romanian) were subjected to full KRAS (exons 2, 3 and 4), NRAS (exons 2, 3 and 4) and BRAF (exon 15) analysis. KRAS, NRAS and BRAF mutation detection was performed by a newly designed HRM analysis protocol, followed by Sanger sequencing. Results KRAS exon 2 mutations (codons 12/13) were detected in 702 of the 1699 Greek patients with colorectal carcinoma analysed (41.3%) and in 39.2% (146/372) of the Romanian patients. Among the 354 patients who were subjected to full KRAS, NRAS and BRAF analysis, 40.96% had KRAS exon 2 mutations (codons 12/13). Among the KRAS exon 2 wild-type patients 15.31% harboured additional RAS mutations and 12.44% BRAF mutations. The newly designed HRM method used showed a higher sensitivity compared with the sequencing method. Conclusions The HRM method developed was shown to be a reliable method for KRAS, NRAS and BRAF mutation detection. Furthermore, no difference in the mutation frequency of KRAS, NRAS and BRAF was observed between Greek and Romanian patients with colorectal cancer. PMID:24859998

  1. Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: The Lung Cancer Mutation Consortium experience

    PubMed Central

    Dias-Santagata, Dora; Wistuba, Ignacio I.; Chen, Heidi; Fujimoto, Junya; Kugler, Kelly; Franklin, Wilbur A.; Iafrate, A. John; Ladanyi, Marc; Kris, Mark G.; Johnson, Bruce E.; Bunn, Paul A.; Minna, John D.; Kwiatkowski, David J.

    2015-01-01

    Introduction Molecular genetic analyses of lung adenocarcinoma have recently become standard of care for treatment selection. The Lung Cancer Mutation Consortium was formed to enable collaborative multi-institutional analyses of 10 potential oncogenic driver mutations. Technical aspects of testing, and clinicopathologic correlations are presented. Methods Mutation testing in at least one of 8 genes (EGFR, KRAS, ERBB2, AKT1, BRAF, MEK1, NRAS, PIK3CA) using SNaPshot, mass spectrometry, Sanger sequencing +/− PNA and/or sizing assays, along with ALK and/or MET FISH were performed in 6 labs on 1007 patients from 14 institutions. Results 1007 specimens had mutation analysis performed, and 733 specimens had all 10 genes analyzed. Mutation identification rates did not vary by analytic method. Biopsy and cytology specimens were inadequate for testing in 26% and 35% of cases compared to 5% of surgical specimens. Among the 1007 cases with mutation analysis performed, EGFR, KRAS, ALK, and ERBB2 alterations were detected in 22, 25, 8.5, and 2.4% of cases, respectively. EGFR mutations were highly associated with female sex, Asian race, and never smoking status; and less strongly associated with stage IV disease, presence of bone metastases, and absence of adrenal metastases. ALK rearrangements were strongly associated with never smoking status, and more weakly associated with presence of liver metastases. ERBB2 mutations were strongly associated with Asian race and never smoking status. Two mutations were seen in 2.7% of samples, all but one of which involved one or more of PIK3CA, ALK or MET. Conclusion Multi-institutional molecular analysis across multiple platforms, sample types, and institutions can yield consistent results and novel clinicopathological observations. PMID:25738220

  2. Further screening of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaithinathan, R.; Berson, E.L.; Dryja, T.P.

    Here the authors report 8 novel mutations and 8 previously reported mutations found from further analysis of the rhodopsin gene in a large set of additional patients with autosomal dominant retinitis pigmentosa. Leukocyte DNA was purified from 122 unrelated patients with autosomal dominant retinitis pigmentosa who were not included in previous analyses. The coding region and splice donor and acceptor sites of the rhodopsin gene were screened for mutations using single-strand conformation polymorphism analysis and direct genomic sequencing. They found 29 patients with varient bands that were due to mutations. Sequence analysis showed that 20 cases each had 1 ofmore » 9 previously published mutations: Pro23His, Thr58Arg, Gly89Asp, Pro171Leu, Glu181Lys, Pro347Leu, Phe45Leu, Arg135Trp, and Lys296Glu. In 9 other cases, they found 8 novel mutations. One was a 3-bp deletion (Cys264-del), and the rest were point mutations resulting in an altered amino acid: Gly51Arg (GGC [yields] CGC), Cys110Tyr (TCG [yields] TAC), Gly114Asp (GGC [yields] GAC), Ala164Glu (GCG [yields] GAG), Pro171Ser (CCA [yields] TCA), Val345Leu (GTG [yields] CTG), and Pro347Gln (CCG [yields] CAG). Each of these novel mutations was found in only one family except for Gly51Arg, which was found in two. In every family tested, the mutation cosegregated with the disease. However, in pedigree D865 only one affected member was available for analysis. About two-thirds of the mutations affect amino acids in transmembrane domains, yet only one-half of opsin's residues are in these regions. One-third of the mutations alter residues in the extracellular/intradiscal space, which includes only 25% of the protein.« less

  3. Fragment length analysis screening for detection of CEBPA mutations in intermediate-risk karyotype acute myeloid leukemia.

    PubMed

    Fuster, Oscar; Barragán, Eva; Bolufer, Pascual; Such, Esperanza; Valencia, Ana; Ibáñez, Mariam; Dolz, Sandra; de Juan, Inmaculada; Jiménez, Antonio; Gómez, Maria Teresa; Buño, Ismael; Martínez, Joaquín; Cervera, José; Montesinos, Pau; Moscardó, Federico; Sanz, Miguel Ángel

    2012-01-01

    During last years, molecular markers have been increased as prognostic factors routinely screened in acute myeloid leukemia (AML). Recently, an increasing interest has been reported in introducing to clinical practice screening for mutations in the CCAAT/enhancer-binding protein α (CEBPA) gene in AML, as it seems to be a good prognostic factor. However, there is no reliable established method for assessing CEBPA mutations during the diagnostic work-up of AMLs. We describe here a straightforward and reliable fragment analysis method based in PCR capillary electrophoresis (PCR-CE) for screening of CEBPA mutations; moreover, we present the results obtained in 151 intermediate-risk karyotype AML patients (aged 16-80 years). The method gave a specificity of 100% and sensitivity of 93% with a lower detection limit of 1-5% for CEBPA mutations. The series found 19 mutations and four polymorphisms in 12 patients, seven of whom (58%) presented two mutations. The overall frequency of CEBPA mutations in AML was 8% (n = 12). CEBPA mutations showed no coincidence with FLT3-ITD or NPM1 mutations. CEBPA mutation predicted better disease-free survival in the group of patients without FLT3-ITD, NPM, or both genes mutated (HR 3.6, IC 95%; 1.0-13.2, p = 0.05) and better overall survival in patients younger than 65 of this group without molecular markers (HR 4.0, IC 95%; 1.0-17.4, p = 0.05). In conclusion, the fragment analysis method based in PCR-CE is a rapid, specific, and sensitive method for CEBPA mutation screening and our results confirm that CEBPA mutations can identify a subgroup of patients with favorable prognosis in AML with intermediate-risk karyotype.

  4. Occult HBV among Anti-HBc Alone: Mutation Analysis of an HBV Surface Gene and Pre-S Gene.

    PubMed

    Kim, Myeong Hee; Kang, So Young; Lee, Woo In

    2017-05-01

    The aim of this study is to investigate the molecular characteristics of occult hepatitis B virus (HBV) infection in 'anti-HBc alone' subjects. Twenty-four patients with 'anti-HBc alone' and 20 control patients diagnosed with HBV were analyzed regarding S and pre-S gene mutations. All specimens were analyzed for HBs Ag, anti-HBc, and anti-HBs. For specimens with an anti-HBc alone, quantitative analysis of HBV DNA, as well as sequencing and mutation analysis of S and pre-S genes, were performed. A total 24 were analyzed for the S gene, and 14 were analyzed for the pre-S gene through sequencing. A total of 20 control patients were analyzed for S and pre-S gene simultaneously. Nineteen point mutations of the major hydrophilic region were found in six of 24 patients. Among them, three mutations, S114T, P127S/T, M133T, were detected in common. Only one mutation was found in five subjects of the control group; this mutation was not found in the occult HBV infection group, however. Pre-S mutations were detected in 10 patients, and mutations of site aa58-aa100 were detected in 9 patients. A mutation on D114E was simultaneously detected. Although five mutations from the control group were found at the same location (aa58-aa100), no mutations of occult HBV infection were detected. The prevalence of occult HBV infection is not low among 'anti-HBc alone' subjects. Variable mutations in the S gene and pre-S gene were associated with the occurrence of occult HBV infection. Further larger scale studies are required to determine the significance of newly detected mutations. © Copyright: Yonsei University College of Medicine 2017

  5. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology.

    PubMed

    Cantara, Silvia; Capezzone, Marco; Marchisotta, Stefania; Capuano, Serena; Busonero, Giulia; Toti, Paolo; Di Santo, Andrea; Caruso, Giuseppe; Carli, Anton Ferdinando; Brilli, Lucia; Montanaro, Annalisa; Pacini, Furio

    2010-03-01

    Fine-needle aspiration cytology (FNAC) is the gold standard for the differential diagnosis of thyroid nodules but has the limitation of inadequate sampling or indeterminate lesions. We aimed to verify whether search of thyroid cancer-associated protooncogene mutations in cytological samples may improve the diagnostic accuracy of FNAC. One hundred seventy-four consecutive patients undergoing thyroid surgery were submitted to FNAC (on 235 thyroid nodules) that was used for cytology and molecular analysis of BRAF, RAS, RET, TRK, and PPRgamma mutations. At surgery these nodules were sampled to perform the same molecular testing. Mutations were found in 67 of 235 (28.5%) cytological samples. Of the 67 mutated samples, 23 (34.3%) were mutated by RAS, 33 (49.3%) by BRAF, and 11 (16.4%) by RET/PTC. In 88.2% of the cases, the mutation was confirmed in tissue sample. The presence of mutations at cytology was associated with cancer 91.1% of the times and follicular adenoma 8.9% of the time. BRAF or RET/PTC mutations were always associated with cancer, whereas RAS mutations were mainly associated with cancer (74%) but also follicular adenoma (26%). The diagnostic performance of molecular analysis was superior to that of traditional cytology, with better sensitivity and specificity, and the combination of the two techniques further contributed to improve the total accuracy (93.2%), compared with molecular analysis (90.2%) or traditional cytology (83.0%). Our findings demonstrate that molecular analysis of cytological specimens is feasible and that its results in combination with cytology improves the diagnostic performance of traditional cytology.

  6. Genetic analysis of hispanic individuals with cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebe, T.A.; Doane, W.W.; Norman, R.A.

    1994-03-01

    The authors have performed molecular genetic analysis of Hispanic individuals with cystic fibrosis (CF) in the southwestern United States. Of 129 CF chromosomes analyzed, oly 46% (59/129) carry [Delta]F508. The G542X mutation was found on 5% (7/129) of CF chromosomes. The 3849+10kbC[yields]T mutation, detected primarily in Ashkenazi Jews, was present on 2% (3/129). R1162X and R334W, mutations identified in Spain and Italy, each occurred on 1.6% (2/129) of CF chromosomes. W1282X and R553X were each detected once. G551D and N1303K were not found. Overall, screening for 22 or more mutations resulted in detection of only 58% of CF transmembrane conductancemore » regulator gene mutations among Hispanic individuals. Analysis of KM19/XV2c haplotypes revealed an unusual distribution. Although the majority of [Delta]508 mutations are on chromosomes of B haplotypes, the other CF mutations are on A and C haplotypes at higher-than-expected frequencies. These genetic analysis demonstrate significant differences between Hispanic individuals with CF and those of the general North American population. Assessment of carrier/affected risk in Hispanic CF individuals cannot, therefore, be based on the mutation frequencies found through studies of the general population but must be adjusted to better reflect the genetic makeup of this ethnic group. Further studies are necessary to identify the causative mutation(s) in this population and to better delineate genotype/phenotype correlations. These will enable counselors to provide more accurate genetic counseling. 22 refs., 2 tabs.« less

  7. High-resolution Melting Analysis for Gene Scanning of Adenomatous Polyposis Coli (APC) Gene With Oral Squamous Cell Carcinoma Samples.

    PubMed

    Chang, Ya-Sian; Lin, Chien-Yu; Yang, Shu-Fen; Ho, Cheng Mao; Chang, Jan-Gowth

    2016-02-01

    There have been many different mutations reported for the large adenomatous polyposis coli (APC) tumor suppressor gene. APC mutations result in inactivation of APC tumor suppressor action, allowing the progression of tumorigenesis. The present study utilized a highly efficient method to identify APC mutations and investigated the association between the APC genetic variants Y486Y, A545A, T1493T, and D1822V and susceptibility to oral squamous cell carcinoma (OSCC). High-resolution melting (HRM) analysis was used to characterize APC mutations. Genomic DNA was extracted from 83 patient specimens of OSCC and 50 blood samples from healthy control subjects. The 14 exons and mutation cluster region of exon 15 were screened by HRM analysis. All mutations were confirmed by direct DNA sequencing. Three mutations and 4 single nucleotide polymorphisms (SNPs) were found in this study. The mutations were c.573T>C (Y191Y) in exon 5, c.1005A>G (L335L) in exon 9, and c.1488A>T (T496T) in exon 11. Two SNPs, c.4479G>A (T1493T) and c.5465A>T (D1822V), were located in exon 15, whereas c.1458T>C (Y486Y) and c.1635G>A (A545A) were located in exon 11 and 13, respectively. There was no observed association between OSCC risk and genotype for any of the 4 APC SNPs. The mutation of APC is rare in Taiwanese patients with OSCC. HRM analysis is a reliable, accurate, and fast screening method for APC mutations.

  8. Competitive amplification of differentially melting amplicons (CADMA) enables sensitive and direct detection of all mutation types by high-resolution melting analysis.

    PubMed

    Kristensen, Lasse S; Andersen, Gitte B; Hager, Henrik; Hansen, Lise Lotte

    2012-01-01

    Sensitive and specific mutation detection is of particular importance in cancer diagnostics, prognostics, and individualized patient treatment. However, the majority of molecular methodologies that have been developed with the aim of increasing the sensitivity of mutation testing have drawbacks in terms of specificity, convenience, or costs. Here, we have established a new method, Competitive Amplification of Differentially Melting Amplicons (CADMA), which allows very sensitive and specific detection of all mutation types. The principle of the method is to amplify wild-type and mutated sequences simultaneously using a three-primer system. A mutation-specific primer is designed to introduce melting temperature decreasing mutations in the resulting mutated amplicon, while a second overlapping primer is designed to amplify both wild-type and mutated sequences. When combined with a third common primer very sensitive mutation detection becomes possible, when using high-resolution melting (HRM) as detection platform. The introduction of melting temperature decreasing mutations in the mutated amplicon also allows for further mutation enrichment by fast coamplification at lower denaturation temperature PCR (COLD-PCR). For proof-of-concept, we have designed CADMA assays for clinically relevant BRAF, EGFR, KRAS, and PIK3CA mutations, which are sensitive to, between 0.025% and 0.25%, mutated alleles in a wild-type background. In conclusion, CADMA enables highly sensitive and specific mutation detection by HRM analysis. © 2011 Wiley Periodicals, Inc.

  9. Detection of sdhB Gene Mutations in SDHI-Resistant Isolates of Botrytis cinerea Using High Resolution Melting (HRM) Analysis.

    PubMed

    Samaras, Anastasios; Madesis, Panagiotis; Karaoglanidis, George S

    2016-01-01

    Botrytis cinerea , is a high risk pathogen for fungicide resistance development. Pathogen' resistance to SDHIs is associated with several mutations in sdh gene. The diversity of mutations and their differential effect on cross-resistance patterns among SDHIs and the fitness of resistant strains necessitate the availability of a tool for their rapid identification. This study was initiated to develop and validate a high-resolution melting (HRM) analysis for the identification of P225H/F/L//T, N230I, and H272L/R/Y mutations. Based on the sequence of sdh B subunit of resistant and sensitive isolates, a universal primer pair was designed. The specificity of the HRM analysis primers was verified to ensure against the cross-reaction with other fungal species and its sensitivity was evaluated using concentrations of known amounts of mutant's DNA. The melting curve analysis generated nine distinct curve profiles, enabling the discrimination of all the four mutations located at codon 225, the N230I mutation, the three mutations located in codon 272, and the non-mutated isolates (isolates of wild-type sensitivity). Similar results were obtained when DNA was extracted directly from artificially inoculated strawberry fruit. The method was validated by monitoring the presence of sdh B mutations in samples of naturally infected strawberry fruits and stone fruit rootstock seedling plants showing damping-off symptoms. HRM analysis data were compared with a standard PIRA-PCR technique and an absolute agreement was observed suggesting that in both populations the H272R mutation was the predominant one, while H272Y, N230I, and P225H were detected in lower frequencies. The results of the study suggest that HRM analysis can be a useful tool for sensate, accurate, and rapid identification of several sdh B mutations in B. cinerea and it is expected to contribute in routine fungicide resistance monitoring or assessments of the effectiveness of anti-resistance strategies implemented in crops heavily treated with botryticides.

  10. Detection of sdhB Gene Mutations in SDHI-Resistant Isolates of Botrytis cinerea Using High Resolution Melting (HRM) Analysis

    PubMed Central

    Samaras, Anastasios; Madesis, Panagiotis; Karaoglanidis, George S.

    2016-01-01

    Botrytis cinerea, is a high risk pathogen for fungicide resistance development. Pathogen’ resistance to SDHIs is associated with several mutations in sdh gene. The diversity of mutations and their differential effect on cross-resistance patterns among SDHIs and the fitness of resistant strains necessitate the availability of a tool for their rapid identification. This study was initiated to develop and validate a high-resolution melting (HRM) analysis for the identification of P225H/F/L//T, N230I, and H272L/R/Y mutations. Based on the sequence of sdhB subunit of resistant and sensitive isolates, a universal primer pair was designed. The specificity of the HRM analysis primers was verified to ensure against the cross-reaction with other fungal species and its sensitivity was evaluated using concentrations of known amounts of mutant’s DNA. The melting curve analysis generated nine distinct curve profiles, enabling the discrimination of all the four mutations located at codon 225, the N230I mutation, the three mutations located in codon 272, and the non-mutated isolates (isolates of wild-type sensitivity). Similar results were obtained when DNA was extracted directly from artificially inoculated strawberry fruit. The method was validated by monitoring the presence of sdhB mutations in samples of naturally infected strawberry fruits and stone fruit rootstock seedling plants showing damping-off symptoms. HRM analysis data were compared with a standard PIRA–PCR technique and an absolute agreement was observed suggesting that in both populations the H272R mutation was the predominant one, while H272Y, N230I, and P225H were detected in lower frequencies. The results of the study suggest that HRM analysis can be a useful tool for sensate, accurate, and rapid identification of several sdhB mutations in B. cinerea and it is expected to contribute in routine fungicide resistance monitoring or assessments of the effectiveness of anti-resistance strategies implemented in crops heavily treated with botryticides. PMID:27895633

  11. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders.

    PubMed

    Damm, Frederik; Chesnais, Virginie; Nagata, Yasunobu; Yoshida, Kenichi; Scourzic, Laurianne; Okuno, Yusuke; Itzykson, Raphael; Sanada, Masashi; Shiraishi, Yuichi; Gelsi-Boyer, Véronique; Renneville, Aline; Miyano, Satoru; Mori, Hiraku; Shih, Lee-Yung; Park, Sophie; Dreyfus, François; Guerci-Bresler, Agnes; Solary, Eric; Rose, Christian; Cheze, Stéphane; Prébet, Thomas; Vey, Norbert; Legentil, Marion; Duffourd, Yannis; de Botton, Stéphane; Preudhomme, Claude; Birnbaum, Daniel; Bernard, Olivier A; Ogawa, Seishi; Fontenay, Michaela; Kosmider, Olivier

    2013-10-31

    Patients with low-risk myelodysplastic syndromes (MDS) that rapidly progress to acute myeloid leukemia (AML) remain a challenge in disease management. Using whole-exome sequencing of an MDS patient, we identified a somatic mutation in the BCOR gene also mutated in AML. Sequencing of BCOR and related BCORL1 genes in a cohort of 354 MDS patients identified 4.2% and 0.8% of mutations respectively. BCOR mutations were associated with RUNX1 (P = .002) and DNMT3A mutations (P = .015). BCOR is also mutated in chronic myelomonocytic leukemia patients (7.4%) and BCORL1 in AML patients with myelodysplasia-related changes (9.1%). Using deep sequencing, we show that BCOR mutations arise after mutations affecting genes involved in splicing machinery or epigenetic regulation. In univariate analysis, BCOR mutations were associated with poor prognosis in MDS (overall survival [OS]: P = .013; cumulative incidence of AML transformation: P = .005). Multivariate analysis including age, International Prognostic Scoring System, transfusion dependency, and mutational status confirmed a significant inferior OS to patients with a BCOR mutation (hazard ratio, 3.3; 95% confidence interval, 1.4-8.1; P = .008). These data suggest that BCOR mutations define the clinical course rather than disease initiation. Despite infrequent mutations, BCOR analyses should be considered in risk stratification.

  12. Simultaneous screening for JAK2 and calreticulin gene mutations in myeloproliferative neoplasms with high resolution melting.

    PubMed

    Matsumoto, Nariyoshi; Mori, Sayaka; Hasegawa, Hiroo; Sasaki, Daisuke; Mori, Hayato; Tsuruda, Kazuto; Imanishi, Daisuke; Imaizumi, Yoshitaka; Hata, Tomoko; Kaku, Norihito; Kosai, Kousuke; Uno, Naoki; Miyazaki, Yasushi; Yanagihara, Katsunori

    2016-11-01

    Recently, novel calreticulin (CALR) mutations were discovered in Janus kinase 2 (JAK2) non-mutated myelofibrosis (PMF) and essential thrombocythemia (ET) cases, with a frequency of 60-80%. We examined clinical correlations and CALR mutation frequency in our myeloproliferative neoplasms (MPN) cases, and introduce an effective test method for use in clinical practice. We examined 177 samples previously investigated for the JAK2 mutation for differential diagnosis of MPN. JAK2 and CALR mutations were analyzed using melting curve analysis and microchip electrophoresis, respectively. Next, we constructed a test for simultaneous screening of the JAK2 and CALR mutations utilizing high resolution melting (HRM). Among 99 MPN cases, 60 possessed the JAK2 mutation alone. Of the 39 MPN cases without the JAK2 mutation, 14 were positive for the CALR mutation, all of which were ET. Using our novel screening test for the JAK2 and CALR mutations by HRM, the concordance rate of conventional analysis with HRM was 96% for the JAK2 mutation and 95% for the CALR mutation. Our novel simultaneous screening test for the JAK2 and CALR gene mutations with HRM is useful for diagnosis of MPN. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Cell-Free Plasma DNA-Guided Treatment With Osimertinib in Patients With Advanced EGFR-Mutated NSCLC.

    PubMed

    Buder, Anna; Hochmair, Maximilian J; Schwab, Sophia; Bundalo, Tatjana; Schenk, Peter; Errhalt, Peter; Mikes, Romana E; Absenger, Gudrun; Patocka, Kurt; Baumgartner, Bernhard; Setinek, Ulrike; Burghuber, Otto C; Prosch, Helmut; Pirker, Robert; Filipits, Martin

    2018-03-02

    Osimertinib is standard treatment for patients with advanced EGFR T790M-mutated non-small-cell lung cancer who have been pre-treated with EGFR-tyrosine kinase inhibitors (TKIs). We studied whether cell-free plasma DNA for T790M detection can be used to select patients for osimertinib treatment in the clinical routine. From April 2015 to November 2016, we included 119 patients with advanced EGFR-mutated non-small-cell lung cancer who had progressed under treatment with an EGFR-TKI. The T790M mutation status was assessed in cell-free plasma DNA by droplet digital polymerase chain reaction in all patients and by tissue analyses in selected patients. T790M mutations were detected in 85 (93%) patients by analyses of cell-free plasma DNA and in 6 (7%) plasma-negative patients by tumor re-biopsy. Eighty-nine of 91 T790M-positive patients received osimertinib. Median progression-free survival (PFS) was 10.1 months (95% confidence interval [CI]: 8.1-12.1). Median survival was not reached and the 1-year survival was 64%. The response rate was 70% in T790M-positive patients (n = 91) in the intention-to-treat population. PFS trended to be shorter in patients with high T790M copy number (≥10 copies/mL) compared to those with low T790M copy number (<10 copies/mL) (hazard ratio for PFS = 1.72, 95% CI: 0.92-3.2, p = 0.09). A comparable trend was observed for overall survival (hazard ratio for overall survival = 2.16, 95% CI: 0.89-5.25, p = 0.09). No difference in response rate was observed based on T790M copy numbers. Plasma genotyping using digital polymerase chain reaction is clinically useful for the selection of patients who had progressed during first-line EGFR-TKI therapy for treatment with osimertinib. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  14. The role of alternative GJB2 transcription in screening for neonatal sensorineural deafness in Austria.

    PubMed

    Parzefall, Thomas; Lucas, Trevor; Koenighofer, Martin; Ramsebner, Reinhard; Frohne, Alexandra; Czeiger, Shelly; Baumgartner, Wolf-Dieter; Schoefer, Christian; Gstoettner, Wolfgang; Frei, Klemens

    2017-04-01

    Alterations within a novel putative Exon 1a within the gap junction beta 2 (GJB2) gene may play a role in the development of genetic hearing impairment in Austria. Mutations in the GJB2 gene are the most common cause of hereditary sensorineural deafness. Genome-wide screening for alternative transcriptional start sites in the human genome has revealed the presence of an additional GJB2 exon (E1a). This study tested the hypothesis of whether alternative GJB2 transcription involving E1a may play a role in the development of congenital sensorineural deafness in Austria. GJB2 E1a and flanking regions were sequenced in randomized normal hearing control subjects and three different patient groups with non-syndromic hearing impairment (NSHI), and bioinformatic analysis was performed. Statistical analysis of disease association was carried out using the Cochran-Armitage test for trend. A single change 2410 bp proximal to the translational start site (c.-2410T > C, rs7994748, NM_004004.5:c.-23 + 792T > C) was found to be significantly associated with the common c.35delG GJB2 mutation (p = .009). c.35delG in combination with c.-2410CC occurred at a 6.9-fold increased frequency compared to the control group. Additionally, one patient with idiopathic congenital hearing loss was found to be homozygous c.-2410CC.

  15. A universal method for the mutational analysis of K-ras and p53 gene in non-small-cell lung cancer using formalin-fixed paraffin-embedded tissue.

    PubMed

    Sarkar, F H; Valdivieso, M; Borders, J; Yao, K L; Raval, M M; Madan, S K; Sreepathi, P; Shimoyama, R; Steiger, Z; Visscher, D W

    1995-12-01

    The p53 tumor suppressor gene has been found to be altered in almost all human solid tumors, whereas K-ras gene mutations have been observed in a limited number of human cancers (adenocarcinoma of colon, pancreas, and lung). Studies of mutational inactivation for both genes in the same patient's sample on non-small-cell lung cancer have been limited. In an effort to perform such an analysis, we developed and compared methods (for the mutational detection of p53 and K-ras gene) that represent a modified and universal protocol, in terms of DNA extraction, polymerase chain reaction (PCR) amplification, and nonradioisotopic PCR-single-strand conformation polymorphism (PCR-SSCP) analysis, which is readily applicable to either formalin-fixed, paraffin-embedded tissues or frozen tumor specimens. We applied this method to the evaluation of p53 (exons 5-8) and K-ras (codon 12 and 13) gene mutations in 55 cases of non-small-cell lung cancer. The mutational status in the p53 gene was evaluated by radioisotopic PCR-SSCP and compared with PCR-SSCP utilizing our standardized nonradioisotopic detection system using a single 6-microns tissue section. The mutational patterns observed by PCR-SSCP were subsequently confirmed by PCR-DNA sequencing. The mutational status in the K-ras gene was similarly evaluated by PCR-SSCP, and the specific mutation was confirmed by Southern slot-blot hybridization using 32P-labeled sequence-specific oligonucleotide probes for codons 12 and 13. Mutational changes in K-ras (codon 12) were found in 10 of 55 (18%) of non-small-cell lung cancers. Whereas adenocarcinoma showed K-ras mutation in 33% of the cases at codon 12, only one mutation was found at codon 13. As expected, squamous cell carcinoma samples (25 cases) did not show K-ras mutations. Mutations at exons 5-8 of the p53 gene were documented in 19 of 55 (34.5%) cases. Ten of the 19 mutations were single nucleotide point mutations, leading to amino acid substitution. Six showed insertional mutation, and three showed deletion mutations. Only three samples showed mutations of both K-ras and p53 genes. We conclude that although K-ras and p53 gene mutations are frequent in non-small-cell lung cancer, mutations of both genes in the same patient's samples are not common. We also conclude that this universal nonradioisotopic method is superior to other similar methods and is readily applicable to the rapid screening of large numbers of formalin-fixed, paraffin-embedded or frozen samples for the mutational analysis of multiple genes.

  16. Molecular analysis of Fanconi anemia: the experience of the Bone Marrow Failure Study Group of the Italian Association of Pediatric Onco-Hematology

    PubMed Central

    De Rocco, Daniela; Bottega, Roberta; Cappelli, Enrico; Cavani, Simona; Criscuolo, Maria; Nicchia, Elena; Corsolini, Fabio; Greco, Chiara; Borriello, Adriana; Svahn, Johanna; Pillon, Marta; Mecucci, Cristina; Casazza, Gabriella; Verzegnassi, Federico; Cugno, Chiara; Locasciulli, Anna; Farruggia, Piero; Longoni, Daniela; Ramenghi, Ugo; Barberi, Walter; Tucci, Fabio; Perrotta, Silverio; Grammatico, Paola; Hanenberg, Helmut; Della Ragione, Fulvio; Dufour, Carlo; Savoia, Anna

    2014-01-01

    Fanconi anemia is an inherited disease characterized by congenital malformations, pancytopenia, cancer predisposition, and sensitivity to cross-linking agents. The molecular diagnosis of Fanconi anemia is relatively complex for several aspects including genetic heterogeneity with mutations in at least 16 different genes. In this paper, we report the mutations identified in 100 unrelated probands enrolled into the National Network of the Italian Association of Pediatric Hematoly and Oncology. In approximately half of these cases, mutational screening was carried out after retroviral complementation analyses or protein analysis. In the other half, the analysis was performed on the most frequently mutated genes or using a next generation sequencing approach. We identified 108 distinct variants of the FANCA, FANCG, FANCC, FANCD2, and FANCB genes in 85, 9, 3, 2, and 1 families, respectively. Despite the relatively high number of private mutations, 45 of which are novel Fanconi anemia alleles, 26% of the FANCA alleles are due to 5 distinct mutations. Most of the mutations are large genomic deletions and nonsense or frameshift mutations, although we identified a series of missense mutations, whose pathogenetic role was not always certain. The molecular diagnosis of Fanconi anemia is still a tiered procedure that requires identifying candidate genes to avoid useless sequencing. Introduction of next generation sequencing strategies will greatly improve the diagnostic process, allowing a rapid analysis of all the genes. PMID:24584348

  17. MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer.

    PubMed

    Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L

    2016-01-04

    The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. [Two novel pathogenic mutations of GAN gene identified in a patient with giant axonal neuropathy].

    PubMed

    Wang, Juan; Ma, Qingwen; Cai, Qin; Liu, Yanna; Wang, Wei; Ren, Zhaorui

    2016-06-01

    To explore the disease-causing mutations in a patient suspected for giant axonal neuropathy(GAN). Target sequence capture sequencing was used to screen potential mutations in genomic DNA extracted from peripheral blood sample of the patient. Sanger sequencing was applied to confirm the detected mutation. The mutation was verified among 400 GAN alleles from 200 healthy individuals by Sanger sequencing. The function of the mutations was predicted by bioinformatics analysis. The patient was identified as a compound heterozygote carrying two novel pathogenic GAN mutations, i.e., c.778G>T (p.Glu260Ter) and c.277G>A (p.Gly93Arg). Sanger sequencing confirmed that the c.778G>T (p.Glu260Ter) mutation was inherited from his father, while c.277G>A (p.Gly93Arg) was inherited from his mother. The same mutations was not found in the 200 healthy individuals. Bioinformatics analysis predicted that the two mutations probably caused functional abnormality of gigaxonin. Two novel GAN mutations were detected in a patient with GAN. Both mutations are pathogenic and can cause abnormalities of gigaxonin structure and function, leading to pathogenesis of GAN. The results may also offer valuable information for similar diseases.

  19. Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions

    PubMed Central

    Adamczyk, Andrew J.; Cao, Jie; Kamerlin, Shina C. L.; Warshel, Arieh

    2011-01-01

    The proposal that enzymatic catalysis is due to conformational fluctuations has been previously promoted by means of indirect considerations. However, recent works have focused on cases where the relevant motions have components toward distinct conformational regions, whose population could be manipulated by mutations. In particular, a recent work has claimed to provide direct experimental evidence for a dynamical contribution to catalysis in dihydrofolate reductase, where blocking a relevant conformational coordinate was related to the suppression of the motion toward the occluded conformation. The present work utilizes computer simulations to elucidate the true molecular basis for the experimentally observed effect. We start by reproducing the trend in the measured change in catalysis upon mutations (which was assumed to arise as a result of a “dynamical knockout” caused by the mutations). This analysis is performed by calculating the change in the corresponding activation barriers without the need to invoke dynamical effects. We then generate the catalytic landscape of the enzyme and demonstrate that motions in the conformational space do not help drive catalysis. We also discuss the role of flexibility and conformational dynamics in catalysis, once again demonstrating that their role is negligible and that the largest contribution to catalysis arises from electrostatic preorganization. Finally, we point out that the changes in the reaction potential surface modify the reorganization free energy (which includes entropic effects), and such changes in the surface also alter the corresponding motion. However, this motion is never the reason for catalysis, but rather simply a reflection of the shape of the reaction potential surface. PMID:21831831

  20. Molecular genetic analysis of the F11 gene in 14 Turkish patients with factor XI deficiency: identification of novel and recurrent mutations and their inheritance within families.

    PubMed

    Colakoglu, Seyma; Bayhan, Turan; Tavil, Betül; Keskin, Ebru Yılmaz; Cakir, Volkan; Gümrük, Fatma; Çetin, Mualla; Aytaç, Selin; Berber, Ergul

    2018-01-01

    Factor XI (FXI) deficiency is an autosomal bleeding disease associated with genetic defects in the F11 gene which cause decreased FXI levels or impaired FXI function. An increasing number of mutations has been reported in the FXI mutation database, most of which affect the serine protease domain of the protein. FXI is a heterogeneous disorder associated with a variable bleeding tendency and a variety of causative F11 gene mutations. The molecular basis of FXI deficiency in 14 patients from ten unrelated families in Turkey was analysed to establish genotype-phenotype correlations and inheritance of the mutations in the patients' families. Fourteen index cases with a diagnosis of FXI deficiency and family members of these patients were enrolled into the study. The patients' F11 genes were amplified by polymerase chain reaction and subjected to direct DNA sequencing analysis. The findings were analysed statistically using bivariate correlations, Pearson's correlation coefficient and the nonparametric Mann-Whitney test. Direct DNA sequencing analysis of the F11 genes revealed that all of the 14 patients had a F11 gene mutation. Eight different mutations were identified in the apple 1, apple 2 or serine protease domains, except one which was a splice site mutation. Six of the mutations were recurrent. Two of the mutations were novel missense mutations, p.Val522Gly and p.Cys581Arg, within the catalytic domain. The p.Trp519Stop mutation was observed in two families whereas all the other mutations were specific to a single family. Identification of mutations confirmed the genetic heterogeneity of FXI deficiency. Most of the patients with mutations did not have any bleeding complications, whereas some had severe bleeding symptoms. Genetic screening for F11 gene mutations is important to decrease the mortality and morbidity rate associated with FXI deficiency, which can be life-threatening if bleeding occurs in tissues with high fibrinolytic activity.

  1. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families

    PubMed Central

    Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy

    2017-01-01

    Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular spectrum of PRPH2, PRPF8, RHO, RP1, SNRNP200, and TOPORS-associated adRP by the identification of 17 novel mutations. PMID:28076437

  2. Clinical and mutation analysis of 51 probands with anophthalmia and/or severe microphthalmia from a single center

    PubMed Central

    Gerth-Kahlert, Christina; Williamson, Kathleen; Ansari, Morad; Rainger, Jacqueline K; Hingst, Volker; Zimmermann, Theodor; Tech, Stefani; Guthoff, Rudolf F; van Heyningen, Veronica; FitzPatrick, David R

    2013-01-01

    Clinical evaluation and mutation analysis was performed in 51 consecutive probands with severe eye malformations – anophthalmia and/or severe microphthalmia – seen in a single specialist ophthalmology center. The mutation analysis consisted of bidirectional sequencing of the coding regions of SOX2, OTX2, PAX6 (paired domain), STRA6, BMP4, SMOC1, FOXE3, and RAX, and genome-wide array-based copy number assessment. Fifteen (29.4%) of the 51 probands had likely causative mutations affecting SOX2 (9/51), OTX2 (5/51), and STRA6 (1/51). Of the cases with bilateral anophthalmia, 9/12 (75%) were found to be mutation positive. Three of these mutations were large genomic deletions encompassing SOX2 (one case) or OTX2 (two cases). Familial inheritance of three intragenic, plausibly pathogenic, and heterozygous mutations was observed. An unaffected carrier parent of an affected child with an identified OTX2 mutation confirmed the previously reported nonpenetrance for this disorder. Two families with SOX2 mutations demonstrated a parent and child both with significant but highly variable eye malformations. Heterozygous loss-of-function mutations in SOX2 and OTX2 are the most common genetic pathology associated with severe eye malformations and bi-allelic loss-of-function in STRA6 is confirmed as an emerging cause of nonsyndromal eye malformations. PMID:24498598

  3. Diagnosis of becker muscular dystrophy: Results of Re-analysis of DNA samples.

    PubMed

    Straathof, Chiara S M; Van Heusden, Dave; Ippel, Pieternella F; Post, Jan G; Voermans, Nicol C; De Visser, Marianne; Brusse, Esther; Van Den Bergen, Janneke C; Van Der Kooi, Anneke J; Verschuuren, Jan J G M; Ginjaar, Hendrika B

    2016-01-01

    The phenotype of Becker muscular dystrophy (BMD) is highly variable, and the disease may be underdiagnosed. We searched for new mutations in the DMD gene in a cohort of previously undiagnosed patients who had been referred in the period 1985-1995. All requests for DNA analysis of the DMD gene in probands with suspected BMD were re-evaluated. If the phenotype was compatible with BMD, and no deletions or duplications were detected, DNA samples were screened for small mutations. In 79 of 185 referrals, no mutation was found. Analysis could be performed on 31 DNA samples. Seven different mutations, including 3 novel ones, were found. Long-term clinical follow-up is described. Refining DNA analysis in previously undiagnosed cases can identify mutations in the DMD gene and provide genetic diagnosis of BMD. A delayed diagnosis can still be valuable for the proband or the relatives of BMD patients. © 2015 Wiley Periodicals, Inc.

  4. Cytology smears as diagnostic material for EGFR gene testing in non-small cell lung cancer.

    PubMed

    Powrózek, Tomasz; Krawczyk, Paweł; Pankowski, Juliusz; Reszka, Katarzyna; Jakubiak, Magdalena; Obrochta, Anna; Wojas-Krawczyk, Kamila; Buczkowski, Jarosław; Milanowski, Janusz

    2015-11-14

    Cytology smears can be effectively used for EGFR mutation testing in the qualification of NSCLC patients for EGFR tyrosine kinase inhibitor therapy. However, tissue specimens are preferred for EGFR mutation analysis. The aim of this study was to estimate the effectiveness of the real-time PCR method for EGFR testing in histology and cytology materials obtained simultaneously from NSCLC patients. Fourteen adenocarcinoma patients with EGFR-mutation-positive primary tumor tissues were included in the study. Corresponding cytological smears of metastatic lymph nodes obtained by EBUS-TBNA were examined. EGFR Mutation Analysis Kit (EntroGen, USA) and real-time PCR (m2000rt system, Abbott, USA) were used for EGFR mutation analysis in both types of material. In primary tumor tissues, 12 deletions in exon 19 and 2 substitutions in exon 21 (L858R mutation) of the EGFR gene were found. Except for 1 deletion in exon 19, the same EGFR gene mutations were detected in all corresponding cytology samples. The percentage of tumor cells, DNA concentration, percentage of mutated DNA as well as ΔCt values were similar in cytology slides and histology material. In both types of materials, no significant correlations were found between the percentage of tumor cells and the percentage of mutated DNA nor between the DNA concentration and the percentage of mutated DNA. We demonstrated the high effectiveness of a sensitive real-time PCR method in EGFR gene mutation detection in cytology smears.

  5. [Study of a family with epidermolysis bullosa simplex resulting from a novel mutation of KRT14 gene].

    PubMed

    Meng, Lanlan; Du, Juan; Li, Wen; Lu, Guangxiu; Tan, Yueqiu

    2017-08-10

    To determine the molecular etiology for a Chinese pedigree affected with epidermolysis bullosa simplex (EBS). Target region sequencing using a hereditary epidermolysis bullosa capture array combined with Sanger sequencing and bioinformatics analysis were used. Mutation taster, PolyPhen-2, Provean, and SIFT software and NCBI online were employed to assess the pathogenicity and conservation of detected mutations. One hundred healthy unrelated individuals were used as controls. Target region sequencing showed that the proband has carried a unreported heterozygous c.1234A>G (p.Ile412Val) mutation of the KRT14 gene, which was confirmed by Sanger sequencing in other 8 affected individuals but not among healthy members of the pedigree. Bioinformatics analysis indicated that the mutation is highly pathogenic. Remarkably, 3 members of the family (2 affected and 1 unaffected) have carried a heterozygous c.1237G>A (p.Ala413Thr) mutation of the KRT14 gene, which was collected in Human Gene Mutation Database (HGMD). Bioinformatics analysis indicated that the mutation may not be pathogenic. Both mutations were not detected among the 100 healthy controls. The novel c.1234A>G(p.Ile412Val) mutation of the KRT14 gene is probably responsible for the disease, while c.1237G>A (p.Ala413Thr) mutation of KRT14 gene may be a polymorphism. Compared with Sanger sequencing, target region capture sequencing is more efficient and can significantly reduce the cost of genetic testing for EBS.

  6. Precise Detection of IDH1/2 and BRAF Hotspot Mutations in Clinical Glioma Tissues by a Differential Calculus Analysis of High-Resolution Melting Data

    PubMed Central

    Hatae, Ryusuke; Yoshimoto, Koji; Kuga, Daisuke; Akagi, Yojiro; Murata, Hideki; Suzuki, Satoshi O.; Mizoguchi, Masahiro; Iihara, Koji

    2016-01-01

    High resolution melting (HRM) is a simple and rapid method for screening mutations. It offers various advantages for clinical diagnostic applications. Conventional HRM analysis often yields equivocal results, especially for surgically obtained tissues. We attempted to improve HRM analyses for more effective applications to clinical diagnostics. HRM analyses were performed for IDH1R132 and IDH2R172 mutations in 192 clinical glioma samples in duplicate and these results were compared with sequencing results. BRAFV600E mutations were analyzed in 52 additional brain tumor samples. The melting profiles were used for differential calculus analyses. Negative second derivative plots revealed additional peaks derived from heteroduplexes in PCR products that contained mutations; this enabled unequivocal visual discrimination of the mutations. We further developed a numerical expression, the HRM-mutation index (MI), to quantify the heteroduplex-derived peak of the mutational curves. Using this expression, all IDH1 mutation statuses matched those ascertained by sequencing, with the exception of three samples. These discordant results were all derived from the misinterpretation of sequencing data. The effectiveness of our approach was further validated by analyses of IDH2R172 and BRAFV600E mutations. The present analytical method enabled an unequivocal and objective HRM analysis and is suitable for reliable mutation scanning in surgically obtained glioma tissues. This approach could facilitate molecular diagnostics in clinical environments. PMID:27529619

  7. Software and database for the analysis of mutations in the human FBN1 gene.

    PubMed Central

    Collod, G; Béroud, C; Soussi, T; Junien, C; Boileau, C

    1996-01-01

    Fibrillin is the major component of extracellular microfibrils. Mutations in the fibrillin gene on chromosome 15 (FBN1) were described at first in the heritable connective tissue disorder, Marfan syndrome (MFS). More recently, FBN1 has also been shown to harbor mutations related to a spectrum of conditions phenotypically related to MFS and many mutations will have to be accumulated before genotype/phenotype relationships emerge. To facilitate mutational analysis of the FBN1 gene, a software package along with a computerized database (currently listing 63 entries) have been created. PMID:8594563

  8. Monoallelic mutation analysis (MAMA) for identifying germline mutations.

    PubMed

    Papadopoulos, N; Leach, F S; Kinzler, K W; Vogelstein, B

    1995-09-01

    Dissection of germline mutations in a sensitive and specific manner presents a continuing challenge. In dominantly inherited diseases, mutations occur in only one allele and are often masked by the normal allele. Here we report the development of a sensitive and specific diagnostic strategy based on somatic cell hybridization termed MAMA (monoallelic mutation analysis). We have demonstrated the utility of this strategy in two different hereditary colorectal cancer syndromes, one caused by a defective tumour suppressor gene on chromosome 5 (familial adenomatous polyposis, FAP) and the other caused by a defective mismatch repair gene on chromosome 2 (hereditary non-polyposis colorectal cancer, HNPCC).

  9. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia

    PubMed Central

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W.

    2011-01-01

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML. PMID:21989985

  10. [Rapid detection of hot spot mutations of FGFR3 gene with PCR-high resolution melting assay].

    PubMed

    Li, Shan; Wang, Han; Su, Hua; Gao, Jinsong; Zhao, Xiuli

    2017-08-10

    To identify the causative mutations in five individuals affected with dyschondroplasia and develop an efficient procedure for detecting hot spot mutations of the FGFR3 gene. Genomic DNA was extracted from peripheral blood samples with a standard phenol/chloroform method. PCR-Sanger sequencing was used to analyze the causative mutations in the five probands. PCR-high resolution melting (HRM) was developed to detect the identified mutations. A c.1138G>A mutation in exon 8 was found in 4 probands, while a c.1620C>G mutation was found in exon 11 of proband 5 whom had a mild phenotype. All patients were successfully distinguished from healthy controls with the PCR-HRM method. The results of HRM analysis were highly consistent with that of Sanger sequencing. The Gly380Arg and Asn540Lys are hot spot mutations of the FGFR3 gene among patients with ACH/HCH. PCR-HRM analysis is more efficient for detecting hot spot mutations of the FGFR3 gene.

  11. [Mutation analysis for a pedigree affected with keratitis-ichthyosis-deafness syndrome].

    PubMed

    Li, Lulu; Li, Yuan; Lin, Wei; Zhao, Xiuli

    2017-10-10

    To identify mutation of GJB2 gene and provide genetic counseling for a family affected with keratitis-ichthyosis-deafness (KID) syndrome. Genomic DNA was extracted from peripheral blood samples with a standard phenol-chloroform method. PCR and Sanger sequencing were used to analyze potential mutation in the proband. Suspected mutation was verified with a PCR-high-resolution melting (PCR-HRM) method. T-clone sequencing was applied to determine the parental origin of the mutation. A heterozygous mutation, c.148G>A (p.Asp50Asn), which is located in the exon 1 of the GJB2 gene, was found in the proband. The results was confirmed by HRM analysis. Cloning sequencing suggested that the mutation was derived from the father's germline. The hot-spot mutation c.148G>A (p.Asp50Asn) in the GJB2 gene probably underlies the KID syndrome in this Chinese family. A PCR-HRM method has been established to rapidly detect common mutations associated with this disease.

  12. RHO Mutations (p.W126L and p.A346P) in Two Japanese Families with Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Akahori, Masakazu; Itabashi, Takeshi; Nishino, Jo; Yoshitake, Kazutoshi; Ikeo, Kazuho; Tsuneoka, Hiroshi

    2014-01-01

    Purpose. To investigate genetic and clinical features of patients with rhodopsin (RHO) mutations in two Japanese families with autosomal dominant retinitis pigmentosa (adRP). Methods. Whole-exome sequence analysis was performed in ten adRP families. Identified RHO mutations for the cosegregation analysis were confirmed by Sanger sequencing. Ophthalmic examinations were performed to evaluate the RP phenotypes. The impact of the RHO mutation on the rhodopsin conformation was examined by molecular modeling analysis. Results. In two adRP families, we identified two RHO mutations (c.377G>T (p.W126L) and c.1036G>C (p.A346P)), one of which was novel. Complete cosegregation was confirmed for each mutation exhibiting the RP phenotype in both families. Molecular modeling predicted that the novel mutation (p.W126L) might impair rhodopsin function by affecting its conformational transition in the light-adapted form. Clinical phenotypes showed that patients with p.W126L exhibited sector RP, whereas patients with p.A346P exhibited classic RP. Conclusions. Our findings demonstrated that the novel mutation (p.W126L) may be associated with the phenotype of sector RP. Identification of RHO mutations is a very useful tool for predicting disease severity and providing precise genetic counseling. PMID:25485142

  13. Genetic characterization of HIV-1 strains in Togo reveals a high genetic complexity and genotypic drug-resistance mutations in ARV naive patients.

    PubMed

    Yaotsè, Dagnra Anoumou; Nicole, Vidal; Roch, Niama Fabien; Mireille, Prince-David; Eric, Delaporte; Martine, Peeters

    2009-07-01

    In this study, the genetic diversity of HIV-1 and the presence of genotypic drug-resistance mutations in ARV naive patients in Lomé, the capital city of Togo, was documented for the first time. Between June 2006 and January 2007, 83 plasma samples were collected in Lomé from HIV-1 positive and antiretroviral (ARV) naive individuals. Pol (protease+RT) and env (V3-V5) regions were amplified and sequenced. Phylogenetic and recombination analyses were done to identify the HIV-1 variants. Pol sequences were then inspected to identify presence of drug-resistance mutations based on the WHO list recommended for epidemiological studies. A total of 75 plasma samples were amplified and sequenced in both genomic regions. The phylogenetic analysis showed that CRF02 (48.7% and 51.2%) and G (12.8% and 16.2%) were predominant, followed by A3 (6.4% and 6.2%) and CRF06 (3.8% and 12.5%) in pol and env, respectively. One strain was identified as CRF05 in pol and env. Two divergent subtype A strains in env were undetermined (U) in pol but clustered with a previously described complex recombinant strain, 99GR303. Overall, at least 23/83 (27.7%) strains were recombinant, 19 had a unique recombinant structure in pol, and 4 had discordant subtype/CRF designations between pol and env. The subtypes/CRFs involved in the recombination events corresponded to those already circulating as non-recombinant strains in the country. A total of 8 patients harbored strains with mutations associated to drug resistance: L90M (n=1), K103N (n=1), T69N (n=1), T215S (n=1), M41L (n=4). In this study we showed the complexity of the HIV-1 strains circulating in Togo and documented a relative high proportion of ARV naive patients with drug-resistance mutations. The high number of resistant strains observed in Togo needs further attention and additional studies are needed to confirm this trend especially because the national ART program experienced major problems to provide drugs on a regular base.

  14. A frame-shift mutation of PMS2 is a widespread cause of Lynch syndrome.

    PubMed

    Clendenning, M; Senter, L; Hampel, H; Robinson, K Lagerstedt; Sun, S; Buchanan, D; Walsh, M D; Nilbert, M; Green, J; Potter, J; Lindblom, A; de la Chapelle, A

    2008-06-01

    When compared to the other mismatch repair genes involved in Lynch syndrome, the identification of mutations within PMS2 has been limited (<2% of all identified mutations), yet the immunohistochemical analysis of tumour samples indicates that approximately 5% of Lynch syndrome cases are caused by PMS2. This disparity is primarily due to complications in the study of this gene caused by interference from pseudogene sequences. Using a recently developed method for detecting PMS2 specific mutations, we have screened 99 patients who are likely candidates for PMS2 mutations based on immunohistochemical analysis. We have identified a frequently occurring frame-shift mutation (c.736_741del6ins11) in 12 ostensibly unrelated Lynch syndrome patients (20% of patients we have identified with a deleterious mutation in PMS2, n = 61). These individuals all display the rare allele (population frequency <0.05) at a single nucleotide polymorphism (SNP) in exon 11, and have been shown to possess a short common haplotype, allowing us to calculate that the mutation arose around 1625 years ago (65 generations; 95% confidence interval 22 to 120). Ancestral analysis indicates that this mutation is enriched in individuals with British and Swedish ancestry. We estimate that there are >10 000 carriers of this mutation in the USA alone. The identification of both the mutation and the common haplotype in one Swedish control sample (n = 225), along with evidence that Lynch syndrome associated cancers are rarer than expected in the probands' families, would suggest that this is a prevalent mutation with reduced penetrance.

  15. Common pathogenic effects of missense mutations in the P-type ATPase ATP13A2 (PARK9) associated with early-onset parkinsonism.

    PubMed

    Podhajska, Agata; Musso, Alessandra; Trancikova, Alzbeta; Stafa, Klodjan; Moser, Roger; Sonnay, Sarah; Glauser, Liliane; Moore, Darren J

    2012-01-01

    Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense mutations in ATP13A2 associated with early-onset forms of parkinsonism.

  16. Common Pathogenic Effects of Missense Mutations in the P-Type ATPase ATP13A2 (PARK9) Associated with Early-Onset Parkinsonism

    PubMed Central

    Podhajska, Agata; Musso, Alessandra; Trancikova, Alzbeta; Stafa, Klodjan; Moser, Roger; Sonnay, Sarah; Glauser, Liliane; Moore, Darren J.

    2012-01-01

    Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense mutations in ATP13A2 associated with early-onset forms of parkinsonism. PMID:22768177

  17. Molecular genetic investigations of root gravitropism and other complex growth behaviors using Arabidopsis and Brachypodium as models

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Barker, Richard; Miller, Nathan; Su, Shih-Hao; Su, Shih-Heng

    2016-07-01

    When growing on hard surfaces, Arabidopsis roots tend to grown downward, as dictated by positive gravitropism. At the same time, surface-derived stimuli promote a wavy pattern of growth that is superimposed to a rightward root-skewing trend. This behavior is believed to facilitate obstacle avoidance in soil. To better understand these complex behaviors, we have isolated and characterized mutations that affect them. Some of these mutations were shown to affect gravitropism whereas others did not. Within the latter group, most of the mutations affected mechanisms that control anisotropic cell expansion. We have also characterized mutations that affect early steps of gravity signal transduction within the gravity-sensing columella cells of the root cap. Upon reorientation within the gravity field, starch-filled plastids sediment to the bottom-side of these cells, triggering a pathway that leads to re-localization of auxin efflux facilitators to the bottom membrane. Lateral auxin transport toward the bottom flank ensues, leading to gravitropic curvature. Several of the mutations we characterized affect genes that encode proteins associated with the vesicle trafficking pathway needed for this cell polarization. Other mutations were shown to affect components of the plastid outer envelope protein import complex (TOC). Their functional analysis suggests an active role for plastids in gravity signal transduction, beyond a simple contribution as sedimenting gravity susceptors. Because most cultivated crops are monocots, not dicots like Arabidopsis, we have also initiated studies of root-growth behavior with Brachypodium distachyon. When responding to a gravistimulus, the roots of Brachypodium seedlings develop a strong downward curvature that proceeds until the tip reaches a ~50-degree curvature. At that time, an oscillatory tip movement occurs while the root continues its downward reorientation. These root-tip oscillations also occur if roots are allowed to simply grow downward on vertical surfaces, or fully embedded in agar-containing medium. Brachypodium distachyon accessions differ in their gravisensitivity, kinetics of gravitropism and occurrence, periodicity and amplitude of tip oscillations. Mathematical models are being built to fit the data, and used to estimate growth, gravitropism and oscillation parameters for incorporation into Genome-Wide Association Study (GWAS) algorithms aimed at identifying contributing loci. This work was supported by grants from the National Aeronautics and Space Administration (NASA) and from the National Science Foundation (NSF).

