Sample records for mutational processes operative

  1. Clock-like mutational processes in human somatic cells

    PubMed Central

    Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; Sale, Julian E.; Campbell, Peter J.; Nik-Zainal, Serena; Stratton, Michael R.

    2016-01-01

    During the course of a lifetime somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell’s genome. Some processes generate mutations throughout life at a constant rate in all individuals and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutation rates in different tissues. However, their mutation rates are not correlated indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This study provides the first survey of clock-like mutational processes operative in human somatic cells. PMID:26551669

  2. Clock-like mutational processes in human somatic cells

    DOE PAGES

    Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; ...

    2015-11-09

    During the course of a lifetime, somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell's genome. Some processes generate mutations throughout life at a constant rate in all individuals, and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutationmore » rates in different tissues. However, their mutation rates are not correlated, indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This paper provides the first survey of clock-like mutational processes operating in human somatic cells.« less

  3. The topography of mutational processes in breast cancer genomes.

    PubMed

    Morganella, Sandro; Alexandrov, Ludmil B; Glodzik, Dominik; Zou, Xueqing; Davies, Helen; Staaf, Johan; Sieuwerts, Anieta M; Brinkman, Arie B; Martin, Sancha; Ramakrishna, Manasa; Butler, Adam; Kim, Hyung-Yong; Borg, Åke; Sotiriou, Christos; Futreal, P Andrew; Campbell, Peter J; Span, Paul N; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E; Thompson, Alastair M; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W M; Børresen-Dale, Anne-Lise; Richardson, Andrea L; Kong, Gu; Thomas, Gilles; Sale, Julian; Rada, Cristina; Stratton, Michael R; Birney, Ewan; Nik-Zainal, Serena

    2016-05-02

    Somatic mutations in human cancers show unevenness in genomic distribution that correlate with aspects of genome structure and function. These mutations are, however, generated by multiple mutational processes operating through the cellular lineage between the fertilized egg and the cancer cell, each composed of specific DNA damage and repair components and leaving its own characteristic mutational signature on the genome. Using somatic mutation catalogues from 560 breast cancer whole-genome sequences, here we show that each of 12 base substitution, 2 insertion/deletion (indel) and 6 rearrangement mutational signatures present in breast tissue, exhibit distinct relationships with genomic features relating to transcription, DNA replication and chromatin organization. This signature-based approach permits visualization of the genomic distribution of mutational processes associated with APOBEC enzymes, mismatch repair deficiency and homologous recombinational repair deficiency, as well as mutational processes of unknown aetiology. Furthermore, it highlights mechanistic insights including a putative replication-dependent mechanism of APOBEC-related mutagenesis.

  4. The topography of mutational processes in breast cancer genomes

    DOE PAGES

    Morganella, Sandro; Alexandrov, Ludmil B.; Glodzik, Dominik; ...

    2016-01-01

    Somatic mutations in human cancers show unevenness in genomic distribution that correlate with aspects of genome structure and function. These mutations are, however, generated by multiple mutational processes operating through the cellular lineage between the fertilized egg and the cancer cell, each composed of specific DNA damage and repair components and leaving its own characteristic mutational signature on the genome. Using somatic mutation catalogues from 560 breast cancer whole-genome sequences, here we show that each of 12 base substitution, 2 insertion/deletion (indel) and 6 rearrangement mutational signatures present in breast tissue, exhibit distinct relationships with genomic features relating to transcription,more » DNA replication and chromatin organization. This signature-based approach permits visualization of the genomic distribution of mutational processes associated with APOBEC enzymes, mismatch repair deficiency and homologous recombinational repair deficiency, as well as mutational processes of unknown aetiology. Lastly, it highlights mechanistic insights including a putative replication-dependent mechanism of APOBEC-related mutagenesis.« less

  5. Automatic Combination of Operators in a Genetic Algorithm to Solve the Traveling Salesman Problem.

    PubMed

    Contreras-Bolton, Carlos; Parada, Victor

    2015-01-01

    Genetic algorithms are powerful search methods inspired by Darwinian evolution. To date, they have been applied to the solution of many optimization problems because of the easy use of their properties and their robustness in finding good solutions to difficult problems. The good operation of genetic algorithms is due in part to its two main variation operators, namely, crossover and mutation operators. Typically, in the literature, we find the use of a single crossover and mutation operator. However, there are studies that have shown that using multi-operators produces synergy and that the operators are mutually complementary. Using multi-operators is not a simple task because which operators to use and how to combine them must be determined, which in itself is an optimization problem. In this paper, it is proposed that the task of exploring the different combinations of the crossover and mutation operators can be carried out by evolutionary computing. The crossover and mutation operators used are those typically used for solving the traveling salesman problem. The process of searching for good combinations was effective, yielding appropriate and synergic combinations of the crossover and mutation operators. The numerical results show that the use of the combination of operators obtained by evolutionary computing is better than the use of a single operator and the use of multi-operators combined in the standard way. The results were also better than those of the last operators reported in the literature.

  6. Automatic Combination of Operators in a Genetic Algorithm to Solve the Traveling Salesman Problem

    PubMed Central

    2015-01-01

    Genetic algorithms are powerful search methods inspired by Darwinian evolution. To date, they have been applied to the solution of many optimization problems because of the easy use of their properties and their robustness in finding good solutions to difficult problems. The good operation of genetic algorithms is due in part to its two main variation operators, namely, crossover and mutation operators. Typically, in the literature, we find the use of a single crossover and mutation operator. However, there are studies that have shown that using multi-operators produces synergy and that the operators are mutually complementary. Using multi-operators is not a simple task because which operators to use and how to combine them must be determined, which in itself is an optimization problem. In this paper, it is proposed that the task of exploring the different combinations of the crossover and mutation operators can be carried out by evolutionary computing. The crossover and mutation operators used are those typically used for solving the traveling salesman problem. The process of searching for good combinations was effective, yielding appropriate and synergic combinations of the crossover and mutation operators. The numerical results show that the use of the combination of operators obtained by evolutionary computing is better than the use of a single operator and the use of multi-operators combined in the standard way. The results were also better than those of the last operators reported in the literature. PMID:26367182

  7. Landscape of somatic mutations in 560 breast cancer whole-genome sequences

    DOE PAGES

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; ...

    2016-05-02

    Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less

  8. Landscape of somatic mutations in 560 breast cancer whole-genome sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan

    Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less

  9. Landscape of somatic mutations in 560 breast cancer whole genome sequences

    PubMed Central

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; Ramakrishna, Manasa; Glodzik, Dominik; Zou, Xueqing; Martincorena, Inigo; Alexandrov, Ludmil B.; Martin, Sancha; Wedge, David C.; Van Loo, Peter; Ju, Young Seok; Smid, Marcel; Brinkman, Arie B; Morganella, Sandro; Aure, Miriam R.; Lingjærde, Ole Christian; Langerød, Anita; Ringnér, Markus; Ahn, Sung-Min; Boyault, Sandrine; Brock, Jane E.; Broeks, Annegien; Butler, Adam; Desmedt, Christine; Dirix, Luc; Dronov, Serge; Fatima, Aquila; Foekens, John A.; Gerstung, Moritz; Hooijer, Gerrit KJ; Jang, Se Jin; Jones, David R.; Kim, Hyung-Yong; King, Tari A.; Krishnamurthy, Savitri; Lee, Hee Jin; Lee, Jeong-Yeon; Li, Yilong; McLaren, Stuart; Menzies, Andrew; Mustonen, Ville; O’Meara, Sarah; Pauporté, Iris; Pivot, Xavier; Purdie, Colin A.; Raine, Keiran; Ramakrishnan, Kamna; Rodríguez-González, F. Germán; Romieu, Gilles; Sieuwerts, Anieta M.; Simpson, Peter T; Shepherd, Rebecca; Stebbings, Lucy; Stefansson, Olafur A; Teague, Jon; Tommasi, Stefania; Treilleux, Isabelle; Van den Eynden, Gert G.; Vermeulen, Peter; Vincent-Salomon, Anne; Yates, Lucy; Caldas, Carlos; van’t Veer, Laura; Tutt, Andrew; Knappskog, Stian; Tan, Benita Kiat Tee; Jonkers, Jos; Borg, Åke; Ueno, Naoto T; Sotiriou, Christos; Viari, Alain; Futreal, P. Andrew; Campbell, Peter J; Span, Paul N.; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E.; Thompson, Alastair M.; Birney, Ewan; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W.M.; Børresen-Dale, Anne-Lise; Richardson, Andrea L.; Kong, Gu; Thomas, Gilles; Stratton, Michael R.

    2016-01-01

    We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer. PMID:27135926

  10. The landscape of cancer genes and mutational processes in breast cancer

    PubMed Central

    Stephens, Philip J.; Tarpey, Patrick S.; Davies, Helen; Loo, Peter Van; Greenman, Chris; Wedge, David C.; Nik-Zainal, Serena; Martin, Sancha; Varela, Ignacio; Bignell, Graham R.; Yates, Lucy R.; Papaemmanuil, Elli; Beare, David; Butler, Adam; Cheverton, Angela; Gamble, John; Hinton, Jonathan; Jia, Mingming; Jayakumar, Alagu; Jones, David; Latimer, Calli; Lau, King Wai; McLaren, Stuart; McBride, David J.; Menzies, Andrew; Mudie, Laura; Raine, Keiran; Rad, Roland; Chapman, Michael Spencer; Teague, Jon; Easton, Douglas; Langerød, Anita; OSBREAC; Lee, Ming Ta Michael; Shen, Chen-Yang; Tee, Benita Tan Kiat; Huimin, Bernice Wong; Broeks, Annegien; Vargas, Ana Cristina; Turashvili, Gulisa; Martens, John; Fatima, Aquila; Miron, Penelope; Chin, Suet-Feung; Thomas, Gilles; Boyault, Sandrine; Mariani, Odette; Lakhani, Sunil R.; van de Vijver, Marc; van ’t Veer, Laura; Foekens, John; Desmedt, Christine; Sotiriou, Christos; Tutt, Andrew; Caldas, Carlos; Reis-Filho, Jorge S.; Aparicio, Samuel A. J. R.; Salomon, Anne Vincent; Børresen-Dale, Anne-Lise; Richardson, Andrea L.; Campbell, Peter J.; Futreal, P. Andrew; Stratton, Michael R.

    2012-01-01

    All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis1, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease. PMID:22722201

  11. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma

    DOE PAGES

    Behjati, Sam; Tarpey, Patrick S.; Haase, Kerstin; ...

    2017-06-23

    Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation,more » we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. Lastly, it may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike.« less

  12. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behjati, Sam; Tarpey, Patrick S.; Haase, Kerstin

    Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation,more » we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. Lastly, it may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike.« less

  13. Processing closely spaced lesions during Nucleotide Excision Repair triggers mutagenesis in E. coli

    PubMed Central

    Isogawa, Asako; Fujii, Shingo

    2017-01-01

    It is generally assumed that most point mutations are fixed when damage containing template DNA undergoes replication, either right at the fork or behind the fork during gap filling. Here we provide genetic evidence for a pathway, dependent on Nucleotide Excision Repair, that induces mutations when processing closely spaced lesions. This pathway, referred to as Nucleotide Excision Repair-induced Mutagenesis (NERiM), exhibits several characteristics distinct from mutations that occur within the course of replication: i) following UV irradiation, NER-induced mutations are fixed much more rapidly (t ½ ≈ 30 min) than replication dependent mutations (t ½ ≈ 80–100 min) ii) NERiM specifically requires DNA Pol IV in addition to Pol V iii) NERiM exhibits a two-hit dose-response curve that suggests processing of closely spaced lesions. A mathematical model let us define the geometry (infer the structure) of the toxic intermediate as being formed when NER incises a lesion that resides in close proximity of another lesion in the complementary strand. This critical NER intermediate requires Pol IV / Pol II for repair, it is either lethal if left unrepaired or mutation-prone when repaired. Finally, NERiM is found to operate in stationary phase cells providing an intriguing possibility for ongoing evolution in the absence of replication. PMID:28686598

  14. Evolution of catalytic RNA in the laboratory

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F.

    1992-01-01

    We are interested in the biochemistry of existing RNA enzymes and in the development of RNA enzymes with novel catalytic function. The focal point of our research program has been the design and operation of a laboratory system for the controlled evolution of catalytic RNA. This system serves as working model of RNA-based life and can be used to explore the catalytic potential of RNA. Evolution requires the integration of three chemical processes: amplification, mutation, and selection. Amplification results in additional copies of the genetic material. Mutation operates at the level of genotype to introduce variability, this variability in turn being expressed as a range of phenotypes. Selection operates at the level of phenotype to reduce variability by excluding those individuals that do not conform to the prevailing fitness criteria. These three processes must be linked so that only the selected individuals are amplified, subject to mutational error, to produce a progeny distribution of mutant individuals. We devised techniques for the amplification, mutation, and selection of catalytic RNA, all of which can be performed rapidly in vitro within a single reaction vessel. We integrated these techniques in such a way that they can be performed iteratively and routinely. This allowed us to conduct evolution experiments in response to artificially-imposed selection constraints. Our objective was to develop novel RNA enzymes by altering the selection constraints in a controlled manner. In this way we were able to expand the catalytic repertoire of RNA. Our long-range objective is to develop an RNA enzyme with RNA replicase activity. If such an enzyme had the ability to produce additional copies of itself, then RNA evolution would operate autonomously and the origin of life will have been realized in the laboratory.

  15. Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems.

    PubMed

    Liu, Chun; Kroll, Andreas

    2016-01-01

    Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.

  16. On the Evolution of Human Language.

    ERIC Educational Resources Information Center

    Lieberman, Philip

    Human linguistic ability depends, in part, on the gradual evolution of man's supralaryngeal vocal tract. The anatomic basis of human speech production is the result of a long evolutionary process in which the Darwinian process of natural selection acted to retain mutations. For auditory perception, the listener operates in terms of the acoustic…

  17. Combinatorial optimization problem solution based on improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Peng

    2017-08-01

    Traveling salesman problem (TSP) is a classic combinatorial optimization problem. It is a simplified form of many complex problems. In the process of study and research, it is understood that the parameters that affect the performance of genetic algorithm mainly include the quality of initial population, the population size, and crossover probability and mutation probability values. As a result, an improved genetic algorithm for solving TSP problems is put forward. The population is graded according to individual similarity, and different operations are performed to different levels of individuals. In addition, elitist retention strategy is adopted at each level, and the crossover operator and mutation operator are improved. Several experiments are designed to verify the feasibility of the algorithm. Through the experimental results analysis, it is proved that the improved algorithm can improve the accuracy and efficiency of the solution.

  18. Operation management of daily economic dispatch using novel hybrid particle swarm optimization and gravitational search algorithm with hybrid mutation strategy

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Song; Ji, Zhicheng

    2017-07-01

    This paper presents a hybrid particle swarm optimization and gravitational search algorithm based on hybrid mutation strategy (HGSAPSO-M) to optimize economic dispatch (ED) including distributed generations (DGs) considering market-based energy pricing. A daily ED model was formulated and a hybrid mutation strategy was adopted in HGSAPSO-M. The hybrid mutation strategy includes two mutation operators, chaotic mutation, Gaussian mutation. The proposed algorithm was tested on IEEE-33 bus and results show that the approach is effective for this problem.

  19. Nurse Scheduling by Cooperative GA with Effective Mutation Operator

    NASA Astrophysics Data System (ADS)

    Ohki, Makoto

    In this paper, we propose an effective mutation operators for Cooperative Genetic Algorithm (CGA) to be applied to a practical Nurse Scheduling Problem (NSP). The nurse scheduling is a very difficult task, because NSP is a complex combinatorial optimizing problem for which many requirements must be considered. In real hospitals, the schedule changes frequently. The changes of the shift schedule yields various problems, for example, a fall in the nursing level. We describe a technique of the reoptimization of the nurse schedule in response to a change. The conventional CGA is superior in ability for local search by means of its crossover operator, but often stagnates at the unfavorable situation because it is inferior to ability for global search. When the optimization stagnates for long generation cycle, a searching point, population in this case, would be caught in a wide local minimum area. To escape such local minimum area, small change in a population should be required. Based on such consideration, we propose a mutation operator activated depending on the optimization speed. When the optimization stagnates, in other words, when the optimization speed decreases, the mutation yields small changes in the population. Then the population is able to escape from a local minimum area by means of the mutation. However, this mutation operator requires two well-defined parameters. This means that user have to consider the value of these parameters carefully. To solve this problem, we propose a periodic mutation operator which has only one parameter to define itself. This simplified mutation operator is effective over a wide range of the parameter value.

  20. An application of the Caputo-Fabrizio operator to replicator-mutator dynamics: Bifurcation, chaotic limit cycles and control

    NASA Astrophysics Data System (ADS)

    Doungmo Goufo, Emile Franc

    2018-02-01

    The physical behaviors of replicator-mutator processes found in theoretical biophysics, physical chemistry, biochemistry and population biology remain complex with unlimited expressibility. People languages, for instance, have impressively and unpredictably changed over the time in human history. This is mainly due to the collection of small changes and collaboration with other languages. In this paper, the Caputo-Fabrizio operator is applied to a replicator-mutator dynamic taking place in midsts with movement. The model is fully analyzed and solved numerically via the Crank-Nicolson scheme. Stability and convergence results are provided. A concrete application to replicator-mutator dynamics for a population with three strategies is performed with numerical simulations provided for some fixed values of the physical position of the population symbolized by r and the grid points. Physically, it happens that limit cycles appear, not only in function of the mutation parameter μ but also in function of the values given to r . The amplitudes of limit cycles also appear to be proportional to r but the stability of the system remains unaffected. However, those limit cycles instead of disappearing as expected, are immediately followed by chaotic and unpredictable behaviors certainly due to the non-singular kernel used in the model and suitable to non-linear dynamics. Hence, the appearance and disappearance of limit cycles might be controlled by the position variable r which can also apprehend chaos.

  1. Differential evolution enhanced with multiobjective sorting-based mutation operators.

    PubMed

    Wang, Jiahai; Liao, Jianjun; Zhou, Ying; Cai, Yiqiao

    2014-12-01

    Differential evolution (DE) is a simple and powerful population-based evolutionary algorithm. The salient feature of DE lies in its mutation mechanism. Generally, the parents in the mutation operator of DE are randomly selected from the population. Hence, all vectors are equally likely to be selected as parents without selective pressure at all. Additionally, the diversity information is always ignored. In order to fully exploit the fitness and diversity information of the population, this paper presents a DE framework with multiobjective sorting-based mutation operator. In the proposed mutation operator, individuals in the current population are firstly sorted according to their fitness and diversity contribution by nondominated sorting. Then parents in the mutation operators are proportionally selected according to their rankings based on fitness and diversity, thus, the promising individuals with better fitness and diversity have more opportunity to be selected as parents. Since fitness and diversity information is simultaneously considered for parent selection, a good balance between exploration and exploitation can be achieved. The proposed operator is applied to original DE algorithms, as well as several advanced DE variants. Experimental results on 48 benchmark functions and 12 real-world application problems show that the proposed operator is an effective approach to enhance the performance of most DE algorithms studied.

  2. Enhancing the performance of MOEAs: an experimental presentation of a new fitness guided mutation operator

    NASA Astrophysics Data System (ADS)

    Liagkouras, K.; Metaxiotis, K.

    2017-01-01

    Multi-objective evolutionary algorithms (MOEAs) are currently a dynamic field of research that has attracted considerable attention. Mutation operators have been utilized by MOEAs as variation mechanisms. In particular, polynomial mutation (PLM) is one of the most popular variation mechanisms and has been utilized by many well-known MOEAs. In this paper, we revisit the PLM operator and we propose a fitness-guided version of the PLM. Experimental results obtained by non-dominated sorting genetic algorithm II and strength Pareto evolutionary algorithm 2 show that the proposed fitness-guided mutation operator outperforms the classical PLM operator, based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it.

  3. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE PAGES

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz; ...

    2017-03-22

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  4. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  5. C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency

    PubMed Central

    Meier, Bettina; Cooke, Susanna L.; Weiss, Joerg; Bailly, Aymeric P.; Alexandrov, Ludmil B.; Marshall, John; Raine, Keiran; Maddison, Mark; Anderson, Elizabeth; Stratton, Michael R.; Campbell, Peter J.

    2014-01-01

    Mutation is associated with developmental and hereditary disorders, aging, and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. We used Caenorhabditis elegans whole-genome sequencing to model mutational signatures, analyzing 183 worm populations across 17 DNA repair-deficient backgrounds propagated for 20 generations or exposed to carcinogens. The baseline mutation rate in C. elegans was approximately one per genome per generation, not overtly altered across several DNA repair deficiencies over 20 generations. Telomere erosion led to complex chromosomal rearrangements initiated by breakage–fusion–bridge cycles and completed by simultaneously acquired, localized clusters of breakpoints. Aflatoxin B1 induced substitutions of guanines in a GpC context, as observed in aflatoxin-induced liver cancers. Mutational burden increased with impaired nucleotide excision repair. Cisplatin and mechlorethamine, DNA crosslinking agents, caused dose- and genotype-dependent signatures among indels, substitutions, and rearrangements. Strikingly, both agents induced clustered rearrangements resembling “chromoanasynthesis,” a replication-based mutational signature seen in constitutional genomic disorders, suggesting that interstrand crosslinks may play a pathogenic role in such events. Cisplatin mutagenicity was most pronounced in xpf-1 mutants, suggesting that this gene critically protects cells against platinum chemotherapy. Thus, experimental model systems combined with genome sequencing can recapture and mechanistically explain mutational signatures associated with human disease. PMID:25030888

  6. Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns.

    PubMed

    Enge, Martin; Arda, H Efsun; Mignardi, Marco; Beausang, John; Bottino, Rita; Kim, Seung K; Quake, Stephen R

    2017-10-05

    As organisms age, cells accumulate genetic and epigenetic errors that eventually lead to impaired organ function or catastrophic transformation such as cancer. Because aging reflects a stochastic process of increasing disorder, cells in an organ will be individually affected in different ways, thus rendering bulk analyses of postmitotic adult cells difficult to interpret. Here, we directly measure the effects of aging in human tissue by performing single-cell transcriptome analysis of 2,544 human pancreas cells from eight donors spanning six decades of life. We find that islet endocrine cells from older donors display increased levels of transcriptional noise and potential fate drift. By determining the mutational history of individual cells, we uncover a novel mutational signature in healthy aging endocrine cells. Our results demonstrate the feasibility of using single-cell RNA sequencing (RNA-seq) data from primary cells to derive insights into genetic and transcriptional processes that operate on aging human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Evolutionary design optimization of traffic signals applied to Quito city.

    PubMed

    Armas, Rolando; Aguirre, Hernán; Daolio, Fabio; Tanaka, Kiyoshi

    2017-01-01

    This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process.

  8. Evolutionary design optimization of traffic signals applied to Quito city

    PubMed Central

    2017-01-01

    This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process. PMID:29236733

  9. Clonal origins and parallel evolution of regionally synchronous colorectal adenoma and carcinoma.

    PubMed

    Kim, Tae-Min; An, Chang Hyeok; Rhee, Je-Keun; Jung, Seung-Hyun; Lee, Sung Hak; Baek, In-Pyo; Kim, Min Sung; Lee, Sug Hyung; Chung, Yeun-Jun

    2015-09-29

    Although the colorectal adenoma-to-carcinoma sequence represents a classical cancer progression model, the evolution of the mutational landscape underlying this model is not fully understood. In this study, we analyzed eight synchronous pairs of colorectal high-grade adenomas and carcinomas, four microsatellite-unstable (MSU) and four-stable (MSS) pairs, using whole-exome sequencing. In the MSU adenoma-carcinoma pairs, we observed no subclonal mutations in adenomas that became fixed in paired carcinomas, suggesting a 'parallel' evolution of synchronous adenoma-to-carcinoma, rather than a 'stepwise' evolution. The abundance of indel (in MSU and MSS pairs) and microsatellite instability (in MSU pairs) was noted in the later adenoma- or carcinoma-specific mutations, indicating that the mutational processes and functional constraints operative in early and late colorectal carcinogenesis are different. All MSU cases exhibited clonal, truncating mutations in ACVR2A, TGFBR2, and DNA mismatch repair genes, but none were present in APC or KRAS. In three MSS pairs, both APC and KRAS mutations were identified as both early and clonal events, often accompanying clonal copy number changes. An MSS case uniquely exhibited clonal ERBB2 amplification, followed by APC and TP53 mutations as carcinoma-specific events. Along with the previously unrecognized clonal origins of synchronous colorectal adenoma-carcinoma pairs, our study revealed that the preferred sequence of mutational events during colorectal carcinogenesis can be context-dependent.

  10. C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency.

    PubMed

    Meier, Bettina; Cooke, Susanna L; Weiss, Joerg; Bailly, Aymeric P; Alexandrov, Ludmil B; Marshall, John; Raine, Keiran; Maddison, Mark; Anderson, Elizabeth; Stratton, Michael R; Gartner, Anton; Campbell, Peter J

    2014-10-01

    Mutation is associated with developmental and hereditary disorders, aging, and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. We used Caenorhabditis elegans whole-genome sequencing to model mutational signatures, analyzing 183 worm populations across 17 DNA repair-deficient backgrounds propagated for 20 generations or exposed to carcinogens. The baseline mutation rate in C. elegans was approximately one per genome per generation, not overtly altered across several DNA repair deficiencies over 20 generations. Telomere erosion led to complex chromosomal rearrangements initiated by breakage-fusion-bridge cycles and completed by simultaneously acquired, localized clusters of breakpoints. Aflatoxin B1 induced substitutions of guanines in a GpC context, as observed in aflatoxin-induced liver cancers. Mutational burden increased with impaired nucleotide excision repair. Cisplatin and mechlorethamine, DNA crosslinking agents, caused dose- and genotype-dependent signatures among indels, substitutions, and rearrangements. Strikingly, both agents induced clustered rearrangements resembling "chromoanasynthesis," a replication-based mutational signature seen in constitutional genomic disorders, suggesting that interstrand crosslinks may play a pathogenic role in such events. Cisplatin mutagenicity was most pronounced in xpf-1 mutants, suggesting that this gene critically protects cells against platinum chemotherapy. Thus, experimental model systems combined with genome sequencing can recapture and mechanistically explain mutational signatures associated with human disease. © 2014 Meier et al.; Published by Cold Spring Harbor Laboratory Press.

  11. [Control levels of Sin3 histone deacetylase for spontaneous and UV-induced mutagenesis in yeasts Saccharomyces cerevisiae].

    PubMed

    Lebovka, I Iu; Kozhina, T N; Fedorova, I V; Peshekhonov, V T; Evstiukhina, T A; Chernenkov, A Iu; Korolev, V G

    2014-01-01

    SIN3 gene product operates as a repressor for a huge amount of genes in Saccharomyces cerevisiae. Sin3 protein with a mass of about 175 kDa is a member of the RPD3 protein complex with an assessed mass of greater than 2 million Da. It was previously shownthat RPD3 gene mutations influence recombination and repair processes in S. cerevisiae yeasts. We studied the impacts of the sin3 mutation on UV-light sensitivity and UV-induced mutagenesis in budding yeast cells. The deletion ofthe SIN3 gene causes weak UV-sensitivity of mutant budding cells as compared to the wild-type strain. These results show that the sin3 mutation decreases both spontaneous and UV-induced levels of levels. This fact is hypothetically related to themalfunction of ribonucleotide reductase activity regulation, which leads to a decrease in the dNTP pool and the inaccurate error-prone damage bypass postreplication repair pathway, which in turn provokes a reduction in the incidence of mutations.

  12. An Improved Evolutionary Programming with Voting and Elitist Dispersal Scheme

    NASA Astrophysics Data System (ADS)

    Maity, Sayan; Gunjan, Kumar; Das, Swagatam

    Although initially conceived for evolving finite state machines, Evolutionary Programming (EP), in its present form, is largely used as a powerful real parameter optimizer. For function optimization, EP mainly relies on its mutation operators. Over past few years several mutation operators have been proposed to improve the performance of EP on a wide variety of numerical benchmarks. However, unlike real-coded GAs, there has been no fitness-induced bias in parent selection for mutation in EP. That means the i-th population member is selected deterministically for mutation and creation of the i-th offspring in each generation. In this article we present an improved EP variant called Evolutionary Programming with Voting and Elitist Dispersal (EPVE). The scheme encompasses a voting process which not only gives importance to best solutions but also consider those solutions which are converging fast. By introducing Elitist Dispersal Scheme we maintain the elitism by keeping the potential solutions intact and other solutions are perturbed accordingly, so that those come out of the local minima. By applying these two techniques we can be able to explore those regions which have not been explored so far that may contain optima. Comparison with the recent and best-known versions of EP over 25 benchmark functions from the CEC (Congress on Evolutionary Computation) 2005 test-suite for real parameter optimization reflects the superiority of the new scheme in terms of final accuracy, speed, and robustness.

  13. Cooperative optimization of reconfigurable machine tool configurations and production process plan

    NASA Astrophysics Data System (ADS)

    Xie, Nan; Li, Aiping; Xue, Wei

    2012-09-01

    The production process plan design and configurations of reconfigurable machine tool (RMT) interact with each other. Reasonable process plans with suitable configurations of RMT help to improve product quality and reduce production cost. Therefore, a cooperative strategy is needed to concurrently solve the above issue. In this paper, the cooperative optimization model for RMT configurations and production process plan is presented. Its objectives take into account both impacts of process and configuration. Moreover, a novel genetic algorithm is also developed to provide optimal or near-optimal solutions: firstly, its chromosome is redesigned which is composed of three parts, operations, process plan and configurations of RMTs, respectively; secondly, its new selection, crossover and mutation operators are also developed to deal with the process constraints from operation processes (OP) graph, otherwise these operators could generate illegal solutions violating the limits; eventually the optimal configurations for RMT under optimal process plan design can be obtained. At last, a manufacturing line case is applied which is composed of three RMTs. It is shown from the case that the optimal process plan and configurations of RMT are concurrently obtained, and the production cost decreases 6.28% and nonmonetary performance increases 22%. The proposed method can figure out both RMT configurations and production process, improve production capacity, functions and equipment utilization for RMT.

  14. Merkel Cell Polyomavirus Exhibits Dominant Control of the Tumor Genome and Transcriptome in Virus-Associated Merkel Cell Carcinoma.

    PubMed

    Starrett, Gabriel J; Marcelus, Christina; Cantalupo, Paul G; Katz, Joshua P; Cheng, Jingwei; Akagi, Keiko; Thakuria, Manisha; Rabinowits, Guilherme; Wang, Linda C; Symer, David E; Pipas, James M; Harris, Reuben S; DeCaprio, James A

    2017-01-03

    Merkel cell polyomavirus is the primary etiological agent of the aggressive skin cancer Merkel cell carcinoma (MCC). Recent studies have revealed that UV radiation is the primary mechanism for somatic mutagenesis in nonviral forms of MCC. Here, we analyze the whole transcriptomes and genomes of primary MCC tumors. Our study reveals that virus-associated tumors have minimally altered genomes compared to non-virus-associated tumors, which are dominated by UV-mediated mutations. Although virus-associated tumors contain relatively small mutation burdens, they exhibit a distinct mutation signature with observable transcriptionally biased kataegic events. In addition, viral integration sites overlap focal genome amplifications in virus-associated tumors, suggesting a potential mechanism for these events. Collectively, our studies indicate that Merkel cell polyomavirus is capable of hijacking cellular processes and driving tumorigenesis to the same severity as tens of thousands of somatic genome alterations. A variety of mutagenic processes that shape the evolution of tumors are critical determinants of disease outcome. Here, we sequenced the entire genome of virus-positive and virus-negative primary Merkel cell carcinomas (MCCs), revealing distinct mutation spectra and corresponding expression profiles. Our studies highlight the strong effect that Merkel cell polyomavirus has on the divergent development of viral MCC compared to the somatic alterations that typically drive nonviral tumorigenesis. A more comprehensive understanding of the distinct mutagenic processes operative in viral and nonviral MCCs has implications for the effective treatment of these tumors. Copyright © 2017 Starrett et al.

  15. The effects of mutational processes and selection on driver mutations across cancer types.

    PubMed

    Temko, Daniel; Tomlinson, Ian P M; Severini, Simone; Schuster-Böckler, Benjamin; Graham, Trevor A

    2018-05-10

    Epidemiological evidence has long associated environmental mutagens with increased cancer risk. However, links between specific mutation-causing processes and the acquisition of individual driver mutations have remained obscure. Here we have used public cancer sequencing data from 11,336 cancers of various types to infer the independent effects of mutation and selection on the set of driver mutations in a cancer type. First, we detect associations between a range of mutational processes, including those linked to smoking, ageing, APOBEC and DNA mismatch repair (MMR) and the presence of key driver mutations across cancer types. Second, we quantify differential selection between well-known alternative driver mutations, including differences in selection between distinct mutant residues in the same gene. These results show that while mutational processes have a large role in determining which driver mutations are present in a cancer, the role of selection frequently dominates.

  16. Annealing Ant Colony Optimization with Mutation Operator for Solving TSP.

    PubMed

    Mohsen, Abdulqader M

    2016-01-01

    Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality.

  17. Female mating preferences determine system-level evolution in a gene network model.

    PubMed

    Fierst, Janna L

    2013-06-01

    Environmental patterns of directional, stabilizing and fluctuating selection can influence the evolution of system-level properties like evolvability and mutational robustness. Intersexual selection produces strong phenotypic selection and these dynamics may also affect the response to mutation and the potential for future adaptation. In order to to assess the influence of mating preferences on these evolutionary properties, I modeled a male trait and female preference determined by separate gene regulatory networks. I studied three sexual selection scenarios: sexual conflict, a Gaussian model of the Fisher process described in Lande (in Proc Natl Acad Sci 78(6):3721-3725, 1981) and a good genes model in which the male trait signalled his mutational condition. I measured the effects these mating preferences had on the potential for traits and preferences to evolve towards new states, and mutational robustness of both the phenotype and the individual's overall viability. All types of sexual selection increased male phenotypic robustness relative to a randomly mating population. The Fisher model also reduced male evolvability and mutational robustness for viability. Under good genes sexual selection, males evolved an increased mutational robustness for viability. Females choosing their mates is a scenario that is sufficient to create selective forces that impact genetic evolution and shape the evolutionary response to mutation and environmental selection. These dynamics will inevitably develop in any population where sexual selection is operating, and affect the potential for future adaptation.

  18. Serial processing of biological reactions using flow-through microfluidic devices: coupled PCR/LDR for the detection of low-abundant DNA point mutations.

    PubMed

    Hashimoto, Masahiko; Barany, Francis; Xu, Feng; Soper, Steven A

    2007-09-01

    We have fabricated a flow-through biochip consisting of passive elements for the analysis of single base mutations in genomic DNA using polycarbonate (PC) as the substrate. The biochip was configured to carry out two processing steps on the input sample, a primary polymerase chain reaction (PCR) followed by an allele-specific ligation detection reaction (LDR) for scoring the presence of low abundant point mutations in genomic DNA. The operation of the device was demonstrated by detecting single nucleotide polymorphisms in gene fragments (K-ras) that carry high diagnostic value for colorectal cancers. The effect of carryover from the primary PCR on the subsequent LDR was investigated in terms of LDR yield and fidelity. We found that a post-PCR treatment step prior to the LDR phase of the assay was not essential. As a consequence, a thermal cycling microchip was used for a sequential PCR/LDR in a simple continuous-flow format, in which the following three steps were carried out: (1) exponential amplification of the gene fragments from genomic DNA; (2) mixing of the resultant PCR product(s) with an LDR cocktail via a Y-shaped passive micromixer; and (3) ligation of two primers (discriminating primer that carried the complement base to the mutation locus being interrogated and a common primer) only when the particular mutation was present in the genomic DNA. We successfully demonstrated the ability to detect one mutant DNA in 1000 normal sequences with the integrated microfluidic system. The PCR/LDR assay using the microchip performed the entire assay at a relatively fast processing speed: 18.7 min for 30 rounds of PCR, 4.1 min for 13 rounds of LDR (total processing time = ca. 22.8 min) and could screen multiple mutations simultaneously in a multiplexed format. In addition, the low cost of the biochip due to the fact that it was fabricated from polymers using replication technologies and consisted of passive elements makes the platform amenable to clinical diagnostics, where one-time use devices are required to eliminate false positives resulting from carryover contamination.

  19. Microfluidic Purification and Concentration of Malignant Pleural Effusions for Improved Molecular and Cytomorphological Diagnostics

    PubMed Central

    Go, Derek E.; Talati, Ish; Ying, Yong; Rao, Jianyu; Kulkarni, Rajan P.; Di Carlo, Dino

    2013-01-01

    Evaluation of pleural fluids for metastatic cells is a key component of diagnostic cytopathology. However, a large background of smaller leukocytes and/or erythrocytes can make accurate diagnosis difficult and reduce specificity in identification of mutations of interest for targeted anti-cancer therapies. Here, we describe an automated microfluidic system (Centrifuge Chip) which employs microscale vortices for the size-based isolation and concentration of cancer cells and mesothelial cells from a background of blood cells. We are able to process non-diluted pleural fluids at 6 mL/min and enrich target cells significantly over the background; we achieved improved purity in all patient samples analyzed. The resulting isolated and viable cells are readily available for immunostaining, cytological analysis, and detection of gene mutations. To demonstrate the utility towards aiding companion diagnostics, we also show improved detection accuracy of KRAS gene mutations in lung cancer cells processed using the Centrifuge Chip, leading to an increase in the area under the curve (AUC) of the receiver operating characteristic from 0.90 to 0.99. The Centrifuge Chip allows for rapid concentration and processing of large volumes of bodily fluid samples for improved cytological diagnosis and purification of cells of interest for genetic testing, which will be helpful for enhancing diagnostic accuracy. PMID:24205153

  20. Rayleigh wave dispersion curve inversion by using particle swarm optimization and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Buyuk, Ersin; Zor, Ekrem; Karaman, Abdullah

    2017-04-01

    Inversion of surface wave dispersion curves with its highly nonlinear nature has some difficulties using traditional linear inverse methods due to the need and strong dependence to the initial model, possibility of trapping in local minima and evaluation of partial derivatives. There are some modern global optimization methods to overcome of these difficulties in surface wave analysis such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). GA is based on biologic evolution consisting reproduction, crossover and mutation operations, while PSO algorithm developed after GA is inspired from the social behaviour of birds or fish of swarms. Utility of these methods require plausible convergence rate, acceptable relative error and optimum computation cost that are important for modelling studies. Even though PSO and GA processes are similar in appearence, the cross-over operation in GA is not used in PSO and the mutation operation is a stochastic process for changing the genes within chromosomes in GA. Unlike GA, the particles in PSO algorithm changes their position with logical velocities according to particle's own experience and swarm's experience. In this study, we applied PSO algorithm to estimate S wave velocities and thicknesses of the layered earth model by using Rayleigh wave dispersion curve and also compared these results with GA and we emphasize on the advantage of using PSO algorithm for geophysical modelling studies considering its rapid convergence, low misfit error and computation cost.

  1. Extraordinary genome stability in the ciliate Paramecium tetraurelia

    PubMed Central

    Sung, Way; Tucker, Abraham E.; Doak, Thomas G.; Choi, Eunjin; Thomas, W. Kelley; Lynch, Michael

    2012-01-01

    Mutation plays a central role in all evolutionary processes and is also the basis of genetic disorders. Established base-substitution mutation rates in eukaryotes range between ∼5 × 10−10 and 5 × 10−8 per site per generation, but here we report a genome-wide estimate for Paramecium tetraurelia that is more than an order of magnitude lower than any previous eukaryotic estimate. Nevertheless, when the mutation rate per cell division is extrapolated to the length of the sexual cycle for this protist, the measure obtained is comparable to that for multicellular species with similar genome sizes. Because Paramecium has a transcriptionally silent germ-line nucleus, these results are consistent with the hypothesis that natural selection operates on the cumulative germ-line replication fidelity per episode of somatic gene expression, with the germ-line mutation rate per cell division evolving downward to the lower barrier imposed by random genetic drift. We observe ciliate-specific modifications of widely conserved amino acid sites in DNA polymerases as one potential explanation for unusually high levels of replication fidelity. PMID:23129619

  2. Mutalisk: a web-based somatic MUTation AnaLyIS toolKit for genomic, transcriptional and epigenomic signatures.

    PubMed

    Lee, Jongkeun; Lee, Andy Jinseok; Lee, June-Koo; Park, Jongkeun; Kwon, Youngoh; Park, Seongyeol; Chun, Hyonho; Ju, Young Seok; Hong, Dongwan

    2018-05-22

    Somatic genome mutations occur due to combinations of various intrinsic/extrinsic mutational processes and DNA repair mechanisms. Different molecular processes frequently generate different signatures of somatic mutations in their own favored contexts. As a result, the regional somatic mutation rate is dependent on the local DNA sequence, the DNA replication/RNA transcription dynamics and epigenomic chromatin organization landscape in the genome. Here, we propose an online computational framework, termed Mutalisk, which correlates somatic mutations with various genomic, transcriptional and epigenomic features in order to understand mutational processes that contribute to the generation of the mutations. This user-friendly tool explores the presence of localized hypermutations (kataegis), dissects the spectrum of mutations into the maximum likelihood combination of known mutational signatures and associates the mutation density with numerous regulatory elements in the genome. As a result, global patterns of somatic mutations in any query sample can be efficiently screened, thus enabling a deeper understanding of various mutagenic factors. This tool will facilitate more effective downstream analyses of cancer genome sequences to elucidate the diversity of mutational processes underlying the development and clonal evolution of cancer cells. Mutalisk is freely available at http://mutalisk.org.

  3. Annealing Ant Colony Optimization with Mutation Operator for Solving TSP

    PubMed Central

    2016-01-01

    Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality. PMID:27999590

  4. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem

    PubMed Central

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585

  5. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem.

    PubMed

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.

  6. Operation Upshot-Knothole, Nevada Proving Ground, March-June 1953. Projects 23.4-23.14 and 23.16. Genetic Effects of Fast Neutrons from Nuclear Detonations,

    DTIC Science & Technology

    1954-01-01

    THIS SHEET AND RETURN TO DTIC-DDA-2 FORM DOCUMENT PROCESSING SHEET DTIC oct79 70A OCT. 79 11 0 0 0 r/ WT-820 This document consists of 86 Pages No...mutation curve with no lower limit.2 In addition, there is a dose-related recovery process for physiological effects of lrradaticn by chronic or repeated...individual formed by reproductive processes may be expected to show in all its cells whatever genetic effects the ionizations have produced. 9,1w The

  7. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process

    PubMed Central

    Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya

    2015-01-01

    The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution. PMID:26177190

  8. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.

    PubMed

    Kishimoto, Toshihiko; Ying, Bei-Wen; Tsuru, Saburo; Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya

    2015-07-01

    The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.

  9. Long Distance Dispersal of Zooplankton Endemic to Isolated Mountaintops - an Example of an Ecological Process Operating on an Evolutionary Time Scale

    PubMed Central

    Vanschoenwinkel, Bram; Mergeay, Joachim; Pinceel, Tom; Waterkeyn, Aline; Vandewaerde, Hanne; Seaman, Maitland; Brendonck, Luc

    2011-01-01

    Recent findings suggest a convergence of time scales between ecological and evolutionary processes which is usually explained in terms of rapid micro evolution resulting in evolution on ecological time scales. A similar convergence, however, can also emerge when slow ecological processes take place on evolutionary time scales. A good example of such a slow ecological process is the colonization of remote aquatic habitats by passively dispersed zooplankton. Using variation at the protein coding mitochondrial COI gene, we investigated the balance between mutation and migration as drivers of genetic diversity in two Branchipodopsis fairy shrimp species (Crustacea, Anostraca) endemic to remote temporary rock pool clusters at the summit of isolated mountaintops in central South Africa. We showed that both species colonized the region almost simultaneously c. 0.8 My ago, but exhibit contrasting patterns of regional genetic diversity and demographic history. The haplotype network of the common B. cf. wolfi showed clear evidence of 11 long distance dispersal events (up to 140 km) with five haplotypes that are shared among distant inselbergs, as well as some more spatially isolated derivates. Similar patterns were not observed for B. drakensbergensis presumably since this rarer species experienced a genetic bottleneck. We conclude that the observed genetic patterns reflect rare historic colonization events rather than frequent ongoing gene flow. Moreover, the high regional haplotype diversity combined with a high degree of haplotype endemicity indicates that evolutionary- (mutation) and ecological (migration) processes in this system operate on similar time scales. PMID:22102865

  10. Resource planning and scheduling of payload for satellite with particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Li, Jian; Wang, Cheng

    2007-11-01

    The resource planning and scheduling technology of payload is a key technology to realize an automated control for earth observing satellite with limited resources on satellite, which is implemented to arrange the works states of various payloads to carry out missions by optimizing the scheme of the resources. The scheduling task is a difficult constraint optimization problem with various and mutative requests and constraints. Based on the analysis of the satellite's functions and the payload's resource constraints, a proactive planning and scheduling strategy based on the availability of consumable and replenishable resources in time-order is introduced along with dividing the planning and scheduling period to several pieces. A particle swarm optimization algorithm is proposed to address the problem with an adaptive mutation operator selection, where the swarm is divided into groups with different probabilities to employ various mutation operators viz., differential evolution, Gaussian and random mutation operators. The probabilities are adjusted adaptively by comparing the effectiveness of the groups to select a proper operator. The simulation results have shown the feasibility and effectiveness of the method.

  11. Involvement and Influence of Healthcare Providers, Family Members, and Other Mutation Carriers in the Cancer Risk Management Decision-Making Process of BRCA1 and BRCA2 Mutation Carriers.

    PubMed

    Puski, Athena; Hovick, Shelly; Senter, Leigha; Toland, Amanda Ewart

    2018-03-29

    Deciding between increased cancer screening or prophylactic surgery and the timing of such procedures can be a difficult and complex process for women with BRCA mutations. There are gaps in our understanding of involvement of others in the decision-making process for women with BRCA mutations. This study evaluated the management decision-making process of women with BRCA mutations, focusing on the involvement of others. Grounded theory was used to analyze and code risk management decision-making information from interviews with 20 BRCA mutation carriers. Unaffected at-risk participants with a BRCA mutation, those under age 40, and those with no children described having a difficult time making risk management decisions. Physicians were an integral part of the decision-making process by providing decisional support and management recommendations. Family members and other mutation carriers filled similar yet distinct roles by providing experiential information as well as decisional and emotional support for carriers. Participants described genetic counselors as short-term providers of risk information and management recommendations. The study findings suggest that unaffected at-risk women, women under 40, and those who do not have children may benefit from additional support and information during the decision-making process. Genetic counselors are well trained to help women through this process and connect them with resources, and may be under-utilized in long-term follow-up for women with a BRCA mutation.

  12. An automated microfluidic DNA microarray platform for genetic variant detection in inherited arrhythmic diseases.

    PubMed

    Huang, Shu-Hong; Chang, Yu-Shin; Juang, Jyh-Ming Jimmy; Chang, Kai-Wei; Tsai, Mong-Hsun; Lu, Tzu-Pin; Lai, Liang-Chuan; Chuang, Eric Y; Huang, Nien-Tsu

    2018-03-12

    In this study, we developed an automated microfluidic DNA microarray (AMDM) platform for point mutation detection of genetic variants in inherited arrhythmic diseases. The platform allows for automated and programmable reagent sequencing under precise conditions of hybridization flow and temperature control. It is composed of a commercial microfluidic control system, a microfluidic microarray device, and a temperature control unit. The automated and rapid hybridization process can be performed in the AMDM platform using Cy3 labeled oligonucleotide exons of SCN5A genetic DNA, which produces proteins associated with sodium channels abundant in the heart (cardiac) muscle cells. We then introduce a graphene oxide (GO)-assisted DNA microarray hybridization protocol to enable point mutation detection. In this protocol, a GO solution is added after the staining step to quench dyes bound to single-stranded DNA or non-perfectly matched DNA, which can improve point mutation specificity. As proof-of-concept we extracted the wild-type and mutant of exon 12 and exon 17 of SCN5A genetic DNA from patients with long QT syndrome or Brugada syndrome by touchdown PCR and performed a successful point mutation discrimination in the AMDM platform. Overall, the AMDM platform can greatly reduce laborious and time-consuming hybridization steps and prevent potential contamination. Furthermore, by introducing the reciprocating flow into the microchannel during the hybridization process, the total assay time can be reduced to 3 hours, which is 6 times faster than the conventional DNA microarray. Given the automatic assay operation, shorter assay time, and high point mutation discrimination, we believe that the AMDM platform has potential for low-cost, rapid and sensitive genetic testing in a simple and user-friendly manner, which may benefit gene screening in medical practice.

  13. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    USGS Publications Warehouse

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.

  14. Multidimensional Simulation Applied to Water Resources Management

    NASA Astrophysics Data System (ADS)

    Camara, A. S.; Ferreira, F. C.; Loucks, D. P.; Seixas, M. J.

    1990-09-01

    A framework for an integrated decision aiding simulation (IDEAS) methodology using numerical, linguistic, and pictorial entities and operations is introduced. IDEAS relies upon traditional numerical formulations, logical rules to handle linguistic entities with linguistic values, and a set of pictorial operations. Pictorial entities are defined by their shape, size, color, and position. Pictorial operators include reproduction (copy of a pictorial entity), mutation (expansion, rotation, translation, change in color), fertile encounters (intersection, reunion), and sterile encounters (absorption). Interaction between numerical, linguistic, and pictorial entities is handled through logical rules or a simplified vector calculus operation. This approach is shown to be applicable to various environmental and water resources management analyses using a model to assess the impacts of an oil spill. Future developments, including IDEAS implementation on parallel processing machines, are also discussed.

  15. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs.

    PubMed

    Girelli Zubani, Giulia; Zivojnovic, Marija; De Smet, Annie; Albagli-Curiel, Olivier; Huetz, François; Weill, Jean-Claude; Reynaud, Claude-Agnès; Storck, Sébastien

    2017-04-03

    During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung -/- Pms2 -/- mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases. © 2017 Girelli Zubani et al.

  16. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs

    PubMed Central

    De Smet, Annie; Albagli-Curiel, Olivier; Huetz, François; Weill, Jean-Claude

    2017-01-01

    During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung−/−Pms2−/− mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases. PMID:28283534

  17. Hybrid Self-Adaptive Evolution Strategies Guided by Neighborhood Structures for Combinatorial Optimization Problems.

    PubMed

    Coelho, V N; Coelho, I M; Souza, M J F; Oliveira, T A; Cota, L P; Haddad, M N; Mladenovic, N; Silva, R C P; Guimarães, F G

    2016-01-01

    This article presents an Evolution Strategy (ES)--based algorithm, designed to self-adapt its mutation operators, guiding the search into the solution space using a Self-Adaptive Reduced Variable Neighborhood Search procedure. In view of the specific local search operators for each individual, the proposed population-based approach also fits into the context of the Memetic Algorithms. The proposed variant uses the Greedy Randomized Adaptive Search Procedure with different greedy parameters for generating its initial population, providing an interesting exploration-exploitation balance. To validate the proposal, this framework is applied to solve three different [Formula: see text]-Hard combinatorial optimization problems: an Open-Pit-Mining Operational Planning Problem with dynamic allocation of trucks, an Unrelated Parallel Machine Scheduling Problem with Setup Times, and the calibration of a hybrid fuzzy model for Short-Term Load Forecasting. Computational results point out the convergence of the proposed model and highlight its ability in combining the application of move operations from distinct neighborhood structures along the optimization. The results gathered and reported in this article represent a collective evidence of the performance of the method in challenging combinatorial optimization problems from different application domains. The proposed evolution strategy demonstrates an ability of adapting the strength of the mutation disturbance during the generations of its evolution process. The effectiveness of the proposal motivates the application of this novel evolutionary framework for solving other combinatorial optimization problems.

  18. Swarm satellite mission scheduling & planning using Hybrid Dynamic Mutation Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Zixuan; Guo, Jian; Gill, Eberhard

    2017-08-01

    Space missions have traditionally been controlled by operators from a mission control center. Given the increasing number of satellites for some space missions, generating a command list for multiple satellites can be time-consuming and inefficient. Developing multi-satellite, onboard mission scheduling & planning techniques is, therefore, a key research field for future space mission operations. In this paper, an improved Genetic Algorithm (GA) using a new mutation strategy is proposed as a mission scheduling algorithm. This new mutation strategy, called Hybrid Dynamic Mutation (HDM), combines the advantages of both dynamic mutation strategy and adaptive mutation strategy, overcoming weaknesses such as early convergence and long computing time, which helps standard GA to be more efficient and accurate in dealing with complex missions. HDM-GA shows excellent performance in solving both unconstrained and constrained test functions. The experiments of using HDM-GA to simulate a multi-satellite, mission scheduling problem demonstrates that both the computation time and success rate mission requirements can be met. The results of a comparative test between HDM-GA and three other mutation strategies also show that HDM has outstanding performance in terms of speed and reliability.

  19. Water-mediated contacts in the trp-repressor operator complex recognition process.

    PubMed

    Wibowo, Fajar R; Rauch, Christine; Trieb, Michael; Wellenzohn, Bernd; Liedl, Klaus R

    2004-04-15

    Water-mediated contacts are known as an important recognition tool in trp-repressor operator systems. One of these contacts involves two conserved base pairs (G(6).C(-6) and A(5). T(-5)) and three amino acids (Lys 72, Ile 79, and Ala 80). To investigate the nature of these contacts, we analyzed the X-ray structure (PDB code: 1TRO) of the trp-repressor operator complex by means of molecular dynamics simulations. This X-ray structure contains two dimers that exhibit structural differences. From these two different starting structures, two 10 ns molecular dynamics simulations have been performed. Both of our simulations show an increase of water molecules in the major groove at one side of the dimer, while the other side remains unchanged compared to the X-ray structure. Though the maximum residence time of the concerned water molecules decreases with an increase of solvent at the interface, these water molecules continue to play an important role in mediating DNA-protein contacts. This is shown by new stable amino acids-DNA distances and a long water residence time compared to free DNA simulation. To maintain stability of the new contacts, the preferential water binding site on O6(G6) is extended. This extension agrees with mutation experiment data on A5 and G6, which shows different relative affinity due to mutation on these bases [A. Joachimiak, T. E. Haran, P. B. Sigler, EMBO Journal 1994, Vol. 13, No. (2) pp. 367-372]. Due to the rearrangements in the system, the phosphate of the base G6 is able to interconvert to the B(II) substate, which is not observed on the other half side of the complex. The decrease of the number of hydrogen bonds between protein and DNA backbone could be the initial step of the dissociation process of the complex, or in other words an intermediate complex conformation of the association process. Thus, we surmise that these features show the importance of water-mediated contacts in the trp-repressor operator recognition process. Copyright 2004 Wiley Periodicals, Inc.

  20. Specificity Determinants of Proteolytic Processing of Aspergillus PacC Transcription Factor Are Remote from the Processing Site, and Processing Occurs in Yeast If pH Signalling Is Bypassed

    PubMed Central

    Mingot, José-Manuel; Tilburn, Joan; Diez, Eliecer; Bignell, Elaine; Orejas, Margarita; Widdick, David A.; Sarkar, Sovan; Brown, Christopher V.; Caddick, Mark X.; Espeso, Eduardo A.; Arst, Herbert N.; Peñalva, Miguel A.

    1999-01-01

    The Aspergillus nidulans transcription factor PacC, which mediates pH regulation, is proteolytically processed to a functional form in response to ambient alkaline pH. The full-length PacC form is unstable in the presence of an operational pH signal transduction pathway, due to processing to the relatively stable short functional form. We have characterized and used an extensive collection of pacC mutations, including a novel class of “neutrality-mimicking” pacC mutations having aspects of both acidity- and alkalinity-mimicking phenotypes, to investigate a number of important features of PacC processing. Analysis of mutant proteins lacking the major translation initiation residue or truncated at various distances from the C terminus showed that PacC processing does not remove N-terminal residues, indicated that processing yields slightly heterogeneous products, and delimited the most upstream processing site to residues ∼252 to 254. Faithful processing of three mutant proteins having deletions of a region including the predicted processing site(s) and of a fourth having 55 frameshifted residues following residue 238 indicated that specificity determinants reside at sequences or structural features located upstream of residue 235. Thus, the PacC protease cuts a peptide bond(s) remote from these determinants, possibly thereby resembling type I endonucleases. Downstream of the cleavage site, residues 407 to 678 are not essential for processing, but truncation at or before residue 333 largely prevents it. Ambient pH apparently regulates the accessibility of PacC to proteolytic processing. Alkalinity-mimicking mutations L259R, L266F, and L340S favor the protease-accessible conformation, whereas a protein with residues 465 to 540 deleted retains a protease-inaccessible conformation, leading to acidity mimicry. Finally, not only does processing constitute a crucial form of modulation for PacC, but there is evidence for its conservation during fungal evolution. Transgenic expression of a truncated PacC protein, which was processed in a pH-independent manner, showed that appropriate processing can occur in Saccharomyces cerevisiae. PMID:9891072

  1. Selected missense mutations impair frataxin processing in Friedreich ataxia.

    PubMed

    Clark, Elisia; Butler, Jill S; Isaacs, Charles J; Napierala, Marek; Lynch, David R

    2017-08-01

    Frataxin (FXN) is a highly conserved mitochondrial protein. Reduced FXN levels cause Friedreich ataxia, a recessive neurodegenerative disease. Typical patients carry GAA repeat expansions on both alleles, while a subgroup of patients carry a missense mutation on one allele and a GAA repeat expansion on the other. Here, we report that selected disease-related FXN missense mutations impair FXN localization, interaction with mitochondria processing peptidase, and processing. Immunocytochemical studies and subcellular fractionation were performed to study FXN import into the mitochondria and examine the mechanism by which mutations impair FXN processing. Coimmunoprecipitation was performed to study the interaction between FXN and mitochondrial processing peptidase. A proteasome inhibitor was used to model traditional therapeutic strategies. In addition, clinical profiles of subjects with and without point mutations were compared in a large natural history study. FXN I 154F and FXN G 130V missense mutations decrease FXN 81-210 levels compared with FXN WT , FXN R 165C , and FXN W 155R , but do not block its association with mitochondria. FXN I 154F and FXN G 130V also impair FXN maturation and enhance the binding between FXN 42-210 and mitochondria processing peptidase. Furthermore, blocking proteosomal degradation does not increase FXN 81-210 levels. Additionally, impaired FXN processing also occurs in fibroblasts from patients with FXN G 130V . Finally, clinical data from patients with FXN G 130V and FXN I 154F mutations demonstrates a lower severity compared with other individuals with Friedreich ataxia. These data suggest that the effects on processing associated with FXN G 130V and FXN I 154F mutations lead to higher levels of partially processed FXN, which may contribute to the milder clinical phenotypes in these patients.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, L. B.

    All cancers originate from a single cell that starts to behave abnormally, to divide uncontrollably, and, eventually, to invade adjacent tissues (1). The aberrant behavior of this single cell is due to somatic mutations—changes in the genomic DNA produced by the activity of different mutational processes (1). These various mutational processes include exposure to exogenous or endogenous mutagens, abnormal DNA editing, the incomplete fidelity of DNA polymerases, and failure of DNA repair mechanisms (2). Early studies that sequenced TP53, the most commonly mutated gene in human cancer, provided evidence that mutational processes leave distinct imprints of somatic mutations on themore » genome of a cancer cell (3). For example, C:G>A:T transversions predominate in smoking-associated lung cancer, whereas C:G>T:A transitions occurring mainly at dipyrimidines and CC:GG>TT:AA double-nucleotide substitutions are common in ultraviolet light–associated skin cancers. Moreover, these patterns of mutations matched the ones induced experimentally by tobacco mutagens and ultraviolet light, respectively, the major, known, exogenous carcinogenic influences in these cancer types, and demonstrated that examining patterns of mutations in cancer genomes can yield information about the mutational processes that cause human cancer (4).« less

  3. Understanding the origins of human cancer

    DOE PAGES

    Alexandrov, L. B.

    2015-12-04

    All cancers originate from a single cell that starts to behave abnormally, to divide uncontrollably, and, eventually, to invade adjacent tissues (1). The aberrant behavior of this single cell is due to somatic mutations—changes in the genomic DNA produced by the activity of different mutational processes (1). These various mutational processes include exposure to exogenous or endogenous mutagens, abnormal DNA editing, the incomplete fidelity of DNA polymerases, and failure of DNA repair mechanisms (2). Early studies that sequenced TP53, the most commonly mutated gene in human cancer, provided evidence that mutational processes leave distinct imprints of somatic mutations on themore » genome of a cancer cell (3). For example, C:G>A:T transversions predominate in smoking-associated lung cancer, whereas C:G>T:A transitions occurring mainly at dipyrimidines and CC:GG>TT:AA double-nucleotide substitutions are common in ultraviolet light–associated skin cancers. Moreover, these patterns of mutations matched the ones induced experimentally by tobacco mutagens and ultraviolet light, respectively, the major, known, exogenous carcinogenic influences in these cancer types, and demonstrated that examining patterns of mutations in cancer genomes can yield information about the mutational processes that cause human cancer (4).« less

  4. Role of epistasis on the fixation probability of a non-mutator in an adapted asexual population.

    PubMed

    James, Ananthu

    2016-10-21

    The mutation rate of a well adapted population is prone to reduction so as to have a lower mutational load. We aim to understand the role of epistatic interactions between the fitness affecting mutations in this process. Using a multitype branching process, the fixation probability of a single non-mutator emerging in a large asexual mutator population is analytically calculated here. The mutator population undergoes deleterious mutations at constant, but at a much higher rate than that of the non-mutator. We find that antagonistic epistasis lowers the chances of mutation rate reduction, while synergistic epistasis enhances it. Below a critical value of epistasis, the fixation probability behaves non-monotonically with variation in the mutation rate of the background population. Moreover, the variation of this critical value of the epistasis parameter with the strength of the mutator is discussed in the appendix. For synergistic epistasis, when selection is varied, the fixation probability reduces overall, with damped oscillations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Impact of experimental design on PET radiomics in predicting somatic mutation status.

    PubMed

    Yip, Stephen S F; Parmar, Chintan; Kim, John; Huynh, Elizabeth; Mak, Raymond H; Aerts, Hugo J W L

    2017-12-01

    PET-based radiomic features have demonstrated great promises in predicting genetic data. However, various experimental parameters can influence the feature extraction pipeline, and hence, Here, we investigated how experimental settings affect the performance of radiomic features in predicting somatic mutation status in non-small cell lung cancer (NSCLC) patients. 348 NSCLC patients with somatic mutation testing and diagnostic PET images were included in our analysis. Radiomic feature extractions were analyzed for varying voxel sizes, filters and bin widths. 66 radiomic features were evaluated. The performance of features in predicting mutations status was assessed using the area under the receiver-operating-characteristic curve (AUC). The influence of experimental parameters on feature predictability was quantified as the relative difference between the minimum and maximum AUC (δ). The large majority of features (n=56, 85%) were significantly predictive for EGFR mutation status (AUC≥0.61). 29 radiomic features significantly predicted EGFR mutations and were robust to experimental settings with δ Overall <5%. The overall influence (δ Overall ) of the voxel size, filter and bin width for all features ranged from 5% to 15%, respectively. For all features, none of the experimental designs was predictive of KRAS+ from KRAS- (AUC≤0.56). The predictability of 29 radiomic features was robust to the choice of experimental settings; however, these settings need to be carefully chosen for all other features. The combined effect of the investigated processing methods could be substantial and must be considered. Optimized settings that will maximize the predictive performance of individual radiomic features should be investigated in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Tissue or blood: which is more suitable for detection of EGFR mutations in non-small cell lung cancer?

    PubMed

    Biaoxue, Rong; Shuanying, Yang

    2018-01-01

    Many studies have evaluated the accuracy of EGFR mutation status in blood against that in tumor tissues as the reference. We conducted this systematic review and meta-analysis to assess whether blood can be used as a substitute for tumor tissue in detecting EGFR mutations. Investigations that provided data on EGFR mutation status in blood were searched in the databases of Medline, Embase, Ovid Technologies and Web of Science. The detect efficiency of EGFR mutations in paired blood and tissues was compared using a random-effects model of meta-analysis. Pooled sensitivity and specificity and diagnostic accuracy were calculated by receiver operating characteristic curve. A total of 19 studies with 2,922 individuals were involved in this meta-analysis. The pooled results showed the positive detection rate of EGFR mutations in lung cancer tissues was remarkably higher than that of paired blood samples (odds ratio [OR] = 1.47, p<0.001). The pooled sensitivity and specificity of blood were 0.65 and 0.91, respectively, and the area under the receiver operating characteristic curve was 0.89. Although blood had a better specificity for detecting EGFR mutations, the absence of blood positivity should not necessarily be construed as confirmed negativity. Patients with negative results for blood should decidedly undergo further biopsies to ascertain EGFR mutations.

  7. The importance of selection in the evolution of blindness in cavefish.

    PubMed

    Cartwright, Reed A; Schwartz, Rachel S; Merry, Alexandra L; Howell, Megan M

    2017-02-07

    Blindness has evolved repeatedly in cave-dwelling organisms, and many hypotheses have been proposed to explain this observation, including both accumulation of neutral loss-of-function mutations and adaptation to darkness. Investigating the loss of sight in cave dwellers presents an opportunity to understand the operation of fundamental evolutionary processes, including drift, selection, mutation, and migration. Here we model the evolution of blindness in caves. This model captures the interaction of three forces: (1) selection favoring alleles causing blindness, (2) immigration of sightedness alleles from a surface population, and (3) mutations creating blindness alleles. We investigated the dynamics of this model and determined selection-strength thresholds that result in blindness evolving in caves despite immigration of sightedness alleles from the surface. We estimate that the selection coefficient for blindness would need to be at least 0.005 (and maybe as high as 0.5) for blindness to evolve in the model cave-organism, Astyanax mexicanus. Our results indicate that strong selection is required for the evolution of blindness in cave-dwelling organisms, which is consistent with recent work suggesting a high metabolic cost of eye development.

  8. Genome-Wide Motif Statistics are Shaped by DNA Binding Proteins over Evolutionary Time Scales

    NASA Astrophysics Data System (ADS)

    Qian, Long; Kussell, Edo

    The composition of genomes with respect to short DNA motifs impacts the ability of DNA binding proteins to locate and bind their target sites. Since nonfunctional DNA binding can be detrimental to cellular functions and ultimately to organismal fitness, organisms could benefit from reducing the number of nonfunctional binding sites genome wide. Using in vitro measurements of binding affinities for a large collection of DNA binding proteins, in multiple species, we detect a significant global avoidance of weak binding sites in genomes. The underlying evolutionary process leaves a distinct genomic hallmark in that similar words have correlated frequencies, which we detect in all species across domains of life. We hypothesize that natural selection against weak binding sites contributes to this process, and using an evolutionary model we show that the strength of selection needed to maintain global word compositions is on the order of point mutation rates. Alternative contributions may come from interference of protein-DNA binding with replication and mutational repair processes, which operates with similar rates. We conclude that genome-wide word compositions have been molded by DNA binding proteins through tiny evolutionary steps over timescales spanning millions of generations.

  9. Pre-operative role of BRAF in the guidance of the surgical approach and prognosis of differentiated thyroid carcinoma.

    PubMed

    Danilovic, Debora L S; Lima, Erika U; Domingues, Regina B; Brandão, Lenine G; Hoff, Ana O; Marui, Suemi

    2014-04-01

    The p.V600E BRAF and RAS mutations are found in 30-80% of differentiated thyroid carcinoma (DTC). BRAF mutation has been associated with poor prognosis. This study investigated the role of molecular studies in preoperative diagnosis of DTC and the association of p.V600E mutation with prognostic factors. Prospective study. A total of 202 patients with cytological diagnosis of Bethesda III-VI underwent preoperative molecular studies and subsequent thyroidectomy. p.V600E and RAS mutations were studied in the cytology smears, using real-time PCR genotyping technique. The BRAF mutation (BRAF(+) or BRAF(-)) was correlated with histological and clinical findings. Molecular study of 172 nodules with Bethesda III-V cytology improved negative predictive value and accuracy of Bethesda III and IV diagnosis. BRAF mutation was present in 65% of 94 DTC and p.Q61R NRAS in one. Except for age, BRAF(+) and BRAF(-) did not differ in sex, tumor size, histological subtype, multifocality, vascular invasion, extrathyroidal extension, or prognostic staging. Among papillary carcinomas, lymph node (LN) metastasis was diagnosed in 23% BRAF(+) and 37% BRAF(-). Distant metastasis occurred in four BRAF(-). Recurrent or persistent disease was more frequent in BRAF(-) (26.7 vs 3.3% BRAF(+), P=0.002) along follow-up of 29.8±10 months. BRAF(+) patients without LN metastasis by pre-operative evaluation submitted to thyroidectomy with central neck dissection (CND) had more frequent LN metastasis (45 vs 5% no CND, P=0.002), but no difference in clinical outcome was observed. Pre-operative identification of BRAF mutation improved cytological diagnosis of DTC, but it was not associated with poor prognostic factors. Prophylactic CND did not guarantee better outcome in BRAF(+) patients.

  10. Markov Chain-Like Quantum Biological Modeling of Mutations, Aging, and Evolution.

    PubMed

    Djordjevic, Ivan B

    2015-08-24

    Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper published in Life, we have derived the operator-sum representation of a biological channel based on codon basekets, and determined the quantum channel model suitable for study of the quantum biological channel capacity. However, this model is essentially memoryless and it is not able to properly model the propagation of mutation errors in time, the process of aging, and evolution of genetic information through generations. To solve for these problems, we propose novel quantum mechanical models to accurately describe the process of creation spontaneous, induced, and adaptive mutations and their propagation in time. Different biological channel models with memory, proposed in this paper, include: (i) Markovian classical model, (ii) Markovian-like quantum model, and (iii) hybrid quantum-classical model. We then apply these models in a study of aging and evolution of quantum biological channel capacity through generations. We also discuss key differences of these models with respect to a multilevel symmetric channel-based Markovian model and a Kimura model-based Markovian process. These models are quite general and applicable to many open problems in biology, not only biological channel capacity, which is the main focus of the paper. We will show that the famous quantum Master equation approach, commonly used to describe different biological processes, is just the first-order approximation of the proposed quantum Markov chain-like model, when the observation interval tends to zero. One of the important implications of this model is that the aging phenotype becomes determined by different underlying transition probabilities in both programmed and random (damage) Markov chain-like models of aging, which are mutually coupled.

  11. Markov Chain-Like Quantum Biological Modeling of Mutations, Aging, and Evolution

    PubMed Central

    Djordjevic, Ivan B.

    2015-01-01

    Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper published in Life, we have derived the operator-sum representation of a biological channel based on codon basekets, and determined the quantum channel model suitable for study of the quantum biological channel capacity. However, this model is essentially memoryless and it is not able to properly model the propagation of mutation errors in time, the process of aging, and evolution of genetic information through generations. To solve for these problems, we propose novel quantum mechanical models to accurately describe the process of creation spontaneous, induced, and adaptive mutations and their propagation in time. Different biological channel models with memory, proposed in this paper, include: (i) Markovian classical model, (ii) Markovian-like quantum model, and (iii) hybrid quantum-classical model. We then apply these models in a study of aging and evolution of quantum biological channel capacity through generations. We also discuss key differences of these models with respect to a multilevel symmetric channel-based Markovian model and a Kimura model-based Markovian process. These models are quite general and applicable to many open problems in biology, not only biological channel capacity, which is the main focus of the paper. We will show that the famous quantum Master equation approach, commonly used to describe different biological processes, is just the first-order approximation of the proposed quantum Markov chain-like model, when the observation interval tends to zero. One of the important implications of this model is that the aging phenotype becomes determined by different underlying transition probabilities in both programmed and random (damage) Markov chain-like models of aging, which are mutually coupled. PMID:26305258

  12. Chaotic particle swarm optimization with mutation for classification.

    PubMed

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms.

  13. Whole-Tumor Histogram and Texture Analyses of DTI for Evaluation of IDH1-Mutation and 1p/19q-Codeletion Status in World Health Organization Grade II Gliomas.

    PubMed

    Park, Y W; Han, K; Ahn, S S; Choi, Y S; Chang, J H; Kim, S H; Kang, S-G; Kim, E H; Lee, S-K

    2018-04-01

    Prediction of the isocitrate dehydrogenase 1 (IDH1)-mutation and 1p/19q-codeletion status of World Health Organization grade ll gliomas preoperatively may assist in predicting prognosis and planning treatment strategies. Our aim was to characterize the histogram and texture analyses of apparent diffusion coefficient and fractional anisotropy maps to determine IDH1 -mutation and 1p/19q-codeletion status in World Health Organization grade II gliomas. Ninety-three patients with World Health Organization grade II gliomas with known IDH1- mutation and 1p/19q-codeletion status (18 IDH1 wild-type, 45 IDH1 mutant and no 1p/19q codeletion, 30 IDH1- mutant and 1p/19q codeleted tumors) underwent DTI. ROIs were drawn on every section of the T2-weighted images and transferred to the ADC and the fractional anisotropy maps to derive volume-based data of the entire tumor. Histogram and texture analyses were correlated with the IDH1 -mutation and 1p/19q-codeletion status. The predictive powers of imaging features for IDH1 wild-type tumors and 1p/19q-codeletion status in IDH1 -mutant subgroups were evaluated using the least absolute shrinkage and selection operator. Various histogram and texture parameters differed significantly according to IDH1 -mutation and 1p/19q-codeletion status. The skewness and energy of ADC, 10th and 25th percentiles, and correlation of fractional anisotropy were independent predictors of an IDH1 wild-type in the least absolute shrinkage and selection operator. The area under the receiver operating curve for the prediction model was 0.853. The skewness and cluster shade of ADC, energy, and correlation of fractional anisotropy were independent predictors of a 1p/19q codeletion in IDH1 -mutant tumors in the least absolute shrinkage and selection operator. The area under the receiver operating curve was 0.807. Whole-tumor histogram and texture features of the ADC and fractional anisotropy maps are useful for predicting the IDH1 -mutation and 1p/19q-codeletion status in World Health Organization grade II gliomas. © 2018 by American Journal of Neuroradiology.

  14. Transforming Growth Factor Beta-2 Mutations in Barlow's Disease and Aortic Dilatation.

    PubMed

    Disha, Kushtrim; Schulz, Solveig; Kuntze, Thomas; Girdauskas, Evaldas

    2017-07-01

    We report on a patient operated on for degenerative myxomatous mitral and tricuspid valve disease (Barlow's disease) and aortic root dilatation. A valve repair operation and the postoperative course were uneventful. Multigenerational genetic analyses revealed two different mutations in the transforming growth factor beta-2 gene in the same patient. The two mutations in different exons were inherited from both parents each. None of the parents presented with either valve dysfunction or aortic root dilatation. This rare case illustrates potentially common genetic and signaling pathways of concomitant myxomatous valve disease and aortic root dilatation. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Mutation particle swarm optimization of the BP-PID controller for piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Zheng, Huaqing; Jiang, Minlan

    2016-01-01

    PID control is the most common used method in industrial control because its structure is simple and it is easy to implement. PID controller has good control effect, now it has been widely used. However, PID method has a few limitations. The overshoot of the PID controller is very big. The adjustment time is long. When the parameters of controlled plant are changing over time, the parameters of controller could hardly change automatically to adjust to changing environment. Thus, it can't meet the demand of control quality in the process of controlling piezoelectric ceramic. In order to effectively control the piezoelectric ceramic and improve the control accuracy, this paper replaced the learning algorithm of the BP with the mutation particle swarm optimization algorithm(MPSO) on the process of the parameters setting of BP-PID. That designed a better self-adaptive controller which is combing the BP neural network based on mutation particle swarm optimization with the conventional PID control theory. This combination is called the MPSO-BP-PID. In the mechanism of the MPSO, the mutation operation is carried out with the fitness variance and the global best fitness value as the standard. That can overcome the precocious of the PSO and strengthen its global search ability. As a result, the MPSO-BP-PID can complete controlling the controlled plant with higher speed and accuracy. Therefore, the MPSO-BP-PID is applied to the piezoelectric ceramic. It can effectively overcome the hysteresis, nonlinearity of the piezoelectric ceramic. In the experiment, compared with BP-PID and PSO-BP-PID, it proved that MPSO is effective and the MPSO-BP-PID has stronger adaptability and robustness.

