Science.gov

Sample records for mutations causing multidrug

  1. First insights into the genetic diversity of Mycobacterium tuberculosis isolates from HIV-infected Mexican patients and mutations causing multidrug resistance

    PubMed Central

    2010-01-01

    Background The prevalence of infections with Mycobacterium tuberculosis (MTb) and nontuberculous mycobacteria (NTM) species in HIV-infected patients in Mexico is unknown. The aims of this study were to determine the frequency of MTb and NTM species in HIV-infected patients from Mexico City, to evaluate the genotypic diversity of the Mycobacterium tuberculosis complex strains, to determine their drug resistance profiles by colorimetric microplate Alamar Blue assay (MABA), and finally, to detect mutations present in katG, rpoB and inhA genes, resulting in isoniazid (INH) and rifampin (RIF) resistance. Results Of the 67 mycobacterial strains isolated, 48 were identified as MTb, 9 as M. bovis, 9 as M. avium and 1 as M. intracellulare. IS6110-RFLP of 48 MTb strains showed 27 profiles. Spoligotyping of the 48 MTb strains yielded 21 patterns, and 9 M. bovis strains produced 7 patterns. Eleven new spoligotypes patterns were found. A total of 40 patterns were produced from the 48 MTb strains when MIRU-VNTR was performed. Nineteen (39.6%) MTb strains were resistant to one or more drugs. One (2.1%) multidrug-resistant (MDR) strain was identified. A novel mutation was identified in a RIF-resistant strain, GAG → TCG (Glu → Ser) at codon 469 of rpoB gene. Conclusions This is the first molecular analysis of mycobacteria isolated from HIV-infected patients in Mexico, which describe the prevalence of different mycobacterial species in this population. A high genetic diversity of MTb strains was identified. New spoligotypes and MIRU-VNTR patterns as well as a novel mutation associated to RIF-resistance were found. This information will facilitate the tracking of different mycobacterial species in HIV-infected individuals, and monitoring the spread of these microorganisms, leading to more appropriate measures for tuberculosis control. PMID:20236539

  2. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    PubMed

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  3. Role of uL3 in Multidrug Resistance in p53-Mutated Lung Cancer Cells

    PubMed Central

    Russo, Annapina; Saide, Assunta; Smaldone, Silvia; Faraonio, Raffaella; Russo, Giulia

    2017-01-01

    Cancer is one of the most common causes of death among adults. Chemotherapy is crucial in determining patient survival and quality of life. However, the development of multidrug resistance (MDR) continues to pose a significant challenge in the management of cancer. In this study, we analyzed the role of human ribosomal protein uL3 (formerly rpL3) in multidrug resistance. Our studies revealed that uL3 is a key determinant of multidrug resistance in p53-mutated lung cancer cells by controlling the cell redox status. We established and characterized a multidrug resistant Calu-6 cell line. We found that uL3 down-regulation correlates positively with multidrug resistance. Restoration of the uL3 protein level re-sensitized the resistant cells to the drug by regulating the reactive oxygen species (ROS) levels, glutathione content, glutamate release, and cystine uptake. Chromatin immunoprecipitation experiments and luciferase assays demonstrated that uL3 coordinated the expression of stress-response genes acting as transcriptional repressors of solute carrier family 7 member 11 (xCT) and glutathione S-transferase α1 (GST-α1), independently of Nuclear factor erythroid 2-related factor 2 (Nrf2). Altogether our results describe a new function of uL3 as a regulator of oxidative stress response genes and advance our understanding of the molecular mechanisms underlying multidrug resistance in cancers. PMID:28273808

  4. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment

    PubMed Central

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-01-01

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance. DOI: http://dx.doi.org/10.7554/eLife.20420.001 PMID:28220755

  5. Clinical management of infections caused by multidrug-resistant Enterobacteriaceae

    PubMed Central

    Delgado-Valverde, Mercedes; Sojo-Dorado, Jesús; Pascual, Álvaro

    2013-01-01

    Enterobacteriaceae showing resistance to cephalosporins due to extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC enzymes, and those producing carbapenemases have spread worldwide during the last decades. Many of these isolates are also resistant to other first-line agents such as fluoroquinolones or aminoglycosides, leaving few available options for therapy. Thus, older drugs such as colistin and fosfomycin are being increasingly used. Infections caused by these bacteria are associated with increased morbidity and mortality compared with those caused by their susceptible counterparts. Most of the evidence supporting the present recommendations is from in vitro data, animal studies, and observational studies. While carbapenems are considered the drugs of choice for ESBL and AmpC producers, recent data suggest that certain alternatives may be suitable for some types of infections. Combined therapy seems superior to monotherapy in the treatment of invasive infections caused by carbapenemase-producing Enterobacteriaceae. Optimization of dosage according to pharmacokinetics/pharmacodynamics data is important for the treatment of infections caused by isolates with borderline minimum inhibitory concentration due to low-level resistance mechanisms. The increasing frequency and the rapid spread of multidrug resistance among the Enterobacteriaceae is a true and complex public health problem. PMID:25165544

  6. Population Genetics Study of Isoniazid Resistance Mutations and Evolution of Multidrug-Resistant Mycobacterium tuberculosis†

    PubMed Central

    Hazbón, Manzour Hernando; Brimacombe, Michael; Bobadilla del Valle, Miriam; Cavatore, Magali; Guerrero, Marta Inírida; Varma-Basil, Mandira; Billman-Jacobe, Helen; Lavender, Caroline; Fyfe, Janet; García-García, Lourdes; León, Clara Inés; Bose, Mridula; Chaves, Fernando; Murray, Megan; Eisenach, Kathleen D.; Sifuentes-Osornio, José; Cave, M. Donald; Ponce de León, Alfredo; Alland, David

    2006-01-01

    The molecular basis for isoniazid resistance in Mycobacterium tuberculosis is complex. Putative isoniazid resistance mutations have been identified in katG, ahpC, inhA, kasA, and ndh. However, small sample sizes and related potential biases in sample selection have precluded the development of statistically valid and significant population genetic analyses of clinical isoniazid resistance. We present the first large-scale analysis of 240 alleles previously associated with isoniazid resistance in a diverse set of 608 isoniazid-susceptible and 403 isoniazid-resistant clinical M. tuberculosis isolates. We detected 12 mutant alleles in isoniazid-susceptible isolates, suggesting that these alleles are not involved in isoniazid resistance. However, mutations in katG, ahpC, and inhA were strongly associated with isoniazid resistance, while kasA mutations were associated with isoniazid susceptibility. Remarkably, the distribution of isoniazid resistance-associated mutations was different in isoniazid-monoresistant isolates from that in multidrug-resistant isolates, with significantly fewer isoniazid resistance mutations in the isoniazid-monoresistant group. Mutations in katG315 were significantly more common in the multidrug-resistant isolates. Conversely, mutations in the inhA promoter were significantly more common in isoniazid-monoresistant isolates. We tested for interactions among mutations and resistance to different drugs. Mutations in katG, ahpC, and inhA were associated with rifampin resistance, but only katG315 mutations were associated with ethambutol resistance. There was also a significant inverse association between katG315 mutations and mutations in ahpC or inhA and between mutations in kasA and mutations in ahpC. Our results suggest that isoniazid resistance and the evolution of multidrug-resistant strains are complex dynamic processes that may be influenced by interactions between genes and drug-resistant phenotypes. PMID:16870753

  7. Multidrug resistant citrobacter: an unusual cause of liver abscess.

    PubMed

    Kumar, Prabhat; Ghosh, Soumik; Rath, Deepak; Gadpayle, A K

    2013-04-22

    Liver abscesses are infectious, space occupying lesions in the liver, the two most common abscesses being pyogenic and amoebic. A pyogenic liver abscess (PLA) is a rare condition with a reported incidence of 20 per 100 000 hospital admissions in the western population. The right lobe of the liver is the most common site in both types of liver abscess. Clinical presentation is elusive with complaints of fever, right upper quadrant pain in the abdomen and hepatomegaly with or without jaundice. The aetiology of PLA has changed in the past few decades and may be of biliary, portal, arterial or traumatic origin, but many cases are still cryptogenic. The most common organisms causing PLA are Gram-negative aerobes, especially Escherichia coli and Klebsiella pneumoniae. Studies have shown a high degree of antimicrobial susceptibility of isolated organism resulting in an overall lower mortality in PLA. Here, we present a case of PLA caused by multidrug-resistant Citrobacter freundii, which is an unusual organism to be isolated.

  8. [Obesity caused by melanocortin-4 receptor mutations].

    PubMed

    van den Berg, Linda; Glorie-Docter, Miriam; van den Akker, Erica; Delemarre-van de Waal, Henriette A

    2012-01-01

    Obesity is usually the result of a combination of genetic and lifestyle factors. In monogenic obesity, overweight is caused by a single gene mutation. The most frequent form of monogenic obesity is caused by mutations in the gene that codes for the melanocortin-4 receptor (MC4R gene). Approximately 2% of Dutch children with obesity have a mutation in the MC4R gene. Children with homozygous and 'compound' heterozygous MC4R mutations have a phenotype distinguished by extreme overweight at an early age and hyperphagia. Children with heterozygous MC4R mutations have a more subtle phenotype and are difficult to distinguish clinically from obese children without this mutation. MC4R mutations can be identified by DNA diagnostics.- Drug treatment is not yet available for this condition.

  9. rpoB Mutations in Multidrug-Resistant Strains of Mycobacterium tuberculosis Isolated in Italy

    PubMed Central

    Pozzi, G.; Meloni, M.; Iona, E.; Orrù, G.; Thoresen, O. F.; Ricci, M. L.; Oggioni, M. R.; Fattorini, L.; Orefici, G.

    1999-01-01

    Mutations of rpoB associated with rifampin resistance were studied in 37 multidrug-resistant (MDR) clinical strains of Mycobacterium tuberculosis isolated in Italy. At least one mutated codon was found in each MDR strain. It was always a single-base substitution leading to an amino acid change. Nine different rpoB alleles, three of which had not been reported before, were found. The relative frequencies of specific mutations in this sample were different from those previously reported from different geographical areas, since 22 strains (59.5%) carried the mutated codon TTG in position 531 (Ser→Leu) and 11 (29.7%) had GAC in position 526 (His→Asp). PMID:10074552

  10. Genes and mutations causing retinitis pigmentosa

    PubMed Central

    Daiger, SP; Sullivan, LS; Bowne, SJ

    2013-01-01

    Retinitis pigmentosa (RP) is a heterogeneous set of inherited retinopathies with many disease-causing genes, many known mutations, and highly varied clinical consequences. Progress in finding treatments is dependent on determining the genes and mutations causing these diseases, which includes both gene discovery and mutation screening in affected individuals and families. Despite the complexity, substantial progress has been made in finding RP genes and mutations. Depending on the type of RP, and the technology used, it is possible to detect mutations in 30–80% of cases. One of the most powerful approaches to genetic testing is high-throughput ‘deep sequencing’, that is, next-generation sequencing (NGS). NGS has identified several novel RP genes but a substantial fraction of previously unsolved cases have mutations in genes that are known causes of retinal disease but not necessarily RP. Apparent discrepancy between the molecular defect and clinical findings may warrant reevaluation of patients and families. In this review, we summarize the current approaches to gene discovery and mutation detection for RP, and indicate pitfalls and unsolved problems. Similar considerations apply to other forms of inherited retinal disease. PMID:23701314

  11. The Impact of Cell Density and Mutations in a Model of Multidrug Resistance in Solid Tumors

    PubMed Central

    Greene, James; Lavi, Orit; Gottesman, Michael M.; Levy, Doron

    2016-01-01

    In this paper we develop a mathematical framework for describing multidrug resistance in cancer. To reflect the complexity of the underlying interplay between cancer cells and the therapeutic agent, we assume that the resistance level is a continuous parameter. Our model is written as a system of integro-differential equations that are parametrized by the resistance level. This model incorporates the cell-density and mutation dependence. Analysis and simulations of the model demonstrate how the dynamics evolves to a selection of one or more traits corresponding to different levels of resistance. The emerging limit distribution with nonzero variance is the desirable modeling outcome as it represents tumor heterogeneity. PMID:24553772

  12. NMNAT1 mutations cause Leber congenital amaurosis

    PubMed Central

    Falk, Marni J; Zhang, Qi; Nakamaru-Ogiso, Eiko; Kannabiran, Chitra; Fonseca-Kelly, Zoe; Chakarova, Christina; Audo, Isabelle; Mackay, Donna S; Zeitz, Christina; Borman, Arundhati Dev; Staniszewska, Magdalena; Shukla, Rachna; Palavalli, Lakshmi; Mohand-Said, Saddek; Waseem, Naushin H; Jalali, Subhadra; Perin, Juan C; Place, Emily; Ostrovsky, Julian; Xiao, Rui; Bhattacharya, Shomi S; Consugar, Mark; Webster, Andrew R; Sahel, José-Alain; Moore, Anthony T; Berson, Eliot L; Liu, Qin; Gai, Xiaowu; Pierce, Eric A.

    2012-01-01

    Leber congenital amaurosis (LCA) is an infantile-onset form of inherited retinal degeneration characterized by severe vision loss1, 2. Two-thirds of LCA cases are caused by mutations in 17 known disease genes3 (RetNet Retinal Information Network). Using exome sequencing, we identified a homozygous missense mutation (c.25G>A, p.Val9Met) in NMNAT1 as likely disease-causing in two siblings of a consanguineous Pakistani kindred affected by LCA. This mutation segregated with disease in their kindred, including in three other children with LCA. NMNAT1 resides in the previously identified LCA9 locus and encodes the nuclear isoform of nicotinamide mononucleotide adenylyltransferase, a rate-limiting enzyme in nicotinamide adenine dinucleotide (NAD+) biosynthesis4, 5. Functional studies showed the p.Val9Met mutation decreased NMNAT1 enzyme activity. Sequencing NMNAT1 in 284 unrelated LCA families identified 14 rare mutations in 13 additional affected individuals. These results are the first to link an NMNAT isoform to disease and indicate that NMNAT1 mutations cause LCA. PMID:22842227

  13. Fitness Costs of Drug Resistance Mutations in Multidrug-Resistant Mycobacterium tuberculosis: A Household-Based Case-Control Study.

    PubMed

    Salvatore, Phillip P; Becerra, Mercedes C; Abel zur Wiesch, Pia; Hinkley, Trevor; Kaur, Devinder; Sloutsky, Alexander; Cohen, Ted

    2016-01-01

    The projected long-term prevalence of multidrug-resistant (MDR) tuberculosis depends upon the relative fitness of MDR Mycobacterium tuberculosis strains, compared with non-MDR strains. While many experimental models have tested the in vitro or in vivo fitness costs of various drug resistance mutations, fewer epidemiologic studies have attempted to validate these experimental findings. We performed a case-control study comparing drug resistance-associated mutations from MDR M. tuberculosis strains causing multiple cases in a household to matched MDR strains without evidence of secondary household cases. Eighty-eight multiple-case and 88 single-case household MDR strains were analyzed for 10 specific drug resistance-associated polymorphisms previously associated with fitness effects. We found that the isoniazid-resistant katG Ser315Thr mutation occurred more than twice as frequently in multiple-case households than in single-case households (odds ratio [OR], 2.39; 95% confidence interval [CI], 1.21-4.70), corroborating previous experimental findings. However, strains carrying both the katG Ser315Thr mutation and the rpsL Lys43Arg mutation were less likely to be found in multiple-case households (OR, 0.09; 95% CI, .01-.73), suggesting a negative epistatic interaction which contrasts previous findings. The case-control design presents a useful approach for assessing in vivo fitness effects of drug resistance mutations. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  14. Analysis of mutations causing biotinidase deficiency.

    PubMed

    Pindolia, Kirit; Jordan, Megan; Wolf, Barry

    2010-09-01

    Biotinidase deficiency is an inherited disorder in which the vitamin, biotin, is not recycled. Individuals with biotinidase deficiency can develop neurological and cutaneous symptoms if they are not treated with biotin. Biotinidase deficiency screening has been incorporated into essentially all newborn screening programs in the United States and in many countries. We now report 140 known mutations in the biotinidase gene (BTD) that cause biotinidase deficiency. All types of mutations have been found to cause biotinidase deficiency. Variants have been identified throughout the coding sequence. Essentially all the variants result in enzymatic activities with less than 10% of mean normal enzyme activity (profound biotinidase deficiency) with the exception of the c.1330G>C (p.D444H) mutation, which results in an enzyme having 50% of mean normal serum activity. The putative three-dimensional structure of biotinidase has been predicted by homology to that of nitrilases/amidases. The effect of the various missense mutations can be predicted to affect various important sites within the structure of the enzyme. This compilation of variants causing biotinidase deficiency will be useful to clinical laboratories that are performing mutation analysis for confirmational testing when the enzymatic results are equivocal for children identified through newborn screening. Copyright 2010 Wiley-Liss, Inc.

  15. Mutational and acquired carbapenem resistance mechanisms in multidrug resistant Pseudomonas aeruginosa clinical isolates from Recife, Brazil.

    PubMed

    Cavalcanti, Felipe Lira de Sá; Mirones, Cristina Rodríguez; Paucar, Elena Román; Montes, Laura Álvarez; Leal-Balbino, Tereza Cristina; Morais, Marcia Maria Camargo de; Martínez-Martínez, Luis; Ocampo-Sosa, Alain Antonio

    2015-12-01

    An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem-resistant Pseudomonas aeruginosa isolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosa isolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXY-OprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed.

  16. Mutational and acquired carbapenem resistance mechanisms in multidrug resistant Pseudomonas aeruginosa clinical isolates from Recife, Brazil

    PubMed Central

    Cavalcanti, Felipe Lira de Sá; Mirones, Cristina Rodríguez; Paucar, Elena Román; Montes, Laura Álvarez; Leal-Balbino, Tereza Cristina; de Morais, Marcia Maria Camargo; Martínez-Martínez, Luis; Ocampo-Sosa, Alain Antonio

    2015-01-01

    An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem-resistant Pseudomonas aeruginosaisolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosaisolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXY-OprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed. PMID:26676375

  17. Multidrug resistance conferred by novel DNA polymerase mutations in human cytomegalovirus isolates.

    PubMed

    Scott, Gillian M; Weinberg, Adriana; Rawlinson, William D; Chou, Sunwen

    2007-01-01

    The emergence of antiviral-resistant cytomegalovirus (CMV) strains is a continuing clinical problem, with increased numbers of immunocompromised patients given longer-duration antiviral prophylaxis. Two previously unrecognized CMV DNA polymerase mutations (N408K and A834P) identified separately and together in at-risk lung and kidney transplant recipients and a third mutation (L737M) identified in a liver transplant recipient were characterized by marker transfer to antiviral-sensitive laboratory strains AD169 and Towne. Subsequent phenotypic analyses of recombinant strains demonstrated the ability of mutation N408K to confer ganciclovir (GCV) and cidofovir (CDV) resistance and of mutation A834P to confer GCV, foscarnet, and CDV resistance. Mutation L737M did not confer resistance to any of the antiviral agents tested. A recombinant strain containing both N408K and A834P demonstrated increased GCV and CDV resistance compared to the levels of resistance of the virus containing only the A834P mutation. The addition of mutation N408K in combination with A834P also partially reconstituted the replication impairment of recombinant virus containing only A834P. This suggests that perturbation of both DNA polymerization (A834P) and exonuclease (N408K) activities contributes to antiviral resistance and altered replication kinetics in these mutant strains. The identification of these multidrug-resistant CMV strains in at-risk seronegative recipients of organs from seropositive donors suggests that improved prophylactic and treatment strategies are required. The additive effect of multiple mutations on antiviral susceptibility suggests that increasing antiviral-resistant phenotypes can result from different virus-antiviral interactions.

  18. Outbreak of mastitis in sheep caused by multi-drug resistant Enterococcus faecalis in Sardinia, Italy.

    PubMed

    Sanciu, G; Marogna, G; Paglietti, B; Cappuccinelli, P; Leori, G; Rappelli, P

    2013-03-01

    An outbreak of infective mastitis due to Enterococcus faecalis occurred in an intensive sheep farm in north Sardinia (Italy). E. faecalis, which is only rarely isolated from sheep milk, was unexpectedly found in 22·3% of positive samples at microbiological examination. Forty-five out of the 48 E. faecalis isolates showed the same multi-drug resistance pattern (cloxacillin, streptomycin, kanamycin, clindamycin, oxytetracycline). E. faecalis isolates were analysed by pulsed-field gel electrophoresis, and all 45 multi-drug resistant strains showed an indistinguishable macrorestiction profile, indicating their clonal origin. To our knowledge, this is the first report of an outbreak of mastitis in sheep caused by E. faecalis.

  19. RAD21 mutations cause a human cohesinopathy.

    PubMed

    Deardorff, Matthew A; Wilde, Jonathan J; Albrecht, Melanie; Dickinson, Emma; Tennstedt, Stephanie; Braunholz, Diana; Mönnich, Maren; Yan, Yuqian; Xu, Weizhen; Gil-Rodríguez, María Concepcion; Clark, Dinah; Hakonarson, Hakon; Halbach, Sara; Michelis, Laura Daniela; Rampuria, Abhinav; Rossier, Eva; Spranger, Stephanie; Van Maldergem, Lionel; Lynch, Sally Ann; Gillessen-Kaesbach, Gabriele; Lüdecke, Hermann-Josef; Ramsay, Robert G; McKay, Michael J; Krantz, Ian D; Xu, Huiling; Horsfield, Julia A; Kaiser, Frank J

    2012-06-08

    The evolutionarily conserved cohesin complex was originally described for its role in regulating sister-chromatid cohesion during mitosis and meiosis. Cohesin and its regulatory proteins have been implicated in several human developmental disorders, including Cornelia de Lange (CdLS) and Roberts syndromes. Here we show that human mutations in the integral cohesin structural protein RAD21 result in a congenital phenotype consistent with a "cohesinopathy." Children with RAD21 mutations display growth retardation, minor skeletal anomalies, and facial features that overlap findings in individuals with CdLS. Notably, unlike children with mutations in NIPBL, SMC1A, or SMC3, these individuals have much milder cognitive impairment than those with classical CdLS. Mechanistically, these mutations act at the RAD21 interface with the other cohesin proteins STAG2 and SMC1A, impair cellular DNA damage response, and disrupt transcription in a zebrafish model. Our data suggest that, compared to loss-of-function mutations, dominant missense mutations result in more severe functional defects and cause worse structural and cognitive clinical findings. These results underscore the essential role of RAD21 in eukaryotes and emphasize the need for further understanding of the role of cohesin in human development.

  20. RAD21 Mutations Cause a Human Cohesinopathy

    PubMed Central

    Deardorff, Matthew A.; Wilde, Jonathan J.; Albrecht, Melanie; Dickinson, Emma; Tennstedt, Stephanie; Braunholz, Diana; Mönnich, Maren; Yan, Yuqian; Xu, Weizhen; Gil-Rodríguez, María Concepcion; Clark, Dinah; Hakonarson, Hakon; Halbach, Sara; Michelis, Laura Daniela; Rampuria, Abhinav; Rossier, Eva; Spranger, Stephanie; Van Maldergem, Lionel; Lynch, Sally Ann; Gillessen-Kaesbach, Gabriele; Lüdecke, Hermann-Josef; Ramsay, Robert G.; McKay, Michael J.; Krantz, Ian D.; Xu, Huiling; Horsfield, Julia A.; Kaiser, Frank J.

    2012-01-01

    The evolutionarily conserved cohesin complex was originally described for its role in regulating sister-chromatid cohesion during mitosis and meiosis. Cohesin and its regulatory proteins have been implicated in several human developmental disorders, including Cornelia de Lange (CdLS) and Roberts syndromes. Here we show that human mutations in the integral cohesin structural protein RAD21 result in a congenital phenotype consistent with a “cohesinopathy.” Children with RAD21 mutations display growth retardation, minor skeletal anomalies, and facial features that overlap findings in individuals with CdLS. Notably, unlike children with mutations in NIPBL, SMC1A, or SMC3, these individuals have much milder cognitive impairment than those with classical CdLS. Mechanistically, these mutations act at the RAD21 interface with the other cohesin proteins STAG2 and SMC1A, impair cellular DNA damage response, and disrupt transcription in a zebrafish model. Our data suggest that, compared to loss-of-function mutations, dominant missense mutations result in more severe functional defects and cause worse structural and cognitive clinical findings. These results underscore the essential role of RAD21 in eukaryotes and emphasize the need for further understanding of the role of cohesin in human development. PMID:22633399

  1. Mutations in ANTXR1 Cause GAPO Syndrome

    PubMed Central

    Stránecký, Viktor; Hoischen, Alexander; Hartmannová, Hana; Zaki, Maha S.; Chaudhary, Amit; Zudaire, Enrique; Nosková, Lenka; Barešová, Veronika; Přistoupilová, Anna; Hodaňová, Kateřina; Sovová, Jana; Hůlková, Helena; Piherová, Lenka; Hehir-Kwa, Jayne Y.; de Silva, Deepthi; Senanayake, Manouri P.; Farrag, Sameh; Zeman, Jiří; Martásek, Pavel; Baxová, Alice; Afifi, Hanan H.; St. Croix, Brad; Brunner, Han G.; Temtamy, Samia; Kmoch, Stanislav

    2013-01-01

    The genetic cause of GAPO syndrome, a condition characterized by growth retardation, alopecia, pseudoanodontia, and progressive visual impairment, has not previously been identified. We studied four ethnically unrelated affected individuals and identified homozygous nonsense mutations (c.262C>T [p.Arg88*] and c.505C>T [p.Arg169*]) or splicing mutations (c.1435–12A>G [p.Gly479Phefs*119]) in ANTXR1, which encodes anthrax toxin receptor 1. The nonsense mutations predictably trigger nonsense-mediated mRNA decay, resulting in the loss of ANTXR1. The transcript with the splicing mutation theoretically encodes a truncated ANTXR1 containing a neopeptide composed of 118 unique amino acids in its C terminus. GAPO syndrome’s major phenotypic features, which include dental abnormalities and the accumulation of extracellular matrix, recapitulate those found in Antxr1-mutant mice and point toward an underlying defect in extracellular-matrix regulation. Thus, we propose that mutations affecting ANTXR1 function are responsible for this disease’s characteristic generalized defect in extracellular-matrix homeostasis. PMID:23602711

  2. TNXB Mutations Can Cause Vesicoureteral Reflux

    PubMed Central

    Brophy, Patrick D.; Adeyemo, Adebowale; Hall, Gentzon; Gupta, Indra R.; Hains, David; Bartkowiak, Bartlomeij; Rabinovich, C. Egla; Chandrasekharappa, Settara; Homstad, Alison; Westreich, Katherine; Wu, Guanghong; Liu, Yutao; Holanda, Danniele; Clarke, Jason; Lavin, Peter; Selim, Angelica; Miller, Sara; Wiener, John S.; Ross, Sherry S.; Foreman, John; Rotimi, Charles; Winn, Michelle P.

    2013-01-01

    Primary vesicoureteral reflux (VUR) is the most common congenital anomaly of the kidney and the urinary tract, and it is a major risk factor for pyelonephritic scarring and CKD in children. Although twin studies support the heritability of VUR, specific genetic causes remain elusive. We performed a sequential genome-wide linkage study and whole-exome sequencing in a family with hereditary VUR. We obtained a significant multipoint parametric logarithm of odds score of 3.3 on chromosome 6p, and whole-exome sequencing identified a deleterious heterozygous mutation (T3257I) in the gene encoding tenascin XB (TNXB in 6p21.3). This mutation segregated with disease in the affected family as well as with a pathogenic G1331R change in another family. Fibroblast cell lines carrying the T3257I mutation exhibited a reduction in both cell motility and phosphorylated focal adhesion kinase expression, suggesting a defect in the focal adhesions that link the cell cytoplasm to the extracellular matrix. Immunohistochemical studies revealed that the human uroepithelial lining of the ureterovesical junction expresses TNXB, suggesting that TNXB may be important for generating tensile forces that close the ureterovesical junction during voiding. Taken together, these results suggest that mutations in TNXB can cause hereditary VUR. PMID:23620400

  3. ramR mutations affecting fluoroquinolone susceptibility in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198.

    PubMed

    Baucheron, Sylvie; Le Hello, Simon; Doublet, Benoît; Giraud, Etienne; Weill, François-Xavier; Cloeckaert, Axel

    2013-01-01

    A screening for non-target mutations affecting fluoroquinolone susceptibility was conducted in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198. Among a panel of representative isolates (n = 27), covering the epidemic, only three showed distinct mutations in ramR resulting in enhanced expression of genes encoding the AcrAB-TolC efflux system and low increase in ciprofloxacin MIC. No mutations were detected in other regulatory regions of this efflux system. Ciprofloxacin resistance in serovar Kentucky ST198 is thus currently mainly due to multiple target gene mutations.

  4. ramR mutations affecting fluoroquinolone susceptibility in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198

    PubMed Central

    Baucheron, Sylvie; Le Hello, Simon; Doublet, Benoît; Giraud, Etienne; Weill, François-Xavier; Cloeckaert, Axel

    2013-01-01

    A screening for non-target mutations affecting fluoroquinolone susceptibility was conducted in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198. Among a panel of representative isolates (n = 27), covering the epidemic, only three showed distinct mutations in ramR resulting in enhanced expression of genes encoding the AcrAB-TolC efflux system and low increase in ciprofloxacin MIC. No mutations were detected in other regulatory regions of this efflux system. Ciprofloxacin resistance in serovar Kentucky ST198 is thus currently mainly due to multiple target gene mutations. PMID:23914184

  5. Prostaglandin transporter mutations cause pachydermoperiostosis with myelofibrosis.

    PubMed

    Diggle, Christine P; Parry, David A; Logan, Clare V; Laissue, Paul; Rivera, Carolina; Restrepo, Carlos Martín; Fonseca, Dora J; Morgan, Joanne E; Allanore, Yannick; Fontenay, Michaela; Wipff, Julien; Varret, Mathilde; Gibault, Laure; Dalantaeva, Nadezhda; Korbonits, Márta; Zhou, Bowen; Yuan, Gang; Harifi, Ghita; Cefle, Kivanc; Palanduz, Sukru; Akoglu, Hadim; Zwijnenburg, Petra J; Lichtenbelt, Klaske D; Aubry-Rozier, Bérengère; Superti-Furga, Andrea; Dallapiccola, Bruno; Accadia, Maria; Brancati, Francesco; Sheridan, Eamonn G; Taylor, Graham R; Carr, Ian M; Johnson, Colin A; Markham, Alexander F; Bonthron, David T

    2012-08-01

    Pachydermoperiostosis, or primary hypertrophic osteoarthropathy (PHO), is an inherited multisystem disorder, whose features closely mimic the reactive osteoarthropathy that commonly accompanies neoplastic and inflammatory pathologies. We previously described deficiency of the prostaglandin-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (HPGD) as a cause of this condition, implicating elevated circulating prostaglandin E(2) (PGE(2)) as causative of PHO, and perhaps also as the principal mediator of secondary HO. However, PHO is genetically heterogeneous. Here, we use whole-exome sequencing to identify recessive mutations of the prostaglandin transporter SLCO2A1, in individuals lacking HPGD mutations. We performed exome sequencing of four probands with severe PHO, followed by conventional mutation analysis of SLCO2A1 in nine others. Biallelic SLCO2A1 mutations were identified in 12 of the 13 families. Affected individuals had elevated urinary PGE(2), but unlike HPGD-deficient patients, also excreted considerable quantities of the PGE(2) metabolite, PGE-M. Clinical differences between the two groups were also identified, notably that SLCO2A1-deficient individuals have a high frequency of severe anemia due to myelofibrosis. These findings reinforce the key role of systemic or local prostaglandin excess as the stimulus to HO. They also suggest that the induction or maintenance of hematopoietic stem cells by prostaglandin may depend upon transporter activity. © 2012 Wiley Periodicals, Inc.

  6. Toxic Myocarditis Caused by Acetaminophen in a Multidrug Overdose.

    PubMed

    Gosselin, Maxime; Dazé, Yann; Mireault, Pascal; Crahes, Marie

    2017-08-09

    We report the case of an 18-year-old woman with personality disorders who was hospitalized a few hours after suicidal ingestion of acetaminophen, quetiapine, acetylsalicylic acid, and ethanol. Twelve hours after admission, severe liver damage was evident, but the patient was stable and awaiting hepatic transplantation. Electrolytes were successfully controlled. The condition of the liver stabilized. Cardiac biomarkers then deteriorated unexpectedly. Localized ST-segment elevations were noted on electrocardiogram, but angiography ruled out myocardial infarction. A computed tomographic scan ruled out cerebral edema. The patient died of irreversible cardiac arrest 40 hours after admission. Heart failure remained unexplained, and the body underwent forensic autopsy.At autopsy, histologic findings were indicative of acute toxic myocarditis and were concluded to be caused by acetaminophen intoxication. Acetaminophen overdose is common and typically leads to liver failure requiring supportive treatment and emergency liver transplantation. Toxic myocarditis is an extremely rare complication of acetaminophen overdose. It has only been reported 4 times in the literature despite the widespread use and misuse of acetaminophen. Toxic myocarditis remains a possibility in many cases of overdose but can be overlooked in a clinical picture dominated by hepatorenal failure and encephalopathy. Clinicians and forensic pathologists should be aware of this rare potential complication.

  7. Seventeen novel mutations that cause profound biotinidase deficiency.

    PubMed

    Wolf, B; Jensen, K; Hüner, G; Demirkol, M; Baykal, T; Divry, P; Rolland, M-O; Perez-Cerdá, C; Ugarte, M; Straussberg, R; Basel-Vanagaite, L; Baumgartner, E R; Suormala, T; Scholl, S; Das, A M; Schweitzer, S; Pronicka, E; Sykut-Cegielska, J

    2002-01-01

    We report 17 novel mutations that cause profound biotinidase deficiency. Six of the mutations are due to deletions, whereas the remaining 11 mutations are missense mutations located throughout the gene and encode amino acids that are conserved in mammals. Our results increase the total number of different mutations that cause biotinidase deficiency to 79. These additional mutations will undoubtedly be helpful in identifying structure/function relationships once the three-dimensional structure of biotinidase is determined.

  8. Multidrug-resistant Achromobacter animicus causing wound infection in a street child in Mwanza, Tanzania.

    PubMed

    Moremi, Nyambura; Claus, Heike; Hingi, Marko; Vogel, Ulrich; Mshana, Stephen E

    2017-02-10

    Achromobacter animicus (A. animicus) is an aerobic, motile, gram-negative, non-fermenting small bacillus that can also grow anaerobically with potassium nitrate. It has been isolated from sputum of humans suffering from respiratory infections. Literature regarding the role of A. animicus in wound infections is limited. We report a first case of a chronic post-traumatic wound infection caused by a multidrug-resistant A. animicus in a street child from Africa and accompanied diagnostic challenges.

  9. Mutations in XRCC4 cause primordial dwarfism without causing immunodeficiency.

    PubMed

    Saito, Shinta; Kurosawa, Aya; Adachi, Noritaka

    2016-08-01

    In successive reports from 2014 to 2015, X-ray repair cross-complementing protein 4 (XRCC4) has been identified as a novel causative gene of primordial dwarfism. XRCC4 is indispensable for non-homologous end joining (NHEJ), the major pathway for repairing DNA double-strand breaks. As NHEJ is essential for V(D)J recombination during lymphocyte development, it is generally believed that abnormalities in XRCC4 cause severe combined immunodeficiency. Contrary to expectations, however, no overt immunodeficiency has been observed in patients with primordial dwarfism harboring XRCC4 mutations. Here, we describe the various XRCC4 mutations that lead to disease and discuss their impact on NHEJ and V(D)J recombination.

  10. Bloodstream infections caused by multi-drug resistant Proteus mirabilis: Epidemiology, risk factors and impact of multi-drug resistance.

    PubMed

    Korytny, Alexander; Riesenberg, Klaris; Saidel-Odes, Lisa; Schlaeffer, Fransisc; Borer, Abraham

    2016-01-01

    The prevalence of antimicrobial co-resistance among ESBL-producing Enterobactereaceae is extremely high in Israel. Multidrug-resistant Proteus mirabilis strains (MDR-PM), resistant to almost all antibiotic classes have been described. The aim was to determine the risk factors for bloodstream infections caused by MDR-PM and clinical outcomes. A retrospective case-control study. Adult patients with PM bacteremia during 7 years were identified retrospectively and their files reviewed for demographics, underlying diseases, Charlson Comorbidity Index, treatment and outcome. One hundred and eighty patients with PM-bloodstream infection (BSI) were included; 90 cases with MDR-PM and 90 controls with sensitive PM (S-PM). Compared to controls, cases more frequently were from nursing homes, had recurrent hospital admissions in the past year and received antibiotic therapy in the previous 3 months, were bedridden and suffered from peripheral vascular disease and peptic ulcer disease (p < 0.001). Two-thirds of the MDR-PM isolates were ESBL-producers vs 4.4% of S-PM isolates (p < 0.001, OR = 47.6, 95% CI = 15.9-142.6). In-hospital crude mortality rate of patients with MDR-PM BSI was 37.7% vs 23.3% in those with S-PM BSI (p = 0.0359, OR = 2, 95% CI = 1.4-3.81). PM bacteremia in elderly and functionally-dependent patients is likely to be caused by nearly pan-resistant PM strains in the institution; 51.8% of the patients received inappropriate empiric antibiotic treatment. The crude mortality rate of patients with MDR-PM BSI was significantly higher than that of patients with S-PM BSI.

  11. Mutations in BOREALIN cause thyroid dysgenesis.

    PubMed

    Carré, Aurore; Stoupa, Athanasia; Kariyawasam, Dulanjalee; Gueriouz, Manelle; Ramond, Cyrille; Monus, Taylor; Léger, Juliane; Gaujoux, Sébastien; Sebag, Frédéric; Glaser, Nicolas; Zenaty, Delphine; Nitschke, Patrick; Bole-Feysot, Christine; Hubert, Laurence; Lyonnet, Stanislas; Scharfmann, Raphaël; Munnich, Arnold; Besmond, Claude; Taylor, William; Polak, Michel

    2016-12-26

    Congenital hypothyroidism is the most common neonatal endocrine disorder and is primarily caused by developmental abnormalities otherwise known as thyroid dysgenesis (TD). We performed whole exome sequencing (WES) in a consanguineous family with TD and subsequently sequenced a cohort of 134 probands with TD to identify genetic factors predisposing to the disease. We identified the novel missense mutations p.S148F, p.R114Q and p.L177W in the BOREALIN gene in TD-affected families. Borealin is a major component of the Chromosomal Passenger Complex (CPC) with well-known functions in mitosis. Further analysis of the missense mutations showed no apparent effects on mitosis. In contrast, expression of the mutants in human thyrocytes resulted in defects in adhesion and migration with corresponding changes in gene expression suggesting others functions for this mitotic protein. These results were well correlated with the same gene expression pattern analysed in the thyroid tissue of the patient with BOREALIN-p.R114W. These studies open new avenues in the genetics of TD in humans.

  12. FAT1 mutations cause a glomerulotubular nephropathy

    PubMed Central

    Gee, Heon Yung; Sadowski, Carolin E.; Aggarwal, Pardeep K.; Porath, Jonathan D.; Yakulov, Toma A.; Schueler, Markus; Lovric, Svjetlana; Ashraf, Shazia; Braun, Daniela A.; Halbritter, Jan; Fang, Humphrey; Airik, Rannar; Vega-Warner, Virginia; Cho, Kyeong Jee; Chan, Timothy A.; Morris, Luc G. T.; ffrench-Constant, Charles; Allen, Nicholas; McNeill, Helen; Büscher, Rainer; Kyrieleis, Henriette; Wallot, Michael; Gaspert, Ariana; Kistler, Thomas; Milford, David V.; Saleem, Moin A.; Keng, Wee Teik; Alexander, Stephen I.; Valentini, Rudolph P.; Licht, Christoph; Teh, Jun C.; Bogdanovic, Radovan; Koziell, Ania; Bierzynska, Agnieszka; Soliman, Neveen A.; Otto, Edgar A.; Lifton, Richard P.; Holzman, Lawrence B.; Sibinga, Nicholas E. S.; Walz, Gerd; Tufro, Alda; Hildebrandt, Friedhelm

    2016-01-01

    Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice induces abnormal glomerular filtration barrier development, leading to podocyte foot process effacement. Knockdown of Fat1 in renal tubular cells reduces migration, decreases active RAC1 and CDC42, and induces defects in lumen formation. Knockdown of fat1 in zebrafish causes pronephric cysts, which is partially rescued by RAC1/CDC42 activators, confirming a role of the two small GTPases in the pathogenesis. These findings provide new insights into the pathogenesis of SRNS and tubulopathy, linking FAT1 and RAC1/CDC42 to podocyte and tubular cell function. PMID:26905694

  13. FAT1 mutations cause a glomerulotubular nephropathy.

    PubMed

    Gee, Heon Yung; Sadowski, Carolin E; Aggarwal, Pardeep K; Porath, Jonathan D; Yakulov, Toma A; Schueler, Markus; Lovric, Svjetlana; Ashraf, Shazia; Braun, Daniela A; Halbritter, Jan; Fang, Humphrey; Airik, Rannar; Vega-Warner, Virginia; Cho, Kyeong Jee; Chan, Timothy A; Morris, Luc G T; ffrench-Constant, Charles; Allen, Nicholas; McNeill, Helen; Büscher, Rainer; Kyrieleis, Henriette; Wallot, Michael; Gaspert, Ariana; Kistler, Thomas; Milford, David V; Saleem, Moin A; Keng, Wee Teik; Alexander, Stephen I; Valentini, Rudolph P; Licht, Christoph; Teh, Jun C; Bogdanovic, Radovan; Koziell, Ania; Bierzynska, Agnieszka; Soliman, Neveen A; Otto, Edgar A; Lifton, Richard P; Holzman, Lawrence B; Sibinga, Nicholas E S; Walz, Gerd; Tufro, Alda; Hildebrandt, Friedhelm

    2016-02-24

    Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice induces abnormal glomerular filtration barrier development, leading to podocyte foot process effacement. Knockdown of Fat1 in renal tubular cells reduces migration, decreases active RAC1 and CDC42, and induces defects in lumen formation. Knockdown of fat1 in zebrafish causes pronephric cysts, which is partially rescued by RAC1/CDC42 activators, confirming a role of the two small GTPases in the pathogenesis. These findings provide new insights into the pathogenesis of SRNS and tubulopathy, linking FAT1 and RAC1/CDC42 to podocyte and tubular cell function.

  14. Diverse mutational mechanisms cause pathogenic subtelomeric rearrangements

    PubMed Central

    Luo, Yue; Hermetz, Karen E.; Jackson, Jodi M.; Mulle, Jennifer G.; Dodd, Anne; Tsuchiya, Karen D.; Ballif, Blake C.; Shaffer, Lisa G.; Cody, Jannine D.; Ledbetter, David H.; Martin, Christa L.; Rudd, M. Katharine

    2011-01-01

    Chromosome rearrangements are a significant cause of intellectual disability and birth defects. Subtelomeric rearrangements, including deletions, duplications and translocations of chromosome ends, were first discovered over 40 years ago and are now recognized as being responsible for several genetic syndromes. Unlike the deletions and duplications that cause some genomic disorders, subtelomeric rearrangements do not typically have recurrent breakpoints and involve many different chromosome ends. To capture the molecular mechanisms responsible for this heterogeneous class of chromosome abnormality, we coupled high-resolution array CGH with breakpoint junction sequencing of a diverse collection of subtelomeric rearrangements. We analyzed 102 breakpoints corresponding to 78 rearrangements involving 28 chromosome ends. Sequencing 21 breakpoint junctions revealed signatures of non-homologous end-joining, non-allelic homologous recombination between interspersed repeats and DNA replication processes. Thus, subtelomeric rearrangements arise from diverse mutational mechanisms. In addition, we find hotspots of subtelomeric breakage at the end of chromosomes 9q and 22q; these sites may correspond to genomic regions that are particularly susceptible to double-strand breaks. Finally, fine-mapping the smallest subtelomeric rearrangements has narrowed the critical regions for some chromosomal disorders. PMID:21729882

  15. Mutations of the central tyrosines of putative cholesterol recognition amino acid consensus (CRAC) sequences modify folding, activity, and sterol-sensing of the human ABCG2 multidrug transporter.

    PubMed

    Gál, Zita; Hegedüs, Csilla; Szakács, Gergely; Váradi, András; Sarkadi, Balázs; Özvegy-Laczka, Csilla

    2015-02-01

    Human ABCG2 is a plasma membrane glycoprotein causing multidrug resistance in cancer. Membrane cholesterol and bile acids are efficient regulators of ABCG2 function, while the molecular nature of the sterol-sensing sites has not been elucidated. The cholesterol recognition amino acid consensus (CRAC, L/V-(X)(1-5)-Y-(X)(1-5)-R/K) sequence is one of the conserved motifs involved in cholesterol binding in several proteins. We have identified five potential CRAC motifs in the transmembrane domain of the human ABCG2 protein. In order to define their roles in sterol-sensing, the central tyrosines of these CRACs (Y413, 459, 469, 570 and 645) were mutated to S or F and the mutants were expressed both in insect and mammalian cells. We found that mutation in Y459 prevented protein expression; the Y469S and Y645S mutants lost their activity; while the Y570S, Y469F, and Y645F mutants retained function as well as cholesterol and bile acid sensitivity. We found that in the case of the Y413S mutant, drug transport was efficient, while modulation of the ATPase activity by cholesterol and bile acids was significantly altered. We suggest that the Y413 residue within a putative CRAC motif has a role in sterol-sensing and the ATPase/drug transport coupling in the ABCG2 multidrug transporter.

  16. Universal pattern of RpoB gene mutations among multidrug-resistant isolates of Mycobacterium tuberculosis complex from Africa.

    PubMed

    Schilke, K; Weyer, K; Bretzel, G; Amthor, B; Brandt, J; Sticht-Groh, V; Fourie, P B; Haas, W H

    1999-07-01

    Multidrug-resistant tuberculosis (MDR-TB) presents an increasing burden in Southern Africa. Rapid diagnostic tests for drug resistance to rifampicin have been developed based on mutation analysis of the rpoB gene. However, geographic differences of underlying mutations have recently been suggested. Drug-resistant strains of Mycobacterium tuberculosis complex from Africa were analysed for geographic differences in frequency and location of rpoB mutations. A random sample of rifampicin-resistant strains was collected from 87 patients with pulmonary MDR-TB treated in 12 hospitals from six different regions of South Africa. In addition, 18 isolates of M. tuberculosis complex from Namibia, Sierra Leone, and Uganda, including 13 isolates of M. africanum, were analyzed. Point mutations were detected by direct sequence analysis of the rpoB gene. Missense mutations were identified for 91 isolates (87%). Double mutations were present in eight (8%) MDR-TB isolates, two of which carried one mutation outside a previously described diagnostic region. We found no geographic differences regarding the frequency and pattern of single rpoB gene mutations. Our results confirm that molecular genetic analysis of rifampicin resistance based on a core region within the rpoB gene is universally applicable to strains of M. tuberculosis complex from different geographic regions.

  17. Homozygous truncating PTPRF mutation causes athelia.

    PubMed

    Borck, Guntram; de Vries, Liat; Wu, Hsin-Jung; Smirin-Yosef, Pola; Nürnberg, Gudrun; Lagovsky, Irina; Ishida, Luis Henrique; Thierry, Patrick; Wieczorek, Dagmar; Nürnberg, Peter; Foley, John; Kubisch, Christian; Basel-Vanagaite, Lina

    2014-08-01

    Athelia is a very rare entity that is defined by the absence of the nipple-areola complex. It can affect either sex and is mostly part of syndromes including other congenital or ectodermal anomalies, such as limb-mammary syndrome, scalp-ear-nipple syndrome, or ectodermal dysplasias. Here, we report on three children from two branches of an extended consanguineous Israeli Arab family, a girl and two boys, who presented with a spectrum of nipple anomalies ranging from unilateral hypothelia to bilateral athelia but no other consistently associated anomalies except a characteristic eyebrow shape. Using homozygosity mapping after single nucleotide polymorphism (SNP) array genotyping and candidate gene sequencing we identified a homozygous frameshift mutation in PTPRF as the likely cause of nipple anomalies in this family. PTPRF encodes a receptor-type protein phosphatase that localizes to adherens junctions and may be involved in the regulation of epithelial cell-cell contacts, peptide growth factor signaling, and the canonical Wnt pathway. Together with previous reports on female mutant Ptprf mice, which have a lactation defect, and disruption of one allele of PTPRF by a balanced translocation in a woman with amastia, our results indicate a key role for PTPRF in the development of the nipple-areola region.

  18. Metapopulation extinction caused by mutation accumulation

    PubMed Central

    Higgins, Kevin; Lynch, Michael

    2001-01-01

    Theory suggests that the risk of extinction by mutation accumulation can be comparable to that by environmental stochasticity for an isolated population smaller than a few thousand individuals. Here we show that metapopulation structure, habitat loss or fragmentation, and environmental stochasticity can be expected to greatly accelerate the accumulation of mildly deleterious mutations, lowering the genetic effective size to such a degree that even large metapopulations may be at risk of extinction. Because of mutation accumulation, viable metapopulations may need to be far larger and better connected than would be required under just stochastic demography. PMID:11226343

  19. Efflux pump regulatory genes mutations in multidrug resistance Pseudomonas aeruginosa isolated from wound infections in Isfahan hospitals

    PubMed Central

    Vaez, Hamid; Faghri, Jamshid; Isfahani, Bahram Nasr; Moghim, Sharareh; Yadegari, Sima; Fazeli, Hossein; Moghofeei, Mohsen; Safaei, Hajieh Ghasemian

    2014-01-01

    Background: Multidrug resistance Pseudomonas aeruginosa (MDR-P. aeruginosa) is a worldwide threat for public health. Hyperexpression of efflux pump systems (MexAB-OprM and MexCD-OprJ), which is a well-known mechanisms for MDR emerging, is controlled by regulatory genes, mexR and nfxB, respectively. The aim of this study was to evaluate point mutations in mexR and nfxB genes in MDR- P. aeruginosa isolated from wound infections. Materials and Methods: A total of 34 P. aeruginosa cultures obtained from wound infections were analyzed. Among them eight isolates identified as MDR-P. aeruginosa and were subjected to determination of mutations in mexR and nfxB genes. Results: We detected eight-point mutations in mexR and 12-point mutations in nfxB. The most common mutations were common G327-A (eight isolates), G384-A (eight isolates), G411-A (eight isolates). Mutations in A371-C and A372-C were the predominant substitution which was seen in nfxB. Amino acid substitutions were also found at position 124 and 126 for NfxB and MexR, respectively. Conclusions: P. aeruginosa isolates with mutation in efflux pump regulatory genes such as mexR and nfxB could be a main factor contributed to antibiotic resistance and must be considered in antibiotic treatment. PMID:24949288

  20. Efflux pump regulatory genes mutations in multidrug resistance Pseudomonas aeruginosa isolated from wound infections in Isfahan hospitals.

    PubMed

    Vaez, Hamid; Faghri, Jamshid; Isfahani, Bahram Nasr; Moghim, Sharareh; Yadegari, Sima; Fazeli, Hossein; Moghofeei, Mohsen; Safaei, Hajieh Ghasemian

    2014-01-01

    Multidrug resistance Pseudomonas aeruginosa (MDR-P. aeruginosa) is a worldwide threat for public health. Hyperexpression of efflux pump systems (MexAB-OprM and MexCD-OprJ), which is a well-known mechanisms for MDR emerging, is controlled by regulatory genes, mexR and nfxB, respectively. The aim of this study was to evaluate point mutations in mexR and nfxB genes in MDR- P. aeruginosa isolated from wound infections. A total of 34 P. aeruginosa cultures obtained from wound infections were analyzed. Among them eight isolates identified as MDR-P. aeruginosa and were subjected to determination of mutations in mexR and nfxB genes. We detected eight-point mutations in mexR and 12-point mutations in nfxB. The most common mutations were common G327-A (eight isolates), G384-A (eight isolates), G411-A (eight isolates). Mutations in A371-C and A372-C were the predominant substitution which was seen in nfxB. Amino acid substitutions were also found at position 124 and 126 for NfxB and MexR, respectively. P. aeruginosa isolates with mutation in efflux pump regulatory genes such as mexR and nfxB could be a main factor contributed to antibiotic resistance and must be considered in antibiotic treatment.

  1. Brain abscess caused by multidrug-resistant Acinetobacter baumannii. Case report.

    PubMed

    Guinand Vives, Carlos H; Monsalve Duarte, Guillermo A; Beltrán, Sandra Valderrama; Pinzón, Johanna Osorio

    2009-08-01

    This 24-year-old soldier had a history of polytrauma caused by firearm missiles of a fragmentation weapon. He was referred to the Hospital Militar Central, where multiple shrapnel wounds in the head, face, thorax, and extremities were found. A brain abscess was documented and drained, and a culture grew a multidrug-resistant Acinetobacter baumannii. An appropriate antibiotic treatment was started but did not lead to a good response, and the patient died. The clinical course of the illness is presented, as is its treatment and the role of A baumannii as an etiological agent of a brain abscess. To the authors' knowledge, there have been no reported cases in the worldwide literature of brain abscess by this infectious agent.

  2. Current review of antimicrobial treatment of nosocomial pneumonia caused by multidrug-resistant pathogens.

    PubMed

    Jean, Shio-Shin; Hsueh, Po-Ren

    2011-10-01

    Nosocomial pneumonia (including ventilator-associated pneumonia; VAP), a consistently difficult-to-treat entity, is frequently caused by multidrug-resistant (MDR) or pandrug-resistant (PDR) bacteria. Given the high mortality rates caused by drug-resistant bacteria and the difficulty of developing new potent antibiotics to target the problematic pathogens, combination regimens are under ardent evaluation as new strategies to overcome increasing drug resistance. Adjustment of the administration method of certain β-lactams (meropenem, or imipenem/cilastatin), or combination of tigecycline with some agents, may show promise with regard to successful management of MDR or PDR Acinetobacter baumannii pneumonia. Additionally, vancomycin plus rifampicin is an effective regimen against nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA) responding poorly to vancomycin monotherapy. The clinical appropriateness of parenteral colistin against pneumonia caused by MDR A. baumannii has been established in a clinical trial. Facing the decline of clinical vancomycin efficacy after initial use, linezolid might be the drug of choice with regard to the treatment of MRSA-VAP. The role of tigecycline monotherapy for the management of nosocomial pneumonia caused by MRSA and extended-spectrum β-lactamase-producing Enterobacteriaceae needs to be cautiously evaluated.

  3. A TPM3 mutation causing cap myopathy.

    PubMed

    De Paula, Andre Maues; Franques, Jerome; Fernandez, Carla; Monnier, Nicole; Lunardi, Joel; Pellissier, Jean-François; Figarella-Branger, Dominique; Pouget, Jean

    2009-10-01

    Cap disease is a rare congenital myopathy associated with skeletal malformations and respiratory involvement. Abnormally arranged myofibrils taking the appearance of a "cap" are the morphological hallmark of this entity. We report a case of cap disease concerning a 42-year-old man, without any family history and presenting a p.Arg168His mutation on the TPM3 gene. His first biopsy at 7years had only shown selective type I hypotrophy. Mutations of TPM3 gene have been found in nemaline myopathy, congenital fiber type disproportion, but never before in cap disease.

  4. Novel STXBP2 mutation causing familial hemophagocytic lymphohistiocytosis.

    PubMed

    Jain, Rakhi; Puliyel, Mammen; Moses, Prabhakar D; Sieni, Elena

    2012-06-01

    Familial Hemophagocytic Lymphohistiocytosis (FHL) is a rare autosomal recessive disorder. Diagnosis is established in presence of genetic mutation or positive family history in one of the siblings. Common genetic mutations associated with FHL are mutations in gene PRF1 (also known as FHL 2), UNC13D (FHL 3) and STX11 (FHL 4). Recently mutation in STXBP2 encoding syntaxin binding protein 2 (Munc 18 -2) has been found to be associated with FHL type 5. Here we describe the first reported Indian patient with homozygous mutation in STX BP2 gene (c1697 G > A resulting in amino acid change p.G566D) causing FHL 5.

  5. STIL mutation causes autosomal recessive microcephalic lobar holoprosencephaly.

    PubMed

    Kakar, Naseebullah; Ahmad, Jamil; Morris-Rosendahl, Deborah J; Altmüller, Janine; Friedrich, Katrin; Barbi, Gotthold; Nürnberg, Peter; Kubisch, Christian; Dobyns, William B; Borck, Guntram

    2015-01-01

    Holoprosencephaly is a clinically and genetically heterogeneous midline brain malformation associated with neurologic manifestations including developmental delay, intellectual disability and seizures. Although mutations in the sonic hedgehog gene SHH and more than 10 other genes are known to cause holoprosencephaly, many patients remain without a molecular diagnosis. Here we show that a homozygous truncating mutation of STIL not only causes severe autosomal recessive microcephaly, but also lobar holoprosencephaly in an extended consanguineous Pakistani family. STIL mutations have previously been linked to centrosomal defects in primary microcephaly at the MCPH7 locus. Our results thus expand the clinical phenotypes associated with biallellic STIL mutations to include holoprosencephaly.

  6. 8-oxoguanine causes spontaneous de novo germline mutations in mice

    NASA Astrophysics Data System (ADS)

    Ohno, Mizuki; Sakumi, Kunihiko; Fukumura, Ryutaro; Furuichi, Masato; Iwasaki, Yuki; Hokama, Masaaki; Ikemura, Toshimichi; Tsuzuki, Teruhisa; Gondo, Yoichi; Nakabeppu, Yusaku

    2014-04-01

    Spontaneous germline mutations generate genetic diversity in populations of sexually reproductive organisms, and are thus regarded as a driving force of evolution. However, the cause and mechanism remain unclear. 8-oxoguanine (8-oxoG) is a candidate molecule that causes germline mutations, because it makes DNA more prone to mutation and is constantly generated by reactive oxygen species in vivo. We show here that endogenous 8-oxoG caused de novo spontaneous and heritable G to T mutations in mice, which occurred at different stages in the germ cell lineage and were distributed throughout the chromosomes. Using exome analyses covering 40.9 Mb of mouse transcribed regions, we found increased frequencies of G to T mutations at a rate of 2 × 10-7 mutations/base/generation in offspring of Mth1/Ogg1/Mutyh triple knockout (TOY-KO) mice, which accumulate 8-oxoG in the nuclear DNA of gonadal cells. The roles of MTH1, OGG1, and MUTYH are specific for the prevention of 8-oxoG-induced mutation, and 99% of the mutations observed in TOY-KO mice were G to T transversions caused by 8-oxoG; therefore, we concluded that 8-oxoG is a causative molecule for spontaneous and inheritable mutations of the germ lineage cells.

  7. 8-oxoguanine causes spontaneous de novo germline mutations in mice.

    PubMed

    Ohno, Mizuki; Sakumi, Kunihiko; Fukumura, Ryutaro; Furuichi, Masato; Iwasaki, Yuki; Hokama, Masaaki; Ikemura, Toshimichi; Tsuzuki, Teruhisa; Gondo, Yoichi; Nakabeppu, Yusaku

    2014-04-15

    Spontaneous germline mutations generate genetic diversity in populations of sexually reproductive organisms, and are thus regarded as a driving force of evolution. However, the cause and mechanism remain unclear. 8-oxoguanine (8-oxoG) is a candidate molecule that causes germline mutations, because it makes DNA more prone to mutation and is constantly generated by reactive oxygen species in vivo. We show here that endogenous 8-oxoG caused de novo spontaneous and heritable G to T mutations in mice, which occurred at different stages in the germ cell lineage and were distributed throughout the chromosomes. Using exome analyses covering 40.9 Mb of mouse transcribed regions, we found increased frequencies of G to T mutations at a rate of 2 × 10(-7) mutations/base/generation in offspring of Mth1/Ogg1/Mutyh triple knockout (TOY-KO) mice, which accumulate 8-oxoG in the nuclear DNA of gonadal cells. The roles of MTH1, OGG1, and MUTYH are specific for the prevention of 8-oxoG-induced mutation, and 99% of the mutations observed in TOY-KO mice were G to T transversions caused by 8-oxoG; therefore, we concluded that 8-oxoG is a causative molecule for spontaneous and inheritable mutations of the germ lineage cells.

  8. Multidrug Resistant Mycobacterium tuberculosis: A Retrospective katG and rpoB Mutation Profile Analysis in Isolates from a Reference Center in Brazil

    PubMed Central

    de Freitas, Flávia A. D.; Bernardo, Vagner; Gomgnimbou, Michel K.; Sola, Christophe; Siqueira, Hélio R.; Pereira, Márcia A. S.; Fandinho, Fátima C. O.; Gomes, Harrison M.; Araújo, Marcelo E. I.; Suffys, Philip N.; Marques, Elizabeth A.; Albano, Rodolpho M.

    2014-01-01

    Background Multidrug resistance is a critical factor in tuberculosis control. To gain better understanding of multidrug resistant tuberculosis in Brazil, a retrospective study was performed to compare genotypic diversity and drug resistance associated mutations in Mycobacterium tuberculosis isolates from a national reference center. Methods and Findings Ninety-nine multidrug resistant isolates from 12 Brazilian states were studied. Drug-resistance patterns were determined and the rpoB and katG genes were screened for mutations. Genotypic diversity was investigated by IS6110-RFLP and Luminex 47 spoligotyping. Mutations in rpoB and katG were seen in 91% and 93% of the isolates, respectively. Codon 315 katG mutations occurred in 82.8% of the isolates with a predominance of the Ser315Thr substitution. Twenty-five isolates were clustered in 11 groups with identical IS6110-RFLP patterns while 74 showed unique patterns with no association between mutation frequencies or susceptibility profiles. The most prevalent spoligotyping lineages were LAM (47%), T (17%) and Haarlen (12%). The Haarlen lineage showed a higher frequency of codon 516 rpoB mutations while codon 531 mutations prevailed in the other isolates. Conclusions Our data suggest that there were no major multidrug resistant M. tuberculosis strains transmitted among patients referred to the reference center, indicating an independent acquisition of resistance. In addition, drug resistance associated mutation profiles were well established among the main spoligotyping lineages found in these Brazilian multidrug resistant isolates, providing useful data for patient management and treatment. PMID:25093512

  9. ELOVL5 Mutations Cause Spinocerebellar Ataxia 38

    PubMed Central

    Di Gregorio, Eleonora; Borroni, Barbara; Giorgio, Elisa; Lacerenza, Daniela; Ferrero, Marta; Lo Buono, Nicola; Ragusa, Neftj; Mancini, Cecilia; Gaussen, Marion; Calcia, Alessandro; Mitro, Nico; Hoxha, Eriola; Mura, Isabella; Coviello, Domenico A.; Moon, Young-Ah; Tesson, Christelle; Vaula, Giovanna; Couarch, Philippe; Orsi, Laura; Duregon, Eleonora; Papotti, Mauro Giulio; Deleuze, Jean-François; Imbert, Jean; Costanzi, Chiara; Padovani, Alessandro; Giunti, Paola; Maillet-Vioud, Marcel; Durr, Alexandra; Brice, Alexis; Tempia, Filippo; Funaro, Ada; Boccone, Loredana; Caruso, Donatella; Stevanin, Giovanni; Brusco, Alfredo

    2014-01-01

    Spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal-dominant neurodegenerative disorders involving the cerebellum and 23 different genes. We mapped SCA38 to a 56 Mb region on chromosome 6p in a SCA-affected Italian family by whole-genome linkage analysis. Targeted resequencing identified a single missense mutation (c.689G>T [p.Gly230Val]) in ELOVL5. Mutation screening of 456 independent SCA-affected individuals identified the same mutation in two further unrelated Italian families. Haplotyping showed that at least two of the three families shared a common ancestor. One further missense variant (c.214C>G [p.Leu72Val]) was found in a French family. Both missense changes affect conserved amino acids, are predicted to be damaging by multiple bioinformatics tools, and were not identified in ethnically matched controls or within variant databases. ELOVL5 encodes an elongase involved in the synthesis of polyunsaturated fatty acids of the ω3 and ω6 series. Arachidonic acid and docosahexaenoic acid, two final products of the enzyme, were reduced in the serum of affected individuals. Immunohistochemistry on control mice and human brain demonstrated high levels in Purkinje cells. In transfection experiments, subcellular localization of altered ELOVL5 showed a perinuclear distribution with a signal increase in the Golgi compartment, whereas the wild-type showed a widespread signal in the endoplasmic reticulum. SCA38 and SCA34 are examples of SCAs due to mutations in elongase-encoding genes, emphasizing the importance of fatty-acid metabolism in neurological diseases. PMID:25065913

  10. ELOVL5 mutations cause spinocerebellar ataxia 38.

    PubMed

    Di Gregorio, Eleonora; Borroni, Barbara; Giorgio, Elisa; Lacerenza, Daniela; Ferrero, Marta; Lo Buono, Nicola; Ragusa, Neftj; Mancini, Cecilia; Gaussen, Marion; Calcia, Alessandro; Mitro, Nico; Hoxha, Eriola; Mura, Isabella; Coviello, Domenico A; Moon, Young-Ah; Tesson, Christelle; Vaula, Giovanna; Couarch, Philippe; Orsi, Laura; Duregon, Eleonora; Papotti, Mauro Giulio; Deleuze, Jean-François; Imbert, Jean; Costanzi, Chiara; Padovani, Alessandro; Giunti, Paola; Maillet-Vioud, Marcel; Durr, Alexandra; Brice, Alexis; Tempia, Filippo; Funaro, Ada; Boccone, Loredana; Caruso, Donatella; Stevanin, Giovanni; Brusco, Alfredo

    2014-08-07

    Spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal-dominant neurodegenerative disorders involving the cerebellum and 23 different genes. We mapped SCA38 to a 56 Mb region on chromosome 6p in a SCA-affected Italian family by whole-genome linkage analysis. Targeted resequencing identified a single missense mutation (c.689G>T [p.Gly230Val]) in ELOVL5. Mutation screening of 456 independent SCA-affected individuals identified the same mutation in two further unrelated Italian families. Haplotyping showed that at least two of the three families shared a common ancestor. One further missense variant (c.214C>G [p.Leu72Val]) was found in a French family. Both missense changes affect conserved amino acids, are predicted to be damaging by multiple bioinformatics tools, and were not identified in ethnically matched controls or within variant databases. ELOVL5 encodes an elongase involved in the synthesis of polyunsaturated fatty acids of the ω3 and ω6 series. Arachidonic acid and docosahexaenoic acid, two final products of the enzyme, were reduced in the serum of affected individuals. Immunohistochemistry on control mice and human brain demonstrated high levels in Purkinje cells. In transfection experiments, subcellular localization of altered ELOVL5 showed a perinuclear distribution with a signal increase in the Golgi compartment, whereas the wild-type showed a widespread signal in the endoplasmic reticulum. SCA38 and SCA34 are examples of SCAs due to mutations in elongase-encoding genes, emphasizing the importance of fatty-acid metabolism in neurological diseases.