  18. Biochemical and genetic diagnosis of the primary hyperoxalurias: a review.

    PubMed

    Rumsby, G

    2000-01-01

    The primary hyperoxalurias are a group of inherited disorders of endogenous oxalate overproduction. Diagnosis of the two best-characterized disorders, primary hyperoxaluria (PH) Types 1 and 2, is achieved by sequential measurement of alanine:glyoxylate aminotransferase and glyoxylate reductase enzyme activity in a single needle liver biopsy. While genetic analysis of PH2 is still at a relatively early stage, the AGXT gene defective in the Type 1 disorder is well characterized, and a number of mutations have been identified. To determine whether mutation analysis could replace enzymatic analysis for the diagnosis of PH1, DNA samples from 127 consecutive unrelated patients in whom there was a high clinical suspicion of primary hyperoxaluria were analyzed for the presence of the G630A and T853C mutations, which together account for approximately 34% of the mutant alleles in our patient cohort. The sensitivity of mutation detection was 47% in those patients with enzymologically confirmed Type 1 disease, showing that mutation analysis cannot effectively replace enzymology at the present time. However, there is little doubt of the value of genetic methods (mutation and linkage analysis) for diagnosing PH1 (and eventually PH2) in other family members and for prenatal diagnosis and carrier testing.

  19. Trends in global warming and evolution of matrix protein 2 family from influenza A virus.

    PubMed

    Yan, Shao-Min; Wu, Guang

    2009-12-01

    The global warming is an important factor affecting the biological evolution, and the influenza is an important disease that threatens humans with possible epidemics or pandemics. In this study, we attempted to analyze the trends in global warming and evolution of matrix protein 2 family from influenza A virus, because this protein is a target of anti-flu drug, and its mutation would have significant effect on the resistance to anti-flu drugs. The evolution of matrix protein 2 of influenza A virus from 1959 to 2008 was defined using the unpredictable portion of amino-acid pair predictability. Then the trend in this evolution was compared with the trend in the global temperature, the temperature in north and south hemispheres, and the temperature in influenza A virus sampling site, and species carrying influenza A virus. The results showed the similar trends in global warming and in evolution of M2 proteins although we could not correlate them at this stage of study. The study suggested the potential impact of global warming on the evolution of proteins from influenza A virus.

  20. Cardiac Channel Molecular Autopsy: Insights From 173 Consecutive Cases of Autopsy-Negative Sudden Unexplained Death Referred for Postmortem Genetic Testing

    PubMed Central

    Tester, David J.; Medeiros-Domingo, Argelia; Will, Melissa L.; Haglund, Carla M.; Ackerman, Michael J.

    2012-01-01

    Objective To perform long QT syndrome and catecholaminergic polymorphic ventricular tachycardia cardiac channel postmortem genetic testing (molecular autopsy) for a large cohort of cases of autopsy-negative sudden unexplained death (SUD). Methods From September 1, 1998, through October 31, 2010, 173 cases of SUD (106 males; mean ± SD age, 18.4±12.9 years; age range, 1-69 years; 89% white) were referred by medical examiners or coroners for a cardiac channel molecular autopsy. Using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing, a comprehensive mutational analysis of the long QT syndrome susceptibility genes (KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2) and a targeted analysis of the catecholaminergic polymorphic ventricular tachycardia type 1–associated gene (RYR2) were conducted. Results Overall, 45 putative pathogenic mutations absent in 400 to 700 controls were identified in 45 autopsy-negative SUD cases (26.0%). Females had a higher yield (26/67 [38.8%]) than males (19/106 [17.9%]; P<.005). Among SUD cases with exercise-induced death, the yield trended higher among the 1- to 10-year-olds (8/12 [66.7%]) compared with the 11- to 20-year-olds (4/27 [14.8%]; P=.002). In contrast, for those who died during a period of sleep, the 11- to 20-year-olds had a higher yield (9/25 [36.0%]) than the 1- to 10-year-olds (1/24 [4.2%]; P=.01). Conclusion Cardiac channel molecular autopsy should be considered in the evaluation of autopsy-negative SUD. Several interesting genotype-phenotype observations may provide insight into the expected yields of postmortem genetic testing for SUD and assist in selecting cases with the greatest potential for mutation discovery and directing genetic testing efforts. PMID:22677073

  1. Role of genetic mutations in folate-related enzyme genes on Male Infertility

    PubMed Central

    Liu, Kang; Zhao, Ruizhe; Shen, Min; Ye, Jiaxin; Li, Xiao; Huang, Yuan; Hua, Lixin; Wang, Zengjun; Li, Jie

    2015-01-01

    Several studies showed that the genetic mutations in the folate-related enzyme genes might be associated with male infertility; however, the results were still inconsistent. We performed a meta-analysis with trial sequential analysis to investigate the associations between the MTHFR C677T, MTHFR A1298C, MTR A2756G, MTRR A66G mutations and the MTHFR haplotype with the risk of male infertility. Overall, a total of 37 studies were selected. Our meta-analysis showed that the MTHFR C677T mutation was a risk factor for male infertility in both azoospermia and oligoasthenoteratozoospermia patients, especially in Asian population. Men carrying the MTHFR TC haplotype were most liable to suffer infertility while those with CC haplotype had lowest risk. On the other hand, the MTHFR A1298C mutation was not related to male infertility. MTR A2756G and MTRR A66G were potential candidates in the pathogenesis of male infertility, but more case-control studies were required to avoid false-positive outcomes. All of these results were confirmed by the trial sequential analysis. Finally, our meta-analysis with trial sequential analysis proved that the genetic mutations in the folate-related enzyme genes played a significant role in male infertility. PMID:26549413

  2. Mutational Analysis of the Adaptor Protein 2 Sigma Subunit (AP2S1) Gene: Search for Autosomal Dominant Hypocalcemia Type 3 (ADH3)

    PubMed Central

    Rogers, Angela; Nesbit, M. Andrew; Hannan, Fadil M.; Howles, Sarah A.; Gorvin, Caroline M.; Cranston, Treena; Allgrove, Jeremy; Bevan, John S.; Bano, Gul; Brain, Caroline; Datta, Vipan; Grossman, Ashley B.; Hodgson, Shirley V.; Izatt, Louise; Millar-Jones, Lynne; Pearce, Simon H.; Robertson, Lisa; Selby, Peter L.; Shine, Brian; Snape, Katie; Warner, Justin

    2014-01-01

    Context: Autosomal dominant hypocalcemia (ADH) types 1 and 2 are due to calcium-sensing receptor (CASR) and G-protein subunit-α11 (GNA11) gain-of-function mutations, respectively, whereas CASR and GNA11 loss-of-function mutations result in familial hypocalciuric hypercalcemia (FHH) types 1 and 2, respectively. Loss-of-function mutations of adaptor protein-2 sigma subunit (AP2σ 2), encoded by AP2S1, cause FHH3, and we therefore sought for gain-of-function AP2S1 mutations that may cause an additional form of ADH, which we designated ADH3. Objective: The objective of the study was to investigate the hypothesis that gain-of-function AP2S1 mutations may cause ADH3. Design: The sample size required for the detection of at least one mutation with a greater than 95% likelihood was determined by binomial probability analysis. Nineteen patients (including six familial cases) with hypocalcemia in association with low or normal serum PTH concentrations, consistent with ADH, but who did not have CASR or GNA11 mutations, were ascertained. Leukocyte DNA was used for sequence and copy number variation analysis of AP2S1. Results: Binomial probability analysis, using the assumption that AP2S1 mutations would occur in hypocalcemic patients at a prevalence of 20%, which is observed in FHH patients without CASR or GNA11 mutations, indicated that the likelihood of detecting at least one AP2S1 mutation was greater than 95% and greater than 98% in sample sizes of 14 and 19 hypocalcemic patients, respectively. AP2S1 mutations and copy number variations were not detected in the 19 hypocalcemic patients. Conclusion: The absence of AP2S1 abnormalities in hypocalcemic patients, suggests that ADH3 may not occur or otherwise represents a rare hypocalcemic disorder. PMID:24708097

  3. Cancerouspdomains: comprehensive analysis of cancer type-specific recurrent somatic mutations in proteins and domains.

    PubMed

    Hashemi, Seirana; Nowzari Dalini, Abbas; Jalali, Adrin; Banaei-Moghaddam, Ali Mohammad; Razaghi-Moghadam, Zahra

    2017-08-16

    Discriminating driver mutations from the ones that play no role in cancer is a severe bottleneck in elucidating molecular mechanisms underlying cancer development. Since protein domains are representatives of functional regions within proteins, mutations on them may disturb the protein functionality. Therefore, studying mutations at domain level may point researchers to more accurate assessment of the functional impact of the mutations. This article presents a comprehensive study to map mutations from 29 cancer types to both sequence- and structure-based domains. Statistical analysis was performed to identify candidate domains in which mutations occur with high statistical significance. For each cancer type, the corresponding type-specific domains were distinguished among all candidate domains. Subsequently, cancer type-specific domains facilitated the identification of specific proteins for each cancer type. Besides, performing interactome analysis on specific proteins of each cancer type showed high levels of interconnectivity among them, which implies their functional relationship. To evaluate the role of mitochondrial genes, stem cell-specific genes and DNA repair genes in cancer development, their mutation frequency was determined via further analysis. This study has provided researchers with a publicly available data repository for studying both CATH and Pfam domain regions on protein-coding genes. Moreover, the associations between different groups of genes/domains and various cancer types have been clarified. The work is available at http://www.cancerouspdomains.ir .

  4. Mutation analysis of the MYO7A and CDH23 genes in Japanese patients with Usher syndrome type 1.

    PubMed

    Nakanishi, Hiroshi; Ohtsubo, Masafumi; Iwasaki, Satoshi; Hotta, Yoshihiro; Takizawa, Yoshinori; Hosono, Katsuhiro; Mizuta, Kunihiro; Mineta, Hiroyuki; Minoshima, Shinsei

    2010-12-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by retinitis pigmentosa and hearing loss. USH type 1 (USH1), the second common type of USH, is frequently caused by MYO7A and CDH23 mutations, accounting for 70-80% of the cases among various ethnicities, including Caucasians, Africans and Asians. However, there have been no reports of mutation analysis for any responsible genes for USH1 in Japanese patients. This study describes the first mutation analysis of MYO7A and CDH23 in Japanese USH1 patients. Five mutations (three in MYO7A and two in CDH23) were identified in four of five unrelated patients. Of these mutations, two were novel. One of them, p.Tyr1942SerfsX23 in CDH23, was a large deletion causing the loss of 3 exons. This is the first large deletion to be found in CDH23. The incidence of the MYO7A and CDH23 mutations in the study population was 80%, which is consistent with previous findings. Therefore, mutation screening for these genes is expected to be a highly sensitive method for diagnosing USH1 among the Japanese.

  5. Ocular findings associated with a Cys39Arg mutation in the Norrie disease gene.

    PubMed

    Joos, K M; Kimura, A E; Vandenburgh, K; Bartley, J A; Stone, E M

    1994-12-01

    To diagnose the carriers and noncarriers in a family affected with Norrie disease based on molecular analysis. Family members from three generations, including one affected patient, two obligate carriers, one carrier identified with linkage analysis, one noncarrier identified with linkage analysis, and one female family member with indeterminate carrier status, were examined clinically and electrophysiologically. Linkage analysis had previously failed to determine the carrier status of one female family member in the third generation. Blood samples were screened for mutations in the Norrie disease gene with single-strand conformation polymorphism analysis. The mutation was characterized by dideoxy-termination sequencing. Ophthalmoscopy and electroretinographic examination failed to detect the carrier state. The affected individuals and carriers in this family were found to have a transition from thymidine to cytosine in the first nucleotide of codon 39 of the Norrie disease gene, causing a cysteine-to-arginine mutation. Single-strand conformation polymorphism analysis identified a patient of indeterminate status (by linkage) to be a noncarrier of Norrie disease. Ophthalmoscopy and electroretinography could not identify carriers of this Norrie disease mutation. Single-strand conformation polymorphism analysis was more sensitive and specific than linkage analysis in identifying carriers in this family.

  6. Comparison of Thoracic Radiotherapy Efficacy Between Patients With and Without EGFR-mutated Lung Adenocarcinoma.

    PubMed

    Li, Ming-Hsien; Tsai, Jo-Ting; Ting, Lai-Lei; Lin, Jang-Chun; Liu, Yu-Chang

    2018-01-01

    To investigate the association between tumor response to thoracic radiotherapy and epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma, we collected 48 patients treated between January 2010 and December 2013. Of the 18 patients with EGFR mutation, 15 (83.3%) had a single mutation, and three (16.7%) had double mutation. Different EGFR mutation subtypes exhibited different responses to radiotherapy. The identified double EGFR mutations were associated with reduction of residual tumor burden (RTB) after radiotherapy. In univariate analysis, EGFR mutations in exon 18, 20, and 21 and double EGFR mutation were significant factors predicting RTB. In multivariate analysis, exon 20 mutation was the only significant factor. Patients with EGFR mutation seemed to have longer mean overall survival (OS) compared to the group with wild-type EGFR (31.1 vs. 26.6 months, p=0.49). The median and mean OS in patients with double EGFR mutation vs. wild-type EGFR were 20.1 vs. 16.9 months and 28.9 vs. 26.6 months, respectively. Further studies with larger sample size are warranted to clarify the association of EGFR mutation status with the lung tumor response after radiotherapy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Identification of Mutations Underlying 20 Inborn Errors of Metabolism in the United Arab Emirates Population

    PubMed Central

    Ben-Rebeh, Imen; Hertecant, Jozef L.; Al-Jasmi, Fatma A.; Aburawi, Hanan E.; Al-Yahyaee, Said A.; Al-Gazali, Lihadh

    2012-01-01

    Inborn errors of metabolism (IEM) are frequently encountered by physicians in the United Arab Emirates (UAE). However, the mutations underlying a large number of these disorders have not yet been determined. Therefore, the objective of this study was to identify the mutations underlying a number of IEM disorders among UAE residents from both national and expatriate families. A case series of patients from 34 families attending the metabolic clinic at Tawam Hospital were clinically evaluated, and molecular testing was carried out to determine their causative mutations. The mutation analysis was carried out at molecular genetics diagnostic laboratories. Thirty-eight mutations have been identified as responsible for twenty IEM disorders, including in the metabolism of amino acids, lipids, steroids, metal transport and mitochondrial energy metabolism, and lysosomal storage disorders. Nine of the identified mutations are novel, including two missense mutations, three premature stop codons and four splice site mutations. Mutation analysis of IEM disorders in the UAE population has an important impact on molecular diagnosis and genetic counseling for families affected by these disorders. PMID:22106832

  8. Comparison of cross-platform technologies for EGFR T790M testing in patients with non-small cell lung cancer

    PubMed Central

    Li, Xuefei; Zhou, Caicun

    2017-01-01

    Somatic mutations in the gene encoding epidermal growth factor receptor (EGFR) play an important role in determining targeted treatment modalities in non-small cell lung cancer (NSCLC). The EGFR T790M mutation emerges in approximately 50% of cases who acquire resistance to tyrosine kinase inhibitors. Detecting EGFR T790M mutation in tumor tissue is challenging due to heterogeneity of the tumor, low abundance of the mutation and difficulty for re-biopsy in patients with advanced disease. Alternatively, circulating tumor DNA (ctDNA) has been proposed as a non-invasive method for mutational analysis. The presence of EGFR mutations in ctDNA predicts response to the EGFR TKIs in the first-line setting. Molecular testing is now considered a standard care for NSCLC. The advent of standard commercially available kits and targeted mutational analysis has revolutionized the accuracy of mutation detection platforms for detection of EGFR mutations. Our review provides an overview of various commonly used platforms for detecting EGFR T790M mutation in tumor tissue and plasma. PMID:29246024

  9. Whole-exome analysis to detect congenital hemolytic anemia mimicking congenital dyserythropoietic anemia.

    PubMed

    Hamada, Motoharu; Doisaki, Sayoko; Okuno, Yusuke; Muramatsu, Hideki; Hama, Asahito; Kawashima, Nozomu; Narita, Atsushi; Nishio, Nobuhiro; Yoshida, Kenichi; Kanno, Hitoshi; Manabe, Atsushi; Taga, Takashi; Takahashi, Yoshiyuki; Miyano, Satoru; Ogawa, Seishi; Kojima, Seiji

    2018-06-23

    Congenital dyserythropoietic anemia (CDA) is a heterogeneous group of rare congenital disorders characterized by ineffective erythropoiesis and dysplastic changes in erythroblasts. Diagnosis of CDA is based primarily on the morphology of bone marrow erythroblasts; however, genetic tests have recently become more important. Here, we performed genetic analysis of 10 Japanese patients who had been diagnosed with CDA based on laboratory findings and morphological characteristics. We examined 10 CDA patients via central review of bone marrow morphology and genetic analysis for congenital bone marrow failure syndromes. Sanger sequencing for CDAN1, SEC23B, and KLF1 was performed for all patients. We performed whole-exome sequencing in patients without mutation in these genes. Three patients carried pathogenic CDAN1 mutations, whereas no SEC23B mutations were identified in our cohort. WES unexpectedly identified gene mutations known to cause congenital hemolytic anemia in two patients: canonical G6PD p.Val394Leu mutation and SPTA1 p.Arg28His mutation. Comprehensive genetic analysis is warranted for more effective diagnosis of patients with suspected CDA.

  10. Congenital combined pituitary hormone deficiency attributable to a novel PROP1 mutation (467insT).

    PubMed

    Nose, Osamu; Tatsumi, Keita; Nakano, Yukiko; Amino, Nobuyuki

    2006-04-01

    Combined pituitary hormone deficiency (CPHD) is an anterior pituitary disorder, commonly resulting in growth retardation. PROP1 gene mutations appear to be frequently responsible for CPHD, particularly in Middle and Eastern Europe and the Americas, but few cases have been reported in Japan. Two sisters (aged 8.4 and 4.3 years at presentation) exhibited proportional short stature from about 2 years of age. Genetic analysis determined the nature and location of mutations. Pituitary size by magnetic resonance imaging (MRI) indicated only slight hypoplasia, while hormone analysis revealed deficiencies in secretion of growth hormone (GH), thyroid stimulating hormone, prolactin and gonadotropins; adrenocortinotropin secretion appeared adequate. Genetic analysis revealed a novel familial inherited PROP1 mutation. A unique insertion mutation was found in codon 156 (467insT) located in the transcription-activating region of the PROP1 gene. The resulting PROP1 protein (191 amino acids) would lack the transcription activation domain and consequently be non-functional. Gene analysis suggested that the siblings had inherited a unique autosomal recessive PROP1 gene mutation resulting in severe GH deficiency and subsequent growth retardation.

  11. Identification of a Comprehensive Spectrum of Genetic Factors for Hereditary Breast Cancer in a Chinese Population by Next-Generation Sequencing

    PubMed Central

    Yang, Xiaochen; Wu, Jiong; Lu, Jingsong; Liu, Guangyu; Di, Genhong; Chen, Canming; Hou, Yifeng; Sun, Menghong; Yang, Wentao; Xu, Xiaojing; Zhao, Ying; Hu, Xin; Li, Daqiang; Cao, Zhigang; Zhou, Xiaoyan; Huang, Xiaoyan; Liu, Zhebin; Chen, Huan; Gu, Yanzi; Chi, Yayun; Yan, Xia; Han, Qixia; Shen, Zhenzhou; Shao, Zhimin; Hu, Zhen

    2015-01-01

    The genetic etiology of hereditary breast cancer has not been fully elucidated. Although germline mutations of high-penetrance genes such as BRCA1/2 are implicated in development of hereditary breast cancers, at least half of all breast cancer families are not linked to these genes. To identify a comprehensive spectrum of genetic factors for hereditary breast cancer in a Chinese population, we performed an analysis of germline mutations in 2,165 coding exons of 152 genes associated with hereditary cancer using next-generation sequencing (NGS) in 99 breast cancer patients from families of cancer patients regardless of cancer types. Forty-two deleterious germline mutations were identified in 21 genes of 34 patients, including 18 (18.2%) BRCA1 or BRCA2 mutations, 3 (3%) TP53 mutations, 5 (5.1%) DNA mismatch repair gene mutations, 1 (1%) CDH1 mutation, 6 (6.1%) Fanconi anemia pathway gene mutations, and 9 (9.1%) mutations in other genes. Of seven patients who carried mutations in more than one gene, 4 were BRCA1/2 mutation carriers, and their average onset age was much younger than patients with only BRCA1/2 mutations. Almost all identified high-penetrance gene mutations in those families fulfill the typical phenotypes of hereditary cancer syndromes listed in the National Comprehensive Cancer Network (NCCN) guidelines, except two TP53 and three mismatch repair gene mutations. Furthermore, functional studies of MSH3 germline mutations confirmed the association between MSH3 mutation and tumorigenesis, and segregation analysis suggested antagonism between BRCA1 and MSH3. We also identified a lot of low-penetrance gene mutations. Although the clinical significance of those newly identified low-penetrance gene mutations has not been fully appreciated yet, these new findings do provide valuable epidemiological information for the future studies. Together, these findings highlight the importance of genetic testing based on NCCN guidelines and a multi-gene analysis using NGS may be a supplement to traditional genetic counseling. PMID:25927356

  12. Lessons learnt from implementation of a Lynch syndrome screening program for patients with gynaecological malignancy.

    PubMed

    Najdawi, Fedaa; Crook, Ashley; Maidens, Jayne; McEvoy, Christopher; Fellowes, Andrew; Pickett, Justine; Ho, Musei; Nevell, David; McIlroy, Kirsten; Sheen, Amy; Sioson, Loretta; Ahadi, Mahsa; Turchini, John; Clarkson, Adele; Hogg, Russell; Valmadre, Sue; Gard, Greg; Dooley, Susan J; Scott, Rodney J; Fox, Stephen B; Field, Michael; Gill, Anthony J

    2017-08-01

    Despite a trend towards universal testing, best practice to screen patients presenting with gynaecological malignancy for Lynch syndrome (LS) is uncertain. We report our institutional experience of a co-ordinated gynaecological LS screening program. All patients with endometrial carcinoma or carcinosarcoma, or gynaecological endometrioid or clear cell carcinomas undergo reflex four panel immunohistochemistry (IHC) for MLH1, PMS2, MSH2 and MSH6 followed by cascade somatic hypermethylation analysis of the MLH1 promoter locus for dual MLH1/PMS2 negative tumours. On the basis of these results, genetic counselling and targeted germline mutation testing is then offered to patients considered at high risk of LS. From 1 August 2013 to 31 December 2015, 124 patients were screened (mean age 64.6 years). Thirty-six (29.0%) demonstrated abnormal MMR IHC: 26 (72.2%) showed dual loss of MLH1/PMS2, five (13.9%) dual loss of MSH2/MSH6, three (8.3%) isolated loss of MSH6, and two (5.6%) isolated loss of PMS2. Twenty-five of 26 (96.1%) patients with dual MLH1/PMS2 loss demonstrated MLH1 promoter methylation. Therefore, 11 (8.9%) patients screened were classified as high risk for LS, of whom nine (81.8%) accepted germline mutation testing. Three (2.4% of total screened) were confirmed to have LS, two with germline PMS2 and one with germline MSH2 mutation. Massive parallel sequencing of tumour tissue demonstrated somatic mutations which were concordant with the IHC results in the remainder. Interestingly, the one MLH1/PMS2 IHC negative but not hypermethylated tumour harboured only somatic MLH1 mutations, indicating that universal cascade methylation testing in MLH1/PMS2 IHC negative tumours is very low yield and could be reconsidered in a resource-poor setting. In conclusion, universal screening for LS in patients presenting with gynaecological malignancy using the algorithm described above identified LS in three of 124 (2.4%) of our population. Only three of nine (33.3%) patients considered at high risk for LS by combined IHC and hypermethylation analysis were proven to have LS. Only one of the LS patients was less than 50 years of age and none of these patients would have been identified had more restrictive Amsterdam or Bethesda criteria been applied. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Novel types of COMP mutations and genotype-phenotype association in pseudoachondroplasia and multiple epiphyseal dysplasia.

    PubMed

    Mabuchi, Akihiko; Manabe, Noriyo; Haga, Nobuhiko; Kitoh, Hiroshi; Ikeda, Toshiyuki; Kawaji, Hiroyuki; Tamai, Kazuya; Hamada, Junichiro; Nakamura, Shigeru; Brunetti-Pierri, Nicola; Kimizuka, Mamori; Takatori, Yoshio; Nakamura, Kozo; Nishimura, Gen; Ohashi, Hirofumi; Ikegawa, Shiro

    2003-01-01

    Mutations in the gene encoding cartilage oligomeric matrix protein ( COMP) cause two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). More than 40 mutations have been identified; however, genotype-phenotype relationships are not well delineated. Further, mutations other than in-frame insertion/deletions and substitutions have not been found, and currently known mutations are clustered within relatively small regions. Here we report the identification of nine novel and three recurrent COMP mutations in PSACH and MED patients. These include two novel types of mutations; the first, a gross deletion spanning an exon-intron junction, causes an exon deletion. The second, a frameshift mutation that results in a truncation of the C-terminal domain, is the first known truncating mutation in the COMP gene. The remaining mutations, other than a novel exon 18 mutation, affected highly conserved aspartate or cysteine residues in the calmodulin-like repeat (CLR) region. Genotype-phenotype analysis revealed a correlation between the position and type of mutations and the severity of short stature. Mutations in the seventh CLR produced more severe short stature compared with mutations elsewhere in the CLRs ( P=0.0003) and elsewhere in the COMP gene ( P=0.0007). Patients carrying mutations within the five-aspartates repeat (aa 469-473) in the seventh CLR were extremely short (below -6 SD). Patients with deletion mutations were significantly shorter than those with substitution mutations ( P=0.0024). These findings expand the mutation spectrum of the COMP gene and highlight genotype-phenotype relationships, facilitating improved genetic diagnosis and analysis of COMP function in humans.

  14. Transcription factor mutations in myelodysplastic/myeloproliferative neoplasms

    PubMed Central

    Ernst, Thomas; Chase, Andrew; Zoi, Katerina; Waghorn, Katherine; Hidalgo-Curtis, Claire; Score, Joannah; Jones, Amy; Grand, Francis; Reiter, Andreas; Hochhaus, Andreas; Cross, Nicholas C.P.

    2010-01-01

    Background Aberrant activation of tyrosine kinases, caused by either mutation or gene fusion, is of major importance for the development of many hematologic malignancies, particularly myeloproliferative neoplasms. We hypothesized that hitherto unrecognized, cytogenetically cryptic tyrosine kinase fusions may be common in non-classical or atypical myeloproliferative neoplasms and related myelodysplastic/myeloproliferative neoplasms. Design and Methods To detect genomic copy number changes associated with such fusions, we performed a systematic search in 68 patients using custom designed, targeted, high-resolution array comparative genomic hybridization. Arrays contained 44,000 oligonucleotide probes that targeted 500 genes including all 90 tyrosine kinases plus downstream tyrosine kinase signaling components, other translocation targets, transcription factors, and other factors known to be important for myelopoiesis. Results No abnormalities involving tyrosine kinases were detected; however, nine cytogenetically cryptic copy number imbalances were detected in seven patients, including hemizygous deletions of RUNX1 or CEBPA in two cases with atypical chronic myeloid leukemia. Mutation analysis of the remaining alleles revealed non-mutated RUNX1 and a frameshift insertion within CEBPA. A further mutation screen of 187 patients with myelodysplastic/myeloproliferative neoplasms identified RUNX1 mutations in 27 (14%) and CEBPA mutations in seven (4%) patients. Analysis of other transcription factors known to be frequently mutated in acute myeloid leukemia revealed NPM1 mutations in six (3%) and WT1 mutations in two (1%) patients with myelodysplastic/myeloproliferative neoplasms. Univariate analysis indicated that patients with mutations had a shorter overall survival (28 versus 44 months, P=0.019) compared with patients without mutations, with the prognosis for cases with CEBPA, NPM1 or WT1 mutations being particularly poor. Conclusions We conclude that mutations of transcription and other nuclear factors are frequent in myelodysplastic/myeloproliferative neoplasms and are generally mutually exclusive. CEBPA, NPM1 or WT1 mutations may be associated with a poor prognosis, an observation that will need to be confirmed by detailed prospective studies. PMID:20421268

  15. Clinical implications of genomic profiles in metastatic breast cancer with a focus on TP53 and PIK3CA, the most frequently mutated genes.

    PubMed

    Kim, Ji-Yeon; Lee, Eunjin; Park, Kyunghee; Park, Woong-Yang; Jung, Hae Hyun; Ahn, Jin Seok; Im, Young-Hyuck; Park, Yeon Hee

    2017-04-25

    Breast cancer (BC) has been genetically profiled through large-scale genome analyses. However, the role and clinical implications of genetic alterations in metastatic BC (MBC) have not been evaluated. Therefore, we conducted whole-exome sequencing (WES) and RNA-Seq of 37 MBC samples and targeted deep sequencing of another 29 MBCs. We evaluated somatic mutations from WES and targeted sequencing and assessed gene expression and performed pathway analysis from RNA-Seq. In this analysis, PIK3CA was the most commonly mutated gene in estrogen receptor (ER)-positive BC, while in ER-negative BC, TP53 was the most commonly mutated gene (p = 0.018 and p < 0.001, respectively). TP53 stopgain/loss and frameshift mutation was related to low expression of TP53 in contrast nonsynonymous mutation was related to high expression. The impact of TP53 mutation on clinical outcome varied with regard to ER status. In ER-positive BCs, wild type TP53 had a better prognosis than mutated TP53 (median overall survival (OS) (wild type vs. mutated): 88.5 ± 54.4 vs. 32.6 ± 10.7 (months), p = 0.002). In contrast, mutated TP53 had a protective effect in ER-negative BCs (median OS: 0.10 vs. 32.6 ± 8.2, p = 0.026). However, PIK3CA mutation did not affect patient survival. In gene expression analysis, CALM1, a potential regulator of AKT, was highly expressed in PIK3CA-mutated BCs. In conclusion, mutation of TP53 was associated with expression status and affect clinical outcome according to ER status in MBC. Although mutation of PIK3CA was not related to survival in this study, mutation of PIK3CA altered the expression of other genes and pathways including CALM1 and may be a potential predictive marker of PI3K inhibitor effectiveness.

  16. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS) Gene

    PubMed Central

    Nakajima, Yoko; Meijer, Judith; Zhang, Chunhua; Wang, Xu; Kondo, Tomomi; Ito, Tetsuya; Dobritzsch, Doreen; Van Kuilenburg, André B. P.

    2016-01-01

    Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R) in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients. PMID:26771602

  17. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS) Gene.

    PubMed

    Nakajima, Yoko; Meijer, Judith; Zhang, Chunhua; Wang, Xu; Kondo, Tomomi; Ito, Tetsuya; Dobritzsch, Doreen; Van Kuilenburg, André B P

    2016-01-12

    Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R) in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients.

  18. Geographic and temporal trends in the molecular epidemiology and genetic mechanisms of transmitted HIV-1 drug resistance: an individual-patient- and sequence-level meta-analysis.

    PubMed

    Rhee, Soo-Yon; Blanco, Jose Luis; Jordan, Michael R; Taylor, Jonathan; Lemey, Philippe; Varghese, Vici; Hamers, Raph L; Bertagnolio, Silvia; Rinke de Wit, Tobias F; Aghokeng, Avelin F; Albert, Jan; Avi, Radko; Avila-Rios, Santiago; Bessong, Pascal O; Brooks, James I; Boucher, Charles A B; Brumme, Zabrina L; Busch, Michael P; Bussmann, Hermann; Chaix, Marie-Laure; Chin, Bum Sik; D'Aquin, Toni T; De Gascun, Cillian F; Derache, Anne; Descamps, Diane; Deshpande, Alaka K; Djoko, Cyrille F; Eshleman, Susan H; Fleury, Herve; Frange, Pierre; Fujisaki, Seiichiro; Harrigan, P Richard; Hattori, Junko; Holguin, Africa; Hunt, Gillian M; Ichimura, Hiroshi; Kaleebu, Pontiano; Katzenstein, David; Kiertiburanakul, Sasisopin; Kim, Jerome H; Kim, Sung Soon; Li, Yanpeng; Lutsar, Irja; Morris, Lynn; Ndembi, Nicaise; Ng, Kee Peng; Paranjape, Ramesh S; Peeters, Martine; Poljak, Mario; Price, Matt A; Ragonnet-Cronin, Manon L; Reyes-Terán, Gustavo; Rolland, Morgane; Sirivichayakul, Sunee; Smith, Davey M; Soares, Marcelo A; Soriano, Vincent V; Ssemwanga, Deogratius; Stanojevic, Maja; Stefani, Mariane A; Sugiura, Wataru; Sungkanuparph, Somnuek; Tanuri, Amilcar; Tee, Kok Keng; Truong, Hong-Ha M; van de Vijver, David A M C; Vidal, Nicole; Yang, Chunfu; Yang, Rongge; Yebra, Gonzalo; Ioannidis, John P A; Vandamme, Anne-Mieke; Shafer, Robert W

    2015-04-01

    Regional and subtype-specific mutational patterns of HIV-1 transmitted drug resistance (TDR) are essential for informing first-line antiretroviral (ARV) therapy guidelines and designing diagnostic assays for use in regions where standard genotypic resistance testing is not affordable. We sought to understand the molecular epidemiology of TDR and to identify the HIV-1 drug-resistance mutations responsible for TDR in different regions and virus subtypes. We reviewed all GenBank submissions of HIV-1 reverse transcriptase sequences with or without protease and identified 287 studies published between March 1, 2000, and December 31, 2013, with more than 25 recently or chronically infected ARV-naïve individuals. These studies comprised 50,870 individuals from 111 countries. Each set of study sequences was analyzed for phylogenetic clustering and the presence of 93 surveillance drug-resistance mutations (SDRMs). The median overall TDR prevalence in sub-Saharan Africa (SSA), south/southeast Asia (SSEA), upper-income Asian countries, Latin America/Caribbean, Europe, and North America was 2.8%, 2.9%, 5.6%, 7.6%, 9.4%, and 11.5%, respectively. In SSA, there was a yearly 1.09-fold (95% CI: 1.05-1.14) increase in odds of TDR since national ARV scale-up attributable to an increase in non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance. The odds of NNRTI-associated TDR also increased in Latin America/Caribbean (odds ratio [OR] = 1.16; 95% CI: 1.06-1.25), North America (OR = 1.19; 95% CI: 1.12-1.26), Europe (OR = 1.07; 95% CI: 1.01-1.13), and upper-income Asian countries (OR = 1.33; 95% CI: 1.12-1.55). In SSEA, there was no significant change in the odds of TDR since national ARV scale-up (OR = 0.97; 95% CI: 0.92-1.02). An analysis limited to sequences with mixtures at less than 0.5% of their nucleotide positions—a proxy for recent infection—yielded trends comparable to those obtained using the complete dataset. Four NNRTI SDRMs—K101E, K103N, Y181C, and G190A—accounted for >80% of NNRTI-associated TDR in all regions and subtypes. Sixteen nucleoside reverse transcriptase inhibitor (NRTI) SDRMs accounted for >69% of NRTI-associated TDR in all regions and subtypes. In SSA and SSEA, 89% of NNRTI SDRMs were associated with high-level resistance to nevirapine or efavirenz, whereas only 27% of NRTI SDRMs were associated with high-level resistance to zidovudine, lamivudine, tenofovir, or abacavir. Of 763 viruses with TDR in SSA and SSEA, 725 (95%) were genetically dissimilar; 38 (5%) formed 19 sequence pairs. Inherent limitations of this study are that some cohorts may not represent the broader regional population and that studies were heterogeneous with respect to duration of infection prior to sampling. Most TDR strains in SSA and SSEA arose independently, suggesting that ARV regimens with a high genetic barrier to resistance combined with improved patient adherence may mitigate TDR increases by reducing the generation of new ARV-resistant strains. A small number of NNRTI-resistance mutations were responsible for most cases of high-level resistance, suggesting that inexpensive point-mutation assays to detect these mutations may be useful for pre-therapy screening in regions with high levels of TDR. In the context of a public health approach to ARV therapy, a reliable point-of-care genotypic resistance test could identify which patients should receive standard first-line therapy and which should receive a protease-inhibitor-containing regimen.

  19. Geographic and Temporal Trends in the Molecular Epidemiology and Genetic Mechanisms of Transmitted HIV-1 Drug Resistance: An Individual-Patient- and Sequence-Level Meta-Analysis

    PubMed Central

    Rhee, Soo-Yon; Blanco, Jose Luis; Jordan, Michael R.; Taylor, Jonathan; Lemey, Philippe; Varghese, Vici; Hamers, Raph L.; Bertagnolio, Silvia; de Wit, Tobias F. Rinke; Aghokeng, Avelin F.; Albert, Jan; Avi, Radko; Avila-Rios, Santiago; Bessong, Pascal O.; Brooks, James I.; Boucher, Charles A. B.; Brumme, Zabrina L.; Busch, Michael P.; Bussmann, Hermann; Chaix, Marie-Laure; Chin, Bum Sik; D’Aquin, Toni T.; De Gascun, Cillian F.; Derache, Anne; Descamps, Diane; Deshpande, Alaka K.; Djoko, Cyrille F.; Eshleman, Susan H.; Fleury, Herve; Frange, Pierre; Fujisaki, Seiichiro; Harrigan, P. Richard; Hattori, Junko; Holguin, Africa; Hunt, Gillian M.; Ichimura, Hiroshi; Kaleebu, Pontiano; Katzenstein, David; Kiertiburanakul, Sasisopin; Kim, Jerome H.; Kim, Sung Soon; Li, Yanpeng; Lutsar, Irja; Morris, Lynn; Ndembi, Nicaise; NG, Kee Peng; Paranjape, Ramesh S.; Peeters, Martine; Poljak, Mario; Price, Matt A.; Ragonnet-Cronin, Manon L.; Reyes-Terán, Gustavo; Rolland, Morgane; Sirivichayakul, Sunee; Smith, Davey M.; Soares, Marcelo A.; Soriano, Vincent V.; Ssemwanga, Deogratius; Stanojevic, Maja; Stefani, Mariane A.; Sugiura, Wataru; Sungkanuparph, Somnuek; Tanuri, Amilcar; Tee, Kok Keng; Truong, Hong-Ha M.; van de Vijver, David A. M. C.; Vidal, Nicole; Yang, Chunfu; Yang, Rongge; Yebra, Gonzalo; Ioannidis, John P. A.; Vandamme, Anne-Mieke; Shafer, Robert W.

    2015-01-01

    Background Regional and subtype-specific mutational patterns of HIV-1 transmitted drug resistance (TDR) are essential for informing first-line antiretroviral (ARV) therapy guidelines and designing diagnostic assays for use in regions where standard genotypic resistance testing is not affordable. We sought to understand the molecular epidemiology of TDR and to identify the HIV-1 drug-resistance mutations responsible for TDR in different regions and virus subtypes. Methods and Findings We reviewed all GenBank submissions of HIV-1 reverse transcriptase sequences with or without protease and identified 287 studies published between March 1, 2000, and December 31, 2013, with more than 25 recently or chronically infected ARV-naïve individuals. These studies comprised 50,870 individuals from 111 countries. Each set of study sequences was analyzed for phylogenetic clustering and the presence of 93 surveillance drug-resistance mutations (SDRMs). The median overall TDR prevalence in sub-Saharan Africa (SSA), south/southeast Asia (SSEA), upper-income Asian countries, Latin America/Caribbean, Europe, and North America was 2.8%, 2.9%, 5.6%, 7.6%, 9.4%, and 11.5%, respectively. In SSA, there was a yearly 1.09-fold (95% CI: 1.05–1.14) increase in odds of TDR since national ARV scale-up attributable to an increase in non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance. The odds of NNRTI-associated TDR also increased in Latin America/Caribbean (odds ratio [OR] = 1.16; 95% CI: 1.06–1.25), North America (OR = 1.19; 95% CI: 1.12–1.26), Europe (OR = 1.07; 95% CI: 1.01–1.13), and upper-income Asian countries (OR = 1.33; 95% CI: 1.12–1.55). In SSEA, there was no significant change in the odds of TDR since national ARV scale-up (OR = 0.97; 95% CI: 0.92–1.02). An analysis limited to sequences with mixtures at less than 0.5% of their nucleotide positions—a proxy for recent infection—yielded trends comparable to those obtained using the complete dataset. Four NNRTI SDRMs—K101E, K103N, Y181C, and G190A—accounted for >80% of NNRTI-associated TDR in all regions and subtypes. Sixteen nucleoside reverse transcriptase inhibitor (NRTI) SDRMs accounted for >69% of NRTI-associated TDR in all regions and subtypes. In SSA and SSEA, 89% of NNRTI SDRMs were associated with high-level resistance to nevirapine or efavirenz, whereas only 27% of NRTI SDRMs were associated with high-level resistance to zidovudine, lamivudine, tenofovir, or abacavir. Of 763 viruses with TDR in SSA and SSEA, 725 (95%) were genetically dissimilar; 38 (5%) formed 19 sequence pairs. Inherent limitations of this study are that some cohorts may not represent the broader regional population and that studies were heterogeneous with respect to duration of infection prior to sampling. Conclusions Most TDR strains in SSA and SSEA arose independently, suggesting that ARV regimens with a high genetic barrier to resistance combined with improved patient adherence may mitigate TDR increases by reducing the generation of new ARV-resistant strains. A small number of NNRTI-resistance mutations were responsible for most cases of high-level resistance, suggesting that inexpensive point-mutation assays to detect these mutations may be useful for pre-therapy screening in regions with high levels of TDR. In the context of a public health approach to ARV therapy, a reliable point-of-care genotypic resistance test could identify which patients should receive standard first-line therapy and which should receive a protease-inhibitor-containing regimen. PMID:25849352

  20. [Clinical-based study of ovarian cancer patients with and without BRCA1/2 genes mutation: clinical features and pedigree analysis].

    PubMed

    Tao, T; Yang, J X; Shen, K; Cao, D Y

    2017-01-25

    Objective: To compare the clinical and histological features and prognosis of patients with ovarian cancer from different genetic background, and to make further understanding of the genetic model of BRCA genes used pedigree analysis. Methods: There were 71 patients from 67 independent families enrolled in our study from Apr. 2000 to Jun. 2009 in Peking Union Medical College Hospital. All exons of BRCA1/2 genes were analyzed using denaturing high-performance liquid chromatography(DHPLC) followed by direct sequencing, and clinical features of patients were compared by statistical analysis. Pedigree analysis of two families with BRCA genes mutation were performed. Results: The mutation rate of BRCA genes was 28% (20/71). The frequency of BRCA1 and BRCA2 gene mutation was 23% (16/71) and 6% (4/71), respectively ( P= 0.004). Histology types of patients with and without BRCA genes mutation were different. The onset age between patients with and without BRCA genes mutation was similar (52.6 versus 54.6 years old, P= 0.393), and tend to be early-onset breast or ovarian cancer in high-risk group. There was no significant difference of platinum-resistant rate, disease free survival and overall survival rate between patients with and without BRCA genes mutation (all P> 0.05). According to the pedigree analysis, up to 100% of female offspring inherited pathogenic mutations, and male offspring could be a mutation carrier. Conclusions: The genetic screening and clinical intervention should be performed as early as possible for the members from families at risk of hereditary ovarian cancer. Genetic consulting is important for patients with high-grade papillary serous adenocarcinoma of ovary. It is still unknown that whether the patients with BRCA gene mutations have better prognosis than sporadic ones, and further perspective, randomized controlled trial is still needed.

  1. Characterisation of ATM mutations in Slavic Ataxia telangiectasia patients.

    PubMed

    Soukupova, Jana; Pohlreich, Petr; Seemanova, Eva

    2011-09-01

    Ataxia telangiectasia (AT) is a genomic instability syndrome characterised, among others, by progressive cerebellar degeneration, oculocutaneous telangiectases, immunodeficiency, elevated serum alpha-phetoprotein level, chromosomal breakage, hypersensitivity to ionising radiation and increased cancer risk. This autosomal recessive disorder is caused by mutations in the ataxia telangiectasia mutated (ATM) gene coding for serine/threonine protein kinase with a crucial role in response to DNA double-strand breaks. We characterised genotype and phenotype of 12 Slavic AT patients from 11 families. Mutation analysis included sequencing of the entire coding sequence, adjacent intron regions, 3'UTR and 5'UTR of the ATM gene and multiplex ligation-dependent probe amplification (MLPA) for the detection of large deletions/duplications at the ATM locus. The high incidence of new and individual mutations demonstrates a marked mutational heterogeneity of AT in the Czech Republic. Our data indicate that sequence analysis of the entire coding region of ATM is sufficient for a high detection rate of mutations in ATM and that MLPA analysis for the detection of deletions/duplications seems to be redundant in the Slavic population.

  2. AID protein expression in chronic lymphocytic leukemia/small lymphocytic lymphoma is associated with poor prognosis and complex genetic alterations.

    PubMed

    Leuenberger, Mona; Frigerio, Simona; Wild, Peter J; Noetzli, Franziska; Korol, Dimitri; Zimmermann, Dieter R; Gengler, Carole; Probst-Hensch, Nicole M; Moch, Holger; Tinguely, Marianne

    2010-02-01

    The biological behavior of chronic lymphocytic leukemia and small lymphocytic lymphoma is unpredictable. Nonetheless, non-mutated IgV(H) gene rearrangement, ATM (11q22-23) and p53 (17p13) deletion are recognized as unfavorable prognosticators in chronic lymphocytic leukemia. The mRNA expression of activation-induced cytidine deaminase (AID), an enzyme indispensable for somatic hypermutation processes, was claimed to be predictive of non-mutated chronic lymphocytic leukemia cells in blood. Here, we evaluated AID protein expression compared with known molecular and immunohistochemical prognostic indicators in 71 chronic lymphocytic leukemia/small lymphocytic lymphoma patients using a tissue microarray approach. We found AID heterogeneously expressed in tumor cells as shown by colocalization analysis for CD5 and CD23. Ki-67 positive paraimmunoblasts of the proliferation centers displayed the highest expression. This observation is reflected by a significant association of AID positivity with a high proliferation rate (P=0.012). ATM deletion was detected in 10% (6/63) of patients and p53 deletion in 19% (13/67) of patients. Moreover, both ATM (P=0.002) and p53 deletion (P=0.004) were significantly associated with AID. IgV(H) gene mutation was seen in 45% (27/60) of patients. Twenty-five percent (17/69) of patients with AID-positive chronic lymphocytic leukemia/small lymphocytic lymphoma displayed a shorter survival than AID-negative chronic lymphocytic leukemia/small lymphocytic lymphoma patients (61 vs 130 months, P=0.001). Although there was a trend, we could not show an association with the IgV(H) gene mutation status. Taken together, our study shows that AID expression is an indicator of an unfavorable prognosis in chronic lymphocytic leukemia/small lymphocytic lymphoma patients, although it is not a surrogate marker for the IgV(H) status. Furthermore, the microenvironment of proliferation centers seems to influence AID regulation and might be an initiating factor in its transformation.

  3. Linkage Study Revealed Complex Haplotypes in a Multifamily due to Different Mutations in CAPN3 Gene in an Iranian Ethnic Group.

    PubMed

    Mojbafan, Marzieh; Tonekaboni, Seyed Hassan; Abiri, Maryam; Kianfar, Soudeh; Sarhadi, Ameneh; Nilipour, Yalda; Tavakkoly-Bazzaz, Javad; Zeinali, Sirous

    2016-07-01

    Calpainopathy is an autosomal recessive form of limb girdle muscular dystrophies which is caused by mutation in CAPN3 gene. In the present study, co-segregation of this disorder was analyzed with four short tandem repeat markers linked to the CAPN3 gene. Three apparently unrelated Iranian families with same ethnicity were investigated. Haplotype analysis and sequencing of the CAPN3 gene were performed. DNA sample from one of the patients was simultaneously sent for next-generation sequencing. DNA sequencing identified two mutations. It was seen as a homozygous c.2105C>T in exon 19 in one family, a homozygous novel mutation c.380G>A in exon 3 in another family, and a compound heterozygote form of these two mutations in the third family. Next-generation sequencing also confirmed our results. It was expected that, due to the rare nature of limb girdle muscular dystrophies, affected individuals from the same ethnic group share similar mutations. Haplotype analysis showed two different homozygote patterns in two families, yet a compound heterozygote pattern in the third family as seen in the mutation analysis. This study shows that haplotype analysis would help in determining presence of different founders.

  4. A Streamlined Protocol for Molecular Testing of the DMD Gene within a Diagnostic Laboratory: A Combination of Array Comparative Genomic Hybridization and Bidirectional Sequence Analysis

    PubMed Central

    Marquis-Nicholson, Renate; Lai, Daniel; Love, Jennifer M.; Love, Donald R.

    2013-01-01

    Purpose. The aim of this study was to develop a streamlined mutation screening protocol for the DMD gene in order to confirm a clinical diagnosis of Duchenne or Becker muscular dystrophy in affected males and to clarify the carrier status of female family members. Methods. Sequence analysis and array comparative genomic hybridization (aCGH) were used to identify mutations in the dystrophin DMD gene. We analysed genomic DNA from six individuals with a range of previously characterised mutations and from eight individuals who had not previously undergone any form of molecular analysis. Results. We successfully identified the known mutations in all six patients. A molecular diagnosis was also made in three of the four patients with a clinical diagnosis who had not undergone prior genetic screening, and testing for familial mutations was successfully completed for the remaining four patients. Conclusion. The mutation screening protocol described here meets best practice guidelines for molecular testing of the DMD gene in a diagnostic laboratory. The aCGH method is a superior alternative to more conventional assays such as multiplex ligation-dependent probe amplification (MLPA). The combination of aCGH and sequence analysis will detect mutations in 98% of patients with the Duchenne or Becker muscular dystrophy. PMID:23476807

  5. Constructive neutral evolution: exploring evolutionary theory's curious disconnect.

    PubMed

    Stoltzfus, Arlin

    2012-10-13

    Constructive neutral evolution (CNE) suggests that neutral evolution may follow a stepwise path to extravagance. Whether or not CNE is common, the mere possibility raises provocative questions about causation: in classical neo-Darwinian thinking, selection is the sole source of creativity and direction, the only force that can cause trends or build complex features. However, much of contemporary evolutionary genetics departs from the conception of evolution underlying neo-Darwinism, resulting in a widening gap between what formal models allow, and what the prevailing view of the causes of evolution suggests. In particular, a mutationist conception of evolution as a 2-step origin-fixation process has been a source of theoretical innovation for 40 years, appearing not only in the Neutral Theory, but also in recent breakthroughs in modeling adaptation (the "mutational landscape" model), and in practical software for sequence analysis. In this conception, mutation is not a source of raw materials, but an agent that introduces novelty, while selection is not an agent that shapes features, but a stochastic sieve. This view, which now lays claim to important theoretical, experimental, and practical results, demands our attention. CNE provides a way to explore its most significant implications about the role of variation in evolution. Alex Kondrashov, Eugene Koonin and Johann Peter Gogarten reviewed this article.

  6. Constructive neutral evolution: exploring evolutionary theory’s curious disconnect

    PubMed Central

    2012-01-01

    Abstract Constructive neutral evolution (CNE) suggests that neutral evolution may follow a stepwise path to extravagance. Whether or not CNE is common, the mere possibility raises provocative questions about causation: in classical neo-Darwinian thinking, selection is the sole source of creativity and direction, the only force that can cause trends or build complex features. However, much of contemporary evolutionary genetics departs from the conception of evolution underlying neo-Darwinism, resulting in a widening gap between what formal models allow, and what the prevailing view of the causes of evolution suggests. In particular, a mutationist conception of evolution as a 2-step origin-fixation process has been a source of theoretical innovation for 40 years, appearing not only in the Neutral Theory, but also in recent breakthroughs in modeling adaptation (the “mutational landscape” model), and in practical software for sequence analysis. In this conception, mutation is not a source of raw materials, but an agent that introduces novelty, while selection is not an agent that shapes features, but a stochastic sieve. This view, which now lays claim to important theoretical, experimental, and practical results, demands our attention. CNE provides a way to explore its most significant implications about the role of variation in evolution. Reviewers Alex Kondrashov, Eugene Koonin and Johann Peter Gogarten reviewed this article. PMID:23062217

  7. The evolutionary adaptation of the C282Y mutation to culture and climate during the European Neolithic.

    PubMed

    Heath, Kathleen M; Axton, Jacob H; McCullough, John M; Harris, Nathan

    2016-05-01

    The C282Y allele is the major cause of hemochromatosis as a result of excessive iron absorption. The mutation arose in continental Europe no earlier than 6,000 years ago, coinciding with the arrival of the Neolithic agricultural revolution. Here we hypothesize that this new Neolithic diet, which originated in the sunny warm and dry climates of the Middle East, was carried by migrating farmers into the chilly and damp environments of Europe where iron is a critical micronutrient for effective thermoregulation. We argue that the C282Y allele was an adaptation to this novel environment. To address our hypothesis, we compiled C282Y allele frequencies, known Neolithic sites in Europe and climatic data on temperature and rainfall for statistical analysis. Our findings indicate that the geographic cline for C282Y frequency in Europe increases as average temperatures decrease below 16°C, a critical threshold for thermoregulation, with rainy days intensifying the trend. The results indicate that the deleterious C282Y allele, responsible for most cases of hemochromatosis, may have evolved as a selective advantage to culture and climate during the European Neolithic. © 2016 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.

  8. Echinocandin resistance among Candida isolates at an academic medical centre 2005-15: analysis of trends and outcomes.

    PubMed

    McCarty, Todd P; Lockhart, Shawn R; Moser, Stephen A; Whiddon, Jennifer; Zurko, Joanna; Pham, Cau D; Pappas, Peter G

    2018-02-28

    To identify the frequency of micafungin resistance among clinically significant isolates of Candida stored at our institution from 2005 to 2015. Chart review of patients with resistant isolates then informed the clinical setting and outcomes associated with these infections. Clinical Candida isolates had been stored at -80°C in Brucella broth with 20% glycerol from 2005. Isolates were tested using broth microdilution to determine micafungin MICs. All Candida glabrata isolates and all isolates demonstrating decreased susceptibility to micafungin were screened for FKS mutations using a Luminex assay. In total, 3876 Candida isolates were tested for micafungin resistance, including 832 C. glabrata isolates. Of those, 33 isolates from 31 patients were found to have either decreased susceptibility to micafungin and/or an FKS mutation. C. glabrata accounted for the majority of these isolates. While bloodstream infections were found to have a very high mortality rate, isolates from other sites were uncommonly associated with 30-day mortality. Overall resistance rates were very low. Echinocandin resistance in C. glabrata has been increasingly reported but rates at our institution remain very low. We hypothesize that a focus on antifungal stewardship may have led to these observations. Knowledge of local resistance patterns is key to appropriate empirical treatment strategies.

  9. Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease.