  16. Dissecting genetic and environmental mutation signatures with model organisms.

    PubMed

    Segovia, Romulo; Tam, Annie S; Stirling, Peter C

    2015-08-01

    Deep sequencing has impacted on cancer research by enabling routine sequencing of genomes and exomes to identify genetic changes associated with carcinogenesis. Researchers can now use the frequency, type, and context of all mutations in tumor genomes to extract mutation signatures that reflect the driving mutational processes. Identifying mutation signatures, however, may not immediately suggest a mechanism. Consequently, several recent studies have employed deep sequencing of model organisms exposed to discrete genetic or environmental perturbations. These studies exploit the simpler genomes and availability of powerful genetic tools in model organisms to analyze mutation signatures under controlled conditions, forging mechanistic links between mutational processes and signatures. We discuss the power of this approach and suggest that many such studies may be on the horizon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Efficient fractal-based mutation in evolutionary algorithms from iterated function systems

    NASA Astrophysics Data System (ADS)

    Salcedo-Sanz, S.; Aybar-Ruíz, A.; Camacho-Gómez, C.; Pereira, E.

    2018-03-01

    In this paper we present a new mutation procedure for Evolutionary Programming (EP) approaches, based on Iterated Function Systems (IFSs). The new mutation procedure proposed consists of considering a set of IFS which are able to generate fractal structures in a two-dimensional phase space, and use them to modify a current individual of the EP algorithm, instead of using random numbers from different probability density functions. We test this new proposal in a set of benchmark functions for continuous optimization problems. In this case, we compare the proposed mutation against classical Evolutionary Programming approaches, with mutations based on Gaussian, Cauchy and chaotic maps. We also include a discussion on the IFS-based mutation in a real application of Tuned Mass Dumper (TMD) location and optimization for vibration cancellation in buildings. In both practical cases, the proposed EP with the IFS-based mutation obtained extremely competitive results compared to alternative classical mutation operators.

  18. Exploring the sequence-function relationship in transcriptional regulation by the lac O1 operator.

    PubMed

    Maity, Tuhin S; Jha, Ramesh K; Strauss, Charlie E M; Dunbar, John

    2012-07-01

    Understanding how binding of a transcription factor to an operator is influenced by the operator sequence is an ongoing quest. It facilitates discovery of alternative binding sites as well as tuning of transcriptional regulation. We investigated the behavior of the Escherichia coli Lac repressor (LacI) protein with a large set of lac O(1) operator variants. The 114 variants examined contained a mean of 2.9 (range 0-4) mutations at positions -4, -2, +2 and +4 in the minimally required 17 bp operator. The relative affinity of LacI for the operators was examined by quantifying expression of a GFP reporter gene and Rosetta structural modeling. The combinations of mutations in the operator sequence created a wide range of regulatory behaviors. We observed variations in the GFP fluorescent signal among the operator variants of more than an order of magnitude under both uninduced and induced conditions. We found that a single nucleotide change may result in changes of up to six- and 12-fold in uninduced and induced GFP signals, respectively. Among the four positions mutated, we found that nucleotide G at position -4 is strongly correlated with strong repression. By Rosetta modeling, we found a significant correlation between the calculated binding energy and the experimentally observed transcriptional repression strength for many operators. However, exceptions were also observed, underscoring the necessity for further improvement in biophysical models of protein-DNA interactions. © 2012 The Authors Journal compilation © 2012 FEBS.

  19. Myeloid neoplasms with germline DDX41 mutation.

    PubMed

    Cheah, Jesse J C; Hahn, Christopher N; Hiwase, Devendra K; Scott, Hamish S; Brown, Anna L

    2017-08-01

    Recently, DDX41 mutations have been identified both as germline and acquired somatic mutations in families with multiple cases of late-onset myelodysplastic syndrome (MDS) and/or acute myeloid leukemia. The majority of germline mutations are frameshift mutations suggesting loss of function with DDX41 acting as a tumor suppressor, and there is a common somatic missense mutation found in a majority of germline mutated tumors. Clinically, DDX41 mutations lead to development of high-risk MDS at an age similar to that observed in sporadic cohorts, presenting a unique challenge to hematologists in recognizing the familial context. Functionally, DDX41 has been shown to contribute to multiple pathways and processes including mRNA splicing, innate immunity and rRNA processing. Mutations in DDX41 result in aberrations to each of these in ways that could potentially impact on tumorigenesis-initiation, maintenance or progression. This review discusses the various molecular, clinical and biological aspects of myeloid malignancy predisposition due to DDX41 mutation and highlights how each of these suggest potential therapeutic opportunities through the use of pathway-specific inhibitors.

  20. Clustered Mutation Signatures Reveal that Error-Prone DNA Repair Targets Mutations to Active Genes.

    PubMed

    Supek, Fran; Lehner, Ben

    2017-07-27

    Many processes can cause the same nucleotide change in a genome, making the identification of the mechanisms causing mutations a difficult challenge. Here, we show that clustered mutations provide a more precise fingerprint of mutagenic processes. Of nine clustered mutation signatures identified from >1,000 tumor genomes, three relate to variable APOBEC activity and three are associated with tobacco smoking. An additional signature matches the spectrum of translesion DNA polymerase eta (POLH). In lymphoid cells, these mutations target promoters, consistent with AID-initiated somatic hypermutation. In solid tumors, however, they are associated with UV exposure and alcohol consumption and target the H3K36me3 chromatin of active genes in a mismatch repair (MMR)-dependent manner. These regions normally have a low mutation rate because error-free MMR also targets H3K36me3 chromatin. Carcinogens and error-prone repair therefore redistribute mutations to the more important regions of the genome, contributing a substantial mutation load in many tumors, including driver mutations. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Methods for Determining Spontaneous Mutation Rates

    PubMed Central

    Foster, Patricia L.

    2007-01-01

    Spontaneous mutations arise as a result of cellular processes that act upon or damage DNA. Accurate determination of spontaneous mutation rates can contribute to our understanding of these processes and the enzymatic pathways that deal with them. The methods that are used to calculate mutation rates are based on the model for the expansion of mutant clones originally described by Luria and Delbrück and extended by Lea and Coulson. The accurate determination of mutation rates depends on understanding the strengths and limitations of these methods and how to optimize a fluctuation assay for a given method. This chapter describes the proper design of a fluctuation assay, several of the methods used to calculate mutation rates, and ways to evaluate the results statistically. PMID:16793403

  2. Skeletal muscle repair in a mouse model of nemaline myopathy

    PubMed Central

    Sanoudou, Despina; Corbett, Mark A.; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T.; Vlahovich, Nicole; Hardeman, Edna C.; Beggs, Alan H.

    2012-01-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five different skeletal muscles from affected mice, which are representative of muscles with differing fiber-type compositions, different physiological specializations and variable degrees of pathology. Although these same muscles in non-affected mice showed marked variation in patterns of gene expression, with diaphragm being the most dissimilar, the presence of the mutant protein in nemaline muscles resulted in a more similar pattern of gene expression among the muscles. This result suggests a common process or mechanism operating in nemaline muscles independent of the variable degrees of pathology. Transcriptional and protein expression data indicate the presence of a repair process and possibly delayed maturation in nemaline muscles. Markers indicative of satellite cell number, activated satellite cells and immature fibers including M-Cadherin, MyoD, desmin, Pax7 and Myf6 were elevated by western-blot analysis or immunohistochemistry. Evidence suggesting elevated focal repair was observed in nemaline muscle in electron micrographs. This analysis reveals that NM is characterized by a novel repair feature operating in multiple different muscles. PMID:16877500

  3. Skeletal muscle repair in a mouse model of nemaline myopathy.

    PubMed

    Sanoudou, Despina; Corbett, Mark A; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T; Vlahovich, Nicole; Hardeman, Edna C; Beggs, Alan H

    2006-09-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five different skeletal muscles from affected mice, which are representative of muscles with differing fiber-type compositions, different physiological specializations and variable degrees of pathology. Although these same muscles in non-affected mice showed marked variation in patterns of gene expression, with diaphragm being the most dissimilar, the presence of the mutant protein in nemaline muscles resulted in a more similar pattern of gene expression among the muscles. This result suggests a common process or mechanism operating in nemaline muscles independent of the variable degrees of pathology. Transcriptional and protein expression data indicate the presence of a repair process and possibly delayed maturation in nemaline muscles. Markers indicative of satellite cell number, activated satellite cells and immature fibers including M-Cadherin, MyoD, desmin, Pax7 and Myf6 were elevated by western-blot analysis or immunohistochemistry. Evidence suggesting elevated focal repair was observed in nemaline muscle in electron micrographs. This analysis reveals that NM is characterized by a novel repair feature operating in multiple different muscles.

  4. Spliceosomal gene aberrations are rare, coexist with oncogenic mutations, and are unlikely to exert a driver effect in childhood MDS and JMML.

    PubMed

    Hirabayashi, Shinsuke; Flotho, Christian; Moetter, Jessica; Heuser, Michael; Hasle, Henrik; Gruhn, Bernd; Klingebiel, Thomas; Thol, Felicitas; Schlegelberger, Brigitte; Baumann, Irith; Strahm, Brigitte; Stary, Jan; Locatelli, Franco; Zecca, Marco; Bergstraesser, Eva; Dworzak, Michael; van den Heuvel-Eibrink, Marry M; De Moerloose, Barbara; Ogawa, Seishi; Niemeyer, Charlotte M; Wlodarski, Marcin W

    2012-03-15

    Somatic mutations of the spliceosomal machinery occur frequently in adult patients with myelodysplastic syndrome (MDS). We resequenced SF3B1, U2AF35, and SRSF2 in 371 children with MDS or juvenile myelomonocytic leukemia. We found missense mutations in 2 juvenile myelomonocytic leukemia cases and in 1 child with systemic mastocytosis with MDS. In 1 juvenile myelomonocytic leukemia patient, the SRSF2 mutation that initially coexisted with an oncogenic NRAS mutation was absent at relapse, whereas the NRAS mutation persisted and a second, concomitant NRAS mutation later emerged. The patient with systemic mastocytosis and MDS carried both mutated U2AF35 and KIT in a single clone as confirmed by clonal sequencing. In the adult MDS patients sequenced for control purposes, we detected previously reported mutations in 7/30 and a novel SRSF2 deletion (c.284_307del) in 3 of 30 patients. These findings implicate that spliceosome mutations are rare in pediatric MDS and juvenile myelomonocytic leukemia and are unlikely to operate as driver mutations.

  5. Chaotic Particle Swarm Optimization with Mutation for Classification

    PubMed Central

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms. PMID:25709937

  6. Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries.

    PubMed

    Monteiro Santos, Erika Maria; Valentin, Mev Dominguez; Carneiro, Felipe; de Oliveira, Ligia Petrolini; de Oliveira Ferreira, Fabio; Junior, Samuel Aguiar; Nakagawa, Wilson Toshihiko; Gomy, Israel; de Faria Ferraz, Victor Evangelista; da Silva Junior, Wilson Araujo; Carraro, Dirce Maria; Rossi, Benedito Mauro

    2012-02-09

    Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson). The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.

  7. Individualized Mutation Detection in Circulating Tumor DNA for Monitoring Colorectal Tumor Burden Using a Cancer-Associated Gene Sequencing Panel.

    PubMed

    Sato, Kei A; Hachiya, Tsuyoshi; Iwaya, Takeshi; Kume, Kohei; Matsuo, Teppei; Kawasaki, Keisuke; Abiko, Yukito; Akasaka, Risaburo; Matsumoto, Takayuki; Otsuka, Koki; Nishizuka, Satoshi S

    2016-01-01

    Circulating tumor DNA (ctDNA) carries information on tumor burden. However, the mutation spectrum is different among tumors. This study was designed to examine the utility of ctDNA for monitoring tumor burden based on an individual mutation profile. DNA was extracted from a total of 176 samples, including pre- and post-operational plasma, primary tumors, and peripheral blood mononuclear cells (PBMC), from 44 individuals with colorectal tumor who underwent curative resection of colorectal tumors, as well as nine healthy individuals. Using a panel of 50 cancer-associated genes, tumor-unique mutations were identified by comparing the single nucleotide variants (SNVs) from tumors and PBMCs with an Ion PGM sequencer. A group of the tumor-unique mutations from individual tumors were designated as individual marker mutations (MMs) to trace tumor burden by ctDNA using droplet digital PCR (ddPCR). From these experiments, three major objectives were assessed: (a) Tumor-unique mutations; (b) mutation spectrum of a tumor; and (c) changes in allele frequency of the MMs in ctDNA after curative resection of the tumor. A total of 128 gene point mutations were identified in 27 colorectal tumors. Twenty-six genes were mutated in at least 1 sample, while 14 genes were found to be mutated in only 1 sample, respectively. An average of 2.7 genes were mutated per tumor. Subsequently, 24 MMs were selected from SNVs for tumor burden monitoring. Among the MMs found by ddPCR with > 0.1% variant allele frequency in plasma DNA, 100% (8 out of 8) exhibited a decrease in post-operation ctDNA, whereas none of the 16 MMs found by ddPCR with < 0.1% variant allele frequency in plasma DNA showed a decrease. This panel of 50 cancer-associated genes appeared to be sufficient to identify individual, tumor-unique, mutated ctDNA markers in cancer patients. The MMs showed the clinical utility in monitoring curatively-treated colorectal tumor burden if the allele frequency of MMs in plasma DNA is above 0.1%.

  8. Neuroligin Trafficking Deficiencies Arising from Mutations in the α/β-Hydrolase Fold Protein Family*

    PubMed Central

    De Jaco, Antonella; Lin, Michael Z.; Dubi, Noga; Comoletti, Davide; Miller, Meghan T.; Camp, Shelley; Ellisman, Mark; Butko, Margaret T.; Tsien, Roger Y.; Taylor, Palmer

    2010-01-01

    Despite great functional diversity, characterization of the α/β-hydrolase fold proteins that encompass a superfamily of hydrolases, heterophilic adhesion proteins, and chaperone domains reveals a common structural motif. By incorporating the R451C mutation found in neuroligin (NLGN) and associated with autism and the thyroglobulin G2320R (G221R in NLGN) mutation responsible for congenital hypothyroidism into NLGN3, we show that mutations in the α/β-hydrolase fold domain influence folding and biosynthetic processing of neuroligin3 as determined by in vitro susceptibility to proteases, glycosylation processing, turnover, and processing rates. We also show altered interactions of the mutant proteins with chaperones in the endoplasmic reticulum and arrest of transport along the secretory pathway with diversion to the proteasome. Time-controlled expression of a fluorescently tagged neuroligin in hippocampal neurons shows that these mutations compromise neuronal trafficking of the protein, with the R451C mutation reducing and the G221R mutation virtually abolishing the export of NLGN3 from the soma to the dendritic spines. Although the R451C mutation causes a local folding defect, the G221R mutation appears responsible for more global misfolding of the protein, reflecting their sequence positions in the structure of the protein. Our results suggest that disease-related mutations in the α/β-hydrolase fold domain share common trafficking deficiencies yet lead to discrete congenital disorders of differing severity in the endocrine and nervous systems. PMID:20615874

  9. Neuroligin trafficking deficiencies arising from mutations in the alpha/beta-hydrolase fold protein family.

    PubMed

    De Jaco, Antonella; Lin, Michael Z; Dubi, Noga; Comoletti, Davide; Miller, Meghan T; Camp, Shelley; Ellisman, Mark; Butko, Margaret T; Tsien, Roger Y; Taylor, Palmer

    2010-09-10

    Despite great functional diversity, characterization of the alpha/beta-hydrolase fold proteins that encompass a superfamily of hydrolases, heterophilic adhesion proteins, and chaperone domains reveals a common structural motif. By incorporating the R451C mutation found in neuroligin (NLGN) and associated with autism and the thyroglobulin G2320R (G221R in NLGN) mutation responsible for congenital hypothyroidism into NLGN3, we show that mutations in the alpha/beta-hydrolase fold domain influence folding and biosynthetic processing of neuroligin3 as determined by in vitro susceptibility to proteases, glycosylation processing, turnover, and processing rates. We also show altered interactions of the mutant proteins with chaperones in the endoplasmic reticulum and arrest of transport along the secretory pathway with diversion to the proteasome. Time-controlled expression of a fluorescently tagged neuroligin in hippocampal neurons shows that these mutations compromise neuronal trafficking of the protein, with the R451C mutation reducing and the G221R mutation virtually abolishing the export of NLGN3 from the soma to the dendritic spines. Although the R451C mutation causes a local folding defect, the G221R mutation appears responsible for more global misfolding of the protein, reflecting their sequence positions in the structure of the protein. Our results suggest that disease-related mutations in the alpha/beta-hydrolase fold domain share common trafficking deficiencies yet lead to discrete congenital disorders of differing severity in the endocrine and nervous systems.

  10. Combined Simulated Annealing and Genetic Algorithm Approach to Bus Network Design

    NASA Astrophysics Data System (ADS)

    Liu, Li; Olszewski, Piotr; Goh, Pong-Chai

    A new method - combined simulated annealing (SA) and genetic algorithm (GA) approach is proposed to solve the problem of bus route design and frequency setting for a given road network with fixed bus stop locations and fixed travel demand. The method involves two steps: a set of candidate routes is generated first and then the best subset of these routes is selected by the combined SA and GA procedure. SA is the main process to search for a better solution to minimize the total system cost, comprising user and operator costs. GA is used as a sub-process to generate new solutions. Bus demand assignment on two alternative paths is performed at the solution evaluation stage. The method was implemented on four theoretical grid networks of different size and a benchmark network. Several GA operators (crossover and mutation) were utilized and tested for their effectiveness. The results show that the proposed method can efficiently converge to the optimal solution on a small network but computation time increases significantly with network size. The method can also be used for other transport operation management problems.

  11. A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data.

    PubMed

    Bertl, Johanna; Guo, Qianyun; Juul, Malene; Besenbacher, Søren; Nielsen, Morten Muhlig; Hornshøj, Henrik; Pedersen, Jakob Skou; Hobolth, Asger

    2018-04-19

    Detailed modelling of the neutral mutational process in cancer cells is crucial for identifying driver mutations and understanding the mutational mechanisms that act during cancer development. The neutral mutational process is very complex: whole-genome analyses have revealed that the mutation rate differs between cancer types, between patients and along the genome depending on the genetic and epigenetic context. Therefore, methods that predict the number of different types of mutations in regions or specific genomic elements must consider local genomic explanatory variables. A major drawback of most methods is the need to average the explanatory variables across the entire region or genomic element. This procedure is particularly problematic if the explanatory variable varies dramatically in the element under consideration. To take into account the fine scale of the explanatory variables, we model the probabilities of different types of mutations for each position in the genome by multinomial logistic regression. We analyse 505 cancer genomes from 14 different cancer types and compare the performance in predicting mutation rate for both regional based models and site-specific models. We show that for 1000 randomly selected genomic positions, the site-specific model predicts the mutation rate much better than regional based models. We use a forward selection procedure to identify the most important explanatory variables. The procedure identifies site-specific conservation (phyloP), replication timing, and expression level as the best predictors for the mutation rate. Finally, our model confirms and quantifies certain well-known mutational signatures. We find that our site-specific multinomial regression model outperforms the regional based models. The possibility of including genomic variables on different scales and patient specific variables makes it a versatile framework for studying different mutational mechanisms. Our model can serve as the neutral null model for the mutational process; regions that deviate from the null model are candidates for elements that drive cancer development.

  12. Extensive de novo mutation rate variation between individuals and across the genome of Chlamydomonas reinhardtii

    PubMed Central

    Ness, Rob W.; Morgan, Andrew D.; Vasanthakrishnan, Radhakrishnan B.; Colegrave, Nick; Keightley, Peter D.

    2015-01-01

    Describing the process of spontaneous mutation is fundamental for understanding the genetic basis of disease, the threat posed by declining population size in conservation biology, and much of evolutionary biology. Directly studying spontaneous mutation has been difficult, however, because new mutations are rare. Mutation accumulation (MA) experiments overcome this by allowing mutations to build up over many generations in the near absence of natural selection. Here, we sequenced the genomes of 85 MA lines derived from six genetically diverse strains of the green alga Chlamydomonas reinhardtii. We identified 6843 new mutations, more than any other study of spontaneous mutation. We observed sevenfold variation in the mutation rate among strains and that mutator genotypes arose, increasing the mutation rate approximately eightfold in some replicates. We also found evidence for fine-scale heterogeneity in the mutation rate, with certain sequence motifs mutating at much higher rates, and clusters of multiple mutations occurring at closely linked sites. There was little evidence, however, for mutation rate heterogeneity between chromosomes or over large genomic regions of 200 kbp. We generated a predictive model of the mutability of sites based on their genomic properties, including local GC content, gene expression level, and local sequence context. Our model accurately predicted the average mutation rate and natural levels of genetic diversity of sites across the genome. Notably, trinucleotides vary 17-fold in rate between the most and least mutable sites. Our results uncover a rich heterogeneity in the process of spontaneous mutation both among individuals and across the genome. PMID:26260971

  13. Base changes in tumour DNA have the power to reveal the causes and evolution of cancer

    DOE PAGES

    Hollstein, M.; Alexandrov, L. B.; Wild, C. P.; ...

    2016-06-06

    Next-generation sequencing (NGS) technology has demonstrated that the cancer genomes are peppered with mutations. Although most somatic tumour mutations are unlikely to have any role in the cancer process per se, the spectra of DNA sequence changes in tumour mutation catalogues have the potential to identify the mutagens, and to reveal the mutagenic processes responsible for human cancer. Very recently, a novel approach for data mining of the vast compilations of tumour NGS data succeeded in separating and precisely defining at least 30 distinct patterns of sequence change hidden in mutation databases. At least half of these mutational signatures canmore » be readily assigned to known human carcinogenic exposures or endogenous mechanisms of mutagenesis. A quantum leap in our knowledge of mutagenesis in human cancers has resulted, stimulating a flurry of research activity. We trace here the major findings leading first to the hypothesis that carcinogenic insults leave characteristic imprints on the DNA sequence of tumours, and culminating in empirical evidence from NGS data that well-defined carcinogen mutational signatures are indeed present in tumour genomic DNA from a variety of cancer types. The notion that tumour DNAs can divulge environmental sources of mutation is now a well-accepted fact. This approach to cancer aetiology has also incriminated various endogenous, enzyme-driven processes that increase the somatic mutation load in sporadic cancers. The tasks now confronting the field of molecular epidemiology are to assign mutagenic processes to orphan and newly discovered tumour mutation patterns, and to determine whether avoidable cancer risk factors influence signatures produced by endogenous enzymatic mechanisms. As a result, innovative research with experimental models and exploitation of the geographical heterogeneity in cancer incidence can address these challenges.« less

  14. Base changes in tumour DNA have the power to reveal the causes and evolution of cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollstein, M.; Alexandrov, L. B.; Wild, C. P.

    Next-generation sequencing (NGS) technology has demonstrated that the cancer genomes are peppered with mutations. Although most somatic tumour mutations are unlikely to have any role in the cancer process per se, the spectra of DNA sequence changes in tumour mutation catalogues have the potential to identify the mutagens, and to reveal the mutagenic processes responsible for human cancer. Very recently, a novel approach for data mining of the vast compilations of tumour NGS data succeeded in separating and precisely defining at least 30 distinct patterns of sequence change hidden in mutation databases. At least half of these mutational signatures canmore » be readily assigned to known human carcinogenic exposures or endogenous mechanisms of mutagenesis. A quantum leap in our knowledge of mutagenesis in human cancers has resulted, stimulating a flurry of research activity. We trace here the major findings leading first to the hypothesis that carcinogenic insults leave characteristic imprints on the DNA sequence of tumours, and culminating in empirical evidence from NGS data that well-defined carcinogen mutational signatures are indeed present in tumour genomic DNA from a variety of cancer types. The notion that tumour DNAs can divulge environmental sources of mutation is now a well-accepted fact. This approach to cancer aetiology has also incriminated various endogenous, enzyme-driven processes that increase the somatic mutation load in sporadic cancers. The tasks now confronting the field of molecular epidemiology are to assign mutagenic processes to orphan and newly discovered tumour mutation patterns, and to determine whether avoidable cancer risk factors influence signatures produced by endogenous enzymatic mechanisms. As a result, innovative research with experimental models and exploitation of the geographical heterogeneity in cancer incidence can address these challenges.« less

  15. Mutational signatures of DNA mismatch repair deficiency in C. elegans and human cancers.

    PubMed

    Meier, Bettina; Volkova, Nadezda V; Hong, Ye; Schofield, Pieta; Campbell, Peter J; Gerstung, Moritz; Gartner, Anton

    2018-05-01

    Throughout their lifetime, cells are subject to extrinsic and intrinsic mutational processes leaving behind characteristic signatures in the genome. DNA mismatch repair (MMR) deficiency leads to hypermutation and is found in different cancer types. Although it is possible to associate mutational signatures extracted from human cancers with possible mutational processes, the exact causation is often unknown. Here, we use C. elegans genome sequencing of pms-2 and mlh-1 knockouts to reveal the mutational patterns linked to C. elegans MMR deficiency and their dependency on endogenous replication errors and errors caused by deletion of the polymerase ε subunit pole-4 Signature extraction from 215 human colorectal and 289 gastric adenocarcinomas revealed three MMR-associated signatures, one of which closely resembles the C. elegans MMR spectrum and strongly discriminates microsatellite stable and unstable tumors (AUC = 98%). A characteristic difference between human and C. elegans MMR deficiency is the lack of elevated levels of N C G > NTG mutations in C. elegans, likely caused by the absence of cytosine (CpG) methylation in worms . The other two human MMR signatures may reflect the interaction between MMR deficiency and other mutagenic processes, but their exact cause remains unknown. In summary, combining information from genetically defined models and cancer samples allows for better aligning mutational signatures to causal mutagenic processes. © 2018 Meier et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Fitness Probability Distribution of Bit-Flip Mutation.

    PubMed

    Chicano, Francisco; Sutton, Andrew M; Whitley, L Darrell; Alba, Enrique

    2015-01-01

    Bit-flip mutation is a common mutation operator for evolutionary algorithms applied to optimize functions over binary strings. In this paper, we develop results from the theory of landscapes and Krawtchouk polynomials to exactly compute the probability distribution of fitness values of a binary string undergoing uniform bit-flip mutation. We prove that this probability distribution can be expressed as a polynomial in p, the probability of flipping each bit. We analyze these polynomials and provide closed-form expressions for an easy linear problem (Onemax), and an NP-hard problem, MAX-SAT. We also discuss a connection of the results with runtime analysis.

  17. The basic science and mathematics of random mutation and natural selection.

    PubMed

    Kleinman, Alan

    2014-12-20

    The mutation and natural selection phenomenon can and often does cause the failure of antimicrobial, herbicidal, pesticide and cancer treatments selection pressures. This phenomenon operates in a mathematically predictable behavior, which when understood leads to approaches to reduce and prevent the failure of the use of these selection pressures. The mathematical behavior of mutation and selection is derived using the principles given by probability theory. The derivation of the equations describing the mutation and selection phenomenon is carried out in the context of an empirical example. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Reproducibility of Digital PCR Assays for Circulating Tumor DNA Analysis in Advanced Breast Cancer

    PubMed Central

    Hrebien, Sarah; O’Leary, Ben; Beaney, Matthew; Schiavon, Gaia; Fribbens, Charlotte; Bhambra, Amarjit; Johnson, Richard; Turner, Nicholas

    2016-01-01

    Circulating tumor DNA (ctDNA) analysis has the potential to allow non-invasive analysis of tumor mutations in advanced cancer. In this study we assessed the reproducibility of digital PCR (dPCR) assays of circulating tumor DNA in a cohort of patients with advanced breast cancer and assessed delayed plasma processing using cell free DNA preservative tubes. We recruited a cohort of 96 paired samples from 71 women with advanced breast cancer who had paired blood samples processed either immediately or delayed in preservative tubes with processing 48–72 hours after collection. Plasma DNA was analysed with multiplex digital PCR (mdPCR) assays for hotspot mutations in PIK3CA, ESR1 and ERBB2, and for AKT1 E17K. There was 94.8% (91/96) agreement in mutation calling between immediate and delayed processed tubes, kappa 0.88 95% CI 0.77–0.98). Discordance in mutation calling resulted from low allele frequency and likely stochastic effects. In concordant samples there was high correlation in mutant copies per ml plasma (r2 = 0.98; p<0.0001). There was elevation of total cell free plasma DNA concentrations in 10.3% of delayed processed tubes, although overall quantification of total cell free plasma DNA had similar prognostic effects in immediate (HR 3.6) and delayed (HR 3.0) tubes. There was moderate agreement in changes in allele fraction between sequential samples in quantitative mutation tracking (r = 0.84, p = 0.0002). Delayed processing of samples using preservative tubes allows for centralized ctDNA digital PCR mutation screening in advanced breast cancer. The potential of preservative tubes in quantitative mutation tracking requires further research. PMID:27760227

  19. Reproducibility of Digital PCR Assays for Circulating Tumor DNA Analysis in Advanced Breast Cancer.

    PubMed

    Hrebien, Sarah; O'Leary, Ben; Beaney, Matthew; Schiavon, Gaia; Fribbens, Charlotte; Bhambra, Amarjit; Johnson, Richard; Garcia-Murillas, Isaac; Turner, Nicholas

    2016-01-01

    Circulating tumor DNA (ctDNA) analysis has the potential to allow non-invasive analysis of tumor mutations in advanced cancer. In this study we assessed the reproducibility of digital PCR (dPCR) assays of circulating tumor DNA in a cohort of patients with advanced breast cancer and assessed delayed plasma processing using cell free DNA preservative tubes. We recruited a cohort of 96 paired samples from 71 women with advanced breast cancer who had paired blood samples processed either immediately or delayed in preservative tubes with processing 48-72 hours after collection. Plasma DNA was analysed with multiplex digital PCR (mdPCR) assays for hotspot mutations in PIK3CA, ESR1 and ERBB2, and for AKT1 E17K. There was 94.8% (91/96) agreement in mutation calling between immediate and delayed processed tubes, kappa 0.88 95% CI 0.77-0.98). Discordance in mutation calling resulted from low allele frequency and likely stochastic effects. In concordant samples there was high correlation in mutant copies per ml plasma (r2 = 0.98; p<0.0001). There was elevation of total cell free plasma DNA concentrations in 10.3% of delayed processed tubes, although overall quantification of total cell free plasma DNA had similar prognostic effects in immediate (HR 3.6) and delayed (HR 3.0) tubes. There was moderate agreement in changes in allele fraction between sequential samples in quantitative mutation tracking (r = 0.84, p = 0.0002). Delayed processing of samples using preservative tubes allows for centralized ctDNA digital PCR mutation screening in advanced breast cancer. The potential of preservative tubes in quantitative mutation tracking requires further research.

  20. [Evaluation of performance of five bioinformatics software for the prediction of missense mutations].

    PubMed

    Chen, Qianting; Dai, Congling; Zhang, Qianjun; Du, Juan; Li, Wen

    2016-10-01

    To study the prediction performance evaluation with five kinds of bioinformatics software (SIFT, PolyPhen2, MutationTaster, Provean, MutationAssessor). From own database for genetic mutations collected over the past five years, Chinese literature database, Human Gene Mutation Database, and dbSNP, 121 missense mutations confirmed by functional studies, and 121 missense mutations suspected to be pathogenic by pedigree analysis were used as positive gold standard, while 242 missense mutations with minor allele frequency (MAF)>5% in dominant hereditary diseases were used as negative gold standard. The selected mutations were predicted with the five software. Based on the results, the performance of the five software was evaluated for their sensitivity, specificity, positive predict value, false positive rate, negative predict value, false negative rate, false discovery rate, accuracy, and receiver operating characteristic curve (ROC). In terms of sensitivity, negative predictive value and false negative rate, the rank was MutationTaster, PolyPhen2, Provean, SIFT, and MutationAssessor. For specificity and false positive rate, the rank was MutationTaster, Provean, MutationAssessor, SIFT, and PolyPhen2. For positive predict value and false discovery rate, the rank was MutationTaster, Provean, MutationAssessor, PolyPhen2, and SIFT. For area under the ROC curve (AUC) and accuracy, the rank was MutationTaster, Provean, PolyPhen2, MutationAssessor, and SIFT. The prediction performance of software may be different when using different parameters. Among the five software, MutationTaster has the best prediction performance.

  1. Tissue-specific mutation accumulation in human adult stem cells during life

    NASA Astrophysics Data System (ADS)

    Blokzijl, Francis; de Ligt, Joep; Jager, Myrthe; Sasselli, Valentina; Roerink, Sophie; Sasaki, Nobuo; Huch, Meritxell; Boymans, Sander; Kuijk, Ewart; Prins, Pjotr; Nijman, Isaac J.; Martincorena, Inigo; Mokry, Michal; Wiegerinck, Caroline L.; Middendorp, Sabine; Sato, Toshiro; Schwank, Gerald; Nieuwenhuis, Edward E. S.; Verstegen, Monique M. A.; van der Laan, Luc J. W.; de Jonge, Jeroen; Ijzermans, Jan N. M.; Vries, Robert G.; van de Wetering, Marc; Stratton, Michael R.; Clevers, Hans; Cuppen, Edwin; van Boxtel, Ruben

    2016-10-01

    The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.

  2. Statistical Methods for Identifying Sequence Motifs Affecting Point Mutations

    PubMed Central

    Zhu, Yicheng; Neeman, Teresa; Yap, Von Bing; Huttley, Gavin A.

    2017-01-01

    Mutation processes differ between types of point mutation, genomic locations, cells, and biological species. For some point mutations, specific neighboring bases are known to be mechanistically influential. Beyond these cases, numerous questions remain unresolved, including: what are the sequence motifs that affect point mutations? How large are the motifs? Are they strand symmetric? And, do they vary between samples? We present new log-linear models that allow explicit examination of these questions, along with sequence logo style visualization to enable identifying specific motifs. We demonstrate the performance of these methods by analyzing mutation processes in human germline and malignant melanoma. We recapitulate the known CpG effect, and identify novel motifs, including a highly significant motif associated with A→G mutations. We show that major effects of neighbors on germline mutation lie within ±2 of the mutating base. Models are also presented for contrasting the entire mutation spectra (the distribution of the different point mutations). We show the spectra vary significantly between autosomes and X-chromosome, with a difference in T→C transition dominating. Analyses of malignant melanoma confirmed reported characteristic features of this cancer, including statistically significant strand asymmetry, and markedly different neighboring influences. The methods we present are made freely available as a Python library https://bitbucket.org/pycogent3/mutationmotif. PMID:27974498

  3. Lynch Syndrome in high risk Ashkenazi Jews in Israel.

    PubMed

    Goldberg, Yael; Kedar, Inbal; Kariiv, Revital; Halpern, Naama; Plesser, Morasha; Hubert, Ayala; Kaduri, Luna; Sagi, Michal; Lerer, Israela; Abeliovich, Dvorah; Hamburger, Tamar; Nissan, Aviram; Goldshmidt, Hanoch; Solar, Irit; Geva, Ravit; Strul, Hana; Rosner, Guy; Baris, Hagit; Levi, Zohar; Peretz, Tamar

    2014-03-01

    Lynch Syndrome is caused by mutations in DNA mismatch repair genes. Diagnosis is not always trivial and may be costly. Information regarding incidence, genotype-phenotype correlation, spectrum of mutations and genes involved in specific populations facilitate the diagnostic process and contribute to clinical work-up. To report gene distribution, mutations detected and co-occurrence of related syndromes in a cohort of Ashkenazi Jews in Israel. Patients were identified in dedicated high risk clinics in 3 medical centers in Israel. Diagnostic process followed a multi-step scheme. It included testing for founder mutations, tumor testing, gene sequencing and MLPA. Lynch Syndrome was defined either by positive mutation testing, or by clinical criteria and positive tumor analysis. We report a cohort of 75 Ashkenazi families suspected of Lynch Syndrome. Mutations were identified in 51/75 (68%) families: 38 in MSH2, 9 in MSH6, and 4 in MLH1. 37/51 (73%) of these families carried one of the 3 'Ashkenazi' founder mutations in MSH2 or MSH6. Each of the other 14 families carried a private mutation. 3 (6%) were large deletions. Only 20/51 (39%) families were Amsterdam Criteria positive; 42 (82%) were positive for the Bethesda guidelines and 9 (18%) did not fulfill any Lynch Syndrome criteria. We report C-MMRD and co-occurrence of BRCA and Lynch Syndrome in our cohort. Mutation spectra and gene distribution among Ashkenazi Jews are unique. Three founder Lynch Syndrome mutations are found in 73% families with known mutations. Among the three, MSH2 and MSH6 are the most common. These features affect the phenotype, the diagnostic process, risk estimation, and genetic counseling.

  4. Elevated mutation rate during meiosis in Saccharomyces cerevisiae.

    PubMed

    Rattray, Alison; Santoyo, Gustavo; Shafer, Brenda; Strathern, Jeffrey N

    2015-01-01

    Mutations accumulate during all stages of growth, but only germ line mutations contribute to evolution. While meiosis contributes to evolution by reassortment of parental alleles, we show here that the process itself is inherently mutagenic. We have previously shown that the DNA synthesis associated with repair of a double-strand break is about 1000-fold less accurate than S-phase synthesis. Since the process of meiosis involves many programmed DSBs, we reasoned that this repair might also be mutagenic. Indeed, in the early 1960's Magni and Von Borstel observed elevated reversion of recessive alleles during meiosis, and found that the revertants were more likely to be associated with a crossover than non-revertants, a process that they called "the meiotic effect." Here we use a forward mutation reporter (CAN1 HIS3) placed at either a meiotic recombination coldspot or hotspot near the MAT locus on Chromosome III. We find that the increased mutation rate at CAN1 (6 to 21 -fold) correlates with the underlying recombination rate at the locus. Importantly, we show that the elevated mutation rate is fully dependent upon Spo11, the protein that introduces the meiosis specific DSBs. To examine associated recombination we selected for random spores with or without a mutation in CAN1. We find that the mutations isolated this way show an increased association with recombination (crossovers, loss of crossover interference and/or increased gene conversion tracts). Polζ appears to contribute about half of the mutations induced during meiosis, but is not the only source of mutations for the meiotic effect. We see no difference in either the spectrum or distribution of mutations between mitosis and meiosis. The correlation of hotspots with elevated mutagenesis provides a mechanism for organisms to control evolution rates in a gene specific manner.

  5. Stochastic eco-evolutionary model of a prey-predator community.

    PubMed

    Costa, Manon; Hauzy, Céline; Loeuille, Nicolas; Méléard, Sylvie

    2016-02-01

    We are interested in the impact of natural selection in a prey-predator community. We introduce an individual-based model of the community that takes into account both prey and predator phenotypes. Our aim is to understand the phenotypic coevolution of prey and predators. The community evolves as a multi-type birth and death process with mutations. We first consider the infinite particle approximation of the process without mutation. In this limit, the process can be approximated by a system of differential equations. We prove the existence of a unique globally asymptotically stable equilibrium under specific conditions on the interaction among prey individuals. When mutations are rare, the community evolves on the mutational scale according to a Markovian jump process. This process describes the successive equilibria of the prey-predator community and extends the polymorphic evolutionary sequence to a coevolutionary framework. We then assume that mutations have a small impact on phenotypes and consider the evolution of monomorphic prey and predator populations. The limit of small mutation steps leads to a system of two differential equations which is a version of the canonical equation of adaptive dynamics for the prey-predator coevolution. We illustrate these different limits with an example of prey-predator community that takes into account different prey defense mechanisms. We observe through simulations how these various prey strategies impact the community.

  6. Operating rules for multireservoir systems

    NASA Astrophysics Data System (ADS)

    Oliveira, Rodrigo; Loucks, Daniel P.

    1997-04-01

    Multireservoir operating policies are usually defined by rules that specify either individual reservoir desired (target) storage volumes or desired (target) releases based on the time of year and the existing total storage volume in all reservoirs. This paper focuses on the use of genetic search algorithms to derive these multireservoir operating policies. The genetic algorithms use real-valued vectors containing information needed to define both system release and individual reservoir storage volume targets as functions of total storage in each of multiple within-year periods. Elitism, arithmetic crossover, mutation, and "en bloc" replacement are used in the algorithms to generate successive sets of possible operating policies. Each policy is then evaluated using simulation to compute a performance index for a given flow series. The better performing policies are then used as a basis for generating new sets of possible policies. The process of improved policy generation and evaluation is repeated until no further improvement in performance is obtained. The proposed algorithm is applied to example reservoir systems used for water supply and hydropower.

  7. SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage

    PubMed Central

    Pouyet, Fanny; Bailly-Bechet, Marc; Mouchiroud, Dominique; Guéguen, Laurent

    2016-01-01

    Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences. PMID:27401173

  8. Distinct contributions of replication and transcription to mutation rate variation of human genomes.

    PubMed

    Cui, Peng; Ding, Feng; Lin, Qiang; Zhang, Lingfang; Li, Ang; Zhang, Zhang; Hu, Songnian; Yu, Jun

    2012-02-01

    Here, we evaluate the contribution of two major biological processes--DNA replication and transcription--to mutation rate variation in human genomes. Based on analysis of the public human tissue transcriptomics data, high-resolution replicating map of Hela cells and dbSNP data, we present significant correlations between expression breadth, replication time in local regions and SNP density. SNP density of tissue-specific (TS) genes is significantly higher than that of housekeeping (HK) genes. TS genes tend to locate in late-replicating genomic regions and genes in such regions have a higher SNP density compared to those in early-replication regions. In addition, SNP density is found to be positively correlated with expression level among HK genes. We conclude that the process of DNA replication generates stronger mutational pressure than transcription-associated biological processes do, resulting in an increase of mutation rate in TS genes while having weaker effects on HK genes. In contrast, transcription-associated processes are mainly responsible for the accumulation of mutations in highly-expressed HK genes. Copyright © 2012 Beijing Genomics Institute. Published by Elsevier Ltd. All rights reserved.

  9. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770

    PubMed Central

    Van Goor, Fredrick; Hadida, Sabine; Grootenhuis, Peter D. J.; Burton, Bill; Cao, Dong; Neuberger, Tim; Turnbull, Amanda; Singh, Ashvani; Joubran, John; Hazlewood, Anna; Zhou, Jinglan; McCartney, Jason; Arumugam, Vijayalaksmi; Decker, Caroline; Yang, Jennifer; Young, Chris; Olson, Eric R.; Wine, Jeffery J.; Frizzell, Raymond A.; Ashlock, Melissa; Negulescu, Paul

    2009-01-01

    Cystic fibrosis (CF) is a fatal genetic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), a protein kinase A (PKA)-activated epithelial anion channel involved in salt and fluid transport in multiple organs, including the lung. Most CF mutations either reduce the number of CFTR channels at the cell surface (e.g., synthesis or processing mutations) or impair channel function (e.g., gating or conductance mutations) or both. There are currently no approved therapies that target CFTR. Here we describe the in vitro pharmacology of VX-770, an orally bioavailable CFTR potentiator in clinical development for the treatment of CF. In recombinant cells VX-770 increased CFTR channel open probability (Po) in both the F508del processing mutation and the G551D gating mutation. VX-770 also increased Cl− secretion in cultured human CF bronchial epithelia (HBE) carrying the G551D gating mutation on one allele and the F508del processing mutation on the other allele by ≈10-fold, to ≈50% of that observed in HBE isolated from individuals without CF. Furthermore, VX-770 reduced excessive Na+ and fluid absorption to prevent dehydration of the apical surface and increased cilia beating in these epithelial cultures. These results support the hypothesis that pharmacological agents that restore or increase CFTR function can rescue epithelial cell function in human CF airway. PMID:19846789

  10. The Landscape of mtDNA Modifications in Cancer: A Tale of Two Cities.

    PubMed

    Hertweck, Kate L; Dasgupta, Santanu

    2017-01-01

    Mitochondria from normal and cancerous cells represent a tale of two cities, wherein both execute similar processes but with different cellular and molecular effects. Given the number of reviews currently available which describe the functional implications of mitochondrial mutations in cancer, this article focuses on documenting current knowledge in the abundance and distribution of somatic mitochondrial mutations, followed by elucidation of processes which affect the fate of mutations in cancer cells. The conclusion includes an overview of translational implications for mtDNA mutations, as well as recommendations for future research uniting mitochondrial variants and tumorigenesis.

  11. Mutation—The Engine of Evolution: Studying Mutation and Its Role in the Evolution of Bacteria

    PubMed Central

    Hershberg, Ruth

    2015-01-01

    Mutation is the engine of evolution in that it generates the genetic variation on which the evolutionary process depends. To understand the evolutionary process we must therefore characterize the rates and patterns of mutation. Starting with the seminal Luria and Delbruck fluctuation experiments in 1943, studies utilizing a variety of approaches have revealed much about mutation rates and patterns and about how these may vary between different bacterial strains and species along the chromosome and between different growth conditions. This work provides a critical overview of the results and conclusions drawn from these studies, of the debate surrounding some of these conclusions, and of the challenges faced when studying mutation and its role in bacterial evolution. PMID:26330518

  12. Fuel management optimization using genetic algorithms and code independence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1994-12-31

    Fuel management optimization is a hard problem for traditional optimization techniques. Loading pattern optimization is a large combinatorial problem without analytical derivative information. Therefore, methods designed for continuous functions, such as linear programming, do not always work well. Genetic algorithms (GAs) address these problems and, therefore, appear ideal for fuel management optimization. They do not require derivative information and work well with combinatorial. functions. The GAs are a stochastic method based on concepts from biological genetics. They take a group of candidate solutions, called the population, and use selection, crossover, and mutation operators to create the next generation of bettermore » solutions. The selection operator is a {open_quotes}survival-of-the-fittest{close_quotes} operation and chooses the solutions for the next generation. The crossover operator is analogous to biological mating, where children inherit a mixture of traits from their parents, and the mutation operator makes small random changes to the solutions.« less

  13. Topology of evolving, mutagenized viral populations: quasispecies expansion, compression, and operation of negative selection.

    PubMed

    Ojosnegros, Samuel; Agudo, Rubén; Sierra, Macarena; Briones, Carlos; Sierra, Saleta; González-López, Claudia; Domingo, Esteban; Cristina, Juan

    2008-07-17

    The molecular events and evolutionary forces underlying lethal mutagenesis of virus (or virus extinction through an excess of mutations) are not well understood. Here we apply for the first time phylogenetic methods and Partition Analysis of Quasispecies (PAQ) to monitor genetic distances and intra-population structures of mutant spectra of foot-and-mouth disease virus (FMDV) quasispecies subjected to mutagenesis by base and nucleoside analogues. Phylogenetic and PAQ analyses have revealed a highly dynamic variation of intrapopulation diversity of FMDV quasispecies. The population diversity first suffers striking expansions in the presence of mutagens and then compressions either when the presence of the mutagenic analogue was discontinued or when a mutation that decreased sensitivity to a mutagen was selected. The pattern of mutations found in the populations was in agreement with the behavior of the corresponding nucleotide analogues with FMDV in vitro. Mutations accumulated at preferred genomic sites, and dn/ds ratios indicate the operation of negative (or purifying) selection in populations subjected to mutagenesis. No evidence of unusually elevated genetic distances has been obtained for FMDV populations approaching extinction. Phylogenetic and PAQ analysis provide adequate procedures to describe the evolution of viral sequences subjected to lethal mutagenesis. These methods define the changes of intra-population structure more precisely than mutation frequencies and Shannon entropies. PAQ is very sensitive to variations of intrapopulation genetic distances. Strong negative (or purifying) selection operates in FMDV populations subjected to enhanced mutagenesis. The quantifications provide evidence that extinction does not imply unusual increases of intrapopulation complexity, in support of the lethal defection model of virus extinction.

  14. Loss of circadian clock accelerates aging in neurodegeneration-prone mutants

    PubMed Central

    Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S.; Wentzell, Jill S.; Kretzschmar, Doris; Giebultowicz, Jadwiga M.

    2012-01-01

    Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per01) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni1), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni1 mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per01 sni1 flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per01 mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws1), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. PMID:22227001

  15. Detection of high-risk thrombophilia with an automated, global test: the Coagulation Inhibitor Potential assay.

    PubMed

    Réger, Barbara; Losonczy, Hajna; Nagy, Ágnes; Péterfalvi, Ágnes; Mózes, Réka; Pótó, László; Farkas, Nelli; Kovács, Gábor L; Miseta, Attila; Hussain, Alizadeh; Tóth, Orsolya

    2018-05-17

    : The diagnosis of thrombophilia is a cost-consuming and time-consuming process, as each defect should be separately investigated. The Coagulation Inhibitor Potential (CIP) assay is a promising new global test, sensitive for most of the hereditary thrombophilias, developed for manual methodology. We adapt the original method to an optical coagulation analyser. By this automation, the test will be easier, faster and more precise, and it also allows carrying out 18 measurements simultaneously. The CIP assay was performed in 126 healthy subjects and 193 patients with different types of hereditary thrombophilia conditions. Detected with conventional laboratory tests high-risk thrombophilia was present in 70 patients: deficiencies of antithrombin (AT) (n = 12), protein C (PC) (n = 14), protein S (PS) (n = 6), homozygous factor V Leiden (FVL) mutation (n = 9) and combined types (n = 29). Low-risk thrombophilia was present in 123 patients: heterozygous FVL (n = 115) and FII G2010A mutation (n = 8). Significantly lower median CIP values were found for AT-,PC-, PS deficiencies, homozygous and heterozygous FVL mutations and combined thrombophilias (P < 0.01) as compared with healthy controls. There was no significant difference between the heterozygous FIIG20210A (P = 0.669) thrombophilia group and the healthy controls. The best performance of the test was achieved at the cut-off value of 90.0 U (area: 0.981) with 96% sensitivity and 92% specificity in the high-risk thrombophilia group estimated by receiver operating characteristic analysis. The new method seems to be appropriate and reliable for the detection of AT-, PC- and PS deficiencies, homozygous FVL mutation and also for combined deficiencies. The automated CIP test is insensitive to FII G2010A mutation.

  16. Growth Hormone Receptor Mutations Related to Individual Dwarfism

    PubMed Central

    Li, Charles; Zhang, Xiquan

    2018-01-01

    Growth hormone (GH) promotes body growth by binding with two GH receptors (GHRs) at the cell surface. GHRs interact with Janus kinase, signal transducers, and transcription activators to stimulate metabolic effects and insulin-like growth factor (IGF) synthesis. However, process dysfunctions in the GH–GHR–IGF-1 axis cause animal dwarfism. If, during the GH process, GHR is not successfully recognized and/or bound, or GHR fails to transmit the GH signal to IGF-1, the GH dysfunction occurs. The goal of this review was to focus on the GHR mutations that lead to failures in the GH–GHR–IGF-1 signal transaction process in the dwarf phenotype. Until now, more than 90 GHR mutations relevant to human short stature (Laron syndrome and idiopathic short stature), including deletions, missense, nonsense, frameshift, and splice site mutations, and four GHR defects associated with chicken dwarfism, have been described. Among the 93 identified mutations of human GHR, 68 occur extracellularly, 13 occur in GHR introns, 10 occur intracellularly, and two occur in the transmembrane. These mutations interfere with the interaction between GH and GHRs, GHR dimerization, downstream signaling, and the expression of GHR. These mutations cause aberrant functioning in the GH-GHR-IGF-1 axis, resulting in defects in the number and diameter of muscle fibers as well as bone development. PMID:29748515

  17. mtDNA Mutations and Their Role in Aging, Diseases and Forensic Sciences

    PubMed Central

    Zapico, Sara C.; Ubelaker, Douglas H.

    2013-01-01

    Mitochondria are independent organelles with their own DNA. As a primary function, mitochondria produce the energy for the cell through Oxidative Phosphorylation (OXPHOS) in the Electron Transport Chain (ETC). One of the toxic products of this process is Reactive Oxygen Species (ROS), which can induce oxidative damage in macromolecules like lipids, proteins and DNA. Mitochondrial DNA (mtDNA) is less protected and has fewer reparation mechanisms than nuclear DNA (nDNA), and as such is more exposed to oxidative, mutation-inducing damage. This review analyzes the causes and consequences of mtDNA mutations and their relationship with the aging process. Neurodegenerative diseases, related with the aging, are consequences of mtDNA mutations resulting in a decrease in mitochondrial function. Also described are “mitochondrial diseases”, pathologies produced by mtDNA mutations and whose symptoms are related with mitochondrial dysfunction. Finally, mtDNA haplogroups are defined in this review; these groups are important for determination of geographical origin of an individual. Additionally, different haplogroups exhibit variably longevity and risk of certain diseases. mtDNA mutations in aging and haplogroups are of special interest to forensic science research. Therefore this review will help to clarify the key role of mtDNA mutations in these processes and support further research in this area. PMID:24307969

  18. The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization.

    PubMed

    Błażej, Paweł; Wnȩtrzak, Małgorzata; Mackiewicz, Paweł

    2016-12-01

    One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given criteria and compare it with the canonical genetic code. Unfortunately, the huge number of possible alternatives makes it impossible to find the optimal code using exhaustive methods in sensible time. Therefore, heuristic methods should be applied to search the space of possible solutions. Evolutionary algorithms (EA) seem to be ones of such promising approaches. This class of methods is founded both on mutation and crossover operators, which are responsible for creating and maintaining the diversity of candidate solutions. These operators possess dissimilar characteristics and consequently play different roles in the process of finding the best solutions under given criteria. Therefore, the effective searching for the potential solutions can be improved by applying both of them, especially when these operators are devised specifically for a given problem. To study this subject, we analyze the effectiveness of algorithms for various combinations of mutation and crossover probabilities under three models of the genetic code assuming different restrictions on its structure. To achieve that, we adapt the position based crossover operator for the most restricted model and develop a new type of crossover operator for the more general models. The applied fitness function describes costs of amino acid replacement regarding their polarity. Our results indicate that the usage of crossover operators can significantly improve the quality of the solutions. Moreover, the simulations with the crossover operator optimize the fitness function in the smaller number of generations than simulations without this operator. The optimal genetic codes without restrictions on their structure minimize the costs about 2.7 times better than the canonical genetic code. Interestingly, the optimal codes are dominated by amino acids characterized by polarity close to its average value for all amino acids. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Fixation probability of a nonmutator in a large population of asexual mutators.

    PubMed

    Jain, Kavita; James, Ananthu

    2017-11-21

    In an adapted population of mutators in which most mutations are deleterious, a nonmutator that lowers the mutation rate is under indirect selection and can sweep to fixation. Using a multitype branching process, we calculate the fixation probability of a rare nonmutator in a large population of asexual mutators. We show that when beneficial mutations are absent, the fixation probability is a nonmonotonic function of the mutation rate of the mutator: it first increases sublinearly and then decreases exponentially. We also find that beneficial mutations can enhance the fixation probability of a nonmutator. Our analysis is relevant to an understanding of recent experiments in which a reduction in the mutation rates has been observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Mutation-selection equilibrium in games with multiple strategies.

    PubMed

    Antal, Tibor; Traulsen, Arne; Ohtsuki, Hisashi; Tarnita, Corina E; Nowak, Martin A

    2009-06-21

    In evolutionary games the fitness of individuals is not constant but depends on the relative abundance of the various strategies in the population. Here we study general games among n strategies in populations of large but finite size. We explore stochastic evolutionary dynamics under weak selection, but for any mutation rate. We analyze the frequency dependent Moran process in well-mixed populations, but almost identical results are found for the Wright-Fisher and Pairwise Comparison processes. Surprisingly simple conditions specify whether a strategy is more abundant on average than 1/n, or than another strategy, in the mutation-selection equilibrium. We find one condition that holds for low mutation rate and another condition that holds for high mutation rate. A linear combination of these two conditions holds for any mutation rate. Our results allow a complete characterization of nxn games in the limit of weak selection.

  1. Forced evolution in silico by artificial transposons and their genetic operators: The ant navigation problem.

    PubMed

    Zamdborg, Leonid; Holloway, David M; Merelo, Juan J; Levchenko, Vladimir F; Spirov, Alexander V

    2015-06-10

    Modern evolutionary computation utilizes heuristic optimizations based upon concepts borrowed from the Darwinian theory of natural selection. Their demonstrated efficacy has reawakened an interest in other aspects of contemporary biology as an inspiration for new algorithms. However, amongst the many excellent candidates for study, contemporary models of biological macroevolution attract special attention. We believe that a vital direction in this field must be algorithms that model the activity of "genomic parasites", such as transposons, in biological evolution. Many evolutionary biologists posit that it is the co-evolution of populations with their genomic parasites that permits the high efficiency of evolutionary searches found in the living world. This publication is our first step in the direction of developing a minimal assortment of algorithms that simulate the role of genomic parasites. Specifically, we started in the domain of genetic algorithms (GA) and selected the Artificial Ant Problem as a test case. This navigation problem is widely known as a classical benchmark test and possesses a large body of literature. We add new objects to the standard toolkit of GA - artificial transposons and a collection of operators that operate on them. We define these artificial transposons as a fragment of an ant's code with properties that cause it to stand apart from the rest. The minimal set of operators for transposons is a transposon mutation operator, and a transposon reproduction operator that causes a transposon to multiply within the population of hosts. An analysis of the population dynamics of transposons within the course of ant evolution showed that transposons are involved in the processes of propagation and selection of blocks of ant navigation programs. During this time, the speed of evolutionary search increases significantly. We concluded that artificial transposons, analogous to real transposons, are truly capable of acting as intelligent mutators that adapt in response to an evolutionary problem in the course of co-evolution with their hosts.

  2. Forced evolution in silico by artificial transposons and their genetic operators: The ant navigation problem

    PubMed Central

    Zamdborg, Leonid; Holloway, David M.; Merelo, Juan J.; Levchenko, Vladimir F.; Spirov, Alexander V.

    2015-01-01

    Modern evolutionary computation utilizes heuristic optimizations based upon concepts borrowed from the Darwinian theory of natural selection. Their demonstrated efficacy has reawakened an interest in other aspects of contemporary biology as an inspiration for new algorithms. However, amongst the many excellent candidates for study, contemporary models of biological macroevolution attract special attention. We believe that a vital direction in this field must be algorithms that model the activity of “genomic parasites”, such as transposons, in biological evolution. Many evolutionary biologists posit that it is the co-evolution of populations with their genomic parasites that permits the high efficiency of evolutionary searches found in the living world. This publication is our first step in the direction of developing a minimal assortment of algorithms that simulate the role of genomic parasites. Specifically, we started in the domain of genetic algorithms (GA) and selected the Artificial Ant Problem as a test case. This navigation problem is widely known as a classical benchmark test and possesses a large body of literature. We add new objects to the standard toolkit of GA - artificial transposons and a collection of operators that operate on them. We define these artificial transposons as a fragment of an ant's code with properties that cause it to stand apart from the rest. The minimal set of operators for transposons is a transposon mutation operator, and a transposon reproduction operator that causes a transposon to multiply within the population of hosts. An analysis of the population dynamics of transposons within the course of ant evolution showed that transposons are involved in the processes of propagation and selection of blocks of ant navigation programs. During this time, the speed of evolutionary search increases significantly. We concluded that artificial transposons, analogous to real transposons, are truly capable of acting as intelligent mutators that adapt in response to an evolutionary problem in the course of co-evolution with their hosts. PMID:25767296

  3. The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes.

    PubMed

    Poulos, Rebecca C; Olivier, Jake; Wong, Jason W H

    2017-07-27

    Methylated cytosines (5mCs) are frequently mutated in the genome. However, no studies have yet comprehensively analysed mutation-methylation associations across cancer types. Here we analyse 916 cancer genomes, together with tissue type-specific methylation and replication timing data. We describe a strong mutation-methylation association across colorectal cancer subtypes, most interestingly in samples with microsatellite instability (MSI) or Polymerase epsilon (POLE) exonuclease domain mutations. By analysing genomic regions with differential mismatch repair (MMR) efficiency, we suggest a possible role for MMR in the correction of 5mC deamination events, potentially accounting for the high rate of 5mC mutation accumulation in MSI tumours. Additionally, we propose that mutant POLE asserts a mutator phenotype specifically at 5mCs, and we find coding mutation hotspots in POLE-mutant cancers at highly-methylated CpGs in the tumour-suppressor genes APC and TP53. Finally, using multivariable regression models, we demonstrate that different cancers exhibit distinct mutation-methylation associations, with DNA repair influencing such associations in certain cancer genomes. Taken together, we find differential associations with methylation that are vital for accurately predicting expected mutation loads across cancer types. Our findings reveal links between methylation and common mutation and repair processes, with these mechanisms defining a key part of the mutational landscape of cancer genomes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Large-Scale Discovery of Induced Point Mutations With High-Throughput TILLING

    PubMed Central

    Till, Bradley J.; Reynolds, Steven H.; Greene, Elizabeth A.; Codomo, Christine A.; Enns, Linda C.; Johnson, Jessica E.; Burtner, Chris; Odden, Anthony R.; Young, Kim; Taylor, Nicholas E.; Henikoff, Jorja G.; Comai, Luca; Henikoff, Steven

    2003-01-01

    TILLING (Targeting Induced Local Lesions in Genomes) is a general reverse-genetic strategy that provides an allelic series of induced point mutations in genes of interest. High-throughput TILLING allows the rapid and low-cost discovery of induced point mutations in populations of chemically mutagenized individuals. As chemical mutagenesis is widely applicable and mutation detection for TILLING is dependent only on sufficient yield of PCR products, TILLING can be applied to most organisms. We have developed TILLING as a service to the Arabidopsis community known as the Arabidopsis TILLING Project (ATP). Our goal is to rapidly deliver allelic series of ethylmethanesulfonate-induced mutations in target 1-kb loci requested by the international research community. In the first year of public operation, ATP has discovered, sequenced, and delivered >1000 mutations in >100 genes ordered by Arabidopsis researchers. The tools and methodologies described here can be adapted to create similar facilities for other organisms. PMID:12618384

  5. The callipyge mutation and other genes that affect muscle hypertrophy in sheep

    PubMed Central

    2005-01-01

    Genetic strategies to improve the profitability of sheep operations have generally focused on traits for reproduction. However, natural mutations exist in sheep that affect muscle growth and development, and the exploitation of these mutations in breeding strategies has the potential to significantly improve lamb-meat quality. The best-documented mutation for muscle development in sheep is callipyge (CLPG), which causes a postnatal muscle hypertrophy that is localized to the pelvic limbs and loin. Enhanced skeletal muscle growth is also observed in animals with the Carwell (or rib-eye muscling) mutation, and a double-muscling phenotype has been documented for animals of the Texel sheep breed. However, the actual mutations responsible for these muscular hypertrophy phenotypes in sheep have yet to be identified, and further characterization of the genetic basis for these phenotypes will provide insight into the biological control of muscle growth and body composition. PMID:15601596

  6. Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation.

    PubMed

    Diaz, M; Velez, J; Singh, M; Cerny, J; Flajnik, M F

    1999-05-01

    The pattern of somatic mutations of shark and frog Ig is distinct from somatic hypermutation of Ig in mammals in that there is a bias to mutate GC base pairs and a low frequency of mutations. Previous analysis of the new antigen receptor gene in nurse sharks (NAR), however, revealed no bias to mutate GC base pairs and the frequency of mutation was comparable to that of mammalian IgG. Here, we analyzed 1023 mutations in NAR and found no targeting of the mechanism to any particular nucleotide but did obtain strong evidence for a transition bias and for strand polarity. As seen for all species studied to date, the serine codon AGC/T in NAR was a mutational hotspot. The NAR mutational pattern is most similar to that of mammalian IgG and furthermore both are strikingly akin to mutations acquired during the neutral evolution of nuclear pseudogenes, suggesting that a similar mechanism is at work for both processes. In yeast, most spontaneous mutations are introduced by the translesion synthesis DNA polymerase zeta (REV3) and in various DNA repair-deficient backgrounds transitions were more often REV3-dependent than were transversions. Therefore, we propose a model of somatic hypermutation where DNA polymerase zeta is recruited to the Ig locus. An excess of DNA glycosylases in germinal center reactions may further enhance the mutation frequency by a REV3-dependent mutagenic process known as imbalanced base excision repair.

  7. An improved parent-centric mutation with normalized neighborhoods for inducing niching behavior in differential evolution.

    PubMed

    Biswas, Subhodip; Kundu, Souvik; Das, Swagatam

    2014-10-01

    In real life, we often need to find multiple optimally sustainable solutions of an optimization problem. Evolutionary multimodal optimization algorithms can be very helpful in such cases. They detect and maintain multiple optimal solutions during the run by incorporating specialized niching operations in their actual framework. Differential evolution (DE) is a powerful evolutionary algorithm (EA) well-known for its ability and efficiency as a single peak global optimizer for continuous spaces. This article suggests a niching scheme integrated with DE for achieving a stable and efficient niching behavior by combining the newly proposed parent-centric mutation operator with synchronous crowding replacement rule. The proposed approach is designed by considering the difficulties associated with the problem dependent niching parameters (like niche radius) and does not make use of such control parameter. The mutation operator helps to maintain the population diversity at an optimum level by using well-defined local neighborhoods. Based on a comparative study involving 13 well-known state-of-the-art niching EAs tested on an extensive collection of benchmarks, we observe a consistent statistical superiority enjoyed by our proposed niching algorithm.

  8. A natural allele of Nxf1/TAP supresses retrovirus insertional mutations

    PubMed Central

    Floyd, Jennifer A.; Gold, David A.; Concepcion, Dorothy; Poon, Tiffany H.; Wang, Xiaobo; Keithley, Elizabeth; Chen, Dan; Ward, Erica J.; Chinn, Steven B.; Friedman, Rick A.; Yu, Hon-Tsen; Moriwaki, Kazuo; Shiroishi, Toshihiko; Hamilton, Bruce A.

    2009-01-01

    Endogenous retroviruses have shaped the evolution of mammalian genomes. Host genes that control the effects of retrovirus insertions are therefore of great interest. The Modifier-of-vibrator-1 locus controls level of correctly processed mRNA from genes mutated by endogenous retrovirus insertions into introns, including the pitpnvb tremor mutation and the Eya1BOR model of human branchiootorenal syndrome. Positional complementation cloning identifies Mvb1 as the nuclear export factor Nxf1, providing an unexpected link between mRNA export receptor and pre-mRNA processing. Population structure of the suppressing allele in wild M. m. castaneus suggests selective advantage. A congenic Mvb1CAST allele is a useful tool for modifying gene expression from existing mutations and could be used to manipulate engineered mutations containing retroviral elements. PMID:14517553

  9. Germline mutation of CHEK2 in neurofibromatosis 1 and 2: Two case reports.

    PubMed

    Li, Qiang; Zhao, Feilong; Ju, Yan

    2018-06-01

    Neurofibromatosis, including type 1 and type 2, is inherited dominant disease that causes serious consequences. The genetic mechanism of these diseases has been described, but germline mutation of checkpoint 2 kinase gene, together with other DNA repair related genes, has not been fully elucidated in the context of neurofibromatosis. In this article, we reported identical germline mutation of CHEK2 gene (p.R180C) in a 7-year-old Tibetan boy with NF1, and in a 12-year-old Chinese girl with NF2. Neurofibromatosis 1 and 2 with CHECK2 gene germline mutation. Both patients underwent operation to obtain tumor tissue, and peripheral blood of their family was tested. Identical germline mutation of CHEK2 gene (p.R180C) was detected in both patients, and germline mutations of POLE, MUTYH and ATR were also detected. This is the first article to describe CHEK2 mutation in both NF1 and NF2. This article highlights a possible role of CHEK2, in association with other germline genetic mutations, in tumorigenesis of NF1 and NF2.

  10. Random mtDNA mutations modulate proliferation capacity in mouse embryonic fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kukat, Alexandra; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases; Edgar, Daniel

    2011-06-10

    Highlights: {yields} Increased mtDNA mutations in MEFs lead to high level of spontaneous immortalization. {yields} This process is independent of endogenous ROS production. {yields} Aerobic glycolysis significantly contributes to spontaneous immortalization of MEFs. -- Abstract: An increase in mtDNA mutation load leads to a loss of critical cells in different tissues thereby contributing to the physiological process of organismal ageing. Additionally, the accumulation of senescent cells that display changes in metabolic function might act in an active way to further disrupt the normal tissue function. We believe that this could be the important link missing in our understanding of themore » molecular mechanisms of premature ageing in the mtDNA mutator mice. We tested proliferation capacity of mtDNA mutator cells in vitro. When cultured in physiological levels of oxygen (3%) their proliferation capacity is somewhat lower than wild-type cells. Surprisingly, in conditions of increased oxidative stress (20% O{sub 2}) mtDNA mutator mouse embryonic fibroblasts exhibit continuous proliferation due to spontaneous immortalization, whereas the same conditions promote senescence in wild-type cells. We believe that an increase in aerobic glycolysis observed in mtDNA mutator mice is a major mechanism behind this process. We propose that glycolysis promotes proliferation and allows a fast turnover of metabolites, but also leads to energy crisis due to lower ATP production rate. This could lead to compromised replication and/or repair and therefore, in rare cases, might lead to mutations in tumor suppressor genes and spontaneous immortalization.« less

  11. Invasive advance of an advantageous mutation: nucleation theory.

    PubMed

    O'Malley, Lauren; Basham, James; Yasi, Joseph A; Korniss, G; Allstadt, Andrew; Caraco, Thomas

    2006-12-01

    For sedentary organisms with localized reproduction, spatially clustered growth drives the invasive advance of a favorable mutation. We model competition between two alleles where recurrent mutation introduces a genotype with a rate of local propagation exceeding the resident's rate. We capture ecologically important properties of the rare invader's stochastic dynamics by assuming discrete individuals and local neighborhood interactions. To understand how individual-level processes may govern population patterns, we invoke the physical theory for nucleation of spatial systems. Nucleation theory discriminates between single-cluster and multi-cluster dynamics. A sufficiently low mutation rate, or a sufficiently small environment, generates single-cluster dynamics, an inherently stochastic process; a favorable mutation advances only if the invader cluster reaches a critical radius. For this mode of invasion, we identify the probability distribution of waiting times until the favored allele advances to competitive dominance, and we ask how the critical cluster size varies as propagation or mortality rates vary. Increasing the mutation rate or system size generates multi-cluster invasion, where spatial averaging produces nearly deterministic global dynamics. For this process, an analytical approximation from nucleation theory, called Avrami's Law, describes the time-dependent behavior of the genotype densities with remarkable accuracy.

  12. Transformation of Saccharomyces cerevisiae with UV-irradiated single-stranded plasmid.

    PubMed

    Zgaga, Z

    1991-08-01

    UV-irradiated single-stranded replicative plasmids were used to transform different yeast strains. The low doses of UV used in this study (10-75 J/m2) caused a significant decrease in the transforming efficiency of plasmid DNA in the Rad+ strain, while they had no effect on transformation with double-stranded plasmids of comparable size. Neither the rev3 mutation, nor the rad18 or rad52 mutations influenced the efficiency of transformation with irradiated single-stranded plasmid. However, it was found to be decreased in the double rev3 rad52 mutant. Extracellular irradiation of plasmid that contains both URA3 and LEU2 genes (psLU) gave rise to up to 5% Leu- transformants among selected Ura+ ones in the repair-proficient strain. Induction of Leu- transformants was dose-dependent and only partially depressed in the rev3 mutant. These results suggest that both mutagenic and recombinational repair processes operate on UV-damaged single-stranded DNA in yeast.

  13. Genome-Wide Motif Statistics are Shaped by DNA Binding Proteins over Evolutionary Time Scales

    NASA Astrophysics Data System (ADS)

    Qian, Long; Kussell, Edo

    2016-10-01

    The composition of a genome with respect to all possible short DNA motifs impacts the ability of DNA binding proteins to locate and bind their target sites. Since nonfunctional DNA binding can be detrimental to cellular functions and ultimately to organismal fitness, organisms could benefit from reducing the number of nonfunctional DNA binding sites genome wide. Using in vitro measurements of binding affinities for a large collection of DNA binding proteins, in multiple species, we detect a significant global avoidance of weak binding sites in genomes. We demonstrate that the underlying evolutionary process leaves a distinct genomic hallmark in that similar words have correlated frequencies, a signal that we detect in all species across domains of life. We consider the possibility that natural selection against weak binding sites contributes to this process, and using an evolutionary model we show that the strength of selection needed to maintain global word compositions is on the order of point mutation rates. Likewise, we show that evolutionary mechanisms based on interference of protein-DNA binding with replication and mutational repair processes could yield similar results and operate with similar rates. On the basis of these modeling and bioinformatic results, we conclude that genome-wide word compositions have been molded by DNA binding proteins acting through tiny evolutionary steps over time scales spanning millions of generations.

  14. PS-FW: A Hybrid Algorithm Based on Particle Swarm and Fireworks for Global Optimization

    PubMed Central

    Chen, Shuangqing; Wei, Lixin; Guan, Bing

    2018-01-01

    Particle swarm optimization (PSO) and fireworks algorithm (FWA) are two recently developed optimization methods which have been applied in various areas due to their simplicity and efficiency. However, when being applied to high-dimensional optimization problems, PSO algorithm may be trapped in the local optima owing to the lack of powerful global exploration capability, and fireworks algorithm is difficult to converge in some cases because of its relatively low local exploitation efficiency for noncore fireworks. In this paper, a hybrid algorithm called PS-FW is presented, in which the modified operators of FWA are embedded into the solving process of PSO. In the iteration process, the abandonment and supplement mechanism is adopted to balance the exploration and exploitation ability of PS-FW, and the modified explosion operator and the novel mutation operator are proposed to speed up the global convergence and to avoid prematurity. To verify the performance of the proposed PS-FW algorithm, 22 high-dimensional benchmark functions have been employed, and it is compared with PSO, FWA, stdPSO, CPSO, CLPSO, FIPS, Frankenstein, and ALWPSO algorithms. Results show that the PS-FW algorithm is an efficient, robust, and fast converging optimization method for solving global optimization problems. PMID:29675036

  15. Determination of the DNA-binding kinetics of three related but heteroimmune bacteriophage repressors using EMSA and SPR analysis

    PubMed Central

    Henriksson-Peltola, Petri; Sehlén, Wilhelmina; Haggård-Ljungquist, Elisabeth

    2007-01-01

    Bacteriophages P2, P2 Hy dis and WΦ are very similar but heteroimmune Escherichia coli phages. The structural genes show over 96% identity, but the repressors show between 43 and 63% identities. Furthermore, the operators, which contain two directly repeated sequences, vary in sequence, length, location relative to the promoter and spacing between the direct repeats. We have compared the in vivo effects of the wild type and mutated operators on gene expression with the complexes formed between the repressors and their wild type or mutated operators using electrophoretic mobility shift assay (EMSA), and real-time kinetics of the protein–DNA interactions using surface plasmon resonance (SPR) analysis. Using EMSA, the repressors formed different protein–DNA complexes, and only WΦ was significantly affected by point mutations. However, SPR analysis showed a reduced association rate constant and an increased dissociation rate constant for P2 and WΦ operator mutants. The association rate constants of P2 Hy dis was too fast to be determined. The P2 Hy dis dissociation response curves were shown to be triphasic, while both P2 and WΦ C were biphasic. Thus, the kinetics of complex formation and the nature of the complexes formed differ extensively between these very closely related phages. PMID:17412705

  16. The Efficiency of Dentin Sialoprotein-Phosphophoryn Processing Is Affected by Mutations Both Flanking and Distant from the Cleavage Site*

    PubMed Central

    Yang, Robert T.; Lim, Glendale L.; Dong, Zhihong; Lee, Arthur M.; Yee, Colin T.; Fuller, Robert S.; Ritchie, Helena H.

    2013-01-01

    Normal dentin mineralization requires two highly acidic proteins, dentin sialoprotein (DSP) and phosphophoryn (PP). DSP and PP are synthesized as part of a single secreted precursor, DSP-PP, which is conserved in marsupial and placental mammals. Using a baculovirus expression system, we previously found that DSP-PP is accurately cleaved into DSP and PP after secretion into medium by an endogenous, secreted, zinc-dependent Sf9 cell activity. Here we report that mutation of conserved residues near and distant from the G447↓D448 cleavage site in DSP-PP240 had dramatic effects on cleavage efficiency by the endogenous Sf9 cell processing enzyme. We found that: 1) mutation of residues flanking the cleavage site from P4 to P4′ blocked, impaired, or enhanced DSP-PP240 cleavage; 2) certain conserved amino acids distant from the cleavage site were important for precursor cleavage; 3) modification of the C terminus by appending a C-terminal tag altered the pattern of processing; and 4) mutations in DSP-PP240 had similar effects on cleavage by recombinant human BMP1, a candidate physiological processing enzyme, as was seen with the endogenous Sf9 cell activity. An analysis of a partial TLR1 cDNA from Sf9 cells indicates that residues that line the substrate-binding cleft of Sf9 TLR1 and human BMP1 are nearly perfectly conserved, offering an explanation of why Sf9 cells so accurately process mammalian DSP-PP. The fact that several mutations in DSP-PP240 significantly modified the amount of PP240 product generated from DSP-PP240 precursor protein cleavage suggests that such mutation may affect the mineralization process. PMID:23297400

  17. The efficiency of dentin sialoprotein-phosphophoryn processing is affected by mutations both flanking and distant from the cleavage site.