  11. Dihydropyridine receptor mutations cause hypokalemic periodic paralysis

    SciTech Connect

    Ptacek, L.J.; Leppert, M.F.; Tawil, R.

    1994-09-01

    Hypokalemic periodic paralysis (hypoKPP) is an autosomal dominant skeletal muscle disorder manifested by episodic weakness associated with low serum potassium. Genetic linkage analysis has localized the hypoKPP gene to chromosome 1q31-q32 near a dihydropyridine receptor (DHP) gene. This receptor functions as a voltage-gated calcium channel and is also critical for excitation-contraction coupling in a voltage-sensitive and calcium-independent manner. We have characterized patient-specific DHP receptor mutations in 11 probands of 33 independent hypoKPP kindreds that occur at one of two adjacent nucleotides within the same codon and predict substitution of a highly conserved arginine in the S4 segment of domain 4 with either histidine or glycine. In one kindred, the mutation arose de novo. Taken together, these data establish the DHP receptor as the hypoKPP gene. We are unaware of any other human diseases presently known to result from DHP receptor mutations.

  12. Pfeiffer syndrome caused by haploinsufficient mutation of FGFR2.

    PubMed

    Tsukuno, M; Suzuki, H; Eto, Y

    1999-01-01

    Mutations of the fibroblast growth factor receptors (FGFRs) cause several dominantly inherited congenital skeletal disorders and syndromes. Recently, these mutations have been suggested to cause either ligand-independent activation of the receptor or a dominant negative inactivation. The analysis of two Japanese patients with Pfeiffer syndrome and postaxial polydactyly of the hand now shows that both carried the same 1119-2A-to-G transition of the FGFR2 gene and this nonsense mutation caused skipping of exon 9(B) and haploinsufficiency of FGFR2.

  13. Runaway telomere elongation caused by telomerase RNA gene mutations.

    PubMed

    McEachern, M J; Blackburn, E H

    1995-08-03

    The ribonucleoprotein enzyme telomerase adds telomeric DNA onto chromosome ends and is normally regulated so that telomeric DNA lengths are kept within defined bounds. In the telomerase RNA gene from the yeast Kluyveromyces lactis, specific mutations that alter telomeric DNA sequences result in telomeres elongating to up to 100 times their normal length and impair cell growth. Some mutations cause immediate elongation whereas others behave like genetic time bombs, causing elongation only after a latent period of hundreds of generations.

  14. Frontotemporal Dementia Caused by CHMP2B Mutations

    PubMed Central

    Isaacs, A.M; Johannsen, P; Holm, I; Nielsen, J.E; Consortium, FReJA

    2011-01-01

    CHMP2B mutations are a rare cause of autosomal dominant frontotemporal dementia (FTD). The best studied example is frontotemporal dementia linked to chromosome 3 (FTD-3) which occurs in a large Danish family, with a further CHMP2B mutation identified in an unrelated Belgian familial FTD patient. These mutations lead to C-terminal truncations of the CHMP2B protein and we will review recent advances in our understanding of the molecular effects of these mutant truncated proteins on vesicular fusion events within the endosome-lysosome and autophagy degradation pathways. We will also review the clinical features of FTD caused by CHMP2B truncation mutations as well as new brain imaging and neuropathological findings. Finally, we collate the current data on CHMP2B missense mutations, which have been reported in FTD and motor neuron disease. PMID:21222599

  15. Frontotemporal dementia caused by CHMP2B mutations.

    PubMed

    Isaacs, A M; Johannsen, P; Holm, I; Nielsen, J E

    2011-05-01

    CHMP2B mutations are a rare cause of autosomal dominant frontotemporal dementia (FTD). The best studied example is frontotemporal dementia linked to chromosome 3 (FTD-3) which occurs in a large Danish family, with a further CHMP2B mutation identified in an unrelated Belgian familial FTD patient. These mutations lead to C-terminal truncations of the CHMP2B protein and we will review recent advances in our understanding of the molecular effects of these mutant truncated proteins on vesicular fusion events within the endosome-lysosome and autophagy degradation pathways. We will also review the clinical features of FTD caused by CHMP2B truncation mutations as well as new brain imaging and neuropathological findings. Finally, we collate the current data on CHMP2B missense mutations, which have been reported in FTD and motor neuron disease.

  16. Risk factors for nosocomial burn wound infection caused by multidrug resistant Acinetobacter baumannii.

    PubMed

    Tekin, Recep; Dal, Tuba; Bozkurt, Fatma; Deveci, Ozcan; Palanc, Ylmaz; Arslan, Eyüp; Selçuk, Caferi Tayyar; Hoşoğlu, Salih

    2014-01-01

    Acinetobacter baumannii infections in burn patients may lead to delays in wound healing, graft losses, and development of sepsis. Determining the risk factors for multidrug resistant A. baumannii (MDR-AB) infections is essential for infection control. In the present study, the authors aimed to evaluate risk factors for wound infections caused by A. baumannii in burn patients. The study was conducted at Dicle University Hospital Burn Center, from April 2011 to July 2012, to investigate the risk factors for MDR-AB infections. The data of both the case and control group patients and the result of wound cultures were recorded on a daily basis, on individual forms given for each patient, and analyzed. A total of 30 cases infected with MDR-AB, and 60 uninfected control patients, were included in the study. The mean age (±SD) was 7.7 ± 15.4 years in infected patients and 11.4 ± 16.5 years in uninfected patients. The mean total burn surface area was 13.5 ± 10.9% in uninfected patients and 34.7 ± 16.2% in infected patients. The mean total burn surface area, the abbreviated burn severity index, acute physiological and chronic health evaluation II score, day of admission to hospital, length of hospital stay, first excision day, prior usage of third-generation cephalosporins, and stay in intensive care unit of the infected patients were significantly higher (P < .001) than those of patients without infection. Univariate analysis found that high acute physiological and chronic health evaluation II score, first excision time of wound, invasive device usage, admission day to hospital, and prior usage of broad-spectrum antibiotics were risk factors for nosocomial infections. This study showed that multiple factors contribute to multidrug resistance in A. baumannii. A combination of an early diagnosis of wound infections, appropriate antimicrobial treatments, surgical debridement, and early wound closure may be effective in the management.

  17. Anesthesia in patients with infectious disease caused by multi-drug resistant bacteria.

    PubMed

    Einav, Sharon; Wiener-Well, Yonit

    2017-06-01

    Up to 50% of specific bacterial strains in healthcare admission facilities are multi-drug resistant organisms (MDROs). Involvement of anesthesiologists in management of patients carrying/at risk of carrying MDROs may decrease transmission in the Operating Room (OR). Anesthesiologists, their work area and tools have all been implicated in MDRO outbreaks. Causes include contamination of external ventilation circuits and noncontribution of filters to prevention, inappropriate decontamination procedures for nondisposable equipment (e.g. laryngoscopes, bronchoscopes and stethoscopes) and the anesthesia workplace (e.g. external surfaces of cart and anesthesia machine, telephones and computer keyboards) during OR cleaning and lack of training in sterile drug management. Discussions regarding the management of potential MDRO carriers must include anesthesia providers to optimize infection control interventions as well as the anesthesia method, the location of surgery and recovery and the details of patient transport. Anesthesia staff must learn to identify patients at risk for MDRO infection. Antibiotic prophylaxis, although not evidence based, should adhere to known best practices. Adjuvant therapies (e.g. intranasal Mupirocin and bathing with antiseptics) should be considered. Addition of nonmanual OR cleaning methods such as ultraviolet irradiation or gaseous decontamination is encouraged. Anesthesiologists must undergo formal training in sterile drug preparation and administration.

  18. Intronic splicing mutations in PTCH1 cause Gorlin syndrome.

    PubMed

    Bholah, Zaynab; Smith, Miriam J; Byers, Helen J; Miles, Emma K; Evans, D Gareth; Newman, William G

    2014-09-01

    Gorlin syndrome is an autosomal dominant disorder characterized by multiple early-onset basal cell carcinoma, odontogenic keratocysts and skeletal abnormalities. It is caused by heterozygous mutations in the tumour suppressor PTCH1. Routine clinical genetic testing, by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to confirm a clinical diagnosis of Gorlin syndrome, identifies a mutation in 60-90 % of cases. We undertook RNA analysis on lymphocytes from ten individuals diagnosed with Gorlin syndrome, but without known PTCH1 mutations by exonic sequencing or MLPA. Two altered PTCH1 transcripts were identified. Genomic DNA sequence analysis identified an intron 7 mutation c.1068-10T>A, which created a strong cryptic splice acceptor site, leading to an intronic insertion of eight bases; this is predicted to create a frameshift p.(His358Alafs*12). Secondly, a deep intronic mutation c.2561-2057A>G caused an inframe insertion of 78 intronic bases in the cDNA transcript, leading to a premature stop codon p.(Gly854fs*3). The mutations are predicted to cause loss of function of PTCH1, consistent with its tumour suppressor function. The findings indicate the importance of RNA analysis to detect intronic mutations in PTCH1 not identified by routine screening techniques.

  19. De novo mutation in the NOTCH3 gene causing CADASIL.

    PubMed

    Stojanov, Dragan; Grozdanović, Danijela; Petrović, Sladjana; Benedeto-Stojanov, Daniela; Stefanović, Ivan; Stojanović, Nebojša; Ilić, Dušica N

    2014-02-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) is one of the most common hereditary forms of stroke, and migraine with aura, mood disorders and dementia. CADASIL is caused by mutations of the NOTCH3 gene. This mutation is inherited as an autosomal dominant trait. Most individuals with CADASIL have a parent with the disorder. In extremely rare cases, CADASIL may occur due to a spontaneous genetic mutation that occurs for unknown reasons (de novo mutation). We report a new case of patient with de novo mutation of the NOTCH3 gene and a condition strongly suggestive of CADASIL (migraine, stroke, and white matter abnormalities), except that this patient did not have any first-degree relatives with similar symptoms.

  20. Novel cerebrotendinous xanthomatosis mutation causes familial early dementia in Colombia.

    PubMed

    Giraldo-Chica, Margarita; Acosta-Baena, Natalia; Urbano, Lorena; Velilla, Lina; Lopera, Francisco; Pineda, Nicolás

    2015-01-01

    Cerebrotendinous xanthomatosis is an infrequent cause of dementia. It is an autosomal recessive disorder with clinical and molecular heterogeneity. To identify the presence of a possible mutation in a Colombian family with several affected siblings and clinical characteristics compatible with cerebrotendinous xanthomatosis associated to early dementia. We studied a series of cases with longitudinal follow-up and genetic analysis. These individuals had xanthomas, mental retardation, psychiatric disorders, behavioral changes, and multiple domains cognitive impairment with dysexecutive dominance that progressed to early dementia. CYP27A1 gene coding region sequencing revealed a novel mutation (c.1183_1184insT). The mutation found in this family is responsible for the described dementia features. Early identification of familial history with mental retardation, xanthomas and cognitive impairment might prevent the progression to this treatable type of dementia. Even though this mutation lies in the most frequently mutated codon of CYP27A1 gene, it has not been reported previously.

  1. Simple method for detection of mutations causing hereditary fructose intolerance.

    PubMed

    Kullberg-Lindh, C; Hannoun, C; Lindh, M

    2002-11-01

    Aldolase B is critical for sugar metabolism, and a catalytic deficiency due to mutations in its gene may result in hereditary fructose intolerance (HFI) syndrome, with hypoglycaemia and severe abdominal symptoms. This report describes two cases of HFI, which were identified by intravenous fructose tolerance test and a new RFLP (restriction fragment length polymorphism) test that detects the two most common mutations, A149P and A174D. The method includes PCR of a 224-base-pair segment of exon 5, a subsequent 3 h incubation with Cac8I and agarose electrophoresis, which reveals either or both of the mutations in one single reaction. The method might be useful for screening of these mutations, which may account for more than 70% of the mutations causing HFI.

  2. A novel mutation in GATA6 causes pancreatic agenesis.

    PubMed

    Stanescu, Diana E; Hughes, Nkecha; Patel, Puja; De León, Diva D

    2015-02-01

    Heterozygous mutations in GATA6 have been linked to pancreatic agenesis and cardiac malformations. The aim of this study was to describe a new mutation in GATA6 in an infant with pancreatic agenesis, associated with truncus arteriosus and absent gallbladder. Clinical data were obtained from chart review. Gene sequencing was performed on genomic DNA. The patient was a female infant diagnosed shortly after birth with a severe cardiac malformation, absent gallbladder, anomalous hepatic blood flow, unilateral hydronephrosis and hydroureter, neonatal diabetes, and pancreatic exocrine insufficiency. Despite prolonged intensive management care, she died at 3 months of age because of cardiac complications. Analysis of her genomic DNA revealed a novel missense mutation of GATA6. The novel mutation described in this case extends the list of GATA6 mutations causing pancreatic agenesis and cardiac malformations. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Heterozygous Reelin Mutations Cause Autosomal-Dominant Lateral Temporal Epilepsy

    PubMed Central

    Dazzo, Emanuela; Fanciulli, Manuela; Serioli, Elena; Minervini, Giovanni; Pulitano, Patrizia; Binelli, Simona; Di Bonaventura, Carlo; Luisi, Concetta; Pasini, Elena; Striano, Salvatore; Striano, Pasquale; Coppola, Giangennaro; Chiavegato, Angela; Radovic, Slobodanka; Spadotto, Alessandro; Uzzau, Sergio; La Neve, Angela; Giallonardo, Anna Teresa; Mecarelli, Oriano; Tosatto, Silvio C.E.; Ottman, Ruth; Michelucci, Roberto; Nobile, Carlo

    2015-01-01

    Autosomal-dominant lateral temporal epilepsy (ADLTE) is a genetic epilepsy syndrome clinically characterized by focal seizures with prominent auditory symptoms. ADLTE is genetically heterogeneous, and mutations in LGI1 account for fewer than 50% of affected families. Here, we report the identification of causal mutations in reelin (RELN) in seven ADLTE-affected families without LGI1 mutations. We initially investigated 13 ADLTE-affected families by performing SNP-array linkage analysis and whole-exome sequencing and identified three heterozygous missense mutations co-segregating with the syndrome. Subsequent analysis of 15 small ADLTE-affected families revealed four additional missense mutations. 3D modeling predicted that all mutations have structural effects on protein-domain folding. Overall, RELN mutations occurred in 7/40 (17.5%) ADLTE-affected families. RELN encodes a secreted protein, Reelin, which has important functions in both the developing and adult brain and is also found in the blood serum. We show that ADLTE-related mutations significantly decrease serum levels of Reelin, suggesting an inhibitory effect of mutations on protein secretion. We also show that Reelin and LGI1 co-localize in a subset of rat brain neurons, supporting an involvement of both proteins in a common molecular pathway underlying ADLTE. Homozygous RELN mutations are known to cause lissencephaly with cerebellar hypoplasia. Our findings extend the spectrum of neurological disorders associated with RELN mutations and establish a link between RELN and LGI1, which play key regulatory roles in both the developing and adult brain. PMID:26046367

  4. Cilia gene mutations cause atrioventricular septal defects by multiple mechanisms

    PubMed Central

    Burnicka-Turek, Ozanna; Steimle, Jeffrey D.; Huang, Wenhui; Felker, Lindsay; Kamp, Anna; Kweon, Junghun; Peterson, Michael; Reeves, Roger H.; Maslen, Cheryl L.; Gruber, Peter J.; Yang, Xinan H.; Shendure, Jay; Moskowitz, Ivan P.

    2016-01-01

    Atrioventricular septal defects (AVSDs) are a common severe form of congenital heart disease (CHD). In this study we identified deleterious non-synonymous mutations in two cilia genes, Dnah11 and Mks1, in independent N-ethyl-N-nitrosourea-induced mouse mutant lines with heritable recessive AVSDs by whole-exome sequencing. Cilia are required for left/right body axis determination and second heart field (SHF) Hedgehog (Hh) signaling, and we find that cilia mutations affect these requirements differentially. Dnah11avc4 did not disrupt SHF Hh signaling and caused AVSDs only concurrently with heterotaxy, a left/right axis abnormality. In contrast, Mks1avc6 disrupted SHF Hh signaling and caused AVSDs without heterotaxy. We performed unbiased whole-genome SHF transcriptional profiling and found that cilia motility genes were not expressed in the SHF whereas cilia structural and signaling genes were highly expressed. SHF cilia gene expression predicted the phenotypic concordance between AVSDs and heterotaxy in mice and humans with cilia gene mutations. A two-step model of cilia action accurately predicted the AVSD/heterotaxyu phenotypic expression pattern caused by cilia gene mutations. We speculate that cilia gene mutations contribute to both syndromic and non-syndromic AVSDs in humans and provide a model that predicts the phenotypic consequences of specific cilia gene mutations. PMID:27340223

  5. Pyrazinamide Susceptibility and pncA Mutation Profiles of Mycobacterium tuberculosis among Multidrug-Resistant Tuberculosis Patients in Bangladesh.

    PubMed

    Rahman, Arfatur; Ferdous, Sara Sabrina; Ahmed, Shahriar; Rahman, S M Mazidur; Uddin, Mohammad Khaja Mafij; Pholwat, Suporn; Gratz, Jean; Houpt, Eric; Banu, Sayera

    2017-09-01

    Pyrazinamide (PZA) is a frontline antituberculosis (anti-TB) drug used in both first- and second-line treatment regimens. However, due to complex laboratory requirements, the PZA susceptibility test is rarely performed, leading to a scarcity of data on susceptibility to PZA. Bangladesh is a country with a burden of high rates of both TB and multidrug-resistant TB (MDR-TB), but to our knowledge, published data on rates of PZA susceptibility (PZA(s)), especially among MDR-TB patients, are limited. We aimed to analyze the PZA susceptibility patterns of Mycobacterium tuberculosis isolates from MDR-TB patients and to correlate the pncA mutation with PZA resistance in Bangladesh. A total of 169 confirmed MDR M. tuberculosis isolates from a pool of specimens collected in a nationwide surveillance study were included in this analysis. All the isolates were tested for phenotypic PZA susceptibility in Bactec mycobacterial growth indicator tube (MGIT) culture medium, and the pncA gene was sequenced. We also correlated different types of clinical information and treatment outcomes with PZA susceptibility. We found that 45% of isolates were phenotypically PZA resistant. Sequencing of the pncA gene revealed a high concordance (82.2%) between the pncA gene sequence and the phenotypic assay results. A total of 64 different mutations were found, and 9 isolates harbored multiple mutations. We detected 27 new pncA mutations. We did not find any significant correlation between the different clinical categories, the genetic lineage, or treatment outcome group and PZA susceptibility. Considering the turnaround time, sequencing would be the more feasible option to determine PZA susceptibility, and further studies to investigate the MIC of PZA should be conducted to determine an effective dose of the drug. Copyright © 2017 Rahman et al.

  6. Novel GABRG2 mutations cause familial febrile seizures

    PubMed Central

    Boillot, Morgane; Morin-Brureau, Mélanie; Picard, Fabienne; Weckhuysen, Sarah; Lambrecq, Virginie; Minetti, Carlo; Striano, Pasquale; Zara, Federico; Iacomino, Michele; Ishida, Saeko; An-Gourfinkel, Isabelle; Daniau, Mailys; Hardies, Katia; Baulac, Michel; Dulac, Olivier; Leguern, Eric; Nabbout, Rima

    2015-01-01

    Objective: To identify the genetic cause in a large family with febrile seizures (FS) and temporal lobe epilepsy (TLE) and subsequently search for additional mutations in a cohort of 107 families with FS, with or without epilepsy. Methods: The cohort consisted of 1 large family with FS and TLE, 64 smaller French families recruited through a national French campaign, and 43 Italian families. Molecular analyses consisted of whole-exome sequencing and mutational screening. Results: Exome sequencing revealed a p.Glu402fs*3 mutation in the γ2 subunit of the GABAA receptor gene (GABRG2) in the large family with FS and TLE. Three additional nonsense and frameshift GABRG2 mutations (p.Arg136*, p.Val462fs*33, and p.Pro59fs*12), 1 missense mutation (p.Met199Val), and 1 exonic deletion were subsequently identified in 5 families of the follow-up cohort. Conclusions: We report GABRG2 mutations in 5.6% (6/108) of families with FS, with or without associated epilepsy. This study provides evidence that GABRG2 mutations are linked to the FS phenotype, rather than epilepsy, and that loss-of-function of GABAA receptor γ2 subunit is the probable underlying pathogenic mechanism. PMID:27066572

  7. Biallelic TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy.

    PubMed

    Miyake, Noriko; Fukai, Ryoko; Ohba, Chihiro; Chihara, Takahiro; Miura, Masayuki; Shimizu, Hiroshi; Kakita, Akiyoshi; Imagawa, Eri; Shiina, Masaaki; Ogata, Kazuhiro; Okuno-Yuguchi, Jiu; Fueki, Noboru; Ogiso, Yoshifumi; Suzumura, Hiroshi; Watabe, Yoshiyuki; Imataka, George; Leong, Huey Yin; Fattal-Valevski, Aviva; Kramer, Uri; Miyatake, Satoko; Kato, Mitsuhiro; Okamoto, Nobuhiko; Sato, Yoshinori; Mitsuhashi, Satomi; Nishino, Ichizo; Kaneko, Naofumi; Nishiyama, Akira; Tamura, Tomohiko; Mizuguchi, Takeshi; Nakashima, Mitsuko; Tanaka, Fumiaki; Saitsu, Hirotomo; Matsumoto, Naomichi

    2016-10-06

    We describe four families with affected siblings showing unique clinical features: early-onset (before 1 year of age) progressive diffuse brain atrophy with regression, postnatal microcephaly, postnatal growth retardation, muscle weakness/atrophy, and respiratory failure. By whole-exome sequencing, we identified biallelic TBCD mutations in eight affected individuals from the four families. TBCD encodes TBCD (tubulin folding co-factor D), which is one of five tubulin-specific chaperones playing a pivotal role in microtubule assembly in all cells. A total of seven mutations were found: five missense mutations, one nonsense, and one splice site mutation resulting in a frameshift. In vitro cell experiments revealed the impaired binding between most mutant TBCD proteins and ARL2, TBCE, and β-tubulin. The in vivo experiments using olfactory projection neurons in Drosophila melanogaster indicated that the TBCD mutations caused loss of function. The wide range of clinical severity seen in this neurodegenerative encephalopathy may result from the residual function of mutant TBCD proteins. Furthermore, the autopsied brain from one deceased individual showed characteristic neurodegenerative findings: cactus and somatic sprout formations in the residual Purkinje cells in the cerebellum, which are also seen in some diseases associated with mitochondrial impairment. Defects of microtubule formation caused by TBCD mutations may underlie the pathomechanism of this neurodegenerative encephalopathy. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. GJB2 gene mutations causing familial hereditary deafness in Turkey.

    PubMed

    Bayazit, Yildirim A; Cable, Benjamin B; Cataloluk, Osman; Kara, Cengiz; Chamberlin, Parker; Smith, Richard J H; Kanlikama, Muzaffer; Ozer, Enver; Cakmak, Ecir Ali; Mumbuc, Semih; Arslan, Ahmet

    2003-12-01

    Mutations in Connexin 26 (Cx26) play an important role in autosomal non-syndromic hereditary hearing loss. In this study, our objective was to find out the significance of Cx26 mutations in Turkish families who had hereditary deafness. Fourteen families who had at least two prelingually deaf children per family were included in the study. One affected child from each of the 14 families was selected for single-stranded conformational polymorphism SSCP analysis. Three PCR reactions were used for each subject to amplify the entire Cx26 coding region with overlap. PCR products were sequenced on an Applied Biosystems (ABI) model 3700 automated sequencer. Six of the 14 representative family members (42.9%) demonstrated shifts on SSCP and were subsequently sequenced for Exons 1 and 2 of GJB2 and were tested for the 432 kb upstream deletion. No mutations were found in Exon 1 and no 432 kb deletions were noted. Three different GJB2 mutations were found in Exon 2 of the probands, which were 35delG, 299-300delAT, and 487G > A (M163V). GJB2 mutations were detected in 21.4% of the families. Two patients were homozygous for 35delG and 299-300delAT mutations, and were given a diagnosis of DFNB1 deafness (14.3%). Two different polymorphisms, 457G > A (V153I) and 380G > AG (R127H) were also found. In conclusion, although GJB2 mutations were detected in 21.4% of the families tested, only 14.3% of subject representatives were homozygous and therefore deafness caused by Cx26 mutation segregated with DFNB1. Thus, contribution of GJB2 mutations appears less significant in familial deafness. This necessitates further assessment for the other known gene regions as well as a search for new genetic factors in familial type of genetic deafness.

  9. Mutations in LPIN1 cause recurrent acute myoglobinuria in childhood.

    PubMed

    Zeharia, Avraham; Shaag, Avraham; Houtkooper, Riekelt H; Hindi, Tareq; de Lonlay, Pascale; Erez, Gilli; Hubert, Laurence; Saada, Ann; de Keyzer, Yves; Eshel, Gideon; Vaz, Frédéric M; Pines, Ophry; Elpeleg, Orly

    2008-10-01

    Recurrent episodes of life-threatening myoglobinuria in childhood are caused by inborn errors of glycogenolysis, mitochondrial fatty acid beta-oxidation, and oxidative phosphorylation. Nonetheless, approximately half of the patients do not suffer from a defect in any of these pathways. Using homozygosity mapping, we identified six deleterious mutations in the LPIN1 gene in patients who presented at 2-7 years of age with recurrent, massive rhabdomyolysis. The LPIN1 gene encodes the muscle-specific phosphatidic acid phosphatase, a key enzyme in triglyceride and membrane phospholipid biosynthesis. Of six individuals who developed statin-induced myopathy, one was a carrier for Glu769Gly, a pathogenic mutation in the LPIN1 gene. Analysis of phospholipid content disclosed accumulation of phosphatidic acid and lysophospholipids in muscle tissue of the more severe genotype. Mutations in the LPIN1 gene cause recurrent rhabdomyolysis in childhood, and a carrier state may predispose for statin-induced myopathy.

  10. Peripheral neuropathies caused by mutations in the myelin protein zero.

    PubMed

    Shy, Michael E

    2006-03-15

    Charcot-Marie-Tooth disease type 1B (CMT1B) is caused by mutations in the major PNS myelin protein myelin protein zero (MPZ). MPZ is a member of the immunoglobulin supergene family and functions as an adhesion molecule helping to mediate compaction of PNS myelin. Mutations in MPZ appear to either disrupt myelination during development, leading to severe early onset neuropathies, or to disrupt axo-glial interactions leading to late onset neuropathies in adulthood. Identifying molecular pathways involved in early and late onset CMT1B will be crucial to understand how MPZ mutations cause CMT1B so that rational therapies for both early and late onset neuropathies can be developed.

  11. Mutations in the deubiquitinase gene USP8 cause Cushing's disease.

    PubMed

    Reincke, Martin; Sbiera, Silviu; Hayakawa, Akira; Theodoropoulou, Marily; Osswald, Andrea; Beuschlein, Felix; Meitinger, Thomas; Mizuno-Yamasaki, Emi; Kawaguchi, Kohei; Saeki, Yasushi; Tanaka, Keiji; Wieland, Thomas; Graf, Elisabeth; Saeger, Wolfgang; Ronchi, Cristina L; Allolio, Bruno; Buchfelder, Michael; Strom, Tim M; Fassnacht, Martin; Komada, Masayuki

    2015-01-01

    Cushing's disease is caused by corticotroph adenomas of the pituitary. To explore the molecular mechanisms of endocrine autonomy in these tumors, we performed exome sequencing of 10 corticotroph adenomas. We found somatic mutations in the USP8 deubiquitinase gene in 4 of 10 adenomas. The mutations clustered in the 14-3-3 protein binding motif and enhanced the proteolytic cleavage and catalytic activity of USP8. Cleavage of USP8 led to increased deubiqutination of the EGF receptor, impairing its downregulation and sustaining EGF signaling. USP8 mutants enhanced promoter activity of the gene encoding proopiomelanocortin. In summary, our data show that dominant mutations in USP8 cause Cushing's disease via activation of EGF receptor signaling.

  12. Respiratory chain complex I deficiency caused by mitochondrial DNA mutations

    PubMed Central

    Swalwell, Helen; Kirby, Denise M; Blakely, Emma L; Mitchell, Anna; Salemi, Renato; Sugiana, Canny; Compton, Alison G; Tucker, Elena J; Ke, Bi-Xia; Lamont, Phillipa J; Turnbull, Douglass M; McFarland, Robert; Taylor, Robert W; Thorburn, David R

    2011-01-01

    Defects of the mitochondrial respiratory chain are associated with a diverse spectrum of clinical phenotypes, and may be caused by mutations in either the nuclear or the mitochondrial genome (mitochondrial DNA (mtDNA)). Isolated complex I deficiency is the most common enzyme defect in mitochondrial disorders, particularly in children in whom family history is often consistent with sporadic or autosomal recessive inheritance, implicating a nuclear genetic cause. In contrast, although a number of recurrent, pathogenic mtDNA mutations have been described, historically, these have been perceived as rare causes of paediatric complex I deficiency. We reviewed the clinical and genetic findings in a large cohort of 109 paediatric patients with isolated complex I deficiency from 101 families. Pathogenic mtDNA mutations were found in 29 of 101 probands (29%), 21 in MTND subunit genes and 8 in mtDNA tRNA genes. Nuclear gene defects were inferred in 38 of 101 (38%) probands based on cell hybrid studies, mtDNA sequencing or mutation analysis (nuclear gene mutations were identified in 22 probands). Leigh or Leigh-like disease was the most common clinical presentation in both mtDNA and nuclear genetic defects. The median age at onset was higher in mtDNA patients (12 months) than in patients with a nuclear gene defect (3 months). However, considerable overlap existed, with onset varying from 0 to >60 months in both groups. Our findings confirm that pathogenic mtDNA mutations are a significant cause of complex I deficiency in children. In the absence of parental consanguinity, we recommend whole mitochondrial genome sequencing as a key approach to elucidate the underlying molecular genetic abnormality. PMID:21364701

  13. Infantile onset spinocerebellar ataxia caused by compound heterozygosity for Twinkle mutations and modeling of Twinkle mutations causing recessive disease

    PubMed Central

    Gulsuner, Suleyman; Stapleton, Gail A.; Walsh, Tom; Lee, Ming K.; Mandell, Jessica B.; Morales, Augusto; Klevit, Rachel E.; King, Mary-Claire; Rogers, R. Curtis

    2016-01-01

    Mutations in nuclear genes required for the replication and maintenance of mitochondrial DNA cause progressive multisystemic neuromuscular disorders with overlapping phenotypes. Biallelic mutations in C10orf2, encoding the Twinkle mitochondrial DNA helicase, lead to infantile-onset cerebellar ataxia (IOSCA), as well as milder and more severe phenotypes. We present a 13-year-old girl with ataxia, severe hearing loss, optic atrophy, peripheral neuropathy, and hypergonadotropic hypogonadism. Whole-exome sequencing revealed that the patient is compound heterozygous for previously unreported variants in the C10orf2 gene: a paternally inherited frameshift variant (c.333delT; p.L112Sfs*3) and a maternally inherited missense variant (c.904C>T; p.R302W). The identification of novel C10orf2 mutations extends the spectrum of mutations in the Twinkle helicase causing recessive disease, in particular the intermediate IOSCA phenotype. Structural modeling suggests that the p.R302W mutation and many other recessively inherited Twinkle mutations impact the position or interactions of the linker region, which is critical for the oligomeric ring structure and activity of the helicase. This study emphasizes the utility of whole-exome sequencing for the genetic diagnosis of a complex multisystemic disorder. PMID:27551684

  14. Biallelic IRF8 Mutations Causing NK Cell Deficiency.

    PubMed

    López-Soto, Alejandro; Lorenzo-Herrero, Seila; Gonzalez, Segundo

    2017-03-01

    Human primary immunodeficiencies result in an exacerbated susceptibility to contracting infectious diseases. Recent work by Mace et al., published in the Journal of Clinical Investigation, unveils a novel genetic cause for the development of familial natural killer (NK) cell deficiency: a biallelic compound heterozygous mutation in IRF8, which leads to impaired NK cell development and cytotoxic activity.

  15. Mutations in mitochondrial DNA causing tubulointerstitial kidney disease

    PubMed Central

    Mallett, Andrew; Posse, Viktor; Moreno, Pablo; Sciacovelli, Marco; Duff, Jennifer; Wiesener, Michael S.; Hudson, Gavin; Gustafsson, Claes M.; Chinnery, Patrick F.; Maxwell, Patrick H.

    2017-01-01

    Tubulointerstitial kidney disease is an important cause of progressive renal failure whose aetiology is incompletely understood. We analysed a large pedigree with maternally inherited tubulointerstitial kidney disease and identified a homoplasmic substitution in the control region of the mitochondrial genome (m.547A>T). While mutations in mtDNA coding sequence are a well recognised cause of disease affecting multiple organs, mutations in the control region have never been shown to cause disease. Strikingly, our patients did not have classical features of mitochondrial disease. Patient fibroblasts showed reduced levels of mitochondrial tRNAPhe, tRNALeu1 and reduced mitochondrial protein translation and respiration. Mitochondrial transfer demonstrated mitochondrial transmission of the defect and in vitro assays showed reduced activity of the heavy strand promoter. We also identified further kindreds with the same phenotype carrying a homoplasmic mutation in mitochondrial tRNAPhe (m.616T>C). Thus mutations in mitochondrial DNA can cause maternally inherited renal disease, likely mediated through reduced function of mitochondrial tRNAPhe. PMID:28267784

  16. A novel mutation of the fibrillin gene causing Ectopia lentis

    SciTech Connect

    Loennqvist, L.; Kainulainen, K.; Puhakka, L.; Peltonen, L. ); Child, A. ); Peltonen, L. )

    1994-02-01

    Ectopia lentis (EL), a dominantly inherited connective tissue disorder, has been genetically linked to the fibrillin gene on chromosome 15 (FBN1) in earlier studies. Here, the authors report the first EL mutation in the FBN1 gene confirming that EL is caused by mutations of this gene. So far, several mutations in the FBN1 gene have been reported in patients with Marfan syndrome (MFS). EL and MFS are clinically related but distinct conditions with typical manifestations in the ocular and skeletal systems, the fundamental difference between them being the absence of cardiovascular involvement in EL. They report a point mutation, cosegregating with the disease in the described family, that displays EL over four generations. The mutation changes a conserved glutamic acid residue in an EGF-like motif, which is the major structural component of the fibrillin and is repeated throughout the polypeptide. In vitro mutagenetic studies have demonstrated the necessity of an analogous glutamic acid residue for calcium binding in an EGF-like repeat of human factor IX. This provides a possible explanation for the role of this mutation in the disease pathogenesis. 32 refs., 2 figs., 1 tab.

  17. Mutations in WNT1 Cause Different Forms of Bone Fragility

    PubMed Central

    Keupp, Katharina; Beleggia, Filippo; Kayserili, Hülya; Barnes, Aileen M.; Steiner, Magdalena; Semler, Oliver; Fischer, Björn; Yigit, Gökhan; Janda, Claudia Y.; Becker, Jutta; Breer, Stefan; Altunoglu, Umut; Grünhagen, Johannes; Krawitz, Peter; Hecht, Jochen; Schinke, Thorsten; Makareeva, Elena; Lausch, Ekkehart; Cankaya, Tufan; Caparrós-Martín, José A.; Lapunzina, Pablo; Temtamy, Samia; Aglan, Mona; Zabel, Bernhard; Eysel, Peer; Koerber, Friederike; Leikin, Sergey; Garcia, K. Christopher; Netzer, Christian; Schönau, Eckhard; Ruiz-Perez, Victor L.; Mundlos, Stefan; Amling, Michael; Kornak, Uwe; Marini, Joan; Wollnik, Bernd

    2013-01-01

    We report that hypofunctional alleles of WNT1 cause autosomal-recessive osteogenesis imperfecta, a congenital disorder characterized by reduced bone mass and recurrent fractures. In consanguineous families, we identified five homozygous mutations in WNT1: one frameshift mutation, two missense mutations, one splice-site mutation, and one nonsense mutation. In addition, in a family affected by dominantly inherited early-onset osteoporosis, a heterozygous WNT1 missense mutation was identified in affected individuals. Initial functional analysis revealed that altered WNT1 proteins fail to activate canonical LRP5-mediated WNT-regulated β-catenin signaling. Furthermore, osteoblasts cultured in vitro showed enhanced Wnt1 expression with advancing differentiation, indicating a role of WNT1 in osteoblast function and bone development. Our finding that homozygous and heterozygous variants in WNT1 predispose to low-bone-mass phenotypes might advance the development of more effective therapeutic strategies for congenital forms of bone fragility, as well as for common forms of age-related osteoporosis. PMID:23499309

  18. Mutations in TJP2 cause progressive cholestatic liver disease

    PubMed Central

    Sambrotta, Melissa; Strautnieks, Sandra; Papouli, Efterpi; Rushton, Peter; Clark, Barnaby E.; Parry, David A.; Logan, Clare V.; Newbury, Lucy J.; Kamath, Binita M.; Ling, Simon; Grammatikopoulos, Tassos; Wagner, Bart E.; Magee, John C.; Sokol, Ronald J.; Mieli-Vergani, Giorgina; Smith, Joshua D.; Johnson, Colin A.; McClean, Patricia; Simpson, Michael A.; Knisely, A.S.; Bull, Laura N.; Thompson, Richard J.

    2014-01-01

    The elucidation of genetic causes of cholestasis has proved to be important in understanding the physiology and pathophysiology of the liver. Protein-truncating mutations in the tight junction protein 2 gene (TJP2) are shown to cause failure of protein localisation, with disruption of tight-junction structure leading to severe cholestatic liver disease. This contrasts with the embryonic-lethal knockout mouse, highlighting differences in redundancy in junctional complexes between organs and species. PMID:24614073

  19. Recessively Inherited LRBA Mutations Cause Autoimmunity Presenting as Neonatal Diabetes.

    PubMed

    Johnson, Matthew B; De Franco, Elisa; Lango Allen, Hana; Al Senani, Aisha; Elbarbary, Nancy; Siklar, Zeynep; Berberoglu, Merih; Imane, Zineb; Haghighi, Alireza; Razavi, Zahra; Ullah, Irfan; Alyaarubi, Saif; Gardner, Daphne; Ellard, Sian; Hattersley, Andrew T; Flanagan, Sarah E

    2017-08-01

    Young-onset autoimmune diabetes associated with additional autoimmunity usually reflects a polygenic predisposition, but rare cases result from monogenic autoimmunity. Diagnosing monogenic autoimmunity is crucial for patients' prognosis and clinical management. We sought to identify novel genetic causes of autoimmunity presenting with neonatal diabetes (NDM) (diagnosis <6 months). We performed exome sequencing in a patient with NDM and autoimmune lymphoproliferative syndrome and his unrelated, unaffected parents and identified compound heterozygous null mutations in LRBA Biallelic LRBA mutations cause common variable immunodeficiency-8; however, NDM has not been confirmed in this disorder. We sequenced LRBA in 169 additional patients with diabetes diagnosed <1 year without mutations in the 24 known NDM genes. We identified recessive null mutations in 8 additional probands, of which, 3 had NDM (<6 months). Diabetes was the presenting feature in 6 of 9 probands. Six of 17 (35%) patients born to consanguineous parents and with additional early-onset autoimmunity had recessive LRBA mutations. LRBA testing should be considered in patients with diabetes diagnosed <12 months, particularly if they have additional autoimmunity or are born to consanguineous parents. A genetic diagnosis is important as it can enable personalized therapy with abatacept, a CTLA-4 mimetic, and inform genetic counseling. © 2017 by the American Diabetes Association.

  20. Mutations in Calmodulin Cause Ventricular Tachycardia and Sudden Cardiac Death

    PubMed Central

    Nyegaard, Mette; Overgaard, Michael T.; Søndergaard, Mads T.; Vranas, Marta; Behr, Elijah R.; Hildebrandt, Lasse L.; Lund, Jacob; Hedley, Paula L.; Camm, A. John; Wettrell, Göran; Fosdal, Inger; Christiansen, Michael; Børglum, Anders D.

    2012-01-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe dominantly inherited form of CPVT-like arrhythmias, we mapped the disease locus to chromosome 14q31-32. Sequencing CALM1 encoding calmodulin revealed a heterozygous missense mutation (c.161A>T [p.Asn53Ile]) segregating with the disease. A second, de novo, missense mutation (c.293A>G [p.Asn97Ser]) was subsequently identified in an individual of Iraqi origin; this individual was diagnosed with CPVT from a screening of 61 arrhythmia samples with no identified RYR2 mutations. Both CALM1 substitutions demonstrated compromised calcium binding, and p.Asn97Ser displayed an aberrant interaction with the RYR2 calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac death. PMID:23040497

  1. Mutations in the NHEJ component XRCC4 cause primordial dwarfism.

    PubMed

    Murray, Jennie E; van der Burg, Mirjam; IJspeert, Hanna; Carroll, Paula; Wu, Qian; Ochi, Takashi; Leitch, Andrea; Miller, Edward S; Kysela, Boris; Jawad, Alireza; Bottani, Armand; Brancati, Francesco; Cappa, Marco; Cormier-Daire, Valerie; Deshpande, Charu; Faqeih, Eissa A; Graham, Gail E; Ranza, Emmanuelle; Blundell, Tom L; Jackson, Andrew P; Stewart, Grant S; Bicknell, Louise S

    2015-03-05

    Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation.

  2. Mutations in TMEM76* cause mucopolysaccharidosis IIIC (Sanfilippo C syndrome).

    PubMed

    Hrebícek, Martin; Mrázová, Lenka; Seyrantepe, Volkan; Durand, Stéphanie; Roslin, Nicole M; Nosková, Lenka; Hartmannová, Hana; Ivánek, Robert; Cízkova, Alena; Poupetová, Helena; Sikora, Jakub; Urinovská, Jana; Stranecký, Viktor; Zeman, Jirí; Lepage, Pierre; Roquis, David; Verner, Andrei; Ausseil, Jérome; Beesley, Clare E; Maire, Irène; Poorthuis, Ben J H M; van de Kamp, Jiddeke; van Diggelen, Otto P; Wevers, Ron A; Hudson, Thomas J; Fujiwara, T Mary; Majewski, Jacek; Morgan, Kenneth; Kmoch, Stanislav; Pshezhetsky, Alexey V

    2006-11-01

    Mucopolysaccharidosis IIIC (MPS IIIC, or Sanfilippo C syndrome) is a lysosomal storage disorder caused by the inherited deficiency of the lysosomal membrane enzyme acetyl-coenzyme A: alpha -glucosaminide N-acetyltransferase (N-acetyltransferase), which leads to impaired degradation of heparan sulfate. We report the narrowing of the candidate region to a 2.6-cM interval between D8S1051 and D8S1831 and the identification of the transmembrane protein 76 gene (TMEM76), which encodes a 73-kDa protein with predicted multiple transmembrane domains and glycosylation sites, as the gene that causes MPS IIIC when it is mutated. Four nonsense mutations, 3 frameshift mutations due to deletions or a duplication, 6 splice-site mutations, and 14 missense mutations were identified among 30 probands with MPS IIIC. Functional expression of human TMEM76 and the mouse ortholog demonstrates that it is the gene that encodes the lysosomal N-acetyltransferase and suggests that this enzyme belongs to a new structural class of proteins that transport the activated acetyl residues across the cell membrane.

  3. Mutations in the NHEJ Component XRCC4 Cause Primordial Dwarfism

    PubMed Central

    Murray, Jennie E.; van der Burg, Mirjam; IJspeert, Hanna; Carroll, Paula; Wu, Qian; Ochi, Takashi; Leitch, Andrea; Miller, Edward S.; Kysela, Boris; Jawad, Alireza; Bottani, Armand; Brancati, Francesco; Cappa, Marco; Cormier-Daire, Valerie; Deshpande, Charu; Faqeih, Eissa A.; Graham, Gail E.; Ranza, Emmanuelle; Blundell, Tom L.; Jackson, Andrew P.; Stewart, Grant S.; Bicknell, Louise S.

    2015-01-01

    Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation. PMID:25728776

  4. Mutations in KCTD1 cause scalp-ear-nipple syndrome.

    PubMed

    Marneros, Alexander G; Beck, Anita E; Turner, Emily H; McMillin, Margaret J; Edwards, Matthew J; Field, Michael; de Macena Sobreira, Nara Lygia; Perez, Ana Beatriz A; Fortes, Jose A R; Lampe, Anne K; Giovannucci Uzielli, Maria Luisa; Gordon, Christopher T; Plessis, Ghislaine; Le Merrer, Martine; Amiel, Jeanne; Reichenberger, Ernst; Shively, Kathryn M; Cerrato, Felecia; Labow, Brian I; Tabor, Holly K; Smith, Joshua D; Shendure, Jay; Nickerson, Deborah A; Bamshad, Michael J

    2013-04-04

    Scalp-ear-nipple (SEN) syndrome is a rare, autosomal-dominant disorder characterized by cutis aplasia of the scalp; minor anomalies of the external ears, digits, and nails; and malformations of the breast. We used linkage analysis and exome sequencing of a multiplex family affected by SEN syndrome to identify potassium-channel tetramerization-domain-containing 1 (KCTD1) mutations that cause SEN syndrome. Evaluation of a total of ten families affected by SEN syndrome revealed KCTD1 missense mutations in each family tested. All of the mutations occurred in a KCTD1 region encoding a highly conserved bric-a-brac, tram track, and broad complex (BTB) domain that is required for transcriptional repressor activity. KCTD1 inhibits the transactivation of the transcription factor AP-2α (TFAP2A) via its BTB domain, and mutations in TFAP2A cause cutis aplasia in individuals with branchiooculofacial syndrome (BOFS), suggesting a potential overlap in the pathogenesis of SEN syndrome and BOFS. The identification of KCTD1 mutations in SEN syndrome reveals a role for this BTB-domain-containing transcriptional repressor during ectodermal development.

  5. Mutations in NSUN2 Cause Autosomal- Recessive Intellectual Disability

    PubMed Central

    Abbasi-Moheb, Lia; Mertel, Sara; Gonsior, Melanie; Nouri-Vahid, Leyla; Kahrizi, Kimia; Cirak, Sebahattin; Wieczorek, Dagmar; Motazacker, M. Mahdi; Esmaeeli-Nieh, Sahar; Cremer, Kirsten; Weißmann, Robert; Tzschach, Andreas; Garshasbi, Masoud; Abedini, Seyedeh S.; Najmabadi, Hossein; Ropers, H. Hilger; Sigrist, Stephan J.; Kuss, Andreas W.

    2012-01-01

    With a prevalence between 1 and 3%, hereditary forms of intellectual disability (ID) are among the most important problems in health care. Particularly, autosomal-recessive forms of the disorder have a very heterogeneous molecular basis, and genes with an increased number of disease-causing mutations are not common. Here, we report on three different mutations (two nonsense mutations, c.679C>T [p.Gln227∗] and c.1114C>T [p.Gln372∗], as well as one splicing mutation, g.6622224A>C [p.Ile179Argfs∗192]) that cause a loss of the tRNA-methyltransferase-encoding NSUN2 main transcript in homozygotes. We identified the mutations by sequencing exons and exon-intron boundaries within the genomic region where the linkage intervals of three independent consanguineous families of Iranian and Kurdish origin overlapped with the previously described MRT5 locus. In order to gain further evidence concerning the effect of a loss of NSUN2 on memory and learning, we constructed a Drosophila model by deleting the NSUN2 ortholog, CG6133, and investigated the mutants by using molecular and behavioral approaches. When the Drosophila melanogaster NSUN2 ortholog was deleted, severe short-term-memory (STM) deficits were observed; STM could be rescued by re-expression of the wild-type protein in the nervous system. The humans homozygous for NSUN2 mutations showed an overlapping phenotype consisting of moderate to severe ID and facial dysmorphism (which includes a long face, characteristic eyebrows, a long nose, and a small chin), suggesting that mutations in this gene might even induce a syndromic form of ID. Moreover, our observations from the Drosophila model point toward an evolutionarily conserved role of RNA methylation in normal cognitive development. PMID:22541559

  6. Dominant GDAP1 mutations cause predominantly mild CMT phenotypes.

    PubMed

    Zimoń, M; Baets, J; Fabrizi, G M; Jaakkola, E; Kabzińska, D; Pilch, J; Schindler, A B; Cornblath, D R; Fischbeck, K H; Auer-Grumbach, M; Guelly, C; Huber, N; De Vriendt, E; Timmerman, V; Suter, U; Hausmanowa-Petrusewicz, I; Niemann, A; Kochański, A; De Jonghe, P; Jordanova, A

    2011-08-09

    Ganglioside-induced differentiation associated-protein 1 (GDAP1) mutations are commonly associated with autosomal recessive Charcot-Marie-Tooth (ARCMT) neuropathy; however, in rare instances, they also lead to autosomal dominant Charcot-Marie-Tooth (ADCMT). We aimed to investigate the frequency of disease-causing heterozygous GDAP1 mutations in ADCMT and their associated phenotype. We performed mutation analysis in a large cohort of ADCMT patients by means of bidirectional sequencing of coding regions and exon-intron boundaries of GDAP1. Intragenic GDAP1 deletions were excluded using an allele quantification assay. We confirmed the pathogenic character of one sequence variant by in vitro experiments assaying mitochondrial morphology and function. In 8 Charcot-Marie-Tooth disease (CMT) families we identified 4 pathogenic heterozygous GDAP1 mutations, 3 of which are novel. Three of the mutations displayed reduced disease penetrance. Disease onset in the affected individuals was variable, ranging from early childhood to adulthood. Disease progression was slow in most patients and overall severity milder than typically seen in autosomal recessive GDAP1 mutations. Electrophysiologic changes are heterogeneous but compatible with axonal neuropathy in the majority of patients. With this study, we broaden the phenotypic and genetic spectrum of autosomal dominant GDAP1-associated neuropathies. We show that patients with dominant GDAP1 mutations may display clear axonal CMT, but may also have only minimal clinical and electrophysiologic abnormalities. We demonstrate that cell-based functional assays can be reliably used to test the pathogenicity of unknown variants. We discuss the implications of phenotypic variability and the reduced penetrance of autosomal dominant GDAP1 mutations for CMT diagnostic testing and counseling.

  7. Mutations in IMPG1 cause vitelliform macular dystrophies.

    PubMed

    Manes, Gaël; Meunier, Isabelle; Avila-Fernández, Almudena; Banfi, Sandro; Le Meur, Guylène; Zanlonghi, Xavier; Corton, Marta; Simonelli, Francesca; Brabet, Philippe; Labesse, Gilles; Audo, Isabelle; Mohand-Said, Saddek; Zeitz, Christina; Sahel, José-Alain; Weber, Michel; Dollfus, Hélène; Dhaenens, Claire-Marie; Allorge, Delphine; De Baere, Elfride; Koenekoop, Robert K; Kohl, Susanne; Cremers, Frans P M; Hollyfield, Joe G; Sénéchal, Audrey; Hebrard, Maxime; Bocquet, Béatrice; Ayuso García, Carmen; Hamel, Christian P

    2013-09-05

    Vitelliform macular dystrophies (VMD) are inherited retinal dystrophies characterized by yellow, round deposits visible upon fundus examination and encountered in individuals with juvenile Best macular dystrophy (BMD) or adult-onset vitelliform macular dystrophy (AVMD). Although many BMD and some AVMD cases harbor mutations in BEST1 or PRPH2, the underlying genetic cause remains unknown for many affected individuals. In a large family with autosomal-dominant VMD, gene mapping and whole-exome sequencing led to the identification of a c.713T>G (p.Leu238Arg) IMPG1 mutation, which was subsequently found in two other families with autosomal-dominant VMD and the same phenotype. IMPG1 encodes the SPACR protein, a component of the rod and cone photoreceptor extracellular matrix domains. Structural modeling indicates that the p.Leu238Arg substitution destabilizes the conserved SEA1 domain of SPACR. Screening of 144 probands who had various forms of macular dystrophy revealed three other IMPG1 mutations. Two individuals from one family affected by autosomal-recessive VMD were homozygous for the splice-site mutation c.807+1G>T, and two from another family were compound heterozygous for the mutations c.461T>C (p.Leu154Pro) and c.1519C>T (p.Arg507(∗)). Most cases had a normal or moderately decreased electrooculogram Arden ratio. We conclude that IMPG1 mutations cause both autosomal-dominant and -recessive forms of VMD, thus indicating that impairment of the interphotoreceptor matrix might be a general cause of VMD.

  8. Prolonged and high dosage of tigecycline - successful treatment of spondylodiscitis caused by multidrug-resistant Acinetobacter baumannii: a case report.

    PubMed

    Tsachouridou, Olga; Georgiou, Adamantini; Nanoudis, Sideris; Chrysanthidis, Theofilos; Loli, Georgia; Morfesis, Petros; Zebekakis, Pantelis; Metallidis, Symeon

    2017-07-08

    The incidence of infectious spondylodiscitis has been increasing over the last few years. This reflects the expanding elderly and immunocompromised populations and the rising implementation of invasive spinal procedures. Infection may be inoculated into the disc space directly during invasive spinal procedures. Osteomyelitis caused by Acinetobacter species is rare and mainly caused by multidrug-resistant strains. We present the case of a 72-year-old Greek woman with postoperative spondylodiscitis caused by a multidrug-resistant Acinetobacter baumannii strain that was successfully treated, after she declined surgical treatment, with prolonged and high dosage of tigecycline. She received intravenously administered tigecycline 200 mg per day for 60 days and then 100 mg per day for a total of 102 days and was infection-free. We reviewed the literature on the role of Acinetobacter baumannii as a cause of osteomyelitis, emphasizing the difficulty of treatment and the potential role of tigecycline in conservative treatment of the infection. We believe that 102 days in total is the longest time that any patient has received tigecycline in the literature, thus our patient is a unique case of successful treatment of spondylodiscitis.

  9. Dominant de novo DSP mutations cause erythrokeratodermia-cardiomyopathy syndrome

    PubMed Central

    Boyden, Lynn M.; Kam, Chen Y.; Hernández-Martín, Angela; Zhou, Jing; Craiglow, Brittany G.; Sidbury, Robert; Mathes, Erin F.; Maguiness, Sheilagh M.; Crumrine, Debra A.; Williams, Mary L.; Hu, Ronghua; Lifton, Richard P.; Elias, Peter M.; Green, Kathleen J.; Choate, Keith A.

    2016-01-01

    Disorders of keratinization (DOK) show marked genotypic and phenotypic heterogeneity. In most cases, disease is primarily cutaneous, and further clinical evaluation is therefore rarely pursued. We have identified subjects with a novel DOK featuring erythrokeratodermia and initially-asymptomatic, progressive, potentially fatal cardiomyopathy, a finding not previously associated with erythrokeratodermia. We show that de novo missense mutations clustered tightly within a single spectrin repeat of DSP cause this novel cardio-cutaneous disorder, which we term erythrokeratodermia-cardiomyopathy (EKC) syndrome. We demonstrate that DSP mutations in our EKC syndrome subjects affect localization of desmosomal proteins and connexin 43 in the skin, and result in desmosome aggregation, widening of intercellular spaces, and lipid secretory defects. DSP encodes desmoplakin, a primary component of desmosomes, intercellular adhesion junctions most abundant in the epidermis and heart. Though mutations in DSP are known to cause other disorders, our cohort features the unique clinical finding of severe whole-body erythrokeratodermia, with distinct effects on localization of desmosomal proteins and connexin 43. These findings add a severe, previously undescribed syndrome featuring erythrokeratodermia and cardiomyopathy to the spectrum of disease caused by mutation in DSP, and identify a specific region of the protein critical to the pathobiology of EKC syndrome and to DSP function in the heart and skin. PMID:26604139

  10. Dominant de novo DSP mutations cause erythrokeratodermia-cardiomyopathy syndrome.

    PubMed

    Boyden, Lynn M; Kam, Chen Y; Hernández-Martín, Angela; Zhou, Jing; Craiglow, Brittany G; Sidbury, Robert; Mathes, Erin F; Maguiness, Sheilagh M; Crumrine, Debra A; Williams, Mary L; Hu, Ronghua; Lifton, Richard P; Elias, Peter M; Green, Kathleen J; Choate, Keith A

    2016-01-15

    Disorders of keratinization (DOK) show marked genotypic and phenotypic heterogeneity. In most cases, disease is primarily cutaneous, and further clinical evaluation is therefore rarely pursued. We have identified subjects with a novel DOK featuring erythrokeratodermia and initially-asymptomatic, progressive, potentially fatal cardiomyopathy, a finding not previously associated with erythrokeratodermia. We show that de novo missense mutations clustered tightly within a single spectrin repeat of DSP cause this novel cardio-cutaneous disorder, which we term erythrokeratodermia-cardiomyopathy (EKC) syndrome. We demonstrate that DSP mutations in our EKC syndrome subjects affect localization of desmosomal proteins and connexin 43 in the skin, and result in desmosome aggregation, widening of intercellular spaces, and lipid secretory defects. DSP encodes desmoplakin, a primary component of desmosomes, intercellular adhesion junctions most abundant in the epidermis and heart. Though mutations in DSP are known to cause other disorders, our cohort features the unique clinical finding of severe whole-body erythrokeratodermia, with distinct effects on localization of desmosomal proteins and connexin 43. These findings add a severe, previously undescribed syndrome featuring erythrokeratodermia and cardiomyopathy to the spectrum of disease caused by mutation in DSP, and identify a specific region of the protein critical to the pathobiology of EKC syndrome and to DSP function in the heart and skin.

  11. Mutations of ESPN cause autosomal recessive deafness and vestibular dysfunction

    PubMed Central

    Naz, S; Griffith, A; Riazuddin, S; Hampton, L; Battey, J; Khan, S; Riazuddin, S; Wilcox, E; Friedman, T

    2004-01-01

    We mapped a human deafness locus DFNB36 to chromosome 1p36.3 in two consanguineous families segregating recessively inherited deafness and vestibular areflexia. This phenotype co-segregates with either of two frameshift mutations, 1988delAGAG and 2469delGTCA, in ESPN, which encodes a calcium-insensitive actin-bundling protein called espin. A recessive mutation of ESPN is known to cause hearing loss and vestibular dysfunction in the jerker mouse. Our results establish espin as an essential protein for hearing and vestibular function in humans. The abnormal vestibular phenotype associated with ESPN mutations will be a useful clinical marker for refining the differential diagnosis of non-syndromic deafness. PMID:15286153

  12. Dominant KCNA2 mutation causes episodic ataxia and pharmacoresponsive epilepsy.

    PubMed

    Corbett, Mark A; Bellows, Susannah T; Li, Melody; Carroll, Renée; Micallef, Silvana; Carvill, Gemma L; Myers, Candace T; Howell, Katherine B; Maljevic, Snezana; Lerche, Holger; Gazina, Elena V; Mefford, Heather C; Bahlo, Melanie; Berkovic, Samuel F; Petrou, Steven; Scheffer, Ingrid E; Gecz, Jozef

    2016-11-08

    To identify the genetic basis of a family segregating episodic ataxia, infantile seizures, and heterogeneous epilepsies and to study the phenotypic spectrum of KCNA2 mutations. A family with 7 affected individuals over 3 generations underwent detailed phenotyping. Whole genome sequencing was performed on a mildly affected grandmother and her grandson with epileptic encephalopathy (EE). Segregating variants were filtered and prioritized based on functional annotations. The effects of the mutation on channel function were analyzed in vitro by voltage clamp assay and in silico by molecular modeling. KCNA2 was sequenced in 35 probands with heterogeneous phenotypes. The 7 family members had episodic ataxia (5), self-limited infantile seizures (5), evolving to genetic generalized epilepsy (4), focal seizures (2), and EE (1). They had a segregating novel mutation in the shaker type voltage-gated potassium channel KCNA2 (CCDS_827.1: c.765_773del; p.255_257del). A rare missense SCN2A (rs200884216) variant was also found in 2 affected siblings and their unaffected mother. The p.255_257del mutation caused dominant negative loss of channel function. Molecular modeling predicted repositioning of critical arginine residues in the voltage-sensing domain. KCNA2 sequencing revealed 1 de novo mutation (CCDS_827.1: c.890G>A; p.Arg297Gln) in a girl with EE, ataxia, and tremor. A KCNA2 mutation caused dominantly inherited episodic ataxia, mild infantile-onset seizures, and later generalized and focal epilepsies in the setting of normal intellect. This observation expands the KCNA2 phenotypic spectrum from EE often associated with chronic ataxia, reflecting the marked variation in severity observed in many ion channel disorders. © 2016 American Academy of Neurology.

  13. The spectrum of epilepsy caused by POLG mutations.

    PubMed

    Janssen, Wouter; Quaegebeur, Annelies; Van Goethem, Gert; Ann, Löfgren; Smets, Katrien; Vandenberghe, Rik; Van Paesschen, Wim

    2016-03-01

    Mutations in POLG are increasingly recognized as a cause of refractory occipital lobe epilepsy (OLE) and status epilepticus (SE). Our aim was to describe the epilepsy syndrome in seven patients with POLG mutations. We retrospectively reviewed the medical records of seven patients with POLG mutations and epilepsy. Mutation analysis was performed by direct sequencing of the coding exons of the POLG gene. Disease onset was at a median age of 18 years (range 12-26). Epilepsy was the presenting problem in six patients. All had focal seizures, with motor (n = 6) and visual (n = 6) phenomena. Six patients had secondarily generalized seizures and two patients had myoclonic seizures. Six patients had one or more episodes of refractory SE, including focal (n = 5), subtle (n = 4), myoclonic (n = 2) and convulsive (n = 3) SE. During or after SE, brain MRI showed lesions affecting the occipital lobe in all patients, probably due to continuous epileptic activity. Five of the six patients with SE died during treatment of SE, one due to valproate-induced hepatotoxicity. Associated clinical symptoms were ataxia (n = 6), polyneuropathy (n = 6), progressive external ophthalmoplegia (PEO) (n = 3) and migraine (n = 3). Epilepsy may be the first and dominant neurological problem caused by POLG mutations. The epilepsy may be severe and the condition of the patient may end in fatal SE. Refractory OLE and SE in a patient with polyneuropathy, ataxia, PEO or migraine warrant screening for POLG mutations. In this clinical setting, valproate should not be given in view of the risk of fatal hepatotoxicity.

  14. Homozygous STIL mutation causes holoprosencephaly and microcephaly in two siblings.

    PubMed

    Mouden, Charlotte; de Tayrac, Marie; Dubourg, Christèle; Rose, Sophie; Carré, Wilfrid; Hamdi-Rozé, Houda; Babron, Marie-Claude; Akloul, Linda; Héron-Longe, Bénédicte; Odent, Sylvie; Dupé, Valérie; Giet, Régis; David, Véronique

    2015-01-01

    Holoprosencephaly (HPE) is a frequent congenital malformation of the brain characterized by impaired forebrain cleavage and midline facial anomalies. Heterozygous mutations in 14 genes have been identified in HPE patients that account for only 30% of HPE cases, suggesting the existence of other HPE genes. Data from homozygosity mapping and whole-exome sequencing in a consanguineous Turkish family were combined to identify a homozygous missense mutation (c.2150G>A; p.Gly717Glu) in STIL, common to the two affected children. STIL has a role in centriole formation and has previously been described in rare cases of microcephaly. Rescue experiments in U2OS cells showed that the STIL p.Gly717Glu mutation was not able to fully restore the centriole duplication failure following depletion of endogenous STIL protein indicating the deleterious role of the mutation. In situ hybridization experiments using chick embryos demonstrated that expression of Stil was in accordance with a function during early patterning of the forebrain. It is only the second time that a STIL homozygous mutation causing a recessive form of HPE was reported. This result also supports the genetic heterogeneity of HPE and increases the panel of genes to be tested for HPE diagnosis.