    PubMed

    Leongamornlert, D; Saunders, E; Dadaev, T; Tymrakiewicz, M; Goh, C; Jugurnauth-Little, S; Kozarewa, I; Fenwick, K; Assiotis, I; Barrowdale, D; Govindasami, K; Guy, M; Sawyer, E; Wilkinson, R; Antoniou, A C; Eeles, R; Kote-Jarai, Z

    2014-03-18

    Prostate cancer (PrCa) is one of the most common diseases to affect men worldwide and among the leading causes of cancer-related death. The purpose of this study was to use second-generation sequencing technology to assess the frequency of deleterious mutations in 22 tumour suppressor genes in familial PrCa and estimate the relative risk of PrCa if these genes are mutated. Germline DNA samples from 191 men with 3 or more cases of PrCa in their family were sequenced for 22 tumour suppressor genes using Agilent target enrichment and Illumina technology. Analysis for genetic variation was carried out by using a pipeline consisting of BWA, Genome Analysis Toolkit (GATK) and ANNOVAR. Clinical features were correlated with mutation status using standard statistical tests. Modified segregation analysis was used to determine the relative risk of PrCa conferred by the putative loss-of-function (LoF) mutations identified. We discovered 14 putative LoF mutations in 191 samples (7.3%) and these mutations were more frequently associated with nodal involvement, metastasis or T4 tumour stage (P=0.00164). Segregation analysis of probands with European ancestry estimated that LoF mutations in any of the studied genes confer a relative risk of PrCa of 1.94 (95% CI: 1.56-2.42). These findings show that LoF mutations in DNA repair pathway genes predispose to familial PrCa and advanced disease and therefore warrants further investigation. The clinical utility of these findings will become increasingly important as targeted screening and therapies become more widespread.

  10. Molecular genetics of Leber congenital amaurosis in Chinese: New data from 66 probands and mutation overview of 159 probands.

    PubMed

    Xu, Yan; Xiao, Xueshan; Li, Shiqiang; Jia, Xiaoyun; Xin, Wei; Wang, Panfeng; Sun, Wenmin; Huang, Li; Guo, Xiangming; Zhang, Qingjiong

    2016-08-01

    Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophy. We have previously performed a mutational analysis of the known LCA-associated genes in probands with LCA by both Sanger and whole exome sequencing. In this study, whole exome sequencing was carried out on 66 new probabds with LCA. In conjunction with these data, the present study provides a comprehensive analysis of the spectrum and frequency of all known genes associated with retinal dystrophy in a total of 159 Chinese probands with LCA. The known genes responsible for all forms hereditary retinal dystrophy were included based on information from RetNet. The candidate variants were filtered by bioinformatics analysis and confirmed by Sanger sequencing. Potentially causative mutations were further validated in available family members. Overall, a total of 118 putative pathogenic mutations from 23 genes were identified in 56.6% (90/159) of probands. These mutations were harbored in 13 LCA-associated genes and in ten genes related to other forms of retinal dystrophy. The most frequently mutated gene in probands with LCA was GUCY2D (10.7%, 17/159). A series of mutational analyses suggests that all known genes associated with retinal dystrophy account for 56.6% of Chinese patients with LCA. A comprehensive molecular genetic analysis of Chinese patients with LCA provides an overview of the spectrum and frequency of ethno-specific mutations of all known genes, as well as indications about other unknown genes in the remaining probands who lacked identified mutations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Alcohol Consumption and the Risk of Colorectal Cancer for Mismatch Repair Gene Mutation Carriers

    PubMed Central

    Dashti, S. Ghazaleh; Buchanan, Daniel D.; Jayasekara, Harindra; Ouakrim, Driss Ait; Clendenning, Mark; Rosty, Christophe; Winship, Ingrid M.; Macrae, Finlay A.; Giles, Graham G.; Parry, Susan; Casey, Graham; Haile, Robert W.; Gallinger, Steven; Le Marchand, Loïc; Thibodeau, Stephen N.; Lindor, Noralane M.; Newcomb, Polly A.; Potter, John D.; Baron, John A.; Hopper, John L.; Jenkins, Mark A.; Win, Aung Ko

    2016-01-01

    Background People with germline mutation in one of the DNA mismatch repair (MMR) genes have increased colorectal cancer risk. For these high-risk people, study findings of the relationship between alcohol consumption and colorectal cancer risk have been inconclusive. Methods 1,925 MMR gene mutations carriers recruited into the Colon Cancer Family Registry who had completed a questionnaire on lifestyle factors were included. Weighted Cox proportional hazard regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between alcohol consumption and colorectal cancer. Results Colorectal cancer was diagnosed in 769 carriers (40%) at a mean (standard deviation) age of 42.6 (10.3) years. Compared with abstention, ethanol consumption from any alcoholic beverage up to 14 grams/day and >28 grams/day were associated with increased colorectal cancer risk (HR, 1.50; 95%CI, 1.09–2.07 and 1.69; 95%CI, 1.07–2.65 respectively; P-trend=0.05), and colon cancer risk (HR, 1.78; 95%CI, 1.27–2.49 and 1.94; 95%CI, 1.19–3.18 respectively; P-trend=0.02). However, there was no clear evidence for an association with rectal cancer risk. Also, there was no evidence for associations between consumption of individual alcoholic beverage types (beer, wine, spirits) and colorectal, colon, or rectal cancer risk. Conclusion Our data suggests that alcohol consumption, particularly more than 28 grams/day of ethanol (~2 standard drinks of alcohol in the US), is associated with increased colorectal cancer risk for MMR gene mutation carriers. Impact Although these data suggested that alcohol consumption in MMR carriers was associated with increased colorectal cancer risk, there was no evidence of a dose-response, and not all types of alcohol consumption were associated with increased risk. PMID:27811119

  12. Alcohol Consumption and the Risk of Colorectal Cancer for Mismatch Repair Gene Mutation Carriers.

    PubMed

    Dashti, S Ghazaleh; Buchanan, Daniel D; Jayasekara, Harindra; Ait Ouakrim, Driss; Clendenning, Mark; Rosty, Christophe; Winship, Ingrid M; Macrae, Finlay A; Giles, Graham G; Parry, Susan; Casey, Graham; Haile, Robert W; Gallinger, Steven; Le Marchand, Loïc; Thibodeau, Stephen N; Lindor, Noralane M; Newcomb, Polly A; Potter, John D; Baron, John A; Hopper, John L; Jenkins, Mark A; Win, Aung Ko

    2017-03-01

    Background: People with germline mutation in one of the DNA mismatch repair (MMR) genes have increased colorectal cancer risk. For these high-risk people, study findings of the relationship between alcohol consumption and colorectal cancer risk have been inconclusive. Methods: 1,925 MMR gene mutations carriers recruited into the Colon Cancer Family Registry who had completed a questionnaire on lifestyle factors were included. Weighted Cox proportional hazard regression models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between alcohol consumption and colorectal cancer. Results: Colorectal cancer was diagnosed in 769 carriers (40%) at a mean (SD) age of 42.6 (10.3) years. Compared with abstention, ethanol consumption from any alcoholic beverage up to 14 g/day and >28 g/day was associated with increased colorectal cancer risk (HR, 1.50; 95% CI, 1.09-2.07 and 1.69; 95% CI, 1.07-2.65, respectively; P trend = 0.05), and colon cancer risk (HR, 1.78; 95% CI, 1.27-2.49 and 1.94; 95% CI, 1.19-3.18, respectively; P trend = 0.02). However, there was no clear evidence for an association with rectal cancer risk. Also, there was no evidence for associations between consumption of individual alcoholic beverage types (beer, wine, spirits) and colorectal, colon, or rectal cancer risk. Conclusions: Our data suggest that alcohol consumption, particularly more than 28 g/day of ethanol (∼2 standard drinks of alcohol in the United States), is associated with increased colorectal cancer risk for MMR gene mutation carriers. Impact: Although these data suggested that alcohol consumption in MMR carriers was associated with increased colorectal cancer risk, there was no evidence of a dose-response, and not all types of alcohol consumption were associated with increased risk. Cancer Epidemiol Biomarkers Prev; 26(3); 366-75. ©2016 AACR . ©2016 American Association for Cancer Research.

  13. Amino-Acid Network Clique Analysis of Protein Mutation Non-Additive Effects: A Case Study of Lysozme.

    PubMed

    Ming, Dengming; Chen, Rui; Huang, He

    2018-05-10

    Optimizing amino-acid mutations in enzyme design has been a very challenging task in modern bio-industrial applications. It is well known that many successful designs often hinge on extensive correlations among mutations at different sites within the enzyme, however, the underpinning mechanism for these correlations is far from clear. Here, we present a topology-based model to quantitively characterize non-additive effects between mutations. The method is based on the molecular dynamic simulations and the amino-acid network clique analysis. It examines if the two mutation sites of a double-site mutation fall into to a 3-clique structure, and associates such topological property of mutational site spatial distribution with mutation additivity features. We analyzed 13 dual mutations of T4 phage lysozyme and found that the clique-based model successfully distinguishes highly correlated or non-additive double-site mutations from those additive ones whose component mutations have less correlation. We also applied the model to protein Eglin c whose structural topology is significantly different from that of T4 phage lysozyme, and found that the model can, to some extension, still identify non-additive mutations from additive ones. Our calculations showed that mutation non-additive effects may heavily depend on a structural topology relationship between mutation sites, which can be quantitatively determined using amino-acid network k -cliques. We also showed that double-site mutation correlations can be significantly altered by exerting a third mutation, indicating that more detailed physicochemical interactions should be considered along with the network clique-based model for better understanding of this elusive mutation-correlation principle.

  14. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.

    PubMed

    Ahn, Eun Hyun; Hirohata, Kensen; Kohrn, Brendan F; Fox, Edward J; Chang, Chia-Cheng; Loeb, Lawrence A

    2015-01-01

    Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic) mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS) methods have high error rates. We have established a new method termed Duplex Sequencing (DS), which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G) are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G) are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.

  15. [FANCA gene mutation analysis in Fanconi anemia patients].

    PubMed

    Chen, Fei; Peng, Guang-Jie; Zhang, Kejian; Hu, Qun; Zhang, Liu-Qing; Liu, Ai-Guo

    2005-10-01

    To screen the FANCA gene mutation and explore the FANCA protein function in Fanconi anemia (FA) patients. FANCA protein expression and its interaction with FANCF were analyzed using Western blot and immunoprecipitation in 3 cases of FA-A. Genomic DNA was used for MLPA analysis followed by sequencing. FANCA protein was undetectable and FANCA and FANCF protein interaction was impaired in these 3 cases of FA-A. Each case of FA-A contained biallelic pathogenic mutations in FANCA gene. No functional FANCA protein was found in these 3 cases of FA-A, and intragenic deletion, frame shift and splice site mutation were the major pathogenic mutations found in FANCA gene.

  16. An N-terminal glycine to cysteine mutation in the collagen COL1A1 gene produces moderately severe osteogenesis imperfecta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, W.; Scott, L.; Cohn, D.

    Osteogenesis imperfecta (OI) is usually due to mutations in the type I procollagen genes COL1A1 and COL1A2. Point mutations close to the N-terminus are generally milder than those near the C-terminus of the molecule (the gradient hypothesis of collagen mutations). We describe a patient with moderately severe OI due to a mutation in the N-terminal portion of the triple helical domain of the {alpha}1(I) chain. Electrophoretic analysis of collagen isolated from fibroblast cultures suggested the abnormal presence of a cysteine in the N-terminal portion of the {alpha}1(I) chain. Five overlapping DNA fragments amplified from fibroblast RNA were screened for mutationsmore » using single strand conformational polymorphism (SSCP) and heteroduplex analyses. Direct DNA sequence analysis of the single positive fragment demonstrated a G to T transversion, corresponding to a glycine to cysteine substitution at position 226 of the triple helical domain of the {alpha}1(I) chain. The mutation was confirmed by restriction enzyme analysis of amplified genomic DNA. The mutation was not present in fibroblasts from either phenotypically normal parent. Combining this mutation with other reported mutations, glycine to cysteine substitutions at positions 205, 211, 223, and 226 produce a moderately severe phenotype whereas flanking mutations at positions 175 and 382 produce a mild phenotype. This data supports a regional rather than a gradient model of the relationship between the nature and location of type I collagen mutations and OI phenotype.« less

  17. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta

    PubMed Central

    Gasse, Barbara; Prasad, Megana; Delgado, Sidney; Huckert, Mathilde; Kawczynski, Marzena; Garret-Bernardin, Annelyse; Lopez-Cazaux, Serena; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Stoetzel, Corinne; Bloch-Zupan, Agnès; Sire, Jean-Yves

    2017-01-01

    Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene (MMP20) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI. PMID:28659819

  18. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta.

    PubMed

    Gasse, Barbara; Prasad, Megana; Delgado, Sidney; Huckert, Mathilde; Kawczynski, Marzena; Garret-Bernardin, Annelyse; Lopez-Cazaux, Serena; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Stoetzel, Corinne; Bloch-Zupan, Agnès; Sire, Jean-Yves

    2017-01-01

    Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene ( MMP20 ) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.

  19. Mutational analysis of GALT gene in Greek patients with galactosaemia: identification of two novel mutations and clinical evaluation.

    PubMed

    Schulpis, Kleopatra H; Thodi, Georgia; Iakovou, Konstantinos; Chatzidaki, Maria; Dotsikas, Yannis; Molou, Elina; Triantafylli, Olga; Loukas, Yannis L

    2017-10-01

    Classical galactosaemia is an inborn error of metabolism due to the deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). The aim of the study was to identify the underlying mutations in Greek patients with GALT deficiency and evaluate their psychomotor and speech development. Patients with GALT deficiency (n = 17) were picked up through neonatal screening. Mutational analysis was conducted via Sanger sequencing, while in silico analysis was used in the cases of novel missense mutations. Psychomotor speech development tests were utilized for the clinical evaluation of the patients. Eleven different mutations in the GALT gene were detected in the patient cohort, including two novel ones. The most frequent mutation was p.Q188R (c.563 A > G). As for the novel mutations, p.M298I (c.894 G > A) was identified in four out of 32 independent alleles, while p.P115S (c.343 C > T) was identified once. Psychomotor evaluation revealed that most of the patients were found in the borderline area (Peabody test), while only two had speech delay problems. The WISK test revealed three patients at borderline limits and two were at lower than normal limits. The mutational spectrum of the GALT gene in Greek patients is presented for the first time. The mutation p.Q188R is the most frequent among Greek patients. Two novel mutations were identified and their potential pathogenicity was estimated. Regarding the phenotypic characteristics, psychomotor disturbances and speech delay were mainly observed among GALT-deficient patients.

  20. Correlational study on mitochondrial DNA mutations as potential risk factors in breast cancer.

    PubMed

    Li, Linhai; Chen, Lidan; Li, Jun; Zhang, Weiyun; Liao, Yang; Chen, Jianyun; Sun, Zhaohui

    2016-05-24

    The presented study performed an mtDNA genome-wide association analysis to screen the peripheral blood of breast cancer patients for high-risk germline mutations. Unlike previous studies, which have used breast tissue in analyzing somatic mutations, we looked for germline mutations in our study, since they are better predictors of breast cancer in high-risk groups, facilitate early, non-invasive diagnoses of breast cancer and may provide a broader spectrum of therapeutic options. The data comprised 22 samples of healthy group and 83 samples from breast cancer patients. The sequencing data showed 170 mtDNA mutations in the healthy group and 393 mtDNA mutations in the disease group. Of these, 283 mtDNA mutations (88 in the healthy group and 232 in the disease group) had never been reported in the literature. Moreover, correlation analysis indicated there was a significant difference in 32 mtDNA mutations. According to our relative risk analysis of these 32 mtDNA mutations, 27 of the total had odds ratio values (ORs) of less than 1, meaning that these mutations have a potentially protective role to play in breast cancer. The remaining 5 mtDNA mutations, RNR2-2463 indelA, COX1-6296 C>A, COX1-6298 indelT, ATP6-8860 A>G, and ND5-13327 indelA, whose ORs were 8.050, 4.464, 4.464, 5.254 and 4.853, respectively, were regarded as risk factors of increased breast cancer. The five mutations identified here may serve as novel indicators of breast cancer and may have future therapeutic applications. In addition, the use of peripheral blood samples was procedurally simple and could be applied as a non-invasive diagnostic technique.

  1. Multiple Origins of a Mitochondrial Mutation Conferring Deafness

    PubMed Central

    Hutchin, T. P.; Cortopassi, G. A.

    1997-01-01

    A point mutation (1555G) in the smaller ribosomal subunit of the mitochondrial DNA (mtDNA) has been associated with maternally inherited traits of hypersensitivity to streptomycin and sensorineural deafness in a number of families from China, Japan, Israel, and Africa. To determine whether this distribution was the result of a single or multiple mutational events, we carried out genetic distance analysis and phylogenetic analysis of 10 independent mtDNA D-loop sequences from Africa and Asia. The mtDNA sequence diversity was high (2.21%). Phylogenetic analysis assigned 1555G-bearing haplotypes at very divergent points in the human mtDNA evolutionary tree, and the 1555G mutations occur in many cases on race-specific mtDNA haplotypes, both facts are inconsistent with a recent introgression of the mutation into these races. The simplest interpretation of the available data is that there have been multiple origins of the 1555G mutation. The genetic distance among mtDNAs bearing the pathogenic 1555G mutation is much larger than among mtDNAs bearing either evolutionarily neutral or weakly deleterious nucleotide substitutions (such as the 4336G mutation). These results are consistent with the view that pathogenic mtDNA haplotypes such as 1555G arise on disparate mtDNA lineages which because of negative natural selection leave relatively few related descendants. The co-existence of the same mutation with deafness in individuals with very different nuclear and mitochondrial genetic backgrounds confirms the pathogenicity of the 1555G mutation. PMID:9055086

  2. The Application of Next-Generation Sequencing for Mutation Detection in Autosomal-Dominant Hereditary Hearing Impairment.

    PubMed

    Gürtler, Nicolas; Röthlisberger, Benno; Ludin, Katja; Schlegel, Christoph; Lalwani, Anil K

    2017-07-01

    Identification of the causative mutation using next-generation sequencing in autosomal-dominant hereditary hearing impairment, as mutation analysis in hereditary hearing impairment by classic genetic methods, is hindered by the high heterogeneity of the disease. Two Swiss families with autosomal-dominant hereditary hearing impairment. Amplified DNA libraries for next-generation sequencing were constructed from extracted genomic DNA, derived from peripheral blood, and enriched by a custom-made sequence capture library. Validated, pooled libraries were sequenced on an Illumina MiSeq instrument, 300 cycles and paired-end sequencing. Technical data analysis was performed with SeqMonk, variant analysis with GeneTalk or VariantStudio. The detection of mutations in genes related to hearing loss by next-generation sequencing was subsequently confirmed using specific polymerase-chain-reaction and Sanger sequencing. Mutation detection in hearing-loss-related genes. The first family harbored the mutation c.5383+5delGTGA in the TECTA-gene. In the second family, a novel mutation c.2614-2625delCATGGCGCCGTG in the WFS1-gene and a second mutation TCOF1-c.1028G>A were identified. Next-generation sequencing successfully identified the causative mutation in families with autosomal-dominant hereditary hearing impairment. The results helped to clarify the pathogenic role of a known mutation and led to the detection of a novel one. NGS represents a feasible approach with great potential future in the diagnostics of hereditary hearing impairment, even in smaller labs.

  3. [Analysis of genotype and phenotype correlation of MYH7-V878A mutation among ethnic Han Chinese pedigrees affected with hypertrophic cardiomyopathy].

    PubMed

    Wang, Bo; Guo, Ruiqi; Zuo, Lei; Shao, Hong; Liu, Ying; Wang, Yu; Ju, Yan; Sun, Chao; Wang, Lifeng; Zhang, Yanmin; Liu, Liwen

    2017-08-10

    To analyze the phenotype-genotype correlation of MYH7-V878A mutation. Exonic amplification and high-throughput sequencing of 96-cardiovascular disease-related genes were carried out on probands from 210 pedigrees affected with hypertrophic cardiomyopathy (HCM). For the probands, their family members, and 300 healthy volunteers, the identified MYH7-V878A mutation was verified by Sanger sequencing. Information of the HCM patients and their family members, including clinical data, physical examination, echocardiography (UCG), electrocardiography (ECG), and conserved sequence of the mutation among various species were analyzed. A MYH7-V878A mutation was detected in five HCM pedigrees containing 31 family members. Fourteen members have carried the mutation, among whom 11 were diagnosed with HCM, while 3 did not meet the diagnostic criteria. Some of the fourteen members also carried other mutations. Family members not carrying the mutation had normal UCG and ECG. No MYH7-V878A mutation was found among the 300 healthy volunteers. Analysis of sequence conservation showed that the amino acid is located in highly conserved regions among various species. MYH7-V878A is a hot spot among ethnic Han Chinese with a high penetrance. Functional analysis of the conserved sequences suggested that the mutation may cause significant alteration of the function. MYH7-V878A has a significant value for the early diagnosis of HCM.

  4. Time trends in HIV-1 transmitted drug resistance mutation frequency in Poland

    PubMed Central

    Parczewski, Milosz; Witak-Jedra, Magdalena; Maciejewska, Katarzyna; Bociaga-Jasik, Monika; Skwara, Pawel; Garlicki, Aleksander; Grzeszczuk, Anna; Rogalska, Magdalena; Jankowska, Maria; Lemanska, Malgorzata; Hlebowicz, Maria; Baralkiewicz, Grazyna; Mozer-Lisewska, Iwona; Mazurek, Renata; Lojewski, Wladyslaw; Grabczewska, Edyta; Olczak, Anita; Jablonowska, Elzbieta; Rymer, Weronika; Szymczak, Aleksandra; Szetela, Bartosz; Gasiorowski, Jacek; Knysz, Brygida; Urbanska, Anna; Leszczyszyn-Pynka, Magdalena

    2014-01-01

    Introduction In Poland, the HIV epidemic has shifted recently from being predominantly related to injection drug use (IDU) to being driven by transmissions among men-who-have-sex-with-men (MSM). The number of new HIV cases has increased in the recent years, while no current data on the transmitted drug resistance associated mutations (tDRM) frequency trend over time are available from 2010. In this study, we analyze the temporal trends in the spread of tDRM from 2008 to 2013. Materials and Methods Partial pol sequences from 833 antiretroviral treatment-naive individuals of European descent (Polish origin) linked to care in 9 of 17 Polish HIV treatment centres were analyzed. Drug resistance interpretation was performed according to WHO surveillance recommendations, subtyping with REGA genotyping 2.0 tool. Time trends were examined for the frequency of t-DRM across subtypes and transmission groups using logistic regression (R statistical platform, v. 3.1.0). Results Frequency of tDRM proved stable over time, with mutation frequency change from 11.3% in 2008 to 8.3% in 2013 [OR: 0.91 (95% CI 0.80–1,05), p=0.202] (Figure 1a). Also, no significant differences over time were noted for the subtype B (decrease from 8.4% 2008 to 6.2% in 2013 [OR: 0.94 (95% CI 0.79–1.11), p=0.45] and across non-B variants [change from 22.6% 2008 to 23.1% in 2013, OR: 0.94 (95% CI 0.75–1.19), p=0.62]. When patient groups were stratified according to transmission route, in MSM there was a trend for a NNRTI t-DRM decrease (from 6.8% 2008 to 1% in 2013, OR: 0.61 (95% CI 0.34–1.02), p=0.0655, slope −0.74%/year) (Figure 1b), related to the subtype B infected MSM (decrease from 7% 2008 to 1% in 2013, OR: 0.61 (95% CI 0.34–1.03), p=0.0662, slope −0.75%/year). Overall tDRM frequency decrease was also noted for the heterosexually infected patients [from 17.6% 2008 to 10.3% in 2013, OR: 0.83 (95% CI 0.67–1.02, p=0.077, slope −2.041%/year)] but did not associate with drug class (Figure 1c). In IDUs, the trends in t-DRM frequency were not significant over time (change from 1.9% in 2008 to 0 in 2013 [OR:1.24 (95% CI 0.73–2.26), p=0.4)]. Conclusions The frequency of t-DRM in Poland is generally stable over time. Decrease in the overall tDRM frequency in heterosexual infected cases and NNRTI resistance in subtype B infected MSM may be related to the higher treatment efficacy of current cART. PMID:25397498

  5. A Novel Missense Mutation of Doublecortin: Mutation Analysis of Korean Patients with Subcortical Band Heterotopia

    PubMed Central

    Kim, Myeong-Kyu; Park, Man-Seok; Kim, Byeong-Chae; Cho, Ki-Hyun; Kim, Young-Seon; Kim, Jin-Hee; Heo, Tag; Kim, Eun-Young

    2005-01-01

    The neuronal migration disorders, X-linked lissencephaly syndrome (XLIS) and subcortical band heterotopia (SBH), also called "double cortex", have been linked to missense, nonsense, aberrant splicing, deletion, and insertion mutations in doublecortin (DCX) in families and sporadic cases. Most DCX mutations identified to date are located in two evolutionarily conserved domains. We performed mutation analysis of DCX in two Korean patients with SBH. The SBH patients had mild to moderate developmental delays, drug-resistant generalized seizures, and diffuse thick SBH upon brain MRI. Sequence analysis of the DCX coding region in Patient 1 revealed a c.386 C>T change in exon 3. The sequence variation results in a serine to leucine amino acid change at position 129 (S129L), which has not been found in other family members of Patient 1 or in a large panel of 120 control X-chromosomes. We report here a novel c.386 C>T mutation of DCX that is responsible for SBH. PMID:16100463

  6. Mutations des roles techniques et formation. Etude documentaire (Changes in the Roles and Education of Technicians. Documentary Study).

    ERIC Educational Resources Information Center

    Pinard, Helene

    Drawing from research conducted in 1990-91, this report examines trends affecting the future work of technicians in Quebec, their pre-employment education, and the link between college and work. Part 1 focuses on aspects of the economic, technological, and social environment that will influence the future role of technicians. Economic concerns…

  7. Sequence-indexed mutant library for fast discovery of casual gene mutations for drought tolerance in sorghum

    USDA-ARS?s Scientific Manuscript database

    As the filth largest grain crop in the world, sorghum is well adapted to high temperature, drought, and low fertilizer input conditions. It can also be used as a fodder and bioenergy crop. Given the trend of global warming, depletion of refresh water resources, reduction in arable land due to soil d...

  8. Somatic gene mutations in African Americans may predict worse outcomes in colorectal cancer.

    PubMed

    Kang, Melissa; Shen, Xiang J; Kim, Sangmi; Araujo-Perez, Felix; Galanko, Joseph A; Martin, Chris F; Sandler, Robert S; Keku, Temitope O

    2013-01-01

    African Americans have worse outcomes in colorectal cancer (CRC) than Caucasians. We sought to determine if KRAS, BRAF and PIK3CA mutations might contribute to the racial differences in CRC outcome. DNA was extracted from tissue microarrays made from CRC samples from 67 African Americans and 237 Caucasians. Mutations in KRAS, BRAF, and PIK3CA were evaluated by PCR sequencing. We also examined microsatellite instability (MSI) status. Associations of mutation status with tumor stage and grade were examined using a logistic regression model. Cox proportional hazards models were used to estimate the all-cause mortality associated with mutational status, race and other clinicopathologic features. KRAS mutations were more common in African Americans than among Caucasians (37% vs 21%, p=0.01) and were associated with advanced stage (unadjusted odds ratio (OR)=3.31, 95% confidence interval (CI) 1.03-10.61) and grade (unadjusted OR=5.60, 95% CI 1.01-31.95) among African Americans. Presence of BRAF mutations was also positively associated with advanced tumor stage (adjusted OR=3.99, 95%CI 1.43-11.12) and grade (adjusted OR=3.93, 95%CI 1.05-14.69). PIK3CA mutations showed a trend toward an association with an increased risk of death compared to absence of those mutations (adjusted for age, sex and CRC site HR=1.89, 95% CI 0.98-3.65). Among African Americans, the association was more evident (adjusted for age, sex and CRC site HR=3.92, 95% CI 1.03-14.93) and remained significant after adjustment for MSI-H status and combined education-income level, with HR of 12.22 (95%CI 1.32-121.38). Our results suggest that African Americans may have different frequencies of somatic genetic alterations that may partially explain the worse prognosis among African Americans with CRC compared to whites.

  9. Establishing an EGFR mutation screening service for non-small cell lung cancer - sample quality criteria and candidate histological predictors.

    PubMed

    Leary, Alexandra F; Castro, David Gonzalez de; Nicholson, Andrew G; Ashley, Sue; Wotherspoon, Andrew; O'Brien, Mary E R; Popat, Sanjay

    2012-01-01

    EGFR screening requires good quality tissue, sensitivity and turn-around time (TAT). We report our experience of routine screening, describing sample type, TAT, specimen quality (cellularity and DNA yield), histopathological description, mutation result and clinical outcome. Non-small cell lung cancer (NSCLC) sections were screened for EGFR mutations (M+) in exons 18-21. Clinical, pathological and screening outcome data were collected for year 1 of testing. Screening outcome alone was collected for year 2. In year 1, 152 samples were tested, most (72%) were diagnostic. TAT was 4.9 days (95%confidence interval (CI)=4.5-5.5). EGFR-M+ prevalence was 11% and higher (20%) among never-smoking women with adenocarcinomas (ADCs), but 30% of mutations occurred in current/ex-smoking men. EGFR-M+ tumours were non-mucinous ADCs and 100% thyroid transcription factor (TTF1+). No mutations were detected in poorly differentiated NSCLC-not otherwise specified (NOS). There was a trend for improved overall survival (OS) among EGFR-M+ versus EGFR-M- patients (median OS=78 versus 17 months). In year 1, test failure rate was 19%, and associated with scant cellularity and low DNA concentrations. However 75% of samples with poor cellularity but representative of tumour were informative and mutation prevalence was 9%. In year 2, 755 samples were tested; mutation prevalence was 13% and test failure only 5.4%. Although samples with low DNA concentration (<2 ng/μL) had more test failures (30% versus 3.9% for [DNA]>2.2 ng/μL), the mutation rate was 9.2%. Routine epidermal growth factor receptor (EGFR) screening using diagnostic samples is fast and feasible even on samples with poor cellularity and DNA content. Mutations tend to occur in better-differentiated non-mucinous TTF1+ ADCs. Whether these histological criteria may be useful to select patients for EGFR testing merits further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Novel HSF4 mutation causes congenital total white cataract in a Chinese family.

    PubMed

    Ke, Tie; Wang, Qing K; Ji, Binchu; Wang, Xu; Liu, Ping; Zhang, Xianqin; Tang, Zhaohui; Ren, Xiang; Liu, Mugen

    2006-08-01

    To identify the disease-causing gene (mutation) in a Chinese family affected with autosomal dominant congenital total white cataract. Observational case series. Genotyping and linkage analyses were used to identify the linkage of the disease-causing gene in the Chinese family to the HSF4 gene encoding a member of the family of heat shock transcription factors (HSFs). Direct DNA sequence analysis was used to identify the disease-causing mutation. Polymerase chain reaction/restriction fragment length polymorphism analysis was used to demonstrate cosegregation of the HSF4 mutation with the cataract and the absence of the mutation in the normal controls. The cataract gene in the Chinese family was linked to marker D16S3043, and further haplotype analysis defined the causative gene between D16S515 and D16S415 within which HSF4 is located. A novel mutation c.221G>A was identified in HSF4, which results in substitution of a highly conserved arginine residue by histidine at codon 74 (p.R74H). The R74H mutation cosegregated with the affected individuals in the family and did not exist in unaffected family members and 150 unrelated normal controls. These results identified a novel missense mutation R74H in the transcription factor gene HSF4 in a Chinese cataract family and expand the spectrum of HSF4 mutations causing cataract.

  11. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma.

    PubMed

    Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh

    2017-03-03

    In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies.

  12. Novel EDA mutation in X-linked hypohidrotic ectodermal dysplasia and genotype-phenotype correlation.

    PubMed

    Zeng, B; Lu, H; Xiao, X; Zhou, L; Lu, J; Zhu, L; Yu, D; Zhao, W

    2015-11-01

    X-linked hypohidrotic ectodermal dysplasia (XLHED) is characterized by abnormalities of hair, teeth, and sweat glands, while non-syndromic hypodontia (NSH) affects only teeth. Mutations in Ectodysplasin A (EDA) underlie both XLHED and NSH. This study investigated the genetic causes of six hypohidrotic ectodermal dysplasia (HED) patients and genotype-phenotype correlation. The EDA gene of six patients with HED was sequenced. Bioinformatics analysis and structural modeling for the mutations were performed. The records of 134 patients with XLHED and EDA-related NSH regarding numbers of missing permanent teeth from this study and 20 articles were reviewed. Nonparametric tests were used to analyze genotype-phenotype correlations. In four of the six patients, we identified a novel mutation c.852T>G (p.Phe284Leu) and three reported mutations: c.467G>A (p.Arg156His), c.776C>A (p.Ala259Glu), and c.871G>A (p.Gly291Arg). They were predicted to be pathogenic by bioinformatics analysis and structural modeling. Genotype-phenotype correlation analysis revealed that truncating mutations were associated with more missing teeth. Missense mutations and the mutations affecting the TNF homology domain were correlated with fewer missing teeth. This study extended the mutation spectrum of XLHED and revealed the relationship between genotype and the number of missing permanent teeth. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Genetic Epidemiology of Glucose-6-Dehydrogenase Deficiency in the Arab World.

    PubMed

    Doss, C George Priya; Alasmar, Dima R; Bux, Reem I; Sneha, P; Bakhsh, Fadheela Dad; Al-Azwani, Iman; Bekay, Rajaa El; Zayed, Hatem

    2016-11-17

    A systematic search was implemented using four literature databases (PubMed, Embase, Science Direct and Web of Science) to capture all the causative mutations of Glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDD) in the 22 Arab countries. Our search yielded 43 studies that captured 33 mutations (23 missense, one silent, two deletions, and seven intronic mutations), in 3,430 Arab patients with G6PDD. The 23 missense mutations were then subjected to phenotypic classification using in silico prediction tools, which were compared to the WHO pathogenicity scale as a reference. These in silico tools were tested for their predicting efficiency using rigorous statistical analyses. Of the 23 missense mutations, p.S188F, p.I48T, p.N126D, and p.V68M, were identified as the most common mutations among Arab populations, but were not unique to the Arab world, interestingly, our search strategy found four other mutations (p.N135T, p.S179N, p.R246L, and p.Q307P) that are unique to Arabs. These mutations were exposed to structural analysis and molecular dynamics simulation analysis (MDSA), which predicting these mutant forms as potentially affect the enzyme function. The combination of the MDSA, structural analysis, and in silico predictions and statistical tools we used will provide a platform for future prediction accuracy for the pathogenicity of genetic mutations.

  14. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma

    PubMed Central

    Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh

    2017-01-01

    In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies. PMID:28256603

  15. Genetic analysis in Bartter syndrome from India.

    PubMed

    Sharma, Pradeep Kumar; Saikia, Bhaskar; Sharma, Rachna; Ankur, Kumar; Khilnani, Praveen; Aggarwal, Vinay Kumar; Cheong, Hae

    2014-10-01

    Bartter syndrome is a group of inherited, salt-losing tubulopathies presenting as hypokalemic metabolic alkalosis with normotensive hyperreninemia and hyperaldosteronism. Around 150 cases have been reported in literature till now. Mutations leading to salt losing tubulopathies are not routinely tested in Indian population. The authors have done the genetic analysis for the first time in the Bartter syndrome on two cases from India. First case was antenatal Bartter syndrome presenting with massive polyuria and hyperkalemia. Mutational analysis revealed compound heterozygous mutations in KCNJ1(ROMK) gene [p(Leu220Phe), p(Thr191Pro)]. Second case had a phenotypic presentation of classical Bartter syndrome however, genetic analysis revealed only heterozygous novel mutation in SLC12A gene p(Ala232Thr). Bartter syndrome is a clinical diagnosis and genetic analysis is recommended for prognostication and genetic counseling.

  16. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.

    PubMed

    Engin, H Billur; Kreisberg, Jason F; Carter, Hannah

    2016-01-01

    Recently it has been shown that cancer mutations selectively target protein-protein interactions. We hypothesized that mutations affecting distinct protein interactions involving established cancer genes could contribute to tumor heterogeneity, and that novel mechanistic insights might be gained into tumorigenesis by investigating protein interactions under positive selection in cancer. To identify protein interactions under positive selection in cancer, we mapped over 1.2 million nonsynonymous somatic cancer mutations onto 4,896 experimentally determined protein structures and analyzed their spatial distribution. In total, 20% of mutations on the surface of known cancer genes perturbed protein-protein interactions (PPIs), and this enrichment for PPI interfaces was observed for both tumor suppressors (Odds Ratio 1.28, P-value < 10(-4)) and oncogenes (Odds Ratio 1.17, P-value < 10(-3)). To study this further, we constructed a bipartite network representing structurally resolved PPIs from all available human complexes in the Protein Data Bank (2,864 proteins, 3,072 PPIs). Analysis of frequently mutated cancer genes within this network revealed that tumor-suppressors, but not oncogenes, are significantly enriched with functional mutations in homo-oligomerization regions (Odds Ratio 3.68, P-Value < 10(-8)). We present two important examples, TP53 and beta-2-microglobulin, for which the patterns of somatic mutations at interfaces provide insights into specifically perturbed biological circuits. In patients with TP53 mutations, patient survival correlated with the specific interactions that were perturbed. Moreover, we investigated mutations at the interface of protein-nucleotide interactions and observed an unexpected number of missense mutations but not silent mutations occurring within DNA and RNA binding sites. Finally, we provide a resource of 3,072 PPI interfaces ranked according to their mutation rates. Analysis of this list highlights 282 novel candidate cancer genes that encode proteins participating in interactions that are perturbed recurrently across tumors. In summary, mutation of specific protein interactions is an important contributor to tumor heterogeneity and may have important implications for clinical outcomes.

  17. The 253-kb inversion and deep intronic mutations in UNC13D are present in North American patients with familial hemophagocytic lymphohistiocytosis 3.

    PubMed

    Qian, Yaping; Johnson, Judith A; Connor, Jessica A; Valencia, C Alexander; Barasa, Nathaniel; Schubert, Jeffery; Husami, Ammar; Kissell, Diane; Zhang, Ge; Weirauch, Matthew T; Filipovich, Alexandra H; Zhang, Kejian

    2014-06-01

    The mutations in UNC13D are responsible for familial hemophagocytic lymphohistiocytosis (FHL) type 3. A 253-kb inversion and two deep intronic mutations, c.118-308C > T and c.118-307G > A, in UNC13D were recently reported in European and Asian FHL3 patients. We sought to determine the prevalence of these three non-coding mutations in North American FHL patients and evaluate the significance of examining these new mutations in genetic testing. We performed DNA sequencing of UNC13D and targeted analysis of these three mutations in 1,709 North American patients with a suspected clinical diagnosis of hemophagocytic lymphohistiocytosis (HLH). The 253-kb inversion, intronic mutations c.118-308C > T and c.118-307G > A were found in 11, 15, and 4 patients, respectively, in which the genetic basis (bi-allelic mutations) explained 25 additional patients. Taken together with previously diagnosed FHL3 patients in our HLH patient registry, these three non-coding mutations were found in 31.6% (25/79) of the FHL3 patients. The 253-kb inversion, c.118-308C > T and c.118-307G > A accounted for 7.0%, 8.9%, and 1.3% of mutant alleles, respectively. Significantly, eight novel mutations in UNC13D are being reported in this study. To further evaluate the expression level of the newly reported intronic mutation c.118-307G > A, reverse transcription PCR and Western blot analysis revealed a significant reduction of both RNA and protein levels suggesting that the c.118-307G > A mutation affects transcription. These specified non-coding mutations were found in a significant number of North American patients and inclusion of them in mutation analysis will improve the molecular diagnosis of FHL3. © 2014 Wiley Periodicals, Inc.

  18. Mutation profiles in early-stage lung squamous cell carcinoma with clinical follow-up and correlation with markers of immune function.

    PubMed

    Choi, M; Kadara, H; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Kim, K; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Herbst, R S; Wistuba, I I

    2017-01-01

    Lung squamous cell carcinoma (LUSC) accounts for 20–30% of non-small cell lung cancers (NSCLCs). There are limited treatment strategies for LUSC in part due to our inadequate understanding of the molecular underpinnings of the disease. We performed whole-exome sequencing (WES) and comprehensive immune profiling of a unique set of clinically annotated early-stage LUSCs to increase our understanding of the pathobiology of this malignancy. Matched pairs of surgically resected stage I-III LUSCs and normal lung tissues (n = 108) were analyzed by WES. Immunohistochemistry and image analysis-based profiling of 10 immune markers were done on a subset of LUSCs (n = 91). Associations among mutations, immune markers and clinicopathological variables were statistically examined using analysis of variance and Fisher’s exact test. Cox proportional hazards regression models were used for statistical analysis of clinical outcome. This early-stage LUSC cohort displayed an average of 209 exonic mutations per tumor. Fourteen genes exhibited significant enrichment for somatic mutation: TP53, MLL2, PIK3CA, NFE2L2, CDH8, KEAP1, PTEN, ADCY8, PTPRT, CALCR, GRM8, FBXW7, RB1 and CDKN2A. Among mutated genes associated with poor recurrence-free survival, MLL2 mutations predicted poor prognosis in both TP53 mutant and wild-type LUSCs. We also found that in treated patients, FBXW7 and KEAP1 mutations were associated with poor response to adjuvant therapy, particularly in TP53-mutant tumors. Analysis of mutations with immune markers revealed that ADCY8 and PIK3CA mutations were associated with markedly decreased tumoral PD-L1 expression, LUSCs with PIK3CA mutations exhibited elevated CD45ro levels and CDKN2A-mutant tumors displayed an up-regulated immune response. Our findings pinpoint mutated genes that may impact clinical outcome as well as personalized strategies for targeted immunotherapies in early-stage LUSC.

  19. Cell lineage analysis in human brain using endogenous retroelements

    PubMed Central

    Evrony, Gilad D.; Lee, Eunjung; Mehta, Bhaven K.; Benjamini, Yuval; Johnson, Robert M.; Cai, Xuyu; Yang, Lixing; Haseley, Psalm; Lehmann, Hillel S.; Park, Peter J.; Walsh, Christopher A.

    2015-01-01

    Summary Somatic mutations occur during brain development and are increasingly implicated as a cause of neurogenetic disease. However, the patterns in which somatic mutations distribute in the human brain are unknown. We used high-coverage whole-genome sequencing of single neurons from a normal individual to identify spontaneous somatic mutations as clonal marks to track cell lineages in human brain. Somatic mutation analyses in >30 locations throughout the nervous system identified multiple lineages and sub-lineages of cells marked by different LINE-1 (L1) retrotransposition events and subsequent mutation of poly-A microsatellites within L1. One clone contained thousands of cells limited to the left middle frontal gyrus, whereas a second distinct clone contained millions of cells distributed over the entire left hemisphere. These patterns mirror known somatic mutation disorders of brain development, and suggest that focally distributed mutations are also prevalent in normal brains. Single-cell analysis of somatic mutation enables tracing of cell lineage clones in human brain. PMID:25569347

  20. Kit receptor tyrosine kinase dysregulations in feline splenic mast cell tumours.

    PubMed

    Sabattini, S; Barzon, G; Giantin, M; Lopparelli, R M; Dacasto, M; Prata, D; Bettini, G

    2017-09-01

    This study investigated Kit receptor dysregulations (cytoplasmic immunohistochemical expression and/or c-KIT mutations) in cats affected with splenic mast cell tumours. Twenty-two cats were included. Median survival time was 780 days (range: 1-1219). An exclusive splenic involvement was significantly (P = 0.042) associated with longer survival (807 versus 120 days). Eighteen tumours (85.7%) showed Kit cytoplasmic expression (Kit pattern 2, 3). Mutation analysis was successful in 20 cases. Fourteen missense mutations were detected in 13 out of 20 tumours (65%). Eleven (78.6%) were located in exon 8, and three (21.6%) in exon 9. No mutations were detected in exons 11 and 17. Seven mutations corresponded to the same internal tandem duplication in exon 8 (c.1245_1256dup). Although the association between Kit cytoplasmic expression and mutations was significant, immunohistochemistry cannot be considered a surrogate marker for mutation analysis. No correlation was observed between c-Kit mutations and tumour differentiation, mitotic activity or survival. © 2016 John Wiley & Sons Ltd.

  1. Laboratory practice guidelines for detecting and reporting JAK2 and MPL mutations in myeloproliferative neoplasms: a report of the Association for Molecular Pathology.

    PubMed

    Gong, Jerald Z; Cook, James R; Greiner, Timothy C; Hedvat, Cyrus; Hill, Charles E; Lim, Megan S; Longtine, Janina A; Sabath, Daniel; Wang, Y Lynn

    2013-11-01

    Recurrent mutations in JAK2 and MPL genes are genetic hallmarks of BCR-ABL1-negative myeloproliferative neoplasms. Detection of JAK2 and MPL mutations has been incorporated into routine diagnostic algorithms for these diseases. This Special Article summarizes results from a nationwide laboratory survey of JAK2 and MPL mutation analysis. Based on the current practice pattern and the literature, this Special Article provides recommendations and guidelines for laboratory practice for detection of mutations in the JAK2 and MPL genes, including clinical manifestations for prompting the mutation analysis, current and recommended methodologies for testing the mutations, and standardization for reporting the test results. This Special Article also points to future directions for genomic testing in BCR-ABL1-negative myeloproliferative neoplasms. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  2. DMD mutation spectrum analysis in 613 Chinese patients with dystrophinopathy.

    PubMed

    Guo, Ruolan; Zhu, Guosheng; Zhu, Huimin; Ma, Ruiyu; Peng, Ying; Liang, Desheng; Wu, Lingqian

    2015-08-01

    Dystrophinopathy is a group of inherited diseases caused by mutations in the DMD gene. Within the dystrophinopathy spectrum, Duchenne and Becker muscular dystrophies are common X-linked recessive disorders that mainly feature striated muscle necrosis. We combined multiplex ligation-dependent probe amplification with Sanger sequencing to detect large deletions/duplications and point mutations in the DMD gene in 613 Chinese patients. A total of 571 (93.1%) patients were diagnosed, including 428 (69.8%) with large deletions/duplications and 143 (23.3%) with point mutations. Deletion/duplication breakpoints gathered mostly in introns 44-55. Reading frame rules could explain 88.6% of deletion mutations. We identified seventy novel point mutations that had not been previously reported. Spectrum expansion and genotype-phenotype analysis of DMD mutations on such a large sample size in Han Chinese population would provide new insights into the pathogenic mechanism underlying dystrophinopathies.

  3. Rapid identification of mutations in the IDS gene of Hunter patients: Analysis of mRNA by the protein truncation test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogervorst, F.B.L.; Tuijn, A.C. van der; Ommen, G.J.B. van

    Hunter syndrome is an X-linked recessive disorder constituting phenotypes ranging from mild to severe. The gene affected in Hunter syndrome is iduronate-2-sulfatase (IDS). The identification of mutations leading to a defective enzyme could be of benefit for the diagnosis and prognosis of patients. At this moment a variety of mutations have been found, including large deletions and base substitutions. We have previously described a method, designated the protein truncation test (PTT), for the detection of mutations leading to premature translation termination. The method combines reverse transcription and PCR (RT-PCR) with in vitro transcript/translation of the products generated. To facilitate amore » PTT analysis, the forward primer is modified by addition of a T7 promoter sequence and an in-frame protein translation initiation sequence. In our department the method has been successfully applied for DMD and FAP. Here we report on the PTT analysis of 8 Hunter patients, all of them without major gene alterations as determined by Southern analysis. Total RNA was isolated from cultured skin fibroblasts or peripheral blood lymphocytes. PTT analysis revealed 4 novel mutations in the IDS gene: two missense mutations and two frameshift mutations (splice donor site alteration in intron 6 and a 13 bp deletion in exon 9). Furthermore, PTT proved to be a simple method to identify carriers. Currently, we use the generated RT-PCR products of the remaining patients for automated sequence analysis. PTT may be of great value in screening disorders in which affected genes give rise to truncated protein products.« less

  4. Pitfalls in genetic analysis of pheochromocytomas/paragangliomas-case report.

    PubMed

    Canu, Letizia; Rapizzi, Elena; Zampetti, Benedetta; Fucci, Rossella; Nesi, Gabriella; Richter, Susan; Qin, Nan; Giachè, Valentino; Bergamini, Carlo; Parenti, Gabriele; Valeri, Andrea; Ercolino, Tonino; Eisenhofer, Graeme; Mannelli, Massimo

    2014-07-01

    About 35% of patients with pheochromocytoma/paraganglioma carry a germline mutation in one of the 10 main susceptibility genes. The recent introduction of next-generation sequencing will allow the analysis of all these genes in one run. When positive, the analysis is generally unequivocal due to the association between a germline mutation and a concordant clinical presentation or positive family history. When genetic analysis reveals a novel mutation with no clinical correlates, particularly in the presence of a missense variant, the question arises whether the mutation is pathogenic or a rare polymorphism. We report the case of a 35-year-old patient operated for a pheochromocytoma who turned out to be a carrier of a novel SDHD (succinate dehydrogenase subunit D) missense mutation. With no positive family history or clinical correlates, we decided to perform additional analyses to test the clinical significance of the mutation. We performed in silico analysis, tissue loss of heterozygosity analysis, immunohistochemistry, Western blot analysis, SDH enzymatic assay, and measurement of the succinate/fumarate concentration ratio in the tumor tissue by tandem mass spectrometry. Although the in silico analysis gave contradictory results according to the different methods, all the other tests demonstrated that the SDH complex was conserved and normally active. We therefore came to the conclusion that the variant was a nonpathogenic polymorphism. Advancements in technology facilitate genetic analysis of patients with pheochromocytoma but also offer new challenges to the clinician who, in some cases, needs clinical correlates and/or functional tests to give significance to the results of the genetic assay.

  5. Non-invasive prenatal diagnosis of multiple endocrine neoplasia type 2A using COLD-PCR combined with HRM genotyping analysis from maternal serum.

    PubMed

    Macher, Hada C; Martinez-Broca, Maria A; Rubio-Calvo, Amalia; Leon-Garcia, Cristina; Conde-Sanchez, Manuel; Costa, Alzenira; Navarro, Elena; Guerrero, Juan M

    2012-01-01

    The multiple endocrine neoplasia type 2A (MEN2A) is a monogenic disorder characterized by an autosomal dominant pattern of inheritance which is characterized by high risk of medullary thyroid carcinoma in all mutation carriers. Although this disorder is classified as a rare disease, the patients affected have a low life quality and a very expensive and continuous treatment. At present, MEN2A is diagnosed by gene sequencing after birth, thus trying to start an early treatment and by reduction of morbidity and mortality. We first evaluated the presence of MEN2A mutation (C634Y) in serum of 25 patients, previously diagnosed by sequencing in peripheral blood leucocytes, using HRM genotyping analysis. In a second step, we used a COLD-PCR approach followed by HRM genotyping analysis for non-invasive prenatal diagnosis of a pregnant woman carrying a fetus with a C634Y mutation. HRM analysis revealed differences in melting curve shapes that correlated with patients diagnosed for MEN2A by gene sequencing analysis with 100% accuracy. Moreover, the pregnant woman carrying the fetus with the C634Y mutation revealed a melting curve shape in agreement with the positive controls in the COLD-PCR study. The mutation was confirmed by sequencing of the COLD-PCR amplification product. In conclusion, we have established a HRM analysis in serum samples as a new primary diagnosis method suitable for the detection of C634Y mutations in MEN2A patients. Simultaneously, we have applied the increase of sensitivity of COLD-PCR assay approach combined with HRM analysis for the non-invasive prenatal diagnosis of C634Y fetal mutations using pregnant women serum.

  6. Overrepresentation of missense mutations in mild hemophilia A patients from Belgium: founder effect or independent occurrence?

    PubMed

    Lannoy, N; Lambert, C; Vikkula, M; Hermans, C

    2015-06-01

    Roughly 40% of observed mutations responsible for hemophilia A (HA) are novel and present in either a single family or a limited number of unrelated families. During routine diagnostic analysis of 73 unrelated Belgian patients with mild HA, 4 out of 43 different mutations (p.Ser2030Asn, p.Arg2178Cys, p.Arg2178His, and p.Pro2311His) were detected in more than one family, representing 35% of total identified mutations. To discriminate between an independent recurrence or a founder effect, an analysis of intra- and -extragenic single nucleotide polymorphisms (SNPs) and short tandem repeats (STRs) flanking the F8 gene was conducted. SNP haplotype and microsatellite analysis revealed strong evidence that p.Ser2030Asn and p.Pro2311His mutations were probably associated with a founder effect. The two other mutations localized in an F8 cytosine-phosphate-guanine (CpG) site likely resulted from recurrent de novo events. This study suggests that missense mutations producing C-to-T or G-to-A substitutions in CpG dinucleotide can occur de novo with more repetition than other causal substitutions that do not affect the CpG site. Analysis of F8 database implied that CpG sites throughout the F8 gene are not all mutated with the same frequency. Causes are still unknown and remain to be identified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Investigating the usefulness of a cluster-based trend analysis to detect visual field progression in patients with open-angle glaucoma.

    PubMed

    Aoki, Shuichiro; Murata, Hiroshi; Fujino, Yuri; Matsuura, Masato; Miki, Atsuya; Tanito, Masaki; Mizoue, Shiro; Mori, Kazuhiko; Suzuki, Katsuyoshi; Yamashita, Takehiro; Kashiwagi, Kenji; Hirasawa, Kazunori; Shoji, Nobuyuki; Asaoka, Ryo

    2017-12-01

    To investigate the usefulness of the Octopus (Haag-Streit) EyeSuite's cluster trend analysis in glaucoma. Ten visual fields (VFs) with the Humphrey Field Analyzer (Carl Zeiss Meditec), spanning 7.7 years on average were obtained from 728 eyes of 475 primary open angle glaucoma patients. Mean total deviation (mTD) trend analysis and EyeSuite's cluster trend analysis were performed on various series of VFs (from 1st to 10th: VF1-10 to 6th to 10th: VF6-10). The results of the cluster-based trend analysis, based on different lengths of VF series, were compared against mTD trend analysis. Cluster-based trend analysis and mTD trend analysis results were significantly associated in all clusters and with all lengths of VF series. Between 21.2% and 45.9% (depending on VF series length and location) of clusters were deemed to progress when the mTD trend analysis suggested no progression. On the other hand, 4.8% of eyes were observed to progress using the mTD trend analysis when cluster trend analysis suggested no progression in any two (or more) clusters. Whole field trend analysis can miss local VF progression. Cluster trend analysis appears as robust as mTD trend analysis and useful to assess both sectorial and whole field progression. Cluster-based trend analyses, in particular the definition of two or more progressing cluster, may help clinicians to detect glaucomatous progression in a timelier manner than using a whole field trend analysis, without significantly compromising specificity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Mutation analysis of the STRA6 gene in isolated and non-isolated anophthalmia/microphthalmia.

    PubMed

    Chassaing, N; Ragge, N; Kariminejad, A; Buffet, A; Ghaderi-Sohi, S; Martinovic, J; Calvas, P

    2013-03-01

    PDAC syndrome [Pulmonary hypoplasia/agenesis, Diaphragmatic hernia/eventration, Anophthalmia/microphthalmia (A/M) and Cardiac Defect] is a condition associated with recessive mutations in the STRA6 gene in some of these patients. Recently, cases with isolated anophthalmia have been associated with STRA6 mutations. To determine the minimal findings associated with STRA6 mutations, we performed mutation analysis of the STRA6 gene in 28 cases with anophthalmia. In 7 of the cases the anophthalmia was isolated, in 14 cases it was associated with one of the major features included in PDAC and 7 had other abnormalities. Mutations were identified in two individuals: one with bilateral anophthalmia and some features included in PDAC, who was a compound heterozygote for a missense mutation and a large intragenic deletion, and the second case with all the major features of PDAC and who had a homozygous splicing mutation. This study suggests that STRA6 mutations are more likely to be identified in individuals with A/M and other abnormalities included in the PDAC spectrum, rather than in isolated A/M cases. © 2012 John Wiley & Sons A/S.

  9. Mutational analysis of the TCOF1 gene in 11 Japanese patients with Treacher Collins Syndrome and mechanism of mutagenesis.