    PubMed

    Yang, Robert T; Lim, Glendale L; Dong, Zhihong; Lee, Arthur M; Yee, Colin T; Fuller, Robert S; Ritchie, Helena H

    2013-02-22

    Normal dentin mineralization requires two highly acidic proteins, dentin sialoprotein (DSP) and phosphophoryn (PP). DSP and PP are synthesized as part of a single secreted precursor, DSP-PP, which is conserved in marsupial and placental mammals. Using a baculovirus expression system, we previously found that DSP-PP is accurately cleaved into DSP and PP after secretion into medium by an endogenous, secreted, zinc-dependent Sf9 cell activity. Here we report that mutation of conserved residues near and distant from the G(447)↓D(448) cleavage site in DSP-PP(240) had dramatic effects on cleavage efficiency by the endogenous Sf9 cell processing enzyme. We found that: 1) mutation of residues flanking the cleavage site from P(4) to P(4)' blocked, impaired, or enhanced DSP-PP(240) cleavage; 2) certain conserved amino acids distant from the cleavage site were important for precursor cleavage; 3) modification of the C terminus by appending a C-terminal tag altered the pattern of processing; and 4) mutations in DSP-PP(240) had similar effects on cleavage by recombinant human BMP1, a candidate physiological processing enzyme, as was seen with the endogenous Sf9 cell activity. An analysis of a partial TLR1 cDNA from Sf9 cells indicates that residues that line the substrate-binding cleft of Sf9 TLR1 and human BMP1 are nearly perfectly conserved, offering an explanation of why Sf9 cells so accurately process mammalian DSP-PP. The fact that several mutations in DSP-PP(240) significantly modified the amount of PP(240) product generated from DSP-PP(240) precursor protein cleavage suggests that such mutation may affect the mineralization process.

  18. Topology of evolving, mutagenized viral populations: quasispecies expansion, compression, and operation of negative selection

    PubMed Central

    2008-01-01

    Background The molecular events and evolutionary forces underlying lethal mutagenesis of virus (or virus extinction through an excess of mutations) are not well understood. Here we apply for the first time phylogenetic methods and Partition Analysis of Quasispecies (PAQ) to monitor genetic distances and intra-population structures of mutant spectra of foot-and-mouth disease virus (FMDV) quasispecies subjected to mutagenesis by base and nucleoside analogues. Results Phylogenetic and PAQ analyses have revealed a highly dynamic variation of intrapopulation diversity of FMDV quasispecies. The population diversity first suffers striking expansions in the presence of mutagens and then compressions either when the presence of the mutagenic analogue was discontinued or when a mutation that decreased sensitivity to a mutagen was selected. The pattern of mutations found in the populations was in agreement with the behavior of the corresponding nucleotide analogues with FMDV in vitro. Mutations accumulated at preferred genomic sites, and dn/ds ratios indicate the operation of negative (or purifying) selection in populations subjected to mutagenesis. No evidence of unusually elevated genetic distances has been obtained for FMDV populations approaching extinction. Conclusion Phylogenetic and PAQ analysis provide adequate procedures to describe the evolution of viral sequences subjected to lethal mutagenesis. These methods define the changes of intra-population structure more precisely than mutation frequencies and Shannon entropies. PAQ is very sensitive to variations of intrapopulation genetic distances. Strong negative (or purifying) selection operates in FMDV populations subjected to enhanced mutagenesis. The quantifications provide evidence that extinction does not imply unusual increases of intrapopulation complexity, in support of the lethal defection model of virus extinction. PMID:18637173

  19. Presenilin 1 mutations influence processing and trafficking of the ApoE receptor apoER2.

    PubMed

    Wang, Wei; Moerman-Herzog, Andrea M; Slaton, Arthur; Barger, Steven W

    2017-01-01

    Presenilin (PS)-1 is an intramembrane protease serving as the catalytic component of γ-secretase. Mutations in the PS1 gene are the most common cause of familial Alzheimer's disease (FAD). The low-density lipoprotein (LDL)-receptor family member apoER2 is a γ-secretase substrate that has been associated with AD in several ways, including acting as a receptor for apolipoprotein E (ApoE). ApoER2 is processed by γ-secretase into a C-terminal fragment (γ-CTF) that appears to regulate gene expression. FAD PS1 mutations were tested for effects on apoER2. PS1 mutation R278I showed impaired γ-secretase activity for apoER2 in the basal state or after exposure to Reelin. PS1 M146V mutation permitted accumulation of apoER2 CTFs after Reelin treatment, whereas no difference was seen between wild-type (WT) and M146V in the basal state. PS1 L282V mutation, combined with the γ-secretase inhibitor N-(N-[3,5-Difluorophenacetyl]-L-alanyl)-S-phenylglycine t-butyl ester, greatly reduced the cell-surface levels of apoER2 without affecting total apoER2 levels, suggesting a defect in receptor trafficking. These findings indicate that impaired processing or localization of apoER2 may contribute to the pathogenic effects of FAD mutations in PS1. Published by Elsevier Inc.

  20. SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells.

    PubMed

    Liang, Yang; Tebaldi, Toma; Rejeski, Kai; Joshi, Poorval; Stefani, Giovanni; Taylor, Ashley; Song, Yuanbin; Vasic, Radovan; Maziarz, Jamie; Balasubramanian, Kunthavai; Ardasheva, Anastasia; Ding, Alicia; Quattrone, Alessandro; Halene, Stephanie

    2018-06-01

    Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2 P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2 P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a "splicing-cascade" phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2 P95H , impairs hematopoietic differentiation in vivo. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer.

  1. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains.

    PubMed

    Satomura, Atsushi; Miura, Natsuko; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-03-17

    Saccharomyces cerevisiae is used as a host strain in bioproduction, because of its rapid growth, ease of genetic manipulation, and high reducing capacity. However, the heat produced during the fermentation processes inhibits the biological activities and growth of the yeast cells. We performed whole-genome sequencing of 19 intermediate strains previously obtained during adaptation experiments under heat stress; 49 mutations were found in the adaptation steps. Phylogenetic tree revealed at least five events in which these strains had acquired mutations in the CDC25 gene. Reconstructed CDC25 point mutants based on a parental strain had acquired thermotolerance without any growth defects. These mutations led to the downregulation of the cAMP-dependent protein kinase (PKA) signaling pathway, which controls a variety of processes such as cell-cycle progression and stress tolerance. The one-point mutations in CDC25 were involved in the global transcriptional regulation through the cAMP/PKA pathway. Additionally, the mutations enabled efficient ethanol fermentation at 39 °C, suggesting that the one-point mutations in CDC25 may contribute to bioproduction.

  2. The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila.

    PubMed

    Perkins, L A; Johnson, M R; Melnick, M B; Perrimon, N

    1996-11-25

    Corkscrew (csw) encodes a nonreceptor protein tyrosine phosphatase (PTPase) that has been implicated in signaling from the Torso receptor tyrosine kinase (RTK). csw mutations, unlike tor mutations, are associated with zygotic lethality, indicating that Csw plays additional roles during development. We have conducted a detailed phenotypic analysis of csw mutations to identify these additional functions of Csw. Our results indicate that Csw operates positively downstream of other Drosophila RTKs such as the Drosophila epidermal growth factor receptor (DER), the fibroblast growth factor receptor (Breathless), and likely other RTKs. This model is substantiated by specific dosage interactions between csw and DER. It is proposed that Csw is part of the evolutionarily conserved "signaling cassette" that operates downstream of all RTKs. In support of this hypothesis, we demonstrate that SHP-2, a vertebrate PTPase similar to Csw and previously implicated in RTK signaling, encodes the functional vertebrate homologue of Csw.

  3. Endometrial cancer occurence five years after breast cancer in BRCA2 mutation patient

    PubMed Central

    Oh, Sang Eun; Kim, Soo Hyun; Kim, Mee Seon

    2015-01-01

    We recently experienced a case of endometrial cancer 5 years after the diagnosis of breast cancer in a patient with a mutation in the BRCA2 gene. A 55-year-old Korean woman who had a past history of breast cancer in her 50s underwent an operation for endometrial cancer. Final pathology confirmed stage Ia, and no adjuvant treatment was performed. After surgery, considering her history of sequential cancer occurrence, genetic counseling was offered. The result showed the BRCA2 variation of unknown significance mutation. This is the first case report of sequential cancers (endometrial and breast) in a patient with a BRCA2 mutation among a Korean population. PMID:25798433

  4. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution

    PubMed Central

    McGranahan, Nicholas; Favero, Francesco; de Bruin, Elza C.; Birkbak, Nicolai Juul; Szallasi, Zoltan; Swanton, Charles

    2015-01-01

    Deciphering whether actionable driver mutations are found in all or a subset of tumor cells will likely be required to improve drug development and precision medicine strategies. We analyzed nine cancer types to determine the subclonal frequencies of driver events, to time mutational processes during cancer evolution, and to identify drivers of subclonal expansions. Although mutations in known driver genes typically occurred early in cancer evolution, we also identified later subclonal “actionable” mutations, including BRAF(V600E), IDH1(R132H), PIK3CA(E545K), EGFR(L858R), and KRAS(G12D), which may compromise the efficacy of targeted therapy approaches. More than 20% of IDH1 mutations in glioblastomas, and 15% of mutations in genes in the PI3K(phosphatidylinositol 3-kinase)–AKT–mTOR (mammalian target of rapamycin) signaling axis across all tumor types were subclonal. Mutations in the RAS–MEK (mitogen-activated protein kinase kinase) signaling axis were less likely to be subclonal than mutations in genes associated with PI3K-AKT-mTORsignaling. Analysis of late mutations revealed a link between APOBEC-mediated mutagenesis and the acquisition of subclonal driver mutations and uncovered putative cancer genes involved in subclonal expansions, including CTNNA2 and ATXN1. Our results provide a pan-cancer census of driver events within the context of intratumor heterogeneity and reveal patterns of tumor evolution across cancers. The frequent presence of subclonal driver mutations suggests the need to stratify targeted therapy response according to the proportion of tumor cells in which the driver is identified. PMID:25877892

  5. Transfer RNA and human disease.

    PubMed

    Abbott, Jamie A; Francklyn, Christopher S; Robey-Bond, Susan M

    2014-01-01

    Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are "hotspots" for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.

  6. Mutation of Breast Cancer Cell Genomic DNA by APOBEC3B

    DTIC Science & Technology

    2012-09-01

    down Yes, A3B expression increases the steady-state level of genomic uracil Fig. 2a-2c 2) Can A3B mutate a target gene to escape drug...somatic mutation in human cancer genomes. Nature 446, 153-158 (2007). 10 2 Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in...processes molding the genomes of 21 breast cancers. Cell 149, 979-993 (2012). 9 Stephens, P. J. et al. The landscape of cancer genes and mutational

  7. Identifying pathways affected by cancer mutations.

    PubMed

    Iengar, Prathima

    2017-12-16

    Mutations in 15 cancers, sourced from the COSMIC Whole Genomes database, and 297 human pathways, arranged into pathway groups based on the processes they orchestrate, and sourced from the KEGG pathway database, have together been used to identify pathways affected by cancer mutations. Genes studied in ≥15, and mutated in ≥10 samples of a cancer have been considered recurrently mutated, and pathways with recurrently mutated genes have been considered affected in the cancer. Novel doughnut plots have been presented which enable visualization of the extent to which pathways and genes, in each pathway group, are targeted, in each cancer. The 'organismal systems' pathway group (including organism-level pathways; e.g., nervous system) is the most targeted, more than even the well-recognized signal transduction, cell-cycle and apoptosis, and DNA repair pathway groups. The important, yet poorly-recognized, role played by the group merits attention. Pathways affected in ≥7 cancers yielded insights into processes affected. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. An unsupervised learning approach to find ovarian cancer genes through integration of biological data

    PubMed Central

    2015-01-01

    Cancer is a disease characterized largely by the accumulation of out-of-control somatic mutations during the lifetime of a patient. Distinguishing driver mutations from passenger mutations has posed a challenge in modern cancer research. With the advanced development of microarray experiments and clinical studies, a large numbers of candidate cancer genes have been extracted and distinguishing informative genes out of them is essential. As a matter of fact, we proposed to find the informative genes for cancer by using mutation data from ovarian cancers in our framework. In our model we utilized the patient gene mutation profile, gene expression data and gene gene interactions network to construct a graphical representation of genes and patients. Markov processes for mutation and patients are triggered separately. After this process, cancer genes are prioritized automatically by examining their scores at their stationary distributions in the eigenvector. Extensive experiments demonstrate that the integration of heterogeneous sources of information is essential in finding important cancer genes. PMID:26328548

  9. Heterogeneity of spontaneous DNA replication errors in single isogenic Escherichia coli cells

    PubMed Central

    2018-01-01

    Despite extensive knowledge of the molecular mechanisms that control mutagenesis, it is not known how spontaneous mutations are produced in cells with fully operative mutation-prevention systems. By using a mutation assay that allows visualization of DNA replication errors and stress response transcriptional reporters, we examined populations of isogenic Escherichia coli cells growing under optimal conditions without exogenous stress. We found that spontaneous DNA replication errors in proliferating cells arose more frequently in subpopulations experiencing endogenous stresses, such as problems with proteostasis, genome maintenance, and reactive oxidative species production. The presence of these subpopulations of phenotypic mutators is not expected to affect the average mutation frequency or to reduce the mean population fitness in a stable environment. However, these subpopulations can contribute to overall population adaptability in fluctuating environments by serving as a reservoir of increased genetic variability.

  10. Parkin Mutations Reduce the Complexity of Neuronal Processes in iPSC-derived Human Neurons

    PubMed Central

    Ren, Yong; Jiang, Houbo; Hu, Zhixing; Fan, Kevin; Wang, Jun; Janoschka, Stephen; Wang, Xiaomin; Ge, Shaoyu; Feng, Jian

    2015-01-01

    Parkinson’s disease (PD) is characterized by the degeneration of nigral dopaminergic (DA) neurons and non-DA neurons in many parts of the brain. Mutations of parkin, an E3 ubiquitin ligase that strongly binds to microtubules, are the most frequent cause of recessively inherited Parkinson’s disease. The lack of robust PD phenotype in parkin knockout mice suggests a unique vulnerability of human neurons to parkin mutations. Here, we show that the complexity of neuronal processes as measured by total neurite length, number of terminals, number of branch points and Sholl analysis, was greatly reduced in induced pluripotent stem cell (iPSC)-derived TH+ or TH− neurons from PD patients with parkin mutations. Consistent with these, microtubule stability was significantly decreased by parkin mutations in iPSC-derived neurons. Overexpression of parkin, but not its PD-linked mutant nor GFP, restored the complexity of neuronal processes and the stability of microtubules. Consistent with these, the microtubule-depolymerizing agent colchicine mimicked the effect of parkin mutations by decreasing neurite length and complexity in control neurons while the microtubule-stabilizing drug taxol mimicked the effect of parkin overexpression by enhancing the morphology of parkin-deficient neurons. The results suggest that parkin maintains the morphological complexity of human neurons by stabilizing microtubules. PMID:25332110

  11. A General Population Genetic Framework for Antagonistic Selection That Accounts for Demography and Recurrent Mutation

    PubMed Central

    Connallon, Tim; Clark, Andrew G.

    2012-01-01

    Antagonistic selection—where alleles at a locus have opposing effects on male and female fitness (“sexual antagonism”) or between components of fitness (“antagonistic pleiotropy”)—might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range—a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The “efficacy” of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (Nes >> 1, where Ne is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection. PMID:22298707

  12. A general population genetic framework for antagonistic selection that accounts for demography and recurrent mutation.

    PubMed

    Connallon, Tim; Clark, Andrew G

    2012-04-01

    Antagonistic selection--where alleles at a locus have opposing effects on male and female fitness ("sexual antagonism") or between components of fitness ("antagonistic pleiotropy")--might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range--a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The "efficacy" of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (N(e)s > 1, where N(e) is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection.

  13. Loss of circadian clock accelerates aging in neurodegeneration-prone mutants.

    PubMed

    Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S; Wentzell, Jill S; Kretzschmar, Doris; Giebultowicz, Jadwiga M

    2012-03-01

    Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per(01)) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni(1)), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni(1) mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per(01)sni(1) flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per(01) mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws(1)), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Hybrid Particle Swarm Optimization for Hybrid Flowshop Scheduling Problem with Maintenance Activities

    PubMed Central

    Li, Jun-qing; Pan, Quan-ke; Mao, Kun

    2014-01-01

    A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm. PMID:24883414

  15. CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula.

    PubMed

    Curtin, Shaun J; Xiong, Yer; Michno, Jean-Michel; Campbell, Benjamin W; Stec, Adrian O; Čermák, Tomas; Starker, Colby; Voytas, Daniel F; Eamens, Andrew L; Stupar, Robert M

    2018-06-01

    Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 reagent was used to create a bi-allelic double mutant for the two soya bean paralogous Double-stranded RNA-binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9-generated mutation of the M. truncatula Hua enhancer1 (MtHen1) gene, were determined to be germ-line transmissible. Furthermore, TALENs were used to generate a mutation within the soya bean Dicer-like2 gene. CRISPR/Cas9 mutagenesis of the soya bean Dicer-like3 gene and the GmHen1a gene was observed in the T 0 generation, but these mutations failed to transmit to the T 1 generation. The irregular transmission of induced mutations and the corresponding transgenes was investigated by whole-genome sequencing to reveal a spectrum of non-germ-line-targeted mutations and multiple transgene insertion events. Finally, a suite of combinatorial mutant plants were generated by combining the previously reported Gmdcl1a, Gmdcl1b and Gmdcl4b mutants with the Gmdrb2ab double mutant. Altogether, this study demonstrates the synergistic use of different genome engineering platforms to generate a collection of useful mutant plant lines for future study of small RNA processing in legume crops. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Frequency and Clinical Implication of the R450H Mutation in the Thyrotropin Receptor Gene in the Japanese Population Detected by Smart Amplification Process 2

    PubMed Central

    Yanagawa, Yoshimaro; Aoki, Tomoyuki; Morimura, Tadashi; Araki, Osamu; Kimura, Takao; Ogiwara, Takayuki; Kotajima, Nobuo; Yanagawa, Masumi; Murakami, Masami

    2014-01-01

    In Japanese pediatric patients with thyrotropin (TSH) resistance, the R450H mutation in TSH receptor gene (TSHR) is occasionally observed. We studied the frequency and clinical implication of the R450H mutation in TSHR in the general population of Japanese adults using smart amplification process 2 (SmartAmp2). We designed SmartAmp2 primer sets to detect this mutation using a drop of whole blood. We analyzed thyroid function, antithyroid antibodies, and this mutation in 429 Japanese participants who had not been found to have thyroid disease. Two cases without antithyroid antibodies were heterozygous for the R450H mutation in TSHR. Thus, the prevalence of this mutation was 0.47% in the general population and 0.63% among those without antithyroid antibodies. Their serum TSH concentrations were higher than the average TSH concentration not only in subjects without antithyroid antibodies but also in those with antithyroid antibodies. The R450H mutation in TSHR is relatively common in the Japanese population and potentially affects thyroid function. The present study demonstrates that the SmartAmp2 method is useful to detect the R450H mutation in TSHR, which is one of the common causes of TSH resistance in the Japanese population. PMID:24895636

  17. The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes

    PubMed Central

    Poulos, Rebecca C.

    2017-01-01

    Abstract Methylated cytosines (5mCs) are frequently mutated in the genome. However, no studies have yet comprehensively analysed mutation–methylation associations across cancer types. Here we analyse 916 cancer genomes, together with tissue type-specific methylation and replication timing data. We describe a strong mutation–methylation association across colorectal cancer subtypes, most interestingly in samples with microsatellite instability (MSI) or Polymerase epsilon (POLE) exonuclease domain mutations. By analysing genomic regions with differential mismatch repair (MMR) efficiency, we suggest a possible role for MMR in the correction of 5mC deamination events, potentially accounting for the high rate of 5mC mutation accumulation in MSI tumours. Additionally, we propose that mutant POLE asserts a mutator phenotype specifically at 5mCs, and we find coding mutation hotspots in POLE-mutant cancers at highly-methylated CpGs in the tumour-suppressor genes APC and TP53. Finally, using multivariable regression models, we demonstrate that different cancers exhibit distinct mutation–methylation associations, with DNA repair influencing such associations in certain cancer genomes. Taken together, we find differential associations with methylation that are vital for accurately predicting expected mutation loads across cancer types. Our findings reveal links between methylation and common mutation and repair processes, with these mechanisms defining a key part of the mutational landscape of cancer genomes. PMID:28531315

  18. Understanding mutagenesis through delineation of mutational signatures in human cancer

    DOE PAGES

    Petljak, Mia; Alexandrov, Ludmil B.

    2016-05-04

    Each individual cell within a human body acquires a certain number of somatic mutations during a course of its lifetime. These mutations originate from a wide spectra of both endogenous and exogenous mutational processes that leave distinct patterns of mutations, termed mutational signatures, embedded within the genomes of all cells. In recent years, the vast amount of data produced by sequencing of cancer genomes was coupled with novel mathematical models and computational tools to generate the first comprehensive map of mutational signatures in human cancer. Up to date, >30 distinct mutational signatures have been identified, and etiologies have been proposedmore » for many of them. This paper provides a brief historical background on examination of mutational patterns in human cancer, summarizes the knowledge accumulated since introducing the concept of mutational signatures and discusses their future potential applications and perspectives within the field.« less

  19. KMeyeDB: a graphical database of mutations in genes that cause eye diseases.

    PubMed

    Kawamura, Takashi; Ohtsubo, Masafumi; Mitsuyama, Susumu; Ohno-Nakamura, Saho; Shimizu, Nobuyoshi; Minoshima, Shinsei

    2010-06-01

    KMeyeDB (http://mutview.dmb.med.keio.ac.jp/) is a database of human gene mutations that cause eye diseases. We have substantially enriched the amount of data in the database, which now contains information about the mutations of 167 human genes causing eye-related diseases including retinitis pigmentosa, cone-rod dystrophy, night blindness, Oguchi disease, Stargardt disease, macular degeneration, Leber congenital amaurosis, corneal dystrophy, cataract, glaucoma, retinoblastoma, Bardet-Biedl syndrome, and Usher syndrome. KMeyeDB is operated using the database software MutationView, which deals with various characters of mutations, gene structure, protein functional domains, and polymerase chain reaction (PCR) primers, as well as clinical data for each case. Users can access the database using an ordinary Internet browser with smooth user-interface, without user registration. The results are displayed on the graphical windows together with statistical calculations. All mutations and associated data have been collected from published articles. Careful data analysis with KMeyeDB revealed many interesting features regarding the mutations in 167 genes that cause 326 different types of eye diseases. Some genes are involved in multiple types of eye diseases, whereas several eye diseases are caused by different mutations in one gene.

  20. Clinical implications of the BRAF mutation in papillary thyroid carcinoma and chronic lymphocytic thyroiditis.

    PubMed

    Kim, Woon Won; Ha, Tae Kwun; Bae, Sung Kwon

    2018-01-09

    The purpose of this study was to examine the possible prognostics and clinicopathologic characteristics underlying the BRAFV600E mutation and papillary thyroid carcinoma (PTC) coexisting or in absence of chronic lymphocytic thyroiditis (CLT). This study was conducted on 172 patients who had undergone total thyroidectomy or unilateral total thyroidectomy for PTC; the patients were then examined for the BRAFV600E mutation using specimens obtained after their surgery from January 2013 to August 2015. BRAF mutations were found in 130 of 172 patients (75.6%). CLT was present in 27.9% of patients (48/172). The incidence of the BRAFV600E mutation was significantly increased in the group with no CLT (P = 0.001). The findings of the multivariate analysis pertaining to the coexistence of CLT and PTC showed no significant correlation other than the BRAFV600E mutation. No significant difference was noted in the clinicopathologic factors between the two groups based on the coexistence of CLT in univariate and multivariate analyses. The BRAFV600E mutation is less frequent in PTC coexisting with CLT presumably because CLT and the BRAFV600E mutation operate independently in the formation and progression of thyroid cancer.

  1. Genome complexity, robustness and genetic interactions in digital organisms

    NASA Astrophysics Data System (ADS)

    Lenski, Richard E.; Ofria, Charles; Collier, Travis C.; Adami, Christoph

    1999-08-01

    Digital organisms are computer programs that self-replicate, mutate and adapt by natural selection. They offer an opportunity to test generalizations about living systems that may extend beyond the organic life that biologists usually study. Here we have generated two classes of digital organism: simple programs selected solely for rapid replication, and complex programs selected to perform mathematical operations that accelerate replication through a set of defined `metabolic' rewards. To examine the differences in their genetic architecture, we introduced millions of single and multiple mutations into each organism and measured the effects on the organism's fitness. The complex organisms are more robust than the simple ones with respect to the average effects of single mutations. Interactions among mutations are common and usually yield higher fitness than predicted from the component mutations assuming multiplicative effects; such interactions are especially important in the complex organisms. Frequent interactions among mutations have also been seen in bacteria, fungi and fruitflies. Our findings support the view that interactions are a general feature of genetic systems.

  2. Genome complexity, robustness and genetic interactions in digital organisms.

    PubMed

    Lenski, R E; Ofria, C; Collier, T C; Adami, C

    1999-08-12

    Digital organisms are computer programs that self-replicate, mutate and adapt by natural selection. They offer an opportunity to test generalizations about living systems that may extend beyond the organic life that biologists usually study. Here we have generated two classes of digital organism: simple programs selected solely for rapid replication, and complex programs selected to perform mathematical operations that accelerate replication through a set of defined 'metabolic' rewards. To examine the differences in their genetic architecture, we introduced millions of single and multiple mutations into each organism and measured the effects on the organism's fitness. The complex organisms are more robust than the simple ones with respect to the average effects of single mutations. Interactions among mutations are common and usually yield higher fitness than predicted from the component mutations assuming multiplicative effects; such interactions are especially important in the complex organisms. Frequent interactions among mutations have also been seen in bacteria, fungi and fruitflies. Our findings support the view that interactions are a general feature of genetic systems.

  3. Deconstruction of the Ras switching cycle through saturation mutagenesis

    PubMed Central

    Bandaru, Pradeep; Shah, Neel H; Bhattacharyya, Moitrayee; Barton, John P; Kondo, Yasushi; Cofsky, Joshua C; Gee, Christine L; Chakraborty, Arup K; Kortemme, Tanja; Ranganathan, Rama; Kuriyan, John

    2017-01-01

    Ras proteins are highly conserved signaling molecules that exhibit regulated, nucleotide-dependent switching between active and inactive states. The high conservation of Ras requires mechanistic explanation, especially given the general mutational tolerance of proteins. Here, we use deep mutational scanning, biochemical analysis and molecular simulations to understand constraints on Ras sequence. Ras exhibits global sensitivity to mutation when regulated by a GTPase activating protein and a nucleotide exchange factor. Removing the regulators shifts the distribution of mutational effects to be largely neutral, and reveals hotspots of activating mutations in residues that restrain Ras dynamics and promote the inactive state. Evolutionary analysis, combined with structural and mutational data, argue that Ras has co-evolved with its regulators in the vertebrate lineage. Overall, our results show that sequence conservation in Ras depends strongly on the biochemical network in which it operates, providing a framework for understanding the origin of global selection pressures on proteins. DOI: http://dx.doi.org/10.7554/eLife.27810.001 PMID:28686159

  4. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution.

    PubMed

    McGranahan, Nicholas; Favero, Francesco; de Bruin, Elza C; Birkbak, Nicolai Juul; Szallasi, Zoltan; Swanton, Charles

    2015-04-15

    Deciphering whether actionable driver mutations are found in all or a subset of tumor cells will likely be required to improve drug development and precision medicine strategies. We analyzed nine cancer types to determine the subclonal frequencies of driver events, to time mutational processes during cancer evolution, and to identify drivers of subclonal expansions. Although mutations in known driver genes typically occurred early in cancer evolution, we also identified later subclonal "actionable" mutations, including BRAF (V600E), IDH1 (R132H), PIK3CA (E545K), EGFR (L858R), and KRAS (G12D), which may compromise the efficacy of targeted therapy approaches. More than 20% of IDH1 mutations in glioblastomas, and 15% of mutations in genes in the PI3K (phosphatidylinositol 3-kinase)-AKT-mTOR (mammalian target of rapamycin) signaling axis across all tumor types were subclonal. Mutations in the RAS-MEK (mitogen-activated protein kinase kinase) signaling axis were less likely to be subclonal than mutations in genes associated with PI3K-AKT-mTOR signaling. Analysis of late mutations revealed a link between APOBEC-mediated mutagenesis and the acquisition of subclonal driver mutations and uncovered putative cancer genes involved in subclonal expansions, including CTNNA2 and ATXN1. Our results provide a pan-cancer census of driver events within the context of intratumor heterogeneity and reveal patterns of tumor evolution across cancers. The frequent presence of subclonal driver mutations suggests the need to stratify targeted therapy response according to the proportion of tumor cells in which the driver is identified. Copyright © 2015, American Association for the Advancement of Science.

  5. Mutation rates at the glycophorin A and HPRT loci in uranium miners exposed to radon progeny.

    PubMed Central

    Shanahan, E M; Peterson, D; Roxby, D; Quintana, J; Morely, A A; Woodward, A

    1996-01-01

    OBJECTIVES--To find whether a relation exists between estimated levels of exposure to radon and its progeny and mutations in hypoxanthine phosphoribosyl transferase (HPRT) and glycophorin A in a cohort of former uranium miners. METHODS--A cohort study involving a sample of miners from the Radium Hill uranium mine in South Australia, which operated from 1952 to 1961. Radiation exposures underground at Radium Hill were estimated from historical radon gas measures with a job exposure matrix. Workers from the mine who worked exclusively above ground according to mine records were selected as controls. In 1991-2 miners were interviewed and blood taken for measurement of somatic mutations. Mutation rates for HPRT and glycophorin A were estimated with standard assay techniques. RESULTS--Homozygous mutations of glycophorin A were increased in underground miners (P = 0.0027) and the mutation rate tended to rise with increasing exposure with the exception of the highest exposure (> 10 working level months). However, there was no association between place of work and either the hemizygous mutations of glycophorin A or the HPRT mutation. CONCLUSIONS--There may be an association between glycophorin A mutations and previous occupational exposure to ionising radiation. However, not enough is known at present to use these assays as biomarkers for historical exposure in underground mining cohorts. PMID:8704866

  6. Mutagenesis: Interactions with a parallel universe.

    PubMed

    Miller, Jeffrey H

    Unexpected observations in mutagenesis research have led to a new perspective in this personal reflection based on years of studying mutagenesis. Many mutagens have been thought to operate via a single principal mechanism, with secondary effects usually resulting in only minor changes in the observed mutation frequencies and spectra. For example, we conceive of base analogs as resulting in direct mispairing as their main mechanism of mutagenesis. Recent studies now show that in fact even these simple mutagens can cause very large and unanticipated effects both in mutation frequencies and in the mutational spectra when used in certain pair-wise combinations. Here we characterize this leap in mutation frequencies as a transport to an alternate universe of mutagenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Exome-wide Mutation Profile in Benzo[a]pyrene-derived Post-stasis and Immortal Human Mammary Epithelial Cells

    PubMed Central

    Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.; Futscher, Bernard W.

    2014-01-01

    Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and towards immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. The results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes. PMID:25435355

  8. Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells.

    PubMed

    Severson, Paul L; Vrba, Lukas; Stampfer, Martha R; Futscher, Bernard W

    2014-12-01

    Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. The results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. On spatial mutation-selection models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratiev, Yuri, E-mail: kondrat@math.uni-bielefeld.de; Kutoviy, Oleksandr, E-mail: kutoviy@math.uni-bielefeld.de, E-mail: kutovyi@mit.edu; Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

    2013-11-15

    We discuss the selection procedure in the framework of mutation models. We study the regulation for stochastically developing systems based on a transformation of the initial Markov process which includes a cost functional. The transformation of initial Markov process by cost functional has an analytic realization in terms of a Kimura-Maruyama type equation for the time evolution of states or in terms of the corresponding Feynman-Kac formula on the path space. The state evolution of the system including the limiting behavior is studied for two types of mutation-selection models.

  10. RNA Recombination Enhances Adaptability and Is Required for Virus Spread and Virulence.

    PubMed

    Xiao, Yinghong; Rouzine, Igor M; Bianco, Simone; Acevedo, Ashley; Goldstein, Elizabeth Faul; Farkov, Mikhail; Brodsky, Leonid; Andino, Raul

    2016-04-13

    Mutation and recombination are central processes driving microbial evolution. A high mutation rate fuels adaptation but also generates deleterious mutations. Recombination between two different genomes may resolve this paradox, alleviating effects of clonal interference and purging deleterious mutations. Here we demonstrate that recombination significantly accelerates adaptation and evolution during acute virus infection. We identified a poliovirus recombination determinant within the virus polymerase, mutation of which reduces recombination rates without altering replication fidelity. By generating a panel of variants with distinct mutation rates and recombination ability, we demonstrate that recombination is essential to enrich the population in beneficial mutations and purge it from deleterious mutations. The concerted activities of mutation and recombination are key to virus spread and virulence in infected animals. These findings inform a mathematical model to demonstrate that poliovirus adapts most rapidly at an optimal mutation rate determined by the trade-off between selection and accumulation of detrimental mutations. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Germline Mutations of BRCA1 and BRCA2 in Korean Ovarian Cancer Patients: Finding Founder Mutations.

    PubMed

    Choi, Min Chul; Heo, Jin-Hyung; Jang, Ja-Hyun; Jung, Sang Geun; Park, Hyun; Joo, Won Duk; Lee, Chan; Lee, Je Ho; Lee, Jun Mo; Hwang, Yoon Young; Kim, Seung Jo

    2015-10-01

    To investigate and analyze the BRCA mutations in Korean ovarian cancer patients with or without family history and to find founder mutations in this group. One hundred two patients who underwent a staging operation for pathologically proven epithelial cancer between January 2013 and December 2014 were enrolled. Thirty-two patients declined to analyze BRCA1/2 gene alterations after genetic counseling and pedigree analysis. Lymphocyte specimens from peripheral blood were assessed for BRCA1/2 by direct sequencing. BRCA genetic test results of 70 patients were available. Eighteen BRCA1/2 mutations and 17 unclassified variations (UVs) were found. Five of the BRCA1/2 mutations and 4 of the UVs were not reported in the Breast Cancer Information Core database. One BRCA2 UV (8665_8667delGGA) was strongly suspicious to be a deleterious mutation. BRCA1/2 mutations were identified in 11 (61.1%) of 18 patients with a family history and in 7 (13.5%) of 52 patients without a family history.Candidates for founder mutations in Korean ovarian cancer patients were assessed among 39 BRCA1/2 mutations from the present study and from literature reviews. The analysis showed that 1041_1043delAGCinsT (n = 4; 10.2%) and 3746insA (n = 4; 10.2%) were possible BRCA1 founder mutations. Only one of the BRCA2 mutations (5804_5807delTTAA) was repeated twice (n = 2; 5.1%). The prevalence of BRCA1/2 mutations in Korean ovarian cancer patients irrespective of the family history was significantly higher than previously reported. Possible founder mutations in Korean ovarian cancer patients were identified.

  12. Mutation Pattern of Paired Immunoglobulin Heavy and Light Variable Domains in Chronic Lymphocytic Leukemia B Cells

    PubMed Central

    Ghiotto, Fabio; Marcatili, Paolo; Tenca, Claudya; Calevo, Maria Grazia; Yan, Xiao-Jie; Albesiano, Emilia; Bagnara, Davide; Colombo, Monica; Cutrona, Giovanna; Chu, Charles C; Morabito, Fortunato; Bruno, Silvia; Ferrarini, Manlio; Tramontano, Anna; Fais, Franco; Chiorazzi, Nicholas

    2011-01-01

    B-cell chronic lymphocytic leukemia (CLL) patients display leukemic clones bearing either germline or somatically mutated immunoglobulin heavy variable (IGHV ) genes. Most information on CLL immunoglobulins (Igs), such as the definition of stereotyped B-cell receptors (BCRs), was derived from germline unmutated Igs. In particular, detailed studies on the distribution and nature of mutations in paired heavy- and light-chain domains of CLL clones bearing mutated Igs are lacking. To address the somatic hyper-mutation dynamics of CLL Igs, we analyzed the mutation pattern of paired IGHV–diversity-joining (IGHV-D-J ) and immunoglobulin kappa/lambda variable-joining (IGK/LV-J ) rearrangements of 193 leukemic clones that displayed ≥2% mutations in at least one of the two immunoglobulin variable (IGV ) genes (IGHV and/or IGK/LV ). The relationship between the mutation frequency in IGHV and IGK/LV complementarity determining regions (CDRs) and framework regions (FRs) was evaluated by correlation analysis. Replacement (R) mutation frequency within IGK/LV chain CDRs correlated significantly with mutation frequency of paired IGHV CDRs in λ but not κ isotype CLL clones. CDRs of IGKV-J rearrangements displayed a lower percentage of R mutations than IGHVs. The frequency/pattern of mutations in kappa CLL Igs differed also from that in κ-expressing normal B cells described in the literature. Instead, the mutation frequency within the FRs of IGHV and either IGKV or IGLV was correlated. Notably, the amount of diversity introduced by replaced amino acids was comparable between IGHVs and IGKVs. The data indicate a different mutation pattern between κ and λ isotype CLL clones and suggest an antigenic selection that, in κ samples, operates against CDR variation. PMID:21785810

  13. Stochastic demography and the neutral substitution rate in class-structured populations.

    PubMed

    Lehmann, Laurent

    2014-05-01

    The neutral rate of allelic substitution is analyzed for a class-structured population subject to a stationary stochastic demographic process. The substitution rate is shown to be generally equal to the effective mutation rate, and under overlapping generations it can be expressed as the effective mutation rate in newborns when measured in units of average generation time. With uniform mutation rate across classes the substitution rate reduces to the mutation rate.

  14. Decision-making process of women carrying a BRCA1 or BRCA2 mutation who have chosen prophylactic mastectomy.

    PubMed

    McQuirter, Megan; Castiglia, Luisa Luciani; Loiselle, Carmen G; Wong, Nora

    2010-05-01

    To explore the decision-making process of women with a BRCA1 or BRCA2 gene mutation who have chosen to undergo prophylactic mastectomy. Cross-sectional, qualitative, descriptive design. Participants were recruited from an outpatient cancer prevention center in the oncology and medical genetics departments of a large university-affiliated hospital in Montreal, Quebec, Canada. 10 women carrying a BRCA1 or BRCA2 mutation; 8 previously had had a prophylactic mastectomy and 2 were scheduled for surgery at the time of study. Semistructured, in-depth interviews were conducted. Field notes were written and audiotapes were transcribed verbatim. The textual data were coded and analyzed. Decision-making process for prophylactic mastectomy. Two broad findings emerged. First, several intrapersonal and contextual factors interacted throughout the process to move women either closer to choosing a prophylactic mastectomy or further from the decision. Second, all women reported experiencing a "pivotal point," an emotionally charged event when the decision to have a prophylactic mastectomy became definitive. Pivotal points for patients included either receiving a positive result for a genetic mutation or a breast cancer diagnosis for herself or a family member in the context of positive mutation status. Decision making about prophylactic mastectomy was an affective and intuitive process incorporating contexts and their relations rather than a rational, straight-forward process of weighing pros and cons. Supportive interventions for women in this population should explicitly address the individual and the inter-relationships of contextual factors that shape decision making about prophylactic mastectomy while recognizing important affective components involved.

  15. Mechanisms of viral mutation.

    PubMed

    Sanjuán, Rafael; Domingo-Calap, Pilar

    2016-12-01

    The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.

  16. Coevolutionary dynamics in large, but finite populations

    NASA Astrophysics Data System (ADS)

    Traulsen, Arne; Claussen, Jens Christian; Hauert, Christoph

    2006-07-01

    Coevolving and competing species or game-theoretic strategies exhibit rich and complex dynamics for which a general theoretical framework based on finite populations is still lacking. Recently, an explicit mean-field description in the form of a Fokker-Planck equation was derived for frequency-dependent selection with two strategies in finite populations based on microscopic processes [A. Traulsen, J. C. Claussen, and C. Hauert, Phys. Rev. Lett. 95, 238701 (2005)]. Here we generalize this approach in a twofold way: First, we extend the framework to an arbitrary number of strategies and second, we allow for mutations in the evolutionary process. The deterministic limit of infinite population size of the frequency-dependent Moran process yields the adjusted replicator-mutator equation, which describes the combined effect of selection and mutation. For finite populations, we provide an extension taking random drift into account. In the limit of neutral selection, i.e., whenever the process is determined by random drift and mutations, the stationary strategy distribution is derived. This distribution forms the background for the coevolutionary process. In particular, a critical mutation rate uc is obtained separating two scenarios: above uc the population predominantly consists of a mixture of strategies whereas below uc the population tends to be in homogeneous states. For one of the fundamental problems in evolutionary biology, the evolution of cooperation under Darwinian selection, we demonstrate that the analytical framework provides excellent approximations to individual based simulations even for rather small population sizes. This approach complements simulation results and provides a deeper, systematic understanding of coevolutionary dynamics.

  17. Evolutionary algorithm for vehicle driving cycle generation.

    PubMed

    Perhinschi, Mario G; Marlowe, Christopher; Tamayo, Sergio; Tu, Jun; Wayne, W Scott

    2011-09-01

    Modeling transit bus emissions and fuel economy requires a large amount of experimental data over wide ranges of operational conditions. Chassis dynamometer tests are typically performed using representative driving cycles defined based on vehicle instantaneous speed as sequences of "microtrips", which are intervals between consecutive vehicle stops. Overall significant parameters of the driving cycle, such as average speed, stops per mile, kinetic intensity, and others, are used as independent variables in the modeling process. Performing tests at all the necessary combinations of parameters is expensive and time consuming. In this paper, a methodology is proposed for building driving cycles at prescribed independent variable values using experimental data through the concatenation of "microtrips" isolated from a limited number of standard chassis dynamometer test cycles. The selection of the adequate "microtrips" is achieved through a customized evolutionary algorithm. The genetic representation uses microtrip definitions as genes. Specific mutation, crossover, and karyotype alteration operators have been defined. The Roulette-Wheel selection technique with elitist strategy drives the optimization process, which consists of minimizing the errors to desired overall cycle parameters. This utility is part of the Integrated Bus Information System developed at West Virginia University.

  18. Therapeutic strategies based on modified U1 snRNAs and chaperones for Sanfilippo C splicing mutations.

    PubMed

    Matos, Liliana; Canals, Isaac; Dridi, Larbi; Choi, Yoo; Prata, Maria João; Jordan, Peter; Desviat, Lourdes R; Pérez, Belén; Pshezhetsky, Alexey V; Grinberg, Daniel; Alves, Sandra; Vilageliu, Lluïsa

    2014-12-10

    Mutations affecting RNA splicing represent more than 20% of the mutant alleles in Sanfilippo syndrome type C, a rare lysosomal storage disorder that causes severe neurodegeneration. Many of these mutations are localized in the conserved donor or acceptor splice sites, while few are found in the nearby nucleotides. In this study we tested several therapeutic approaches specifically designed for different splicing mutations depending on how the mutations affect mRNA processing. For three mutations that affect the donor site (c.234 + 1G > A, c.633 + 1G > A and c.1542 + 4dupA), different modified U1 snRNAs recognizing the mutated donor sites, have been developed in an attempt to rescue the normal splicing process. For another mutation that affects an acceptor splice site (c.372-2A > G) and gives rise to a protein lacking four amino acids, a competitive inhibitor of the HGSNAT protein, glucosamine, was tested as a pharmacological chaperone to correct the aberrant folding and to restore the normal trafficking of the protein to the lysosome. Partial correction of c.234 + 1G > A mutation was achieved with a modified U1 snRNA that completely matches the splice donor site suggesting that these molecules may have a therapeutic potential for some splicing mutations. Furthermore, the importance of the splice site sequence context is highlighted as a key factor in the success of this type of therapy. Additionally, glucosamine treatment resulted in an increase in the enzymatic activity, indicating a partial recovery of the correct folding. We have assayed two therapeutic strategies for different splicing mutations with promising results for the future applications.

  19. A mathematical model of breast cancer development, local treatment and recurrence.

    PubMed

    Enderling, Heiko; Chaplain, Mark A J; Anderson, Alexander R A; Vaidya, Jayant S

    2007-05-21

    Cancer development is a stepwise process through which normal somatic cells acquire mutations which enable them to escape their normal function in the tissue and become self-sufficient in survival. The number of mutations depends on the patient's age, genetic susceptibility and on the exposure of the patient to carcinogens throughout their life. It is believed that in every malignancy 4-6 crucial similar mutations have to occur on cancer-related genes. These genes are classified as oncogenes and tumour suppressor genes (TSGs) which gain or lose their function respectively, after they have received one mutative hit or both of their alleles have been knocked out. With the acquisition of each of the necessary mutations the transformed cell gains a selective advantage over normal cells, and the mutation will spread throughout the tissue via clonal expansion. We present a simplified model of this mutation and expansion process, in which we assume that the loss of two TSGs is sufficient to give rise to a cancer. Our mathematical model of the stepwise development of breast cancer verifies the idea that the normal mutation rate in genes is only sufficient to give rise to a tumour within a clinically observable time if a high number of breast stem cells and TSGs exist or genetic instability is involved as a driving force of the mutation pathway. Furthermore, our model shows that if a mutation occurred in stem cells pre-puberty, and formed a field of cells with this mutation through clonal formation of the breast, it is most likely that a tumour will arise from within this area. We then apply different treatment strategies, namely surgery and adjuvant external beam radiotherapy and targeted intraoperative radiotherapy (TARGIT) and use the model to identify different sources of local recurrence and analyse their prevention.

  20. Analysis of IgV gene mutations in B cell chronic lymphocytic leukaemia according to antigen-driven selection identifies subgroups with different prognosis and usage of the canonical somatic hypermutation machinery.

    PubMed

    Degan, Massimo; Bomben, Riccardo; Bo, Michele Dal; Zucchetto, Antonella; Nanni, Paola; Rupolo, Maurizio; Steffan, Agostino; Attadia, Vincenza; Ballerini, Pier Ferruccio; Damiani, Daniela; Pucillo, Carlo; Poeta, Giovanni Del; Colombatti, Alfonso; Gattei, Valter

    2004-07-01

    Cases of B-cell chronic lymphocytic leukaemia (B-CLL) with mutated (M) IgV(H) genes have a better prognosis than unmutated (UM) cases. We analysed the IgV(H) mutational status of B-CLL according to the features of a canonical somatic hypermutation (SHM) process, correlating this data with survival. In a series of 141 B-CLLs, 124 cases were examined for IgV(H) gene per cent mutations and skewing of replacement/silent mutations in the framework/complementarity-determining regions as evidence of antigen-driven selection; this identified three B-CLL subsets: significantly mutated (sM), with evidence of antigen-driven selection, not significantly mutated (nsM) and UM, without such evidence and IgV(H) gene per cent mutations above or below the 2% cut-off. sM B-CLL patients had longer survival within the good prognosis subgroup that had more than 2% mutations of IgV(H) genes. sM, nsM and UM B-CLL were also characterized for the biased usage of IgV(H) families, intraclonal IgV(H) gene diversification, preference of mutations to target-specific nucleotides or hotspots, and for the expression of enzymes involved in SHM (translesion DNA polymerase zeta and eta and activation-induced cytidine deaminase). These findings indicate the activation of a canonical SHM process in nsM and sM B-CLLs and underscore the role of the antigen in defining the specific clinical and biological features of B-CLL.

  1. In Darwinian evolution, feedback from natural selection leads to biased mutations.

    PubMed

    Caporale, Lynn Helena; Doyle, John

    2013-12-01

    Natural selection provides feedback through which information about the environment and its recurring challenges is captured, inherited, and accumulated within genomes in the form of variations that contribute to survival. The variation upon which natural selection acts is generally described as "random." Yet evidence has been mounting for decades, from such phenomena as mutation hotspots, horizontal gene transfer, and highly mutable repetitive sequences, that variation is far from the simplifying idealization of random processes as white (uniform in space and time and independent of the environment or context).  This paper focuses on what is known about the generation and control of mutational variation, emphasizing that it is not uniform across the genome or in time, not unstructured with respect to survival, and is neither memoryless nor independent of the (also far from white) environment. We suggest that, as opposed to frequentist methods, Bayesian analysis could capture the evolution of nonuniform probabilities of distinct classes of mutation, and argue not only that the locations, styles, and timing of real mutations are not correctly modeled as generated by a white noise random process, but that such a process would be inconsistent with evolutionary theory. © 2013 New York Academy of Sciences.

  2. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism.

    PubMed

    Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R

    2016-05-20

    C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells

    DOE PAGES

    Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.; ...

    2014-11-04

    Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutationsmore » were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. In conclusion, the results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes.« less

  4. A mouse model for the cystic fibrosis delta F508 mutation.

    PubMed Central

    van Doorninck, J H; French, P J; Verbeek, E; Peters, R H; Morreau, H; Bijman, J; Scholte, B J

    1995-01-01

    Most cystic fibrosis (CF) patients produce a mutant form (delta F508) of the cystic fibrosis transmembrane conductance regulator (CFTR), which is not properly processed in normal cells but is active as a chloride channel in several experimental systems. We used a double homologous recombination ('Hit and Run') procedure to generate a mouse model for the delta F508 mutation. Targeted embryonic stem (ES) cells (Hit clones) were found; of these either 80 or 20% of the clones had lost the delta F508 mutation, depending on the distance between the linearization site in the targeting construct and the delta F508 mutation. Correctly targeted clones underwent a second selection step resulting in ES cell clones (Run clones) heterozygous for the delta F508 mutation with an efficiency of 2-7%. Chimeric mice were generated and offspring homozygous for the delta F508 mutation showed electrophysiological abnormalities in nasal epithelium, gallbladder and in the intestine, and histological abnormalities in the intestine, typical of CF. Our data suggest that the delta F508 mice have residual delta F508 CFTR activity which would explain the mild pathology of the delta F508 mice. The delta F508 mouse may provide a useful model for the study of the processing defect of delta F508 CFTR and for the development of novel therapeutic approaches based on circumvention of the processing block. Images PMID:7556083

  5. Altered cellular localization and hemichannel activities of KID syndrome associated connexin26 I30N and D50Y mutations.

    PubMed

    Aypek, Hande; Bay, Veysel; Meşe, Gülistan

    2016-02-02

    Gap junctions facilitate exchange of small molecules between adjacent cells, serving a crucial function for the maintenance of cellular homeostasis. Mutations in connexins, the basic unit of gap junctions, are associated with several human hereditary disorders. For example, mutations in connexin26 (Cx26) cause both non-syndromic deafness and syndromic deafness associated with skin abnormalities such as keratitis-ichthyosis-deafness (KID) syndrome. These mutations can alter the formation and function of gap junction channels through different mechanisms, and in turn interfere with various cellular processes leading to distinct disorders. The KID associated Cx26 mutations were mostly shown to result in elevated hemichannel activities. However, the effects of these aberrant hemichannels on cellular processes are recently being deciphered. Here, we assessed the effect of two Cx26 mutations associated with KID syndrome, Cx26I30N and D50Y, on protein biosynthesis and channel function in N2A and HeLa cells. Immunostaining experiments showed that Cx26I30N and D50Y failed to form gap junction plaques at cell-cell contact sites. Further, these mutations resulted in the retention of Cx26 protein in the Golgi apparatus. Examination of hemichannel function by fluorescent dye uptake assays revealed that cells with Cx26I30N and D50Y mutations had increased dye uptake compared to Cx26WT (wild-type) containing cells, indicating abnormal hemichannel activities. Cells with mutant proteins had elevated intracellular calcium levels compared to Cx26WT transfected cells, which were abolished by a hemichannel blocker, carbenoxolone (CBX), as measured by Fluo-3 AM loading and flow cytometry. Here, we demonstrated that Cx26I30N and D50Y mutations resulted in the formation of aberrant hemichannels that might result in elevated intracellular calcium levels, a process which may contribute to the hyperproliferative epidermal phenotypes of KID syndrome.

  6. The "COLD-PCR approach" for early and cost-effective detection of tyrosine kinase inhibitor resistance mutations in EGFR-positive non-small cell lung cancer.

    PubMed

    Mairinger, Fabian D; Vollbrecht, Claudia; Streubel, Anna; Roth, Andreas; Landt, Olfert; Walter, Henry F R; Kollmeier, Jens; Mairinger, Thomas

    2014-01-01

    Activating epidermal growth factor receptor (EGFR) gene mutations can be successfully treated by EGFR tyrosine kinase inhibitors (EGFR-TKIs), but nearly 50% of all patients' exhibit progression of the disease until treatment because of T790M mutations. It is proposed that this is mostly caused by therapy-resistant tumor clones harboring a T790M mutation. Until now no cost-effective routine-diagnostic method for EGFR-resistance mutation status analysis is available leaving long-time response to TKI treatment to chance. Unambiguous identification of T790M EGFR mutations is mandatory to optimize initial treatment strategies. Artificial EGFR T790M mutations and human wild-type gDNA were prepared in several dilution series. Preferential amplification using coamplification at lower denaturation temperature-PCR (COLD-PCR) of the mutant sequence and subsequent HybProbe melting curve detection or pyrosequencing were performed in comparison to normal processing. COLD-PCR-based amplification allowed the detection of 0.125% T790M mutant DNA in a background of wild-type DNA in comparison to 5% while normal processing. These results were reproducible. COLD-PCR is a powerful and cost-effective tool for routine diagnostic to detect underrepresented tumor clones in clinical samples. A diagnostic tool for unambiguous identification of T790M-mutated minor tumor clones is now available enabling optimized therapy.

  7. Insights into the Folding and Unfolding Processes of Wild-Type and Mutated SH3 Domain by Molecular Dynamics and Replica Exchange Molecular Dynamics Simulations

    PubMed Central

    Chu, Wen-Ting; Zhang, Ji-Long; Zheng, Qing-Chuan; Chen, Lin; Zhang, Hong-Xing

    2013-01-01

    Src-homology regions 3 (SH3) domain is essential for the down-regulation of tyrosine kinase activity. Mutation A39V/N53P/V55L of SH3 is found to be relative to the urgent misfolding diseases. To gain insight, the human and gallus SH3 domains (PDB ID: 1NYG and 2LP5), including 58 amino acids in each protein, were selected for MD simulations (Amber11, ff99SB force field) and cluster analysis to investigate the influence of mutations on the spatial structure of the SH3 domain. It is found that the large conformational change of mutations mainly exists in three areas in the vicinity of protein core: RT loop, N-src loop, distal β-hairpin to 310 helix. The C-terminus of the mutated gallus SH3 is disordered after simulation, which represents the intermediate state of aggregation. The disappeared strong Hbond net in the mutated human and gallus systems will make these mutated proteins looser than the wild-type proteins. Additionally, by performing the REMD simulations on the gallus SH3 domain, the mutated domain is found to have an obvious effect on the unfolding process. These studies will be helpful for further aggregation mechanisms investigations on SH3 family. PMID:23734224

  8. Insights into the folding and unfolding processes of wild-type and mutated SH3 domain by molecular dynamics and replica exchange molecular dynamics simulations.

    PubMed

    Chu, Wen-Ting; Zhang, Ji-Long; Zheng, Qing-Chuan; Chen, Lin; Zhang, Hong-Xing

    2013-01-01

    Src-homology regions 3 (SH3) domain is essential for the down-regulation of tyrosine kinase activity. Mutation A39V/N53P/V55L of SH3 is found to be relative to the urgent misfolding diseases. To gain insight, the human and gallus SH3 domains (PDB ID: 1NYG and 2LP5), including 58 amino acids in each protein, were selected for MD simulations (Amber11, ff99SB force field) and cluster analysis to investigate the influence of mutations on the spatial structure of the SH3 domain. It is found that the large conformational change of mutations mainly exists in three areas in the vicinity of protein core: RT loop, N-src loop, distal β-hairpin to 310 helix. The C-terminus of the mutated gallus SH3 is disordered after simulation, which represents the intermediate state of aggregation. The disappeared strong Hbond net in the mutated human and gallus systems will make these mutated proteins looser than the wild-type proteins. Additionally, by performing the REMD simulations on the gallus SH3 domain, the mutated domain is found to have an obvious effect on the unfolding process. These studies will be helpful for further aggregation mechanisms investigations on SH3 family.

  9. Risk reducing mastectomy, breast reconstruction and patient satisfaction in Norwegian BRCA1/2 mutation carriers.

    PubMed

    Hagen, Anne Irene; Mæhle, Lovise; Vedå, Nina; Vetti, Hildegunn Høberg; Stormorken, Astrid; Ludvigsen, Trond; Guntvedt, Bente; Isern, Anne Elisabeth; Schlichting, Ellen; Kleppe, Geir; Bofin, Anna; Gullestad, Hans Petter; Møller, Pål

    2014-02-01

    The aim of this study was to evaluate the outcome of risk-reducing mastectomy in BRCA1/2 mutation carriers with and without breast cancer. Uptake, methods of operation and reconstruction, complications, patient satisfaction and histopathological findings were registered at all five departments of genetics in Norway. Data from 267 affected and unaffected BRCA1/2 mutation carriers were analyzed, including a study-specific questionnaire returned by 178 mutation carriers. There was a steady increase in the uptake of risk-reducing mastectomies during the study period. Complications were observed in 106/266 (39.7%) women. Patient satisfaction was high. The majority of women expressed great relief after risk-reducing mastectomy and would have chosen the same option again. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The Equilibrium Allele Frequency Distribution for a Population with Reproductive Skew

    PubMed Central

    Der, Ricky; Plotkin, Joshua B.

    2014-01-01

    We study the population genetics of two neutral alleles under reversible mutation in a model that features a skewed offspring distribution, called the Λ-Fleming–Viot process. We describe the shape of the equilibrium allele frequency distribution as a function of the model parameters. We show that the mutation rates can be uniquely identified from this equilibrium distribution, but the form of the offspring distribution cannot itself always be so identified. We introduce an estimator for the mutation rate that is consistent, independent of the form of reproductive skew. We also introduce a two-allele infinite-sites version of the Λ-Fleming–Viot process, and we use it to study how reproductive skew influences standing genetic diversity in a population. We derive asymptotic formulas for the expected number of segregating sites as a function of sample size and offspring distribution. We find that the Wright–Fisher model minimizes the equilibrium genetic diversity, for a given mutation rate and variance effective population size, compared to all other Λ-processes. PMID:24473932

  11. A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer

    DOE PAGES

    Viel, Alessandra; Bruselles, Alessandro; Meccia, Ettore; ...

    2017-04-13

    8-Oxoguanine, a common mutagenic DNA lesion, generates G:C > T:A transversions via mispairing with adenine during DNA replication. When operating normally, the MUTYH DNA glycosylase prevents 8-oxoguanine-related mutagenesis by excising the incorporated adenine. Biallelic MUTYH mutations impair this enzymatic function and are associated with colorectal cancer (CRC) in MUTYH-Associated Polyposis (MAP) syndrome. Here in this paper, we perform whole-exome sequencing that reveals a modest mutator phenotype in MAP CRCs compared to sporadic CRC stem cell lines or bulk tumours. The excess G:C > T:A transversion mutations in MAP CRCs exhibits a novel mutational signature, termed Signature 36, with a strongmore » sequence dependence. The MUTYH mutational signature reflecting persistent 8-oxoG:A mismatches occurs frequently in the APC, KRAS, PIK3CA, FAT4, TP53, FAT1, AMER1, KDM6A, SMAD4 and SMAD2 genes that are associated with CRC. In conclusion, the occurrence of Signature 36 in other types of human cancer indicates that DNA 8-oxoguanine-related mutations might contribute to the development of cancer in other organs.« less

  12. A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viel, Alessandra; Bruselles, Alessandro; Meccia, Ettore

    8-Oxoguanine, a common mutagenic DNA lesion, generates G:C > T:A transversions via mispairing with adenine during DNA replication. When operating normally, the MUTYH DNA glycosylase prevents 8-oxoguanine-related mutagenesis by excising the incorporated adenine. Biallelic MUTYH mutations impair this enzymatic function and are associated with colorectal cancer (CRC) in MUTYH-Associated Polyposis (MAP) syndrome. Here in this paper, we perform whole-exome sequencing that reveals a modest mutator phenotype in MAP CRCs compared to sporadic CRC stem cell lines or bulk tumours. The excess G:C > T:A transversion mutations in MAP CRCs exhibits a novel mutational signature, termed Signature 36, with a strongmore » sequence dependence. The MUTYH mutational signature reflecting persistent 8-oxoG:A mismatches occurs frequently in the APC, KRAS, PIK3CA, FAT4, TP53, FAT1, AMER1, KDM6A, SMAD4 and SMAD2 genes that are associated with CRC. In conclusion, the occurrence of Signature 36 in other types of human cancer indicates that DNA 8-oxoguanine-related mutations might contribute to the development of cancer in other organs.« less

  13. The CDC Hemophilia A Mutation Project (CHAMP) Mutation List: a New Online Resource

    PubMed Central

    Payne, Amanda B.; Miller, Connie H.; Kelly, Fiona M.; Soucie, J. Michael; Hooper, W. Craig

    2015-01-01

    Genotyping efforts in hemophilia A (HA) populations in many countries have identified large numbers of unique mutations in the Factor VIII gene (F8). To assist HA researchers conducting genotyping analyses, we have developed a listing of F8 mutations including those listed in existing locus-specific databases as well as those identified in patient populations and reported in the literature. Each mutation was reviewed and uniquely identified using Human Genome Variation Society (HGVS) nomenclature standards for coding DNA and predicted protein changes as well as traditional nomenclature based on the mature, processed protein. Listings also include the associated hemophilia severity classified by International Society of Thrombosis and Haemostasis (ISTH) criteria, associations of the mutations with inhibitors, and reference information. The mutation list currently contains 2,537 unique mutations known to cause HA. HA severity caused by the mutation is available for 2,022 mutations (80%) and information on inhibitors is available for 1,816 mutations (72%). The CDC Hemophilia A Mutation Project (CHAMP) Mutation List is available at http://www.cdc.gov/hemophiliamutations for download and search and will be updated quarterly based on periodic literature reviews and submitted reports. PMID:23280990

  14. Crossover versus mutation: a comparative analysis of the evolutionary strategy of genetic algorithms applied to combinatorial optimization problems.

    PubMed

    Osaba, E; Carballedo, R; Diaz, F; Onieva, E; de la Iglesia, I; Perallos, A

    2014-01-01

    Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test.

  15. Crossover versus Mutation: A Comparative Analysis of the Evolutionary Strategy of Genetic Algorithms Applied to Combinatorial Optimization Problems

    PubMed Central

    Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; de la Iglesia, I.; Perallos, A.

    2014-01-01

    Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test. PMID:25165731

  16. A protein functional leap: how a single mutation reverses the function of the transcription regulator TetR.

    PubMed

    Resch, Marcus; Striegl, Harald; Henssler, Eva Maria; Sevvana, Madhumati; Egerer-Sieber, Claudia; Schiltz, Emile; Hillen, Wolfgang; Muller, Yves A

    2008-08-01

    Today's proteome is the result of innumerous gene duplication, mutagenesis, drift and selection processes. Whereas random mutagenesis introduces predominantly only gradual changes in protein function, a case can be made that an abrupt switch in function caused by single amino acid substitutions will not only considerably further evolution but might constitute a prerequisite for the appearance of novel functionalities for which no promiscuous protein intermediates can be envisaged. Recently, tetracycline repressor (TetR) variants were identified in which binding of tetracycline triggers the repressor to associate with and not to dissociate from the operator DNA as in wild-type TetR. We investigated the origin of this activity reversal by limited proteolysis, CD spectroscopy and X-ray crystallography. We show that the TetR mutant Leu17Gly switches its function via a disorder-order mechanism that differs completely from the allosteric mechanism of wild-type TetR. Our study emphasizes how single point mutations can engender unexpected leaps in protein function thus enabling the appearance of new functionalities in proteins without the need for promiscuous intermediates.

  17. High prevalence of mutations affecting the splicing process in a Spanish cohort with autosomal dominant retinitis pigmentosa

    PubMed Central

    Ezquerra-Inchausti, Maitane; Barandika, Olatz; Anasagasti, Ander; Irigoyen, Cristina; López de Munain, Adolfo; Ruiz-Ederra, Javier

    2017-01-01

    Retinitis pigmentosa is the most frequent group of inherited retinal dystrophies. It is highly heterogeneous, with more than 80 disease-causing genes 27 of which are known to cause autosomal dominant RP (adRP), having been identified. In this study a total of 29 index cases were ascertained based on a family tree compatible with adRP. A custom panel of 31 adRP genes was analysed by targeted next-generation sequencing using the Ion PGM platform in combination with Sanger sequencing. This allowed us to detect putative disease-causing mutations in 14 out of the 29 (48.28%) families analysed. Remarkably, around 38% of all adRP cases analysed showed mutations affecting the splicing process, mainly due to mutations in genes coding for spliceosome factors (SNRNP200 and PRPF8) but also due to splice-site mutations in RHO. Twelve of the 14 mutations found had been reported previously and two were novel mutations found in PRPF8 in two unrelated patients. In conclusion, our results will lead to more accurate genetic counselling and will contribute to a better characterisation of the disease. In addition, they may have a therapeutic impact in the future given the large number of studies currently underway based on targeted RNA splicing for therapeutic purposes. PMID:28045043

  18. Spontaneous Mutation Rate in the Smallest Photosynthetic Eukaryotes

    PubMed Central

    Krasovec, Marc; Eyre-Walker, Adam; Sanchez-Ferandin, Sophie

    2017-01-01

    Abstract Mutation is the ultimate source of genetic variation, and knowledge of mutation rates is fundamental for our understanding of all evolutionary processes. High throughput sequencing of mutation accumulation lines has provided genome wide spontaneous mutation rates in a dozen model species, but estimates from nonmodel organisms from much of the diversity of life are very limited. Here, we report mutation rates in four haploid marine bacterial-sized photosynthetic eukaryotic algae; Bathycoccus prasinos, Ostreococcus tauri, Ostreococcus mediterraneus, and Micromonas pusilla. The spontaneous mutation rate between species varies from μ = 4.4 × 10−10 to 9.8 × 10−10 mutations per nucleotide per generation. Within genomes, there is a two-fold increase of the mutation rate in intergenic regions, consistent with an optimization of mismatch and transcription-coupled DNA repair in coding sequences. Additionally, we show that deviation from the equilibrium GC content increases the mutation rate by ∼2% to ∼12% because of a GC bias in coding sequences. More generally, the difference between the observed and equilibrium GC content of genomes explains some of the inter-specific variation in mutation rates. PMID:28379581

  19. Exploring the common molecular basis for the universal DNA mutation bias: Revival of Loewdin mutation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Liang-Yu; Center for Bioinformatics, Huazhong Agricultural University, Wuhan 430070; Wang, Guang-Zhong

    2011-06-10

    Highlights: {yields} There exists a universal G:C {yields} A:T mutation bias in three domains of life. {yields} This universal mutation bias has not been sufficiently explained. {yields} A DNA mutation model proposed by Loewdin 40 years ago offers a common explanation. -- Abstract: Recently, numerous genome analyses revealed the existence of a universal G:C {yields} A:T mutation bias in bacteria, fungi, plants and animals. To explore the molecular basis for this mutation bias, we examined the three well-known DNA mutation models, i.e., oxidative damage model, UV-radiation damage model and CpG hypermutation model. It was revealed that these models cannot providemore » a sufficient explanation to the universal mutation bias. Therefore, we resorted to a DNA mutation model proposed by Loewdin 40 years ago, which was based on inter-base double proton transfers (DPT). Since DPT is a fundamental and spontaneous chemical process and occurs much more frequently within GC pairs than AT pairs, Loewdin model offers a common explanation for the observed universal mutation bias and thus has broad biological implications.« less

  20. Regulation of MDM2 Activity by Nucleolin

    DTIC Science & Technology

    2005-06-01

    tumorigenesis with -50% of human cancers showing mutation of the TP53 gene , often a loss of one gene copy and a point mutation within the second. p53...Sordat B, Gillet M, Schorderet D, Bosman FT, Chaubert P (2001) Methylation silencing and mutations of the p14ARF and pl6INK4a genes in colon cancer. Lab...for the first machinery (for example, see reference 53 and references step of pre-rRNA processing (22). Mutation of the genes en- therein). It is

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.

    Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutationsmore » were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. In conclusion, the results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes.« less

  2. ORAI1 mutations abolishing store-operated Ca2+ entry cause anhidrotic ectodermal dysplasia with immunodeficiency.

    PubMed

    Lian, Jayson; Cuk, Mario; Kahlfuss, Sascha; Kozhaya, Lina; Vaeth, Martin; Rieux-Laucat, Frédéric; Picard, Capucine; Benson, Melina J; Jakovcevic, Antonia; Bilic, Karmen; Martinac, Iva; Stathopulos, Peter; Kacskovics, Imre; Vraetz, Thomas; Speckmann, Carsten; Ehl, Stephan; Issekutz, Thomas; Unutmaz, Derya; Feske, Stefan

    2017-11-16

    Store-operated Ca 2+ entry (SOCE) through Ca 2+ release-activated Ca 2+ channels is an essential signaling pathway in many cell types. Ca 2+ release-activated Ca 2+ channels are formed by ORAI1, ORAI2, and ORAI3 proteins and activated by stromal interaction molecule (STIM) 1 and STIM2. Mutations in the ORAI1 and STIM1 genes that abolish SOCE cause a combined immunodeficiency (CID) syndrome that is accompanied by autoimmunity and nonimmunologic symptoms. We performed molecular and immunologic analysis of patients with CID, anhidrosis, and ectodermal dysplasia of unknown etiology. We performed DNA sequencing of the ORAI1 gene, modeling of mutations on ORAI1 crystal structure, analysis of ORAI1 mRNA and protein expression, SOCE measurements, immunologic analysis of peripheral blood lymphocyte populations by using flow cytometry, and histologic and ultrastructural analysis of patient tissues. We identified 3 novel autosomal recessive mutations in ORAI1 in unrelated kindreds with CID, autoimmunity, ectodermal dysplasia with anhidrosis, and muscular dysplasia. The patients were homozygous for p.V181SfsX8, p.L194P, and p.G98R mutations in the ORAI1 gene that suppressed ORAI1 protein expression and SOCE in the patients' lymphocytes and fibroblasts. In addition to impaired T-cell cytokine production, ORAI1 mutations were associated with strongly reduced numbers of invariant natural killer T and regulatory T (Treg) cells and altered composition of γδ T-cell and natural killer cell subsets. ORAI1 null mutations are associated with reduced numbers of invariant natural killer T and Treg cells that likely contribute to the patients' immunodeficiency and autoimmunity. ORAI1-deficient patients have dental enamel defects and anhidrosis, representing a new form of anhidrotic ectodermal dysplasia with immunodeficiency that is distinct from previously reported patients with anhidrotic ectodermal dysplasia with immunodeficiency caused by mutations in the nuclear factor κB signaling pathway (IKBKG and NFKBIA). Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Limited family structure and BRCA gene mutation status in single cases of breast cancer.

    PubMed

    Weitzel, Jeffrey N; Lagos, Veronica I; Cullinane, Carey A; Gambol, Patricia J; Culver, Julie O; Blazer, Kathleen R; Palomares, Melanie R; Lowstuter, Katrina J; MacDonald, Deborah J

    2007-06-20

    An autosomal dominant pattern of hereditary breast cancer may be masked by small family size or transmission through males given sex-limited expression. To determine if BRCA gene mutations are more prevalent among single cases of early onset breast cancer in families with limited vs adequate family structure than would be predicted by currently available probability models. A total of 1543 women seen at US high-risk clinics for genetic cancer risk assessment and BRCA gene testing were enrolled in a prospective registry study between April 1997 and February 2007. Three hundred six of these women had breast cancer before age 50 years and no first- or second-degree relatives with breast or ovarian cancers. The main outcome measure was whether family structure, assessed from multigenerational pedigrees, predicts BRCA gene mutation status. Limited family structure was defined as fewer than 2 first- or second-degree female relatives surviving beyond age 45 years in either lineage. Family structure effect and mutation probability by the Couch, Myriad, and BRCAPRO models were assessed with stepwise multiple logistic regression. Model sensitivity and specificity were determined and receiver operating characteristic curves were generated. Family structure was limited in 153 cases (50%). BRCA gene mutations were detected in 13.7% of participants with limited vs 5.2% with adequate family structure. Family structure was a significant predictor of mutation status (odds ratio, 2.8; 95% confidence interval, 1.19-6.73; P = .02). Although none of the models performed well, receiver operating characteristic analysis indicated that modification of BRCAPRO output by a corrective probability index accounting for family structure was the most accurate BRCA gene mutation status predictor (area under the curve, 0.72; 95% confidence interval, 0.63-0.81; P<.001) for single cases of breast cancer. Family structure can affect the accuracy of mutation probability models. Genetic testing guidelines may need to be more inclusive for single cases of breast cancer when the family structure is limited and probability models need to be recreated using limited family history as an actual variable.

  4. Sexual selection on spontaneous mutations strengthens the between-sex genetic correlation for fitness.

    PubMed

    Allen, Scott L; McGuigan, Katrina; Connallon, Tim; Blows, Mark W; Chenoweth, Stephen F

    2017-10-01

    A proposed benefit to sexual selection is that it promotes purging of deleterious mutations from populations. For this benefit to be realized, sexual selection, which is usually stronger on males, must purge mutations deleterious to both sexes. Here, we experimentally test the hypothesis that sexual selection on males purges deleterious mutations that affect both male and female fitness. We measured male and female fitness in two panels of spontaneous mutation-accumulation lines of the fly, Drosophila serrata, each established from a common ancestor. One panel of mutation accumulation lines limited both natural and sexual selection (LS lines), whereas the other panel limited natural selection, but allowed sexual selection to operate (SS lines). Although mutation accumulation caused a significant reduction in male and female fitness in both the LS and SS lines, sexual selection had no detectable effect on the extent of the fitness reduction. Similarly, despite evidence of mutational variance for fitness in males and females of both treatments, sexual selection had no significant impact on the amount of mutational genetic variance for fitness. However, sexual selection did reshape the between-sex correlation for fitness: significantly strengthening it in the SS lines. After 25 generations, the between-sex correlation for fitness was positive but considerably less than one in the LS lines, suggesting that, although most mutations had sexually concordant fitness effects, sex-limited, and/or sex-biased mutations contributed substantially to the mutational variance. In the SS lines this correlation was strong and could not be distinguished from unity. Individual-based simulations that mimick the experimental setup reveal two conditions that may drive our results: (1) a modest-to-large fraction of mutations have sex-limited (or highly sex-biased) fitness effects, and (2) the average fitness effect of sex-limited mutations is larger than the average fitness effect of mutations that affect both sexes similarly. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  5. Evaluation of current prediction models for Lynch syndrome: updating the PREMM5 model to identify PMS2 mutation carriers.

    PubMed

    Goverde, A; Spaander, M C W; Nieboer, D; van den Ouweland, A M W; Dinjens, W N M; Dubbink, H J; Tops, C J; Ten Broeke, S W; Bruno, M J; Hofstra, R M W; Steyerberg, E W; Wagner, A

    2018-07-01

    Until recently, no prediction models for Lynch syndrome (LS) had been validated for PMS2 mutation carriers. We aimed to evaluate MMRpredict and PREMM5 in a clinical cohort and for PMS2 mutation carriers specifically. In a retrospective, clinic-based cohort we calculated predictions for LS according to MMRpredict and PREMM5. The area under the operator receiving characteristic curve (AUC) was compared between MMRpredict and PREMM5 for LS patients in general and for different LS genes specifically. Of 734 index patients, 83 (11%) were diagnosed with LS; 23 MLH1, 17 MSH2, 31 MSH6 and 12 PMS2 mutation carriers. Both prediction models performed well for MLH1 and MSH2 (AUC 0.80 and 0.83 for PREMM5 and 0.79 for MMRpredict) and fair for MSH6 mutation carriers (0.69 for PREMM5 and 0.66 for MMRpredict). MMRpredict performed fair for PMS2 mutation carriers (AUC 0.72), while PREMM5 failed to discriminate PMS2 mutation carriers from non-mutation carriers (AUC 0.51). The only statistically significant difference between PMS2 mutation carriers and non-mutation carriers was proximal location of colorectal cancer (77 vs. 28%, p < 0.001). Adding location of colorectal cancer to PREMM5 considerably improved the models performance for PMS2 mutation carriers (AUC 0.77) and overall (AUC 0.81 vs. 0.72). We validated these results in an external cohort of 376 colorectal cancer patients, including 158 LS patients. MMRpredict and PREMM5 cannot adequately identify PMS2 mutation carriers. Adding location of colorectal cancer to PREMM5 may improve the performance of this model, which should be validated in larger cohorts.