  15. Homozygous STIL Mutation Causes Holoprosencephaly and Microcephaly in Two Siblings

    PubMed Central

    Mouden, Charlotte; de Tayrac, Marie; Dubourg, Christèle; Rose, Sophie; Carré, Wilfrid; Hamdi-Rozé, Houda; Babron, Marie-Claude; Akloul, Linda; Héron-Longe, Bénédicte; Odent, Sylvie; Dupé, Valérie; Giet, Régis; David, Véronique

    2015-01-01

    Holoprosencephaly (HPE) is a frequent congenital malformation of the brain characterized by impaired forebrain cleavage and midline facial anomalies. Heterozygous mutations in 14 genes have been identified in HPE patients that account for only 30% of HPE cases, suggesting the existence of other HPE genes. Data from homozygosity mapping and whole-exome sequencing in a consanguineous Turkish family were combined to identify a homozygous missense mutation (c.2150G>A; p.Gly717Glu) in STIL, common to the two affected children. STIL has a role in centriole formation and has previously been described in rare cases of microcephaly. Rescue experiments in U2OS cells showed that the STIL p.Gly717Glu mutation was not able to fully restore the centriole duplication failure following depletion of endogenous STIL protein indicating the deleterious role of the mutation. In situ hybridization experiments using chick embryos demonstrated that expression of Stil was in accordance with a function during early patterning of the forebrain. It is only the second time that a STIL homozygous mutation causing a recessive form of HPE was reported. This result also supports the genetic heterogeneity of HPE and increases the panel of genes to be tested for HPE diagnosis. PMID:25658757

  16. An MRPS12 mutation modifies aminoglycoside sensitivity caused by 12S rRNA mutations

    PubMed Central

    Emperador, Sonia; Pacheu-Grau, David; Bayona-Bafaluy, M. Pilar; Garrido-Pérez, Nuria; Martín-Navarro, Antonio; López-Pérez, Manuel J.; Montoya, Julio; Ruiz-Pesini, Eduardo

    2015-01-01

    Several homoplasmic pathologic mutations in mitochondrial DNA, such as those causing Leber hereditary optic neuropathy or non-syndromic hearing loss, show incomplete penetrance. Therefore, other elements must modify their pathogenicity. Discovery of these modifying factors is not an easy task because in multifactorial diseases conventional genetic approaches may not always be informative. Here, we have taken an evolutionary approach to unmask putative modifying factors for a particular homoplasmic pathologic mutation causing aminoglycoside-induced and non-syndromic hearing loss, the m.1494C>T transition in the mitochondrial DNA. The mutation is located in the decoding site of the mitochondrial ribosomal RNA. We first looked at mammalian species that had fixed the human pathologic mutation. These mutations are called compensated pathogenic deviations because an organism carrying one must also have another that suppresses the deleterious effect of the first. We found that species from the primate family Cercopithecidae (old world monkeys) harbor the m.1494T allele even if their auditory function is normal. In humans the m.1494T allele increases the susceptibility to aminoglycosides. However, in primary fibroblasts from a Cercopithecidae species, aminoglycosides do not impair cell growth, respiratory complex IV activity and quantity or the mitochondrial protein synthesis. Interestingly, this species also carries a fixed mutation in the mitochondrial ribosomal protein S12. We show that the expression of this variant in a human m.1494T cell line reduces its susceptibility to aminoglycosides. Because several mutations in this human protein have been described, they may possibly explain the absence of pathologic phenotype in some pedigree members with the most frequent pathologic mutations in mitochondrial ribosomal RNA. PMID:25642242

  17. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling

    PubMed Central

    Gee, Heon Yung; Saisawat, Pawaree; Ashraf, Shazia; Hurd, Toby W.; Vega-Warner, Virginia; Fang, Humphrey; Beck, Bodo B.; Gribouval, Olivier; Zhou, Weibin; Diaz, Katrina A.; Natarajan, Sivakumar; Wiggins, Roger C.; Lovric, Svjetlana; Chernin, Gil; Schoeb, Dominik S.; Ovunc, Bugsu; Frishberg, Yaacov; Soliman, Neveen A.; Fathy, Hanan M.; Goebel, Heike; Hoefele, Julia; Weber, Lutz T.; Innis, Jeffrey W.; Faul, Christian; Han, Zhe; Washburn, Joseph; Antignac, Corinne; Levy, Shawn; Otto, Edgar A.; Hildebrandt, Friedhelm

    2013-01-01

    Nephrotic syndrome (NS) is divided into steroid-sensitive (SSNS) and -resistant (SRNS) variants. SRNS causes end-stage kidney disease, which cannot be cured. While the disease mechanisms of NS are not well understood, genetic mapping studies suggest a multitude of unknown single-gene causes. We combined homozygosity mapping with whole-exome resequencing and identified an ARHGDIA mutation that causes SRNS. We demonstrated that ARHGDIA is in a complex with RHO GTPases and is prominently expressed in podocytes of rat glomeruli. ARHGDIA mutations (R120X and G173V) from individuals with SRNS abrogated interaction with RHO GTPases and increased active GTP-bound RAC1 and CDC42, but not RHOA, indicating that RAC1 and CDC42 are more relevant to the pathogenesis of this SRNS variant than RHOA. Moreover, the mutations enhanced migration of cultured human podocytes; however, enhanced migration was reversed by treatment with RAC1 inhibitors. The nephrotic phenotype was recapitulated in arhgdia-deficient zebrafish. RAC1 inhibitors were partially effective in ameliorating arhgdia-associated defects. These findings identify a single-gene cause of NS and reveal that RHO GTPase signaling is a pathogenic mediator of SRNS. PMID:23867502

  18. Mutations in KDSR Cause Recessive Progressive Symmetric Erythrokeratoderma.

    PubMed

    Boyden, Lynn M; Vincent, Nicholas G; Zhou, Jing; Hu, Ronghua; Craiglow, Brittany G; Bayliss, Susan J; Rosman, Ilana S; Lucky, Anne W; Diaz, Luis A; Goldsmith, Lowell A; Paller, Amy S; Lifton, Richard P; Baserga, Susan J; Choate, Keith A

    2017-06-01

    The discovery of new genetic determinants of inherited skin disorders has been instrumental to the understanding of epidermal function, differentiation, and renewal. Here, we show that mutations in KDSR (3-ketodihydrosphingosine reductase), encoding an enzyme in the ceramide synthesis pathway, lead to a previously undescribed recessive Mendelian disorder in the progressive symmetric erythrokeratoderma spectrum. This disorder is characterized by severe lesions of thick scaly skin on the face and genitals and thickened, red, and scaly skin on the hands and feet. Although exome sequencing revealed several of the KDSR mutations, we employed genome sequencing to discover a pathogenic 346 kb inversion in multiple probands, and cDNA sequencing and a splicing assay established that two mutations, including a recurrent silent third base change, cause exon skipping. Immunohistochemistry and yeast complementation studies demonstrated that the mutations cause defects in KDSR function. Systemic isotretinoin therapy has achieved nearly complete resolution in the two probands in whom it has been applied, consistent with the effects of retinoic acid on alternative pathways for ceramide generation. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Mutations in BTD gene causing biotinidase deficiency: a regional report.

    PubMed

    Kasapkara, Çiğdem Seher; Akar, Melek; Özbek, Mehmet Nuri; Tüzün, Heybet; Aldudak, Bedri; Baran, Rıza Taner; Tanyalçın, Tijen

    2015-03-01

    Biotinidase deficiency is an autosomal recessive inborn error of biotin metabolism. Children with biotinidase deficiency cannot cleave biocytin and, therefore, cannot recycle biotin. Untreated individuals become secondarily biotin deficient, which in turn results in decreased activities of the biotin-dependent carboxylases and the subsequent accumulation of toxic metabolites causing clinical symptoms. Biotinidase deficiency is characterized by neurological, cutaneous manifestations and metabolic abnormalities. The worldwide incidence of profound biotinidase deficiency has been estimated at 1:112,271. The human biotinidase gene is located on chromosome 3p25 and consists of four exons with a total length of 1629 base pairs. To date, more than 100 mutations in the biotinidase gene known to cause biotinidase deficiency have been reported. The vast majority of mutations are homozygous or compound heterozygous. Finding known mutations can be correlated with the biochemical enzymatic results. This report summarizes the demographic features of patients identified as biotinidase deficient from August of 2012 through August of 2013 and mutation analysis results for 20 cases in the southeast region of Turkey.

  20. ECEL1 mutation causes fetal arthrogryposis multiplex congenita.

    PubMed

    Dohrn, N; Le, V Q; Petersen, A; Skovbo, P; Pedersen, I S; Ernst, A; Krarup, H; Petersen, M B

    2015-04-01

    Arthrogryposis multiplex congenita (AMC) is a descriptor for the clinical finding of congenital fixation of multiple joints. We present a consanguineous healthy couple with two pregnancies described with AMC due to characteristic findings on ultrasonography of fixated knee extension and reduced fetal movement at the gestational age of 13 weeks + 2 days and 12 weeks + 4 days. Both pregnancies were terminated and postmortem examinations were performed. The postmortem examinations confirmed AMC and suggested a diagnosis of centronuclear myopathy (CNM) due to characteristic histological findings in muscle biopsies. Whole exome sequencing (WES) was performed on all four individuals and the outcome was filtered by application of multiple filtration parameters satisfying a recessive inheritance pattern. Only one gene, ECEL1, was predicted damaging and had previously been associated with neuromuscular disease or AMC. The variant found ECEL1 is a missense mutation in a highly conserved residue and was predicted pathogenic by prediction software. The finding expands the molecular basis of congenital contractures and the phenotypic spectrum of ECEL1 mutations. The histological pattern suggestive of CNM in the fetuses can expand the spectrum of genes causing CNM, as we propose that mutations in ECEL1 can cause CNM or a condition similar to this. Further investigation of this is needed and we advocate that future patients with similar clinical presentation or proven ECEL1 mutations are examined with muscle biopsy. Secondly, this study illustrates the great potential of the clinical application of WES in couples with recurrent abortions or stillborn neonates. © 2015 Wiley Periodicals, Inc.

  1. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism.

    PubMed

    Rauch, Anita; Thiel, Christian T; Schindler, Detlev; Wick, Ursula; Crow, Yanick J; Ekici, Arif B; van Essen, Anthonie J; Goecke, Timm O; Al-Gazali, Lihadh; Chrzanowska, Krystyna H; Zweier, Christiane; Brunner, Han G; Becker, Kristin; Curry, Cynthia J; Dallapiccola, Bruno; Devriendt, Koenraad; Dörfler, Arnd; Kinning, Esther; Megarbane, André; Meinecke, Peter; Semple, Robert K; Spranger, Stephanie; Toutain, Annick; Trembath, Richard C; Voss, Egbert; Wilson, Louise; Hennekam, Raoul; de Zegher, Francis; Dörr, Helmuth-Günther; Reis, André

    2008-02-08

    Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss-of-function mutations in the centrosomal pericentrin (PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial dwarfism type II (MOPD II) in 25 patients. Adults with this rare inherited condition have an average height of 100 centimeters and a brain size comparable to that of a 3-month-old baby, but are of near-normal intelligence. Absence of PCNT results in disorganized mitotic spindles and missegregation of chromosomes. Mutations in related genes are known to cause primary microcephaly (MCPH1, CDK5RAP2, ASPM, and CENPJ).

  2. Mutations in the Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL) Confer Multidrug Resistance

    PubMed Central

    LaMonte, Gregory; Lim, Michelle Yi-Xiu; Wree, Melanie; Reimer, Christin; Nachon, Marie; Corey, Victoria; Gedeck, Peter; Plouffe, David; Du, Alan; Figueroa, Nelissa; Yeung, Bryan; Winzeler, Elizabeth A.

    2016-01-01

    ABSTRACT Mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) are associated with parasite resistance to the imidazolopiperazines, a potent class of novel antimalarial compounds that display both prophylactic and transmission-blocking activity, in addition to activity against blood-stage parasites. Here, we show that pfcarl encodes a protein, with a predicted molecular weight of 153 kDa, that localizes to the cis-Golgi apparatus of the parasite in both asexual and sexual blood stages. Utilizing clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene introduction of 5 variants (L830V, S1076N/I, V1103L, and I1139K), we demonstrate that mutations in pfcarl are sufficient to generate resistance against the imidazolopiperazines in both asexual and sexual blood-stage parasites. We further determined that the mutant PfCARL protein confers resistance to several structurally unrelated compounds. These data suggest that PfCARL modulates the levels of small-molecule inhibitors that affect Golgi-related processes, such as protein sorting or membrane trafficking, and is therefore an important mechanism of resistance in malaria parasites. PMID:27381290

  3. Antibacterial and antioxidant activities of Musa sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection.

    PubMed

    Karuppiah, Ponmurugan; Mustaffa, Muhammed

    2013-09-01

    To investigate different Musa sp. leave extracts of hexane, ethyl acetate and methanol were evaluated for antibacterial activity against multi-drug resistant pathogens causing nosocomial infection by agar well diffusion method and also antioxidant activities. The four different Musa species leaves were extracted with hexane, ethyl acetate and methanol. Antibacterial susceptibility test, minimum inhibitory concentration and minimum inhibitory bacterial concentration were determined by agar well diffusion method. Total phenolic content and in vitro antioxidant activity was determined. All the Musa sp. extracts showed moderate antibacterial activities expect Musa paradisiaca with the inhibition zone ranging from 8.0 to 18.6 mm. Among four species ethyl acetate extracts of Musa paradisiaca showed highest activity against tested pathogens particularly E. coli, P. aeruginosa and Citrobacter sp. The minimum inhibitory concentrations were within the value of 15.63- 250 µg/mL and minimum bactericidal concentrations were ranging from 31.25- 250 µg/mL. Antioxidant activity of Musa acuminate exhibited maximum activity among other three Musa species. The present study concluded that among the different Musa species, Musa paradisiaca displayed efficient antibacterial activity followed by Musa acuminata against multi-drug resistant nosocomial infection causing pathogens. Further, an extensive study is needed to identify the bioactive compounds, mode of action and toxic effect in vivo of Musa sp.

  4. Novel mutation in VCP gene causes atypical amyotrophic lateral sclerosis

    PubMed Central

    González-Pérez, Paloma; Cirulli, Elizabeth T.; Drory, Vivian E.; Dabby, Ron; Nisipeanu, Puiu; Carasso, Ralph L.; Sadeh, Menachem; Fox, Andrew; Festoff, Barry W.; Sapp, Peter C.; McKenna-Yasek, Diane; Goldstein, David B.

    2012-01-01

    Objective: To identify the genetic variant that causes autosomal dominantly inherited motor neuron disease in a 4-generation Israeli-Arab family using genetic linkage and whole exome sequencing. Methods: Genetic linkage analysis was performed in this family using Illumina single nucleotide polymorphism chips. Whole exome sequencing was then undertaken on DNA samples from 2 affected family members using an Illumina 2000 HiSeq platform in pursuit of potentially pathogenic genetic variants that comigrate with the disease in this pedigree. Variants meeting these criteria were then screened in all affected individuals. Results: A novel mutation (p.R191G) in the valosin-containing protein (VCP) gene was identified in the index family. Direct sequencing of the VCP gene in a panel of DNA from 274 unrelated individuals with familial amyotrophic lateral sclerosis (FALS) revealed 5 additional mutations. Among them, 2 were previously identified in pedigrees with a constellation of inclusion body myopathy with Paget disease of the bone and frontotemporal dementia (IBMPFD) and in FALS, and 2 other mutations (p.R159C and p.R155C) in IBMPFD alone. We did not detect VCP gene mutations in DNA from 178 cases of sporadic amyotrophic lateral sclerosis. Conclusions: We report a novel VCP mutation identified in an amyotrophic lateral sclerosis family (p.R191G) with atypical clinical features. In our experience, VCP mutations arise in approximately 1.5% of FALS cases. Our study supports the view that motor neuron disease is part of the clinical spectrum of VCP-associated disease. PMID:23152587

  5. Genes and Mutations Causing Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Daiger, Stephen P.; Bowne, Sara J.; Sullivan, Lori S.

    2015-01-01

    Retinitis pigmentosa (RP) has a prevalence of approximately one in 4000; 25%–30% of these cases are autosomal dominant retinitis pigmentosa (adRP). Like other forms of inherited retinal disease, adRP is exceptionally heterogeneous. Mutations in more than 25 genes are known to cause adRP, more than 1000 mutations have been reported in these genes, clinical findings are highly variable, and there is considerable overlap with other types of inherited disease. Currently, it is possible to detect disease-causing mutations in 50%–75% of adRP families in select populations. Genetic diagnosis of adRP has advantages over other forms of RP because segregation of disease in families is a useful tool for identifying and confirming potentially pathogenic variants, but there are disadvantages too. In addition to identifying the cause of disease in the remaining 25% of adRP families, a central challenge is reconciling clinical diagnosis, family history, and molecular findings in patients and families. PMID:25304133

  6. Mutations in FN1 cause glomerulopathy with fibronectin deposits.

    PubMed

    Castelletti, Federica; Donadelli, Roberta; Banterla, Federica; Hildebrandt, Friedhelm; Zipfel, Peter F; Bresin, Elena; Otto, Edgar; Skerka, Christine; Renieri, Alessandra; Todeschini, Marta; Caprioli, Jessica; Caruso, Rosa Maria; Artuso, Rosangela; Remuzzi, Giuseppe; Noris, Marina

    2008-02-19

    Glomerulopathy with fibronectin (FN) deposits (GFND) is an autosomal dominant disease with age-related penetrance, characterized by proteinuria, microscopic hematuria, hypertension, and massive glomerular deposits of FN that lead to end-stage renal failure. The genetic abnormality underlying GFND was still unknown. We hypothesized that mutations in FN1, which encodes FN, were the cause of GFND. In a large Italian pedigree with eight affected subjects, we found linkage with GFND at the FN1 locus at 2q32. We sequenced the FN1 in 15 unrelated pedigrees and found three heterozygous missense mutations, the W1925R, L1974R, and Y973C, that cosegregated with the disease in six pedigrees. The mutations affected two domains of FN (Hep-II domain for the W1925R and the L1974R, and Hep-III domain for the Y973C) that play key roles in FN-cell interaction and in FN fibrillogenesis. Mutant recombinant Hep-II fragments were expressed, and functional studies revealed a lower binding to heparin and to endothelial cells and podocytes compared with wild-type Hep-II and an impaired capability to induce endothelial cell spreading and cytoskeletal reorganization. Overall dominant mutations in FN1 accounted for 40% of cases of GFND in our study group. These findings may help understanding the pathogenesis of proteinuria and glomerular FN deposits in GFND and possibly in more common renal diseases such as diabetic nephropathy, IgA nephropathy, and lupus nephritis. To our knowledge no FN1 mutation causing a human disease was previously reported.

  7. Mutations in PCBD1 cause hypomagnesemia and renal magnesium wasting.

    PubMed

    Ferrè, Silvia; de Baaij, Jeroen H F; Ferreira, Patrick; Germann, Roger; de Klerk, Johannis B C; Lavrijsen, Marla; van Zeeland, Femke; Venselaar, Hanka; Kluijtmans, Leo A J; Hoenderop, Joost G J; Bindels, René J M

    2014-03-01

    Mutations in PCBD1 are causative for transient neonatal hyperphenylalaninemia and primapterinuria (HPABH4D). Until now, HPABH4D has been regarded as a transient and benign neonatal syndrome without complications in adulthood. In our study of three adult patients with homozygous mutations in the PCBD1 gene, two patients were diagnosed with hypomagnesemia and renal Mg(2+) loss, and two patients developed diabetes with characteristics of maturity onset diabetes of the young (MODY), regardless of serum Mg(2+) levels. Our results suggest that these clinical findings are related to the function of PCBD1 as a dimerization cofactor for the transcription factor HNF1B. Mutations in the HNF1B gene have been shown to cause renal malformations, hypomagnesemia, and MODY. Gene expression studies combined with immunohistochemical analysis in the kidney showed that Pcbd1 is expressed in the distal convoluted tubule (DCT), where Pcbd1 transcript levels are upregulated by a low Mg(2+)-containing diet. Overexpression in a human kidney cell line showed that wild-type PCBD1 binds HNF1B to costimulate the FXYD2 promoter, the activity of which is instrumental in Mg(2+) reabsorption in the DCT. Of seven PCBD1 mutations previously reported in HPABH4D patients, five mutations caused proteolytic instability, leading to reduced FXYD2 promoter activity. Furthermore, cytosolic localization of PCBD1 increased when coexpressed with HNF1B mutants. Overall, our findings establish PCBD1 as a coactivator of the HNF1B-mediated transcription necessary for fine tuning FXYD2 transcription in the DCT and suggest that patients with HPABH4D should be monitored for previously unrecognized late complications, such as hypomagnesemia and MODY diabetes.

  8. How do mutations in lamins A and C cause disease?

    PubMed Central

    Worman, Howard J.; Courvalin, Jean-Claude

    2004-01-01

    Mutations in lamins A and C, nuclear intermediate-filament proteins in nearly all somatic cells, cause a variety of diseases that primarily affect striated muscle, adipocytes, or peripheral nerves or cause features of premature aging. Two new studies use lamin A/C–deficient mice, which develop striated muscle disease, as a model to investigate pathogenic mechanisms. These reports provide evidence for a stepwise process in which mechanically stressed cells first develop chromatin and nuclear envelope damage and then develop secondary alterations in the transcriptional activation of genes in adaptive and protective pathways. PMID:14755330

  9. Congenital myopathy is caused by mutation of HACD1

    PubMed Central

    Muhammad, Emad; Reish, Orit; Ohno, Yusuke; Scheetz, Todd; DeLuca, Adam; Searby, Charles; Regev, Miriam; Benyamini, Lilach; Fellig, Yakov; Kihara, Akio; Sheffield, Val C.; Parvari, Ruti

    2013-01-01

    Congenital myopathies are heterogeneous inherited diseases of muscle characterized by a range of distinctive histologic abnormalities. We have studied a consanguineous family with congenital myopathy. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous non-sense mutation in 3-hydroxyacyl-CoA dehydratase 1 (HACD1) in affected individuals. The mutation results in non-sense mediated decay of the HACD1 mRNA to 31% of control levels in patient muscle and completely abrogates the enzymatic activity of dehydration of 3-hydroxyacyl-CoA, the third step in the elongation of very long-chain fatty acids (VLCFAs). We describe clinical findings correlated with a deleterious mutation in a gene not previously known to be associated with congenital myopathy in humans. We suggest that the mutation in the HACD1 gene causes a reduction in the synthesis of VLCFAs, which are components of membrane lipids and participants in physiological processes, leading to congenital myopathy. These data indicate that HACD1 is necessary for muscle function. PMID:23933735

  10. Mutations in MED12 Cause X-Linked Ohdo Syndrome

    PubMed Central

    Vulto-van Silfhout, Anneke T.; de Vries, Bert B.A.; van Bon, Bregje W.M.; Hoischen, Alexander; Ruiterkamp-Versteeg, Martina; Gilissen, Christian; Gao, Fangjian; van Zwam, Marloes; Harteveld, Cornelis L.; van Essen, Anthonie J.; Hamel, Ben C.J.; Kleefstra, Tjitske; Willemsen, Michèl A.A.P.; Yntema, Helger G.; van Bokhoven, Hans; Brunner, Han G.; Boyer, Thomas G.; de Brouwer, Arjan P.M.

    2013-01-01

    Ohdo syndrome comprises a heterogeneous group of disorders characterized by intellectual disability (ID) and typical facial features, including blepharophimosis. Clinically, these blepharophimosis-ID syndromes have been classified in five distinct subgroups, including the Maat-Kievit-Brunner (MKB) type, which, in contrast to the others, is characterized by X-linked inheritance and facial coarsening at older age. We performed exome sequencing in two families, each with two affected males with Ohdo syndrome MKB type. In the two families, MED12 missense mutations (c.3443G>A [p.Arg1148His] or c.3493T>C [p.Ser1165Pro]) segregating with the phenotype were identified. Upon subsequent analysis of an additional cohort of nine simplex male individuals with Ohdo syndrome, one additional de novo missense change (c.5185C>A [p.His1729Asn]) in MED12 was detected. The occurrence of three different hemizygous missense mutations in three unrelated families affected by Ohdo syndrome MKB type shows that mutations in MED12 are the underlying cause of this X-linked form of Ohdo syndrome. Together with the recently described KAT6B mutations resulting in Ohdo syndrome Say/Barber/Biesecker/Young/Simpson type, our findings point to aberrant chromatin modification as being central to the pathogenesis of Ohdo syndrome. PMID:23395478

  11. Heterozygous Mutations of OTX2 Cause Severe Ocular Malformations

    PubMed Central

    Ragge, Nicola K.; Brown, Alison G.; Poloschek, Charlotte M.; Lorenz, Birgit; Henderson, R. Alex; Clarke, Michael P.; Russell-Eggitt, Isabelle; Fielder, Alistair; Gerrelli, Dianne; Martinez-Barbera, Juan Pedro; Ruddle, Piers; Hurst, Jane; Collin, J. Richard O.; Salt, Alison; Cooper, Simon T.; Thompson, Pamela J.; Sisodiya, Sanjay M.; Williamson, Kathleen A.; FitzPatrick, David R.; Heyningen, Veronica van; Hanson, Isabel M.

    2005-01-01

    Major malformations of the human eye, including microphthalmia and anophthalmia, are examples of phenotypes that recur in families yet often show no clear Mendelian inheritance pattern. Defining loci by mapping is therefore rarely feasible. Using a candidate-gene approach, we have identified heterozygous coding-region changes in the homeobox gene OTX2 in eight families with ocular malformations. The expression pattern of OTX2 in human embryos is consistent with the eye phenotypes observed in the patients, which range from bilateral anophthalmia to retinal defects resembling Leber congenital amaurosis and pigmentary retinopathy. Magnetic resonance imaging scans revealed defects of the optic nerve, optic chiasm, and, in some cases, brain. In two families, the mutations appear to have occurred de novo in severely affected offspring, and, in two other families, the mutations have been inherited from a gonosomal mosaic parent. Data from these four families support a simple model in which OTX2 heterozygous loss-of-function mutations cause ocular malformations. Four additional families display complex inheritance patterns, suggesting that OTX2 mutations alone may not lead to consistent phenotypes. The high incidence of mosaicism and the reduced penetrance have implications for genetic counseling. PMID:15846561

  12. IARS mutation causes prenatal death in Japanese Black cattle.

    PubMed

    Hirano, Takashi; Matsuhashi, Tamako; Takeda, Kenji; Hara, Hiromi; Kobayashi, Naohiko; Kita, Kazuo; Sugimoto, Yoshikazu; Hanzawa, Kei

    2016-09-01

    Isoleucyl-tRNA synthetase (IARS) c.235G > C (p.V79L) is a causative mutation for a recessive disease called IARS disorder in Japanese black cattle. The disease is involved in weak calf syndrome and is characterized by low birth weight, weakness and poor suckling. The gestation period is often slightly extended, implying that intrauterine growth is retarded. In a previous analysis of 2597 artificial insemination (AI) procedures, we suggested that the IARS mutation might contribute toward an increase in the incidence of prenatal death. In this study, we extended this analysis to better clarify the association between the IARS mutation and prenatal death. The IARS genotypes of 92 animals resulting from crosses between carrier (G/C) × G/C were 27 normal (G/G), 55 G/C and 10 affected animals (C/C) (expected numbers: 23, 46 and 23, respectively). Compared to the expected numbers, there were significantly fewer affected animals in this population (P < 0.05), suggesting that more than half of the affected embryos died prenatally. When the number of AI procedures examined was increased to 11 580, the frequency of re-insemination after G/C × G/C insemination was significantly higher at 61-140 days (P < 0.001). The findings suggested that the homozygous IARS mutation not only causes calf death, but also embryonic or fetal death. © 2016 Japanese Society of Animal Science.

  13. Mutations in EMP2 Cause Childhood-Onset Nephrotic Syndrome

    PubMed Central

    Gee, Heon Yung; Ashraf, Shazia; Wan, Xiaoyang; Vega-Warner, Virginia; Esteve-Rudd, Julian; Lovric, Svjetlana; Fang, Humphrey; Hurd, Toby W.; Sadowski, Carolin E.; Allen, Susan J.; Otto, Edgar A.; Korkmaz, Emine; Washburn, Joseph; Levy, Shawn; Williams, David S.; Bakkaloglu, Sevcan A.; Zolotnitskaya, Anna; Ozaltin, Fatih; Zhou, Weibin; Hildebrandt, Friedhelm

    2014-01-01

    Nephrotic syndrome (NS) is a genetically heterogeneous group of diseases that are divided into steroid-sensitive NS (SSNS) and steroid-resistant NS (SRNS). SRNS inevitably leads to end-stage kidney disease, and no curative treatment is available. To date, mutations in more than 24 genes have been described in Mendelian forms of SRNS; however, no Mendelian form of SSNS has been described. To identify a genetic form of SSNS, we performed homozygosity mapping, whole-exome sequencing, and multiplex PCR followed by next-generation sequencing. We thereby detected biallelic mutations in EMP2 (epithelial membrane protein 2) in four individuals from three unrelated families affected by SRNS or SSNS. We showed that EMP2 exclusively localized to glomeruli in the kidney. Knockdown of emp2 in zebrafish resulted in pericardial effusion, supporting the pathogenic role of mutated EMP2 in human NS. At the cellular level, we showed that knockdown of EMP2 in podocytes and endothelial cells resulted in an increased amount of CAVEOLIN-1 and decreased cell proliferation. Our data therefore identify EMP2 mutations as causing a recessive Mendelian form of SSNS. PMID:24814193

  14. Melanism in Peromyscus Is Caused by Independent Mutations in Agouti

    PubMed Central

    Kingsley, Evan P.; Manceau, Marie; Wiley, Christopher D.; Hoekstra, Hopi E.

    2009-01-01

    Identifying the molecular basis of phenotypes that have evolved independently can provide insight into the ways genetic and developmental constraints influence the maintenance of phenotypic diversity. Melanic (darkly pigmented) phenotypes in mammals provide a potent system in which to study the genetic basis of naturally occurring mutant phenotypes because melanism occurs in many mammals, and the mammalian pigmentation pathway is well understood. Spontaneous alleles of a few key pigmentation loci are known to cause melanism in domestic or laboratory populations of mammals, but in natural populations, mutations at one gene, the melanocortin-1 receptor (Mc1r), have been implicated in the vast majority of cases, possibly due to its minimal pleiotropic effects. To investigate whether mutations in this or other genes cause melanism in the wild, we investigated the genetic basis of melanism in the rodent genus Peromyscus, in which melanic mice have been reported in several populations. We focused on two genes known to cause melanism in other taxa, Mc1r and its antagonist, the agouti signaling protein (Agouti). While variation in the Mc1r coding region does not correlate with melanism in any population, in a New Hampshire population, we find that a 125-kb deletion, which includes the upstream regulatory region and exons 1 and 2 of Agouti, results in a loss of Agouti expression and is perfectly associated with melanic color. In a second population from Alaska, we find that a premature stop codon in exon 3 of Agouti is associated with a similar melanic phenotype. These results show that melanism has evolved independently in these populations through mutations in the same gene, and suggest that melanism produced by mutations in genes other than Mc1r may be more common than previously thought. PMID:19649329

  15. Mutations in ECEL1 Cause Distal Arthrogryposis Type 5D

    PubMed Central

    McMillin, Margaret J.; Below, Jennifer E.; Shively, Kathryn M.; Beck, Anita E.; Gildersleeve, Heidi I.; Pinner, Jason; Gogola, Gloria R.; Hecht, Jacqueline T.; Grange, Dorothy K.; Harris, David J.; Earl, Dawn L.; Jagadeesh, Sujatha; Mehta, Sarju G.; Robertson, Stephen P.; Swanson, James M.; Faustman, Elaine M.; Mefford, Heather C.; Shendure, Jay; Nickerson, Deborah A.; Bamshad, Michael J.

    2013-01-01

    Distal arthrogryposis (DA) syndromes are the most common of the heritable congenital-contracture disorders, and ∼50% of cases are caused by mutations in genes that encode contractile proteins of skeletal myofibers. DA type 5D (DA5D) is a rare, autosomal-recessive DA previously defined by us and is characterized by congenital contractures of the hands and feet, along with distinctive facial features, including ptosis. We used linkage analysis and whole-genome sequencing of a multiplex consanguineous family to identify in endothelin-converting enzyme-like 1 (ECEL1) mutations that result in DA5D. Evaluation of a total of seven families affected by DA5D revealed in five families ECEL1 mutations that explain ∼70% of cases overall. ECEL1 encodes a neuronal endopeptidase and is expressed in the brain and peripheral nerves. Mice deficient in Ecel1 exhibit perturbed terminal branching of motor neurons to the endplate of skeletal muscles, resulting in poor formation of the neuromuscular junction. Our results distinguish a second developmental pathway that causes congenital-contracture syndromes. PMID:23261301

  16. TCTN3 Mutations Cause Mohr-Majewski Syndrome

    PubMed Central

    Thomas, Sophie; Legendre, Marine; Saunier, Sophie; Bessières, Bettina; Alby, Caroline; Bonnière, Maryse; Toutain, Annick; Loeuillet, Laurence; Szymanska, Katarzyna; Jossic, Frédérique; Gaillard, Dominique; Yacoubi, Mohamed Tahar; Mougou-Zerelli, Soumaya; David, Albert; Barthez, Marie-Anne; Ville, Yves; Bole-Feysot, Christine; Nitschke, Patrick; Lyonnet, Stanislas; Munnich, Arnold; Johnson, Colin A.; Encha-Razavi, Férechté; Cormier-Daire, Valérie; Thauvin-Robinet, Christel; Vekemans, Michel; Attié-Bitach, Tania

    2012-01-01

    Orofaciodigital syndromes (OFDSs) consist of a group of heterogeneous disorders characterized by abnormalities in the oral cavity, face, and digits and associated phenotypic abnormalities that lead to the delineation of 13 OFDS subtypes. Here, by a combined approach of homozygozity mapping and exome ciliary sequencing, we identified truncating TCTN3 mutations as the cause of an extreme form of OFD associated with bone dysplasia, tibial defect, cystic kidneys, and brain anomalies (OFD IV, Mohr-Majewski syndrome). Analysis of 184 individuals with various ciliopathies (OFD, Meckel, Joubert, and short rib polydactyly syndromes) led us to identify four additional truncating TCTN3 mutations in unrelated fetal cases with overlapping Meckel and OFD IV syndromes and one homozygous missense mutation in a family with Joubert syndrome. By exploring roles of TCTN3 in human ciliary related functions, we found that TCTN3 is necessary for transduction of the sonic hedgehog (SHH) signaling pathway, as revealed by abnormal processing of GLI3 in patient cells. These results are consistent with the suggested role of its murine ortholog, which forms a complex at the ciliary transition zone with TCTN1 and TCTN2, both of which are also implicated in the transduction of SHH signaling. Overall, our data show the involvement of the transition zone protein TCTN3 in the regulation of the key SHH signaling pathway and that its disruption causes a severe form of ciliopathy, combining features of Meckel and OFD IV syndromes. PMID:22883145

  17. CSB-PGBD3 Mutations Cause Premature Ovarian Failure

    PubMed Central

    Li, Guangyu; Tang, Tie-Shan; Zhao, Shidou; Jiao, Xue; Gong, Juanjuan; Gao, Fei; Guo, Caixia; Simpson, Joe Leigh; Chen, Zi-Jiang

    2015-01-01

    Premature ovarian failure (POF) is a rare, heterogeneous disorder characterized by cessation of menstruation occurring before the age of 40 years. Genetic etiology is responsible for perhaps 25% of cases, but most cases are sporadic and unexplained. In this study, through whole exome sequencing in a non-consanguineous family having four affected members with POF and Sanger sequencing in 432 sporadic cases, we identified three novel mutations in the fusion gene CSB-PGBD3. Subsequently functional studies suggest that mutated CSB-PGBD3 fusion protein was impaired in response to DNA damage, as indicated by delayed or absent recruitment to damaged sites. Our data provide the first evidence that mutations in the CSB-PGBD3 fusion protein can cause human disease, even in the presence of functional CSB, thus potentially explaining conservation of the fusion protein for 43 My since marmoset. The localization of the CSB-PGBD3 fusion protein to UVA-induced nuclear DNA repair foci further suggests that the CSB-PGBD3 fusion protein, like many other proteins that can cause POF, modulates or participates in DNA repair. PMID:26218421

  18. Filamin A mutation is one cause of FG syndrome.

    PubMed

    Unger, Sheila; Mainberger, Anita; Spitz, Christian; Bähr, Anna; Zeschnigk, Christine; Zabel, Bernhard; Superti-Furga, Andrea; Morris-Rosendahl, Deborah J

    2007-08-15

    FG syndrome was originally described as a rare syndromic cause of X-linked mental retardation associated with congenital heart disease, anal atresia, inguinal hernia, cryptorchidism, and other anomalies. However, recent reports have highlighted the more common milder presentation which has for cardinal features developmental delay, particularly in speech, neonatal hypotonia, relative macrocephaly, dysmorphic facial features, severe constipation, and few if any congenital malformations. Thus far, five separate loci have been identified on the X chromosome but attempts at finding the responsible gene have not yet been successful. Given that one putative FG locus (FGS2) is situated at Xq28, which is the location of the Filamin A gene (FLNA), and that a Filamin A mutation was reported in a boy with facial dysmorphism and constipation, it was hypothesized that Filamin A mutations could be one cause of FG syndrome. Indeed, a previously unreported FLNA missense mutation (P1291L) was detected in our patient with FG syndrome, thus supporting this hypothesis and indicating that FG syndrome could now be added to the list of Filamin A-related disorders. Filamin A studies in other children with FG syndrome would help to confirm this association. (c) 2007 Wiley-Liss, Inc.

  19. Similar compositional biases are caused by very different mutational effects

    PubMed Central

    Rocha, Eduardo P.C.; Touchon, Marie; Feil, Edward J.

    2006-01-01

    Compositional replication strand bias, commonly referred to as GC skew, is present in many genomes of prokaryotes, eukaryotes, and viruses. Although cytosine deamination in ssDNA (resulting in C→T changes on the leading strand) is often invoked as its major cause, the precise contributions of this and other substitution types are currently unknown. It is also unclear if the underlying mutational asymmetries are the same among taxa, are stable over time, or how closely the observed biases are to mutational equilibrium. We analyzed nearly neutral sites of seven taxa each with between three and six complete bacterial genomes, and inferred the substitution spectra of fourfold degenerate positions in nonhighly expressed genes. Using a bootstrap procedure, we extracted compositional biases associated with replication and identified the significant asymmetries. Although all taxa showed an overrepresentation of G relative to C on the leading strand (and imbalances between A and T), widely variable substitution asymmetries are noted. Surprisingly, all substitution types show significant asymmetry in at least one taxon, but none were universally biased in all taxa. Notably, in the two most biased genomes, A→G, rather than C→T, shapes the compositional bias. Given the variability in these biases, we propose that the process is multifactorial. Finally, we also find that most genomes are not at compositional equilibrium, and suggest that mutational-based heterotachy is deeply imprinted in the history of biological macromolecules. This shows that similar compositional biases associated with the same essential well-conserved process, replication, do not reflect similar mutational processes in different genomes, and that caution is required in inferring the roles of specific mutational biases on the basis of contemporary patterns of sequence composition. PMID:17068325

  20. CtIP Mutations Cause Seckel and Jawad Syndromes

    PubMed Central

    Jimeno, Sonia; Nyegaard, Mette; Hassan, Muhammad J.; Jackson, Stephen P.; Børglum, Anders D.

    2011-01-01

    Seckel syndrome is a recessively inherited dwarfism disorder characterized by microcephaly and a unique head profile. Genetically, it constitutes a heterogeneous condition, with several loci mapped (SCKL1-5) but only three disease genes identified: the ATR, CENPJ, and CEP152 genes that control cellular responses to DNA damage. We previously mapped a Seckel syndrome locus to chromosome 18p11.31-q11.2 (SCKL2). Here, we report two mutations in the CtIP (RBBP8) gene within this locus that result in expression of C-terminally truncated forms of CtIP. We propose that these mutations are the molecular cause of the disease observed in the previously described SCKL2 family and in an additional unrelated family diagnosed with a similar form of congenital microcephaly termed Jawad syndrome. While an exonic frameshift mutation was found in the Jawad family, the SCKL2 family carries a splicing mutation that yields a dominant-negative form of CtIP. Further characterization of cell lines derived from the SCKL2 family revealed defective DNA damage induced formation of single-stranded DNA, a critical co-factor for ATR activation. Accordingly, SCKL2 cells present a lowered apoptopic threshold and hypersensitivity to DNA damage. Notably, over-expression of a comparable truncated CtIP variant in non-Seckel cells recapitulates SCKL2 cellular phenotypes in a dose-dependent manner. This work thus identifies CtIP as a disease gene for Seckel and Jawad syndromes and defines a new type of genetic disease mechanism in which a dominant negative mutation yields a recessively inherited disorder. PMID:21998596

  1. Mutational inactivation of STAG2 causes aneuploidy in human cancer.

    PubMed

    Solomon, David A; Kim, Taeyeon; Diaz-Martinez, Laura A; Fair, Joshlean; Elkahloun, Abdel G; Harris, Brent T; Toretsky, Jeffrey A; Rosenberg, Steven A; Shukla, Neerav; Ladanyi, Marc; Samuels, Yardena; James, C David; Yu, Hongtao; Kim, Jung-Sik; Waldman, Todd

    2011-08-19

    Most cancer cells are characterized by aneuploidy, an abnormal number of chromosomes. We have identified a clue to the mechanistic origins of aneuploidy through integrative genomic analyses of human tumors. A diverse range of tumor types were found to harbor deletions or inactivating mutations of STAG2, a gene encoding a subunit of the cohesin complex, which regulates the separation of sister chromatids during cell division. Because STAG2 is on the X chromosome, its inactivation requires only a single mutational event. Studying a near-diploid human cell line with a stable karyotype, we found that targeted inactivation of STAG2 led to chromatid cohesion defects and aneuploidy, whereas in two aneuploid human glioblastoma cell lines, targeted correction of the endogenous mutant alleles of STAG2 led to enhanced chromosomal stability. Thus, genetic disruption of cohesin is a cause of aneuploidy in human cancer.

  2. Mutations in KPTN cause macrocephaly, neurodevelopmental delay, and seizures.

    PubMed

    Baple, Emma L; Maroofian, Reza; Chioza, Barry A; Izadi, Maryam; Cross, Harold E; Al-Turki, Saeed; Barwick, Katy; Skrzypiec, Anna; Pawlak, Robert; Wagner, Karin; Coblentz, Roselyn; Zainy, Tala; Patton, Michael A; Mansour, Sahar; Rich, Phillip; Qualmann, Britta; Hurles, Matt E; Kessels, Michael M; Crosby, Andrew H

    2014-01-02

    The proper development of neuronal circuits during neuromorphogenesis and neuronal-network formation is critically dependent on a coordinated and intricate series of molecular and cellular cues and responses. Although the cortical actin cytoskeleton is known to play a key role in neuromorphogenesis, relatively little is known about the specific molecules important for this process. Using linkage analysis and whole-exome sequencing on samples from families from the Amish community of Ohio, we have demonstrated that mutations in KPTN, encoding kaptin, cause a syndrome typified by macrocephaly, neurodevelopmental delay, and seizures. Our immunofluorescence analyses in primary neuronal cell cultures showed that endogenous and GFP-tagged kaptin associates with dynamic actin cytoskeletal structures and that this association is lost upon introduction of the identified mutations. Taken together, our studies have identified kaptin alterations responsible for macrocephaly and neurodevelopmental delay and define kaptin as a molecule crucial for normal human neuromorphogenesis.

  3. Two novel SCN9A mutations causing insensitivity to pain.

    PubMed

    Nilsen, K B; Nicholas, A K; Woods, C G; Mellgren, S I; Nebuchennykh, M; Aasly, J

    2009-05-01

    The sensation of pain is important and there may be serious consequences if it is missing. Recently, the genetic basis for a channelopathy characterised by a congenital inability to experience pain has been described and channelopathy-associated insensitivity to pain has been proposed as a suitable name for this condition. Different mutations in the SCN9A gene causing loss of function of the voltage-gated sodium channel Nav1.7 have been reported in patients with this rare disease. Here we describe a woman with insensitivity to pain with two novel mutations in the SCN9A gene, coding for the Nav1.7 channel. We also discuss the finding of anosmia which apparently is a common feature in these patients.

  4. Inflammatory peeling skin syndrome caused a novel mutation in CDSN.

    PubMed

    Telem, Dana Fuchs; Israeli, Shirli; Sarig, Ofer; Sprecher, Eli

    2012-04-01

    Generalized peeling skin syndrome (PSS) is a rare autosomal recessive dermatosis manifesting with continuous exfoliation of the stratum corneum. The inflammatory (type B) subtype of PSS was recently found to be caused by deleterious mutations in the CDSN gene encoding corneodesmosin, a major component of desmosomal junctions in the uppermost layers of the epidermis. In the present study, we assessed a 10-month-old baby, who presented with generalized superficial peeling of the skin. Using PCR amplification and direct sequencing, we identified the third PSS-associated mutation in CDSN, a homozygous 4 bp duplication in the second exon of the gene (c.164_167dup GCCT; p.Thr57ProfsX6). These data further support the notion that corneodesmosin deficiency impairs cell-cell adhesion in the upper epidermis, paving the way for an abnormal inflammatory response due to epidermal barrier disruption.

  5. Mutations in Myosin Light Chain Kinase Cause Familial Aortic Dissections

    PubMed Central

    Wang, Li; Guo, Dong-chuan; Cao, Jiumei; Gong, Limin; Kamm, Kristine E.; Regalado, Ellen; Li, Li; Shete, Sanjay; He, Wei-Qi; Zhu, Min-Sheng; Offermanns, Stephan; Gilchrist, Dawna; Elefteriades, John; Stull, James T.; Milewicz, Dianna M.

    2010-01-01

    Mutations in smooth muscle cell (SMC)-specific isoforms of α-actin and β-myosin heavy chain, two major components of the SMC contractile unit, cause familial thoracic aortic aneurysms leading to acute aortic dissections (FTAAD). To investigate whether mutations in the kinase that controls SMC contractile function (myosin light chain kinase [MYLK]) cause FTAAD, we sequenced MYLK by using DNA from 193 affected probands from unrelated FTAAD families. One nonsense and four missense variants were identified in MYLK and were not present in matched controls. Two variants, p.R1480X (c.4438C>T) and p.S1759P (c.5275T>C), segregated with aortic dissections in two families with a maximum LOD score of 2.1, providing evidence of linkage of these rare variants to the disease (p = 0.0009). Both families demonstrated a similar phenotype characterized by presentation with an acute aortic dissection with little to no enlargement of the aorta. The p.R1480X mutation leads to a truncated protein lacking the kinase and calmodulin binding domains, and p.S1759P alters amino acids in the α-helix of the calmodulin binding sequence, which disrupts kinase binding to calmodulin and reduces kinase activity in vitro. Furthermore, mice with SMC-specific knockdown of Mylk demonstrate altered gene expression and pathology consistent with medial degeneration of the aorta. Thus, genetic and functional studies support the conclusion that heterozygous loss-of-function mutations in MYLK are associated with aortic dissections. PMID:21055718

  6. Diseases caused by mutations in ORAI1 and STIM1

    PubMed Central

    Lacruz, Rodrigo S.; Feske, Stefan

    2015-01-01

    Ca2+ release-activated Ca2+ (CRAC) channels mediate a specific form of Ca2+ influx called store-operated Ca2+ entry (SOCE) that contributes to the function of many cell types. CRAC channels are formed by ORAI1 proteins located in the plasma membrane, which form its ion-conducting pore. ORAI1 channels are activated by stromal interaction molecule (STIM) 1 and STIM2 located in the endoplasmic reticulum. Loss- and gain-of-function gene mutations in ORAI1 and STIM1 in human patients cause distinct disease syndromes. CRAC channelopathy is caused by loss-of-function mutations in ORAI1 and STIM1 that abolish CRAC channel function and SOCE; it is characterized by severe combined immunodeficiency (SCID)-like disease, autoimmunity, muscular hypotonia, and ectodermal dysplasia, with defects in dental enamel. The latter defect emphasizes an important role of CRAC channels in tooth development. By contrast, autosomal dominant gain-of-function mutations in these genes result in constitutive CRAC channel activation, SOCE, and increased intracellular Ca2+ levels that are associated with an overlapping spectrum of diseases, including non-syndromic tubular aggregate myopathy (TAM) and York platelet and Stormorken syndromes, two syndromes defined, besides myopathy, by thrombocytopenia, thrombopathy, and bleeding diathesis. The fact that myopathy results from loss- and gain-of-function mutations in ORAI1 and STIM1 highlights the importance of CRAC channels for Ca2+ homeostasis in skeletal muscle function. The cellular dysfunction and clinical disease spectrum observed in mutant patients provide important information about the molecular regulation of ORAI1 and STIM1 proteins and the role of CRAC channels in human physiology. PMID:26469693

  7. Homozygous Nonsense Mutations in TWIST2 Cause Setleis Syndrome

    PubMed Central

    Tukel, Turgut; Šošić, Dražen; Al-Gazali, Lihadh I.; Erazo, Mónica; Casasnovas, Jose; Franco, Hector L.; Richardson, James A.; Olson, Eric N.; Cadilla, Carmen L.; Desnick, Robert J.

    2010-01-01

    The focal facial dermal dysplasias (FFDDs) are a group of inherited developmental disorders in which the characteristic diagnostic feature is bitemporal scar-like lesions that resemble forceps marks. To date, the genetic defects underlying these ectodermal dysplasias have not been determined. To identify the gene defect causing autosomal-recessive Setleis syndrome (type III FFDD), homozygosity mapping was performed with genomic DNAs from five affected individuals and 26 members of the consanguineous Puerto Rican (PR) family originally described by Setleis and colleagues. Microsatellites D2S1397 and D2S2968 were homozygous in all affected individuals, mapping the disease locus to 2q37.3. Haplotype analyses of additional markers in the PR family and a consanguineous Arab family further limited the disease locus to ∼3 Mb between D2S2949 and D2S2253. Of the 29 candidate genes in this region, the bHLH transcription factor, TWIST2, was initially sequenced on the basis of its known involvement in murine facial development. Homozygous TWIST2 nonsense mutations, c.324C>T and c.486C>T, were identified in the affected members of the Arab and PR families, respectively. Characterization of the expressed mutant proteins, p.Q65X and p.Q119X, by electrophoretic mobility shift assays and immunoblot analyses indicated that they were truncated and unstable. Notably, Setleis syndrome patients and Twist2 knockout mice have similar facial features, indicating the gene's conserved role in mammalian development. Although human TWIST2 and TWIST1 encode highly homologous bHLH transcription factors, the finding that TWIST2 recessive mutations cause an FFDD and dominant TWIST1 mutations cause Saethre-Chotzen craniocynostosis suggests that they function independently in skin and bone development. PMID:20691403

  8. Familial gigantism caused by an NSD1 mutation.

    PubMed

    van Haelst, Mieke M; Hoogeboom, Jeannette J M; Baujat, Genevieve; Brüggenwirth, Hennie T; Van de Laar, Ingrid; Coleman, Kim; Rahman, Nazneen; Niermeijer, Martinus F; Drop, Sten L S; Scambler, Peter J

    2005-11-15

    A three-generation family with autosomal dominant segregation of a novel NSD1 mutation (6605G --> A, resulting in Cys2202Tyr) is reported. Haploinsufficiency of NSD1 has been identified as the major cause of Sotos syndrome. The overgrowth condition (MIM 117550) is characterized by facial anomalies, macrocephaly, advanced bone age, and learning disabilities. Manifestations in the present family include dramatically increased height, weight, and head circumference together with a long face, large mandible, and large ears, but mental deficiency was absent.

  9. LAMB3 mutations causing autosomal-dominant amelogenesis imperfecta.

    PubMed

    Kim, J W; Seymen, F; Lee, K E; Ko, J; Yildirim, M; Tuna, E B; Gencay, K; Shin, T J; Kyun, H K; Simmer, J P; Hu, J C-C

    2013-10-01

    Amelogenesis imperfecta (AI) can be either isolated or part of a larger syndrome. Junctional epidermolysis bullosa (JEB) is a collection of autosomal-recessive disorders featuring AI associated with skin fragility and other symptoms. JEB is a recessive syndrome usually caused by mutations in both alleles of COL17A1, LAMA3, LAMB3, or LAMC2. In rare cases, heterozygous carriers in JEB kindreds display enamel malformations in the absence of skin fragility (isolated AI). We recruited two kindreds with autosomal-dominant amelogenesis imperfecta (ADAI) characterized by generalized severe enamel hypoplasia with deep linear grooves and pits. Whole-exome sequencing of both probands identified novel heterozygous mutations in the last exon of LAMB3 that likely truncated the protein. The mutations perfectly segregated with the enamel defects in both families. In Family 1, an 8-bp deletion (c.3446_3453del GACTGGAG) shifted the reading frame (p.Gly 1149Glufs*8). In Family 2, a single nucleotide substitution (c.C3431A) generated an in-frame translation termination codon (p.Ser1144*). We conclude that enamel formation is particularly sensitive to defects in hemidesmosome/basement-membrane complexes and that syndromic and non-syndromic forms of AI can be etiologically related.

  10. RTTN Mutations Cause Primary Microcephaly and Primordial Dwarfism in Humans.

    PubMed

    Shamseldin, Hanan; Alazami, Anas M; Manning, Melanie; Hashem, Amal; Caluseiu, Oana; Tabarki, Brahim; Esplin, Edward; Schelley, Susan; Innes, A Micheil; Parboosingh, Jillian S; Lamont, Ryan; Majewski, Jacek; Bernier, Francois P; Alkuraya, Fowzan S

    2015-12-03

    Primary microcephaly is a developmental brain anomaly that results from defective proliferation of neuroprogenitors in the germinal periventricular zone. More than a dozen genes are known to be mutated in autosomal-recessive primary microcephaly in isolation or in association with a more generalized growth deficiency (microcephalic primordial dwarfism), but the genetic heterogeneity is probably more extensive. In a research protocol involving autozygome mapping and exome sequencing, we recruited a multiplex consanguineous family who is affected by severe microcephalic primordial dwarfism and tested negative on clinical exome sequencing. Two candidate autozygous intervals were identified, and the second round of exome sequencing revealed a single intronic variant therein (c.2885+8A>G [p.Ser963(∗)] in RTTN exon 23). RT-PCR confirmed that this change creates a cryptic splice donor and thus causes retention of the intervening 7 bp of the intron and leads to premature truncation. On the basis of this finding, we reanalyzed the exome file of a second consanguineous family affected by a similar phenotype and identified another homozygous change in RTTN as the likely causal mutation. Combined linkage analysis of the two families confirmed that RTTN maps to the only significant linkage peak. Finally, through international collaboration, a Canadian multiplex family affected by microcephalic primordial dwarfism and biallelic mutation of RTTN was identified. Our results expand the phenotype of RTTN-related disorders, hitherto limited to polymicrogyria, to include microcephalic primordial dwarfism with a complex brain phenotype involving simplified gyration.

  11. Mutation of TBCK causes a rare recessive developmental disorder

    PubMed Central

    Guerreiro, Rita J.; Brown, Rachel; Dian, Donnai; de Goede, Christian

    2016-01-01

    Objective: To characterize the underlying genetic defect in a family with 3 siblings affected by a severe, yet viable, congenital disorder. Methods: Extensive genetic and metabolic investigations were performed, and the affected children were imaged at different ages. Whole-genome genotyping and whole-exome sequencing were undertaken. A single large region (>8 Mb) of homozygosity in chromosome 4 (chr4:100,268,553–108,609,628) was identified that was shared only in affected siblings. Inspection of genetic variability within this region led to the identification of a novel mutation. Sanger sequencing confirmed segregation of the mutation with disease. Results: All affected siblings share homozygosity for a novel 4-bp deletion in the gene TBCK (NM_033115:c.614_617del:p.205_206del). Conclusions: This finding provides the genetic cause of a severe inherited disease in a family and extends the number of mutations and phenotypes associated with this recently identified disease gene. PMID:27275012

  12. RTTN Mutations Cause Primary Microcephaly and Primordial Dwarfism in Humans

    PubMed Central

    Shamseldin, Hanan; Alazami, Anas M.; Manning, Melanie; Hashem, Amal; Caluseiu, Oana; Tabarki, Brahim; Esplin, Edward; Schelley, Susan; Innes, A. Micheil; Parboosingh, Jillian S.; Lamont, Ryan; Majewski, Jacek; Bernier, Francois P.; Alkuraya, Fowzan S.

    2015-01-01

    Primary microcephaly is a developmental brain anomaly that results from defective proliferation of neuroprogenitors in the germinal periventricular zone. More than a dozen genes are known to be mutated in autosomal-recessive primary microcephaly in isolation or in association with a more generalized growth deficiency (microcephalic primordial dwarfism), but the genetic heterogeneity is probably more extensive. In a research protocol involving autozygome mapping and exome sequencing, we recruited a multiplex consanguineous family who is affected by severe microcephalic primordial dwarfism and tested negative on clinical exome sequencing. Two candidate autozygous intervals were identified, and the second round of exome sequencing revealed a single intronic variant therein (c.2885+8A>G [p.Ser963∗] in RTTN exon 23). RT-PCR confirmed that this change creates a cryptic splice donor and thus causes retention of the intervening 7 bp of the intron and leads to premature truncation. On the basis of this finding, we reanalyzed the exome file of a second consanguineous family affected by a similar phenotype and identified another homozygous change in RTTN as the likely causal mutation. Combined linkage analysis of the two families confirmed that RTTN maps to the only significant linkage peak. Finally, through international collaboration, a Canadian multiplex family affected by microcephalic primordial dwarfism and biallelic mutation of RTTN was identified. Our results expand the phenotype of RTTN-related disorders, hitherto limited to polymicrogyria, to include microcephalic primordial dwarfism with a complex brain phenotype involving simplified gyration. PMID:26608784

  13. SKIV2L Mutations Cause Syndromic Diarrhea, or Trichohepatoenteric Syndrome

    PubMed Central

    Fabre, Alexandre; Charroux, Bernard; Martinez-Vinson, Christine; Roquelaure, Bertrand; Odul, Egritas; Sayar, Ersin; Smith, Hilary; Colomb, Virginie; Andre, Nicolas; Hugot, Jean-Pierre; Goulet, Olivier; Lacoste, Caroline; Sarles, Jacques; Royet, Julien; Levy, Nicolas; Badens, Catherine

    2012-01-01

    Syndromic diarrhea (or trichohepatoenteric syndrome) is a rare congenital bowel disorder characterized by intractable diarrhea and woolly hair, and it has recently been associated with mutations in TTC37. Although databases report TTC37 as being the human ortholog of Ski3p, one of the yeast Ski-complex cofactors, this lead was not investigated in initial studies. The Ski complex is a multiprotein complex required for exosome-mediated RNA surveillance, including the regulation of normal mRNA and the decay of nonfunctional mRNA. Considering the fact that TTC37 is homologous to Ski3p, we explored a gene encoding another Ski-complex cofactor, SKIV2L, in six individuals presenting with typical syndromic diarrhea without variation in TTC37. We identified mutations in all six individuals. Our results show that mutations in genes encoding cofactors of the human Ski complex cause syndromic diarrhea, establishing a link between defects of the human exosome complex and a Mendelian disease. PMID:22444670

  14. Mutations in SERPINF1 cause osteogenesis imperfecta type VI.

    PubMed

    Homan, Erica P; Rauch, Frank; Grafe, Ingo; Lietman, Caressa; Doll, Jennifer A; Dawson, Brian; Bertin, Terry; Napierala, Dobrawa; Morello, Roy; Gibbs, Richard; White, Lisa; Miki, Rika; Cohn, Daniel H; Crawford, Susan; Travers, Rose; Glorieux, Francis H; Lee, Brendan

    2011-12-01

    Osteogenesis imperfecta (OI) is a spectrum of genetic disorders characterized by bone fragility. It is caused by dominant mutations affecting the synthesis and/or structure of type I procollagen or by recessively inherited mutations in genes responsible for the posttranslational processing/trafficking of type I procollagen. Recessive OI type VI is unique among OI types in that it is characterized by an increased amount of unmineralized osteoid, thereby suggesting a distinct disease mechanism. In a large consanguineous family with OI type VI, we performed homozygosity mapping and next-generation sequencing of the candidate gene region to isolate and identify the causative gene. We describe loss of function mutations in serpin peptidase inhibitor, clade F, member 1 (SERPINF1) in two affected members of this family and in an additional unrelated patient with OI type VI. SERPINF1 encodes pigment epithelium-derived factor. Hence, loss of pigment epithelium-derived factor function constitutes a novel mechanism for OI and shows its involvement in bone mineralization.

  15. Multidrug- and methicillin resistant Staphylococcus pseudintermedius as a cause of canine pyoderma: a case report.

    PubMed

    Vincze, Szilvia; Paasch, Angela; Walther, Birgit; Ruscher, Claudia; Lübke-Becker, Antina; Wieler, Lothar H; Barbara, Kohn

    2010-01-01

    A case of a dog with a long-term inflammatory skin disorder due to infection with methicillin-resistant Staphylococcus pseudintermedius (MRSP) is described. After initial diagnostics of MRSP, follow-up swabs of the dog (nose, skin) were taken twice after four and seven weeks. MRSP was constantly isolated from the skin and once from the nose. Since infected humans might be a source of reinfection, the owners of the dog were screened (nasal) three times during their pet's therapy. Thereby, the male owner was found to be colonized with MRSP once in the first sampling round. Comparative typing of all MRSP-isolates by pulsed-field gel electrophoresis (PFGE), SCCmec typing, multilocus sequence typing (MLST), spa typing, PCR-detection of the leukotoxin encoding operon (LukI) and the Staphylococcus intermedius-exfoliative toxin (SIET) as well as antimicrobial resistance profiling by broth microdilution revealed that all five MRSP isolates from the dog and the single isolate from the owner were indistinguishable by any of the applied methods. All isolates were assigned to a certain strain, a multidrug-resistant MRSP belonging to sequence type (ST) 71, spa type (t)05, harbouring SCCmecIII as well as the genes encoding LukI and SIET. In this case, a number of reasons might have contributed to therapy failure and re-infection, respectively (e. g. contact to other MRSP-colonized dogs, contact to MRSP-colonized humans, refusal to clip the dog's fur). In addition, MRSP-contaminated objects or surfaces in the household, which were difficult to disinfect or simply not considered as a potential source of MRSP, might have served as a source of re-infection. These results envision the possibility of a dog-to-human transmission of MRSP and the relevance of this aspect as a potential source of re-infection in cases of bacterial-supported long-term skin disorders in canine patients. First cases of MRSP infections in humans have been described only recently. However, the general

  16. Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy.

    PubMed

    Duesberg, P; Stindl, R; Hehlmann, R

    2000-12-19

    The mutation rates of cancer cells to drug and multidrug resistance are paradoxically high, i.e., 10(-3) to 10(-6), compared with those altering phenotypes of recessive genes in normal diploid cells of about 10(-12). Here the hypothesis was investigated that these mutations are due to chromosome reassortments that are catalyzed by aneuploidy. Aneuploidy, an abnormal number of chromosomes, is the most common genetic abnormality of cancer cells and is known to change phenotypes (e.g., Down's syndrome). Moreover, we have shown recently that aneuploidy autocatalyzes reassortments of up to 2% per chromosome per mitosis because it unbalances spindle proteins, even centrosome numbers, via gene dosage. The hypothesis predicts that a selected phenotype is associated with multiple unselected ones, because chromosome reassortments unbalance simultaneously thousands of regulatory and structural genes. It also predicts variants of a selected phenotype based on variant reassortments. To test our hypothesis we have investigated in parallel the mutation rates of highly aneuploid and of normal diploid Chinese hamster cells to resistance against puromycin, cytosine arabinoside, colcemid, and methotrexate. The mutation rates of aneuploid cells ranged from 10(-4) to 10(-6), but no drug-resistant mutants were obtained from diploid cells in our conditions. Further selection increased drug resistance at similar mutation rates. Mutants selected from cloned cells for resistance against one drug displayed different unselected phenotypes, e.g., polygonal or fusiform cellular morphology, flat or three-dimensional colonies, and resistances against other unrelated drugs. Thus our hypothesis offers a unifying explanation for the high mutation rates of aneuploid cancer cells and for the association of selected with unselected phenotypes, e.g., multidrug resistance. It also predicts drug-specific chromosome combinations that could become a basis for selecting alternative chemotherapy against drug

  17. Biallelic Truncating Mutations in ALPK3 Cause Severe Pediatric Cardiomyopathy.

    PubMed

    Almomani, Rowida; Verhagen, Judith M A; Herkert, Johanna C; Brosens, Erwin; van Spaendonck-Zwarts, Karin Y; Asimaki, Angeliki; van der Zwaag, Paul A; Frohn-Mulder, Ingrid M E; Bertoli-Avella, Aida M; Boven, Ludolf G; van Slegtenhorst, Marjon A; van der Smagt, Jasper J; van IJcken, Wilfred F J; Timmer, Bert; van Stuijvenberg, Margriet; Verdijk, Rob M; Saffitz, Jeffrey E; du Plessis, Frederik A; Michels, Michelle; Hofstra, Robert M W; Sinke, Richard J; van Tintelen, J Peter; Wessels, Marja W; Jongbloed, Jan D H; van de Laar, Ingrid M B H

    2016-02-09

    Cardiomyopathies are usually inherited and predominantly affect adults, but they can also present in childhood. Although our understanding of the molecular basis of pediatric cardiomyopathy has improved, the underlying mechanism remains elusive in a substantial proportion of cases. This study aimed to identify new genes involved in pediatric cardiomyopathy. The authors performed homozygosity mapping and whole-exome sequencing in 2 consanguineous families with idiopathic pediatric cardiomyopathy. Sixty unrelated patients with pediatric cardiomyopathy were subsequently screened for mutations in a candidate gene. First-degree relatives were submitted to cardiac screening and cascade genetic testing. Myocardial samples from 2 patients were processed for histological and immunohistochemical studies. We identified 5 patients from 3 unrelated families with pediatric cardiomyopathy caused by homozygous truncating mutations in ALPK3, a gene encoding a nuclear kinase that plays an essential role in early differentiation of cardiomyocytes. All patients with biallelic mutations presented with severe hypertrophic and/or dilated cardiomyopathy in utero, at birth, or in early childhood. Three patients died from heart failure within the first week of life. Moreover, 2 of 10 (20%) heterozygous family members showed hypertrophic cardiomyopathy with an atypical distribution of hypertrophy. Deficiency of alpha-kinase 3 has previously been associated with features of both hypertrophic and dilated cardiomyopathy in mice. Consistent with studies in knockout mice, we provide microscopic evidence for intercalated disc remodeling. Biallelic truncating mutations in the newly identified gene ALPK3 give rise to severe, early-onset cardiomyopathy in humans. Our findings highlight the importance of transcription factor pathways in the molecular mechanisms underlying human cardiomyopathies. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. Lethal neonatal meningoencephalitis caused by multi-drug resistant, highly virulent Escherichia coli.

    PubMed

    Iqbal, Junaid; Dufendach, Kevin R; Wellons, John C; Kuba, Maria G; Nickols, Hilary H; Gómez-Duarte, Oscar G; Wynn, James L

    2016-01-01

    Neonatal meningitis is a rare but devastating condition. Multi-drug resistant (MDR) bacteria represent a substantial global health risk. This study reports on an aggressive case of lethal neonatal meningitis due to a MDR Escherichia coli (serotype O75:H5:K1). Serotyping, MDR pattern and phylogenetic typing revealed that this strain is an emergent and highly virulent neonatal meningitis E. coli isolate. The isolate was resistant to both ampicillin and gentamicin; antibiotics currently used for empiric neonatal sepsis treatment. The strain was also positive for multiple virulence genes including K1 capsule, fimbrial adhesion fimH, siderophore receptors iroN, fyuA and iutA, secreted autotransporter toxin sat, membrane associated proteases ompA and ompT, type II polysaccharide synthesis genes (kpsMTII) and pathogenicity-associated island (PAI)-associated malX gene. The presence of highly-virulent MDR organisms isolated in neonates underscores the need to implement rapid drug resistance diagnostic methods and should prompt consideration of alternate empiric therapy in neonates with Gram negative meningitis.

  19. A stress-induced early innate response causes multidrug tolerance in melanoma.

    PubMed

    Ravindran Menon, D; Das, S; Krepler, C; Vultur, A; Rinner, B; Schauer, S; Kashofer, K; Wagner, K; Zhang, G; Bonyadi Rad, E; Haass, N K; Soyer, H P; Gabrielli, B; Somasundaram, R; Hoefler, G; Herlyn, M; Schaider, H

    2015-08-20

    Acquired drug resistance constitutes a major challenge for effective cancer therapies with melanoma being no exception. The dynamics leading to permanent resistance are poorly understood but are important to design better treatments. Here we show that drug exposure, hypoxia or nutrient starvation leads to an early innate cell response in melanoma cells resulting in multidrug resistance, termed induced drug-tolerant cells (IDTCs). Transition into the IDTC state seems to be an inherent stress reaction for survival toward unfavorable environmental conditions or drug exposure. The response comprises chromatin remodeling, activation of signaling cascades and markers implicated in cancer stemness with higher angiogenic potential and tumorigenicity. These changes are characterized by a common increase in CD271 expression concomitantly with loss of differentiation markers such as melan-A and tyrosinase, enhanced aldehyde dehydrogenase (ALDH) activity and upregulation of histone demethylases. Accordingly, IDTCs show a loss of H3K4me3, H3K27me3 and gain of H3K9me3 suggesting activation and repression of differential genes. Drug holidays at the IDTC state allow for reversion into parental cells re-sensitizing them to the drug they were primarily exposed to. However, upon continuous drug exposure IDTCs eventually transform into permanent and irreversible drug-resistant cells. Knockdown of CD271 or KDM5B decreases transition into the IDTC state substantially but does not prevent it. Targeting IDTCs would be crucial for sustainable disease management and prevention of acquired drug resistance.