    PubMed

    Horiuchi, Katsumi; Ariga, Tadashi; Fujioka, Hirotaka; Kawashima, Kunihiro; Yamamoto, Yuhei; Igawa, Hiroharu; Sugihara, Tsuneki; Sakiyama, Yukio

    2005-05-01

    Treacher Collins Syndrome (TCS) (OMIM 154500) is a congenital, craniofacial disorder inherited as an autosomal dominant trait. The responsible gene for TCS, TCOF1, was mapped to 5q32-33.1 and identified in 1996. Since then, TCOF1 mutations in patients with TCS have been reported from Europe, North and South America, however, no TCS cases from an Asian country have been molecularly characterized. Here we report mutational analysis for 11 Japanese patients with TCS for the first time, and have identified TCOF1 mutations in 9 of them. The mutations detected were various, but most likely all the mutations are predicted to result in a truncated gene product, known as treacle. One mutation frequently reported was included in our cases, but no missense mutations were detected. These findings are similar to those for the previous studies for TCS in other races. We have speculated about the molecular mechanisms of the mutations in most cases. Collectively, we have defined some of the characteristic molecular features commonly observed in TCS patients, irrespective of racial difference. 2005 Wiley-Liss, Inc.

  10. A de novo deletion mutation in SOX10 in a Chinese family with Waardenburg syndrome type 4.

    PubMed

    Wang, Xiong; Zhu, Yaowu; Shen, Na; Peng, Jing; Wang, Chunyu; Liu, Haiyi; Lu, Yanjun

    2017-01-27

    Waardenburg syndrome type 4 (WS4) or Waardenburg-Shah syndrome is a rare genetic disorder with a prevalence of <1/1,000,000 and characterized by the association of congenital sensorineural hearing loss, pigmentary abnormalities, and intestinal aganglionosis. There are three types of WS4 (WS4A-C) caused by mutations in endothelin receptor type B, endothelin 3, and SRY-box 10 (SOX10), respectively. This study investigated a genetic mutation in a Chinese family with one WS4 patient in order to improve genetic counselling. Genomic DNA was extracted, and mutation analysis of the three WS4 related genes was performed using Sanger sequencing. We detected a de novo heterozygous deletion mutation [c.1333delT (p.Ser445Glnfs*57)] in SOX10 in the patient; however, this mutation was absent in the unaffected parents and 40 ethnicity matched healthy controls. Subsequent phylogenetic analysis and three-dimensional modelling of the SOX10 protein confirmed that the c.1333delT heterozygous mutation was pathogenic, indicating that this mutation might constitute a candidate disease-causing mutation.

  11. A de novo deletion mutation in SOX10 in a Chinese family with Waardenburg syndrome type 4

    PubMed Central

    Wang, Xiong; Zhu, Yaowu; Shen, Na; Peng, Jing; Wang, Chunyu; Liu, Haiyi; Lu, Yanjun

    2017-01-01

    Waardenburg syndrome type 4 (WS4) or Waardenburg-Shah syndrome is a rare genetic disorder with a prevalence of <1/1,000,000 and characterized by the association of congenital sensorineural hearing loss, pigmentary abnormalities, and intestinal aganglionosis. There are three types of WS4 (WS4A–C) caused by mutations in endothelin receptor type B, endothelin 3, and SRY-box 10 (SOX10), respectively. This study investigated a genetic mutation in a Chinese family with one WS4 patient in order to improve genetic counselling. Genomic DNA was extracted, and mutation analysis of the three WS4 related genes was performed using Sanger sequencing. We detected a de novo heterozygous deletion mutation [c.1333delT (p.Ser445Glnfs*57)] in SOX10 in the patient; however, this mutation was absent in the unaffected parents and 40 ethnicity matched healthy controls. Subsequent phylogenetic analysis and three-dimensional modelling of the SOX10 protein confirmed that the c.1333delT heterozygous mutation was pathogenic, indicating that this mutation might constitute a candidate disease-causing mutation. PMID:28128317

  12. Intronic splicing mutations in PTCH1 cause Gorlin syndrome.

    PubMed

    Bholah, Zaynab; Smith, Miriam J; Byers, Helen J; Miles, Emma K; Evans, D Gareth; Newman, William G

    2014-09-01

    Gorlin syndrome is an autosomal dominant disorder characterized by multiple early-onset basal cell carcinoma, odontogenic keratocysts and skeletal abnormalities. It is caused by heterozygous mutations in the tumour suppressor PTCH1. Routine clinical genetic testing, by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to confirm a clinical diagnosis of Gorlin syndrome, identifies a mutation in 60-90 % of cases. We undertook RNA analysis on lymphocytes from ten individuals diagnosed with Gorlin syndrome, but without known PTCH1 mutations by exonic sequencing or MLPA. Two altered PTCH1 transcripts were identified. Genomic DNA sequence analysis identified an intron 7 mutation c.1068-10T>A, which created a strong cryptic splice acceptor site, leading to an intronic insertion of eight bases; this is predicted to create a frameshift p.(His358Alafs*12). Secondly, a deep intronic mutation c.2561-2057A>G caused an inframe insertion of 78 intronic bases in the cDNA transcript, leading to a premature stop codon p.(Gly854fs*3). The mutations are predicted to cause loss of function of PTCH1, consistent with its tumour suppressor function. The findings indicate the importance of RNA analysis to detect intronic mutations in PTCH1 not identified by routine screening techniques.

  13. Noninvasive prenatal diagnosis of hemophilia by microfluidics digital PCR analysis of maternal plasma DNA.

    PubMed

    Tsui, Nancy B Y; Kadir, Rezan A; Chan, K C Allen; Chi, Claudia; Mellars, Gillian; Tuddenham, Edward G; Leung, Tak Y; Lau, Tze K; Chiu, Rossa W K; Lo, Y M Dennis

    2011-03-31

    Hemophilia is a bleeding disorder with X-linked inheritance. Current prenatal diagnostic methods for hemophilia are invasive and pose a risk to the fetus. Cell-free fetal DNA analysis in maternal plasma provides a noninvasive mean of assessing fetal sex in such pregnancies. However, the disease status of male fetuses remains unknown if mutation-specific confirmatory analysis is not performed. Here we have developed a noninvasive test to diagnose whether the fetus has inherited a causative mutation for hemophilia from its mother. The strategy is based on a relative mutation dosage approach, which we have previously established for determining the mutational status of fetuses for autosomal disease mutations. In this study, the relative mutation dosage method is used to deduce whether a fetus has inherited a hemophilia mutation on chromosome X by detecting whether the concentration of the mutant or wild-type allele is overrepresented in the plasma of heterozygous women carrying male fetuses. We correctly detected fetal genotypes for hemophilia mutations in all of the 12 studied maternal plasma samples obtained from at-risk pregnancies from as early as the 11th week of gestation. This development would make the decision to undertake prenatal testing less traumatic and safer for at-risk families.

  14. Mutation analysis of 272 Spanish families affected by autosomal recessive retinitis pigmentosa using a genotyping microarray.

    PubMed

    Ávila-Fernández, Almudena; Cantalapiedra, Diego; Aller, Elena; Vallespín, Elena; Aguirre-Lambán, Jana; Blanco-Kelly, Fiona; Corton, M; Riveiro-Álvarez, Rosa; Allikmets, Rando; Trujillo-Tiebas, María José; Millán, José M; Cremers, Frans P M; Ayuso, Carmen

    2010-12-03

    Retinitis pigmentosa (RP) is a genetically heterogeneous disorder characterized by progressive loss of vision. The aim of this study was to identify the causative mutations in 272 Spanish families using a genotyping microarray. 272 unrelated Spanish families, 107 with autosomal recessive RP (arRP) and 165 with sporadic RP (sRP), were studied using the APEX genotyping microarray. The families were also classified by clinical criteria: 86 juveniles and 186 typical RP families. Haplotype and sequence analysis were performed to identify the second mutated allele. At least one-gene variant was found in 14% and 16% of the juvenile and typical RP groups respectively. Further study identified four new mutations, providing both causative changes in 11% of the families. Retinol Dehydrogenase 12 (RDH12) was the most frequently mutated gene in the juvenile RP group, and Usher Syndrome 2A (USH2A) and Ceramide Kinase-Like (CERKL) were the most frequently mutated genes in the typical RP group. The only variant found in CERKL was p.Arg257Stop, the most frequent mutation. The genotyping microarray combined with segregation and sequence analysis allowed us to identify the causative mutations in 11% of the families. Due to the low number of characterized families, this approach should be used in tandem with other techniques.

  15. The use of high resolution melting analysis to detect Fabry mutations in heterozygous females via dry bloodspots.

    PubMed

    Tai, Chang-Long; Liu, Mei-Ying; Yu, Hsiao-Chi; Chiang, Chiang-Chuan; Chiang, Hung; Suen, Jeng-Hung; Kao, Shu-Min; Huang, Yu-Hsiu; Wu, Tina Jui-Ting; Yang, Chia-Feng; Tsai, Fang-Chih; Lin, Ching-Yuang; Chang, Jan-Gowth; Chen, Hong-Duo; Niu, Dau-Ming

    2012-02-18

    As an X-linked genetic disorder, Fabry disease was first thought to affect males only, and females were generally considered to be asymptomatic carriers. However, recent research suggests that female carriers of Fabry disease may still develop vital organ damage causing severe morbidity and mortality. In the previous newborn screening, from 299,007 newborns, we identified a total of 20 different Fabry mutations and 121 newborns with Fabry mutations. However, we found that most female carriers are not detected by enzyme assays. A streamlined method for high resolution melting (HRM) analysis was designed to screen for GLA gene mutations using a same PCR and melting program. Primer sets were designed to cover the 7 exons and the Chinese common intronic mutation, IVS4+919G>A of GLA gene. The HRM analysis was successful in identifying heterozygous and hemizygous patients with the 20 surveyed mutations. We were also successful in using this method to test dry blood spots of newborns afflicted with Fabry mutations without having to determine DNA concentration before PCR amplification. The results of this study show that HRM could be a reliable and sensitive method for use in the rapid screening of females for GLA mutations. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Role of TGFBR1 and TGFBR2 genetic variants in Marfan syndrome.

    PubMed

    De Cario, Rosina; Sticchi, Elena; Lucarini, Laura; Attanasio, Monica; Nistri, Stefano; Marcucci, Rossella; Pepe, Guglielmina; Giusti, Betti

    2017-08-25

    Genetic variants in transforming growth factor beta (TGF-β) receptors type 1 (TGFBR1) and type 2 (TGFBR2) genes have been associated with different hereditary connective tissue disorders sharing thoracic aortic aneurysm and dissection (TAA/D). Mutations in both TGFBR1/2 genes have been described in patients with TAA/D and Marfan syndrome (MFS), and they are associated consistently with Loeys-Dietz syndrome. The existing literature shows discordant data resulting from mutational screening of TGFBR1/2 genes in patients with MFS. The aim of the study was to investigate the role of TGFBR1/2 genetic variants in determining and/or modulating MFS clinical phenotype. We investigated 75 unrelated patients with MFS referred to the Center for Marfan Syndrome and Related Disorders (Careggi University Hospital, Florence) who were subjected to FBN1 and TGFBR1/2 Sanger mutational screening. Forty-seven patients with MFS (63%) carried a pathogenetic FBN1 mutation. No pathogenetic mutations were detected in TGFBR1/2 genes. Ten common polymorphisms were identified in TGFBR2 and 6 in TGFBR1. Their association with cardiovascular manifestations was evaluated. Carriers of the A allele of rs11466512, delA allele of c.383delA or delT allele of c.1256-15del1T polymorphisms had a trend toward or significantly reduced z-scores (median [interquartile range (IQR)], 2.2 [1.13-4.77]; 2.1 [1.72-3.48]; 2.5 [1.85-3.86]) with respect to homozygous patients with wild-type MFS (median [IQR], 4.20 [2.39-7.25]; 3.9 [2.19-7.00]; 3.9 [2.14-6.93]). Carriers of the A allele of the rs2276767 polymorphism showed a trend toward increased z-score (median [IQR], 4.9 [2.14-7.16]) with respect to patients with wild-type MFS (median [IQR], 3.3 [1.75-5.45]). The protective effect of TGFBR1/2 genetic score including all the 4 variants was also evaluated. Patients with MFS with two or more protective alleles included in the score had statistically significant reduced aortic z-scores (median [IQR], 2.20 [1.48-3.37]) with respect to patients with 1 or no protective alleles (median [IQR], 4.20 [2.48-7.12]; P = .007). Patients with severe aortic manifestations (aortic z-score ≥ 2 or aortic surgery) showed a significantly lower prevalence of subjects with two or more protective alleles included in the genetic score (29.7%) than patients with no or milder cardiovascular involvement (63.6%; P = .029). The genetic score protective effect on global aortic manifestations severity (aortic z-score ≥ 2 or aortic surgery) was also observed at the logistic regression analysis adjusted for the presence of FBN1 gene mutations (odds ratio, 0.21; 95% CI, 0.05-0.84; P = .028). In conclusion, our data reappraise the role of TGFBR1 and TGFBR2 as major genes in patients with MFS, and suggest that TGFBR1/2 genetic variants (in particular when evaluated as a burden by score) might play a role in modulating the severity of cardiovascular manifestation in MFS. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  17. Molecular genetic analysis of the F11 gene in 14 Turkish patients with factor XI deficiency: identification of novel and recurrent mutations and their inheritance within families

    PubMed Central

    Colakoglu, Seyma; Bayhan, Turan; Tavil, Betül; Keskin, Ebru Yılmaz; Cakir, Volkan; Gümrük, Fatma; Çetin, Mualla; Aytaç, Selin; Berber, Ergul

    2018-01-01

    Background Factor XI (FXI) deficiency is an autosomal bleeding disease associated with genetic defects in the F11 gene which cause decreased FXI levels or impaired FXI function. An increasing number of mutations has been reported in the FXI mutation database, most of which affect the serine protease domain of the protein. FXI is a heterogeneous disorder associated with a variable bleeding tendency and a variety of causative F11 gene mutations. The molecular basis of FXI deficiency in 14 patients from ten unrelated families in Turkey was analysed to establish genotype-phenotype correlations and inheritance of the mutations in the patients’ families. Material and methods Fourteen index cases with a diagnosis of FXI deficiency and family members of these patients were enrolled into the study. The patients’ F11 genes were amplified by polymerase chain reaction and subjected to direct DNA sequencing analysis. The findings were analysed statistically using bivariate correlations, Pearson’s correlation coefficient and the nonparametric Mann-Whitney test. Results Direct DNA sequencing analysis of the F11 genes revealed that all of the 14 patients had a F11 gene mutation. Eight different mutations were identified in the apple 1, apple 2 or serine protease domains, except one which was a splice site mutation. Six of the mutations were recurrent. Two of the mutations were novel missense mutations, p.Val522Gly and p.Cys581Arg, within the catalytic domain. The p.Trp519Stop mutation was observed in two families whereas all the other mutations were specific to a single family. Discussion Identification of mutations confirmed the genetic heterogeneity of FXI deficiency. Most of the patients with mutations did not have any bleeding complications, whereas some had severe bleeding symptoms. Genetic screening for F11 gene mutations is important to decrease the mortality and morbidity rate associated with FXI deficiency, which can be life-threatening if bleeding occurs in tissues with high fibrinolytic activity. PMID:27723456

  18. Significance of KRAS, NRAS, BRAF and PIK3CA mutations in metastatic colorectal cancer patients receiving Bevacizumab: a single institution experience

    PubMed Central

    Baltruškevičienė, Edita; Mickys, Ugnius; Žvirblis, Tadas; Stulpinas, Rokas; Pipirienė Želvienė, Teresė; Aleknavičius, Eduardas

    2016-01-01

    Background. KRAS mutation is an important predictive and prognostic factor for patients receiving anti-EGFR therapy. An expanded KRAS, NRAS, BRAF, PIK3CA mutation analysis provides additional prognostic information, but its role in predicting bevacizumab efficacy is unclear. The aim of our study was to evaluate the incidence of KRAS, NRAS, BRAF and PIK3CA mutations in metastatic colorectal cancer patients receiving first line oxaliplatin based chemotherapy with or without bevacizumab and to evaluate their prognostic and predictive significance. Methods. 55 patients with the first-time diagnosed CRC receiving FOLFOX ± bevacizumab were involved in the study. Tumour blocks were tested for KRAS mutations in exons 2, 3 and 4, NRAS mutations in exons 2, 3 and 4, BRAF mutation in exon 15 and PIK3CA mutations in exons 9 and 20. The association between mutations and clinico-pathological factors, treatment outcomes and survival was analyzed. Results. KRAS mutations were detected in 67.3% of the patients, BRAF in 1.8%, PIK3CA in 5.5% and there were no NRAS mutations. A significant association between the high CA 19–9 level and KRAS mutation was detected (mean CA 19–9 levels were 276 and 87 kIU/l, respectively, p = 0.019). There was a significantly higher response rate in the KRAS, NRAS, BRAF and PIK3CA wild type cohort receiving bevacizumab compared to any gene mutant type (100 and 60%, respectively, p = 0.030). The univariate Cox regression analysis did not confirm KRAS and other tested mutations as prognostic factors for PFS or OS. Conclusions. Our study revealed higher KRAS and lower NRAS, BRAF and PIK3CA mutation rates in the Lithuanian population than those reported in the literature. KRAS mutation was associated with the high CA 19–9 level and mucinous histology type, but did not show any predictive or prognostic significance. The expanded KRAS, NRAS, BRAF and PIK3CA mutation analysis provided additional significant predictive information. PMID:28356789

  19. Determination of EGFR and KRAS mutational status in Greek non-small-cell lung cancer patients

    PubMed Central

    PAPADOPOULOU, EIRINI; TSOULOS, NIKOLAOS; TSIRIGOTI, ANGELIKI; APESSOS, ANGELA; AGIANNITOPOULOS, KONSTANTINOS; METAXA-MARIATOU, VASILIKI; ZAROGOULIDIS, KONSTANTINOS; ZAROGOULIDIS, PAVLOS; KASARAKIS, DIMITRIOS; KAKOLYRIS, STYLIANOS; DAHABREH, JUBRAIL; VLASTOS, FOTIS; ZOUBLIOS, CHARALAMPOS; RAPTI, AGGELIKI; PAPAGEORGIOU, NIKI GEORGATOU; VELDEKIS, DIMITRIOS; GAGA, MINA; ARAVANTINOS, GERASIMOS; KARAVASILIS, VASILEIOS; KARAGIANNIDIS, NAPOLEON; NASIOULAS, GEORGE

    2015-01-01

    It has been reported that certain patients with non-small-cell lung cancer (NSCLC) that harbor activating somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene may be effectively treated using targeted therapy. The use of EGFR inhibitors in patient therapy has been demonstrated to improve response and survival rates; therefore, it was suggested that clinical screening for EGFR mutations should be performed for all patients. Numerous clinicopathological factors have been associated with EGFR and Kirsten-rat sarcoma oncogene homolog (KRAS) mutational status including gender, smoking history and histology. In addition, it was reported that EGFR mutation frequency in NSCLC patients was ethnicity-dependent, with an incidence rate of ~30% in Asian populations and ~15% in Caucasian populations. However, limited data has been reported on intra-ethnic differences throughout Europe. The present study aimed to investigate the frequency and spectrum of EGFR mutations in 1,472 Greek NSCLC patients. In addition, KRAS mutation analysis was performed in patients with known smoking history in order to determine the correlation of type and mutation frequency with smoking. High-resolution melting curve (HRM) analysis followed by Sanger sequencing was used to identify mutations in exons 18–21 of the EGFR gene and in exon 2 of the KRAS gene. A sensitive next-generation sequencing (NGS) technology was also employed to classify samples with equivocal results. The use of sensitive mutation detection techniques in a large study population of Greek NSCLC patients in routine diagnostic practice revealed an overall EGFR mutation frequency of 15.83%. This mutation frequency was comparable to that previously reported in other European populations. Of note, there was a 99.8% concordance between the HRM method and Sanger sequencing. NGS was found to be the most sensitive method. In addition, female non-smokers demonstrated a high prevalence of EGFR mutations. Furthermore, KRAS mutation analysis in patients with a known smoking history revealed no difference in mutation frequency according to smoking status; however, a different mutation spectrum was observed. PMID:26622815

  20. NASA trend analysis procedures

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This publication is primarily intended for use by NASA personnel engaged in managing or implementing trend analysis programs. 'Trend analysis' refers to the observation of current activity in the context of the past in order to infer the expected level of future activity. NASA trend analysis was divided into 5 categories: problem, performance, supportability, programmatic, and reliability. Problem trend analysis uncovers multiple occurrences of historical hardware or software problems or failures in order to focus future corrective action. Performance trend analysis observes changing levels of real-time or historical flight vehicle performance parameters such as temperatures, pressures, and flow rates as compared to specification or 'safe' limits. Supportability trend analysis assesses the adequacy of the spaceflight logistics system; example indicators are repair-turn-around time and parts stockage levels. Programmatic trend analysis uses quantitative indicators to evaluate the 'health' of NASA programs of all types. Finally, reliability trend analysis attempts to evaluate the growth of system reliability based on a decreasing rate of occurrence of hardware problems over time. Procedures for conducting all five types of trend analysis are provided in this publication, prepared through the joint efforts of the NASA Trend Analysis Working Group.

  1. Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations.

    PubMed

    Fares, Mario A; Sabater-Muñoz, Beatriz; Toft, Christina

    2017-05-01

    Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innovations, which have been the source of the unique biotechnological capabilities in the Baker's yeast Saccharomyces cerevisiae. What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of duplicated genes in the mutational and transcriptional hotspots of S. cerevisiae genome. The mechanism of duplication matters, with whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tolerance to deleterious mutations in duplicates with repetitive promoter elements, which in turn exhibit higher transcriptional plasticity against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory and functional divergence of their gene copies providing a source of novel adaptations in yeast. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Genetic analysis of a four generation Indian family with Usher syndrome: a novel insertion mutation in MYO7A.

    PubMed

    Kumar, Arun; Babu, Mohan; Kimberling, William J; Venkatesh, Conjeevaram P

    2004-11-24

    Usher syndrome (USH) is a rare autosomal recessive disorder characterized by deafness and retinitis pigmentosa. The purpose of this study was to determine the genetic cause of USH in a four generation Indian family. Peripheral blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to known USH loci, microsatellite markers were selected from the candidate regions of known loci and used to genotype the family. Exon specific intronic primers for the MYO7A gene were used to amplify DNA samples from one affected individual from the family. PCR products were subsequently sequenced to detect mutation. PCR-SSCP analysis was used to determine if the mutation segregated with the disease in the family and was not present in 50 control individuals. All affected individuals had a classic USH type I (USH1) phenotype which included deafness, vestibular dysfunction and retinitis pigmentosa. Pedigree analysis suggested an autosomal recessive mode of inheritance of USH in the family. Haplotype analysis suggested linkage of this family to the USH1B locus on chromosome 11q. DNA sequence analysis of the entire coding region of the MYO7A gene showed a novel insertion mutation c.2663_2664insA in a homozygous state in all affected individuals, resulting in truncation of MYO7A protein. This is the first study from India which reports a novel MYO7A insertion mutation in a four generation USH family. The mutation is predicted to produce a truncated MYO7A protein. With the novel mutation reported here, the total number of USH causing mutations in the MYO7A gene described to date reaches to 75.

  3. Colorectal cancer risk variants at 8q23.3 and 11q23.1 are associated with disease phenotype in APC mutation carriers.

    PubMed

    Ghorbanoghli, Z; Nieuwenhuis, M H; Houwing-Duistermaat, J J; Jagmohan-Changur, S; Hes, F J; Tops, C M; Wagner, A; Aalfs, C M; Verhoef, S; Gómez García, E B; Sijmons, R H; Menko, F H; Letteboer, T G; Hoogerbrugge, N; van Wezel, T; Vasen, H F A; Wijnen, J T

    2016-10-01

    Familial adenomatous polyposis (FAP) is a dominantly inherited syndrome caused by germline mutations in the APC gene and characterized by the development of multiple colorectal adenomas and a high risk of developing colorectal cancer (CRC). The severity of polyposis is correlated with the site of the APC mutation. However, there is also phenotypic variability within families with the same underlying APC mutation, suggesting that additional factors influence the severity of polyposis. Genome-wide association studies identified several single nucleotide polymorphisms (SNPs) that are associated with CRC. We assessed whether these SNPs are associated with polyp multiplicity in proven APC mutation carriers. Sixteen CRC-associated SNPs were analysed in a cohort of 419 APC germline mutation carriers from 182 families. Clinical data were retrieved from the Dutch Polyposis Registry. Allele frequencies of the SNPs were compared for patients with <100 colorectal adenomas versus patients with ≥100 adenomas, using generalized estimating equations with the APC genotype as a covariate. We found a trend of association of two of the tested SNPs with the ≥100 adenoma phenotype: the C alleles of rs16892766 at 8q23.3 (OR 1.71, 95 % CI 1.05-2.76, p = 0.03, dominant model) and rs3802842 at 11q23.1 (OR 1.51, 95 % CI 1.03-2.22, p = 0.04, dominant model). We identified two risk variants that are associated with a more severe phenotype in APC mutation carriers. These risk variants may partly explain the phenotypic variability in families with the same APC gene defect. Further studies with a larger sample size are recommended to evaluate and confirm the phenotypic effect of these SNPs in FAP.

  4. Specificity and Catalytic Mechanism in Family 5 Uracil DNA Glycosylase*

    PubMed Central

    Xia, Bo; Liu, Yinling; Li, Wei; Brice, Allyn R.; Dominy, Brian N.; Cao, Weiguo

    2014-01-01

    UDGb belongs to family 5 of the uracil DNA glycosylase (UDG) superfamily. Here, we report that family 5 UDGb from Thermus thermophilus HB8 is not only a uracil DNA glycosyase acting on G/U, T/U, C/U, and A/U base pairs, but also a hypoxanthine DNA glycosylase acting on G/I, T/I, and A/I base pairs and a xanthine DNA glycosylase acting on all double-stranded and single-stranded xanthine-containing DNA. Analysis of potentials of mean force indicates that the tendency of hypoxanthine base flipping follows the order of G/I > T/I, A/I > C/I, matching the trend of hypoxanthine DNA glycosylase activity observed in vitro. Genetic analysis indicates that family 5 UDGb can also act as an enzyme to remove uracil incorporated into DNA through the existence of dUTP in the nucleotide pool. Mutational analysis coupled with molecular modeling and molecular dynamics analysis reveals that although hydrogen bonding to O2 of uracil underlies the UDG activity in a dissociative fashion, Tth UDGb relies on multiple catalytic residues to facilitate its excision of hypoxanthine and xanthine. This study underscores the structural and functional diversity in the UDG superfamily. PMID:24838246

  5. Pluripotent stem cells to model Hutchinson-Gilford progeria syndrome (HGPS): Current trends and future perspectives for drug discovery.

    PubMed

    Lo Cicero, Alessandra; Nissan, Xavier

    2015-11-01

    Progeria, or Hutchinson-Gilford progeria syndrome (HGPS), is a rare, fatal genetic disease characterized by an appearance of accelerated aging in children. This syndrome is typically caused by mutations in codon 608 (p.G608G) of the LMNA, leading to the production of a mutated form of lamin A precursor called progerin. In HGPS, progerin accumulates in cells causing progressive molecular defects, including nuclear shape abnormalities, chromatin disorganization, damage to DNA and delays in cell proliferation. Here we report how, over the past five years, pluripotent stem cells have provided new insights into the study of HGPS and opened new original therapeutic perspectives to treat the disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Racial Disparities in the Molecular Landscape of Cancer.

    PubMed

    Heath, Elisabeth I; Lynce, Filipa; Xiu, Joanne; Ellerbrock, Angela; Reddy, Sandeep K; Obeid, Elias; Liu, Stephen V; Bollig-Fischer, Aliccia; Separovic, Duska; Vanderwalde, Ari

    2018-04-01

    African Americans (AA) have the highest incidence and mortality of any racial/ethnic group in the US for most cancer types. Heterogeneity in the molecular biology of cancer, as a contributing factor to this disparity, is poorly understood. To address this gap in knowledge, we explored the molecular landscape of colorectal cancer (CRC), non-small cell lung cancer (NSCLC) and high-grade glioma (HGG) from 271 AA and 636 Caucasian (CC) cases. DNA from formalin-fixed paraffin-embedded tumors was sequenced using next-generation sequencing. Additionally, we evaluated protein expression using immunohistochemistry. The Exome Aggregation Consortium Database was evaluated for known ethnicity associations. Considering only pathogenic or presumed pathogenic mutations, as determined by the American College of Medical Genetics and Genomics guidelines, and using Bonferroni and Benjamini-Hochberg corrections for multiple comparisons, we found that CRC tumors from AA patients harbored significantly more mutations of phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) than those from CC patients. CRC tumors in AA patients also appeared to harbor more mutations of mitogen-activated protein kinase kinase 1 (MAP2K1/MEK1), MPL proto-oncogene (MPL), thrombo-poietin receptor, and neurofibromin 1 (NF1) than those from CC patients. In contrast, CRCs from AA patients were likely to carry fewer mutations of ataxia-telangiectasia mutated (ATM), as well as of proto-oncogene B-Raf (BRAF), including the V600E variant, than those from CC patients. Rates of immunohistochemical positivity for epidermal growth factor receptor (EGFR) and DNA topoisomerase 2-alpha (TOP2A) tended to be higher in CRCs from AA patients than in CC patients. In NSCLC adenocarcinoma, BRAF variants appeared to be more frequent in the AA than in the CC cohort, whereas in squamous cell lung carcinoma, programmed death-ligand 1 (PD-L1) expression tended to be lower in the AA than in CC group. Moreover, HGG tumors from AA patients showed a trend toward harboring more mutations of protein tyrosine phosphatase non-receptor 11 (PTPN11), than HGG tumors from the CC cohort. In contrast, mutations of phosphatase and tensin homolog (PTEN) and tumor protein 53 (TP53) appeared to be higher in HGG tumors in CC patients than in their AA counterparts. Our data revealed significant differences and trends in molecular signatures of the three cancer types in AA and CC cohorts. These findings imply that there may be differences in carcinogenesis between AA and CC patients and that race may be a factor that should be considered regarding cancer incidence and outcome. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Massively Parallel DNA Sequencing Facilitates Diagnosis of Patients with Usher Syndrome Type 1

    PubMed Central

    Yoshimura, Hidekane; Iwasaki, Satoshi; Nishio, Shin-ya; Kumakawa, Kozo; Tono, Tetsuya; Kobayashi, Yumiko; Sato, Hiroaki; Nagai, Kyoko; Ishikawa, Kotaro; Ikezono, Tetsuo; Naito, Yasushi; Fukushima, Kunihiro; Oshikawa, Chie; Kimitsuki, Takashi; Nakanishi, Hiroshi; Usami, Shin-ichi

    2014-01-01

    Usher syndrome is an autosomal recessive disorder manifesting hearing loss, retinitis pigmentosa and vestibular dysfunction, and having three clinical subtypes. Usher syndrome type 1 is the most severe subtype due to its profound hearing loss, lack of vestibular responses, and retinitis pigmentosa that appears in prepuberty. Six of the corresponding genes have been identified, making early diagnosis through DNA testing possible, with many immediate and several long-term advantages for patients and their families. However, the conventional genetic techniques, such as direct sequence analysis, are both time-consuming and expensive. Targeted exon sequencing of selected genes using the massively parallel DNA sequencing technology will potentially enable us to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using this technique combined with direct sequence analysis, we screened 17 unrelated Usher syndrome type 1 patients and detected probable pathogenic variants in the 16 of them (94.1%) who carried at least one mutation. Seven patients had the MYO7A mutation (41.2%), which is the most common type in Japanese. Most of the mutations were detected by only the massively parallel DNA sequencing. We report here four patients, who had probable pathogenic mutations in two different Usher syndrome type 1 genes, and one case of MYO7A/PCDH15 digenic inheritance. This is the first report of Usher syndrome mutation analysis using massively parallel DNA sequencing and the frequency of Usher syndrome type 1 genes in Japanese. Mutation screening using this technique has the power to quickly identify mutations of many causative genes while maintaining cost-benefit performance. In addition, the simultaneous mutation analysis of large numbers of genes is useful for detecting mutations in different genes that are possibly disease modifiers or of digenic inheritance. PMID:24618850

  8. Massively parallel DNA sequencing facilitates diagnosis of patients with Usher syndrome type 1.

    PubMed

    Yoshimura, Hidekane; Iwasaki, Satoshi; Nishio, Shin-Ya; Kumakawa, Kozo; Tono, Tetsuya; Kobayashi, Yumiko; Sato, Hiroaki; Nagai, Kyoko; Ishikawa, Kotaro; Ikezono, Tetsuo; Naito, Yasushi; Fukushima, Kunihiro; Oshikawa, Chie; Kimitsuki, Takashi; Nakanishi, Hiroshi; Usami, Shin-Ichi

    2014-01-01

    Usher syndrome is an autosomal recessive disorder manifesting hearing loss, retinitis pigmentosa and vestibular dysfunction, and having three clinical subtypes. Usher syndrome type 1 is the most severe subtype due to its profound hearing loss, lack of vestibular responses, and retinitis pigmentosa that appears in prepuberty. Six of the corresponding genes have been identified, making early diagnosis through DNA testing possible, with many immediate and several long-term advantages for patients and their families. However, the conventional genetic techniques, such as direct sequence analysis, are both time-consuming and expensive. Targeted exon sequencing of selected genes using the massively parallel DNA sequencing technology will potentially enable us to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using this technique combined with direct sequence analysis, we screened 17 unrelated Usher syndrome type 1 patients and detected probable pathogenic variants in the 16 of them (94.1%) who carried at least one mutation. Seven patients had the MYO7A mutation (41.2%), which is the most common type in Japanese. Most of the mutations were detected by only the massively parallel DNA sequencing. We report here four patients, who had probable pathogenic mutations in two different Usher syndrome type 1 genes, and one case of MYO7A/PCDH15 digenic inheritance. This is the first report of Usher syndrome mutation analysis using massively parallel DNA sequencing and the frequency of Usher syndrome type 1 genes in Japanese. Mutation screening using this technique has the power to quickly identify mutations of many causative genes while maintaining cost-benefit performance. In addition, the simultaneous mutation analysis of large numbers of genes is useful for detecting mutations in different genes that are possibly disease modifiers or of digenic inheritance.

  9. New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy

    PubMed Central

    Marchant, D; Yu, K; Bigot, K; Roche, O; Germain, A; Bonneau, D; Drouin‐Garraud, V; Schorderet, D F; Munier, F; Schmidt, D; Neindre, P Le; Marsac, C; Menasche, M; Dufier, J L; Fischmeister, R; Hartzell, C; Abitbol, M

    2007-01-01

    Purpose The mutations responsible for Best vitelliform macular dystrophy (BVMD) are found in a gene called VMD2. The VMD2 gene encodes a transmembrane protein named bestrophin‐1 (hBest1) which is a Ca2+‐sensitive chloride channel. This study was performed to identify disease‐specific mutations in 27 patients with BVMD. Because this disease is characterised by an alteration in Cl− channel function, patch clamp analysis was used to test the hypothesis that one of the VMD2 mutated variants causes the disease. Methods Direct sequencing analysis of the 11 VMD2 exons was performed to detect new abnormal sequences. The mutant of hBest1 was expressed in HEK‐293 cells and the associated Cl− current was examined using whole‐cell patch clamp analysis. Results Six new VMD2 mutations were identified, located exclusively in exons four, six and eight. One of these mutations (Q293H) was particularly severe. Patch clamp analysis of human embryonic kidney cells expressing the Q293H mutant showed that this mutant channel is non‐functional. Furthermore, the Q293H mutant inhibited the function of wild‐type bestrophin‐1 channels in a dominant negative manner. Conclusions This study provides further support for the idea that mutations in VMD2 are a necessary factor for Best disease. However, because variable expressivity of VMD2 was observed in a family with the Q293H mutation, it is also clear that a disease‐linked mutation in VMD2 is not sufficient to produce BVMD. The finding that the Q293H mutant does not form functional channels in the membrane could be explained either by disruption of channel conductance or gating mechanisms or by improper trafficking of the protein to the plasma membrane. PMID:17287362

  10. Mutation analysis in 129 genes associated with other forms of retinal dystrophy in 157 families with retinitis pigmentosa based on exome sequencing.

    PubMed

    Xu, Yan; Guan, Liping; Xiao, Xueshan; Zhang, Jianguo; Li, Shiqiang; Jiang, Hui; Jia, Xiaoyun; Yang, Jianhua; Guo, Xiangming; Yin, Ye; Wang, Jun; Zhang, Qingjiong

    2015-01-01

    Mutations in 60 known genes were previously identified by exome sequencing in 79 of 157 families with retinitis pigmentosa (RP). This study analyzed variants in 129 genes associated with other forms of hereditary retinal dystrophy in the same cohort. Apart from the 73 genes previously analyzed, a further 129 genes responsible for other forms of hereditary retinal dystrophy were selected based on RetNet. Variants in the 129 genes determined by whole exome sequencing were selected and filtered by bioinformatics analysis. Candidate variants were confirmed by Sanger sequencing and validated by analysis of available family members and controls. A total of 90 candidate variants were present in the 129 genes. Sanger sequencing confirmed 83 of the 90 variants. Analysis of family members and controls excluded 76 of these 83 variants. The remaining seven variants were considered to be potential pathogenic mutations; these were c.899A>G, c.1814C>G, and c.2107C>T in BBS2; c.1073C>T and c.1669C>T in INPP5E; and c.3582C>G and c.5704-5C>G in CACNA1F. Six of these seven mutations were novel. The mutations were detected in five unrelated patients without a family history, including three patients with homozygous or compound heterozygous mutations in BBS2 and INPP5E, and two patients with hemizygous mutations in CACNA1F. None of the patients had mutations in the genes associated with autosome dominant retinal dystrophy. Only a small portion of patients with RP, about 3% (5/157), had causative mutations in the 129 genes associated with other forms of hereditary retinal dystrophy.

  11. Combined Microsatellite Instability, MLH1 Methylation Analysis, and Immunohistochemistry for Lynch Syndrome Screening in Endometrial Cancers From GOG210: An NRG Oncology and Gynecologic Oncology Group Study.

    PubMed

    Goodfellow, Paul J; Billingsley, Caroline C; Lankes, Heather A; Ali, Shamshad; Cohn, David E; Broaddus, Russell J; Ramirez, Nilsa; Pritchard, Colin C; Hampel, Heather; Chassen, Alexis S; Simmons, Luke V; Schmidt, Amy P; Gao, Feng; Brinton, Louise A; Backes, Floor; Landrum, Lisa M; Geller, Melissa A; DiSilvestro, Paul A; Pearl, Michael L; Lele, Shashikant B; Powell, Matthew A; Zaino, Richard J; Mutch, David

    2015-12-20

    The best screening practice for Lynch syndrome (LS) in endometrial cancer (EC) remains unknown. We sought to determine whether tumor microsatellite instability (MSI) typing along with immunohistochemistry (IHC) and MLH1 methylation analysis can help identify women with LS. ECs from GOG210 patients were assessed for MSI, MLH1 methylation, and mismatch repair (MMR) protein expression. Each tumor was classified as having normal MMR, defective MMR associated with MLH1 methylation, or probable MMR mutation (ie, defective MMR but no methylation). Cancer family history and demographic and clinical features were compared for the three groups. Lynch mutation testing was performed for a subset of women. Analysis of 1,002 ECs suggested possible MMR mutation in 11.8% of tumors. The number of patients with a family history suggestive of LS was highest among women whose tumors were classified as probable MMR mutation (P = .001). Lynch mutations were identified in 41% of patient cases classified as probable mutation (21 of 51 tested). One of the MSH6 Lynch mutations was identified in a patient whose tumor had intact MSH6 expression. Age at diagnosis was younger for mutation carriers than noncarriers (54.3 v 62.3 years; P < .01), with five carriers diagnosed at age > 60 years. Combined MSI, methylation, and IHC analysis may prove useful in Lynch screening in EC. Twenty-four percent of mutation carriers presented with ECs at age > 60 years, and one carrier had an MSI-positive tumor with no IHC defect. Restricting Lynch testing to women diagnosed at age < 60 years or to women with IHC defects could result in missing a substantial fraction of genetic disease. © 2015 by American Society of Clinical Oncology.

  12. Combined Microsatellite Instability, MLH1 Methylation Analysis, and Immunohistochemistry for Lynch Syndrome Screening in Endometrial Cancers From GOG210: An NRG Oncology and Gynecologic Oncology Group Study

    PubMed Central

    Goodfellow, Paul J.; Billingsley, Caroline C.; Lankes, Heather A.; Ali, Shamshad; Cohn, David E.; Broaddus, Russell J.; Ramirez, Nilsa; Pritchard, Colin C.; Hampel, Heather; Chassen, Alexis S.; Simmons, Luke V.; Schmidt, Amy P.; Gao, Feng; Brinton, Louise A.; Backes, Floor; Landrum, Lisa M.; Geller, Melissa A.; DiSilvestro, Paul A.; Pearl, Michael L.; Lele, Shashikant B.; Powell, Matthew A.; Zaino, Richard J.; Mutch, David

    2015-01-01

    Purpose The best screening practice for Lynch syndrome (LS) in endometrial cancer (EC) remains unknown. We sought to determine whether tumor microsatellite instability (MSI) typing along with immunohistochemistry (IHC) and MLH1 methylation analysis can help identify women with LS. Patients and Methods ECs from GOG210 patients were assessed for MSI, MLH1 methylation, and mismatch repair (MMR) protein expression. Each tumor was classified as having normal MMR, defective MMR associated with MLH1 methylation, or probable MMR mutation (ie, defective MMR but no methylation). Cancer family history and demographic and clinical features were compared for the three groups. Lynch mutation testing was performed for a subset of women. Results Analysis of 1,002 ECs suggested possible MMR mutation in 11.8% of tumors. The number of patients with a family history suggestive of LS was highest among women whose tumors were classified as probable MMR mutation (P = .001). Lynch mutations were identified in 41% of patient cases classified as probable mutation (21 of 51 tested). One of the MSH6 Lynch mutations was identified in a patient whose tumor had intact MSH6 expression. Age at diagnosis was younger for mutation carriers than noncarriers (54.3 v 62.3 years; P < .01), with five carriers diagnosed at age > 60 years. Conclusion Combined MSI, methylation, and IHC analysis may prove useful in Lynch screening in EC. Twenty-four percent of mutation carriers presented with ECs at age > 60 years, and one carrier had an MSI-positive tumor with no IHC defect. Restricting Lynch testing to women diagnosed at age < 60 years or to women with IHC defects could result in missing a substantial fraction of genetic disease. PMID:26552419

  13. Nanofluidic Digital PCR and Extended Genotyping of RAS and BRAF for Improved Selection of Metastatic Colorectal Cancer Patients for Anti-EGFR Therapies.

    PubMed

    Azuara, Daniel; Santos, Cristina; Lopez-Doriga, Adriana; Grasselli, Julieta; Nadal, Marga; Sanjuan, Xavier; Marin, Fátima; Vidal, Joana; Montal, Robert; Moreno, Victor; Bellosillo, Beatriz; Argiles, Guillem; Elez, Elena; Dienstmann, Rodrigo; Montagut, Clara; Tabernero, Josep; Capellá, Gabriel; Salazar, Ramon

    2016-05-01

    The clinical significance of low-frequent RAS pathway-mutated alleles and the optimal sensitivity cutoff value in the prediction of response to anti-EGFR therapy in metastatic colorectal cancer (mCRC) patients remains controversial. We aimed to evaluate the added value of genotyping an extended RAS panel using a robust nanofluidic digital PCR (dPCR) approach. A panel of 34 hotspots, including RAS (KRAS and NRAS exons 2/3/4) and BRAF (V600E), was analyzed in tumor FFPE samples from 102 mCRC patients treated with anti-EGFR therapy. dPCR was compared with conventional quantitative PCR (qPCR). Response rates, progression-free survival (PFS), and overall survival (OS) were correlated to the mutational status and the mutated allele fraction. Tumor response evaluations were not available in 9 patients and were excluded for response rate analysis. Twenty-two percent of patients were positive for one mutation with qPCR (mutated alleles ranged from 2.1% to 66.6%). Analysis by dPCR increased the number of positive patients to 47%. Mutated alleles for patients only detected by dPCR ranged from 0.04% to 10.8%. An inverse correlation between the fraction of mutated alleles and radiologic response was observed. ROC analysis showed that a fraction of 1% or higher of any mutated alleles offered the best predictive value for all combinations of RAS and BRAF analysis. In addition, this threshold also optimized prediction both PFS and OS. We conclude that mutation testing using an extended gene panel, including RAS and BRAF with a threshold of 1% improved prediction of response to anti-EGFR therapy. Mol Cancer Ther; 15(5); 1106-12. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. A9 region in EPHB2 mutation is frequent in tumors with microsatellite instability. Analysis of prognosis.

    PubMed

    Rafael, Sara; Vidaurreta, Marta; Veganzones, Silvia; De La Orden, Virgnia; Mediero, Beatriz; Gutierrez, Maria Luisa; Maestro, Maria Luisa

    2013-11-01

    The aim of the present study was to determine the relation of EPH tyrosine kinase receptor B2 (EPHB2) A9 region mutation and microsatellite instability (MSI); and to analyze their influence in prognosis of patients with sporadic colorectal cancer (CRC). A total of 481 patients with CRC were examined. MSI (NCI criteria) and EPHB2 were analyzed using PCR and fragment analysis software. EPHB2 mutation was detected in 3.1% of patients. Mutation of EPHB2 was associated with location and with MSI status. We considered low instability (L-MSI) when only one marker showed instability, high instability (H-MSI) when two or more markers were positive and microsatelllite stable (MSS) when no instability was detected. The stratified analysis of overall survival (OS) and disease-free survival (DFS) in MSI according to EPHB2 status revealed no statistically significant differences. However, the risk of recurrence of H-MSI tumors with EPHB2 mutation carriers was 3.6-times higher than in non-mutation carriers. The frequency of EPHB2 mutation is higher in patients with H-MSI than MSS tumors. Promising results were found regarding the prognostic influence of EPHB2 in H-MSI.

  15. A novel loss-of-function mutation in OTX2 in a patient with anophthalmia and isolated growth hormone deficiency.

    PubMed

    Ashkenazi-Hoffnung, Liat; Lebenthal, Yael; Wyatt, Alexander W; Ragge, Nicola K; Dateki, Sumito; Fukami, Maki; Ogata, Tsutomu; Phillip, Moshe; Gat-Yablonski, Galia

    2010-06-01

    Heterozygous mutations of the gene encoding transcription factor OTX2 were recently shown to be responsible for ocular as well as pituitary abnormalities. Here, we describe a patient with unilateral anophthalmia and short stature. Endocrine evaluation of the hypothalamic-pituitary axis revealed isolated growth hormone deficiency (IGHD) with small anterior pituitary gland, invisible stalk, ectopic posterior lobe, and right anophthalmia on brain magnetic resonance imaging. DNA was analyzed for mutations in the HESX1, SOX2, and OTX2 genes. Molecular analysis yielded a novel heterozygous OTX2 mutation (c.270A>T, p.R90S) within the homeodomain. Functional analysis revealed that the mutation inhibited both the DNA binding and transactivation activities of the protein. This novel loss-of-function mutation is associated with anophthalmia and IGHD in a patient of Sephardic Jewish descent. We recommend that patients with GH deficiency and ocular malformation in whom genetic analysis for classic transcription factor genes (PROP1, POU1F1, HESX1, and LHX4) failed to identify alterations should be checked for the presence of mutations in the OTX2 gene.

  16. KRAS Mutation as a Potential Prognostic Biomarker of Biliary Tract Cancers

    PubMed Central

    Yokoyama, Masaaki; Ohnishi, Hiroaki; Ohtsuka, Kouki; Matsushima, Satsuki; Ohkura, Yasuo; Furuse, Junji; Watanabe, Takashi; Mori, Toshiyuki; Sugiyama, Masanori

    2016-01-01

    BACKGROUND The aim of this study was to identify the unique molecular characteristics of biliary tract cancer (BTC) for the development of novel molecular-targeted therapies. MATERIALS AND METHODS We performed mutational analysis of KRAS, BRAF, PIK3CA, and FBXW7 and immunohistochemical analysis of EGFR and TP53 in 63 Japanese patients with BTC and retrospectively evaluated the association between the molecular characteristics and clinicopathological features of BTC. RESULTS KRAS mutations were identified in 9 (14%) of the 63 BTC patients; no mutations were detected within the analyzed regions of BRAF, PIK3CA, and FBXW7. EGFR overexpression was observed in 5 (8%) of the 63 tumors, while TP53 overexpression was observed in 48% (30/63) of the patients. Overall survival of patients with KRAS mutation was significantly shorter than that of patients with the wild-type KRAS gene (P = 0.005). By multivariate analysis incorporating molecular and clinicopathological features, KRAS mutations and lymph node metastasis were identified to be independently associated with shorter overall survival (KRAS, P = 0.004; lymph node metastasis, P = 0.015). CONCLUSIONS Our data suggest that KRAS mutation is a poor prognosis predictive biomarker for the survival in BTC patients. PMID:28008299

  17. A de novo mutation in the AGXT gene causing primary hyperoxaluria type 1.

    PubMed

    Williams, Emma L; Kemper, Markus J; Rumsby, Gill

    2006-09-01

    Primary hyperoxaluria type 1 is caused by mutations in the alanine-glyoxylate aminotransferase (AGXT) gene. In cases in which no mutation was identified, linkage analysis can be used to confirm or exclude the diagnosis in other siblings. We present a family in which a sibling of the index case predicted to have primary hyperoxaluria type 1 by means of linkage analysis failed to show hyperoxaluria during the following 7 years, putting the diagnosis into question. Whole-gene sequence analysis identified 2 causative mutations in the index case, of which only 1, c.646A (Gly216Arg), was inherited. The other sequence change, c.33_34insC, was a de novo mutation occurring on the paternal allele. This particular mutation is a relatively common cause of primary hyperoxaluria type 1. It occurs in a run of 8 cytosines and therefore potentially is susceptible to polymerase slippage. This case illustrates 2 important points. First, biochemical confirmation of a genetic diagnosis should always be made in siblings diagnosed by using genetic tests. Second, de novo mutations should be considered as a potential, albeit rare, cause of primary hyperoxaluria type 1.

  18. PIMMS (Pragmatic Insertional Mutation Mapping System) Laboratory Methodology a Readily Accessible Tool for Identification of Essential Genes in Streptococcus

    PubMed Central

    Blanchard, Adam M.; Egan, Sharon A.; Emes, Richard D.; Warry, Andrew; Leigh, James A.

    2016-01-01

    The Pragmatic Insertional Mutation Mapping (PIMMS) laboratory protocol was developed alongside various bioinformatics packages (Blanchard et al., 2015) to enable detection of essential and conditionally essential genes in Streptococcus and related bacteria. This extended the methodology commonly used to locate insertional mutations in individual mutants to the analysis of mutations in populations of bacteria. In Streptococcus uberis, a pyogenic Streptococcus associated with intramammary infection and mastitis in ruminants, the mutagen pGhost9:ISS1 was shown to integrate across the entire genome. Analysis of >80,000 mutations revealed 196 coding sequences, which were not be mutated and a further 67 where mutation only occurred beyond the 90th percentile of the coding sequence. These sequences showed good concordance with sequences within the database of essential genes and typically matched sequences known to be associated with basic cellular functions. Due to the broad utility of this mutagen and the simplicity of the methodology it is anticipated that PIMMS will be of value to a wide range of laboratories in functional genomic analysis of a wide range of Gram positive bacteria (Streptococcus, Enterococcus, and Lactococcus) of medical, veterinary, and industrial significance. PMID:27826289

  19. Frequency of TERT promoter mutations in primary tumors of the liver.

    PubMed

    Quaas, Alexander; Oldopp, Theresa; Tharun, Lars; Klingenfeld, Catina; Krech, Till; Sauter, Guido; Grob, Tobias J

    2014-12-01

    Transcriptional regulation of the TERT gene is a major cause of the cancer-specific increase in telomerase activity. Recently, frequent somatic mutations in the TERT promoter have been described in several tumor entities such as melanoma, glioblastoma, bladder cancer, and hepatocellular carcinoma. By generating a putative consensus binding site for ETS transcription factors within the TERT promoter, these mutations are predicted to increase promoter activity and TERT transcription. In order to improve the understanding of the role of TERT promoter mutation in liver tumorigenesis, the mutational status of the TERT promoter was analyzed in 78 hepatocellular carcinomas, 15 hepatocellular adenomas, and 52 intrahepatic cholangiocarciomas. The promoter region of TERT was screened for the two hotspot mutations using PCR and restriction fragment length analysis, utilizing the introduction of novel restriction sites by the somatic mutations. TERT promoter mutation was found in 37 of 78 hepatocellular carcinomas (47 %) and was restricted to the -124C>T mutation. Frequency of mutations was associated with grade of differentiation ranging from 39 % in well-differentiated tumors to 73 % in high-grade hepatocellular carcinomas. TERT promoter mutations were not found in 15 hepatocellular adenomas and 52 intrahepatic cholangiocarcinomas. These data show that TERT promoter mutation is the most frequent genetic alteration in hepatocellular carcinoma known at this time. The striking predominance of the -124C>T mutation compared with other tumor entities suggest a biological difference of the two hotspot mutations. Analysis of TERT promoter mutation might become a diagnostic tool distinguishing hepatocellular adenoma from well-differentiated hepatocellular carcinoma.

  20. The prognostic value of KRAS mutation by cell-free DNA in cancer patients: A systematic review and meta-analysis.

    PubMed

    Zhuang, Rongyuan; Li, Song; Li, Qian; Guo, Xi; Shen, Feng; Sun, Hong; Liu, Tianshu

    2017-01-01

    KRAS mutation has been found in various types of cancer. However, the prognostic value of KRAS mutation in cell-free DNA (cfDNA) in cancer patients was conflicting. In the present study, a meta-analysis was conducted to clarify its prognostic significance. Literature searches of Cochrane Library, EMBASE, PubMed and Web of Science were performed to identify studies related to KRAS mutation detected by cfDNA and survival in cancer patients. Two evaluators reviewed and extracted the information independently. Review Manager 5.3 software was used to perform the statistical analysis. Thirty studies were included in the present meta-analysis. Our analysis showed that KRAS mutation in cfDNA was associated with a poorer survival in cancer patients for overall survival (OS, HR 2.02, 95% CI 1.63-2.51, P<0.01) and progression-free survival (PFS, HR 1.64, 95% CI 1.27-2.13, P<0.01). In subgroup analyses, KRAS mutation in pancreatic cancer, colorectal cancer, non-small cell lung cancer and ovarian epithelial cancer had HRs of 2.81 (95% CI 1.83-4.30, P<0.01), 1.67 (95% CI 1.25-2.42, P<0.01), 1.64 (95% CI 1.13-2.39, P = 0.01) and 2.17 (95% 1.12-4.21, p = 0.02) for OS, respectively. In addition, the ethnicity didn't influence the prognostic value of KRAS mutation in cfDNA in cancer patients (p = 0.39). Prognostic value of KRAS mutation was slightly higher in plasma than in serum (HR 2.13 vs 1.65), but no difference was observed (p = 0.37). Briefly, KRAS mutation in cfDNA was a survival prognostic biomarker in cancer patients. Its prognostic value was different in various types of cancer.