  6. Highly sensitive detection of mutations in CHO cell recombinant DNA using multi-parallel single molecule real-time DNA sequencing.

    PubMed

    Cartwright, Joseph F; Anderson, Karin; Longworth, Joseph; Lobb, Philip; James, David C

    2018-06-01

    High-fidelity replication of biologic-encoding recombinant DNA sequences by engineered mammalian cell cultures is an essential pre-requisite for the development of stable cell lines for the production of biotherapeutics. However, immortalized mammalian cells characteristically exhibit an increased point mutation frequency compared to mammalian cells in vivo, both across their genomes and at specific loci (hotspots). Thus unforeseen mutations in recombinant DNA sequences can arise and be maintained within producer cell populations. These may affect both the stability of recombinant gene expression and give rise to protein sequence variants with variable bioactivity and immunogenicity. Rigorous quantitative assessment of recombinant DNA integrity should therefore form part of the cell line development process and be an essential quality assurance metric for instances where synthetic/multi-component assemblies are utilized to engineer mammalian cells, such as the assessment of recombinant DNA fidelity or the mutability of single-site integration target loci. Based on Pacific Biosciences (Menlo Park, CA) single molecule real-time (SMRT™) circular consensus sequencing (CCS) technology we developed a rDNA sequence analysis tool to process the multi-parallel sequencing of ∼40,000 single recombinant DNA molecules. After statistical filtering of raw sequencing data, we show that this analytical method is capable of detecting single point mutations in rDNA to a minimum single mutation frequency of 0.0042% (<1/24,000 bases). Using a stable CHO transfectant pool harboring a randomly integrated 5 kB plasmid construct encoding GFP we found that 28% of recombinant plasmid copies contained at least one low frequency (<0.3%) point mutation. These mutations were predominantly found in GC base pairs (85%) and that there was no positional bias in mutation across the plasmid sequence. There was no discernable difference between the mutation frequencies of coding and non-coding DNA. The putative ratio of non-synonymous and synonymous changes within the open reading frames (ORFs) in the plasmid sequence indicates that natural selection does not impact upon the prevalence of these mutations. Here we have demonstrated the abundance of mutations that fall outside of the reported range of detection of next generation sequencing (NGS) and second generation sequencing (SGS) platforms, providing a methodology capable of being utilized in cell line development platforms to identify the fidelity of recombinant genes throughout the production process. © 2018 Wiley Periodicals, Inc.

  7. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittig, S.; Siggaard, C.; Pedersen, E.B.

    1996-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation wasmore » unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. 63 refs., 5 figs., 6 tabs.« less

  8. Finding cancer driver mutations in the era of big data research.

    PubMed

    Poulos, Rebecca C; Wong, Jason W H

    2018-04-02

    In the last decade, the costs of genome sequencing have decreased considerably. The commencement of large-scale cancer sequencing projects has enabled cancer genomics to join the big data revolution. One of the challenges still facing cancer genomics research is determining which are the driver mutations in an individual cancer, as these contribute only a small subset of the overall mutation profile of a tumour. Focusing primarily on somatic single nucleotide mutations in this review, we consider both coding and non-coding driver mutations, and discuss how such mutations might be identified from cancer sequencing datasets. We describe some of the tools and database that are available for the annotation of somatic variants and the identification of cancer driver genes. We also address the use of genome-wide variation in mutation load to establish background mutation rates from which to identify driver mutations under positive selection. Finally, we describe the ways in which mutational signatures can act as clues for the identification of cancer drivers, as these mutations may cause, or arise from, certain mutational processes. By defining the molecular changes responsible for driving cancer development, new cancer treatment strategies may be developed or novel preventative measures proposed.

  9. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus.

    PubMed Central

    Rittig, S.; Robertson, G. L.; Siggaard, C.; Kovács, L.; Gregersen, N.; Nyborg, J.; Pedersen, E. B.

    1996-01-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation was unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons. Images Figure 3 PMID:8554046

  10. Mutation and premating isolation

    NASA Technical Reports Server (NTRS)

    Woodruff, R. C.; Thompson, J. N. Jr

    2002-01-01

    While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.

  11. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. IV. Influence of DNA replication and excision repair on REV2 dependent UV-mutagenesis and repair.

    PubMed

    Siede, W; Eckardt, F

    1986-01-01

    A double mutant being thermoconditionally defective in mutation induction as well as in repair of pre-lethal UV-induced DNA damage (rev2ts) and deficient in excision repair (rad3-2) was studied in temperature-shift experiments. The influence of inhibitors of DNA replication (hydroxyurea, aphidicolin) was determined. Additionally, an analysis of the dose-response pattern of mutation induction ("mutation kinetics") at several ochre alleles was carried out. It was concluded that the UV-inducible REV2 dependent mutagenic repair process is not induced in excision-deficient cells. In excision-deficient cells, REV2 dependent mutation fixation is slow and mostly post-replicative though not dependent on DNA replication. The REV2 mediated mutagenic process could be separated from the repair function.

  12. Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development.

    PubMed

    Liu, Qing; Zhu, Andan; Chai, Lijun; Zhou, Wenjing; Yu, Keqin; Ding, Jian; Xu, Juan; Deng, Xiuxin

    2009-01-01

    Bud mutations often arise in citrus. The selection of mutants is one of the most important breeding channels in citrus. However, the molecular basis of bud mutation has rarely been studied. To identify differentially expressed genes in a spontaneous sweet orange [C. sinensis (L.) Osbeck] bud mutation which causes lycopene accumulation, low citric acid, and high sucrose in fruit, suppression subtractive hybridization and microarray analysis were performed to decipher this bud mutation during fruit development. After sequencing of the differentially expressed clones, a total of 267 non-redundant transcripts were obtained and 182 (68.2%) of them shared homology (E-value < or = 1x10(-10)) with known gene products. Few genes were constitutively up- or down-regulated (fold change > or = 2) in the bud mutation during fruit development. Self-organizing tree algorithm analysis results showed that 95.1% of the differentially expressed genes were extensively coordinated with the initiation of lycopene accumulation. Metabolic process, cellular process, establishment of localization, response to stimulus, and biological regulation-related transcripts were among the most regulated genes. These genes were involved in many biological processes such as organic acid metabolism, lipid metabolism, transport, and pyruvate metabolism, etc. Moreover, 13 genes which were differentially regulated at 170 d after flowering shared homology with previously described signal transduction or transcription factors. The information generated in this study provides new clues to aid in the understanding of bud mutation in citrus.

  13. Multiple mutant clones in blood rarely coexist

    NASA Astrophysics Data System (ADS)

    Dingli, David; Pacheco, Jorge M.; Traulsen, Arne

    2008-02-01

    Leukemias arise due to mutations in the genome of hematopoietic (blood) cells. Hematopoiesis has a multicompartment architecture, with cells exhibiting different rates of replication and differentiation. At the root of this process, one finds a small number of stem cells, and hence the description of the mutation-selection dynamics of blood cells calls for a stochastic approach. We use stochastic dynamics to investigate to which extent acquired hematopoietic disorders are associated with mutations of single or multiple genes within developing blood cells. Our analysis considers the appearance of mutations both in the stem cell compartment as well as in more committed compartments. We conclude that in the absence of genomic instability, acquired hematopoietic disorders due to mutations in multiple genes are most likely very rare events, as multiple mutations typically require much longer development times compared to those associated with a single mutation.

  14. How mutation affects evolutionary games on graphs

    PubMed Central

    Allen, Benjamin; Traulsen, Arne; Tarnita, Corina E.; Nowak, Martin A.

    2011-01-01

    Evolutionary dynamics are affected by population structure, mutation rates and update rules. Spatial or network structure facilitates the clustering of strategies, which represents a mechanism for the evolution of cooperation. Mutation dilutes this effect. Here we analyze how mutation influences evolutionary clustering on graphs. We introduce new mathematical methods to evolutionary game theory, specifically the analysis of coalescing random walks via generating functions. These techniques allow us to derive exact identity-by-descent (IBD) probabilities, which characterize spatial assortment on lattices and Cayley trees. From these IBD probabilities we obtain exact conditions for the evolution of cooperation and other game strategies, showing the dual effects of graph topology and mutation rate. High mutation rates diminish the clustering of cooperators, hindering their evolutionary success. Our model can represent either genetic evolution with mutation, or social imitation processes with random strategy exploration. PMID:21473871

  15. Genomic Profiling on an Unselected Solid Tumor Population Reveals a Highly Mutated Wnt/β-Catenin Pathway Associated with Oncogenic EGFR Mutations.

    PubMed

    Jiang, Jingrui; Protopopov, Alexei; Sun, Ruobai; Lyle, Stephen; Russell, Meaghan

    2018-04-09

    Oncogenic epidermal growth factor receptors (EGFRs) can recruit key effectors in diverse cellular processes to propagate oncogenic signals. Targeted and combinational therapeutic strategies have been successfully applied for treating EGFR-driven cancers. However, a main challenge in EGFR therapies is drug resistance due to mutations, oncogenic shift, alternative signaling, and other potential mechanisms. To further understand the genetic alterations associated with oncogenic EGFRs and to provide further insight into optimal and personalized therapeutic strategies, we applied a proprietary comprehensive next-generation sequencing (NGS)-based assay of 435 genes to systematically study the genomic profiles of 1565 unselected solid cancer patient samples. We found that activating EGFR mutations were predominantly detected in lung cancer, particularly in non-small cell lung cancer (NSCLC). The mutational landscape of EGFR-driven tumors covered most key signaling pathways and biological processes. Strikingly, the Wnt/β-catenin pathway was highly mutated (48 variants detected in 46% of the EGFR-driven tumors), and its variant number topped that in the TP53/apoptosis and PI3K-AKT-mTOR pathways. Furthermore, an analysis of mutation distribution revealed a differential association pattern of gene mutations between EGFR exon 19del and EGFR L858R. Our results confirm the aggressive nature of the oncogenic EGFR-driven tumors and reassure that a combinational strategy should have advantages over an EGFR-targeted monotherapy and holds great promise for overcoming drug resistance.

  16. Proximity to AGCT sequences dictates MMR-independent versus MMR-dependent mechanisms for AID-induced mutation via UNG2

    PubMed Central

    Thientosapol, Eddy Sanchai; Sharbeen, George; Lau, K.K. Edwin; Bosnjak, Daniel; Durack, Timothy; Stevanovski, Igor; Weninger, Wolfgang

    2017-01-01

    Abstract AID deaminates C to U in either strand of Ig genes, exclusively producing C:G/G:C to T:A/A:T transition mutations if U is left unrepaired. Error-prone processing by UNG2 or mismatch repair diversifies mutation, predominantly at C:G or A:T base pairs, respectively. Here, we show that transversions at C:G base pairs occur by two distinct processing pathways that are dictated by sequence context. Within and near AGCT mutation hotspots, transversion mutation at C:G was driven by UNG2 without requirement for mismatch repair. Deaminations in AGCT were refractive both to processing by UNG2 and to high-fidelity base excision repair (BER) downstream of UNG2, regardless of mismatch repair activity. We propose that AGCT sequences resist faithful BER because they bind BER-inhibitory protein(s) and/or because hemi-deaminated AGCT motifs innately form a BER-resistant DNA structure. Distal to AGCT sequences, transversions at G were largely co-dependent on UNG2 and mismatch repair. We propose that AGCT-distal transversions are produced when apyrimidinic sites are exposed in mismatch excision patches, because completion of mismatch repair would require bypass of these sites. PMID:28039326

  17. Hybrid intelligent optimization methods for engineering problems

    NASA Astrophysics Data System (ADS)

    Pehlivanoglu, Yasin Volkan

    The purpose of optimization is to obtain the best solution under certain conditions. There are numerous optimization methods because different problems need different solution methodologies; therefore, it is difficult to construct patterns. Also mathematical modeling of a natural phenomenon is almost based on differentials. Differential equations are constructed with relative increments among the factors related to yield. Therefore, the gradients of these increments are essential to search the yield space. However, the landscape of yield is not a simple one and mostly multi-modal. Another issue is differentiability. Engineering design problems are usually nonlinear and they sometimes exhibit discontinuous derivatives for the objective and constraint functions. Due to these difficulties, non-gradient-based algorithms have become more popular in recent decades. Genetic algorithms (GA) and particle swarm optimization (PSO) algorithms are popular, non-gradient based algorithms. Both are population-based search algorithms and have multiple points for initiation. A significant difference from a gradient-based method is the nature of the search methodologies. For example, randomness is essential for the search in GA or PSO. Hence, they are also called stochastic optimization methods. These algorithms are simple, robust, and have high fidelity. However, they suffer from similar defects, such as, premature convergence, less accuracy, or large computational time. The premature convergence is sometimes inevitable due to the lack of diversity. As the generations of particles or individuals in the population evolve, they may lose their diversity and become similar to each other. To overcome this issue, we studied the diversity concept in GA and PSO algorithms. Diversity is essential for a healthy search, and mutations are the basic operators to provide the necessary variety within a population. After having a close scrutiny of the diversity concept based on qualification and quantification studies, we improved new mutation strategies and operators to provide beneficial diversity within the population. We called this new approach as multi-frequency vibrational GA or PSO. They were applied to different aeronautical engineering problems in order to study the efficiency of these new approaches. These implementations were: applications to selected benchmark test functions, inverse design of two-dimensional (2D) airfoil in subsonic flow, optimization of 2D airfoil in transonic flow, path planning problems of autonomous unmanned aerial vehicle (UAV) over a 3D terrain environment, 3D radar cross section minimization problem for a 3D air vehicle, and active flow control over a 2D airfoil. As demonstrated by these test cases, we observed that new algorithms outperform the current popular algorithms. The principal role of this multi-frequency approach was to determine which individuals or particles should be mutated, when they should be mutated, and which ones should be merged into the population. The new mutation operators, when combined with a mutation strategy and an artificial intelligent method, such as, neural networks or fuzzy logic process, they provided local and global diversities during the reproduction phases of the generations. Additionally, the new approach also introduced random and controlled diversity. Due to still being population-based techniques, these methods were as robust as the plain GA or PSO algorithms. Based on the results obtained, it was concluded that the variants of the present multi-frequency vibrational GA and PSO were efficient algorithms, since they successfully avoided all local optima within relatively short optimization cycles.

  18. Fitness effects of advantageous mutations in evolving Escherichia coli populations

    PubMed Central

    Imhof, Marianne; Schlötterer, Christian

    2001-01-01

    The central role of beneficial mutations for adaptive processes in natural populations is well established. Thus, there has been a long-standing interest to study the nature of beneficial mutations. Their low frequency, however, has made this class of mutations almost inaccessible for systematic studies. In the absence of experimental data, the distribution of the fitness effects of beneficial mutations was assumed to resemble that of deleterious mutations. For an experimental proof of this assumption, we used a novel marker system to trace adaptive events in an evolving Escherichia coli culture and to determine the selective advantage of those beneficial mutations. Ten parallel cultures were propagated for about 1,000 generations by serial transfer, and 66 adaptive events were identified. From this data set, we estimate the rate of beneficial mutations to be 4 × 10−9 per cell and generation. Consistent with an exponential distribution of the fitness effects, we observed a large fraction of advantageous mutations with a small effect and only few with large effect. The mean selection coefficient of advantageous mutations in our experiment was 0.02. PMID:11158603

  19. The rate and character of spontaneous mutation in an RNA virus.

    PubMed Central

    Malpica, José M; Fraile, Aurora; Moreno, Ignacio; Obies, Clara I; Drake, John W; García-Arenal, Fernando

    2002-01-01

    Estimates of spontaneous mutation rates for RNA viruses are few and uncertain, most notably due to their dependence on tiny mutation reporter sequences that may not well represent the whole genome. We report here an estimate of the spontaneous mutation rate of tobacco mosaic virus using an 804-base cognate mutational target, the viral MP gene that encodes the movement protein (MP). Selection against newly arising mutants was countered by providing MP function from a transgene. The estimated genomic mutation rate was on the lower side of the range previously estimated for lytic animal riboviruses. We also present the first unbiased riboviral mutational spectrum. The proportion of base substitutions is the same as that in a retrovirus but is lower than that in most DNA-based organisms. Although the MP mutant frequency was 0.02-0.05, 35% of the sequenced mutants contained two or more mutations. Therefore, the mutation process in populations of TMV and perhaps of riboviruses generally differs profoundly from that in populations of DNA-based microbes and may be strongly influenced by a subpopulation of mutator polymerases. PMID:12524327

  20. In situ mutation detection and visualization of intratumor heterogeneity for cancer research and diagnostics

    PubMed Central

    Grundberg, Ida; Kiflemariam, Sara; Mignardi, Marco; Imgenberg-Kreuz, Juliana; Edlund, Karolina; Micke, Patrick; Sundström, Magnus; Sjöblom, Tobias

    2013-01-01

    Current assays for somatic mutation analysis are based on extracts from tissue sections that often contain morphologically heterogeneous neoplastic regions with variable contents of genetically normal stromal and inflammatory cells, obscuring the results of the assays. We have developed an RNA-based in situ mutation assay that targets oncogenic mutations in a multiplex fashion that resolves the heterogeneity of the tissue sample. Activating oncogenic mutations are targets for a new generation of cancer drugs. For anti-EGFR therapy prediction, we demonstrate reliable in situ detection of KRAS mutations in codon 12 and 13 in colon and lung cancers in three different types of routinely processed tissue materials. High-throughput screening of KRAS mutation status was successfully performed on a tissue microarray. Moreover, we show how the patterns of expressed mutated and wild-type alleles can be studied in situ in tumors with complex combinations of mutated EGFR, KRAS and TP53. This in situ method holds great promise as a tool to investigate the role of somatic mutations during tumor progression and for prediction of response to targeted therapy. PMID:24280411

  1. Accumulation of Spontaneous Mutations in the Ciliate Tetrahymena thermophila

    PubMed Central

    Long, Hong-An; Paixão, Tiago; Azevedo, Ricardo B. R.; Zufall, Rebecca A.

    2013-01-01

    Knowledge of the rate and fitness effects of mutations is essential for understanding the process of evolution. Mutations are inherently difficult to study because they are rare and are frequently eliminated by natural selection. In the ciliate Tetrahymena thermophila, mutations can accumulate in the germline genome without being exposed to selection. We have conducted a mutation accumulation (MA) experiment in this species. Assuming that all mutations are deleterious and have the same effect, we estimate that the deleterious mutation rate per haploid germline genome per generation is U = 0.0047 (95% credible interval: 0.0015, 0.0125), and that germline mutations decrease fitness by s = 11% when expressed in a homozygous state (95% CI: 4.4%, 27%). We also estimate that deleterious mutations are partially recessive on average (h = 0.26; 95% CI: –0.022, 0.62) and that the rate of lethal mutations is <10% of the deleterious mutation rate. Comparisons between the observed evolutionary responses in the germline and somatic genomes and the results from individual-based simulations of MA suggest that the two genomes have similar mutational parameters. These are the first estimates of the deleterious mutation rate and fitness effects from the eukaryotic supergroup Chromalveolata and are within the range of those of other eukaryotes. PMID:23934880

  2. Genetic variation in RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 and risk of colon or rectal cancer

    PubMed Central

    Slattery, Martha L.; Lundgreen, Abbie; Herrick, Jennifer S.; Wolff, Roger K.

    2010-01-01

    RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 are involved in several pathways central to the carcinogenic process, including regulation of cell growth, insulin, and inflammation. We evaluated genetic variation in their candidate genes to obtain a better understanding of their association with colon and rectal cancer. We used data from two population-based case-control studies of colon (n=1574 cases, 1940 controls) and rectal (n=791 cases, 999 controls) cancer. We observed genetic variation in RPS6KA1, RPS6KA2, and PRS6KB2 were associated with risk of developing colon cancer while only genetic variation in RPS6KA2 was associated with altering risk of rectal cancer. These genes also interacted significantly with other genes operating in similar mechanisms, including Akt1, FRAP1, NFκB1, and PIK3CA. Assessment of tumor markers indicated that these genes and this pathway may importantly contributed to CIMP+ tumors and tumors with KRAS2 mutations. Our findings implicate these candidate genes in the etiology of colon and rectal cancer and provide information on how these genes operate with other genes in the pathway. Our data further suggest that this pathway may lead to CIMP+ and KRAS2-mutated tumors. PMID:21035469

  3. New knowledge-based genetic algorithm for excavator boom structural optimization

    NASA Astrophysics Data System (ADS)

    Hua, Haiyan; Lin, Shuwen

    2014-03-01

    Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.

  4. Association between CHEK2 H371Y mutation and response to neoadjuvant chemotherapy in women with breast cancer.

    PubMed

    Liu, Yin; Xu, Ye; Ouyang, Tao; Li, Jinfeng; Wang, Tianfeng; Fan, Zhaoqing; Fan, Tie; Lin, Benyao; Xie, Yuntao

    2015-03-28

    Our previous study suggested that the recurrent CHEK2 H371Y mutation is a novel pathogenic mutation that confers an increased risk of breast cancer. The purpose of this study was to investigate whether breast cancer patients with CHEK2 H371Y mutation were more likely to respond to neoadjuvant chemotherapy. We screened a cohort of 2334 Chinese women with operable primary breast cancer who received a neoadjuvant chemotherapy regimen for CHEK2 H371Y germline mutations. Pathologic complete response (pCR) was defined as the absence of tumor cells in the breast after the completion of neoadjuvant chemotherapy. Thirty-nine patients (1.7%) with CHEK2 H371Y germline mutation were identified in this cohort of 2334 patients. CHEK2 H371Y mutation carriers had a significantly higher pCR rate than non-carriers (33.3% versus 19.5%, P = 0.031) in the entire study population, and CHEK2 H371Y mutation-positive status remained an independent favorable predictor of pCR in a multivariate analysis (odds ratio [OR] = 3.01; 95% confidence interval [CI]: 1.34- 6.78, P = 0.008). CHEK2 H371Y carriers had a slightly worse distant recurrence-free survival than non-carriers (adjusted hazard ratio [HR] =1.24, 95% CI: 0.59-2.63). CHEK2 H371Y mutation carriers are more likely to respond to neoadjuvant chemotherapy than are non-carriers.

  5. Value of combining serum carcinoembryonic antigen and PET/CT in predicting EGFR mutation in non-small cell lung cancer.

    PubMed

    Gu, Jincui; Xu, Siqi; Huang, Lixia; Li, Shaoli; Wu, Jian; Xu, Junwen; Feng, Jinlun; Liu, Baomo; Zhou, Yanbin

    2018-02-01

    We sought to investigate the associations between pretreatment serum Carcinoembryonic antigen (CEA) level, 18 F-Fluoro-2-deoxyglucose ( 18 F-FDG) uptake value of primary tumor and epidermal growth factor receptor ( EGFR ) mutation status in non-small cell lung cancer (NSCLC). We retrospectively reviewed medical records of 210 NSCLC patients who underwent EGFR mutation test and 18 F-FDG positron emission tomography/computed tomography (PET/CT) scan before anti-tumor therapy. The associations between EGFR mutations and patients' characteristics, serum CEA, PET/CT imaging characteristics maximal standard uptake value (SUVmax) of the primary tumor were analyzed. Receiver-operating characteristic (ROC) curve was used to assess the predictive value of these factors. EGFR mutations were found in 70 patients (33.3%). EGFR mutations were more common in high CEA group (CEA ≥7.0 ng/mL) than in low CEA group (CEA <7.0 ng/mL) (40.4% vs . 27.6%; P=0.05). Females (P<0.001), non-smokers (P<0.001), patients with adenocarcinoma (P<0.001) and SUVmax <9.0 (P=0.001) were more likely to be EGFR mutation-positive. Multivariate analysis revealed that gender, tumor histology, pretreatment serum CEA level, and SUVmax were the most significant predictors for EGFR mutations. The ROC curve revealed that combining these four factors yielded a higher calculated AUC (0.80). Gender, histology, pretreatment serum CEA level and SUVmax are significant predictors for EGFR mutations in NSCLC. Combining these factors in predicting EGFR mutations has a moderate diagnostic accuracy, and is helpful in guiding anti-tumor treatment.

  6. Mutations in cell elongation genes mreB, mrdA and mrdB suppress the shape defect of RodZ-deficient cells.

    PubMed

    Shiomi, Daisuke; Toyoda, Atsushi; Aizu, Tomoyuki; Ejima, Fumio; Fujiyama, Asao; Shini, Tadasu; Kohara, Yuji; Niki, Hironori

    2013-03-01

    RodZ interacts with MreB and both factors are required to maintain the rod shape of Escherichia coli. The assembly of MreB into filaments regulates the subcellular arrangement of a group of enzymes that synthesizes the peptidoglycan (PG) layer. However, it is still unknown how polymerization of MreB determines the rod shape of bacterial cells. Regulatory factor(s) are likely to be involved in controlling the function and dynamics of MreB. We isolated suppressor mutations to partially recover the rod shape in rodZ deletion mutants and found that some of the suppressor mutations occurred in mreB. All of the mreB mutations were in or in the vicinity of domain IA of MreB. Those mreB mutations changed the property of MreB filaments in vivo. In addition, suppressor mutations were found in the periplasmic regions in PBP2 and RodA, encoded by mrdA and mrdB genes. Similar to MreB and RodZ, PBP2 and RodA are pivotal to the cell wall elongation process. Thus, we found that mutations in domain IA of MreB and in the periplasmic domain of PBP2 and RodA can restore growth and rod shape to ΔrodZ cells, possibly by changing the requirements of MreB in the process. © 2013 Blackwell Publishing Ltd.

  7. Mutations in cell elongation genes mreB, mrdA and mrdB suppress the shape defect of RodZ-deficient cells

    PubMed Central

    Shiomi, Daisuke; Toyoda, Atsushi; Aizu, Tomoyuki; Ejima, Fumio; Fujiyama, Asao; Shini, Tadasu; Kohara, Yuji; Niki, Hironori

    2013-01-01

    RodZ interacts with MreB and both factors are required to maintain the rod shape of Escherichia coli. The assembly of MreB into filaments regulates the subcellular arrangement of a group of enzymes that synthesizes the peptidoglycan (PG) layer. However, it is still unknown how polymerization of MreB determines the rod shape of bacterial cells. Regulatory factor(s) are likely to be involved in controlling the function and dynamics of MreB. We isolated suppressor mutations to partially recover the rod shape in rodZ deletion mutants and found that some of the suppressor mutations occurred in mreB. All of the mreB mutations were in or in the vicinity of domain IA of MreB. Those mreB mutations changed the property of MreB filaments in vivo. In addition, suppressor mutations were found in the periplasmic regions in PBP2 and RodA, encoded by mrdA and mrdB genes. Similar to MreB and RodZ, PBP2 and RodA are pivotal to the cell wall elongation process. Thus, we found that mutations in domain IA of MreB and in the periplasmic domain of PBP2 and RodA can restore growth and rod shape to ΔrodZ cells, possibly by changing the requirements of MreB in the process. PMID:23301723

  8. KRAS mutation testing in borderline ovarian tumors and low-grade ovarian carcinomas with a rapid, fully integrated molecular diagnostic system.

    PubMed

    Sadlecki, Pawel; Antosik, Paulina; Grzanka, Dariusz; Grabiec, Marek; Walentowicz-Sadlecka, Malgorzata

    2017-10-01

    Epithelial ovarian neoplasms are a heterogeneous group of tumors, including various malignancies with distinct clinicopathologic and molecular features. Mutations in BRAF and KRAS genes are the most frequent genetic aberrations found in low-grade serous ovarian carcinomas and serous and mucinous borderline tumors. Implementation of targeted therapeutic strategies requires access to highly specific and highly sensitive diagnostic tests for rapid determination of mutation status. One candidate for such test is fully integrated, real-time polymerase chain reaction-based Idylla™ system for quick and simple detection of KRAS mutations in formaldehyde fixed-paraffin embedded tumor samples. The primary aim of this study was to verify whether fully integrated real-time polymerase chain reaction-based Idylla system may be useful in determination of KRAS mutation status in patients with borderline ovarian tumors and low-grade ovarian carcinomas. The study included tissue specimens from 37 patients with histopathologically verified ovarian masses, operated on at the Department of Obstetrics and Gynecology, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz (Poland) between January 2009 and June 2012. Based on histopathological examination of surgical specimens, 30 lesions were classified as low-grade ovarian carcinomas and 7 as borderline ovarian tumors. Seven patients examined with Idylla KRAS Mutation Test tested positive for KRAS mutation. No statistically significant association was found between the incidence of KRAS mutations and histopathological type of ovarian tumors. Mean survival of the study subjects was 48.51 months (range 3-60 months). Presence of KRAS mutation did not exert a significant effect on the duration of survival in our series. Our findings suggest that Idylla KRAS Mutation Test may be a useful tool for rapid detection of KRAS mutations in ovarian tumor tissue.

  9. The nearly neutral and selection theories of molecular evolution under the fisher geometrical framework: substitution rate, population size, and complexity.

    PubMed

    Razeto-Barry, Pablo; Díaz, Javier; Vásquez, Rodrigo A

    2012-06-01

    The general theories of molecular evolution depend on relatively arbitrary assumptions about the relative distribution and rate of advantageous, deleterious, neutral, and nearly neutral mutations. The Fisher geometrical model (FGM) has been used to make distributions of mutations biologically interpretable. We explored an FGM-based molecular model to represent molecular evolutionary processes typically studied by nearly neutral and selection models, but in which distributions and relative rates of mutations with different selection coefficients are a consequence of biologically interpretable parameters, such as the average size of the phenotypic effect of mutations and the number of traits (complexity) of organisms. A variant of the FGM-based model that we called the static regime (SR) represents evolution as a nearly neutral process in which substitution rates are determined by a dynamic substitution process in which the population's phenotype remains around a suboptimum equilibrium fitness produced by a balance between slightly deleterious and slightly advantageous compensatory substitutions. As in previous nearly neutral models, the SR predicts a negative relationship between molecular evolutionary rate and population size; however, SR does not have the unrealistic properties of previous nearly neutral models such as the narrow window of selection strengths in which they work. In addition, the SR suggests that compensatory mutations cannot explain the high rate of fixations driven by positive selection currently found in DNA sequences, contrary to what has been previously suggested. We also developed a generalization of SR in which the optimum phenotype can change stochastically due to environmental or physiological shifts, which we called the variable regime (VR). VR models evolution as an interplay between adaptive processes and nearly neutral steady-state processes. When strong environmental fluctuations are incorporated, the process becomes a selection model in which evolutionary rate does not depend on population size, but is critically dependent on the complexity of organisms and mutation size. For SR as well as VR we found that key parameters of molecular evolution are linked by biological factors, and we showed that they cannot be fixed independently by arbitrary criteria, as has usually been assumed in previous molecular evolutionary models.

  10. The Nearly Neutral and Selection Theories of Molecular Evolution Under the Fisher Geometrical Framework: Substitution Rate, Population Size, and Complexity

    PubMed Central

    Razeto-Barry, Pablo; Díaz, Javier; Vásquez, Rodrigo A.

    2012-01-01

    The general theories of molecular evolution depend on relatively arbitrary assumptions about the relative distribution and rate of advantageous, deleterious, neutral, and nearly neutral mutations. The Fisher geometrical model (FGM) has been used to make distributions of mutations biologically interpretable. We explored an FGM-based molecular model to represent molecular evolutionary processes typically studied by nearly neutral and selection models, but in which distributions and relative rates of mutations with different selection coefficients are a consequence of biologically interpretable parameters, such as the average size of the phenotypic effect of mutations and the number of traits (complexity) of organisms. A variant of the FGM-based model that we called the static regime (SR) represents evolution as a nearly neutral process in which substitution rates are determined by a dynamic substitution process in which the population’s phenotype remains around a suboptimum equilibrium fitness produced by a balance between slightly deleterious and slightly advantageous compensatory substitutions. As in previous nearly neutral models, the SR predicts a negative relationship between molecular evolutionary rate and population size; however, SR does not have the unrealistic properties of previous nearly neutral models such as the narrow window of selection strengths in which they work. In addition, the SR suggests that compensatory mutations cannot explain the high rate of fixations driven by positive selection currently found in DNA sequences, contrary to what has been previously suggested. We also developed a generalization of SR in which the optimum phenotype can change stochastically due to environmental or physiological shifts, which we called the variable regime (VR). VR models evolution as an interplay between adaptive processes and nearly neutral steady-state processes. When strong environmental fluctuations are incorporated, the process becomes a selection model in which evolutionary rate does not depend on population size, but is critically dependent on the complexity of organisms and mutation size. For SR as well as VR we found that key parameters of molecular evolution are linked by biological factors, and we showed that they cannot be fixed independently by arbitrary criteria, as has usually been assumed in previous molecular evolutionary models. PMID:22426879

  11. Mutational Effects and Population Dynamics During Viral Adaptation Challenge Current Models

    PubMed Central

    Miller, Craig R.; Joyce, Paul; Wichman, Holly A.

    2011-01-01

    Adaptation in haploid organisms has been extensively modeled but little tested. Using a microvirid bacteriophage (ID11), we conducted serial passage adaptations at two bottleneck sizes (104 and 106), followed by fitness assays and whole-genome sequencing of 631 individual isolates. Extensive genetic variation was observed including 22 beneficial, several nearly neutral, and several deleterious mutations. In the three large bottleneck lines, up to eight different haplotypes were observed in samples of 23 genomes from the final time point. The small bottleneck lines were less diverse. The small bottleneck lines appeared to operate near the transition between isolated selective sweeps and conditions of complex dynamics (e.g., clonal interference). The large bottleneck lines exhibited extensive interference and less stochasticity, with multiple beneficial mutations establishing on a variety of backgrounds. Several leapfrog events occurred. The distribution of first-step adaptive mutations differed significantly from the distribution of second-steps, and a surprisingly large number of second-step beneficial mutations were observed on a highly fit first-step background. Furthermore, few first-step mutations appeared as second-steps and second-steps had substantially smaller selection coefficients. Collectively, the results indicate that the fitness landscape falls between the extremes of smooth and fully uncorrelated, violating the assumptions of many current mutational landscape models. PMID:21041559

  12. A Large-scale Cross-sectional Study of ALK Rearrangements and EGFR Mutations in Non-small-cell Lung Cancer in Chinese Han Population

    PubMed Central

    Hong, Shaodong; Fang, Wenfeng; Hu, Zhihuang; Zhou, Ting; Yan, Yue; Qin, Tao; Tang, Yanna; Ma, Yuxiang; Zhao, Yuanyuan; Xue, Cong; Huang, Yan; Zhao, Hongyun; Zhang, Li

    2014-01-01

    The predictive power of age at diagnosis and smoking history for ALK rearrangements and EGFR mutations in non-small-cell lung cancer (NSCLC) remains not fully understood. In this cross-sectional study, 1160 NSCLC patients were prospectively enrolled and genotyped for EML4-ALK rearrangements and EGFR mutations. Multivariate logistic regression analysis was performed to explore the association between clinicopathological features and these two genetic aberrations. Receiver operating characteristic (ROC) curves methodology was applied to evaluate the predictive value. We showed that younger age at diagnosis was the only independent variable associated with EML4-ALK rearrangements (odds ratio (OR) per 5 years' increment, 0.68; p < 0.001), while lower tobacco exposure (OR per 5 pack-years' increment, 0.88; p < 0.001), adenocarcinoma (OR, 6.61; p < 0.001), and moderate to high differentiation (OR, 2.05; p < 0.001) were independently associated with EGFR mutations. Age at diagnosis was a very strong predictor of ALK rearrangements but poorly predicted EGFR mutations, while smoking pack-years may predict the presence of EGFR mutations and ALK rearrangements but with rather limited power. These findings should assist clinicians in assessing the likelihood of EML4-ALK rearrangements and EGFR mutations and understanding their biological implications in NSCLC. PMID:25434695

  13. Directional cultural change by modification and replacement of memes.

    PubMed

    Cardoso, Gonçalo C; Atwell, Jonathan W

    2011-01-01

    Evolutionary approaches to culture remain contentious. A source of contention is that cultural mutation may be substantial and, if it drives cultural change, then current evolutionary models are not adequate. But we lack studies quantifying the contribution of mutations to directional cultural change. We estimated the contribution of one type of cultural mutations--modification of memes--to directional cultural change using an amenable study system: learned birdsongs in a species that recently entered an urban habitat. Many songbirds have higher minimum song frequency in cities, to alleviate masking by low-frequency noise. We estimated that the input of meme modifications in an urban songbird population explains about half the extent of the population divergence in song frequency. This contribution of cultural mutations is large, but insufficient to explain the entire population divergence. The remaining divergence is due to selection of memes or creation of new memes. We conclude that the input of cultural mutations can be quantitatively important, unlike in genetic evolution, and that it operates together with other mechanisms of cultural evolution. For this and other traits, in which the input of cultural mutations might be important, quantitative studies of cultural mutation are necessary to calibrate realistic models of cultural evolution. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  14. Mutated form (G52E) of inactive diphtheria toxin CRM197: molecular simulations clearly display effect of the mutation to NAD binding.

    PubMed

    Salmas, Ramin Ekhteiari; Mestanoglu, Mert; Unlu, Ayhan; Yurtsever, Mine; Durdagi, Serdar

    2016-11-01

    Mutated form (G52E) of diphtheria toxin (DT) CRM197 is an inactive and nontoxic enzyme. Here, we provided a molecular insight using comparative molecular dynamics (MD) simulations to clarify the influence of a single point mutation on overall protein and active-site loop. Post-processing MD analysis (i.e. stability, principal component analysis, hydrogen-bond occupancy, etc.) is carried out on both wild and mutated targets to investigate and to better understand the mechanistic differences of structural and dynamical properties on an atomic scale especially at nicotinamide adenine dinucleotide (NAD) binding site when a single mutation (G52E) happens at the DT. In addition, a docking simulation is performed for wild and mutated forms. The docking scoring analysis and docking poses results revealed that mutant form is not able to properly accommodate the NAD molecule.

  15. Wild-type and mutated IDH1/2 enzymes and therapy responses.

    PubMed

    Molenaar, Remco J; Maciejewski, Jaroslaw P; Wilmink, Johanna W; van Noorden, Cornelis J F

    2018-04-01

    Isocitrate dehydrogenase 1 and 2 (IDH1/2) are key enzymes in cellular metabolism, epigenetic regulation, redox states, and DNA repair. IDH1/2 mutations are causal in the development and/or progression of various types of cancer due to supraphysiological production of D-2-hydroxyglutarate. In various tumor types, IDH1/2-mutated cancers predict for improved responses to treatment with irradiation or chemotherapy. The present review discusses the molecular basis of the sensitivity of IDH1/2-mutated cancers with respect to the function of mutated IDH1/2 in cellular processes and their interactions with novel IDH1/2-mutant inhibitors. Finally, lessons learned from IDH1/2 mutations for future clinical applications in IDH1/2 wild-type cancers are discussed.

  16. Clonal Expansion (CE) Models in Cancer Risk Assessment

    EPA Science Inventory

    Cancer arises when cells accumulate sufficient critical mutations. Carcinogens increase the probability of mutation during cell division or promote clonal expansion within stages. Multistage CE models recapitulate this process and provide a framework for incorporating relevant da...

  17. Genetics Home Reference: Leigh syndrome

    MedlinePlus

    ... people with Leigh syndrome have a mutation in nuclear DNA, about 20 percent have a mutation in mtDNA. Most genes associated with Leigh syndrome are involved in the process of energy production in mitochondria. Mitochondria use oxygen to convert ...

  18. Rapid identification of kidney cyst mutations by whole exome sequencing in zebrafish

    PubMed Central

    Ryan, Sean; Willer, Jason; Marjoram, Lindsay; Bagwell, Jennifer; Mankiewicz, Jamie; Leshchiner, Ignaty; Goessling, Wolfram; Bagnat, Michel; Katsanis, Nicholas

    2013-01-01

    Forward genetic approaches in zebrafish have provided invaluable information about developmental processes. However, the relative difficulty of mapping and isolating mutations has limited the number of new genetic screens. Recent improvements in the annotation of the zebrafish genome coupled to a reduction in sequencing costs prompted the development of whole genome and RNA sequencing approaches for gene discovery. Here we describe a whole exome sequencing (WES) approach that allows rapid and cost-effective identification of mutations. We used our WES methodology to isolate four mutations that cause kidney cysts; we identified novel alleles in two ciliary genes as well as two novel mutants. The WES approach described here does not require specialized infrastructure or training and is therefore widely accessible. This methodology should thus help facilitate genetic screens and expedite the identification of mutants that can inform basic biological processes and the causality of genetic disorders in humans. PMID:24130329

  19. [The role of remodeling complexes CHD1 and ISWI in spontaneous and UV-induced mutagenesis control in yeast Saccharomyces cerevisiae].

    PubMed

    Evstiukhina, T A; Alekseeva, E A; Fedorov, D V; Peshekhonov, V T; Korolev, V G

    2017-02-01

    Chromatin remodulators are special multiprotein machines capable of transforming the structure, constitution, and positioning of nucleosomes on DNA. Biochemical activities of remodeling complexes CHD1 and ISWI from the SWI2/SNF2 family are well established. They ensure correct positioning of nucleosomes along the genome, which is probably critical for genome stability, in particular, after action of polymerases, repair enzymes, and transcription. In this paper, we show that single mutations in genes ISW1, ISW2, and CHD1 weakly affect repair and mutagenic processes in yeast cells. At the same time, there are differences in the effect of these mutations on spontaneous mutation levels, which indicates certain specificity of action of protein complexes ISW1, ISW2, and CHD1 on expression of different genes that control repair and mutation processes in yeast.

  20. FLG mutations in ichthyosis vulgaris and atopic eczema: spectrum of mutations and population genetics.

    PubMed

    Akiyama, M

    2010-03-01

    Filaggrin is a key protein involved in skin barrier function. Mutations in the gene encoding filaggrin (FLG) have been identified as the cause of ichthyosis vulgaris and have been shown to be major predisposing factors for atopic eczema (AE), initially in European populations. Subsequently, FLG mutations were identified in Japanese, Chinese, Taiwanese and Korean populations. It was demonstrated that FLG mutations are closely associated with AE in the Japanese population. Notably, the same FLG mutations identified in the European population were rarely found in Asians. These results exemplify differences in filaggrin population genetics between Europe and Asia. For mutation screening, background information needs to be obtained on prevalent FLG mutations for each geographical population. It is therefore important to establish the global population genetics maps for FLG mutations. Mutations at any site within FLG, even mutations in C-terminal imperfect filaggrin repeats, cause significant reductions in amounts of profilaggrin/filaggrin peptide in patient epidermis as the C-terminal region is essential for proper processing of profilaggrin into filaggrin. Thus, no genotype-phenotype correlation has been observed in patients with FLG mutations. A restoration of the barrier function seems a feasible and promising strategy for treatment and prevention in individuals with filaggrin deficiency.

  1. Combination of icotinib, surgery, and internal-radiotherapy of a patient with lung cancer severely metastasized to the vertebrae bones with EGFR mutation: a case report.

    PubMed

    Qu, Li-Li; Qin, Hai-Feng; Gao, Hong-Jun; Liu, Xiao-Qing

    2015-01-01

    A 48-year-old Chinese female was referred to us regarding EGFR-mutated advanced non-small cell lung cancer, and metastasis to left scapula and vertebrae bones which caused pathological fracture at T8 and T10 thoracic vertebrae. An aggressive combined therapy with icotinib, vertebrae operation, and radioactive particle implantation and immunotherapy was proposed to prevent paraplegia, relieve pain, and control the overall and local tumor lesions. No postoperative symptoms were seen after surgery, and the pain was significantly relieved. Icotinib merited a 31-month partial response with grade 1 diarrhea as its drug-related adverse event. High dose of icotinib was administered after pelvis lesion progression for 3 months with good tolerance. Combination therapy of icotinib, surgery, and internal radiation for metastases of the vertebrae bones from non-small cell lung cancer seems to be a very promising technique both for sufficient pain relief and for local control of the tumor, vertebrae operation can be an encouraging option for patients with EFGR positive mutation and good prognosis indicator.

  2. Characterizing biased cancer-related cognitive processing: relationships with BRCA1/2 genetic mutation status, personal cancer history, age, and prophylactic surgery.

    PubMed

    Carpenter, Kristen M; Eisenberg, Stacy; Weltfreid, Sharone; Low, Carissa A; Beran, Tammy; Stanton, Annette L

    2014-09-01

    This study evaluated associations of cancer-related cognitive processing with BRCA1/2 mutation carrier status, personal cancer history, age, and election of prophylactic surgery in women at high risk for breast cancer. In a 2 (BRCA1/2 mutation carrier status) × 2 (personal cancer history) matched-control design, with age as an additional predictor, participants (N = 115) completed a computerized cancer Stroop task. Dependent variables were response latency to cancer-related stimuli (reaction time [RT]) and cancer-related cognitive interference (cancer RT minus neutral RT). RT and interference were tested as predictors of prophylactic surgery in the subsequent four years. RT for cancer-related words was significantly slower than other word groups, indicating biased processing specific to cancer-related stimuli. Participants with a cancer history evidenced longer RT to cancer-related words than those without a history; moreover, a significant Cancer History × Age interaction indicated that, among participants with a cancer history, the typical advantage associated with younger age on Stroop tasks was absent. BRCA mutation carriers demonstrated more cancer-related cognitive interference than noncarriers. Again, the typical Stroop age advantage was absent among carriers. Exploratory analyses indicated that BRCA+ status and greater cognitive interference predicted greater likelihood of undergoing prophylactic surgery. Post hoc tests suggest that cancer-related distress does not account for these relationships. In the genetic testing context, younger women with a personal cancer history or who are BRCA1/2 mutation carriers might be particularly vulnerable to biases in cancer-related cognitive processing. Biased processing was associated marginally with greater likelihood of prophylactic surgery. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  3. Detailed conformation dynamics and activation process of wild type c-Abl and T315I mutant

    NASA Astrophysics Data System (ADS)

    Yang, Li-Jun; Zhao, Wen-Hua; Liu, Qian

    2014-10-01

    Bcr-Abl is an important target for therapy against chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). The synergistic effect between myristyl pocket and the ATP pocket has been found. But its detailed information based on molecular level still has not been achieved. In this study, conventional molecular dynamics (CMD) and target molecular dynamics (TMD) simulations were performed to explore the effect of T315I mutation on dynamics and activation process of Abl containing the N-terminal cap (Ncap). The CMD simulation results reveal the increasing flexibility of ATP pocket in kinase domain (KD) after T315I mutation which confirms the disability of ATP-pocket inhibitors to the Abl-T315I mutant. On the contrary, the T315I mutation decreased the flexibility of remote helix αI which suggests the synergistic effect between them. The mobility of farther regions containing Ncap, SH3, SH2 and SH2-KD linker were not affected by T315I mutation. The TMD simulation results show that the activation process of wild type Abl and Abl-T315I mutant experienced global conformation change. Their differences were elucidated by the activation motion of subsegments including A-loop, P-loop and Ncap. Besides, the T315I mutation caused decreasing energy barrier and increasing intermediate number in activation process, which results easier activation process. The TMD and CMD results indicate that a drug targeting only the ATP pocket is not enough to inhibit the Abl-T315I mutant. An effective way to inhibit the abnormal activity of Abl-T315I mutant is to combine the ATP-pocket inhibitors with inhibitors binding at non-ATP pockets mainly related to Ncap, SH2-KD linker and myristyl pocket.

  4. Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks.

    PubMed

    Billiard, Sylvain; Ferrière, Régis; Méléard, Sylvie; Tran, Viet Chi

    2015-11-01

    How the neutral diversity is affected by selection and adaptation is investigated in an eco-evolutionary framework. In our model, we study a finite population in continuous time, where each individual is characterized by a trait under selection and a completely linked neutral marker. Population dynamics are driven by births and deaths, mutations at birth, and competition between individuals. Trait values influence ecological processes (demographic events, competition), and competition generates selection on trait variation, thus closing the eco-evolutionary feedback loop. The demographic effects of the trait are also expected to influence the generation and maintenance of neutral variation. We consider a large population limit with rare mutation, under the assumption that the neutral marker mutates faster than the trait under selection. We prove the convergence of the stochastic individual-based process to a new measure-valued diffusive process with jumps that we call Substitution Fleming-Viot Process (SFVP). When restricted to the trait space this process is the Trait Substitution Sequence first introduced by Metz et al. (1996). During the invasion of a favorable mutation, a genetical bottleneck occurs and the marker associated with this favorable mutant is hitchhiked. By rigorously analysing the hitchhiking effect and how the neutral diversity is restored afterwards, we obtain the condition for a time-scale separation; under this condition, we show that the marker distribution is approximated by a Fleming-Viot distribution between two trait substitutions. We discuss the implications of the SFVP for our understanding of the dynamics of neutral variation under eco-evolutionary feedbacks and illustrate the main phenomena with simulations. Our results highlight the joint importance of mutations, ecological parameters, and trait values in the restoration of neutral diversity after a selective sweep.

  5. A Ruby in the Rubbish: Beneficial Mutations, Deleterious Mutations and the Evolution of Sex

    PubMed Central

    Peck, J. R.

    1994-01-01

    This study presents a mathematical model in which a single beneficial mutation arises in a very large population that is subject to frequent deleterious mutations. The results suggest that, if the population is sexual, then the deleterious mutations will have little effect on the ultimate fate of the beneficial mutation. However, if most offspring are produced asexually, then the probability that the beneficial mutation will be lost from the population may be greatly enhanced by the deleterious mutations. Thus, sexual populations may adapt much more quickly than populations where most reproduction is asexual. Some of the results were produced using computer simulation methods, and a technique was developed that allows treatment of arbitrarily large numbers of individuals in a reasonable amount of computer time. This technique may be of prove useful for the analysis of a wide variety of models, though there are some constraints on its applicability. For example, the technique requires that reproduction can be described by Poisson processes. PMID:8070669

  6. A framework for the interpretation of de novo mutation in human disease

    PubMed Central

    Samocha, Kaitlin E.; Robinson, Elise B.; Sanders, Stephan J.; Stevens, Christine; Sabo, Aniko; McGrath, Lauren M.; Kosmicki, Jack A.; Rehnström, Karola; Mallick, Swapan; Kirby, Andrew; Wall, Dennis P.; MacArthur, Daniel G.; Gabriel, Stacey B.; dePristo, Mark; Purcell, Shaun M.; Palotie, Aarno; Boerwinkle, Eric; Buxbaum, Joseph D.; Cook, Edwin H.; Gibbs, Richard A.; Schellenberg, Gerard D.; Sutcliffe, James S.; Devlin, Bernie; Roeder, Kathryn; Neale, Benjamin M.; Daly, Mark J.

    2014-01-01

    Spontaneously arising (‘de novo’) mutations play an important role in medical genetics. For diseases with extensive locus heterogeneity – such as autism spectrum disorders (ASDs) – the signal from de novo mutations (DNMs) is distributed across many genes, making it difficult to distinguish disease-relevant mutations from background variation. We provide a statistical framework for the analysis of DNM excesses per gene and gene set by calibrating a model of de novo mutation. We applied this framework to DNMs collected from 1,078 ASD trios and – while affirming a significant role for loss-of-function (LoF) mutations – found no excess of de novo LoF mutations in cases with IQ above 100, suggesting that the role of DNMs in ASD may reside in fundamental neurodevelopmental processes. We also used our model to identify ~1,000 genes that are significantly lacking functional coding variation in non-ASD samples and are enriched for de novo LoF mutations identified in ASD cases. PMID:25086666

  7. The Mutational Landscape of Adenoid Cystic Carcinoma

    PubMed Central

    Ho, Allen S.; Kannan, Kasthuri; Roy, David M.; Morris, Luc G.T.; Ganly, Ian; Katabi, Nora; Ramaswami, Deepa; Walsh, Logan A.; Eng, Stephanie; Huse, Jason T.; Zhang, Jianan; Dolgalev, Igor; Huberman, Kety; Heguy, Adriana; Viale, Agnes; Drobnjak, Marija; Leversha, Margaret A.; Rice, Christine E.; Singh, Bhuvanesh; Iyer, N. Gopalakrishna; Leemans, C. Rene; Bloemena, Elisabeth; Ferris, Robert L.; Seethala, Raja R.; Gross, Benjamin E.; Liang, Yupu; Sinha, Rileen; Peng, Luke; Raphael, Benjamin J.; Turcan, Sevin; Gong, Yongxing; Schultz, Nikolaus; Kim, Seungwon; Chiosea, Simion; Shah, Jatin P.; Sander, Chris; Lee, William; Chan, Timothy A.

    2013-01-01

    Adenoid cystic carcinomas (ACCs) are among the most enigmatic of human malignancies. These aggressive salivary cancers frequently recur and metastasize despite definitive treatment, with no known effective chemotherapy regimen. Here, we determined the ACC mutational landscape and report the exome or whole genome sequences of 60 ACC tumor/normal pairs. These analyses revealed a low exonic somatic mutation rate (0.31 non-silent events/megabase) and wide mutational diversity. Interestingly, mutations selectively involved chromatin state regulators, such as SMARCA2, CREBBP, and KDM6A, suggesting aberrant epigenetic regulation in ACC oncogenesis. Mutations in genes central to DNA damage and protein kinase A signaling also implicate these processes. We observed MYB-NFIB translocations and somatic mutations in MYB-associated genes, solidifying these aberrations as critical events. Lastly, we identified recurrent mutations in the FGF/IGF/PI3K pathway that may potentially offer new avenues for therapy (30%). Collectively, our observations establish a molecular foundation for understanding and exploring new treatments for ACC. PMID:23685749

  8. De novo mutations in the genome organizer CTCF cause intellectual disability.

    PubMed

    Gregor, Anne; Oti, Martin; Kouwenhoven, Evelyn N; Hoyer, Juliane; Sticht, Heinrich; Ekici, Arif B; Kjaergaard, Susanne; Rauch, Anita; Stunnenberg, Hendrik G; Uebe, Steffen; Vasileiou, Georgia; Reis, André; Zhou, Huiqing; Zweier, Christiane

    2013-07-11

    An increasing number of genes involved in chromatin structure and epigenetic regulation has been implicated in a variety of developmental disorders, often including intellectual disability. By trio exome sequencing and subsequent mutational screening we now identified two de novo frameshift mutations and one de novo missense mutation in CTCF in individuals with intellectual disability, microcephaly, and growth retardation. Furthermore, an individual with a larger deletion including CTCF was identified. CTCF (CCCTC-binding factor) is one of the most important chromatin organizers in vertebrates and is involved in various chromatin regulation processes such as higher order of chromatin organization, enhancer function, and maintenance of three-dimensional chromatin structure. Transcriptome analyses in all three individuals with point mutations revealed deregulation of genes involved in signal transduction and emphasized the role of CTCF in enhancer-driven expression of genes. Our findings indicate that haploinsufficiency of CTCF affects genomic interaction of enhancers and their regulated gene promoters that drive developmental processes and cognition. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Criticality Is an Emergent Property of Genetic Networks that Exhibit Evolvability

    PubMed Central

    Torres-Sosa, Christian; Huang, Sui; Aldana, Maximino

    2012-01-01

    Accumulating experimental evidence suggests that the gene regulatory networks of living organisms operate in the critical phase, namely, at the transition between ordered and chaotic dynamics. Such critical dynamics of the network permits the coexistence of robustness and flexibility which are necessary to ensure homeostatic stability (of a given phenotype) while allowing for switching between multiple phenotypes (network states) as occurs in development and in response to environmental change. However, the mechanisms through which genetic networks evolve such critical behavior have remained elusive. Here we present an evolutionary model in which criticality naturally emerges from the need to balance between the two essential components of evolvability: phenotype conservation and phenotype innovation under mutations. We simulated the Darwinian evolution of random Boolean networks that mutate gene regulatory interactions and grow by gene duplication. The mutating networks were subjected to selection for networks that both (i) preserve all the already acquired phenotypes (dynamical attractor states) and (ii) generate new ones. Our results show that this interplay between extending the phenotypic landscape (innovation) while conserving the existing phenotypes (conservation) suffices to cause the evolution of all the networks in a population towards criticality. Furthermore, the networks produced by this evolutionary process exhibit structures with hubs (global regulators) similar to the observed topology of real gene regulatory networks. Thus, dynamical criticality and certain elementary topological properties of gene regulatory networks can emerge as a byproduct of the evolvability of the phenotypic landscape. PMID:22969419

  10. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids.

    PubMed

    Matano, Mami; Date, Shoichi; Shimokawa, Mariko; Takano, Ai; Fujii, Masayuki; Ohta, Yuki; Watanabe, Toshiaki; Kanai, Takanori; Sato, Toshiro

    2015-03-01

    Human colorectal tumors bear recurrent mutations in genes encoding proteins operative in the WNT, MAPK, TGF-β, TP53 and PI3K pathways. Although these pathways influence intestinal stem cell niche signaling, the extent to which mutations in these pathways contribute to human colorectal carcinogenesis remains unclear. Here we use the CRISPR-Cas9 genome-editing system to introduce multiple such mutations into organoids derived from normal human intestinal epithelium. By modulating the culture conditions to mimic that of the intestinal niche, we selected isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, and in the oncogenes KRAS and/or PIK3CA. Organoids engineered to express all five mutations grew independently of niche factors in vitro, and they formed tumors after implantation under the kidney subcapsule in mice. Although they formed micrometastases containing dormant tumor-initiating cells after injection into the spleen of mice, they failed to colonize in the liver. In contrast, engineered organoids derived from chromosome-instable human adenomas formed macrometastatic colonies. These results suggest that 'driver' pathway mutations enable stem cell maintenance in the hostile tumor microenvironment, but that additional molecular lesions are required for invasive behavior.

  11. General and inducible hypermutation facilitate parallel adaptation in Pseudomonas aeruginosa despite divergent mutation spectra.

    PubMed

    Weigand, Michael R; Sundin, George W

    2012-08-21

    The successful growth of hypermutator strains of bacteria contradicts a clear preference for lower mutation rates observed in the microbial world. Whether by general DNA repair deficiency or the inducible action of low-fidelity DNA polymerases, the evolutionary strategies of bacteria include methods of hypermutation. Although both raise mutation rate, general and inducible hypermutation operate through distinct molecular mechanisms and therefore likely impart unique adaptive consequences. Here we compare the influence of general and inducible hypermutation on adaptation in the model organism Pseudomonas aeruginosa PAO1 through experimental evolution. We observed divergent spectra of single base substitutions derived from general and inducible hypermutation by sequencing rpoB in spontaneous rifampicin-resistant (Rif(R)) mutants. Likewise, the pattern of mutation in a draft genome sequence of a derived inducible hypermutator isolate differed from those of general hypermutators reported in the literature. However, following experimental evolution, populations of both mutator types exhibited comparable improvements in fitness across varied conditions that differed from the highly specific adaptation of nonmutators. Our results suggest that despite their unique mutation spectra, general and inducible hypermutation can analogously influence the ecology and adaptation of bacteria, significantly shaping pathogenic populations where hypermutation has been most widely observed.

  12. DIRECTIONAL CULTURAL CHANGE BY MODIFICATION AND REPLACEMENT OF MEMES

    PubMed Central

    Cardoso, Gonçalo C.; Atwell, Jonathan W.

    2017-01-01

    Evolutionary approaches to culture remain contentious. A source of contention is that cultural mutation may be substantial and, if it drives cultural change, then current evolutionary models are not adequate. But we lack studies quantifying the contribution of mutations to directional cultural change. We estimated the contribution of one type of cultural mutations—modification of memes—to directional cultural change using an amenable study system: learned birdsongs in a species that recently entered an urban habitat. Many songbirds have higher minimum song frequency in cities, to alleviate masking by low-frequency noise. We estimated that the input of meme modifications in an urban songbird population explains about half the extent of the population divergence in song frequency. This contribution of cultural mutations is large, but insufficient to explain the entire population divergence. The remaining divergence is due to selection of memes or creation of new memes. We conclude that the input of cultural mutations can be quantitatively important, unlike in genetic evolution, and that it operates together with other mechanisms of cultural evolution. For this and other traits, in which the input of cultural mutations might be important, quantitative studies of cultural mutation are necessary to calibrate realistic models of cultural evolution. PMID:20722726

  13. Emerging patterns of somatic mutations in cancer

    PubMed Central

    Watson, Ian R.; Takahashi, Koichi; Futreal, P. Andrew; Chin, Lynda

    2014-01-01

    The advance in technological tools for massively parallel, high-throughput sequencing of DNA has enabled the comprehensive characterization of somatic mutations in large number of tumor samples. Here, we review recent cancer genomic studies that have assembled emerging views of the landscapes of somatic mutations through deep sequencing analyses of the coding exomes and whole genomes in various cancer types. We discuss the comparative genomics of different cancers, including mutation rates, spectrums, and roles of environmental insults that influence these processes. We highlight the developing statistical approaches used to identify significantly mutated genes, and discuss the emerging biological and clinical insights from such analyses as well as the challenges ahead translating these genomic data into clinical impacts. PMID:24022702

  14. Reduced mutation rate in exons due to differential mismatch repair

    PubMed Central

    Mularoni, Loris; Muiños, Ferran; Gonzalez-Perez, Abel; López-Bigas, Núria

    2017-01-01

    While recent studies have revealed higher than anticipated heterogeneity of mutation rate across genomic regions, mutations in exons and introns are assumed to be generated at the same rate. Here we find fewer somatic mutations in exons than expected based on their sequence content, and demonstrate that this is not due to purifying selection. Moreover, we show that it is caused by higher mismatch repair activity in exonic than in intronic regions. Our findings have important implications for our understanding of mutational and DNA repair processes, our knowledge of the evolution of eukaryotic genes, and practical ramifications for the study of the evolution of both tumors and species. PMID:29106418

  15. Myeloproliferative Neoplasms in Children and Adolescents and Thrombosis at Unusual Sites: The Role of Driver Mutations.

    PubMed

    Tafesh, Laith; Musgrave, Kathryn; Roberts, Wing; Plews, Dianne; Carey, Peter; Biss, Tina

    2018-04-17

    Myeloproliferative neoplasms (MPNs) in childhood and adolescence are rare and seldom complicated by thrombosis. We describe 3 cases of thrombosis at unusual sites in young patients with MPNs. In the pediatric MPN population, unlike in adult MPNs, a clonal mutation is identifiable in only a minority of cases (22% to 26%). All 3 of these individuals had JAK2 mutations driving the disease process. A literature search identified 19 cases of MPN-associated thrombosis in children. Seventeen of the 19 children (89.5%) had a driver mutation. These cases suggest that identifiable driver mutations may confer an increased thrombotic risk in children with MPNs.

  16. Nitrative and oxidative DNA damage caused by K-ras mutation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnishi, Shiho; Saito, Hiromitsu; Suzuki, Noboru

    2011-09-23

    Highlights: {yields} Mutated K-ras in transgenic mice caused nitrative DNA damage, 8-nitroguanine. {yields} The mutagenic 8-nitroguanine seemed to be generated by iNOS via Ras-MAPK signal. {yields} Mutated K-ras produces additional mutagenic lesions, as a new oncogenic role. -- Abstract: Ras mutation is important for carcinogenesis. Carcinogenesis consists of multi-step process with mutations in several genes. We investigated the role of DNA damage in carcinogenesis initiated by K-ras mutation, using conditional transgenic mice. Immunohistochemical analysis revealed that mutagenic 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were apparently formed in adenocarcinoma caused by mutated K-ras. 8-Nitroguanine was co-localized with iNOS, eNOS, NF-{kappa}B, IKK, MAPK, MEK,more » and mutated K-ras, suggesting that oncogenic K-ras causes additional DNA damage via signaling pathway involving these molecules. It is noteworthy that K-ras mutation mediates not only cell over-proliferation but also the accumulation of mutagenic DNA lesions, leading to carcinogenesis.« less

  17. Glycosylation and Processing of Pro-B-type Natriuretic Peptide in Cardiomyocytes

    PubMed Central

    Peng, Jianhao; Jiang, Jingjing; Wang, Wei; Qi, Xiaofei; Sun, Xue-Long; Wu, Qingyu

    2011-01-01

    B-type natriuretic peptide (BNP) and its related peptides are biomarkers for the diagnosis of heart failure. Recent studies identified several O-glycosylation sites, including Thr-71, on human pro-BNP but the functional significance was unclear. In this study, we analyzed glycosylation and proteolytic processing of pro-BNP in cardiomyocytes. Human pro-BNP wild-type (WT) and mutants were expressed in HEK 293 cells and murine HL-1 cardiomyocytes. Pro-BNP and BNP were analyzed by immunoprecipitation and Western blotting. Glycosidases and glycosylation inhibitors were used to examine carbohydrates on pro-BNP. The effects of furin and corin expression on pro-BNP processing in cells also were examined. We found that in HEK 293 cells, recombinant pro-BNP contained significant amounts of O-glycans with terminal oligosialic acids. Mutation at Thr-71 reduced O-glycans on pro-BNP and increased pro-BNP processing. In HL-1 cardiomyocytes, residue Thr-71 contained little O-glycans, and pro-BNP WT and T71A mutant were processed similarly. In HEK 293 cells, pro-BNP was processed by furin. Mutations at Arg-73 and Arg-76, but not Lys-79, prevented pro-BNP processing. In HL-1 cardiomyocytes, which express furin and corin, single or double mutations at Arg-73, Arg-76 and Lys-79 did not prevent pro-BNP processing. Only when all these three residues were mutated, was pro-BNP processing completely blocked. Our data indicate that pro-BNP glycosylation in cardiomyocytes differed significantly from that in HEK 293 cells. In HEK 293 cells, furin cleaved pro-BNP at Arg-76 whereas in cardiomyocytes corin cleaved pro-BNP at multiple residues including Arg-73, Arg-76 and Lys-79. PMID:21763278

  18. Short template switch events explain mutation clusters in the human genome.

    PubMed

    Löytynoja, Ari; Goldman, Nick

    2017-06-01

    Resequencing efforts are uncovering the extent of genetic variation in humans and provide data to study the evolutionary processes shaping our genome. One recurring puzzle in both intra- and inter-species studies is the high frequency of complex mutations comprising multiple nearby base substitutions or insertion-deletions. We devised a generalized mutation model of template switching during replication that extends existing models of genome rearrangement and used this to study the role of template switch events in the origin of short mutation clusters. Applied to the human genome, our model detects thousands of template switch events during the evolution of human and chimp from their common ancestor and hundreds of events between two independently sequenced human genomes. Although many of these are consistent with a template switch mechanism previously proposed for bacteria, our model also identifies new types of mutations that create short inversions, some flanked by paired inverted repeats. The local template switch process can create numerous complex mutation patterns, including hairpin loop structures, and explains multinucleotide mutations and compensatory substitutions without invoking positive selection, speculative mechanisms, or implausible coincidence. Clustered sequence differences are challenging for current mapping and variant calling methods, and we show that many erroneous variant annotations exist in human reference data. Local template switch events may have been neglected as an explanation for complex mutations because of biases in commonly used analyses. Incorporation of our model into reference-based analysis pipelines and comparisons of de novo assembled genomes will lead to improved understanding of genome variation and evolution. © 2017 Löytynoja and Goldman; Published by Cold Spring Harbor Laboratory Press.

  19. Reverse Engineering Field Isolates of Myxoma Virus Demonstrates that Some Gene Disruptions or Losses of Function Do Not Explain Virulence Changes Observed in the Field

    PubMed Central

    Liu, June; Cattadori, Isabella M.; Sim, Derek G.; Eden, John-Sebastian; Read, Andrew F.

    2017-01-01

    ABSTRACT The coevolution of myxoma virus (MYXV) and wild European rabbits in Australia and Europe is a paradigm for the evolution of a pathogen in a new host species. Genomic analyses have identified the mutations that have characterized this evolutionary process, but defining causal mutations in the pathways from virulence to attenuation and back to virulence has not been possible. Using reverse genetics, we examined the roles of six selected mutations found in Australian field isolates of MYXV that fall in known or potential virulence genes. Several of these mutations occurred in genes previously identified as virulence genes in whole-gene knockout studies. Strikingly, no single or double mutation among the mutations tested had an appreciable impact on virulence. This suggests either that virulence evolution was defined by amino acid changes other than those analyzed here or that combinations of multiple mutations, possibly involving epistatic interactions or noncoding sequences, have been critical in the ongoing evolution of MYXV virulence. In sum, our results show that single-gene knockout studies of a progenitor virus can have little power to predict the impact of individual mutations seen in the field. The genetic determinants responsible for this canonical case of virulence evolution remain to be determined. IMPORTANCE The species jump of myxoma virus (MYXV) from the South American tapeti to the European rabbit populations of Australia and Europe is a canonical example of host-pathogen coevolution. Detailed molecular studies have identified multiple genes in MYXV that are critical for virulence, and genome sequencing has revealed the evolutionary history of MYXV in Australia and Europe. However, it has not been possible to categorically identify the key mutations responsible for the attenuation of or reversion to virulence during this evolutionary process. Here we use reverse genetics to examine the role of mutations in viruses isolated early and late in the Australian radiation of MYXV. Surprisingly, none of the candidate mutations that we identified as likely having roles in attenuation proved to be important for virulence. This indicates that considerable caution is warranted when interpreting the possible role of individual mutations during virulence evolution. PMID:28768866

  20. Deleting a Single Protein Restores Critical DNA Repair Process in Mice with Brca1 Gene Mutations | Center for Cancer Research

    Cancer.gov

    Women who carry a harmful mutation in the BRCA1 gene have up to an 85 percent greater lifetime risk of developing breast cancer than other women, and up to a 40 percent greater chance of developing ovarian cancer. Thus far, no effective therapies have been developed that overcome the susceptibility to cancer caused by mutations in BRCA1.

  1. Multiple levels of redundant processes inhibit Caenorhabditis elegans vulval cell fates.

    PubMed

    Andersen, Erik C; Saffer, Adam M; Horvitz, H Robert

    2008-08-01

    Many mutations cause obvious abnormalities only when combined with other mutations. Such synthetic interactions can be the result of redundant gene functions. In Caenorhabditis elegans, the synthetic multivulva (synMuv) genes have been grouped into multiple classes that redundantly inhibit vulval cell fates. Animals with one or more mutations of the same class undergo wild-type vulval development, whereas animals with mutations of any two classes have a multivulva phenotype. By varying temperature and genetic background, we determined that mutations in most synMuv genes within a single synMuv class enhance each other. However, in a few cases no enhancement was observed. For example, mutations that affect an Mi2 homolog and a histone methyltransferase are of the same class and do not show enhancement. We suggest that such sets of genes function together in vivo and in at least some cases encode proteins that interact physically. The approach of genetic enhancement can be applied more broadly to identify potential protein complexes as well as redundant processes or pathways. Many synMuv genes are evolutionarily conserved, and the genetic relationships we have identified might define the functions not only of synMuv genes in C. elegans but also of their homologs in other organisms.

  2. Multiple Levels of Redundant Processes Inhibit Caenorhabditis elegans Vulval Cell Fates

    PubMed Central

    Andersen, Erik C.; Saffer, Adam M.; Horvitz, H. Robert

    2008-01-01

    Many mutations cause obvious abnormalities only when combined with other mutations. Such synthetic interactions can be the result of redundant gene functions. In Caenorhabditis elegans, the synthetic multivulva (synMuv) genes have been grouped into multiple classes that redundantly inhibit vulval cell fates. Animals with one or more mutations of the same class undergo wild-type vulval development, whereas animals with mutations of any two classes have a multivulva phenotype. By varying temperature and genetic background, we determined that mutations in most synMuv genes within a single synMuv class enhance each other. However, in a few cases no enhancement was observed. For example, mutations that affect an Mi2 homolog and a histone methyltransferase are of the same class and do not show enhancement. We suggest that such sets of genes function together in vivo and in at least some cases encode proteins that interact physically. The approach of genetic enhancement can be applied more broadly to identify potential protein complexes as well as redundant processes or pathways. Many synMuv genes are evolutionarily conserved, and the genetic relationships we have identified might define the functions not only of synMuv genes in C. elegans but also of their homologs in other organisms. PMID:18689876

  3. Selective Strolls: Fixation and Extinction in Diploids Are Slower for Weakly Selected Mutations Than for Neutral Ones.

    PubMed

    Mafessoni, Fabrizio; Lachmann, Michael

    2015-12-01

    In finite populations, an allele disappears or reaches fixation due to two main forces, selection and drift. Selection is generally thought to accelerate the process: a selected mutation will reach fixation faster than a neutral one, and a disadvantageous one will quickly disappear from the population. We show that even in simple diploid populations, this is often not true. Dominance and recessivity unexpectedly slow down the evolutionary process for weakly selected alleles. In particular, slightly advantageous dominant and mildly deleterious recessive mutations reach fixation slightly more slowly than neutral ones (at most 5%). This phenomenon determines genetic signatures opposite to those expected under strong selection, such as increased instead of decreased genetic diversity around the selected site. Furthermore, we characterize a new phenomenon: mildly deleterious recessive alleles, thought to represent a wide fraction of newly arising mutations, on average survive in a population slightly longer than neutral ones, before getting lost. Consequently, these mutations are on average slightly older than neutral ones, in contrast with previous expectations. Furthermore, they slightly increase the amount of weakly deleterious polymorphisms, as a consequence of the longer unconditional sojourn times compared to neutral mutations. Copyright © 2015 by the Genetics Society of America.

  4. [Evaluation of Consistency in detection of epidermal growth factor receptor gene T790M mutation in plasma and tumor specimens of patients with lung adenocarcinoma].

    PubMed

    Du, J; Wang, Z; Yang, L; Di, J; Zhang, J G; Wang, T Y; Liu, D G

    2018-01-23

    Objective: To evaluate the consistency in detection of T790M mutation of epidermal growth factor receptor gene (EGFR) in plasma and tumor samples of patients with lung adenocarcinoma. Methods: The tumor tissues or cytological specimens of 12 patients with operable lung adenocarcinoma(stage Ⅰ-ⅢA) and 100 patients with advanced stage ⅢB-Ⅳ lung adenocarcinoma were collected, among which 11 patients showed acquired resistance for gefitinib (11/100). In the same period, peripheral blood samples were collected from all patients and 50 healthy volunteers. Amplification refractory mutation system (ARMS) was used to detect EGFR mutations in tumor specimens. Next Generation Sequencing(NGS) based circulating single-molecule amplification and resequencing technology (cSMART)was performed to quantitatively detect the EGFR mutations in circulating tumor DNA (ctDNA) from plasma specimens. Results: The sensitivity, specificity and concordance rate of EGFR T790M mutation between plasma and tissue specimens from 100 advanced stage patients were 50.0%, 72.9% and 72.0%, respectively. For L858R mutation and exon 19 deletion mutations, the above mentioned sensitivity, specificity and concordance rate were 91.7%, 100.0%, and 98.0%, as well as 79.2%, 100.0% and 95.0%, respectively. The L858R mutation and exon 19 deletion mutations were not detected in plasma of 50 healthy volunteers, whereasT790M mutation(1.0±0.0 copies) was found in 7 individuals(7/50, 14.0%). Similarly, in 12 resectable patients, 4 (4/12, 33.3%) T790M mutations were found in plasma (1.2±0.2 copies), but no L858R mutation and 19 exon deletion mutations. In comparison, 28.0% of patients with advanced lung adenocarcinoma (28/100)had detectable T790M mutation in plasma with copy numbers (34.0±22.7 copies). Furthermore, the copy numbers of T790M were 268.2±119.9 in plasma of 5 cases with acquired gefitinib-resistance. Conclusions: In patients with advanced stages of lung adenocarcinoma, the detection of T790M mutation in plasma and tumor specimens is low. The T790M mutation also exists in the plasma of some healthy controls, suggesting that T790M mutation participates in EGFR signaling pathway and it might function in healthy population.

  5. Multiple primary tumors of the upper aerodigestive tract: is there a role for constitutional mutations in the p53 gene?