  20. A stress-induced early innate response causes multidrug tolerance in melanoma

    PubMed Central

    Menon, D Ravindran; Das, S; Krepler, C; Vultur, A; Rinner, B; Schauer, S; Kashofer, K; Wagner, K; Zhang, G; Rad, E Bonyadi; Haass, NK; Soyer, HP; Gabrielli, B; Somasundaram, R; Hoefler, G; Herlyn, M; Schaider, H

    2015-01-01

    Acquired drug resistance constitutes a major challenge for effective cancer therapies with melanoma being no exception. The dynamics leading to permanent resistance are poorly understood but are important to design better treatments. Here we show that drug exposure, hypoxia or nutrient starvation leads to an early innate cell response in melanoma cells resulting in multidrug resistance, termed induced drug-tolerant cells (IDTCs). Transition into the IDTC state seems to be an inherent stress reaction for survival toward unfavorable environmental conditions or drug exposure. The response comprises chromatin remodeling, activation of signaling cascades and markers implicated in cancer stemness with higher angiogenic potential and tumorigenicity. These changes are characterized by a common increase in CD271 expression concomitantly with loss of differentiation markers such as melan-A and tyrosinase, enhanced aldehyde dehydrogenase (ALDH) activity and upregulation of histone demethylases. Accordingly, IDTCs show a loss of H3K4me3, H3K27me3 and gain of H3K9me3 suggesting activation and repression of differential genes. Drug holidays at the IDTC state allow for reversion into parental cells re-sensitizing them to the drug they were primarily exposed to. However, upon continuous drug exposure IDTCs eventually transform into permanent and irreversible drug-resistant cells. Knockdown of CD271 or KDM5B decreases transition into the IDTC state substantially but does not prevent it. Targeting IDTCs would be crucial for sustainable disease management and prevention of acquired drug resistance. PMID:25417704

  1. Mutations in NOTCH1 Cause Adams-Oliver Syndrome

    PubMed Central

    Stittrich, Anna-Barbara; Lehman, Anna; Bodian, Dale L.; Ashworth, Justin; Zong, Zheyuan; Li, Hong; Lam, Patricia; Khromykh, Alina; Iyer, Ramaswamy K.; Vockley, Joseph G.; Baveja, Rajiv; Silva, Ermelinda Santos; Dixon, Joanne; Leon, Eyby L.; Solomon, Benjamin D.; Glusman, Gustavo; Niederhuber, John E.; Roach, Jared C.; Patel, Millan S.

    2014-01-01

    Notch signaling determines and reinforces cell fate in bilaterally symmetric multicellular eukaryotes. Despite the involvement of Notch in many key developmental systems, human mutations in Notch signaling components have mainly been described in disorders with vascular and bone effects. Here, we report five heterozygous NOTCH1 variants in unrelated individuals with Adams-Oliver syndrome (AOS), a rare disease with major features of aplasia cutis of the scalp and terminal transverse limb defects. Using whole-genome sequencing in a cohort of 11 families lacking mutations in the four genes with known roles in AOS pathology (ARHGAP31, RBPJ, DOCK6, and EOGT), we found a heterozygous de novo 85 kb deletion spanning the NOTCH1 5′ region and three coding variants (c.1285T>C [p.Cys429Arg], c.4487G>A [p.Cys1496Tyr], and c.5965G>A [p.Asp1989Asn]), two of which are de novo, in four unrelated probands. In a fifth family, we identified a heterozygous canonical splice-site variant (c.743−1 G>T) in an affected father and daughter. These variants were not present in 5,077 in-house control genomes or in public databases. In keeping with the prominent developmental role described for Notch1 in mouse vasculature, we observed cardiac and multiple vascular defects in four of the five families. We propose that the limb and scalp defects might also be due to a vasculopathy in NOTCH1-related AOS. Our results suggest that mutations in NOTCH1 are the most common cause of AOS and add to a growing list of human diseases that have a vascular and/or bony component and are caused by alterations in the Notch signaling pathway. PMID:25132448

  2. Mutations of TMC1 cause deafness by disrupting mechanoelectrical transduction

    PubMed Central

    Nakanishi, Hiroshi; Kurima, Kiyoto; Kawashima, Yoshiyuki; Griffith, Andrew J.

    2014-01-01

    Objective Mutations of transmembrane channel-like 1 gene (TMC1) can cause dominant (DFNA36) or recessive (DFNB7/B11) deafness. In this article, we describe the characteristics of DFNA36 and DFNB7/B11 deafness, the features of the Tmc1 mutant mouse strains, and recent advances in our understanding of TMC1 function. Methods Publications related to TMC1, DFNA36 or DFNB7/B11 were identified through PubMed. Results All affected DFNA36 subjects showed post-lingual, progressive, sensorineural hearing loss (HL), initially affecting high frequencies. In contrast, almost all affected DFNB7/B11 subjects demonstrated congenital or prelingual severe to profound sensorineural HL. The mouse Tmc1 gene also has dominant and recessive mutant alleles that cause HL in mutant strains, including Beethoven, deafness and Tmc1 knockout mice. These mutant mice have been instrumental for revealing that Tmc1 and its closely related paralog Tmc2 are expressed in cochlear and vestibular hair cells, and are required for hair cell mechanoelectrical transduction (MET). Recent studies suggest that TMC1 and TMC2 may be components of the long-sought hair cell MET channel. Conclusion TMC1 mutations disrupt hair cell MET. PMID:24933710

  3. Aggressive regimens for multidrug-resistant tuberculosis decrease all-cause mortality.

    PubMed

    Mitnick, Carole D; Franke, Molly F; Rich, Michael L; Alcantara Viru, Felix A; Appleton, Sasha C; Atwood, Sidney S; Bayona, Jaime N; Bonilla, Cesar A; Chalco, Katiuska; Fraser, Hamish S F; Furin, Jennifer J; Guerra, Dalia; Hurtado, Rocio M; Joseph, Keith; Llaro, Karim; Mestanza, Lorena; Mukherjee, Joia S; Muñoz, Maribel; Palacios, Eda; Sanchez, Epifanio; Seung, Kwonjune J; Shin, Sonya S; Sloutsky, Alexander; Tolman, Arielle W; Becerra, Mercedes C

    2013-01-01

    A better understanding of the composition of optimal treatment regimens for multidrug-resistant tuberculosis (MDR-TB) is essential for expanding universal access to effective treatment and for developing new therapies for MDR-TB. Analysis of observational data may inform the definition of an optimized regimen. This study assessed the impact of an aggressive regimen-one containing at least five likely effective drugs, including a fluoroquinolone and injectable-on treatment outcomes in a large MDR-TB patient cohort. This was a retrospective cohort study of patients treated in a national outpatient program in Peru between 1999 and 2002. We examined the association between receiving an aggressive regimen and the rate of death. In total, 669 patients were treated with individualized regimens for laboratory-confirmed MDR-TB. Isolates were resistant to a mean of 5.4 (SD 1.7) drugs. Cure or completion was achieved in 66.1% (442) of patients; death occurred in 20.8% (139). Patients who received an aggressive regimen were less likely to die (crude hazard ratio [HR]: 0.62; 95% CI: 0.44,0.89), compared to those who did not receive such a regimen. This association held in analyses adjusted for comorbidities and indicators of severity (adjusted HR: 0.63; 95% CI: 0.43,0.93). The aggressive regimen is a robust predictor of MDR-TB treatment outcome. TB policy makers and program directors should consider this standard as they design and implement regimens for patients with drug-resistant disease. Furthermore, the aggressive regimen should be considered the standard background regimen when designing randomized trials of treatment for drug-resistant TB.

  4. Aggressive Regimens for Multidrug-Resistant Tuberculosis Decrease All-Cause Mortality

    PubMed Central

    Mitnick, Carole D.; Franke, Molly F.; Rich, Michael L.; Alcantara Viru, Felix A.; Appleton, Sasha C.; Atwood, Sidney S.; Bayona, Jaime N.; Bonilla, Cesar A.; Chalco, Katiuska; Fraser, Hamish S. F.; Furin, Jennifer J.; Guerra, Dalia; Hurtado, Rocio M.; Joseph, Keith; Llaro, Karim; Mestanza, Lorena; Mukherjee, Joia S.; Muñoz, Maribel; Palacios, Eda; Sanchez, Epifanio; Seung, Kwonjune J.; Shin, Sonya S.; Sloutsky, Alexander; Tolman, Arielle W.; Becerra, Mercedes C.

    2013-01-01

    Rationale A better understanding of the composition of optimal treatment regimens for multidrug-resistant tuberculosis (MDR-TB) is essential for expanding universal access to effective treatment and for developing new therapies for MDR-TB. Analysis of observational data may inform the definition of an optimized regimen. Objectives This study assessed the impact of an aggressive regimen–one containing at least five likely effective drugs, including a fluoroquinolone and injectable–on treatment outcomes in a large MDR-TB patient cohort. Methods This was a retrospective cohort study of patients treated in a national outpatient program in Peru between 1999 and 2002. We examined the association between receiving an aggressive regimen and the rate of death. Measurements and Main Results In total, 669 patients were treated with individualized regimens for laboratory-confirmed MDR-TB. Isolates were resistant to a mean of 5.4 (SD 1.7) drugs. Cure or completion was achieved in 66.1% (442) of patients; death occurred in 20.8% (139). Patients who received an aggressive regimen were less likely to die (crude hazard ratio [HR]: 0.62; 95% CI: 0.44,0.89), compared to those who did not receive such a regimen. This association held in analyses adjusted for comorbidities and indicators of severity (adjusted HR: 0.63; 95% CI: 0.43,0.93). Conclusions The aggressive regimen is a robust predictor of MDR-TB treatment outcome. TB policy makers and program directors should consider this standard as they design and implement regimens for patients with drug-resistant disease. Furthermore, the aggressive regimen should be considered the standard background regimen when designing randomized trials of treatment for drug-resistant TB. PMID:23516529

  5. Disease-causing mutations in genes of the complement system.

    PubMed

    Degn, Søren E; Jensenius, Jens C; Thiel, Steffen

    2011-06-10

    Recent studies have revealed profound developmental consequences of mutations in genes encoding proteins of the lectin pathway of complement activation, a central component of the innate immune system. Apart from impairment of immunity against microorganisms, it is known that hereditary deficiencies of this system predispose one to autoimmune conditions. Polymorphisms in complement genes are linked to, for example, atypical hemolytic uremia and age-dependent macular degeneration. The complement system comprises three convergent pathways of activation: the classical, the alternative, and the lectin pathway. The recently discovered lectin pathway is less studied, but polymorphisms in the plasma pattern-recognition molecule mannan-binding lectin (MBL) are known to impact its level, and polymorphisms in the MBL-associated serine protease-2 (MASP-2) result in defects of complement activation. Recent studies have described roles outside complement and immunity of another MBL-associated serine protease, MASP-3, in the etiology of 3MC syndrome, an autosomal-recessive disorder involving a spectrum of developmental features, including characteristic facial dysmorphism. Syndrome-causing mutations were identified in MASP1, encoding MASP-3 and two additional proteins, MASP-1 and MAp44. Furthermore, an association was discovered between 3MC syndrome and mutations in COLEC11, encoding CL-K1, another molecule of the lectin pathway. The findings were confirmed in zebrafish, indicating that MASP-3 and CL-K1 underlie an evolutionarily conserved pathway of embryonic development. Along with the discovery of a role of C1q in pruning synapses in mice, these recent advances point toward a broader role of complement in development. Here, we compare the functional immunologic consequences of "conventional" complement deficiencies with these newly described developmental roles.

  6. Disease-Causing Mutations in Genes of the Complement System

    PubMed Central

    Degn, Søren E.; Jensenius, Jens C.; Thiel, Steffen

    2011-01-01

    Recent studies have revealed profound developmental consequences of mutations in genes encoding proteins of the lectin pathway of complement activation, a central component of the innate immune system. Apart from impairment of immunity against microorganisms, it is known that hereditary deficiencies of this system predispose one to autoimmune conditions. Polymorphisms in complement genes are linked to, for example, atypical hemolytic uremia and age-dependent macular degeneration. The complement system comprises three convergent pathways of activation: the classical, the alternative, and the lectin pathway. The recently discovered lectin pathway is less studied, but polymorphisms in the plasma pattern-recognition molecule mannan-binding lectin (MBL) are known to impact its level, and polymorphisms in the MBL-associated serine protease-2 (MASP-2) result in defects of complement activation. Recent studies have described roles outside complement and immunity of another MBL-associated serine protease, MASP-3, in the etiology of 3MC syndrome, an autosomal-recessive disorder involving a spectrum of developmental features, including characteristic facial dysmorphism. Syndrome-causing mutations were identified in MASP1, encoding MASP-3 and two additional proteins, MASP-1 and MAp44. Furthermore, an association was discovered between 3MC syndrome and mutations in COLEC11, encoding CL-K1, another molecule of the lectin pathway. The findings were confirmed in zebrafish, indicating that MASP-3 and CL-K1 underlie an evolutionarily conserved pathway of embryonic development. Along with the discovery of a role of C1q in pruning synapses in mice, these recent advances point toward a broader role of complement in development. Here, we compare the functional immunologic consequences of “conventional” complement deficiencies with these newly described developmental roles. PMID:21664996

  7. Mutations in FYCO1 Cause Autosomal-Recessive Congenital Cataracts

    PubMed Central

    Chen, Jianjun; Ma, Zhiwei; Jiao, Xiaodong; Fariss, Robert; Kantorow, Wanda Lee; Kantorow, Marc; Pras, Eran; Frydman, Moshe; Pras, Elon; Riazuddin, Sheikh; Riazuddin, S. Amer; Hejtmancik, J. Fielding

    2011-01-01

    Congenital cataracts (CCs), responsible for about one-third of blindness in infants, are a major cause of vision loss in children worldwide. Autosomal-recessive congenital cataracts (arCC) form a clinically diverse and genetically heterogeneous group of disorders of the crystalline lens. To identify the genetic cause of arCC in consanguineous Pakistani families, we performed genome-wide linkage analysis and fine mapping and identified linkage to 3p21-p22 with a summed LOD score of 33.42. Mutations in the gene encoding FYVE and coiled-coil domain containing 1 (FYCO1), a PI(3)P-binding protein family member that is associated with the exterior of autophagosomes and mediates microtubule plus-end-directed vesicle transport, were identified in 12 Pakistani families and one Arab Israeli family in which arCC had previously been mapped to the overlapping CATC2 region. Nine different mutations were identified, including c.3755 delC (p.Ala1252AspfsX71), c.3858_3862dupGGAAT (p.Leu1288TrpfsX37), c.1045 C>T (p.Gln349X), c.2206C>T (p.Gln736X), c.2761C>T (p.Arg921X), c.2830C>T (p.Arg944X), c.3150+1 G>T, c.4127T>C (p.Leu1376Pro), and c.1546C>T (p.Gln516X). Fyco1 is expressed in the mouse embryonic and adult lens and peaks at P12d. Expressed mutant proteins p.Leu1288TrpfsX37 and p.Gln736X are truncated on immunoblots. Wild-type and p.L1376P FYCO1, the only missense mutant identified, migrate at the expected molecular mass. Both wild-type and p. Leu1376Pro FYCO1 proteins expressed in human lens epithelial cells partially colocalize to microtubules and are found adjacent to Golgi, but they primarily colocalize to autophagosomes. Thus, FYCO1 is involved in lens development and transparency in humans, and mutations in this gene are one of the most common causes of arCC in the Pakistani population. PMID:21636066

  8. SPP2 Mutations Cause Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Liu, Yuan; Chen, Xue; Xu, Qihua; Gao, Xiang; Tam, Pancy O. S.; Zhao, Kanxing; Zhang, Xiumei; Chen, Li Jia; Jia, Wenshuang; Zhao, Qingshun; Vollrath, Douglas; Pang, Chi Pui; Zhao, Chen

    2015-01-01

    Retinitis pigmentosa (RP) shows progressive loss of photoreceptors involved with heterogeneous genetic background. Here, by exome sequencing and linkage analysis on a Chinese family with autosomal dominant RP, we identified a putative pathogenic variant, p.Gly97Arg, in the gene SPP2, of which expression was detected in multiple tissues including retina. The p.Gly97Arg was absent in 800 ethnically matched chromosomes and 1400 in-house exome dataset, and was located in the first of the two highly conserved disulfide bonded loop of secreted phosphoprotein 2 (Spp-24) encoded by SPP2. Overexpression of p.Gly97Arg and another signal peptide mutation, p.Gly29Asp, caused cellular retention of both endogenous wild type and exogenous mutants in vitro, and primarily affected rod photoreceptors in zebrafish mimicking cardinal feature of RP. Taken together, our data indicate that the two mutations of SPP2 have dominant negative effects and cellular accumulation of Spp-24 might be particularly toxic to photoreceptors and/or retinal pigment epithelium. SPP2 has a new role in retinal degeneration. PMID:26459573

  9. Mycobacterial interspersed repetitive unit typing and mutational profile for multidrug-resistant and extensively drug-resistant tuberculosis surveillance in Portugal: a 3-year period overview.

    PubMed

    Silva, Carla; Perdigão, João; Jordão, Luísa; Portugal, Isabel

    2014-12-01

    Multidrug tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) cases constitute a serious health problem in Portugal, of which the majority of isolates belong to the Lisboa family and the Q1 cluster, highly related to the Lisboa family. Here we sought to investigate the molecular basis of resistant TB as well as to determine the prevalence of specific drug resistance mutations and their association with MDR-TB and/or XDR-TB. In total, 74 Mycobacterium tuberculosis clinical isolates collected in Lisbon Health Region were genotyped by 24-loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR), and the mutational profile associated with first- and second-line drug resistance was studied. Seven new mutations were found, whilst the remaining 28 mutations had been previously associated with drug resistance. None of the mutations was specifically associated with MDR-TB. The mutational patterns observed among isolates belonging to Lisboa3 and Q1 clusters were also observed in isolates with unique MIRU-VNTR patterns but closely related to these strains. Such data suggest that the genotyping technique employed discriminates isolates with the same mutational profile. To establish the most adequate genotyping technique, the discriminatory power of three different MIRU-VNTR sets was analysed. The 15-loci MIRU-VNTR set showed adequate discriminatory power, comparable with the 24-loci set, allowing clustering of 60% and 86% of the MDR-TB and XDR-TB isolates, respectively, the majority of which belonged to the Lisboa3 and Q1 clusters. From an epidemiological standpoint, this study suggests combined mutational and genotyping analysis as a valuable tool for drug resistance surveillance. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  10. Novel mutations cause biotinidase deficiency in Turkish children.

    PubMed

    Pomponio, R J; Coskun, T; Demirkol, M; Tokatli, A; Ozalp, I; Hüner, G; Baykal, T; Wolf, B

    2000-03-01

    Mutation analysis was performed on DNA from 31 Turkish children with profound biotinidase deficiency who were symptomatic or ascertained by newborn screening. The 98G:del7ins3 mutation is common in clinically ascertained children in both the United States and Turkish populations, but a unique common mutation, R79C, is found only in the Turkish children identified both clinically and by newborn screening. Another frequently occurring mutation, T532M, is only observed in the Turkish newborn screening group. There are four other less frequent novel mutations identified in the Turkish population. Interestingly, the Q456H and the A171T:D444H double mutation, which are the most common mutations found in the US newborn screening population and have not been observed in symptomatic children, do occur in clinically ascertained children in the Turkish population, although the double mutation may be associated with milder and/or later-onset symptoms.

  11. Novel Mutations and Mutation Combinations of TMPRSS3 Cause Various Phenotypes in One Chinese Family with Autosomal Recessive Hearing Impairment

    PubMed Central

    Wang, Guo-Jian; Xu, Jin-Cao; Su, Yu

    2017-01-01

    Autosomal recessive hearing impairment with postlingual onset is rare. Exceptions are caused by mutations in the TMPRSS3 gene, which can lead to prelingual (DFNB10) as well as postlingual deafness (DFNB8). TMPRSS3 mutations can be classified as mild or severe, and the phenotype is dependent on the combination of TMPRSS3 mutations. The combination of two severe mutations leads to profound hearing impairment with a prelingual onset, whereas severe mutations in combination with milder TMPRSS3 mutations lead to a milder phenotype with postlingual onset. We characterized a Chinese family (number FH1523) with not only prelingual but also postlingual hearing impairment. Three mutations in TMPRSS3, one novel mutation c.36delC [p.(Phe13Serfs⁎12)], and two previously reported pathogenic mutations, c.916G>A (p.Ala306Thr) and c.316C>T (p.Arg106Cys), were identified. Compound heterozygous mutations of p.(Phe13Serfs⁎12) and p.Ala306Thr manifest as prelingual, profound hearing impairment in the patient (IV: 1), whereas the combination of p.Arg106Cys and p.Ala306Thr manifests as postlingual, milder hearing impairment in the patient (II: 2, II: 3, II: 5), suggesting that p.Arg106Cys mutation has a milder effect than p.(Phe13Serfs⁎12). We concluded that different combinations of TMPRSS3 mutations led to different hearing impairment phenotypes (DFNB8/DFNB10) in this family. PMID:28246597

  12. PTRH2 gene mutation causes progressive congenital skeletal muscle pathology.

    PubMed

    Doe, Jinger; Kaindl, Angela M; Jijiwa, Mayumi; de la Vega, Michelle; Hu, Hao; Griffiths, Genevieve S; Fontelonga, Tatiana M; Barraza, Pamela; Cruz, Vivian; Van Ry, Pam; Ramos, Joe W; Burkin, Dean J; Matter, Michelle L

    2017-04-15

    Peptidyl-tRNA hydrolase 2 (PTRH2) regulates integrin-mediated pro-survival and apoptotic signaling. PTRH2 is critical in muscle development and regulates myogenic differentiation. In humans a biallelic mutation in the PTRH2 gene causes infantile-onset multisystem disease with progressive muscle weakness. We report here that the Ptrh2 knockout mouse model recapitulates the progressive congenital muscle pathology observed in patients. Ptrh2 null mice demonstrate multiple degenerating and regenerating muscle fibers, increased central nuclei, elevated creatine kinase activity and endomysial fibrosis. This progressive muscle pathology resembles the muscular dystrophy phenotype in humans and mice lacking the α7 integrin. We demonstrate that in normal muscle Ptrh2 associates in a complex with the α7β1 integrin at the sarcolemma and Ptrh2 expression is decreased in α7 integrin null muscle. Furthermore, Ptrh2 expression is altered in skeletal muscle of classical congenital muscular dystrophy mouse models. Ptrh2 levels were up-regulated in dystrophin deficient mdx muscle, which correlates with the elevated levels of the α7β1 integrin observed in mdx muscle and Duchenne muscular dystrophy patients. Similar to the α7 integrin, Ptrh2 expression was decreased in laminin-α2 dyW null gastrocnemius muscle. Our data establishes a PTRH2 mutation as a novel driver of congenital muscle degeneration and identifies a potential novel target to treat muscle myopathies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Conjunctivitis Caused by Neisseria gonorrhoeae Isolates with Reduced Cephalosporin Susceptibility and Multidrug Resistance

    PubMed Central

    Kitagawa, Yutaka; Maruyama, Yosuke; Yamaguchi, Satoshi; Sakane, Yuri; Miyamoto, Hitoshi; Ohashi, Yuichi

    2013-01-01

    We report two cases of conjunctivitis caused by Neisseria gonorrhoeae with reduced cephalosporin susceptibility. Patients showed no response to cefmenoxime eye drops and intravenous ceftriaxone administration. The patients' condition improved after the addition of oral minocycline. The isolates contained the mosaic penA for reduction of β-lactam susceptibility. PMID:24025911

  14. 5'UTR mutations of ENG cause hereditary hemorrhagic telangiectasia.

    PubMed

    Damjanovich, Kristy; Langa, Carmen; Blanco, Francisco J; McDonald, Jamie; Botella, Luisa M; Bernabeu, Carmelo; Wooderchak-Donahue, Whitney; Stevenson, David A; Bayrak-Toydemir, Pinar

    2011-12-22

    Hereditary hemorrhagic telangiectasia (HHT) is a vascular disorder characterized by epistaxis, arteriovenous malformations, and telangiectases. The majority of the patients have a mutation in the coding region of the activin A receptor type II-like 1 (ACVRL1) or Endoglin (ENG) gene. However, in approximately 15% of cases, sequencing analysis and deletion/duplication testing fail to identify mutations in the coding regions of these genes. Knowing its vital role in transcription and translation control, we were prompted to investigate the 5'untranslated region (UTR) of ENG. We sequenced the 5'UTR of ENG for 154 HHT patients without mutations in ENG or ACVRL1 coding regions. We found a mutation (c.-127C > T), which is predicted to affect translation initiation and alter the reading frame of endoglin. This mutation was found in a family with linkage to the ENG, as well as in three other patients, one of which had an affected sibling with the same mutation. In vitro expression studies showed that a construct with the c.-127C > T mutation alters the translation and decreases the level of the endoglin protein. In addition, a c.-9G > A mutation was found in three patients, one of whom was homozygous for this mutation. Expression studies showed decreased protein levels suggesting that the c.-9G > A is a hypomorphic mutation. Our results emphasize the need for the inclusion of the 5'UTR region of ENG in clinical testing for HHT.

  15. Ability of bacteriophage in resolving wound infection caused by multidrug-resistant Acinetobacter baumannii in uncontrolled diabetic rats.

    PubMed

    Shivaswamy, VinodKumar Chickmangalure; Kalasuramath, Suneeta Basavaraj; Sadanand, Chethan Kumar; Basavaraju, Abhishek Kilagere; Ginnavaram, Varsha; Bille, Sumanth; Ukken, Sanjay Saju; Pushparaj, Usha Nandini

    2015-04-01

    Acinetobacter baumannii, a substantial nosocomial pathogen, has developed resistance to almost all available antimicrobial drugs. Bacteriophage therapy is a possible alternative treatment for multidrug-resistant (MDR) bacterial infections. In this study, we have successfully isolated bacteriophage active against clinical strains of A. baumannii by enrichment from hospital sewage sludge using representatives of those strains. The bacteriophage isolated against A. baumannii formed plaques against beta-lactamases producing strains of A. baumannii. The utility of bacteriophage specific for A. baumannii to resolve wound infection in uncontrolled diabetic rats was evaluated. Five groups of uncontrolled diabetic rats were used. Group I was noninfected (Control), Group II was infected with MDR A. baumannii and challenged with bacteriophage, Group III was infected with MDR A. baumannii, Group IV was infected with MDR A. baumannii and challenged with antibiotic colistin, and Group V consisted of noninfected rats and sprayed with phage (Phage control). A significant decrease in infection, period of epithelization, and wound contraction was observed in the phage-challenged group when compared with antibiotic-treated uncontrolled diabetic rats and the control group. To conclude the study, new insights are provided into the biology of the broad host range of A. baumannii phage, demonstrating that A. baumannii phage has prospects for the treatment of infections caused by the MDR A. baumannii.

  16. Asparaginase II of Saccharomyces cerevisiae: selection of four mutations that cause derepressed enzyme synthesis.

    PubMed

    Kamerud, J Q; Roon, R J

    1986-01-01

    A positive selection method was used to isolate four Saccharomyces cerevisiae mutations that cause derepressed synthesis of asparaginase II. The four mutations (and1, and2, and3, and4) were neither closely linked to each other nor linked to previously characterized mutations (asp3, asp6) which cause the complete loss of asparaginase II activity. One of the new mutations (and4) was shown to be allelic to gdh-CR, a pleiotropic mutation which causes derepressed synthesis of a number of enzymes of nitrogen catabolism.

  17. Foot ulcer caused by multidrug-resistant Mycobacterium tuberculosis in a diabetic patient.

    PubMed

    Baveja, C P; Gumma, Vidya Nidhi; Jain, Manisha; Jha, Himanshu

    2010-10-01

    Osteoarticular tuberculosis is the fourth leading type of extrapulmonary tuberculosis. The disease has a progressive course and the diagnosis is often made in the later stages of bone destruction. We describe a case of a foot ulcer caused by drug-resistant Mycobacterium tuberculosis in a patient with known diabetes where the diagnosis was not suspected initially. Although tuberculous foot ulcers are rare, they should be included in the differential diagnosis of unknown foot ulcers. A greater awareness of this rare clinical entity may help in commencing specific evidence-based therapy quickly and preventing undue morbidity and mortality.

  18. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome

    PubMed Central

    Lemaire, Mathieu; Frémeaux-Bacchi, Véronique; Schaefer, Franz; Choi, Murim; Tang, Wai Ho; Le Quintrec, Moglie; Fakhouri, Fadi; Taque, Sophie; Nobili, François; Martinez, Frank; Ji, Weizhen; Overton, John D.; Mane, Shrikant M.; Nürnberg, Gudrun; Altmüller, Janine; Thiele, Holger; Morin, Denis; Deschenes, Georges; Baudouin, Véronique; Llanas, Brigitte; Collard, Laure; Majid, Mohammed A.; Simkova, Eva; Nürnberg, Peter; Rioux-Leclerc, Nathalie; Moeckel, Gilbert W.; Gubler, Marie Claire; Hwa, John; Loirat, Chantal; Lifton, Richard P.

    2013-01-01

    Pathologic thrombosis is a major cause of mortality. Hemolytic-uremic syndrome (HUS) features episodes of small vessel thrombosis resulting in microangiopathic hemolytic anemia, thrombocytopenia and renal failure1. Atypical HUS (aHUS) can result from genetic or autoimmune factors2 that lead to pathologic complement cascade activation3. By exome sequencing we identify recessive mutations in DGKE (diacylglycerol kinase epsilon) that co-segregate with aHUS in 9 unrelated kindreds, defining a distinctive Mendelian disease. Affected patients present with aHUS before age 1, have persistent hypertension, hematuria and proteinuria (sometimes nephrotic range), and develop chronic kidney disease with age. DGKE is found in endothelium, platelets, and podocytes. Arachidonic acid-containing diacylglycerols (DAG) activate protein kinase C, which promotes thrombosis. DGKE normally inactivates DAG signaling. We infer that loss of DGKE function results in a pro-thrombotic state. These findings identify a new mechanism of pathologic thrombosis and kidney failure and have immediate implications for treatment of aHUS patients. PMID:23542698

  19. Novel MBTPS2 missense mutation causes a keratosis follicularis spinulosa decalvans phenotype: mutation update and review of the literature.

    PubMed

    Zhang, J; Wang, Y; Cheng, R; Ni, C; Liang, J; Li, M; Yao, Z

    2016-10-01

    Keratosis follicularis spinulosa decalvans (KFSD) is an X-linked condition characterized by keratotic follicular papules and progressive alopecia, which is caused by mutations in the MBTPS2 gene. We carried out a genetic study on a child who was suspected clinically to have KFSD. Sanger sequencing was performed to detect mutations in the entire coding region of MBTPS2. A novel missense mutation (c.599C>T) was identified in the patient, confirming a diagnosis of KFSD. We reviewed related cases with MBTPS2 mutations for evidence of genotype-phenotype correlations.

  20. Mutations in KCNT1 cause a spectrum of focal epilepsies.

    PubMed

    Møller, Rikke S; Heron, Sarah E; Larsen, Line H G; Lim, Chiao Xin; Ricos, Michael G; Bayly, Marta A; van Kempen, Marjan J A; Klinkenberg, Sylvia; Andrews, Ian; Kelley, Kent; Ronen, Gabriel M; Callen, David; McMahon, Jacinta M; Yendle, Simone C; Carvill, Gemma L; Mefford, Heather C; Nabbout, Rima; Poduri, Annapurna; Striano, Pasquale; Baglietto, Maria G; Zara, Federico; Smith, Nicholas J; Pridmore, Clair; Gardella, Elena; Nikanorova, Marina; Dahl, Hans Atli; Gellert, Pia; Scheffer, Ingrid E; Gunning, Boudewijn; Kragh-Olsen, Bente; Dibbens, Leanne M

    2015-09-01

    Autosomal dominant mutations in the sodium-gated potassium channel subunit gene KCNT1 have been associated with two distinct seizure syndromes, nocturnal frontal lobe epilepsy (NFLE) and malignant migrating focal seizures of infancy (MMFSI). To further explore the phenotypic spectrum associated with KCNT1, we examined individuals affected with focal epilepsy or an epileptic encephalopathy for mutations in the gene. We identified KCNT1 mutations in 12 previously unreported patients with focal epilepsy, multifocal epilepsy, cardiac arrhythmia, and in a family with sudden unexpected death in epilepsy (SUDEP), in addition to patients with NFLE and MMFSI. In contrast to the 100% penetrance so far reported for KCNT1 mutations, we observed incomplete penetrance. It is notable that we report that the one KCNT1 mutation, p.Arg398Gln, can lead to either of the two distinct phenotypes, ADNFLE or MMFSI, even within the same family. This indicates that genotype-phenotype relationships for KCNT1 mutations are not straightforward. We demonstrate that KCNT1 mutations are highly pleiotropic and are associated with phenotypes other than ADNFLE and MMFSI. KCNT1 mutations are now associated with Ohtahara syndrome, MMFSI, and nocturnal focal epilepsy. They may also be associated with multifocal epilepsy and cardiac disturbances.

  1. The inhibition of human multidrug and toxin extrusion 1 is involved in the drug-drug interaction caused by cimetidine.

    PubMed

    Matsushima, Soichiro; Maeda, Kazuya; Inoue, Katsuhisa; Ohta, Kin-ya; Yuasa, Hiroaki; Kondo, Tsunenori; Nakayama, Hideki; Horita, Shigeru; Kusuhara, Hiroyuki; Sugiyama, Yuichi

    2009-03-01

    Cimetidine is known to cause drug-drug interactions (DDIs) with organic cations in the kidney, and a previous clinical study showed that coadministration of cimetidine or probenecid with fexofenadine (FEX) decreased its renal clearance. FEX was taken up into human kidney by human organic anion transporter (hOAT) 3 (SLC22A8), but the mechanism of its luminal efflux has not been clarified. The present study examined the molecular mechanism of these DDIs. Saturable uptake of FEX was observed in human kidney slices, with K(m) and V(max) values of 157+/-7 microM and 418+/-16 nmol/15 min/g kidney, respectively. Cimetidine only slightly inhibited its uptake even at 100 microM, far greater than its clinically relevant concentration, whereas 10 microM probenecid markedly inhibited its uptake. As candidate transporters for the luminal efflux of FEX, we focused on human multidrug and toxin extrusions MATE1 (SLC47A1) and MATE2-K (SLC47A2). Saturable uptake of FEX could be observed in human embryonic kidney 293 cells expressing human MATE1 (hMATE1), whereas hMATE2-K-specific uptake of FEX was too small to conduct its further kinetic analysis. The hMATE1-mediated uptake clearance of FEX was inhibited by cimetidine in a concentration-dependent manner, and it was decreased to 60% of the control value in the presence of 3 microM cimetidine. Taken together, our results suggest that the DDI of FEX with probenecid can be explained by the inhibition of renal uptake mediated by hOAT3, whereas the DDI with cimetidine is mainly caused by the inhibition of hMATE1-mediated efflux of FEX rather than the inhibition of its renal uptake process.

  2. Molecular mechanisms of disease-causing missense mutations

    PubMed Central

    Stefl, Shannon; Nishi, Hafumi; Petukh, Marharyta; Panchenko, Anna R.; Alexov, Emil

    2013-01-01

    Genetic variations resulting in a change of amino acid sequence can have a dramatic effect on stability, hydrogen bond network, conformational dynamics, activity and many other physiologically important properties of proteins. The substitutions of only one residue in a protein sequence, so-called missense mutations, can be related to many pathological conditions, and may influence susceptibility to disease and drug treatment. The plausible effects of missense mutations range from affecting the macromolecular stability to perturbing macromolecular interactions and cellular localization. Here we review the individual cases and genome-wide studies which illustrate the association between missense mutations and diseases. In addition we emphasize that the molecular mechanisms of effects of mutations should be revealed in order to understand the disease origin. Finally we report the current state-of-the-art methodologies which predict the effects of mutations on protein stability, the hydrogen bond network, pH-dependence, conformational dynamics and protein function. PMID:23871686

  3. FKRP mutations, including a founder mutation, cause phenotype variability in Chinese patients with dystroglycanopathies.

    PubMed

    Fu, Xiaona; Yang, Haipo; Wei, Cuijie; Jiao, Hui; Wang, Shuo; Yang, Yanling; Han, Chunxi; Wu, Xiru; Xiong, Hui

    2016-12-01

    Mutations in the fukutin-related protein (FKRP) gene have been associated with dystroglycanopathies, which are common in Europe but rare in Asia. Our study aimed to retrospectively analyze and characterize the clinical, myopathological and genetic features of 12 Chinese patients with FKRP mutations. Three patients were diagnosed with congenital muscular dystrophy type 1C (MDC1C) and nine patients were diagnosed with limb girdle muscular dystrophy type 2I (LGMD2I). Three muscle biopsy specimens had dystrophic changes and reduced glycosylated α-dystroglycan staining, and two showed reduced expression of laminin α2. Two known and 13 novel mutations were identified in our single center cohort. Interestingly, the c.545A>G mutation was found in eight of the nine LGMD2I patients as a founder mutation and this founder mutation in Chinese patients differs from the one seen in European patients. Moreover, patients homozygous for the c.545A>G mutation were clinically asymptomatic, a less severe phenotype than in compound heterozygous patients with the c.545A>G mutation. The 13 novel mutations of FKRP significantly expanded the mutation spectrum of MDC1C and LGMD2I, and the different founder mutations indicate the ethnic difference in FKRP mutations.

  4. Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes.

    PubMed

    Lewis, Daniel R; Miller, Nathan D; Splitt, Bessie L; Wu, Guosheng; Spalding, Edgar P

    2007-06-01

    Two Arabidopsis thaliana ABC transporter genes linked to auxin transport by various previous results were studied in a reverse-genetic fashion. Mutations in Multidrug Resistance-Like1 (MDR1) reduced acropetal auxin transport in roots by 80% without affecting basipetal transport. Conversely, mutations in MDR4 blocked 50% of basipetal transport without affecting acropetal transport. Developmental and auxin distribution phenotypes associated with these altered auxin flows were studied with a high-resolution morphometric system and confocal microscopy, respectively. Vertically grown mdr1 roots produced positive and negative curvatures threefold greater than the wild type, possibly due to abnormal auxin distribution observed in the elongation zone. However, upon 90 degrees reorientation, mdr1 gravitropism was inseparable from the wild type. Thus, acropetal auxin transport maintains straight growth but contributes surprisingly little to gravitropism. Conversely, vertically maintained mdr4 roots grew as straight as the wild type, but their gravitropism was enhanced. Upon reorientation, curvature in this mutant developed faster, was distributed more basally, and produced a greater total angle than the wild type. An amplified auxin asymmetry may explain the mdr4 hypertropism. Double mutant analysis indicated that the two auxin transport streams are more independent than interdependent. The hypothesis that flavanols regulate MDR-dependent auxin transport was supported by the epistatic relationship of mdr4 to the tt4 phenylpropanoid pathway mutation.

  5. Separating the Roles of Acropetal and Basipetal Auxin Transport on Gravitropism with Mutations in Two Arabidopsis Multidrug Resistance-Like ABC Transporter Genes[W][OA

    PubMed Central

    Lewis, Daniel R.; Miller, Nathan D.; Splitt, Bessie L.; Wu, Guosheng; Spalding, Edgar P.

    2007-01-01

    Two Arabidopsis thaliana ABC transporter genes linked to auxin transport by various previous results were studied in a reverse-genetic fashion. Mutations in Multidrug Resistance-Like1 (MDR1) reduced acropetal auxin transport in roots by 80% without affecting basipetal transport. Conversely, mutations in MDR4 blocked 50% of basipetal transport without affecting acropetal transport. Developmental and auxin distribution phenotypes associated with these altered auxin flows were studied with a high-resolution morphometric system and confocal microscopy, respectively. Vertically grown mdr1 roots produced positive and negative curvatures threefold greater than the wild type, possibly due to abnormal auxin distribution observed in the elongation zone. However, upon 90° reorientation, mdr1 gravitropism was inseparable from the wild type. Thus, acropetal auxin transport maintains straight growth but contributes surprisingly little to gravitropism. Conversely, vertically maintained mdr4 roots grew as straight as the wild type, but their gravitropism was enhanced. Upon reorientation, curvature in this mutant developed faster, was distributed more basally, and produced a greater total angle than the wild type. An amplified auxin asymmetry may explain the mdr4 hypertropism. Double mutant analysis indicated that the two auxin transport streams are more independent than interdependent. The hypothesis that flavanols regulate MDR-dependent auxin transport was supported by the epistatic relationship of mdr4 to the tt4 phenylpropanoid pathway mutation. PMID:17557805

  6. Mutation at embB codon 306, a potential marker for the identification of multidrug resistance associated with ethambutol in Mycobacterium tuberculosis.

    PubMed

    Cuevas-Córdoba, Betzaida; Juárez-Eusebio, Dulce María; Almaraz-Velasco, Raquel; Muñiz-Salazar, Raquel; Laniado-Laborin, Rafael; Zenteno-Cuevas, Roberto

    2015-09-01

    Ethambutol inhibits arabinogalactan and lipoarabinomannan biosynthesis in mycobacteria. The occurrence of mutations in embB codon 306 in ethambutol-susceptible isolates and their absence in resistant isolates has raised questions regarding the utility of this codon as a potential marker for resistance against ethambutol. The characterization of mutations on embB 306 will contribute to a better understanding of the mechanisms of resistance to this drug; therefore, the purpose of this study was to investigate the association between embB 306 mutations and first-line drug resistance profiles in tuberculosis isolates. We sequenced the region surrounding the embB 306 codon in 175 tuberculosis clinical isolates, divided according to drug sensitivity, in three groups: 110 were resistant to at least one first-line drug, of which 61 were resistant to ethambutol (EMB(r)), 49 were sensitive to ethambutol (EMB(s)) but were resistant to another drug, and 65 were pansensitive isolates (P(s)). The associations between embB 306 mutations and phenotypic resistance to all first-line drugs were determined, and their validity and safety as a diagnostic marker were assessed. One of the P(s) isolates (1/65), one of the EMB(s) isolates (1/49), and 20 of the EMB(r) isolates (20/61) presented with an embB 306 mutation. Four different single-nucleotide polymorphisms (SNPs) at embB 306 were associated with simultaneous resistance to ethambutol, isoniazid, and rifampin (odds ratio [OR], 17.7; confidence interval [CI], 5.6 to 56.1) and showed a positive predictive value of 82%, with a specificity of 97% for diagnosing multidrug resistance associated with ethambutol, indicating its potential as a molecular marker for several drugs.

  7. Computational simulations of structural role of the active-site W374C mutation of acetyl-coenzyme-A carboxylase: multi-drug resistance mechanism.

    PubMed

    Zhu, Xiao-Lei; Yang, Wen-Chao; Yu, Ning-Xi; Yang, Sheng-Gang; Yang, Guang-Fu

    2011-03-01

    Herbicides targeting grass plastidic acetyl-CoA carboxylase (ACCase, EC 6.4.1.2) are selectively effective against graminicides. The intensive worldwide use of this herbicide family has selected for resistance genes in a number of grass weed species. Recently, the active-site W374C mutation was found to confer multi-drug resistance toward haloxyfop (HF), fenoxaprop (FR), Diclofop (DF), and clodinafop (CF) in A. myosuroides. In order to uncover the resistance mechanism due to W374C mutation, the binding of above-mentioned four herbicides to both wild-type and the mutant-type ACCase was investigated in the current work by molecular docking and molecular dynamics (MD) simulations. The binding free energies were calculated by molecular mechanics-Poisson-Boltzmann surface area (MM/PBSA) method. The calculated binding free energy values for four herbicides were qualitatively consistent with the experimental order of IC(50) values. All the computational model and energetic results indicated that the W374C mutation has great effects on the conformational change of the binding pocket and the ligand-protein interactions. The most significant conformational change was found to be associated with the aromatic amino acid residues, such as Phe377, Tyr161' and Trp346. As a result, the π-π interaction between the ligand and the residue of Phe377 and Tyr161', which make important contributions to the binding affinity, was decreased after mutation and the binding affinity for the inhibitors to the mutant-type ACCase was less than that to the wild-type enzyme, which accounts for the molecular basis of herbicidal resistance. The structural role and mechanistic insights obtained from computational simulations will provide a new starting point for the rational design of novel inhibitors to overcome drug resistance associated with W374C mutation.

  8. Mutation at embB Codon 306, a Potential Marker for the Identification of Multidrug Resistance Associated with Ethambutol in Mycobacterium tuberculosis

    PubMed Central

    Cuevas-Córdoba, Betzaida; Juárez-Eusebio, Dulce María; Almaraz-Velasco, Raquel; Muñiz-Salazar, Raquel; Laniado-Laborin, Rafael

    2015-01-01

    Ethambutol inhibits arabinogalactan and lipoarabinomannan biosynthesis in mycobacteria. The occurrence of mutations in embB codon 306 in ethambutol-susceptible isolates and their absence in resistant isolates has raised questions regarding the utility of this codon as a potential marker for resistance against ethambutol. The characterization of mutations on embB 306 will contribute to a better understanding of the mechanisms of resistance to this drug; therefore, the purpose of this study was to investigate the association between embB 306 mutations and first-line drug resistance profiles in tuberculosis isolates. We sequenced the region surrounding the embB 306 codon in 175 tuberculosis clinical isolates, divided according to drug sensitivity, in three groups: 110 were resistant to at least one first-line drug, of which 61 were resistant to ethambutol (EMBr), 49 were sensitive to ethambutol (EMBs) but were resistant to another drug, and 65 were pansensitive isolates (Ps). The associations between embB 306 mutations and phenotypic resistance to all first-line drugs were determined, and their validity and safety as a diagnostic marker were assessed. One of the Ps isolates (1/65), one of the EMBs isolates (1/49), and 20 of the EMBr isolates (20/61) presented with an embB 306 mutation. Four different single-nucleotide polymorphisms (SNPs) at embB 306 were associated with simultaneous resistance to ethambutol, isoniazid, and rifampin (odds ratio [OR], 17.7; confidence interval [CI], 5.6 to 56.1) and showed a positive predictive value of 82%, with a specificity of 97% for diagnosing multidrug resistance associated with ethambutol, indicating its potential as a molecular marker for several drugs. PMID:26124153

  9. Dominant Mutations in GRM1 Cause Spinocerebellar Ataxia Type 44.

    PubMed

    Watson, Lauren M; Bamber, Elizabeth; Schnekenberg, Ricardo Parolin; Williams, Jonathan; Bettencourt, Conceição; Lickiss, Jennifer; Jayawant, Sandeep; Fawcett, Katherine; Clokie, Samuel; Wallis, Yvonne; Clouston, Penny; Sims, David; Houlden, Henry; Becker, Esther B E; Németh, Andrea H

    2017-09-07

    The metabotropic glutamate receptor 1 (mGluR1) is abundantly expressed in the mammalian central nervous system, where it regulates intracellular calcium homeostasis in response to excitatory signaling. Here, we describe heterozygous dominant mutations in GRM1, which encodes mGluR1, that are associated with distinct disease phenotypes: gain-of-function missense mutations, linked in two different families to adult-onset cerebellar ataxia, and a de novo truncation mutation resulting in a dominant-negative effect that is associated with juvenile-onset ataxia and intellectual disability. Crucially, the gain-of-function mutations could be pharmacologically modulated in vitro using an existing FDA-approved drug, Nitazoxanide, suggesting a possible avenue for treatment, which is currently unavailable for ataxias. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Characteristics, causes and evolutionary consequences of male-biased mutation.

    PubMed

    Ellegren, Hans

    2007-01-07

    Mutation has traditionally been considered a random process, but this paradigm is challenged by recent evidence of divergence rate heterogeneity in different genomic regions. One facet of mutation rate variation is the propensity for genetic change to correlate with the number of germ cell divisions, reflecting the replication-dependent origin of many mutations. Haldane was the first to connect this association of replication and mutation to the difference in the number of cell divisions in oogenesis (low) and spermatogenesis (usually high), and the resulting sex difference in the rate of mutation. The concept of male-biased mutation has been thoroughly analysed in recent years using an evolutionary approach, in which sequence divergence of autosomes and/or sex chromosomes are compared to allow inference about the relative contribution of mothers and fathers in the accumulation of mutations. For instance, assuming that a neutral sequence is analysed, that rate heterogeneity owing to other factors is cancelled out by the investigation of many loci and that the effect of ancestral polymorphism is properly taken into account, the male-to-female mutation rate ratio, alpham, can be solved from the observed difference in rate of X and Y chromosome divergence. The male mutation bias is positively correlated with the relative excess of cell divisions in the male compared to the female germ line, as evidenced by a generation time effect: in mammals, alpham is estimated at approximately 4-6 in primates, approximately 3 in carnivores and approximately 2 in small rodents. Another life-history correlate is sexual selection: when there is intense sperm competition among males, increased sperm production will be associated with a larger number of mitotic cell divisions in spermatogenesis and hence an increase in alpham. Male-biased mutation has implications for important aspects of evolutionary biology such as mate choice in relation to mutation load, sexual selection and the

  11. Characteristics, causes and evolutionary consequences of male-biased mutation

    PubMed Central

    Ellegren, Hans

    2006-01-01

    Mutation has traditionally been considered a random process, but this paradigm is challenged by recent evidence of divergence rate heterogeneity in different genomic regions. One facet of mutation rate variation is the propensity for genetic change to correlate with the number of germ cell divisions, reflecting the replication-dependent origin of many mutations. Haldane was the first to connect this association of replication and mutation to the difference in the number of cell divisions in oogenesis (low) and spermatogenesis (usually high), and the resulting sex difference in the rate of mutation. The concept of male-biased mutation has been thoroughly analysed in recent years using an evolutionary approach, in which sequence divergence of autosomes and/or sex chromosomes are compared to allow inference about the relative contribution of mothers and fathers in the accumulation of mutations. For instance, assuming that a neutral sequence is analysed, that rate heterogeneity owing to other factors is cancelled out by the investigation of many loci and that the effect of ancestral polymorphism is properly taken into account, the male-to-female mutation rate ratio, αm, can be solved from the observed difference in rate of X and Y chromosome divergence. The male mutation bias is positively correlated with the relative excess of cell divisions in the male compared to the female germ line, as evidenced by a generation time effect: in mammals, αm is estimated at approximately 4–6 in primates, approximately 3 in carnivores and approximately 2 in small rodents. Another life-history correlate is sexual selection: when there is intense sperm competition among males, increased sperm production will be associated with a larger number of mitotic cell divisions in spermatogenesis and hence an increase in αm. Male-biased mutation has implications for important aspects of evolutionary biology such as mate choice in relation to mutation load, sexual selection and the

  12. Mutations in argininosuccinate synthetase mRNA of Japanese patients, causing classical citrullinemia

    SciTech Connect

    Kobayashi, Keiko; Shaheen, Nazma; Terazono, Hiroki; Saheki, Takeyori

    1994-12-01

    Citrullinemia is an autosomal recessive disease caused by a genetic deficiency of argininosuccinate synthetase. In order to characterize mutations in Japanese patients with classical citrullinemia, RNA isolated from 10 unrelated patients was reverse-transcribed, and cDNA amplified by PCR was cloned and sequenced. The 10 mutations identified included 6 missense mutations (A118T, A192V, R272C, G280R, R304W, and R363L), 2 mutations associated with an absence of an exon 7 or exon 13, 1 mutation with a deletion of the first 7 bp in exon 16 (which might be caused by abnormal splicing), and 1 mutation with an insertion of 37 bp within exons 15 and 16 in cDNA. The insertion mutation and the five missense mutations (R304W being excluded) are new mutations described in the present paper. These are in addition to 14 mutations (9 missense mutations, 4 mutations associated with an absence of an exon in mRNA, and 1 splicing mutation) that we identified previously in mainly American patients with neonatal citrullinemia. Two of these 20 mutations, a deletion of exon 13 sequence and a 7-bp deletion in exon 16, were common to Japanese and American populations from different ethnic backgrounds; however, other mutations were unique to each population. Furthermore, the presence of a frequent mutation - the exon 7 deletion mutation in mRNA, which accounts for 10 of 23 affected alleles - was demonstrated in Japanese citrullinemia. This differs from the situation in the United States, where there was far greater heterogeneity of mutations.

  13. Changing carbapenemase gene pattern in an epidemic multidrug-resistant Acinetobacter baumannii lineage causing multiple outbreaks in central Italy

    PubMed Central

    D'Arezzo, Silvia; Principe, Luigi; Capone, Alessandro; Petrosillo, Nicola; Petrucca, Andrea; Visca, Paolo

    2011-01-01

    Objectives Infections caused by multidrug-resistant (MDR) Acinetobacter baumannii are a challenging problem worldwide. Here, the molecular epidemiology and the genetic basis of antibiotic resistance in 111 MDR A. baumannii strains isolated from June 2005 to March 2009 from infected patients in 10 intensive care units (ICUs) in central Italy were investigated. Methods Epidemiological typing was performed by random amplification of polymorphic DNA, PCR-based sequence grouping and macrorestriction analysis. MICs of antibiotics were determined by the broth microdilution method. Genes for OXA carbapenemases, metallo-β-lactamases and the CarO porin were searched for by PCR. Results Molecular genotyping identified one predominant A. baumannii lineage, related to the international clonal lineage II, accounting for 95.6% of isolates. Isolates referable to this lineage were recovered from all ICUs surveyed and were resistant to nearly all classes of antimicrobials, with the exception of tigecycline and colistin. A high percentage (60.5%) of A. baumannii isolates showed elevated resistance to imipenem (MICs ≥ 128 mg/L), concomitant with resistance to meropenem. Carbapenem resistance was associated with the presence of either blaOXA-58-like (22.8%) or blaOXA-23-like (71.1%) carbapenemase genes. Molecular typing showed that the epidemic lineage encoding OXA-23 emerged in 2007 and displaced a genetically related clone encoding OXA-58 that had been responsible for previous ICU outbreaks in the same region. Conclusions Emergence of the OXA-23 epidemic lineage could result from selective advantage conferred by the blaOXA-23-like determinant, which provides increased resistance to carbapenems. PMID:21088019

  14. One novel Dravet syndrome causing mutation and one recurrent MAE causing mutation in SCN1A gene.

    PubMed

    Yordanova, Iglika; Todorov, Tihomir; Dimova, Petia; Hristova, Dimitrina; Tincheva, Radka; Litvinenko, Ivan; Yotovska, Olga; Kremensky, Ivo; Todorova, Albena

    2011-04-25

    Mutations in SCN1A gene, encoding the voltage-gated sodium channel α1-subunit, are found to be associated with severe myoclonic epilepsy in infancy or Dravet syndrome (DS), but only rarely with the myoclonic astatic epilepsy (MAE, or Doose syndrome). We report on two patients with SCN1A mutations and severe epilepsy within the spectrum of generalized epilepsy with febrile seizures plus syndrome (GEFS+), the phenotypes being consistent with DS and MAE, respectively. Analysis of SCN1A revealed a heterozygous de novo frameshift mutation (c.4205_4208delGAAA) in the patient with DS, and a recurrent missense mutation (c.3521C>G) in that suffering from MAE. The missense mutation has been reported in patients with neurological diseases of various manifestations, which suggests that this variability is likely to result from the modifying effects of other genetic or environmental factors. DS phenotype has been mainly found associated with truncation mutations, while predominantly missense mutations and very few prematurely terminating substitutions have been reported in GEFS+ patients.

  15. cis-Regulatory Mutations Are a Genetic Cause of Human Limb Malformations

    PubMed Central

    VanderMeer, Julia E.; Ahituv, Nadav

    2011-01-01

    The underlying mutations that cause human limb malformations are often difficult to determine, particularly for limb malformations that occur as isolated traits. Evidence from a variety of studies shows that cis-regulatory mutations, specifically in enhancers, can lead to some of these isolated limb malformations. Here, we provide a review of human limb malformations that have been shown to be caused by enhancer mutations and propose that cis-regulatory mutations will continue to be identified as the cause of additional human malformations as our understanding of regulatory sequences improves. PMID:21509892

  16. Mutations Preventing Regulated Exon Skipping in MET Cause Osteofibrous Dysplasia

    PubMed Central

    Gray, Mary J.; Kannu, Peter; Sharma, Swarkar; Neyt, Christine; Zhang, Dongping; Paria, Nandina; Daniel, Philip B.; Whetstone, Heather; Sprenger, Hans-Georg; Hammerschmidt, Philipp; Weng, Angela; Dupuis, Lucie; Jobling, Rebekah; Mendoza-Londono, Roberto; Dray, Michael; Su, Peiqiang; Wilson, Megan J.; Kapur, Raj P.; McCarthy, Edward F.; Alman, Benjamin A.; Howard, Andrew; Somers, Gino R.; Marshall, Christian R.; Manners, Simon; Flanagan, Adrienne M.; Rathjen, Karl E.; Karol, Lori A.; Crawford, Haemish; Markie, David M.; Rios, Jonathan J.; Wise, Carol A.; Robertson, Stephen P.

    2015-01-01

    The periosteum contributes to bone repair and maintenance of cortical bone mass. In contrast to the understanding of bone development within the epiphyseal growth plate, factors that regulate periosteal osteogenesis have not been studied as intensively. Osteofibrous dysplasia (OFD) is a congenital disorder of osteogenesis and is typically sporadic and characterized by radiolucent lesions affecting the cortical bone immediately under the periosteum of the tibia and fibula. We identified germline mutations in MET, encoding a receptor tyrosine kinase, that segregate with an autosomal-dominant form of OFD in three families and a mutation in a fourth affected subject from a simplex family and with bilateral disease. Mutations identified in all families with dominant inheritance and in the one simplex subject with bilateral disease abolished the splice inclusion of exon 14 in MET transcripts, which resulted in a MET receptor (METΔ14) lacking a cytoplasmic juxtamembrane domain. Splice exclusion of this domain occurs during normal embryonic development, and forced induction of this exon-exclusion event retarded osteoblastic differentiation in vitro and inhibited bone-matrix mineralization. In an additional subject with unilateral OFD, we identified a somatic MET mutation, also affecting exon 14, that substituted a tyrosine residue critical for MET receptor turnover and, as in the case of the METΔ14 mutations, had a stabilizing effect on the mature protein. Taken together, these data show that aberrant MET regulation via the juxtamembrane domain subverts core MET receptor functions that regulate osteogenesis within cortical diaphyseal bone. PMID:26637977

  17. A novel mutation in PIGW causes glycosylphosphatidylinositol deficiency without hyperphosphatasia.

    PubMed

    Hogrebe, Max; Murakami, Yoshiko; Wild, Martin; Ahlmann, Martina; Biskup, Saskia; Hörtnagel, Konstanze; Grüneberg, Marianne; Reunert, Janine; Linden, Tobias; Kinoshita, Taroh; Marquardt, Thorsten

    2016-12-01

    In recent years, many mutations have been identified that affect the biosynthesis of the glycosylphosphatidylinositol anchor, a biomolecule that attaches surface molecules to cell membranes. Here, we present two second-degree cousins with unexplained patterns of seizures. Next-generation sequencing identified the homozygous c.460A>G; p.(R154G) PIGW mutation in both patients. Transfection of the mutated allele into Pigw-defective CHO cells indicated impaired enzymatic activity of the mutated PIGW product. Alkaline phosphatase did not exceed the upper normal range and flow cytometry of CD16, CD24, and CD66c on granulocytes showed subtle changes of the cellular expression of the glycosylphosphatidylinositol-anchored proteins. The patients' phenotype is therefore remarkably different from the phenotype of the only other described individual with PIGW mutations. Patients might therefore be missed when relying on traditional flow cytometry of glycosylphosphatidylinositol-anchored proteins only and we suggest that glycosylphosphatidylinositol-deficiency should be considered even with patients not showing the typical clinical phenotypes. © 2016 Wiley Periodicals, Inc.

  18. Mutations in PAX3 that cause Waardenburg syndrome type I: Ten new mutations and review of the literature

    SciTech Connect

    Baldwin, C.T.; Hoth, C.F.; Milunsky, A.

    1995-08-28

    Waardenburg syndrome (WS) is an autosomal-dominant disorder characterized by sensorineural hearing loss, dystopia canthorum, and pigmentary disturbances, and it represents the most common form of inherited deafness in infants. WS type I is characterized by the presence of dystopia canthorum, while individuals with WS type II have normally-located canthi. WS type III is similar to WS type I but is also characterized by musculoskeletal abnormalities. Defects in the PAX3 gene, a transcription factor expressed during embryonic development, have been shown to cause WS types I and III in several families. In contrast, mutations in PAX3 do not cause WS type II, and linkage of the disease to other chromosomal regions has been demonstrated. We describe 10 additional mutations in the PAX3 gene in families with WS type I. Eight of these mutations are in the region of PAX3, where only one mutation has been previously described. These mutations, together with those previously reported, cover essentially the entire PAX3 gene and represent a wide spectrum of mutations that can cause WS type I. Thus far, all but one of the mutations are private; only one mutation has been reported in two apparently unrelated families. Our analysis thus far demonstrates little correlation between genotype and phenotype; deletions of the entire PAX3 gene result in phenotypes indistinguishable from those associated with single-base substitutions in the paired domain or homeodomain of PAX3. Moreover, two similar mutations in close proximity can result in significantly different phenotypes, WS type I in one family and WS type III in another. 47 refs., 3 figs., 5 tabs.

  19. Mutations in TMEM231 cause Meckel–Gruber syndrome

    PubMed Central

    Shaheen, Ranad; Ansari, Shinu; Mardawi, Elham AL; Alshammari, Muneera J; Alkuraya, Fowzan S

    2013-01-01

    Background Meckel–Gruber syndrome (MKS) is a genetically heterogeneous severe ciliopathy characterised by early lethality, occipital encephalocele, polydactyly, and polycystic kidney disease. Purpose To report genetic analysis results in two families in which all known MKS diseases genes have been excluded. Methods In two consanguineous families with classical MKS in which autozygome-guided sequencing of previously reported MKS genes was negative, we performed exome sequencing followed by autozygome filtration. Results We identified one novel splicing mutation in TMEM231, which led to complete degradation of the mutant transcript in one family, and a novel missense mutation in the other, both in the homozygous state. Conclusions TMEM231 represents a novel MKS locus. The very recent identification of TMEM231 mutations in Joubert syndrome supports the growing appreciation of the overlap in the molecular pathogenesis between these two ciliopathies. PMID:23349226

  20. Mutations in TMEM231 cause Meckel-Gruber syndrome.

    PubMed

    Shaheen, Ranad; Ansari, Shinu; Mardawi, Elham Al; Alshammari, Muneera J; Alkuraya, Fowzan S

    2013-03-01

    Meckel-Gruber syndrome (MKS) is a genetically heterogeneous severe ciliopathy characterised by early lethality, occipital encephalocele, polydactyly, and polycystic kidney disease. To report genetic analysis results in two families in which all known MKS diseases genes have been excluded. In two consanguineous families with classical MKS in which autozygome-guided sequencing of previously reported MKS genes was negative, we performed exome sequencing followed by autozygome filtration. We identified one novel splicing mutation in TMEM231, which led to complete degradation of the mutant transcript in one family, and a novel missense mutation in the other, both in the homozygous state. TMEM231 represents a novel MKS locus. The very recent identification of TMEM231 mutations in Joubert syndrome supports the growing appreciation of the overlap in the molecular pathogenesis between these two ciliopathies.

  1. Hungarian surveillance of germinal mutations. Lack of detectable increase in indicator conditions caused by germinal mutations following the Chernobyl accident.

    PubMed

    Czeizel, A

    1989-07-01

    The Hungarian surveillance of germinal mutations is based on three indicator conditions seen in offspring, i.e., 15 sentinel anomalies, Down syndrome and component anomaly pairs of unidentified multiple congenital anomalies. It is an "opportunistic program," because the necessary data are available from the Hungarian Congenital Malformation Registry. This system is described and the criteria of a good registry are summarized. The analysis of indicator conditions caused by germinal mutations did not reveal any measurable mutagenic effects in Hungary following the accident at the Chernobyl nuclear power plant. The pros and cons of germinal mutation surveillance are discussed.

  2. RND-type efflux pumps in multidrug-resistant clinical isolates of Acinetobacter baumannii: major role for AdeABC overexpression and AdeRS mutations.

    PubMed

    Yoon, Eun-Jeong; Courvalin, Patrice; Grillot-Courvalin, Catherine

    2013-07-01

    Increased expression of chromosomal genes for resistance-nodulation-cell division (RND)-type efflux systems plays a major role in the multidrug resistance (MDR) of Acinetobacter baumannii. However, the relative contributions of the three most prevalent pumps, AdeABC, AdeFGH, and AdeIJK, have not been evaluated in clinical settings. We have screened 14 MDR clinical isolates shown to be distinct on the basis of multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) for the presence and overexpression of the three Ade efflux systems and analyzed the sequences of the regulators AdeRS, a two-component system, for AdeABC and AdeL, a LysR-type regulator, for AdeFGH. Gene adeB was detected in 13 of 14 isolates, and adeG and the intrinsic adeJ gene were detected in all strains. Significant overexpression of adeB was observed in 10 strains, whereas only 7 had moderately increased levels of expression of AdeFGH, and none overexpressed AdeIJK. Thirteen strains had reduced susceptibility to tigecycline, but there was no correlation between tigecycline MICs and the levels of AdeABC expression, suggesting the presence of other mechanisms for tigecycline resistance. No mutations were found in the highly conserved LysR regulator of the nine strains expressing AdeFGH. In contrast, functional mutations were found in conserved domains of AdeRS in all the strains that overexpressed AdeABC with two mutational hot spots, one in AdeS near histidine 149 suggesting convergent evolution and the other in the DNA binding domain of AdeR compatible with horizontal gene transfer. This report outlines the high incidence of AdeABC efflux pump overexpression in MDR A. baumannii as a result of a variety of single mutations in the corresponding two-component regulatory system.

  3. Isolation of a point mutation associated with altered expression of the CmeABC efflux pump in a multidrug-resistant Campylobacter jejuni population of poultry origin.

    PubMed

    Pérez-Boto, David; Acebo, Paloma; García-Peña, Francisco Javier; Abad, Juan Carlos; Echeita, María Aurora; Amblar, Mónica

    2015-06-01

    The objective of this study was to investigate the antibiotic resistance phenotype of Campylobacter jejuni isolates from a poultry flock of broiler production in Spain. Isolates were characterised by RFLP-PCR of the flaA gene and multilocus sequence typing. Minimum inhibitory concentrations of quinolones, aminoglycosides, β-lactams, tetracyclines, phenicols, macrolides and lincosamides were determined by Etest. Determinants of resistance and the regulatory region of the cmeABC operon were investigated in all isolates by PCR detection and sequencing. Expression of the CmeABC efflux pump was investigated by quantitative RT-PCR and accumulation assay. Based on their molecular markers, two different populations of C. jejuni were identified: one resistant to quinolones, β-lactams and tetracyclines, considered multidrug-resistant (MDR); and another resistant only to tetracyclines. Both populations possessed the tetO gene, previously associated with tetracycline resistance. The blaOXA-61 gene was also present in both populations, although only the MDR population showed β-lactamase activity. In addition, MDR isolates possessed the Thr86Ile mutation in the gyrA gene responsible for quinolone resistance. Moreover, sequencing of the regulatory region of the cmeABC operon revealed the presence of the C-32→T mutation in the MDR isolates, which was accompanied by an increase in cmeA mRNA levels compared with the non-mutant population. In conclusion, this is the first report of the mutation C-32→T in the cmeABC operon in C. jejuni isolates of veterinary origin. This mutation is associated with overexpression of the CmeABC efflux pump in a MDR population and is possibly related to enhanced tolerance to antimicrobials that favours the development of resistance.