  1. Mutation analysis of the COL1A1 and COL1A2 genes in Vietnamese patients with osteogenesis imperfecta.

    PubMed

    Ho Duy, Binh; Zhytnik, Lidiia; Maasalu, Katre; Kändla, Ivo; Prans, Ele; Reimann, Ene; Märtson, Aare; Kõks, Sulev

    2016-08-12

    The genetics of osteogenesis imperfecta (OI) have not been studied in a Vietnamese population before. We performed mutational analysis of the COL1A1 and COL1A2 genes in 91 unrelated OI patients of Vietnamese origin. We then systematically characterized the mutation profiles of these two genes which are most commonly related to OI. Genomic DNA was extracted from EDTA-preserved blood according to standard high-salt extraction methods. Sequence analysis and pathogenic variant identification was performed with Mutation Surveyor DNA variant analysis software. Prediction of the pathogenicity of mutations was conducted using Alamut Visual software. The presence of variants was checked against Dalgleish's osteogenesis imperfecta mutation database. The sample consisted of 91 unrelated osteogenesis imperfecta patients. We identified 54 patients with COL1A1/2 pathogenic variants; 33 with COL1A1 and 21 with COL1A2. Two patients had multiple pathogenic variants. Seventeen novel COL1A1 and 10 novel COL1A2 variants were identified. The majority of identified COL1A1/2 pathogenic variants occurred in a glycine substitution (36/56, 64.3 %), usually serine (23/36, 63.9 %). We found two pathogenic variants of the COL1A1 gene c.2461G > A (p.Gly821Ser) in four unrelated patients and one, c.2005G > A (p.Ala669Thr), in two unrelated patients. Our data showed a lower number of collagen OI pathogenic variants in Vietnamese patients compared to reported rates for Asian populations. The OI mutational profile of the Vietnamese population is unique and related to the presence of a high number of recessive mutations in non-collagenous OI genes. Further analysis of OI patients negative for collagen mutations, is required.

  2. X-linked Alport syndrome caused by splicing mutations in COL4A5.

    PubMed

    Nozu, Kandai; Vorechovsky, Igor; Kaito, Hiroshi; Fu, Xue Jun; Nakanishi, Koichi; Hashimura, Yuya; Hashimoto, Fusako; Kamei, Koichi; Ito, Shuichi; Kaku, Yoshitsugu; Imasawa, Toshiyuki; Ushijima, Katsumi; Shimizu, Junya; Makita, Yoshio; Konomoto, Takao; Yoshikawa, Norishige; Iijima, Kazumoto

    2014-11-07

    X-linked Alport syndrome is caused by mutations in the COL4A5 gene. Although many COL4A5 mutations have been detected, the mutation detection rate has been unsatisfactory. Some men with X-linked Alport syndrome show a relatively mild phenotype, but molecular basis investigations have rarely been conducted to clarify the underlying mechanism. In total, 152 patients with X-linked Alport syndrome who were suspected of having Alport syndrome through clinical and pathologic investigations and referred to the hospital for mutational analysis between January of 2006 and January of 2013 were genetically diagnosed. Among those patients, 22 patients had suspected splice site mutations. Transcripts are routinely examined when suspected splice site mutations for abnormal transcripts are detected; 11 of them showed expected exon skipping, but others showed aberrant splicing patterns. The mutation detection strategy had two steps: (1) genomic DNA analysis using PCR and direct sequencing and (2) mRNA analysis using RT-PCR to detect RNA processing abnormalities. Six splicing consensus site mutations resulting in aberrant splicing patterns, one exonic mutation leading to exon skipping, and four deep intronic mutations producing cryptic splice site activation were identified. Interestingly, one case produced a cryptic splice site with a single nucleotide substitution in the deep intron that led to intronic exonization containing a stop codon; however, the patient showed a clearly milder phenotype for X-linked Alport syndrome in men with a truncating mutation. mRNA extracted from the kidney showed both normal and abnormal transcripts, with the normal transcript resulting in the milder phenotype. This novel mechanism leads to mild clinical characteristics. This report highlights the importance of analyzing transcripts to enhance the mutation detection rate and provides insight into genotype-phenotype correlations. This approach can clarify the cause of atypically mild phenotypes in X-linked Alport syndrome. Copyright © 2014 by the American Society of Nephrology.

  3. A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes.

    PubMed

    Rodríguez-Escudero, Isabel; Oliver, María D; Andrés-Pons, Amparo; Molina, María; Cid, Víctor J; Pulido, Rafael

    2011-11-01

    The PTEN (phosphatase and tensin homolog) phosphatase is unique in mammals in terms of its tumor suppressor activity, exerted by dephosphorylation of the lipid second messenger PIP(3) (phosphatidylinositol 3,4,5-trisphosphate), which activates the phosphoinositide 3-kinase/Akt/mTOR (mammalian target of rapamycin) oncogenic pathway. Loss-of-function mutations in the PTEN gene are frequent in human cancer and in the germline of patients with PTEN hamartoma tumor-related syndromes (PHTSs). In addition, PTEN is mutated in patients with autism spectrum disorders (ASDs), although no functional information on these mutations is available. Here, we report a comprehensive in vivo functional analysis of human PTEN using a heterologous yeast reconstitution system. Ala-scanning mutagenesis at the catalytic loops of PTEN outlined the critical role of residues within the P-catalytic loop for PIP(3) phosphatase activity in vivo. PTEN mutations that mimic the P-catalytic loop of mammalian PTEN-like proteins (TPTE, TPIP, tensins and auxilins) affected PTEN function variably, whereas tumor- or PHTS-associated mutations targeting the PTEN P-loop produced complete loss of function. Conversely, Ala-substitutions, as well as tumor-related mutations at the WPD- and TI-catalytic loops, displayed partial activity in many cases. Interestingly, a tumor-related D92N mutation was partially active, supporting the notion that the PTEN Asp92 residue might not function as the catalytic general acid. The analysis of a panel of ASD-associated hereditary PTEN mutations revealed that most of them did not substantially abrogate PTEN activity in vivo, whereas most of PHTS-associated mutations did. Our findings reveal distinctive functional patterns among PTEN mutations found in tumors and in the germline of PHTS and ASD patients, which could be relevant for therapy.

  4. Mutations in POGLUT1, Encoding Protein O-Glucosyltransferase 1, Cause Autosomal-Dominant Dowling-Degos Disease

    PubMed Central

    Basmanav, F. Buket; Oprisoreanu, Ana-Maria; Pasternack, Sandra M.; Thiele, Holger; Fritz, Günter; Wenzel, Jörg; Größer, Leopold; Wehner, Maria; Wolf, Sabrina; Fagerberg, Christina; Bygum, Anette; Altmüller, Janine; Rütten, Arno; Parmentier, Laurent; El Shabrawi-Caelen, Laila; Hafner, Christian; Nürnberg, Peter; Kruse, Roland; Schoch, Susanne; Hanneken, Sandra; Betz, Regina C.

    2014-01-01

    Dowling-Degos disease (DDD) is an autosomal-dominant genodermatosis characterized by progressive and disfiguring reticulate hyperpigmentation. We previously identified loss-of-function mutations in KRT5 but were only able to detect pathogenic mutations in fewer than half of our subjects. To identify additional causes of DDD, we performed exome sequencing in five unrelated affected individuals without mutations in KRT5. Data analysis identified three heterozygous mutations from these individuals, all within the same gene. These mutations, namely c.11G>A (p.Trp4∗), c.652C>T (p.Arg218∗), and c.798-2A>C, are within POGLUT1, which encodes protein O-glucosyltransferase 1. Further screening of unexplained cases for POGLUT1 identified six additional mutations, as well as two of the above described mutations. Immunohistochemistry of skin biopsies of affected individuals with POGLUT1 mutations showed significantly weaker POGLUT1 staining in comparison to healthy controls with strong localization of POGLUT1 in the upper parts of the epidermis. Immunoblot analysis revealed that translation of either wild-type (WT) POGLUT1 or of the protein carrying the p.Arg279Trp substitution led to the expected size of about 50 kDa, whereas the c.652C>T (p.Arg218∗) mutation led to translation of a truncated protein of about 30 kDa. Immunofluorescence analysis identified a colocalization of the WT protein with the endoplasmic reticulum and a notable aggregating pattern for the truncated protein. Recently, mutations in POFUT1, which encodes protein O-fucosyltransferase 1, were also reported to be responsible for DDD. Interestingly, both POGLUT1 and POFUT1 are essential regulators of Notch activity. Our results furthermore emphasize the important role of the Notch pathway in pigmentation and keratinocyte morphology. PMID:24387993

  5. Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by Hereditary Hemorrhagic Telangiectasia

    PubMed Central

    Alaa el Din, Ferdos; Patri, Sylvie; Thoreau, Vincent; Rodriguez-Ballesteros, Montserrat; Hamade, Eva; Bailly, Sabine; Gilbert-Dussardier, Brigitte; Abou Merhi, Raghida; Kitzis, Alain

    2015-01-01

    Hereditary Hemorrhagic Telangiectasia syndrome (HHT) or Rendu-Osler-Weber (ROW) syndrome is an autosomal dominant vascular disorder. Two most common forms of HHT, HHT1 and HHT2, have been linked to mutations in the endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1or ALK1) genes respectively. This work was designed to examine the pathogenicity of 23 nucleotide variations in ACVRL1 gene detected in more than 400 patients. Among them, 14 missense mutations and one intronic variant were novels, and 8 missense mutations were previously identified with questionable implication in HHT2. The functionality of missense mutations was analyzed in response to BMP9 (specific ligand of ALK1), the maturation of the protein products and their localization were analyzed by western blot and fluorescence microscopy. The splicing impairment of the intronic and of two missense mutations was examined by minigene assay. Functional analysis showed that 18 out of 22 missense mutations were defective. Splicing analysis revealed that one missense mutation (c.733A>G, p.Ile245Val) affects the splicing of the harboring exon 6. Similarly, the intronic mutation outside the consensus splicing sites (c.1048+5G>A in intron 7) was seen pathogenic by splicing study. Both mutations induce a frame shift creating a premature stop codon likely resulting in mRNA degradation by NMD surveillance mechanism. Our results confirm the haploinsufficiency model proposed for HHT2. The affected allele of ACVRL1 induces mRNA degradation or the synthesis of a protein lacking the receptor activity. Furthermore, our data demonstrate that functional and splicing analyses together, represent two robust diagnostic tools to be used by geneticists confronted with novel or conflicted ACVRL1 mutations. PMID:26176610

  6. TERT promoter mutation and its interaction with IDH mutations in glioma: Combined TERT promoter and IDH mutations stratifies lower-grade glioma into distinct survival subgroups-A meta-analysis of aggregate data.

    PubMed

    Vuong, Huy Gia; Altibi, Ahmed M A; Duong, Uyen N P; Ngo, Hanh T T; Pham, Thong Quang; Chan, Aden Ka-Yin; Park, Chul-Kee; Fung, Kar-Ming; Hassell, Lewis

    2017-12-01

    The clinical significance of telomerase reverse transcriptase (TERT) promoter mutation in glioma remains unclear. The aim of our meta-analysis is to investigate the prognostic impact TERT promoter mutation in glioma patients and its interaction with other molecular markers, particularly Isocitrate Dehydrogenase (IDH) mutation from aggregate level data. Relevant articles were searched in four electronic databases including PubMed, Scopus, Web of Science and Virtual Health Library. Pooled HRs were calculated using random effect model weighted by inverse variance method. From 1010 studies, we finally included 28 studies with 11519 patients for meta-analyses. TERT mutation is significantly associated with compromised overall survival (OS) (HR=1.38; 95% CI=1.15-1.67) and progression-free survival (PFS) (HR=1.31; 95% CI=1.06-1.63) in glioma patients. In studying its reaction with IDH, TERT promoter mutation was associated with reduced OS in both IDH-mutant (IDH-mut) and IDH-wild type (IDH-wt) glioblastomas but shown to have inverse effects on IDH-mut and IDH-wt grade II/III tumors. Our analysis categorized WHO grade II/III glioma patients into four distinct survival subgroups with descending survival as follow: TERT-mut/IDH-mut≫TERT-wt/IDH-mut≫TERT-wt/IDH-wt≫TERT-mut/IDH-wt. Prognostic value of TERT promoter mutations in gliomas is dependent on tumor grade and the IDH mutational status. With the same tumor grade in WHO grade II and III tumors and the same IDH mutation status, TERT-mut is a prognostic factor. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Integrated Analysis of Mutation Data from Various Sources Identifies Key Genes and Signaling Pathways in Hepatocellular Carcinoma

    PubMed Central

    Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu

    2014-01-01

    Background Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. Principal Findings In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Conclusions Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers. PMID:24988079

  8. Integrated analysis of mutation data from various sources identifies key genes and signaling pathways in hepatocellular carcinoma.

    PubMed

    Zhang, Yuannv; Qiu, Zhaoping; Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu

    2014-01-01

    Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers.

  9. Stickler syndrome caused by COL2A1 mutations: genotype–phenotype correlation in a series of 100 patients

    PubMed Central

    Hoornaert, Kristien P; Vereecke, Inge; Dewinter, Chantal; Rosenberg, Thomas; Beemer, Frits A; Leroy, Jules G; Bendix, Laila; Björck, Erik; Bonduelle, Maryse; Boute, Odile; Cormier-Daire, Valerie; De Die-Smulders, Christine; Dieux-Coeslier, Anne; Dollfus, Hélène; Elting, Mariet; Green, Andrew; Guerci, Veronica I; Hennekam, Raoul C M; Hilhorts-Hofstee, Yvonne; Holder, Muriel; Hoyng, Carel; Jones, Kristi J; Josifova, Dragana; Kaitila, Ilkka; Kjaergaard, Suzanne; Kroes, Yolande H; Lagerstedt, Kristina; Lees, Melissa; LeMerrer, Martine; Magnani, Cinzia; Marcelis, Carlo; Martorell, Loreto; Mathieu, Michèle; McEntagart, Meriel; Mendicino, Angela; Morton, Jenny; Orazio, Gabrielli; Paquis, Véronique; Reish, Orit; Simola, Kalle O J; Smithson, Sarah F; Temple, Karen I; Van Aken, Elisabeth; Van Bever, Yolande; van den Ende, Jenneke; Van Hagen, Johanna M; Zelante, Leopoldo; Zordania, Riina; De Paepe, Anne; Leroy, Bart P; De Buyzere, Marc; Coucke, Paul J; Mortier, Geert R

    2010-01-01

    Stickler syndrome is an autosomal dominant connective tissue disorder caused by mutations in different collagen genes. The aim of our study was to define more precisely the phenotype and genotype of Stickler syndrome type 1 by investigating a large series of patients with a heterozygous mutation in COL2A1. In 188 probands with the clinical diagnosis of Stickler syndrome, the COL2A1 gene was analyzed by either a mutation scanning technique or bidirectional fluorescent DNA sequencing. The effect of splice site alterations was investigated by analyzing mRNA. Multiplex ligation-dependent amplification analysis was used for the detection of intragenic deletions. We identified 77 different COL2A1 mutations in 100 affected individuals. Analysis of the splice site mutations showed unusual RNA isoforms, most of which contained a premature stop codon. Vitreous anomalies and retinal detachments were found more frequently in patients with a COL2A1 mutation compared with the mutation-negative group (P<0.01). Overall, 20 of 23 sporadic patients with a COL2A1 mutation had either a cleft palate or retinal detachment with vitreous anomalies. The presence of vitreous anomalies, retinal tears or detachments, cleft palate and a positive family history were shown to be good indicators for a COL2A1 defect. In conclusion, we confirm that Stickler syndrome type 1 is predominantly caused by loss-of-function mutations in the COL2A1 gene as >90% of the mutations were predicted to result in nonsense-mediated decay. On the basis of binary regression analysis, we developed a scoring system that may be useful when evaluating patients with Stickler syndrome. PMID:20179744

  10. Autosomal dominant tubulointerstitial kidney disease caused by uromodulin mutations: seek and you will find.

    PubMed

    Raffler, Gabriele; Zitt, Emanuel; Sprenger-Mähr, Hannelore; Nagel, Mato; Lhotta, Karl

    2016-04-01

    Uromodulin (UMOD)-associated kidney disease belongs to the group of autosomal dominant interstitial kidney diseases and is caused by mutations in the UMOD gene. Affected patients present with hyperuricemia, gout, and progressive renal failure. The disease is thought to be very rare but is probably underdiagnosed. Two index patients from two families with tubulointerstitial nephropathy and hyperuricemia were examined, including blood and urine chemistry, ultrasound, and mutation analysis of the UMOD gene. In addition, other available family members were studied. In a 46-year-old female patient with a fractional excretion of uric acid of 3 %, analysis of the UMOD gene revealed a p.W202S missense mutation. The same mutation was found in her 72-year-old father, who suffers from gout and end-stage renal disease. The second index patient was a 47-year-old female with chronic kidney disease and gout for more than 10 years. Her fractional uric acid excretion was 3.5 %. Genetic analysis identified a novel p.H250Q UMOD mutation that was also present in her 12-year-old son, who had normal renal function and uric acid levels. In patients suffering from chronic tubulointerstitial nephropathy, hyperuricemia, and a low fractional excretion of uric acid mutation, analysis of the UMOD gene should be performed to diagnose UMOD-associated kidney disease.

  11. A high proportion of ADA point mutations associated with a specific alanine-to-valine substitution.

    PubMed

    Markert, M L; Norby-Slycord, C; Ward, F E

    1989-09-01

    In 15%-20% of children with severe combined immunodeficiency (SCID), the underlying defect is adenosine deaminase (ADA) deficiency. The overall goal of our research has been to identify the precise molecular defects in patients with ADA-deficient SCID. In this study, we focused on a patient whom we found to have normal sized ADA mRNA by Northern analysis and an intact ADA structural gene by Southern analysis. By cloning and sequencing this patient's ADA cDNA, we found a C-to-T point mutation in exon 11. This resulted in the amino acid substitution of a valine for an alanine at position 329 of the ADA protein. Sequence analysis revealed that this mutation created a new BalI restriction site. Using Southern analyses, we were able to directly screen individuals to determine the frequency of this mutation. By combining data on eight families followed at our institution with data on five other families reported in the literature, we established that five of 13 patients (seven of 22 alleles) with known or suspected point mutations have this defect. This mutation was found to be associated with three different ADA haplotypes. This argues against a founder effect and suggests that the mutation is very old. In summary, a conservative amino acid substitution is found in a high proportion of patients with ADA deficiency; this can easily be detected by Southern analysis.

  12. Patterns of haplotypes for 92 cystic fibrosis mutations: Variability, association and recurrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morral, N.; Llevadot, R.; Estivill, X.

    1994-09-01

    Most CFTR mutations are very uncommon among the cystic fibrosis population, with frequencies of less than 1%, and many are found only in specific areas. We have analyzed 92 CF mutations for several markers (4 microsatellites and 3 other polymorphisms) scattered in the CFTR gene. Haplotypes associated with these mutations can be used as a framework in the screening of chromosomes carrying unknown mutations. The association between mutation and haplotype reduces the number of mutations it is necessary to search for to a maximum of 16 for the same haplotype. Only mutations {triangle}F508, G542X and N1303K are associated with moremore » than one haplotype as a result of slippage at more than one microsatellite loci, suggesting that these three are the most ancient CF mutations. Recurrence has been found for at least 7 mutations: H199Y, R347P, L558S, R553X, 2184insA, 3272-26A{r_arrow}G, 3849+10kbC{r_arrow}T and R1162X. Also microsatellite analysis of chromosomes of several ethnic origins (Czech, Italian, Russian, Slovac and Spanish) suggested that possibility of three or more independent origins for mutations R334W, R347P, R1162X, and 3849+10kbC{r_arrow}T, which was confirmed by analysis of markers flanking these mutations.« less

  13. The first USH2A mutation analysis of Japanese autosomal recessive retinitis pigmentosa patients: a totally different mutation profile with the lack of frequent mutations found in Caucasian patients.

    PubMed

    Zhao, Yang; Hosono, Katsuhiro; Suto, Kimiko; Ishigami, Chie; Arai, Yuuki; Hikoya, Akiko; Hirami, Yasuhiko; Ohtsubo, Masafumi; Ueno, Shinji; Terasaki, Hiroko; Sato, Miho; Nakanishi, Hiroshi; Endo, Shiori; Mizuta, Kunihiro; Mineta, Hiroyuki; Kondo, Mineo; Takahashi, Masayo; Minoshima, Shinsei; Hotta, Yoshihiro

    2014-09-01

    Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease. The USH2A gene, which accounts for approximately 74-90% of Usher syndrome type 2 (USH2) cases, is also one of the major autosomal recessive RP (arRP) causative genes among Caucasian populations. To identify disease-causing USH2A gene mutations in Japanese RP patients, all 73 exons were screened for mutations by direct sequencing. In total, 100 unrelated Japanese RP patients with no systemic manifestations were identified, excluding families with obvious autosomal dominant inheritance. Of these 100 patients, 82 were included in this present study after 18 RP patients with very likely pathogenic EYS (eyes shut homolog) mutations were excluded. The mutation analysis of the USH2A revealed five very likely pathogenic mutations in four patients. A patient had only one very likely pathogenic mutation and the others had two of them. Caucasian frequent mutations p.C759F in arRP and p.E767fs in USH2 were not found. All the four patients exhibited typical clinical features of RP. The observed prevalence of USH2A gene mutations was approximately 4% among Japanese arRP patients, and the profile of the USH2A gene mutations differed largely between Japanese patients and previously reported Caucasian populations.

  14. ssaD1, a suppressor of secA51(Ts) that renders growth of Escherichia coli cold sensitive, is an early amber mutation in the transcription factor gene nusB.

    PubMed Central

    Rajapandi, T.; Oliver, D.

    1994-01-01

    Complementation analysis of the ssaD1 mutation, isolated as a suppressor of the secA51(Ts) mutation that renders growth of Escherichia coli cold sensitive, was used to show that ssaD corresponds to nusB, a gene known to be important in transcription antitermination. DNA sequence analysis of the ssaD1 allele showed that it creates an amber mutation in the 15th codon of nusB. Analysis of the effect of different levels of NusB protein on secA transcription and translation suggested that NusB plays little or no role in the control of secA expression. Accordingly, mechanisms by which nusB inactivation can lead to suppression of secA51(Ts) and secY24(Ts) mutations without affecting secA expression need to be considered. PMID:8021230

  15. Molecular and Clinical Characterization of Albinism in a Large Cohort of Italian Patients

    PubMed Central

    Gargiulo, Annagiusi; Testa, Francesco; Rossi, Settimio; Di Iorio, Valentina; Fecarotta, Simona; de Berardinis, Teresa; Iovine, Antonello; Magli, Adriano; Signorini, Sabrina; Fazzi, Elisa; Galantuomo, Maria Silvana; Fossarello, Maurizio; Montefusco, Sandro; Ciccodicola, Alfredo; Neri, Alberto; Macaluso, Claudio; Simonelli, Francesca; Surace, Enrico Maria

    2011-01-01

    Purpose. The purpose of this study was to identify the molecular basis of albinism in a large cohort of Italian patients showing typical ocular landmarks of the disease and to provide a full characterization of the clinical ophthalmic manifestations. Methods. DNA samples from 45 patients with ocular manifestations of albinism were analyzed by direct sequencing analysis of five genes responsible for albinism: TYR, P, TYRP1, SLC45A2 (MATP), and OA1. All patients studied showed a variable degree of skin and hair hypopigmentation. Eighteen patients with distinct mutations in each gene associated with OCA were evaluated by detailed ophthalmic analysis, optical coherence tomography (OCT), and fundus autofluorescence. Results. Disease-causing mutations were identified in more than 95% of analyzed patients with OCA (28/45 [62.2%] cases with two or more mutations; 15/45 [33.3%] cases with one mutation). Thirty-five different mutant alleles were identified of which 15 were novel. Mutations in TYR were the most frequent (73.3%), whereas mutations in P occurred more rarely (13.3%) than previously reported. Novel mutations were also identified in rare loci such as TYRP1 and MATP. Mutations in the OA1 gene were not detected. Clinical assessment revealed that patients with iris and macular pigmentation had significantly higher visual acuity than did severe hypopigmented phenotypes. Conclusions. TYR gene mutations represent a relevant cause of oculocutaneous albinism in Italy, whereas mutations in P present a lower frequency than that found in other populations. Clinical analysis revealed that the severity of the ocular manifestations depends on the degree of retinal pigmentation. PMID:20861488

  16. Muscle RAS oncogene homolog (MRAS) recurrent mutation in Borrmann type IV gastric cancer.

    PubMed

    Yasumoto, Makiko; Sakamoto, Etsuko; Ogasawara, Sachiko; Isobe, Taro; Kizaki, Junya; Sumi, Akiko; Kusano, Hironori; Akiba, Jun; Torimura, Takuji; Akagi, Yoshito; Itadani, Hiraku; Kobayashi, Tsutomu; Hasako, Shinichi; Kumazaki, Masafumi; Mizuarai, Shinji; Oie, Shinji; Yano, Hirohisa

    2017-01-01

    The prognosis of patients with Borrmann type IV gastric cancer (Type IV) is extremely poor. Thus, there is an urgent need to elucidate the molecular mechanisms underlying the oncogenesis of Type IV and to identify new therapeutic targets. Although previous studies using whole-exome and whole-genome sequencing have elucidated genomic alterations in gastric cancer, none has focused on comprehensive genetic analysis of Type IV. To discover cancer-relevant genes in Type IV, we performed whole-exome sequencing and genome-wide copy number analysis on 13 patients with Type IV. Exome sequencing identified 178 somatic mutations in protein-coding sequences or at splice sites. Among the mutations, we found a mutation in muscle RAS oncogene homolog (MRAS), which is predicted to cause molecular dysfunction. MRAS belongs to the Ras subgroup of small G proteins, which includes the prototypic RAS oncogenes. We analyzed an additional 46 Type IV samples to investigate the frequency of MRAS mutation. There were eight nonsynonymous mutations (mutation frequency, 17%), showing that MRAS is recurrently mutated in Type IV. Copy number analysis identified six focal amplifications and one homozygous deletion, including insulin-like growth factor 1 receptor (IGF1R) amplification. The samples with IGF1R amplification had remarkably higher IGF1R mRNA and protein expression levels compared with the other samples. This is the first report of MRAS recurrent mutation in human tumor samples. Our results suggest that MRAS mutation and IGF1R amplification could drive tumorigenesis of Type IV and could be new therapeutic targets. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  17. Network Analysis of Protein Adaptation: Modeling the Functional Impact of Multiple Mutations

    PubMed Central

    Beleva Guthrie, Violeta; Masica, David L; Fraser, Andrew; Federico, Joseph; Fan, Yunfan; Camps, Manel; Karchin, Rachel

    2018-01-01

    Abstract The evolution of new biochemical activities frequently involves complex dependencies between mutations and rapid evolutionary radiation. Mutation co-occurrence and covariation have previously been used to identify compensating mutations that are the result of physical contacts and preserve protein function and fold. Here, we model pairwise functional dependencies and higher order interactions that enable evolution of new protein functions. We use a network model to find complex dependencies between mutations resulting from evolutionary trade-offs and pleiotropic effects. We present a method to construct these networks and to identify functionally interacting mutations in both extant and reconstructed ancestral sequences (Network Analysis of Protein Adaptation). The time ordering of mutations can be incorporated into the networks through phylogenetic reconstruction. We apply NAPA to three distantly homologous β-lactamase protein clusters (TEM, CTX-M-3, and OXA-51), each of which has experienced recent evolutionary radiation under substantially different selective pressures. By analyzing the network properties of each protein cluster, we identify key adaptive mutations, positive pairwise interactions, different adaptive solutions to the same selective pressure, and complex evolutionary trajectories likely to increase protein fitness. We also present evidence that incorporating information from phylogenetic reconstruction and ancestral sequence inference can reduce the number of spurious links in the network, whereas preserving overall network community structure. The analysis does not require structural or biochemical data. In contrast to function-preserving mutation dependencies, which are frequently from structural contacts, gain-of-function mutation dependencies are most commonly between residues distal in protein structure. PMID:29522102

  18. Functional Analysis of Somatic Mutations in Lung Cancer

    DTIC Science & Technology

    2015-10-01

    antibody cetuximab [11]. Finally, we have developed novel single cell sequencing approaches to uncover EGFR mutational variants in glioblastoma and their...assessed which mutations are epistatic to EGFR or capable of initiating xenograft tumor formation in vivo. Using eVIP, we identified 69% of mutations...analyzed as impactful whereas 31% appear functionally neutral. A subset of the impactful mutations induce xenograft tumor formation in mice and/or

  19. Timing, rates and spectra of human germline mutation.

    PubMed

    Rahbari, Raheleh; Wuster, Arthur; Lindsay, Sarah J; Hardwick, Robert J; Alexandrov, Ludmil B; Turki, Saeed Al; Dominiczak, Anna; Morris, Andrew; Porteous, David; Smith, Blair; Stratton, Michael R; Hurles, Matthew E

    2016-02-01

    Germline mutations are a driving force behind genome evolution and genetic disease. We investigated genome-wide mutation rates and spectra in multi-sibling families. The mutation rate increased with paternal age in all families, but the number of additional mutations per year differed by more than twofold between families. Meta-analysis of 6,570 mutations showed that germline methylation influences mutation rates. In contrast to somatic mutations, we found remarkable consistency in germline mutation spectra between the sexes and at different paternal ages. In parental germ line, 3.8% of mutations were mosaic, resulting in 1.3% of mutations being shared by siblings. The number of these shared mutations varied significantly between families. Our data suggest that the mutation rate per cell division is higher during both early embryogenesis and differentiation of primordial germ cells but is reduced substantially during post-pubertal spermatogenesis. These findings have important consequences for the recurrence risks of disorders caused by de novo mutations.

  20. Metastatic site location influences the diagnostic accuracy of ctDNA EGFR- mutation testing in NSCLC patients: a pooled analysis.

    PubMed

    Passiglia, Francesco; Rizzo, Sergio; Rolfo, Christian; Galvano, Antonio; Bronte, Enrico; Incorvaia, Lorena; Listi, Angela; Barraco, Nadia; Castiglia, Marta; Calo, Valentina; Bazan, Viviana; Russo, Antonio

    2018-03-08

    Recent studies evaluated the diagnostic accuracy of circulating tumor DNA (ctDNA) in the detection of epidermal growth factor receptor (EGFR) mutations from plasma of NSCLC patients, overall showing a high concordance as compared to standard tissue genotyping. However it is less clear if the location of metastatic site may influence the ability to identify EGFR mutations in plasma. This pooled analysis aims to evaluate the association between the metastatic site location and the sensitivity of ctDNA analysis in detecting EGFR mutations in NSCLC patients. Data from all published studies, evaluating the sensitivity of plasma-based EGFR-mutation testing, stratified by metastatic site location (extrathoracic (M1b) vs intrathoracic (M1a)) were collected by searching in PubMed, Cochrane Library, American Society of Clinical Oncology, and World Conference of Lung Cancer, meeting proceedings. Pooled Odds ratio (OR) and 95% confidence intervals (95% CIs) were calculated for the ctDNA analysis sensitivity, according to metastatic site location. A total of ten studies, with 1425 patients, were eligible. Pooled analysis showed that the sensitivity of ctDNA-based EGFR-mutation testing is significantly higher in patients with M1b vs M1a disease (OR: 5.09; 95% CIs: 2.93 - 8.84). A significant association was observed for both EGFR-activating (OR: 4.30, 95% CI: 2.35-7.88) and resistant T790M mutations (OR: 11.89, 95% CI: 1.45-97.22), regardless of the use of digital-PCR (OR: 5.85, 95% CI: 3.56-9.60) or non-digital PCR technologies (OR: 2.96, 95% CI: 2.24-3.91). These data suggest that the location of metastatic sites significantly influences the diagnostic accuracy of ctDNA analysis in detecting EGFR mutations in NSCLC patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity

    NASA Astrophysics Data System (ADS)

    Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit

    2016-10-01

    Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.

  2. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity.

    PubMed

    Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit

    2016-10-01

    Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.

  3. Prediction of HIV-1 sensitivity to broadly neutralizing antibodies shows a trend towards resistance over time.

    PubMed

    Hake, Anna; Pfeifer, Nico

    2017-10-01

    Treatment with broadly neutralizing antibodies (bNAbs) has proven effective against HIV-1 infections in humanized mice, non-human primates, and humans. Due to the high mutation rate of HIV-1, resistance testing of the patient's viral strains to the bNAbs is still inevitable. So far, bNAb resistance can only be tested in expensive and time-consuming neutralization experiments. Here, we introduce well-performing computational models that predict the neutralization response of HIV-1 to bNAbs given only the envelope sequence of the virus. Using non-linear support vector machines based on a string kernel, the models learnt even the important binding sites of bNAbs with more complex epitopes, i.e., the CD4 binding site targeting bNAbs, proving thereby the biological relevance of the models. To increase the interpretability of the models, we additionally provide a new kind of motif logo for each query sequence, visualizing those residues of the test sequence that influenced the prediction outcome the most. Moreover, we predicted the neutralization sensitivity of around 34,000 HIV-1 samples from different time points to a broad range of bNAbs, enabling the first analysis of HIV resistance to bNAbs on a global scale. The analysis showed for many of the bNAbs a trend towards antibody resistance over time, which had previously only been discovered for a small non-representative subset of the global HIV-1 population.

  4. Prediction of HIV-1 sensitivity to broadly neutralizing antibodies shows a trend towards resistance over time

    PubMed Central

    2017-01-01

    Treatment with broadly neutralizing antibodies (bNAbs) has proven effective against HIV-1 infections in humanized mice, non-human primates, and humans. Due to the high mutation rate of HIV-1, resistance testing of the patient’s viral strains to the bNAbs is still inevitable. So far, bNAb resistance can only be tested in expensive and time-consuming neutralization experiments. Here, we introduce well-performing computational models that predict the neutralization response of HIV-1 to bNAbs given only the envelope sequence of the virus. Using non-linear support vector machines based on a string kernel, the models learnt even the important binding sites of bNAbs with more complex epitopes, i.e., the CD4 binding site targeting bNAbs, proving thereby the biological relevance of the models. To increase the interpretability of the models, we additionally provide a new kind of motif logo for each query sequence, visualizing those residues of the test sequence that influenced the prediction outcome the most. Moreover, we predicted the neutralization sensitivity of around 34,000 HIV-1 samples from different time points to a broad range of bNAbs, enabling the first analysis of HIV resistance to bNAbs on a global scale. The analysis showed for many of the bNAbs a trend towards antibody resistance over time, which had previously only been discovered for a small non-representative subset of the global HIV-1 population. PMID:29065122

  5. Clinical utility of routine MPL exon 10 analysis in the diagnosis of essential thrombocythaemia and primary myelofibrosis.

    PubMed

    Boyd, Elaine M; Bench, Anthony J; Goday-Fernández, Andrea; Anand, Shubha; Vaghela, Krishna J; Beer, Phillip; Scott, Mike A; Bareford, David; Green, Anthony R; Huntly, Brian; Erber, Wendy N

    2010-04-01

    Approximately 50% of essential thrombocythaemia and primary myelo-fibrosis patients do not have a JAK2 V617F mutation. Up to 5% of these are reported to have a MPL exon 10 mutation but testing for MPL is not routine as there are multiple mutation types. The ability to routinely assess both JAK2 and MPL mutations would be beneficial in the differential diagnosis of unexplained thrombocytosis or myelofibrosis. We developed and applied a high resolution melt (HRM) assay, capable of detecting all known MPL mutations in a single analysis, for the detection of MPL exon 10 mutations. We assessed 175 ET and PMF patients, including 67 that were JAK2 V617F-negative by real time polymerase chain reaction (PCR). Overall, 19/175 (11%) patients had a MPL exon 10 mutation, of whom 16 were JAK2 V617F-negative (16/67; 24%). MPL mutation types were W515L (11), W515K (4), W515R (2) and W515A (1). One patient had both W515L and S505N MPL mutations and these were present in the same haemopoietic colonies. Real time PCR for JAK2 V617F analysis and HRM for MPL exon 10 status identified one or more clonal marker in 71% of patients. This combined genetic approach increases the sensitivity of meeting the World Health Organization diagnostic criteria for these myeloproliferative neoplasms.

  6. Molecular basis of cystic fibrosis in Lithuania: incomplete CFTR mutation detection by PCR-based screening protocols.

    PubMed

    Giannattasio, S; Bobba, A; Jurgelevicius, V; Vacca, R A; Lattanzio, P; Merafina, R S; Utkus, A; Kucinskas, V; Marra, E

    2006-01-01

    Mutational analysis of the cystic fibrosis transmembrane regulator (CFTR) gene was performed in 98 unrelated CF chromosomes from 49 Lithuanian CF patients through a combined approach in which the p.F508del mutation was first screened by allele-specific PCR while CFTR mutations in nonp.F508del chromosomes have been screened for by denaturing gradient gel electrophoresis analysis. A CFTR mutation was characterized in 62.2% of CF chromosomes, two of which (2.0%) have been previously shown to carry a large gene deletion CFTRdele2,3(21 kb). The most frequent Lithuanian CF mutation is p.F508del (52.0%). Seven CFTR mutations, p.N1303K (2.0%), p.R75Q (1.0%), p.G314R (1.0%), p.R553X (4.2%), p.W1282X (1.0%), and g.3944delGT (1.0%), accounted for 10.1% of Lithuanian CF chromosomes. It was not possible to characterize 35.8% of the CF Lithuanian chromosomes. Analysis of intron 8 (TG)mTn and M470V polymorphic loci did not permit the characterization of the CFTR dysfunction underlying the CF phenotype in the patients for which no CFTR mutation was identified. Thus, screening of the eight CFTR mutations identified in this study and of the large deletion CFTRdele2,3(21 kb) allows the implementation of an early molecular or confirmatory CF diagnosis for 65% of Lithuanian CF chromosomes.

  7. [Mutation Analysis of 19 STR Loci in 20 723 Cases of Paternity Testing].

    PubMed

    Bi, J; Chang, J J; Li, M X; Yu, C Y

    2017-06-01

    To observe and analyze the confirmed cases of paternity testing, and to explore the mutation rules of STR loci. The mutant STR loci were screened from 20 723 confirmed cases of paternity testing by Goldeneye 20A system.The mutation rates, and the sources, fragment length, steps and increased or decreased repeat sequences of mutant alleles were counted for the analysis of the characteristics of mutation-related factors. A total of 548 mutations were found on 19 STR loci, and 557 mutation events were observed. The loci mutation rate was 0.07‰-2.23‰. The ratio of paternal to maternal mutant events was 3.06:1. One step mutation was the main mutation, and the number of the increased repeat sequences was almost the same as the decreased repeat sequences. The repeat sequences were more likely to decrease in two steps mutation and above. Mutation mainly occurred in the medium allele, and the number of the increased repeat sequences was almost the same as the decreased repeat sequences. In long allele mutations, the decreased repeat sequences were significantly more than the increased repeat sequences. The number of the increased repeat sequences was almost the same as the decreased repeat sequences in paternal mutation, while the decreased repeat sequences were more than the increased in maternal mutation. There are significant differences in the mutation rate of each locus. When one or two loci do not conform to the genetic law, other detection system should be added, and PI value should be calculated combined with the information of the mutate STR loci in order to further clarify the identification opinions. Copyright© by the Editorial Department of Journal of Forensic Medicine

  8. Mutation analysis of the APC gene in Taiwanese FAP families: low incidence of APC germline mutation in a distinct subgroup of FAP families.

    PubMed

    Chiang, J M; Chen, H W; Tang, R P; Chen, J S; Changchien, C R; Hsieh, P S; Wang, J Y

    2010-06-01

    Familial adenomatous polyposis (FAP) is an autosomal-dominant disease caused by germline mutations in the adenomatous polyposis coli (APC) gene. The affected individuals develop colorectal polyposis and show various extra-colonic manifestations. In this study, we aimed to investigate the genetic and clinical characteristics of FAP in Taiwanese families and analyze the genotype-phenotype correlations. Blood samples were obtained from 66 FAP patients registered in the hereditary colorectal cancer database. Then, germline mutations in the APC genes of these 66 polyposis patients from 47 unrelated FAP families were analyzed. The germline-mutation-negative cases were analyzed by performing multiplex ligation-dependent probe amplification (MLPA) and single-strand conformation polymorphism (SSCP) analysis of the MUTYH gene. Among the analyzed families, 79% (37/47) of the families showed 28 APC mutations, including 19 frameshift mutations, 4 nonsense mutations, 3 genomic deletion mutations, 1 missense mutation, and 1 splice-site mutation. In addition, we identified 15 novel mutations in 32% (15/47) of the families. The cases in which APC mutations were not identified showed significantly lower incidence of profuse polyposis (P = 0.034) and gastroduodenal polyps (P = 0.027). Furthermore, FAP families in which some affected individuals had less than 100 polyps showed significant association with low incidence of APC germline mutations (P = 0.002). We have added the APC germline-mutation data for Taiwanese FAP patients and indicated the presence of an FAP subgroup comprising affected individuals with nonadenomatous polyps or less than 100 adenomatous polyps; this form of FAP is less frequently caused by germline mutations of the APC gene.

  9. Is High Resolution Melting Analysis (HRMA) Accurate for Detection of Human Disease-Associated Mutations? A Meta Analysis

    PubMed Central

    Ma, Feng-Li; Jiang, Bo; Song, Xiao-Xiao; Xu, An-Gao

    2011-01-01

    Background High Resolution Melting Analysis (HRMA) is becoming the preferred method for mutation detection. However, its accuracy in the individual clinical diagnostic setting is variable. To assess the diagnostic accuracy of HRMA for human mutations in comparison to DNA sequencing in different routine clinical settings, we have conducted a meta-analysis of published reports. Methodology/Principal Findings Out of 195 publications obtained from the initial search criteria, thirty-four studies assessing the accuracy of HRMA were included in the meta-analysis. We found that HRMA was a highly sensitive test for detecting disease-associated mutations in humans. Overall, the summary sensitivity was 97.5% (95% confidence interval (CI): 96.8–98.5; I2 = 27.0%). Subgroup analysis showed even higher sensitivity for non-HR-1 instruments (sensitivity 98.7% (95%CI: 97.7–99.3; I2 = 0.0%)) and an eligible sample size subgroup (sensitivity 99.3% (95%CI: 98.1–99.8; I2 = 0.0%)). HRMA specificity showed considerable heterogeneity between studies. Sensitivity of the techniques was influenced by sample size and instrument type but by not sample source or dye type. Conclusions/Significance These findings show that HRMA is a highly sensitive, simple and low-cost test to detect human disease-associated mutations, especially for samples with mutations of low incidence. The burden on DNA sequencing could be significantly reduced by the implementation of HRMA, but it should be recognized that its sensitivity varies according to the number of samples with/without mutations, and positive results require DNA sequencing for confirmation. PMID:22194806

  10. Establishing high resolution melting analysis: method validation and evaluation for c-RET proto-oncogene mutation screening.

    PubMed

    Benej, Martin; Bendlova, Bela; Vaclavikova, Eliska; Poturnajova, Martina

    2011-10-06

    Reliable and effective primary screening of mutation carriers is the key condition for common diagnostic use. The objective of this study is to validate the method high resolution melting (HRM) analysis for routine primary mutation screening and accomplish its optimization, evaluation and validation. Due to their heterozygous nature, germline point mutations of c-RET proto-oncogene, associated to multiple endocrine neoplasia type 2 (MEN2), are suitable for HRM analysis. Early identification of mutation carriers has a major impact on patients' survival due to early onset of medullary thyroid carcinoma (MTC) and resistance to conventional therapy. The authors performed a series of validation assays according to International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines for validation of analytical procedures, along with appropriate design and optimization experiments. After validated evaluation of HRM, the method was utilized for primary screening of 28 pathogenic c-RET mutations distributed among nine exons of c-RET gene. Validation experiments confirm the repeatability, robustness, accuracy and reproducibility of HRM. All c-RET gene pathogenic variants were detected with no occurrence of false-positive/false-negative results. The data provide basic information about design, establishment and validation of HRM for primary screening of genetic variants in order to distinguish heterozygous point mutation carriers among the wild-type sequence carriers. HRM analysis is a powerful and reliable tool for rapid and cost-effective primary screening, e.g., of c-RET gene germline and/or sporadic mutations and can be used as a first line potential diagnostic tool.

  11. Novel and recurrent NDP gene mutations in familial cases of Norrie disease and X-linked exudative vitreoretinopathy.

    PubMed

    Pelcastre, Erika L; Villanueva-Mendoza, Cristina; Zenteno, Juan C

    2010-05-01

    To present the results of molecular analysis of the NDP gene in Mexican families with Norrie disease (ND) and X-linked familial exudative vitreoretinopathy (XL-FEVR). Two unrelated families with ND and two with XL-FEVR were studied. Clinical diagnosis was suspected on the basis of a complete ophthalmologic examination. Molecular methods included DNA isolation from peripheral blood leucocytes, polymerase chain reaction amplification and direct nucleotide sequencing analysis of the complete coding region and exon-intron junctions of NDP. Haplotype analysis using NDP-linked microsatellites markers was performed in both ND families. A novel Norrin missense mutation, p.Arg41Thr, was identified in two apparently unrelated families with ND. Haplotype analysis demonstrated that affected males in these two families shared the same ND-linked haplotype, suggesting a common origin for this novel mutation. The previously reported p.Arg121Trp and p.Arg121Gln Norrin mutations were identified in the two families with XL-FEVR. Our results expand the mutational spectrum in ND. This is the first report of ND resulting from mutation at arginine position 41 of Norrin. Interestingly, mutations at the same residue but resulting in a different missense change were previously described in subjects with XL-FEVR (p.Arg41Lys) or persistent fetal vasculature syndrome (p.Arg41Ser), indicating that the novel p.Arg41Thr change causes a more severe retinal phenotype. Preliminary data suggest a founder effect for the ND p.Arg41Thr mutation in these two Mexican families.

  12. Identification of novel mutations in the α-galactosidase A gene in patients with Fabry disease: pitfalls of mutation analyses in patients with low α-galactosidase A activity.

    PubMed

    Yoshimitsu, Makoto; Higuchi, Koji; Miyata, Masaaki; Devine, Sean; Mattman, Andre; Sirrs, Sandra; Medin, Jeffrey A; Tei, Chuwa; Takenaka, Toshihiro

    2011-05-01

    Fabry disease is an X-linked lysosomal storage disorder caused by mutations of the α-galactosidase A (GLA) gene, and the disease is a relatively prevalent cause of left ventricular hypertrophy followed by conduction abnormalities and arrhythmias. Mutation analysis of the GLA gene is a valuable tool for accurate diagnosis of affected families. In this study, we carried out molecular studies of 10 unrelated families diagnosed with Fabry disease. Genetic analysis of the GLA gene using conventional genomic sequencing was performed in 9 hemizygous males and 6 heterozygous females. In patients with no mutations in coding DNA sequence, multiplex ligation-dependent probe amplification (MLPA) and/or cDNA sequencing were performed. We identified a novel exon 2 deletion (IVS1_IVS2) in a heterozygous female by MLPA, which was undetectable by conventional sequencing methods. In addition, the g.9331G>A mutation that has previously been found only in patients with cardiac Fabry disease was found in 3 unrelated, newly-diagnosed, cardiac Fabry patients by sequencing GLA genomic DNA and cDNA. Two other novel mutations, g.8319A>G and 832delA were also found in addition to 4 previously reported mutations (R112C, C142Y, M296I, and G373D) in 6 other families. We could identify GLA gene mutations in all hemizygotes and heterozygotes from 10 families with Fabry disease. Mutations in 4 out of 10 families could not be identified by classical genomic analysis, which focuses on exons and the flanking region. Instead, these data suggest that MLPA analysis and cDNA sequence should be considered in genetic testing surveys of patients with Fabry disease. Copyright © 2011 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  13. CHEK2 mutation and risk of prostate cancer: a systematic review and meta-analysis

    PubMed Central

    Wang, Yue; Dai, Bo; Ye, Dingwei

    2015-01-01

    Background: CHEK2 encodes for a G2 checkpoint kinase which plays a critical role in DNA repair. Its mutation confers an increased risk of breast cancer. It has also been suggested to increase risks of prostate cancer, but its involvement with this type of cancer has not been confirmed. Methods: We performed a systematic review and meta-analysis to clarify the association between CHEK2 1100delC, IVS2+1G>A, I157T mutation and risk of Prostate Cancer. A comprehensive, computerized literature search of PubMed until December 27, 2014 was carried out. Eligible studies were included according to specific inclusion criteria. Pooled hazard ratio was estimated using the fixed effects model or random effects model according to heterogeneity between studies. Results: Eight eligible studies were included in the analysis, all were retrospective studies. The overall meta-analysis demonstrated that the CHEK2 1100delC mutation (OR 3.29; 95% confidence interval: 1.85-5.85; P = 0.00) and I157T missense mutation (OR 1.80; 95% confidence interval: 1.51-2.14; P = 0.00) was associated with higher risk of Prostate Cancer, and CHEK2 1100delC mutation is irrelevant to familial aggregation phenomenon of prostate cancer (OR 1.59; 95% confidence interval: 0.79-3.20; P = 0.20). The IVS2+1G>A mutation is also irrelevant to Prostate Cancer (OR = 1.59, 95% CI = 0.93-2.71, P = 0.09). None of the single studies materially altered the original results and no evidence of publication bias was found. Conclusion: CHEK2 1100delC mutation and I157T missense mutation in males indicates higher risk of Prostate Cancer, but there’s no evidence to prove the CHEK2 1100delC mutation was associated with Familial prostate cancer. PMID:26629066

  14. CHEK2 mutation and risk of prostate cancer: a systematic review and meta-analysis.

    PubMed

    Wang, Yue; Dai, Bo; Ye, Dingwei

    2015-01-01

    CHEK2 encodes for a G2 checkpoint kinase which plays a critical role in DNA repair. Its mutation confers an increased risk of breast cancer. It has also been suggested to increase risks of prostate cancer, but its involvement with this type of cancer has not been confirmed. We performed a systematic review and meta-analysis to clarify the association between CHEK2 1100delC, IVS2+1G>A, I157T mutation and risk of Prostate Cancer. A comprehensive, computerized literature search of PubMed until December 27, 2014 was carried out. Eligible studies were included according to specific inclusion criteria. Pooled hazard ratio was estimated using the fixed effects model or random effects model according to heterogeneity between studies. Eight eligible studies were included in the analysis, all were retrospective studies. The overall meta-analysis demonstrated that the CHEK2 1100delC mutation (OR 3.29; 95% confidence interval: 1.85-5.85; P = 0.00) and I157T missense mutation (OR 1.80; 95% confidence interval: 1.51-2.14; P = 0.00) was associated with higher risk of Prostate Cancer, and CHEK2 1100delC mutation is irrelevant to familial aggregation phenomenon of prostate cancer (OR 1.59; 95% confidence interval: 0.79-3.20; P = 0.20). The IVS2+1G>A mutation is also irrelevant to Prostate Cancer (OR = 1.59, 95% CI = 0.93-2.71, P = 0.09). None of the single studies materially altered the original results and no evidence of publication bias was found. CHEK2 1100delC mutation and I157T missense mutation in males indicates higher risk of Prostate Cancer, but there's no evidence to prove the CHEK2 1100delC mutation was associated with Familial prostate cancer.

  15. PVRL1 as a Candidate Gene for Nonsyndromic Cleft Lip With or Without Cleft Palate: No Evidence for the Involvement of Common or Rare Variants in Southern Han Chinese Patients

    PubMed Central

    Cheng, Hong-Qiu; Huang, En-Min; Xu, Ming-Yan; Shu, Shen-You

    2012-01-01

    The poliovirus receptor related-1 (PVRL1) gene encodes nectin-1, a cell–cell adhesion molecule (OMIM #600644), and is mutated in the cleft lip with or without cleft palate/ectodermal dysplasia-1 syndrome (CLPED1, OMIM #225000). In addition, PVRL1 mutations have been associated with nonsyndromic cleft lip with or without a cleft palate (NSCL/P) in studies of multiethnic samples. To investigate the possible involvement of this gene in southern Han Chinese NSCL/P patients, we performed (i) a case–control association study, and (ii) a resequencing study. A set of 470 patients with NSCL/P and 693 controls were recruited, and a total of 45 tagging single-nucleotide polymorphisms (SNPs) were genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In the resequencing study, the coding regions of the PVRL1 α isoform were direct sequenced in 45 trios from multiply affected families. One (rs7128327) of the 45 tested SNPs showed a trend toward statistical significance in the genotypic-level chi-square test (p=0.009567). However, this result did not withstand correction for multiple testing. Likewise, sliding window haplotype analyses consisting of two, three, or four SNPs failed to detect any positive association. Resequencing analysis also failed to identify any novel rare sequence variants. In conclusion, the present study provided no support for the hypothesis that common or rare variants in PVRL1 play a significant role in NSCL/P development in the southern Han Chinese population. This is the first study that has used tagging SNPs covering all the coding and noncoding regions to search for common NSCL/P-associated mutations of PVRL1. PMID:22455396

  16. Pathological response after neoadjuvant bevacizumab- or cetuximab-based chemotherapy in resected colorectal cancer liver metastases.

    PubMed

    Pietrantonio, Filippo; Mazzaferro, Vincenzo; Miceli, Rosalba; Cotsoglou, Christian; Melotti, Flavia; Fanetti, Giuseppe; Perrone, Federica; Biondani, Pamela; Muscarà, Cecilia; Di Bartolomeo, Maria; Coppa, Jorgelina; Maggi, Claudia; Milione, Massimo; Tamborini, Elena; de Braud, Filippo

    2015-07-01

    Neoadjuvant chemotherapy (NACT) prior to liver resection is advantageous for patients with colorectal cancer liver metastases (CLM). Bevacizumab- or cetuximab-based NACT may affect patient outcome and curative resection rate, but comparative studies on differential tumour regression grade (TRG) associated with distinct antibodies-associated regimens are lacking. Ninety-three consecutive patients received NACT plus bevacizumab (n = 46) or cetuximab (n = 47) followed by CLM resection. Pathological response was determined in each resected metastasis as TRG rated from 1 (complete) to 5 (no response). Except for KRAS mutations prevailing in bevacizumab versus cetuximab (57 vs. 21 %, p = 0.001), patients characteristics were well balanced. Median follow-up was 31 months (IQR 17-48). Bevacizumab induced significantly better pathological response rates (TRG1-3: 78 vs. 34 %, p < 0.001) as well as complete responses (TRG1: 13 vs. 0 %, p = 0.012) with respect to cetuximab. Three-year progression-free survival (PFS) and overall survival (OS) were not significantly different in the two cohorts. At multivariable analysis, significant association with pathological response was found for number of resected metastases (p = 0.015) and bevacizumab allocation (p < 0.001), while KRAS mutation showed only a trend. Significant association with poorer PFS and OS was found for low grades of pathological response (p = 0.009 and p < 0.001, respectively), R2 resection or presence of extrahepatic disease (both p < 0.001) and presence of KRAS mutation (p = 0.007 and p < 0.001, respectively). Bevacizumab-based regimens, although influenced by the number of metastases and KRAS status, improve significantly pathological response if compared to cetuximab-based NACT. Possible differential impact among regimens on patient outcome has still to be elucidated.

  17. Smoking and colorectal cancer in Lynch syndrome: Results from the Colon Cancer Family Registry and The University of Texas M. D. Anderson Cancer Center

    PubMed Central

    Pande, Mala; Lynch, Patrick M.; Hopper, John L.; Jenkins, Mark A.; Gallinger, Steve; Haile, Robert W.; LeMarchand, Loic; Lindor, Noralane M.; Campbell, Peter T.; Newcomb, Polly A.; Potter, John D.; Baron, John A.; Frazier, Marsha L.; Amos, Christopher I.