    PubMed

    Gallo, O; Sardi, I; Pepe, G; Franchi, A; Attanasio, M; Giusti, B; Bocciolini, C; Abbate, R

    1999-07-19

    Head-and-neck cancer (HNC) patients have a high risk of developing second primary tumors of the upper aerodigestive tract, the main cause of death. Although the roles of tobacco and diet in multiple head-and-neck carcinogenesis have been thoroughly investigated, little is known about individual genetic susceptibility factors involved in this process. Genomic instability, reflecting the propensity and the susceptibility of the genome to acquire multiple alterations, could be considered a driving force behind multiple carcinogenesis. Mutation of the p53 tumor-suppressor gene has been proposed to play an important role in this process. Therefore, we evaluated the incidence of inherited p53 germ-line alteration(s) in a population of 24 consecutive HNC patients and their first-degree relatives affected by multiple malignancies as well as the occurrence of p53 somatic acquired mutation(s) in 16 cancers, including first and second primaries from 5 HNCs of the same group. Mutations in exons 4-11 of the p53 gene were investigated using SSCP-PCR analysis and DNA sequencing. Analysis was extended to the peripheral blood and cancer biopsies available from first-degree relatives of cancer-prone families with p53 germ-line mutations. p53 germ-line mutations were identified in the peripheral blood and corresponding cancers of 3 HNC patients who had multiple malignancies. The only missense mutation detected was mapped in exon 6; it is a GTG to GAG substitution with an amino acid change from Val to Glu at codon 197. The remaining 2 p53 germ-line mutations were single-nucleotide substitutions without amino acid change in exon 6 (codon 213, CGA to CGG) and in exon 8 (codon 295, CCT to CCC), respectively. These mutations were found in HNC patients with a family history of cancer. Abnormal expression of wild-type p53 protein in normal and pathological tissues from patients with the same sense single-nucleotide substitutions was detected by immuno-histochemistry.

  6. MR Imaging-derived Oxygen Metabolism and Neovascularization Characterization for Grading and IDH Gene Mutation Detection of Gliomas.

    PubMed

    Stadlbauer, Andreas; Zimmermann, Max; Kitzwögerer, Melitta; Oberndorfer, Stefan; Rössler, Karl; Dörfler, Arnd; Buchfelder, Michael; Heinz, Gertraud

    2017-06-01

    Purpose To explore the diagnostic performance of physiological magnetic resonance (MR) imaging of oxygen metabolism and neovascularization activity for grading and characterization of isocitrate dehydrogenase (IDH) gene mutation status of gliomas. Materials and Methods This retrospective study had institutional review board approval; written informed consent was obtained from all patients. Eighty-three patients with histopathologically proven glioma (World Health Organization [WHO] grade II-IV) were examined with quantitative blood oxygen level-dependent imaging and vascular architecture mapping. Biomarker maps of neovascularization activity (microvessel radius, microvessel density, and microvessel type indicator [MTI]) and oxygen metabolism (oxygen extraction fraction [OEF] and cerebral metabolic rate of oxygen [CMRO 2 ]) were calculated. Receiver operating characteristic analysis was used to determine diagnostic performance for grading and detection of IDH gene mutation status. Results Low-grade (WHO grade II) glioma showed areas with increased OEF (+18%, P < .001, n = 20), whereas anaplastic glioma (WHO grade III) and glioblastoma (WHO grade IV) showed decreased OEF when compared with normal brain tissue (-54% [P < .001, n = 21] and -49% [P < .001, n = 41], respectively). This allowed clear differentiation between low- and high-grade glioma (area under the receiver operating characteristic curve [AUC], 1) for the patient cohort. MTI had the highest diagnostic performance (AUC, 0.782) for differentiation between gliomas of grades III and IV among all biomarkers. CMRO 2 was decreased (P = .037) in low-grade glioma with a mutated IDH gene, and MTI was significantly increased in glioma grade III with IDH mutation (P = .013) when compared with the IDH wild-type counterparts. CMRO 2 showed the highest diagnostic performance for IDH gene mutation detection in low-grade glioma (AUC, 0.818) and MTI in high-grade glioma (AUC, 0.854) and for all WHO grades (AUC, 0.899) among all biomarkers. Conclusion MR imaging-derived oxygen metabolism and neovascularization characterization may be useful for grading and IDH mutation detection of gliomas and requires only 7 minutes of extra imaging time. © RSNA, 2016 Online supplemental material is available for this article.

  7. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop.

    PubMed

    Pirker, Robert; Herth, Felix J F; Kerr, Keith M; Filipits, Martin; Taron, Miquel; Gandara, David; Hirsch, Fred R; Grunenwald, Dominique; Popper, Helmut; Smit, Egbert; Dietel, Manfred; Marchetti, Antonio; Manegold, Christian; Schirmacher, Peter; Thomas, Michael; Rosell, Rafael; Cappuzzo, Federico; Stahel, Rolf

    2010-10-01

    Activating somatic mutations of the tyrosine kinase domain of epidermal growth factor receptor (EGFR) have recently been characterized in a subset of patients with advanced non-small cell lung cancer (NSCLC). Patients harboring these mutations in their tumors show excellent response to EGFR tyrosine kinase inhibitors (EGFR-TKIs). The EGFR-TKI gefitinib has been approved in Europe for the treatment of adult patients with locally advanced or metastatic NSCLC with activating mutations of the EGFR TK. Because EGFR mutation testing is not yet well established across Europe, biomarker-directed therapy only slowly emerges for the subset of NSCLC patients most likely to benefit: those with EGFR mutations. The "EGFR testing in NSCLC: from biology to clinical practice" International Association for the Study of Lung Cancer-European Thoracic Oncology Platform multidisciplinary workshop aimed at facilitating the implementation of EGFR mutation testing. Recommendations for high-quality EGFR mutation testing were formulated based on the opinion of the workshop expert group. Co-operation and communication flow between the various disciplines was considered to be of most importance. Participants agreed that the decision to request EGFR mutation testing should be made by the treating physician, and results should be available within 7 working days. There was agreement on the importance of appropriate sampling techniques and the necessity for the standardization of tumor specimen handling including fixation. Although there was no consensus on which laboratory test should be preferred for clinical decision making, all stressed the importance of standardization and validation of these tests. The recommendations of the workshop will help implement EGFR mutation testing in Europe and, thereby, optimize the use of EGFR-TKIs in clinical practice.

  8. Environmental modulation of somatic mutations: nature of interactions. Final report, 1 June 1974--31 May 1977. [Effects of diurnal temperature changes in Tradescantia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mericle, L.W.

    1977-05-01

    Research on this project has had as a major goal a combined ecologic-genetic investigation of somatic mutations in order to evaluate the impacts of certain changing environmental parameters. The ultimate aim, to better understand how such environmental-mutation interactions operate and to assure the information obtained be extrapolatable to conditions and events in nature. Higher plants delineate reproductive tissues late in development from meristematic, somatic tissues. Moreover, the prevailing method of reproduction may be without sexual fusion of gametes and/or wholly asexual (vegetative). Therefore, somatic mutations can have as far-reaching genetic significance for a plant population as when germ cells, themselves,more » are directly affected. Our data show diurnal temperature differences (DTD) of greater than or equal to 22.2 C-degrees to be very effective mutagenic agents in the Tradescantia somatic mutation system. Further, these ranges of DTD were found to occur often in important seed production areas. A DTD of 22.2 in magnitude can increase mutations 10-fold. And, durations short as 1-day can induce significant increases in mutation rate. Whether interaction of 22.2 DTD with low-level radiation (800 mR/day) is synergistic or attenuative is still debatable. We believe, however, that spontaneous, and 22.2 DTD induced, mutations occur mainly via the genetic mechanism of somatic crossing-over; mutations from acute ionizing radiation (e.g., 30-60 R ..gamma..) via chromosome breakage, producing micronuclei. Requirements for maximizing the Discriminatory Response Capability (DRC) in the Tradescantia somatic mutation system are set forth.« less

  9. Upregulation of c-mesenchymal epithelial transition expression and RAS mutations are associated with late lung metastasis and poor prognosis in colorectal carcinoma.

    PubMed

    Liu, Jianhua; Zeng, Weiqiang; Huang, Chengzhi; Wang, Junjiang; Xu, Lishu; Ma, Dong

    2018-05-01

    The present study aimed to investigate whether c-mesenchymal epithelial transition factor (C-MET) overexpression combined with RAS (including KRAS, NRAS and HRAS ) or BRAF mutations were associated with late distant metastases and the prognosis of patients with colorectal cancer (CRC). A total of 374 patients with stage III CRC were classified into 4 groups based on RAS/BRAF and C-MET status for comprehensive analysis. Mutations in RAS / BRAF were determined using Sanger sequencing and C-MET expression was examined using immunohistochemistry. The associations between RAS/BRAF mutations in combination with C-MET overexpression and clinicopathological variables including survival were evaluated. In addition, their predictive value for late distant metastases were statistically analyzed via logistic regression and receiver operating characteristic analysis. Among 374 patients, mutations in KRAS, NRAS, HRAS, BRAF and C-MET overexpression were observed in 43.9, 2.4, 0.3, 5.9 and 71.9% of cases, respectively. Considering RAS/BRAF mutations and C-MET overexpression, vascular invasion (P=0.001), high carcino-embryonic antigen level (P=0.031) and late distant metastases (P<0.001) were more likely to occur in patients of group 4. Furthermore, survival analyses revealed RAS/BRAF mutations may have a more powerful impact on survival than C-MET overexpression, although they were both predictive factors for adverse prognosis. Further logistic regression suggested that RAS/BRAF mutations and C-MET overexpression may predict late distant metastases. In conclusion, RAS/BRAF mutations and C-MET overexpression may serve as predictive indicators for metastatic behavior and poor prognosis of CRC.

  10. Peptide processing and biology in human disease.

    PubMed

    Kovac, Suzana; Shulkes, Arthur; Baldwin, Graham S

    2009-02-01

    To describe recent advances in the processing of gastrointestinal hormones, and the consequences for human disease of mutations in the enzymes involved. Although gastrointestinal prohormones were long regarded as devoid of biological activity, recent data indicate that the prohormones for both gastrin and gastrin-releasing peptide are bioactive, through different receptors from the mature hormones. Mutations in the family of prohormone convertases responsible for the initial steps in the processing of gastrointestinal hormones are associated with several different pathophysiological conditions in humans. Human mutational studies, when taken together with the phenotypes observed in mice deficient in the prohormone convertases, emphasize the crucial importance of the processing enzymes in mammalian biology. Although the phenotypes may often be ascribed to defective production of a mature hormone or growth factor, the recognition that the precursors are independently bioactive suggests that the increased precursor concentrations may also contribute to the symptoms. The observation that the precursors often act through different receptors from the mature hormones may permit the development of precursor-selective antagonists for therapeutic use.

  11. How range shifts induced by climate change affect neutral evolution

    PubMed Central

    McInerny, G.J.; Turner, J.R.G.; Wong, H.Y.; Travis, J.M.J.; Benton, T.G.

    2009-01-01

    We investigate neutral evolution during range shifts in a strategic model of a metapopulation occupying a climate gradient. Using heritable, neutral markers, we track the spatio-temporal fate of lineages. Owing to iterated founder effects (‘mutation surfing’), survival of lineages derived from the leading range limit is enhanced. At trailing limits, where habitat suitability decreases, survival is reduced (mutations ‘wipe out’). These processes alter (i) the spatial spread of mutations, (ii) origins of persisting mutations and (iii) the generation of diversity. We show that large changes in neutral evolution can be a direct consequence of range shifting. PMID:19324824

  12. How range shifts induced by climate change affect neutral evolution.

    PubMed

    McInerny, G J; Turner, J R G; Wong, H Y; Travis, J M J; Benton, T G

    2009-04-22

    We investigate neutral evolution during range shifts in a strategic model of a metapopulation occupying a climate gradient. Using heritable, neutral markers, we track the spatio-temporal fate of lineages. Owing to iterated founder effects ('mutation surfing'), survival of lineages derived from the leading range limit is enhanced. At trailing limits, where habitat suitability decreases, survival is reduced (mutations 'wipe out'). These processes alter (i) the spatial spread of mutations, (ii) origins of persisting mutations and (iii) the generation of diversity. We show that large changes in neutral evolution can be a direct consequence of range shifting.

  13. Disease-Associated Mutations of TREM2 Alter the Processing of N-Linked Oligosaccharides in the Golgi Apparatus.

    PubMed

    Park, Ji-Seon; Ji, In Jung; An, Hyun Joo; Kang, Min-Ji; Kang, Sang-Wook; Kim, Dong-Hou; Yoon, Seung-Yong

    2015-05-01

    The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune-modulatory receptor involved in phagocytosis and inflammation. Mutations of Q33X, Y38C and T66M cause Nasu-Hakola disease (NHD) which is characterized by early onset of dementia and bone cysts. A recent, genome-wide association study also revealed that single nucleotide polymorphism of TREM2, such as R47H, increased the risk of Alzheimer's disease (AD) similar to ApoE4. However, how these mutations affect the trafficking of TREM2, which may affect the normal functions of TREM2, was not known. In this study, we show that TREM2 with NHD mutations are impaired in the glycosylation with complex oligosaccharides in the Golgi apparatus, in the trafficking to plasma membrane and further processing by γ-secretase. Although R47H mutation in AD affected the glycosylation and normal trafficking of TREM2 less, the detailed pattern of glycosylated TREM2 differs from that of the wild type, thus suggesting that precise regulation of TREM2 glycosylation is impaired when arginine at 47 is mutated to histidine. Our results suggest that the impaired glycosylation and trafficking of TREM2 from endoplasmic reticulum/Golgi to plasma membrane by mutations may inhibit its normal functions in the plasma membrane, which may contribute to the disease. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Accumulation of neutral mutations in growing cell colonies with competition.

    PubMed

    Sorace, Ron; Komarova, Natalia L

    2012-12-07

    Neutral mutations play an important role in many biological processes including cancer initiation and progression, the generation of drug resistance in bacterial and viral diseases as well as cancers, and the development of organs in multicellular organisms. In this paper we study how neutral mutants are accumulated in nonlinearly growing colonies of cells subject to growth constraints such as crowding or lack of resources. We investigate different types of growth control which range from "division-controlled" to "death-controlled" growth (and various mixtures of both). In division-controlled growth, the burden of handling overcrowding lies with the process of cell-divisions, the divisions slow down as the carrying capacity is approached. In death-controlled growth, it is death rate that increases to slow down expansion. We show that division-controlled growth minimizes the number of accumulated mutations, and death-controlled growth corresponds to the maximum number of mutants. We check that these results hold in both deterministic and stochastic settings. We further develop a general (deterministic) theory of neutral mutations and achieve an analytical understanding of the mutant accumulation in colonies of a given size in the absence of back-mutations. The long-term dynamics of mutants in the presence of back-mutations is also addressed. In particular, with equal forward- and back-mutation rates, if division-controlled and a death-controlled types are competing for space and nutrients, cells obeying division-controlled growth will dominate the population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Context-Dependent Sensitivity to Mutations Disrupting the Structural Integrity of Individual EGF Repeats in the Mouse Notch Ligand DLL1

    PubMed Central

    Schuster-Gossler, Karin; Cordes, Ralf; Müller, Julia; Geffers, Insa; Delany-Heiken, Patricia; Taft, Manuel; Preller, Matthias; Gossler, Achim

    2016-01-01

    The highly conserved Notch-signaling pathway mediates cell-to-cell communication and is pivotal for multiple developmental processes and tissue homeostasis in adult organisms. Notch receptors and their ligands are transmembrane proteins with multiple epidermal-growth-factor-like (EGF) repeats in their extracellular domains. In vitro the EGF repeats of mammalian ligands that are essential for Notch activation have been defined. However, in vivo the significance of the structural integrity of each EGF repeat in the ligand ectodomain for ligand function is still unclear. Here, we analyzed the mouse Notch ligand DLL1. We expressed DLL1 proteins with mutations disrupting disulfide bridges in each individual EGF repeat from single-copy transgenes in the HPRT locus of embryonic stem cells. In Notch transactivation assays all mutations impinged on DLL1 function and affected both NOTCH1 and NOTCH2 receptors similarly. An allelic series in mice that carried the same point mutations in endogenous Dll1, generated using a mini-gene strategy, showed that early developmental processes depending on DLL1-mediated NOTCH activation were differently sensitive to mutation of individual EGF repeats in DLL1. Notably, some mutations affected only somite patterning and resulted in vertebral column defects resembling spondylocostal dysostosis. In conclusion, the structural integrity of each individual EGF repeat in the extracellular domain of DLL1 is necessary for full DLL1 activity, and certain mutations in Dll1 might contribute to spondylocostal dysostosis in humans. PMID:26801181

  16. A prognostic mutation panel for predicting cancer recurrence in stages II and III colorectal cancer.

    PubMed

    Sho, Shonan; Court, Colin M; Winograd, Paul; Russell, Marcia M; Tomlinson, James S

    2017-12-01

    Approximately 20-40% of stage II/III colorectal cancer (CRC) patients develop relapse. Clinicopathological factors alone are limited in detecting these patients, resulting in potential under/over-treatment. We sought to identify a prognostic tumor mutational profile that could predict CRC recurrence. Whole-exome sequencing data were obtained for 207 patients with stage II/III CRC from The Cancer Genome Atlas. Mutational landscape in relapse-free versus relapsed cohort was compared using Fisher's exact test, followed by multivariate Cox regression to identify genes associated with cancer recurrence. Bootstrap-validation was used to examine internal/external validity. We identified five prognostic genes (APAF1, DIAPH2, NTNG1, USP7, and VAV2), which were combined to form a prognostic mutation panel. Patients with ≥1 mutation(s) within this five-gene panel had worse prognosis (3-yr relapse-free survival [RFS]: 53.0%), compared to patients with no mutation (3-yr RFS: 84.3%). In multivariate analysis, the five-gene panel remained prognostic for cancer recurrence independent of stage and high-risk features (hazard ratio 3.63, 95%CI [1.93-6.83], P < 0.0001). Furthermore, its prognostic accuracy was superior to the American Joint Commission on Cancer classification (concordance-index: 0.70 vs 0.54). Our proposed mutation panel identifies CRC patients at high-risk for recurrence, which may help guide adjuvant therapy and post-operative surveillance protocols. © 2017 Wiley Periodicals, Inc.

  17. Mathematical models of tissue stem and transit target cell divisions and the risk of radiation- or smoking-associated cancer

    PubMed Central

    Hendry, Jolyon H.

    2017-01-01

    There is compelling biological data to suggest that cancer arises from a series of mutations in single target cells, resulting in defects in cell renewal and differentiation processes which lead to malignancy. Because much mutagenic damage is expressed following cell division, more-rapidly renewing tissues could be at higher risk because of the larger number of cell replications. Cairns suggested that renewing tissues may reduce cancer risk by partitioning the dividing cell populations into lineages comprising infrequently-dividing long-lived stem cells and frequently-dividing short-lived daughter transit cells. We develop generalizations of three recent cancer-induction models that account for the joint maintenance and renewal of stem and transit cells, also competing processes of partially transformed cell proliferation and differentiation/apoptosis. We are particularly interested in using these models to separately assess the probabilities of mutation and development of cancer associated with “spontaneous” processes and with those linked to a specific environmental mutagen, specifically ionizing radiation or cigarette smoking. All three models demonstrate substantial variation in cancer risks, by at least 20 orders of magnitude, depending on the assumed number of critical mutations required for cancer, and the stem-cell and transition-cell mutation rates. However, in most cases the conditional probabilities of cancer being mutagen-induced range between 7–96%. The relative risks associated with mutagen exposure compared to background rates are also stable, ranging from 1.0–16.0. Very few cancers, generally <0.5%, arise from mutations occurring solely in stem cells rather than in a combination of stem and transit cells. However, for cancers with 2 or 3 critical mutations, a substantial proportion of cancers, in some cases 100%, have at least one mutation derived from a mutated stem cell. Little difference is made to relative risks if competing processes of proliferation and differentiation in the partially transformed stem and transit cell population are allowed for, nor is any difference made if one assumes that transit cells require an extra mutation to confer malignancy from the number required by stem cells. The probability of a cancer being mutagen-induced correlates across cancer sites with the estimated cumulative number of stem cell divisions in the associated tissue (p<0.05), although in some cases there is sensitivity of findings to removal of high-leverage outliers and in some cases only modest variation in probability, but these issues do not affect the validity of the findings. There are no significant correlations (p>0.3) between lifetime cancer-site specific radiation risk and the probability of that cancer being mutagen-induced. These results do not depend on the assumed critical number of mutations leading to cancer, or on the assumed mutagen-associated mutation rate, within the generally-accepted ranges tested. However, there are borderline significant negative correlations (p = 0.08) between the smoking-associated mortality rate difference (current vs former smokers) and the probability of cancer being mutagen-induced. This is only the case where values of the critical number of mutations leading to cancer, k, is 3 or 4 and not for smaller values (1 or 2), but does not strongly depend on the assumed mutagen-associated mutation rate. PMID:28196079

  18. Mathematical models of tissue stem and transit target cell divisions and the risk of radiation- or smoking-associated cancer.

    PubMed

    Little, Mark P; Hendry, Jolyon H

    2017-02-01

    There is compelling biological data to suggest that cancer arises from a series of mutations in single target cells, resulting in defects in cell renewal and differentiation processes which lead to malignancy. Because much mutagenic damage is expressed following cell division, more-rapidly renewing tissues could be at higher risk because of the larger number of cell replications. Cairns suggested that renewing tissues may reduce cancer risk by partitioning the dividing cell populations into lineages comprising infrequently-dividing long-lived stem cells and frequently-dividing short-lived daughter transit cells. We develop generalizations of three recent cancer-induction models that account for the joint maintenance and renewal of stem and transit cells, also competing processes of partially transformed cell proliferation and differentiation/apoptosis. We are particularly interested in using these models to separately assess the probabilities of mutation and development of cancer associated with "spontaneous" processes and with those linked to a specific environmental mutagen, specifically ionizing radiation or cigarette smoking. All three models demonstrate substantial variation in cancer risks, by at least 20 orders of magnitude, depending on the assumed number of critical mutations required for cancer, and the stem-cell and transition-cell mutation rates. However, in most cases the conditional probabilities of cancer being mutagen-induced range between 7-96%. The relative risks associated with mutagen exposure compared to background rates are also stable, ranging from 1.0-16.0. Very few cancers, generally <0.5%, arise from mutations occurring solely in stem cells rather than in a combination of stem and transit cells. However, for cancers with 2 or 3 critical mutations, a substantial proportion of cancers, in some cases 100%, have at least one mutation derived from a mutated stem cell. Little difference is made to relative risks if competing processes of proliferation and differentiation in the partially transformed stem and transit cell population are allowed for, nor is any difference made if one assumes that transit cells require an extra mutation to confer malignancy from the number required by stem cells. The probability of a cancer being mutagen-induced correlates across cancer sites with the estimated cumulative number of stem cell divisions in the associated tissue (p<0.05), although in some cases there is sensitivity of findings to removal of high-leverage outliers and in some cases only modest variation in probability, but these issues do not affect the validity of the findings. There are no significant correlations (p>0.3) between lifetime cancer-site specific radiation risk and the probability of that cancer being mutagen-induced. These results do not depend on the assumed critical number of mutations leading to cancer, or on the assumed mutagen-associated mutation rate, within the generally-accepted ranges tested. However, there are borderline significant negative correlations (p = 0.08) between the smoking-associated mortality rate difference (current vs former smokers) and the probability of cancer being mutagen-induced. This is only the case where values of the critical number of mutations leading to cancer, k, is 3 or 4 and not for smaller values (1 or 2), but does not strongly depend on the assumed mutagen-associated mutation rate.

  19. Variation of p53 mutational spectra between carcinoma of the upper and lower respiratory tract.

    PubMed

    Law, J C; Whiteside, T L; Gollin, S M; Weissfeld, J; El-Ashmawy, L; Srivastava, S; Landreneau, R J; Johnson, J T; Ferrell, R E

    1995-07-01

    Mutations of the p53 tumor suppressor gene are the most common genetic alterations associated with human cancer. Tumor-associated p53 mutations often show characteristic tissue-specific profiles which may infer environmentally induced mutational mechanisms. The p53 mutational frequency and spectrum were determined for 95 carcinomas of the upper and lower respiratory tract (32 lung and 63 upper respiratory tract). Mutations were identified at a frequency of 30% in upper respiratory tract (URT) tumors and 31% in lung tumors. All 29 identified mutations were single-base substitutions. Comparison of the frequency of specific base substitutions between lung and URT showed a striking difference. Transitions occurred at a frequency of 68% in URT, but only 30% in lung. Mutations involving G:C-->A:T transitions, which are commonly reported in gastric and esophageal tumors, were the most frequently identified alteration in URT (11/19). Mutations involving G:C-->T:A transversions, which were relatively common in lung tumors (3/10) and are representative of tobacco smoke-induced mutations were rare in URT tumors (1/19). Interestingly, G:C-->A:T mutations at CpG sites, which are characteristic of endogenous processes, were observed frequently in URT tumors (9/19) but only rarely in lung tumors (1/10), suggesting that both endogenous and exogenous factors are responsible for the observed differences in mutational spectra between the upper and lower respiratory systems.

  20. Study of genetic direct search algorithms for function optimization

    NASA Technical Reports Server (NTRS)

    Zeigler, B. P.

    1974-01-01

    The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.

  1. A novel artificial fish swarm algorithm for solving large-scale reliability-redundancy application problem.

    PubMed

    He, Qiang; Hu, Xiangtao; Ren, Hong; Zhang, Hongqi

    2015-11-01

    A novel artificial fish swarm algorithm (NAFSA) is proposed for solving large-scale reliability-redundancy allocation problem (RAP). In NAFSA, the social behaviors of fish swarm are classified in three ways: foraging behavior, reproductive behavior, and random behavior. The foraging behavior designs two position-updating strategies. And, the selection and crossover operators are applied to define the reproductive ability of an artificial fish. For the random behavior, which is essentially a mutation strategy, the basic cloud generator is used as the mutation operator. Finally, numerical results of four benchmark problems and a large-scale RAP are reported and compared. NAFSA shows good performance in terms of computational accuracy and computational efficiency for large scale RAP. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis.

    PubMed

    Johnson, Janel O; Pioro, Erik P; Boehringer, Ashley; Chia, Ruth; Feit, Howard; Renton, Alan E; Pliner, Hannah A; Abramzon, Yevgeniya; Marangi, Giuseppe; Winborn, Brett J; Gibbs, J Raphael; Nalls, Michael A; Morgan, Sarah; Shoai, Maryam; Hardy, John; Pittman, Alan; Orrell, Richard W; Malaspina, Andrea; Sidle, Katie C; Fratta, Pietro; Harms, Matthew B; Baloh, Robert H; Pestronk, Alan; Weihl, Conrad C; Rogaeva, Ekaterina; Zinman, Lorne; Drory, Vivian E; Borghero, Giuseppe; Mora, Gabriele; Calvo, Andrea; Rothstein, Jeffrey D; Drepper, Carsten; Sendtner, Michael; Singleton, Andrew B; Taylor, J Paul; Cookson, Mark R; Restagno, Gabriella; Sabatelli, Mario; Bowser, Robert; Chiò, Adriano; Traynor, Bryan J

    2014-05-01

    MATR3 is an RNA- and DNA-binding protein that interacts with TDP-43, a disease protein linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Using exome sequencing, we identified mutations in MATR3 in ALS kindreds. We also observed MATR3 pathology in ALS-affected spinal cords with and without MATR3 mutations. Our data provide more evidence supporting the role of aberrant RNA processing in motor neuron degeneration.

  3. Suppression of the UV-sensitive phenotype of Escherichia coli recF mutants by recA(Srf) and recA(Tif) mutations requires recJ+.

    PubMed Central

    Thoms, B; Wackernagel, W

    1988-01-01

    Mutations in recA, such as recA801(Srf) (suppressor of RecF) or recA441(Tif) (temperature-induced filamentation) partially suppress the deficiency in postreplication repair of UV damage conferred by recF mutations. We observed that spontaneous recA(Srf) mutants accumulated in cultures of recB recC sbcB sulA::Mu dX(Ap lac) lexA51 recF cells because they grew faster than the parental strain. We show that in a uvrA recB+ recC+ genetic background there are two prerequisites for the suppression by recA(Srf) of the UV-sensitive phenotype of recF mutants. (i) The recA(Srf) protein must be provided in increased amounts either by SOS derepression or by a recA operator-constitutive mutation in a lexA(Ind) (no induction of SOS functions) genetic background. (ii) The gene recJ, which has been shown previously to be involved in the recF pathway of recombination and repair, must be functional. The level of expression of recJ in a lexA(Ind) strain suffices for full suppression. Suppression by recA441 at 30 degrees C also depends on recJ+. The hampered induction by UV of the SOS gene uvrA seen in a recF mutant was improved by a recA(Srf) mutation. This improvement did not require recJ+. We suggest that recA(Srf) and recA(Tif) mutant proteins can operate in postreplication repair independent of recF by using the recJ+ function. PMID:2841294

  4. Performance of prediction models for BRCA mutation carriage in three racial/ethnic groups: findings from the Northern California Breast Cancer Family Registry.

    PubMed

    Kurian, Allison W; Gong, Gail D; John, Esther M; Miron, Alexander; Felberg, Anna; Phipps, Amanda I; West, Dee W; Whittemore, Alice S

    2009-04-01

    Patients with early-onset breast and/or ovarian cancer frequently wish to know if they inherited a mutation in one of the cancer susceptibility genes, BRCA1 or BRCA2. Accurate carrier prediction models are needed to target costly testing. Two widely used models, BRCAPRO and BOADICEA, were developed using data from non-Hispanic Whites (NHW), but their accuracies have not been evaluated in other racial/ethnic populations. We evaluated the BRCAPRO and BOADICEA models in a population-based series of African American, Hispanic, and NHW breast cancer patients tested for BRCA1 and BRCA2 mutations. We assessed model calibration by evaluating observed versus predicted mutations and attribute diagrams, and model discrimination using areas under the receiver operating characteristic curves. Both models were well-calibrated within each racial/ethnic group, with some exceptions. BOADICEA overpredicted mutations in African Americans and older NHWs, and BRCAPRO underpredicted in Hispanics. In all racial/ethnic groups, the models overpredicted in cases whose personal and family histories indicated >80% probability of carriage. The two models showed similar discrimination in each racial/ethnic group, discriminating least well in Hispanics. For example, BRCAPRO's areas under the receiver operating characteristic curves were 83% (95% confidence interval, 63-93%) for NHWs, compared with 74% (59-85%) for African Americans and 58% (45-70%) for Hispanics. The poor performance of the model for Hispanics may be due to model misspecification in this racial/ethnic group. However, it may also reflect racial/ethnic differences in the distributions of personal and family histories among breast cancer cases in the Northern California population.

  5. Contributions of intrinsic mutation rate and selfish selection to levels of de novo HRAS mutations in the paternal germline

    PubMed Central

    Giannoulatou, Eleni; McVean, Gilean; Taylor, Indira B.; McGowan, Simon J.; Maher, Geoffrey J.; Iqbal, Zamin; Pfeifer, Susanne P.; Turner, Isaac; Burkitt Wright, Emma M. M.; Shorto, Jennifer; Itani, Aysha; Turner, Karen; Gregory, Lorna; Buck, David; Rajpert-De Meyts, Ewa; Looijenga, Leendert H. J.; Kerr, Bronwyn; Wilkie, Andrew O. M.; Goriely, Anne

    2013-01-01

    The RAS proto-oncogene Harvey rat sarcoma viral oncogene homolog (HRAS) encodes a small GTPase that transduces signals from cell surface receptors to intracellular effectors to control cellular behavior. Although somatic HRAS mutations have been described in many cancers, germline mutations cause Costello syndrome (CS), a congenital disorder associated with predisposition to malignancy. Based on the epidemiology of CS and the occurrence of HRAS mutations in spermatocytic seminoma, we proposed that activating HRAS mutations become enriched in sperm through a process akin to tumorigenesis, termed selfish spermatogonial selection. To test this hypothesis, we quantified the levels, in blood and sperm samples, of HRAS mutations at the p.G12 codon and compared the results to changes at the p.A11 codon, at which activating mutations do not occur. The data strongly support the role of selection in determining HRAS mutation levels in sperm, and hence the occurrence of CS, but we also found differences from the mutation pattern in tumorigenesis. First, the relative prevalence of mutations in sperm correlates weakly with their in vitro activating properties and occurrence in cancers. Second, specific tandem base substitutions (predominantly GC>TT/AA) occur in sperm but not in cancers; genomewide analysis showed that this same mutation is also overrepresented in constitutional pathogenic and polymorphic variants, suggesting a heightened vulnerability to these mutations in the germline. We developed a statistical model to show how both intrinsic mutation rate and selfish selection contribute to the mutational burden borne by the paternal germline. PMID:24259709

  6. Contributions of intrinsic mutation rate and selfish selection to levels of de novo HRAS mutations in the paternal germline.

    PubMed

    Giannoulatou, Eleni; McVean, Gilean; Taylor, Indira B; McGowan, Simon J; Maher, Geoffrey J; Iqbal, Zamin; Pfeifer, Susanne P; Turner, Isaac; Burkitt Wright, Emma M M; Shorto, Jennifer; Itani, Aysha; Turner, Karen; Gregory, Lorna; Buck, David; Rajpert-De Meyts, Ewa; Looijenga, Leendert H J; Kerr, Bronwyn; Wilkie, Andrew O M; Goriely, Anne

    2013-12-10

    The RAS proto-oncogene Harvey rat sarcoma viral oncogene homolog (HRAS) encodes a small GTPase that transduces signals from cell surface receptors to intracellular effectors to control cellular behavior. Although somatic HRAS mutations have been described in many cancers, germline mutations cause Costello syndrome (CS), a congenital disorder associated with predisposition to malignancy. Based on the epidemiology of CS and the occurrence of HRAS mutations in spermatocytic seminoma, we proposed that activating HRAS mutations become enriched in sperm through a process akin to tumorigenesis, termed selfish spermatogonial selection. To test this hypothesis, we quantified the levels, in blood and sperm samples, of HRAS mutations at the p.G12 codon and compared the results to changes at the p.A11 codon, at which activating mutations do not occur. The data strongly support the role of selection in determining HRAS mutation levels in sperm, and hence the occurrence of CS, but we also found differences from the mutation pattern in tumorigenesis. First, the relative prevalence of mutations in sperm correlates weakly with their in vitro activating properties and occurrence in cancers. Second, specific tandem base substitutions (predominantly GC>TT/AA) occur in sperm but not in cancers; genomewide analysis showed that this same mutation is also overrepresented in constitutional pathogenic and polymorphic variants, suggesting a heightened vulnerability to these mutations in the germline. We developed a statistical model to show how both intrinsic mutation rate and selfish selection contribute to the mutational burden borne by the paternal germline.

  7. Toxicity study of dimethylethoxysilane (DMSES), the waterproofing agent for the Orbiter heat protective system

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-Wing; James, John T.; Dodd, Darol; Stuart, Bruce; Rothenberg, Simon; Kershaw, Mary Ann; Thilagar, A.

    1993-01-01

    DMES, a volatile liquid, is used by NASA to waterproof the Orbiter thermal protective system. During waterproofing operations at the Oribter Processing Facility at KSC, workers could be exposed to DMES vapor. To assess the toxicity of DMES, acute and subchronic (2-week and 13-week) inhalation studies were conducted with rats. Studies were also conducted to assess the potential of DMES. Inhalation exposure concentrations ranged from 40 ppm to 4000 ppm. No mortality was observed during the studies. Exposures to 2100 ppm produced narcosis and ataxia. Post-exposure recovery from these CNS effects was rapid (less than 1 hr). These effects were concentration-dependent and relatively independent of exposure length. Exposure to 3000 ppm for 2 weeks (5 h/d, 5 d/wk) produced testicular toxicity. The 13-week study yielded similar results. Results from the genotoxicity assays (in vivo/in vitro unscheduled DNA synthesis in rat primary heptaocytes, chromosomal aberrations in rat bone marrow cells; reverse gene mutation in Salmonella typhimurium; and forward mutation in Chinese hamster culture cells) were negative. These studies indicated that DMES is mildly to moderately toxic but not a multagen.

  8. Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression

    PubMed Central

    Cline, Susan D.

    2012-01-01

    How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831

  9. A New Targeted CFTR Mutation Panel Based on Next-Generation Sequencing Technology.

    PubMed

    Lucarelli, Marco; Porcaro, Luigi; Biffignandi, Alice; Costantino, Lucy; Giannone, Valentina; Alberti, Luisella; Bruno, Sabina Maria; Corbetta, Carlo; Torresani, Erminio; Colombo, Carla; Seia, Manuela

    2017-09-01

    Searching for mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) is a key step in the diagnosis of and neonatal and carrier screening for cystic fibrosis (CF), and it has implications for prognosis and personalized therapy. The large number of mutations and genetic and phenotypic variability make this search a complex task. Herein, we developed, validated, and tested a laboratory assay for an extended search for mutations in CFTR using a next-generation sequencing-based method, with a panel of 188 CFTR mutations customized for the Italian population. Overall, 1426 dried blood spots from neonatal screening, 402 genomic DNA samples from various origins, and 1138 genomic DNA samples from patients with CF were analyzed. The assay showed excellent analytical and diagnostic operative characteristics. We identified and experimentally validated 159 (of 188) CFTR mutations. The assay achieved detection rates of 95.0% and 95.6% in two large-scale case series of CF patients from central and northern Italy, respectively. These detection rates are among the highest reported so far with a genetic test for CF based on a mutation panel. This assay appears to be well suited for diagnostics, neonatal and carrier screening, and assisted reproduction, and it represents a considerable advantage in CF genetic counseling. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  10. Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes

    PubMed Central

    2009-01-01

    Background One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a set of assays. Primers for each individual assay were selected based on location and sequence concerns. The two primer sequences were then iteratively adjusted to make the individual assays work properly. This generally resulted in groups of assays with different annealing temperatures that required the use of multiple thermal cyclers or multiple passes in a single thermal cycler making diagnostic testing time-consuming, laborious and expensive. These factors have severely hampered diagnostic testing services, leaving many families without an answer for the exact cause of a familial genetic disease. A search of GeneTests for sequencing analysis of the entire coding sequence for genes that are known to cause muscular dystrophies returns only a small list of laboratories that perform comprehensive gene panels. The hypothesis for the study was that a complete set of universal assays can be designed to amplify and sequence any gene or family of genes using computer aided design tools. If true, this would allow automation and optimization of the mutation detection process resulting in reduced cost and increased throughput. Results An automated process has been developed for the detection of deletions, duplications/insertions and point mutations in any gene or family of genes and has been applied to ten genes known to bear mutations that cause muscular dystrophy: DMD; CAV3; CAPN3; FKRP; TRIM32; LMNA; SGCA; SGCB; SGCG; SGCD. Using this process, mutations have been found in five DMD patients and four LGMD patients (one in the FKRP gene, one in the CAV3 gene, and two likely causative heterozygous pairs of variations in the CAPN3 gene of two other patients). Methods and assay sequences are reported in this paper. Conclusion This automated process allows laboratories to discover DNA variations in a short time and at low cost. PMID:19835634

  11. Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes.

    PubMed

    Bennett, Richard R; Schneider, Hal E; Estrella, Elicia; Burgess, Stephanie; Cheng, Andrew S; Barrett, Caitlin; Lip, Va; Lai, Poh San; Shen, Yiping; Wu, Bai-Lin; Darras, Basil T; Beggs, Alan H; Kunkel, Louis M

    2009-10-18

    One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a set of assays. Primers for each individual assay were selected based on location and sequence concerns. The two primer sequences were then iteratively adjusted to make the individual assays work properly. This generally resulted in groups of assays with different annealing temperatures that required the use of multiple thermal cyclers or multiple passes in a single thermal cycler making diagnostic testing time-consuming, laborious and expensive.These factors have severely hampered diagnostic testing services, leaving many families without an answer for the exact cause of a familial genetic disease. A search of GeneTests for sequencing analysis of the entire coding sequence for genes that are known to cause muscular dystrophies returns only a small list of laboratories that perform comprehensive gene panels.The hypothesis for the study was that a complete set of universal assays can be designed to amplify and sequence any gene or family of genes using computer aided design tools. If true, this would allow automation and optimization of the mutation detection process resulting in reduced cost and increased throughput. An automated process has been developed for the detection of deletions, duplications/insertions and point mutations in any gene or family of genes and has been applied to ten genes known to bear mutations that cause muscular dystrophy: DMD; CAV3; CAPN3; FKRP; TRIM32; LMNA; SGCA; SGCB; SGCG; SGCD. Using this process, mutations have been found in five DMD patients and four LGMD patients (one in the FKRP gene, one in the CAV3 gene, and two likely causative heterozygous pairs of variations in the CAPN3 gene of two other patients). Methods and assay sequences are reported in this paper. This automated process allows laboratories to discover DNA variations in a short time and at low cost.

  12. An Effective Hybrid Evolutionary Algorithm for Solving the Numerical Optimization Problems

    NASA Astrophysics Data System (ADS)

    Qian, Xiaohong; Wang, Xumei; Su, Yonghong; He, Liu

    2018-04-01

    There are many different algorithms for solving complex optimization problems. Each algorithm has been applied successfully in solving some optimization problems, but not efficiently in other problems. In this paper the Cauchy mutation and the multi-parent hybrid operator are combined to propose a hybrid evolutionary algorithm based on the communication (Mixed Evolutionary Algorithm based on Communication), hereinafter referred to as CMEA. The basic idea of the CMEA algorithm is that the initial population is divided into two subpopulations. Cauchy mutation operators and multiple paternal crossover operators are used to perform two subpopulations parallelly to evolve recursively until the downtime conditions are met. While subpopulation is reorganized, the individual is exchanged together with information. The algorithm flow is given and the performance of the algorithm is compared using a number of standard test functions. Simulation results have shown that this algorithm converges significantly faster than FEP (Fast Evolutionary Programming) algorithm, has good performance in global convergence and stability and is superior to other compared algorithms.

  13. Cloud Model-Based Artificial Immune Network for Complex Optimization Problem.

    PubMed

    Wang, Mingan; Feng, Shuo; Li, Jianming; Li, Zhonghua; Xue, Yu; Guo, Dongliang

    2017-01-01

    This paper proposes an artificial immune network based on cloud model (AINet-CM) for complex function optimization problems. Three key immune operators-cloning, mutation, and suppression-are redesigned with the help of the cloud model. To be specific, an increasing half cloud-based cloning operator is used to adjust the dynamic clone multipliers of antibodies, an asymmetrical cloud-based mutation operator is used to control the adaptive evolution of antibodies, and a normal similarity cloud-based suppressor is used to keep the diversity of the antibody population. To quicken the searching convergence, a dynamic searching step length strategy is adopted. For comparative study, a series of numerical simulations are arranged between AINet-CM and the other three artificial immune systems, that is, opt-aiNet, IA-AIS, and AAIS-2S. Furthermore, two industrial applications-finite impulse response (FIR) filter design and proportional-integral-differential (PID) controller tuning-are investigated and the results demonstrate the potential searching capability and practical value of the proposed AINet-CM algorithm.

  14. A Developmental Systems Perspective on Epistasis: Computational Exploration of Mutational Interactions in Model Developmental Regulatory Networks

    PubMed Central

    Gutiérrez, Jayson

    2009-01-01

    The way in which the information contained in genotypes is translated into complex phenotypic traits (i.e. embryonic expression patterns) depends on its decoding by a multilayered hierarchy of biomolecular systems (regulatory networks). Each layer of this hierarchy displays its own regulatory schemes (i.e. operational rules such as +/− feedback) and associated control parameters, resulting in characteristic variational constraints. This process can be conceptualized as a mapping issue, and in the context of highly-dimensional genotype-phenotype mappings (GPMs) epistatic events have been shown to be ubiquitous, manifested in non-linear correspondences between changes in the genotype and their phenotypic effects. In this study I concentrate on epistatic phenomena pervading levels of biological organization above the genetic material, more specifically the realm of molecular networks. At this level, systems approaches to studying GPMs are specially suitable to shed light on the mechanistic basis of epistatic phenomena. To this aim, I constructed and analyzed ensembles of highly-modular (fully interconnected) networks with distinctive topologies, each displaying dynamic behaviors that were categorized as either arbitrary or functional according to early patterning processes in the Drosophila embryo. Spatio-temporal expression trajectories in virtual syncytial embryos were simulated via reaction-diffusion models. My in silico mutational experiments show that: 1) the average fitness decay tendency to successively accumulated mutations in ensembles of functional networks indicates the prevalence of positive epistasis, whereas in ensembles of arbitrary networks negative epistasis is the dominant tendency; and 2) the evaluation of epistatic coefficients of diverse interaction orders indicates that, both positive and negative epistasis are more prevalent in functional networks than in arbitrary ones. Overall, I conclude that the phenotypic and fitness effects of multiple perturbations are strongly conditioned by both the regulatory architecture (i.e. pattern of coupled feedback structures) and the dynamic nature of the spatio-temporal expression trajectories displayed by the simulated networks. PMID:19738908

  15. Discovery of rare mutations in populations: TILLING by sequencing

    USDA-ARS?s Scientific Manuscript database

    Discovery of rare mutations in populations requires methods for processing and analyzing in parallel many individuals. Previous TILLING methods employed enzymatic or physical discrimination of heteroduplexed from homoduplexed target DNA. We used mutant populations of rice and wheat to develop a meth...

  16. Linkage disequilibrium between STRPs and SNPs across the human genome.

    PubMed

    Payseur, Bret A; Place, Michael; Weber, James L

    2008-05-01

    Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to recombination and population history, mutation rate and process are expected to shape LD. To test this idea, we measured associations between short-tandem-repeat polymorphisms (STRPs), which can mutate rapidly and recurrently, and SNPs in 721 regions across the human genome. We directly compared STRP-SNP LD with SNP-SNP LD from the same genomic regions in the human HapMap populations. The intensity of STRP-SNP LD, measured by the average of D', was reduced, consistent with the action of recurrent mutation. Nevertheless, a higher fraction of STRP-SNP pairs than SNP-SNP pairs showed significant LD, on both short (up to 50 kb) and long (cM) scales. These results reveal the substantial effects of mutational processes on LD at STRPs and provide important measures of the potential of STRPs for association mapping of disease genes.

  17. Transient Abnormal Myelopoiesis and AML in Down Syndrome: an Update.

    PubMed

    Bhatnagar, Neha; Nizery, Laure; Tunstall, Oliver; Vyas, Paresh; Roberts, Irene

    2016-10-01

    Children with constitutional trisomy 21 (Down syndrome (DS)) have a unique predisposition to develop myeloid leukaemia of Down syndrome (ML-DS). This disorder is preceded by a transient neonatal preleukaemic syndrome, transient abnormal myelopoiesis (TAM). TAM and ML-DS are caused by co-operation between trisomy 21, which itself perturbs fetal haematopoiesis and acquired mutations in the key haematopoietic transcription factor gene GATA1. These mutations are found in almost one third of DS neonates and are frequently clinically and haematologcially 'silent'. While the majority of cases of TAM undergo spontaneous remission, ∼10 % will progress to ML-DS by acquiring transforming mutations in additional oncogenes. Recent advances in the unique biological, cytogenetic and molecular characteristics of TAM and ML-DS are reviewed here.

  18. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development.

    PubMed

    Ross, Jaime M; Stewart, James B; Hagström, Erik; Brené, Stefan; Mourier, Arnaud; Coppotelli, Giuseppe; Freyer, Christoph; Lagouge, Marie; Hoffer, Barry J; Olson, Lars; Larsson, Nils-Göran

    2013-09-19

    Ageing is due to an accumulation of various types of damage, and mitochondrial dysfunction has long been considered to be important in this process. There is substantial sequence variation in mammalian mitochondrial DNA (mtDNA), and the high mutation rate is counteracted by different mechanisms that decrease maternal transmission of mutated mtDNA. Despite these protective mechanisms, it is becoming increasingly clear that low-level mtDNA heteroplasmy is quite common and often inherited in humans. We designed a series of mouse mutants to investigate the extent to which inherited mtDNA mutations can contribute to ageing. Here we report that maternally transmitted mtDNA mutations can induce mild ageing phenotypes in mice with a wild-type nuclear genome. Furthermore, maternally transmitted mtDNA mutations lead to anticipation of reduced fertility in mice that are heterozygous for the mtDNA mutator allele (PolgA(wt/mut)) and aggravate premature ageing phenotypes in mtDNA mutator mice (PolgA(mut/mut)). Unexpectedly, a combination of maternally transmitted and somatic mtDNA mutations also leads to stochastic brain malformations. Our findings show that a pre-existing mutation load will not only allow somatic mutagenesis to create a critically high total mtDNA mutation load sooner but will also increase clonal expansion of mtDNA mutations to enhance the normally occurring mosaic respiratory chain deficiency in ageing tissues. Our findings suggest that maternally transmitted mtDNA mutations may have a similar role in aggravating aspects of normal human ageing.

  19. Conservative mutation Met8 --> Leu affects the folding process and structural stability of squash trypsin inhibitor CMTI-I.

    PubMed Central

    Zhukov, I.; Jaroszewski, L.; Bierzyński, A.

    2000-01-01

    Protein molecules can accommodate a large number of mutations without noticeable effects on their stability and folding kinetics. On the other hand, some mutations can have quite strong effects on protein conformational properties. Such mutations either destabilize secondary structures, e.g., alpha-helices, are incompatible with close packing of protein hydrophobic cores, or lead to disruption of some specific interactions such as disulfide cross links, salt bridges, hydrogen bonds, or aromatic-aromatic contacts. The Met8 --> Leu mutation in CMTI-I results in significant destabilization of the protein structure. This effect could hardly be expected since the mutation is highly conservative, and the side chain of residue 8 is situated on the protein surface. We show that the protein destabilization is caused by rearrangement of a hydrophobic cluster formed by side chains of residues 8, Ile6, and Leu17 that leads to partial breaking of a hydrogen bond formed by the amide group of Leu17 with water and to a reduction of a hydrophobic surface buried within the cluster. The mutation perturbs also the protein folding. In aerobic conditions the reduced wild-type protein folds effectively into its native structure, whereas more then 75% of the mutant molecules are trapped in various misfolded species. The main conclusion of this work is that conservative mutations of hydrophobic residues can destabilize a protein structure even if these residues are situated on the protein surface and partially accessible to water. Structural rearrangement of small hydrophobic clusters formed by such residues can lead to local changes in protein hydration, and consequently, can affect considerably protein stability and folding process. PMID:10716179

  20. Spastic Paraplegia Type 7 Is Associated with Multiple Mitochondrial DNA Deletions

    PubMed Central

    Wedding, Iselin Marie; Koht, Jeanette; Tran, Gia Tuong; Misceo, Doriana; Selmer, Kaja Kristine; Holmgren, Asbjørn; Frengen, Eirik; Bindoff, Laurence; Tallaksen, Chantal M. E.; Tzoulis, Charalampos

    2014-01-01

    Spastic paraplegia 7 is an autosomal recessive disorder caused by mutations in the gene encoding paraplegin, a protein located at the inner mitochondrial membrane and involved in the processing of other mitochondrial proteins. The mechanism whereby paraplegin mutations cause disease is unknown. We studied two female and two male adult patients from two Norwegian families with a combination of progressive external ophthalmoplegia and spastic paraplegia. Sequencing of SPG7 revealed a novel missense mutation, c.2102A>C, p.H 701P, which was homozygous in one family and compound heterozygous in trans with a known pathogenic mutation c.1454_1462del in the other. Muscle was examined from an additional, unrelated adult female patient with a similar phenotype caused by a homozygous c.1047insC mutation in SPG7. Immunohistochemical studies in skeletal muscle showed mosaic deficiency predominantly affecting respiratory complex I, but also complexes III and IV. Molecular studies in single, microdissected fibres showed multiple mitochondrial DNA deletions segregating at high levels (38–97%) in respiratory deficient fibres. Our findings demonstrate for the first time that paraplegin mutations cause accumulation of mitochondrial DNA damage and multiple respiratory chain deficiencies. While paraplegin is not known to be directly associated with the mitochondrial nucleoid, it is known to process other mitochondrial proteins and it is possible therefore that paraplegin mutations lead to mitochondrial DNA deletions by impairing proteins involved in the homeostasis of the mitochondrial genome. These studies increase our understanding of the molecular pathogenesis of SPG7 mutations and suggest that SPG7 testing should be included in the diagnostic workup of autosomal recessive, progressive external ophthalmoplegia, especially if spasticity is present. PMID:24466038

  1. Single quantum dot analysis enables multiplexed point mutation detection by gap ligase chain reaction.

    PubMed

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2013-04-08

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. KRAS mutation testing in metastatic colorectal cancer

    PubMed Central

    Tan, Cong; Du, Xiang

    2012-01-01

    The KRAS oncogene is mutated in approximately 35%-45% of colorectal cancers, and KRAS mutational status testing has been highlighted in recent years. The most frequent mutations in this gene, point substitutions in codons 12 and 13, were validated as negative predictors of response to anti-epidermal growth factor receptor antibodies. Therefore, determining the KRAS mutational status of tumor samples has become an essential tool for managing patients with colorectal cancers. Currently, a variety of detection methods have been established to analyze the mutation status in the key regions of the KRAS gene; however, several challenges remain related to standardized and uniform testing, including the selection of tumor samples, tumor sample processing and optimal testing methods. Moreover, new testing strategies, in combination with the mutation analysis of BRAF, PIK3CA and loss of PTEN proposed by many researchers and pathologists, should be promoted. In addition, we recommend that microsatellite instability, a prognostic factor, be added to the abovementioned concomitant analysis. This review provides an overview of KRAS biology and the recent advances in KRAS mutation testing. This review also addresses other aspects of status testing for determining the appropriate treatment and offers insight into the potential drawbacks of mutational testing. PMID:23066310

  3. Crossovers are associated with mutation and biased gene conversion at recombination hotspots.

    PubMed

    Arbeithuber, Barbara; Betancourt, Andrea J; Ebner, Thomas; Tiemann-Boege, Irene

    2015-02-17

    Meiosis is a potentially important source of germline mutations, as sites of meiotic recombination experience recurrent double-strand breaks (DSBs). However, evidence for a local mutagenic effect of recombination from population sequence data has been equivocal, likely because mutation is only one of several forces shaping sequence variation. By sequencing large numbers of single crossover molecules obtained from human sperm for two recombination hotspots, we find direct evidence that recombination is mutagenic: Crossovers carry more de novo mutations than nonrecombinant DNA molecules analyzed for the same donors and hotspots. The observed mutations were primarily CG to TA transitions, with a higher frequency of transitions at CpG than non-CpGs sites. This enrichment of mutations at CpG sites at hotspots could predominate in methylated regions involving frequent single-stranded DNA processing as part of DSB repair. In addition, our data set provides evidence that GC alleles are preferentially transmitted during crossing over, opposing mutation, and shows that GC-biased gene conversion (gBGC) predominates over mutation in the sequence evolution of hotspots. These findings are consistent with the idea that gBGC could be an adaptation to counteract the mutational load of recombination.

  4. Crossovers are associated with mutation and biased gene conversion at recombination hotspots

    PubMed Central

    Arbeithuber, Barbara; Betancourt, Andrea J.; Ebner, Thomas; Tiemann-Boege, Irene

    2015-01-01

    Meiosis is a potentially important source of germline mutations, as sites of meiotic recombination experience recurrent double-strand breaks (DSBs). However, evidence for a local mutagenic effect of recombination from population sequence data has been equivocal, likely because mutation is only one of several forces shaping sequence variation. By sequencing large numbers of single crossover molecules obtained from human sperm for two recombination hotspots, we find direct evidence that recombination is mutagenic: Crossovers carry more de novo mutations than nonrecombinant DNA molecules analyzed for the same donors and hotspots. The observed mutations were primarily CG to TA transitions, with a higher frequency of transitions at CpG than non-CpGs sites. This enrichment of mutations at CpG sites at hotspots could predominate in methylated regions involving frequent single-stranded DNA processing as part of DSB repair. In addition, our data set provides evidence that GC alleles are preferentially transmitted during crossing over, opposing mutation, and shows that GC-biased gene conversion (gBGC) predominates over mutation in the sequence evolution of hotspots. These findings are consistent with the idea that gBGC could be an adaptation to counteract the mutational load of recombination. PMID:25646453

  5. Restriction digest screening facilitates efficient detection of site-directed mutations introduced by CRISPR in C. albicans UME6.

    PubMed

    Evans, Ben A; Smith, Olivia L; Pickerill, Ethan S; York, Mary K; Buenconsejo, Kristen J P; Chambers, Antonio E; Bernstein, Douglas A

    2018-01-01

    Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn 2+ -binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans . Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest.

  6. Fast stochastic algorithm for simulating evolutionary population dynamics

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev; Hasty, Jeff; Mather, William

    2012-02-01

    Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.

  7. Processing of intervening sequences: a new yeast mutant which fails to excise intervening sequences from precursor tRNAs.

    PubMed

    Hopper, A K; Schultz, L D; Shapiro, R A

    1980-03-01

    By using conditional loss of suppression an an assay, we have been successful in screening for a yeast mutant which is defective in tRNA processing. The los1-1 mutation causes an accumulation of a subset of precursor tRNAs at the nonpermissive temperature. These pre-tRNAs are like those which accumulate in the yeast mutant ts 136 (rna1) in that they have transcribed intervening sequences. The mutations at los1-1 and rna1 complement and segregate independently of each other. The los1-1 mutation affects the expression of all 8 tyrosine-inserting suppressor loci, but does not seem to affect rRNA or mRNA synthesis.

  8. Mutational signatures associated with tobacco smoking in human cancer

    DOE PAGES

    Alexandrov, Ludmil B.; Ju, Young Seok; Haase, Kerstin; ...

    2016-11-04

    Tobacco smoking increases the risk of at least 17 classes of cancer. Here, we analyzed somatic mutations and DNA methylation in 5,243 cancers of types for which tobacco smoking confers an elevated risk. Smoking is associated with increased mutation burdens of multiple distinct mutational signatures, which contribute to different extents in different cancers. One of these signatures, mainly found in cancers derived from tissues directly exposed to tobacco smoke, is attributable to misreplication of DNA damage caused by tobacco carcinogens. Others likely reflect indirect activation of DNA edi ting by APOBEC cytidine deaminases and of an endogenous clock-like mutational process.more » Smoking is associated with limited differences in methylation. The results are consistent with the proposition that smoking increases cancer risk by increasing the somatic mutation load, although direct evidence for this mechanism is lacking in some smoking-related cancer types.« less

  9. Mutational signatures associated with tobacco smoking in human cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Ludmil B.; Ju, Young Seok; Haase, Kerstin

    Tobacco smoking increases the risk of at least 17 classes of cancer. Here, we analyzed somatic mutations and DNA methylation in 5,243 cancers of types for which tobacco smoking confers an elevated risk. Smoking is associated with increased mutation burdens of multiple distinct mutational signatures, which contribute to different extents in different cancers. One of these signatures, mainly found in cancers derived from tissues directly exposed to tobacco smoke, is attributable to misreplication of DNA damage caused by tobacco carcinogens. Others likely reflect indirect activation of DNA edi ting by APOBEC cytidine deaminases and of an endogenous clock-like mutational process.more » Smoking is associated with limited differences in methylation. The results are consistent with the proposition that smoking increases cancer risk by increasing the somatic mutation load, although direct evidence for this mechanism is lacking in some smoking-related cancer types.« less

  10. MLH1 mutations differentially affect meiotic functions in Saccharomyces cerevisiae.

    PubMed Central

    Hoffmann, Eva R; Shcherbakova, Polina V; Kunkel, Thomas A; Borts, Rhona H

    2003-01-01

    To test whether missense mutations in the cancer susceptibility gene MLH1 adversely affect meiosis, we examined 14 yeast MLH1 mutations for effects on meiotic DNA transactions and gamete viability in the yeast Saccharomyces cerevisiae. Mutations analogous to those associated with hereditary nonpolyposis colorectal cancer (HNPCC) or those that reduce Mlh1p interactions with ATP or DNA all impair replicative mismatch repair as measured by increased mutation rates. However, their effects on meiotic heteroduplex repair, crossing over, chromosome segregation, and gametogenesis vary from complete loss of meiotic functions to no meiotic defect, and mutants defective in one meiotic process are not necessarily defective in others. DNA binding and ATP binding but not ATP hydrolysis are required for meiotic crossing over. The results reveal clear separation of different Mlh1p functions in mitosis and meiosis, and they suggest that some, but not all, MLH1 mutations may be a source of human infertility. PMID:12618391

  11. Mutations on the α2-Globin Gene That May Trigger α(+)-Thalassemia.

    PubMed

    Farashi, Samaneh; Vakili, Shadi; Garous, Negin F; Ashki, Mehri; Imanian, Hashem; Azarkeivan, Azita; Najmabadi, Hossein

    2015-01-01

    In the present study, a total of 11 individuals with hypochromic microcytic anemia who did not reveal the most common α-thalassemia (α-thal) deletions or mutations, were subjected to more investigations by DNA sequencing of the α-globin genes. Seven novel nondeletional α-thal mutations localized on the α2-globin gene in the heterozygous state were identified. These mutations either corrupted regulatory splice sites and consequently affected RNA processing or created unstable hemoglobin (Hb) variants. The mutations described here produced globin gene variants that lead to amino acid changes in critical regions of the globin chain. The clinical presentation of most patients was a persistent mild microcytic anemia similar to an α(+)-thal. In the last decade, numerous α-globin mutations have been observed leading to an α-thal phenotype and these studies have been considered to be important as discussed here.

  12. Fibrinogen Šumperk II: dysfibrinogenemia in an individual with two coding mutations.

    PubMed

    Kotlín, Roman; Suttnar, Jiří; Cápová, Irena; Hrachovinová, Ingrid; Urbánková, Marie; Dyr, Jan Evangelista

    2012-05-01

    Fibrinogen—a 340-kDa glycoprotein—plays a crucial role in blood coagulation, platelet aggregation, wound healing, and other physiological processes. A mutation in fibrinogen may lead to congenital dysfibrinogenemia,a rare disease characterized by the functional deficiency of fibrinogen. About 580 cases of abnormal fibrinogens have been reported worldwide; thereof 335 cases in the fibrinogen Aa chain[1]. To our knowledge, only five cases of abnormal fibrinogens with two mutations [2–6] and one case of two different mutations in the same family [7] have been described earlier. A 52-year-old female was examined for bleeding. Routine hemostasis screening resulted in a diagnosis of dysfibrinogenemia. Functional testing revealed prolonged fibrin polymerization, prolonged lysis of the clot, abnormal fibrin morphology,and fibrinopeptides release. Genetic analysis showed two heterozygous nonsense mutations—previously described mutation AaGly13Glu and a novel mutation Aa Ser314Cys. The mutation Aa Gly13-Glu was found in her brother and niece, but there was no evidence in either of the mutation Aa Ser314Cys. While mutation Aa Gly13Glu is responsible for abnormal fibrinopeptide release and prolonged thrombin time, the novel mutation Aa Ser314Cys seems to affect fibrin morphology and fibrinolysis.

  13. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-05-26

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes.

  14. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  15. Efficient affinity maturation of antibody variable domains requires co-selection of compensatory mutations to maintain thermodynamic stability

    PubMed Central

    Julian, Mark C.; Li, Lijuan; Garde, Shekhar; Wilen, Rebecca; Tessier, Peter M.

    2017-01-01

    The ability of antibodies to accumulate affinity-enhancing mutations in their complementarity-determining regions (CDRs) without compromising thermodynamic stability is critical to their natural function. However, it is unclear if affinity mutations in the hypervariable CDRs generally impact antibody stability and to what extent additional compensatory mutations are required to maintain stability during affinity maturation. Here we have experimentally and computationally evaluated the functional contributions of mutations acquired by a human variable (VH) domain that was evolved using strong selections for enhanced stability and affinity for the Alzheimer’s Aβ42 peptide. Interestingly, half of the key affinity mutations in the CDRs were destabilizing. Moreover, the destabilizing effects of these mutations were compensated for by a subset of the affinity mutations that were also stabilizing. Our findings demonstrate that the accumulation of both affinity and stability mutations is necessary to maintain thermodynamic stability during extensive mutagenesis and affinity maturation in vitro, which is similar to findings for natural antibodies that are subjected to somatic hypermutation in vivo. These findings for diverse antibodies and antibody fragments specific for unrelated antigens suggest that the formation of the antigen-binding site is generally a destabilizing process and that co-enrichment for compensatory mutations is critical for maintaining thermodynamic stability. PMID:28349921

  16. Metabolite toxicity determines the pace of molecular evolution within microbial populations.

    PubMed

    Lilja, Elin E; Johnson, David R

    2017-02-14

    The production of toxic metabolites has shaped the spatial and temporal arrangement of metabolic processes within microbial cells. While diverse solutions to mitigate metabolite toxicity have evolved, less is known about how evolution itself is affected by metabolite toxicity. We hypothesized that the pace of molecular evolution should increase as metabolite toxicity increases. At least two mechanisms could cause this. First, metabolite toxicity could increase the mutation rate. Second, metabolite toxicity could increase the number of available mutations with large beneficial effects that selection could act upon (e.g., mutations that provide tolerance to toxicity), which consequently would increase the rate at which those mutations increase in frequency. We tested this hypothesis by experimentally evolving the bacterium Pseudomonas stutzeri under denitrifying conditions. The metabolite nitrite accumulates during denitrification and has pH-dependent toxic effects, which allowed us to evolve P. stutzeri at different magnitudes of nitrite toxicity. We demonstrate that increased nitrite toxicity results in an increased pace of molecular evolution. We further demonstrate that this increase is generally due to an increased number of available mutations with large beneficial effects and not to an increased mutation rate. Our results demonstrate that the production of toxic metabolites can have important impacts on the evolutionary processes of microbial cells. Given the ubiquity of toxic metabolites, they could also have implications for understanding the evolutionary histories of biological organisms.

  17. Analysis of APC mutation in human ameloblastoma and clinical significance.

    PubMed

    Li, Ning; Liu, Bing; Sui, Chengguang; Jiang, Youhong

    2016-01-01

    As a highly conserved signaling pathway, Wnt/β-catenin signal transduction pathway plays an important role in many processes. Either in the occurrence or development of tumor, activation of this pathway takes an important place. APC inhibits Wnt/β-catenin pathway to regulate cell proliferation and differentiation. This study aimed to investigate the function of cancer suppressor gene. PCR amplification and sequencing method was used to analyze APC mutations of human clinical specimens. The pathological specimens were collected for PCR and clear electrophoretic bands were obtained after electrophoresis. The gene sequence obtained after purification and sequencing analysis was compared with the known APC gene sequence (NM_000038.5). Base mutations at APC 1543 (T → C), APC-4564 (G → A), APC-5353 (T → G), APC-5550 (T → A) and APC-5969 (G → A) locus existed in 22 (27.5 %), 12 (15 %), 5 (6.25 %), 13 (16.25 %) and 12 patients (15 %), respectively. Gene mutations existed in ameloblastoma, and the mutation loci were 1543 locus (T → C), 4564 locus (G → A), 5353 locus (T → G), 5550 locus (T → A) and 5969 locus (G → A) 15 %, respectively. APC mutation plays a certain role in monitoring the tumor malignant degree as it may indicate the transition process of ameloblastoma malignant phenotype.

  18. Genetics Home Reference: cytochrome c oxidase deficiency

    MedlinePlus

    ... are caused by mutations in genes found within nuclear DNA; however, in some rare instances, mutations in genes located within mtDNA cause this condition. The genes associated with cytochrome c oxidase deficiency are involved in energy production in mitochondria through a process called oxidative ...

  19. Nonsense mutations in the alcohol dehydrogenase gene of Drosophila melanogaster correlate with an abnormal 3' end processing of the corresponding pre-mRNA.

    PubMed Central

    Brogna, S

    1999-01-01

    From bacteria to mammals, mutations that generate premature termination codons have been shown to result in the reduction in the abundance of the corresponding mRNA. In mammalian cells, more often than not, the reduction happens while the RNA is still associated with the nucleus. Here, it is reported that mutations in the alcohol dehydrogenase gene (Adh) of Drosophila melanogaster that generate premature termination codons lead to reduced levels of cytoplasmic and nuclear mRNA. Unexpectedly, it has been found that the poly(A) tails of Adh mRNAs and pre-mRNAs that carry a premature termination codon are longer than in the wild-type transcript. The more 5' terminal the mutation is, the longer is the poly(A) tail of the transcript. These findings suggest that the integrity of the coding region may be required for accurate mRNA 3' end processing. PMID:10199572

  20. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation.

    PubMed

    Hartmann, Bianca; Wai, Timothy; Hu, Hao; MacVicar, Thomas; Musante, Luciana; Fischer-Zirnsak, Björn; Stenzel, Werner; Gräf, Ralph; van den Heuvel, Lambert; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Langer, Thomas; Kaindl, Angela M

    2016-08-06

    Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans.

  1. NAC-NOR mutations in tomato Penjar accessions attenuate multiple metabolic processes and prolong the fruit shelf life.

    PubMed

    Kumar, Rakesh; Tamboli, Vajir; Sharma, Rameshwar; Sreelakshmi, Yellamaraju

    2018-09-01

    Several Penjar accessions of tomato grown in the Mediterranean exhibit prolonged shelf life and harbor alcobaca mutation. To uncover the metabolic basis underlying shelf life, we compared four Penjar accessions to Ailsa Craig. Three accessions bore alcobaca mutation, whereas the fourth was a novel NAC-NOR allele. Cuticle composition of Penjars varied widely during fruit ripening. All Penjars exhibited delayed ripening, prolonged on-vine and off-vine shelf life, low ethylene emission, and carotenoid levels. Metabolic profiling revealed shifts in Krebs cycle intermediates, amino acids, and γ-aminobutyric acid levels indicating the attenuation of respiration in Penjars during post-harvest storage. Penjar fruits also showed concerted downregulation of several cell-wall modifying genes and related metabolites. The high ABA and sucrose levels at the onset of senescence in Penjar fruits likely contribute to reduced water loss. Our analyses reveal that the attenuation of various metabolic processes by NAC-NOR mutation likely prolongs the shelf life of Penjar fruits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The transcriptional control machinery as well as the cell wall integrity and its regulation are involved in the detoxification of the organic solvent dimethyl sulfoxide in Saccharomyces cerevisiae.

    PubMed

    Zhang, Lilin; Liu, Ningning; Ma, Xiao; Jiang, Linghuo

    2013-03-01

    In the present study, we have identified 339 dimethyl sulfoxide (DMSO)-sensitive and nine DMSO-tolerant gene mutations in Saccharomyces cerevisiae through a functional genomics approach. Twelve of these identified DMSO-sensitive mutations are of genes involved in the general control of gene expression mediated by the SWR1 complex and the RNA polymerase II mediator complex, whereas 71 of them are of genes involved in the protein trafficking and vacuolar sorting processes. In addition, twelve of these DMSO-sensitive mutations are of genes involved in the cell wall integrity (CWI) and its regulation. DMSO-tolerant mutations are of genes mainly involved in the metabolism and the gene expression control. Therefore, the transcriptional control machinery, the CWI and its regulation as well as the protein trafficking and sorting process play critical roles in the DMSO detoxification in yeast cells. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Lack of formylated methionyl-tRNA has pleiotropic effects on Bacillus subtilis.

    PubMed

    Cai, Yanfei; Chandrangsu, Pete; Gaballa, Ahmed; Helmann, John D

    2017-02-01

    Bacteria initiate translation using a modified amino acid, N-formylmethionine (fMet), adapted specifically for this function. Most proteins are processed co-translationally by peptide deformylase (PDF) to remove this modification. Although PDF activity is essential in WT cells and is the target of the antibiotic actinonin, bypass mutations in the fmt gene that eliminate the formylation of Met-tRNAMet render PDF dispensable. The extent to which the emergence of fmt bypass mutations might compromise the therapeutic utility of actinonin is determined, in part, by the effects of these bypass mutations on fitness. Here, we characterize the phenotypic consequences of an fmt null mutation in the model organism Bacillus subtilis. An fmt null mutant is defective for several post-exponential phase adaptive programmes including antibiotic resistance, biofilm formation, swarming and swimming motility and sporulation. In addition, a survey of well-characterized stress responses reveals an increased sensitivity to metal ion excess and oxidative stress. These diverse phenotypes presumably reflect altered synthesis or stability of key proteins involved in these processes.

  4. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue.

    PubMed

    Cooper, Colin S; Eeles, Rosalind; Wedge, David C; Van Loo, Peter; Gundem, Gunes; Alexandrov, Ludmil B; Kremeyer, Barbara; Butler, Adam; Lynch, Andrew G; Camacho, Niedzica; Massie, Charlie E; Kay, Jonathan; Luxton, Hayley J; Edwards, Sandra; Kote-Jarai, ZSofia; Dennis, Nening; Merson, Sue; Leongamornlert, Daniel; Zamora, Jorge; Corbishley, Cathy; Thomas, Sarah; Nik-Zainal, Serena; O'Meara, Sarah; Matthews, Lucy; Clark, Jeremy; Hurst, Rachel; Mithen, Richard; Bristow, Robert G; Boutros, Paul C; Fraser, Michael; Cooke, Susanna; Raine, Keiran; Jones, David; Menzies, Andrew; Stebbings, Lucy; Hinton, Jon; Teague, Jon; McLaren, Stuart; Mudie, Laura; Hardy, Claire; Anderson, Elizabeth; Joseph, Olivia; Goody, Victoria; Robinson, Ben; Maddison, Mark; Gamble, Stephen; Greenman, Christopher; Berney, Dan; Hazell, Steven; Livni, Naomi; Fisher, Cyril; Ogden, Christopher; Kumar, Pardeep; Thompson, Alan; Woodhouse, Christopher; Nicol, David; Mayer, Erik; Dudderidge, Tim; Shah, Nimish C; Gnanapragasam, Vincent; Voet, Thierry; Campbell, Peter; Futreal, Andrew; Easton, Douglas; Warren, Anne Y; Foster, Christopher S; Stratton, Michael R; Whitaker, Hayley C; McDermott, Ultan; Brewer, Daniel S; Neal, David E

    2015-04-01

    Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases.

  5. The Impact of Mutation and Gene Conversion on the Local Diversification of Antigen Genes in African Trypanosomes

    PubMed Central

    Gjini, Erida; Haydon, Daniel T.; Barry, J. David; Cobbold, Christina A.

    2012-01-01

    Patterns of genetic diversity in parasite antigen gene families hold important information about their potential to generate antigenic variation within and between hosts. The evolution of such gene families is typically driven by gene duplication, followed by point mutation and gene conversion. There is great interest in estimating the rates of these processes from molecular sequences for understanding the evolution of the pathogen and its significance for infection processes. In this study, a series of models are constructed to investigate hypotheses about the nucleotide diversity patterns between closely related gene sequences from the antigen gene archive of the African trypanosome, the protozoan parasite causative of human sleeping sickness in Equatorial Africa. We use a hidden Markov model approach to identify two scales of diversification: clustering of sequence mismatches, a putative indicator of gene conversion events with other lower-identity donor genes in the archive, and at a sparser scale, isolated mismatches, likely arising from independent point mutations. In addition to quantifying the respective probabilities of occurrence of these two processes, our approach yields estimates for the gene conversion tract length distribution and the average diversity contributed locally by conversion events. Model fitting is conducted using a Bayesian framework. We find that diversifying gene conversion events with lower-identity partners occur at least five times less frequently than point mutations on variant surface glycoprotein (VSG) pairs, and the average imported conversion tract is between 14 and 25 nucleotides long. However, because of the high diversity introduced by gene conversion, the two processes have almost equal impact on the per-nucleotide rate of sequence diversification between VSG subfamily members. We are able to disentangle the most likely locations of point mutations and conversions on each aligned gene pair. PMID:22735079

  6. Somatic profiling of the epidermal growth factor receptor pathway in tumours from patients with advanced colorectal cancer, treated with chemotherapy ± cetuximab

    PubMed Central

    Smith, Christopher G.; Fisher, David; Claes, Bart; Maughan, Timothy S.; Idziaszczyk, Shelley; Peuteman, Gilian; Harris, Rebecca; James, Michelle D.; Meade, Angela; Jasani, Bharat; Adams, Richard A.; Kenny, Sarah; Kaplan, Richard; Lambrechts, Diether; Cheadle, Jeremy P.