  4. Mutations that Cause Human Disease: A Computational/Experimental Approach

    SciTech Connect

    Beernink, P; Barsky, D; Pesavento, B

    2006-01-11

    International genome sequencing projects have produced billions of nucleotides (letters) of DNA sequence data, including the complete genome sequences of 74 organisms. These genome sequences have created many new scientific opportunities, including the ability to identify sequence variations among individuals within a species. These genetic differences, which are known as single nucleotide polymorphisms (SNPs), are particularly important in understanding the genetic basis for disease susceptibility. Since the report of the complete human genome sequence, over two million human SNPs have been identified, including a large-scale comparison of an entire chromosome from twenty individuals. Of the protein coding SNPs (cSNPs), approximately half leads to a single amino acid change in the encoded protein (non-synonymous coding SNPs). Most of these changes are functionally silent, while the remainder negatively impact the protein and sometimes cause human disease. To date, over 550 SNPs have been found to cause single locus (monogenic) diseases and many others have been associated with polygenic diseases. SNPs have been linked to specific human diseases, including late-onset Parkinson disease, autism, rheumatoid arthritis and cancer. The ability to predict accurately the effects of these SNPs on protein function would represent a major advance toward understanding these diseases. To date several attempts have been made toward predicting the effects of such mutations. The most successful of these is a computational approach called ''Sorting Intolerant From Tolerant'' (SIFT). This method uses sequence conservation among many similar proteins to predict which residues in a protein are functionally important. However, this method suffers from several limitations. First, a query sequence must have a sufficient number of relatives to infer sequence conservation. Second, this method does not make use of or provide any information on protein structure, which can be used to

  5. FGFR3 mutation causes abnormal membranous ossification in achondroplasia.

    PubMed

    Di Rocco, Federico; Biosse Duplan, Martin; Heuzé, Yann; Kaci, Nabil; Komla-Ebri, Davide; Munnich, Arnold; Mugniery, Emilie; Benoist-Lasselin, Catherine; Legeai-Mallet, Laurence

    2014-06-01

    FGFR3 gain-of-function mutations lead to both chondrodysplasias and craniosynostoses. Achondroplasia (ACH), the most frequent dwarfism, is due to an FGFR3-activating mutation which results in impaired endochondral ossification. The effects of the mutation on membranous ossification are unknown. Fgfr3(Y367C/+) mice mimicking ACH and craniofacial analysis of patients with ACH and FGFR3-related craniosynostoses provide an opportunity to address this issue. Studying the calvaria and skull base, we observed abnormal cartilage and premature fusion of the synchondroses leading to modifications of foramen magnum shape and size in Fgfr3(Y367C/+) mice, ACH and FGFR3-related craniosynostoses patients. Partial premature fusion of the coronal sutures and non-ossified gaps in frontal bones were also present in Fgfr3(Y367C/+) mice and ACH patients. Our data provide strong support that not only endochondral ossification but also membranous ossification is severely affected in ACH. Demonstration of the impact of FGFR3 mutations on craniofacial development should initiate novel pharmacological and surgical therapeutic approaches.

  6. Familial dysautonomia is caused by mutations of the IKAP gene.

    PubMed

    Anderson, S L; Coli, R; Daly, I W; Kichula, E A; Rork, M J; Volpi, S A; Ekstein, J; Rubin, B Y

    2001-03-01

    The defective gene DYS, which is responsible for familial dysautonomia (FD) and has been mapped to a 0.5-cM region on chromosome 9q31, has eluded identification. We identified and characterized the RNAs encoded by this region of chromosome 9 in cell lines derived from individuals homozygous for the major FD haplotype, and we observed that the RNA encoding the IkappaB kinase complex-associated protein (IKAP) lacks exon 20 and, as a result of a frameshift, encodes a truncated protein. Sequence analysis reveals a T-->C transition in the donor splice site of intron 20. In individuals bearing a minor FD haplotype, a missense mutation in exon 19 disrupts a consensus serine/threonine kinase phosphorylation site. This mutation results in defective phosphorylation of IKAP. These mutations were observed to be present in a random sample of Ashkenazi Jewish individuals, at approximately the predicted carrier frequency of FD. These findings demonstrate that mutations in the gene encoding IKAP are responsible for FD.

  7. Familial Dysautonomia Is Caused by Mutations of the IKAP Gene

    PubMed Central

    Anderson, Sylvia L.; Coli, Rocco; Daly, Ira W.; Kichula, Elizabeth A.; Rork, Matthew J.; Volpi, Sabrina A.; Ekstein, Josef; Rubin, Berish Y.

    2001-01-01

    The defective gene DYS, which is responsible for familial dysautonomia (FD) and has been mapped to a 0.5-cM region on chromosome 9q31, has eluded identification. We identified and characterized the RNAs encoded by this region of chromosome 9 in cell lines derived from individuals homozygous for the major FD haplotype, and we observed that the RNA encoding the IκB kinase complex–associated protein (IKAP) lacks exon 20 and, as a result of a frameshift, encodes a truncated protein. Sequence analysis reveals a T→C transition in the donor splice site of intron 20. In individuals bearing a minor FD haplotype, a missense mutation in exon 19 disrupts a consensus serine/threonine kinase phosphorylation site. This mutation results in defective phosphorylation of IKAP. These mutations were observed to be present in a random sample of Ashkenazi Jewish individuals, at approximately the predicted carrier frequency of FD. These findings demonstrate that mutations in the gene encoding IKAP are responsible for FD. PMID:11179021

  8. Mosaic Activating Mutations in FGFR1 Cause Encephalocraniocutaneous Lipomatosis

    PubMed Central

    Bennett, James T.; Tan, Tiong Yang; Alcantara, Diana; Tétrault, Martine; Timms, Andrew E.; Jensen, Dana; Collins, Sarah; Nowaczyk, Malgorzata J.M.; Lindhurst, Marjorie J.; Christensen, Katherine M.; Braddock, Stephen R.; Brandling-Bennett, Heather; Hennekam, Raoul C.M.; Chung, Brian; Lehman, Anna; Su, John; Ng, SuYuen; Amor, David J.; Majewski, Jacek; Biesecker, Les G.; Boycott, Kym M.; Dobyns, William B.; O’Driscoll, Mark; Moog, Ute; McDonell, Laura M.

    2016-01-01

    Encephalocraniocutaneous lipomatosis (ECCL) is a sporadic condition characterized by ocular, cutaneous, and central nervous system anomalies. Key clinical features include a well-demarcated hairless fatty nevus on the scalp, benign ocular tumors, and central nervous system lipomas. Seizures, spasticity, and intellectual disability can be present, although affected individuals without seizures and with normal intellect have also been reported. Given the patchy and asymmetric nature of the malformations, ECCL has been hypothesized to be due to a post-zygotic, mosaic mutation. Despite phenotypic overlap with several other disorders associated with mutations in the RAS-MAPK and PI3K-AKT pathways, the molecular etiology of ECCL remains unknown. Using exome sequencing of DNA from multiple affected tissues from five unrelated individuals with ECCL, we identified two mosaic mutations, c.1638C>A (p.Asn546Lys) and c.1966A>G (p.Lys656Glu) within the tyrosine kinase domain of FGFR1, in two affected individuals each. These two residues are the most commonly mutated residues in FGFR1 in human cancers and are associated primarily with CNS tumors. Targeted resequencing of FGFR1 in multiple tissues from an independent cohort of individuals with ECCL identified one additional individual with a c.1638C>A (p.Asn546Lys) mutation in FGFR1. Functional studies of ECCL fibroblast cell lines show increased levels of phosphorylated FGFRs and phosphorylated FRS2, a direct substrate of FGFR1, as well as constitutive activation of RAS-MAPK signaling. In addition to identifying the molecular etiology of ECCL, our results support the emerging overlap between mosaic developmental disorders and tumorigenesis. PMID:26942290

  9. Mosaic Activating Mutations in FGFR1 Cause Encephalocraniocutaneous Lipomatosis.

    PubMed

    Bennett, James T; Tan, Tiong Yang; Alcantara, Diana; Tétrault, Martine; Timms, Andrew E; Jensen, Dana; Collins, Sarah; Nowaczyk, Malgorzata J M; Lindhurst, Marjorie J; Christensen, Katherine M; Braddock, Stephen R; Brandling-Bennett, Heather; Hennekam, Raoul C M; Chung, Brian; Lehman, Anna; Su, John; Ng, SuYuen; Amor, David J; Majewski, Jacek; Biesecker, Les G; Boycott, Kym M; Dobyns, William B; O'Driscoll, Mark; Moog, Ute; McDonell, Laura M

    2016-03-03

    Encephalocraniocutaneous lipomatosis (ECCL) is a sporadic condition characterized by ocular, cutaneous, and central nervous system anomalies. Key clinical features include a well-demarcated hairless fatty nevus on the scalp, benign ocular tumors, and central nervous system lipomas. Seizures, spasticity, and intellectual disability can be present, although affected individuals without seizures and with normal intellect have also been reported. Given the patchy and asymmetric nature of the malformations, ECCL has been hypothesized to be due to a post-zygotic, mosaic mutation. Despite phenotypic overlap with several other disorders associated with mutations in the RAS-MAPK and PI3K-AKT pathways, the molecular etiology of ECCL remains unknown. Using exome sequencing of DNA from multiple affected tissues from five unrelated individuals with ECCL, we identified two mosaic mutations, c.1638C>A (p.Asn546Lys) and c.1966A>G (p.Lys656Glu) within the tyrosine kinase domain of FGFR1, in two affected individuals each. These two residues are the most commonly mutated residues in FGFR1 in human cancers and are associated primarily with CNS tumors. Targeted resequencing of FGFR1 in multiple tissues from an independent cohort of individuals with ECCL identified one additional individual with a c.1638C>A (p.Asn546Lys) mutation in FGFR1. Functional studies of ECCL fibroblast cell lines show increased levels of phosphorylated FGFRs and phosphorylated FRS2, a direct substrate of FGFR1, as well as constitutive activation of RAS-MAPK signaling. In addition to identifying the molecular etiology of ECCL, our results support the emerging overlap between mosaic developmental disorders and tumorigenesis. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. GATA2 germline mutations impair GATA2 transcription, causing haploinsufficiency: functional analysis of the p.Arg396Gln mutation.

    PubMed

    Cortés-Lavaud, Xabier; Landecho, Manuel F; Maicas, Miren; Urquiza, Leire; Merino, Juana; Moreno-Miralles, Isabel; Odero, María D

    2015-03-01

    Germline GATA2 mutations have been identified as the cause of familial syndromes with immunodeficiency and predisposition to myeloid malignancies. GATA2 mutations appear to cause loss of function of the mutated allele leading to haploinsufficiency; however, this postulate has not been experimentally validated as the basis of these syndromes. We hypothesized that mutations that are translated into abnormal proteins could affect the transcription of GATA2, triggering GATA2 deficiency. Chromatin immunoprecipitation and luciferase assays showed that the human GATA2 protein activates its own transcription through a specific region located at -2.4 kb, whereas the p.Thr354Met, p.Thr355del, and p.Arg396Gln germline mutations impair GATA2 promoter activation. Accordingly, GATA2 expression was decreased to ∼58% in a patient with p.Arg396Gln, compared with controls. p.Arg396Gln is the second most common mutation in these syndromes, and no previous functional analyses have been performed. We therefore analyzed p.Arg396Gln. Our data show that p.Arg396Gln is a loss-of-function mutation affecting DNA-binding ability and, as a consequence, it fails to maintain the immature characteristics of hematopoietic stem and progenitor cells, which could result in defects in this cell compartment. In conclusion, we show that human GATA2 binds to its own promoter, activating its transcription, and that the aforementioned mutations impair the transcription of GATA2. Our results indicate that they can affect other GATA2 target genes, which could partially explain the variability of symptoms in these diseases. Moreover, we show that p.Arg396Gln is a loss-of-function mutation, which is unable to retain the progenitor phenotype in cells where it is expressed.

  11. Determination of integron frequency by a polymerase chain reaction-restriction fragment length polymorphism method in multidrug-resistant Escherichia coli, which causes urinary tract infections.

    PubMed

    Fallah, Fatemeh; Karimi, Abdollah; Goudarzi, Mehdi; Shiva, Farideh; Navidinia, Masoumeh; Jahromi, Mana Hadipour; Sajadi Nia, Raheleh Sadat

    2012-12-01

    The purpose of this study was to determine the presence of integrons in Escherichia coli, which cause urinary tract infections, and to define the association between integrons and antimicrobial susceptibility. Susceptibility of 200 isolates from urine samples of patients suffering from urinary tract infections to 13 antibiotics was determined by the Kirby-Bauer disk diffusion method. The existence of class1 and 2 integrons in resistant isolates was assessed by polymerase chain reaction-restriction fragment length polymorphism and sequencing. Antibiotic resistance patterns were observed as follows: amoxicillin 78%, tetracycline 76.1%, co-trimoxazole 67.7%, cephalotin 60%, nalidixic acid 57.4%, chloramphenicol 49%, gentamicin 46.4%, ceftazidim 38.1%, ciprofloxacin 36.2%, nitrofurantoin 33.5%, amikacin 32.1%, norfloxacin 36.1%, and imipenem 27.1%. Of 200 isolates, 155 (77.5%) were multidrug resistant (MDR). The existence of integrons was confirmed in 50.3% of isolates. Three class 1 integron types, aadA2 being the most frequently found, and four class 2 integron types are described. Significant association between resistance to gentamicin, co-trimoxazole, cephalotin, ceftazidim, imipenem, chloramphenicol, and nalidixic acid with the existence of integrons was observed. Multidrug resistance suggests that the strategy for treatment of patients with E.coli infections needs to be revised. Furthermore, it was shown that integrons may be partly responsible for multidrug resistance. Imipenem and norfloxacin were the most effective antibiotics against isolates.

  12. Two Novel De Novo GARS Mutations Cause Early-Onset Axonal Charcot-Marie-Tooth Disease.

    PubMed

    Liao, Yi-Chu; Liu, Yo-Tsen; Tsai, Pei-Chien; Chang, Chia-Ching; Huang, Yen-Hua; Soong, Bing-Wen; Lee, Yi-Chung

    2015-01-01

    Mutations in the GARS gene have been identified in a small number of patients with Charcot-Marie-Tooth disease (CMT) type 2D or distal spinal muscular atrophy type V, for whom disease onset typically occurs during adolescence or young adulthood, initially manifesting as weakness and atrophy of the hand muscles. The role of GARS mutations in patients with inherited neuropathies in Taiwan remains elusive. Mutational analyses of the coding regions of GARS were performed using targeted sequencing of 54 patients with molecularly unassigned axonal CMT, who were selected from 340 unrelated CMT patients. Two heterozygous mutations in GARS, p.Asp146Tyr and p.Met238Arg, were identified; one in each patient. Both are novel de novo mutations. The p.Asp146Tyr mutation is associated with a severe infantile-onset neuropathy and the p.Met238Arg mutation results in childhood-onset disability. GARS mutations are an uncommon cause of CMT in Taiwan. The p.Asp146Tyr and p.Met238Arg mutations are associated with early-onset axonal CMT. These findings broaden the mutational spectrum of GARS and also highlight the importance of considering GARS mutations as a disease cause in patients with early-onset neuropathies.

  13. Novel USH2A compound heterozygous mutations cause RP/USH2 in a Chinese family.

    PubMed

    Liu, Xiaowen; Tang, Zhaohui; Li, Chang; Yang, Kangjuan; Gan, Guanqi; Zhang, Zibo; Liu, Jingyu; Jiang, Fagang; Wang, Qing; Liu, Mugen

    2010-03-17

    To identify the disease-causing gene in a four-generation Chinese family affected with retinitis pigmentosa (RP). Linkage analysis was performed with a panel of microsatellite markers flanking the candidate genetic loci of RP. These loci included 38 known RP genes. The complete coding region and exon-intron boundaries of Usher syndrome 2A (USH2A) were sequenced with the proband DNA to screen the disease-causing gene mutation. Restriction fragment length polymorphism (RFLP) analysis and direct DNA sequence analysis were done to demonstrate co-segregation of the USH2A mutations with the family disease. One hundred normal controls were used without the mutations. The disease-causing gene in this Chinese family was linked to the USH2A locus on chromosome 1q41. Direct DNA sequence analysis of USH2A identified two novel mutations in the patients: one missense mutation p.G1734R in exon 26 and a splice site mutation, IVS32+1G>A, which was found in the donor site of intron 32 of USH2A. Neither the p.G1734R nor the IVS32+1G>A mutation was found in the unaffected family members or the 100 normal controls. One patient with a homozygous mutation displayed only RP symptoms until now, while three patients with compound heterozygous mutations in the family of study showed both RP and hearing impairment. This study identified two novel mutations: p.G1734R and IVS32+1G>A of USH2A in a four-generation Chinese RP family. In this study, the heterozygous mutation and the homozygous mutation in USH2A may cause Usher syndrome Type II or RP, respectively. These two mutations expand the mutant spectrum of USH2A.

  14. A molecular and clinical study of Larsen syndrome caused by mutations in FLNB

    PubMed Central

    Bicknell, Louise S; Farrington‐Rock, Claire; Shafeghati, Yousef; Rump, Patrick; Alanay, Yasemin; Alembik, Yves; Al‐Madani, Navid; Firth, Helen; Karimi‐Nejad, Mohammad Hassan; Kim, Chong Ae; Leask, Kathryn; Maisenbacher, Melissa; Moran, Ellen; Pappas, John G; Prontera, Paolo; de Ravel, Thomy; Fryns, Jean‐Pierre; Sweeney, Elizabeth; Fryer, Alan; Unger, Sheila; Wilson, L C; Lachman, Ralph S; Rimoin, David L; Cohn, Daniel H; Krakow, Deborah; Robertson, Stephen P

    2007-01-01

    Background Larsen syndrome is an autosomal dominant osteochondrodysplasia characterised by large‐joint dislocations and craniofacial anomalies. Recently, Larsen syndrome was shown to be caused by missense mutations or small inframe deletions in FLNB, encoding the cytoskeletal protein filamin B. To further delineate the molecular causes of Larsen syndrome, 20 probands with Larsen syndrome together with their affected relatives were evaluated for mutations in FLNB and their phenotypes studied. Methods Probands were screened for mutations in FLNB using a combination of denaturing high‐performance liquid chromatography, direct sequencing and restriction endonuclease digestion. Clinical and radiographical features of the patients were evaluated. Results and discussion The clinical signs most frequently associated with a FLNB mutation are the presence of supernumerary carpal and tarsal bones and short, broad, spatulate distal phalanges, particularly of the thumb. All individuals with Larsen syndrome‐associated FLNB mutations are heterozygous for either missense or small inframe deletions. Three mutations are recurrent, with one mutation, 5071G→A, observed in 6 of 20 subjects. The distribution of mutations within the FLNB gene is non‐random, with clusters of mutations leading to substitutions in the actin‐binding domain and filamin repeats 13–17 being the most common cause of Larsen syndrome. These findings collectively define autosomal dominant Larsen syndrome and demonstrate clustering of causative mutations in FLNB. PMID:16801345

  15. Tietz syndrome (hypopigmentation/deafness) caused by mutation of MITF

    PubMed Central

    Smith, S.; Kelley, P.; Kenyon, J.; Hoover, D.

    2000-01-01

    Patients with Tietz syndrome have congenital profound deafness and generalised hypopigmentation, inherited in a fully penetrant autosomal dominant fashion. The pigmentary features and complete penetrance make this syndrome distinct among syndromes with pigmentary anomalies and deafness, which characteristically have patchy depigmentation and variable penetrance. Only one family has been reported with the exact features described in the original report of this syndrome. This family was reascertained and a missense mutation was found in the basic region of the MITF gene in family members with Tietz syndrome. Mutations in other regions of this gene have been found to produce Waardenburg syndrome type 2 (WS2), which also includes pigmentary changes and hearing loss, but in contrast to Tietz syndrome, depigmentation is patchy and hearing loss is variable in WS2.


Keywords: Tietz syndrome; Waardenburg syndrome; deafness; MITF PMID:10851256

  16. Mutations in DCHS1 Cause Mitral Valve Prolapse

    PubMed Central

    Durst, Ronen; Sauls, Kimberly; Peal, David S; deVlaming, Annemarieke; Toomer, Katelynn; Leyne, Maire; Salani, Monica; Talkowski, Michael E.; Brand, Harrison; Perrocheau, Maëlle; Simpson, Charles; Jett, Christopher; Stone, Matthew R.; Charles, Florie; Chiang, Colby; Lynch, Stacey N.; Bouatia-Naji, Nabila; Delling, Francesca N.; Freed, Lisa A.; Tribouilloy, Christophe; Le Tourneau, Thierry; LeMarec, Hervé; Fernandez-Friera, Leticia; Solis, Jorge; Trujillano, Daniel; Ossowski, Stephan; Estivill, Xavier; Dina, Christian; Bruneval, Patrick; Chester, Adrian; Schott, Jean-Jacques; Irvine, Kenneth D.; Mao, Yaopan; Wessels, Andy; Motiwala, Tahirali; Puceat, Michel; Tsukasaki, Yoshikazu; Menick, Donald R.; Kasiganesan, Harinath; Nie, Xingju; Broome, Ann-Marie; Williams, Katherine; Johnson, Amanda; Markwald, Roger R.; Jeunemaitre, Xavier; Hagege, Albert; Levine, Robert A.; Milan, David J.; Norris, Russell A.; Slaugenhaupt, Susan A.

    2015-01-01

    SUMMARY Mitral valve prolapse (MVP) is a common cardiac valve disease that affects nearly 1 in 40 individuals1–3. It can manifest as mitral regurgitation and is the leading indication for mitral valve surgery4,5. Despite a clear heritable component, the genetic etiology leading to non-syndromic MVP has remained elusive. Four affected individuals from a large multigenerational family segregating non-syndromic MVP underwent capture sequencing of the linked interval on chromosome 11. We report a missense mutation in the DCHS1 gene, the human homologue of the Drosophila cell polarity gene dachsous (ds) that segregates with MVP in the family. Morpholino knockdown of the zebrafish homolog dachsous1b resulted in a cardiac atrioventricular canal defect that could be rescued by wild-type human DCHS1, but not by DCHS1 mRNA with the familial mutation. Further genetic studies identified two additional families in which a second deleterious DCHS1 mutation segregates with MVP. Both DCHS1 mutations reduce protein stability as demonstrated in zebrafish, cultured cells, and, notably, in mitral valve interstitial cells (MVICs) obtained during mitral valve repair surgery of a proband. Dchs1+/− mice had prolapse of thickened mitral leaflets, which could be traced back to developmental errors in valve morphogenesis. DCHS1 deficiency in MVP patient MVICs as well as in Dchs1+/− mouse MVICs result in altered migration and cellular patterning, supporting these processes as etiological underpinnings for the disease. Understanding the role of DCHS1 in mitral valve development and MVP pathogenesis holds potential for therapeutic insights for this very common disease. PMID:26258302

  17. Mutations in DCHS1 cause mitral valve prolapse.

    PubMed

    Durst, Ronen; Sauls, Kimberly; Peal, David S; deVlaming, Annemarieke; Toomer, Katelynn; Leyne, Maire; Salani, Monica; Talkowski, Michael E; Brand, Harrison; Perrocheau, Maëlle; Simpson, Charles; Jett, Christopher; Stone, Matthew R; Charles, Florie; Chiang, Colby; Lynch, Stacey N; Bouatia-Naji, Nabila; Delling, Francesca N; Freed, Lisa A; Tribouilloy, Christophe; Le Tourneau, Thierry; LeMarec, Hervé; Fernandez-Friera, Leticia; Solis, Jorge; Trujillano, Daniel; Ossowski, Stephan; Estivill, Xavier; Dina, Christian; Bruneval, Patrick; Chester, Adrian; Schott, Jean-Jacques; Irvine, Kenneth D; Mao, Yaopan; Wessels, Andy; Motiwala, Tahirali; Puceat, Michel; Tsukasaki, Yoshikazu; Menick, Donald R; Kasiganesan, Harinath; Nie, Xingju; Broome, Ann-Marie; Williams, Katherine; Johnson, Amanda; Markwald, Roger R; Jeunemaitre, Xavier; Hagege, Albert; Levine, Robert A; Milan, David J; Norris, Russell A; Slaugenhaupt, Susan A

    2015-09-03

    Mitral valve prolapse (MVP) is a common cardiac valve disease that affects nearly 1 in 40 individuals. It can manifest as mitral regurgitation and is the leading indication for mitral valve surgery. Despite a clear heritable component, the genetic aetiology leading to non-syndromic MVP has remained elusive. Four affected individuals from a large multigenerational family segregating non-syndromic MVP underwent capture sequencing of the linked interval on chromosome 11. We report a missense mutation in the DCHS1 gene, the human homologue of the Drosophila cell polarity gene dachsous (ds), that segregates with MVP in the family. Morpholino knockdown of the zebrafish homologue dachsous1b resulted in a cardiac atrioventricular canal defect that could be rescued by wild-type human DCHS1, but not by DCHS1 messenger RNA with the familial mutation. Further genetic studies identified two additional families in which a second deleterious DCHS1 mutation segregates with MVP. Both DCHS1 mutations reduce protein stability as demonstrated in zebrafish, cultured cells and, notably, in mitral valve interstitial cells (MVICs) obtained during mitral valve repair surgery of a proband. Dchs1(+/-) mice had prolapse of thickened mitral leaflets, which could be traced back to developmental errors in valve morphogenesis. DCHS1 deficiency in MVP patient MVICs, as well as in Dchs1(+/-) mouse MVICs, result in altered migration and cellular patterning, supporting these processes as aetiological underpinnings for the disease. Understanding the role of DCHS1 in mitral valve development and MVP pathogenesis holds potential for therapeutic insights for this very common disease.

  18. Severe forms of Baraitser–Winter syndrome are caused by ACTB mutations rather than ACTG1 mutations

    PubMed Central

    Di Donato, N; Rump, A; Koenig, R; Der Kaloustian, V M; Halal, F; Sonntag, K; Krause, C; Hackmann, K; Hahn, G; Schrock, E; Verloes, A

    2014-01-01

    ACTB and ACTG1 mutations have recently been reported to cause Baraitser–Winter syndrome (BRWS) – a rare condition characterized by ptosis, colobomata, neuronal migration disorder, distinct facial anomalies and intellectual disability. One of the patients carrying an ACTB mutation was previously diagnosed with Fryns–Aftimos syndrome (FAS), which is a rare and severe, multiple congenital anomaly (MCA) syndrome whose symptoms partially overlap with that of BRWS. However, several patients with Fryns–Aftimos were considered not to fit into the ACTB and ACTG1 spectrum because of their severe impairment and additional malformations. We report on three patients who had been diagnosed with FAS. All three patients carry a mutation in the ACTB gene. On the basis of the ACTB mutations and analysis of the clinical findings, we reclassify the diagnosis of these patients as severe BRWS. We suggest that mutations in ACTB cause a distinctly more severe phenotype than ACTG1 mutations, despite the structural similarity of beta- and gamma-actins and their overlapping expression pattern. We expand the spectrum of BRWS and confirm that FAS is not a separate entity but an early and severe manifestation of BRWS. PMID:23756437

  19. Novel Mutations in EPCAM Cause Congenital Tufting Enteropathy.

    PubMed

    Tang, Wenjuan; Huang, Taosheng; Xu, Zhongyao; Huang, Ying

    2016-11-21

    Congenital tufting enteropathy (CTE) is a rare autosomal recessive form of intractable diarrhea of infancy. Patients develop chronic diarrhea within days after birth, leading to severe malabsorption and significant mortality. CTE is characterized by subtotal villous atrophy with crypt hyperplasia. Typical features include abnormal villi in the intestinal epithelium and disorganization of surface enterocytes with focal crowding, resembling tufts. The pathogenesis of CTE remains poorly understood. CTE has been reported in Western populations, but until now had not been reported in China. The objective of this study was to identify the gene responsible for CTE in a Chinese individual. A 13-year-old girl with suspected CTE, whose parents were both healthy, was evaluated in our clinic. Tissues were obtained by endoscopy and examined by electron microscopy. Genomic DNA, extracted from the peripheral blood of the child and parents, was subjected to whole-exome sequencing. After mutations in the gene encoding epithelial cell adhesion molecule (EPCAM) were identified, expression of EPCAM was examined by immunohistochemistry staining. Whole-exome sequencing revealed compound heterozygous mutations in EPCAM in the patient, with immunohistochemical analysis showing complete loss of EPCAM expression in the intestinal villi and crypts. We identified compound heterozygous mutations in EPCAM, with loss of EPCAM expression in duodenal enterocytes, in a patient with intractable diarrhea since infancy who was subsequently diagnosed with CTE. This is the first case of CTE to be reported in a Chinese patient.

  20. Somatic Mutations in NEK9 Cause Nevus Comedonicus

    PubMed Central

    Levinsohn, Jonathan L.; Sugarman, Jeffrey L.; McNiff, Jennifer M.; Antaya, Richard J.; Choate, Keith A.

    2016-01-01

    Acne vulgaris (AV) affects most adolescents, and of those affected, moderate to severe disease occurs in 20%. Comedones, follicular plugs consisting of desquamated keratinocytes and sebum, are central to its pathogenesis. Despite high heritability in first-degree relatives, AV genetic determinants remain incompletely understood. We therefore employed whole-exome sequencing (WES) in nevus comedonicus (NC), a rare disorder that features comedones and inflammatory acne cysts in localized, linear configurations. WES identified somatic NEK9 mutations, each affecting highly conserved residues within its kinase or RCC1 domains, in affected tissue of three out of three NC-affected subjects. All mutations are gain of function, resulting in increased phosphorylation at Thr210, a hallmark of NEK9 kinase activation. We found that comedo formation in NC is marked by loss of follicular differentiation markers, expansion of keratin-15-positive cells from localization within the bulge to the entire sub-bulge follicle and cyst, and ectopic expression of keratin 10, a marker of interfollicular differentiation not present in normal follicles. These findings suggest that NEK9 mutations in NC disrupt normal follicular differentiation and identify NEK9 as a potential regulator of follicular homeostasis. PMID:27153399

  1. Homozygous mutation in MERTK causes severe autosomal recessive retinitis pigmentosa.

    PubMed

    Ksantini, Mohamed; Lafont, Estèle; Bocquet, Béatrice; Meunier, Isabelle; Hamel, Christian P

    2012-01-01

    Gene identification in retinitis pigmentosa is a prerequisite to future therapies. Accordingly, autosomal recessive retinitis pigmentosa families were genotyped to search for causative mutations. Members of a consanguineous Moroccan family had standard ophthalmologic examination, optical coherence tomography-3 scan, autofluorescence testing, and electroretinogram. Their DNA was genotyped with the 250K SNP microchip (Affymetrix) and homozygosity mapping was done. MERTK exons were polymerase chain reaction amplified and sequenced. Two sisters and one brother out of 6 siblings had rod cone dystrophy type of retinitis pigmentosa. Salient features were night blindness starting in early infancy, dot-like whitish deposits in fovea and macula with corresponding autofluorescent dots in youngest patients, decreased visual acuity, and cone responses higher than rod responses at electroretinogram. The patients were homozygous in regions from chromosomes 2 and 8, but only that of chromosome 2 was inherited from a common ancestor. Sequencing of the MERTK gene belonging to the chromosome 2 region showed that the 3 affected patients carried a novel homozygous mutation in exon 17, c.2323C>T, leading to p.Arg775X, while their unaffected brothers and sister, parents, and paternal grandfather were heterozygous. MERTK mutations lead to severe retinitis pigmentosa with discrete dot-like autofluorescent deposits at early stages, which are a hallmark of this MERTK-specific dystrophy.

  2. Kif14 Mutation Causes Severe Brain Malformation and Hypomyelination

    PubMed Central

    Fujikura, Kohei; Setsu, Tomiyoshi; Tanigaki, Kenji; Abe, Takaya; Kiyonari, Hiroshi; Terashima, Toshio; Sakisaka, Toshiaki

    2013-01-01

    We describe a novel spontaneous mouse mutant, laggard (lag), characterized by a flat head, motor impairment and growth retardation. The mutation is inherited as an autosomal recessive trait, and lag/lag mice suffer from cerebellar ataxia and die before weaning. lag/lag mice exhibit a dramatic reduction in brain size and slender optic nerves. By positional cloning, we identify a splice site mutation in Kif14. Transgenic complementation with wild-type Kif14-cDNA alleviates ataxic phenotype in lag/lag mice. To further confirm that the causative gene is Kif14, we generate Kif14 knockout mice and find that all of the phenotypes of Kif14 knockout mice are similar to those of lag/lag mice. The main morphological abnormality of lag/lag mouse is severe hypomyelination in central nervous system. The lag/lag mice express an array of myelin-related genes at significantly reduced levels. The disrupted cytoarchitecture of the cerebellar and cerebral cortices appears to result from apoptotic cell death. Thus, we conclude that Kif14 is essential for the generation and maturation of late-developing structures such as the myelin sheath, cerebellar and cerebral cortices. So far, no Kif14-deficient mice or mutation in Kif14 has ever been reported and we firstly define the biological function of Kif14 in vivo. The discovery of mammalian models, laggard, has opened up horizons for researchers to add more knowledge regarding the etiology and pathology of brain malformation. PMID:23308235

  3. ALDH1A3 Mutations Cause Recessive Anophthalmia and Microphthalmia

    PubMed Central

    Fares-Taie, Lucas; Gerber, Sylvie; Chassaing, Nicolas; Clayton-Smith, Jill; Hanein, Sylvain; Silva, Eduardo; Serey, Margaux; Serre, Valérie; Gérard, Xavier; Baumann, Clarisse; Plessis, Ghislaine; Demeer, Bénédicte; Brétillon, Lionel; Bole, Christine; Nitschke, Patrick; Munnich, Arnold; Lyonnet, Stanislas; Calvas, Patrick; Kaplan, Josseline; Ragge, Nicola; Rozet, Jean-Michel

    2013-01-01

    Anophthalmia and microphthalmia (A/M) are early-eye-development anomalies resulting in absent or small ocular globes, respectively. A/M anomalies occur in syndromic or nonsyndromic forms. They are genetically heterogeneous, some mutations in some genes being responsible for both anophthalmia and microphthalmia. Using a combination of homozygosity mapping, exome sequencing, and Sanger sequencing, we identified homozygosity for one splice-site and two missense mutations in the gene encoding the A3 isoform of the aldehyde dehydrogenase 1 (ALDH1A3) in three consanguineous families segregating A/M with occasional orbital cystic, neurological, and cardiac anomalies. ALDH1A3 is a key enzyme in the formation of a retinoic acid gradient along the dorso-ventral axis during early eye development. Transitory expression of mutant ALDH1A3 open reading frames showed that both missense mutations reduce the accumulation of the enzyme, potentially leading to altered retinoic acid synthesis. Although the role of retinoic acid signaling in eye development is well established, our findings provide genetic evidence of a direct link between retinoic-acid-synthesis dysfunction and early-eye-development anomalies in humans. PMID:23312594

  4. Mutations Define Cross-talk between the N-terminal Nucleotide-binding Domain and Transmembrane Helix-2 of the Yeast Multidrug Transporter Pdr5

    PubMed Central

    Sauna, Zuben E.; Bohn, Sherry Supernavage; Rutledge, Robert; Dougherty, Michael P.; Cronin, Susan; May, Leopold; Xia, Di; Ambudkar, Suresh V.; Golin, John

    2008-01-01

    The yeast Pdr5 multidrug transporter is an important member of the ATP-binding cassette superfamily of proteins. We describe a novel mutation (S558Y) in transmembrane helix 2 of Pdr5 identified in a screen for suppressors that eliminated Pdr5-mediated cycloheximide hyper-resistance. Nucleotides as well as transport substrates bind to the mutant Pdr5 with an affinity comparable with that for wild-type Pdr5. Wild-type and mutant Pdr5s show ATPase activity with comparable Km(ATP) values. Nonetheless, drug sensitivity is equivalent in the mutant pdr5 and the pdr5 deletion. Finally, the transport substrate clotrimazole, which is a noncompetitive inhibitor of Pdr5 ATPase activity, has a minimal effect on ATP hydrolysis by the S558Y mutant. These results suggest that the drug sensitivity of the mutant Pdr5 is attributable to the uncoupling of NTPase activity and transport. We screened for amino acid alterations in the nucleotide-binding domains that would reverse the phenotypic effect of the S558Y mutation. A second-site mutation, N242K, located between the Walker A and signature motifs of the N-terminal nucleotide-binding domain, restores significant function. This region of the nucleotide-binding domain interacts with the transmembrane domains via the intracellular loop-1 (which connects transmembrane helices 2 and 3) in the crystal structure of Sav1866, a bacterial ATP-binding cassette drug transporter. These structural studies are supported by biochemical and genetic evidence presented here that interactions between transmembrane helix 2 and the nucleotide-binding domain, via the intracellular loop-1, may define at least part of the translocation pathway for coupling ATP hydrolysis to drug transport. PMID:18842589

  5. Exome Sequencing Identifies Mutations in CCDC114 as a Cause of Primary Ciliary Dyskinesia

    PubMed Central

    Knowles, Michael R.; Leigh, Margaret W.; Ostrowski, Lawrence E.; Huang, Lu; Carson, Johnny L.; Hazucha, Milan J.; Yin, Weining; Berg, Jonathan S.; Davis, Stephanie D.; Dell, Sharon D.; Ferkol, Thomas W.; Rosenfeld, Margaret; Sagel, Scott D.; Milla, Carlos E.; Olivier, Kenneth N.; Turner, Emily H.; Lewis, Alexandra P.; Bamshad, Michael J.; Nickerson, Deborah A.; Shendure, Jay; Zariwala, Maimoona A.

    2013-01-01

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 14 genes, but they collectively account for only ∼60% of all PCD. To identify mutations that cause PCD, we performed exome sequencing on six unrelated probands with ciliary outer dynein arm (ODA) defects. Mutations in CCDC114, an ortholog of the Chlamydomonas reinhardtii motility gene DCC2, were identified in a family with two affected siblings. Sanger sequencing of 67 additional individuals with PCD with ODA defects from 58 families revealed CCDC114 mutations in 4 individuals in 3 families. All 6 individuals with CCDC114 mutations had characteristic oto-sino-pulmonary disease, but none had situs abnormalities. In the remaining 5 individuals with PCD who underwent exome sequencing, we identified mutations in two genes (DNAI2, DNAH5) known to cause PCD, including an Ashkenazi Jewish founder mutation in DNAI2. These results revealed that mutations in CCDC114 are a cause of ciliary dysmotility and PCD and further demonstrate the utility of exome sequencing to identify genetic causes in heterogeneous recessive disorders. PMID:23261302

  6. Nocturnal frontal lobe epilepsy caused by a mutation in the GATOR1 complex gene NPRL3.

    PubMed

    Korenke, Georg-Christoph; Eggert, Marlene; Thiele, Holger; Nürnberg, Peter; Sander, Thomas; Steinlein, Ortrud K

    2016-03-01

    Mutations in NPRL3, one of three genes that encode proteins of the mTORC1-regulating GATOR1 complex, have recently been reported to cause cortical dysplasia with focal epilepsy. We have now analyzed a multiplex epilepsy family by whole exome sequencing and identified a frameshift mutation (NM_001077350.2; c.1522delG; p.E508Rfs*46) within exon 13 of NPRL3. This truncating mutation causes an epilepsy phenotype characterized by early childhood onset of mainly nocturnal frontal lobe epilepsy. The penetrance in our family was low (three affected out of six mutation carriers), compared to families with either ion channel- or DEPDC5-associated familial nocturnal frontal lobe epilepsy. The absence of apparent structural brain abnormalities suggests that mutations in NPRL3 are not necessarily associated with focal cortical dysplasia but might be able to cause epilepsy by different, yet unknown pathomechanisms. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  7. Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset.

    PubMed

    Bitoun, Marc; Bevilacqua, Jorge A; Prudhon, Bernard; Maugenre, Svetlana; Taratuto, Ana Lia; Monges, Soledad; Lubieniecki, Fabiana; Cances, Claude; Uro-Coste, Emmanuelle; Mayer, Michèle; Fardeau, Michel; Romero, Norma B; Guicheney, Pascale

    2007-12-01

    We report four heterozygous dynamin 2 (DNM2) mutations in five centronuclear myopathy patients aged 1 to 15 years. They all presented with neonatal hypotonia with weak suckling. Thereafter, their phenotype progressively improved. All patients demonstrated muscle weakness prominent in the lower limbs, and most of them also presented with facial weakness, open mouth, arched palate, ptosis, and ophthalmoparesis. Electrophysiology showed only myopathic changes, and muscle biopsies showed central nuclei and type 1 fiber hypotrophy and predominance. Our results expand the phenotypic spectrum of dynamin 2-related centronuclear myopathy from the classic mild form to the more severe neonatal phenotype.

  8. Disease causing mutations of troponin alter regulated actin state distributions.

    PubMed

    Chalovich, Joseph M

    2012-12-01

    Striated muscle contraction is regulated primarily through the action of tropomyosin and troponin that are bound to actin. Activation requires Ca(2+) binding to troponin and/or binding of high affinity myosin complexes to actin. Mutations within components of the regulatory complex may lead to familial cardiomyopathies and myopathies. In several cases examined, either physiological or pathological changes in troponin alter the distribution among states of actin-tropomyosin-troponin that differ in their abilities to stimulate myosin ATPase activity. These observations open possibilities for managing disorders of the troponin complex. Furthermore, analyses of mutant forms of troponin give insights into the regulation of striated muscle contraction.

  9. A homozygous mutation in LTBP2 causes isolated microspherophakia.

    PubMed

    Kumar, Arun; Duvvari, Maheswara R; Prabhakaran, Venkatesh C; Shetty, Jyoti S; Murthy, Gowri J; Blanton, Susan H

    2010-10-01

    Microspherophakia is an autosomal-recessive congenital disorder characterized by small spherical lens. It may be isolated or occur as part of a hereditary systemic disorder, such as Marfan syndrome, autosomal dominant and recessive forms of Weill-Marchesani syndrome, autosomal dominant glaucoma-lens ectopia-microspherophakia-stiffness-shortness syndrome, autosomal dominant microspherophakia with hernia, and microspherophakia-metaphyseal dysplasia. The purpose of this study was to map and identify the gene for isolated microspherophakia in two consanguineous Indian families. Using a whole-genome linkage scan in one family, we identified a likely locus for microspherophakia (MSP1) on chromosome 14q24.1-q32.12 between markers D14S588 and D14S1050 in a physical distance of 22.76 Mb. The maximum multi-point lod score was 2.91 between markers D14S1020 and D14S606. The MSP1 candidate region harbors 110 reference genes. DNA sequence analysis of one of the genes, LTBP2, detected a homozygous duplication (insertion) mutation, c.5446dupC, in the last exon (exon 36) in affected family members. This homozygous mutation is predicted to elongate the LTBP2 protein by replacing the last 6 amino acids with 27 novel amino acids. Microspherophakia in the second family did not map to this locus, suggesting genetic heterogeneity. The present study suggests a role for LTBP2 in the structural stability of ciliary zonules, and growth and development of lens.

  10. Recessive Osteogenesis Imperfecta Caused by Missense Mutations in SPARC

    PubMed Central

    Mendoza-Londono, Roberto; Fahiminiya, Somayyeh; Majewski, Jacek; Tétreault, Martine; Nadaf, Javad; Kannu, Peter; Sochett, Etienne; Howard, Andrew; Stimec, Jennifer; Dupuis, Lucie; Roschger, Paul; Klaushofer, Klaus; Palomo, Telma; Ouellet, Jean; Al-Jallad, Hadil; Mort, John S.; Moffatt, Pierre; Boudko, Sergei; Bächinger, Hans-Peter; Rauch, Frank

    2015-01-01

    Secreted protein, acidic, cysteine-rich (SPARC) is a glycoprotein that binds to collagen type I and other proteins in the extracellular matrix. Using whole-exome sequencing to identify the molecular defect in two unrelated girls with severe bone fragility and a clinical diagnosis of osteogenesis imperfecta type IV, we identified two homozygous variants in SPARC (GenBank: NM_003118.3; c.497G>A [p.Arg166His] in individual 1; c.787G>A [p.Glu263Lys] in individual 2). Published modeling and site-directed mutagenesis studies had previously shown that the residues substituted by these mutations form an intramolecular salt bridge in SPARC and are essential for the binding of SPARC to collagen type I. The amount of SPARC secreted by skin fibroblasts was reduced in individual 1 but appeared normal in individual 2. The migration of collagen type I alpha chains produced by these fibroblasts was mildly delayed on SDS-PAGE gel, suggesting some overmodification of collagen during triple helical formation. Pulse-chase experiments showed that collagen type I secretion was mildly delayed in skin fibroblasts from both individuals. Analysis of an iliac bone sample from individual 2 showed that trabecular bone was hypermineralized on the material level. In conclusion, these observations show that homozygous mutations in SPARC can give rise to severe bone fragility in humans. PMID:26027498

  11. Novel WISP3 mutations causing progressive pseudorheumatoid dysplasia in two Chinese families

    PubMed Central

    Yan, Wenjin; Dai, Jin; Xu, Zhihong; Shi, Dongquan; Chen, Dongyang; Xu, Xingquan; Song, Kai; Yao, Yao; Li, Lan; Ikegawa, Shiro; Teng, Huajian; Jiang, Qing

    2016-01-01

    Progressive pseudorheumatoid dysplasia (PPD) is a rare disease caused by mutations in the gene for Wnt1-inducible signaling pathway protein 3 (WISP3). Here, we report the clinical and radiographic manifestations of two Chinese PPD patients. We performed whole-exome sequencing for one patient and sequenced the WISP3 for the other. Three WISP3 mutations (c.396T>G, c.721T>G and c.679dup) were identified; the two missense mutations were novel. Our study expanded the WISP3 mutation spectrum. PMID:28018607

  12. Quantitative and sensitive detection of GNAS mutations causing mccune-albright syndrome with next generation sequencing.

    PubMed

    Narumi, Satoshi; Matsuo, Kumihiro; Ishii, Tomohiro; Tanahashi, Yusuke; Hasegawa, Tomonobu

    2013-01-01

    Somatic activating GNAS mutations cause McCune-Albright syndrome (MAS). Owing to low mutation abundance, mutant-specific enrichment procedures, such as the peptide nucleic acid (PNA) method, are required to detect mutations in peripheral blood. Next generation sequencing (NGS) can analyze millions of PCR amplicons independently, thus it is expected to detect low-abundance GNAS mutations quantitatively. In the present study, we aimed to develop an NGS-based method to detect low-abundance somatic GNAS mutations. PCR amplicons encompassing exons 8 and 9 of GNAS, in which most activating mutations occur, were sequenced on the MiSeq instrument. As expected, our NGS-based method could sequence the GNAS locus with very high read depth (approximately 100,000) and low error rate. A serial dilution study with use of cloned mutant and wildtype DNA samples showed a linear correlation between dilution and measured mutation abundance, indicating the reliability of quantification of the mutation. Using the serially diluted samples, the detection limits of three mutation detection methods (the PNA method, NGS, and combinatory use of PNA and NGS [PNA-NGS]) were determined. The lowest detectable mutation abundance was 1% for the PNA method, 0.03% for NGS and 0.01% for PNA-NGS. Finally, we analyzed 16 MAS patient-derived leukocytic DNA samples with the three methods, and compared the mutation detection rate of them. Mutation detection rate of the PNA method, NGS and PNA-NGS in 16 patient-derived peripheral blood samples were 56%, 63% and 75%, respectively. In conclusion, NGS can detect somatic activating GNAS mutations quantitatively and sensitively from peripheral blood samples. At present, the PNA-NGS method is likely the most sensitive method to detect low-abundance GNAS mutation.

  13. Hexosamine Biosynthetic Pathway Mutations Cause Neuromuscular Transmission Defect

    PubMed Central

    Senderek, Jan; Müller, Juliane S.; Dusl, Marina; Strom, Tim M.; Guergueltcheva, Velina; Diepolder, Irmgard; Laval, Steven H.; Maxwell, Susan; Cossins, Judy; Krause, Sabine; Muelas, Nuria; Vilchez, Juan J.; Colomer, Jaume; Mallebrera, Cecilia Jimenez; Nascimento, Andres; Nafissi, Shahriar; Kariminejad, Ariana; Nilipour, Yalda; Bozorgmehr, Bita; Najmabadi, Hossein; Rodolico, Carmelo; Sieb, Jörn P.; Steinlein, Ortrud K.; Schlotter, Beate; Schoser, Benedikt; Kirschner, Janbernd; Herrmann, Ralf; Voit, Thomas; Oldfors, Anders; Lindbergh, Christopher; Urtizberea, Andoni; von der Hagen, Maja; Hübner, Angela; Palace, Jacqueline; Bushby, Kate; Straub, Volker; Beeson, David; Abicht, Angela; Lochmüller, Hanns

    2011-01-01

    Neuromuscular junctions (NMJs) are synapses that transmit impulses from motor neurons to skeletal muscle fibers leading to muscle contraction. Study of hereditary disorders of neuromuscular transmission, termed congenital myasthenic syndromes (CMS), has helped elucidate fundamental processes influencing development and function of the nerve-muscle synapse. Using genetic linkage, we find 18 different biallelic mutations in the gene encoding glutamine-fructose-6-phosphate transaminase 1 (GFPT1) in 13 unrelated families with an autosomal recessive CMS. Consistent with these data, downregulation of the GFPT1 ortholog gfpt1 in zebrafish embryos altered muscle fiber morphology and impaired neuromuscular junction development. GFPT1 is the key enzyme of the hexosamine pathway yielding the amino sugar UDP-N-acetylglucosamine, an essential substrate for protein glycosylation. Our findings provide further impetus to study the glycobiology of NMJ and synapses in general. PMID:21310273

  14. Mutations in the promoter region of the aldolase B gene that cause hereditary fructose intolerance.

    PubMed

    Coffee, Erin M; Tolan, Dean R

    2010-12-01

    Hereditary fructose intolerance (HFI) is a potentially fatal inherited metabolic disease caused by a deficiency of aldolase B activity in the liver and kidney. Over 40 disease-causing mutations are known in the protein-coding region of ALDOB. Mutations upstream of the protein-coding portion of ALDOB are reported here for the first time. DNA sequence analysis of 61 HFI patients revealed single base mutations in the promoter, intronic enhancer, and the first exon, which is entirely untranslated. One mutation, g.-132G>A, is located within the promoter at an evolutionarily conserved nucleotide within a transcription factor-binding site. A second mutation, IVS1+1G>C, is at the donor splice site of the first exon. In vitro electrophoretic mobility shift assays show a decrease in nuclear extract-protein binding at the g.-132G>A mutant site. The promoter mutation results in decreased transcription using luciferase reporter plasmids. Analysis of cDNA from cells transfected with plasmids harboring the IVS1+1G>C mutation results in aberrant splicing leading to complete retention of the first intron (~5 kb). The IVS1+1G>C splicing mutation results in loss of luciferase activity from a reporter plasmid. These novel mutations in ALDOB represent 2% of alleles in American HFI patients, with IVS1+1G>C representing a significantly higher allele frequency (6%) among HFI patients of Hispanic and African-American ethnicity.

  15. Evidence that mutation accumulation does not cause aging in Saccharomyces cerevisiae.

    PubMed

    Kaya, Alaattin; Lobanov, Alexei V; Gladyshev, Vadim N

    2015-06-01

    The concept that mutations cause aging phenotypes could not be directly tested previously due to inability to identify age-related mutations in somatic cells and determine their impact on organismal aging. Here, we subjected Saccharomyces cerevisiae to multiple rounds of replicative aging and assessed de novo mutations in daughters of mothers of different age. Mutations did increase with age, but their low numbers, < 1 per lifespan, excluded their causal role in aging. Structural genome changes also had no role. A mutant lacking thiol peroxidases had the mutation rate well above that of wild-type cells, but this did not correspond to the aging pattern, as old wild-type cells with few or no mutations were dying, whereas young mutant cells with many more mutations continued dividing. In addition, wild-type cells lost mitochondrial DNA during aging, whereas shorter-lived mutant cells preserved it, excluding a causal role of mitochondrial mutations in aging. Thus, DNA mutations do not cause aging in yeast. These findings may apply to other damage types, suggesting a causal role of cumulative damage, as opposed to individual damage types, in organismal aging.

  16. Hyperphosphatemic familial tumoral calcinosis caused by a mutation in GALNT3 in a European kindred.

    PubMed

    Specktor, Polina; Cooper, John G; Indelman, Margarita; Sprecher, Eli

    2006-01-01

    Hyperphosphatemic familial tumoral calcinosis (HFTC) is an autosomal recessive metabolic disorder characterized by extensive phenotypic and genetic heterogeneity. HFTC was shown recently to result from mutations in two genes: GALNT3, coding for a glycosyltransferase responsible for initiating O-glycosylation, and FGF23, coding for a potent phosphaturic protein. All GALNT3 mutations reported so far have been identified in patients of either Middle Eastern or African-American extraction, corroborating numerous historical reports of the disorder in Africa and in the Middle East. In the present study, we describe a patient of Northern European origin displaying typical features of HFTC. Mutation analysis revealed that this patient carries a homozygous novel nonsense mutation in GALNT3 predicted to result in the synthesis of a significantly truncated protein. The present results expand the spectrum of known mutations in GALNT3 and demonstrate the existence of HFTC-causing mutations in this gene outside the Middle Eastern and African-American populations.

  17. Mutations in COL27A1 cause Steel syndrome and suggest a founder mutation effect in the Puerto Rican population

    PubMed Central

    Gonzaga-Jauregui, Claudia; Gamble, Candace N; Yuan, Bo; Penney, Samantha; Jhangiani, Shalini; Muzny, Donna M; Gibbs, Richard A; Lupski, James R; Hecht, Jacqueline T

    2015-01-01

    Osteochondrodysplasias represent a large group of developmental structural disorders that can be caused by mutations in a variety of genes responsible for chondrocyte development, differentiation, mineralization and early ossification. The application of whole-exome sequencing to disorders apparently segregating as Mendelian traits has proven to be an effective approach to disease gene identification for conditions with unknown molecular etiology. We identified a homozygous missense variant p.(Gly697Arg) in COL27A1, in a family with Steel syndrome and no consanguinity. Interestingly, the identified variant seems to have arisen as a founder mutation in the Puerto Rican population. PMID:24986830

  18. Mutations in COL27A1 cause Steel syndrome and suggest a founder mutation effect in the Puerto Rican population.

    PubMed

    Gonzaga-Jauregui, Claudia; Gamble, Candace N; Yuan, Bo; Penney, Samantha; Jhangiani, Shalini; Muzny, Donna M; Gibbs, Richard A; Lupski, James R; Hecht, Jacqueline T

    2015-03-01

    Osteochondrodysplasias represent a large group of developmental structural disorders that can be caused by mutations in a variety of genes responsible for chondrocyte development, differentiation, mineralization and early ossification. The application of whole-exome sequencing to disorders apparently segregating as Mendelian traits has proven to be an effective approach to disease gene identification for conditions with unknown molecular etiology. We identified a homozygous missense variant p.(Gly697Arg) in COL27A1, in a family with Steel syndrome and no consanguinity. Interestingly, the identified variant seems to have arisen as a founder mutation in the Puerto Rican population.

  19. Nitrative and oxidative DNA damage caused by K-ras mutation in mice

    SciTech Connect

    Ohnishi, Shiho; Saito, Hiromitsu; Suzuki, Noboru; Ma, Ning; Hiraku, Yusuke; Murata, Mariko; Kawanishi, Shosuke

    2011-09-23

    Highlights: {yields} Mutated K-ras in transgenic mice caused nitrative DNA damage, 8-nitroguanine. {yields} The mutagenic 8-nitroguanine seemed to be generated by iNOS via Ras-MAPK signal. {yields} Mutated K-ras produces additional mutagenic lesions, as a new oncogenic role. -- Abstract: Ras mutation is important for carcinogenesis. Carcinogenesis consists of multi-step process with mutations in several genes. We investigated the role of DNA damage in carcinogenesis initiated by K-ras mutation, using conditional transgenic mice. Immunohistochemical analysis revealed that mutagenic 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were apparently formed in adenocarcinoma caused by mutated K-ras. 8-Nitroguanine was co-localized with iNOS, eNOS, NF-{kappa}B, IKK, MAPK, MEK, and mutated K-ras, suggesting that oncogenic K-ras causes additional DNA damage via signaling pathway involving these molecules. It is noteworthy that K-ras mutation mediates not only cell over-proliferation but also the accumulation of mutagenic DNA lesions, leading to carcinogenesis.

  20. Congenital isolated adrenocorticotropin deficiency: an underestimated cause of neonatal death, explained by TPIT gene mutations.

    PubMed

    Vallette-Kasic, Sophie; Brue, Thierry; Pulichino, Anne-Marie; Gueydan, Magali; Barlier, Anne; David, Michel; Nicolino, Marc; Malpuech, Georges; Déchelotte, Pierre; Deal, Cheri; Van Vliet, Guy; De Vroede, Monique; Riepe, Felix G; Partsch, Carl-Joachim; Sippell, Wolfgang G; Berberoglu, Merih; Atasay, Begüm; de Zegher, Francis; Beckers, Dominique; Kyllo, Jennifer; Donohoue, Patricia; Fassnacht, Martin; Hahner, Stefanie; Allolio, Bruno; Noordam, C; Dunkel, Leo; Hero, Matti; Pigeon, B; Weill, Jacques; Yigit, Sevket; Brauner, Raja; Heinrich, Juan Jorge; Cummings, Elizabeth; Riddell, Christie; Enjalbert, Alain; Drouin, Jacques

    2005-03-01

    Tpit is a T box transcription factor important for terminal differentiation of pituitary proopiomelanocortin-expressing cells. We demonstrated that human and mouse mutations of the TPIT gene cause a neonatal-onset form of congenital isolated ACTH deficiency (IAD). In the absence of glucocorticoid replacement, IAD can lead to neonatal death by acute adrenal insufficiency. This clinical entity was not previously well characterized because of the small number of published cases. Since identification of the first TPIT mutations, we have enlarged our series of neonatal IAD patients to 27 patients from 21 unrelated families. We found TPIT mutations in 17 of 27 patients. We identified 10 different TPIT mutations, with one mutation found in five unrelated families. All patients appeared to be homozygous or compound heterozygous for TPIT mutations, and their unaffected parents are heterozygous carriers, confirming a recessive mode of transmission. We compared the clinical and biological phenotype of the 17 IAD patients carrying a TPIT mutation with the 10 IAD patients with normal TPIT-coding sequences. This series of neonatal IAD patients revealed a highly homogeneous clinical presentation, suggesting that this disease may be an underestimated cause of neonatal death. Identification of TPIT gene mutations as the principal molecular cause of neonatal IAD permits prenatal diagnosis for families at risk for the purpose of early glucocorticoid replacement therapy.

  1. De novo mutations in ATP1A3 cause alternating hemiplegia of childhood

    PubMed Central

    Heinzen, Erin L.; Swoboda, Kathryn J.; Hitomi, Yuki; Gurrieri, Fiorella; Nicole, Sophie; de Vries, Boukje; Tiziano, F. Danilo; Fontaine, Bertrand; Walley, Nicole M.; Heavin, Sinéad; Panagiotakaki, Eleni; Fiori, Stefania; Abiusi, Emanuela; Di Pietro, Lorena; Sweney, Matthew T.; Newcomb, Tara M.; Viollet, Louis; Huff, Chad; Jorde, Lynn B.; Reyna, Sandra P.; Murphy, Kelley J.; Shianna, Kevin V.; Gumbs, Curtis E.; Little, Latasha; Silver, Kenneth; Ptác̆ek, Louis J.; Haan, Joost; Ferrari, Michel D.; Bye, Ann M.; Herkes, Geoffrey K.; Whitelaw, Charlotte M.; Webb, David; Lynch, Bryan J.; Uldall, Peter; King, Mary D.; Scheffer, Ingrid E.; Neri, Giovanni; Arzimanoglou, Alexis; van den Maagdenberg, Arn M.J.M.; Sisodiya, Sanjay M.; Mikati, Mohamad A.; Goldstein, David B.; Nicole, Sophie; Gurrieri, Fiorella; Neri, Giovanni; de Vries, Boukje; Koelewijn, Stephany; Kamphorst, Jessica; Geilenkirchen, Marije; Pelzer, Nadine; Laan, Laura; Haan, Joost; Ferrari, Michel; van den Maagdenberg, Arn; Zucca, Claudio; Bassi, Maria Teresa; Franchini, Filippo; Vavassori, Rosaria; Giannotta, Melania; Gobbi, Giuseppe; Granata, Tiziana; Nardocci, Nardo; De Grandis, Elisa; Veneselli, Edvige; Stagnaro, Michela; Gurrieri, Fiorella; Neri, Giovanni; Vigevano, Federico; Panagiotakaki, Eleni; Oechsler, Claudia; Arzimanoglou, Alexis; Nicole, Sophie; Giannotta, Melania; Gobbi, Giuseppe; Ninan, Miriam; Neville, Brian; Ebinger, Friedrich; Fons, Carmen; Campistol, Jaume; Kemlink, David; Nevsimalova, Sona; Laan, Laura; Peeters-Scholte, Cacha; van den Maagdenberg, Arn; Casaer, Paul; Casari, Giorgio; Sange, Guenter; Spiel, Georg; Boneschi, Filippo Martinelli; Zucca, Claudio; Bassi, Maria Teresa; Schyns, Tsveta; Crawley, Francis; Poncelin, Dominique; Vavassori, Rosaria

    2012-01-01

    Alternating hemiplegia of childhood (AHC) is a rare, severe neurodevelopmental syndrome characterized by recurrent hemiplegic episodes and distinct neurologic manifestations. AHC is usually a sporadic disorder with unknown etiology. Using exome sequencing of seven patients with AHC, and their unaffected parents, we identified de novo nonsynonymous mutations in ATP1A3 in all seven AHC patients. Subsequent sequence analysis of ATP1A3 in 98 additional patients revealed that 78% of AHC cases have a likely causal ATP1A3 mutation, including one inherited mutation in a familial case of AHC. Remarkably, six ATP1A3 mutations explain the majority of patients, including one observed in 36 patients. Unlike ATP1A3 mutations that cause rapid-onset-dystonia-parkinsonism, AHC-causing mutations revealed consistent reductions in ATPase activity without effects on protein expression. This work identifies de novo ATP1A3 mutations as the primary cause of AHC, and offers insight into disease pathophysiology by expanding the spectrum of phenotypes associated with mutations in this gene. PMID:22842232

  2. PLA2G6 mutations and other rare causes of neurodegeneration with brain iron accumulation.

    PubMed

    McNeill, Alisdair

    2012-08-01

    There is a wide variety of genetic and sporadic causes for neurodegenerative disorders with apparent brain iron accumulation on magnetic resonance imaging. Rare recessive causes include PLA2G6 mutations (infantile neuroaxonal dystrophy), and mutations of ATP13A2 (Kufor Rakeb syndrome) and FA2H. A variety of sporadic neurological disorders can present brain iron accumulation on imaging, including multiple sclerosis and neurological manifestations of HIV infection. The relevant clinical and imaging features will be discussed.

  3. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease

    PubMed Central

    Caswell, Richard; Allen, Hana Lango; De Franco, Elisa; McDonald, Timothy J.; Rajala, Hanna; Ramelius, Anita; Barton, John; Heiskanen, Kaarina; Heiskanen-Kosma, Tarja; Kajosaari, Merja; Murphy, Nuala P.; Milenkovic, Tatjana; Seppänen, Mikko; Lernmark, Åke; Mustjoki, Satu; Otonkoski, Timo; Kere, Juha; Morgan, Noel G.; Ellard, Sian; Hattersley, Andrew T.

    2014-01-01

    Monogenic causes of autoimmunity give key insights to the complex regulation of the immune system. We report a new monogenic cause of autoimmunity resulting from de novo germline activating STAT3 mutations in 5 individuals with a spectrum of early-onset autoimmune disease including type 1 diabetes. These findings emphasise the critical role of STAT3 in autoimmune disease and contrast with the germline inactivating STAT3 mutations that result in Hyper IgE syndrome. PMID:25038750

  4. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease.

    PubMed

    Flanagan, Sarah E; Haapaniemi, Emma; Russell, Mark A; Caswell, Richard; Lango Allen, Hana; De Franco, Elisa; McDonald, Timothy J; Rajala, Hanna; Ramelius, Anita; Barton, John; Heiskanen, Kaarina; Heiskanen-Kosma, Tarja; Kajosaari, Merja; Murphy, Nuala P; Milenkovic, Tatjana; Seppänen, Mikko; Lernmark, Åke; Mustjoki, Satu; Otonkoski, Timo; Kere, Juha; Morgan, Noel G; Ellard, Sian; Hattersley, Andrew T

    2014-08-01

    Monogenic causes of autoimmunity provide key insights into the complex regulation of the immune system. We report a new monogenic cause of autoimmunity resulting from de novo germline activating STAT3 mutations in five individuals with a spectrum of early-onset autoimmune disease, including type 1 diabetes. These findings emphasize the critical role of STAT3 in autoimmune disease and contrast with the germline inactivating STAT3 mutations that result in hyper IgE syndrome.

  5. [Infantile hypophosphatasia caused by a novel compound heterozygous mutation: a case report and pedigree analysis].

    PubMed

    Li, Deng-Feng; Lan, Dan; Zhong, Jing-Zi; Dewan, Roma Kajal; Xie, Yan-Shu; Yang, Ying

    2017-05-01

    This article reported the clinical features of one child with infantile hypophosphatasia (HPP) and his pedigree information. The proband was a 5-month-old boy with multiple skeletal dysplasia (koilosternia, bending deformity of both radii, and knock-knee deformity of both knees), feeding difficulty, reduction in body weight, developmental delay, recurrent pneumonia and respiratory failure, and a significant reduction in blood alkaline phosphatase. Among his parents, sister, uncle, and aunt (other family members did not cooperate with us in the examination), his parents and aunt had a slight reduction in alkaline phosphatase and his aunt had scoliosis; there were no other clinical phenotypes or abnormal laboratory testing results. His ALPL gene mutation came from c.228delG mutation in his mother and c.407G>A compound heterozygous mutation in his father. His aunt carried c.228delG mutation. The c.407G>A mutation had been reported as the pathogenic mutation of HPP, and c.228delG mutation was a novel pathogenic mutation. Hypophosphatasia is caused by ALPL gene mutation, and ALPL gene detection is an effective diagnostic method. This study expands the mutation spectrum of ALPL gene and provides a theoretical basis for genetic diagnosis of this disease.