    2009-01-01

    Purpose Lynch syndrome family members with inherited germline mutations in DNA mismatch repair (MMR) genes have a high risk of colorectal cancer (CRC) and cases typically have tumors that exhibit a high level of microsatellite instability (MSI). There is some evidence that smoking is a risk factor for CRCs with high MSI, but the association of smoking with CRC among those with Lynch syndrome is unknown. Experimental Design A multicentered retrospective cohort of 752 carriers of pathogenic MMR gene mutations was analyzed, using a weighted Cox regression analysis, adjusting for sex, ascertainment source, the specific mutated gene, year of birth, and familial clustering. Results Compared with never smokers, current smokers had a significantly increased CRC risk (adjusted hazard ratio [HR] = 1.62; 95% CI, 1.01 – 2.57) and former smokers who had quit smoking for 2 or more years were at decreased risk (HR = 0.53; 95% CI, 0.35 – 0.82). CRC risk did not vary according to age at starting. However, light smoking (<10 cigarettes per day) and shorter duration of smoking (<10 years) were associated with decreased CRC risk (HR = 0.51; 95% CI, 0.29 – 0.91 and HR = 0.52; 95% CI, 0.30 - 0.89 respectively). For former smokers, CRC risk decreased with years since quitting (P trend <0.01). Conclusion People with Lynch syndrome may be at increased risk of CRC if they smoke regularly. Although our data suggest that former smokers, short-term and light smokers are at decreased CRC risk, these findings need further confirmation, preferably using prospective designs. PMID:20145170

  18. Colorectal Carcinomas With Isolated Loss of PMS2 Staining by Immunohistochemistry.

    PubMed

    Alpert, Lindsay; Pai, Reetesh K; Srivastava, Amitabh; McKinnon, Wendy; Wilcox, Rebecca; Yantiss, Rhonda K; Arcega, Ramir; Wang, Hanlin L; Robert, Marie E; Liu, Xiuli; Pai, Rish K; Zhao, Lei; Westerhoff, Maria; Hampel, Heather; Kupfer, Sonia; Setia, Namrata; Xiao, Shu-Yuan; Hart, John; Frankel, Wendy L

    2018-04-01

    - Isolated loss of PMS2 staining is an uncommon immunophenotype in colorectal carcinomas, accounting for approximately 4% of tumors with microsatellite instability. Limited information regarding these tumors is available in the literature. - To compare the clinicopathologic features of colorectal carcinomas with isolated PMS2 loss by immunohistochemistry to those with other forms of mismatch repair deficiency. - Ninety-three colorectal carcinomas with isolated PMS2 loss by immunohistochemistry and 193 with other forms of mismatch repair deficiency were identified. Forty (43%) of the isolated PMS2 loss cases and 35 control cases (18%) had a known germline mutation or a clinical diagnosis of Lynch syndrome. - Overall, isolated PMS2-loss tumors occurred in significantly younger patients ( P < .001) and in fewer female patients ( P = .006). These tumors were significantly less likely to be right-sided ( P = .001), high-grade ( P = .01), or display histologic features of microsatellite instability ( P < .001). The isolated PMS2-loss group also exhibited increased odds of disease-specific death (odds ratio [OR], 3.09; 95% CI, 1.41-6.85; P = .007). When the analysis was restricted to germline mutation/Lynch syndrome cases and controls, no significant differences were detected for age, sex, tumor location, tumor grade, histologic features, or distant metastases, although a trend toward increased odds of disease-specific death in the isolated PMS2-loss group was evident (OR, 3.87; 95% CI, 0.89-27.04; P = .10). - Unusual clinicopathologic features observed in colorectal carcinomas with isolated PMS2 loss are likely related to the high proportion of cases caused by germline mutations. Isolated PMS2-loss tumors may demonstrate more aggressive behavior than other tumors with microsatellite instability, but larger studies are needed to investigate that possibility further.

  19. Somatic hypermutation of the new antigen receptor gene (NAR) in the nurse shark does not generate the repertoire: possible role in antigen-driven reactions in the absence of germinal centers.

    PubMed

    Diaz, M; Greenberg, A S; Flajnik, M F

    1998-11-24

    The new antigen receptor (NAR) gene in the nurse shark diversifies extensively by somatic hypermutation. It is not known, however, whether NAR somatic hypermutation generates the primary repertoire (like in the sheep) or rather is used in antigen-driven immune responses. To address this issue, the sequences of NAR transmembrane (Tm) and secretory (Sec) forms, presumed to represent the primary and secondary repertoires, respectively, were examined from the peripheral blood lymphocytes of three adult nurse sharks. More than 40% of the Sec clones but fewer than 11% of Tm clones contained five mutations or more. Furthermore, more than 75% of the Tm clones had few or no mutations. Mutations in the Sec clones occurred mostly in the complementarity-determining regions (CDR) with a significant bias toward replacement substitutions in CDR1; in Tm clones there was no significant bias toward replacements and only a low level of targeting to the CDRs. Unlike the Tm clones where the replacement mutational pattern was similar to that seen for synonymous changes, Sec replacements displayed a distinct pattern of mutations. The types of mutations in NAR were similar to those found in mouse Ig genes rather than to the unusual pattern reported for shark and Xenopus Ig. Finally, an oligoclonal family of Sec clones revealed a striking trend toward acquisition of glutamic/aspartic acid, suggesting some degree of selection. These data strongly suggest that hypermutation of NAR does not generate the repertoire, but instead is involved in antigen-driven immune responses.

  20. Chemotherapy-induced amenorrhea in patients with breast cancer with a BRCA1 or BRCA2 mutation.

    PubMed

    Valentini, Adriana; Finch, Amy; Lubinski, Jan; Byrski, Tomasz; Ghadirian, Parviz; Kim-Sing, Charmaine; Lynch, Henry T; Ainsworth, Peter J; Neuhausen, Susan L; Greenblatt, Ellen; Singer, Christian; Sun, Ping; Narod, Steven A

    2013-11-01

    To determine the likelihood of long-term amenorrhea after treatment with chemotherapy in women with breast cancer who carry a BRCA1 or BRCA2 mutation. We conducted a multicenter survey of 1,954 young women with a BRCA1 or BRCA2 mutation who were treated for breast cancer. We included premenopausal women who were diagnosed with invasive breast cancer between 26 and 47 years of age. We determined the age of onset of amenorrhea after breast cancer for women who were and were not treated with chemotherapy, alone or with tamoxifen. We considered chemotherapy-induced amenorrhea to have occurred when the patient experienced ≥ 2 years of amenorrhea, commencing within 2 years of initiating chemotherapy, with no resumption of menses. Of the 1,426 women who received chemotherapy, 35% experienced long-term amenorrhea. Of the 528 women who did not receive chemotherapy, 5.3% developed long-term amenorrhea. The probabilities of chemotherapy-induced amenorrhea were 7.2% for women diagnosed before age 30 years, 33% for women age 31 to 44 years, and 79% for women diagnosed after age 45 years (P trend < .001). The probability of induced amenorrhea was higher for women who received tamoxifen than for those who did not (52% v 29%; P < .001). Age at treatment and use of tamoxifen are important predictors of chemotherapy-induced amenorrhea in women who carry a BRCA1 or BRCA2 mutation. The risk of induced long-term amenorrhea does not seem to be greater among mutation carriers than among women who do not carry a mutation.

  1. Comprehensive Analysis of the Incidence and Survival Patterns of Lung Cancer by Histologies, Including Rare Subtypes, in the Era of Molecular Medicine and Targeted Therapy

    PubMed Central

    Chang, Jeffrey.S.; Chen, Li-Tzong; Shan, Yan-Shen; Lin, Sheng-Fung; Hsiao, Sheng-Yen; Tsai, Chia-Rung; Yu, Shu-Jung; Tsai, Hui-Jen

    2015-01-01

    Abstract Lung cancer is the third most common cancer in the world and has the highest cancer mortality rate. A worldwide increasing trend of lung adenocarcinoma has been noted. In addition, the identification of epidermal growth factor receptor (EGFR) mutations and the introduction of EGFR inhibitors to successfully treat EGFR mutated non–small cell lung cancers are breakthroughs for lung cancer treatment. The current study evaluated the incidence and survival of lung cancer using data collected by the Taiwan Cancer Registry between 1996 and 2008. The results showed that the most common histologic subtype of lung cancer was adenocarcinoma, followed by squamous cell carcinoma, small cell carcinoma, large cell carcinoma, neuroendocrine tumors, lymphoma, and sarcoma. Overall, the incidence of lung cancer in Taiwan increased significantly from 1996 to 2008. An increased incidence was observed for adenocarcinoma, particularly for women, with an annual percentage change of 5.9, whereas the incidence of squamous cell carcinoma decreased. Among the subtypes of lung cancer, the most rapid increase occurred in neuroendocrine tumors with an annual percentage change of 15.5. From 1996–1999 to 2005–2008, the 1-year survival of adenocarcinoma increased by 10% for men, whereas the 1-, 3-, and 5-year survivals of adenocarcinoma for women increased by 18%, 11%, and 5%, respectively. Overall, the incidence of lung cancer has been increasing in Taiwan, although the trends were variable by subtype. The introduction of targeted therapies was associated with a significantly improved survival for lung adenocarcinoma in Taiwan; however, more studies are needed to explain the rising incidence of lung adenocarcinoma. In addition, it is important to investigate the molecular pathogenesis of the various subtypes of lung cancer to develop novel therapeutic agents. PMID:26091466

  2. Comprehensive Analysis of the Incidence and Survival Patterns of Lung Cancer by Histologies, Including Rare Subtypes, in the Era of Molecular Medicine and Targeted Therapy: A Nation-Wide Cancer Registry-Based Study From Taiwan.

    PubMed

    Chang, Jeffrey S; Chen, Li-Tzong; Shan, Yan-Shen; Lin, Sheng-Fung; Hsiao, Sheng-Yen; Tsai, Chia-Rung; Yu, Shu-Jung; Tsai, Hui-Jen

    2015-06-01

    Lung cancer is the third most common cancer in the world and has the highest cancer mortality rate. A worldwide increasing trend of lung adenocarcinoma has been noted. In addition, the identification of epidermal growth factor receptor (EGFR) mutations and the introduction of EGFR inhibitors to successfully treat EGFR mutated non-small cell lung cancers are breakthroughs for lung cancer treatment. The current study evaluated the incidence and survival of lung cancer using data collected by the Taiwan Cancer Registry between 1996 and 2008. The results showed that the most common histologic subtype of lung cancer was adenocarcinoma, followed by squamous cell carcinoma, small cell carcinoma, large cell carcinoma, neuroendocrine tumors, lymphoma, and sarcoma. Overall, the incidence of lung cancer in Taiwan increased significantly from 1996 to 2008. An increased incidence was observed for adenocarcinoma, particularly for women, with an annual percentage change of 5.9, whereas the incidence of squamous cell carcinoma decreased. Among the subtypes of lung cancer, the most rapid increase occurred in neuroendocrine tumors with an annual percentage change of 15.5. From 1996-1999 to 2005-2008, the 1-year survival of adenocarcinoma increased by 10% for men, whereas the 1-, 3-, and 5-year survivals of adenocarcinoma for women increased by 18%, 11%, and 5%, respectively. Overall, the incidence of lung cancer has been increasing in Taiwan, although the trends were variable by subtype. The introduction of targeted therapies was associated with a significantly improved survival for lung adenocarcinoma in Taiwan; however, more studies are needed to explain the rising incidence of lung adenocarcinoma. In addition, it is important to investigate the molecular pathogenesis of the various subtypes of lung cancer to develop novel therapeutic agents.

  3. Clinical profiles and trend analysis of newly diagnosed lung cancer in a tertiary care hospital of East China during 2011-2015.

    PubMed

    Wang, Pingli; Zou, Jixia; Wu, Jingni; Zhang, Chengyan; Ma, Chengxi; Yu, Juan; Zhou, You; Li, Baizhou; Wang, Kai

    2017-07-01

    More than one-third of lung cancer worldwide occurring in China. However, the clinical profiles of lung cancer patients in the mainland of China are rarely reported and largely unknown. The objective of this study is to analyze the characteristics and time trends of newly diagnosed lung cancer cases during the past 5 years in East China. The data came from an academic tertiary care hospital of East China. Patients who were newly diagnosed as lung cancer from 2011 to 2015 were enrolled. All new cases got pathological supports by lung biopsy or surgery. Tumor staging was performed according to the seventh edition of the tumor node metastasis (TNM) classification of malignant tumors. The patients' disease information was collected from the database of the hospital information system (HIS). From 2011 to 2015, aggregately 5,779 patients, including 3,719 males and 2,060 females, were diagnosed as lung cancer. The major histologic subtypes of lung cancer were adenocarcinoma (ADC, 60.0%), squamous cell carcinoma (SCC, 25.6%), small cell lung cancer (SCLC, 8.5%), large cell carcinoma (0.6%), adenosquamous carcinoma (1%), other non-small cell carcinoma (1.6%) and unclassified or rare carcinoma (2.8%). ADC proportion of female was much higher than that of male. A higher proportion of advanced stage (stage IIIB, IV) of lung cancer existed in patients who were admitted to hospital due to respiratory or cancer related symptoms (RCRS) than those without RCRS. Smoking rate in male patients reached 80.2%, while it was only 2.7% in females. EGFR mutation existed in 66% of female and 37% of male patients with ADC. This study demonstrates the clinicopathologic characteristics of lung cancer patients from East China, including histologic composition, staging proportion, smoking prevalence and gene mutation status. During the past 5 years, the proportion of ADC has increased gradually whereas SCC decreased.

  4. Fixation probability of a nonmutator in a large population of asexual mutators.

    PubMed

    Jain, Kavita; James, Ananthu

    2017-11-21

    In an adapted population of mutators in which most mutations are deleterious, a nonmutator that lowers the mutation rate is under indirect selection and can sweep to fixation. Using a multitype branching process, we calculate the fixation probability of a rare nonmutator in a large population of asexual mutators. We show that when beneficial mutations are absent, the fixation probability is a nonmonotonic function of the mutation rate of the mutator: it first increases sublinearly and then decreases exponentially. We also find that beneficial mutations can enhance the fixation probability of a nonmutator. Our analysis is relevant to an understanding of recent experiments in which a reduction in the mutation rates has been observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Human Chromosome Y and Haplogroups; introducing YDHS Database.

    PubMed

    Tiirikka, Timo; Moilanen, Jukka S

    2015-12-01

    As the high throughput sequencing efforts generate more biological information, scientists from different disciplines are interpreting the polymorphisms that make us unique. In addition, there is an increasing trend in general public to research their own genealogy, find distant relatives and to know more about their biological background. Commercial vendors are providing analyses of mitochondrial and Y-chromosomal markers for such purposes. Clearly, an easy-to-use free interface to the existing data on the identified variants would be in the interest of general public and professionals less familiar with the field. Here we introduce a novel metadatabase YDHS that aims to provide such an interface for Y-chromosomal DNA (Y-DNA) haplogroups and sequence variants. The database uses ISOGG Y-DNA tree as the source of mutations and haplogroups and by using genomic positions of the mutations the database links them to genes and other biological entities. YDHS contains analysis tools for deeper Y-SNP analysis. YDHS addresses the shortage of Y-DNA related databases. We have tested our database using a set of different cases from literature ranging from infertility to autism. The database is at http://www.semanticgen.net/ydhs Y-chromosomal DNA (Y-DNA) haplogroups and sequence variants have not been in the scientific limelight, excluding certain specialized fields like forensics, mainly because there is not much freely available information or it is scattered in different sources. However, as we have demonstrated Y-SNPs do play a role in various cases on the haplogroup level and it is possible to create a free Y-DNA dedicated bioinformatics resource.

  6. Mutational Analysis of Escherichia coli MoeA: Two Functional Activities Map to the Active Site Cleft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols,J.; Xiang, S.; Schindelin, H.

    2007-01-01

    The molybdenum cofactor is ubiquitous in nature, and the pathway for Moco biosynthesis is conserved in all three domains of life. Recent work has helped to illuminate one of the most enigmatic steps in Moco biosynthesis, ligation of metal to molybdopterin (the organic component of the cofactor) to form the active cofactor. In Escherichia coli, the MoeA protein mediates ligation of Mo to molybdopterin while the MogA protein enhances this process in an ATP-dependent manner. The X-ray crystal structures for both proteins have been previously described as well as two essential MogA residues, Asp49 and Asp82. Here we describe amore » detailed mutational analysis of the MoeA protein. Variants of conserved residues at the putative active site of MoeA were analyzed for a loss of function in two different, previously described assays, one employing moeA{sup -} crude extracts and the other utilizing a defined system. Oddly, no correlation was observed between the activity in the two assays. In fact, our results showed a general trend toward an inverse relationship between the activity in each assay. Moco binding studies indicated a strong correlation between a variant's ability to bind Moco and its activity in the purified component assay. Crystal structures of the functionally characterized MoeA variants revealed no major structural changes, indicating that the functional differences observed are not due to disruption of the protein structure. On the basis of these results, two different functional areas were assigned to regions at or near the MoeA active site cleft.« less

  7. Resistance screening and trend analysis of imported falciparum malaria in NSW, Australia (2010 to 2016).

    PubMed

    Prosser, Christiane; Meyer, Wieland; Ellis, John; Lee, Rogan

    2018-01-01

    The World Health Organization currently recommends artemisinin (along with a partner drug) as the global frontline treatment for Plasmodium falciparum malaria. Artemisinin resistant P. falciparum are now found throughout the greater Mekong subregion of South East Asia. Several polymorphisms in the parasite's kelch gene have been demonstrated to confer artemisinin resistance. While genotypes within the greater Mekong subregion are thoroughly examined in the literature, P. falciparum populations within several areas that do not (yet) have endemic resistance are underrepresented. This investigation characterised the Pfkelch13 propeller domains from 153 blood samples of 140 imported cases of P. falciparum malaria in New South Wales from 2010 to 2016. A low level of propeller domain diversity was observed, including the C580Y coding mutation most strongly associated with artemisinin resistance in South East Asia. The resistance genotype was found in a sample originating in Papua New Guinea, where this mutation, or artemisinin treatment failure, have not been previously reported. Sequencing a panel of geographically informative polymorphisms within the organellar genomes identified the C580Y parasite as having Oceanic origins. Patient data analysis revealed that New South Wales, Australia, P. falciparum malaria cases often originated from regions with limited drug resistance screening. The C580Y finding from outside of the greater Mekong subregion supports the consensus to upscale molecular surveillance of artemisinin resistance outside of South East Asia. The genetic screening results identify a risk of importing resistant falciparum malaria to Australia, supporting an ongoing surveillance protocol to pre-empt treatment failure and contribute to global data gathering.

  8. Identification of a Novel HADHB Gene Mutation in an Iranian Patient with Mitochondrial Trifunctional Protein Deficiency.

    PubMed

    Shahrokhi, Mahdiyeh; Shafiei, Mohammad; Galehdari, Hamid; Shariati, Gholamreza

    2017-01-01

    Mitochondrial trifunctional protein (MTP) is a hetero-octamer composed of eight parts (subunits): four α-subunits containing LCEH (long-chain 2,3-enoyl-CoA  hydratase) and LCHAD (long-chain 3-hydroxyacyl CoA dehydrogenase) activity, and four β-subunits that possess LCKT (long-chain  3-ketoacyl-CoA thiolase) activity which catalyzes three out of four steps in β-oxidation spiral of long-chain fatty acid. Its deficiency is an autosomal recessive disorder that causes a clinical spectrum of diseases. A blood spot was collected from the patient's original newborn screening card with parental informed consent. A newborn screening test and quantity plasma acylcarnitine profile analysis by MS/MS were performed. After isolation of DNA and Amplification of all exons of the HADHA and HADHB, directly Sequence analyses of all exons and the flanking introns both of genes were performed. Here, we report a novel mutation in a patient with MTP deficiency diagnosed with newborn screening test and quantity plasma acylcarnitine profile analysis by MS/MS and then confirmed by enzyme analysis in cultured fibroblasts and direct sequencing of the HADHA and HADHB genes. Molecular analysis of causative genes showed a missense mutation (p.Q385P) c.1154A > C in exon 14 of HADHB gene. Since this mutation was not found in 50 normal control cases; so it was concluded that c.1154A > C mutation was a causative mutation. Phenotype analysis of this mutation predicted pathogenesis which reduces the stability of the MTP protein complex.

  9. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. | Office of Cancer Genomics

    Cancer.gov

    We report a comprehensive analysis of 412 muscle-invasive bladder cancers characterized by multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the overall mutational load was associated with APOBEC-signature mutagenesis. Clustering by mutation signature identified a high-mutation subset with 75% 5-year survival.

  10. KRAS mutation testing in metastatic colorectal cancer

    PubMed Central

    Tan, Cong; Du, Xiang

    2012-01-01

    The KRAS oncogene is mutated in approximately 35%-45% of colorectal cancers, and KRAS mutational status testing has been highlighted in recent years. The most frequent mutations in this gene, point substitutions in codons 12 and 13, were validated as negative predictors of response to anti-epidermal growth factor receptor antibodies. Therefore, determining the KRAS mutational status of tumor samples has become an essential tool for managing patients with colorectal cancers. Currently, a variety of detection methods have been established to analyze the mutation status in the key regions of the KRAS gene; however, several challenges remain related to standardized and uniform testing, including the selection of tumor samples, tumor sample processing and optimal testing methods. Moreover, new testing strategies, in combination with the mutation analysis of BRAF, PIK3CA and loss of PTEN proposed by many researchers and pathologists, should be promoted. In addition, we recommend that microsatellite instability, a prognostic factor, be added to the abovementioned concomitant analysis. This review provides an overview of KRAS biology and the recent advances in KRAS mutation testing. This review also addresses other aspects of status testing for determining the appropriate treatment and offers insight into the potential drawbacks of mutational testing. PMID:23066310

  11. Interplay between DMD Point Mutations and Splicing Signals in Dystrophinopathy Phenotypes

    PubMed Central

    Juan-Mateu, Jonàs; González-Quereda, Lidia; Rodríguez, Maria José; Verdura, Edgard; Lázaro, Kira; Jou, Cristina; Nascimento, Andrés; Jiménez-Mallebrera, Cecilia; Colomer, Jaume; Monges, Soledad; Lubieniecki, Fabiana; Foncuberta, Maria Eugenia; Pascual-Pascual, Samuel Ignacio; Molano, Jesús; Baiget, Montserrat; Gallano, Pia

    2013-01-01

    DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements. PMID:23536893

  12. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations

    PubMed Central

    Mogensen, Jens; Kubo, Toru; Duque, Mauricio; Uribe, William; Shaw, Anthony; Murphy, Ross; Gimeno, Juan R.; Elliott, Perry; McKenna, William J.

    2003-01-01

    Restrictive cardiomyopathy (RCM) is an uncommon heart muscle disorder characterized by impaired filling of the ventricles with reduced volume in the presence of normal or near normal wall thickness and systolic function. The disease may be associated with systemic disease but is most often idiopathic. We recognized a large family in which individuals were affected by either idiopathic RCM or hypertrophic cardiomyopathy (HCM). Linkage analysis to selected sarcomeric contractile protein genes identified cardiac troponin I (TNNI3) as the likely disease gene. Subsequent mutation analysis revealed a novel missense mutation, which cosegregated with the disease in the family (lod score: 4.8). To determine if idiopathic RCM is part of the clinical expression of TNNI3 mutations, genetic investigations of the gene were performed in an additional nine unrelated RCM patients with restrictive filling patterns, bi-atrial dilatation, normal systolic function, and normal wall thickness. TNNI3 mutations were identified in six of these nine RCM patients. Two of the mutations identified in young individuals were de novo mutations. All mutations appeared in conserved and functionally important domains of the gene. PMID:12531876

  13. A multisite blinded study for the detection of BRAF mutations in formalin-fixed, paraffin-embedded malignant melanoma

    PubMed Central

    Richter, Anna; Grieu, Fabienne; Carrello, Amerigo; Amanuel, Benhur; Namdarian, Kateh; Rynska, Aleksandra; Lucas, Amanda; Michael, Victoria; Bell, Anthony; Fox, Stephen B.; Hewitt, Chelsee A.; Do, Hongdo; McArthur, Grant A.; Wong, Stephen Q.; Dobrovic, Alexander; Iacopetta, Barry

    2013-01-01

    Melanoma patients with BRAF mutations respond to treatment with vemurafenib, thus creating a need for accurate testing of BRAF mutation status. We carried out a blinded study to evaluate various BRAF mutation testing methodologies in the clinical setting. Formalin-fixed, paraffin-embedded melanoma samples were macrodissected before screening for mutations using Sanger sequencing, single-strand conformation analysis (SSCA), high resolution melting analysis (HRM) and competitive allele-specific TaqMan® PCR (CAST-PCR). Concordance of 100% was observed between the Sanger sequencing, SSCA and HRM techniques. CAST-PCR gave rapid and accurate results for the common V600E and V600K mutations, however additional assays are required to detect rarer BRAF mutation types found in 3–4% of melanomas. HRM and SSCA followed by Sanger sequencing are effective two-step strategies for the detection of BRAF mutations in the clinical setting. CAST-PCR was useful for samples with low tumour purity and may also be a cost-effective and robust method for routine diagnostics. PMID:23584600

  14. Tissue or blood: which is more suitable for detection of EGFR mutations in non-small cell lung cancer?

    PubMed

    Biaoxue, Rong; Shuanying, Yang

    2018-01-01

    Many studies have evaluated the accuracy of EGFR mutation status in blood against that in tumor tissues as the reference. We conducted this systematic review and meta-analysis to assess whether blood can be used as a substitute for tumor tissue in detecting EGFR mutations. Investigations that provided data on EGFR mutation status in blood were searched in the databases of Medline, Embase, Ovid Technologies and Web of Science. The detect efficiency of EGFR mutations in paired blood and tissues was compared using a random-effects model of meta-analysis. Pooled sensitivity and specificity and diagnostic accuracy were calculated by receiver operating characteristic curve. A total of 19 studies with 2,922 individuals were involved in this meta-analysis. The pooled results showed the positive detection rate of EGFR mutations in lung cancer tissues was remarkably higher than that of paired blood samples (odds ratio [OR] = 1.47, p<0.001). The pooled sensitivity and specificity of blood were 0.65 and 0.91, respectively, and the area under the receiver operating characteristic curve was 0.89. Although blood had a better specificity for detecting EGFR mutations, the absence of blood positivity should not necessarily be construed as confirmed negativity. Patients with negative results for blood should decidedly undergo further biopsies to ascertain EGFR mutations.

  15. Single-cell genetic analysis validates cytopathological identification of circulating cancer cells in patients with clear cell renal cell carcinoma.

    PubMed

    Broncy, Lucile; Njima, Basma Ben; Méjean, Arnaud; Béroud, Christophe; Romdhane, Khaled Ben; Ilie, Marius; Hofman, Veronique; Muret, Jane; Hofman, Paul; Bouhamed, Habiba Chaabouni; Paterlini-Bréchot, And Patrizia

    2018-04-13

    Circulating Rare Cells (CRC) are non-haematological cells circulating in blood. They include Circulating Cancer Cells (CCC) and cells with uncertain malignant features (CRC-UMF) according to cytomorphology. Clear cell renal cell carcinomas frequently bear a mutated Von Hippel-Lindau (VHL) gene. To match blind genetic analysis of CRC and tumor samples with CRC cytopathological diagnosis. 29/30 patients harboured CRC (20 harboured CCC, 29 CRC-UMF) and 25/29 patients carried VHL mutations in their tumour. 205 single CRC (64 CCC, 141 CRC-UMF) provided genetic data. 57/57 CCC and 104/125 CRC-UMF from the 25 patients with VHL-mutated tumor carried the same VHL mutation detected in the tumor. Seven CCC and 16 CRC-UMF did not carry VHL mutations but were found in patients with wild-type VHL tumor tissue. All the CCC and 83,2% (104/125) of the CRC-UMF were found to carry the same VHL mutation identified in the corresponding tumorous tissue, validating cytopathological identification of CCC in patients with clear cell renal cell carcinoma. The blood of 30 patients with clear cell renal cell carcinoma was treated by ISET ® for CRC isolation, cytopathology and single-cell VHL mutations analysis, performed blindly and compared to VHL mutations of corresponding tumor tissues and leukocytes.

  16. Analysis of MSH3 in endometrial cancers with defective DNA mismatch repair.

    PubMed

    Swisher, E M; Mutch, D G; Herzog, T J; Rader, J S; Kowalski, L D; Elbendary, A; Goodfellow, P J

    1998-01-01

    To clarify the origin of defective mismatch repair (MMR) in sporadic endometrial cancers with microsatellite instability (MSI), a thorough mutation analysis was performed on the human mismatch repair gene MSH3. Twenty-eight MSI-positive endometrial cancers were investigated for mutations in the human mismatch repair gene MSH3 using single-strand conformation variant (SSCV) analysis of all 24 exons. All variants were sequenced. Loss of heterozygosity was investigated at all MSH3 polymorphisms discovered. A subset of tumors were investigated for methylation of the 5' promoter region of MSH3 using Southern blot hybridization. An identical single-base deletion (delta A) predicted to result in a truncated proteins was discovered in six tumors (21.4%). This deletion occurs in a string of eight consecutive adenosine residues (A8). Because simple repeat sequences are unstable in cells with defective MMR, the observed mutation may be an effect, rather than a cause, of MSI. Evidence of inactivation of the second MSH3 allele in tumors with the delta A mutation would strongly support a causal role for these MSH3 mutations. However, there was no evidence of a second mutation, loss of sequences, or methylation of the promoter region in any of the tumors with the delta A mutation. Although the delta A mutation is a frequent event in sporadic MSI-positive endometrial cancers, it may not be causally associated with defective DNA MMR.

  17. Surgical perspective of T1799A BRAF mutation diagnostic value in papillary thyroid carcinoma.

    PubMed

    Brahma, Bayu; Yulian, Erwin Danil; Ramli, Muchlis; Setianingsih, Iswari; Gautama, Walta; Brahma, Putri; Sastroasmoro, Sudigdo; Harimurti, Kuntjoro

    2013-01-01

    Throughout Indonesia, thyroid cancer is one of the ten commonest malignancies, with papillary thyroid carcinoma (PTC) in our hospital accounting for about 60% of all thyroid nodules. Although fine needle aspiration biopsy (FNAB) is the most reliable diagnostic tool, some nodules are diagnosed as indeterminate and second surgery is common for PTC. The aim of this study was to establish the diagnostic value and feasibility of testing the BRAF T1799A mutation on FNA specimens for improving PTC diagnosis. This prospective study enrolled 95 patients with thyroid nodules and future surgery planned. Results of mutational status were compared with surgical pathology diagnosis. Of the 70 cases included in the final analysis, 62.8% were PTC and the prevalence of BRAF mutation was 38.6%. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for BRAF mutation analysis were 36%, 100%, 100% and 48%, respectively. With other data findings, nodules with "onset less than 5 year" and "hard consistency" were proven as diagnostic determinants for BRAF mutation with a probability of 62.5%. This mutation was also a significant risk factor for extra-capsular extension. Molecular analysis of the BRAF T1799A mutation in FNAB specimens has high specificity and positive predictive value for PTC. It could be used in the selective patients with clinical characteristics to facilitate PTC diagnosis and for guidance regarding extent of thyroidectomy.

  18. Developments for Personalized Medicine of Lung Cancer Subtypes: Mass Spectrometry-Based Clinical Proteogenomic Analysis of Oncogenic Mutations.

    PubMed

    Nishimura, Toshihide; Nakamura, Haruhiko

    2016-01-01

    Molecular therapies targeting lung cancers with mutated epidermal growth factor receptor (EGFR) by EGFR-tyrosin kinase inhibitors (EGFR-TKIs), gefitinib and erlotinib, changed the treatment system of lung cancer. It was revealed that drug efficacy differs by race (e.g., Caucasians vs. Asians) due to oncogenic driver mutations specific to each race, exemplified by gefitinib / erlotinib. The molecular target drugs for lung cancer with anaplastic lymphoma kinase (ALK) gene translocation (the fusion gene, EML4-ALK) was approved, and those targeting lung cancers addicted ROS1, RET, and HER2 have been under development. Both identification and quantification of gatekeeper mutations need to be performed using lung cancer tissue specimens obtained from patients to improve the treatment for lung cancer patients: (1) identification and quantitation data of targeted mutated proteins, including investigation of mutation heterogeneity within a tissue; (2) exploratory mass spectrometry (MS)-based clinical proteogenomic analysis of mutated proteins; and also importantly (3) analysis of dynamic protein-protein interaction (PPI) networks of proteins significantly related to a subgroup of patients with lung cancer not only with good efficacy but also with acquired resistance. MS-based proteogenomics is a promising approach to directly capture mutated and fusion proteins expressed in a clinical sample. Technological developments are further expected, which will provide a powerful solution for the stratification of patients and drug discovery (Precision Medicine).

  19. A meta-analysis of prognostic value of KIT mutation status in gastrointestinal stromal tumors

    PubMed Central

    Jiang, Zhiqiang; Zhang, Jian; Li, Zhi; Liu, Yingjun; Wang, Daohai; Han, Guangsen

    2016-01-01

    Numerous types of KIT mutations have been reported in gastrointestinal stromal tumors (GISTs); however, controversy still exists regarding their clinicopathological significance. In this study, we reviewed the publicly available literature to assess the data by a meta-analysis to characterize KIT mutations and different types of KIT mutations in prognostic prediction in patients with GISTs. Twenty-eight studies that included 4,449 patients were identified and analyzed. We found that KIT mutation status was closely correlated with size of tumors and different mitosis indexes, but not with tumor location. KIT mutation was also observed to be significantly correlated with tumor recurrence, metastasis, as well as the overall survival of patients. Interestingly, there was higher risk of progression in KIT exon 9-mutated patients than in exon 11-mutated patients. Five-year relapse-free survival (RFS) rate was significantly higher in KIT exon 11-deleted patients than in those with other types of KIT exon 11 mutations. In addition, RFS for 5 years was significantly worse in patients bearing KIT codon 557–558 deletions than in those bearing other KIT exon 11 deletions. Our results strongly support the hypothesis that KIT mutation status is another evaluable factor for prognosis prediction in GISTs. PMID:27350754

  20. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-05-26

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes.

  1. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  2. Calreticulin mutation-specific immunostaining in myeloproliferative neoplasms: pathogenetic insight and diagnostic value

    PubMed Central

    Vannucchi, A M; Rotunno, G; Bartalucci, N; Raugei, G; Carrai, V; Balliu, M; Mannarelli, C; Pacilli, A; Calabresi, L; Fjerza, R; Pieri, L; Bosi, A; Manfredini, R; Guglielmelli, P

    2014-01-01

    Mutations in the gene calreticulin (CALR) occur in the majority of JAK2- and MPL-unmutated patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF); identifying CALR mutations contributes to the diagnostic pathway of ET and PMF. CALR mutations are heterogeneous spanning over the exon 9, but all result in a novel common protein C terminus. We developed a polyclonal antibody against a 17-amino-acid peptide derived from mutated calreticulin that was used for immunostaining of bone marrow biopsies. We show that this antibody specifically recognized patients harboring different types of CALR mutation with no staining in healthy controls and JAK2- or MPL-mutated ET and PMF. The labeling was mostly localized in megakaryocytes, whereas myeloid and erythroid cells showed faint staining, suggesting a preferential expression of calreticulin in megakaryocytes. Megakaryocytic-restricted expression of calreticulin was also demonstrated using an antibody against wild-type calreticulin and by measuring the levels of calreticulin RNA by gene expression analysis. Immunostaining using an antibody specific for mutated calreticulin may become a rapid, simple and cost-effective method for identifying CALR-mutated patients complementing molecular analysis; furthermore, the labeling pattern supports the preferential expansion of megakaryocytic cell lineage as a result of CALR mutation in an immature hematopoietic stem cell. PMID:24618731

  3. Targeted mutation analysis of endometrial clear cell carcinoma.

    PubMed

    Hoang, Lien N; McConechy, Melissa K; Meng, Bo; McIntyre, John B; Ewanowich, Carol; Gilks, Cyril Blake; Huntsman, David G; Köbel, Martin; Lee, Cheng-Han

    2015-04-01

    Endometrial clear cell carcinomas (CCC) constitute fewer than 5% of all carcinomas of the endometrium. Currently, little is known regarding the genetic basis of endometrial CCC. We performed genomic and immunohistochemical analyses on 14 rigorously reviewed pure endometrial CCC. The genomic analysis consisted of sequencing the coding regions of 26 genes implicated previously in endometrial carcinoma. Twelve of 14 tumours displayed a prototypical CCC immunophenotype [napsin A+, hepatocyte nuclear factor-1β (HNF1β(+) ) and oestrogen receptor(-) ] and all showed intact mismatch repair protein expression. We detected mutations in 11 of 14 tumours, and there was a predominance of mutations involving genes that are mutated more frequently in endometrial serous carcinomas than in endometrioid carcinomas. Two tumours displayed a prototypical serous carcinoma mutation profile (concurrent TP53 and PPP2R1A mutations, without PTEN, CTNNB1 or ARID1A mutation). No mutations in PTEN, CTNNB1 or POLE were identified. The overall mutation profile of this cohort of endometrial CCC appears to be more serous-like than endometrioid-like, with a minor subset in the TP53-mutated CCC showing serous carcinoma profile. These findings provide new insights into the molecular features of morphologically prototypical endometrial CCC, and underscore the need for further investigations into the oncogenesis of endometrial CCC. © 2014 John Wiley & Sons Ltd.

  4. Alport Syndrome: De Novo Mutation in the COL4A5 Gene Converting Glycine 1205 to Valine.

    PubMed

    Antón-Martín, Pilar; Aparicio López, Cristina; Ramiro-León, Soraya; Santillán Garzón, Sonia; Santos-Simarro, Fernando; Gil-Fournier, Belén

    2012-01-01

    Alport syndrome is a primary basement membrane disorder arising from mutations in genes encoding the type IV collagen protein family. It is a genetically heterogeneous disease with different mutations and forms of inheritance that presents with renal affection, hearing loss and eye defects. Several new mutations related to X-linked forms have been previously determined. We report the case of a 12 years old male and his family diagnosed with Alport syndrome after genetic analysis was performed. A new mutation determining a nucleotide change c.3614G > T (p.Gly1205Val) in hemizygosis in the COL4A5 gene was found. This molecular defect has not been previously described. Molecular biology has helped us to comprehend the mechanisms of pathophysiology in Alport syndrome. Genetic analysis provides the only conclusive diagnosis of the disorder at the moment. Our contribution with a new mutation further supports the need of more sophisticated molecular methods to increase the mutation detection rates with lower costs and less time.

  5. Single quantum dot analysis enables multiplexed point mutation detection by gap ligase chain reaction.

    PubMed

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2013-04-08

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosatelli, M.C.; Faa, V.; Sardu, R.

    This study reports the molecular characterization of [beta]-thalassemia in the Sardinian population. Three thousand [beta]-thalassemia chromosomes from prospective parents presenting at the genetic service were initially analyzed by dot blot analysis with oligonucleotide probes complementary to the most common [beta]-thalassemia mutations in the Mediterranean at-risk populations. The mutation which remained uncharacterized by this approach were defined by denaturing gradient gel electrophoresis (DGGE) followed by direct sequence analysis on amplified DNA. The authors reconfirmed that the predominant mutation in the Sardinian population is the codon 39 nonsense mutation, which accounts for 95.7% of the [beta]-thalassemia chromosomes. The other two relatively commonmore » mutations are frameshifts at codon 6 (2.1%) and at codon 76 (0.7%), relatively uncommon in other Mediterranean-origin populations. In this study they have detected a novel [beta]-thalassemia mutation, i.e., a frameshift at codon 1, in three [beta]-thalassemia chromosomes. The DGGE procedure followed by direct sequencing on amplified DNA is a powerful approach for the characterization of unknown mutations in this genetic system.« less

  7. Mutations in myosin VIIA (MYO7A) and usherin (USH2A) in Spanish patients with Usher syndrome types I and II, respectively.

    PubMed

    Nájera, Carmen; Beneyto, Magdalena; Blanca, José; Aller, Elena; Fontcuberta, Ana; Millán, José María; Ayuso, Carmen

    2002-07-01

    Usher syndrome is an autosomal recessive disorder characterized by congenital hearing impairment and retinitis pigmentosa. Three clinical types are known (USH1, USH2 and USH3), and there is an extensive genetic heterogeneity, with at least ten genes implicated. The most frequently mutated genes are MYO7A, which causes USH1B, and usherin, which causes USH2A. We carried out a mutation analysis of these two genes in the Spanish population. Analysis of the MYO7A gene in patients from 30 USH1 families and sporadic cases identified 32% of disease alleles, with mutation Q821X being the most frequent. Most of the remaining variants are private mutations. With regard to USH2, mutation 2299delG was detected in 25% of the Spanish patients. Altogether the mutations detected in USH2A families account for 23% of the disease alleles. Copyright 2002 Wiley-Liss, Inc.

  8. Detection of PIK3CA gene mutations with HRM analysis and association with IGFBP-5 expression levels in breast cancer.

    PubMed

    Dirican, Ebubekir; Kaya, Zehra; Gullu, Gokce; Peker, Irem; Ozmen, Tolga; Gulluoglu, Bahadir M; Kaya, Handan; Ozer, Ayse; Akkiprik, Mustafa

    2014-01-01

    Breast cancer is the second most common cancer and second leading cause of cancer deaths in women. Phosphatidylinositol-3-kinase (PI3K)/AKT pathway mutations are associated with cancer and phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) gene mutations have been observed in 25-45% of breast cancer samples. Insulin growth factor binding protein-5 (IGFBP-5) can show different effects on apoptosis, cell motility and survival in breast cancer. We here aimed to determine the association between PIK3CA gene mutations and IGFBP-5 expressions for the first time in breast cancer patients. Frozen tumor samples from 101 Turkish breast cancer patients were analyzed with high resolution melting (HRM) for PIK3CA mutations (exon 9 and exon 20) and 37 HRM positive tumor samples were analyzed by DNA sequencing, mutations being found in 31. PIK3CA exon 9 mutations (Q546R, E542Q, E545K, E542K and E545D) were found in 10 tumor samples, exon 20 mutations (H1047L, H1047R, T1025T and G1049R) in 21, where only 1 tumor sample had two exon 20 mutations (T1025T and H1047R). Moreover, we detected one sample with both exon 9 (E542Q) and exon 20 (H1047R) mutations. 35% of the tumor samples with high IGFBP-5 mRNA expression and 29.4% of the tumor samples with low IGFBP-5 mRNA expression had PIK3CA mutations (p=0.9924). This is the first study of PIK3CA mutation screening results in Turkish breast cancer population using HRM analysis. This approach appears to be a very effective and reliable screening method for the PIK3CA exon 9 and 20 mutation detection. Further analysis with a greater number of samples is needed to clarify association between PIK3CA gene mutations and IGFBP-5 mRNA expression, and also clinical outcome in breast cancer patients.

  9. BRCA1 and BRCA2 founder mutations account for 78% of germline carriers among hereditary breast cancer families in Chile

    PubMed Central

    Alvarez, Carolina; Tapia, Teresa; Perez-Moreno, Elisa; Gajardo-Meneses, Patricia; Ruiz, Catalina; Rios, Mabel; Missarelli, Claudio; Silva, Mariela; Cruz, Adolfo; Matamala, Luis; Carvajal-Carmona, Luis; Camus, Mauricio; Carvallo, Pilar

    2017-01-01

    Identifying founder mutations in BRCA1 and BRCA2 in specific populations constitute a valuable opportunity for genetic screening. Several studies from different populations have reported recurrent and/or founder mutations representing a relevant proportion of BRCA mutation carriers. In Latin America, only few founder mutations have been described. We screened 453 Chilean patients with hereditary breast cancer for mutations in BRCA1 and BRCA2. For recurrent mutations, we genotyped 11 microsatellite markers in BRCA1 and BRCA2 in order to determine a founder effect through haplotype analysis. We found a total of 25 mutations (6 novel) in 71 index patients among which, nine are present exclusively in Chilean patients. Our analysis revealed the presence of nine founder mutations, 4 in BRCA1 and 5 in BRCA2, shared by 2 to 10 unrelated families and spread in different regions of Chile. Our panel contains the highest amount of founder mutations until today and represents the highest percentage (78%) of BRCA1 and BRCA2 mutation carriers. We suggest that the dramatic reduction of Amerindian population due to smallpox and wars with Spanish conquerors, a scarce population increase during 300 years, and the geographic position of Chile constituted a favorable scenario to establish founder genetic markers in our population. PMID:29088781

  10. Mutation spectrum of primary hyperoxaluria type 1 in Tunisia: implication for diagnosis in North Africa.

    PubMed

    Nagara, Majdi; Tiar, Afaf; Ben Halim, Nizar; Ben Rhouma, Faten; Messaoud, Olfa; Bouyacoub, Yosra; Kefi, Rym; Hassayoun, Saida; Zouari, Noura; Ben Ammar, Mohamed Slim; Abdelhak, Sonia; Chemli, Jalel

    2013-09-15

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive inherited metabolic disease, characterized by progressive kidney failure due to renal deposition of calcium oxalate. Mutations in the AGXT gene, encoding the liver-specific enzyme alanine glyoxylate aminotransferase, are responsible for the disease. We aimed to determine the mutational spectrum causing PH1 and to provide an accurate tool for diagnosis as well as for prenatal diagnosis in the affected families. Direct sequencing was used to detect mutations in the AGXT gene in DNA samples from 13 patients belonging to 12 Tunisian families. Molecular analysis revealed five mutations causing PH1 in Tunisia. The mutations were identified along exons 1, 2, 4, 5 and 7. The most predominant mutations were the Maghrebian "p.I244T" and the Arabic "p.G190R". Furthermore, three other mutations characteristic of different ethnic groups were found in our study population. These results confirm the mutational heterogeneity related to PH1 in Tunisian population. All the mutations are in a homozygous state, reflecting the high impact of endogamy in our population. Mutation analysis through DNA sequencing can provide a useful first line investigation for PH1. This identification could provide an accurate tool for prenatal diagnosis, genetic counseling and screen for potential presymptomatic individuals. © 2013 Elsevier B.V. All rights reserved.

  11. A meta-analysis of the relationship between FGFR3 and TP53 mutations in bladder cancer.

    PubMed

    Neuzillet, Yann; Paoletti, Xavier; Ouerhani, Slah; Mongiat-Artus, Pierre; Soliman, Hany; de The, Hugues; Sibony, Mathilde; Denoux, Yves; Molinie, Vincent; Herault, Aurélie; Lepage, May-Linda; Maille, Pascale; Renou, Audrey; Vordos, Dimitri; Abbou, Claude-Clément; Bakkar, Ashraf; Asselain, Bernard; Kourda, Nadia; El Gaaied, Amel; Leroy, Karen; Laplanche, Agnès; Benhamou, Simone; Lebret, Thierry; Allory, Yves; Radvanyi, François

    2012-01-01

    TP53 and FGFR3 mutations are the most common mutations in bladder cancers. FGFR3 mutations are most frequent in low-grade low-stage tumours, whereas TP53 mutations are most frequent in high-grade high-stage tumours. Several studies have reported FGFR3 and TP53 mutations to be mutually exclusive events, whereas others have reported them to be independent. We carried out a meta-analysis of published findings for FGFR3 and TP53 mutations in bladder cancer (535 tumours, 6 publications) and additional unpublished data for 382 tumours. TP53 and FGFR3 mutations were not independent events for all tumours considered together (OR = 0.25 [0.18-0.37], p = 0.0001) or for pT1 tumours alone (OR = 0.47 [0.28-0.79], p = 0.0009). However, if the analysis was restricted to pTa tumours or to muscle-invasive tumours alone, FGFR3 and TP53 mutations were independent events (OR = 0.56 [0.23-1.36] (p = 0.12) and OR = 0.99 [0.37-2.7] (p = 0.35), respectively). After stratification of the tumours by stage and grade, no dependence was detected in the five tumour groups considered (pTaG1 and pTaG2 together, pTaG3, pT1G2, pT1G3, pT2-4). These differences in findings can be attributed to the putative existence of two different pathways of tumour progression in bladder cancer: the CIS pathway, in which FGFR3 mutations are rare, and the Ta pathway, in which FGFR3 mutations are frequent. TP53 mutations occur at the earliest stage of the CIS pathway, whereas they occur would much later in the Ta pathway, at the T1G3 or muscle-invasive stage.

  12. A Meta-Analysis of the Relationship between FGFR3 and TP53 Mutations in Bladder Cancer

    PubMed Central

    Ouerhani, Slah; Mongiat-Artus, Pierre; Soliman, Hany; de The, Hugues; Sibony, Mathilde; Denoux, Yves; Molinie, Vincent; Herault, Aurélie; Lepage, May-Linda; Maille, Pascale; Renou, Audrey; Vordos, Dimitri; Abbou, Claude-Clément; Bakkar, Ashraf; Asselain, Bernard; Kourda, Nadia; El Gaaied, Amel; Leroy, Karen; Laplanche, Agnès; Benhamou, Simone; Lebret, Thierry; Allory, Yves; Radvanyi, François

    2012-01-01

    TP53 and FGFR3 mutations are the most common mutations in bladder cancers. FGFR3 mutations are most frequent in low-grade low-stage tumours, whereas TP53 mutations are most frequent in high-grade high-stage tumours. Several studies have reported FGFR3 and TP53 mutations to be mutually exclusive events, whereas others have reported them to be independent. We carried out a meta-analysis of published findings for FGFR3 and TP53 mutations in bladder cancer (535 tumours, 6 publications) and additional unpublished data for 382 tumours. TP53 and FGFR3 mutations were not independent events for all tumours considered together (OR = 0.25 [0.18–0.37], p = 0.0001) or for pT1 tumours alone (OR = 0.47 [0.28–0.79], p = 0.0009). However, if the analysis was restricted to pTa tumours or to muscle-invasive tumours alone, FGFR3 and TP53 mutations were independent events (OR = 0.56 [0.23–1.36] (p = 0.12) and OR = 0.99 [0.37–2.7] (p = 0.35), respectively). After stratification of the tumours by stage and grade, no dependence was detected in the five tumour groups considered (pTaG1 and pTaG2 together, pTaG3, pT1G2, pT1G3, pT2-4). These differences in findings can be attributed to the putative existence of two different pathways of tumour progression in bladder cancer: the CIS pathway, in which FGFR3 mutations are rare, and the Ta pathway, in which FGFR3 mutations are frequent. TP53 mutations occur at the earliest stage of the CIS pathway, whereas they occur would much later in the Ta pathway, at the T1G3 or muscle-invasive stage. PMID:23272046

  13. Molecular analysis of mucopolysaccharidosis IVA: Common mutations and racial difference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomatsu, S.; Hori, T.; Nakashima, Y.

    1994-09-01

    Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency in N-acetylgalactosamine -6-sulfate sulfatase (GALNS). Studies on the molecular basis of MPS IVA have been facilitated following cloning of the full-length cDNA and genomic DNA. In this study we detected mutations from 20 Caucasian and 19 Japanese MPS IVA patients using SSCP system and compared mutations of Caucasian origin with those of Japanese origin. The results showed the presence of 16 various mutations (3 small, deletions, 2 nonsense and 11 missense mutations) for Caucasian patients and 15 (1 deletion, 1 large alteration and 13 missense mutations) formore » Japanese. Moreover, two common mutations existed; one is double gene deletion characteristic for Japanese (6 alleles; 15%) and the other is a point mutation (1113F A{yields}T transition) characteristic for Caucasian (9 alleles; 22.5%). And the clear genotype/phenotype relationship among 1342delCA, IVS1(-2), P151S, Q148X, R386C, I113F, Q473X, W220G, P151L, A291T, R90W, and P77R, for a severe type, G96B N204K and V138A for a milder type, was observed. Only R386 mutation was seen in both of the populations. Further, the precise DNA analysis for double gene deletion of a common double gene deletion has been performed by defining the breakpoints and the results showed that one deletion was caused by homologous recombination due to Alu repetitive sequences and the other was due to nonhomologous recombination of short direct repeat. Haplotype analysis for six alleles with double deletion were different, indicating the different origin of this mutation or the frequent recombination events before a mutational event. Thus the mutations in GALNS gene are very heterogeneous and the racial difference is characteristic.« less

  14. Drug Resistance Missense Mutations in Cancer Are Subject to Evolutionary Constraints

    PubMed Central

    Friedman, Ran

    2013-01-01

    Several tumour types are sensitive to deactivation of just one or very few genes that are constantly active in the cancer cells, a phenomenon that is termed ‘oncogene addiction’. Drugs that target the products of those oncogenes can yield a temporary relief, and even complete remission. Unfortunately, many patients receiving oncogene-targeted therapies relapse on treatment. This often happens due to somatic mutations in the oncogene (‘resistance mutations’). ‘Compound mutations’, which in the context of cancer drug resistance are defined as two or more mutations of the drug target in the same clone may lead to enhanced resistance against the most selective inhibitors. Here, it is shown that the vast majority of the resistance mutations occurring in cancer patients treated with tyrosin kinase inhibitors aimed at three different proteins follow an evolutionary pathway. Using bioinformatic analysis tools, it is found that the drug-resistance mutations in the tyrosine kinase domains of Abl1, ALK and exons 20 and 21 of EGFR favour transformations to residues that can be identified in similar positions in evolutionary related proteins. The results demonstrate that evolutionary pressure shapes the mutational landscape in the case of drug-resistance somatic mutations. The constraints on the mutational landscape suggest that it may be possible to counter single drug-resistance point mutations. The observation of relatively many resistance mutations in Abl1, but not in the other genes, is explained by the fact that mutations in Abl1 tend to be biochemically conservative, whereas mutations in EGFR and ALK tend to be radical. Analysis of Abl1 compound mutations suggests that such mutations are more prevalent than hitherto reported and may be more difficult to counter. This supports the notion that such mutations may provide an escape route for targeted cancer drug resistance. PMID:24376513

  15. Four Novel p.N385K, p.V36A, c.1033–1034insT and c.1417–1418delCT Mutations in the Sphingomyelin Phosphodiesterase 1 (SMPD1) Gene in Patients with Types A and B Niemann-Pick Disease (NPD)

    PubMed Central

    Manshadi, Masoumeh Dehghan; Kamalidehghan, Behnam; Keshavarzi, Fatemeh; Aryani, Omid; Dadgar, Sepideh; Arastehkani, Ahoora; Tondar, Mahdi; Ahmadipour, Fatemeh; Meng, Goh Yong; Houshmand, Massoud

    2015-01-01

    Background: Types A and B Niemann-Pick disease (NPD) are autosomal-recessive lysosomal storage disorders caused by the deficient activity of acid sphingomyelinase due to mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene. Methods: In order to determine the prevalence and distribution of SMPD1 gene mutations, the genomic DNA of 15 unrelated Iranian patients with types A and B NPD was examined using PCR, DNA sequencing and bioinformatics analysis. Results: Of 8 patients with the p.G508R mutation, 5 patients were homozygous, while the other 3 were heterozygous. One patient was heterozygous for both the p.N385K and p.G508R mutations. Another patient was heterozygous for both the p.A487V and p.G508R mutations. Two patients (one homozygous and one heterozygous) showed the p.V36A mutation. One patient was homozygous for the c.1033–1034insT mutation. One patient was homozygous for the c.573delT mutation, and 1 patient was homozygous for the c.1417–1418delCT mutation. Additionally, bioinformatics analysis indicated that two new p.V36A and p.N385K mutations decreased the acid sphingomyelinase (ASM) protein stability, which might be evidence to suggest the pathogenicity of these mutations. Conclusion: with detection of these new mutations, the genotypic spectrum of types A and B NPD is extended, facilitating the definition of disease-related mutations. However, more research is essential to confirm the pathogenic effect of these mutations. PMID:25811928

  16. The clinical phenotype of Lynch syndrome due to germline PMS2 mutations

    PubMed Central

    Senter, Leigha; Clendenning, Mark; Sotamaa, Kaisa; Hampel, Heather; Green, Jane; Potter, John D.; Lindblom, Annika; Lagerstedt, Kristina; Thibodeau, Stephen N.; Lindor, Noralane M.; Young, Joanne; Winship, Ingrid; Dowty, James G.; White, Darren M.; Hopper, John L.; Baglietto, Laura; Jenkins, Mark A.; de la Chapelle, Albert

    2009-01-01

    Background and Aims Although the clinical phenotype of Lynch syndrome (also known as Hereditary Nonpolyposis Colorectal Cancer) has been well described, little is known about disease in PMS2 mutation carriers. Now that mutation detection methods can discern mutations in PMS2 from mutations in its pseudogenes, more mutation carriers have been identified. Information about the clinical significance of PMS2 mutations is crucial for appropriate counseling. Here, we report the clinical characteristics of a large series of PMS2 mutation carriers. Methods We performed PMS2 mutation analysis using long range PCR and MLPA for 99 probands diagnosed with Lynch syndrome-associated tumors showing isolated loss of PMS2 by immunohistochemistry. Penetrance was calculated using a modified segregation analysis adjusting for ascertainment. Results Germline PMS2 mutations were detected in 62% of probands (n = 55 monoallelic; 6 biallelic). Among families with monoallelic PMS2 mutations, 65.5% met revised Bethesda guidelines. Compared with the general population, in mutation carriers, the incidence of colorectal cancer was 5.2 fold higher and the incidence of endometrial cancer was 7.5 fold higher. In North America, this translates to a cumulative cancer risk to age 70 of 15–20% for colorectal cancer, 15% for endometrial cancer, and 25–32% for any Lynch syndrome-associated cancer. No elevated risk for non-Lynch syndrome-associated cancers was observed. Conclusions PMS2 mutations contribute significantly to Lynch syndrome but the penetrance for monoallelic mutation carriers appears to be lower than that for the other mismatch repair genes. Modified counseling and cancer surveillance guidelines for PMS2 mutation carriers are proposed. PMID:18602922

  17. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations.