    2013-01-01

    Purpose To study the somatic molecular profile of the epidermal growth factor receptor (EGFR) pathway in advanced CRC (aCRC), its relationship to prognosis, the site of the primary and metastases, and response to cetuximab. Experimental Design We used Sequenom and Pyrosequencing for high-throughput somatic profiling the EGFR pathway in 1,976 tumours from patients with aCRC from the COIN trial (oxaliplatin and fluoropyrimidine chemotherapy ±cetuximab). Correlations between mutations, clinico-pathological, response and survival data were carried out. Results Sequenom and Pyrosequencing had 99.0% (9961/10063) genotype concordance. We identified thirteen different KRAS mutations in 42.3% of aCRCs, two BRAF mutations in 9.0%, four NRAS mutations in 3.6% and five PIK3CA mutations in 12.7%. 4.2% of aCRCs had microsatellite instability (MSI). KRAS and PIK3CA exon 9, but not exon 20, mutations co-occurred (P=8.9×10−4) as did MSI and BRAF mutations (P=5.3×10−10). KRAS mutations were associated with right colon cancers (P=5.2×10−5) and BRAF mutations with right (P=7.2×10−5) and transverse colon (P=9.8×10−6) cancers. KRAS mutations were associated with lung-only metastases (P=2.3×10−4), BRAF mutations with peritoneal (P=9.2×10−4) and nodal-only (P=3.7×10−5) metastases, and MSI (BRAFWT) with nodal-only metastases (P=2.9×10−4). MSI (BRAFWT) was associated with worse survival (HR=1.89, 95% CI 1.30-2.76, P=8.5×10−4). No mutations, subsets of mutations, or MSI-status were associated with response to cetuximab. Conclusions Our data support a functional co-operation between KRAS and PIK3CA in colorectal tumourigenesis and link somatic profiles to the sites of metastases. MSI was associated with poor prognosis in advanced disease, and no individual somatic profile was associated with response to cetuximab in COIN. PMID:23741067

  7. RNA splicing factors as oncoproteins and tumor suppressors

    PubMed Central

    Dvinge, Heidi; Kim, Eunhee; Abdel-Wahab, Omar; Bradley, Robert K.

    2016-01-01

    Preface The recent genomic characterization of cancers has revealed recurrent somatic point mutations and copy number changes affecting genes encoding RNA splicing factors. Initial studies of these ‘spliceosomal mutations’ suggest that the proteins bearing these mutations exhibit altered splice site and/or exon recognition preferences relative to their wild-type counterparts, resulting in cancer-specific mis-splicing. Such changes in the splicing machinery may create novel vulnerabilities in cancer cells that can be therapeutically exploited using compounds that can influence the splicing process. Further studies to dissect the biochemical, genomic, and biological effects of spliceosomal mutations are critical for the development of cancer therapies targeted to these mutations. PMID:27282250

  8. Prediction of BRCA Mutations Using the BRCAPRO Model in Clinic-Based African American, Hispanic, and Other Minority Families in the United States

    PubMed Central

    Huo, Dezheng; Senie, Ruby T.; Daly, Mary; Buys, Saundra S.; Cummings, Shelly; Ogutha, Jacqueline; Hope, Kisha; Olopade, Olufunmilayo I.

    2009-01-01

    Purpose BRCAPRO, a BRCA mutation carrier prediction model, was developed on the basis of studies in individuals of Ashkenazi Jewish and European ancestry. We evaluated the performance of the BRCAPRO model among clinic-based minority families. We also assessed the clinical utility of mutation status of probands (the first individual tested in a family) in the recommendation of BRCA mutation testing for other at-risk family members. Patients and Methods A total of 292 minority families with at least one member who was tested for BRCA mutations were identified through the Breast Cancer Family Registry and the University of Chicago. Using the BRCAPRO model, the predicted likelihood of carrying BRCA mutations was generated. Area under the receiver operating characteristic curves (AUCs) were calculated. Results There were 104 African American, 130 Hispanic, 37 Asian-American, and 21 other minority families. The AUC was 0.748 (95% CI, 0.672 to 0.823) for all minorities combined. There was a statistically nonsignificant trend for BRCAPRO to perform better in Hispanic families than in other minority families. After taking into account the mutation status of probands, BRCAPRO performance in additional tested family members was improved: the AUC increased from 0.760 to 0.902. Conclusion The findings support the use of BRCAPRO in pretest BRCA mutation prediction among minority families in clinical settings, but there is room for improvement in ethnic groups other than Hispanics. Knowledge of the mutation status of the proband provides additional predictive value, which may guide genetic counselors in recommending BRCA testing of additional relatives when a proband has tested negative. PMID:19188678

  9. Mosaicism in HIF2A-related polycythemia-paraganglioma syndrome.

    PubMed

    Buffet, Alexandre; Smati, Sarra; Mansuy, Ludovic; Ménara, Mélanie; Lebras, Maëlle; Heymann, Marie-Françoise; Simian, Christophe; Favier, Judith; Murat, Arnaud; Cariou, Bertrand; Gimenez-Roqueplo, Anne-Paule

    2014-02-01

    HIF2A germline mutations were known to cause congenital polycythemia. Recently, HIF2A somatic mutations were found in several patients with polycythemia and paraganglioma, pheochromocytoma, or somatostatinoma, suggesting the occurrence of a de novo postzygotic HIF2A mutation that has not been demonstrated clearly. Patient 1 is a woman suffering from polycythemia diagnosed at the age of 16 years. She was operated on for a pheochromocytoma at 45 years and for two abdominal paragangliomas at 59 years. She was also diagnosed with somatostatinoma. Patient 2 is a young boy who suffered from polycythemia since infancy. He underwent surgery for a nonfunctional adrenal paraganglioma at the age of 9 years. We sequenced by Sanger and next-generation sequencing the HIF2A gene in DNA extracted from tumors, leukocytes, and buccal cells. In patient 1, we identified a somatic HIF2A mutation (c.1586T>C; p.Leu529Pro) in DNA extracted from both paragangliomas. The mutation was detected as a somatic mosaic in DNA extracted from somatostatinoma and was absent from germline DNA. In patient 2, we found an HIF2A heterozygous mutation (c.1625T>C; p.Leu542Pro) in the paraganglioma, but the mutation was also present as a mosaic in leukocyte DNA and in DNA extracted from buccal cells (3.3 and 8.96% of sequencing reads, respectively). Both mutations disrupt the hydroxylation domain of the HIF2α protein. Our study shows that HIF2A-related tumors are caused by postzygotic mutations occurring in early developmental stages. Potential germline mosaicism should be considered during the familial genetic counseling when an individual has been diagnosed with HIF2A-related polycythemia-paraganglioma syndrome.

  10. Population Genetics Study of Isoniazid Resistance Mutations and Evolution of Multidrug-Resistant Mycobacterium tuberculosis†

    PubMed Central

    Hazbón, Manzour Hernando; Brimacombe, Michael; Bobadilla del Valle, Miriam; Cavatore, Magali; Guerrero, Marta Inírida; Varma-Basil, Mandira; Billman-Jacobe, Helen; Lavender, Caroline; Fyfe, Janet; García-García, Lourdes; León, Clara Inés; Bose, Mridula; Chaves, Fernando; Murray, Megan; Eisenach, Kathleen D.; Sifuentes-Osornio, José; Cave, M. Donald; Ponce de León, Alfredo; Alland, David

    2006-01-01

    The molecular basis for isoniazid resistance in Mycobacterium tuberculosis is complex. Putative isoniazid resistance mutations have been identified in katG, ahpC, inhA, kasA, and ndh. However, small sample sizes and related potential biases in sample selection have precluded the development of statistically valid and significant population genetic analyses of clinical isoniazid resistance. We present the first large-scale analysis of 240 alleles previously associated with isoniazid resistance in a diverse set of 608 isoniazid-susceptible and 403 isoniazid-resistant clinical M. tuberculosis isolates. We detected 12 mutant alleles in isoniazid-susceptible isolates, suggesting that these alleles are not involved in isoniazid resistance. However, mutations in katG, ahpC, and inhA were strongly associated with isoniazid resistance, while kasA mutations were associated with isoniazid susceptibility. Remarkably, the distribution of isoniazid resistance-associated mutations was different in isoniazid-monoresistant isolates from that in multidrug-resistant isolates, with significantly fewer isoniazid resistance mutations in the isoniazid-monoresistant group. Mutations in katG315 were significantly more common in the multidrug-resistant isolates. Conversely, mutations in the inhA promoter were significantly more common in isoniazid-monoresistant isolates. We tested for interactions among mutations and resistance to different drugs. Mutations in katG, ahpC, and inhA were associated with rifampin resistance, but only katG315 mutations were associated with ethambutol resistance. There was also a significant inverse association between katG315 mutations and mutations in ahpC or inhA and between mutations in kasA and mutations in ahpC. Our results suggest that isoniazid resistance and the evolution of multidrug-resistant strains are complex dynamic processes that may be influenced by interactions between genes and drug-resistant phenotypes. PMID:16870753

  11. Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis

    PubMed Central

    Nesin, Vasyl; Wiley, Graham; Kousi, Maria; Ong, E-Ching; Lehmann, Thomas; Nicholl, David J.; Suri, Mohnish; Shahrizaila, Nortina; Katsanis, Nicholas; Gaffney, Patrick M.; Wierenga, Klaas J.; Tsiokas, Leonidas

    2014-01-01

    Signaling through the store-operated Ca2+ release-activated Ca2+ (CRAC) channel regulates critical cellular functions, including gene expression, cell growth and differentiation, and Ca2+ homeostasis. Loss-of-function mutations in the CRAC channel pore-forming protein ORAI1 or the Ca2+ sensing protein stromal interaction molecule 1 (STIM1) result in severe immune dysfunction and nonprogressive myopathy. Here, we identify gain-of-function mutations in the cytoplasmic domain of STIM1 (p.R304W) associated with thrombocytopenia, bleeding diathesis, miosis, and tubular myopathy in patients with Stormorken syndrome, and in ORAI1 (p.P245L), associated with a Stormorken-like syndrome of congenital miosis and tubular aggregate myopathy but without hematological abnormalities. Heterologous expression of STIM1 p.R304W results in constitutive activation of the CRAC channel in vitro, and spontaneous bleeding accompanied by reduced numbers of thrombocytes in zebrafish embryos, recapitulating key aspects of Stormorken syndrome. p.P245L in ORAI1 does not make a constitutively active CRAC channel, but suppresses the slow Ca2+-dependent inactivation of the CRAC channel, thus also functioning as a gain-of-function mutation. These data expand our understanding of the phenotypic spectrum of dysregulated CRAC channel signaling, advance our knowledge of the molecular function of the CRAC channel, and suggest new therapies aiming at attenuating store-operated Ca2+ entry in the treatment of patients with Stormorken syndrome and related pathologic conditions. PMID:24591628

  12. Low-burden TP53 mutations in chronic phase of myeloproliferative neoplasms: association with age, hydroxyurea administration, disease type and JAK2 mutational status

    PubMed Central

    Kubesova, B; Pavlova, S; Malcikova, J; Kabathova, J; Radova, L; Tom, N; Tichy, B; Plevova, K; Kantorova, B; Fiedorova, K; Slavikova, M; Bystry, V; Kissova, J; Gisslinger, B; Gisslinger, H; Penka, M; Mayer, J; Kralovics, R; Pospisilova, S; Doubek, M

    2018-01-01

    The multistep process of TP53 mutation expansion during myeloproliferative neoplasm (MPN) transformation into acute myeloid leukemia (AML) has been documented retrospectively. It is currently unknown how common TP53 mutations with low variant allele frequency (VAF) are, whether they are linked to hydroxyurea (HU) cytoreduction, and what disease progression risk they carry. Using ultra-deep next-generation sequencing, we examined 254 MPN patients treated with HU, interferon alpha-2a or anagrelide and 85 untreated patients. We found TP53 mutations in 50 cases (0.2–16.3% VAF), regardless of disease subtype, driver gene status and cytoreduction. Both therapy and TP53 mutations were strongly associated with older age. Over-time analysis showed that the mutations may be undetectable at diagnosis and slowly increase during disease course. Although three patients with TP53 mutations progressed to TP53-mutated or TP53-wild-type AML, we did not observe a significant age-independent impact on overall survival during the follow-up. Further, we showed that complete p53 inactivation alone led to neither blast transformation nor HU resistance. Altogether, we revealed patient's age as the strongest factor affecting low-burden TP53 mutation incidence in MPN and found no significant age-independent association between TP53 mutations and hydroxyurea. Mutations may persist at low levels for years without an immediate risk of progression. PMID:28744014

  13. Transcriptomic analysis and mutational status of IDH1 in paired primary-recurrent intrahepatic cholangiocarcinoma.

    PubMed

    Peraldo-Neia, C; Ostano, P; Cavalloni, G; Pignochino, Y; Sangiolo, D; De Cecco, L; Marchesi, E; Ribero, D; Scarpa, A; De Rose, A M; Giuliani, A; Calise, F; Raggi, C; Invernizzi, P; Aglietta, M; Chiorino, G; Leone, F

    2018-06-05

    Effective target therapies for intrahepatic cholangiocarcinoma (ICC) have not been identified so far. One of the reasons may be the genetic evolution from primary (PR) to recurrent (REC) tumors. We aim to identify peculiar characteristics and to select potential targets specific for recurrent tumors. Eighteen ICC paired PR and REC tumors were collected from 5 Italian Centers. Eleven pairs were analyzed for gene expression profiling and 16 for mutational status of IDH1. For one pair, deep mutational analysis by Next Generation Sequencing was also carried out. An independent cohort of patients was used for validation. Two class-paired comparison yielded 315 differentially expressed genes between REC and PR tumors. Up-regulated genes in RECs are involved in RNA/DNA processing, cell cycle, epithelial to mesenchymal transition (EMT), resistance to apoptosis, and cytoskeleton remodeling. Down-regulated genes participate to epithelial cell differentiation, proteolysis, apoptotic, immune response, and inflammatory processes. A 24 gene signature is able to discriminate RECs from PRs in an independent cohort; FANCG is statistically associated with survival in the chol-TCGA dataset. IDH1 was mutated in the RECs of five patients; 4 of them displayed the mutation only in RECs. Deep sequencing performed in one patient confirmed the IDH1 mutation in REC. RECs are enriched for genes involved in EMT, resistance to apoptosis, and cytoskeleton remodeling. Key players of these pathways might be considered druggable targets in RECs. IDH1 is mutated in 30% of RECs, becoming both a marker of progression and a target for therapy.

  14. Evolution of the rate of biological aging using a phenotype based computational model.

    PubMed

    Kittas, Aristotelis

    2010-10-07

    In this work I introduce a simple model to study how natural selection acts upon aging, which focuses on the viability of each individual. It is able to reproduce the Gompertz law of mortality and can make predictions about the relation between the level of mutation rates (beneficial/deleterious/neutral), age at reproductive maturity and the degree of biological aging. With no mutations, a population with low age at reproductive maturity R stabilizes at higher density values, while with mutations it reaches its maximum density, because even for large pre-reproductive periods each individual evolves to survive to maturity. Species with very short pre-reproductive periods can only tolerate a small number of detrimental mutations. The probabilities of detrimental (P(d)) or beneficial (P(b)) mutations are demonstrated to greatly affect the process. High absolute values produce peaks in the viability of the population over time. Mutations combined with low selection pressure move the system towards weaker phenotypes. For low values in the ratio P(d)/P(b), the speed at which aging occurs is almost independent of R, while higher values favor significantly species with high R. The value of R is critical to whether the population survives or dies out. The aging rate is controlled by P(d) and P(b) and the amount of the viability of each individual is modified, with neutral mutations allowing the system more "room" to evolve. The process of aging in this simple model is revealed to be fairly complex, yielding a rich variety of results. 2010 Elsevier Ltd. All rights reserved.

  15. AID-initiated purposeful mutations in immunoglobulin genes.

    PubMed

    Goodman, Myron F; Scharff, Matthew D; Romesberg, Floyd E

    2007-01-01

    Exposure brings risk to all living organisms. Using a remarkably effective strategy, higher vertebrates mitigate risk by mounting a complex and sophisticated immune response to counter the potentially toxic invasion by a virtually limitless army of chemical and biological antagonists. Mutations are almost always deleterious, but in the case of antibody diversification there are mutations occurring at hugely elevated rates within the variable (V) and switch regions (SR) of the immunoglobulin (Ig) genes that are responsible for binding to and neutralizing foreign antigens throughout the body. These mutations are truly purposeful. This chapter is centered on activation-induced cytidine deaminase (AID). AID is required for initiating somatic hypermutation (SHM) in the V regions and class switch recombination (CSR) in the SR portions of Ig genes. By converting C --> U, while transcription takes place, AID instigates a cascade of mutational events involving error-prone DNA polymerases, base excision and mismatch repair enzymes, and recombination pathways. Together, these processes culminate in highly mutated antibody genes and the B cells expressing antibodies that have achieved optimal antigenic binding undergo positive selection in germinal centers. We will discuss the biological role of AID in this complex process, primarily in terms of its biochemical properties in relation to SHM in vivo. The chapter also discusses recent advances in experimental methods to characterize antibody dynamics as a function of SHM to help elucidate the role that the AID-induced mutations play in tailoring molecular recognition. The emerging experimental techniques help to address long-standing conundrums concerning evolution-imposed constraints on antibody structure and function.

  16. A new compound arithmetic crossover-based genetic algorithm for constrained optimisation in enterprise systems

    NASA Astrophysics Data System (ADS)

    Jin, Chenxia; Li, Fachao; Tsang, Eric C. C.; Bulysheva, Larissa; Kataev, Mikhail Yu

    2017-01-01

    In many real industrial applications, the integration of raw data with a methodology can support economically sound decision-making. Furthermore, most of these tasks involve complex optimisation problems. Seeking better solutions is critical. As an intelligent search optimisation algorithm, genetic algorithm (GA) is an important technique for complex system optimisation, but it has internal drawbacks such as low computation efficiency and prematurity. Improving the performance of GA is a vital topic in academic and applications research. In this paper, a new real-coded crossover operator, called compound arithmetic crossover operator (CAC), is proposed. CAC is used in conjunction with a uniform mutation operator to define a new genetic algorithm CAC10-GA. This GA is compared with an existing genetic algorithm (AC10-GA) that comprises an arithmetic crossover operator and a uniform mutation operator. To judge the performance of CAC10-GA, two kinds of analysis are performed. First the analysis of the convergence of CAC10-GA is performed by the Markov chain theory; second, a pair-wise comparison is carried out between CAC10-GA and AC10-GA through two test problems available in the global optimisation literature. The overall comparative study shows that the CAC performs quite well and the CAC10-GA defined outperforms the AC10-GA.

  17. Accurate detection of low prevalence AKT1 E17K mutation in tissue or plasma from advanced cancer patients

    PubMed Central

    de Bruin, Elza C.; Whiteley, Jessica L.; Corcoran, Claire; Kirk, Pauline M.; Fox, Jayne C.; Armisen, Javier; Lindemann, Justin P. O.; Schiavon, Gaia; Ambrose, Helen J.; Kohlmann, Alexander

    2017-01-01

    Personalized healthcare relies on accurate companion diagnostic assays that enable the most appropriate treatment decision for cancer patients. Extensive assay validation prior to use in a clinical setting is essential for providing a reliable test result. This poses a challenge for low prevalence mutations with limited availability of appropriate clinical samples harboring the mutation. To enable prospective screening for the low prevalence AKT1 E17K mutation, we have developed and validated a competitive allele-specific TaqMan® PCR (castPCR™) assay for mutation detection in formalin-fixed paraffin-embedded (FFPE) tumor tissue. Analysis parameters of the castPCR™ assay were established using an FFPE DNA reference standard and its analytical performance was assessed using 338 breast cancer and gynecological cancer FFPE samples. With recent technical advances for minimally invasive mutation detection in circulating tumor DNA (ctDNA), we subsequently also evaluated the OncoBEAM™ assay to enable plasma specimens as additional diagnostic opportunity for AKT1 E17K mutation testing. The analysis performance of the OncoBEAM™ test was evaluated using a novel AKT1 E17K ctDNA reference standard consisting of sheared genomic DNA spiked into human plasma. Both assays are employed at centralized testing laboratories operating according to quality standards for prospective identification of the AKT1 E17K mutation in ER+ breast cancer patients in the context of a clinical trial evaluating the AKT inhibitor AZD5363 in combination with endocrine (fulvestrant) therapy. PMID:28472036

  18. Fitness-Balanced Escape Determines Resolution of Dynamic Founder Virus Escape Processes in HIV-1 Infection

    PubMed Central

    Sunshine, Justine E.; Larsen, Brendan B.; Maust, Brandon; Casey, Ellie; Deng, Wenje; Chen, Lennie; Westfall, Dylan H.; Kim, Moon; Zhao, Hong; Ghorai, Suvankar; Lanxon-Cookson, Erinn; Rolland, Morgane; Collier, Ann C.; Maenza, Janine; Mullins, James I.

    2015-01-01

    ABSTRACT To understand the interplay between host cytotoxic T-lymphocyte (CTL) responses and the mechanisms by which HIV-1 evades them, we studied viral evolutionary patterns associated with host CTL responses in six linked transmission pairs. HIV-1 sequences corresponding to full-length p17 and p24 gag were generated by 454 pyrosequencing for all pairs near the time of transmission, and seroconverting partners were followed for a median of 847 days postinfection. T-cell responses were screened by gamma interferon/interleukin-2 (IFN-γ/IL-2) FluoroSpot using autologous peptide sets reflecting any Gag variant present in at least 5% of sequence reads in the individual's viral population. While we found little evidence for the occurrence of CTL reversions, CTL escape processes were found to be highly dynamic, with multiple epitope variants emerging simultaneously. We found a correlation between epitope entropy and the number of epitope variants per response (r = 0.43; P = 0.05). In cases in which multiple escape mutations developed within a targeted epitope, a variant with no fitness cost became fixed in the viral population. When multiple mutations within an epitope achieved fitness-balanced escape, these escape mutants were each maintained in the viral population. Additional mutations found to confer escape but undetected in viral populations incurred high fitness costs, suggesting that functional constraints limit the available sites tolerable to escape mutations. These results further our understanding of the impact of CTL escape and reversion from the founder virus in HIV infection and contribute to the identification of immunogenic Gag regions most vulnerable to a targeted T-cell attack. IMPORTANCE Rapid diversification of the viral population is a hallmark of HIV-1 infection, and understanding the selective forces driving the emergence of viral variants can provide critical insight into the interplay between host immune responses and viral evolution. We used deep sequencing to comprehensively follow viral evolution over time in six linked HIV transmission pairs. We then mapped T-cell responses to explore if mutations arose due to adaption to the host and found that escape processes were often highly dynamic, with multiple mutations arising within targeted epitopes. When we explored the impact of these mutations on replicative capacity, we found that dynamic escape processes only resolve with the selection of mutations that conferred escape with no fitness cost to the virus. These results provide further understanding of the complicated viral-host interactions that occur during early HIV-1 infection and may help inform the design of future vaccine immunogens. PMID:26223634

  19. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele.

    PubMed

    Anders, Silke; Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-04-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia-cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia-cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons ('mirror neurons') in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia-cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger activity in the right ventrolateral premotor cortex during execution and perception of affective facial gestures than healthy controls. Furthermore, Parkin mutation carriers showed a slightly reduced ability to recognize facial emotions that was least severe in individuals who showed the strongest increase of ventrolateral premotor activity. In addition, Parkin mutation carriers showed a significantly weaker than normal increase of activity in the left lateral orbitofrontal cortex (inferior frontal gyrus pars orbitalis, Brodmann area 47), which was unrelated to facial emotion recognition ability. These findings are consistent with the hypothesis that compensatory activity in the ventrolateral premotor cortex during processing of affective facial gestures can reduce impairments in facial emotion recognition in subclinical Parkin mutation carriers. A breakdown of this compensatory mechanism might lead to the impairment of facial expressivity and facial emotion recognition observed in manifest Parkinson's disease.

  20. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele

    PubMed Central

    Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-01-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia–cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia–cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons (‘mirror neurons’) in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia–cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger activity in the right ventrolateral premotor cortex during execution and perception of affective facial gestures than healthy controls. Furthermore, Parkin mutation carriers showed a slightly reduced ability to recognize facial emotions that was least severe in individuals who showed the strongest increase of ventrolateral premotor activity. In addition, Parkin mutation carriers showed a significantly weaker than normal increase of activity in the left lateral orbitofrontal cortex (inferior frontal gyrus pars orbitalis, Brodmann area 47), which was unrelated to facial emotion recognition ability. These findings are consistent with the hypothesis that compensatory activity in the ventrolateral premotor cortex during processing of affective facial gestures can reduce impairments in facial emotion recognition in subclinical Parkin mutation carriers. A breakdown of this compensatory mechanism might lead to the impairment of facial expressivity and facial emotion recognition observed in manifest Parkinson's disease. PMID:22434215

  1. Learning Effective Connectivity Network Structure from fMRI Data Based on Artificial Immune Algorithm

    PubMed Central

    Ji, Junzhong; Liu, Jinduo; Liang, Peipeng; Zhang, Aidong

    2016-01-01

    Many approaches have been designed to extract brain effective connectivity from functional magnetic resonance imaging (fMRI) data. However, few of them can effectively identify the connectivity network structure due to different defects. In this paper, a new algorithm is developed to infer the effective connectivity between different brain regions by combining artificial immune algorithm (AIA) with the Bayes net method, named as AIAEC. In the proposed algorithm, a brain effective connectivity network is mapped onto an antibody, and four immune operators are employed to perform the optimization process of antibodies, including clonal selection operator, crossover operator, mutation operator and suppression operator, and finally gets an antibody with the highest K2 score as the solution. AIAEC is then tested on Smith’s simulated datasets, and the effect of the different factors on AIAEC is evaluated, including the node number, session length, as well as the other potential confounding factors of the blood oxygen level dependent (BOLD) signal. It was revealed that, as contrast to other existing methods, AIAEC got the best performance on the majority of the datasets. It was also found that AIAEC could attain a relative better solution under the influence of many factors, although AIAEC was differently affected by the aforementioned factors. AIAEC is thus demonstrated to be an effective method for detecting the brain effective connectivity. PMID:27045295

  2. Mutation of Breast Cancer Cell Genomic DNA by APOBEC3B

    DTIC Science & Technology

    2013-09-01

    lethal prostate cancers. Proc. Natl Acad. Sci. USA 108, 17087–17092 (2011). 5. Parsons, D. W. et al. The genetic landscape of the childhood cancer...7. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011). 8. Nik-Zainal, S. et al...Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012). 9. Stephens, P. J. et al. The landscape of cancer genes and

  3. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle

    PubMed Central

    Littlejohn, Mathew D.; Henty, Kristen M.; Tiplady, Kathryn; Johnson, Thomas; Harland, Chad; Lopdell, Thomas; Sherlock, Richard G.; Li, Wanbo; Lukefahr, Steven D.; Shanks, Bruce C.; Garrick, Dorian J.; Snell, Russell G.; Spelman, Richard J.; Davis, Stephen R.

    2014-01-01

    Lactation, hair development and homeothermy are characteristic evolutionary features that define mammals from other vertebrate species. Here we describe the discovery of two autosomal dominant mutations with antagonistic, pleiotropic effects on all three of these biological processes, mediated through the prolactin signalling pathway. Most conspicuously, mutations in prolactin (PRL) and its receptor (PRLR) have an impact on thermoregulation and hair morphology phenotypes, giving prominence to this pathway outside of its classical roles in lactation. PMID:25519203

  4. Facile Affinity Maturation of Antibody Variable Domains Using Natural Diversity Mutagenesis

    PubMed Central

    Tiller, Kathryn E.; Chowdhury, Ratul; Li, Tong; Ludwig, Seth D.; Sen, Sabyasachi; Maranas, Costas D.; Tessier, Peter M.

    2017-01-01

    The identification of mutations that enhance antibody affinity while maintaining high antibody specificity and stability is a time-consuming and laborious process. Here, we report an efficient methodology for systematically and rapidly enhancing the affinity of antibody variable domains while maximizing specificity and stability using novel synthetic antibody libraries. Our approach first uses computational and experimental alanine scanning mutagenesis to identify sites in the complementarity-determining regions (CDRs) that are permissive to mutagenesis while maintaining antigen binding. Next, we mutagenize the most permissive CDR positions using degenerate codons to encode wild-type residues and a small number of the most frequently occurring residues at each CDR position based on natural antibody diversity. This mutagenesis approach results in antibody libraries with variants that have a wide range of numbers of CDR mutations, including antibody domains with single mutations and others with tens of mutations. Finally, we sort the modest size libraries (~10 million variants) displayed on the surface of yeast to identify CDR mutations with the greatest increases in affinity. Importantly, we find that single-domain (VHH) antibodies specific for the α-synuclein protein (whose aggregation is associated with Parkinson’s disease) with the greatest gains in affinity (>5-fold) have several (four to six) CDR mutations. This finding highlights the importance of sampling combinations of CDR mutations during the first step of affinity maturation to maximize the efficiency of the process. Interestingly, we find that some natural diversity mutations simultaneously enhance all three key antibody properties (affinity, specificity, and stability) while other mutations enhance some of these properties (e.g., increased specificity) and display trade-offs in others (e.g., reduced affinity and/or stability). Computational modeling reveals that improvements in affinity are generally not due to direct interactions involving CDR mutations but rather due to indirect effects that enhance existing interactions and/or promote new interactions between the antigen and wild-type CDR residues. We expect that natural diversity mutagenesis will be useful for efficient affinity maturation of a wide range of antibody fragments and full-length antibodies. PMID:28928732

  5. Craniofacial divergence by distinct prenatal growth patterns in Fgfr2 mutant mice

    PubMed Central

    2014-01-01

    Background Differences in cranial morphology arise due to changes in fundamental cell processes like migration, proliferation, differentiation and cell death driven by genetic programs. Signaling between fibroblast growth factors (FGFs) and their receptors (FGFRs) affect these processes during head development and mutations in FGFRs result in congenital diseases including FGFR-related craniosynostosis syndromes. Current research in model organisms focuses primarily on how these mutations change cell function local to sutures under the hypothesis that prematurely closing cranial sutures contribute to skull dysmorphogenesis. Though these studies have provided fundamentally important information contributing to the understanding of craniosynostosis conditions, knowledge of changes in cell function local to the sutures leave change in overall three-dimensional cranial morphology largely unexplained. Here we investigate growth of the skull in two inbred mouse models each carrying one of two gain-of-function mutations in FGFR2 on neighboring amino acids (S252W and P253R) that in humans cause Apert syndrome, one of the most severe FGFR-related craniosynostosis syndromes. We examine late embryonic skull development and suture patency in Fgfr2 Apert syndrome mice between embryonic day 17.5 and birth and quantify the effects of these mutations on 3D skull morphology, suture patency and growth. Results We show in mice what studies in humans can only infer: specific cranial growth deviations occur prenatally and worsen with time in organisms carrying these FGFR2 mutations. We demonstrate that: 1) distinct skull morphologies of each mutation group are established by E17.5; 2) cranial suture patency patterns differ between mice carrying these mutations and their unaffected littermates; 3) the prenatal skull grows differently in each mutation group; and 4) unique Fgfr2-related cranial morphologies are exacerbated by late embryonic growth patterns. Conclusions Our analysis of mutation-driven changes in cranial growth provides a previously missing piece of knowledge necessary for explaining variation in emergent cranial morphologies and may ultimately be helpful in managing human cases carrying these same mutations. This information is critical to the understanding of craniofacial development, disease and evolution and may contribute to the evaluation of incipient therapeutic strategies. PMID:24580805

  6. MutScan: fast detection and visualization of target mutations by scanning FASTQ data.

    PubMed

    Chen, Shifu; Huang, Tanxiao; Wen, Tiexiang; Li, Hong; Xu, Mingyan; Gu, Jia

    2018-01-22

    Some types of clinical genetic tests, such as cancer testing using circulating tumor DNA (ctDNA), require sensitive detection of known target mutations. However, conventional next-generation sequencing (NGS) data analysis pipelines typically involve different steps of filtering, which may cause miss-detection of key mutations with low frequencies. Variant validation is also indicated for key mutations detected by bioinformatics pipelines. Typically, this process can be executed using alignment visualization tools such as IGV or GenomeBrowse. However, these tools are too heavy and therefore unsuitable for validating mutations in ultra-deep sequencing data. We developed MutScan to address problems of sensitive detection and efficient validation for target mutations. MutScan involves highly optimized string-searching algorithms, which can scan input FASTQ files to grab all reads that support target mutations. The collected supporting reads for each target mutation will be piled up and visualized using web technologies such as HTML and JavaScript. Algorithms such as rolling hash and bloom filter are applied to accelerate scanning and make MutScan applicable to detect or visualize target mutations in a very fast way. MutScan is a tool for the detection and visualization of target mutations by only scanning FASTQ raw data directly. Compared to conventional pipelines, this offers a very high performance, executing about 20 times faster, and offering maximal sensitivity since it can grab mutations with even one single supporting read. MutScan visualizes detected mutations by generating interactive pile-ups using web technologies. These can serve to validate target mutations, thus avoiding false positives. Furthermore, MutScan can visualize all mutation records in a VCF file to HTML pages for cloud-friendly VCF validation. MutScan is an open source tool available at GitHub: https://github.com/OpenGene/MutScan.

  7. Lineage dynamics and mutation-selection balance in non-adapting asexual populations

    NASA Astrophysics Data System (ADS)

    Pénisson, Sophie; Sniegowski, Paul D.; Colato, Alexandre; Gerrish, Philip J.

    2013-02-01

    In classical population genetics, mutation-selection balance refers to the equilibrium frequency of a deleterious allele established and maintained under two opposing forces: recurrent mutation, which tends to increase the frequency of the allele; and selection, which tends to decrease its frequency. In a haploid population, if μ denotes the per capita rate of production of the deleterious allele by mutation and s denotes the selective disadvantage of carrying the allele, then the classical mutation-selection balance frequency of the allele is approximated by μ/s. This calculation assumes that lineages carrying the mutant allele in question—the ‘focal allele’—do not accumulate deleterious mutations linked to the focal allele. In principle, indirect selection against the focal allele caused by such additional mutations can decrease the frequency of the focal allele below the classical mutation-selection balance. This effect of indirect selection will be strongest in an asexual population, in which the entire genome is in linkage. Here, we use an approach based on a multitype branching process to investigate this effect, analyzing lineage dynamics under mutation, direct selection, and indirect selection in a non-adapting asexual population. We find that the equilibrium balance between recurrent mutation to the focal allele and the forces of direct and indirect selection against the focal allele is closely approximated by γμ/(s + U) (s = 0 if the focal allele is neutral), where γ ≈ eθθ-(ω+θ)(ω + θ)(Γ(ω + θ) - Γ(ω + θ,θ)), \\theta =U/\\tilde {s}, and \\omega =s/\\tilde {s}; U denotes the genomic deleterious mutation rate and \\tilde {s} denotes the geometric mean selective disadvantage of deleterious mutations elsewhere on the genome. This mutation-selection balance for asexual populations can remain surprisingly invariant over wide ranges of the mutation rate.

  8. Peptide processing and biology in human disease

    PubMed Central

    Kovac, Suzana; Shulkes, Arthur; Baldwin, Graham S.

    2008-01-01

    Purpose of review To describe recent advances in the processing of gastrointestinal hormones, and the consequences for human disease of mutations in the enzymes involved. Recent findings Although gastrointestinal prohormones were long regarded as devoid of biological activity, recent data indicates that the prohormones for both gastrin and gastrin-releasing peptide are bioactive, through different receptors from the mature hormones. Mutations in the family of prohormone convertases responsible for the initial steps in the processing of gastrointestinal hormones are associated with several different pathophysiological conditions in humans. Summary Human mutational studies, when taken together with the phenotypes observed in mice deficient in the prohormone convertases, emphasize the crucial importance of the processing enzymes in mammalian biology. Although the phenotypes may often be ascribed to defective production of a mature hormone or growth factor, the recognition that the precursors are independently bioactive suggests that the increased precursor concentrations may also contribute to the symptoms. The observation that the precursors often act through different receptors from the mature hormones may permit the development of precursor-selective antagonists for therapeutic use. PMID:19104240

  9. Inviability of a DNA2 deletion mutant is due to the DNA damage checkpoint.

    PubMed

    Budd, Martin E; Antoshechkin, Igor A; Reis, Clara; Wold, Barbara J; Campbell, Judith L

    2011-05-15

    Dna2 is a dual polarity exo/endonuclease, and 5' to 3' DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27 (scFEN1) , encoding a 5' to 3' exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5' to 3' helicase involved in mitochondrial recombination, telomerase inhibition and OFP. Mapping of a novel, spontaneously arising suppressor of dna2Δ now reveals that mutation of rad9 and double mutation of rad9 mrc1 can also suppress the lethality of dna2Δ mutants. Interaction of dna2Δ and DNA damage checkpoint mutations provides insight as to why dna2Δ is lethal but rad27Δ is not, even though evidence shows that Rad27 (ScFEN1) processes most of the Okazaki fragments, while Dna2 processes only a subset.

  10. Geographic Distribution of Disease Mutations in the Ashkenazi Jewish Population Supports Genetic Drift over Selection

    PubMed Central

    Risch, Neil; Tang, Hua; Katzenstein, Howard; Ekstein, Josef

    2003-01-01

    The presence of four lysosomal storage diseases (LSDs) at increased frequency in the Ashkenazi Jewish population has suggested to many the operation of natural selection (carrier advantage) as the driving force. We compare LSDs and nonlysosomal storage diseases (NLSDs) in terms of the number of mutations, allele-frequency distributions, and estimated coalescence dates of mutations. We also provide new data on the European geographic distribution, in the Ashkenazi population, of seven LSD and seven NLSD mutations. No differences in any of the distributions were observed between LSDs and NLSDs. Furthermore, no regular pattern of geographic distribution was observed for LSD versus NLSD mutations—with some being more common in central Europe and others being more common in eastern Europe, within each group. The most striking disparate pattern was the geographic distribution of the two primary Tay-Sachs disease mutations, with the first being more common in central Europe (and likely older) and the second being exclusive to eastern Europe (primarily Lithuania and Russia) (and likely much younger). The latter demonstrates a pattern similar to two other recently arisen Lithuanian mutations, those for torsion dystonia and familial hypercholesterolemia. These observations provide compelling support for random genetic drift (chance founder effects, one ∼11 centuries ago that affected all Ashkenazim and another ∼5 centuries ago that affected Lithuanians), rather than selection, as the primary determinant of disease mutations in the Ashkenazi population. PMID:12612865

  11. A Patient With Desmoid Tumors and Familial FAP Having Frame Shift Mutation of the APC Gene.

    PubMed

    Sadighi, Sanambar; Ghaffari-Moghaddam, Mahsa; Saffari, Mojtaba; Mohagheghi, Mohammad Ali; Shirkoohi, Reza

    2017-02-01

    Desmoids tumors, characterized by monoclonal proliferation of myofibroblasts, could occur in 5-10% of patients with familial adenomatous polyposis (FAP) as an extra-colonic manifestation of the disease. FAP can develop when there is a germ-line mutation in the adenomatous polyposis coli gene. Although mild or attenuated FAP may follow mutations in 5΄ extreme of the gene, it is more likely that 3΄ extreme mutations haveamore severe manifestation of thedisease. A 28-year-old woman was admitted to the Cancer Institute of Iran with an abdominal painful mass. She had strong family history of FAP and underwent prophylactic total colectomy. Pre-operative CT scans revealed a large mass. Microscopic observation showed diffuse fibroblast cell infiltration of the adjacent tissue structures. Peripheral blood DNA extraction followed by adenomatous polyposis coli gene exon by exon sequencing was performed to investigate the mutation in adenomatous polyposis coli gene. Analysis of DNA sequencing demonstrated a mutation of 4 bpdeletions at codon 1309-1310 of the exon 16 of adenomatous polyposis coli gene sequence which was repeated in 3 members of the family. Some of them had desmoid tumor without classical FAP history. Even when there is no familial history of adenomatous polyposis, the adenomatous polyposis coli gene mutation should be investigated in cases of familial desmoids tumors for a suitable prevention. The 3΄ extreme of the adenomatous polyposis coli gene is still the best likely location in such families.

  12. Mitochondria and aging: innocent bystanders or guilty parties?

    PubMed

    Tońska, K; Sołyga, A; Bartnik, E

    2009-01-01

    There are many theories of aging and a number of them encompass the role of mitochondria in this process. Mitochondrial DNA mutations and deletions have been shown to accumulate in many tissues in mammals during aging. However, there is little evidence that these mutations could affect the functioning of aging tissues.

  13. Mutation of Dcdc2 in mice leads to impairments in auditory processing and memory ability.

    PubMed

    Truong, D T; Che, A; Rendall, A R; Szalkowski, C E; LoTurco, J J; Galaburda, A M; Holly Fitch, R

    2014-11-01

    Dyslexia is a complex neurodevelopmental disorder characterized by impaired reading ability despite normal intellect, and is associated with specific difficulties in phonological and rapid auditory processing (RAP), visual attention and working memory. Genetic variants in Doublecortin domain-containing protein 2 (DCDC2) have been associated with dyslexia, impairments in phonological processing and in short-term/working memory. The purpose of this study was to determine whether sensory and behavioral impairments can result directly from mutation of the Dcdc2 gene in mice. Several behavioral tasks, including a modified pre-pulse inhibition paradigm (to examine auditory processing), a 4/8 radial arm maze (to assess/dissociate working vs. reference memory) and rotarod (to examine sensorimotor ability and motor learning), were used to assess the effects of Dcdc2 mutation. Behavioral results revealed deficits in RAP, working memory and reference memory in Dcdc2(del2/del2) mice when compared with matched wild types. Current findings parallel clinical research linking genetic variants of DCDC2 with specific impairments of phonological processing and memory ability. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  14. Role of a new Rho family member in cell migration and axon guidance in C. elegans.

    PubMed

    Zipkin, I D; Kindt, R M; Kenyon, C J

    1997-09-05

    Rho family GTPases are thought to regulate actin-dependent processes, but their functions in vivo are still poorly understood. We have investigated the function of a new, widely expressed Rho family member in C. elegans by analyzing mutations in the endogenous gene. Activated and null alleles all inhibit cell migration, demonstrating that this protein is required for cell migration in vivo. Only a small subset of the migrations inhibited by activating mutations are inhibited by null mutations, suggesting that considerable functional redundancy exists within this system. Our findings support this conclusion and show that mig-2 functions redundantly with another pathway to regulate nuclear migration. Surprisingly, activated alleles also cause misguided axon growth, suggesting that Rho family GTPases may couple guidance cues to process outgrowth.

  15. Mutations in histone modulators are associated with prolonged survival during azacitidine therapy

    PubMed Central

    Tobiasson, Magnus; McLornan, Donal P.; Karimi, Mohsen; Dimitriou, Marios; Jansson, Monika; Azenkoud, Asmaa Ben; Jädersten, Martin; Lindberg, Greger; Abdulkadir, Hani; Kulasekararaj, Austin; Ungerstedt, Johanna; Lennartsson, Andreas; Ekwall, Karl; Mufti, Ghulam J.; Hellström-Lindberg, Eva

    2016-01-01

    Early therapeutic decision-making is crucial in patients with higher-risk MDS. We evaluated the impact of clinical parameters and mutational profiles in 134 consecutive patients treated with azacitidine using a combined cohort from Karolinska University Hospital (n=89) and from King's College Hospital, London (n=45). While neither clinical parameters nor mutations had a significant impact on response rate, both karyotype and mutational profile were strongly associated with survival from the start of treatment. IPSS high-risk cytogenetics negatively impacted overall survival (median 20 vs 10 months; p<0.001), whereas mutations in histone modulators (ASXL1, EZH2) were associated with prolonged survival (22 vs 12 months, p=0.01). This positive association was present in both cohorts and remained highly significant in the multivariate cox model. Importantly, patients with mutations in histone modulators lacking high-risk cytogenetics showed a survival of 29 months compared to only 10 months in patients with the opposite pattern. While TP53 was negatively associated with survival, neither RUNX1-mutations nor the number of mutations appeared to influence survival in this cohort. We propose a model combining histone modulator mutational screening with cytogenetics in the clinical decision-making process for higher-risk MDS patients eligible for treatment with azacitidine. PMID:26959885

  16. Mutational landscape of yeast mutator strains.

    PubMed

    Serero, Alexandre; Jubin, Claire; Loeillet, Sophie; Legoix-Né, Patricia; Nicolas, Alain G

    2014-02-04

    The acquisition of mutations is relevant to every aspect of genetics, including cancer and evolution of species on Darwinian selection. Genome variations arise from rare stochastic imperfections of cellular metabolism and deficiencies in maintenance genes. Here, we established the genome-wide spectrum of mutations that accumulate in a WT and in nine Saccharomyces cerevisiae mutator strains deficient for distinct genome maintenance processes: pol32Δ and rad27Δ (replication), msh2Δ (mismatch repair), tsa1Δ (oxidative stress), mre11Δ (recombination), mec1Δ tel1Δ (DNA damage/S-phase checkpoints), pif1Δ (maintenance of mitochondrial genome and telomere length), cac1Δ cac3Δ (nucleosome deposition), and clb5Δ (cell cycle progression). This study reveals the diversity, complexity, and ultimate unique nature of each mutational spectrum, composed of punctual mutations, chromosomal structural variations, and/or aneuploidies. The mutations produced in clb5Δ/CCNB1, mec1Δ/ATR, tel1Δ/ATM, and rad27Δ/FEN1 strains extensively reshape the genome, following a trajectory dependent on previous events. It comprises the transmission of unstable genomes that lead to colony mosaicisms. This comprehensive analytical approach of mutator defects provides a model to understand how genome variations might accumulate during clonal evolution of somatic cell populations, including tumor cells.

  17. Experimental mutation-accumulation on the X chromosome of Drosophila melanogaster reveals stronger selection on males than females.

    PubMed

    Mallet, Martin A; Bouchard, Jessica M; Kimber, Christopher M; Chippindale, Adam K

    2011-06-06

    Sex differences in the magnitude or direction of mutational effect may be important to a variety of population processes, shaping the mutation load and affecting the cost of sex itself. These differences are expected to be greatest after sexual maturity. Mutation-accumulation (MA) experiments provide the most direct way to examine the consequences of new mutations, but most studies have focused on juvenile viability without regard to sex, and on autosomes rather than sex chromosomes; both adult fitness and X-linkage have been little studied. We therefore investigated the effects of 50 generations of X-chromosome mutation accumulation on the fitness of males and females derived from an outbred population of Drosophila melanogaster. Fitness declined rapidly in both sexes as a result of MA, but adult males showed markedly greater fitness loss relative to their controls compared to females expressing identical genotypes, even when females were made homozygous for the X. We estimate that these mutations are partially additive (h ~ 0.3) in females. In addition, the majority of new mutations appear to harm both males and females. Our data helps fill a gap in our understanding of the consequences of sexual selection for genetic load, and suggests that stronger selection on males may indeed purge deleterious mutations affecting female fitness.

  18. Restriction digest screening facilitates efficient detection of site-directed mutations introduced by CRISPR in C. albicans UME6

    PubMed Central

    Evans, Ben A.; Smith, Olivia L.; Pickerill, Ethan S.; York, Mary K.; Buenconsejo, Kristen J.P.; Chambers, Antonio E.

    2018-01-01

    Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn2+-binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans. Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest. PMID:29892505

  19. Deciphering KRAS and NRAS mutated clone dynamics in MLL-AF4 paediatric leukaemia by ultra deep sequencing analysis.

    PubMed

    Trentin, Luca; Bresolin, Silvia; Giarin, Emanuela; Bardini, Michela; Serafin, Valentina; Accordi, Benedetta; Fais, Franco; Tenca, Claudya; De Lorenzo, Paola; Valsecchi, Maria Grazia; Cazzaniga, Giovanni; Kronnie, Geertruy Te; Basso, Giuseppe

    2016-10-04

    To induce and sustain the leukaemogenic process, MLL-AF4+ leukaemia seems to require very few genetic alterations in addition to the fusion gene itself. Studies of infant and paediatric patients with MLL-AF4+ B cell precursor acute lymphoblastic leukaemia (BCP-ALL) have reported mutations in KRAS and NRAS with incidences ranging from 25 to 50%. Whereas previous studies employed Sanger sequencing, here we used next generation amplicon deep sequencing for in depth evaluation of RAS mutations in 36 paediatric patients at diagnosis of MLL-AF4+ leukaemia. RAS mutations including those in small sub-clones were detected in 63.9% of patients. Furthermore, the mutational analysis of 17 paired samples at diagnosis and relapse revealed complex RAS clone dynamics and showed that the mutated clones present at relapse were almost all originated from clones that were already detectable at diagnosis and survived to the initial therapy. Finally, we showed that mutated patients were indeed characterized by a RAS related signature at both transcriptional and protein levels and that the targeting of the RAS pathway could be of beneficial for treatment of MLL-AF4+ BCP-ALL clones carrying somatic RAS mutations.

  20. Description of polymerase chain reaction and sequencing DNA Mycobacterium tuberculosis from specimen sputum of tuberculosis patients in Medan

    NASA Astrophysics Data System (ADS)

    Lily; Siregar, Y.; Ilyas, S.

    2018-03-01

    This study purposed to describe the product Polymerase Chain Reaction (PCR) and sequencing of DNA Mycobacterium (M.) tuberculosis from sputum of tuberculosis (TB) patients in Medan. Sputum was collected from patients that diagnosed with pulmonary TB by a physician. Specimen processed by PCR method of Li et al. and sequencing at Macrogen Laboratory. All of 12 product PCR were showed brightness bands at 126 base pair (bp). These results indicated similarity to the study of Li et al. Sequencing analysis showed the presence of a mutation and non-mutation groups of M. tuberculosis. The reference and outcome berange of the mutation and non-mutation of M. tuberculosis were 56-107, 59-85, 60-120 and 63-94, respectively. The percentage bp difference between the outcome and references for mutation and non-mutation were 3.448-6.569and 3.278-7.428%, respectively. In conclusion, the successful amplification of PCR products in a 1.5% agarose gel electrophoresis where all 12 sputa contained rpoB-positive M. tuberculosis and 0.644% difference was found between the outcome with reference bp of the mutation and non-mutation M. tuberculosis groups.

  1. The population genetics of mutations: good, bad and indifferent

    PubMed Central

    Loewe, Laurence; Hill, William G.

    2010-01-01

    Population genetics is fundamental to our understanding of evolution, and mutations are essential raw materials for evolution. In this introduction to more detailed papers that follow, we aim to provide an oversight of the field. We review current knowledge on mutation rates and their harmful and beneficial effects on fitness and then consider theories that predict the fate of individual mutations or the consequences of mutation accumulation for quantitative traits. Many advances in the past built on models that treat the evolution of mutations at each DNA site independently, neglecting linkage of sites on chromosomes and interactions of effects between sites (epistasis). We review work that addresses these limitations, to predict how mutations interfere with each other. An understanding of the population genetics of mutations of individual loci and of traits affected by many loci helps in addressing many fundamental and applied questions: for example, how do organisms adapt to changing environments, how did sex evolve, which DNA sequences are medically important, why do we age, which genetic processes can generate new species or drive endangered species to extinction, and how should policy on levels of potentially harmful mutagens introduced into the environment by humans be determined? PMID:20308090

  2. Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice.

    PubMed

    Safdar, Adeel; Khrapko, Konstantin; Flynn, James M; Saleem, Ayesha; De Lisio, Michael; Johnston, Adam P W; Kratysberg, Yevgenya; Samjoo, Imtiaz A; Kitaoka, Yu; Ogborn, Daniel I; Little, Jonathan P; Raha, Sandeep; Parise, Gianni; Akhtar, Mahmood; Hettinga, Bart P; Rowe, Glenn C; Arany, Zoltan; Prolla, Tomas A; Tarnopolsky, Mark A

    2016-01-01

    Human genetic disorders and transgenic mouse models have shown that mitochondrial DNA (mtDNA) mutations and telomere dysfunction instigate the aging process. Epidemiologically, exercise is associated with greater life expectancy and reduced risk of chronic diseases. While the beneficial effects of exercise are well established, the molecular mechanisms instigating these observations remain unclear. Endurance exercise reduces mtDNA mutation burden, alleviates multisystem pathology, and increases lifespan of the mutator mice, with proofreading deficient mitochondrial polymerase gamma (POLG1). We report evidence for a POLG1-independent mtDNA repair pathway mediated by exercise, a surprising notion as POLG1 is canonically considered to be the sole mtDNA repair enzyme. Here, we show that the tumor suppressor protein p53 translocates to mitochondria and facilitates mtDNA mutation repair and mitochondrial biogenesis in response to endurance exercise. Indeed, in mutator mice with muscle-specific deletion of p53, exercise failed to prevent mtDNA mutations, induce mitochondrial biogenesis, preserve mitochondrial morphology, reverse sarcopenia, or mitigate premature mortality. Our data establish a new role for p53 in exercise-mediated maintenance of the mtDNA genome and present mitochondrially targeted p53 as a novel therapeutic modality for diseases of mitochondrial etiology.

  3. BRAF V600E mutational status in bile duct adenomas and hamartomas.

    PubMed

    Pujals, Anaïs; Bioulac-Sage, Paulette; Castain, Claire; Charpy, Cécile; Zafrani, Elie Serge; Calderaro, Julien

    2015-10-01

    Bile duct adenomas (BDA) and bile duct hamartomas (BDH) are benign bile duct lesions considered neoplastic or secondary to ductal plate malformation, respectively. We have reported previously a high prevalence of BRAF V600E mutations detected by allele-specific polymerase chain reaction assay in BDA, and suggested that BDA may be precursors to a subset of intrahepatic cholangiocarcinomas harbouring V600E mutations. The aim of the present study was to assess the existence of BRAF V600E mutations, using immunohistochemical methods, in additional BDA as well as in BDH. Fifteen BDA and 35 BDH were retrieved from the archives of the pathology departments of two French university hospitals. All cases were reviewed by two pathologists specialized in liver diseases. BRAF V600E mutational status was investigated by immunohistochemistry. Mutated BRAF mutant protein was detected in 53% of the BDA and in none of the cases of BDH. Our findings suggest that BDA and BDH are different processes, and that BDA represent true benign neoplasms. They also support the hypothesis that mutated BDA might precede the development of the subset of intrahepatic cholangiocarcinomas harbouring BRAF V600E mutations. © 2015 John Wiley & Sons Ltd.

  4. New mutations affecting induced mutagenesis in yeast.

    PubMed

    Lawrence, C W; Krauss, B R; Christensen, R B

    1985-01-01

    Previously isolated mutations in baker's yeast, Saccharomyces cerevisiae, that impair induced mutagenesis were all identified with the aid of tests that either exclusively or predominantly detect base-pair substitutions. To avoid this bias, we have screened 11 366 potentially mutant clones for UV-induced reversion of the frameshift allele, his4-38, and have identified 10 mutants that give much reduced yields of revertants. Complementation and recombination tests show that 6 of these carry mutations at the previously known REV1, REV1 and REV3 loci, while the remaining 4 define 3 new genes, REV4 (2 mutations), REV5 and REV6. The rev4 mutations are readily suppressed in many genetic backgrounds and, like the rev5 mutation, impart only a limited deficiency for induced mutagenesis: it is likely, therefore that the REV4+ and REV5+ gene functions are only remotely concerned with this process. The rev6 mutants have a more general deficiency, however, as well as marked sensitivity to UV and an increased spontaneous mutation rate, properties that suggest the REV6 gene is directly involved in mutation induction. The REV5 gene is located about 1 cM proximal to CYC1 on chromosome X.

  5. Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay

    NASA Astrophysics Data System (ADS)

    Zhou, Huijuan; Wu, Baoyan

    2008-12-01

    The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.

  6. SIMPLE estimate of the free energy change due to aliphatic mutations: superior predictions based on first principles.

    PubMed

    Bueno, Marta; Camacho, Carlos J; Sancho, Javier

    2007-09-01

    The bioinformatics revolution of the last decade has been instrumental in the development of empirical potentials to quantitatively estimate protein interactions for modeling and design. Although computationally efficient, these potentials hide most of the relevant thermodynamics in 5-to-40 parameters that are fitted against a large experimental database. Here, we revisit this longstanding problem and show that a careful consideration of the change in hydrophobicity, electrostatics, and configurational entropy between the folded and unfolded state of aliphatic point mutations predicts 20-30% less false positives and yields more accurate predictions than any published empirical energy function. This significant improvement is achieved with essentially no free parameters, validating past theoretical and experimental efforts to understand the thermodynamics of protein folding. Our first principle analysis strongly suggests that both the solute-solute van der Waals interactions in the folded state and the electrostatics free energy change of exposed aliphatic mutations are almost completely compensated by similar interactions operating in the unfolded ensemble. Not surprisingly, the problem of properly accounting for the solvent contribution to the free energy of polar and charged group mutations, as well as of mutations that disrupt the protein backbone remains open. 2007 Wiley-Liss, Inc.

  7. Whole-genome landscapes of major melanoma subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayward, Nicholas K.; Wilmott, James S.; Waddell, Nicola

    Melanoma of the skin is a common cancer only in Europeans, whereas it arises in internal body surfaces (mucosal sites) and on the hands and feet (acral sites) in people throughout the world. We report analysis of whole-genome sequences from cutaneous, acral and mucosal subtypes of melanoma. The heavily mutated landscape of coding and non-coding mutations in cutaneous melanoma resolved novel signatures of mutagenesis attributable to ultraviolet radiation. But, acral and mucosal melanomas were dominated by structural changes and mutation signatures of unknown aetiology, not previously identified in melanoma. The number of genes affected by recurrent mutations disrupting non-coding sequencesmore » was similar to that affected by recurrent mutations to coding sequences. Significantly mutated genes included BRAF, CDKN2A, NRAS and TP53 in cutaneous melanoma, BRAF, NRAS and NF1 in acral melanoma and SF3B1 in mucosal melanoma. Mutations affecting the TERT promoter were the most frequent of all; however, neither they nor ATRX mutations, which correlate with alternative telomere lengthening, were associated with greater telomere length. In most cases, melanomas had potentially actionable mutations, most in components of the mitogen-activated protein kinase and phosphoinositol kinase pathways. The whole-genome mutation landscape of melanoma reveals diverse carcinogenic processes across its subtypes, some unrelated to sun exposure, and extends potential involvement of the non-coding genome in its pathogenesis.« less

  8. Whole-genome landscapes of major melanoma subtypes

    DOE PAGES

    Hayward, Nicholas K.; Wilmott, James S.; Waddell, Nicola; ...

    2017-05-03

    Melanoma of the skin is a common cancer only in Europeans, whereas it arises in internal body surfaces (mucosal sites) and on the hands and feet (acral sites) in people throughout the world. We report analysis of whole-genome sequences from cutaneous, acral and mucosal subtypes of melanoma. The heavily mutated landscape of coding and non-coding mutations in cutaneous melanoma resolved novel signatures of mutagenesis attributable to ultraviolet radiation. But, acral and mucosal melanomas were dominated by structural changes and mutation signatures of unknown aetiology, not previously identified in melanoma. The number of genes affected by recurrent mutations disrupting non-coding sequencesmore » was similar to that affected by recurrent mutations to coding sequences. Significantly mutated genes included BRAF, CDKN2A, NRAS and TP53 in cutaneous melanoma, BRAF, NRAS and NF1 in acral melanoma and SF3B1 in mucosal melanoma. Mutations affecting the TERT promoter were the most frequent of all; however, neither they nor ATRX mutations, which correlate with alternative telomere lengthening, were associated with greater telomere length. In most cases, melanomas had potentially actionable mutations, most in components of the mitogen-activated protein kinase and phosphoinositol kinase pathways. The whole-genome mutation landscape of melanoma reveals diverse carcinogenic processes across its subtypes, some unrelated to sun exposure, and extends potential involvement of the non-coding genome in its pathogenesis.« less

  9. Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP).

    PubMed

    Rowe, P S; Oudet, C L; Francis, F; Sinding, C; Pannetier, S; Econs, M J; Strom, T M; Meitinger, T; Garabedian, M; David, A; Macher, M A; Questiaux, E; Popowska, E; Pronicka, E; Read, A P; Mokrzycki, A; Glorieux, F H; Drezner, M K; Hanauer, A; Lehrach, H; Goulding, J N; O'Riordan, J L

    1997-04-01

    Mutations in the PEX gene at Xp22.1 (phosphate-regulating gene with homologies to endopeptidases, on the X-chromosome), are responsible for X-linked hypophosphataemic rickets (HYP). Homology of PEX to the M13 family of Zn2+ metallopeptidases which include neprilysin (NEP) as prototype, has raised important questions regarding PEX function at the molecular level. The aim of this study was to analyse 99 HYP families for PEX gene mutations, and to correlate predicted changes in the protein structure with Zn2+ metallopeptidase gene function. Primers flanking 22 characterised exons were used to amplify DNA by PCR, and SSCP was then used to screen for mutations. Deletions, insertions, nonsense mutations, stop codons and splice mutations occurred in 83% of families screened for in all 22 exons, and 51% of a separate set of families screened in 17 PEX gene exons. Missense mutations in four regions of the gene were informative regarding function, with one mutation in the Zn2+-binding site predicted to alter substrate enzyme interaction and catalysis. Computer analysis of the remaining mutations predicted changes in secondary structure, N-glycosylation, protein phosphorylation and catalytic site molecular structure. The wide range of mutations that align with regions required for protease activity in NEP suggests that PEX also functions as a protease, and may act by processing factor(s) involved in bone mineral metabolism.

  10. Orphan missense mutations in the cystic fibrosis transmembrane conductance regulator: A three-step biological approach to establishing a correlation between genotype and phenotype.

    PubMed

    Fresquet, Fleur; Clement, Romain; Norez, Caroline; Sterlin, Adélaïde; Melin, Patricia; Becq, Frédéric; Kitzis, Alain; Thoreau, Vincent; Bilan, Frédéric

    2011-09-01

    More than 1860 mutations have been found within the human cystic fibrosis transmembrane conductance regulator (CFTR) gene sequence. These mutations can be classified according to their degree of severity in CF disease. Although the most common mutations are well characterized, few data are available for rare mutations. Thus, genetic counseling is particularly difficult when fetuses or patients with CF present these orphan variations. We describe a three-step in vitro assay that can evaluate rare missense CFTR mutation consequences to establish a correlation between genotype and phenotype. By using a green fluorescent protein-tagged CFTR construct, we expressed mutated proteins in COS-7 cells. CFTR trafficking was visualized by confocal microscopy, and the cellular localization of CFTR was determined using intracellular markers. We studied the CFTR maturation process using Western blot analysis and evaluated CFTR channel activity by automated iodide efflux assays. Of six rare mutations that we studied, five have been isolated in our laboratory. The cellular and functional impact that we observed in each case was compared with the clinical data concerning the patients in whom we encountered these mutations. In conclusion, we propose that performing this type of analysis for orphan CFTR missense mutations can improve CF genetic counseling. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  11. Dynamics of mutated GFAP aggregates revealed by real-time imaging of an astrocyte model of Alexander disease.

    PubMed

    Mignot, Cyril; Delarasse, Cécile; Escaich, Séverine; Della Gaspera, Bruno; Noé, Eric; Colucci-Guyon, Emma; Babinet, Charles; Pekny, Milos; Vicart, Patrick; Boespflug-Tanguy, Odile; Dautigny, André; Rodriguez, Diana; Pham-Dinh, Danielle

    2007-08-01

    Alexander disease (AxD) is a rare neurodegenerative disorder characterized by large cytoplasmic aggregates in astrocytes and myelin abnormalities and caused by dominant mutations in the gene encoding glial fibrillary acidic protein (GFAP), the main intermediate filament protein in astrocytes. We tested the effects of three mutations (R236H, R76H and L232P) associated with AxD in cells transiently expressing mutated GFAP fused to green fluorescent protein (GFP). Mutated GFAP-GFP expressed in astrocytes formed networks or aggregates similar to those found in the brains of patients with the disease. Time-lapse recordings of living astrocytes showed that aggregates of mutated GFAP-GFP may either disappear, associated with cell survival, or coalesce in a huge juxtanuclear structure associated with cell death. Immunolabeling of fixed cells suggested that this gathering of aggregates forms an aggresome-like structure. Proteasome inhibition and immunoprecipitation assays revealed mutated GFAP-GFP ubiquitination, suggesting a role of the ubiquitin-proteasome system in the disaggregation process. In astrocytes from wild-type-, GFAP-, and vimentin-deficient mice, mutated GFAP-GFP aggregated or formed a network, depending on qualitative and quantitative interactions with normal intermediate filament partners. Particularly, vimentin displayed an anti-aggregation effect on mutated GFAP. Our data indicate a dynamic and reversible aggregation of mutated GFAP, suggesting that therapeutic approaches may be possible.

  12. Prediction of BRAF mutation status of craniopharyngioma using magnetic resonance imaging features.

    PubMed

    Yue, Qi; Yu, Yang; Shi, Zhifeng; Wang, Yongfei; Zhu, Wei; Du, Zunguo; Yao, Zhenwei; Chen, Liang; Mao, Ying

    2017-10-06

    OBJECTIVE Treatment with a BRAF mutation inhibitor might shrink otherwise refractory craniopharyngiomas and is a promising preoperative treatment to facilitate tumor resection. The aim of this study was to investigate the noninvasive diagnosis of BRAF-mutated craniopharyngiomas based on MRI characteristics. METHODS Fifty-two patients with pathologically diagnosed craniopharyngioma were included in this study. Polymerase chain reaction was performed on tumor tissue specimens to detect BRAF and CTNNB1 mutations. MRI manifestations-including tumor location, size, shape, and composition; signal intensity of cysts; enhancement pattern; pituitary stalk morphology; and encasement of the internal carotid artery-were analyzed by 2 neuroradiologists blinded to patient identity and clinical characteristics, including BRAF mutation status. Results were compared between the BRAF-mutated and wild-type (WT) groups. Characteristics that were significantly more prevalent (p < 0.05) in the BRAF-mutated craniopharyngiomas were defined as diagnostic features. The minimum number of diagnostic features needed to make a diagnosis was determined by analyzing the receiver operating characteristic (ROC) curve. RESULTS Eight of the 52 patients had BRAF-mutated craniopharyngiomas, and the remaining 44 had BRAF WT tumors. The clinical characteristics did not differ significantly between the 2 groups. Interobserver agreement for MRI data analysis was relatively reliable, with values of Cohen κ ranging from 0.65 to 0.97 (p < 0.001). A comparison of findings in the 2 patient groups showed that BRAF-mutated craniopharyngiomas tended to be suprasellar (p < 0.001), spherical (p = 0.005), predominantly solid (p = 0.003), and homogeneously enhancing (p < 0.001), and that patients with these tumors tended to have a thickened pituitary stalk (p = 0.014). When at least 3 of these 5 features were present, a tumor might be identified as BRAF mutated with a sensitivity of 1.00 and a specificity of 0.91. The area under the ROC curve for the sum of all 5 diagnostic criteria was 0.989 (p < 0.001). CONCLUSIONS The BRAF mutation status of craniopharyngiomas might be predicted using certain MRI features with relatively high sensitivity and specificity, thus offering potential guidance for the preoperative administration of BRAF mutation inhibitors.

  13. ADAM10 Missense Mutations Potentiate β-Amyloid Accumulation by Impairing Prodomain Chaperone Function

    PubMed Central

    Suh, Jaehong; Choi, Se Hoon; Romano, Donna M.; Gannon, Moira A.; Lesinski, Andrea N.; Kim, Doo Yeon; Tanzi, Rudolph E.

    2014-01-01

    SUMMARY The generation of Aβ, the main component of senile plaques in Alzheimer’s disease (AD), is precluded by α-secretase cleavage within the Aβ domain of the amyloid precursor protein (APP). We identified two rare mutations (Q170H and R181G) in the prodomain of the metalloprotease, ADAM10, that co-segregate with late-onset AD (LOAD). Here, we addressed the pathogenicity of these mutations in transgenic mice expressing human ADAM10 in brain. In Tg2576 AD mice, both mutations attenuated α-secretase activity of ADAM10 and shifted APP processing toward β-secretase-mediated cleavage, while enhancing Aβ plaque load and reactive gliosis. We also demonstrated ADAM10 expression potentiates adult hippocampal neurogenesis, which is reduced by the LOAD mutations. Mechanistically, both LOAD mutations impaired the molecular chaperone activity of ADAM10 prodomain. Collectively, these findings suggest that diminished α-secretase activity, owing to LOAD ADAM10 prodomain mutations, leads to AD-related pathology, strongly supporting ADAM10 as a promising therapeutic target for this devastating disease. PMID:24055016

  14. ADAM10 missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone function.

    PubMed

    Suh, Jaehong; Choi, Se Hoon; Romano, Donna M; Gannon, Moira A; Lesinski, Andrea N; Kim, Doo Yeon; Tanzi, Rudolph E

    2013-10-16

    The generation of Aβ, the main component of senile plaques in Alzheimer's disease (AD), is precluded by α-secretase cleavage within the Aβ domain of the amyloid precursor protein (APP). We identified two rare mutations (Q170H and R181G) in the prodomain of the metalloprotease, ADAM10, that cosegregate with late-onset AD (LOAD). Here, we addressed the pathogenicity of these mutations in transgenic mice expressing human ADAM10 in brain. In Tg2576 AD mice, both mutations attenuated α-secretase activity of ADAM10 and shifted APP processing toward β-secretase-mediated cleavage, while enhancing Aβ plaque load and reactive gliosis. We also demonstrated ADAM10 expression potentiates adult hippocampal neurogenesis, which is reduced by the LOAD mutations. Mechanistically, both LOAD mutations impaired the molecular chaperone activity of ADAM10 prodomain. Collectively, these findings suggest that diminished α-secretase activity, owing to LOAD ADAM10 prodomain mutations, leads to AD-related pathology, strongly supporting ADAM10 as a promising therapeutic target for this devastating disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Mitochondrial DNA mutations and cognition: a case-series report.

    PubMed

    Inczedy-Farkas, Gabriella; Trampush, Joey W; Perczel Forintos, Dora; Beech, Danielle; Andrejkovics, Monika; Varga, Zsofia; Remenyi, Viktoria; Bereznai, Benjamin; Gal, Aniko; Molnar, Maria Judit

    2014-06-01

    Mutations in the mitochondrial genome can impair normal metabolic function in the central nervous system (CNS) where cellular energy demand is high. Primary mitochondrial DNA (mtDNA) mutations have been linked to several mitochondrial disorders that have comorbid psychiatric, neurologic, and cognitive sequelae. Here, we present a series of cases with primary mtDNA mutations who were genotyped and evaluated across a common neuropsychological battery. Nineteen patients with mtDNA mutations were genotyped and clinically and cognitively evaluated. Pronounced deficits in nonverbal/visuoperceptual reasoning, verbal recall, semantic word generativity, and processing speed were evident and consistent with a "mitochondrial dementia" that has been posited. However, variation in cognitive performance was noteworthy, suggesting that the phenotypic landscape of cognition linked to primary mtDNA mutations is heterogeneous. Our patients with mtDNA mutations evidenced cognitive deficits quite similar to those commonly seen in Alzheimer's disease and could have clinical relevance to the evaluation of dementia. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. An Evolutionary Approach for Identifying Driver Mutations in Colorectal Cancer

    PubMed Central

    Leder, Kevin; Riester, Markus; Iwasa, Yoh; Lengauer, Christoph; Michor, Franziska

    2015-01-01

    The traditional view of cancer as a genetic disease that can successfully be treated with drugs targeting mutant onco-proteins has motivated whole-genome sequencing efforts in many human cancer types. However, only a subset of mutations found within the genomic landscape of cancer is likely to provide a fitness advantage to the cell. Distinguishing such “driver” mutations from innocuous “passenger” events is critical for prioritizing the validation of candidate mutations in disease-relevant models. We design a novel statistical index, called the Hitchhiking Index, which reflects the probability that any observed candidate gene is a passenger alteration, given the frequency of alterations in a cross-sectional cancer sample set, and apply it to a mutational data set in colorectal cancer. Our methodology is based upon a population dynamics model of mutation accumulation and selection in colorectal tissue prior to cancer initiation as well as during tumorigenesis. This methodology can be used to aid in the prioritization of candidate mutations for functional validation and contributes to the process of drug discovery. PMID:26379039

  17. A neutral theory for interpreting correlations between species and genetic diversity in communities.

    PubMed

    Laroche, Fabien; Jarne, Philippe; Lamy, Thomas; David, Patrice; Massol, Francois

    2015-01-01

    Spatial patterns of biological diversity have been extensively studied in ecology and population genetics, because they reflect the forces acting on biodiversity. A growing number of studies have found that genetic (within-species) and species diversity can be correlated in space (the so-called species-gene diversity correlation [SGDC]), which suggests that they are controlled by nonindependent processes. Positive SGDCs are generally assumed to arise from parallel responses of genetic and species diversity to variation in site size and connectivity. However, this argument implicitly assumes a neutral model that has yet to be developed. Here, we build such a model to predict SGDC in a metacommunity. We describe how SGDC emerges from competition within sites and variation in connectivity and carrying capacity among sites. We then introduce the formerly ignored mutation process, which affects genetic but not species diversity. When mutation rate is low, our model confirms that variation in the number of migrants among sites creates positive SGDCs. However, when considering high mutation rates, interactions between mutation, migration, and competition can produce negative SGDCs. Neutral processes thus do not always contribute positively to SGDCs. Our approach provides empirical guidelines for interpreting these novel patterns in natura with respect to evolutionary and ecological forces shaping metacommunities.

  18. Mutational analysis of PI3K/AKT and RAS/RAF pathway activation in malignant salivary gland tumours with a new mutation of PIK3CA.

    PubMed

    Shalmon, B; Drendel, M; Wolf, M; Hirshberg, A; Cohen, Y

    2016-06-01

    The phosphoinositide 3-kinase (PIK3)/v-akt murine thymoma (AKT) oncogene pathway and the RAS/RAF pathway are involved in regulating the signalling of multiple biological processes, including apoptosis, metabolism, cell proliferation, and cell growth. Mutations in the genes within these pathways are frequently found in several tumours. The aim of this study was to investigate the frequency of mutations in the PIK3CA, BRAF, and KRAS genes in cases of malignant salivary gland tumours. Mutational analysis of the PIK3CA, KRAS, and BRAF genes was performed by direct sequencing of material from 21 patients with malignant salivary gland tumours who underwent surgery between 1992 and 2001. No mutations were found in the KRAS exon 2, BRAF exon 15, or PIK3CA exon 9 genes. However, an unpublished mutation of the PIK3CA gene in exon 20 (W1051 stop mutation) was found in one case of adenocarcinoma NOS. The impact of this mutation on the biological behaviour of the tumour has yet to be explored, however the patient with adenocarcinoma NOS harbouring this mutation has survived for over 20 years following surgery despite a high stage at presentation. Further studies with more homogeneous patient cohorts are needed to address whether this mutation reflects a different clinical presentation and may benefit from targeted treatment strategies. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Hybridization-Induced Aggregation Technology for Practical Clinical Testing: KRAS Mutation Detection in Lung and Colorectal Tumors.

    PubMed

    Sloane, Hillary S; Landers, James P; Kelly, Kimberly A

    2016-07-01

    KRAS mutations have emerged as powerful predictors of response to targeted therapies in the treatment of lung and colorectal cancers; thus, prospective KRAS genotyping is essential for appropriate treatment stratification. Conventional mutation testing technologies are not ideal for routine clinical screening, as they often involve complex, time-consuming processes and/or costly instrumentation. In response, we recently introduced a unique analytical strategy for revealing KRAS mutations, based on the allele-specific hybridization-induced aggregation (HIA) of oligonucleotide probe-conjugated microbeads. Using simple, inexpensive instrumentation, this approach allows for the detection of any common KRAS mutation in <10 minutes after PCR. Here, we evaluate the clinical utility of the HIA method for mutation detection (HIAMD). In the analysis of 20 lung and colon tumor pathology specimens, we observed a 100% correlation between the KRAS mutation statuses determined by HIAMD and sequencing. In addition, we were able to detect KRAS mutations in a background of 75% wild-type DNA-a finding consistent with that reported for sequencing. With this, we show that HIAMD allows for the rapid and cost-effective detection of KRAS mutations, without compromising analytical performance. These results indicate the validity of HIAMD as a mutation-testing technology suitable for practical clinical testing. Further expansion of this platform may involve the detection of mutations in other key oncogenic pathways. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  20. Rapid BRAF mutation tests in patients with advanced melanoma: comparison of immunohistochemistry, Droplet Digital PCR, and the Idylla Mutation Platform

    PubMed Central

    Bisschop, Cornelis; ter Elst, Arja; Bosman, Lisette J.; Platteel, Inge; Jalving, Mathilde; van den Berg, Anke; Diepstra, Arjan; van Hemel, Bettien; Diercks, Gilles F.H.; Hospers, Geke A.P.

    2018-01-01

    BRAF mutational testing has become a common practice in the diagnostic process of patients with advanced melanoma. Although time-consuming, DNA sequencing techniques are the current gold standard for mutational testing. However, in certain clinical situations, a rapid test result is required. In this study, the performance of three rapid BRAF mutation tests was compared. Thirty-nine formalin-fixed paraffin-embedded melanoma tissue samples collected between 2007 and 2014 at a single center were included. These samples were analyzed by immunohistochemistry using the anti-BRAF-V600E (VE1) mouse monocolonal antibody (BRAF-VE1 IHC), a V600E-specific Droplet Digital PCR Test, and the Idylla BRAF- Mutation Test (Idylla). Results were compared with the results of conventional BRAF mutation testing, performed using high-resolution melting analysis followed by Sanger sequencing. Next-generation sequencing was performed on samples with discordant results. The Idylla test and Droplet Digital PCR Test correctly identified all mutated and wild-type samples. BRAF-VE1 IHC showed one discordant result. The Idylla test could identify BRAF-V600 mutations other than BRAF-V600E and was the fastest and least laborious test. The Idylla Mutation Test is the most suitable test for rapid BRAF testing in clinical situations on the basis of the broad coverage of treatment-responsive mutations and the fast procedure without the need to perform a DNA isolation step. PMID:29232304

  1. Mutation Rates across Budding Yeast Chromosome VI Are Correlated with Replication Timing

    PubMed Central

    Lang, Gregory I.; Murray, Andrew W.