  6. Human and mouse TPIT gene mutations cause early onset pituitary ACTH deficiency

    PubMed Central

    Pulichino, Anne-Marie; Vallette-Kasic, Sophie; Couture, Catherine; Gauthier, Yves; Brue, Thierry; David, Michel; Malpuech, Georges; Deal, Cheri; Van Vliet, Guy; De Vroede, Monique; Riepe, Felix G.; Partsch, Carl-Joachim; Sippell, Wolfgang G.; Berberoglu, Merih; Atasay, Begüm; Drouin, Jacques

    2003-01-01

    Tpit is a highly cell-restricted transcription factor that is required for expression of the pro-opiomelanocortin (POMC) gene and for terminal differentiation of the pituitary corticotroph lineage. Its exclusive expression in pituitary POMC-expressing cells has suggested that its mutation may cause isolated deficiency of pituitary adrenocorticotropin (ACTH). We now show that Tpit-deficient mice constitute a model of isolated ACTH deficiency (IAD) that is very similar to human IAD patients carrying TPIT gene mutations. Through genetic analysis of a panel of IAD patients, we show that TPIT gene mutations are associated at high frequency with early onset IAD, but not with juvenile forms of this deficiency. We identified seven different TPIT mutations, including nonsense, missense, point deletion, and a genomic deletion. This work defines congenital early onset IAD as a relatively homogeneous clinical entity caused by recessive transmission of loss-of-function mutations in the TPIT gene. PMID:12651888

  7. Human and mouse TPIT gene mutations cause early onset pituitary ACTH deficiency.

    PubMed

    Pulichino, Anne-Marie; Vallette-Kasic, Sophie; Couture, Catherine; Gauthier, Yves; Brue, Thierry; David, Michel; Malpuech, Georges; Deal, Cheri; Van Vliet, Guy; De Vroede, Monique; Riepe, Felix G; Partsch, Carl-Joachim; Sippell, Wolfgang G; Berberoglu, Merih; Atasay, Begüm; Drouin, Jacques

    2003-03-15

    Tpit is a highly cell-restricted transcription factor that is required for expression of the pro-opiomelanocortin (POMC) gene and for terminal differentiation of the pituitary corticotroph lineage. Its exclusive expression in pituitary POMC-expressing cells has suggested that its mutation may cause isolated deficiency of pituitary adrenocorticotropin (ACTH). We now show that Tpit-deficient mice constitute a model of isolated ACTH deficiency (IAD) that is very similar to human IAD patients carrying TPIT gene mutations. Through genetic analysis of a panel of IAD patients, we show that TPIT gene mutations are associated at high frequency with early onset IAD, but not with juvenile forms of this deficiency. We identified seven different TPIT mutations, including nonsense, missense, point deletion, and a genomic deletion. This work defines congenital early onset IAD as a relatively homogeneous clinical entity caused by recessive transmission of loss-of-function mutations in the TPIT gene.

  8. Mutations in phospholipase C epsilon 1 are not sufficient to cause diffuse mesangial sclerosis.

    PubMed

    Gilbert, Rodney D; Turner, Claire L S; Gibson, Jane; Bass, Paul S; Haq, Mushfequr R; Cross, Esta; Bunyan, David J; Collins, Andrew R; Tapper, William J; Needell, Juliet C; Dell, Beverley; Morton, Newton E; Temple, I Karen; Robinson, David O

    2009-02-01

    Diffuse mesangial sclerosis occurs as an isolated abnormality or as a part of a syndrome. Recently, mutations in phospholipase C epsilon 1 (PLCE1) were found to cause a nonsyndromic, autosomal recessive form of this disease. Here we describe three children from one consanguineous kindred of Pakistani origin with diffuse mesangial sclerosis who presented with congenital or infantile nephrotic syndrome. Homozygous mutations in PLCE1 (also known as KIAA1516, PLCE, or NPHS3) were identified following genome-wide mapping of single-nucleotide polymorphisms. All affected children were homozygous for a four-basepair deletion in exon 3, which created a premature translational stop codon. Analysis of the asymptomatic father of two of the children revealed that he was also homozygous for the same mutation. We conclude this nonpenetrance may be due to compensatory mutations at a second locus and that mutation within PLCE1 is not always sufficient to cause diffuse mesangial sclerosis.

  9. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation.

    PubMed

    White, Kenneth E; Cabral, Jose M; Davis, Siobhan I; Fishburn, Tonya; Evans, Wayne E; Ichikawa, Shoji; Fields, Joanna; Yu, Xijie; Shaw, Nick J; McLellan, Neil J; McKeown, Carole; Fitzpatrick, David; Yu, Kai; Ornitz, David M; Econs, Michael J

    2005-02-01

    Activating mutations in the genes for fibroblast growth factor receptors 1-3 (FGFR1-3) are responsible for a diverse group of skeletal disorders. In general, mutations in FGFR1 and FGFR2 cause the majority of syndromes involving craniosynostosis, whereas the dwarfing syndromes are largely associated with FGFR3 mutations. Osteoglophonic dysplasia (OD) is a "crossover" disorder that has skeletal phenotypes associated with FGFR1, FGFR2, and FGFR3 mutations. Indeed, patients with OD present with craniosynostosis, prominent supraorbital ridge, and depressed nasal bridge, as well as the rhizomelic dwarfism and nonossifying bone lesions that are characteristic of the disorder. We demonstrate here that OD is caused by missense mutations in highly conserved residues comprising the ligand-binding and transmembrane domains of FGFR1, thus defining novel roles for this receptor as a negative regulator of long-bone growth.

  10. Characterization of mutations causing rifampicin and isoniazid resistance of Mycobacterium tuberculosis in Syria.

    PubMed

    Madania, Ammar; Habous, Maya; Zarzour, Hana; Ghoury, Ifad; Hebbo, Barea

    2012-01-01

    In order to characterize mutations causing rifampicin and isoniazid resistance of M. tuberculosis in Syria, 69 rifampicin resistant (Rif(r)) and 72 isoniazid resistant (Inh(r)) isolates were screened for point mutations in hot spots of the rpoB, katG and inhA genes by DNA sequencing and real time PCR. Of 69 Rif(r) isolates, 62 (90%) had mutations in the rifampin resistance determining region (RRDR) of the rpoB gene, with codons 531 (61%), 526 (13%), and 516 (8.7%) being the most commonly mutated. We found two new mutations (Asp516Thr and Ser531Gly) described for the first time in the rpoB-RRDR in association with rifampicin resistance. Only one mutation (Ile572Phe) was found outside the rpoB-RRDR. Of 72 Inh(r) strains, 30 (41.6%) had a mutation in katGcodon315 (with Ser315Thr being the predominant alteration), and 23 (32%) harbored the inhA(-15C-->T) mutation. While the general pattern of rpoB-RRDR and katG mutations reflected those found worldwide, the prevalence of the inhA(-15C-->T mutation was above the value found in most other countries, emphasizing the great importance of testing the inhA(-15C-->T) mutation for prediction of isoniazid resistance in Syria. Sensitivity of a rapid test using real time PCR and 3'-Minor groove binder (MGB) probes in detecting Rif(r) and Inh(r) isolates was 90% and 69.4%, respectively. This demonstrates that a small set of MGB-probes can be used in real time PCR in order to detect most mutations causing resistance to rifampicin and isoniazid.

  11. Selection of the highly replicative and partially multidrug resistant rtS78T HBV polymerase mutation during TDF-ETV combination therapy.

    PubMed

    Shirvani-Dastgerdi, Elham; Winer, Benjamin Y; Celià-Terrassa, Toni; Kang, Yibin; Tabernero, David; Yagmur, Eray; Rodríguez-Frías, Francisco; Gregori, Josep; Luedde, Tom; Trautwein, Christian; Ploss, Alexander; Tacke, Frank

    2017-08-01

    Patients chronically infected with the hepatitis B virus (HBV) and receiving long-term treatment with nucleoside or nucleotide analogues are at risk of selecting HBV strains with complex mutational patterns. We herein report two cases of HBV-infected patients with insufficient viral suppression, despite dual antiviral therapy with entecavir (ETV) and tenofovir (TDF). One patient died from aggressive hepatocellular carcinoma (HCC). Serum samples from the two patients at different time points were analyzed using ultra-deep pyrosequencing analysis. HBV mutations were identified and transiently transfected into hepatoma cells in vitro using replication-competent HBV vectors, and functionally analyzed. We assessed replication efficacy, resistance to antivirals and potential impact on HBV secretion (viral particles, exosomes). Sequencing analyses revealed the selection of the rtS78T HBV polymerase mutation in both cases that simultaneously creates a premature stop codon at sC69 and thereby deletes almost the entire small HBV surface protein. One of the patients had an additional 261bp deletion in the preS1/S2 region. Functional analyses of the mutations in vitro revealed that the rtS78T/sC69∗ mutation, but not the preS1/S2 deletion, significantly enhanced viral replication and conferred reduced susceptibility to ETV and TDF. The sC69∗ mutation caused truncation of HBs protein, leading to impaired detection by commercial HBsAg assay, without causing intracellular HBsAg retention or affecting HBV secretion. The rtS78T/sC69∗ HBV mutation, associated with enhanced replication and insufficient response to antiviral treatment, may favor long-term persistence of these isolates. In addition to the increased production of HBV transcripts and the sustained secretion of viral particles in the absence of antigenic domains of S protein, this HBV mutation may predispose patients to carcinogenic effects. Long-term treatment with antiviral drugs carries the risk of selecting

  12. Splice, insertion-deletion and nonsense mutations that perturb the phenylalanine hydroxylase transcript cause phenylketonuria in India.

    PubMed

    Bashyam, Murali D; Chaudhary, Ajay K; Kiran, Manjari; Nagarajaram, Hampapathalu A; Devi, Radha Rama; Ranganath, Prajnya; Dalal, Ashwin; Bashyam, Leena; Gupta, Neerja; Kabra, Madhulika; Muranjan, Mamta; Puri, Ratna D; Verma, Ishwar C; Nampoothiri, Sheela; Kadandale, Jayarama S

    2014-03-01

    Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutational inactivation of the phenylalanine hydroxylase (PAH) gene. Missense mutations are the most common PAH mutation type detected in PKU patients worldwide. We performed PAH mutation analysis in 27 suspected Indian PKU families (including 7 from our previous study) followed by structure and function analysis of specific missense and splice/insertion-deletion/nonsense mutations, respectively. Of the 27 families, disease-causing mutations were detected in 25. A total of 20 different mutations were identified of which 7 "unique" mutations accounted for 13 of 25 mutation positive families. The unique mutations detected exclusively in Indian PKU patients included three recurrent mutations detected in three families each. The 20 mutations included only 5 missense mutations in addition to 5 splice, 4 each nonsense and insertion-deletion mutations, a silent variant in coding region and a 3'UTR mutation. One deletion and two nonsense mutations were characterized to confirm significant reduction in mutant transcript levels possibly through activation of nonsense mediated decay. All missense mutations affected conserved amino acid residues and sequence and structure analysis suggested significant perturbations in the enzyme activity of respective mutant proteins. This is probably the first report of identification of a significantly low proportion of missense PAH mutations from PKU families and together with the presence of a high proportion of splice, insertion-deletion, and nonsense mutations, points to a unique PAH mutation profile in Indian PKU patients. © 2013 Wiley Periodicals, Inc.

  13. The C342R mutation in FGFR2 causes Crouzon syndrome with elbow deformity.

    PubMed

    Ke, Ronghu; Yang, Xianxian; Tianyi, Cai; Ge, Min; Lei, Jiaqi; Mu, Xiongzheng

    2015-03-01

    Crouzon syndrome is an autosomal dominant craniosynostosis syndrome caused by mutation in the fibroblast growth factor receptor 2 (FGFR-2). Numerous findings from animal studies imply a critical role for FGFRs in the regulation of skeletal development. Here, we report 2 unrelated patients with Crouzon syndrome accompanied by elbow deformity. Subsequently, we analyzed the sequence of the FGFR2 gene and found that both of the patients carried the Cys342Arg mutation. The findings suggest that the C342R mutation in FGFR2 may cause Crouzon syndrome and elbow deformity in Chinese patients.

  14. Novel mutation in FOXC1 wing region causing Axenfeld-Rieger anomaly.

    PubMed

    Panicker, Shirly G; Sampath, Srirangan; Mandal, Anil K; Reddy, Aramati B M; Ahmed, Niyaz; Hasnain, Seyed E

    2002-12-01

    To determine the possible molecular genetic defect underlying Axenfeld-Rieger anomaly (ARA) and to identify the pathogenic mutation causing this anterior segment dysgenesis in an Indian pedigree. The FOXC1 gene was amplified from genomic DNA of members of an ARA-affected family and control subjects using four novel sets of primers. The amplicons were directly sequenced, and the sequences were analyzed to identify the disease-causing mutation. A heterozygous novel missense mutation was identified in the coding region of the FOXC1 gene in all three patients in this family. Consistent with the autosomal dominant inheritance pattern, the mutation segregated with the disease phenotype and was fully penetrant. The mutation was found in the wing region of the highly conserved forkhead domain of the FOXC1 gene and resulted in a very severe phenotype leading to blindness. This is the first study to demonstrate that a mutation in the FOXC1 wing region can cause an anterior segment dysgenesis of the eye. This mutation resulted in blindness in the ARA-affected family, and the findings suggest that the FOXC1 wing region has a functional role in the normal development of the eye. Moreover, this is the first study from India to report the genetic etiology of Axenfeld-Rieger anomaly. Genotype-phenotype correlations of FOXC1 may help in establishing the disease prognosis and also in understanding the clinical and genetic heterogeneity associated with various anterior segment dysgenesis caused by this gene.

  15. Exome sequencing reveals cubilin mutation as a single-gene cause of proteinuria.

    PubMed

    Ovunc, Bugsu; Otto, Edgar A; Vega-Warner, Virginia; Saisawat, Pawaree; Ashraf, Shazia; Ramaswami, Gokul; Fathy, Hanan M; Schoeb, Dominik; Chernin, Gil; Lyons, Robert H; Yilmaz, Engin; Hildebrandt, Friedhelm

    2011-10-01

    In two siblings of consanguineous parents with intermittent nephrotic-range proteinuria, we identified a homozygous deleterious frameshift mutation in the gene CUBN, which encodes cubulin, using exome capture and massively parallel re-sequencing. The mutation segregated with affected members of this family and was absent from 92 healthy individuals, thereby identifying a recessive mutation in CUBN as the single-gene cause of proteinuria in this sibship. Cubulin mutations cause a hereditary form of megaloblastic anemia secondary to vitamin B(12) deficiency, and proteinuria occurs in 50% of cases since cubilin is coreceptor for both the intestinal vitamin B(12)-intrinsic factor complex and the tubular reabsorption of protein in the proximal tubule. In summary, we report successful use of exome capture and massively parallel re-sequencing to identify a rare, single-gene cause of nephropathy.

  16. Exome Sequencing Reveals Cubilin Mutation as a Single-Gene Cause of Proteinuria

    PubMed Central

    Ovunc, Bugsu; Otto, Edgar A.; Vega-Warner, Virginia; Saisawat, Pawaree; Ashraf, Shazia; Ramaswami, Gokul; Fathy, Hanan M.; Schoeb, Dominik; Chernin, Gil; Lyons, Robert H.; Yilmaz, Engin

    2011-01-01

    In two siblings of consanguineous parents with intermittent nephrotic-range proteinuria, we identified a homozygous deleterious frameshift mutation in the gene CUBN, which encodes cubulin, using exome capture and massively parallel re-sequencing. The mutation segregated with affected members of this family and was absent from 92 healthy individuals, thereby identifying a recessive mutation in CUBN as the single-gene cause of proteinuria in this sibship. Cubulin mutations cause a hereditary form of megaloblastic anemia secondary to vitamin B12 deficiency, and proteinuria occurs in 50% of cases since cubilin is coreceptor for both the intestinal vitamin B12-intrinsic factor complex and the tubular reabsorption of protein in the proximal tubule. In summary, we report successful use of exome capture and massively parallel re-sequencing to identify a rare, single-gene cause of nephropathy. PMID:21903995

  17. Mutations in Ehrlichia chaffeensis Causing Polar Effects in Gene Expression and Differential Host Specificities.

    PubMed

    Cheng, Chuanmin; Nair, Arathy D S; Jaworski, Deborah C; Ganta, Roman R

    2015-01-01

    Ehrlichia chaffeensis, a tick-borne rickettsial, is responsible for human monocytic ehrlichiosis. In this study, we assessed E. chaffeensis insertion mutations impacting the transcription of genes near the insertion sites. We presented evidence that the mutations within the E. chaffeensis genome at four genomic locations cause polar effects in altering gene expressions. We also reported mutations causing attenuated growth in deer (the pathogen's reservoir host) and in dog (an incidental host), but not in its tick vector, Amblyomma americanum. This is the first study documenting insertion mutations in E. chaffeensis that cause polar effects in altering gene expression from the genes located upstream and downstream to insertion sites and the differential requirements of functionally active genes of the pathogen for its persistence in vertebrate and tick hosts. This study is important in furthering our knowledge on E. chaffeensis pathogenesis.

  18. Mutation of Elfn1 in Mice Causes Seizures and Hyperactivity

    PubMed Central

    Dolan, Jackie; Mitchell, Kevin J.

    2013-01-01

    A growing number of proteins with extracellular leucine-rich repeats (eLRRs) have been implicated in directing neuronal connectivity. We previously identified a novel family of eLRR proteins in mammals: the Elfns are transmembrane proteins with 6 LRRs, a fibronectin type-3 domain and a long cytoplasmic tail. The recent discovery that Elfn1 protein, expressed postsynaptically, can direct the elaboration of specific electrochemical properties of synapses between particular cell types in the hippocampus strongly reinforces this hypothesis. Here, we present analyses of an Elfn1 mutant mouse line and demonstrate a functional requirement for this gene in vivo. We first carried out detailed expression analysis of Elfn1 using a β-galactosidase reporter gene in the knockout line. Elfn1 is expressed in distinct subsets of interneurons of the hippocampus and cortex, and also in discrete subsets of cells in the habenula, septum, globus pallidus, dorsal subiculum, amygdala and several other regions. Elfn1 is expressed in diverse cell types, including local GABAergic interneurons as well as long-range projecting GABAergic and glutamatergic neurons. Elfn1 protein localises to axons of excitatory neurons in the habenula, and long-range GABAergic neurons of the globus pallidus, suggesting the possibility of additional roles for Elfn1 in axons or presynaptically. While gross anatomical analyses did not reveal any obvious neuroanatomical abnormalities, behavioural analyses clearly illustrate functional effects of Elfn1 mutation. Elfn1 mutant mice exhibit seizures, subtle motor abnormalities, reduced thigmotaxis and hyperactivity. The hyperactivity is paradoxically reversible by treatment with the stimulant amphetamine, consistent with phenotypes observed in animals with habenular lesions. These analyses reveal a requirement for Elfn1 in brain function and are suggestive of possible relevance to the etiology and pathophysiology of epilepsy and attention-deficit hyperactivity disorder

  19. Mutation of ATF6 causes autosomal recessive achromatopsia.

    PubMed

    Ansar, Muhammad; Santos-Cortez, Regie Lyn P; Saqib, Muhammad Arif Nadeem; Zulfiqar, Fareeha; Lee, Kwanghyuk; Ashraf, Naeem Mahmood; Ullah, Ehsan; Wang, Xin; Sajid, Sundus; Khan, Falak Sher; Amin-ud-Din, Muhammad; Smith, Joshua D; Shendure, Jay; Bamshad, Michael J; Nickerson, Deborah A; Hameed, Abdul; Riazuddin, Saima; Ahmed, Zubair M; Ahmad, Wasim; Leal, Suzanne M

    2015-09-01

    Achromatopsia (ACHM) is an early-onset retinal dystrophy characterized by photophobia, nystagmus, color blindness and severely reduced visual acuity. Currently mutations in five genes CNGA3, CNGB3, GNAT2, PDE6C and PDE6H have been implicated in ACHM. We performed homozygosity mapping and linkage analysis in a consanguineous Pakistani ACHM family and mapped the locus to a 15.12-Mb region on chromosome 1q23.1-q24.3 with a maximum LOD score of 3.6. A DNA sample from an affected family member underwent exome sequencing. Within the ATF6 gene, a single-base insertion variant c.355_356dupG (p.Glu119Glyfs*8) was identified, which completely segregates with the ACHM phenotype within the family. The frameshift variant was absent in public variant databases, in 130 exomes from unrelated Pakistani individuals, and in 235 ethnically matched controls. The variant is predicted to result in a truncated protein that lacks the DNA binding and transmembrane domains and therefore affects the function of ATF6 as a transcription factor that initiates the unfolded protein response during endoplasmic reticulum (ER) stress. Immunolabeling with anti-ATF6 antibodies showed localization throughout the mouse neuronal retina, including retinal pigment epithelium, photoreceptor cells, inner nuclear layer, inner and outer plexiform layers, with a more prominent signal in retinal ganglion cells. In contrast to cytoplasmic expression of wild-type protein, in heterologous cells ATF6 protein with the p.Glu119Glyfs*8 variant is mainly confined to the nucleus. Our results imply that response to ER stress as mediated by the ATF6 pathway is essential for color vision in humans.

  20. Mutation of Elfn1 in mice causes seizures and hyperactivity.

    PubMed

    Dolan, Jackie; Mitchell, Kevin J

    2013-01-01

    A growing number of proteins with extracellular leucine-rich repeats (eLRRs) have been implicated in directing neuronal connectivity. We previously identified a novel family of eLRR proteins in mammals: the Elfns are transmembrane proteins with 6 LRRs, a fibronectin type-3 domain and a long cytoplasmic tail. The recent discovery that Elfn1 protein, expressed postsynaptically, can direct the elaboration of specific electrochemical properties of synapses between particular cell types in the hippocampus strongly reinforces this hypothesis. Here, we present analyses of an Elfn1 mutant mouse line and demonstrate a functional requirement for this gene in vivo. We first carried out detailed expression analysis of Elfn1 using a β-galactosidase reporter gene in the knockout line. Elfn1 is expressed in distinct subsets of interneurons of the hippocampus and cortex, and also in discrete subsets of cells in the habenula, septum, globus pallidus, dorsal subiculum, amygdala and several other regions. Elfn1 is expressed in diverse cell types, including local GABAergic interneurons as well as long-range projecting GABAergic and glutamatergic neurons. Elfn1 protein localises to axons of excitatory neurons in the habenula, and long-range GABAergic neurons of the globus pallidus, suggesting the possibility of additional roles for Elfn1 in axons or presynaptically. While gross anatomical analyses did not reveal any obvious neuroanatomical abnormalities, behavioural analyses clearly illustrate functional effects of Elfn1 mutation. Elfn1 mutant mice exhibit seizures, subtle motor abnormalities, reduced thigmotaxis and hyperactivity. The hyperactivity is paradoxically reversible by treatment with the stimulant amphetamine, consistent with phenotypes observed in animals with habenular lesions. These analyses reveal a requirement for Elfn1 in brain function and are suggestive of possible relevance to the etiology and pathophysiology of epilepsy and attention-deficit hyperactivity disorder.

  1. Novel mutations in the microsomal triglyceride transfer protein gene causing abetalipoproteinemia.

    PubMed

    Ohashi, K; Ishibashi, S; Osuga, J; Tozawa, R; Harada, K; Yahagi, N; Shionoiri, F; Iizuka, Y; Tamura, Y; Nagai, R; Illingworth, D R; Gotoda, T; Yamada, N

    2000-08-01

    Abetalipoproteinemia (ABL) is an inherited disease characterized by the virtual absence of apolipoprotein B (apoB)-containing lipoproteins from plasma. Only limited numbers of families have been screened for mutations in the microsomal triglyceride transfer protein (MTP) gene. To clarify the genetic basis of clinical diversity of ABL, mutations of the MTP gene have been screened in 4 unrelated patients with ABL. Three novel mutations have been identified: a frameshift mutation caused by a single adenine deletion at position 1389 of the cDNA, and a missense mutation, Asn780Tyr, each in homozygous forms; and a splice site mutation, 2218-2A-->G, in a compound heterozygous form. The frameshift and splice site mutations are predicted to encode truncated forms of MTP. When transiently expressed in Cos-1 cells, the Asn780Tyr mutant MTP bound protein disulfide isomerase (PDI) but displayed negligible MTP activity. It is of interest that the patient having the Asn780Tyr mutation, a 27-year-old male, has none of the manifestations characteristic of classic ABL even though his plasma apoB and vitamin E were virtually undetectable. These results indicated that defects of the MTP gene are the proximal cause of ABL.

  2. Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis of genomic amplicons

    SciTech Connect

    Nijbroek, G.; Sood, S.; McIntosh, I.

    1995-07-01

    Mutations in the gene encoding fibrillin-1 (FBN1), a component of the extracellular microfibril, cause the Marfan syndrome (MFS). This statement is supported by the observations that the classic Marfan phenotype cosegregates with intragenic and/or flanking marker alleles in all families tested and that a significant number of FBN1 mutations have been identified in affected individuals. We have now devised a method to screen the entire coding sequence and flanking splice junctions of FBN1. On completion for a panel of nine probands with classic MFS, six new mutations were identified that accounted for disease in seven (78%) of nine patients. Nine additional new mutations have been characterized in the early stages of a larger screening project. These 15 mutations were equally distributed throughout the gene and, with one exception, were specific to single families. One-third of mutations created premature termination codons, and 6 of 15 substituted residues with putative significance for calcium finding to epidermal growth factor (EGF)-like domains. Mutations causing severe and rapidly progressive disease that presents in the neonatal period can occur in a larger region of the gene than previously demonstrated, and the nature of the mutation is as important a determinant as its location, in predisposing to this phenotype. 56 refs., 5 figs., 3 tabs.

  3. Mutations in the NEB gene cause fetal akinesia/arthrogryposis multiplex congenita.

    PubMed

    Feingold-Zadok, Michal; Chitayat, David; Chong, Karen; Injeyan, Marie; Shannon, Patrick; Chapmann, Daphne; Maymon, Ron; Pillar, Nir; Reish, Orit

    2017-02-01

    We studied a series of patients with fetal akinesia deformation sequence (FADS)/arthrogryposis multiplex congenita (AMC), with nemaline bodies on muscle specimens, which revealed mutations in the NEB gene. We pathologically assessed seven cases from three families, who presented with AMC/FADS. Targeted genetic analysis for Ashkenazi Jewish mutation (in relevant patients) was followed by next-generation sequencing and multiplex ligation-dependent probe amplification. All cases were detected on prenatal ultrasound. Characteristic nemaline bodies on muscle specimens were demonstrated in at least one case in each of the nuclear families. In the Ashkenazi Jewish family, the known founder mutation was compounded by one recurrent novel splice site. The other two families were of Chinese and Korean origins, and only one pathogenic heterozygous mutation was detected in each. Nemaline myopathy due to NEB mutation(s) leads to FADS/AMC. Currently, mutated NEB is under-recognized as a cause for AMC/FADS. Our study attempts to raise recognition of this gene as a cause, suggesting the NEB gene should be included in genetic panels used for FADS/AMC cases and be fully covered when EXOME sequencing is utilized. A heterozygous mutation may suggest either compounding undetected one or digenic interaction that requires further genetic analyses. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  4. A frame-shift mutation of PMS2 is a widespread cause of Lynch syndrome

    PubMed Central

    Clendenning, M; Senter, L; Hampel, H; Robinson, K Lagerstedt; Sun, S; Buchanan, D; Walsh, M D; Nilbert, M; Green, J; Potter, J; Lindblom, A; de la Chapelle, A

    2015-01-01

    Background When compared to the other mismatch repair genes involved in Lynch syndrome, the identification of mutations within PMS2 has been limited (<2% of all identified mutations), yet the immunohistochemical analysis of tumour samples indicates that approximately 5% of Lynch syndrome cases are caused by PMS2. This disparity is primarily due to complications in the study of this gene caused by interference from pseudogene sequences. Methods Using a recently developed method for detecting PMS2 specific mutations, we have screened 99 patients who are likely candidates for PMS2 mutations based on immunohistochemical analysis. Results We have identified a frequently occurring frame-shift mutation (c.736_741del6ins11) in 12 ostensibly unrelated Lynch syndrome patients (20% of patients we have identified with a deleterious mutation in PMS2, n = 61). These individuals all display the rare allele (population frequency <0.05) at a single nucleotide polymorphism (SNP) in exon 11, and have been shown to possess a short common haplotype, allowing us to calculate that the mutation arose around 1625 years ago (65 generations; 95% confidence interval 22 to 120). Conclusion Ancestral analysis indicates that this mutation is enriched in individuals with British and Swedish ancestry. We estimate that there are >10 000 carriers of this mutation in the USA alone. The identification of both the mutation and the common haplotype in one Swedish control sample (n = 225), along with evidence that Lynch syndrome associated cancers are rarer than expected in the probands’ families, would suggest that this is a prevalent mutation with reduced penetrance. PMID:18178629

  5. A frame-shift mutation of PMS2 is a widespread cause of Lynch syndrome.

    PubMed

    Clendenning, M; Senter, L; Hampel, H; Robinson, K Lagerstedt; Sun, S; Buchanan, D; Walsh, M D; Nilbert, M; Green, J; Potter, J; Lindblom, A; de la Chapelle, A

    2008-06-01

    When compared to the other mismatch repair genes involved in Lynch syndrome, the identification of mutations within PMS2 has been limited (<2% of all identified mutations), yet the immunohistochemical analysis of tumour samples indicates that approximately 5% of Lynch syndrome cases are caused by PMS2. This disparity is primarily due to complications in the study of this gene caused by interference from pseudogene sequences. Using a recently developed method for detecting PMS2 specific mutations, we have screened 99 patients who are likely candidates for PMS2 mutations based on immunohistochemical analysis. We have identified a frequently occurring frame-shift mutation (c.736_741del6ins11) in 12 ostensibly unrelated Lynch syndrome patients (20% of patients we have identified with a deleterious mutation in PMS2, n = 61). These individuals all display the rare allele (population frequency <0.05) at a single nucleotide polymorphism (SNP) in exon 11, and have been shown to possess a short common haplotype, allowing us to calculate that the mutation arose around 1625 years ago (65 generations; 95% confidence interval 22 to 120). Ancestral analysis indicates that this mutation is enriched in individuals with British and Swedish ancestry. We estimate that there are >10 000 carriers of this mutation in the USA alone. The identification of both the mutation and the common haplotype in one Swedish control sample (n = 225), along with evidence that Lynch syndrome associated cancers are rarer than expected in the probands' families, would suggest that this is a prevalent mutation with reduced penetrance.

  6. Matrilin-3 mutations that cause chondrodysplasias interfere with protein trafficking while a mutation associated with hand osteoarthritis does not

    PubMed Central

    Otten, C; Wagener, R; Paulsson, M; Zaucke, F

    2005-01-01

    Several mutations in the extracellular matrix protein matrilin-3 cause a heterogeneous disease spectrum affecting skeletal tissues. We introduced three disease causing point mutations leading to single amino acid exchanges (R116W, T298M, C299S) in matrilin-3 and expressed the corresponding proteins in primary articular chondrocytes to elucidate pathogenic mechanisms at the cellular level. Expression levels, processing, and the secretion pattern of a mutation linked to hand osteoarthritis (T298M) were similar to the wildtype protein, whereas the two other mutants were poorly expressed and hardly detectable in supernatants of transiently transfected cells. Using immunofluorescence staining, we demonstrated that mutants R116W and C299S are retained and accumulate within the endoplasmatic reticulum (ER). Their further trafficking to the Golgi compartment seems to be disturbed, whereas T298M is secreted normally. In cells transfected with the wildtype and T298M constructs, a matrilin-3 containing filamentous network was formed surrounding the cells, whereas in the case of R116W and C299S such structures were completely absent. These observations are similar to those for mutations in the cartilage oligomeric matrix protein (COMP) leading to multiple epiphyseal dysplasia and pseudoachondroplasia suggesting that retention and accumulation of cartilage proteins in the ER might be a general mechanism involved in the pathogenesis of chondrodysplasias. PMID:16199550

  7. AP2S1 and GNA11 mutations - not a common cause of familial hypocalciuric hypercalcemia.

    PubMed

    Hovden, Silje; Rejnmark, Lars; Ladefoged, Søren A; Nissen, Peter H

    2017-02-01

    Familial hypocalciuric hypercalcemia (FHH) type 1 is caused by mutations in the gene encoding the calcium-sensing receptor (CASR). Recently, mutations affecting codon 15 in the gene AP2S1 have been shown to cause FHH type 3 in up to 26% of CASR-negative FHH patients. Similarly, mutations in the gene GNA11 have been shown to cause FHH type 2. We hypothesized that mutations in AP2S1 and GNA11 are causative in Danish patients with suspected FHH and that these mutations are not found in patients with primary hyperparathyroidism (PHPT), which is the main differential diagnostic disorder. Cross-sectional study. We identified patients with unexplained hyperparathyroid hypercalcemia and a control group of verified PHPT patients through review of 421 patients tested for CASR mutations in the period 2006-2014. DNA sequencing of all amino acid coding exons including intron-exon boundaries in AP2S1 and GNA11 was performed. In 33 CASR-negative patients with suspected FHH, we found two (~6%) with a mutation in AP2S1 (p.Arg15Leu and p.Arg15His). Family screening confirmed the genotype-phenotype correlations. We did not identify any pathogenic mutations in GNA11. No pathogenic mutations were found in the PHPT control group. We suggest that the best diagnostic approach to hyperparathyroid hypercalcemic patients suspected to have FHH is to screen the CASR and AP2S1 codon 15 for mutations. If the results are negative and there is still suspicion of an inherited condition (i.e. family history), then GNA11 should be examined. © 2017 European Society of Endocrinology.

  8. Recurring dominant-negative mutations in the AVP-NPII gene cause neurohypophyseal diabetes insipidus

    SciTech Connect

    Repaske, D.R.; Phillips, J.A.; Krishnamani, M.R.S.

    1994-09-01

    Autosomal dominant neurohypophyseal diabetes insipidus (ADNDI) is a familial form of arginine vasopressin (or antidiuretic hormone) deficiency that is usually manifest in early childhood with polyuria, polydipsia and an antidiuretic response to exogenous vasopressin or its analogs. The phenotype is postulated to arise from gliosis and depletion of the magnocellular neurons that produce vasopressin in the supraoptic and paraventricular nuclei of the hypothalamus. ADNDI is caused by heterozygosity for a variety of mutations in the AVP-NPII gene which encodes vasopressin, its carrier protein (NPII) and a glycoprotein (copeptin) of unknown function. These mutations include: (1) Ala 19{r_arrow}Thr (G279A) in AVP`s signal peptide, (2) Gly 17{r_arrow}Val (G1740T), (3) Pro 24{r_arrow}Leu (C1761T), (4) Gly 57{r_arrow}Ser (G1859A) and (5) del Glu 47({delta}AGG 1824-26), all of which occur in NPII. In characterizing the AVP-NPII mutations in five non-related ADNDI kindreds, we have detected two kindreds having mutation 1 (G279A), two having mutation 3 (C1761T) and one having mutation 4 (G1859A) without any other allelic changes being detected. Two of these recurring mutations (G279A and G1859A) are transitions that occur at CpG dinucleotides while the third (C1761T) does not. Interestingly, families with the same mutations differed in their ethnicity or in their affected AVP-NPII allele`s associated haplotype of closely linked DNA polymorphisms. Our data indicated that at least three of five known AVP-NPII mutations causing ADNDI tend to recur but the mechanisms by which these dominant-negative mutations cause variable or progressive expression of the ADNDI phenotype remain unclear.

  9. De Novo Truncating FUS Gene Mutation as a Cause of Sporadic Amyotrophic Lateral Sclerosis

    PubMed Central

    DeJesus-Hernandez, Mariely; Kocerha, Jannet; Finch, NiCole; Crook, Richard; Baker, Matt; Desaro, Pamela; Johnston, Amelia; Rutherford, Nicola; Wojtas, Aleksandra; Kennelly, Kathleen; Wszolek, Zbigniew K.; Graff-Radford, Neill; Boylan, Kevin; Rademakers, Rosa

    2010-01-01

    Mutations in the gene encoding fused in sarcoma (FUS) were recently identified as a novel cause of amyotrophic lateral sclerosis (ALS), emphasizing the genetic heterogeneity of ALS. We sequenced the genes encoding superoxide dismutase (SOD1), TAR DNA-binding protein 43 (TARDBP) and FUS in 99 sporadic and 17 familial ALS patients ascertained at Mayo Clinic. We identified two novel mutations in FUS in two out of 99 (2.0%) sporadic ALS patients and established the de novo occurrence of one FUS mutation. In familial patients, we identified three (17.6%) SOD1 mutations, while FUS and TARDBP mutations were excluded. The de novo FUS mutation (g.10747A>G; IVS13-2A>G) affects the splice-acceptor site of FUS intron 13 and was shown to induce skipping of FUS exon 14 leading to the C-terminal truncation of FUS (p.G466VfsX14). Subcellular localization studies showed a dramatic increase in the cytoplasmic localization of FUS and a reduction of normal nuclear expression in cells transfected with truncated compared to wild-type FUS. We further identified a novel in-frame insertion/deletion mutation in FUS exon 12 (p.S402 P411delinsGGGG) which is predicted to expand a conserved poly-glycine motif. Our findings extend the mutation spectrum in FUS leading to ALS and describe the first de novo mutation in FUS. PMID:20232451

  10. Activating mutations affecting the Dbl homology domain of SOS2 cause Noonan syndrome

    PubMed Central

    Cordeddu, Viviana; Yin, Jiani C.; Gunnarsson, Cecilia; Virtanen, Carl; Drunat, Séverine; Lepri, Francesca; De Luca, Alessandro; Rossi, Cesare; Ciolfi, Andrea; Pugh, Trevor J.; Bruselles, Alessandro; Priest, James R.; Pennacchio, Len A.; Lu, Zhibin; Danesh, Arnavaz; Quevedo, Rene; Hamid, Alaa; Martinelli, Simone; Pantaleoni, Francesca; Gnazzo, Maria; Daniele, Paola; Lissewski, Christina; Bocchinfuso, Gianfranco; Stella, Lorenzo; Odent, Sylvie; Philip, Nicole; Faivre, Laurence; Vlckova, Marketa; Seemanova, Eva; Digilio, Cristina; Zenker, Martin; Zampino, Giuseppe; Verloes, Alain; Dallapiccola, Bruno; Roberts, Amy E.; Cavé, Hélène; Gelb, Bruce D.; Neel, Benjamin G.; Tartaglia, Marco

    2015-01-01

    The RASopathies constitute a family of autosomal dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering son of sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its auto-inhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the Dbl homology domain. PMID:26173643

  11. A recurrent synonymous mutation in the human androgen receptor gene causing complete androgen insensitivity syndrome.

    PubMed

    Batista, Rafael Loch; Rodrigues, Andresa di Santi; Nishi, Mirian Yumie; Gomes, Nathalia Lisboa; Faria, José Antonio Diniz; Moraes, Daniela Rodrigues de; Carvalho, Luciani Renata; Costa, Elaine Maria Frade; Domenice, Sorahia; Mendonca, Berenice Bilharinho

    2017-07-22

    Androgen insensitivity syndrome (AIS) is the most common cause of 46,XY disorders of sex development (46,XY DSD). This syndrome is an X-linked inheritance disease and it is caused by mutations in the human androgen receptor (AR) gene. Non-synonymous point AR mutations are frequently described in this disease, including in the complete phenotype. We present a novel synonymous mutation in the human AR gene (c.1530C > T) in four 46,XY patients from two unrelated families associated with complete androgen insensitivity syndrome (CAIS). The analysis of mRNA from testis showed that synonymous AR mutation changed the natural exon 1 donor splice site, with deletion of the last 92 nucleotides of the AR exon 1 leading to a premature stop codon 12 positions ahead resulting in a truncate AR protein. Linkage analyses suggested a probable founder effect for this mutation. In conclusion, we described the first synonymous AR mutation associated with CAIS phenotype, reinforcing the disease-causing role of synonymous mutations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Activating Mutations Affecting the Dbl Homology Domain of SOS2 Cause Noonan Syndrome.

    PubMed

    Cordeddu, Viviana; Yin, Jiani C; Gunnarsson, Cecilia; Virtanen, Carl; Drunat, Séverine; Lepri, Francesca; De Luca, Alessandro; Rossi, Cesare; Ciolfi, Andrea; Pugh, Trevor J; Bruselles, Alessandro; Priest, James R; Pennacchio, Len A; Lu, Zhibin; Danesh, Arnavaz; Quevedo, Rene; Hamid, Alaa; Martinelli, Simone; Pantaleoni, Francesca; Gnazzo, Maria; Daniele, Paola; Lissewski, Christina; Bocchinfuso, Gianfranco; Stella, Lorenzo; Odent, Sylvie; Philip, Nicole; Faivre, Laurence; Vlckova, Marketa; Seemanova, Eva; Digilio, Cristina; Zenker, Martin; Zampino, Giuseppe; Verloes, Alain; Dallapiccola, Bruno; Roberts, Amy E; Cavé, Hélène; Gelb, Bruce D; Neel, Benjamin G; Tartaglia, Marco

    2015-11-01

    The RASopathies constitute a family of autosomal-dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering Son of Sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology (DH) domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its autoinhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the DH domain.

  13. Prevalence of Disease-Causing Mutations in Families with Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Sullivan, Lori S.; Bowne, Sara J.; Birch, David G.; Hughbanks-Wheaton, Dianna; Heckenlively, John R.; Lewis, Richard Alan; Garcia, Charles A.; Ruiz, Richard S.; Blanton, Susan H.; Northrup, Hope; Gire, Anisa I.; Seaman, Robyn; Duzkale, Hatice; Spellicy, Catherine J.; Zhu, Jingya; Shankar, Suma P.; Daiger, Stephen P.

    2008-01-01

    Purpose To survey families with clinical evidence of autosomal dominant retinitis pigmentosa (adRP) for mutations in genes known to cause adRP. Methods Two hundred adRP families, drawn from a cohort of more than 400 potential families, were selected by analysis of pedigrees. Minimum criteria for inclusion in the adRP cohort included either evidence of at least three generations of affected individuals or two generations with evidence of male-to-male transmission. Probands from each family were screened for mutations in 13 genes known to cause adRP: CA4, CRX, FSCN2, IMPDH1, NRL, PRPF3 (RP18), PRPF8 (RP13), PRPF31 (RP11), RDS, RHO, ROM1, RP1, and RP9. Families without mutations in autosomal genes and in which an X-linked mode of inheritance could not be excluded were tested for mutations in ORF 15 of X-linked RPGR. Potentially pathogenic variants were evaluated based on a variety of genetic and computational criteria, to confirm or exclude pathogenicity. Results A total of 82 distinct, rare (nonpolymorphic) variants were detected among the genes tested. Of these, 57 are clearly pathogenic based on multiple criteria, 10 are probably pathogenic, and 15 are probably benign. In the cohort of 200 families, 94 (47%) have one of the clearly pathogenic variants and 10 (5%) have one of the probably pathogenic variants. One family (0.5%) has digenic RDS-ROM1 mutations. Two families (1%) have a pathogenic RPGR mutation, indicating that families with apparent autosomal transmission of RP may actually have X-linked genetic disease. Thus, 107 families (53.5%) have mutations in known genes, leaving 93 whose underlying cause is still unknown. Conclusions Together, the known adRP genes account for retinal disease in approximately half of the families in this survey, mostly Americans of European origin. Among the adRP genes, IMPDH1, PRPF8, PRPF31, RDS, RHO, and RP1 each accounts for more than 2% of the total; CRX, PRPF3, and RPGR each accounts for roughly 1%. Disease-causing mutations

  14. Treatment of a lower urinary tract infection in a cat caused by a multi-drug methicillin-resistant Staphylococcus pseudintermedius and Enterococcus faecalis.

    PubMed

    Pomba, Constança; Couto, Natasha; Moodley, Arshnee

    2010-10-01

    Staphylococci and enterococci are common causes of urinary tract infections in cats. However, both species are rarely implicated together as causes of lower urinary tract infections associated with urethral obstruction. This report describes the first case of a multi-drug methicillin-resistant Staphylococcus pseudintermedius belonging to spa type t06 and Enterococcus faecalis urinary infection in a cat with pre-existing and recurrent urethral obstruction. Both species were isolated at >10(5)CFU/ml from a cystocentesis urine specimen. Clinical and ultrasound features, results from urinalysis, urine culture, molecular typing and susceptibility testing by minimal inhibitory concentrations determination are described. Oral treatment with nitrofurantoin, the only antimicrobial agent that constituted a viable therapeutic option, had a positive outcome.

  15. Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism.

    PubMed

    Pitteloud, Nelly; Acierno, James S; Meysing, Astrid; Eliseenkova, Anna V; Ma, Jinghong; Ibrahimi, Omar A; Metzger, Daniel L; Hayes, Frances J; Dwyer, Andrew A; Hughes, Virginia A; Yialamas, Maria; Hall, Janet E; Grant, Ellen; Mohammadi, Moosa; Crowley, William F

    2006-04-18

    Mutations in KAL1 and FGFR1 cause Kallmann syndrome (KS), whereas mutations in the GNRHR and GPR54 genes cause idiopathic hypogonadotropic hypogonadism with normal olfaction (nIHH). Mixed pedigrees containing both KS and nIHH have also been described; however, the genetic cause of these rare cases is unknown. We examined the FGFR1 gene in seven nIHH subjects who either belonged to a mixed pedigree (n = 5) or who had associated midline defects (n = 2). Heterozygous FGFR1 mutations were found in three of seven unrelated nIHH probands with normal MRI of the olfactory system: (i) G237S in an nIHH female and a KS brother; (ii) (P722H and N724K) in an nIHH male missing two teeth and his mother with isolated hyposmia; and (iii) Q680X in a nIHH male with cleft lip/palate and missing teeth, his brother with nIHH, and his father with delayed puberty. We show that these mutations lead to receptor loss-of-function. The Q680X leads to an inactive FGFR1, which lacks a major portion of the tyrosine kinase domain (TKD). The G237S mutation inhibits proper folding of D2 of the FGFR1 and likely leads to the loss of cell-surface expression of FGFR1. In contrast, the (P722H and N724K) double mutation causes structural perturbations in TKD, reducing the catalytic activity of TKD. We conclude that loss-of-function mutations in FGFR1 cause nIHH with normal MRI of the olfactory system. These mutations also account for some of the mixed pedigrees, thus challenging the current idea that KS and nIHH are distinct entities.

  16. Mutations in SPAG1 Cause Primary Ciliary Dyskinesia Associated with Defective Outer and Inner Dynein Arms

    PubMed Central

    Knowles, Michael R.; Ostrowski, Lawrence E.; Loges, Niki T.; Hurd, Toby; Leigh, Margaret W.; Huang, Lu; Wolf, Whitney E.; Carson, Johnny L.; Hazucha, Milan J.; Yin, Weining; Davis, Stephanie D.; Dell, Sharon D.; Ferkol, Thomas W.; Sagel, Scott D.; Olivier, Kenneth N.; Jahnke, Charlotte; Olbrich, Heike; Werner, Claudius; Raidt, Johanna; Wallmeier, Julia; Pennekamp, Petra; Dougherty, Gerard W.; Hjeij, Rim; Gee, Heon Yung; Otto, Edgar A.; Halbritter, Jan; Chaki, Moumita; Diaz, Katrina A.; Braun, Daniela A.; Porath, Jonathan D.; Schueler, Markus; Baktai, György; Griese, Matthias; Turner, Emily H.; Lewis, Alexandra P.; Bamshad, Michael J.; Nickerson, Deborah A.; Hildebrandt, Friedhelm; Shendure, Jay; Omran, Heymut; Zariwala, Maimoona A.

    2013-01-01

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 20 genes, but collectively they account for only ∼65% of all PCDs. To identify mutations in additional genes that cause PCD, we performed exome sequencing on three unrelated probands with ciliary outer and inner dynein arm (ODA+IDA) defects. Mutations in SPAG1 were identified in one family with three affected siblings. Further screening of SPAG1 in 98 unrelated affected individuals (62 with ODA+IDA defects, 35 with ODA defects, 1 without available ciliary ultrastructure) revealed biallelic loss-of-function mutations in 11 additional individuals (including one sib-pair). All 14 affected individuals with SPAG1 mutations had a characteristic PCD phenotype, including 8 with situs abnormalities. Additionally, all individuals with mutations who had defined ciliary ultrastructure had ODA+IDA defects. SPAG1 was present in human airway epithelial cell lysates but was not present in isolated axonemes, and immunofluorescence staining showed an absence of ODA and IDA proteins in cilia from an affected individual, thus indicating that SPAG1 probably plays a role in the cytoplasmic assembly and/or trafficking of the axonemal dynein arms. Zebrafish morpholino studies of spag1 produced cilia-related phenotypes previously reported for PCD-causing mutations in genes encoding cytoplasmic proteins. Together, these results demonstrate that mutations in SPAG1 cause PCD with ciliary ODA+IDA defects and that exome sequencing is useful to identify genetic causes of heterogeneous recessive disorders. PMID:24055112

  17. Mutations in Twinkle primase-helicase cause Perrault syndrome with neurologic features

    PubMed Central

    Morino, Hiroyuki; Matsuda, Yukiko; Walsh, Tom; Ohsawa, Ryosuke; Newby, Marta; Hiraki-Kamon, Keiko; Kuramochi, Masahito; Lee, Ming K.; Klevit, Rachel E.; Martin, Alan; Maruyama, Hirofumi; King, Mary-Claire

    2014-01-01

    Objective: To identify the genetic cause in 2 families of progressive ataxia, axonal neuropathy, hyporeflexia, and abnormal eye movements, accompanied by progressive hearing loss and ovarian dysgenesis, with a clinical diagnosis of Perrault syndrome. Methods: Whole-exome sequencing was performed to identify causative mutations in the 2 affected sisters in each family. Family 1 is of Japanese ancestry, and family 2 is of European ancestry. Results: In family 1, affected individuals were compound heterozygous for chromosome 10 open reading frame 2 (C10orf2) p.Arg391His and p.Asn585Ser. In family 2, affected individuals were compound heterozygous for C10orf2 p.Trp441Gly and p.Val507Ile. C10orf2 encodes Twinkle, a primase-helicase essential for replication of mitochondrial DNA. Conservation and structural modeling support the causality of the mutations. Twinkle is known also to harbor multiple mutations, nearly all missenses, leading to dominant progressive external ophthalmoplegia type 3 and to recessive mitochondrial DNA depletion syndrome 7, also known as infantile-onset spinocerebellar ataxia. Conclusions: Our study identifies Twinkle mutations as a cause of Perrault syndrome accompanied by neurologic features and expands the phenotypic spectrum of recessive disease caused by mutations in Twinkle. The phenotypic heterogeneity of conditions caused by Twinkle mutations and the genetic heterogeneity of Perrault syndrome call for genomic definition of these disorders. PMID:25355836

  18. Distinct Impact of Two Keratin Mutations Causing Epidermolysis Bullosa Simplex on Keratinocyte Adhesion and Stiffness.

    PubMed

    Homberg, Melanie; Ramms, Lena; Schwarz, Nicole; Dreissen, Georg; Leube, Rudolf E; Merkel, Rudolf; Hoffmann, Bernd; Magin, Thomas M

    2015-10-01

    Keratin filaments constitute the major component of the epidermal cytoskeleton from heterodimers of type I and type II keratin subunits. Missense mutations in keratin 5 or keratin 14, highly expressed in the basal epidermis, cause the severe skin blistering disease epidermolysis bullosa simplex (EBS) in humans by rendering the keratin cytoskeleton sensitive to mechanical stress; yet, the mechanisms by which individual mutations cause cell fragility are incompletely understood. Here, we compared the K14p.Arg125Pro with the K5p.Glu477Asp mutation, both giving rise to severe generalized EBS, by stable expression in keratin-free keratinocytes. This revealed distinctly different effects on keratin cytoskeletal organization, in agreement with in vivo observations, thus validating the cell system. Although the K14p.Arg125Pro mutation led to impaired desmosomes, downregulation of desmosomal proteins, and weakened epithelial sheet integrity upon shear stress, the K5p.Glu477Asp mutation did not impair these functions, although causing EBS with squamous cell carcinoma in vivo. Atomic force microscopy demonstrated that K14 mutant cells were even less resistant against deformation compared with keratin-free keratinocytes. Thus, a keratin mutation causing EBS compromises cell stiffness to a greater extent than the lack of keratins. Finally, re-expression of K14 in K14 mutant cells did not rescue the above defects. Collectively, our findings have implications for EBS therapy approaches.

  19. In silico investigation of molecular effects caused by missense mutations in creatine transporter protein

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Schwatz, Charles; Alexov, Emil

    2011-03-01

    Creatine transporter (CT) protein, which is encoded by SLC6A8 gene, is essential for taking up the creatine in the cell, which in turn plays a key role in the spatial and temporal maintenance of energy in skeletal and cardiac muscle cells. It was shown that some missense mutations in CT cause mental retardation, while others are harmless non-synonymous single nucleoside polymorphism (nsSNP). Currently fifteen missense mutations in CT are known, among which twelve are disease-causing. Sequence analysis reveals that there is no clear trend distinguishing disease-causing from harmless missense mutations. Because of that, we built 3D model of the CT using highly homologous template and use the model to investigate the effects of mutations of CT stability and hydrogen bond network. It is demonstrated that disease-causing mutations affect the folding free energy and ionization states of titratable group in much greater extend as compared with harmless mutations. Supported by grants from NLM, NIH, grant numbers 1R03LM009748 and 1R03LM009748-S1.

  20. Hereditary angioedema in Greek families caused by novel and recurrent mutations.

    PubMed

    Speletas, Matthaios; Boukas, Konstantinos; Papadopoulou-Alataki, Efimia; Tsitsami, Elena; Germenis, Anastasios E

    2009-11-01

    This study constitutes the first molecular analysis of hereditary angioedema (HAE) in Greece, where 11 patients from three unrelated families with recurrent angioedema attacks and decreased C1 inhibitor antigenic levels were analyzed for SERPING1 mutations. Interestingly, one family displayed a novel SERPING1 alteration, characterized by the substitution of two consecutive nucleotides TC to AA, resulting in a termination codon (F225X). To the best of our knowledge, this is the first report of such a mutation in SERPING1, causing HAE. The second family displayed the nonsense mutation W482X, and the third the missense mutation M1V, already described in the literature. The type of mutation did not predict clearly the disease phenotype, since even members of the same family displayed a variety of the frequency and the severity of angioedema attacks. Our study identified a novel mutagenesis mechanism for HAE pathogenesis, providing additional evidence for the genetic heterogeneity of the disease.

  1. Combination of two rare mutations causes β-thalassaemia in a Bangladeshi patient.

    PubMed

    Moosa, Mahdi Muhammad; Ayub, Mustak Ibn; Bashar, Ama Emran; Sarwardi, Golam; Khan, Waqar; Khan, Haseena; Yeasmin, Sabina

    2011-07-01

    Screening of mutations that cause β-thalassaemia in the Bangladeshi population led to the identification of a patient with a combination of two rare mutations, Hb Monroe and HBB: -92 C > G. The β-thalassaemia major male individual was transfusion-dependent and had an atypical β-globin gene cluster haplotype. Of the two mutations, Hb Monroe has been characterized in detail. Clinical effects of the other mutation, HBB: -92 C > G, are unknown so far. Bioinformatics analyses were carried out to predict the possible effect of this mutation. These analyses revealed the presence of a putative binding site for Egr1, a transcription factor, within the HBB: -92 region. Our literature survey suggests a close relationship between different phenotypic manifestations of β-thalassaemia and Egr1 expression.

  2. Combination of two rare mutations causes β-thalassaemia in a Bangladeshi patient

    PubMed Central

    Moosa, Mahdi Muhammad; Ayub, Mustak Ibn; Bashar, AMA Emran; Sarwardi, Golam; Khan, Waqar; Khan, Haseena; Yeasmin, Sabina

    2011-01-01

    Screening of mutations that cause β-thalassaemia in the Bangladeshi population led to the identification of a patient with a combination of two rare mutations, Hb Monroe and HBB: −92 C > G. The β-thalassaemia major male individual was transfusion-dependent and had an atypical β-globin gene cluster haplotype. Of the two mutations, Hb Monroe has been characterized in detail. Clinical effects of the other mutation, HBB: −92 C > G, are unknown so far. Bioinformatics analyses were carried out to predict the possible effect of this mutation. These analyses revealed the presence of a putative binding site for Egr1, a transcription factor, within the HBB: −92 region. Our literature survey suggests a close relationship between different phenotypic manifestations of β-thalassaemia and Egr1 expression. PMID:21931510

  3. Characterization of six novel mutations in CYBA: the gene causing autosomal recessive chronic granulomatous disease.

    PubMed

    Teimourian, Shahram; Zomorodian, Elham; Badalzadeh, Mohsen; Pouya, Alireza; Kannengiesser, Caroline; Mansouri, Davood; Cheraghi, Taher; Parvaneh, Nima

    2008-06-01

    One of the rarest forms of chronic granulomatous disease (CGD) is caused by mutations in CYBA, which encodes the p22-phox subunit of the phagocyte NADPH oxidase, leading to defective intracellular killing. This study investigated eight patients (six males and two females) from seven consanguineous, unrelated families with clinical CGD, positive family history and p22-phox deficiency. Mutation analysis of CYBA showed six different novel mutations: deletion of exons 3, 4 and 5; a missense mutation in exon 6 (c.373G>A); a splice site mutation in intron 5 (c.369+1G>A); a frameshift in exon 6 (c.385delGAGC); a frameshift in exon 3 (c.174delG); and a frameshift in exon 4 (c.223delC).

  4. Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis.

    PubMed

    Weedon, Michael N; Cebola, Ines; Patch, Ann-Marie; Flanagan, Sarah E; De Franco, Elisa; Caswell, Richard; Rodríguez-Seguí, Santiago A; Shaw-Smith, Charles; Cho, Candy H-H; Allen, Hana Lango; Houghton, Jayne Al; Roth, Christian L; Chen, Rongrong; Hussain, Khalid; Marsh, Phil; Vallier, Ludovic; Murray, Anna; Ellard, Sian; Ferrer, Jorge; Hattersley, Andrew T

    2014-01-01

    The contribution of cis-regulatory mutations to human disease remains poorly understood. Whole-genome sequencing can identify all noncoding variants, yet the discrimination of causal regulatory mutations represents a formidable challenge. We used epigenomic annotation in human embryonic stem cell (hESC)-derived pancreatic progenitor cells to guide the interpretation of whole-genome sequences from individuals with isolated pancreatic agenesis. This analysis uncovered six different recessive mutations in a previously uncharacterized ~400-bp sequence located 25 kb downstream of PTF1A (encoding pancreas-specific transcription factor 1a) in ten families with pancreatic agenesis. We show that this region acts as a developmental enhancer of PTF1A and that the mutations abolish enhancer activity. These mutations are the most common cause of isolated pancreatic agenesis. Integrating genome sequencing and epigenomic annotation in a disease-relevant cell type can thus uncover new noncoding elements underlying human development and disease.

  5. A novel mitochondrial MTND5 frameshift mutation causing isolated complex I deficiency, renal failure and myopathy.

    PubMed

    Alston, Charlotte L; Morak, Monika; Reid, Christopher; Hargreaves, Iain P; Pope, Simon A S; Land, John M; Heales, Simon J; Horvath, Rita; Mundy, Helen; Taylor, Robert W

    2010-02-01

    Isolated complex I deficiency is the most commonly reported enzyme defect in paediatric mitochondrial disorders, and may arise due to mutations in nuclear-encoded structural or assembly genes, or the mitochondrial genome. We present the clinical, biochemical and molecular genetic data in a young girl whose clinical picture is dominated by chronic renal failure, myopathy and persistent lactic acidosis. An isolated complex I deficiency in muscle was identified due to a novel mutation (m.12425delA) in the MTND5 gene. This single nucleotide deletion is heteroplasmic and detectable in several tissues from the proband but not her mother, suggesting a de novo mutation event. The description of the first frameshift mutation in a mitochondrial complex I gene affirms mitochondrial DNA mutations as an important cause of isolated complex I deficiency in children and the importance of whole mitochondrial genome sequencing in the diagnostic work-up to elucidate the underlying molecular genetic abnormality and provide important genetic advice.

  6. A FimH Inhibitor Prevents Acute Bladder Infection and Treats Chronic Cystitis Caused by Multidrug-Resistant Uropathogenic Escherichia coli ST131

    PubMed Central

    Totsika, Makrina; Kostakioti, Maria; Hannan, Thomas J.; Upton, Mathew; Beatson, Scott A.; Janetka, James W.; Hultgren, Scott J.; Schembri, Mark A.

    2013-01-01

    Background. Escherichia coli O25b:H4-ST131 represents a predominant clone of multidrug-resistant uropathogens currently circulating worldwide in hospitals and the community. Urinary tract infections (UTIs) caused by E. coli ST131 are typically associated with limited treatment options and are often recurrent. Methods. Using established mouse models of acute and chronic UTI, we mapped the pathogenic trajectory of the reference E. coli ST131 UTI isolate, strain EC958. Results. We demonstrated that E. coli EC958 can invade bladder epithelial cells and form intracellular bacterial communities early during acute UTI. Moreover, E. coli EC958 persisted in the bladder and established chronic UTI. Prophylactic antibiotic administration failed to prevent E. coli EC958–mediated UTI. However, 1 oral dose of a small-molecular-weight compound that inhibits FimH, the type 1 fimbriae adhesin, significantly reduced bacterial colonization of the bladder and prevented acute UTI. Treatment of chronically infected mice with the same FimH inhibitor lowered their bladder bacterial burden by >1000-fold. Conclusions. In this study, we provide novel insight into the pathogenic mechanisms used by the globally disseminated E. coli ST131 clone during acute and chronic UTI and establish the potential of FimH inhibitors as an alternative treatment against multidrug-resistant E. coli. PMID:23737602

  7. Bacteremic Urinary Tract Infection Caused by Multidrug-Resistant Enterobacteriaceae Are Associated With Severe Sepsis at Admission: Implication for Empirical Therapy.

    PubMed

    Lee, Yi-Chien; Hsiao, Chih-Yen; Hung, Miao-Chiu; Hung, Sheng-Che; Wang, Hung-Ping; Huang, Yun-Jhong; Wang, Jann-Tay

    2016-05-01

    The purpose of this study is to compare the clinical features and treatment outcomes among patients with bacteremic urinary tract infection (UTI) caused by multidrug-resistant (MDR) and non-MDR Enterobacteriaceae and to identify whether MDR pathogens were independently associated with severe sepsis or septic shock at presentation.The clinical data of adult patients visiting and being treated at Chia-Yi Christian Hospital due to bacteremic UTI caused by Enterobacteriaceae from January 2006 to August 2015 were retrospectively analyzed.A total of 585 patients were enrolled. Among them, 220 (37.6%) were caused by the MDR Enterobacteriaceae. A total of 206 patients (35.2%) developed severe sepsis or septic shock at presentation. Patients in the MDR group tend to be male and have a past history of gout, recurrent UTI, prior hospitalization, hydronephrosis, renal stone, ureteral stone, indwelling urinary catheter, newly development of renal dysfunction, severe sepsis or septic shock, intensive care unit (ICU) admission, receipt of ineffective empirical therapy, longer hospital stay, and higher in-hospital mortality (2.7% vs 1.9%, P = 0.569). Using multivariate logistic regression analysis, it is revealed that independent predictors associated with severe sepsis or septic shock at presentation were liver cirrhosis (OR 2.868; 95% CI 1.439-5.716; P = 0.003), indwelling urinary catheter (OR 1.936; 95% CI 1.238-3.027; P = 0.004), and MDR Enterobacteriaceae (OR 1.447; 95% CI 1.002-2.090; P = 0.049).Multidrug resistance was associated with the development of severe sepsis or septic shock upon presentation among patients with bacteremic UTI caused by Enterobacteriaceae. Therefore, empirical antibiotics therapy for patients with UTI presented with severe sepsis and/or septic shock should be more broad-spectrum to effectively cover MDR Enterobacteriaceae.

  8. Epidemiological typing of multidrug-resistant Klebsiella pneumoniae, which causes paediatric ventilator-associated pneumonia in Egypt.

    PubMed

    Mohamed, Eman R; Aly, Sherine A; Halby, Hamada M; Ahmed, Shabaan H; Zakaria, Amira M; El-Asheer, Osama M

    2017-05-01

    Multidrug-resistant Klebsiella pneumoniae is a common nosocomial pathogen that plays an important role in ventilator-associated pneumonia (VAP). This study aimed to define the clonal relatedness of K. pneumoniae strains isolated from paediatric VAP in addition to those isolated from environmental samples. This study included 19 clinical and 4 environmental K. pneumoniae isolates recovered from the paediatric intensive care unit (PICU) in Assiut University Children's Hospital. The K. pneumoniae isolates were confirmed by biotyping using API strips and subjected to antimicrobial susceptibility testing. The genes coding K1 and K2 capsular types were detected by PCR. The clonal relationships between the K. pneumoniae isolates were determined by pulsed-field gel electrophoresis (PFGE). Ten resistotypes were detected among all the K. pneumoniae isolates, while PFGE identified seventeen K. pneumoniae pulsotypes. Similar PFGE patterns were found between environmental and clinical isolates and between isolates recovered from different patients, suggesting the circulation of K. pneumoniae pathogens in the PICU and the role of the environment in the spread of infection. No correlation was found between the resistotypes and pulsotypes of the K. pneumoniae isolates. PFGE showed higher discriminatory power for the typing of nosocomial K. pneumoniae [Simpson's diversity index (DI)=0.96] than resistotyping (DI=0.72). As far as we know, this is the first report of the isolation of the same multidrug-resistant (MDR) K. pneumoniae pulsotype from patients and environmental samples in the same hospital ward in Egypt. This study provides a step on the way to understanding the genotyping and epidemiology of MDR K. pneumoniae for enhanced prevention of bacterial transmission.