    PubMed

    Senter, Leigha; Clendenning, Mark; Sotamaa, Kaisa; Hampel, Heather; Green, Jane; Potter, John D; Lindblom, Annika; Lagerstedt, Kristina; Thibodeau, Stephen N; Lindor, Noralane M; Young, Joanne; Winship, Ingrid; Dowty, James G; White, Darren M; Hopper, John L; Baglietto, Laura; Jenkins, Mark A; de la Chapelle, Albert

    2008-08-01

    Although the clinical phenotype of Lynch syndrome (also known as hereditary nonpolyposis colorectal cancer) has been well described, little is known about disease in PMS2 mutation carriers. Now that mutation detection methods can discern mutations in PMS2 from mutations in its pseudogenes, more mutation carriers have been identified. Information about the clinical significance of PMS2 mutations is crucial for appropriate counseling. Here, we report the clinical characteristics of a large series of PMS2 mutation carriers. We performed PMS2 mutation analysis using long-range polymerase chain reaction and multiplex ligation-dependent probe amplification for 99 probands diagnosed with Lynch syndrome-associated tumors showing isolated loss of PMS2 by immunohistochemistry. Penetrance was calculated using a modified segregation analysis adjusting for ascertainment. Germ-line PMS2 mutations were detected in 62% of probands (n = 55 monoallelic; 6 biallelic). Among families with monoallelic PMS2 mutations, 65.5% met revised Bethesda guidelines. Compared with the general population, in mutation carriers, the incidence of colorectal cancer was 5.2-fold higher, and the incidence of endometrial cancer was 7.5-fold higher. In North America, this translates to a cumulative cancer risk to age 70 years of 15%-20% for colorectal cancer, 15% for endometrial cancer, and 25%-32% for any Lynch syndrome-associated cancer. No elevated risk for non-Lynch syndrome-associated cancers was observed. PMS2 mutations contribute significantly to Lynch syndrome, but the penetrance for monoallelic mutation carriers appears to be lower than that for the other mismatch repair genes. Modified counseling and cancer surveillance guidelines for PMS2 mutation carriers are proposed.

  18. Understanding the Disease Course and Therapeutic Benefit of Tafamidis Across Real-World Studies of Hereditary Transthyretin Amyloidosis with Polyneuropathy: A Proof of Concept for Integrative Data Analytic Approaches.

    PubMed

    Serrano, Daniel; Atzinger, Christopher B; Botteman, Marc F

    2018-06-01

    Hereditary transthyretin (TTR) amyloidosis with polyneuropathy (hATTR-PN) is a rare, autosomal dominant amyloidosis characterized primarily by progressive ascending sensorimotor neuropathy often associated with  autonomic involvement. hATTR-PN is caused by a mutation in the TTR gene leading to protein misfolding and amyloid accumulation in peripheral nerves and vital organs. The latest global prevalence estimates point to 10,000 cases worldwide, with an upper end of about 40,000. Tafamidis has been approved in over 40 countries for delaying neurologic disease progression in early-stage hATTR-PN. Multiple observational studies have examined clinical outcomes in hATTR-PN patients treated with tafamidis in the routine clinical setting. Integrative data analysis (IDA) is a technique for optimally constructing synthetic treatment and control cohorts from multiple independent studies, which allows meta-analysis of patient-level data. Herein, we provide a proof of concept for the application of IDA to real-world and natural history hATTR-PN data. IDA permits increased understanding of outcomes in tafamidis-treated and untreated persons with hATTR-PN by optimally pooling all available information. Summary statistics corresponding to the Neuropathy Impairment Score-Lower Limb (NIS-LL) from five published studies were pooled, converted to change from baseline means and variances, and analyzed using IDA. IDA-based synthetic cohorts were generated by averaging across studies stratified on treatment versus control cohort. Trends in change from baseline in each study and the corresponding synthetic cohorts were plotted. Patient-level data were simulated from the synthetic cohort trends in a Monte Carlo simulation to highlight the ability to contrast synthetic cohort trends using the mixed model for repeated measures (MMRM). The average sample size among the five studies was 71 (37-128) patients. The average NIS-LL trends indicated that tafamidis-treated patients experienced slower progression in neuropathy compared to untreated patients. Synthetic cohort trends reflected the trends observed in the contributing studies, while simultaneously shrinking the width of corresponding confidence bands. Monte Carlo simulation results demonstrated precise recovery of the synthetic cohort and time-dependent simulated NIS-LL means by the MMRM. This proof of concept demonstrates the utility of IDA-based synthetic cohorts for increased precision in characterizing and testing hypotheses about treatment outcomes and prognosis in hATTR-PN. Pfizer. Plain language summary available for this article.

  19. Gene analysis of PROP1 in dwarfism with combined pituitary hormone deficiency.

    PubMed

    Takamura, N; Fofanova, O V; Kinoshita, E; Yamashita, S

    1999-06-01

    The prophet of Pit-1 gene (PROP1), a novel pituitary-specific homeodomain factor, has been proved to be one of the causative genes for combined pituitary hormone deficiency (CPHD). Recently, PROP1 mutations have been identified in CPHD families, including our Russian cohort. The 2-bp deletion, 296delGA (A301G302del), is the most common mutational hot spot. Furthermore, in our cohort, PROP1 mutations are more common in comparison with human POU1F1 gene mutations. Here we review the gene analysis of PROP1 in patients with CPHD.

  20. Clinical follow up of mexican women with early onset of breast cancer and mutations in the BRCA1 and BRCA2 genes.

    PubMed

    Calderón-Garcidueñas, Ana Laura; Ruiz-Flores, Pablo; Cerda-Flores, Ricardo M; Barrera-Saldaña, Hugo A

    2005-01-01

    This study describes the presence of mutations in BRCA1 and BRCA2 genes in a group of Mexican women and the clinical evolution of early onset breast cancer (EOBC). A prospective hospital-based study was performed in a sample of 22 women with EOBC (7 in clinical stage IIA, 8 in IIB, and 7 in IIIA). The patients attended a tertiary care hospital in northeastern Mexico in 1997 and were followed up over a 5-year period. Molecular analysis included: 1) a mutation screening by heteroduplex analysis (HA) of BRCA1 and BRCA2 genes and 2) a sequence analysis. Of 22 patients, 14 (63.6%) showed a variant band detected by heteroduplex analysis of the BRCA1 and BRCA2 genes: 8 polymorphisms, 4 mutations of uncertain significance, and 2 novel truncated protein mutations, one in BRCAI (exon 11, 3587delT) and the other in the BRCA2 gene (exon 11, 2664InsA). These findings support future studies to determine the significance and impact of the genetic factor in this Mexican women population.

  1. Mutation analysis of 28 gaucher disease patients: The Australasian experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, B.D.; Nelson, P.V.; Robertson, E.F.

    1994-01-15

    Gaucher disease is the most common lysomal storage disease. It is an autosomal recessive disorder that results from a deficiency of {beta}-glucocerrebrosidase. Three clinical phenotypes have been described: non-neuronopathic, acute neuronopathic, and subacuteneuronopathic. Genomic DNA from 28 Australasian patients of diverse ethnic origin with Gaucher disease was screened for 3 common mutations (1226G, 1448C and 84GG) using the amplification refractory mutation system (ARMS), and one uncommon mutation (1504T) by restriction enzyme digestion. Thirty-eight of the 56 independent alleles in these patients were characterized, with 1448C present in 42% and 1226G in 28% of the alleles. The 1226G mutation was associatedmore » only with the nonneuronopathic phenotype and 7 of the 15 patients who carried the 1448C mutation developed neuronopathic disease. Three infants who died in the neonatal period following a rapidly progressive neurodegenerative course carried no identifiable mutations. The 84GG mutation was carried by 2 Jewish patients and 1504T was present in one patient. It is now possible to rapidly identify the common Gaucher mutations using ARMS and restriction enzyme digestion, and our findings confirm the heterogeneity of mutations in Gaucher disease. It is also possible to predict in part the phenotypic outcome when screening patients for these mutations. The authors consider mutation analysis to be of most use in prenatal diagnosis and for carrier detection within affected families. 27 refs., 2 figs., 2 tabs.« less

  2. Identification of novel mutations in Mexican patients with Aarskog-Scott syndrome.

    PubMed

    Pérez-Coria, Mariana; Lugo-Trampe, José J; Zamudio-Osuna, Michell; Rodríguez-Sánchez, Iram P; Lugo-Trampe, Angel; de la Fuente-Cortez, Beatriz; Campos-Acevedo, Luis D; Martínez-de-Villarreal, Laura E

    2015-05-01

    Aarskog-Scott syndrome (AAS), also known as faciogenital dysplasia (FGD, OMIM # 305400), is an X-linked disorder of recessive inheritance, characterized by short stature and facial, skeletal, and urogenital abnormalities. AAS is caused by mutations in the FGD1 gene (Xp11.22), with over 56 different mutations identified to date. We present the clinical and molecular analysis of four unrelated families of Mexican origin with an AAS phenotype, in whom FGD1 sequencing was performed. This analysis identified two stop mutations not previously reported in the literature: p.Gln664* and p.Glu380*. Phenotypically, every male patient met the clinical criteria of the syndrome, whereas discrepancies were found between phenotypes in female patients. Our results identify two novel mutations in FGD1, broadening the spectrum of reported mutations; and provide further delineation of the phenotypic variability previously described in AAS.

  3. Identification of novel mutations in Mexican patients with Aarskog–Scott syndrome

    PubMed Central

    Pérez-Coria, Mariana; Lugo-Trampe, José J; Zamudio-Osuna, Michell; Rodríguez-Sánchez, Iram P; Lugo-Trampe, Angel; de la Fuente-Cortez, Beatriz; Campos-Acevedo, Luis D; Martínez-de-Villarreal, Laura E

    2015-01-01

    Aarskog–Scott syndrome (AAS), also known as faciogenital dysplasia (FGD, OMIM # 305400), is an X-linked disorder of recessive inheritance, characterized by short stature and facial, skeletal, and urogenital abnormalities. AAS is caused by mutations in the FGD1 gene (Xp11.22), with over 56 different mutations identified to date. We present the clinical and molecular analysis of four unrelated families of Mexican origin with an AAS phenotype, in whom FGD1 sequencing was performed. This analysis identified two stop mutations not previously reported in the literature: p.Gln664* and p.Glu380*. Phenotypically, every male patient met the clinical criteria of the syndrome, whereas discrepancies were found between phenotypes in female patients. Our results identify two novel mutations in FGD1, broadening the spectrum of reported mutations; and provide further delineation of the phenotypic variability previously described in AAS. PMID:26029706

  4. [Analysis of H63D mutation in hemochromatosis (HFE) gene in populations of central Eurasia].

    PubMed

    Khusainova, R I; Khusnutdinova, N N; Litvinov, S S; Khusnutdinova, E K

    2013-02-01

    An analysis of the frequency of H63D (c. 187C>G) mutations in the HFEgene in 19 populations from Central Eurasia demonstrated that the distribution of the mutation in the region of interest was not uniform and that there were the areas of H63D accumulation. The investigation of three polymorphic variants, c.340+4T>C (rs2071303, IVS2(+4)T>C), c.893-44T>C (rs1800708, IVS4(-44)T>C), and c.1007-47G>A (rs1572982, IVS5(-47)A>G), in the HFE gene in individuals homozygous for H63D mutations in the HFE gene revealed the linkage of H63D with three haplotypes, *CTA, *TG, and *TTA. These findings indicated the partial spread of the mutation in Central Eurasia from Western Europe, as well as the possible repeated appearance of the mutation on the territory on interest.

  5. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms

    PubMed Central

    Montalban-Bravo, Guillermo; Takahashi, Koichi; Patel, Keyur; Wang, Feng; Xingzhi, Song; Nogueras, Graciela M.; Huang, Xuelin; Pierola, Ana Alfonso; Jabbour, Elias; Colla, Simona; Gañan-Gomez, Irene; Borthakur, Gautham; Daver, Naval; Estrov, Zeev; Kadia, Tapan; Pemmaraju, Naveen; Ravandi, Farhad; Bueso-Ramos, Carlos; Chamseddine, Ali; Konopleva, Marina; Zhang, Jianhua; Kantarjian, Hagop; Futreal, Andrew; Garcia-Manero, Guillermo

    2018-01-01

    The prognostic and predictive value of sequencing analysis in myelodysplastic syndromes (MDS) has not been fully integrated into clinical practice. We performed whole exome sequencing (WES) of bone marrow samples from 83 patients with MDS and 31 with MDS/MPN identifying 218 driver mutations in 31 genes in 98 (86%) patients. A total of 65 (57%) patients received therapy with hypomethylating agents. By univariate analysis, mutations in BCOR, STAG2, TP53 and SF3B1 significantly influenced survival. Increased number of mutations (≥ 3), but not clonal heterogeneity, predicted for shorter survival and LFS. Presence of 3 or more mutations also predicted for lower likelihood of response (26 vs 50%, p = 0.055), and shorter response duration (3.6 vs 26.5 months, p = 0.022). By multivariate analysis, TP53 mutations (HR 3.1, CI 1.3–7.5, p = 0.011) and number of mutations (≥ 3) (HR 2.5, CI 1.3–4.8, p = 0.005) predicted for shorter survival. A novel prognostic model integrating this mutation data with IPSS-R separated patients into three categories with median survival of not reached, 29 months and 12 months respectively (p < 0.001) and increased stratification potential, compared to IPSS-R, in patients with high/very-high IPSS-R. This model was validated in a separate cohort of 413 patients with untreated MDS. Although the use of WES did not provide significant more information than that obtained with targeted sequencing, our findings indicate that increased number of mutations is an independent prognostic factor in MDS and that mutation data can add value to clinical prognostic models. PMID:29515765

  6. Molecular analysis of congenital goitres with hypothyroidism caused by defective thyroglobulin synthesis. Identification of a novel c.7006C>T [p.R2317X] mutation and expression of minigenes containing nonsense mutations in exon 7.

    PubMed

    Machiavelli, Gloria A; Caputo, Mariela; Rivolta, Carina M; Olcese, María C; Gruñeiro-Papendieck, Laura; Chiesa, Ana; González-Sarmiento, Rogelio; Targovnik, Héctor M

    2010-01-01

    Thyroglobulin (TG) deficiency is an autosomal-recessive disorder that results in thyroid dyshormonogenesis. A number of distinct mutations have been identified as causing human hypothyroid goitre. The purpose of this study was to identify and characterize new mutations in the TG gene in an attempt to increase the understanding of the genetic mechanism responsible for this disorder. A total of six patients from four nonconsanguineous families with marked impairment of TG synthesis were studied. Single-strand conformation polymorphism (SSCP) analysis, sequencing of DNA, genotyping, expression of chimeric minigenes and bioinformatic analysis were performed. Four different inactivating TG mutations were identified: one novel mutation (c.7006C>T [p.R2317X]) and three previously reported (c.886C>T [p.R277X], c.6701C>A [p.A2215D] and c.6725G>A [p.R2223H]). Consequently, one patient carried a compound heterozygous for p.R2223H/p.R2317X mutations; two brothers showed a homozygous p.A2215D substitution and the remaining three patients, from two families with typical phenotype, had a single p.R277X mutated allele. We also showed functional evidences that premature stop codons inserted at different positions in exon 7, which disrupt exonic splicing enhancer (ESE) sequences, do not interfere with exon definition and processing. In this study, we have identified a novel nonsense mutation p.R2317X in the acetylcholinesterase homology domain of TG. We have also observed that nonsense mutations do not interfere with the pre-mRNA splicing of exon 7. The results are in accordance with previous observations confirming the genetic heterogeneity of TG defects.

  7. Longitudinal monitoring of EGFR mutations in plasma predicts outcomes of NSCLC patients treated with EGFR TKIs: Korean Lung Cancer Consortium (KLCC-12-02).

    PubMed

    Lee, Ji Yun; Qing, Xu; Xiumin, Wei; Yali, Bai; Chi, Sangah; Bak, So Hyeon; Lee, Ho Yun; Sun, Jong-Mu; Lee, Se-Hoon; Ahn, Jin Seok; Cho, Eun Kyung; Kim, Dong-Wan; Kim, Hye Ryun; Min, Young Joo; Jung, Sin-Ho; Park, Keunchil; Mao, Mao; Ahn, Myung-Ju

    2016-02-09

    We hypothesized that plasma-based EGFR mutation analysis for NSCLC may be feasible for monitoring treatment response to EGFR TKIs and also predict drug resistance.Clinically relevant mutations including exon 19 deletion (ex19del), L858R and T790M were analyzed using droplet digital PCR (ddPCR) in longitudinally collected plasma samples (n = 367) from 81 NSCLC patients treated with EGFR TKI. Of a total 58 baseline cell-free DNA (cfDNA) samples available for ddPCR analysis, 43 (74.1%) had the same mutation in the matched tumors (clinical sensitivity: 70.8% [17/24] for L858R and 76.5% [26/34] for ex19del). The concordance rates of plasma with tissue-based results of EGFR mutations were 87.9% for L858R and 86.2% for ex19del. All 40 patients who were detected EGFR mutations at baseline showed a dramatic decrease of mutant copies (>50%) in plasma during the first two months after treatment. Median progression-free survival (PFS) was 10.1 months for patients with undetectable EGFR v 6.3 months for detectable EGFR mutations in blood after two-month treatment (HR 3.88, 95% CI 1.48-10.19, P = 0.006). We observed emerging resistance with early detection of T790M as a secondary mutation in 14 (28.6%) of 49 patients. Plasma-based EGFR mutation analysis using ddPCR can monitor treatment response to EGFR TKIs and can lead to early detection of EGFR TKIs resistance. Further studies confirming clinical implications of EGFR mutation in plasma are warranted to guide optimal therapeutic strategies upon knowledge of treatment response and resistance.

  8. SDHB-related pheochromocytoma and paraganglioma penetrance and genotype-phenotype correlations.

    PubMed

    Jochmanova, Ivana; Wolf, Katherine I; King, Kathryn S; Nambuba, Joan; Wesley, Robert; Martucci, Victoria; Raygada, Margarita; Adams, Karen T; Prodanov, Tamara; Fojo, Antonio Tito; Lazurova, Ivica; Pacak, Karel

    2017-08-01

    Succinate dehydrogenase subunit B (SDHB) gene mutations are associated with an aggressive clinical disease course of pheochromocytoma/paraganglioma (PHEO/PGL). Limited information is available concerning PHEO/PGL penetrance among SDHB mutation carriers with regards to primary tumor location, specific mutation type, and gender. We assessed PHEO/PGL penetrance in SDHB mutation carriers and described the clinical presentation and disease course. Asymptomatic relatives (N = 611) of 103 index patients were tested for SDHB mutations. Mutation carriers (N = 328) were offered PHEO/PGL screening, of which 241 participated and were included in penetrance analysis. For additional disease outcome analysis, the 103 index patients and 40 screened individuals who developed PHEO/PGL were included. Clinical data were collected between October 2004 and June 2016. Forty (16.60%) of the 241 screened individuals developed PHEO/PGL during the study. The penetrance estimate in this population was 49.80% (95% CI 29-74.9) at 85 years. A significantly higher age-related penetrance of disease was observed in males compared to females, with 50% penetrance achieved at age 74 vs. not reached. Age-related penetrance analysis demonstrated 4 mutations (Ile127Ser, IVS1+1G>T, Exon 1 deletion, Arg90X) presenting with a slower rate of disease development (50% penetrance ages, respectively: not achieved, 70, 63, 61 years) compared to Arg46X and Val140Phe mutations (50% penetrance at 38 years). Here, we found a higher estimated penetrance compared to several other studies, and a striking difference in age-related penetrance between male and female SDHB mutation carriers with no association between mutation and gender or tumor location.

  9. Mucopolysaccharidosis type I in 21 Czech and Slovak patients: Mutation analysis suggests a functional importance of C-terminus of the IDUA protein

    PubMed Central

    Vazna, Alzbeta; Beesley, Clare; Berna, Linda; Stolnaja, Larisa; Myskova, Helena; Bouckova, Michaela; Vlaskova, Hana; Poupetova, Helena; Zeman, Jiri; Magner, Martin; Hlavata, Anna; Winchester, Bryan; Hrebicek, Martin; Dvorakova, Lenka

    2009-01-01

    Abstract Mucopolysaccharidosis type I (MPS I) is an autosomal recessive lysosomal storage disorder that is caused by a deficiency of the enzyme α-l-iduronidase (IDUA). Of the 21 Czech and Slovak patients who have been diagnosed with MPS I in the last 30 years, 16 have a severe clinical presentation (Hurler syndrome), 2 less severe manifestations (Scheie syndrome), and 3 an intermediate severity (Hurler/Scheie phenotype). Mutation analysis was performed in 20 MPS I patients and 39 mutant alleles were identified. There was a high prevalence of the null mutations p.W402X (12 alleles) and p.Q70X (7 alleles) in this cohort. Four of the 13 different mutations were novel: p.V620F (3 alleles), p.W626X (1 allele), c.1727 + 2T > G (1 allele) and c.1918_1927del (2 alleles). The pathogenicity of the novel mutations was verified by transient expression studies in Chinese hamster ovary cells. Seven haplotypes were observed in the patient alleles using 13 intragenic polymorphisms. One of the two haplotypes associated with the mutation p.Q70X was not found in any of the controls. Haplotype analysis showed, that mutations p.Q70X, p.V620F, and p.D315Y probably have more than one ancestor. Missense mutations localized predominantly in the hydrophobic core of the enzyme are associated with the severe phenotype, whereas missense mutations localized to the surface of the enzyme are usually associated with the attenuated phenotypes. Mutations in the 130 C-terminal amino acids lead to clinical manifestations, which indicates a functional importance of the C-terminus of the IDUA protein. © 2009 Wiley-Liss, Inc. PMID:19396826

  10. Clinical Utility of Genetic Testing in Children and Adults with Steroid-Resistant Nephrotic Syndrome

    PubMed Central

    Santín, Sheila; Bullich, Gemma; Tazón-Vega, Bárbara; García-Maset, Rafael; Giménez, Isabel; Silva, Irene; Ruíz, Patricia; Ballarín, José

    2011-01-01

    Summary Background and objectives The increasing number of podocyte-expressed genes implicated in steroid-resistant nephrotic syndrome (SRNS), the phenotypic variability, and the uncharacterized relative frequency of mutations in these genes in pediatric and adult patients with SRNS complicate their routine genetic analysis. Our aim was to compile the clinical and genetic data of eight podocyte genes analyzed in 110 cases (125 patients) with SRNS (ranging from congenital to adult onset) to provide a genetic testing approach. Design, setting, participants, & measurements Mutation analysis was performed by sequencing the NPHS1, NPHS2, TRPC6, CD2AP, PLCE1, INF2, WT1 (exons 8 and 9), and ACTN4 (exons 1 to 10) genes. Results We identified causing mutations in 34% (37/110) of SRNS patients, representing 67% (16/24) familial and 25% (21/86) sporadic cases. Mutations were detected in 100% of congenital-onset, 57% of infantile-onset, 24 and 36% of early and late childhood-onset, 25% of adolescent-onset, and 14% of adult-onset patients. The most frequently mutated gene was NPHS1 in congenital onset and NPHS2 in the other groups. A partial remission was observed in 7 of 26 mutation carriers treated with immunosuppressive agents and/or angiotensin-converting enzyme inhibitors. Patients with NPHS1 mutations showed a faster progression to ESRD than patients with NPHS2 mutations. None of these mutation carriers relapsed after kidney transplantation. Conclusions We propose a genetic testing algorithm for SRNS based on the age at onset and the familial/sporadic status. Mutation analysis of specific podocyte-genes has a clinical value in all age groups, especially in children. PMID:21415313

  11. A novel COLD-PCR/FMCA assay enhances the detection of low-abundance IDH1 mutations in gliomas.

    PubMed

    Pang, Brendan; Durso, Mary B; Hamilton, Ronald L; Nikiforova, Marina N

    2013-03-01

    Point mutations in isocitrate dehydrogenase 1 (IDH1) have been identified in many gliomas. The detection of IDH1 mutations becomes challenging on suboptimal glioma biopsies when a limited number of tumor cells is available for analysis. Coamplification at lower denaturing-polymerase chain reaction (COLD-PCR) is a PCR technique that deliberately lowers the denaturing cycle temperature to selectively favor amplification of mutant alleles, allowing for the sensitive detection of low-abundance mutations. We developed a novel COLD-PCR assay on the LightCycler platform (Roche, Applied Science, Indianapolis, IN), using post-PCR fluorescent melting curve analysis (FMCA) for the detection of mutant IDH1 with a detection limit of 1%. Thirty-five WHO grade I to IV gliomas and 9 non-neoplastic brain and spinal cord biopsies were analyzed with this technique and the results were compared with the conventional real-time PCR and the Sanger sequencing analysis. COLD-PCR/FMCA was able to detect the most common IDH1 R132H mutation and rare mutation types including R132H, R132C, R132L, R132S, and R132G mutations. Twenty-five glioma cases were positive for IDH1 mutations by COLD-PCR/FMCA, and 23 gliomas were positive by the conventional real-time PCR and Sanger sequencing. A pilocytic astrocytoma (PA I) and a glioblastoma multiforme (GBM IV) showed low-abundance IDH1 mutations detected by COLD-PCR/FMCA. The remaining 10 glioma and 9 non-neoplastic samples were negative by all the 3 methods. In summary, we report a novel COLD-PCR/FMCA method that provides rapid and sensitive detection of IDH1 mutations in formalin-fixed paraffin-embedded tissue and can be used in the clinical setting to assess the small brain biopsies.

  12. A novel WFS1 mutation in a family with dominant low frequency sensorineural hearing loss with normal VEMP and EcochG findings

    PubMed Central

    Bramhall, Naomi F; Kallman, Jeremy C; Verrall, Aimee M; Street, Valerie A

    2008-01-01

    Background Low frequency sensorineural hearing loss (LFSNHL) is an uncommon clinical finding. Mutations within three different identified genes (DIAPH1, MYO7A, and WFS1) are known to cause LFSNHL. The majority of hereditary LFSNHL is associated with heterozygous mutations in the WFS1 gene (wolframin protein). The goal of this study was to use genetic analysis to determine if a small American family's hereditary LFSNHL is linked to a mutation in the WFS1 gene and to use VEMP and EcochG testing to further characterize the family's audiovestibular phenotype. Methods The clinical phenotype of the American family was characterized by audiologic testing, vestibular evoked myogenic potentials (VEMP), and electrocochleography (EcochG) evaluation. Genetic characterization was performed by microsatellite analysis and direct sequencing of WFS1 for mutation detection. Results Sequence analysis of the WFS1 gene revealed a novel heterozygous mutation at c.2054G>C predicting a p.R685P amino acid substitution in wolframin. The c.2054G>C mutation segregates faithfully with hearing loss in the family and is absent in 230 control chromosomes. The p.R685 residue is located within the hydrophilic C-terminus of wolframin and is conserved across species. The VEMP and EcochG findings were normal in individuals segregating the WFS1 c.2054G>C mutation. Conclusion We discovered a novel heterozygous missense mutation in exon 8 of WFS1 predicting a p.R685P amino acid substitution that is likely to underlie the LFSNHL phenotype in the American family. For the first time, we describe VEMP and EcochG findings for individuals segregating a heterozygous WFS1 mutation. PMID:18518985

  13. A novel WFS1 mutation in a family with dominant low frequency sensorineural hearing loss with normal VEMP and EcochG findings.

    PubMed

    Bramhall, Naomi F; Kallman, Jeremy C; Verrall, Aimee M; Street, Valerie A

    2008-06-02

    Low frequency sensorineural hearing loss (LFSNHL) is an uncommon clinical finding. Mutations within three different identified genes (DIAPH1, MYO7A, and WFS1) are known to cause LFSNHL. The majority of hereditary LFSNHL is associated with heterozygous mutations in the WFS1 gene (wolframin protein). The goal of this study was to use genetic analysis to determine if a small American family's hereditary LFSNHL is linked to a mutation in the WFS1 gene and to use VEMP and EcochG testing to further characterize the family's audiovestibular phenotype. The clinical phenotype of the American family was characterized by audiologic testing, vestibular evoked myogenic potentials (VEMP), and electrocochleography (EcochG) evaluation. Genetic characterization was performed by microsatellite analysis and direct sequencing of WFS1 for mutation detection. Sequence analysis of the WFS1 gene revealed a novel heterozygous mutation at c.2054G>C predicting a p.R685P amino acid substitution in wolframin. The c.2054G>C mutation segregates faithfully with hearing loss in the family and is absent in 230 control chromosomes. The p.R685 residue is located within the hydrophilic C-terminus of wolframin and is conserved across species. The VEMP and EcochG findings were normal in individuals segregating the WFS1 c.2054G>C mutation. We discovered a novel heterozygous missense mutation in exon 8 of WFS1 predicting a p.R685P amino acid substitution that is likely to underlie the LFSNHL phenotype in the American family. For the first time, we describe VEMP and EcochG findings for individuals segregating a heterozygous WFS1 mutation.

  14. BRAFV600E mutation and its association with clinicopathological features of colorectal cancer: a systematic review and meta-analysis.

    PubMed

    Chen, Dong; Huang, Jun-Fu; Liu, Kai; Zhang, Li-Qun; Yang, Zhao; Chuai, Zheng-Ran; Wang, Yun-Xia; Shi, Da-Chuan; Huang, Qing; Fu, Wei-Ling

    2014-01-01

    Colorectal cancer (CRC) is a heterogeneous disease with multiple underlying causative genetic mutations. The B-type Raf proto-oncogene (BRAF) plays an important role in the mitogen-activated protein kinase (MAPK) signaling cascade during CRC. The presence of BRAFV600E mutation can determine the response of a tumor to chemotherapy. However, the association between the BRAFV600E mutation and the clinicopathological features of CRC remains controversial. We performed a systematic review and meta-analysis to estimate the effect of BRAFV600E mutation on the clinicopathological characteristics of CRC. We identified studies that examined the effect of BRAFV600E mutation on CRC within the PubMed, ISI Science Citation Index, and Embase databases. The effect of BRAFV600E on outcome parameters was estimated by odds ratios (ORs) with 95% confidence intervals (CIs) for each study using a fixed effects or random effects model. 25 studies with a total of 11,955 CRC patients met inclusion criteria. The rate of BRAFV600 was 10.8% (1288/11955). The BRAFV600E mutation in CRC was associated with advanced TNM stage, poor differentiation, mucinous histology, microsatellite instability (MSI), CpG island methylator phenotype (CIMP). This mutation was also associated with female gender, older age, proximal colon, and mutL homolog 1 (MLH1) methylation. This meta-analysis demonstrated that BRAFV600E mutation was significantly correlated with adverse pathological features of CRC and distinct clinical characteristics. These data suggest that BRAFV600E mutation could be used to supplement standard clinical and pathological staging for the better management of individual CRC patients, and could be considered as a poor prognostic marker for CRC.

  15. Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification.

    PubMed

    De Brouwer, Sara; De Preter, Katleen; Kumps, Candy; Zabrocki, Piotr; Porcu, Michaël; Westerhout, Ellen M; Lakeman, Arjan; Vandesompele, Jo; Hoebeeck, Jasmien; Van Maerken, Tom; De Paepe, Anne; Laureys, Geneviève; Schulte, Johannes H; Schramm, Alexander; Van Den Broecke, Caroline; Vermeulen, Joëlle; Van Roy, Nadine; Beiske, Klaus; Renard, Marleen; Noguera, Rosa; Delattre, Olivier; Janoueix-Lerosey, Isabelle; Kogner, Per; Martinsson, Tommy; Nakagawara, Akira; Ohira, Miki; Caron, Huib; Eggert, Angelika; Cools, Jan; Versteeg, Rogier; Speleman, Frank

    2010-09-01

    Activating mutations of the anaplastic lymphoma kinase (ALK) were recently described in neuroblastoma. We carried out a meta-analysis of 709 neuroblastoma tumors to determine their frequency and mutation spectrum in relation to genomic and clinical parameters, and studied the prognostic significance of ALK copy number and expression. The frequency and type of ALK mutations, copy number gain, and expression were analyzed in a new series of 254 neuroblastoma tumors. Data from 455 published cases were used for further in-depth analysis. ALK mutations were present in 6.9% of 709 investigated tumors, and mutations were found in similar frequencies in favorable [International Neuroblastoma Staging System (INSS) 1, 2, and 4S; 5.7%] and unfavorable (INSS 3 and 4; 7.5%) neuroblastomas (P = 0.087). Two hotspot mutations, at positions R1275 and F1174, were observed (49% and 34.7% of the mutated cases, respectively). Interestingly, the F1174 mutations occurred in a high proportion of MYCN-amplified cases (P = 0.001), and this combined occurrence was associated with a particular poor outcome, suggesting a positive cooperative effect between both aberrations. Furthermore, the F1174L mutant was characterized by a higher degree of autophosphorylation and a more potent transforming capacity as compared with the R1275Q mutant. Chromosome 2p gains, including the ALK locus (91.8%), were associated with a significantly increased ALK expression, which was also correlated with poor survival. ALK mutations occur in equal frequencies across all genomic subtypes, but F1174L mutants are observed in a higher frequency of MYCN-amplified tumors and show increased transforming capacity as compared with the R1275Q mutants.

  16. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms.

    PubMed

    Montalban-Bravo, Guillermo; Takahashi, Koichi; Patel, Keyur; Wang, Feng; Xingzhi, Song; Nogueras, Graciela M; Huang, Xuelin; Pierola, Ana Alfonso; Jabbour, Elias; Colla, Simona; Gañan-Gomez, Irene; Borthakur, Gautham; Daver, Naval; Estrov, Zeev; Kadia, Tapan; Pemmaraju, Naveen; Ravandi, Farhad; Bueso-Ramos, Carlos; Chamseddine, Ali; Konopleva, Marina; Zhang, Jianhua; Kantarjian, Hagop; Futreal, Andrew; Garcia-Manero, Guillermo

    2018-02-09

    The prognostic and predictive value of sequencing analysis in myelodysplastic syndromes (MDS) has not been fully integrated into clinical practice. We performed whole exome sequencing (WES) of bone marrow samples from 83 patients with MDS and 31 with MDS/MPN identifying 218 driver mutations in 31 genes in 98 (86%) patients. A total of 65 (57%) patients received therapy with hypomethylating agents. By univariate analysis, mutations in BCOR, STAG2, TP53 and SF3B1 significantly influenced survival. Increased number of mutations (≥ 3), but not clonal heterogeneity, predicted for shorter survival and LFS. Presence of 3 or more mutations also predicted for lower likelihood of response (26 vs 50%, p = 0.055), and shorter response duration (3.6 vs 26.5 months, p = 0.022). By multivariate analysis, TP53 mutations (HR 3.1, CI 1.3-7.5, p = 0.011) and number of mutations (≥ 3) (HR 2.5, CI 1.3-4.8, p = 0.005) predicted for shorter survival. A novel prognostic model integrating this mutation data with IPSS-R separated patients into three categories with median survival of not reached, 29 months and 12 months respectively ( p < 0.001) and increased stratification potential, compared to IPSS-R, in patients with high/very-high IPSS-R. This model was validated in a separate cohort of 413 patients with untreated MDS. Although the use of WES did not provide significant more information than that obtained with targeted sequencing, our findings indicate that increased number of mutations is an independent prognostic factor in MDS and that mutation data can add value to clinical prognostic models.

  17. Increased Frequency of KRAS Mutations in African Americans Compared with Caucasians in Sporadic Colorectal Cancer.

    PubMed

    Staudacher, Jonas J; Yazici, Cemal; Bul, Vadim; Zeidan, Joseph; Khalid, Ahmer; Xia, Yinglin; Krett, Nancy; Jung, Barbara

    2017-10-19

    The basis for over-representation of colorectal cancer (CRC) in African-American (AA) populations compared with Caucasians are multifactorial and complex. Understanding the mechanisms for this racial disparity is critical for delivery of better care. Several studies have investigated sporadic CRC for differences in somatic mutations between AAs and Caucasians, but owing to small study sizes and conflicting results to date, no definitive conclusions have been reached. Here, we present the first systematic literature review and meta-analysis investigating the mutational differences in sporadic CRC between AAs and Caucasians focused on frequent driver mutations (APC,TP53, KRAS,PI3CA, FBXW7,SMAD4, and BRAF). Publication inclusion criteria comprised sporadic CRC, human subjects, English language, information on ethnicity (AA, Caucasian, or both), total subject number >20, and information on mutation frequencies. We identified 6,234 publications. Meta-analysis for APC, TP54, FBXW7, or SMAD4 was not possible owing to paucity of data. KRAS mutations were statistically less frequent in non-Hispanic Whites when compared with AAs (odds ratio, 0.640; 95% confidence interval (CI): 0.5342-0.7666; P=0.0001), while the mutational differences observed in BRAF and PI3CA did not reach statistical significance. Here, we report the mutational patterns for KRAS, BRAF, and PI3CA in sporadic CRC of AAs and Caucasians in a systematic meta-analysis of previously published data. We identified an increase in KRAS mutations in sporadic CRC in AAs, which may contribute to worse prognosis and increased mortality of CRC in AAs. Future studies investigating health-care disparities in CRC in AAs should control for KRAS mutational frequency.

  18. Genetic evidence for heterogeneity in the etiology of CBAVD: Haplotype analysis in families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerem, B.; Rave-Harel, N.; Goshen, R.

    1994-09-01

    Male infertility due to congenital aplasia of the vas deference (CBAVD) is present in almost all CF male patients. It is also found in 1-2% of infertile otherwise healthy males. Several studies have found that about 10% of males with CBAVD carry 2 CF mutations, 40% carry one mutation and 50% have no mutations. These results indicate that in some males CBAVD is caused by two mutated CF alleles. However, in cases of males with one or no identified CF mutations, the association between CBAVD and CF is unclear. We therefore performed, in addition to CF mutation analysis, an extendedmore » haplotype analysis in 7 families of CBAVD males (2 had 2 brothers with CBAVD). Our results show that in 6 of the families, the infertile males inherited different CF alleles than their fertile brothers. However, in 2 families, in which no CF mutations were as of yet identified, different results were found. In one family, 2 infertile brothers differed in their haplotypes: both inherited from their mother the same CF allele, while from their father they inherited different alleles. Furthermore, their fertile brother inherited the same CF alleles as one of his fertile brothers. In another family, 2 brothers, one with CBAVD and the other fertile, inherited the same 2 CFTR alleles. These results provide genetic evidence for heterogeneity in the etiology of CBAVD. In some families the CBAVD is caused by 2 CF mutations, in others it is caused by other mechanism(s): heterozygosity for a CF mutation influenced by different threshold levels, mutations in other gene(s), or interaction between the two.« less

  19. Tenofovir-based regimens associated with less drug resistance in HIV-1-infected Nigerians failing first-line antiretroviral therapy.

    PubMed

    Etiebet, Mary-Ann A; Shepherd, James; Nowak, Rebecca G; Charurat, Man; Chang, Harry; Ajayi, Samuel; Elegba, Olufunmilayo; Ndembi, Nicaise; Abimiku, Alashle; Carr, Jean K; Eyzaguirre, Lindsay M; Blattner, William A

    2013-02-20

    In resource-limited settings, HIV-1 drug resistance testing to guide antiretroviral therapy (ART) selection is unavailable. We retrospectively conducted genotypic analysis on archived samples from Nigerian patients who received targeted viral load testing to confirm treatment failure and report their drug resistance mutation patterns. Stored plasma from 349 adult patients on non-nucleoside reverse transcriptase inhibitor (NNRTI) regimens was assayed for HIV-1 RNA viral load, and samples with more than 1000 copies/ml were sequenced in the pol gene. Analysis for resistance mutations utilized the IAS-US 2011 Drug Resistance Mutation list. One hundred and seventy-five samples were genotyped; the majority of the subtypes were G (42.9%) and CRF02_AG (33.7%). Patients were on ART for a median of 27 months. 90% had the M184V/I mutation, 62% had at least one thymidine analog mutation, and 14% had the K65R mutation. 97% had an NNRTI resistance mutation and 47% had at least two etravirine-associated mutations. In multivariate analysis tenofovir-based regimens were less likely to have at least three nucleoside reverse transcriptase inhibitor (NRTI) mutations after adjusting for subtype, previous ART, CD4, and HIV viral load [P < 0.001, odds ratio (OR) 0.04]. 70% of patients on tenofovir-based regimens had at least two susceptible NRTIs to include in a second-line regimen compared with 40% on zidovudine-based regimens (P = 0.04, OR = 3.4). At recognition of treatment failure, patients on tenofovir-based first-line regimens had fewer NRTI drug-resistant mutations and more active NRTI drugs available for second-line regimens. These findings can inform strategies for ART regimen sequencing to optimize long-term HIV treatment outcomes in low-resource settings.

  20. Resolving a genetic paradox throughout preimplantation genetic diagnosis for autosomal dominant severe congenital neutropenia.

    PubMed

    Malcov, Mira; Reches, Adi; Ben-Yosef, Dalit; Cohen, Tania; Amit, Ami; Dgany, Orly; Tamary, Hannah; Yaron, Yuval

    2010-03-01

    Severe congenital neutropenia is an inherited disease characterized by low peripheral blood neutrophils, amenable to bone marrow transplantation. Genetic analysis in the family here described detected a ELA2 splice-site mutation in the affected child and also in his asymptomatic father. The parents requested preimplantation genetic diagnosis (PGD), coupled with HLA matching, to obtain a suitable bone marrow donor for the affected child. A PGD protocol was developed, based on multiplex nested PCR for direct analysis of the ELA2 mutation, flanking polymorphic markers and HLA typing. The amplification efficiency of the mutation was > 90% in single leukocytes from the affected child but only 67% in the father. Analysis of single haploid sperm cells from the father demonstrated three different sperm-cell populations: (1) sperm cells harboring the ELA2 mutation on the 'affected' haplotype, (2) sperm cells without the ELA2 mutation on the 'normal' haplotype, and (3) sperm cells without the ELA2 mutation on the 'affected' haplotype. These data demonstrate that the ELA2 mutation in the father occurred de novo during his embryonic development, resulting in somatic as well as germ-line mosaicism. This conclusion was also taken into consideration when PGD was performed. Copyright (c) 2010 John Wiley & Sons, Ltd.

  1. Mutation analysis of the cystic fibrosis transmembrane regulator gene in native American populations of the southwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebe, T.A.; Doane, W.W.; Norman, R.A.

    1992-10-01

    The authors report DNA and clinical analysis of cystic fibrosis (CF) in two previously unstudied, genetically isolated populations: Pueblo and Navajo Native Americans. Direct mutation analysis of six mutations of the CFTR gene - namely, [Delta]F508, G542X, G551D, R553X, N1303K, and W1282X - was performed on PCR-amplified genomic DNA extracted from blood samples. Haplotype analyses with marker/enzyme pairs XV2c/TaqI and KM29/PstI were performed as well. Of the 12 affected individuals studied, no [Delta]F508 mutation was detected; only one G542X mutation was found. None of the other mutations was detected. All affected individuals have either an AA, AC, or CC haplotype,more » except for the one carrying the G542X mutation, who has the haplotye AB. Clinically, six of the affected individuals examined exhibit growth deficiency, and five (all from the Zuni Pueblo) have a severe CF phenotype. Four of the six Zunis with CF are also microcephalic, a finding not previously noted in CF patients. The DNA data have serious implications for risk assessment of CF carrier status for these people. 14 refs., 3 tabs.« less

  2. Two novel compound heterozygous mutations in the BCKDHB gene that cause the intermittent form of maple syrup urine disease.

    PubMed

    Guo, Yi; Liming, Liu; Jiang, Li

    2015-12-01

    Intermittent maple syrup urine disease (MSUD) is a potentially life-threatening metabolic disorder caused by a deficiency of branched chain α-ketoacid dehydrogenase (BCKD) complex. In contrast to classic MSUD, children with the intermittent form usually have an atypical clinical manifestation. Here, we describe the presenting symptoms and clinical course of a Chinese boy with intermittent MSUD. Mutation analysis identified two previously unreported mutations in exon 7 of the BCKDHB gene: c.767A > G (p.Y256C) and c.768C > G (p.Y256X); the parents were each heterozygous for one of these mutations. In silico analysis predicted Y256C probably affects protein structure; Y256X leads to a premature stop codon. This case demonstrates intermittent MSUD should be suspected in cases with symptoms of recurrent encephalopathy, especially ataxia or marked drowsiness, which usually present after the neonatal period and in conjunction with infection. symmetrical basal ganglia damage but normal myelination in the posterior limb will assist differential diagnosis; alloisoleucine is a useful diagnostic marker and mutation analysis may be of prognostic value. These novel mutations Y256C and Y256X result in the clinical manifestation of a variant form of MSUD, expanding the mutation spectrum of this disease.

  3. Optimizing high-resolution melting analysis for the detection of mutations of GPR30/GPER-1 in breast cancer.

    PubMed

    Aihara, Masamune; Yamamoto, Shigeru; Nishioka, Hiroko; Inoue, Yutaro; Hamano, Kimikazu; Oka, Masaaki; Mizukami, Yoichi

    2012-06-15

    G protein-coupled receptor 30/G protein estrogen receptor-1 (GPR30/GPER-1) is a novel membrane receptor for estrogen whose mRNA is expressed at high levels in estrogen-dependent cells such as breast cancer cell lines. However, mutations in GRP30 related to diseases remain unreported. To detect unknown mutations in the GPR30 open reading frame (ORF) quickly, the experimental conditions for high-resolution melting (HRM) analysis were examined for PCR primers, Taq polymerases, saturation DNA binding dyes, Mg(2+) concentration, and normalized temperatures. Nine known SNPs and 13 artificial point mutations within the GPR30 ORF, as well as single nucleotide variants in DNA extracted from subjects with breast cancers were tested under the optimal experimental conditions. The combination of Expand High Fidelity(PLUS) and SYTO9 in the presence of 2.0 mM MgCl(2) produced the best separation in melting curves of mutations in all regions of the GPR30 ORF. Under these experimental conditions, the mutations were clearly detected in both heterozygotes and homozygotes. HRM analysis of GPR30 using genomic DNA from subjects with breast cancers showed a novel single nucleotide variant, 111C>T in GPR30 and 4 known SNPs. The experimental conditions determined in this study for HRM analysis are useful for high throughput assays to detect unknown mutations within the GPR30 ORF. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. DNA Clutch Probes for Circulating Tumor DNA Analysis.

    PubMed

    Das, Jagotamoy; Ivanov, Ivaylo; Sargent, Edward H; Kelley, Shana O

    2016-08-31

    Progress toward the development of minimally invasive liquid biopsies of disease is being bolstered by breakthroughs in the analysis of circulating tumor DNA (ctDNA): DNA released from cancer cells into the bloodstream. However, robust, sensitive, and specific methods of detecting this emerging analyte are lacking. ctDNA analysis has unique challenges, since it is imperative to distinguish circulating DNA from normal cells vs mutation-bearing sequences originating from tumors. Here we report the electrochemical detection of mutated ctDNA in samples collected from cancer patients. By developing a strategy relying on the use of DNA clutch probes (DCPs) that render specific sequences of ctDNA accessible, we were able to readout the presence of mutated ctDNA. DCPs prevent reassociation of denatured DNA strands: they make one of the two strands of a dsDNA accessible for hybridization to a probe, and they also deactivate other closely related sequences in solution. DCPs ensure thereby that only mutated sequences associate with chip-based sensors detecting hybridization events. The assay exhibits excellent sensitivity and specificity in the detection of mutated ctDNA: it detects 1 fg/μL of a target mutation in the presence of 100 pg/μL of wild-type DNA, corresponding to detecting mutations at a level of 0.01% relative to wild type. This approach allows accurate analysis of samples collected from lung cancer and melanoma patients. This work represents the first detection of ctDNA without enzymatic amplification.

  5. Statistical analysis of stratospheric temperature and ozone profile data for trends and model comparison

    NASA Technical Reports Server (NTRS)

    Tiao, G. C.

    1992-01-01

    Work performed during the project period July 1, 1990 to June 30, 1992 on the statistical analysis of stratospheric temperature data, rawinsonde temperature data, and ozone profile data for the detection of trends is described. Our principal topics of research are trend analysis of NOAA stratospheric temperature data over the period 1978-1989; trend analysis of rawinsonde temperature data for the period 1964-1988; trend analysis of Umkehr ozone profile data for the period 1977-1991; and comparison of observed ozone and temperature trends in the lower stratosphere. Analysis of NOAA stratospheric temperature data indicates the existence of large negative trends at 0.4 mb level, with magnitudes increasing with latitudes away from the equator. Trend analysis of rawinsonde temperature data over 184 stations shows significant positive trends about 0.2 C per decade at surface to 500 mb range, decreasing to negative trends about -0.3 C at 100 to 50 mb range, and increasing slightly at 30 mb level. There is little evidence of seasonal variation in trends. Analysis of Umkehr ozone data for 12 northern hemispheric stations shows significant negative trends about -.5 percent per year in Umkehr layers 7-9 and layer 3, but somewhat less negative trends in layers 4-6. There is no pronounced seasonal variation in trends, especially in layers 4-9. A comparison was made of empirical temperature trends from rawinsonde data in the lower stratosphere with temperature changes determined from a one-dimensional radiative transfer calculation that prescribed a given ozone change over the altitude region, surface to 50 km, obtained from trend analysis of ozonsonde and Umkehr profile data. The empirical and calculated temperature trends are found in substantive agreement in profile shape and magnitude.

  6. Characterization of a mutation commonly associated with persistent stuttering: evidence for a founder mutation

    PubMed Central

    Fedyna, Alison; Drayna, Dennis; Kang, Changsoo

    2010-01-01

    Stuttering is a disorder which affects the fluency of speech. It has been shown to have high heritability, and has recently been linked to mutations in the GNPTAB gene. One such mutation, Glu1200Lys, has been repeatedly observed in unrelated families and individual cases. Eight unrelated individuals carrying this mutation were analyzed in an effort to distinguish whether these arise from repeated mutation at the same site, or whether they represent a founder mutation with a single origin. Results show that all 12 chromosomes carrying this mutation share a common haplotype in this region, indicating it is a founder mutation. Further analysis estimated the age of this allele to be ~572 generations. Construction of a cladogram tracing the mutation through our study sample also supports the founder mutation hypothesis. PMID:20944643

  7. Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra

    PubMed Central

    Shewaramani, Sonal; Finn, Thomas J.; Kassen, Rees; Rainey, Paul B.

    2017-01-01

    Oxidative stress is a major cause of mutation but little is known about how growth in the absence of oxygen impacts the rate and spectrum of mutations. We employed long-term mutation accumulation experiments to directly measure the rates and spectra of spontaneous mutation events in Escherichia coli populations propagated under aerobic and anaerobic conditions. To detect mutations, whole genome sequencing was coupled with methods of analysis sufficient to identify a broad range of mutational classes, including structural variants (SVs) generated by movement of repetitive elements. The anaerobically grown populations displayed a mutation rate nearly twice that of the aerobic populations, showed distinct asymmetric mutational strand biases, and greater insertion element activity. Consistent with mutation rate and spectra observations, genes for transposition and recombination repair associated with SVs were up-regulated during anaerobic growth. Together, these results define differences in mutational spectra affecting the evolution of facultative anaerobes. PMID:28103245

  8. D816 mutation of the KIT gene in core binding factor acute myeloid leukemia is associated with poorer prognosis than other KIT gene mutations.

    PubMed

    Yui, Shunsuke; Kurosawa, Saiko; Yamaguchi, Hiroki; Kanamori, Heiwa; Ueki, Toshimitsu; Uoshima, Nobuhiko; Mizuno, Ishikazu; Shono, Katsuhiro; Usuki, Kensuke; Chiba, Shigeru; Nakamura, Yukinori; Yanada, Masamitsu; Kanda, Junya; Tajika, Kenji; Gomi, Seiji; Fukunaga, Keiko; Wakita, Satoshi; Ryotokuji, Takeshi; Fukuda, Takahiro; Inokuchi, Koiti

    2017-10-01

    The clinical impact of KIT mutations in core binding factor acute myeloid leukemia (CBF-AML) is still unclear. In the present study, we analyzed the prognostic significance of each KIT mutation (D816, N822K, and other mutations) in Japanese patients with CBF-AML. We retrospectively analyzed 136 cases of CBF-AML that had gone into complete remission (CR). KIT mutations were found in 61 (45%) of the patients with CBF-AML. D816, N822K, D816 and N822K, and other mutations of the KIT gene were detected in 29 cases (21%), 20 cases (15%), 7 cases (5%), and 5 cases (4%), respectively. The rate of relapse-free survival (RFS) and overall survival (OS) in patients with D816 and with both D816 and N822K mutations was significantly lower than in patients with other or with no KIT mutations (RFS: p < 0.001, OS: p < 0.001). Moreover, stratified analysis of the chromosomal abnormalities t(8;21)(q22;q22) and inv(16)(p13.1q22), t(16;16)(p13.1;q22) showed that D816 mutation was associated with a significantly worse prognosis. In a further multivariate analysis of RFS and OS, D816 mutation was found to be an independent risk factor for significantly poorer prognosis. In the present study, we were able to establish that, of all KIT mutations, D816 mutation alone is an unfavorable prognostic factor.