    2011-01-01

    Previous experimental studies suggest that the mutation rate is nonuniform across the yeast genome. To characterize this variation across the genome more precisely, we measured the mutation rate of the URA3 gene integrated at 43 different locations tiled across Chromosome VI. We show that mutation rate varies 6-fold across a single chromosome, that this variation is correlated with replication timing, and we propose a model to explain this variation that relies on the temporal separation of two processes for replicating past damaged DNA: error-free DNA damage tolerance and translesion synthesis. This model is supported by the observation that eliminating translesion synthesis decreases this variation. PMID:21666225

  2. Diverse growth hormone receptor gene mutations in Laron syndrome.

    PubMed Central

    Berg, M A; Argente, J; Chernausek, S; Gracia, R; Guevara-Aguirre, J; Hopp, M; Pérez-Jurado, L; Rosenbloom, A; Toledo, S P; Francke, U

    1993-01-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), we analyzed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. We amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). We identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71 + 1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, we determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations we identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. We conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. Images Figure 1 Figure 2 PMID:8488849

  3. Association of a novel point mutation in MSH2 gene with familial multiple primary cancers.

    PubMed

    Hu, Hai; Li, Hong; Jiao, Feng; Han, Ting; Zhuo, Meng; Cui, Jiujie; Li, Yixue; Wang, Liwei

    2017-10-03

    Multiple primary cancers (MPC) have been identified as two or more cancers without any subordinate relationship that occur either simultaneously or metachronously in the same or different organs of an individual. Lynch syndrome is an autosomal dominant genetic disorder that increases the risk of many types of cancers. Lynch syndrome patients who suffer more than two cancers can also be considered as MPC; patients of this kind provide unique resources to learn how genetic mutation causes MPC in different tissues. We performed a whole genome sequencing on blood cells and two tumor samples of a Lynch syndrome patient who was diagnosed with five primary cancers. The mutational landscape of the tumors, including somatic point mutations and copy number alternations, was characterized. We also compared Lynch syndrome with sporadic cancers and proposed a model to illustrate the mutational process by which Lynch syndrome progresses to MPC. We revealed a novel pathologic mutation on the MSH2 gene (G504 splicing) that associates with Lynch syndrome. Systematical comparison of the mutation landscape revealed that multiple cancers in the proband were evolutionarily independent. Integrative analysis showed that truncating mutations of DNA mismatch repair (MMR) genes were significantly enriched in the patient. A mutation progress model that included germline mutations of MMR genes, double hits of MMR system, mutations in tissue-specific driver genes, and rapid accumulation of additional passenger mutations was proposed to illustrate how MPC occurs in Lynch syndrome patients. Our findings demonstrate that both germline and somatic alterations are driving forces of carcinogenesis, which may resolve the carcinogenic theory of Lynch syndrome.

  4. Stationary stability for evolutionary dynamics in finite populations

    DOE PAGES

    Harper, Marc; Fryer, Dashiell

    2016-08-25

    Here, we demonstrate a vast expansion of the theory of evolutionary stability to finite populations with mutation, connecting the theory of the stationary distribution of the Moran process with the Lyapunov theory of evolutionary stability. We define the notion of stationary stability for the Moran process with mutation and generalizations, as well as a generalized notion of evolutionary stability that includes mutation called an incentive stable state (ISS) candidate. For sufficiently large populations, extrema of the stationary distribution are ISS candidates and we give a family of Lyapunov quantities that are locally minimized at the stationary extrema and at ISSmore » candidates. In various examples, including for the Moran andWright–Fisher processes, we show that the local maxima of the stationary distribution capture the traditionally-defined evolutionarily stable states. The classical stability theory of the replicator dynamic is recovered in the large population limit. Finally we include descriptions of possible extensions to populations of variable size and populations evolving on graphs.« less

  5. Mutation mechanisms that underlie turnover of a human telomere-adjacent segmental duplication containing an unstable minisatellite.

    PubMed

    Hills, Mark; Jeyapalan, Jennie N; Foxon, Jennifer L; Royle, Nicola J

    2007-04-01

    Subterminal regions, juxtaposed to telomeres on human chromosomes, contain a high density of segmental duplications, but relatively little is known about the evolutionary processes that underlie sequence turnover in these regions. We have characterized a segmental duplication adjacent to the Xp/Yp telomere, each copy containing a hypervariable array of the DXYS14 minisatellite. Both DXYS14 repeat arrays mutate at a high rate (0.3 and 0.2% per gamete) but linkage disequilibrium analysis across 27 SNPs and a direct crossover assay show that recombination during meiosis is suppressed. Therefore instability at DXYS14a and b is dominated by intra-allelic processes or possibly conversion limited to the repeat arrays. Furthermore some chromosomes (14%) carry only one copy of the duplicon, including one DXYS14 repeat array that is also highly mutable (1.2% per gamete). To explain these and other observations, we propose there is another low-rate mutation process that causes copy number change in part or all of the duplicon.

  6. "Bad Luck Mutations": DNA Mutations Are not the Whole Answer to Understanding Cancer Risk.

    PubMed

    Trosko, James E; Carruba, Giuseppe

    2017-01-01

    It has been proposed that many human cancers are generated by intrinsic mechanisms that produce "Bad Luck" mutations by the proliferation of organ-specific adult stem cells. There have been serious challenges to this interpretation, including multiple extrinsic factors thought to be correlated with mutations found in cancers associated with these exposures. While support for both interpretations provides some validity, both interpretations ignore several concepts of the multistage, multimechanism process of carcinogenesis, namely, (1) mutations can be generated by both "errors of DNA repair" and "errors of DNA replication," during the "initiation" process of carcinogenesis; (2) "initiated" stem cells must be clonally amplified by nonmutagenic, intrinsic or extrinsic epigenetic mechanisms; (3) organ-specific stem cell numbers can be modified during in utero development, thereby altering the risk to cancer later in life; and (4) epigenetic tumor promoters are characterized by species, individual genetic-, gender-, developmental state-specificities, and threshold levels to be active; sustained and long-term exposures; and exposures in the absence of antioxidant "antipromoters." Because of the inevitability of some of the stem cells generating "initiating" mutations by either "errors of DNA repair" or "errors of DNA replication," a tumor is formed depending on the promotion phase of carcinogenesis. While it is possible to reduce our frequencies of mutagenic "initiated" cells, one can never reduce it to zero. Because of the extended period of the promotion phase of carcinogenesis, strategies to reduce the appearance of cancers must involve the interruption of the promotion of these initiated cells.

  7. Transcription factor YY1 can control AID-mediated mutagenesis in mice.

    PubMed

    Zaprazna, Kristina; Basu, Arindam; Tom, Nikola; Jha, Vibha; Hodawadekar, Suchita; Radova, Lenka; Malcikova, Jitka; Tichy, Boris; Pospisilova, Sarka; Atchison, Michael L

    2018-02-01

    Activation-induced cytidine deminase (AID) is crucial for controlling the immunoglobulin (Ig) diversification processes of somatic hypermutation (SHM) and class switch recombination (CSR). AID initiates these processes by deamination of cytosine, ultimately resulting in mutations or double strand DNA breaks needed for SHM and CSR. Levels of AID control mutation rates, and off-target non-Ig gene mutations can contribute to lymphomagenesis. Therefore, factors that control AID levels in the nucleus can regulate SHM and CSR, and may contribute to disease. We previously showed that transcription factor YY1 can regulate the level of AID in the nucleus and Ig CSR. Therefore, we hypothesized that conditional knock-out of YY1 would lead to reduction in AID localization at the Ig locus, and reduced AID-mediated mutations. Using mice that overexpress AID (IgκAID yy1 f/f ) or that express normal AID levels (yy1 f/f ), we found that conditional knock-out of YY1 results in reduced AID nuclear levels, reduced localization of AID to the Sμ switch region, and reduced AID-mediated mutations. We find that the mechanism of YY1 control of AID nuclear accumulation is likely due to YY1-AID physical interaction which blocks AID ubiquitination. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents

    DOE PAGES

    Merlevede, Jane; Droin, Nathalie; Qin, Tingting; ...

    2016-02-24

    The cytidine analogues azacytidine and 5-aza-2’-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14 ± 5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents ismore » associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Lastly, our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect.« less

  9. New observations on maternal age effect on germline de novo mutations.

    PubMed

    Wong, Wendy S W; Solomon, Benjamin D; Bodian, Dale L; Kothiyal, Prachi; Eley, Greg; Huddleston, Kathi C; Baker, Robin; Thach, Dzung C; Iyer, Ramaswamy K; Vockley, Joseph G; Niederhuber, John E

    2016-01-19

    Germline mutations are the source of evolution and contribute substantially to many health-related processes. Here we use whole-genome deep sequencing data from 693 parents-offspring trios to examine the de novo point mutations (DNMs) in the offspring. Our estimate for the mutation rate per base pair per generation is 1.05 × 10(-8), well within the range of previous studies. We show that maternal age has a small but significant correlation with the total number of DNMs in the offspring after controlling for paternal age (0.51 additional mutations per year, 95% CI: 0.29, 0.73), which was not detectable in the smaller and younger parental cohorts of earlier studies. Furthermore, while the total number of DNMs increases at a constant rate for paternal age, the contribution from the mother increases at an accelerated rate with age.These observations have implications related to the incidence of de novo mutations relating to maternal age.

  10. Social Learning in the Ultimatum Game

    PubMed Central

    Zhang, Boyu

    2013-01-01

    In the ultimatum game, two players divide a sum of money. The proposer suggests how to split and the responder can accept or reject. If the suggestion is rejected, both players get nothing. The rational solution is that the responder accepts even the smallest offer but humans prefer fair share. In this paper, we study the ultimatum game by a learning-mutation process based on quantal response equilibrium, where players are assumed boundedly rational and make mistakes when estimating the payoffs of strategies. Social learning is never stabilized at the fair outcome or the rational outcome, but leads to oscillations from offering 40 percent to 50 percent. To be precise, there is a clear tendency to increase the mean offer if it is lower than 40 percent, but will decrease when it reaches the fair offer. If mutations occur rarely, fair behavior is favored in the limit of local mutation. If mutation rate is sufficiently high, fairness can evolve for both local mutation and global mutation. PMID:24023950

  11. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents

    PubMed Central

    Merlevede, Jane; Droin, Nathalie; Qin, Tingting; Meldi, Kristen; Yoshida, Kenichi; Morabito, Margot; Chautard, Emilie; Auboeuf, Didier; Fenaux, Pierre; Braun, Thorsten; Itzykson, Raphael; de Botton, Stéphane; Quesnel, Bruno; Commes, Thérèse; Jourdan, Eric; Vainchenker, William; Bernard, Olivier; Pata-Merci, Noemie; Solier, Stéphanie; Gayevskiy, Velimir; Dinger, Marcel E.; Cowley, Mark J.; Selimoglu-Buet, Dorothée; Meyer, Vincent; Artiguenave, François; Deleuze, Jean-François; Preudhomme, Claude; Stratton, Michael R.; Alexandrov, Ludmil B.; Padron, Eric; Ogawa, Seishi; Koscielny, Serge; Figueroa, Maria; Solary, Eric

    2016-01-01

    The cytidine analogues azacytidine and 5-aza-2'-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14±5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect. PMID:26908133

  12. Faster-X evolution: Theory and evidence from Drosophila.

    PubMed

    Charlesworth, Brian; Campos, José L; Jackson, Benjamin C

    2018-02-12

    A faster rate of adaptive evolution of X-linked genes compared with autosomal genes can be caused by the fixation of recessive or partially recessive advantageous mutations, due to the full expression of X-linked mutations in hemizygous males. Other processes, including recombination rate and mutation rate differences between X chromosomes and autosomes, may also cause faster evolution of X-linked genes. We review population genetics theory concerning the expected relative values of variability and rates of evolution of X-linked and autosomal DNA sequences. The theoretical predictions are compared with data from population genomic studies of several species of Drosophila. We conclude that there is evidence for adaptive faster-X evolution of several classes of functionally significant nucleotides. We also find evidence for potential differences in mutation rates between X-linked and autosomal genes, due to differences in mutational bias towards GC to AT mutations. Many aspects of the data are consistent with the male hemizygosity model, although not all possible confounding factors can be excluded. © 2018 John Wiley & Sons Ltd.

  13. Mutations in the putative calcium-binding domain of polyomavirus VP1 affect capsid assembly

    NASA Technical Reports Server (NTRS)

    Haynes, J. I. 2nd; Chang, D.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Calcium ions appear to play a major role in maintaining the structural integrity of the polyomavirus and are likely involved in the processes of viral uncoating and assembly. Previous studies demonstrated that a VP1 fragment extending from Pro-232 to Asp-364 has calcium-binding capabilities. This fragment contains an amino acid stretch from Asp-266 to Glu-277 which is quite similar in sequence to the amino acids that make up the calcium-binding EF hand structures found in many proteins. To assess the contribution of this domain to polyomavirus structural integrity, the effects of mutations in this region were examined by transfecting mutated viral DNA into susceptible cells. Immunofluorescence studies indicated that although viral protein synthesis occurred normally, infective viral progeny were not produced in cells transfected with polyomavirus genomes encoding either a VP1 molecule lacking amino acids Thr-262 through Gly-276 or a VP1 molecule containing a mutation of Asp-266 to Ala. VP1 molecules containing the deletion mutation were unable to bind 45Ca in an in vitro assay. Upon expression in Escherichia coli and purification by immunoaffinity chromatography, wild-type VP1 was isolated as pentameric, capsomere-like structures which could be induced to form capsid-like structures upon addition of CaCl2, consistent with previous studies. However, although VP1 containing the point mutation was isolated as pentamers which were indistinguishable from wild-type VP1 pentamers, addition of CaCl2 did not result in their assembly into capsid-like structures. Immunogold labeling and electron microscopy studies of transfected mammalian cells provided in vivo evidence that a mutation in this region affects the process of viral assembly.

  14. MutSpec: a Galaxy toolbox for streamlined analyses of somatic mutation spectra in human and mouse cancer genomes.

    PubMed

    Ardin, Maude; Cahais, Vincent; Castells, Xavier; Bouaoun, Liacine; Byrnes, Graham; Herceg, Zdenko; Zavadil, Jiri; Olivier, Magali

    2016-04-18

    The nature of somatic mutations observed in human tumors at single gene or genome-wide levels can reveal information on past carcinogenic exposures and mutational processes contributing to tumor development. While large amounts of sequencing data are being generated, the associated analysis and interpretation of mutation patterns that may reveal clues about the natural history of cancer present complex and challenging tasks that require advanced bioinformatics skills. To make such analyses accessible to a wider community of researchers with no programming expertise, we have developed within the web-based user-friendly platform Galaxy a first-of-its-kind package called MutSpec. MutSpec includes a set of tools that perform variant annotation and use advanced statistics for the identification of mutation signatures present in cancer genomes and for comparing the obtained signatures with those published in the COSMIC database and other sources. MutSpec offers an accessible framework for building reproducible analysis pipelines, integrating existing methods and scripts developed in-house with publicly available R packages. MutSpec may be used to analyse data from whole-exome, whole-genome or targeted sequencing experiments performed on human or mouse genomes. Results are provided in various formats including rich graphical outputs. An example is presented to illustrate the package functionalities, the straightforward workflow analysis and the richness of the statistics and publication-grade graphics produced by the tool. MutSpec offers an easy-to-use graphical interface embedded in the popular Galaxy platform that can be used by researchers with limited programming or bioinformatics expertise to analyse mutation signatures present in cancer genomes. MutSpec can thus effectively assist in the discovery of complex mutational processes resulting from exogenous and endogenous carcinogenic insults.

  15. Ras1 interacts with multiple new signaling and cytoskeletal loci in Drosophila eggshell patterning and morphogenesis.

    PubMed Central

    Schnorr, J D; Holdcraft, R; Chevalier, B; Berg, C A

    2001-01-01

    Little is known about the genes that interact with Ras signaling pathways to regulate morphogenesis. The synthesis of dorsal eggshell structures in Drosophila melanogaster requires multiple rounds of Ras signaling followed by dramatic epithelial sheet movements. We took advantage of this process to identify genes that link patterning and morphogenesis; we screened lethal mutations on the second chromosome for those that could enhance a weak Ras1 eggshell phenotype. Of 1618 lethal P-element mutations tested, 13 showed significant enhancement, resulting in forked and fused dorsal appendages. Our genetic and molecular analyses together with information from the Berkeley Drosophila Genome Project reveal that 11 of these lines carry mutations in previously characterized genes. Three mutations disrupt the known Ras1 cell signaling components Star, Egfr, and Blistered, while one mutation disrupts Sec61beta, implicated in ligand secretion. Seven lines represent cell signaling and cytoskeletal components that are new to the Ras1 pathway; these are Chickadee (Profilin), Tec29, Dreadlocks, POSH, Peanut, Smt3, and MESK2, a suppressor of dominant-negative Ksr. A twelfth insertion disrupts two genes, Nrk, a "neurospecific" receptor tyrosine kinase, and Tpp, which encodes a neuropeptidase. These results suggest that Ras1 signaling during oogenesis involves novel components that may be intimately associated with additional signaling processes and with the reorganization of the cytoskeleton. To determine whether these Ras1 Enhancers function upstream or downstream of the Egf receptor, four mutations were tested for their ability to suppress an activated Egfr construct (lambdatop) expressed in oogenesis exclusively in the follicle cells. Mutations in Star and l(2)43Bb had no significant effect upon the lambdatop eggshell defect whereas smt3 and dock alleles significantly suppressed the lambdatop phenotype. PMID:11606538

  16. Ras1 interacts with multiple new signaling and cytoskeletal loci in Drosophila eggshell patterning and morphogenesis.

    PubMed

    Schnorr, J D; Holdcraft, R; Chevalier, B; Berg, C A

    2001-10-01

    Little is known about the genes that interact with Ras signaling pathways to regulate morphogenesis. The synthesis of dorsal eggshell structures in Drosophila melanogaster requires multiple rounds of Ras signaling followed by dramatic epithelial sheet movements. We took advantage of this process to identify genes that link patterning and morphogenesis; we screened lethal mutations on the second chromosome for those that could enhance a weak Ras1 eggshell phenotype. Of 1618 lethal P-element mutations tested, 13 showed significant enhancement, resulting in forked and fused dorsal appendages. Our genetic and molecular analyses together with information from the Berkeley Drosophila Genome Project reveal that 11 of these lines carry mutations in previously characterized genes. Three mutations disrupt the known Ras1 cell signaling components Star, Egfr, and Blistered, while one mutation disrupts Sec61beta, implicated in ligand secretion. Seven lines represent cell signaling and cytoskeletal components that are new to the Ras1 pathway; these are Chickadee (Profilin), Tec29, Dreadlocks, POSH, Peanut, Smt3, and MESK2, a suppressor of dominant-negative Ksr. A twelfth insertion disrupts two genes, Nrk, a "neurospecific" receptor tyrosine kinase, and Tpp, which encodes a neuropeptidase. These results suggest that Ras1 signaling during oogenesis involves novel components that may be intimately associated with additional signaling processes and with the reorganization of the cytoskeleton. To determine whether these Ras1 Enhancers function upstream or downstream of the Egf receptor, four mutations were tested for their ability to suppress an activated Egfr construct (lambdatop) expressed in oogenesis exclusively in the follicle cells. Mutations in Star and l(2)43Bb had no significant effect upon the lambdatop eggshell defect whereas smt3 and dock alleles significantly suppressed the lambdatop phenotype.

  17. Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations.

    PubMed

    Pellagatti, Andrea; Armstrong, Richard N; Steeples, Violetta; Sharma, Eshita; Repapi, Emmanouela; Singh, Shalini; Sanchi, Andrea; Radujkovic, Aleksandar; Horn, Patrick; Dolatshad, Hamid; Roy, Swagata; Broxholme, John; Lockstone, Helen; Taylor, Stephen; Giagounidis, Aristoteles; Vyas, Paresh; Schuh, Anna; Hamblin, Angela; Papaemmanuil, Elli; Killick, Sally; Malcovati, Luca; Hennrich, Marco L; Gavin, Anne-Claude; Ho, Anthony D; Luft, Thomas; Hellström-Lindberg, Eva; Cazzola, Mario; Smith, Christopher W J; Smith, Stephen; Boultwood, Jacqueline

    2018-06-21

    SF3B1, SRSF2 and U2AF1 are the most frequently mutated splicing factor genes in the myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic analysis to determine the impact of these commonly mutated splicing factors on pre-mRNA splicing in the bone marrow stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in CD34 + cells of 84 MDS patients. Splicing factor mutations result in different alterations in splicing and largely affect different genes, but these converge in common dysregulated pathways and cellular processes, focused on RNA splicing, protein synthesis and mitochondrial dysfunction, suggesting common mechanisms of action in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology associated with splicing factor mutations in MDS, whilst several others have not been previously associated with MDS, such as sirtuin signaling. We identified aberrantly spliced events associated with clinical variables, and isoforms which independently predict survival in MDS and implicate dysregulation of focal adhesion and extracellular exosomes as drivers of poor survival. Aberrantly spliced genes and dysregulated pathways were identified in the MDS-affected lineages in splicing factor mutant MDS. Functional studies demonstrated that knockdown of the mitosis regulators SEPT2 and AKAP8, aberrantly spliced target genes of SF3B1 and SRSF2 mutations respectively, led to impaired erythroid cell growth and differentiation. This study illuminates the impact of the common spliceosome mutations on the MDS phenotype and provides novel insights into disease pathophysiology. Copyright © 2018 American Society of Hematology.

  18. Effect of CHEK2 missense variant I157T on the risk of breast cancer in carriers of other CHEK2 or BRCA1 mutations.

    PubMed

    Cybulski, C; Górski, B; Huzarski, T; Byrski, T; Gronwald, J; Debniak, T; Wokolorczyk, D; Jakubowska, A; Serrano-Fernández, P; Dork, T; Narod, S A; Lubinski, J

    2009-02-01

    Carriers of heterozygous mutations in CHEK2 or BRCA1 are at increased risk of breast cancer. These mutations are rare and a very small number of women in a population will carry two mutations. However, it is of interest to estimate the breast cancer risks associated with carrying two mutations because this information may be informative for genetic counsellors and may provide clues to the carcinogenic process. We genotyped 7782 Polish breast cancer patients and 6233 controls for seven founder mutations in BRCA1 and CHEK2. Odds ratios (OR) and 95% confidence intervals (CI) were estimated for the mutations, singly and in combination. Of the 7782 women with breast cancer, 1091 had one mutation (14.0%) and 37 had two mutations (0.5%). Compared to controls, the odds ratio for a BRCA1 mutation in isolation was 13.1 (95% CI 8.2 to 21). The odds ratio was smaller for BRCA1 mutation carriers who also carried a CHEK2 mutation (OR 6.6, 95% CI 1.5 to 29), but the difference was not statistically significant. In contrast, the odds ratio for women who carried two CHEK2 mutations (OR 3.9, 95% CI 1.5 to 10) was greater than that for women who carried one CHEK2 mutation (OR 1.9, 95% CI 1.6 to 2.1). The odds ratio for women who carried both a truncating mutation and the missense mutation in CHEK2 was 7.0 (95% CI 0.9 to 56) and was greater than for women who carried the truncating mutation alone (OR 3.3, 95% CI 2.4 to 4.3) or the missense mutation alone (OR 1.6, 95% CI 1.4 to 1.9), but the difference was not statistically significant. Our study suggests that the risk of breast cancer in carriers of a deleterious CHEK2 mutation is increased if the second allele is the I157T missense variant. However, the presence of a CHEK2 mutation in women with a BRCA1 mutation may not increase their risk beyond that of the BRCA1 mutation alone. These suggestive findings need to be verified in other studies.

  19. Sls1p is a membrane-bound regulator of transcription-coupled processes involved in Saccharomyces cerevisiae mitochondrial gene expression.

    PubMed Central

    Bryan, Anthony C; Rodeheffer, Matthew S; Wearn, Christopher M; Shadel, Gerald S

    2002-01-01

    Mitochondrial translation is largely membrane-associated in S. cerevisiae. Recently, we discovered that the matrix protein Nam1p binds the amino-terminal domain of yeast mtRNA polymerase to couple translation and/or RNA-processing events to transcription. To gain additional insight into these transcription-coupled processes, we performed a genetic screen for genes that suppress the petite phenotype of a point mutation in mtRNA polymerase (rpo41-R129D) when overexpressed. One suppressor identified in this screen was SLS1, which encodes a mitochondrial membrane protein required for assembly of respiratory-chain enzyme complexes III and IV. The mtRNA-processing defects associated with the rpo41-R129D mutation were corrected in the suppressed strain, linking Sls1p to a pathway that includes mtRNA polymerase and Nam1p. This was supported by the observation that SLS1 overexpression rescued the petite phenotype of a NAM1 null mutation. In contrast, overexpression of Nam1p did not rescue the petite phenotype of a SLS1 null mutation, indicating that Nam1p and Sls1p are not functionally redundant but rather exist in an ordered pathway. On the basis of these data, a model in which Nam1p coordinates the delivery of newly synthesized transcripts to the membrane, where Sls1p directs or regulates their subsequent handling by membrane-bound factors involved in translation, is proposed. PMID:11805046

  20. Blocked recombinase polymerase amplification for mutation analysis of PIK3CA gene.

    PubMed

    Martorell, Sara; Palanca, Sarai; Maquieira, Ángel; Tortajada-Genaro, Luis A

    2018-03-01

    A blocked recombinase polymerase amplification (blocked-RPA) approach has been developed for the enrichment of mutated templates in heterogeneous specimens as tumor tissues. This isothermal amplification technique opens alternative solutions for meeting the technological demand of physician office laboratories. Herein, the detection of mutations in PIK3CA gene, such as p.E545K, and p.H1047L, is presented. The main element was an oligonucleotide (dideoxycytidine functionalized at 3'-end) which matched with wild-type sequence in the target locus. The amplification was performed operating at 37 °C during 40 min. The results demonstrated that the competition between the upstream primer and the blocker reduced the percentage of amplified wild-type allele, making the detection of the present mutation easier. For mutation discrimination, a fast hybridization assay was performed in microarray format on plastic chip and colorimetric detection. This approach enabled the reliable discrimination of specific mutations against a background of up to 95% wild-type DNA. The applicability of the method, based on the combination of blocked-RPA and low-cost chip hybridization, was successfully proven for the genotyping of various cancer cell lines as well as tumor tissues. The assignations agreed with those provided by next-generation sequencing. Therefore, these investigations would support a personalized approach to patient care based on the molecular signature of human cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Study on the generation technology of Li brocade pattern mutant genes based on the AI and Java technology

    NASA Astrophysics Data System (ADS)

    Zhou, Yuping; Zhang, Qi

    2018-04-01

    In the information environment, digital and information processing to Li brocade patterns reveals an important means of Li ethnic style and inheriting the national culture. Adobe Illustrator CS3 and Java language were used in the paper to make "variation" processing to Li brocade patterns, and generate "Li brocade pattern mutant genes". The generation of pattern mutant genes includes color mutation, shape mutation, adding and missing transform, and twisted transform, etc. Research shows that Li brocade pattern mutant genes can be generated by using the Adobe Illustrator CS3 and the image processing tools of Java language edit, etc.

  2. Finite-size effects and switching times for Moran process with mutation.

    PubMed

    DeVille, Lee; Galiardi, Meghan

    2017-04-01

    We consider the Moran process with two populations competing under an iterated Prisoner's Dilemma in the presence of mutation, and concentrate on the case where there are multiple evolutionarily stable strategies. We perform a complete bifurcation analysis of the deterministic system which arises in the infinite population size. We also study the Master equation and obtain asymptotics for the invariant distribution and metastable switching times for the stochastic process in the case of large but finite population. We also show that the stochastic system has asymmetries in the form of a skew for parameter values where the deterministic limit is symmetric.

  3. Compound heterozygous mutations in SLC30A2/ZnT2 results in low milk zinc concentrations: a novel mechanism for zinc deficiency in a breast-fed infant.

    PubMed

    Itsumura, Naoya; Inamo, Yasuji; Okazaki, Fumiko; Teranishi, Fumie; Narita, Hiroshi; Kambe, Taiho; Kodama, Hiroko

    2013-01-01

    Zinc concentrations in breast milk are considerably higher than those of the maternal serum, to meet the infant's requirements for normal growth and development. Thus, effective mechanisms ensuring secretion of large amounts of zinc into the milk operate in mammary epithelial cells during lactation. ZnT2 was recently found to play an essential role in the secretion of zinc into milk. Heterozygous mutations of human ZnT2 (hZnT2), including H54R and G87R, in mothers result in low (>75% reduction) secretion of zinc into the breast milk, and infants fed on the milk develop transient neonatal zinc deficiency. We identified two novel missense mutations in the SLC30A2/ZnT2 gene in a Japanese mother with low milk zinc concentrations (>90% reduction) whose infant developed severe zinc deficiency; a T to C transition (c.454T>C) at exon 4, which substitutes a tryptophan residue with an arginine residue (W152R), and a C to T transition (c.887C>T) at exon 7, which substitutes a serine residue with a leucine residue (S296L). Biochemical characterization using zinc-sensitive DT40 cells indicated that the W152R mutation abolished the abilities to transport zinc and to form a dimer complex, indicating a loss-of-function mutation. The S296L mutation retained both abilities but was extremely destabilized. The two mutations were found on different alleles, indicating that the genotype of the mother with low milk zinc was compound heterozygous. These results show novel compound heterozygous mutations in the SLC30A2/ZnT2 gene causing zinc deficiency in a breast-fed infant.

  4. An Unbiased Genome-Wide View of the Mutation Rate and Spectrum of the Endosymbiotic Bacterium Teredinibacter turnerae.

    PubMed

    Senra, Marcus V X; Sung, Way; Ackerman, Matthew; Miller, Samuel F; Lynch, Michael; Soares, Carlos Augusto G

    2018-03-01

    Mutations contribute to genetic variation in all living systems. Thus, precise estimates of mutation rates and spectra across a diversity of organisms are required for a full comprehension of evolution. Here, a mutation-accumulation (MA) assay was carried out on the endosymbiotic bacterium Teredinibacter turnerae. After ∼3,025 generations, base-pair substitutions (BPSs) and insertion-deletion (indel) events were characterized by whole-genome sequencing analysis of 47 independent MA lines, yielding a BPS rate of 1.14 × 10-9 per site per generation and indel rate of 1.55 × 10-10 events per site per generation, which are among the highest within free-living and facultative intracellular bacteria. As in other endosymbionts, a significant bias of BPSs toward A/T and an excess of deletion mutations over insertion mutations are observed for these MA lines. However, even with a deletion bias, the genome remains relatively large (∼5.2 Mb) for an endosymbiotic bacterium. The estimate of the effective population size (Ne) in T. turnerae is quite high and comparable to free-living bacteria (∼4.5 × 107), suggesting that the heavy bottlenecking associated with many endosymbiotic relationships is not prevalent during the life of this endosymbiont. The efficiency of selection scales with increasing Ne and such strong selection may have been operating against the deletion bias, preventing genome erosion. The observed mutation rate in this endosymbiont is of the same order of magnitude of those with similar Ne, consistent with the idea that population size is a primary determinant of mutation-rate evolution within endosymbionts, and that not all endosymbionts have low Ne.

  5. Compound Heterozygous Mutations in SLC30A2/ZnT2 Results in Low Milk Zinc Concentrations: A Novel Mechanism for Zinc Deficiency in a Breast-Fed Infant

    PubMed Central

    Itsumura, Naoya; Inamo, Yasuji; Okazaki, Fumiko; Teranishi, Fumie; Narita, Hiroshi; Kambe, Taiho; Kodama, Hiroko

    2013-01-01

    Zinc concentrations in breast milk are considerably higher than those of the maternal serum, to meet the infant's requirements for normal growth and development. Thus, effective mechanisms ensuring secretion of large amounts of zinc into the milk operate in mammary epithelial cells during lactation. ZnT2 was recently found to play an essential role in the secretion of zinc into milk. Heterozygous mutations of human ZnT2 (hZnT2), including H54R and G87R, in mothers result in low (>75% reduction) secretion of zinc into the breast milk, and infants fed on the milk develop transient neonatal zinc deficiency. We identified two novel missense mutations in the SLC30A2/ZnT2 gene in a Japanese mother with low milk zinc concentrations (>90% reduction) whose infant developed severe zinc deficiency; a T to C transition (c.454T>C) at exon 4, which substitutes a tryptophan residue with an arginine residue (W152R), and a C to T transition (c.887C>T) at exon 7, which substitutes a serine residue with a leucine residue (S296L). Biochemical characterization using zinc-sensitive DT40 cells indicated that the W152R mutation abolished the abilities to transport zinc and to form a dimer complex, indicating a loss-of-function mutation. The S296L mutation retained both abilities but was extremely destabilized. The two mutations were found on different alleles, indicating that the genotype of the mother with low milk zinc was compound heterozygous. These results show novel compound heterozygous mutations in the SLC30A2/ZnT2 gene causing zinc deficiency in a breast-fed infant. PMID:23741301

  6. Coexistence of gastrointestinal stromal tumors and gastric adenocarcinomas.

    PubMed

    Yan, Yan; Li, Ziyu; Liu, Yiqiang; Zhang, Lianhai; Li, Jiyou; Ji, Jiafu

    2013-04-01

    The purpose of this study is to detect the clinicopathology of gastrointestinal stromal tumors (GISTs) occurring synchronously with gastric adenocarcinomas and to unveil the potential underlying relationship between the synchronous GIST and gastric adenocarcinoma. This study included 15 patients with incidental GISTs found during operations for gastric adenocarcinoma and 30 patients who underwent gastrectomy for gastric cancer without discovering GIST between January 2005 and December 2010 at the Beijing Cancer Institute. We collected the clinicopathological data and analyzed the KIT/PDGFRA mutational status of GISTs, corresponding gastric adenocarcinoma specimens, and the normal tissue around the cancer lesions. Additionally, as a control group, the mutational status of the patients with gastric adenocarcinoma and no other tumors was assayed. Overall, 18 GISTs were found in 15 gastric adenocarcinoma patients. Multiple GIST lesions were found in three cases (20 %). The patients' age ranged from 46 to 85 years, with an average of 67.6 years. The average size of the GISTs was 0.85 cm. All mesenchymal lesions showed low proliferative activity, were of low or very low risk, and were identified as CD117-positive by immunostaining. In GIST lesions, mutations in KIT were detected in 7 out of 13 cases, and of these mutations, 6 were found in exon 11 (46.2 %), and 1 was found in exon 9 (7.7 %). A total of five deletions and one point mutation were in exon 11, and one insertion was in exon 9. Mutations were not detected in exon 17 or 13 of KIT. There was no remarkable mutation analyzed in the gastric adenocarcinoma lesions or normal tissues from either the test or control groups. Clinicopathological profiles and molecular analysis of KIT/PDGFRA showed no obvious relationship between gastric cancer and GISTs in tumor genesis, such as similar oncogene mutations.

  7. Xylose utilizing Zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    DOEpatents

    Caimi, Perry G; Hitz, William D; Viitanen, Paul V; Stieglitz, Barry

    2013-10-29

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  8. Xylose utilizing zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    DOEpatents

    Caimi, Perry G; Hitz, William D; Stieglitz, Barry; Viitanen, Paul V

    2013-07-02

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  9. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation

    PubMed Central

    Hartmann, Bianca; Wai, Timothy; Hu, Hao; MacVicar, Thomas; Musante, Luciana; Fischer-Zirnsak, Björn; Stenzel, Werner; Gräf, Ralph; van den Heuvel, Lambert; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Langer, Thomas; Kaindl, Angela M

    2016-01-01

    Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans. DOI: http://dx.doi.org/10.7554/eLife.16078.001 PMID:27495975

  10. Fast maximum likelihood estimation of mutation rates using a birth-death process.

    PubMed

    Wu, Xiaowei; Zhu, Hongxiao

    2015-02-07

    Since fluctuation analysis was first introduced by Luria and Delbrück in 1943, it has been widely used to make inference about spontaneous mutation rates in cultured cells. Under certain model assumptions, the probability distribution of the number of mutants that appear in a fluctuation experiment can be derived explicitly, which provides the basis of mutation rate estimation. It has been shown that, among various existing estimators, the maximum likelihood estimator usually demonstrates some desirable properties such as consistency and lower mean squared error. However, its application in real experimental data is often hindered by slow computation of likelihood due to the recursive form of the mutant-count distribution. We propose a fast maximum likelihood estimator of mutation rates, MLE-BD, based on a birth-death process model with non-differential growth assumption. Simulation studies demonstrate that, compared with the conventional maximum likelihood estimator derived from the Luria-Delbrück distribution, MLE-BD achieves substantial improvement on computational speed and is applicable to arbitrarily large number of mutants. In addition, it still retains good accuracy on point estimation. Published by Elsevier Ltd.

  11. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia

    PubMed Central

    Papaemmanuil, Elli; Rapado, Inmaculada; Li, Yilong; Potter, Nicola E; Wedge, David C; Tubio, Jose; Alexandrov, Ludmil B; Van Loo, Peter; Cooke, Susanna L; Marshall, John; Martincorena, Inigo; Hinton, Jonathan; Gundem, Gunes; van Delft, Frederik W; Nik-Zainal, Serena; Jones, David R; Ramakrishna, Manasa; Titley, Ian; Stebbings, Lucy; Leroy, Catherine; Menzies, Andrew; Gamble, John; Robinson, Ben; Mudie, Laura; Raine, Keiran; O’Meara, Sarah; Teague, Jon W; Butler, Adam P; Cazzaniga, Giovanni; Biondi, Andrea; Zuna, Jan; Kempski, Helena; Muschen, Markus; Ford, Anthony M; Stratton, Michael R; Greaves, Mel; Campbell, Peter J

    2014-01-01

    The ETV6-RUNX1 fusion gene, found in 25% of childhood acute lymphoblastic leukemia (ALL), is acquired in utero but requires additional somatic mutations for overt leukemia. We used exome and low-coverage whole-genome sequencing to characterize secondary events associated with leukemic transformation. RAG-mediated deletions emerge as the dominant mutational process, characterized by recombination signal sequence motifs near the breakpoints; incorporation of non-templated sequence at the junction; ~30-fold enrichment at promoters and enhancers of genes actively transcribed in B-cell development and an unexpectedly high ratio of recurrent to non-recurrent structural variants. Single cell tracking shows that this mechanism is active throughout leukemic evolution with evidence of localized clustering and re-iterated deletions. Integration of point mutation and rearrangement data identifies ATF7IP and MGA as two new tumor suppressor genes in ALL. Thus, a remarkably parsimonious mutational process transforms ETV6-RUNX1 lymphoblasts, targeting the promoters, enhancers and first exons of genes that normally regulate B-cell differentiation. PMID:24413735

  12. Lack of formylated methionyl-tRNA has pleiotropic effects on Bacillus subtilis

    PubMed Central

    Cai, Yanfei; Chandrangsu, Pete; Gaballa, Ahmed; Helmann, John D

    2017-01-01

    Bacteria initiate translation using a modified amino acid, N-formylmethionine (fMet), adapted specifically for this function. Most proteins are processed co-translationally by peptide deformylase (PDF) to remove this modification. Although PDF activity is essential in WT cells and is the target of the antibiotic actinonin, bypass mutations in the fmt gene that eliminate the formylation of Met-tRNAMet render PDF dispensable. The extent to which the emergence of fmt bypass mutations might compromise the therapeutic utility of actinonin is determined, in part, by the effects of these bypass mutations on fitness. Here, we characterize the phenotypic consequences of an fmt null mutation in the model organism Bacillus subtilis. An fmt null mutant is defective for several post-exponential phase adaptive programmes including antibiotic resistance, biofilm formation, swarming and swimming motility and sporulation. In addition, a survey of well-characterized stress responses reveals an increased sensitivity to metal ion excess and oxidative stress. These diverse phenotypes presumably reflect altered synthesis or stability of key proteins involved in these processes. PMID:27983482

  13. FLG mutation p.Lys4021X in the C-terminal imperfect filaggrin repeat in Japanese patients with atopic eczema.

    PubMed

    Nemoto-Hasebe, I; Akiyama, M; Nomura, T; Sandilands, A; McLean, W H I; Shimizu, H

    2009-12-01

    Mutations in the gene encoding filaggrin (FLG) have been shown to predispose to atopic eczema (AE). Further to establish population genetics of FLG mutations in the Japanese population and to elucidate effects of FLG mutations to filaggrin biosynthesis in skin of patients with AE. We searched for FLG mutations in 19 newly recruited Japanese patients with AE. We then screened 137 Japanese patients with AE and 134 Japanese control individuals for a novel mutation identified in the present study. In addition, we evaluated FLG mRNA expression by real-time reverse transcription-polymerase chain reaction and profilaggrin/filaggrin protein expression by immunohistochemical staining in the epidermis of the patients carrying the novel mutation. We identified a novel FLG nonsense mutation c.12069A>T (p.Lys4021X) in one patient with AE. Upon further screening, p.Lys4021X was identified in four patients with AE (2.9% of all the patients with AE). In total, there are at least eight FLG variants in the Japanese population. Here we show that about 27% of patients in our Japanese AE case series carry one or more of these eight FLG mutations and these variants are also carried by 3.7% of Japanese general control individuals. There is a significant statistical association between the eight FLG mutations and AE (chi(2) P = 6.50 x 10(-8)). Interestingly, the present nonsense mutation is in the C-terminal incomplete filaggrin repeat and is the mutation nearest the C-terminal among previously reported FLG mutations. Immunohistochemical staining for filaggrin revealed that this nonsense mutation leads to remarkable reduction of filaggrin protein expression in the patients' epidermis. We clearly demonstrated that FLG mutations are significantly associated with AE in the Japanese population. The present results further support the hypothesis that the C-terminal region is essential for proper processing of profilaggrin to filaggrin.

  14. QML-AiNet: An immune network approach to learning qualitative differential equation models

    PubMed Central

    Pang, Wei; Coghill, George M.

    2015-01-01

    In this paper, we explore the application of Opt-AiNet, an immune network approach for search and optimisation problems, to learning qualitative models in the form of qualitative differential equations. The Opt-AiNet algorithm is adapted to qualitative model learning problems, resulting in the proposed system QML-AiNet. The potential of QML-AiNet to address the scalability and multimodal search space issues of qualitative model learning has been investigated. More importantly, to further improve the efficiency of QML-AiNet, we also modify the mutation operator according to the features of discrete qualitative model space. Experimental results show that the performance of QML-AiNet is comparable to QML-CLONALG, a QML system using the clonal selection algorithm (CLONALG). More importantly, QML-AiNet with the modified mutation operator can significantly improve the scalability of QML and is much more efficient than QML-CLONALG. PMID:25648212

  15. QML-AiNet: An immune network approach to learning qualitative differential equation models.

    PubMed

    Pang, Wei; Coghill, George M

    2015-02-01

    In this paper, we explore the application of Opt-AiNet, an immune network approach for search and optimisation problems, to learning qualitative models in the form of qualitative differential equations. The Opt-AiNet algorithm is adapted to qualitative model learning problems, resulting in the proposed system QML-AiNet. The potential of QML-AiNet to address the scalability and multimodal search space issues of qualitative model learning has been investigated. More importantly, to further improve the efficiency of QML-AiNet, we also modify the mutation operator according to the features of discrete qualitative model space. Experimental results show that the performance of QML-AiNet is comparable to QML-CLONALG, a QML system using the clonal selection algorithm (CLONALG). More importantly, QML-AiNet with the modified mutation operator can significantly improve the scalability of QML and is much more efficient than QML-CLONALG.

  16. Cytochrome C oxydase deficiency: SURF1 gene investigation in patients with Leigh syndrome.

    PubMed

    Maalej, Marwa; Kammoun, Thouraya; Alila-Fersi, Olfa; Kharrat, Marwa; Ammar, Marwa; Felhi, Rahma; Mkaouar-Rebai, Emna; Keskes, Leila; Hachicha, Mongia; Fakhfakh, Faiza

    2018-03-18

    Leigh syndrome (LS) is a rare progressive neurodegenerative disorder occurring in infancy. The most common clinical signs reported in LS are growth retardation, optic atrophy, ataxia, psychomotor retardation, dystonia, hypotonia, seizures and respiratory disorders. The paper reported a manifestation of 3 Tunisian patients presented with LS syndrome. The aim of this study is the MT[HYPHEN]ATP6 and SURF1 gene screening in Tunisian patients affected with classical Leigh syndrome and the computational investigation of the effect of detected mutations on its structure and functions by clinical and bioinformatics analyses. After clinical investigations, three Tunisian patients were tested for mutations in both MT-ATP6 and SURF1 genes by direct sequencing followed by in silico analyses to predict the effects of sequence variation. The result of mutational analysis revealed the absence of mitochondrial mutations in MT-ATP6 gene and the presence of a known homozygous splice site mutation c.516-517delAG in sibling patients added to the presence of a novel double het mutations in LS patient (c.752-18 A > C/c. c.751 + 16G > A). In silico analyses of theses intronic variations showed that it could alters splicing processes as well as SURF1 protein translation. Leigh syndrome (LS) is a rare progressive neurodegenerative disorder occurring in infancy. The most common clinical signs reported in LS are growth retardation, optic atrophy, ataxia, psychomotor retardation, dystonia, hypotonia, seizures and respiratory disorders. The paper reported a manifestation of 3 Tunisian patients presented with LS syndrome. The aim of this study is MT-ATP6 and SURF1 genes screening in Tunisian patients affected with classical Leigh syndrome and the computational investigation of the effect of detected mutations on its structure and functions. After clinical investigations, three Tunisian patients were tested for mutations in both MT-ATP6 and SURF1 genes by direct sequencing followed by in silico analysis to predict the effects of sequence variation. The result of mutational analysis revealed the absence of mitochondrial mutations in MT-ATP6 gene and the presence of a known homozygous splice site mutation c.516-517delAG in sibling patients added to the presence of a novel double het mutations in LS patient (c.752-18 A>C/ c.751+16G>A). In silico analysis of theses intronic vaiations showed that it could alters splicing processes as well as SURF1 protein translation. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. TC-PTP and PTP1B: Regulating JAK-STAT signaling, controlling lymphoid malignancies.

    PubMed

    Pike, Kelly A; Tremblay, Michel L

    2016-06-01

    Lymphoid malignancies are characterized by an accumulation of genetic lesions that act co-operatively to perturb signaling pathways and alter gene expression programs. The Janus kinases (JAK)-signal transducers and activators of transcription (STATs) pathway is one such pathway that is frequently mutated in leukemia and lymphoma. In response to cytokines and growth factors, a cascade of reversible tyrosine phosphorylation events propagates the JAK-STAT pathway from the cell surface to the nucleus. Activated STAT family members then play a fundamental role in establishing the transcriptional landscape of the cell. In leukemia and lymphoma, somatic mutations have been identified in JAK and STAT family members, as well as, negative regulators of the pathway. Most recently, inactivating mutations in the protein tyrosine phosphatase (PTP) genes PTPN1 (PTP1B) and PTPN2 (TC-PTP) were sequenced in B cell lymphoma and T cell acute lymphoblastic leukemia (T-ALL) respectively. The loss of PTP1B and TC-PTP phosphatase activity is associated with an increase in cytokine sensitivity, elevated JAK-STAT signaling, and changes in gene expression. As inactivation mutations in PTPN1 and PTPN2 are restricted to distinct subsets of leukemia and lymphoma, a future challenge will be to identify in which cellular contexts do they contributing to the initiation or maintenance of leukemogenesis or lymphomagenesis. As well, the molecular mechanisms by which PTP1B and TC-PTP loss co-operates with other genetic aberrations will need to be elucidated to design more effective therapeutic strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Understanding the role of floral development in the evolution of angiosperm flowers: clarifications from a historical and physico-dynamic perspective.

    PubMed

    Ronse De Craene, Louis

    2018-05-01

    Flower morphology results from the interaction of an established genetic program, the influence of external forces induced by pollination systems, and physical forces acting before, during and after initiation. Floral ontogeny, as the process of development from a meristem to a fully developed flower, can be approached either from a historical perspective, as a "recapitulation of the phylogeny" mainly explained as a process of genetic mutations through time, or from a physico-dynamic perspective, where time, spatial pressures, and growth processes are determining factors in creating the floral morphospace. The first (historical) perspective clarifies how flower morphology is the result of development over time, where evolutionary changes are only possible using building blocks that are available at a certain stage in the developmental history. Flowers are regulated by genetically determined constraints and development clarifies specific transitions between different floral morphs. These constraints are the result of inherent mutations or are induced by the interaction of flowers with pollinators. The second (physico-dynamic) perspective explains how changes in the physical environment of apical meristems create shifts in ontogeny and this is reflected in the morphospace of flowers. Changes in morphology are mainly induced by shifts in space, caused by the time of initiation (heterochrony), pressure of organs, and alterations of the size of the floral meristem, and these operate independently or in parallel with genetic factors. A number of examples demonstrate this interaction and its importance in the establishment of different floral forms. Both perspectives are complementary and should be considered in the understanding of factors regulating floral development. It is suggested that floral evolution is the result of alternating bursts of physical constraints and genetic stabilization processes following each other in succession. Future research needs to combine these different perspectives in understanding the evolution of floral systems and their diversification.

  19. The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Saaidi, Rasha; Rasmussen, Torsten B.; Palmfeldt, Johan

    2013-11-15

    Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems. The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms however are still not clearly established. In this study, we used a representativemore » LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR and sequencing of these PCR products indicated that transcripts from the mutant allele were degraded by the nonsense-mediated mRNA decay (NMD) mechanism. The fact that no truncated mutant protein was detectable in western blot (WB) analysis strengthens the notion that the mutant transcript is efficiently degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels were also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography/mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type allele was operative at the protein level. Immunofluorescence microscopy analysis showed no abnormal nuclear morphology of patient fibroblast cells. Based on these data, we propose that heterozygosity for the nonsense mutation causes NMD degradation of the mutant transcripts blocking expression of the truncated mutant protein and an additional trans effect on lamin A protein levels expressed from the wild type allele. We discuss the possibility that skewing of the lamin A to lamin C ratio may contribute to ensuing processes that destabilize cardiomyocytes and trigger cardiomyopathy - Highlights: • We study disease mechanisms in DCM patients carrying PTC mutations in the LMNA gene. • The mutant transcript is degraded by the nonsense mediated mRNA decay system. • Skewed lamin A to lamin C protein ratio expressed from the wild type allele. • We suggest a combined pathomechanism: haploinsuffiency plus lamin A/C imbalance.« less

  20. The Dynamics of Germinal Centre Selection as Measured by Graph-Theoretical Analysis of Mutational Lineage Trees

    PubMed Central

    Dunn-Walters, Deborah K.; Belelovsky, Alex; Edelman, Hanna; Banerjee, Monica; Mehr, Ramit

    2002-01-01

    We have developed a rigorous graph-theoretical algorithm for quantifying the shape properties of mutational lineage trees. We show that information about the dynamics of hypermutation and antigen-driven clonal selection during the humoral immune response is contained in the shape of mutational lineage trees deduced from the responding clones. Age and tissue related differences in the selection process can be studied using this method. Thus, tree shape analysis can be used as a means of elucidating humoral immune response dynamics in various situations. PMID:15144020

  1. The Ying and Yang of STAT3 in Human Disease.

    PubMed

    Vogel, Tiphanie P; Milner, Joshua D; Cooper, Megan A

    2015-10-01

    The transcription factor signal transducer and activator of transcription 3 (STAT3) is a critical regulator of multiple, diverse cellular processes. Heterozgyous, germline, loss-of-function mutations in STAT3 lead to the primary immune deficiency Hyper-IgE syndrome. Heterozygous, somatic, gain-of-function mutations in STAT3 have been reported in malignancy. Recently, germline, heterozygous mutations in STAT3 that confer a gain-of-function have been discovered and result in early-onset, multi-organ autoimmunity. This review summarizes what is known about the role of STAT3 in human disease.

  2. Neutral evolution in a biological population as diffusion in phenotype space: reproduction with local mutation but without selection.

    PubMed

    Lawson, Daniel John; Jensen, Henrik Jeldtoft

    2007-03-02

    The process of "evolutionary diffusion," i.e., reproduction with local mutation but without selection in a biological population, resembles standard diffusion in many ways. However, evolutionary diffusion allows the formation of localized peaks that undergo drift, even in the infinite population limit. We relate a microscopic evolution model to a stochastic model which we solve fully. This allows us to understand the large population limit, relates evolution to diffusion, and shows that independent local mutations act as a diffusion of interacting particles taking larger steps.

  3. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors | Office of Cancer Genomics

    Cancer.gov

    We report the most common single-nucleotide substitution/deletion mutations in favorable histology Wilms tumors (FHWTs) to occur within SIX1/2 (7% of 534 tumors) and microRNA processing genes (miRNAPGs) DGCR8 and DROSHA (15% of 534 tumors). Comprehensive analysis of 77 FHWTs indicates that tumors with SIX1/2 and/or miRNAPG mutations show a pre-induction metanephric mesenchyme gene expression pattern and are significantly associated with both perilobar nephrogenic rests and 11p15 imprinting aberrations.

  4. Elucidating the Interdependence of Drug Resistance from Combinations of Mutations.

    PubMed

    Ragland, Debra A; Whitfield, Troy W; Lee, Sook-Kyung; Swanstrom, Ronald; Zeldovich, Konstantin B; Kurt-Yilmaz, Nese; Schiffer, Celia A

    2017-11-14

    HIV-1 protease is responsible for the cleavage of 12 nonhomologous sites within the Gag and Gag-Pro-Pol polyproteins in the viral genome. Under the selective pressure of protease inhibition, the virus evolves mutations within (primary) and outside of (secondary) the active site, allowing the protease to process substrates while simultaneously countering inhibition. The primary protease mutations impede inhibitor binding directly, while the secondary mutations are considered accessory mutations that compensate for a loss in fitness. However, the role of secondary mutations in conferring drug resistance remains a largely unresolved topic. We have shown previously that mutations distal to the active site are able to perturb binding of darunavir (DRV) via the protein's internal hydrogen-bonding network. In this study, we show that mutations distal to the active site, regardless of context, can play an interdependent role in drug resistance. Applying eigenvalue decomposition to collections of hydrogen bonding and van der Waals interactions from a series of molecular dynamics simulations of 15 diverse HIV-1 protease variants, we identify sites in the protease where amino acid substitutions lead to perturbations in nonbonded interactions with DRV and/or the hydrogen-bonding network of the protease itself. While primary mutations are known to drive resistance in HIV-1 protease, these findings delineate the significant contributions of accessory mutations to resistance. Identifying the variable positions in the protease that have the greatest impact on drug resistance may aid in future structure-based design of inhibitors.

  5. Mutation-induced protein interaction kinetics changes affect apoptotic network dynamic properties and facilitate oncogenesis

    PubMed Central

    Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi

    2015-01-01

    It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant–wild-type and 16 matched SNP—wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation. PMID:26170328

  6. Cancer-associated Isocitrate Dehydrogenase 1 (IDH1) R132H Mutation and d-2-Hydroxyglutarate Stimulate Glutamine Metabolism under Hypoxia*

    PubMed Central

    Reitman, Zachary J.; Duncan, Christopher G.; Poteet, Ethan; Winters, Ali; Yan, Liang-Jun; Gooden, David M.; Spasojevic, Ivan; Boros, Laszlo G.; Yang, Shao-Hua; Yan, Hai

    2014-01-01

    Mutations in the cytosolic NADP+-dependent isocitrate dehydrogenase (IDH1) occur in several types of cancer, and altered cellular metabolism associated with IDH1 mutations presents unique therapeutic opportunities. By altering IDH1, these mutations target a critical step in reductive glutamine metabolism, the metabolic pathway that converts glutamine ultimately to acetyl-CoA for biosynthetic processes. While IDH1-mutated cells are sensitive to therapies that target glutamine metabolism, the effect of IDH1 mutations on reductive glutamine metabolism remains poorly understood. To explore this issue, we investigated the effect of a knock-in, single-codon IDH1-R132H mutation on the metabolism of the HCT116 colorectal adenocarcinoma cell line. Here we report the R132H-isobolome by using targeted 13C isotopomer tracer fate analysis to trace the metabolic fate of glucose and glutamine in this system. We show that introduction of the R132H mutation into IDH1 up-regulates the contribution of glutamine to lipogenesis in hypoxia, but not in normoxia. Treatment of cells with a d-2-hydroxyglutarate (d-2HG) ester recapitulated these changes, indicating that the alterations observed in the knocked-in cells were mediated by d-2HG produced by the IDH1 mutant. These studies provide a dynamic mechanistic basis for metabolic alterations observed in IDH1-mutated tumors and uncover potential therapeutic targets in IDH1-mutated cancers. PMID:24986863

  7. Amelogenin signal peptide mutation: Correlation between mutations in the amelogenin gene (AMGX) and manifestations of X-linked amelogenesis imperfecta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerstroem-Fermer, M.; Nilsson, M.; Pettersson, U.

    1995-03-01

    Formation of tooth enamel is a poorly understood biological process. In this study the authors describe a 9-bp deletion in exon 2 of the amelogenin gene (AMGX) causing X-linked hypoplastic amelogenesis imperfecta, a disease characterized by defective enamel. The mutation results in the loss of 3 amino acids and exchange of 1 in the signal peptide of the amelogenin protein. This deletion in the signal peptide probably interferes with translocation of the amelogenin protein during synthesis, resulting in the thin enamel observed in affected members of the family. The authors compare this mutation to a previously reported mutation in themore » amelogenin gene that causes a different disease phenotype. The study illustrates that molecular analysis can help explain the various manifestations of a tooth disorder and thereby provide insights into the mechanisms of tooth enamel formation. 16 refs., 2 figs., 1 tab.« less

  8. Basics of DNA biosensors and cancer diagnosis.

    PubMed

    Sohrabi, Nasrin; Valizadeh, Alireza; Farkhani, Samad Mussa; Akbarzadeh, Abolfazl

    2016-01-01

    The human genome is exposed to mutations during the life cycle because of many types of changes in the DNA. Viruses, radiation, transposons, mutagenic chemicals, or any errors that happen during DNA replication or the meiotic process in the cell, may cause the mutation. Many mutations have no effect on phenotype or health, while some mutations cause crucial diseases such as cancer or cardiac diseases; therefore, a better understanding of the effects of mutation on phenotype is a very important part of genetic studies. Biosensors based on DNA, RNA, and peptide nucleic acids are the most sensitive tools, due to a strong pairing of lined up nucleotide strands between bases in their complementary parts. These methods can provide information to assist clinicians in making successful treatment decisions and increase the patient survival rate. In this review, we discuss DNA biosensors based on peptide nucleic acids that have an important role in cancer diagnosis.

  9. The interplay of mutations and electronic properties in disease-related genes

    NASA Astrophysics Data System (ADS)

    Shih, Chi-Tin; Wells, Stephen A.; Hsu, Ching-Ling; Cheng, Yun-Yin; Römer, Rudolf A.

    2012-02-01

    Electronic properties of DNA are believed to play a crucial role in many phenomena in living organisms, for example the location of DNA lesions by base excision repair (BER) glycosylases and the regulation of tumor-suppressor genes such as p53 by detection of oxidative damage. However, the reproducible measurement and modelling of charge migration through DNA molecules at the nanometer scale remains a challenging and controversial subject even after more than a decade of intense efforts. Here we show, by analysing 162 disease-related genes from a variety of medical databases with a total of almost 20,000 observed pathogenic mutations, a significant difference in the electronic properties of the population of observed mutations compared to the set of all possible mutations. Our results have implications for the role of the electronic properties of DNA in cellular processes, and hint at the possibility of prediction, early diagnosis and detection of mutation hotspots.

  10. [Mutation analysis of beta myosin heavy chain gene in hypertrophic cardiomyopathy families].

    PubMed

    Fan, Xin-ping; Yang, Zhong-wei; Feng, Xiu-li; Yang, Fu-hui; Xiao, Bai; Liang, Yan

    2011-08-01

    To detect the gene mutations of beta-myosin heavy chain gene (MYH7) in Chinese pedigrees with hypertrophic cardiomyopathy (HCM), and to analyze the correlation between the genotype and phenotype. Exons 3, 5, 7-9, 11-16 and 18-23 of the MYH7 gene were amplified with PCR in three Chinese pedigrees with HCM. The products were sequenced. Sequence alignment between the detected and the standard sequences was performed. A missense mutation of Thr441Met in exon 14 was identified in a pedigree, which was not detected in the controls. Several synonymous mutations of MYH7 gene were detected in the three pedigrees. The mutation of Thr441Met, located in the actin binding domain of the globular head, was first identified in Chinese. It probably caused HCM. HCM is a heterogeneous disease. Many factors are involved in the process of its occurrence and development.

  11. Deriving a Mutation Index of Carcinogenicity Using Protein Structure and Protein Interfaces

    PubMed Central

    Hakas, Jarle; Pearl, Frances; Zvelebil, Marketa

    2014-01-01

    With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/. PMID:24454733

  12. Hypogonadism in a patient with two novel mutations of the luteinizing hormone β-subunit gene expressed in a compound heterozygous form.

    PubMed

    Basciani, Sabrina; Watanabe, Mikiko; Mariani, Stefania; Passeri, Marina; Persichetti, Agnese; Fiore, Daniela; Scotto d'Abusco, Anna; Caprio, Massimiliano; Lenzi, Andrea; Fabbri, Andrea; Gnessi, Lucio

    2012-09-01

    LH gene mutations are rare; only four mutations have been described. The affected individuals are hypogonadal. We describe the clinical features of a 31-yr-old man who presented with delayed puberty and azoospermia and was found to have hypogonadism associated with an absence of circulating LH. The patient had a 12-bp deletion in exon 2 in the LH β-subunit gene and a mutation of the 5' splice site IVS2+1G→T in the same gene present in a compound heterozygous state. The first mutation predicts a deletion of four leucines of the hydrophobic core of the signal peptide. The second mutation disrupts the splicing of mRNA, generating a gross abnormality in the processing. The patient's heterozygous parents were clinically normal. The phenotype of a 16-yr-old sister of the proband, carrying the same mutations, was characterized by normal pubertal development and oligomenorrhea. This report unravels two novel mutations of the LH gene critical for synthesis and activity of the LH molecule. The insight gained from the study is that normal pubertal maturation in women can occur in a state of LH deficiency, whereas LH is essential for maturation of Leydig cells and thus steroidogenesis, puberty, and spermatogenesis in man. These mutations should be considered in girls and boys with selective deficiency of LH.

  13. Isocitrate dehydrogenase mutation as a therapeutic target in gliomas.

    PubMed

    Han, Catherine H; Batchelor, Tracy T

    2017-06-01

    Isocitrate dehydrogenases (IDH) are important enzymes that catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG), producing NADPH in the process. More than 80% of low-grade gliomas and secondary glioblastoma (GBM) harbor an IDH mutation. IDH mutations involve the catalytic pocket of the enzyme and lead to a neomorphic ability to produce 2-hydroxyglutarate (2HG) while oxidizing NADPH to NADP+. 2HG is considered as an 'oncometabolite' which is thought to be responsible for many, if not all, biologic effects of IDH mutations. 2HG accumulation competitively inhibits α-KG-dependent dioxygenases, including histone lysine demethylases and DNA demethylases, resulting in a hypermethylation phenotype with alterations in cellular epigenetic status as well as a block in cellular differentiation. IDH mutations have been suggested as an important early event in tumorigenesis, however it remains unclear whether IDH mutation by itself causes cancer or if it requires other oncogenic events to initiate tumorigenesis. Significant efforts have been made to better understand the mechanisms of IDH mutations in tumor initiation and progression, and to develop targeted therapies for IDH-mutated tumors. This review provides an overview of the function of mutant IDH, and the current understanding of the role IDH mutations play in gliomagenesis. In addition, several potential therapeutic strategies for IDH-mutant gliomas, including mutant IDH inhibitors which have entered clinical evaluation in glioma patients, will be discussed.

  14. Experimental evolution reveals genome-wide spectrum and dynamics of mutations in the rice blast fungus, Magnaporthe oryzae.

    PubMed

    Jeon, Junhyun; Choi, Jaeyoung; Lee, Gir-Won; Dean, Ralph A; Lee, Yong-Hwan

    2013-01-01

    Knowledge on mutation processes is central to interpreting genetic analysis data as well as understanding the underlying nature of almost all evolutionary phenomena. However, studies on genome-wide mutational spectrum and dynamics in fungal pathogens are scarce, hindering our understanding of their evolution and biology. Here, we explored changes in the phenotypes and genome sequences of the rice blast fungus Magnaporthe oryzae during the forced in vitro evolution by weekly transfer of cultures on artificial media. Through combination of experimental evolution with high throughput sequencing technology, we found that mutations accumulate rapidly prior to visible phenotypic changes and that both genetic drift and selection seem to contribute to shaping mutational landscape, suggesting the buffering capacity of fungal genome against mutations. Inference of mutational effects on phenotypes through the use of T-DNA insertion mutants suggested that at least some of the DNA sequence mutations are likely associated with the observed phenotypic changes. Furthermore, our data suggest oxidative damages and UV as major sources of mutation during subcultures. Taken together, our work revealed important properties of original source of variation in the genome of the rice blast fungus. We believe that these results provide not only insights into stability of pathogenicity and genome evolution in plant pathogenic fungi but also a model in which evolution of fungal pathogens in natura can be comparatively investigated.

  15. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing

    PubMed Central

    Foster, Patricia L.; Lee, Heewook; Popodi, Ellen; Townes, Jesse P.; Tang, Haixu

    2015-01-01

    A complete understanding of evolutionary processes requires that factors determining spontaneous mutation rates and spectra be identified and characterized. Using mutation accumulation followed by whole-genome sequencing, we found that the mutation rates of three widely diverged commensal Escherichia coli strains differ only by about 50%, suggesting that a rate of 1–2 × 10−3 mutations per generation per genome is common for this bacterium. Four major forces are postulated to contribute to spontaneous mutations: intrinsic DNA polymerase errors, endogenously induced DNA damage, DNA damage caused by exogenous agents, and the activities of error-prone polymerases. To determine the relative importance of these factors, we studied 11 strains, each defective for a major DNA repair pathway. The striking result was that only loss of the ability to prevent or repair oxidative DNA damage significantly impacted mutation rates or spectra. These results suggest that, with the exception of oxidative damage, endogenously induced DNA damage does not perturb the overall accuracy of DNA replication in normally growing cells and that repair pathways may exist primarily to defend against exogenously induced DNA damage. The thousands of mutations caused by oxidative damage recovered across the entire genome revealed strong local-sequence biases of these mutations. Specifically, we found that the identity of the 3′ base can affect the mutability of a purine by oxidative damage by as much as eightfold. PMID:26460006

  16. Sarcomere protein gene mutations and inherited heart disease: a beta-cardiac myosin heavy chain mutation causing endocardial fibroelastosis and heart failure.

    PubMed

    Kamisago, Mitsuhiro; Schmitt, Joachim P; McNamara, Dennis; Seidman, Christine; Seidman, J G

    2006-01-01

    Inherited human cardiomyopathies often lead to heart failure. A common feature of these conditions is that affected individuals can express the disease causing mutations for many years without showing clinical signs of the disease. Previous studies have demonstrated that sarcomere protein gene mutations can cause either dilated cardiomyopathy or hypertrophic cardiomyopathy. Here we demonstrate that the Arg442His missense mutation in beta-cardiac myosin heavy chain (betaMHC) causes dilated cardiomyopathy, endocardial fibroelastosis and heart failure at a very early age. Using standard genetic engineering tools we and others have made murine models by introducing human disease causing mutations into mice. The central hypothesis of these studies has been that by identifying the pathophysiological pathways activated by these mutations we can define enzymatic activities that are modified during the disease process and which may be involved in pathways that involve more common forms of cardiac disease. Murine models bearing different mutant myosins are being used to address whether each disease causing mutant betaMHC activates the same or different cellular pathways. Dissecting the molecular pathways modulated by mutations in sarcomere protein genes as well as other genes has already demonstrated that there are multiple pathways leading to cardiac remodelling and heart failure. Defining the mechanisms by which mutations in the same genes activate different cellular pathways remains an important question.

  17. Frequent somatic TERT promoter mutations and CTNNB1 mutations in hepatocellular carcinoma.

    PubMed

    Lee, Seung Eun; Chang, Seong-Hwan; Kim, Wook Youn; Lim, So Dug; Kim, Wan Seop; Hwang, Tea Sook; Han, Hye Seung

    2016-10-25

    Genetic alterations of TERT and CTNNB1 have been documented in hepatocellular carcinoma. TERT promoter mutations are the earliest genetic events in the multistep process of hepatocarcinogenesis related to cirrhosis. However, analyses of TERT promoter and CTNNB1 mutations in hepatocellular carcinoma tumor samples have not been performed in the Korean population, where hepatitis B virus-related hepatocellular carcinoma is prevalent. In order to identify the role of TERT promoter and CTNNB1 mutations in the hepatocarcinogenesis and pathogenesis of recurrent hepatocellular carcinoma, we performed the sequence analyses in 140 hepatocellular nodules (including 107 hepatocellular carcinomas), and 8 pairs of matched primary and relapsed hepatocellular carcinomas. TERT promoter and CTNNB1 mutations were only observed in hepatocellular carcinomas but not in precursor lesions. Of 109 patients with hepatocellular carcinoma, 41 (39.0%) and 15 (14.6%) harbored TERT and CTNNB1 mutations, respectively. TERT promotermutations were significantly more frequent in hepatocellular carcinomas related to hepatitis C virus infection (5/6; 83.3%) compared to tumors of other etiologies (P = 0.001). In two cases, discordance in TERT promoter mutation status was observed between the primary and the corresponding recurrent hepatocellular carcinoma. The two patients with discordant cases had early relapses. In conclusion, we identified TERT promoter and CTNNB1 mutations as the most frequent somatic genetic alterations observed in hepatocellular carcinoma, indicating its pivotal role in hepatocarcinogenesis. Furthermore, we suggest the possibility of intratumoral genetic heterogeneity of TERT promoter mutations in hepatocellular carcinoma as indicated by the discordance in TERT promoter mutations between primary and corresponding recurrent hepatocellular carcinoma.

  18. [Comparison of two algorithms for development of design space-overlapping method and probability-based method].

    PubMed

    Shao, Jing-Yuan; Qu, Hai-Bin; Gong, Xing-Chu

    2018-05-01

    In this work, two algorithms (overlapping method and the probability-based method) for design space calculation were compared by using the data collected from extraction process of Codonopsis Radix as an example. In the probability-based method, experimental error was simulated to calculate the probability of reaching the standard. The effects of several parameters on the calculated design space were studied, including simulation number, step length, and the acceptable probability threshold. For the extraction process of Codonopsis Radix, 10 000 times of simulation and 0.02 for the calculation step length can lead to a satisfactory design space. In general, the overlapping method is easy to understand, and can be realized by several kinds of commercial software without coding programs, but the reliability of the process evaluation indexes when operating in the design space is not indicated. Probability-based method is complex in calculation, but can provide the reliability to ensure that the process indexes can reach the standard within the acceptable probability threshold. In addition, there is no probability mutation in the edge of design space by probability-based method. Therefore, probability-based method is recommended for design space calculation. Copyright© by the Chinese Pharmaceutical Association.

  19. TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing Genes in Favorable Histology Wilms Tumor | Office of Cancer Genomics

    Cancer.gov

    TARGET researchers molecularly characterized favorable histology Wilms tumor (FHWT), a pediatric renal cancer. Comprehensive genome and transcript analyses revealed single-nucleotide substitution/deletion mutations in microRNA processing genes (15% of FHWT patients) and Sine Oculis Homeobox Homolog 1/2 (SIX1/2) genes (7% of FHWT patients). SIX1/2 genes play a critical role in renal development and were not previously associated with FHWT, thus presenting a novel role for SIX1/2 pathway aberrations in this disease.

  20. The mitochondrial subgenomes of the nematode Globodera pallida are mosaics: evidence of recombination in an animal mitochondrial genome.

    PubMed

    Gibson, Tracey; Blok, Vivian C; Phillips, Mark S; Hong, Gary; Kumarasinghe, Duminda; Riley, Ian T; Dowton, Mark

    2007-04-01

    We sequenced four mitochondrial subgenomes from the potato cyst nematode Globodera pallida, previously characterized as one of the few animals to have a multipartite mitochondrial genome. The sequence data indicate that three of these subgenomic mitochondrial circles are mosaics, comprising long, multigenic fragments derived from fragments of the other circles. This pattern is consistent with the operation of intermitochondrial recombination, a process generally considered absent in animal mitochondria. We also report that many of the duplicated genes contain deleterious mutations, ones likely to render the gene nonfunctional; gene conversion does not appear to be homogenizing the different gene copies. The proposed nonfunctional copies are clustered on particular circles, whereas copies that are likely to code functional gene products are clustered on others.

  1. An Island Grouping Genetic Algorithm for Fuzzy Partitioning Problems

    PubMed Central

    Salcedo-Sanz, S.; Del Ser, J.; Geem, Z. W.

    2014-01-01

    This paper presents a novel fuzzy clustering technique based on grouping genetic algorithms (GGAs), which are a class of evolutionary algorithms especially modified to tackle grouping problems. Our approach hinges on a GGA devised for fuzzy clustering by means of a novel encoding of individuals (containing elements and clusters sections), a new fitness function (a superior modification of the Davies Bouldin index), specially tailored crossover and mutation operators, and the use of a scheme based on a local search and a parallelization process, inspired from an island-based model of evolution. The overall performance of our approach has been assessed over a number of synthetic and real fuzzy clustering problems with different objective functions and distance measures, from which it is concluded that the proposed approach shows excellent performance in all cases. PMID:24977235

  2. KIT D816V-mutated bone marrow mesenchymal stem cells in indolent systemic mastocytosis are associated with disease progression.

    PubMed

    Garcia-Montero, Andres C; Jara-Acevedo, Maria; Alvarez-Twose, Ivan; Teodosio, Cristina; Sanchez-Muñoz, Laura; Muñiz, Carmen; Muñoz-Gonzalez, Javier I; Mayado, Andrea; Matito, Almudena; Caldas, Carolina; Morgado, Jose M; Escribano, Luis; Orfao, Alberto

    2016-02-11

    Multilineage involvement of bone marrow (BM) hematopoiesis by the somatic KIT D816V mutation is present in a subset of adult indolent systemic mastocytosis (ISM) patients in association with a poorer prognosis. Here, we investigated the potential involvement of BM mesenchymal stem cells (MSCs) from ISM patients by the KIT D816V mutation and its potential impact on disease progression and outcome. This mutation was investigated in highly purified BM MSCs and other BM cell populations from 83 ISM patients followed for a median of 116 months. KIT D816V-mutated MSCs were detected in 22 of 83 cases. All MSC-mutated patients had multilineage KIT mutation (100% vs 30%, P = .0001) and they more frequently showed involvement of lymphoid plus myeloid BM cells (59% vs 22%; P = .03) and a polyclonal pattern of inactivation of the X-chromosome of KIT-mutated BM mast cells (64% vs 0%; P = .01) vs other multilineage ISM cases. Moreover, presence of KIT-mutated MSCs was associated with more advanced disease features, a greater rate of disease progression (50% vs 17%; P = .04), and a shorter progression-free survival (P ≤ .003). Overall, these results support the notion that ISM patients with mutated MSCs may have acquired the KIT mutation in a common pluripotent progenitor cell, prior to differentiation into MSCs and hematopoietic precursor cells, before the X-chromosome inactivation process occurs. From a clinical point of view, acquisition of the KIT mutation in an earlier BM precursor cell confers a significantly greater risk for disease progression and a poorer outcome. © 2016 by The American Society of Hematology.

  3. Development and validation of a clinical trial patient stratification assay that interrogates 27 mutation sites in MAPK pathway genes.