  9. Diazoxide-responsive hyperinsulinemic hypoglycemia caused by HNF4A gene mutations

    PubMed Central

    Flanagan, S E; Kapoor, R R; Mali, G; Cody, D; Murphy, N; Schwahn, B; Siahanidou, T; Banerjee, I; Akcay, T; Rubio-Cabezas, O; Shield, J P H; Hussain, K; Ellard, S

    2010-01-01

    Objective The phenotype associated with heterozygous HNF4A gene mutations has recently been extended to include diazoxide responsive neonatal hypoglycemia in addition to maturity-onset diabetes of the young (MODY). To date, mutation screening has been limited to patients with a family history consistent with MODY. In this study, we investigated the prevalence of HNF4A mutations in a large cohort of patients with diazoxide responsive hyperinsulinemic hypoglycemia (HH). Subjects and methods We sequenced the ABCC8, KCNJ11, GCK, GLUD1, and/or HNF4A genes in 220 patients with HH responsive to diazoxide. The order of genetic testing was dependent upon the clinical phenotype. Results A genetic diagnosis was possible for 59/220 (27%) patients. KATP channel mutations were most common (15%) followed by GLUD1 mutations causing hyperinsulinism with hyperammonemia (5.9%), and HNF4A mutations (5%). Seven of the 11 probands with a heterozygous HNF4A mutation did not have a parent affected with diabetes, and four de novo mutations were confirmed. These patients were diagnosed with HI within the first week of life (median age 1 day), and they had increased birth weight (median +2.4 SDS). The duration of diazoxide treatment ranged from 3 months to ongoing at 8 years. Conclusions In this large series, HNF4A mutations are the third most common cause of diazoxide responsive HH. We recommend that HNF4A sequencing is considered in all patients with diazoxide responsive HH diagnosed in the first week of life irrespective of a family history of diabetes, once KATP channel mutations have been excluded. PMID:20164212

  10. Structural analysis of ABAD point mutations causing 2-methyl-3-hydroxylbutyryl-coA deficiency

    NASA Astrophysics Data System (ADS)

    Marques, Alexandra T.; Fernandes, Pedro A.; Ramos, Maria João

    Here, we report a structural analysis of three human amyloid-beta binding alcohol dehydrogenase (ABAD) mutations, identified in patients with 2-methyl-3-hydroxylbutyryl-coA dehydrogenase (MHBD) deficiency. Mapping of the mutations (R130C, L122V, and N247S) on ABAD crystal structure revealed that they occur in the interfaces of the enzyme tetramer. The wild-type and mutant enzymes were then subjected to molecular dynamics simulations with the intention of studying the local effects of the mutations on protein structure. A computational alanine scanning mutagenesis study has been carried out to study the possible impact of the mutations in the energetic contribution of the mutation sites to the binding free energy of ABAD subunit association. In this study, the MMPB-SA (molecular mechanics/Poisson-Boltzmann surface area) approach has been used to calculate the free energy differences on alanine mutation. The interactions and conservation of the mutation sites have been also evaluated. Our results provide an explanation for the strong effect of the R130C mutation on protein stability, evidenced from experimental results. Possibly, the primary effect of this mutation is to impair dimer assembly, as it changes the hot spot character of position 130 to null spot and causes the loss of important hydrogen bonds mediated by the R130 side chain, including a conserved interface hydrogen bond. The other two mutations do not significantly change the energetic contribution of residues 122 and 247 to subunit association, but they are predicted to cause structural changes that affect the enzymatic activity.

  11. Human Genetic Disorders Caused by Mutations in Genes Encoding Biosynthetic Enzymes for Sulfated Glycosaminoglycans*

    PubMed Central

    Mizumoto, Shuji; Ikegawa, Shiro; Sugahara, Kazuyuki

    2013-01-01

    A number of genetic disorders are caused by mutations in the genes encoding glycosyltransferases and sulfotransferases, enzymes responsible for the synthesis of sulfated glycosaminoglycan (GAG) side chains of proteoglycans, including chondroitin sulfate, dermatan sulfate, and heparan sulfate. The phenotypes of these genetic disorders reflect disturbances in crucial biological functions of GAGs in human. Recent studies have revealed that mutations in genes encoding chondroitin sulfate and dermatan sulfate biosynthetic enzymes cause various disorders of connective tissues. This minireview focuses on growing glycobiological studies of recently described genetic diseases caused by disturbances in biosynthetic enzymes for sulfated GAGs. PMID:23457301

  12. Exome sequencing reveals riboflavin transporter mutations as a cause of motor neuron disease

    PubMed Central

    Johnson, Janel O.; Gibbs, J. Raphael; Megarbane, Andre; Urtizberea, J. Andoni; Hernandez, Dena G.; Foley, A. Reghan; Arepalli, Sampath; Pandraud, Amelie; Simón-Sánchez, Javier; Clayton, Peter; Reilly, Mary M.; Muntoni, Francesco; Abramzon, Yevgeniya; Houlden, Henry

    2012-01-01

    Brown–Vialetto–Van Laere syndrome was first described in 1894 as a rare neurodegenerative disorder characterized by progressive sensorineural deafness in combination with childhood amyotrophic lateral sclerosis. Mutations in the gene, SLC52A3 (formerly C20orf54), one of three known riboflavin transporter genes, have recently been shown to underlie a number of severe cases of Brown–Vialetto–Van Laere syndrome; however, cases and families with this disease exist that do not appear to be caused by SLC52A3 mutations. We used a combination of linkage and exome sequencing to identify the disease causing mutation in an extended Lebanese Brown–Vialetto–Van Laere kindred, whose affected members were negative for SLC52A3 mutations. We identified a novel mutation in a second member of the riboflavin transporter gene family (gene symbol: SLC52A2) as the cause of disease in this family. The same mutation was identified in one additional subject, from 44 screened. Within this group of 44 patients, we also identified two additional cases with SLC52A3 mutations, but none with mutations in the remaining member of this gene family, SLC52A1. We believe this strongly supports the notion that defective riboflavin transport plays an important role in Brown–Vialetto–Van Laere syndrome. Initial work has indicated that patients with SLC52A3 defects respond to riboflavin treatment clinically and biochemically. Clearly, this makes an excellent candidate therapy for the SLC52A2 mutation-positive patients identified here. Initial riboflavin treatment of one of these patients shows promising results. PMID:22740598

  13. Identification and expression of mutations in the hydroxymethylbilane synthase gene causing acute intermittent porphyria (AIP).

    PubMed Central

    Solis, C.; Lopez-Echaniz, I.; Sefarty-Graneda, D.; Astrin, K. H.; Desnick, R. J.

    1999-01-01

    BACKGROUND: Acute intermittent porphyria (AIP), an autosomal dominant inborn error, results from the half-normal activity of the heme biosynthetic enzyme hydroxymethylbilane synthase (EC 4.3.1.8; HMB-synthase). This disease is characterized by acute, life-threatening neurologic attacks that are precipitated by various drugs, hormones, and other factors. The enzymatic and/or biochemical diagnosis of AIP heterozygotes is problematic; therefore, efforts have focused on the identification of HMB-synthase mutations so that heterozygotes can be identified and educated to avoid the precipitating factors. In Spain, the occurrence of AIP has been reported, but the nature of the HMB-synthase mutations causing AIP in Spanish families has not been investigated. Molecular analysis was therefore undertaken in nine unrelated Spanish AIP patients. MATERIALS AND METHODS: Genomic DNA was isolated from affected probands and family members of nine unrelated Spanish families with AIP. The HMB-synthase gene was amplified by long-range PCR and the nucleotide sequence of each exon was determined by cycle sequencing. RESULTS: Three new mutations, a missense, M212V; a single base insertion, g4715insT; and a deletion/insertion, g7902ACT-->G, as well as five previously reported mutations (G111R, R116W, R149X R167W, and R173W) were detected in the Spanish probands. Expression of the novel missense mutation M212V in E. coli revealed that the mutation was causative, having <2% residual activity. CONCLUSIONS: These studies identified the first mutations in the HMB-synthase gene causing AIP in Spanish patients. Three of the mutations were novel, while five previously reported lesions were found in six Spanish families. These findings enable accurate identification and counseling of presymptomatic carriers in these nine unrelated Spanish AIP families and further demonstrate the genetic heterogeneity of mutations causing AIP. Images Fig. 1 PMID:10602775

  14. Nemaline myopathy caused byTNNT1 mutations in a Dutch pedigree.

    PubMed

    van der Pol, W Ludo; Leijenaar, Jolien F; Spliet, Wim G M; Lavrijsen, Selma W; Jansen, Nicolaas J G; Braun, Kees P J; Mulder, Marcel; Timmers-Raaijmakers, Brigitte; Ratsma, Kimberly; Dooijes, Dennis; van Haelst, Mieke M

    2014-03-01

    Nemaline myopathy (NM) is genetically heterogeneous disorder characterized by early onset muscular weakness and sarcoplasmatic or intranuclear inclusions of rod-shaped Z-disk material in muscle fibers. Thus far, mutations in seven genes have been identified as cause of NM. Only one singleTNNT1 nonsense mutation has been previously described that causes autosomal recessive NM in the old order Amish with a very specific clinical phenotype including rapidly progressive contractures. Here, we report a patient who is compound heterozygous for a c.309+1G>A mutation and an exon 14 deletion in theTNNT1 gene. This report confirms the specific clinical phenotype ofTNNT1 NM and documents two newTNNT1 mutations outside the old order Amish.

  15. Nemaline myopathy caused byTNNT1 mutations in a Dutch pedigree

    PubMed Central

    van der Pol, W Ludo; Leijenaar, Jolien F; Spliet, Wim G M; Lavrijsen, Selma W; Jansen, Nicolaas J G; Braun, Kees P J; Mulder, Marcel; Timmers-Raaijmakers, Brigitte; Ratsma, Kimberly; Dooijes, Dennis; van Haelst, Mieke M

    2014-01-01

    Nemaline myopathy (NM) is genetically heterogeneous disorder characterized by early onset muscular weakness and sarcoplasmatic or intranuclear inclusions of rod-shaped Z-disk material in muscle fibers. Thus far, mutations in seven genes have been identified as cause of NM. Only one singleTNNT1 nonsense mutation has been previously described that causes autosomal recessive NM in the old order Amish with a very specific clinical phenotype including rapidly progressive contractures. Here, we report a patient who is compound heterozygous for a c.309+1G>A mutation and an exon 14 deletion in theTNNT1 gene. This report confirms the specific clinical phenotype ofTNNT1 NM and documents two newTNNT1 mutations outside the old order Amish. PMID:24689076

  16. Mitotic Recombination in Patients with Ichthyosis Causes Reversion of Dominant Mutations in KRT10

    PubMed Central

    Choate, Keith A.; Lu, Yin; Zhou, Jing; Choi, Murim; Elias, Peter M.; Farhi, Anita; Nelson-Williams, Carol; Crumrine, Debra; Williams, Mary L.; Nopper, Amy J.; Bree, Alanna; Milstone, Leonard M.; Lifton, Richard P.

    2011-01-01

    Somatic loss of wild-type alleles can produce disease traits such as neoplasia. Conversely, somatic loss of disease-causing mutations can revert phenotypes, however these events are infrequently observed. We demonstrate that ichthyosis with confetti, a severe, sporadic skin disease, is associated with thousands of revertant clones of normal skin that arise from loss of heterozygosity on chromosome 17q via mitotic recombination. This enabled mapping and identification of disease-causing mutations in keratin 10 (KRT10); all result in frameshifts into the same alternative reading frame, producing an arginine-rich C-terminal peptide that redirects keratin 10 from the cytokeratin filament network to the nucleolus. The general rarity of spontaneous reversion and the specific absence of reversion of other dominant mutations in KRT10 implicate the frameshift peptide in the appearance of revertants. These results may have ramifications for reversion of other mutations. PMID:20798280

  17. Functional analysis of Ectodysplasin-A mutations causing selective tooth agenesis

    PubMed Central

    Mues, Gabriele; Tardivel, Aubry; Willen, Laure; Kapadia, Hitesh; Seaman, Robyn; Frazier-Bowers, Sylvia; Schneider, Pascal; D'Souza, Rena N

    2010-01-01

    Mutations of the Ectodysplasin-A (EDA) gene are generally associated with the syndrome hypohidrotic ectodermal dysplasia (MIM 305100), but they can also manifest as selective, non-syndromic tooth agenesis (MIM300606). We have performed an in vitro functional analysis of six selective tooth agenesis-causing EDA mutations (one novel and five known) that are located in the C-terminal tumor necrosis factor homology domain of the protein. Our study reveals that expression, receptor binding or signaling capability of the mutant EDA1 proteins is only impaired in contrast to syndrome-causing mutations, which we have previously shown to abolish EDA1 expression, receptor binding or signaling. Our results support a model in which the development of the human dentition, especially of anterior teeth, requires the highest level of EDA-receptor signaling, whereas other ectodermal appendages, including posterior teeth, have less stringent requirements and form normally in response to EDA mutations with reduced activity. PMID:19623212

  18. A dominant mutation in hexokinase 1 (HK1) causes retinitis pigmentosa.

    PubMed

    Sullivan, Lori S; Koboldt, Daniel C; Bowne, Sara J; Lang, Steven; Blanton, Susan H; Cadena, Elizabeth; Avery, Cheryl E; Lewis, Richard A; Webb-Jones, Kaylie; Wheaton, Dianna H; Birch, David G; Coussa, Razck; Ren, Huanan; Lopez, Irma; Chakarova, Christina; Koenekoop, Robert K; Garcia, Charles A; Fulton, Robert S; Wilson, Richard K; Weinstock, George M; Daiger, Stephen P

    2014-09-04

    To identify the cause of retinitis pigmentosa (RP) in UTAD003, a large, six-generation Louisiana family with autosomal dominant retinitis pigmentosa (adRP). A series of strategies, including candidate gene screening, linkage exclusion, genome-wide linkage mapping, and whole-exome next-generation sequencing, was used to identify a mutation in a novel disease gene on chromosome 10q22.1. Probands from an additional 404 retinal degeneration families were subsequently screened for mutations in this gene. Exome sequencing in UTAD003 led to identification of a single, novel coding variant (c.2539G>A, p.Glu847Lys) in hexokinase 1 (HK1) present in all affected individuals and absent from normal controls. One affected family member carries two copies of the mutation and has an unusually severe form of disease, consistent with homozygosity for this mutation. Screening of additional adRP probands identified four other families (American, Canadian, and Sicilian) with the same mutation and a similar range of phenotypes. The families share a rare 450-kilobase haplotype containing the mutation, suggesting a founder mutation among otherwise unrelated families. We identified an HK1 mutation in five adRP families. Hexokinase 1 catalyzes phosphorylation of glucose to glucose-6-phosphate. HK1 is expressed in retina, with two abundant isoforms expressed at similar levels. The Glu847Lys mutation is located at a highly conserved position in the protein, outside the catalytic domains. We hypothesize that the effect of this mutation is limited to the retina, as no systemic abnormalities in glycolysis were detected. Prevalence of the HK1 mutation in our cohort of RP families is 1%. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  19. A Dominant Mutation in Hexokinase 1 (HK1) Causes Retinitis Pigmentosa

    PubMed Central

    Sullivan, Lori S.; Koboldt, Daniel C.; Bowne, Sara J.; Lang, Steven; Blanton, Susan H.; Cadena, Elizabeth; Avery, Cheryl E.; Lewis, Richard A.; Webb-Jones, Kaylie; Wheaton, Dianna H.; Birch, David G.; Coussa, Razck; Ren, Huanan; Lopez, Irma; Chakarova, Christina; Koenekoop, Robert K.; Garcia, Charles A.; Fulton, Robert S.; Wilson, Richard K.; Weinstock, George M.; Daiger, Stephen P.

    2014-01-01

    Purpose. To identify the cause of retinitis pigmentosa (RP) in UTAD003, a large, six-generation Louisiana family with autosomal dominant retinitis pigmentosa (adRP). Methods. A series of strategies, including candidate gene screening, linkage exclusion, genome-wide linkage mapping, and whole-exome next-generation sequencing, was used to identify a mutation in a novel disease gene on chromosome 10q22.1. Probands from an additional 404 retinal degeneration families were subsequently screened for mutations in this gene. Results. Exome sequencing in UTAD003 led to identification of a single, novel coding variant (c.2539G>A, p.Glu847Lys) in hexokinase 1 (HK1) present in all affected individuals and absent from normal controls. One affected family member carries two copies of the mutation and has an unusually severe form of disease, consistent with homozygosity for this mutation. Screening of additional adRP probands identified four other families (American, Canadian, and Sicilian) with the same mutation and a similar range of phenotypes. The families share a rare 450-kilobase haplotype containing the mutation, suggesting a founder mutation among otherwise unrelated families. Conclusions. We identified an HK1 mutation in five adRP families. Hexokinase 1 catalyzes phosphorylation of glucose to glucose-6-phosphate. HK1 is expressed in retina, with two abundant isoforms expressed at similar levels. The Glu847Lys mutation is located at a highly conserved position in the protein, outside the catalytic domains. We hypothesize that the effect of this mutation is limited to the retina, as no systemic abnormalities in glycolysis were detected. Prevalence of the HK1 mutation in our cohort of RP families is 1%. PMID:25190649

  20. Alteration of CFTR transmembrane span integration by disease-causing mutations.

    PubMed

    Patrick, Anna E; Karamyshev, Andrey L; Millen, Linda; Thomas, Philip J

    2011-12-01

    Many missense mutations in the cystic fibrosis transmembrane conductance regulator protein (CFTR) result in its misfolding, endoplasmic reticulum (ER) accumulation, and, thus, cystic fibrosis. A number of these mutations are located in the predicted CFTR transmembrane (TM) spans and have been projected to alter span integration. However, the boundaries of the spans have not been precisely defined experimentally. In this study, the ER luminal integration profiles of TM1 and TM2 were determined using the ER glycosylation machinery, and the effects of the CF-causing mutations G85E and G91R thereon were assessed. The mutations either destabilize the integrated conformation or alter the TM1 ER integration profile. G85E misfolding is based in TM1 destabilization by glutamic acid and loss of glycine and correlates with the temperature-insensitive ER accumulation of immature full-length CFTR harboring the mutation. By contrast, temperature-dependent misfolding owing to the G91R mutation depends on the introduction of the basic side chain rather than the loss of the glycine. This work demonstrates that CF-causing mutations predicted to have similar effects on CFTR structure actually result in disparate molecular perturbations that underlie ER accumulation and the pathology of CF.

  1. Computational Modeling of Molecular Effects of Mutations Causing Snyder-Robinson Syndrome

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Teng, Shaolei; Alexov, Emil

    2009-11-01

    Snyder-Robinson syndrome is an X-linked mental retardation disorder disease. The disease is associated with defects in a particular biomolecule, the spermine synthase (SMS) protein. Specifically, three missense mutations, G56S, I150T and V132G in SMS were identified to cause the disease, but molecular mechanism of their effect is unknown. We apply single-point energy calculations, molecular dynamics simulations and pKa calculations to reveal the effects of these mutations on SMS's stability, flexibility and interactions. It is demonstrated that even saddle changes as very conservative mutations can significantly affect wild type properties of SMS protein. While the mutations do not involve ionizable groups, still slight changes in the protonation of neighboring amino acids are suggested by the computational protocol. The dynamics of SMS was also affected by the mutations resulting in larger structural fluctuations in the mutant protein compared to the wild type. At the same time, the effect on SMS's stability was found to depend on the location of the mutation site with respect to the surface of the protein. Our investigation suggests that the disease is caused by diverse molecular mechanisms depending on the site of mutation and amino acid type substitution.

  2. Germline and somatic DICER1 mutations in a pituitary blastoma causing infantile-onset Cushing's disease.

    PubMed

    Sahakitrungruang, Taninee; Srichomthong, Chalurmpon; Pornkunwilai, Sopon; Amornfa, Jiraporn; Shuangshoti, Shanop; Kulawonganunchai, Supasak; Suphapeetiporn, Kanya; Shotelersuk, Vorasuk

    2014-08-01

    Pituitary blastoma causing Cushing's syndrome in infancy is very rare, and its molecular pathomechanism is not well understood. Our objective was to identify genetic changes of a pituitary blastoma causing infantile-onset Cushing's syndrome in a Thai girl without a family history of cancers. Genomic DNA from both leukocytes and tumor tissues was used for whole-exome sequencing (WES) and Sanger sequencing of DICER1. The cDNA reverse-transcribed from RNA extracted from both leukocytes and tumor tissues was used for Sanger sequencing, quantitative real-time PCR (qRT-PCR), and pyrosequencing of DICER1. WES of leukocytes identified a novel heterozygous c.3046delA (p.S1016VfsX1065) mutation in the DICER1 gene. WES of the tumor tissues detected the same frameshift germline mutation and another novel somatic missense c.5438A→T (p.E1813V) mutation. Both mutations were validated by Sanger sequencing. Quantitative real-time PCR revealed that the DICER1 mRNA levels of the tumor tissues were 54% compared with those of her leukocytes. Pyrosequencing showed that the deletion allele constituted 12% and 0% of the DICER1 cDNA of the proband's leukocytes and tumor tissues, respectively. Our study extends the phenotypic and mutational spectrum of DICER1 mutations to include infantile-onset Cushing's disease and 2 novel mutations. Loss of function of both DICER1 alleles appears to be crucial to initiate tumor development.

  3. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations

    PubMed Central

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-01-01

    Predicting the effect of amino acid substitutions on protein–protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/. PMID:27077847

  4. Mutations in CHMP2B are not a cause of frontotemporal lobar degeneration in Finnish patients.

    PubMed

    Kaivorinne, A-L; Krüger, J; Udd, B; Majamaa, K; Remes, A M

    2010-11-01

    Frontotemporal lobar degeneration (FTLD) is a genetically complex disorder. The majority of mutations linked to FTLD families are found in the microtubule-associated protein tau (MAPT) and progranulin (PGRN) genes. Mutations in the chromatin-modifying protein 2B gene (CHMP2B) have been identified in a few families. However, CHMP2B has been showed to be a rare cause of FTLD. Our aim was to determine the frequency of CHMP2B mutations in a clinical series of patients with FTLD in Northern Finland. We examined 72 (36 men) Finnish patients with FTLD. The mean age at onset was 58.9 (range 43–80). Symptoms of motor neuron disease (FTLDMND) were present in 12 patients (17%). Positive family history was detected in 28% of the patients. Mutations in MAPT and PGRN were excluded from these patients. All exons and exon–intron boundaries of the CHMP2B gene were sequenced. No pathogenic CHMP2B mutations were found. A rare polymorphism in the non-coding region of exon 1 (rs36098294) and three other previously reported polymorphisms were detected. Our results confirm that mutations in CHMP2B are not a common cause of FTLD. MAPT and PGRN mutations are also rare in Finnish population, suggesting that other, still unknown genetic factors may play a role in the pathogenesis of FTLD in Finnish population.

  5. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.

    PubMed

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-04-12

    Predicting the effect of amino acid substitutions on protein-protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/.

  6. Mutations in the Drosophila gene encoding ribosomal protein S6 cause tissue overgrowth.

    PubMed Central

    Stewart, M J; Denell, R

    1993-01-01

    We have characterized two P-element-induced, lethal mutations in Drosophila melanogaster which affect the larval hemocytes, mediators of the insect immune response. Each mutant displays larval melanotic tumors characteristic of mutations affecting the insect cellular immune system, and the moribund animals develop grossly hypertrophied hematopoietic organs because of increased cell proliferation and extra rounds of endoreduplication in some hematopoietic cells. Surprisingly, these mutations are due to P element insertions in the 5' regulatory region of the Drosophila gene encoding ribosomal protein S6 and cause a reduction of S6 transcript abundance in mutant larvae. Images PMID:8384310

  7. Mutation in the AP4B1 gene cause hereditary spastic paraplegia type 47 (SPG47) .

    PubMed

    Bauer, Peter; Leshinsky-Silver, Esther; Blumkin, Lubov; Schlipf, Nina; Schröder, Christopher; Schicks, Julia; Lev, Dorit; Riess, Olaf; Lerman-Sagie, Tally; Schöls, Ludger

    2012-02-01

    We recently identified a new locus for spastic paraplegia type 47 (SPG47) in a consanguineous Arabic family with two affected siblings with progressive spastic paraparesis,intellectual disability, seizures, periventricular white matter changes and thin corpus callosum. Using exome sequencing, we now identified a novel AP4B1 frameshift mutation (c.664delC) in this family. This mutation was homozygous in both affected siblings and heterozygous in both parents. The mutant allele was absent in 316 Caucasian and 200 ethnically matched control chromosomes. We propose that AP4B1 mutations cause SPG47 and should be considered in early onset spastic paraplegia with intellectual disability.

  8. Biallelic SZT2 Mutations Cause Infantile Encephalopathy with Epilepsy and Dysmorphic Corpus Callosum

    PubMed Central

    Basel-Vanagaite, Lina; Hershkovitz, Tova; Heyman, Eli; Raspall-Chaure, Miquel; Kakar, Naseebullah; Smirin-Yosef, Pola; Vila-Pueyo, Marta; Kornreich, Liora; Thiele, Holger; Bode, Harald; Lagovsky, Irina; Dahary, Dvir; Haviv, Ami; Hubshman, Monika Weisz; Pasmanik-Chor, Metsada; Nürnberg, Peter; Gothelf, Doron; Kubisch, Christian; Shohat, Mordechai; Macaya, Alfons; Borck, Guntram

    2013-01-01

    Epileptic encephalopathies are genetically heterogeneous severe disorders in which epileptic activity contributes to neurological deterioration. We studied two unrelated children presenting with a distinctive early-onset epileptic encephalopathy characterized by refractory epilepsy and absent developmental milestones, as well as thick and short corpus callosum and persistent cavum septum pellucidum on brain MRI. Using whole-exome sequencing, we identified biallelic mutations in seizure threshold 2 (SZT2) in both affected children. The causative mutations include a homozygous nonsense mutation and a nonsense mutation together with an exonic splice-site mutation in a compound-heterozygous state. The latter mutation leads to exon skipping and premature termination of translation, as shown by RT-PCR in blood RNA of the affected boy. Thus, all three mutations are predicted to result in nonsense-mediated mRNA decay and/or premature protein truncation and thereby loss of SZT2 function. Although the molecular role of the peroxisomal protein SZT2 in neuronal excitability and brain development remains to be defined, Szt2 has been shown to influence seizure threshold and epileptogenesis in mice, consistent with our findings in humans. We conclude that mutations in SZT2 cause a severe type of autosomal-recessive infantile encephalopathy with intractable seizures and distinct neuroradiological anomalies. PMID:23932106

  9. A Novel CRYBB2 Stopgain Mutation Causing Congenital Autosomal Dominant Cataract in a Chinese Family

    PubMed Central

    Zhou, Yu; Zhai, Yaru; Huang, Lulin; Gong, Bo; Li, Jie; Hao, Fang; Wu, Zhengzheng

    2016-01-01

    Congenital cataract is the most common cause of the visual disability and blindness in childhood. This study aimed to identify gene mutations responsible for autosomal dominant congenital cataract (ADCC) in a Chinese family using next-generation sequencing technology. This family included eight unaffected and five affected individuals. After complete ophthalmic examinations, the blood samples of the proband and two available family members were collected. Then the whole exome sequencing was performed on the proband and Sanger sequencing was applied to validate the causal mutation in the two family members and control samples. After the whole exome sequencing data were filtered through a series of existing variation databases, a heterozygous mutation c.499Tmutation cosegregated with the disease phenotype in the family and was absolutely absent in 1000 ethnicity-matched control samples. Thus, the heterozygous mutation c.499Tmutation responsible for this ADCC family. In conclusion, our findings revealed a novel stopgain mutation c.499Tmutation spectrum of CRYBB2 in Chinese congenital cataract population and illustrated the important role of CRYBB2 in the genetics research of congenital cataract. PMID:28025620

  10. Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy

    PubMed Central

    Kawana, Masataka; Sarkar, Saswata S.; Sutton, Shirley; Ruppel, Kathleen M.; Spudich, James A.

    2017-01-01

    Hypertrophic cardiomyopathy (HCM) affects 1 in 500 individuals and is an important cause of arrhythmias and heart failure. Clinically, HCM is characterized as causing hypercontractility, and therapies are aimed toward controlling the hyperactive physiology. Mutations in the β-cardiac myosin comprise ~40% of genetic mutations associated with HCM, and the converter domain of myosin is a hotspot for HCM-causing mutations; however, the underlying primary effects of these mutations on myosin’s biomechanical function remain elusive. We hypothesize that these mutations affect the biomechanical properties of myosin, such as increasing its intrinsic force and/or its duty ratio and therefore the ensemble force of the sarcomere. Using recombinant human β-cardiac myosin, we characterize the molecular effects of three severe HCM-causing converter domain mutations: R719W, R723G, and G741R. Contrary to our hypothesis, the intrinsic forces of R719W and R723G mutant myosins are decreased compared to wild type and unchanged for G741R. Actin and regulated thin filament gliding velocities are ~15% faster for R719W and R723G myosins, whereas there is no change in velocity for G741R. Adenosine triphosphatase activities and the load-dependent velocity change profiles of all three mutant proteins are very similar to those of wild type. These results indicate that the net biomechanical properties of human β-cardiac myosin carrying these converter domain mutations are very similar to those of wild type or are even slightly hypocontractile, leading us to consider an alternative mechanism for the clinically observed hypercontractility. Future work includes how these mutations affect protein interactions within the sarcomere that increase the availability of myosin heads participating in force production. PMID:28246639

  11. Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy.

    PubMed

    Kawana, Masataka; Sarkar, Saswata S; Sutton, Shirley; Ruppel, Kathleen M; Spudich, James A

    2017-02-01

    Hypertrophic cardiomyopathy (HCM) affects 1 in 500 individuals and is an important cause of arrhythmias and heart failure. Clinically, HCM is characterized as causing hypercontractility, and therapies are aimed toward controlling the hyperactive physiology. Mutations in the β-cardiac myosin comprise ~40% of genetic mutations associated with HCM, and the converter domain of myosin is a hotspot for HCM-causing mutations; however, the underlying primary effects of these mutations on myosin's biomechanical function remain elusive. We hypothesize that these mutations affect the biomechanical properties of myosin, such as increasing its intrinsic force and/or its duty ratio and therefore the ensemble force of the sarcomere. Using recombinant human β-cardiac myosin, we characterize the molecular effects of three severe HCM-causing converter domain mutations: R719W, R723G, and G741R. Contrary to our hypothesis, the intrinsic forces of R719W and R723G mutant myosins are decreased compared to wild type and unchanged for G741R. Actin and regulated thin filament gliding velocities are ~15% faster for R719W and R723G myosins, whereas there is no change in velocity for G741R. Adenosine triphosphatase activities and the load-dependent velocity change profiles of all three mutant proteins are very similar to those of wild type. These results indicate that the net biomechanical properties of human β-cardiac myosin carrying these converter domain mutations are very similar to those of wild type or are even slightly hypocontractile, leading us to consider an alternative mechanism for the clinically observed hypercontractility. Future work includes how these mutations affect protein interactions within the sarcomere that increase the availability of myosin heads participating in force production.

  12. Mutations in the guanine nucleotide exchange factor gene IQSEC2 cause nonsyndromic intellectual disability

    PubMed Central

    Shoubridge, Cheryl; Tarpey, Patrick S; Abidi, Fatima; Ramsden, Sarah L; Rujirabanjerd, Sinitdhorn; Murphy, Jessica A; Boyle, Jackie; Shaw, Marie; Gardner, Alison; Proos, Anne; Puusepp, Helen; Raymond, F Lucy; Schwartz, Charles E; Stevenson, Roger E; Turner, Gill; Field, Michael; Walikonis, Randall S; Harvey, Robert J; Hackett, Anna; Futreal, P Andrew; Stratton, Michael R; Gécz, Jozef

    2013-01-01

    The first family identified as having a nonsyndromic intellectual disability was mapped in 1988. Here we show that a mutation of IQSEC2, encoding a guanine nucleotide exchange factor for the ADP-ribosylation factor family of small GTPases, caused this disorder. In addition to MRX1, IQSEC2 mutations were identified in three other families with X-linked intellectual disability. This discovery was made possible by systematic and unbiased X chromosome exome resequencing. PMID:20473311

  13. Sec3 Mutations Are Synthetically Lethal with Profilin Mutations and Cause Defects in Diploid-Specific Bud-Site Selection

    PubMed Central

    Haarer, B. K.; Corbett, A.; Kweon, Y.; Petzold, A. S.; Silver, P.; Brown, S. S.

    1996-01-01

    Replacement of the wild-type yeast profilin gene (PFY1) with a mutated form (pfy1-111) that has codon 72 changed to encode glutamate rather than arginine results in defects similar to, but less severe than, those that result from complete deletion of the profilin gene. We have used a colony color-sectoring assay to identify mutations that cause pfy1-111, but not wild-type, cells to be inviable. These profilin synthetic lethal (psl) mutations result in various degrees of abnormal growth, morphology, and temperature sensitivity in PFY1 cells. We have examined psl1 strains in the most detail. Interestingly, these strains display a diploid-specific defect in bud-site selection; haploid strains bud normally, while homozygous diploid strains show a dramatic increase in random budding. We discovered that PSL1 is the late secretory gene, SEC3, and have found that mutations in several other late secretory genes are also synthetically lethal with pfy1-111. Our results are likely to reflect an interdependence between the actin cytoskeleton and secretory processes in directing cell polarity and growth. Moreover, they indicate that the secretory pathway is especially crucial for maintaining budding polarity in diploids. PMID:8889515

  14. Mutations in DVL1 Cause an Osteosclerotic Form of Robinow Syndrome

    PubMed Central

    Bunn, Kieran J.; Daniel, Phil; Rösken, Heleen S.; O’Neill, Adam C.; Cameron-Christie, Sophia R.; Morgan, Tim; Brunner, Han G.; Lai, Angeline; Kunst, Henricus P.M.; Markie, David M.; Robertson, Stephen P.

    2015-01-01

    Robinow syndrome (RS) is a phenotypically and genetically heterogeneous condition that can be caused by mutations in genes encoding components of the non-canonical Wnt signaling pathway. In contrast, germline mutations that act to increase canonical Wnt signaling lead to distinctive osteosclerotic phenotypes. Here, we identified de novo frameshift mutations in DVL1, a mediator of both canonical and non-canonical Wnt signaling, as the cause of RS-OS, an RS subtype involving osteosclerosis, in three unrelated individuals. The mutations all delete the DVL1 C terminus and replace it, in each instance, with a novel, highly basic sequence. We showed the presence of mutant transcript in fibroblasts from one individual with RS-OS and demonstrated unimpaired protein stability with transfected GFP-tagged constructs bearing a frameshift mutation. In vitro TOPFlash assays, in apparent contradiction to the osteosclerotic phenotype, revealed that the mutant allele was less active than the wild-type allele in the canonical Wnt signaling pathway. However, when the mutant and wild-type alleles were co-expressed, canonical Wnt activity was 2-fold higher than that in the wild-type construct alone. This work establishes that DVL1 mutations cause a specific RS subtype, RS-OS, and that the osteosclerosis associated with this subtype might be the result of an interaction between the wild-type and mutant alleles and thus lead to elevated canonical Wnt signaling. PMID:25817014

  15. Autosomal-Dominant Multiple Pterygium Syndrome Is Caused by Mutations in MYH3

    PubMed Central

    Chong, Jessica X.; Burrage, Lindsay C.; Beck, Anita E.; Marvin, Colby T.; McMillin, Margaret J.; Shively, Kathryn M.; Harrell, Tanya M.; Buckingham, Kati J.; Bacino, Carlos A.; Jain, Mahim; Alanay, Yasemin; Berry, Susan A.; Carey, John C.; Gibbs, Richard A.; Lee, Brendan H.; Krakow, Deborah; Shendure, Jay; Nickerson, Deborah A.; Bamshad, Michael J.; Shendure, Jay; Nickerson, Deborah A.; Abecasis, Gonçalo R.; Anderson, Peter; Blue, Elizabeth Marchani; Annable, Marcus; Browning, Brian L.; Buckingham, Kati J.; Chen, Christina; Chin, Jennifer; Chong, Jessica X.; Cooper, Gregory M.; Davis, Colleen P.; Frazar, Christopher; Harrell, Tanya M.; He, Zongxiao; Jain, Preti; Jarvik, Gail P.; Jimenez, Guillaume; Johanson, Eric; Jun, Goo; Kircher, Martin; Kolar, Tom; Krauter, Stephanie A.; Krumm, Niklas; Leal, Suzanne M.; Luksic, Daniel; Marvin, Colby T.; McMillin, Margaret J.; McGee, Sean; O’Reilly, Patrick; Paeper, Bryan; Patterson, Karynne; Perez, Marcos; Phillips, Sam W.; Pijoan, Jessica; Poel, Christa; Reinier, Frederic; Robertson, Peggy D.; Santos-Cortez, Regie; Shaffer, Tristan; Shephard, Cindy; Shively, Kathryn M.; Siegel, Deborah L.; Smith, Joshua D.; Staples, Jeffrey C.; Tabor, Holly K.; Tackett, Monica; Underwood, Jason G.; Wegener, Marc; Wang, Gao; Wheeler, Marsha M.; Yi, Qian; Bamshad, Michael J.

    2015-01-01

    Multiple pterygium syndrome (MPS) is a phenotypically and genetically heterogeneous group of rare Mendelian conditions characterized by multiple pterygia, scoliosis, and congenital contractures of the limbs. MPS typically segregates as an autosomal-recessive disorder, but rare instances of autosomal-dominant transmission have been reported. Whereas several mutations causing recessive MPS have been identified, the genetic basis of dominant MPS remains unknown. We identified four families affected by dominantly transmitted MPS characterized by pterygia, camptodactyly of the hands, vertebral fusions, and scoliosis. Exome sequencing identified predicted protein-altering mutations in embryonic myosin heavy chain (MYH3) in three families. MYH3 mutations underlie distal arthrogryposis types 1, 2A, and 2B, but all mutations reported to date occur in the head and neck domains. In contrast, two of the mutations found to cause MPS in this study occurred in the tail domain. The phenotypic overlap among persons with MPS, coupled with physical findings distinct from other conditions caused by mutations in MYH3, suggests that the developmental mechanism underlying MPS differs from that of other conditions and/or that certain functions of embryonic myosin might be perturbed by disruption of specific residues and/or domains. Moreover, the vertebral fusions in persons with MPS, coupled with evidence of MYH3 expression in bone, suggest that embryonic myosin plays a role in skeletal development. PMID:25957469

  16. Erythrocytic Pyruvate Kinase Mutations Causing Hemolytic Anemia, Osteosclerosis, and Secondary Hemochromatosis in Dogs

    PubMed Central

    Gultekin, G. Inal; Raj, K.; Foureman, P.; Lehman, S.; Manhart, K.; Abdulmalik, O.; Giger, U.

    2013-01-01

    Background Erythrocytic pyruvate kinase (PK) deficiency, first documented in Basenjis, is the most common inherited erythroenzymopathy in dogs. Objectives To report 3 new breed-specific PK-LR gene mutations and a retrospective survey of PK mutations in a small and selected group of Beagles and West Highland White Terriers (WHWT). Animals Labrador Retrievers (2 siblings, 5 unrelated), Pugs (2 siblings, 1 unrelated), Beagles (39 anemic, 29 other), WHWTs (22 anemic, 226 nonanemic), Cairn Terrier (n = 1). Methods Exons of the PK-LR gene were sequenced from genomic DNA of young dogs (<2 years) with persistent highly regenerative hemolytic anemia. Results A nonsense mutation (c.799C>T) resulting in a premature stop codon was identified in anemic Labrador Retriever siblings that had osteosclerosis, high serum ferritin concentrations, and severe hepatic secondary hemochromatosis. Anemic Pug and Beagle revealed 2 different missense mutations (c.848T>C, c.994G>A, respectively) resulting in intolerable amino acid changes to protein structure and enzyme function. Breed-specific mutation tests were developed. Among the biased group of 248 WHWTs, 9% and 35% were homozygous (affected) and heterozygous, respectively, for the previously described mutation (mutant allele frequency 0.26). A PK-deficient Cairn Terrier had the same insertion mutation as the affected WHWTs. Of the selected group of 68 Beagles, 35% were PK-deficient and 3% were carriers (0.37). Conclusions and Clinical Importance Erythrocytic PK deficiency is caused by different mutations in different dog breeds and causes chronic severe hemolytic anemia, hemosiderosis, and secondary hemochromatosis because of chronic hemolysis and, an as yet unexplained osteosclerosis. The newly developed breed-specific mutation assays simplify the diagnosis of PK deficiency. PMID:22805166

  17. Mutations in IMPG2, Encoding Interphotoreceptor Matrix Proteoglycan 2, Cause Autosomal-Recessive Retinitis Pigmentosa

    PubMed Central

    Bandah-Rozenfeld, Dikla; Collin, Rob W.J.; Banin, Eyal; Ingeborgh van den Born, L.; Coene, Karlien L.M.; Siemiatkowska, Anna M.; Zelinger, Lina; Khan, Muhammad I.; Lefeber, Dirk J.; Erdinest, Inbar; Testa, Francesco; Simonelli, Francesca; Voesenek, Krysta; Blokland, Ellen A.W.; Strom, Tim M.; Klaver, Caroline C.W.; Qamar, Raheel; Banfi, Sandro; Cremers, Frans P.M.; Sharon, Dror; den Hollander, Anneke I.

    2010-01-01

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal diseases caused by progressive degeneration of the photoreceptor cells. Using autozygosity mapping, we identified two families, each with three affected siblings sharing large overlapping homozygous regions that harbored the IMPG2 gene on chromosome 3. Sequence analysis of IMPG2 in the two index cases revealed homozygous mutations cosegregating with the disease in the respective families: three affected siblings of Iraqi Jewish ancestry displayed a nonsense mutation, and a Dutch family displayed a 1.8 kb genomic deletion that removes exon 9 and results in the absence of seven amino acids in a conserved SEA domain of the IMPG2 protein. Transient transfection of COS-1 cells showed that a construct expressing the wild-type SEA domain is properly targeted to the plasma membrane, whereas the mutant lacking the seven amino acids appears to be retained in the endoplasmic reticulum. Mutation analysis in ten additional index cases that were of Dutch, Israeli, Italian, and Pakistani origin and had homozygous regions encompassing IMPG2 revealed five additional mutations; four nonsense mutations and one missense mutation affecting a highly conserved phenylalanine residue. Most patients with IMPG2 mutations showed an early-onset form of RP with progressive visual-field loss and deterioration of visual acuity. The patient with the missense mutation, however, was diagnosed with maculopathy. The IMPG2 gene encodes the interphotoreceptor matrix proteoglycan IMPG2, which is a constituent of the interphotoreceptor matrix. Our data therefore show that mutations in a structural component of the interphotoreceptor matrix can cause arRP. PMID:20673862

  18. De Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies

    PubMed Central

    Appenzeller, Silke; Balling, Rudi; Barisic, Nina; Baulac, Stéphanie; Caglayan, Hande; Craiu, Dana; De Jonghe, Peter; Depienne, Christel; Dimova, Petia; Djémié, Tania; Gormley, Padhraig; Guerrini, Renzo; Helbig, Ingo; Hjalgrim, Helle; Hoffman-Zacharska, Dorota; Jähn, Johanna; Klein, Karl Martin; Koeleman, Bobby; Komarek, Vladimir; Krause, Roland; Kuhlenbäumer, Gregor; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes R.; Lerche, Holger; Linnankivi, Tarja; Marini, Carla; May, Patrick; Møller, Rikke S.; Muhle, Hiltrud; Pal, Deb; Palotie, Aarno; Pendziwiat, Manuela; Robbiano, Angela; Roelens, Filip; Rosenow, Felix; Selmer, Kaja; Serratosa, Jose M.; Sisodiya, Sanjay; Stephani, Ulrich; Sterbova, Katalin; Striano, Pasquale; Suls, Arvid; Talvik, Tiina; von Spiczak, Sarah; Weber, Yvonne; Weckhuysen, Sarah; Zara, Federico; Abou-Khalil, Bassel; Alldredge, Brian K.; Andermann, Eva; Andermann, Frederick; Amron, Dina; Bautista, Jocelyn F.; Berkovic, Samuel F.; Bluvstein, Judith; Boro, Alex; Cascino, Gregory; Consalvo, Damian; Crumrine, Patricia; Devinsky, Orrin; Dlugos, Dennis; Epstein, Michael P.; Fiol, Miguel; Fountain, Nathan B.; French, Jacqueline; Friedman, Daniel; Geller, Eric B.; Glauser, Tracy; Glynn, Simon; Haas, Kevin; Haut, Sheryl R.; Hayward, Jean; Helmers, Sandra L.; Joshi, Sucheta; Kanner, Andres; Kirsch, Heidi E.; Knowlton, Robert C.; Kossoff, Eric H.; Kuperman, Rachel; Kuzniecky, Ruben; Lowenstein, Daniel H.; McGuire, Shannon M.; Motika, Paul V.; Novotny, Edward J.; Ottman, Ruth; Paolicchi, Juliann M.; Parent, Jack; Park, Kristen; Poduri, Annapurna; Sadleir, Lynette; Scheffer, Ingrid E.; Shellhaas, Renée A.; Sherr, Elliott; Shih, Jerry J.; Singh, Rani; Sirven, Joseph; Smith, Michael C.; Sullivan, Joe; Thio, Liu Lin; Venkat, Anu; Vining, Eileen P.G.; Von Allmen, Gretchen K.; Weisenberg, Judith L.; Widdess-Walsh, Peter; Winawer, Melodie R.; Allen, Andrew S.; Berkovic, Samuel F.; Cossette, Patrick; Delanty, Norman; Dlugos, Dennis; Eichler, Evan E.; Epstein, Michael P.; Glauser, Tracy; Goldstein, David B.; Han, Yujun; Heinzen, Erin L.; Johnson, Michael R.; Kuzniecky, Ruben; Lowenstein, Daniel H.; Marson, Anthony G.; Mefford, Heather C.; Nieh, Sahar Esmaeeli; O’Brien, Terence J.; Ottman, Ruth; Petrou, Stephen; Petrovski, Slavé; Poduri, Annapurna; Ruzzo, Elizabeth K.; Scheffer, Ingrid E.; Sherr, Elliott

    2014-01-01

    Emerging evidence indicates that epileptic encephalopathies are genetically highly heterogeneous, underscoring the need for large cohorts of well-characterized individuals to further define the genetic landscape. Through a collaboration between two consortia (EuroEPINOMICS and Epi4K/EPGP), we analyzed exome-sequencing data of 356 trios with the “classical” epileptic encephalopathies, infantile spasms and Lennox Gastaut syndrome, including 264 trios previously analyzed by the Epi4K/EPGP consortium. In this expanded cohort, we find 429 de novo mutations, including de novo mutations in DNM1 in five individuals and de novo mutations in GABBR2, FASN, and RYR3 in two individuals each. Unlike previous studies, this cohort is sufficiently large to show a significant excess of de novo mutations in epileptic encephalopathy probands compared to the general population using a likelihood analysis (p = 8.2 × 10−4), supporting a prominent role for de novo mutations in epileptic encephalopathies. We bring statistical evidence that mutations in DNM1 cause epileptic encephalopathy, find suggestive evidence for a role of three additional genes, and show that at least 12% of analyzed individuals have an identifiable causal de novo mutation. Strikingly, 75% of mutations in these probands are predicted to disrupt a protein involved in regulating synaptic transmission, and there is a significant enrichment of de novo mutations in genes in this pathway in the entire cohort as well. These findings emphasize an important role for synaptic dysregulation in epileptic encephalopathies, above and beyond that caused by ion channel dysfunction. PMID:25262651

  19. Mutations in MME cause an autosomal‐recessive Charcot–Marie–Tooth disease type 2

    PubMed Central

    Higuchi, Yujiro; Hashiguchi, Akihiro; Yuan, Junhui; Yoshimura, Akiko; Mitsui, Jun; Ishiura, Hiroyuki; Tanaka, Masaki; Ishihara, Satoshi; Tanabe, Hajime; Nozuma, Satoshi; Okamoto, Yuji; Matsuura, Eiji; Ohkubo, Ryuichi; Inamizu, Saeko; Shiraishi, Wataru; Yamasaki, Ryo; Ohyagi, Yasumasa; Kira, Jun‐ichi; Oya, Yasushi; Yabe, Hayato; Nishikawa, Noriko; Tobisawa, Shinsuke; Matsuda, Nozomu; Masuda, Masayuki; Kugimoto, Chiharu; Fukushima, Kazuhiro; Yano, Satoshi; Yoshimura, Jun; Doi, Koichiro; Nakagawa, Masanori; Morishita, Shinichi; Tsuji, Shoji

    2016-01-01

    Objective The objective of this study was to identify new causes of Charcot–Marie–Tooth (CMT) disease in patients with autosomal‐recessive (AR) CMT. Methods To efficiently identify novel causative genes for AR‐CMT, we analyzed 303 unrelated Japanese patients with CMT using whole‐exome sequencing and extracted recessive variants/genes shared among multiple patients. We performed mutation screening of the newly identified membrane metalloendopeptidase (MME) gene in 354 additional patients with CMT. We clinically, genetically, pathologically, and radiologically examined 10 patients with the MME mutation. Results We identified recessive mutations in MME in 10 patients. The MME gene encodes neprilysin (NEP), which is well known to be one of the most prominent beta‐amyloid (Aβ)‐degrading enzymes. All patients had a similar phenotype consistent with late‐onset axonal neuropathy. They showed muscle weakness, atrophy, and sensory disturbance in the lower extremities. All the MME mutations could be loss‐of‐function mutations, and we confirmed a lack/decrease of NEP protein expression in a peripheral nerve. No patients showed symptoms of dementia, and 1 patient showed no excess Aβ in Pittsburgh compound‐B positron emission tomography imaging. Interpretation Our results indicate that loss‐of‐function MME mutations are the most frequent cause of adult‐onset AR‐CMT2 in Japan, and we propose that this new disease should be termed AR‐CMT2T. A loss‐of‐function MME mutation did not cause early‐onset Alzheimer's disease. Identifying the MME mutation responsible for AR‐CMT could improve the rate of molecular diagnosis and the understanding of the molecular mechanisms of CMT. Ann Neurol 2016;79:659–672 PMID:26991897

  20. Mutations in PSMB8 Cause CANDLE Syndrome with Evidence of Genetic and Phenotypic Heterogeneity

    PubMed Central

    Liu, Yin; Ramot, Yuval; Torrelo, Antonio; Paller, Amy S.; Si, Nuo; Babay, Sofia; Kim, Peter W.; Sheikh, Afzal; Lee, Chyi-Chia Richard; Chen, Yongqing; Vera, Angel; Zhang, Xue; Goldbach-Mansky, Raphaela; Zlotogorski, Abraham

    2011-01-01

    Objective Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome is an autoinflammatory syndrome recently described in children. We investigated the clinical phenotype, genetic cause and the immune dysregulation in nine CANDLE patients. Methods Genomic DNA from all patients was screened for PSMB8 (Proteasome subunit beta type-8) mutations. Serum cytokine levels were measured from four patients. Skin biopsies were evaluated immunohistochemically and blood microarray profile (n=4) and stat-1 phosphorylation (n=3) were assessed. Results One patient was homozygous for a novel nonsense mutation in PSMB8 (c.405C>A) suggesting a protein truncation, four patients were homozygous and two were heterozygous for a previously reported missense mutation (c.224C>T), and one patient showed no mutation. None of these sequence changes was observed in chromosomes from 750 healthy controls. Of the four patients with the same mutation, only two share the same haplotype indicating a mutational hot spot. PSMB8 mutation-positive and -negative patients expressed high IP-10 (Interferon gamma-induced protein 10) levels. Levels of MCP-1, IL-6, and IL-1Ra were moderately elevated. Microarray profiles and monocyte stat-1 activation suggested a unique interferon (IFN) signaling signature, unlike in other autoinflammatory disorders. Conclusion CANDLE is caused by mutations in PSMB8, a gene recently reported to cause JMP syndrome (joint contractures, muscle atrophy and panniculitis induced lipodystrophy) in adults. We extend the clinical and pathogenic description of this novel autoinflammatory syndrome, thereby expanding the clinical and genetic disease spectrum of PSMB8-associated disorders. IFN may be a key mediator of the inflammatory response and may present a therapeutic target. PMID:21953331

  1. Mutations in noncoding regions of GJB1 are a major cause of X-linked CMT

    PubMed Central

    Tomaselli, Pedro J.; Rossor, Alexander M.; Horga, Alejandro; Jaunmuktane, Zane; Carr, Aisling; Saveri, Paola; Piscosquito, Giuseppe; Pareyson, Davide; Laura, Matilde; Blake, Julian C.; Poh, Roy; Polke, James; Houlden, Henry

    2017-01-01

    Objective: To determine the prevalence and clinical and genetic characteristics of patients with X-linked Charcot-Marie-Tooth disease (CMT) due to mutations in noncoding regions of the gap junction β-1 gene (GJB1). Methods: Mutations were identified by bidirectional Sanger sequence analysis of the 595 bases of the upstream promoter region, and 25 bases of the 3′ untranslated region (UTR) sequence in patients in whom mutations in the coding region had been excluded. Clinical and neurophysiologic data were retrospectively collected. Results: Five mutations were detected in 25 individuals from 10 kindreds representing 11.4% of all cases of CMTX1 diagnosed in our neurogenetics laboratory between 1996 and 2016. Four pathogenic mutations, c.-17G>A, c.-17+1G>T, c.-103C>T, and c.-146-90_146-89insT were detected in the 5′UTR. A novel mutation, c.*15C>T, was detected in the 3′ UTR of GJB1 in 2 unrelated families with CMTX1 and is the first pathogenic mutation in the 3′UTR of any myelin-associated CMT gene. Mutations segregated with the phenotype, were at sites predicted to be pathogenic, and were not present in the normal population. Conclusions: Mutations in noncoding DNA are a major cause of CMTX1 and highlight the importance of mutations in noncoding DNA in human disease. Next-generation sequencing platforms for use in inherited neuropathy should therefore include coverage of these regions. PMID:28283593

  2. Sporadic paraganglioma caused by de novo SDHB mutations in a 6-year-old girl.

    PubMed

    Imamura, Hideaki; Muroya, Koji; Tanaka, Etsuko; Konomoto, Takao; Moritake, Hiroshi; Sato, Takeshi; Kimura, Noriko; Takekoshi, Kazuhiro; Nunoi, Hiroyuki

    2016-01-01

    Germline mutations in the succinate dehydrogenase complex subunit B (SDHB) gene (SDHB) cause susceptibility to paragangliomas and pheochromocytomas; however, it is exceedingly rare in childhood and especially in sporadic cases. We report the first Japanese pediatric case of paraganglioma with a de novo mutation in the SDHB gene. A 6-year-old girl with convulsions and hypertension was found to have a paravertebral abdominal tumor. Urinary and blood examinations revealed markedly elevated levels of norepinephrine. Following treatment for hypertension, the tumor was removed completely and histological findings were consistent with paraganglioma. Immunohistochemistry studies demonstrated the absence of SDHB protein expression, indicating an underlying SDH mutation with high probability. Germline mutation analysis of the SDHB gene revealed a heterozygous splice site mutation in intron 4 (C.423 + 1G > A). Subsequently, a second somatic genetic change was confirmed by multiplex ligation-dependent probe amplification (MLPA) analysis, showing that deletion of the wild-type allele resulted in loss of function of SDHB. No germline mutations in SDHB were detected in her parents. Genetic testing should be considered for pediatric patients with paragangliomas, even in the absence of familial history, as closer lifelong screening to detect the development of malignancy will be required for patients with SDHB mutations. Most sporadic cases of paraganglioma with SDHB mutations occur between adolescence and adulthood. Screening methods for carriers of SDHB mutations assessing recurrence and detecting developing metastases are yet to be standardized. The current case of an extra-adrenal paraganglioma with a de novo SDHB mutation had an onset at 6 years. We suggest much closer periodical observation for these high-risk children.

  3. Expanding the Spectrum of Founder Mutations Causing Isolated Gonadotropin-Releasing Hormone Deficiency

    PubMed Central

    Choi, Jin-Ho; Balasubramanian, Ravikumar; Lee, Phil H.; Shaw, Natalie D.; Hall, Janet E.; Plummer, Lacey; Buck, Cassandra L.; Kottler, Marie-Laure; Jarzabek, Katarzyna; Wołczynski, Sławomir; Quinton, Richard; Latronico, Ana Claudia; Dode, Catherine; Ogata, Tsutomu; Kim, Hyung-Goo; Layman, Lawrence C.; Gusella, James F.

    2015-01-01

    Context: Loss of function (LoF) mutations in more than 20 genes are now known to cause isolated GnRH deficiency (IGD) in humans. Most causal IGD mutations are typically private, ie, limited to a single individual/pedigree. However, somewhat paradoxically, four IGD genes (GNRH1, TAC3, PROKR2, and GNRHR) have been shown to harbor LoF founder mutations that are shared by multiple unrelated individuals. It is not known whether similar founder mutations occur in other IGD genes. Objective: The objective of the study was to determine whether shared deleterious mutations in IGD-associated genes represent founder alleles. Setting: This study was an international collaboration among academic medical centers. Methods: IGD patients with shared mutations, defined as those documented in three or more unrelated probands in 14 IGD-associated genes, were identified from various academic institutions, the Human Gene Mutation Database, and literature reports by other international investigators. Haplotypes of single-nucleotide polymorphisms and short tandem repeats surrounding the mutations were constructed to assess genetic ancestry. Results: A total of eight founder mutations in five genes, GNRHR (Q106R, R262Q, R139H), TACR3 (W275X), PROKR2 (R85H), FGFR1 (R250Q, G687R), and HS6ST1 (R382W) were identified. Most founder alleles were present at low frequency in the general population. The estimated age of these mutant alleles ranged from 1925 to 5600 years and corresponded to the time of rapid human population expansion. Conclusions: We have expanded the spectrum of founder alleles associated with IGD to a total of eight founder mutations. In contrast to the approximately 9000-year-old PROKR2 founder allele that may confer a heterozygote advantage, the rest of the founder alleles are relatively more recent in origin, in keeping with the timing of recent human population expansion and any selective heterozygote advantage of these alleles requires further evaluation. PMID:26207952

  4. Somatic USP8 Gene Mutations Are a Common Cause of Pediatric Cushing Disease.

    PubMed

    Faucz, Fabio R; Tirosh, Amit; Tatsi, Christina; Berthon, Annabel; Hernández-Ramírez, Laura C; Settas, Nikolaos; Angelousi, Anna; Correa, Ricardo; Papadakis, Georgios Z; Chittiboina, Prashant; Quezado, Martha; Pankratz, Nathan; Lane, John; Dimopoulos, Aggeliki; Mills, James L; Lodish, Maya; Stratakis, Constantine A

    2017-08-01

    Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have been recently identified as the most common genetic alteration in patients with Cushing disease (CD). However, the frequency of these mutations in the pediatric population has not been extensively assessed. We investigated the status of the USP8 gene at the somatic level in a cohort of pediatric patients with corticotroph adenomas. The USP8 gene was fully sequenced in both germline and tumor DNA samples from 42 pediatric patients with CD. Clinical, biochemical, and imaging data were compared between patients with and without somatic USP8 mutations. Five different USP8 mutations (three missense, one frameshift, and one in-frame deletion) were identified in 13 patients (31%), all of them located in exon 14 at the previously described mutational hotspot, affecting the 14-3-3 binding motif of the protein. Patients with somatic mutations were older at disease presentation [mean 5.1 ± 2.1 standard deviation (SD) vs 13.1 ± 3.6 years, P = 0.03]. Levels of urinary free cortisol, midnight serum cortisol, and adrenocorticotropic hormone, as well as tumor size and frequency of invasion of the cavernous sinus, were not significantly different between the two groups. However, patients harboring somatic USP8 mutations had a higher likelihood of recurrence compared with patients without mutations (46.2% vs 10.3%, P = 0.009). Somatic USP8 gene mutations are a common cause of pediatric CD. Patients harboring a somatic mutation had a higher likelihood of tumor recurrence, highlighting the potential importance of this molecular defect for the disease prognosis and the development of targeted therapeutic options.

  5. Mutations in noncoding regions of GJB1 are a major cause of X-linked CMT.

    PubMed

    Tomaselli, Pedro J; Rossor, Alexander M; Horga, Alejandro; Jaunmuktane, Zane; Carr, Aisling; Saveri, Paola; Piscosquito, Giuseppe; Pareyson, Davide; Laura, Matilde; Blake, Julian C; Poh, Roy; Polke, James; Houlden, Henry; Reilly, Mary M

    2017-04-11

    To determine the prevalence and clinical and genetic characteristics of patients with X-linked Charcot-Marie-Tooth disease (CMT) due to mutations in noncoding regions of the gap junction β-1 gene (GJB1). Mutations were identified by bidirectional Sanger sequence analysis of the 595 bases of the upstream promoter region, and 25 bases of the 3' untranslated region (UTR) sequence in patients in whom mutations in the coding region had been excluded. Clinical and neurophysiologic data were retrospectively collected. Five mutations were detected in 25 individuals from 10 kindreds representing 11.4% of all cases of CMTX1 diagnosed in our neurogenetics laboratory between 1996 and 2016. Four pathogenic mutations, c.-17G>A, c.-17+1G>T, c.-103C>T, and c.-146-90_146-89insT were detected in the 5'UTR. A novel mutation, c.*15C>T, was detected in the 3' UTR of GJB1 in 2 unrelated families with CMTX1 and is the first pathogenic mutation in the 3'UTR of any myelin-associated CMT gene. Mutations segregated with the phenotype, were at sites predicted to be pathogenic, and were not present in the normal population. Mutations in noncoding DNA are a major cause of CMTX1 and highlight the importance of mutations in noncoding DNA in human disease. Next-generation sequencing platforms for use in inherited neuropathy should therefore include coverage of these regions. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  6. GRIN1 mutations cause encephalopathy with infantile-onset epilepsy, and hyperkinetic and stereotyped movement disorders.

    PubMed

    Ohba, Chihiro; Shiina, Masaaki; Tohyama, Jun; Haginoya, Kazuhiro; Lerman-Sagie, Tally; Okamoto, Nobuhiko; Blumkin, Lubov; Lev, Dorit; Mukaida, Souichi; Nozaki, Fumihito; Uematsu, Mitsugu; Onuma, Akira; Kodera, Hirofumi; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Miyake, Noriko; Tanaka, Fumiaki; Kato, Mitsuhiro; Ogata, Kazuhiro; Saitsu, Hirotomo; Matsumoto, Naomichi

    2015-06-01

    Recently, de novo mutations in GRIN1 have been identified in patients with nonsyndromic intellectual disability and epileptic encephalopathy. Whole exome sequencing (WES) analysis of patients with genetically unsolved epileptic encephalopathies identified four patients with GRIN1 mutations, allowing us to investigate the phenotypic spectrum of GRIN1 mutations. Eighty-eight patients with unclassified early onset epileptic encephalopathies (EOEEs) with an age of onset <1 year were analyzed by WES. The effect of mutations on N-methyl-D-aspartate (NMDA) receptors was examined by mapping altered amino acids onto three-dimensional models. We identified four de novo missense GRIN1 mutations in 4 of 88 patients with unclassified EOEEs. In these four patients, initial symptoms appeared within 3 months of birth, including hyperkinetic movements in two patients (2/4, 50%), and seizures in two patients (2/4, 50%). Involuntary movements, severe developmental delay, and intellectual disability were recognized in all four patients. In addition, abnormal eye movements resembling oculogyric crises and stereotypic hand movements were observed in two and three patients, respectively. All the four patients exhibited only nonspecific focal and diffuse epileptiform abnormality, and never showed suppression-burst or hypsarrhythmia during infancy. A de novo mosaic mutation (c.1923G>A) with a mutant allele frequency of 16% (in DNA of blood leukocytes) was detected in one patient. Three mutations were located in the transmembrane domain (3/4, 75%), and one in the extracellular loop near transmembrane helix 1. All the mutations were predicted to impair the function of the NMDA receptor. Clinical features of de novo GRIN1 mutations include infantile involuntary movements, seizures, and hand stereotypies, suggesting that GRIN1 mutations cause encephalopathy resulting in seizures and movement disorders. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  7. Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology.

    PubMed

    Clayton, Emma L; Mizielinska, Sarah; Edgar, James R; Nielsen, Troels Tolstrup; Marshall, Sarah; Norona, Frances E; Robbins, Miranda; Damirji, Hana; Holm, Ida E; Johannsen, Peter; Nielsen, Jørgen E; Asante, Emmanuel A; Collinge, John; Isaacs, Adrian M

    2015-10-01

    Mutations in the charged multivesicular body protein 2B (CHMP2B) cause frontotemporal dementia (FTD). We report that mice which express FTD-causative mutant CHMP2B at physiological levels develop a novel lysosomal storage pathology characterised by large neuronal autofluorescent aggregates. The aggregates are an early and progressive pathology that occur at 3 months of age and increase in both size and number over time. These autofluorescent aggregates are not observed in mice expressing wild-type CHMP2B, or in non-transgenic controls, indicating that they are a specific pathology caused by mutant CHMP2B. Ultrastructural analysis and immuno- gold labelling confirmed that they are derived from the endolysosomal system. Consistent with these findings, CHMP2B mutation patient brains contain morphologically similar autofluorescent aggregates. These aggregates occur significantly more frequently in human CHMP2B mutation brain than in neurodegenerative disease or age-matched control brains. These data suggest that lysosomal storage pathology is the major neuronal pathology in FTD caused by CHMP2B mutation. Recent evidence suggests that two other genes associated with FTD, GRN and TMEM106B are important for lysosomal function. Our identification of lysosomal storage pathology in FTD caused by CHMP2B mutation now provides evidence that endolysosomal dysfunction is a major degenerative pathway in FTD.

  8. Increased progerin expression associated with unusual LMNA mutations causes severe progeroid syndromes.

    PubMed

    Moulson, Casey L; Fong, Loren G; Gardner, Jennifer M; Farber, Emily A; Go, Gloriosa; Passariello, Annalisa; Grange, Dorothy K; Young, Stephen G; Miner, Jeffrey H

    2007-09-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare precocious aging syndrome caused by mutations in LMNA that lead to synthesis of a mutant form of prelamin A, generally called progerin, that cannot be processed to mature lamin A. Most HGPS patients have a recurrent heterozygous de novo mutation in exon 11 of LMNA, c.1824C>T/p.G608G; this synonymous mutation activates a nearby cryptic splice donor site, resulting in synthesis of the mutant prelamin A, progerin, which lacks 50 amino acids within the carboxyl-terminal domain. Abnormal splicing is incomplete, so the mutant allele produces some normally-spliced transcripts. Nevertheless, the synthesis of progerin is sufficient to cause misshapen nuclei in cultured cells and severe disease phenotypes in affected patients. Here we present two patients with extraordinarily severe forms of progeria caused by unusual mutations in LMNA. One had a splice site mutation (c.1968+1G>A; or IVS11+1G>A), and the other had a novel synonymous coding region mutation (c.1821G>A/p.V607V). Both mutations caused very frequent use of the same exon 11 splice donor site that is activated in typical HGPS patients. As a consequence, the ratios of progerin mRNA and protein to wild-type were higher than in typical HGPS patients. Fibroblasts from both patients exhibited nuclear shape abnormalities typical of HGPS, and cells treated with a protein farnesyltransferase inhibitor exhibited fewer misshapen nuclei. Thus, farnesyltransferase inhibitors may prove to be useful even when progerin expression levels are higher than those in typical HGPS patients.