  9. Analysis of gene mutations in Chinese patients with maple syrup urine disease.

    PubMed

    Yang, Nan; Han, Lianshu; Gu, Xuefan; Ye, Jun; Qiu, Wenjuan; Zhang, Huiwen; Gong, Zhuwen; Zhang, Yafen

    2012-08-01

    Maple syrup urine disease (MSUD) is predominantly caused by mutations in the BCKDHA, BCKDHB and DBT genes, which encode for the E1α, E1β and E2 subunits of the branched-chain α-keto acid dehydrogenase complex, respectively. The aim of this study was to screen DNA samples from 16 Chinese MSUD patients and assess a potential correlation between genotype and phenotype. BCKDHA, BCKDHB and DBT genes were analyzed by polymerase chain reaction (PCR) and direct sequencing. Segments bearing novel mutations were identified by PCR-restriction fragment length polymorphism (PCR-RFLP) analysis. Within the variant alleles, 28 mutations (28/32, 87.5%), were detected in 15 patients, while one patient displayed no mutations. Mutations were comprised of 20 different: 6 BCKDHA gene mutations in 4 cases, 10 BCKDHB gene mutations in 8 cases and 4 DBT gene mutations in 3 cases. From these, 14 were novel, which included 3 mutations in the BCKDHA gene, 7 in the BCKDHB gene and 4 in the DBT gene. Only two patients with mutations in the BCKDHB and DBT genes were thiamine-responsive and presented a better clinical outcome. We identified 20 different mutations within the BCKDHA, BCKDHB and DBT genes among 16 Chinese MSUD patients, including 14 novel mutations. The majority were non-responsive to thiamine, associating with a worse clinical outcome. Our data provide the basis for further genotype-phenotype correlation studies in these patients, which will be beneficial for early diagnosis and in directing the approach to clinical intervention. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Trends in darunavir resistance-associated mutations and phenotypic resistance in commercially tested United States clinical samples between 2006 and 2012.

    PubMed

    Lathouwers, Erkki; Gupta, Soumi; Haddad, Mojgan; Paquet, Agnes; de Meyer, Sandra; Baugh, Bryan

    2015-06-01

    HIV-1 samples submitted by clinicians from the United States for routine drug susceptibility testing (PhenoSense GT) were evaluated for genotypic and phenotypic resistance to darunavir and other protease inhibitors (PIs). Among these samples (Monogram Biosciences database January 2006-June 2012; N=78,843), isolates harboring zero IAS-USA darunavir resistance-associated mutations (RAMs) increased from 77.7% in 2006 to 92.8% through the first half of 2012 (H1 2012; upward trend, p=0.0008); a downward trend seen for samples with three or more darunavir RAMs (7.5% in 2006 and 2.6% in H1 2012; p=0.002). Among samples with any PI resistance (N=15,932), samples harboring zero darunavir RAMs gradually increased (39.9% in 2006 vs. 55.0% in H1 2012; upward trend, p=0.005), but three or more darunavir RAMs did not change over time (21.7% in 2006 and 19.2% in H1 2012; p=0.27). During this period, the frequency of the 11 individual darunavir RAMs (IAS-USA 2011 list) decreased among all samples. The frequency of each darunavir RAM in PI-resistant samples decreased or remained relatively stable. The prevalence of samples with phenotypic resistance to darunavir (partial-to-full) decreased over time in all samples (8.2% in 2006 vs. 2.3% in H1 2012), as did resistance to other PIs (p<0.006 for all PIs). Phenotypic resistance to darunavir and other PIs also decreased in PI-resistant samples (darunavir: 23.9% in 2006 vs. 17.1% in H1 2012; p<0.013 for all PIs). Since approval of darunavir in 2006, there was a significant decrease in prevalence of samples with genotypic and phenotypic resistance to darunavir in commercially tested HIV-1 isolates. Furthermore, the prevalence of phenotypic resistance to darunavir was lower than all other PIs.

  11. Association of programmed death ligand-1 (PD-L1) expression with treatment outcomes in patients with BRAF mutation-positive melanoma treated with vemurafenib or cobimetinib combined with vemurafenib.

    PubMed

    Wongchenko, Matthew J; Ribas, Antoni; Dréno, Brigitte; Ascierto, Paolo A; McArthur, Grant A; Gallo, Jorge D; Rooney, Isabelle A; Hsu, Jessie; Koeppen, Hartmut; Yan, Yibing; Larkin, James

    2017-11-20

    The prognostic significance of programmed death ligand-1 (PD-L1) on treatment outcomes in patients receiving BRAF with or without MEK inhibitors is not well understood. This retrospective exploratory analysis evaluated the association of tumour PD-L1 expression with progression-free survival (PFS) and overall survival (OS) among 210 patients in the coBRIM trial treated with cobimetinib plus vemurafenib or placebo plus vemurafenib. In the vemurafenib cohort, there was a trend of increased PFS and OS in those with PD-L1 + melanoma, with hazard ratios (HRs; PD-L1 + vs. PD-L1 - ) of 0.70 (95% CI, 0.46-1.07) and 0.69 (95% CI, 0.42-1.13) for PFS and OS, respectively. However, in patients treated with cobimetinib plus vemurafenib, a similar trend was not observed with HRs (PD-L1 + versus PD-L1 - ) of 1.04 (95% CI, 0.66-1.68) and 0.94 (95% CI, 0.57-1.57) for PFS and OS, respectively. The combination cobimetinib plus vemurafenib appears to overcome the poor prognosis associated with low PD-L1 expression. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Genetic Analysis of Japanese Children With Acute Recurrent and Chronic Pancreatitis.

    PubMed

    Saito, Nobutomo; Suzuki, Mitsuyoshi; Sakurai, Yumiko; Nakano, Satoshi; Naritaka, Nakayuki; Minowa, Kei; Sai, Jin K; Shimizu, Toshiaki

    2016-10-01

    Causes of acute recurrent pancreatitis (ARP) or chronic pancreatitis (CP) are sometimes difficult to determine in children. In such patients, genetic analysis may prove helpful. The present study analyzed mutations of cationic trypsinogen (PRSS1), serine protease inhibitor Kazal type 1 (SPINK1), chymotrypsin C (CTRC), and carboxypeptidase A1 (CPA1) and investigated the clinical features of children with these mutations. Genetic analyses of mutations in these 4 genes were conducted in 128 patients with ARP or CP. Characteristics of the patients showing mutations were investigated using medical records. Fifty of the 128 (39.1%) subjects had at least 1 mutation (median age at onset, 7.6 years). Abdominal pain was the presenting symptom of pancreatitis in 48 of the 50 patients (96%). Fifteen of those 50 patients (30.0%) had a family history of pancreatitis. Gene mutations were present in PRSS1 in 26 patients, SPINK1 in 23, CTRC in 3, and CPA1 in 5. In the 31 patients with mutations in SPINK1, CTRC, or CPA1, 16 (51.6%) had homozygous or heterozygous mutations with other mutations. Three patients underwent surgery and another 4 patients underwent endoscopy to manage ARP or CP. Although 3 of the 7 patients complained of mild abdominal pain, none of those 7 patients experienced any obvious episode of ARP after treatment. In pediatric patients with idiopathic ARP and CP, genetic analysis is useful for identifying the cause of pancreatitis. Early endoscopic or surgical treatment prevents ARP by extending the interval between episodes of pancreatitis in this population.

  13. Role of GnRH receptor mutations in patients with a wide spectrum of pubertal delay

    PubMed Central

    Beneduzzi, Daiane; Trarbach, Ericka B.; Min, Le; Jorge, Alexander A. L.; Garmes, Heraldo M.; Renk, Alessandra Covallero; Fichna, Marta; Fichna, Piotr; Arantes, Karina A.; Costa, Elaine M. F.; Zhang, Anna; Adeola, Oluwaseun; Wen, Junping; Carroll, Rona S.; Mendonça, Berenice B.; Kaiser, Ursula B.; Latronico, Ana Claudia; Silveira, Letícia F. G.

    2014-01-01

    Objective To analyze the GNRHR in patients with normosmic isolated hypogonadotropic hypogonadism (IHH) and constitutional delay of growth and puberty (CDGP). Design Molecular analysis and in vitro experiments correlated with phenotype. Setting Academic medical center. Patient(s) 110 individuals with normosmic IHH (74 males) and 50 with CGDP. Intervention(s) GNRHR coding region was amplified and sequenced. Main Outcome Measure(s) Novel variants were submitted to in vitro analysis. Frequency of mutations and genotype-phenotype correlation were analyzed. Microsatellite markers flanking GNRHR were examined in patients carrying the same mutation to investigate a possible founder effect. Result(s) Eleven IHH patients (10%) carried biallelic GNRHR mutations. In vitro analysis of novel variants (p.Y283H and p.V134G) demonstrated complete inactivation. The founder effect study revealed that Brazilian patients carrying the p.R139H mutation shared the same haplotype. Phenotypic spectrum in patients with GNRHR mutations varied from complete GnRH deficiency to partial and reversible IHH, with a relatively good genotype-phenotype correlation. One boy with CDGP was heterozygous for the p.Q106R variant, which was not considered pathogenic. Conclusion(s) GNRHR mutations are a frequent cause of congenital normosmic IHH and should be the first candidate gene for genetic screening in this condition, especially in autosomal recessive familial cases. The founder effect study suggested that the p.R139H mutation arises from a common ancestor in the Brazilian population. Finally, mutations in GNRHR do not appear to be involved in the pathogenesis of CDGP. PMID:25016926

  14. Somatic mutation load of estrogen receptor-positive breast tumors predicts overall survival: an analysis of genome sequence data.

    PubMed

    Haricharan, Svasti; Bainbridge, Matthew N; Scheet, Paul; Brown, Powel H

    2014-07-01

    Breast cancer is one of the most commonly diagnosed cancers in women. While there are several effective therapies for breast cancer and important single gene prognostic/predictive markers, more than 40,000 women die from this disease every year. The increasing availability of large-scale genomic datasets provides opportunities for identifying factors that influence breast cancer survival in smaller, well-defined subsets. The purpose of this study was to investigate the genomic landscape of various breast cancer subtypes and its potential associations with clinical outcomes. We used statistical analysis of sequence data generated by the Cancer Genome Atlas initiative including somatic mutation load (SML) analysis, Kaplan-Meier survival curves, gene mutational frequency, and mutational enrichment evaluation to study the genomic landscape of breast cancer. We show that ER(+), but not ER(-), tumors with high SML associate with poor overall survival (HR = 2.02). Further, these high mutation load tumors are enriched for coincident mutations in both DNA damage repair and ER signature genes. While it is known that somatic mutations in specific genes affect breast cancer survival, this study is the first to identify that SML may constitute an important global signature for a subset of ER(+) tumors prone to high mortality. Moreover, although somatic mutations in individual DNA damage genes affect clinical outcome, our results indicate that coincident mutations in DNA damage response and signature ER genes may prove more informative for ER(+) breast cancer survival. Next generation sequencing may prove an essential tool for identifying pathways underlying poor outcomes and for tailoring therapeutic strategies.

  15. A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing

    PubMed Central

    Alioto, Tyler S.; Buchhalter, Ivo; Derdak, Sophia; Hutter, Barbara; Eldridge, Matthew D.; Hovig, Eivind; Heisler, Lawrence E.; Beck, Timothy A.; Simpson, Jared T.; Tonon, Laurie; Sertier, Anne-Sophie; Patch, Ann-Marie; Jäger, Natalie; Ginsbach, Philip; Drews, Ruben; Paramasivam, Nagarajan; Kabbe, Rolf; Chotewutmontri, Sasithorn; Diessl, Nicolle; Previti, Christopher; Schmidt, Sabine; Brors, Benedikt; Feuerbach, Lars; Heinold, Michael; Gröbner, Susanne; Korshunov, Andrey; Tarpey, Patrick S.; Butler, Adam P.; Hinton, Jonathan; Jones, David; Menzies, Andrew; Raine, Keiran; Shepherd, Rebecca; Stebbings, Lucy; Teague, Jon W.; Ribeca, Paolo; Giner, Francesc Castro; Beltran, Sergi; Raineri, Emanuele; Dabad, Marc; Heath, Simon C.; Gut, Marta; Denroche, Robert E.; Harding, Nicholas J.; Yamaguchi, Takafumi N.; Fujimoto, Akihiro; Nakagawa, Hidewaki; Quesada, Víctor; Valdés-Mas, Rafael; Nakken, Sigve; Vodák, Daniel; Bower, Lawrence; Lynch, Andrew G.; Anderson, Charlotte L.; Waddell, Nicola; Pearson, John V.; Grimmond, Sean M.; Peto, Myron; Spellman, Paul; He, Minghui; Kandoth, Cyriac; Lee, Semin; Zhang, John; Létourneau, Louis; Ma, Singer; Seth, Sahil; Torrents, David; Xi, Liu; Wheeler, David A.; López-Otín, Carlos; Campo, Elías; Campbell, Peter J.; Boutros, Paul C.; Puente, Xose S.; Gerhard, Daniela S.; Pfister, Stefan M.; McPherson, John D.; Hudson, Thomas J.; Schlesner, Matthias; Lichter, Peter; Eils, Roland; Jones, David T. W.; Gut, Ivo G.

    2015-01-01

    As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy. PMID:26647970

  16. Interplay between BRCA1 and RHAMM regulates epithelial apicobasal polarization and may influence risk of breast cancer.

    PubMed

    Maxwell, Christopher A; Benítez, Javier; Gómez-Baldó, Laia; Osorio, Ana; Bonifaci, Núria; Fernández-Ramires, Ricardo; Costes, Sylvain V; Guinó, Elisabet; Chen, Helen; Evans, Gareth J R; Mohan, Pooja; Català, Isabel; Petit, Anna; Aguilar, Helena; Villanueva, Alberto; Aytes, Alvaro; Serra-Musach, Jordi; Rennert, Gad; Lejbkowicz, Flavio; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Ripamonti, Carla B; Bonanni, Bernardo; Viel, Alessandra; Allavena, Anna; Bernard, Loris; Radice, Paolo; Friedman, Eitan; Kaufman, Bella; Laitman, Yael; Dubrovsky, Maya; Milgrom, Roni; Jakubowska, Anna; Cybulski, Cezary; Gorski, Bohdan; Jaworska, Katarzyna; Durda, Katarzyna; Sukiennicki, Grzegorz; Lubiński, Jan; Shugart, Yin Yao; Domchek, Susan M; Letrero, Richard; Weber, Barbara L; Hogervorst, Frans B L; Rookus, Matti A; Collee, J Margriet; Devilee, Peter; Ligtenberg, Marjolijn J; Luijt, Rob B van der; Aalfs, Cora M; Waisfisz, Quinten; Wijnen, Juul; Roozendaal, Cornelis E P van; Easton, Douglas F; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Harrington, Patricia; Evans, D Gareth; Lalloo, Fiona; Eeles, Rosalind; Izatt, Louise; Chu, Carol; Eccles, Diana; Douglas, Fiona; Brewer, Carole; Nevanlinna, Heli; Heikkinen, Tuomas; Couch, Fergus J; Lindor, Noralane M; Wang, Xianshu; Godwin, Andrew K; Caligo, Maria A; Lombardi, Grazia; Loman, Niklas; Karlsson, Per; Ehrencrona, Hans; Wachenfeldt, Anna von; Barkardottir, Rosa Bjork; Hamann, Ute; Rashid, Muhammad U; Lasa, Adriana; Caldés, Trinidad; Andrés, Raquel; Schmitt, Michael; Assmann, Volker; Stevens, Kristen; Offit, Kenneth; Curado, João; Tilgner, Hagen; Guigó, Roderic; Aiza, Gemma; Brunet, Joan; Castellsagué, Joan; Martrat, Griselda; Urruticoechea, Ander; Blanco, Ignacio; Tihomirova, Laima; Goldgar, David E; Buys, Saundra; John, Esther M; Miron, Alexander; Southey, Melissa; Daly, Mary B; Schmutzler, Rita K; Wappenschmidt, Barbara; Meindl, Alfons; Arnold, Norbert; Deissler, Helmut; Varon-Mateeva, Raymonda; Sutter, Christian; Niederacher, Dieter; Imyamitov, Evgeny; Sinilnikova, Olga M; Stoppa-Lyonne, Dominique; Mazoyer, Sylvie; Verny-Pierre, Carole; Castera, Laurent; de Pauw, Antoine; Bignon, Yves-Jean; Uhrhammer, Nancy; Peyrat, Jean-Philippe; Vennin, Philippe; Fert Ferrer, Sandra; Collonge-Rame, Marie-Agnès; Mortemousque, Isabelle; Spurdle, Amanda B; Beesley, Jonathan; Chen, Xiaoqing; Healey, Sue; Barcellos-Hoff, Mary Helen; Vidal, Marc; Gruber, Stephen B; Lázaro, Conxi; Capellá, Gabriel; McGuffog, Lesley; Nathanson, Katherine L; Antoniou, Antonis C; Chenevix-Trench, Georgia; Fleisch, Markus C; Moreno, Víctor; Pujana, Miguel Angel

    2011-11-01

    Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((w)HR) = 1.09 (95% CI 1.02-1.16), p(trend) = 0.017; and n = 3,965, (w)HR = 1.04 (95% CI 0.94-1.16), p(trend) = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.

  17. Dosage analysis of cancer predisposition genes by multiplex ligation-dependent probe amplification

    PubMed Central

    Bunyan, D J; Eccles, D M; Sillibourne, J; Wilkins, E; Thomas, N Simon; Shea-Simonds, J; Duncan, P J; Curtis, C E; Robinson, D O; Harvey, J F; Cross, N C P

    2004-01-01

    Multiplex ligation-dependent probe amplification (MLPA) is a recently described method for detecting gross deletions or duplications of DNA sequences, aberrations which are commonly overlooked by standard diagnostic analysis. To determine the incidence of copy number variants in cancer predisposition genes from families in the Wessex region, we have analysed the hMLH1 and hMSH2 genes in patients with hereditary nonpolyposis colorectal cancer (HNPCC), BRCA1 and BRCA2 in families with hereditary breast/ovarian cancer (BRCA) and APC in patients with familial adenomatous polyposis coli (FAP). Hereditary nonpolyposis colorectal cancer (n=162) and FAP (n=74) probands were fully screened for small mutations, and cases for which no causative abnormality were found (HNPCC, n=122; FAP, n=24) were screened by MLPA. Complete or partial gene deletions were identified in seven cases for hMSH2 (5.7% of mutation-negative HNPCC; 4.3% of all HNPCC), no cases for hMLH1 and six cases for APC (25% of mutation negative FAP; 8% of all FAP). For BRCA1 and BRCA2, a partial mutation screen was performed and 136 mutation-negative cases were selected for MLPA. Five deletions and one duplication were found for BRCA1 (4.4% of mutation-negative BRCA cases) and one deletion for BRCA2 (0.7% of mutation-negative BRCA cases). Cost analysis indicates it is marginally more cost effective to perform MLPA prior to point mutation screening, but the main advantage gained by prescreening is a greatly reduced reporting time for the patients who are positive. These data demonstrate that dosage analysis is an essential component of genetic screening for cancer predisposition genes. PMID:15475941

  18. Next generation sequencing as a useful tool in the diagnostics of mosaicism in Alport syndrome.

    PubMed

    Beicht, Sonja; Strobl-Wildemann, Gertrud; Rath, Sabine; Wachter, Oliver; Alberer, Martin; Kaminsky, Elke; Weber, Lutz T; Hinrichsen, Tanja; Klein, Hanns-Georg; Hoefele, Julia

    2013-09-10

    Alport syndrome (ATS) is a progressive hereditary nephropathy characterized by hematuria and/or proteinuria with structural defects of the glomerular basement membrane. It can be associated with extrarenal manifestations (high-tone sensorineural hearing loss and ocular abnormalities). Somatic mutations in COL4A5 (X-linked), COL4A3 and COL4A4 genes (both autosomal recessive and autosomal dominant) cause Alport syndrome. Somatic mosaicism in Alport patients is very rare. The reason for this may be due to the difficulty of detection. We report the case of a boy and his mother who presented with Alport syndrome. Mutational analysis showed the novel hemizygote pathogenic mutation c.2396-1G>A (IVS29-1G>A) at the splice acceptor site of the intron 29 exon 30 boundary of the COL4A5 gene in the boy. The mutation in the mother would not have been detected by Sanger sequencing without the knowledge of the mutational analysis result of her son. Further investigation of the mother using next generation sequencing showed somatic mosaicism and implied potential germ cell mosaicism. The mutation in the mother has most likely occurred during early embryogenesis. Analysis of tissue of different embryonic origin in the mother confirmed mosaicism in both mesoderm and ectoderm. Low grade mosaicism is very difficult to detect by Sanger sequencing. Next generation sequencing is increasingly used in the diagnostics and might improve the detection of mosaicism. In the case of definite clinical symptoms of ATS and missing detection of a mutation by Sanger sequencing, mutational analysis should be performed by next generation sequencing. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The contribution of GPR98 and DFNB31 genes to a Spanish Usher syndrome type 2 cohort.

    PubMed

    García-García, Gema; Besnard, Thomas; Baux, David; Vaché, Christel; Aller, Elena; Malcolm, Sue; Claustres, Mireille; Millan, Jose M; Roux, Anne-Françoise

    2013-01-01

    Usher syndrome type 2 (USH2) is an autosomal recessive disease characterized by moderate to severe hearing loss and retinitis pigmentosa. To date, three disease-causing genes have been identified, USH2A, GPR98, and DFNB31, of which USH2A is clearly the major contributor. The aim of this work was to determine the contribution of GPR98 and DFNB31 genes in a Spanish cohort of USH2A negative patients using exhaustive molecular analysis, including sequencing, dosage, and splicing analysis. Linkage analysis was performed to prioritize the gene to study, followed by sequencing of exons and intron-exon boundaries of the selected gene, GPR98 (90 exons) or DFNB31 (12 exons). Functional splicing analyses and comparative genomic hybridization array to detect large rearrangements were performed when appropriate. We confirmed that mutations in GPR98 contribute a significant but minor role to Usher syndrome type 2. In a group of patients referred for molecular diagnosis, 43 had been found to be positive for USH2A mutations, the remaining 19 without USH2A alterations were screened, and seven different mutations were identified in the GPR98 gene in seven patients (five in the homozygous state), of which six were novel. All detected mutations result in a truncated protein; deleterious missense mutations were not found. No pathological mutations were identified in the DFNB31 gene. In Spain, USH2A and GPR98 are responsible for 95.8% and 5.2% of USH2 mutated cases, respectively. DFNB31 plays a minor role in the Spanish population. There was a group of patients in whom no mutation was found. These findings confirm the importance of including at least GPR98 analysis for comprehensive USH2 molecular diagnosis.

  20. [Clinical investigation and mutation analysis of a child with citrin deficiency complicated with purpura, convulsive seizures and methioninemia].

    PubMed

    Wen, Peng-qiang; Wang, Guo-bing; Chen, Zhan-ling; Liu, Xiao-hong; Cui, Dong; Shang, Yue; Li, Cheng-rong

    2013-12-01

    To analyze the clinical features and SLC25A13 gene mutations of a child with citrin deficiency complicated with purpura, convulsive seizures and methioninemia. The patient was subjected to physical examination and routine laboratory tests. Blood amino acids and acylcarnitines, and urine organic acids and galactose were analyzed respectively with tandem mass spectrometry and gas chromatographic mass spectrometry. SLC25A13 gene mutation screening was conducted by high resolution melt (HRM) analysis. The petechiae on the patient's face and platelet count (27×10(9)/L, reference range 100×10(9)/L-300×10(9)/L) supported the diagnosis of immunologic thrombocytopenic purpura (ITP). Laboratory tests found that the patient have abnormal coagulation, cardiac enzyme, liver function and liver enzymes dysfunction. Tandem mass spectrometry also found methionine to be increased (286 μmol/L, reference ranges 8-35 μmol/L). The patient did not manifest any galactosemia, citrullinemia and tyrosinemia. Analysis of SLC25A13 gene mutation found that the patient has carried IVS16ins3kb, in addition with abnormal HRM result for exon 6. Direct sequencing of exon 6 revealed a novel mutation c.495delA. The same mutation was not detected in 100 unrelated healthy controls. Further analysis of her family has confirmed that the c.495delA mutation has derived from her farther, and that the IVS16ins3kb was derived from her mother. The clinical features and metabolic spectrum of citrin deficiency can be variable. The poor prognosis and severity of clinical symptoms of the patient may be attributed to the novel c.495delA mutation.

  1. PURA syndrome: clinical delineation and genotype-phenotype study in 32 individuals with review of published literature

    PubMed Central

    Reijnders, Margot R F; Janowski, Robert; Alvi, Mohsan; Self, Jay E; van Essen, Ton J; Vreeburg, Maaike; Rouhl, Rob P W; Stevens, Servi J C; Stegmann, Alexander P A; Schieving, Jolanda; Pfundt, Rolph; van Dijk, Katinke; Smeets, Eric; Stumpel, Connie T R M; Bok, Levinus A; Cobben, Jan Maarten; Engelen, Marc; Mansour, Sahar; Whiteford, Margo; Chandler, Kate E; Douzgou, Sofia; Cooper, Nicola S; Tan, Ene-Choo; Foo, Roger; Lai, Angeline H M; Rankin, Julia; Green, Andrew; Lönnqvist, Tuula; Isohanni, Pirjo; Williams, Shelley; Ruhoy, Ilene; Carvalho, Karen S; Dowling, James J; Lev, Dorit L; Sterbova, Katalin; Lassuthova, Petra; Neupauerová, Jana; Waugh, Jeff L; Keros, Sotirios; Clayton-Smith, Jill; Smithson, Sarah F; Brunner, Han G; van Hoeckel, Ceciel; Anderson, Mel; Clowes, Virginia E; Siu, Victoria Mok; DDD study, The; Selber, Paulo; Leventer, Richard J; Nellaker, Christoffer; Niessing, Dierk; Hunt, David; Baralle, Diana

    2018-01-01

    Background De novo mutations in PURA have recently been described to cause PURA syndrome, a neurodevelopmental disorder characterised by severe intellectual disability (ID), epilepsy, feeding difficulties and neonatal hypotonia. Objectives To delineate the clinical spectrum of PURA syndrome and study genotype-phenotype correlations. Methods Diagnostic or research-based exome or Sanger sequencing was performed in individuals with ID. We systematically collected clinical and mutation data on newly ascertained PURA syndrome individuals, evaluated data of previously reported individuals and performed a computational analysis of photographs. We classified mutations based on predicted effect using 3D in silico models of crystal structures of Drosophila-derived Pur-alpha homologues. Finally, we explored genotype-phenotype correlations by analysis of both recurrent mutations as well as mutation classes. Results We report mutations in PURA (purine-rich element binding protein A) in 32 individuals, the largest cohort described so far. Evaluation of clinical data, including 22 previously published cases, revealed that all have moderate to severe ID and neonatal-onset symptoms, including hypotonia (96%), respiratory problems (57%), feeding difficulties (77%), exaggerated startle response (44%), hypersomnolence (66%) and hypothermia (35%). Epilepsy (54%) and gastrointestinal (69%), ophthalmological (51%) and endocrine problems (42%) were observed frequently. Computational analysis of facial photographs showed subtle facial dysmorphism. No strong genotype-phenotype correlation was identified by subgrouping mutations into functional classes. Conclusion We delineate the clinical spectrum of PURA syndrome with the identification of 32 additional individuals. The identification of one individual through targeted Sanger sequencing points towards the clinical recognisability of the syndrome. Genotype-phenotype analysis showed no significant correlation between mutation classes and disease severity. PMID:29097605

  2. Germline Mutations of BRCA1 and BRCA2 in Korean Ovarian Cancer Patients: Finding Founder Mutations.

    PubMed

    Choi, Min Chul; Heo, Jin-Hyung; Jang, Ja-Hyun; Jung, Sang Geun; Park, Hyun; Joo, Won Duk; Lee, Chan; Lee, Je Ho; Lee, Jun Mo; Hwang, Yoon Young; Kim, Seung Jo

    2015-10-01

    To investigate and analyze the BRCA mutations in Korean ovarian cancer patients with or without family history and to find founder mutations in this group. One hundred two patients who underwent a staging operation for pathologically proven epithelial cancer between January 2013 and December 2014 were enrolled. Thirty-two patients declined to analyze BRCA1/2 gene alterations after genetic counseling and pedigree analysis. Lymphocyte specimens from peripheral blood were assessed for BRCA1/2 by direct sequencing. BRCA genetic test results of 70 patients were available. Eighteen BRCA1/2 mutations and 17 unclassified variations (UVs) were found. Five of the BRCA1/2 mutations and 4 of the UVs were not reported in the Breast Cancer Information Core database. One BRCA2 UV (8665_8667delGGA) was strongly suspicious to be a deleterious mutation. BRCA1/2 mutations were identified in 11 (61.1%) of 18 patients with a family history and in 7 (13.5%) of 52 patients without a family history.Candidates for founder mutations in Korean ovarian cancer patients were assessed among 39 BRCA1/2 mutations from the present study and from literature reviews. The analysis showed that 1041_1043delAGCinsT (n = 4; 10.2%) and 3746insA (n = 4; 10.2%) were possible BRCA1 founder mutations. Only one of the BRCA2 mutations (5804_5807delTTAA) was repeated twice (n = 2; 5.1%). The prevalence of BRCA1/2 mutations in Korean ovarian cancer patients irrespective of the family history was significantly higher than previously reported. Possible founder mutations in Korean ovarian cancer patients were identified.

  3. Spectrum of rhodopsin mutations in Korean patients with retinitis pigmentosa

    PubMed Central

    Kim, Kwang Joong; Kim, Cinoo; Bok, Jeong; Kim, Kyung-Seon; Lee, Eun-Ju; Park, Sung Pyo; Chung, Hum; Han, Bok-Ghee; Kim, Hyung-Lae; Kimm, Kuchan; Yu, Hyeong Gon

    2011-01-01

    Purpose To determine the spectrum and frequency of rhodopsin gene (RHO) mutations in Korean patients with retinitis pigmentosa (RP) and to characterize genotype–phenotype correlations in patients with mutations. Methods The RHO mutations were screened by direct sequencing, and mutation prevalence was measured in patients and controls. The impact of missense mutations to RP was predicted by segregation analysis, peptide sequence alignment, and in silico analysis. The severity of disease in patients with the missense mutations was compared by visual acuity, electroretinography, optical coherence tomography, and kinetic visual field testing. Results Five heterozygous mutations were identified in six of 302 probands with RP, including a novel mutation (c.893C>A, p.A298D) and four known mutations (c.50C>T, p.T17M; c.533A>G, p.Y178C; c.888G>T, p.K296N; and c.1040C>T, p.P347L). The allele frequency of missense mutations was measured in 114 ethnically matched controls. p.A298D, newly identified in a sporadic patient, had never been found in controls and was predicted to be pathogenic. Among the patients with the missense mutations, we observed the most severe phenotype in patients with p.P347L, less severe phenotypes in patients with p.Y178C or p.A298D, and a relatively moderate phenotype in a patient with p.T17M. Conclusions The results reveal the spectrum of RHO mutations in Korean RP patients and clinical features that vary according to mutations. Our findings will be useful for understanding these genetic spectra and the genotype–phenotype correlations and will therefore help with predicting disease prognosis and facilitating the development of gene therapy. PMID:21677794

  4. Epidermolysis bullosa with congenital pyloric atresia: novel mutations in the beta 4 integrin gene (ITGB4) and genotype/phenotype correlations.

    PubMed

    Nakano, A; Pulkkinen, L; Murrell, D; Rico, J; Lucky, A W; Garzon, M; Stevens, C A; Robertson, S; Pfendner, E; Uitto, J

    2001-05-01

    Epidermolysis bullosa with pyloric atresia (EB-PA: OMIM 226730), also known as Carmi syndrome, is a rare autosomal recessive genodermatosis that manifests with neonatal mucocutaneous fragility associated with congenital pyloric atresia. The disease is frequently lethal within the first year, but nonlethal cases have been reported. Mutations in the genes encoding subunit polypeptides of the alpha 6 beta 4 integrin (ITGA6 and ITGB4) have been demonstrated in EB-PA patients. To extend the repertoire of mutations and to identify genotype-phenotype correlations, we examined seven new EB-PA families, four with lethal and three with nonlethal disease variants. DNA from patients was screened for mutations using heteroduplex analysis followed by nucleotide sequencing of PCR products spanning all beta 4 integrin-coding sequences. Mutation analysis disclosed 12 distinct mutations, 11 of them novel. Four mutations predicted a premature termination codon as a result of nonsense mutations or small out-of-frame insertions or deletions, whereas seven were missense mutations. This brings the total number of distinct ITGB4 mutations to 33. The mutation database indicates that premature termination codons are associated predominantly with the lethal EB-PA variants, whereas missense mutations are more prevalent in nonlethal forms. However, the consequences of the missense mutations are position dependent, and substitutions of highly conserved amino acids may have lethal consequences. In general, indirect immunofluorescence studies of affected skin revealed negative staining for beta 4 integrin in lethal cases and positive, but attenuated, staining in nonlethal cases and correlated with clinical phenotype. The data on specific mutations in EB-PA patients allows prenatal testing and preimplantation genetic diagnosis in families at risk.

  5. A novel frameshift GRN mutation results in frontotemporal lobar degeneration with a distinct clinical phenotype in two siblings: case report and literature review.

    PubMed

    Hosaka, Takashi; Ishii, Kazuhiro; Miura, Takeshi; Mezaki, Naomi; Kasuga, Kensaku; Ikeuchi, Takeshi; Tamaoka, Akira

    2017-09-15

    Progranulin gene (GRN) mutations are major causes of frontotemporal lobar degeneration. To date, 68 pathogenic GRN mutations have been identified. However, very few of these mutations have been reported in Asians. Moreover, some GRN mutations manifest with familial phenotypic heterogeneity. Here, we present a novel GRN mutation resulting in frontotemporal lobar degeneration with a distinct clinical phenotype, and we review reports of GRN mutations associated with familial phenotypic heterogeneity. We describe the case of a 74-year-old woman with left frontotemporal lobe atrophy who presented with progressive anarthria and non-fluent aphasia. Her brother had been diagnosed with corticobasal syndrome (CBS) with right-hand limb-kinetic apraxia, aphasia, and a similar pattern of brain atrophy. Laboratory blood examinations did not reveal abnormalities that could have caused cognitive dysfunction. In the cerebrospinal fluid, cell counts and protein concentrations were within normal ranges, and concentrations of tau protein and phosphorylated tau protein were also normal. Since similar familial cases due to mutation of GRN and microtubule-associated protein tau gene (MAPT) were reported, we performed genetic analysis. No pathological mutations of MAPT were identified, but we identified a novel GRN frameshift mutation (c.1118_1119delCCinsG: p.Pro373ArgX37) that resulted in progranulin haploinsufficiency. This is the first report of a GRN mutation associated with familial phenotypic heterogeneity in Japan. Literature review of GRN mutations associated with familial phenotypic heterogeneity revealed no tendency of mutation sites. The role of progranulin has been reported in this and other neurodegenerative diseases, and the analysis of GRN mutations may lead to the discovery of a new therapeutic target.

  6. Spectrum of SMPD1 mutations in Asian-Indian patients with acid sphingomyelinase (ASM)-deficient Niemann-Pick disease.

    PubMed

    Ranganath, Prajnya; Matta, Divya; Bhavani, Gandham SriLakshmi; Wangnekar, Savita; Jain, Jamal Mohammed Nurul; Verma, Ishwar C; Kabra, Madhulika; Puri, Ratna Dua; Danda, Sumita; Gupta, Neerja; Girisha, Katta M; Sankar, Vaikom H; Patil, Siddaramappa J; Ramadevi, Akella Radha; Bhat, Meenakshi; Gowrishankar, Kalpana; Mandal, Kausik; Aggarwal, Shagun; Tamhankar, Parag Mohan; Tilak, Preetha; Phadke, Shubha R; Dalal, Ashwin

    2016-10-01

    Acid sphingomyelinase (ASM)-deficient Niemann-Pick disease is an autosomal recessive lysosomal storage disorder caused by biallelic mutations in the SMPD1 gene. To date, around 185 mutations have been reported in patients with ASM-deficient NPD world-wide, but the mutation spectrum of this disease in India has not yet been reported. The aim of this study was to ascertain the mutation profile in Indian patients with ASM-deficient NPD. We sequenced SMPD1 in 60 unrelated families affected with ASM-deficient NPD. A total of 45 distinct pathogenic sequence variants were found, of which 14 were known and 31 were novel. The variants included 30 missense, 4 nonsense, and 9 frameshift (7 single base deletions and 2 single base insertions) mutations, 1 indel, and 1 intronic duplication. The pathogenicity of the novel mutations was inferred with the help of the mutation prediction software MutationTaster, SIFT, Polyphen-2, PROVEAN, and HANSA. The effects of the identified sequence variants on the protein structure were studied using the structure modeled with the help of the SWISS-MODEL workspace program. The p. (Arg542*) (c.1624C>T) mutation was the most commonly identified mutation, found in 22% (26 out of 120) of the alleles tested, but haplotype analysis for this mutation did not identify a founder effect for the Indian population. To the best of our knowledge, this is the largest study on mutation analysis of patients with ASM-deficient Niemann-Pick disease reported in literature and also the first study on the SMPD1 gene mutation spectrum in India. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Multiple endocrine neoplasia type 1: analysis of germline MEN1 mutations in the Italian multicenter MEN1 patient database.

    PubMed

    Marini, Francesca; Giusti, Francesca; Fossi, Caterina; Cioppi, Federica; Cianferotti, Luisella; Masi, Laura; Boaretto, Francesca; Zovato, Stefania; Cetani, Filomena; Colao, Annamaria; Davì, Maria Vittoria; Faggiano, Antongiulio; Fanciulli, Giuseppe; Ferolla, Piero; Ferone, Diego; Loli, Paola; Mantero, Franco; Marcocci, Claudio; Opocher, Giuseppe; Beck-Peccoz, Paolo; Persani, Luca; Scillitani, Alfredo; Guizzardi, Fabiana; Spada, Anna; Tomassetti, Paola; Tonelli, Francesco; Brandi, Maria Luisa

    2018-03-01

    Multiple endocrine neoplasia type 1 (MEN1) is caused by germline inactivating mutations of the MEN1 gene. Currently, no direct genotype-phenotype correlation is identified. We aim to analyze MEN1 mutation site and features, and possible correlations between the mutation type and/or the affected menin functional domain and clinical presentation in patients from the Italian multicenter MEN1 database, one of the largest worldwide MEN1 mutation series published to date. The study included the analysis of MEN1 mutation profile in 410 MEN1 patients [370 familial cases from 123 different pedigrees (48 still asymptomatic at the time of this study) and 40 single cases]. We identified 99 different mutations: 41 frameshift [small intra-exon deletions (28) or insertions (13)], 13 nonsense, 26 missense and 11 splicing site mutations, 4 in-frame small deletions, and 4 intragenic large deletions spanning more than one exon. One family had two different inactivating MEN1 mutations on the same allele. Gastro-entero-pancreatic tumors resulted more frequent in patients with a nonsense mutation, and thoracic neuroendocrine tumors in individuals bearing a splicing-site mutation. Our data regarding mutation type frequency and distribution are in accordance with previously published data: MEN1 mutations are scattered through the entire coding region, and truncating mutations are the most common in MEN1 syndrome. A specific direct correlation between MEN1 genotype and clinical phenotype was not found in all our families, and wide intra-familial clinical variability and variable disease penetrance were both confirmed, suggesting a role for modifying, still undetermined, factors, explaining the variable MEN1 tumorigenesis.

  8. HISTORY OF GERM CELL MUTAGENESIS

    EPA Science Inventory

    Much of the early work on germ cell mutation analysis was conducted with nonmammalian species, but this historical overview will begin with the rodent studies that provided quantitative data on induced mutations. The initial studies of mutation induction utilized the newly develo...

  9. Do males pay for sex? Sex-specific selection coefficients suggest not.

    PubMed

    Prokop, Zofia M; Prus, Monika A; Gaczorek, Tomasz S; Sychta, Karolina; Palka, Joanna K; Plesnar-Bielak, Agata; Skarboń, Magdalena

    2017-03-01

    Selection acting on males can reduce mutation load of sexual relative to asexual populations, thus mitigating the twofold cost of sex, provided that it seeks and destroys the same mutations as selection acting on females, but with higher efficiency. This could happen due to sexual selection-a potent evolutionary force that in most systems predominantly affects males. We used replicate populations of red flour beetles (Tribolium castaneum) to study sex-specific selection against deleterious mutations introduced with ionizing radiation. We found no evidence for selection being stronger in males than in females; in fact, we observed a nonsignificant trend in the opposite direction. This suggests that selection on males does not reduce mutation load below the level expected under the (hypothetical) scenario of asexual reproduction. Additionally, we employed a novel approach, based on a simple model, to quantify the relative contributions of sexual and offspring viability selection to the overall selection observed in males. We found them to be similar in magnitude; however, only the offspring viability component was statistically significant. In summary, we found no support for the hypothesis that selection on males in general, and sexual selection in particular, contributes to the evolutionary maintenance of sex. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  10. Mosaicism for the FMR1 gene influences adaptive skills development in fragile X-affected males

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, I.L.; Sudhalter, V.; Nolin, S.L.

    Fragile X syndrome is one of the most common forms of inherited mental retardation, and the first of a new class of genetic disorders associated with expanded trinucleotide repeats. Previously, we found that about 41% of affected males are mosaic for this mutation in that some of their blood cells have an active fragile X gene and others do not. It has been hypothesized that these mosaic cases should show higher levels of functioning than those who have only the inactive full mutation gene, but previous studies have provided negative or equivocal results. In the present study, the cross-sectional developmentmore » of communication, self-care, socialization, and motor skills was studied in 46 males with fragile X syndrome under age 20 years as a function of two variables: age and the presence or absence of mosaicism. The rate of adaptive skills development was 2-4 times as great in mosaic cases as in full mutation cases. There was also a trend for cases with autism to be more prevalent in the full-mutation group. These results have implications for prognosis, for the utility of gene or protein replacement therapies for this disorder, and for understanding the association between mental retardation, developmental disorders, and fragile X syndrome. 21 refs., 3 figs.« less

  11. Mutational Biases and GC-Biased Gene Conversion Affect GC Content in the Plastomes of Dendrobium Genus

    PubMed Central

    Niu, Zhitao; Xue, Qingyun; Wang, Hui; Xie, Xuezhu; Zhu, Shuying; Liu, Wei; Ding, Xiaoyu

    2017-01-01

    The variation of GC content is a key genome feature because it is associated with fundamental elements of genome organization. However, the reason for this variation is still an open question. Different kinds of hypotheses have been proposed to explain the variation of GC content during genome evolution. However, these hypotheses have not been explicitly investigated in whole plastome sequences. Dendrobium is one of the largest genera in the orchid species. Evolutionary studies of the plastomic organization and base composition are limited in this genus. In this study, we obtained the high-quality plastome sequences of D. loddigesii and D. devonianum. The comparison results showed a nearly identical organization in Dendrobium plastomes, indicating that the plastomic organization is highly conserved in Dendrobium genus. Furthermore, the impact of three evolutionary forces—selection, mutational biases, and GC-biased gene conversion (gBGC)—on the variation of GC content in Dendrobium plastomes was evaluated. Our results revealed: (1) consistent GC content evolution trends and mutational biases in single-copy (SC) and inverted repeats (IRs) regions; and (2) that gBGC has influenced the plastome-wide GC content evolution. These results suggest that both mutational biases and gBGC affect GC content in the plastomes of Dendrobium genus. PMID:29099062

  12. Autophagy and Oxidative Stress in Gliomas with IDH1 Mutations

    PubMed Central

    Gilbert, Misty R.; Liu, Yinxing; Neltner, Janna; Pu, Hong; Morris, Andrew; Sunkara, Manjula; Pittman, Thomas; Kyprianou, Natasha; Horbinski, Craig

    2013-01-01

    IDH1 mutations in gliomas associate with longer survival. Prooxidant and antiproliferative effects of IDH1 mutations and its D-2-hydroxyglutarate (2-HG) product have been described in vitro, but inconsistently observed. It is also unclear whether overexpression of mutant IDH1 in wild-type cells accurately phenocopies the effects of endogenous IDH1-mutations on tumor apoptosis and autophagy. Herein we investigated the effects of 2-HG and mutant IDH1 overexpression on proliferation, apoptosis, oxidative stress, and autophagy in IDH1 wild-type glioma cells, and compared those results with patient-derived tumors. 2-HG reduced viability and proliferation of U87MG and LN18 cells, triggered apoptosis in LN18 cells, and autophagy in U87MG cells. In vitro studies and flank xenografts of U87MG cells overexpressing R132H IDH1 exhibited increased oxidative stress, including increases of both manganese superoxide dismutase (MnSOD) and p62. Patient-derived IDH1-mutant tumors showed no significant differences in apoptosis or autophagy, but showed p62 accumulation and actually trended toward reduced MnSOD expression. These data indicate that mutant IDH1 and 2-HG can induce oxidative stress, autophagy, and apoptosis, but these effects vary greatly according to cell type. PMID:24150401

  13. Stability of ALS-related Superoxide Dismutase Protein variants

    NASA Astrophysics Data System (ADS)

    Lusebrink, Daniel; Plotkin, Steven

    Superoxide dismutase (SOD1) is a metal binding, homodimeric protein, whose misfolding is implicated in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Monomerization is believed to be a key step in the propagation of the disease. The dimer stability is often difficult to measure experimentally however, because it is entangled with protein unfolding and metal loss. We thus computationally investigate the dimer stability of mutants of SOD1 known to be associated with ALS. We report on systematic trends in dimer stability, as well as intriguing allosteric communication between mutations and the dimer interface. We study the dimer stabilities in molecular dynamics simulations and obtain the binding free energies of the dimers from pulling essays. Mutations are applied in silicoand we compare the differences of binding free energies compared to the wild type.

  14. Colon and Endometrial Cancers with Mismatch Repair Deficiency can Arise from Somatic, Rather Than Germline, Mutations

    PubMed Central

    Haraldsdottir, Sigurdis; Hampel, Heather; Tomsic, Jerneja; Frankel, Wendy L.; Pearlman, Rachel; de la Chapelle, Albert; Pritchard, Colin C.

    2014-01-01

    Background & Aims Patients with Lynch syndrome carry germline mutations in single alleles of genes encoding the MMR proteins MLH1, MSH2, MSH6 and PMS2; when the second allele becomes mutated, cancer can develop. Increased screening for Lynch syndrome has identified patients with tumors that have deficiency in MMR, but no germline mutations in genes encoding MMR proteins. We investigated whether tumors with deficient MMR had acquired somatic mutations in patients without germline mutations in MMR genes using next-generation sequencing. Methods We analyzed blood and tumor samples from 32 patients with colorectal or endometrial cancer who participated in Lynch syndrome screening studies in Ohio and were found to have tumors with MMR deficiency (based on microsatellite instability and/or absence of MMR proteins in immunohistochemical analysis, without hypermethylation of MLH1), but no germline mutations in MMR genes. Tumor DNA was sequenced for MLH1, MSH2, MSH6, PMS2, EPCAM, POLE and POLD1 with ColoSeq and mutation frequencies were established. Results Twenty-two of 32 patients (69%) were found to have two somatic (tumor) mutations in MMR genes encoding proteins that were lost from tumor samples, based on immunohistochemistry. Of the 10 tumors without somatic mutations in MMR genes, 3 had somatic mutations with possible loss of heterozygosity that could lead to MMR deficiency, 6 were found to be false-positive results (19%), and 1 had no mutations known to be associated with MMR deficiency. All of the tumors found to have somatic MMR mutations were of the hypermutated phenotype (>12 mutations/Mb); 6 had mutation frequencies >200 per Mb, and 5 of these had somatic mutations in POLE, which encodes a DNA polymerase. Conclusions Some patients are found to have tumors with MMR deficiency during screening for Lynch syndrome, yet have no identifiable germline mutations in MMR genes. We found that almost 70% of these patients acquire somatic mutations in MMR genes, leading to a hypermutated phenotype of tumor cells. Patients with colon or endometrial cancers with MMR deficiency not explained by germline mutations might undergo analysis for tumor mutations in MMR genes, to guide future surveillance guidelines. PMID:25194673

  15. Rapid diagnosis of pyrazinamide-resistant multidrug-resistant tuberculosis using a molecular-based diagnostic algorithm.

    PubMed

    Simons, S O; van der Laan, T; Mulder, A; van Ingen, J; Rigouts, L; Dekhuijzen, P N R; Boeree, M J; van Soolingen, D

    2014-10-01

    There is an urgent need for rapid and accurate diagnosis of pyrazinamide-resistant multidrug-resistant tuberculosis (MDR-TB). No diagnostic algorithm has been validated in this population. We hypothesized that pncA sequencing added to rpoB mutation analysis can accurately identify patients with pyrazinamide-resistant MDR-TB. We identified from the Dutch national database (2007-11) patients with a positive Mycobacterium tuberculosis culture containing a mutation in the rpoB gene. In these cases, we prospectively sequenced the pncA gene. Results from the rpoB and pncA mutation analysis (pncA added to rpoB) were compared with phenotypic susceptibility testing results to rifampicin, isoniazid and pyrazinamide (reference standard) using the Mycobacterial Growth Indicator Tube 960 system. We included 83 clinical M. tuberculosis isolates containing rpoB mutations in the primary analysis. Rifampicin resistance was seen in 72 isolates (87%), isoniazid resistance in 73 isolates (88%) and MDR-TB in 65 isolates (78%). Phenotypic reference testing identified pyrazinamide-resistant MDR-TB in 31 isolates (48%). Sensitivity of pncA sequencing added to rpoB mutation analysis for detecting pyrazinamide-resistant MDR-TB was 96.8%, the specificity was 94.2%, the positive predictive value was 90.9%, the negative predictive value was 98.0%, the positive likelihood was 16.8 and the negative likelihood was 0.03. In conclusion, pyrazinamide-resistant MDR-TB can be accurately detected using pncA sequencing added to rpoB mutation analysis. We propose to include pncA sequencing in every isolate with an rpoB mutation, allowing for stratification of MDR-TB treatment according to pyrazinamide susceptibility. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  16. Multiplex screening for RB1 germline mutations in 106 patients with hereditary retinoblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohmann, D.R.; Brandt, B.; Passarge, E.

    1994-09-01

    The identification of germline mutations in the retinoblastoma susceptibility gene (RB1) is important for genetic counseling in hereditary retinoblastoma. Due to the complex genomic organization of this gene and the heterogeneity of mutations, efficient screening procedures are important for rapid mutation detection. We have developed methods based on simultaneous analysis of multiple regions of this gene in an ABI automated DNA fragment analyzer to examine 106 patients with hereditary retinoblastoma in which no alteration was identified by Southern blot hybridization. Primers for the amplification of all 27 exons of the RB1 gene as well as the promoter and poly(A) signalmore » sequences were labelled with distinct fluorescent dyes (FAM, HEX, TAMRA) to enable simultaneous electrophoretic analysis of PCR products with similar mobility. PCR fragments distinguishable by size or color were co-amplified by multiplex PCR and analyzed for length by GENESCAN analysis. Using this approach, small deletions ranging from 1 bp to 22 bp were identified in 24 patients (23%). Short sequence repeats or polypyrimidine runs were present in the vicinity of most of these deletions. In 4 patients (4%), insertions from 1 bp to 4 bp were found. The majority of length mutations resulted in a truncated gene product due to frameshift and premature termination. No mutation was identified in exons 25 to 27 possibly indicating that the encoded protein domains have minor functional importance. In order to screen for base substitutions that are not detectable by fragment length analysis, we adapted heteroduplex analysis for the use in the DNA fragment analyzer. During the optimization of this method we detected 10 single base substitutions most of which generated stop codons. Intriguingly, two identical missense mutations were identified in two unrelated families with a low-penetrance phenotype.« less

  17. K-Ras mutation detection in liquid biopsy and tumor tissue as prognostic biomarker in patients with pancreatic cancer: a systematic review with meta-analysis.

    PubMed

    Li, Tao; Zheng, Yuanting; Sun, Hong; Zhuang, Rongyuan; Liu, Jing; Liu, Tianshu; Cai, Weimin

    2016-07-01

    K-Ras gene mutations have been found in most pancreatic cancers; however, conflicting data on the prognostic value of K-Ras mutations in pancreatic cancer have been published. We conducted a meta-analysis to assess its prognostic significance. Literature searches of PubMed, EMBASE, Cochrane Library, Web of Science and Google Scholar were performed through December 2015 to identify publications exploring the association of K-Ras mutation with overall survival. Forty eligible studies involving 3427 patients with pancreatic cancer were included in the present meta-analysis. Our analysis showed a hazard ratio (HR) of negative association with survival of 1.61 [95 % confidence interval (CI) 1.36-1.90; p < 0.01] in K-Ras mutant pancreatic cancer patients. In subgroup analyses, K-Ras mutations detected in tumor tissues and in liquid biopsies had HRs of 1.37 (95 % CI 1.20-1.57; p < 0.01) and 3.16 (95 % CI 2.1-4.71; p < 0.01), respectively. In addition, the HR was higher when K-Ras mutations were detected in fresh frozen samples (HR = 2.01, 95 % CI 1.28-3.16, p = 0.002) than in formalin-fixed, paraffin-embedded (FFPE) samples (HR = 1.29, 95 % CI 1.12-1.49, p < 0.01). Though K-Ras alterations are more frequent among non-East Asian individuals than East Asian individuals, there were no significant differences in HRs of survival between the two ethnic subgroups. In conclusion, this meta-analysis suggests that K-Ras mutations are associated with a worse overall survival in pancreatic cancer patients, especially when mutations are detected in liquid biopsies or fresh frozen tumor tissue samples.

  18. High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes.

    PubMed

    Lochlainn, Seosamh Ó; Amoah, Stephen; Graham, Neil S; Alamer, Khalid; Rios, Juan J; Kurup, Smita; Stoute, Andrew; Hammond, John P; Østergaard, Lars; King, Graham J; White, Phillip J; Broadley, Martin R

    2011-12-08

    Targeted Induced Loci Lesions IN Genomes (TILLING) is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM) analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs) and insertion/deletions (IN/DELs) enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations) from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.

  19. High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes

    PubMed Central

    2011-01-01

    Background Targeted Induced Loci Lesions IN Genomes (TILLING) is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM) analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs) and insertion/deletions (IN/DELs) enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. Results We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Conclusions Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations) from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service. PMID:22152063

  20. HFE gene mutations in patients with primary iron overload: is there a significant improvement in molecular diagnosis yield with HFE sequencing?

    PubMed

    Santos, Paulo C J L; Pereira, Alexandre C; Cançado, Rodolfo D; Schettert, Isolmar T; Sobreira, Tiago J P; Oliveira, Paulo S L; Hirata, Rosario D C; Hirata, Mario H; Figueiredo, Maria Stella; Chiattone, Carlos S; Krieger, Jose E; Guerra-Shinohara, Elvira M

    2010-12-15

    Rare HFE variants have been shown to be associated with hereditary hemochromatosis (HH), an iron overload disease. The low frequency of the HFE p.C282Y mutation in HH-affected Brazilian patients may suggest that other HFE-related mutations may also be implicated in the pathogenesis of HH in this population. The main aim was to screen for new HFE mutations in Brazilian individuals with primary iron overload and to investigate their relationship with HH. Fifty Brazilian patients with primary iron overload (transferrin saturation>50% in females and 60% in males) were selected. Subsequent bidirectional sequencing for each HFE exon was performed. The effect of HFE mutations on protein structure were analyzed by molecular dynamics simulation and free binding energy calculations. p.C282Y in homozygosis or in heterozygosis with p.H63D were the most frequent genotypic combinations associated with HH in our sample population (present in 17 individuals, 34%). Thirty-six (72.0%) out of the 50 individuals presented at least one HFE mutation. The most frequent genotype associated with HH was the homozygous p.C282Y mutation (n=11, 22.0%). One novel mutation (p.V256I) was indentified in heterozygosis with the p.H63D mutation. In silico modeling analysis of protein behavior indicated that the p.V256I mutation does not reduce the binding affinity between HFE and β2-microglobulin (β2M) in the same way the p.C282Y mutation does compared with the native HFE protein. In conclusion, screening of HFE through direct sequencing, as compared to p.C282Y/p.H63D genotyping, was not able to increase the molecular diagnosis yield of HH. The novel p.V256I mutation could not be implicated in the molecular basis of the HH phenotype, although its role cannot be completely excluded in HH-phenotype development. Our molecular modeling analysis can help in the analysis of novel, previously undescribed, HFE mutations. Copyright © 2010 Elsevier Inc. All rights reserved.

Top