    PubMed

    Chang, Ken C N; Galuska, Stefan; Weiner, Russell; Marton, Matthew J

    2013-01-01

    Somatic mutations identified on genes related to the cancer-developing signaling pathways have drawn attention in the field of personalized medicine in recent years. Treatments developed to target a specific signaling pathway may not be effective when tumor activating mutations occur downstream of the target and bypass the targeted mechanism. For instance, mutations detected in KRAS/BRAF/NRAS genes can lead to EGFR-independent intracellular signaling pathway activation. Most patients with these mutations do not respond well to anti-EGFR treatment. In an effort to detect various mutations in FFPE tissue samples among multiple solid tumor types for patient stratification many mutation assays were evaluated. Since there were more than 30 specific mutations among three targeted RAS/RAF oncogenes that could activate MAPK pathway genes, a custom designed Single Nucleotide Primer Extension (SNPE) multiplexing mutation assay was developed and analytically validated as a clinical trial assay. Throughout the process of developing and validating the assay we overcame many technical challenges which include: the designing of PCR primers for FFPE tumor tissue samples versus normal blood samples, designing of probes for detecting consecutive nucleotide double mutations, the kinetics and thermodynamics aspects of probes competition among themselves and against target PCR templates, as well as validating an assay when positive control tumor tissue or cell lines with specific mutations are not available. We used Next Generation sequencing to resolve discordant calls between the SNPE mutation assay and Sanger sequencing. We also applied a triplicate rule to reduce potential false positives and false negatives, and proposed special considerations including pre-define a cut-off percentage for detecting very low mutant copies in the wild-type DNA background.

  4. Factors Limiting SOS Expression in Log-Phase Cells of Escherichia coli

    PubMed Central

    Massoni, Shawn C.; Leeson, Michael C.; Long, Jarukit Edward; Gemme, Kristin; Mui, Alice

    2012-01-01

    In Escherichia coli, RecA–single-stranded DNA (RecA-ssDNA) filaments catalyze DNA repair, recombination, and induction of the SOS response. It has been shown that, while many (15 to 25%) log-phase cells have RecA filaments, few (about 1%) are induced for SOS. It is hypothesized that RecA's ability to induce SOS expression in log-phase cells is repressed because of the potentially detrimental effects of SOS mutagenesis. To test this, mutations were sought to produce a population where the number of cells with SOS expression more closely equaled the number of RecA filaments. Here, it is shown that deleting radA (important for resolution of recombination structures) and increasing recA transcription 2- to 3-fold with a recAo1403 operator mutation act independently to minimally satisfy this condition. This allows 24% of mutant cells to have elevated levels of SOS expression, a percentage similar to that of cells with RecA-green fluorescent protein (RecA-GFP) foci. In an xthA (exonuclease III gene) mutant where there are 3-fold more RecA loading events, recX (a destabilizer of RecA filaments) must be additionally deleted to achieve a population of cells where the percentage having elevated SOS expression (91%) nearly equals the percentage with at least one RecA-GFP focus (83%). It is proposed that, in the xthA mutant, there are three independent mechanisms that repress SOS expression in log-phase cells. These are the rapid processing of RecA filaments by RadA, maintaining the concentration of RecA below a critical level, and the destabilizing of RecA filaments by RecX. Only the first two mechanisms operate independently in a wild-type cell. PMID:22843848

  5. Factors limiting SOS expression in log-phase cells of Escherichia coli.

    PubMed

    Massoni, Shawn C; Leeson, Michael C; Long, Jarukit Edward; Gemme, Kristin; Mui, Alice; Sandler, Steven J

    2012-10-01

    In Escherichia coli, RecA-single-stranded DNA (RecA-ssDNA) filaments catalyze DNA repair, recombination, and induction of the SOS response. It has been shown that, while many (15 to 25%) log-phase cells have RecA filaments, few (about 1%) are induced for SOS. It is hypothesized that RecA's ability to induce SOS expression in log-phase cells is repressed because of the potentially detrimental effects of SOS mutagenesis. To test this, mutations were sought to produce a population where the number of cells with SOS expression more closely equaled the number of RecA filaments. Here, it is shown that deleting radA (important for resolution of recombination structures) and increasing recA transcription 2- to 3-fold with a recAo1403 operator mutation act independently to minimally satisfy this condition. This allows 24% of mutant cells to have elevated levels of SOS expression, a percentage similar to that of cells with RecA-green fluorescent protein (RecA-GFP) foci. In an xthA (exonuclease III gene) mutant where there are 3-fold more RecA loading events, recX (a destabilizer of RecA filaments) must be additionally deleted to achieve a population of cells where the percentage having elevated SOS expression (91%) nearly equals the percentage with at least one RecA-GFP focus (83%). It is proposed that, in the xthA mutant, there are three independent mechanisms that repress SOS expression in log-phase cells. These are the rapid processing of RecA filaments by RadA, maintaining the concentration of RecA below a critical level, and the destabilizing of RecA filaments by RecX. Only the first two mechanisms operate independently in a wild-type cell.

  6. FOXC2 disease-mutations identified in lymphedema-distichiasis patients cause both loss and gain of protein function

    PubMed Central

    Tavian, Daniela; Missaglia, Sara; Maltese, Paolo E.; Michelini, Sandro; Fiorentino, Alessandro; Ricci, Maurizio; Serrani, Roberta; Walter, Michael A.; Bertelli, Matteo

    2016-01-01

    Dominant mutations in the FOXC2 gene cause a form of lymphedema primarily of the limbs that usually develops at or after puberty. In 90-95% of patients, lymphedema is accompanied by distichiasis. FOXC2 is a member of the forkhead/winged-helix family of transcription factors and plays essential roles in different developmental pathways and physiological processes. We previously described six unrelated families with primary lymphedema-distichiasis in which patients showed different FOXC2 mutations located outside of the forkhead domain. Of those, four were missense mutations, one a frameshift mutation, and the last a stop mutation. To assess their pathogenic potential, we have now examined the subcellular localization and the transactivation activity of the mutated FOXC2 proteins. All six FOXC2 mutant proteins were able to localize into the nucleus; however, the frameshift truncated protein appeared to be sequestered into nuclear aggregates. A reduction in the ability to activate FOXC1/FOXC2 response elements was detected in 50% of mutations, while the remaining ones caused an increase of protein transactivation activity. Our data reveal that either a complete loss or a significant gain of FOXC2 function can cause a perturbation of lymphatic vessel formation leading to lymphedema. PMID:27276711

  7. Dramatic effect of single-base mutation on the conformational dynamics of human telomeric G-quadruplex

    PubMed Central

    Lee, Ja Yil; Kim, D. S.

    2009-01-01

    Guanine-rich DNA sequences can form G-quadruplexes. These four-stranded structures are known to form in several genomic regions and to influence certain biological activities. Sometimes, the instability of G-quadruplexes causes the abnormal biological processes. Mutation is a culprit for the destabilization of G-quadruplexes, but the details of mutated G-quadruplexes are poorly understood. In this article, we investigated the conformational dynamics of single-base mutated human telomeric G-quadruplexes in the presence of K+ with single-molecule FRET spectroscopy. We observed that the replacement of single guanine by thymine in a G-track induces various folded structures, i.e. structural polymorphism. Moreover, direct observation of their dynamics revealed that a single-base mutation causes fast unfolding of folded states under physiological conditions. Furthermore, we found that the degree of destabilization varies according to mutation positions. When the central guanine of a G-track is replaced, the G-quadruplexes unfold quickly at any K+ concentrations and temperature. Meanwhile, outer-quartet mutated G-quadruplexes have heterogeneous dynamics at intermediate K+ concentrations and longstanding folded states at high K+ concentrations. Several factors such as base-stacking interaction and K+ coordination are responsible for the different dynamics according to the mutation position. PMID:19359361

  8. Contribution of silent mutations to thermal adaptation of RNA bacteriophage Qβ.

    PubMed

    Kashiwagi, Akiko; Sugawara, Ryu; Sano Tsushima, Fumie; Kumagai, Tomofumi; Yomo, Tetsuya

    2014-10-01

    Changes in protein function and other biological properties, such as RNA structure, are crucial for adaptation of organisms to novel or inhibitory environments. To investigate how mutations that do not alter amino acid sequence may be positively selected, we performed a thermal adaptation experiment using the single-stranded RNA bacteriophage Qβ in which the culture temperature was increased from 37.2°C to 41.2°C and finally to an inhibitory temperature of 43.6°C in a stepwise manner in three independent lines. Whole-genome analysis revealed 31 mutations, including 14 mutations that did not result in amino acid sequence alterations, in this thermal adaptation. Eight of the 31 mutations were observed in all three lines. Reconstruction and fitness analyses of Qβ strains containing only mutations observed in all three lines indicated that five mutations that did not result in amino acid sequence changes but increased the amplification ratio appeared in the course of adaptation to growth at 41.2°C. Moreover, these mutations provided a suitable genetic background for subsequent mutations, altering the fitness contribution from deleterious to beneficial. These results clearly showed that mutations that do not alter the amino acid sequence play important roles in adaptation of this single-stranded RNA virus to elevated temperature. Recent studies using whole-genome analysis technology suggested the importance of mutations that do not alter the amino acid sequence for adaptation of organisms to novel environmental conditions. It is necessary to investigate how these mutations may be positively selected and to determine to what degree such mutations that do not alter amino acid sequences contribute to adaptive evolution. Here, we report the roles of these silent mutations in thermal adaptation of RNA bacteriophage Qβ based on experimental evolution during which Qβ showed adaptation to growth at an inhibitory temperature. Intriguingly, four synonymous mutations and one mutation in the untranslated region that spread widely in the Qβ population during the adaptation process at moderately high temperature provided a suitable genetic background to alter the fitness contribution of subsequent mutations from deleterious to beneficial at a higher temperature. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. The Molecular Revolution in Cutaneous Biology: Era of Molecular Diagnostics for Inherited Skin Diseases.

    PubMed

    McGrath, John A

    2017-05-01

    The discovery of pathogenic mutations in inherited skin diseases represents one of the major landmarks of late 20th century molecular genetics. Mutation data can provide accurate diagnoses, improve genetic counseling, help define disease mechanisms, establish disease models, and provide a basis for translational research and testing of novel therapeutics. The process of detecting disease mutations, however, has not always been straightforward. Traditional approaches using genetic linkage or candidate gene analysis have often been limited, costly, and slow to yield new insights, but the advent of next-generation sequencing (NGS) technologies has altered the landscape of current gene discovery and mutation detection approaches. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  10. Research on moving target defense based on SDN

    NASA Astrophysics Data System (ADS)

    Chen, Mingyong; Wu, Weimin

    2017-08-01

    An address mutation strategy was proposed. This strategy provided an unpredictable change in address, replacing the real address of the packet forwarding process and path mutation, thus hiding the real address of the host and path. a mobile object defense technology based on Spatio-temporal Mutation on this basis is proposed, Using the software Defined Network centralized control architecture advantage combines sFlow traffic monitoring technology and Moving Target Defense. A mutated time period which can be changed in real time according to the network traffic is changed, and the destination address is changed while the controller abruptly changes the address while the data packet is transferred between the switches to construct a moving target, confusing the host within the network, thereby protecting the host and network.

  11. Mapping Second Chromosome Mutations to Defined Genomic Regions in Drosophila melanogaster

    PubMed Central

    Kahsai, Lily; Cook, Kevin R.

    2017-01-01

    Hundreds of Drosophila melanogaster stocks are currently maintained at the Bloomington Drosophila Stock Center with mutations that have not been associated with sequence-defined genes. They have been preserved because they have interesting loss-of-function phenotypes. The experimental value of these mutations would be increased by tying them to specific genomic intervals so that geneticists can more easily associate them with annotated genes. Here, we report the mapping of 85 second chromosome complementation groups in the Bloomington collection to specific, small clusters of contiguous genes or individual genes in the sequenced genome. This information should prove valuable to Drosophila geneticists interested in processes associated with particular phenotypes and those searching for mutations affecting specific sequence-defined genes. PMID:29066472

  12. Deleterious mutations can surf to high densities on the wave front of an expanding population.

    PubMed

    Travis, Justin M J; Münkemüller, Tamara; Burton, Olivia J; Best, Alex; Dytham, Calvin; Johst, Karin

    2007-10-01

    There is an increasing recognition that evolutionary processes play a key role in determining the dynamics of range expansion. Recent work demonstrates that neutral mutations arising near the edge of a range expansion sometimes surf on the expanding front leading them rather than that leads to reach much greater spatial distribution and frequency than expected in stationary populations. Here, we extend this work and examine the surfing behavior of nonneutral mutations. Using an individual-based coupled-map lattice model, we confirm that, regardless of its fitness effects, the probability of survival of a new mutation depends strongly upon where it arises in relation to the expanding wave front. We demonstrate that the surfing effect can lead to deleterious mutations reaching high densities at an expanding front, even when they have substantial negative effects on fitness. Additionally, we highlight that this surfing phenomenon can occur for mutations that impact reproductive rate (i.e., number of offspring produced) as well as mutations that modify juvenile competitive ability. We suggest that these effects are likely to have important consequences for rates of spread and the evolution of spatially expanding populations.

  13. Darwinism for the Genomic Age: Connecting Mutation to Diversification

    PubMed Central

    Hua, Xia; Bromham, Lindell

    2017-01-01

    A growing body of evidence suggests that rates of diversification of biological lineages are correlated with differences in genome-wide mutation rate. Given that most research into differential patterns of diversification rate have focused on species traits or ecological parameters, a connection to the biochemical processes of genome change is an unexpected observation. While the empirical evidence for a significant association between mutation rate and diversification rate is mounting, there has been less effort in explaining the factors that mediate this connection between genetic change and species richness. Here we draw together empirical studies and theoretical concepts that may help to build links in the explanatory chain that connects mutation to diversification. First we consider the way that mutation rates vary between species. We then explore how differences in mutation rates have flow-through effects to the rate at which populations acquire substitutions, which in turn influences the speed at which populations become reproductively isolated from each other due to the acquisition of genomic incompatibilities. Since diversification rate is commonly measured from phylogenetic analyses, we propose a conceptual approach for relating events of reproductive isolation to bifurcations on molecular phylogenies. As we examine each of these relationships, we consider theoretical models that might shine a light on the observed association between rate of molecular evolution and diversification rate, and critically evaluate the empirical evidence for these links, focusing on phylogenetic comparative studies. Finally, we ask whether we are getting closer to a real understanding of the way that the processes of molecular evolution connect to the observable patterns of diversification. PMID:28224003

  14. Papillary renal cell carcinoma: a clinicopathological and whole-genome exon sequencing study

    PubMed Central

    Liu, Kunpeng; Ren, Yuan; Pang, Lijuan; Qi, Yan; Jia, Wei; Tao, Lin; Hu, Zhengyan; Zhao, Jin; Zhang, Haijun; Li, Li; Yue, Haifeng; Han, Juan; Liang, Weihua; Hu, Jianming; Zou, Hong; Yuan, Xianglin; Li, Feng

    2015-01-01

    Papillary renal cell carcinoma (PRCC) represents the second most common histological subtype of RCC, and comprises 2 subtypes. Prognosis for type 1 PRCC is relatively good, whereas type 2 PRCC is associated with poor clinical outcomes. The aim of the present study was to evaluate the clinicopathological and mutations characteristics of PRCC. Hence, we reported on 13 cases of PRCC analyzed using whole-exome sequencing. Histologically, type 2 PRCC showed a higher nuclear grade and lymphovascular invasion rate versus type 1 PRCC (P < 0.05). Immunostaining revealed type 1 PRCC had higher CK7 and lower Top IIα expression rates (P < 0.05). Whole-exome sequencing data analysis revealed that the mutational statuses of 373 genes (287 missense, 69 silent, 6 nonsense, and 11 synonymous mutations) differed significantly between PRCC and normal renal tissues (P < 0.05). Functional enrichment analysis was used to classify the 287 missense-mutated genes into 11 biological process clusters (comprised of 61 biological processes) and 5 pathways, involved in cell adhesion, microtubule-based movement, the cell cycle, polysaccharide biosynthesis, muscle cell development and differentiation, cell death, and negative regulation. Associated pathways included the ATP-binding cassette transporter, extracellular matrix-receptor interaction, lysosome, complement and coagulation cascades, and glyoxylate and dicarboxylate metabolism pathways. The missense mutation status of 19 genes differed significantly between the groups (P < 0.05), and alterations in the EEF1D, RFNG, GPR142, and RAB37 genes were located in different chromosomal regions in type 1 and 2 PRCC. These mutations may contribute to future studies on pathogenic mechanisms and targeted therapy of PRCC. PMID:26339402

  15. Congenital hypothyroidism mutations affect common folding and trafficking in the α/β-hydrolase fold proteins

    PubMed Central

    De Jaco, Antonella; Dubi, Noga; Camp, Shelley; Taylor, Palmer

    2017-01-01

    The α/β-hydrolase fold superfamily of proteins is composed of structurally related members that, despite great diversity in their catalytic, recognition, adhesion and chaperone functions, share a common fold governed by homologous residues and conserved disulfide bridges. Non-synonymous single nucleotide polymorphisms within the α/β-hydrolase fold domain in various family members have been found for congenital endocrine, metabolic and nervous system disorders. By examining the amino acid sequence from the various proteins, mutations were found to be prevalent in conserved residues within the α/β-hydrolase fold of the homologous proteins. This is the case for the thyroglobulin mutations linked to congenital hypothyroidism. To address whether correct folding of the common domain is required for protein export, we inserted the thyroglobulin mutations at homologous positions in two correlated but simpler α/β-hydrolase fold proteins known to be exported to the cell surface: neuroligin3 and acetylcholinesterase. Here we show that these mutations in the cholinesterase homologous region alter the folding properties of the α/β-hydrolase fold domain, which are reflected in defects in protein trafficking, folding and function, and ultimately result in retention of the partially processed proteins in the endoplasmic reticulum. Accordingly, mutations at conserved residues may be transferred amongst homologous proteins to produce common processing defects despite disparate functions, protein complexity and tissue-specific expression of the homologous proteins. More importantly, a similar assembly of the α/β-hydrolase fold domain tertiary structure among homologous members of the superfamily is required for correct trafficking of the proteins to their final destination. PMID:23035660

  16. Darwinism for the Genomic Age: Connecting Mutation to Diversification.

    PubMed

    Hua, Xia; Bromham, Lindell

    2017-01-01

    A growing body of evidence suggests that rates of diversification of biological lineages are correlated with differences in genome-wide mutation rate. Given that most research into differential patterns of diversification rate have focused on species traits or ecological parameters, a connection to the biochemical processes of genome change is an unexpected observation. While the empirical evidence for a significant association between mutation rate and diversification rate is mounting, there has been less effort in explaining the factors that mediate this connection between genetic change and species richness. Here we draw together empirical studies and theoretical concepts that may help to build links in the explanatory chain that connects mutation to diversification. First we consider the way that mutation rates vary between species. We then explore how differences in mutation rates have flow-through effects to the rate at which populations acquire substitutions, which in turn influences the speed at which populations become reproductively isolated from each other due to the acquisition of genomic incompatibilities. Since diversification rate is commonly measured from phylogenetic analyses, we propose a conceptual approach for relating events of reproductive isolation to bifurcations on molecular phylogenies. As we examine each of these relationships, we consider theoretical models that might shine a light on the observed association between rate of molecular evolution and diversification rate, and critically evaluate the empirical evidence for these links, focusing on phylogenetic comparative studies. Finally, we ask whether we are getting closer to a real understanding of the way that the processes of molecular evolution connect to the observable patterns of diversification.

  17. A Reverse-Genetics Mutational Analysis of the Barley HvDWARF Gene Results in Identification of a Series of Alleles and Mutants with Short Stature of Various Degree and Disturbance in BR Biosynthesis Allowing a New Insight into the Process.

    PubMed

    Gruszka, Damian; Gorniak, Malgorzata; Glodowska, Ewelina; Wierus, Ewa; Oklestkova, Jana; Janeczko, Anna; Maluszynski, Miroslaw; Szarejko, Iwona

    2016-04-22

    Brassinosteroids (BRs) are plant steroid hormones, regulating a broad range of physiological processes. The largest amount of data related with BR biosynthesis has been gathered in Arabidopsis thaliana, however understanding of this process is far less elucidated in monocot crops. Up to now, only four barley genes implicated in BR biosynthesis have been identified. Two of them, HvDWARF and HvBRD, encode BR-6-oxidases catalyzing biosynthesis of castasterone, but their relation is not yet understood. In the present study, the identification of the HvDWARF genomic sequence, its mutational and functional analysis and characterization of new mutants are reported. Various types of mutations located in different positions within functional domains were identified and characterized. Analysis of their impact on phenotype of the mutants was performed. The identified homozygous mutants show reduced height of various degree and disrupted skotomorphogenesis. Mutational analysis of the HvDWARF gene with the "reverse genetics" approach allowed for its detailed functional analysis at the level of protein functional domains. The HvDWARF gene function and mutants' phenotypes were also validated by measurement of endogenous BR concentration. These results allowed a new insight into the BR biosynthesis in barley.

  18. Processing of Cholinesterase-like α/β-Hydrolase Fold Proteins: Alterations Associated with Congenital Disorders

    PubMed Central

    De Jaco, Antonella; Comoletti, Davide; Dubi, Noga; Camp, Shelley; Taylor, Palmer

    2016-01-01

    The α/β hydrolase fold family is perhaps the largest group of proteins presenting significant structural homology with divergent functions, ranging from catalytic hydrolysis to heterophilic cell adhesive interactions to chaperones in hormone production. All the proteins of the family share a common three-dimensional core structure containing the α/β-hydrolase fold domain that is crucial for proper protein function. Several mutations associated with congenital diseases or disorders have been reported in conserved residues within the α/β-hydrolase fold domain of cholinesterase-like proteins, neuroligins, butyrylcholinesterase and thyroglobulin. These mutations are known to disrupt the architecture of the common structural domain either globally or locally. Characterization of the natural mutations affecting the α/β-hydrolase fold domain in these proteins has shown that they mainly impair processing and trafficking along the secretory pathway causing retention of the mutant protein in the endoplasmic reticulum. Studying the processing of α/β-hydrolase fold mutant proteins should uncover new functions for this domain, that in some cases require structural integrity for both export of the protein from the ER and for facilitating subunit dimerization. A comparative study of homologous mutations in proteins that are closely related family members, along with the definition of new three-dimensional crystal structures, will identify critical residues for the assembly of the α/β-hydrolase fold. PMID:21933121

  19. Within-Host Evolution of Burkholderia pseudomallei in Four Cases of Acute Melioidosis

    PubMed Central

    Limmathurotsakul, Direk; Max, Tamara L.; Sarovich, Derek S.; Vogler, Amy J.; Dale, Julia L.; Ginther, Jennifer L.; Leadem, Benjamin; Colman, Rebecca E.; Foster, Jeffrey T.; Tuanyok, Apichai; Wagner, David M.; Peacock, Sharon J.; Pearson, Talima; Keim, Paul

    2010-01-01

    Little is currently known about bacterial pathogen evolution and adaptation within the host during acute infection. Previous studies of Burkholderia pseudomallei, the etiologic agent of melioidosis, have shown that this opportunistic pathogen mutates rapidly both in vitro and in vivo at tandemly repeated loci, making this organism a relevant model for studying short-term evolution. In the current study, B. pseudomallei isolates cultured from multiple body sites from four Thai patients with disseminated melioidosis were subjected to fine-scale genotyping using multilocus variable-number tandem repeat analysis (MLVA). In order to understand and model the in vivo variable-number tandem repeat (VNTR) mutational process, we characterized the patterns and rates of mutations in vitro through parallel serial passage experiments of B. pseudomallei. Despite the short period of infection, substantial divergence from the putative founder genotype was observed in all four melioidosis cases. This study presents a paradigm for examining bacterial evolution over the short timescale of an acute infection. Further studies are required to determine whether the mutational process leads to phenotypic alterations that impact upon bacterial fitness in vivo. Our findings have important implications for future sampling strategies, since colonies in a single clinical sample may be genetically heterogeneous, and organisms in a culture taken late in the infective process may have undergone considerable genetic change compared with the founder inoculum. PMID:20090837

  20. Operation of the PAVE PAWS Radar System at Beale Air Force Base, California. Part 2. Public Comment & AF Response.

    DTIC Science & Technology

    1980-07-01

    trip next month to Europe , and when I come back. It’s for this reason that I was not able to have it all typed and prepared, and the Air Force was...millimeter of culture medium. A mutational event such as a change in a single base pair in the bacterial DNA, which is impossible to detect by standard...100) bacteria, a rare single mutation event with a probability of say I in 100,000,000, the probability of 10-8, will thus be amplified by a factor of

  1. A valveless rotary microfluidic device for multiplex point mutation identification based on ligation-rolling circle amplification.

    PubMed

    Heo, Hyun Young; Chung, Soyi; Kim, Yong Tae; Kim, Do Hyun; Seo, Tae Seok

    2016-04-15

    Genetic variations such as single nucleotide polymorphism (SNP) and point mutations are important biomarkers to monitor disease prognosis and diagnosis. In this study, we developed a novel rotary microfluidic device which can perform multiplex SNP typing on the mutation sites of TP53 genes. The microdevice consists of three glass layers: a channel wafer, a Ti/Pt electrode-patterned resistance temperature detector (RTD) wafer, and a rotary plate in which twelve reaction chambers were fabricated. A series of sample injection, ligation-rolling circle amplification (L-RCA) reaction, and fluorescence detection of the resultant amplicons could be executed by rotating the top rotary plate, identifying five mutation points related with cancer prognosis. The use of the rotary plate eliminates the necessity of microvalves and micropumps to control the microfluidic flow in the channel, simplifying the chip design and chip operation for multiplex SNP detection. The proposed microdevice provides an advanced genetic analysis platform in terms of multiplexity, simplicity, and portability in the fields of biomedical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    NASA Astrophysics Data System (ADS)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  3. BRAF mutation status in papillary thyroid carcinoma: significance for surgical strategy.

    PubMed

    Miccoli, P; Basolo, F

    2014-02-01

    BRAF mutation is probably the only molecular marker acting as a risk factor that is available before surgery: for this reason, soon after it became quite widespread, it seemed an important tool as a guide towards an individualized surgical therapy in papillary thyroid carcinoma. Capsule invasion, multifocality, and lymph node involvement are the most important parameters influencing the choice of surgical strategy in front of small papillary cancers and, in more detail, of micro papillary carcinomas. The relationship between these parameters and the BRAF mutation are closely examined through the more recent literature. Capsular invasion seems to show the strongest correlation with the mutation and this has important correlations, thus suggesting that a more aggressive local surgery might be advisable, whereas the correlation between the mutation and lymph node involvement would be weaker, at least according to the most recent studies. The personalization of surgical therapy, today, seems easier to achieve thanks to molecular testing. In particular, an important result could be in the short term reduction in the number of completion thyroidectomies following simple lobectomies. Also, post operative radioactivated iodine therapies should be more carefully evaluated and tailored according to BRAF status. A possible flow chart for the decision of the therapeutic approach is proposed in accordance to the results of the literature.

  4. Genetic factors responsible for long bone fractures non-union.

    PubMed

    Szczęsny, Grzegorz; Olszewski, Waldemar L; Zagozda, Małgorzata; Rutkowska, Joanna; Czapnik, Zanetta; Swoboda-Kopeć, Ewa; Górecki, Andrzej

    2011-02-01

    Approximately 10-15% of all fractures of long bones heal with delay, prolonged immobilization and repetitive operative interventions. Despite intense investigations, the pathomechanism of impaired healing of skeletal tissue remains unclear. An important role in the pathomechanism of mal-union of close fractures plays subclinically proceeding infections. The question arises whether colonization and proliferation of bacteria in the fracture gap could be related to the mutation of genes for factors regulating local antimicrobial response, such as pathogen recognizing receptors (PRR), cytokines and chemokines. We carried out studies in patients with delayed long bone fractures estimating the frequency of mutation of genes crucial for pathogen recognition (TLR2, TLR4 and CD14), and elimination (CRP, IL-6, IL-1ra), as well as wound healing (TGF-β). The molecular milieu regulating healing process (IGF-1, COLL1a, TGF-β, BMP-2, and PDGF) was validated by Western blot analysis of the gap tissue. Microbiological investigations showed the presence of viable bacterial strains in 34 out of 108 gaps in patients with non-healing fractures (31.5%) and in 20 out of 122 patients with uneventful healing (16.4%) (P < 0.05). The occurrence of mutated TLR4 1/W but not 2/W gene was significantly higher (P < 0.05) in the non-healing infected than sterile group. In the non-healing infected group 1/W mutated gene frequency was also higher than in healing infected. In the TGF-β codon 10 a significantly higher frequency of mutated homozygote T and heterozygote C/T in the non-healing infected versus non-healing sterile subgroup was observed (P < 0.05). Similar difference was observed in the non-healing infected versus healing infected subgroup (P < 0.05). The CRP (G1059C), IL1ra (genotype 2/2), IL-6 (G176C), CD14 (G-159T), TLR2 (G2259A) and TLR4/2 (Thr399Ile) polymorphisms did not play evident role in the delay of fracture healing. Individuals bearing the mutant TLR 4 gene 1/W (Asp299Gly) and TGF-β gene codon 10 mutant T and T/C allele may predispose to impaired pathogen recognition and elimination, leading to prolonged pathogen existence in the fracture gaps and healing delays.

  5. Epigenome Aberrations: Emerging Driving Factors of the Clear Cell Renal Cell Carcinoma

    PubMed Central

    Mehdi, Ali; Riazalhosseini, Yasser

    2017-01-01

    Clear cell renal cell carcinoma (ccRCC), the most common form of Kidney cancer, is characterized by frequent mutations of the von Hippel-Lindau (VHL) tumor suppressor gene in ~85% of sporadic cases. Loss of pVHL function affects multiple cellular processes, among which the activation of hypoxia inducible factor (HIF) pathway is the best-known function. Constitutive activation of HIF signaling in turn activates hundreds of genes involved in numerous oncogenic pathways, which contribute to the development or progression of ccRCC. Although VHL mutations are considered as drivers of ccRCC, they are not sufficient to cause the disease. Recent genome-wide sequencing studies of ccRCC have revealed that mutations of genes coding for epigenome modifiers and chromatin remodelers, including PBRM1, SETD2 and BAP1, are the most common somatic genetic abnormalities after VHL mutations in these tumors. Moreover, recent research has shed light on the extent of abnormal epigenome alterations in ccRCC tumors, including aberrant DNA methylation patterns, abnormal histone modifications and deregulated expression of non-coding RNAs. In this review, we discuss the epigenetic modifiers that are commonly mutated in ccRCC, and our growing knowledge of the cellular processes that are impacted by them. Furthermore, we explore new avenues for developing therapeutic approaches based on our knowledge of epigenome aberrations of ccRCC. PMID:28812986

  6. Epigenome Aberrations: Emerging Driving Factors of the Clear Cell Renal Cell Carcinoma.

    PubMed

    Mehdi, Ali; Riazalhosseini, Yasser

    2017-08-16

    Clear cell renal cell carcinoma (ccRCC), the most common form of Kidney cancer, is characterized by frequent mutations of the von Hippel-Lindau ( VHL ) tumor suppressor gene in ~85% of sporadic cases. Loss of pVHL function affects multiple cellular processes, among which the activation of hypoxia inducible factor (HIF) pathway is the best-known function. Constitutive activation of HIF signaling in turn activates hundreds of genes involved in numerous oncogenic pathways, which contribute to the development or progression of ccRCC. Although VHL mutations are considered as drivers of ccRCC, they are not sufficient to cause the disease. Recent genome-wide sequencing studies of ccRCC have revealed that mutations of genes coding for epigenome modifiers and chromatin remodelers, including PBRM1 , SETD2 and BAP1 , are the most common somatic genetic abnormalities after VHL mutations in these tumors. Moreover, recent research has shed light on the extent of abnormal epigenome alterations in ccRCC tumors, including aberrant DNA methylation patterns, abnormal histone modifications and deregulated expression of non-coding RNAs. In this review, we discuss the epigenetic modifiers that are commonly mutated in ccRCC, and our growing knowledge of the cellular processes that are impacted by them. Furthermore, we explore new avenues for developing therapeutic approaches based on our knowledge of epigenome aberrations of ccRCC.

  7. Somatic Mutation Patterns in Hemizygous Genomic Regions Unveil Purifying Selection during Tumor Evolution

    PubMed Central

    Basu, Swaraj; Larsson, Erik

    2016-01-01

    Identification of cancer driver genes using somatic mutation patterns indicative of positive selection has become a major goal in cancer genomics. However, cancer cells additionally depend on a large number of genes involved in basic cellular processes. While such genes should in theory be subject to strong purifying (negative) selection against damaging somatic mutations, these patterns have been elusive and purifying selection remains inadequately explored in cancer. Here, we hypothesized that purifying selection should be evident in hemizygous genomic regions, where damaging mutations cannot be compensated for by healthy alleles. Using a 7,781-sample pan-cancer dataset, we first confirmed this in POLR2A, an essential gene where hemizygous deletions are known to confer elevated sensitivity to pharmacological suppression. We next used this principle to identify several genes and pathways that show patterns indicative of purifying selection to avoid deleterious mutations. These include the POLR2A interacting protein INTS10 as well as genes involved in mRNA splicing, nonsense-mediated mRNA decay and other RNA processing pathways. Many of these genes belong to large protein complexes, and strong overlaps were observed with recent functional screens for gene essentiality in human cells. Our analysis supports that purifying selection acts to preserve the remaining function of many hemizygously deleted essential genes in tumors, indicating vulnerabilities that might be exploited by future therapeutic strategies. PMID:28027311

  8. Advanced evolutionary molecular engineering to produce thermostable cellulase by using a small but efficient library.

    PubMed

    Ito, Y; Ikeuchi, A; Imamura, C

    2013-01-01

    We aimed at constructing thermostable cellulase variants of cellobiohydrolase II, derived from the mesophilic fungus Phanerochaete chrysosporium, by using an advanced evolutionary molecular engineering method. By aligning the amino acid sequences of the catalytic domains of five thermophilic fungal CBH2 and PcCBH2 proteins, we identified 45 positions where the PcCBH2 genes differ from the consensus sequence of two to five thermophilic fungal CBH2s. PcCBH2 variants with the consensus mutations were obtained by a cell-free translation system that was chosen for easy evaluation of thermostability. From the small library of consensus mutations, advantageous mutations for improving thermostability were found to occur with much higher frequency relative to a random library. To further improve thermostability, advantageous mutations were accumulated within the wild-type gene. Finally, we obtained the most thermostable variant Mall4, which contained all 15 advantageous mutations found in this study. This variant had the same specific cellulase activity as the wild type and retained sufficient activity at 50°C for >72 h, whereas wild-type PcCBH2 retained much less activity under the same conditions. The history of the accumulation process indicated that evolution of PcCBH2 toward improved thermostability was ideally and rapidly accomplished through the evolutionary process employed in this study.

  9. Ineffectiveness of the presence of H-ras/p53 combination of mutations in squamous cell carcinoma cells to induce a conversion of a nontumorigenic to a tumorigenic phenotype.

    PubMed

    Lee, H; Li, D; Prior, T; Casto, B C; Weghorst, C M; Shuler, C F; Milo, G E

    1997-10-01

    Human tumor cells have properties in vitro or in surrogate hosts that are distinct from those of normal cells, such as immortality, anchorage independence, and tumor formation in nude mice. However, different cells from individual tumors may exhibit some, but not all of these features. In previous years, human tumor cell lines derived from different tumor and tissue types have been studied to determine those molecular changes that are associated with the in vitro properties listed above and with tumorigenicity in nude mice. In the present study, seven cell lines derived from human tumors were characterized for p53 and ras mutations that may occur in SCC tumor phenotypes and for tumor formation in nude mice. This investigation was designed to examine whether co-occurrence of mutated ras and p53 lead to a malignant stage in the progression process. None of the seven cell lines contained mutations in the recognized "hot spots" of the p53 tumor suppressor gene, but four had a nonsense/splice mutation in codon 126 and a mutation in codon 12 of the H-ras gene. The remaining three cell lines had p53 mutations in intron 5, in codon 193, and a missense mutation in codon 126, respectively. Four of seven cell lines were nontumorigenic; two of these cell lines contained a nonsense p53-126 mutation and mutated ras; one had a missense mutation at codon 126 but no mutated ras; the the fourth had only a p53 mutation at codon 193. Two of the nontumorigenic cell lines were converted to tumorigenicity after treatment with methyl methanesulfonate or N-methyl-N'-nitro-N-nitrosoguanidine with no apparent additional mutations in either gene. Our analysis revealed that there was a high frequency of genetic diversity and mutations in both p53 and H-ras. There was also a lack of a causal relationship in the presence of mutations in p53 and the cells' ability to exhibit a malignant potential in nude mice.

  10. Stochastic evolution in populations of ideas

    PubMed Central

    Nicole, Robin; Sollich, Peter; Galla, Tobias

    2017-01-01

    It is known that learning of players who interact in a repeated game can be interpreted as an evolutionary process in a population of ideas. These analogies have so far mostly been established in deterministic models, and memory loss in learning has been seen to act similarly to mutation in evolution. We here propose a representation of reinforcement learning as a stochastic process in finite ‘populations of ideas’. The resulting birth-death dynamics has absorbing states and allows for the extinction or fixation of ideas, marking a key difference to mutation-selection processes in finite populations. We characterize the outcome of evolution in populations of ideas for several classes of symmetric and asymmetric games. PMID:28098244

  11. Stochastic evolution in populations of ideas

    NASA Astrophysics Data System (ADS)

    Nicole, Robin; Sollich, Peter; Galla, Tobias

    2017-01-01

    It is known that learning of players who interact in a repeated game can be interpreted as an evolutionary process in a population of ideas. These analogies have so far mostly been established in deterministic models, and memory loss in learning has been seen to act similarly to mutation in evolution. We here propose a representation of reinforcement learning as a stochastic process in finite ‘populations of ideas’. The resulting birth-death dynamics has absorbing states and allows for the extinction or fixation of ideas, marking a key difference to mutation-selection processes in finite populations. We characterize the outcome of evolution in populations of ideas for several classes of symmetric and asymmetric games.

  12. Nuclear Proximity of Mtr4 with RNA exosome restricts DNA mutational asymmetry

    PubMed Central

    Lim, Junghyun; Giri, Pankaj Kumar; Kazadi, David; Laffleur, Brice; Zhang, Wanwei; Grinstein, Veronika; Pefanis, Evangelos; Brown, Lewis M.; Ladewig, Erik; Martin, Ophélie; Chen, Yuling; Rabadan, Raul; Boyer, François; Rothschild, Gerson; Cogné, Michel; Pinaud, Eric; Deng, Haiteng; Basu, Uttiya

    2017-01-01

    SUMMARY The distribution of sense and antisense strand DNA mutations on transcribed duplex DNA contributes to the development of immune and neural systems along with the progression of cancer. Because developmentally matured B cells undergo biologically programmed strand-specific DNA mutagenesis at focal DNA/RNA hybrid structures, they make a convenient system to investigate strand-specific mutagenesis mechanisms. We demonstrate that the sense and antisense strand DNA mutagenesis at the immunoglobulin heavy chain locus and some other regions of the B cell genome depends upon localized RNA processing protein complex formation in the nucleus. Both the physical proximity and coupled activities of RNA helicase Mtr4 (and Senataxin) with the noncoding RNA processing function of RNA exosome determine the strand specific distribution of DNA mutations. Our study suggests that strand-specific DNA mutagenesis-associated mechanisms will play major roles in other undiscovered aspects of organismic development. PMID:28431250

  13. Neurological disorders associated with DNA strand-break processing enzymes

    PubMed Central

    Jiang, Bingcheng; Glover, J.N. Mark

    2016-01-01

    The termini of DNA strand breaks induced by reactive oxygen species or by abortive DNA metabolic intermediates require processing to enable subsequent gap filling and ligation to proceed. The three proteins, tyrosyl DNA-phosphodiesterase 1 (TDP1), aprataxin (APTX) and polynucleotide kinase/phosphatase (PNKP) each act on a discrete set of modified strand-break termini. Recently, a series of neurodegenerative and neurodevelopmental disorders have been associated with mutations in the genes coding for these proteins. Mutations in TDP1 and APTX have been linked to Spinocerebellar ataxia with axonal neuropathy (SCAN1) and Ataxia-ocular motor apraxia 1 (AOA1), respectively, while mutations in PNKP are considered to be responsible for Microcephaly with seizures (MCSZ) and Ataxia-ocular motor apraxia 4 (AOA4). Here we present an overview of the mechanisms of these proteins and how their impairment may give rise to their respective disorders. PMID:27470939

  14. Transcriptional alterations in skin fibroblasts from Parkinson's disease patients with parkin mutations.

    PubMed

    González-Casacuberta, Ingrid; Morén, Constanza; Juárez-Flores, Diana-Luz; Esteve-Codina, Anna; Sierra, Cristina; Catalán-García, Marc; Guitart-Mampel, Mariona; Tobías, Ester; Milisenda, José César; Pont-Sunyer, Claustre; Martí, María José; Cardellach, Francesc; Tolosa, Eduard; Artuch, Rafael; Ezquerra, Mario; Fernández-Santiago, Rubén; Garrabou, Glòria

    2018-05-01

    Mutations in the parkin gene (PRKN) are the most common cause of autosomal-recessive juvenile Parkinson's disease (PD). PRKN encodes an E3 ubiquitin ligase that is involved in multiple regulatory functions including proteasomal-mediated protein turnover, mitochondrial function, mitophagy, and cell survival. However, the precise molecular events mediated by PRKN mutations in PRKN-associated PD (PRKN-PD) remain unknown. To elucidate the cellular impact of parkin mutations, we performed an RNA sequencing study in skin fibroblasts from PRKN-PD patients carrying different PRKN mutations (n = 4) and genetically unrelated healthy subjects (n = 4). We identified 343 differentially expressed genes in PRKN-PD fibroblasts. Gene ontology and canonical pathway analysis revealed enrichment of differentially expressed genes in processes such as cell adhesion, cell growth, and amino acid and folate metabolism among others. Our findings indicate that PRKN mutations are associated with large global gene expression changes as observed in fibroblasts from PRKN-PD patients and support the view of PD as a systemic disease affecting also non-neural peripheral tissues such as the skin. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. A mutation in the insulin receptor gene that impairs transport of the receptor to the plasma membrane and causes insulin-resistant diabetes.

    PubMed Central

    Accili, D; Frapier, C; Mosthaf, L; McKeon, C; Elbein, S C; Permutt, M A; Ramos, E; Lander, E; Ullrich, A; Taylor, S I

    1989-01-01

    Insulin binds to a receptor on the cell surface, thereby triggering a biological response within the target cell. Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. We have studied a family in which two sisters have a genetic form of insulin-resistant diabetes mellitus. The technique of homozygosity mapping has been used to demonstrate that the mutation causing diabetes in this consanguineous family is genetically linked to the insulin receptor gene. The two insulin-resistant sisters are homozygous for a mutation encoding substitution of valine for phenylalanine at position 382 in the alpha-subunit of the insulin receptor. Transfection of mutant insulin receptor cDNA into NIH3T3 cells demonstrated that the Val382 mutation impaired post-translational processing and retarded transport of the insulin receptor to the plasma membrane. Thus, the mutation causes insulin resistance by decreasing the number of insulin receptors on the surface of the patients' cells. Images PMID:2573522

  16. Repair of naturally occurring mismatches can induce mutations in flanking DNA

    PubMed Central

    Chen, Jia; Miller, Brendan F; Furano, Anthony V

    2014-01-01

    ‘Normal’ genomic DNA contains hundreds of mismatches that are generated daily by the spontaneous deamination of C (U/G) and methyl-C (T/G). Thus, a mutagenic effect of their repair could constitute a serious genetic burden. We show here that while mismatches introduced into human cells on an SV40-based episome were invariably repaired, this process induced mutations in flanking DNA at a significantly higher rate than no mismatch controls. Most mutations involved the C of TpC, the substrate of some single strand-specific APOBEC cytidine deaminases, similar to the mutations that can typify the ‘mutator phenotype’ of numerous tumors. siRNA knockdowns and chromatin immunoprecipitation showed that TpC preferring APOBECs mediate the mutagenesis, and siRNA knockdowns showed that both the base excision and mismatch repair pathways are involved. That naturally occurring mispairs can be converted to mutators, represents an heretofore unsuspected source of genetic changes that could underlie disease, aging, and evolutionary change. DOI: http://dx.doi.org/10.7554/eLife.02001.001 PMID:24843013

  17. Unexpected identification of a recurrent mutation in the DLX3 gene causing amelogenesis imperfecta.

    PubMed

    Kim, Y-J; Seymen, F; Koruyucu, M; Kasimoglu, Y; Gencay, K; Shin, T J; Hyun, H-K; Lee, Z H; Kim, J-W

    2016-05-01

    To identify the molecular genetic aetiology of a family with autosomal dominant amelogenesis imperfecta (AI). DNA samples were collected from a six-generation family, and the candidate gene approach was used to screen for the enamelin (ENAM) gene. Whole-exome sequencing and linkage analysis with SNP array data identified linked regions, and candidate gene screening was performed. Mutational analysis revealed a mutation (c.561_562delCT and p.Tyr188Glnfs*13) in the DLX3 gene. After finding a recurrent DLX3 mutation, the clinical phenotype of the family members was re-examined. The proband's mother had pulp elongation in the third molars. The proband had not hair phenotype, but her cousin had curly hair at birth. In this study, we identified a recurrent 2-bp deletional DLX3 mutation in a new family. The clinical phenotype was the mildest one associated with the DLX3 mutations. These results will advance the understanding of the functional role of DLX3 in developmental processes. © 2016 The Authors. Oral Diseases Published by John Wiley & Sons Ltd.

  18. Mutation Is a Sufficient and Robust Predictor of Genetic Variation for Mitotic Spindle Traits in Caenorhabditis elegans

    PubMed Central

    Farhadifar, Reza; Ponciano, José Miguel; Andersen, Erik C.; Needleman, Daniel J.; Baer, Charles F.

    2016-01-01

    Different types of phenotypic traits consistently exhibit different levels of genetic variation in natural populations. There are two potential explanations: Either mutation produces genetic variation at different rates or natural selection removes or promotes genetic variation at different rates. Whether mutation or selection is of greater general importance is a longstanding unresolved question in evolutionary genetics. We report mutational variances (VM) for 19 traits related to the first mitotic cell division in Caenorhabditis elegans and compare them to the standing genetic variances (VG) for the same suite of traits in a worldwide collection C. elegans. Two robust conclusions emerge. First, the mutational process is highly repeatable: The correlation between VM in two independent sets of mutation accumulation lines is ∼0.9. Second, VM for a trait is a good predictor of VG for that trait: The correlation between VM and VG is ∼0.9. This result is predicted for a population at mutation–selection balance; it is not predicted if balancing selection plays a primary role in maintaining genetic variation. PMID:27334268

  19. OPERATION CROSSROADS. A COMPARISON OF THE EFFECTS OF TEST ABLE ATOMIC BOMB IONIZING RADIATION AND X-RAYS ON SEEDS OF BARLEY, WHEAT AND OATS.

    DTIC Science & Technology

    SEEDS ), (*RADIATION EFFECTS, (*NUCLEAR EXPLOSIONS, RADIATION HAZARDS), X RAYS, WHEAT, RADIATION DOSAGE, MUTATIONS, RADIOBIOLOGY, GROWTH(PHYSIOLOGY), CEREALS, SENSITIVITY, AGING(PHYSIOLOGY), EXPERIMENTAL DATA, NUCLEAR BOMBS.

  20. Iris double recognition based on modified evolutionary neural network

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Liu, Yuan-Ning; Zhu, Xiao-Dong; Huo, Guang; Liu, Wen-Tao; Feng, Jia-Kai

    2017-11-01

    Aiming at multicategory iris recognition under illumination and noise interference, this paper proposes a method of iris double recognition based on a modified evolutionary neural network. An equalization histogram and Laplace of Gaussian operator are used to process the iris to suppress illumination and noise interference and Haar wavelet to convert the iris feature to binary feature encoding. Calculate the Hamming distance for the test iris and template iris , and compare with classification threshold, determine the type of iris. If the iris cannot be identified as a different type, there needs to be a secondary recognition. The connection weights in back-propagation (BP) neural network use modified evolutionary neural network to adaptively train. The modified neural network is composed of particle swarm optimization with mutation operator and BP neural network. According to different iris libraries in different circumstances of experimental results, under illumination and noise interference, the correct recognition rate of this algorithm is higher, the ROC curve is closer to the coordinate axis, the training and recognition time is shorter, and the stability and the robustness are better.

  1. Computer Simulation of Biological Ageing-A Bird's-Eye View

    NASA Astrophysics Data System (ADS)

    Dasgupta, Subinay

    For living organisms, the process of ageing consists of acquiring good and bad genetic mutations, which increase and decrease (respectively) the survival probability. When a child is born, the hereditary mutations of the parents are transmitted to the offspring. Such stochastic processes seem to be amenable to computer simulation. Over the last 10 years, simulation studies of this sort have been done in different parts of the globe to explain ageing. The objective of these studies have been to attempt an explanation of demographic data and of natural phenomena like preference of nature to the process of sexual reproduction (in comparison to the process of asexual reproduction). Here we shall attempt to discuss briefly the principles and the results of these works, with an emphasis on what is called Penna bit-string model.

  2. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    PubMed

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.

  3. Cellstat--A continuous culture system of a bacteriophage for the study of the mutation rate and the selection process at the DNA level

    NASA Astrophysics Data System (ADS)

    Husimi, Yuzuru; Nishigaki, Koichi; Kinoshita, Yasunori; Tanaka, Toyosuke

    1982-04-01

    A bacteriophage is continuously cultured in the flow of the host bacterial cell under the control of a minicomputer. In the culture, the population of the noninfected cell is kept constant by the endogeneous regulation mechanism, so it is called the ''cellstat'' culture. Due to the high dilution rate of the host cell, the mutant cell cannot be selected in the cellstat. Therefore, the cellstat is suitable for the study of the mutation rate and the selection process of a bacteriophage under well-defined environmental conditions (including physiological condition of the host cell) without being interfered by host-cell mutations. Applications to coliphage fd, a secretion type phage, are shown as a measurement example. A chimera between fd and a plasmid pBR322 is cultured more than 100 h. The process of population changeovers by deletion mutants indicates that the deletion hot spots exist in this cloning vector and that this apparatus can be used also for testing instability of a recombinant DNA.

  4. Functional analysis of H. sapiens DNA polymerase γ spacer mutation W748S with and without common variant E1143G

    PubMed Central

    Palin, Eino JH; Lesonen, Annamari; Farr, Carol L; Euro, Liliya; Suomalainen, Anu; Kaguni, Laurie S

    2010-01-01

    Mitochondrial DNA polymerase, POLG, is the sole DNA polymerase found in animal mitochondria. In humans, POLGα W748S in cis with an E1143G mutation has been linked to a new type of recessive ataxia, MIRAS, which is the most common inherited ataxia in Finland. We investigated the biochemical phenotypes of the W748S amino acid change, using recombinant human POLG. We measured processive and non-processive DNA polymerase activity, DNA binding affinity, enzyme processivity, and subunit interaction with recombinant POLGβ. In addition, we studied the effects of the W748S and E1143G mutations in primary human cell cultures using retroviral transduction. Here, we examined cell viability, mitochondrial DNA copy number, and products of mitochondrial translation. Our results indicate that the W748S mutant POLGα does not exhibit a clear biochemical phenotype, making it indistinguishable from wild type POLGα and as such, fail to replicate previously published results. Furthermore, results from the cell models were concurrent with the findings from patients, and support our biochemical findings. PMID:20153822

  5. Genome-Wide Mutation Avalanches Induced in Diploid Yeast Cells by a Base Analog or an APOBEC Deaminase

    PubMed Central

    Lada, Artem G.; Stepchenkova, Elena I.; Waisertreiger, Irina S. R.; Noskov, Vladimir N.; Dhar, Alok; Eudy, James D.; Boissy, Robert J.; Hirano, Masayuki; Rogozin, Igor B.; Pavlov, Youri I.

    2013-01-01

    Genetic information should be accurately transmitted from cell to cell; conversely, the adaptation in evolution and disease is fueled by mutations. In the case of cancer development, multiple genetic changes happen in somatic diploid cells. Most classic studies of the molecular mechanisms of mutagenesis have been performed in haploids. We demonstrate that the parameters of the mutation process are different in diploid cell populations. The genomes of drug-resistant mutants induced in yeast diploids by base analog 6-hydroxylaminopurine (HAP) or AID/APOBEC cytosine deaminase PmCDA1 from lamprey carried a stunning load of thousands of unselected mutations. Haploid mutants contained almost an order of magnitude fewer mutations. To explain this, we propose that the distribution of induced mutation rates in the cell population is uneven. The mutants in diploids with coincidental mutations in the two copies of the reporter gene arise from a fraction of cells that are transiently hypersensitive to the mutagenic action of a given mutagen. The progeny of such cells were never recovered in haploids due to the lethality caused by the inactivation of single-copy essential genes in cells with too many induced mutations. In diploid cells, the progeny of hypersensitive cells survived, but their genomes were saturated by heterozygous mutations. The reason for the hypermutability of cells could be transient faults of the mutation prevention pathways, like sanitization of nucleotide pools for HAP or an elevated expression of the PmCDA1 gene or the temporary inability of the destruction of the deaminase. The hypothesis on spikes of mutability may explain the sudden acquisition of multiple mutational changes during evolution and carcinogenesis. PMID:24039593

  6. Structural study of the effects of mutations in proteins to identify the molecular basis of the loss of local structural fluidity leading to the onset of autoimmune diseases.

    PubMed

    Ali, Ananya; Ghosh, Semanti; Bagchi, Angshuman

    2017-02-26

    Protein-Protein Interactions (PPIs) are crucial in most of the biological processes and PPI dysfunctions are known to be associated with the onsets of various diseases. One of such diseases is the auto-immune disease. Auto-immune diseases are one among the less studied group of diseases with very high mortality rates. Thus, we tried to correlate the appearances of mutations with their probable biochemical basis of the molecular mechanisms leading to the onset of the disease phenotypes. We compared the effects of the Single Amino Acid Variants (SAVs) in the wild type and mutated proteins to identify any structural deformities that might lead to altered PPIs leading ultimately to disease onset. For this we used Relative Solvent Accessibility (RSA) as a spatial parameter to compare the structural perturbation in mutated and wild type proteins. We observed that the mutations were capable to increase intra-chain PPIs whereas inter-chain PPIs would remain mostly unaltered. This might lead to more intra-molecular friction causing a deleterious alteration of protein's normal function. A Lyapunov exponent analysis, using the altered RSA values due to polymorphic and disease causing mutations, revealed polymorphic mutations have a positive mean value for the Lyapunov exponent while disease causing mutations have a negative mean value. Thus, local spatial stochasticity has been lost due to disease causing mutations, indicating a loss of structural fluidity. The amino acid conversion plot also showed a clear tendency of altered surface patch residue conversion propensity than polymorphic conversions. So far, this is the first report that compares the effects of different kinds of mutations (disease and non-disease causing polymorphic mutations) in the onset of autoimmune diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Clonal Architecture of Secondary Acute Myeloid Leukemia

    PubMed Central

    Walter, Matthew J.; Shen, Dong; Ding, Li; Shao, Jin; Koboldt, Daniel C.; Chen, Ken; Larson, David E.; McLellan, Michael D.; Dooling, David; Abbott, Rachel; Fulton, Robert; Magrini, Vincent; Schmidt, Heather; Kalicki-Veizer, Joelle; O’Laughlin, Michelle; Fan, Xian; Grillot, Marcus; Witowski, Sarah; Heath, Sharon; Frater, John L.; Eades, William; Tomasson, Michael; Westervelt, Peter; DiPersio, John F.; Link, Daniel C.; Mardis, Elaine R.; Ley, Timothy J.; Wilson, Richard K.; Graubert, Timothy A.

    2012-01-01

    BACKGROUND The myelodysplastic syndromes are a group of hematologic disorders that often evolve into secondary acute myeloid leukemia (AML). The genetic changes that underlie progression from the myelodysplastic syndromes to secondary AML are not well understood. METHODS We performed whole-genome sequencing of seven paired samples of skin and bone marrow in seven subjects with secondary AML to identify somatic mutations specific to secondary AML. We then genotyped a bone marrow sample obtained during the antecedent myelodysplastic-syndrome stage from each subject to determine the presence or absence of the specific somatic mutations. We identified recurrent mutations in coding genes and defined the clonal architecture of each pair of samples from the myelodysplastic-syndrome stage and the secondary-AML stage, using the allele burden of hundreds of mutations. RESULTS Approximately 85% of bone marrow cells were clonal in the myelodysplastic-syndrome and secondary-AML samples, regardless of the myeloblast count. The secondary-AML samples contained mutations in 11 recurrently mutated genes, including 4 genes that have not been previously implicated in the myelodysplastic syndromes or AML. In every case, progression to acute leukemia was defined by the persistence of an antecedent founding clone containing 182 to 660 somatic mutations and the outgrowth or emergence of at least one subclone, harboring dozens to hundreds of new mutations. All founding clones and subclones contained at least one mutation in a coding gene. CONCLUSIONS Nearly all the bone marrow cells in patients with myelodysplastic syndromes and secondary AML are clonally derived. Genetic evolution of secondary AML is a dynamic process shaped by multiple cycles of mutation acquisition and clonal selection. Recurrent gene mutations are found in both founding clones and daughter subclones. (Funded by the National Institutes of Health and others.) PMID:22417201

  8. The p.M292T NDUFS2 mutation causes complex I-deficient Leigh syndrome in multiple families.

    PubMed

    Tuppen, Helen A L; Hogan, Vanessa E; He, Langping; Blakely, Emma L; Worgan, Lisa; Al-Dosary, Mazhor; Saretzki, Gabriele; Alston, Charlotte L; Morris, Andrew A; Clarke, Michael; Jones, Simon; Devlin, Anita M; Mansour, Sahar; Chrzanowska-Lightowlers, Zofia M A; Thorburn, David R; McFarland, Robert; Taylor, Robert W

    2010-10-01

    Isolated complex I deficiency is the most frequently observed oxidative phosphorylation defect in children with mitochondrial disease, leading to a diverse range of clinical presentations, including Leigh syndrome. For most patients the genetic cause of the biochemical defect remains unknown due to incomplete understanding of the complex I assembly process. Nonetheless, a plethora of pathogenic mutations have been described to date in the seven mitochondrial-encoded subunits of complex I as well as in 12 of the nuclear-encoded subunits and in six assembly factors. Whilst several mitochondrial DNA mutations are recurrent, the majority of these mutations are reported in single families. We have sequenced core structural and functional nuclear-encoded subunits of complex I in a cohort of 34 paediatric patients with isolated complex I deficiency, identifying pathogenic mutations in 6 patients. These included a novel homozygous NDUFS1 mutation in an Asian child with Leigh syndrome, a previously identified NDUFS8 mutation (c.236C>T, p.P79L) in a second Asian child with Leigh-like syndrome and six novel, compound heterozygous NDUFS2 mutations in four white Caucasian patients with Leigh or Leigh-like syndrome. Three of these children harboured an identical NDUFS2 mutation (c.875T>C, p.M292T), which was also identified in conjunction with a novel NDUFS2 splice site mutation (c.866+4A>G) in a fourth Caucasian child who presented to a different diagnostic centre, with microsatellite and single nucleotide polymorphism analyses indicating that this was due to an ancient common founder event. Our results confirm that NDUFS2 is a mutational hotspot in Caucasian children with isolated complex I deficiency and recommend the routine diagnostic investigation of this gene in patients with Leigh or Leigh-like phenotypes.

  9. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yoon Jae; Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul; Vaccine Translational Research Center, Yonsei University, Seoul

    In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single aminomore » acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response. - Highlights: • Cold-adaptation process induced four amino acid mutations in the HA of X-31 virus. • The four mutations in the HA also contributed to attenuation of the X-31ca virus • N81K mutation was the most significant marker for the attenuation of X-31ca virus. • Introduction of N81K mutation into H3N2 LAIV further attenuated the vaccine. • This approach provides a useful guideline for enhancing the safety of the LAIVs.« less

  10. A KCNH2 branch point mutation causing aberrant splicing contributes to an explanation of genotype-negative long QT syndrome.

    PubMed

    Crotti, Lia; Lewandowska, Marzena A; Schwartz, Peter J; Insolia, Roberto; Pedrazzini, Matteo; Bussani, Erica; Dagradi, Federica; George, Alfred L; Pagani, Franco

    2009-02-01

    Genetic screening of long QT syndrome (LQTS) fails to identify disease-causing mutations in about 30% of patients. So far, molecular screening has focused mainly on coding sequence mutations or on substitutions at canonical splice sites. The purpose of this study was to explore the possibility that intronic variants not at canonical splice sites might affect splicing regulatory elements, lead to aberrant transcripts, and cause LQTS. Molecular screening was performed through DHPLC and sequence analysis. The role of the intronic mutation identified was assessed with a hybrid minigene splicing assay. A three-generation LQTS family was investigated. Molecular screening failed to identify an obvious disease-causing mutation in the coding sequences of the major LQTS genes but revealed an intronic A-to-G substitution in KCNH2 (IVS9-28A/G) cosegregating with the clinical phenotype in family members. In vitro analysis proved that the mutation disrupts the acceptor splice site definition by affecting the branch point (BP) sequence and promoting intron retention. We further demonstrated a tight functional relationship between the BP and the polypyrimidine tract, whose weakness is responsible for the pathological effect of the IVS9-28A/G mutation. We identified a novel BP mutation in KCNH2 that disrupts the intron 9 acceptor splice site definition and causes LQT2. The present finding demonstrates that intronic mutations affecting pre-mRNA processing may contribute to the failure of traditional molecular screening in identifying disease-causing mutations in LQTS subjects and offers a rationale strategy for the reduction of genotype-negative cases.

  11. DiMeX: A Text Mining System for Mutation-Disease Association Extraction.

    PubMed

    Mahmood, A S M Ashique; Wu, Tsung-Jung; Mazumder, Raja; Vijay-Shanker, K

    2016-01-01

    The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this problem by developing a text-mining system (DiMeX) to extract mutation to disease associations from publication abstracts. DiMeX consists of a series of natural language processing modules that preprocess input text and apply syntactic and semantic patterns to extract mutation-disease associations. DiMeX achieves high precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different datasets for mutation-disease associations. DiMeX includes a separate component that extracts mutation mentions in text and associates them with genes. This component has been also evaluated on different datasets and shown to achieve state-of-the-art performance. The results indicate that our system outperforms the existing mutation-disease association tools, addressing the low precision problems suffered by most approaches. DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease associations, as well as other relevant information including patient/cohort size and population data. The results are stored in a database that can be queried and downloaded at http://biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has the potential to significantly assist researchers and curators to enrich mutation databases.

  12. Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning.

    PubMed

    Alexander, J; Stainier, D Y; Yelon, D

    1998-01-01

    The genetic pathways underlying the induction and anterior-posterior patterning of the heart are poorly understood. The recent emergence of the zebrafish model system now allows a classical genetic approach to such challenging problems in vertebrate development. Two large-scale screens for mutations affecting zebrafish embryonic development have recently been completed; among the hundreds of mutations identified were several that affect specific aspects of cardiac morphogenesis, differentiation, and function. However, very few mutations affecting induction and/or anterior-posterior patterning of the heart were identified. We hypothesize that a directed approach utilizing molecular markers to examine these particular steps of heart development will uncover additional such mutations. To test this hypothesis, we are conducting two parallel screens for mutations that affect either the induction or the anterior-posterior patterning of the zebrafish heart. As an indicator of cardiac induction, we examine expression of nkx2.5, the earliest known marker of precardiac mesoderm; to assess anterior-posterior patterning, we distinguish ventricle from atrium with antibodies that recognize different myosin heavy chain isoforms. In order to expedite the examination of a large number of mutations, we are screening the haploid progeny of mosaic F1 females. In these ongoing screens, we have identified four mutations that affect nkx2.5 expression as well as 21 that disrupt either ventricular or atrial development and thus far have recovered several of these mutations, demonstrating the value of our approach. Future analysis of these and other cardiac mutations will provide further insight into the processes of induction and anterior-posterior patterning of the heart.

  13. DiMeX: A Text Mining System for Mutation-Disease Association Extraction

    PubMed Central

    Mahmood, A. S. M. Ashique; Wu, Tsung-Jung; Mazumder, Raja; Vijay-Shanker, K.

    2016-01-01

    The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this problem by developing a text-mining system (DiMeX) to extract mutation to disease associations from publication abstracts. DiMeX consists of a series of natural language processing modules that preprocess input text and apply syntactic and semantic patterns to extract mutation-disease associations. DiMeX achieves high precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different datasets for mutation-disease associations. DiMeX includes a separate component that extracts mutation mentions in text and associates them with genes. This component has been also evaluated on different datasets and shown to achieve state-of-the-art performance. The results indicate that our system outperforms the existing mutation-disease association tools, addressing the low precision problems suffered by most approaches. DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease associations, as well as other relevant information including patient/cohort size and population data. The results are stored in a database that can be queried and downloaded at http://biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has the potential to significantly assist researchers and curators to enrich mutation databases. PMID:27073839

  14. Thiol peroxidase deficiency leads to increased mutational load and decreased fitness in Saccharomyces cerevisiae.

    PubMed

    Kaya, Alaattin; Lobanov, Alexei V; Gerashchenko, Maxim V; Koren, Amnon; Fomenko, Dmitri E; Koc, Ahmet; Gladyshev, Vadim N

    2014-11-01

    Thiol peroxidases are critical enzymes in the redox control of cellular processes that function by reducing low levels of hydroperoxides and regulating redox signaling. These proteins were also shown to regulate genome stability, but how their dysfunction affects the actual mutations in the genome is not known. Saccharomyces cerevisiae has eight thiol peroxidases of glutathione peroxidase and peroxiredoxin families, and the mutant lacking all these genes (∆8) is viable. In this study, we employed two independent ∆8 isolates to analyze the genome-wide mutation spectrum that results from deficiency in these enzymes. Deletion of these genes was accompanied by a dramatic increase in point mutations, many of which clustered in close proximity and scattered throughout the genome, suggesting strong mutational bias. We further subjected multiple lines of wild-type and ∆8 cells to long-term mutation accumulation, followed by genome sequencing and phenotypic characterization. ∆8 lines showed a significant increase in nonrecurrent point mutations and indels. The original ∆8 cells exhibited reduced growth rate and decreased life span, which were further reduced in all ∆8 mutation accumulation lines. Although the mutation spectrum of the two independent isolates was different, similar patterns of gene expression were observed, suggesting the direct contribution of thiol peroxidases to the observed phenotypes. Expression of a single thiol peroxidase could partially restore the growth phenotype of ∆8 cells. This study shows how deficiency in nonessential, yet critical and conserved oxidoreductase function, leads to increased mutational load and decreased fitness. Copyright © 2014 by the Genetics Society of America.

  15. Cancer-associated isocitrate dehydrogenase 1 (IDH1) R132H mutation and d-2-hydroxyglutarate stimulate glutamine metabolism under hypoxia.

    PubMed

    Reitman, Zachary J; Duncan, Christopher G; Poteet, Ethan; Winters, Ali; Yan, Liang-Jun; Gooden, David M; Spasojevic, Ivan; Boros, Laszlo G; Yang, Shao-Hua; Yan, Hai

    2014-08-22

    Mutations in the cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDH1) occur in several types of cancer, and altered cellular metabolism associated with IDH1 mutations presents unique therapeutic opportunities. By altering IDH1, these mutations target a critical step in reductive glutamine metabolism, the metabolic pathway that converts glutamine ultimately to acetyl-CoA for biosynthetic processes. While IDH1-mutated cells are sensitive to therapies that target glutamine metabolism, the effect of IDH1 mutations on reductive glutamine metabolism remains poorly understood. To explore this issue, we investigated the effect of a knock-in, single-codon IDH1-R132H mutation on the metabolism of the HCT116 colorectal adenocarcinoma cell line. Here we report the R132H-isobolome by using targeted (13)C isotopomer tracer fate analysis to trace the metabolic fate of glucose and glutamine in this system. We show that introduction of the R132H mutation into IDH1 up-regulates the contribution of glutamine to lipogenesis in hypoxia, but not in normoxia. Treatment of cells with a d-2-hydroxyglutarate (d-2HG) ester recapitulated these changes, indicating that the alterations observed in the knocked-in cells were mediated by d-2HG produced by the IDH1 mutant. These studies provide a dynamic mechanistic basis for metabolic alterations observed in IDH1-mutated tumors and uncover potential therapeutic targets in IDH1-mutated cancers. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Neutral Evolution in a Biological Population as Diffusion in Phenotype Space: Reproduction with Local Mutation but without Selection

    NASA Astrophysics Data System (ADS)

    Lawson, Daniel John; Jensen, Henrik Jeldtoft

    2007-03-01

    The process of “evolutionary diffusion,” i.e., reproduction with local mutation but without selection in a biological population, resembles standard diffusion in many ways. However, evolutionary diffusion allows the formation of localized peaks that undergo drift, even in the infinite population limit. We relate a microscopic evolution model to a stochastic model which we solve fully. This allows us to understand the large population limit, relates evolution to diffusion, and shows that independent local mutations act as a diffusion of interacting particles taking larger steps.

  17. X-linked Alport syndrome caused by splicing mutations in COL4A5.

    PubMed

    Nozu, Kandai; Vorechovsky, Igor; Kaito, Hiroshi; Fu, Xue Jun; Nakanishi, Koichi; Hashimura, Yuya; Hashimoto, Fusako; Kamei, Koichi; Ito, Shuichi; Kaku, Yoshitsugu; Imasawa, Toshiyuki; Ushijima, Katsumi; Shimizu, Junya; Makita, Yoshio; Konomoto, Takao; Yoshikawa, Norishige; Iijima, Kazumoto

    2014-11-07

    X-linked Alport syndrome is caused by mutations in the COL4A5 gene. Although many COL4A5 mutations have been detected, the mutation detection rate has been unsatisfactory. Some men with X-linked Alport syndrome show a relatively mild phenotype, but molecular basis investigations have rarely been conducted to clarify the underlying mechanism. In total, 152 patients with X-linked Alport syndrome who were suspected of having Alport syndrome through clinical and pathologic investigations and referred to the hospital for mutational analysis between January of 2006 and January of 2013 were genetically diagnosed. Among those patients, 22 patients had suspected splice site mutations. Transcripts are routinely examined when suspected splice site mutations for abnormal transcripts are detected; 11 of them showed expected exon skipping, but others showed aberrant splicing patterns. The mutation detection strategy had two steps: (1) genomic DNA analysis using PCR and direct sequencing and (2) mRNA analysis using RT-PCR to detect RNA processing abnormalities. Six splicing consensus site mutations resulting in aberrant splicing patterns, one exonic mutation leading to exon skipping, and four deep intronic mutations producing cryptic splice site activation were identified. Interestingly, one case produced a cryptic splice site with a single nucleotide substitution in the deep intron that led to intronic exonization containing a stop codon; however, the patient showed a clearly milder phenotype for X-linked Alport syndrome in men with a truncating mutation. mRNA extracted from the kidney showed both normal and abnormal transcripts, with the normal transcript resulting in the milder phenotype. This novel mechanism leads to mild clinical characteristics. This report highlights the importance of analyzing transcripts to enhance the mutation detection rate and provides insight into genotype-phenotype correlations. This approach can clarify the cause of atypically mild phenotypes in X-linked Alport syndrome. Copyright © 2014 by the American Society of Nephrology.

  18. Structural study of the effects of mutations in proteins to identify the molecular basis of the loss of local structural fluidity leading to the onset of autoimmune diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Ananya; Ghosh, Semanti; Bagchi, Angshuman

    Protein-Protein Interactions (PPIs) are crucial in most of the biological processes and PPI dysfunctions are known to be associated with the onsets of various diseases. One of such diseases is the auto-immune disease. Auto-immune diseases are one among the less studied group of diseases with very high mortality rates. Thus, we tried to correlate the appearances of mutations with their probable biochemical basis of the molecular mechanisms leading to the onset of the disease phenotypes. We compared the effects of the Single Amino Acid Variants (SAVs) in the wild type and mutated proteins to identify any structural deformities that mightmore » lead to altered PPIs leading ultimately to disease onset. For this we used Relative Solvent Accessibility (RSA) as a spatial parameter to compare the structural perturbation in mutated and wild type proteins. We observed that the mutations were capable to increase intra-chain PPIs whereas inter-chain PPIs would remain mostly unaltered. This might lead to more intra-molecular friction causing a deleterious alteration of protein's normal function. A Lyapunov exponent analysis, using the altered RSA values due to polymorphic and disease causing mutations, revealed polymorphic mutations have a positive mean value for the Lyapunov exponent while disease causing mutations have a negative mean value. Thus, local spatial stochasticity has been lost due to disease causing mutations, indicating a loss of structural fluidity. The amino acid conversion plot also showed a clear tendency of altered surface patch residue conversion propensity than polymorphic conversions. So far, this is the first report that compares the effects of different kinds of mutations (disease and non-disease causing polymorphic mutations) in the onset of autoimmune diseases. - Highlights: • Protein-Protein Interaction. • Changes in Relative Solvent Accessibility (RSA). • Amino acid conversion matrix. • Polymorphic mutations. • Disease causing mutations.« less

  19. An efficient method for the prediction of deleterious multiple-point mutations in the secondary structure of RNAs using suboptimal folding solutions

    PubMed Central

    Churkin, Alexander; Barash, Danny

    2008-01-01

    Background RNAmute is an interactive Java application which, given an RNA sequence, calculates the secondary structure of all single point mutations and organizes them into categories according to their similarity to the predicted structure of the wild type. The secondary structure predictions are performed using the Vienna RNA package. A more efficient implementation of RNAmute is needed, however, to extend from the case of single point mutations to the general case of multiple point mutations, which may often be desired for computational predictions alongside mutagenesis experiments. But analyzing multiple point mutations, a process that requires traversing all possible mutations, becomes highly expensive since the running time is O(nm) for a sequence of length n with m-point mutations. Using Vienna's RNAsubopt, we present a method that selects only those mutations, based on stability considerations, which are likely to be conformational rearranging. The approach is best examined using the dot plot representation for RNA secondary structure. Results Using RNAsubopt, the suboptimal solutions for a given wild-type sequence are calculated once. Then, specific mutations are selected that are most likely to cause a conformational rearrangement. For an RNA sequence of about 100 nts and 3-point mutations (n = 100, m = 3), for example, the proposed method reduces the running time from several hours or even days to several minutes, thus enabling the practical application of RNAmute to the analysis of multiple-point mutations. Conclusion A highly efficient addition to RNAmute that is as user friendly as the original application but that facilitates the practical analysis of multiple-point mutations is presented. Such an extension can now be exploited prior to site-directed mutagenesis experiments by virologists, for example, who investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary structure. A complete explanation of the application, called MultiRNAmute, is available at [1]. PMID:18445289

  20. Molecular evaluation of PIK3CA gene mutation in breast cancer: determination of frequency, distribution pattern and its association with clinicopathological findings in Indian patients.

    PubMed

    Ahmad, Firoz; Badwe, Anuya; Verma, Geeta; Bhatia, Simi; Das, Bibhu Ranjan

    2016-07-01

    Somatic mutations in the PIK3CA gene are common in breast cancer and represent a clinically useful marker for prognosis and therapeutic target. Activating mutations in the PI3K p110 catalytic subunit (PIK3CA) have been identified in 18-40 % of breast carcinomas. In this study, we evaluated PIK3CA mutation in 185 Indian breast cancer patients by direct DNA sequencing. PIK3CA mutations were observed in 23.2 % (43/185) of breast tumor samples. PIK3CA mutations were more frequent exon 30 (76.8 %) than in exon 9 (23.2 %). Mutations were mostly clustered within two hotspot region between nucleotides 1624 and 1636 or between 3129 and 3140. Sequencing analysis revealed four different missense mutations at codon 542 and 545 (E542K, E545K, E545A and E545G) in the helical domain and two different amino acid substitutions at codon 1047 (H1047R and H1047L) in the kinase domain. None of the cases harbored concomitant mutations at multiple codons. PIK3CA mutations were more frequent in older patients, smaller size tumors, ductal carcinomas, grade II tumors, lymph node-positive tumors and non-DCIS tumors; however, none of the differences were significant. In addition, PIK3CA mutations were common in ER+, PR+ and HER2+ cases (30 %), and a comparatively low frequency were noted in triple-negative tumors (13.6 %). In conclusion, to our knowledge, this is the largest study to evaluate the PIK3CA mutation in Indian breast cancer patients. The frequency and distribution pattern of PIK3CA mutations is similar to global reports. Furthermore, identification of molecular markers has unique strengths and can provide insights into the pathogenic process of breast carcinomas.

Top