  9. A Novel Nonsense Mutation of POU4F3 Gene Causes Autosomal Dominant Hearing Loss

    PubMed Central

    Zhang, Chi; Wang, Mingming; Zhang, Fengguo; Zhou, Yicui; Li, Jianfeng; Zheng, Qingyin; Bai, Xiaohui

    2016-01-01

    POU4F3 gene encodes a transcription factor which plays an essential role in the maturation and maintenance of hair cells in cochlea and vestibular system. Several mutations of POU4F3 have been reported to cause autosomal dominant nonsyndromic hearing loss in recent years. In this study, we describe a pathogenic nonsense mutation located in POU4F3 in a four-generation Chinese family. Target region capture sequencing was performed to search for the candidate mutations from 81 genes related to nonsyndromic hearing loss in this family. A novel nonsense mutation of POU4F3, c.337C>T (p. Gln113⁎), was identified in a Chinese family characterized by late-onset progressive nonsyndromic hearing loss. The novel mutation cosegregated with hearing loss in this family and was absent in 200 ethnicity-matched controls. The mutation led to a stop codon and thus a truncated protein with no functional domains remained. Transient transfection and immunofluorescence assay revealed that the subcellular localization of the truncated protein differed markedly from normal protein, which could be the underlying reason for complete loss of its normal function. Here, we report the first nonsense mutation of POU4F3 associated with progressive hearing loss and explored the possible underlying mechanism. Routine examination of POU4F3 is necessary for the genetic diagnosis of hereditary hearing loss in the future. PMID:27999687

  10. Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis.

    PubMed

    Santín, Sheila; García-Maset, Rafael; Ruíz, Patricia; Giménez, Isabel; Zamora, Isabel; Peña, Antonia; Madrid, Alvaro; Camacho, Juan A; Fraga, Gloria; Sánchez-Moreno, Ana; Cobo, Maria Angeles; Bernis, Carmen; Ortiz, Alberto; de Pablos, Augusto Luque; Pintos, Guillem; Justa, Maria Luisa; Hidalgo-Barquero, Emilia; Fernández-Llama, Patricia; Ballarín, José; Ars, Elisabet; Torra, Roser

    2009-12-01

    Mutations in the NPHS1 gene cause congenital nephrotic syndrome of the Finnish type presenting before the first 3 months of life. Recently, NPHS1 mutations have also been identified in childhood-onset steroid-resistant nephrotic syndrome and milder courses of disease, but their role in adults with focal segmental glomerulosclerosis remains unknown. Here we developed an in silico scoring matrix to evaluate the pathogenicity of amino-acid substitutions using the biophysical and biochemical difference between wild-type and mutant amino acid, the evolutionary conservation of the amino-acid residue in orthologs, and defined domains, with the addition of contextual information. Mutation analysis was performed in 97 patients from 89 unrelated families, of which 52 presented with steroid-resistant nephrotic syndrome after 18 years of age. Compound heterozygous or homozygous NPHS1 mutations were identified in five familial and seven sporadic cases, including one patient 27 years old at onset of the disease. Substitutions were classified as 'severe' or 'mild' using this in silico approach. Our results suggest an earlier onset of the disease in patients with two 'severe' mutations compared to patients with at least one 'mild' mutation. The finding of mutations in a patient with adult-onset focal segmental glomerulosclerosis indicates that NPHS1 analysis could be considered in patients with later onset of the disease.

  11. A novel missense mutation in the paired domain of PAX9 causes non-syndromic oligodontia.

    PubMed

    Jumlongras, Dolrudee; Lin, Jenn-Yih; Chapra, Anas; Seidman, Christine E; Seidman, Jonathan G; Maas, Richard L; Olsen, Bjorn R

    2004-02-01

    PAX9, a paired domain transcription factor, has important functions in craniofacial and limb development. Heterozygous mutations of PAX9, including deletion, nonsense, or frameshift mutations that lead to a premature stop codon, and missense mutations, were previously shown to be associated with autosomal dominant oligodontia. Here, we report a novel missense mutation that lies in the highly conserved paired domain of PAX9 and that is associated with non-syndromic oligodontia in one family. The mutation, 83G-->C, is predicted to result in the substitution of arginine by proline (R28P) in the N-terminal subdomain of PAX9 paired domain. To rule out the possibility that this substitution is a rare polymorphism and to test whether the predicted amino acid substitution disrupts protein-DNA binding, we analyzed the binding of wild-type and mutant PAX9 paired domain to double-stranded DNA targets. The R28P mutation dramatically reduces DNA binding of the PAX9 paired domain and supports the hypothesis that loss of DNA binding is the pathogenic mechanism by which the mutation causes oligodontia.

  12. Primary ciliary dyskinesia-causing mutations in Amish and Mennonite communities.

    PubMed

    Ferkol, Thomas W; Puffenberger, Erik G; Lie, Hauw; Helms, Cynthia; Strauss, Kevin A; Bowcock, Anne; Carson, John L; Hazucha, Milan; Morton, D Holmes; Patel, Anand C; Leigh, Margaret W; Knowles, Michael R; Zariwala, Maimoona A

    2013-08-01

    To determine whether individuals with primary ciliary dyskinesia (PCD) from unrelated Amish and Mennonite families harbor a single and unique founder mutation. Subjects from Amish and Mennonite communities in several states were enrolled in the study. All subjects were clinically characterized, and nasal nitric oxide levels were measured. Nasal epithelial scrapings were collected from several subjects for ciliary ultrastructural analyses. DNA was isolated from patients with PCD and their unaffected first- and second-degree relatives. Genome-wide homozygosity mapping, linkage analyses, targeted mutation analyses, and exome sequencing were performed. All subjects from Old-Order Amish communities from Pennsylvania were homozygous for a nonsense mutant DNAH5 allele, c.4348C>T (p.Q1450X). Two affected siblings from an unrelated Mennonite family in Arkansas were homozygous for the same nonsense DNAH5 mutation. Children with PCD from an Amish family from Wisconsin had biallelic DNAH5 mutations, c.4348C>T (p.Q1450X) and c.10815delT (p.P3606HfsX23), and mutations in other genes associated with PCD were also identified in this community. The Amish and Mennonite subjects from geographically dispersed and socially isolated communities had the same founder DNAH5 mutation, owing to the common heritage of these populations. However, disease-causing mutations in other PCD-associated genes were also found in affected individuals in these communities, illustrating the genetic heterogeneity in this consanguineous population. Copyright © 2013 Mosby, Inc. All rights reserved.

  13. Primary Ciliary Dyskinesia-Causing Mutations in Amish and Mennonite Communities

    PubMed Central

    Ferkol, Thomas W.; Puffenberger, Erik G.; Lie, Hauw; Helms, Cynthia; Strauss, Kevin A.; Bowcock, Anne; Carson, John L.; Hazucha, Milan; Morton, D. Holmes; Patel, Anand C.; Leigh, Margaret W.; Knowles, Michael R.; Zariwala, Maimoona A.

    2013-01-01

    Objective To determine whether individuals with primary ciliary dyskinesia (PCD) from unrelated Amish and Mennonite families harbor a single and unique founder mutation. Study design Subjects from Amish and Mennonite communities in several states were enrolled in the study. All subjects were clinically characterized, and nasal nitric oxide levels were measured. Nasal epithelial scrapings were collected from several subjects for ciliary ultrastructural analyses. DNA was isolated from patients with PCD and their unaffected first- and second-degree relatives. Genome-wide homozygosity mapping, linkage analyses, targeted mutation analyses, and exome sequencing were performed. Results All subjects from Old-Order Amish communities from Pennsylvania were homozygous for a nonsense mutant DNAH5 allele, c.4348C>T (p.Q1450X). Two affected siblings from an unrelated Mennonite family in Arkansas were homozygous for the same nonsense DNAH5 mutation. Children with PCD from an Amish family from Wisconsin had biallelic DNAH5 mutations, c.4348C>T (p.Q1450X) and c.10815delT (p.P3606HfsX23), and mutations in other genes associated with PCD were also identified in this community. Conclusion The Amish and Mennonite subjects from geographically dispersed and socially isolated communities had the same founder DNAH5 mutation, owing to the common heritage of these populations. However, disease-causing mutations in other PCD-associated genes were also found in affected individuals in these communities, illustrating the genetic heterogeneity in this consanguineous population. PMID:23477994

  14. Identities and frequencies of mutations of the otoferlin gene (OTOF) causing DFNB9 deafness in Pakistan

    PubMed Central

    Choi, BY; Ahmed, ZM; Riazuddin, S; Bhinder, MA; Shahzad, M; Husnain, T; Riazuddin, S; Griffith, AJ; Friedman, TB

    2012-01-01

    Mutations in OTOF, encoding otoferlin, cause non-syndromic recessive hearing loss. The goal of our study was to define the identities and frequencies of OTOF mutations in a model population. We screened a cohort of 557 large consanguineous Pakistani families segregating recessive, severe-to-profound, prelingual-onset deafness for linkage to DFNB9. There were 13 families segregating deafness consistent with linkage to markers for DFNB9. We analyzed the genomic nucleotide sequence of OTOF and detected probable pathogenic sequence variants among all 13 families. These include the previously reported nonsense mutation p.R708X and 10 novel variants: 3 nonsense mutations (p.R425X, p.W536X, and p.Y1603X), 1 frameshift (c.1103_1104delinsC), 1 single amino acid deletion (p.E766del) and 5 missense substitutions of conserved residues (p.L573R, p.A1090E, p.E1733K, p.R1856Q and p.R1939W). OTOF mutations thus account for deafness in 13 (2.3%) of 557 Pakistani families. This overall prevalence is similar, but the mutation spectrum is different from those for Western populations. In addition, we demonstrate the existence of an alternative splice isoform of OTOF expressed in the human cochlea. This isoform must be required for human hearing because it encodes a unique alternative C-terminus affected by some DFNB9 mutations. PMID:19250381

  15. A functional alternative splicing mutation in AIRE gene causes autoimmune polyendocrine syndrome type 1.

    PubMed

    Zhang, Junyu; Liu, Hongbin; Liu, Zhiyuan; Liao, Yong; Guo, Luo; Wang, Honglian; He, Lin; Zhang, Xiaodong; Xing, Qinghe

    2013-01-01

    Autoimmune polyendocrine syndrome type 1 (APS-1) is a rare autosomal recessive disease defined by the presence of two of the three conditions: mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Loss-of-function mutations of the autoimmune regulator (AIRE) gene have been linked to APS-1. Here we report mutational analysis and functional characterization of an AIRE mutation in a consanguineous Chinese family with APS-1. All exons of the AIRE gene and adjacent exon-intron sequences were amplified by PCR and subsequently sequenced. We identified a homozygous missense AIRE mutation c.463G>A (p.Gly155Ser) in two siblings with different clinical features of APS-1. In silico splice-site prediction and minigene analysis were carried out to study the potential pathological consequence. Minigene splicing analysis and subsequent cDNA sequencing revealed that the AIRE mutation potentially compromised the recognition of the splice donor of intron 3, causing alternative pre-mRNA splicing by intron 3 retention. Furthermore, the aberrant AIRE transcript was identified in a heterozygous carrier of the c.463G>A mutation. The aberrant intron 3-retaining transcript generated a truncated protein (p.G155fsX203) containing the first 154 AIRE amino acids and followed by 48 aberrant amino acids. Therefore, our study represents the first functional characterization of the alternatively spliced AIRE mutation that may explain the pathogenetic role in APS-1.

  16. Presymptomatic generalized brain atrophy in frontotemporal dementia caused by CHMP2B mutation.

    PubMed

    Rohrer, Jonathan D; Ahsan, R Laila; Isaacs, Adrian M; Nielsen, Jorgen E; Ostergaard, Leif; Scahill, Rachael; Warren, Jason D; Rossor, Martin N; Fox, Nick C; Johannsen, Peter

    2009-01-01

    CHMP2B mutations are a rare cause of familial frontotemporal dementia (FTD). The clinical syndrome is dominated by personality change and behavioural symptoms, but language, memory, calculation and praxis impairments are also seen early in the course of the disease. There are no detailed studies of brain imaging in CHMP2B mutation-associated FTD. This study aimed to investigate whether there were early or presymptomatic changes in this group of patients. Subjects comprised 16 members of a Danish family with CHMP2B mutation-associated FTD. Nine subjects were presymptomatic mutation carriers with a control group of 7 mutation-negative family members. Volumetric MRI brain scans were performed on all subjects at two time points, and rates of volume change were compared between the two groups. We demonstrate that generalized atrophy occurs presymptomatically in CHMP2B gene mutation carriers. This finding suggests that mutations in CHMP2B have widespread effects throughout the brain, leading to a neuro-anatomical signature distinct from other diseases in the frontotemporal lobar degeneration spectrum. Copyright 2009 S. Karger AG, Basel.

  17. Do cell junction protein mutations cause an airway phenotype in mice or humans?

    PubMed

    Chang, Eugene H; Pezzulo, Alejandro A; Zabner, Joseph

    2011-08-01

    Cell junction proteins connect epithelial cells to each other and to the basement membrane. Genetic mutations of these proteins can cause alterations in some epithelia leading to varied phenotypes such as deafness, renal disease, skin disorders, and cancer. This review examines if genetic mutations in these proteins affect the function of lung airway epithelia. We review cell junction proteins with examples of disease mutation phenotypes in humans and in mouse knockout models. We also review which of these genes are expressed in airway epithelium by microarray expression profiling and immunocytochemistry. Last, we present a comprehensive literature review to find the lung phenotype when cell junction and adhesion genes are mutated or subject to targeted deletion. We found that in murine models, targeted deletion of cell junction and adhesion genes rarely result in a lung phenotype. Moreover, mutations in these genes in humans have no obvious lung phenotype. Our research suggests that simply because a cell junction or adhesion protein is expressed in an organ does not imply that it will exhibit a drastic phenotype when mutated. One explanation is that because a functioning lung is critical to survival, redundancy in the system is expected. Therefore mutations in a single gene might be compensated by a related function of a similar gene product. Further studies in human and animal models will help us understand the overlap in the function of cell junction gene products. Finally, it is possible that the human lung phenotype is subtle and has not yet been described.

  18. Loss of function mutation in LOX causes thoracic aortic aneurysm and dissection in humans

    PubMed Central

    Lee, Vivian S.; Halabi, Carmen M.; Hoffman, Erin P.; Carmichael, Nikkola; Leshchiner, Ignaty; Lian, Christine G.; Bierhals, Andrew J.; Vuzman, Dana; Mecham, Robert P.; Frank, Natasha Y.; Stitziel, Nathan O.

    2016-01-01

    Thoracic aortic aneurysms and dissections (TAAD) represent a substantial cause of morbidity and mortality worldwide. Many individuals presenting with an inherited form of TAAD do not have causal mutations in the set of genes known to underlie disease. Using whole-genome sequencing in two first cousins with TAAD, we identified a missense mutation in the lysyl oxidase (LOX) gene (c.893T > G encoding p.Met298Arg) that cosegregated with disease in the family. Using clustered regularly interspaced short palindromic repeats (CRISPR)/clustered regularly interspaced short palindromic repeats-associated protein-9 nuclease (Cas9) genome engineering tools, we introduced the human mutation into the homologous position in the mouse genome, creating mice that were heterozygous and homozygous for the human allele. Mutant mice that were heterozygous for the human allele displayed disorganized ultrastructural properties of the aortic wall characterized by fragmented elastic lamellae, whereas mice homozygous for the human allele died shortly after parturition from ascending aortic aneurysm and spontaneous hemorrhage. These data suggest that a missense mutation in LOX is associated with aortic disease in humans, likely through insufficient cross-linking of elastin and collagen in the aortic wall. Mutation carriers may be predisposed to vascular diseases because of weakened vessel walls under stress conditions. LOX sequencing for clinical TAAD may identify additional mutation carriers in the future. Additional studies using our mouse model of LOX-associated TAAD have the potential to clarify the mechanism of disease and identify novel therapeutics specific to this genetic cause. PMID:27432961

  19. Identification of a Novel GJA8 (Cx50) Point Mutation Causes Human Dominant Congenital Cataracts

    NASA Astrophysics Data System (ADS)

    Ge, Xiang-Lian; Zhang, Yilan; Wu, Yaming; Lv, Jineng; Zhang, Wei; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-02-01

    Hereditary cataracts are clinically and genetically heterogeneous lens diseases that cause a significant proportion of visual impairment and blindness in children. Human cataracts have been linked with mutations in two genes, GJA3 and GJA8, respectively. To identify the causative mutation in a family with hereditary cataracts, family members were screened for mutations by PCR for both genes. Sequencing the coding regions of GJA8, coding for connexin 50, revealed a C > A transversion at nucleotide 264, which caused p.P88T mutation. To dissect the molecular consequences of this mutation, plasmids carrying wild-type and mutant mouse ORFs of Gja8 were generated and ectopically expressed in HEK293 cells and human lens epithelial cells, respectively. The recombinant proteins were assessed by confocal microscopy and Western blotting. The results demonstrate that the molecular consequences of the p.P88T mutation in GJA8 include changes in connexin 50 protein localization patterns, accumulation of mutant protein, and increased cell growth.

  20. Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification

    PubMed Central

    Hsu, Sandy Chan; Sears, Renee L.; Lemos, Roberta R.; Quintáns, Beatriz; Huang, Alden; Spiteri, Elizabeth; Nevarez, Lisette; Mamah, Catherine; Zatz, Mayana; Pierce, Kerrie D.; Fullerton, Janice M.; Adair, John C.; Berner, Jon E.; Bower, Matthew; Brodaty, Henry; Carmona, Olga; Dobricić, Valerija; Fogel, Brent L.; García-Estevez, Daniel; Goldman, Jill; Goudreau, John L.; Hopfer, Suellen; Janković, Milena; Jaumà, Serge; Jen, Joanna C.; Kirdlarp, Suppachok; Klepper, Joerg; Kostić, Vladimir; Lang, Anthony E.; Linglart, Agnès; Maisenbacher, Melissa K.; Manyam, Bala V.; Mazzoni, Pietro; Miedzybrodzka, Zofia; Mitarnun, Witoon; Mitchell, Philip B.; Mueller, Jennifer; Novaković, Ivana; Paucar, Martin; Paulson, Henry; Simpson, Sheila A.; Svenningsson, Per; Tuite, Paul; Vitek, Jerrold; Wetchaphanphesat, Suppachok; Williams, Charles; Yang, Michele; Schofield, Peter R.; de Oliveira, João R. M.; Sobrido, María-Jesús

    2014-01-01

    Familial idiopathic basal ganglia calcification (IBGC) or Fahr’s disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We performed a mutational analysis of SLC20A2, the first gene found to cause IBGC, to assess its genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families of varied ancestry and collected medical history, neurological exam, and head CT scans to characterize each patient’s disease status. We screened our patient cohort for mutations in SLC20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic variants, one synonymous variant, and one previously reported mutation were identified in 13 families. Variants predicted to be deleterious cosegregated with disease in five families. Three families showed nonsegregation with clinical disease of such variants, but retrospective review of clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations in SLC20A2 account for as many as 41 % of our familial IBGC cases. Our screen in a large series expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in SLC20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted deleterious variants highlight the challenges of phenotypic assessment in this condition with highly variable clinical presentation. PMID:23334463

  1. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations

    PubMed Central

    Vogel, Tiphanie P.; Forbes, Lisa; Ma, Chi A.; Stray-Pedersen, Asbjørg; Niemela, Julie E.; Lyons, Jonathan J.; Engelhardt, Karin R.; Zhang, Yu; Topcagic, Nermina; Roberson, Elisha D. O.; Matthews, Helen; Verbsky, James W.; Dasu, Trivikram; Vargas-Hernandez, Alexander; Varghese, Nidhy; McClain, Kenneth L.; Karam, Lina B.; Nahmod, Karen; Makedonas, George; Mace, Emily M.; Sorte, Hanne S.; Perminow, Gøri; Rao, V. Koneti; O’Connell, Michael P.; Price, Susan; Su, Helen C.; Butrick, Morgan; McElwee, Joshua; Hughes, Jason D.; Willet, Joseph; Swan, David; Xu, Yaobo; Santibanez-Koref, Mauro; Slowik, Voytek; Dinwiddie, Darrell L.; Ciaccio, Christina E.; Saunders, Carol J.; Septer, Seth; Kingsmore, Stephen F.; White, Andrew J.; Cant, Andrew J.; Hambleton, Sophie

    2015-01-01

    Germline loss-of-function mutations in the transcription factor signal transducer and activator of transcription 3 (STAT3) cause immunodeficiency, whereas somatic gain-of-function mutations in STAT3 are associated with large granular lymphocytic leukemic, myelodysplastic syndrome, and aplastic anemia. Recently, germline mutations in STAT3 have also been associated with autoimmune disease. Here, we report on 13 individuals from 10 families with lymphoproliferation and early-onset solid-organ autoimmunity associated with 9 different germline heterozygous mutations in STAT3. Patients exhibited a variety of clinical features, with most having lymphadenopathy, autoimmune cytopenias, multiorgan autoimmunity (lung, gastrointestinal, hepatic, and/or endocrine dysfunction), infections, and short stature. Functional analyses demonstrate that these mutations confer a gain-of-function in STAT3 leading to secondary defects in STAT5 and STAT1 phosphorylation and the regulatory T-cell compartment. Treatment targeting a cytokine pathway that signals through STAT3 led to clinical improvement in 1 patient, suggesting a potential therapeutic option for such patients. These results suggest that there is a broad range of autoimmunity caused by germline STAT3 gain-of-function mutations, and that hematologic autoimmunity is a major component of this newly described disorder. Some patients for this study were enrolled in a trial registered at www.clinicaltrials.gov as #NCT00001350. PMID:25359994

  2. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia.

    PubMed

    Wooderchak-Donahue, Whitney L; McDonald, Jamie; O'Fallon, Brendan; Upton, Paul D; Li, Wei; Roman, Beth L; Young, Sarah; Plant, Parker; Fülöp, Gyula T; Langa, Carmen; Morrell, Nicholas W; Botella, Luisa M; Bernabeu, Carmelo; Stevenson, David A; Runo, James R; Bayrak-Toydemir, Pinar

    2013-09-05

    Hereditary hemorrhagic telangiectasia (HHT), the most common inherited vascular disorder, is caused by mutations in genes involved in the transforming growth factor beta (TGF-β) signaling pathway (ENG, ACVRL1, and SMAD4). Yet, approximately 15% of individuals with clinical features of HHT do not have mutations in these genes, suggesting that there are undiscovered mutations in other genes for HHT and possibly vascular disorders with overlapping phenotypes. The genetic etiology for 191 unrelated individuals clinically suspected to have HHT was investigated with the use of exome and Sanger sequencing; these individuals had no mutations in ENG, ACVRL1, and SMAD4. Mutations in BMP9 (also known as GDF2) were identified in three unrelated probands. These three individuals had epistaxis and dermal lesions that were described as telangiectases but whose location and appearance resembled lesions described in some individuals with RASA1-related disorders (capillary malformation-arteriovenous malformation syndrome). Analyses of the variant proteins suggested that mutations negatively affect protein processing and/or function, and a bmp9-deficient zebrafish model demonstrated that BMP9 is involved in angiogenesis. These data confirm a genetic cause of a vascular-anomaly syndrome that has phenotypic overlap with HHT. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae.

    PubMed

    McDonald, Michael J; Yu, Yen-Hsin; Guo, Jheng-Fen; Chong, Shin Yen; Kao, Cheng-Fu; Leu, Jun-Yi

    2016-05-01

    Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G 13+ ) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G 13+ mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications.

  4. A single origin for the most frequent mutation causing late infantile metachromatic leucodystrophy.

    PubMed

    Zlotogora, J; Furman-Shaharabani, Y; Harris, A; Barth, M L; von Figura, K; Gieselmann, V

    1994-09-01

    Metachromatic leucodystrophy is an autosomal recessive degenerative disease of the nervous system caused by the deficiency of the lysosomal enzyme arylsulphatase A (ARSA). We report here on the high incidence of late infantile MLD among Muslim Arabs originating from Jerusalem, most probably because of a founder effect. All the patients were found to be homozygous for 459 + 1 G-->A, a mutation which destroys the splice donor site of exon 2 of the ARSA gene. This mutation has been reported to be the most common mutation causing MLD. We studied the ARSA haplotype defined by three intragenic polymorphic sites in DNA samples from Muslim Arab patients from Jerusalem, a Christian Arab patient originating from the region, and eight other white patients, all homozygous for the 459 + 1 G-->A mutation. All the alleles carried the same haplotype which is in complete linkage disequilibrium with the mutation. This finding indicates a common origin for the 459 + 1 G-->A mutation which may have been introduced into Jerusalem at the time of the Crusades.

  5. Sporadic cardiac and skeletal myopathy caused by a de novo desmin mutation.

    PubMed

    Park, K Y; Dalakas, M C; Semino-Mora, C; Lee, H S; Litvak, S; Takeda, K; Ferrans, V J; Goldfarb, L G

    2000-06-01

    Desmin myopathy is a familial or sporadic disorder characterized by intracytoplasmic accumulation of desmin in the muscle cells. We and others have previously identified desmin gene mutations in patients with familial myopathy, but close to 45% of the patients do not report previous family history of the disease. The present study was conducted to determine the cause of desmin myopathy in a sporadic patient presenting with symmetrical muscle weakness and atrophy combined with atrioventricular conduction block requiring a permanent pacemaker. A novel heterozygous R406W mutation in the desmin gene was identified by sequencing cDNA and genomic DNA. Expression of a construct containing the patient's mutant desmin cDNA in SW13 (vim-) cells demonstrated a high pathogenic potential of the R406W mutation. This mutation was not found in the patient's father, mother or sister by sequencing and restriction analysis. Testing with five microsatellite markers and four intragenic single nucleotide polymorphisms excluded alternative paternity. Haplotype analysis indicates that the patient's father was germ-line mosaic for the desmin mutation. We conclude that de novo mutations in the desmin gene may be the cause of sporadic forms of desmin-related cardiac and skeletal myopathy.

  6. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations.

    PubMed

    Milner, Joshua D; Vogel, Tiphanie P; Forbes, Lisa; Ma, Chi A; Stray-Pedersen, Asbjørg; Niemela, Julie E; Lyons, Jonathan J; Engelhardt, Karin R; Zhang, Yu; Topcagic, Nermina; Roberson, Elisha D O; Matthews, Helen; Verbsky, James W; Dasu, Trivikram; Vargas-Hernandez, Alexander; Varghese, Nidhy; McClain, Kenneth L; Karam, Lina B; Nahmod, Karen; Makedonas, George; Mace, Emily M; Sorte, Hanne S; Perminow, Gøri; Rao, V Koneti; O'Connell, Michael P; Price, Susan; Su, Helen C; Butrick, Morgan; McElwee, Joshua; Hughes, Jason D; Willet, Joseph; Swan, David; Xu, Yaobo; Santibanez-Koref, Mauro; Slowik, Voytek; Dinwiddie, Darrell L; Ciaccio, Christina E; Saunders, Carol J; Septer, Seth; Kingsmore, Stephen F; White, Andrew J; Cant, Andrew J; Hambleton, Sophie; Cooper, Megan A

    2015-01-22

    Germline loss-of-function mutations in the transcription factor signal transducer and activator of transcription 3 (STAT3) cause immunodeficiency, whereas somatic gain-of-function mutations in STAT3 are associated with large granular lymphocytic leukemic, myelodysplastic syndrome, and aplastic anemia. Recently, germline mutations in STAT3 have also been associated with autoimmune disease. Here, we report on 13 individuals from 10 families with lymphoproliferation and early-onset solid-organ autoimmunity associated with 9 different germline heterozygous mutations in STAT3. Patients exhibited a variety of clinical features, with most having lymphadenopathy, autoimmune cytopenias, multiorgan autoimmunity (lung, gastrointestinal, hepatic, and/or endocrine dysfunction), infections, and short stature. Functional analyses demonstrate that these mutations confer a gain-of-function in STAT3 leading to secondary defects in STAT5 and STAT1 phosphorylation and the regulatory T-cell compartment. Treatment targeting a cytokine pathway that signals through STAT3 led to clinical improvement in 1 patient, suggesting a potential therapeutic option for such patients. These results suggest that there is a broad range of autoimmunity caused by germline STAT3 gain-of-function mutations, and that hematologic autoimmunity is a major component of this newly described disorder. Some patients for this study were enrolled in a trial registered at www.clinicaltrials.gov as #NCT00001350.

  7. Loss of function mutation in LOX causes thoracic aortic aneurysm and dissection in humans.

    PubMed

    Lee, Vivian S; Halabi, Carmen M; Hoffman, Erin P; Carmichael, Nikkola; Leshchiner, Ignaty; Lian, Christine G; Bierhals, Andrew J; Vuzman, Dana; Mecham, Robert P; Frank, Natasha Y; Stitziel, Nathan O

    2016-08-02

    Thoracic aortic aneurysms and dissections (TAAD) represent a substantial cause of morbidity and mortality worldwide. Many individuals presenting with an inherited form of TAAD do not have causal mutations in the set of genes known to underlie disease. Using whole-genome sequencing in two first cousins with TAAD, we identified a missense mutation in the lysyl oxidase (LOX) gene (c.893T > G encoding p.Met298Arg) that cosegregated with disease in the family. Using clustered regularly interspaced short palindromic repeats (CRISPR)/clustered regularly interspaced short palindromic repeats-associated protein-9 nuclease (Cas9) genome engineering tools, we introduced the human mutation into the homologous position in the mouse genome, creating mice that were heterozygous and homozygous for the human allele. Mutant mice that were heterozygous for the human allele displayed disorganized ultrastructural properties of the aortic wall characterized by fragmented elastic lamellae, whereas mice homozygous for the human allele died shortly after parturition from ascending aortic aneurysm and spontaneous hemorrhage. These data suggest that a missense mutation in LOX is associated with aortic disease in humans, likely through insufficient cross-linking of elastin and collagen in the aortic wall. Mutation carriers may be predisposed to vascular diseases because of weakened vessel walls under stress conditions. LOX sequencing for clinical TAAD may identify additional mutation carriers in the future. Additional studies using our mouse model of LOX-associated TAAD have the potential to clarify the mechanism of disease and identify novel therapeutics specific to this genetic cause.

  8. A single origin for the most frequent mutation causing late infantile metachromatic leucodystrophy.

    PubMed Central

    Zlotogora, J; Furman-Shaharabani, Y; Harris, A; Barth, M L; von Figura, K; Gieselmann, V

    1994-01-01

    Metachromatic leucodystrophy is an autosomal recessive degenerative disease of the nervous system caused by the deficiency of the lysosomal enzyme arylsulphatase A (ARSA). We report here on the high incidence of late infantile MLD among Muslim Arabs originating from Jerusalem, most probably because of a founder effect. All the patients were found to be homozygous for 459 + 1 G-->A, a mutation which destroys the splice donor site of exon 2 of the ARSA gene. This mutation has been reported to be the most common mutation causing MLD. We studied the ARSA haplotype defined by three intragenic polymorphic sites in DNA samples from Muslim Arab patients from Jerusalem, a Christian Arab patient originating from the region, and eight other white patients, all homozygous for the 459 + 1 G-->A mutation. All the alleles carried the same haplotype which is in complete linkage disequilibrium with the mutation. This finding indicates a common origin for the 459 + 1 G-->A mutation which may have been introduced into Jerusalem at the time of the Crusades. Images PMID:7815434

  9. FAS Haploinsufficiency Caused by Extracellular Missense Mutations Underlying Autoimmune Lymphoproliferative Syndrome.

    PubMed

    de Bielke, María Gabriela Simesen; Perez, Laura; Yancoski, Judith; Oliveira, João Bosco; Danielian, Silvia

    2015-11-01

    Mutations in the FAS gene are the most common cause of Autoimmune Lymphoproliferative Syndrome (ALPS), and the majority of them affect the intracellular domain of FAS protein, particularly the region termed death domain. However, approximately one third of these mutations affect the extracellular region of FAS and most are stop codons, with very few missense changes having been described to date. We previously described 7 patients with a FAS missense extracellular mutation, C107Y, two in homozygozity and 5 in heterozygosity. We investigated here the mechanistic effects of this mutation and observed that the homozygous patients did not show any FAS surface expression, while the heterozygous patients had diminished receptor expression. Aiming to understand why a missense mutation was abolishing receptor expression, we analyzed intracellular FAS protein trafficking using fluorescent fusion proteins of wild type FAS, two missense extracellular mutants (FAS-C107Y and FAS-C104Y) and one missense change localized in the intracellular region, FAS-D260E. The FAS-C107Y and FAS-C104Y mutants failed to reach the cell surface, being retained at the endoplasmic reticulum, unlike the WT or the FAS-D260E which were clearly expressed at the plasma membrane. These results support haploinsufficiency as the underlying mechanism involved in the pathogenesis of ALPS caused by extracellular FAS missense mutations.

  10. Restrictive Cardiomyopathy Caused by Troponin Mutations: Application of Disease Animal Models in Translational Studies

    PubMed Central

    Liu, Xiaoyan; Zhang, Lei; Pacciulli, Daniel; Zhao, Jianquan; Nan, Changlong; Shen, Wen; Quan, Junjun; Tian, Jie; Huang, Xupei

    2016-01-01

    Cardiac troponin I (cTnI) plays a critical role in regulation of cardiac function. Studies have shown that the deficiency of cTnI or mutations in cTnI (particularly in the C-terminus of cTnI) results in diastolic dysfunction (impaired relaxation) due to an increased myofibril sensitivity to calcium. The first clinical study revealing the association between restrictive cardiomyopathy (RCM) with cardiac troponin mutations was reported in 2003. In order to illustrate the mechanisms underlying the cTnI mutation caused cardiomyopathy, we have generated a cTnI gene knockout mouse model and transgenic mouse lines with the reported point mutations in cTnI C-terminus. In this paper, we summarize our studies using these animal models from our laboratory and the other in vitro studies using reconstituted filament and cultured cells. The potential mechanisms underlying diastolic dysfunction and heart failure caused by these cTnI C-terminal mutations are discussed as well. Furthermore, calcium desensitizing in correction of impaired relaxation in myocardial cells due to cTnI mutations is discussed. Finally, we describe a model of translational study, i.e., from bedside to bench and from bench to bedside. These studies may enrich our understanding of the mechanism underlying inherited cardiomyopathies and provide the clues to search for target-oriented medication aiming at the treatment of diastolic dysfunction and heart failure. PMID:28066262

  11. A familial case of Blau syndrome caused by a novel NOD2 genetic mutation

    PubMed Central

    Kim, Woojoong; Park, Eujin; Ahn, Yo Han; Lee, Jiwon M.; Kang, Hee Gyung; Kim, Byung Joo; Ha, Il-Soo

    2016-01-01

    Blau syndrome (BS) is a rare autosomal dominant, inflammatory syndrome that is characterized by the clinical triad of granulomatous dermatitis, symmetric arthritis, and recurrent uveitis. Mutations in the nucleotide oligomerization domain 2 (NOD2) gene are responsible for causing BS. To date, up to 30 Blau-associated genetic mutations have been identified within this gene. We report a novel NOD2 genetic mutation that causes BS. A girl, aged 8 years, and her brother, aged 10 years, developed erythematous skin rashes and uveitis. The computed tomography angiogram of the younger sister showed features of midaortic dysplastic syndrome. The brother had more prominent joint involvement than the sister. Their father (38 years) was also affected by uveitis; however, only minimal skin involvement was observed in his case. The paternal aunt (39 years) and her daughter (13 years) were previously diagnosed with sarcoidosis. Mutational analysis revealed a novel c.1439 A>G mutation in the NOD2 gene in both siblings. The novel c.1439 A>G mutation in the NOD2 gene was found in a familial case of BS. Although BS is rare, it should always be considered in patients presenting with sarcoidosis-like features at a young age. Early diagnosis of BS and prompt multisystem workup including the eyes and joints can improve the patient's outcome. PMID:28018435

  12. De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development.

    PubMed

    Gordon, Christopher T; Xue, Shifeng; Yigit, Gökhan; Filali, Hicham; Chen, Kelan; Rosin, Nadine; Yoshiura, Koh-Ichiro; Oufadem, Myriam; Beck, Tamara J; McGowan, Ruth; Magee, Alex C; Altmüller, Janine; Dion, Camille; Thiele, Holger; Gurzau, Alexandra D; Nürnberg, Peter; Meschede, Dieter; Mühlbauer, Wolfgang; Okamoto, Nobuhiko; Varghese, Vinod; Irving, Rachel; Sigaudy, Sabine; Williams, Denise; Ahmed, S Faisal; Bonnard, Carine; Kong, Mung Kei; Ratbi, Ilham; Fejjal, Nawfal; Fikri, Meriem; Elalaoui, Siham Chafai; Reigstad, Hallvard; Bole-Feysot, Christine; Nitschké, Patrick; Ragge, Nicola; Lévy, Nicolas; Tunçbilek, Gökhan; Teo, Audrey S M; Cunningham, Michael L; Sefiani, Abdelaziz; Kayserili, Hülya; Murphy, James M; Chatdokmaiprai, Chalermpong; Hillmer, Axel M; Wattanasirichaigoon, Duangrurdee; Lyonnet, Stanislas; Magdinier, Frédérique; Javed, Asif; Blewitt, Marnie E; Amiel, Jeanne; Wollnik, Bernd; Reversade, Bruno

    2017-02-01

    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD.

  13. Gain-of-function SOS1 mutations cause a distinctive form of noonansyndrome

    SciTech Connect

    Tartaglia, Marco; Pennacchio, Len A.; Zhao, Chen; Yadav, KamleshK.; Fodale, Valentina; Sarkozy, Anna; Pandit, Bhaswati; Oishi, Kimihiko; Martinelli, Simone; Schackwitz, Wendy; Ustaszewska, Anna; Martin, Joes; Bristow, James; Carta, Claudio; Lepri, Francesca; Neri, Cinzia; Vasta,Isabella; Gibson, Kate; Curry, Cynthia J.; Lopez Siguero, Juan Pedro; Digilio, Maria Cristina; Zampino, Giuseppe; Dallapiccola, Bruno; Bar-Sagi, Dafna; Gelb, Brude D.

    2006-09-01

    Noonan syndrome (NS) is a developmental disordercharacterized by short stature, facial dysmorphia, congenital heartdefects and skeletal anomalies1. Increased RAS-mitogenactivated proteinkinase (MAPK) signaling due to PTPN11 and KRAS mutations cause 50 percentof NS2-6. Here, we report that 22 of 129 NS patients without PTPN11 orKRAS mutation (17 percent) have missense mutations in SOS1, which encodesa RAS-specific guanine nucleotide exchange factor (GEF). SOS1 mutationscluster at residues implicated in the maintenance of SOS1 in itsautoinhibited form and ectopic expression of two NS-associated mutantsinduced enhanced RAS activation. The phenotype associated with SOS1defects is distinctive, although within NS spectrum, with a highprevalence of ectodermal abnormalities but generally normal developmentand linear growth. Our findings implicate for the first timegain-of-function mutations in a RAS GEF in inherited disease and define anew mechanism by which upregulation of the RAS pathway can profoundlychange human development.

  14. Mutations in DEPDC5 cause familial focal epilepsy with variable foci.

    PubMed

    Dibbens, Leanne M; de Vries, Boukje; Donatello, Simona; Heron, Sarah E; Hodgson, Bree L; Chintawar, Satyan; Crompton, Douglas E; Hughes, James N; Bellows, Susannah T; Klein, Karl Martin; Callenbach, Petra M C; Corbett, Mark A; Gardner, Alison E; Kivity, Sara; Iona, Xenia; Regan, Brigid M; Weller, Claudia M; Crimmins, Denis; O'Brien, Terence J; Guerrero-López, Rosa; Mulley, John C; Dubeau, Francois; Licchetta, Laura; Bisulli, Francesca; Cossette, Patrick; Thomas, Paul Q; Gecz, Jozef; Serratosa, Jose; Brouwer, Oebele F; Andermann, Frederick; Andermann, Eva; van den Maagdenberg, Arn M J M; Pandolfo, Massimo; Berkovic, Samuel F; Scheffer, Ingrid E

    2013-05-01

    The majority of epilepsies are focal in origin, with seizures emanating from one brain region. Although focal epilepsies often arise from structural brain lesions, many affected individuals have normal brain imaging. The etiology is unknown in the majority of individuals, although genetic factors are increasingly recognized. Autosomal dominant familial focal epilepsy with variable foci (FFEVF) is notable because family members have seizures originating from different cortical regions. Using exome sequencing, we detected DEPDC5 mutations in two affected families. We subsequently identified mutations in five of six additional published large families with FFEVF. Study of families with focal epilepsy that were too small for conventional clinical diagnosis with FFEVF identified DEPDC5 mutations in approximately 12% of families (10/82). This high frequency establishes DEPDC5 mutations as a common cause of familial focal epilepsies. Shared homology with G protein signaling molecules and localization in human neurons suggest a role of DEPDC5 in neuronal signal transduction.

  15. A deleterious mutation in the LOXHD1 gene causes autosomal recessive hearing loss in Ashkenazi Jews.

    PubMed

    Edvardson, S; Jalas, C; Shaag, A; Zenvirt, S; Landau, C; Lerer, I; Elpeleg, O

    2011-05-01

    Autosomal recessive nonsyndromic sensorineural hearing loss (ARNSHL) in Ashkenazi Jews, is mainly caused by mutations in the GJB2 and GJB6 genes. Here we describe a novel homozygous mutation of the LOXHD1 gene resulting in a premature stop codon (R1572X) in nine patients of Ashkenazi Jewish origin who had severe-profound congenital non-progressive ARNSHL and benefited from cochlear implants. Upon screening for the mutation among 719 anonymous Ashkenazi-Jews we detected four carriers, indicating a carrier rate of 1:180 Ashkenazi Jews. This is the second reported mutation in the LOXHD1 gene, and its homozygous presence in two of 39 Ashkenazi Jewish families with congenital ARNSHL suggest that it could account for some 5% of the familial cases in this community. Copyright © 2011 Wiley-Liss, Inc.

  16. New mutation in periaxin gene causing Charcot Marie Tooth disease in a Puerto Rican young male.

    PubMed

    Noriega, Elizabeth; Ramos, Edwardo

    2013-12-01

    Charcot-Marie-Tooth (CMT) disease is an inherited peripheral neuropathy caused by mutations in more than 30 different genes. One of the genes encodes for periaxin (PRX) protein, which is required for the maintenance of peripheral nerve myelin. Individuals with PRX gene mutations have been described to present early-onset, autosomal recessive, demyelinating CMT disease or CMT4F subtype. Only 23 mutations involving the PRX gene have been reported in patients throughout the world. We describe a case of a Puerto Rican adolescent with history, neurologic examination, electromyographic data, and laboratory tests consistent with CMT4F. Genetic analysis of this individual showed a heterozygous transversion resulting in amino acid change from arginine to glycine in the PRX gene, suggesting CMT4F. We report this novel PRX mutation to expand the clinical spectrum of CMT disease.

  17. Semi-automated, reverse-hybridization detection of multiple mutations causing hereditary fructose intolerance.

    PubMed

    Kriegshäuser, Gernot; Halsall, David; Rauscher, Bettina; Oberkanins, Christian

    2007-06-01

    Hereditary fructose intolerance (HFI) is a potentially fatal nutritional disease that is caused by mutations in the liver isoenzyme of fructoaldolase (aldolase B). Our aim was to evaluate a diagnostic assay capable of simultaneously analyzing three-point mutations and a small deletion in the aldolase B (ALDOB) gene. The test under investigation is based on multiplex DNA amplification and hybridization to membrane strips presenting a parallel array of allele-specific oligonucleotide probes. We used the novel reverse-hybridization (RH) protocol to analyze 54 individuals previously genotyped by direct sequencing. RH genotyping for ALDOB mutations Delta4E4, A149P, A174D, and N334K was in complete concordance with results obtained by DNA sequencing. The procedure is rapid (<6h) and may be automated to a large extent. The RH assay tested in this study represents an accurate and robust screening tool to identify common ALDOB mutations.

  18. Mutation of the translation initiation codon in FGA causes congenital afibrinogenemia.

    PubMed

    Tirefort, Yordanka; Alson, Olivat Rakoto; de Moerloose, Philippe; Neerman-Arbez, Marguerite

    2012-09-01

    Congenital afibrinogenemia is characterized by the complete absence of fibrinogen, the precursor of the major protein constituent of the blood clot, fibrin. Extensive allelic heterogeneity has been found for this disorder and more than 40 mutations, the majority in FGA, have been identified in homozygosity or in compound heterozygosity. However, the continuous genetic analysis of additional patients still allows the identification of novel mutations and thus the greater understanding of fibrinogen structure and function. Here we report the identification of a novel missense mutation in FGA exon 1 affecting the translation initiation codon: c.1 A>T (ATG>TTG) M1L, identified in a young boy from Madagascar in compound heterozygosity with a second mutation in FGA exon 4: c.385 C>T (CGA>TGA) R129X. The patient suffered from occasional severe arthralgias (shoulder, knee) most likely caused by intra-articular bleeding with subsequent inflammation.

  19. A novel fibrinogen B beta chain frameshift mutation causes congenital afibrinogenaemia.

    PubMed

    Zhang, Jian; Zhao, Xiaojuan; Wang, Zhaoyue; Yu, Ziqiang; Cao, Lijuan; Zhang, Wei; Bai, Xia; Ruan, Changgeng

    2013-07-01

    Congenital afibrinogenaemia is a rare autosomal recessive disorder caused by various mutations within the fibrinogen genes FGA, FGB and FGG. Ins/del mutations in FGB are extremely rare. We report a patient with afibrinogenaemia who suffered from umbilical cord bleeding and repeated bleeding episodes. His plasma fibrinogen levels could not be detected using the Clauss method and immunological methods. Molecular analyses revealed homozygosity in a novel four bases insertion in codon 40 of FGB exon 2 (g. 2833_2834 ins GTTT), which resulted in a truncated 50-residue polypeptide that contained 11 exceptional abnormal residues. In the transient expression experiments, mutant fibrinogen could be detected at higher level than wild-type fibrinogen in COS-7 cell lysates but not in culture media. These results suggest that the homozygous mutation in FGB could be responsible for congenital afibrinogenaemia in this patient. This frameshift mutation could impair fibrinogen assembly and secretion without influencing the protein synthesis.

  20. De novo SHANK3 mutation causes Rett syndrome-like phenotype in a female patient.

    PubMed

    Hara, Munetsugu; Ohba, Chihiro; Yamashita, Yushiro; Saitsu, Hirotomo; Matsumoto, Naomichi; Matsuishi, Toyojiro

    2015-07-01

    Rett syndrome (RTT) is a neurodevelopmental disorder predominantly affecting females. Females with the MECP2 mutations exhibit a broad spectrum of clinical manifestations ranging from classical Rett syndrome to asymptomatic carriers. Mutations of genes encoding cyclin-dependent kinase-like 5 (CDKL5) and forkhead box G1 (FOXG1) are also found in early onset RTT variants. Here, we present the first report of a female patient with RTT-like phenotype caused by SHANK3 (SH3 and multiple ankylin repeat domain 3) mutation, indicating that the clinical spectrum of SHANK3 mutations may extend to RTT-like phenotype in addition to (severe) developmental delay, absence of expressive speech, autistic behaviors and intellectual disability.

  1. A Clostridium difficile Lineage Endemic to Costa Rican Hospitals Is Multidrug Resistant by Acquisition of Chromosomal Mutations and Novel Mobile Genetic Elements.

    PubMed

    Ramírez-Vargas, Gabriel; Quesada-Gómez, Carlos; Acuña-Amador, Luis; López-Ureña, Diana; Murillo, Tatiana; Del Mar Gamboa-Coronado, María; Chaves-Olarte, Esteban; Thomson, Nicholas; Rodríguez-Cavallini, Evelyn; Rodríguez, César

    2017-04-01

    The antimicrobial resistance (AMR) rates and levels recorded for Clostridium difficile are on the rise. This study reports the nature, levels, diversity, and genomic context of the antimicrobial resistance of human C. difficile isolates of the NAPCR1/RT012/ST54 genotype, which caused an outbreak in 2009 and is endemic in Costa Rican hospitals. To this end, we determined the susceptibilities of 38 NAPCR1 isolates to 10 antibiotics from seven classes using Etests or macrodilution tests and examined 31 NAPCR1 whole-genome sequences to identify single nucleotide polymorphisms (SNPs) and genes that could explain the resistance phenotypes observed. The NAPCR1 isolates were multidrug resistant (MDR) and commonly exhibited very high resistance levels. By sequencing their genomes, we showed that they possessed resistance-associated SNPs in gyrA and rpoB and carried eight to nine acquired antimicrobial resistance (AMR) genes. Most of these genes were located on known or novel mobile genetic elements shared by isolates recovered at different hospitals and at different time points. Metronidazole and vancomycin remain the first-line treatment options for these isolates. Overall, the NAPCR1 lineage showed an enhanced ability to acquire AMR genes through lateral gene transfer. On the basis of this finding, we recommend further vigilance and the adoption of improved control measures to limit the dissemination of this lineage and the emergence of more C. difficile MDR strains. Copyright © 2017 American Society for Microbiology.

  2. Multidrug-Resistant Mycobacterium tuberculosis of the Latin American Mediterranean Lineage, Wrongly Identified as Mycobacterium pinnipedii (Spoligotype International Type 863 [SIT863]), Causing Active Tuberculosis in South Brazil

    PubMed Central

    Vasconcelos, Sidra E. G.; Esteves, Leonardo S.; Gomes, Harrison M.; Almeida da Silva, Pedro; Perdigão, João; Portugal, Isabel; Viveiros, Miguel; McNerney, Ruth; Pain, Arnab; Clark, Taane G.; Rastogi, Nalin; Unis, Gisela; Rossetti, Maria Lucia R.

    2015-01-01

    We recently detected the spoligotype patterns of strains of Mycobacterium pinnipedii, a species of the Mycobacterium tuberculosis complex, in sputum samples from nine cases with pulmonary tuberculosis residing in Porto Alegre, South Brazil. Because this species is rarely encountered in humans, we further characterized these nine isolates by additional genotyping techniques, including 24-locus mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) typing, verification of the loci TbD1, RD9, pks15/1, RDRio, and fbpC, the insertion of IS6110 at a site specific to the M. tuberculosis Latin American Mediterranean (LAM) lineage, and whole-genome sequencing. The combined analysis of these markers revealed that the isolates are in fact M. tuberculosis and more specifically belong to the LAM genotype. Most of these isolates (n = 8) were shown to be multidrug resistant (MDR), which prompted us to perform partial sequencing of the rpoA, rpoB, rpoC, katG, and inhA genes. Seven isolates (77.8%) carried the S315T mutation in katG, and one of these (11%) also presented the C(−17)T single-nucleotide polymorphism (SNP) in inhA. Interestingly, six of the MDR isolates also presented an undescribed insertion of 12 nucleotides (CCA GAA CAA CCC) in codon 516 of rpoB. No putative compensatory mutation was found in either rpoA or rpoC. This is the first report of an M. tuberculosis LAM family strain with a convergent M. pinnipedii spoligotype. These spoligotypes are observed in genotype databases at a modest frequency, highlighting that care must be taken when identifying isolates in the M. tuberculosis complex on the basis of single genetic markers. PMID:26400784

  3. GNA14 Somatic Mutation Causes Congenital and Sporadic Vascular Tumors by MAPK Activation.

    PubMed

    Lim, Young H; Bacchiocchi, Antonella; Qiu, Jingyao; Straub, Robert; Bruckner, Anna; Bercovitch, Lionel; Narayan, Deepak; McNiff, Jennifer; Ko, Christine; Robinson-Bostom, Leslie; Antaya, Richard; Halaban, Ruth; Choate, Keith A

    2016-08-04

    Vascular tumors are among the most common neoplasms in infants and children; 5%-10% of newborns present with or develop lesions within the first 3 months of life. Most are benign infantile hemangiomas that typically regress by 5 years of age; other vascular tumors include congenital tufted angiomas (TAs), kaposiform hemangioendotheliomas (KHEs), and childhood lobular capillary hemangiomas (LCHs). Some of these lesions can become locally invasive and unresponsive to pharmacologic intervention, leading to significant complications. Recent investigation has revealed that activating mutations in HRAS, KRAS, NRAS, GNAQ, and GNA11 can cause certain types of rare childhood vascular tumors, and we have now identified causal recurrent somatic activating mutations in GNA14 by whole-exome and targeted sequencing. We found somatic activating GNA14 c.614A>T (p.Gln205Leu) mutations in one KHE, one TA, and one LCH and a GNA11 c.547C>T (p.Arg183Cys) mutation in two LCH lesions. We examined mutation pathobiology via expression of mutant GNA14 or GNA11 in primary human endothelial cells and melanocytes. GNA14 and GNA11 mutations induced changes in cellular morphology and rendered cells growth-factor independent by upregulating the MAPK pathway. Our findings identify GNA14 mutations as a cause of childhood vascular tumors, offer insight into mechanisms of oncogenic transformation by mutations affecting Gaq family members, and identify potential targets for therapeutic intervention. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. PRIMA1 mutation: a new cause of nocturnal frontal lobe epilepsy

    PubMed Central

    Hildebrand, Michael S; Tankard, Rick; Gazina, Elena V; Damiano, John A; Lawrence, Kate M; Dahl, Hans-Henrik M; Regan, Brigid M; Shearer, Aiden Eliot; Smith, Richard J H; Marini, Carla; Guerrini, Renzo; Labate, Angelo; Gambardella, Antonio; Tinuper, Paolo; Lichetta, Laura; Baldassari, Sara; Bisulli, Francesca; Pippucci, Tommaso; Scheffer, Ingrid E; Reid, Christopher A; Petrou, Steven; Bahlo, Melanie; Berkovic, Samuel F

    2015-01-01

    Objective Nocturnal frontal lobe epilepsy (NFLE) can be sporadic or autosomal dominant; some families have nicotinic acetylcholine receptor subunit mutations. We report a novel autosomal recessive phenotype in a single family and identify the causative gene. Methods Whole exome sequencing data was used to map the family, thereby narrowing exome search space, and then to identify the mutation. Results Linkage analysis using exome sequence data from two affected and two unaffected subjects showed homozygous linkage peaks on chromosomes 7, 8, 13, and 14 with maximum LOD scores between 1.5 and 1.93. Exome variant filtering under these peaks revealed that the affected siblings were homozygous for a novel splice site mutation (c.93+2T>C) in the PRIMA1 gene on chromosome 14. No additional PRIMA1 mutations were found in 300 other NFLE cases. The c.93+2T>C mutation was shown to lead to skipping of the first coding exon of the PRIMA1 mRNA using a minigene system. Interpretation PRIMA1 is a transmembrane protein that anchors acetylcholinesterase (AChE), an enzyme hydrolyzing acetycholine, to membrane rafts of neurons. PRiMA knockout mice have reduction of AChE and accumulation of acetylcholine at the synapse; our minigene analysis suggests that the c.93+2T>C mutation leads to knockout of PRIMA1. Mutations with gain of function effects in acetylcholine receptor subunits cause autosomal dominant NFLE. Thus, enhanced cholinergic responses are the likely cause of the severe NFLE and intellectual disability segregating in this family, representing the first recessive case to be reported and the first PRIMA1 mutation implicated in disease. PMID:26339676

  5. Clinical-genetic correlations in familial Alzheimer's disease caused by presenilin 1 mutations.

    PubMed

    Gómez-Tortosa, Estrella; Barquero, Sagrario; Barón, Manuel; Gil-Neciga, Eulogio; Castellanos, Fernando; Zurdo, Martín; Manzano, Sagrario; Muñoz, David G; Jiménez-Huete, Adolfo; Rábano, Alberto; Sainz, M José; Guerrero, Rosa; Gobernado, Isabel; Pérez-Pérez, Julián; Jiménez-Escrig, Adriano

    2010-01-01

    We describe the clinical phenotype of nine kindred with presenile Alzheimer's disease (AD) caused by different presenilin 1 (PS1) point mutations, and compare them with reported families with mutations in the same codons. Mutations were in exon 4 (Phe105Val), exon 5 (Pro117Arg, Glu120Gly), exon 6 (His163Arg), exon 7 (Leu226Phe), exon 8 (Val261Leu, Val272Ala, Leu282Arg), and exon 12 (Ile439Ser). Three of these amino acid changes (Phe105Val, Glu120Gly, and Ile439Ser) had not been previously reported. Distinct clinical features, including age of onset, symptoms and signs associated with the cortical-type dementia and aggressiveness of the disease, characterized the different mutations and were quite homogeneous across family members. Age of onset fell within a consistent range: some mutations caused the disease in the thirties (P117R, L226F, V272A), other in the forties (E120G, H163R, V261L, L282R), and other in the fifties (F105V, I439S). Associated features also segregated with specific mutations: early epileptic activity (E120G), spastic paraparesis (V261L), subcortical dementia and parkinsonism (V272A), early language impairment, frontal signs, and myoclonus (L226F), and late myoclonus and seizures (H163R, L282R). Neurological deterioration was particularly aggressive in PS1 mutations with earlier age of onset such as P117R, L226F, and E120G. With few exceptions, a similar clinical phenotype was found in families reported to have either the same mutation or different amino acid changes in the same codons. This series points to a strong influence of the specific genetic defect in the development of the clinical phenotype.

  6. Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy

    PubMed Central

    Harms, M.B.; Ori-McKenney, K.M.; Scoto, M.; Tuck, E.P.; Bell, S.; Ma, D.; Masi, S.; Allred, P.; Al-Lozi, M.; Reilly, M.M.; Miller, L.J.; Jani-Acsadi, A.; Pestronk, A.; Shy, M.E.; Muntoni, F.; Vallee, R.B.

    2012-01-01

    Objective: To identify the gene responsible for 14q32-linked dominant spinal muscular atrophy with lower extremity predominance (SMA-LED, OMIM 158600). Methods: Target exon capture and next generation sequencing was used to analyze the 73 genes in the 14q32 linkage interval in 3 SMA-LED family members. Candidate gene sequencing in additional dominant SMA families used PCR and pooled target capture methods. Patient fibroblasts were biochemically analyzed. Results: Regional exome sequencing of all candidate genes in the 14q32 interval in the original SMA-LED family identified only one missense mutation that segregated with disease state—a mutation in the tail domain of DYNC1H1 (I584L). Sequencing of DYNC1H1 in 32 additional probands with lower extremity predominant SMA found 2 additional heterozygous tail domain mutations (K671E and Y970C), confirming that multiple different mutations in the same domain can cause a similar phenotype. Biochemical analysis of dynein purified from patient-derived fibroblasts demonstrated that the I584L mutation dominantly disrupted dynein complex stability and function. Conclusions: We demonstrate that mutations in the tail domain of the heavy chain of cytoplasmic dynein (DYNC1H1) cause spinal muscular atrophy and provide experimental evidence that a human DYNC1H1 mutation disrupts dynein complex assembly and function. DYNC1H1 mutations were recently found in a family with Charcot-Marie-Tooth disease (type 2O) and in a child with mental retardation. Both of these phenotypes show partial overlap with the spinal muscular atrophy patients described here, indicating that dynein dysfunction is associated with a range of phenotypes in humans involving neuronal development and maintenance. PMID:22459677

  7. BRF1 mutations alter RNA polymerase III–dependent transcription and cause neurodevelopmental anomalies

    PubMed Central

    Hög, Friederike; Dentici, Maria Lisa; Tan, Perciliz L.; Sowada, Nadine; Medeira, Ana; Gueneau, Lucie; Thiele, Holger; Kousi, Maria; Lepri, Francesca; Wenzeck, Larissa; Blumenthal, Ian; Radicioni, Antonio; Schwarzenberg, Tito Livio; Mandriani, Barbara; Fischetto, Rita; Morris-Rosendahl, Deborah J.; Altmüller, Janine; Reymond, Alexandre; Nürnberg, Peter; Merla, Giuseppe; Dallapiccola, Bruno; Katsanis, Nicholas; Cramer, Patrick; Kubisch, Christian

    2015-01-01

    RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III–related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development. PMID:25561519

  8. Parkinson's Disease-Associated Pathogenic VPS35 Mutation Causes Complex I Deficits.

    PubMed

    Zhou, Leping; Wang, Wenzhang; Hoppel, Charles; Liu, Jun; Zhu, Xiongwei

    2017-07-29

    Defect in the complex I of the mitochondrial electron-transport chain is a characteristic of Parkinson's disease (PD) which is thought to play a critical role in the disease pathogenesis. Mutations in vacuolar sorting protein 35 (VPS35) cause autosomal dominant PD and we recently demonstrated that pathogenic VPS35 mutations cause mitochondrial damage through enhanced mitochondrial fragmentation. In this study, we aimed to determine whether pathogenic VPS35 mutation impacts the activity of complex I and its underlying mechanism. Indeed, VPS35 D620N mutation led to decreased enzymatic activity and respiratory defects in complex I and II in patient fibroblasts. While no changes in the expression of the complex I and II subunits were noted, the level of assembled complex I and II as well as the supercomplex was significantly reduced in D620N fibroblasts. Importantly, inhibition of mitochondrial fission rescued the contents of assembled complexes as well as the functional defects in complex I and II. Overall, these results suggest that VPS35 D620N mutation-induced excessive mitochondrial fission leads to the defects in the assembled complex I and supercomplex and causes bioenergetics deficits. Copyright © 2017. Published by Elsevier B.V.

  9. Spectrum of Mutations that cause Distal Arthrogryposis Types 1 and 2B

    PubMed Central

    Beck, Anita E.; McMillin, Margaret J.; Gildersleeve, Heidi I. S.; Kezele, Phillip R.; Shively, Kathryn M. B.; Carey, John C.; Regnier, Michael; Bamshad, Michael J.

    2012-01-01

    The distal arthrogryposis (DA) syndromes are a group of disorders characterized by non-progressive congenital contractures of the limbs. Mutations that cause distal arthrogryposis syndromes have been reported in six genes, each of which encodes a component of the contractile apparatus of skeletal myofibers. However, these reports have usually emanated from gene discovery efforts and thus potentially bias estimates of the frequency of pathogenic mutations at each locus. We characterized the spectrum of pathogenic variants in a cohort of 153 cases of DA1 (n = 48) and DA2B (n = 105). Disease-causing mutations in 56/153 (37%) kindreds including 14/48 (29%) with DA1 and 42/105 (40%) with DA2B were distributed nearly equally across TNNI2, TNNT3, TPM2, and MYH3. In TNNI2, TNNT3, and TPM2 the same mutation caused DA1 in some families and DA2B in others. We found no significant differences among the clinical characteristics of DA by locus or between each locus and DA1 or DA2B. Collectively, the substantial overlap between phenotypic characteristics and spectrum of mutations suggest that DA1 and DA2B should be considered phenotypic extremes of the same disorder. PMID:23401156

  10. Spectrum of mutations that cause distal arthrogryposis types 1 and 2B.

    PubMed

    Beck, Anita E; McMillin, Margaret J; Gildersleeve, Heidi I S; Kezele, Phillip R; Shively, Kathryn M; Carey, John C; Regnier, Michael; Bamshad, Michael J

    2013-03-01

    The distal arthrogryposis (DA) syndromes are a group of disorders characterized by non-progressive congenital contractures of the limbs. Mutations that cause distal arthrogryposis syndromes have been reported in six genes, each of which encodes a component of the contractile apparatus of skeletal myofibers. However, these reports have usually emanated from gene discovery efforts and thus potentially bias estimates of the frequency of pathogenic mutations at each locus. We characterized the spectrum of pathogenic variants in a cohort of 153 cases of DA1 (n = 48) and DA2B (n = 105). Disease-causing mutations in 56/153 (37%) kindreds including 14/48 (29%) with DA1 and 42/105 (40%) with DA2B were distributed nearly equally across TNNI2, TNNT3, TPM2, and MYH3. In TNNI2, TNNT3, and TPM2 the same mutation caused DA1 in some families and DA2B in others. We found no significant differences among the clinical characteristics of DA by locus or between each locus and DA1 or DA2B. Collectively, the substantial overlap between phenotypic characteristics and spectrum of mutations suggests that DA1 and DA2B should be considered phenotypic extremes of the same disorder. Copyright © 2013 Wiley Periodicals, Inc.

  11. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency.

    PubMed

    Lovric, Svjetlana; Goncalves, Sara; Gee, Heon Yung; Oskouian, Babak; Srinivas, Honnappa; Choi, Won-Il; Shril, Shirlee; Ashraf, Shazia; Tan, Weizhen; Rao, Jia; Airik, Merlin; Schapiro, David; Braun, Daniela A; Sadowski, Carolin E; Widmeier, Eugen; Jobst-Schwan, Tilman; Schmidt, Johanna Magdalena; Girik, Vladimir; Capitani, Guido; Suh, Jung H; Lachaussée, Noëlle; Arrondel, Christelle; Patat, Julie; Gribouval, Olivier; Furlano, Monica; Boyer, Olivia; Schmitt, Alain; Vuiblet, Vincent; Hashmi, Seema; Wilcken, Rainer; Bernier, Francois P; Innes, A Micheil; Parboosingh, Jillian S; Lamont, Ryan E; Midgley, Julian P; Wright, Nicola; Majewski, Jacek; Zenker, Martin; Schaefer, Franz; Kuss, Navina; Greil, Johann; Giese, Thomas; Schwarz, Klaus; Catheline, Vilain; Schanze, Denny; Franke, Ingolf; Sznajer, Yves; Truant, Anne S; Adams, Brigitte; Désir, Julie; Biemann, Ronald; Pei, York; Ars, Elisabet; Lloberas, Nuria; Madrid, Alvaro; Dharnidharka, Vikas R; Connolly, Anne M; Willing, Marcia C; Cooper, Megan A; Lifton, Richard P; Simons, Matias; Riezman, Howard; Antignac, Corinne; Saba, Julie D; Hildebrandt, Friedhelm

    2017-03-01

    Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease cases. A mutation in 1 of over 40 monogenic genes can be detected in approximately 30% of individuals with SRNS whose symptoms manifest before 25 years of age. However, in many patients, the genetic etiology remains unknown. Here, we have performed whole exome sequencing to identify recessive causes of SRNS. In 7 families with SRNS and facultative ichthyosis, adrenal insufficiency, immunodeficiency, and neurological defects, we identified 9 different recessive mutations in SGPL1, which encodes sphingosine-1-phosphate (S1P) lyase. All mutations resulted in reduced or absent SGPL1 protein and/or enzyme activity. Overexpression of cDNA representing SGPL1 mutations resulted in subcellular mislocalization of SGPL1. Furthermore, expression of WT human SGPL1 rescued growth of SGPL1-deficient dpl1Δ yeast strains, whereas expression of disease-associated variants did not. Immunofluorescence revealed SGPL1 expression in mouse podocytes and mesangial cells. Knockdown of Sgpl1 in rat mesangial cells inhibited cell migration, which was partially rescued by VPC23109, an S1P receptor antagonist. In Drosophila, Sply mutants, which lack SGPL1, displayed a phenotype reminiscent of nephrotic syndrome in nephrocytes. WT Sply, but not the disease-associated variants, rescued this phenotype. Together, these results indicate that SGPL1 mutations cause a syndromic form of SRNS.

  12. Mutations in the interleukin receptor IL11RA cause autosomal recessive Crouzon-like craniosynostosis

    PubMed Central

    Keupp, Katharina; Li, Yun; Vargel, Ibrahim; Hoischen, Alexander; Richardson, Rebecca; Neveling, Kornelia; Alanay, Yasemin; Uz, Elif; Elcioğlu, Nursel; Rachwalski, Martin; Kamaci, Soner; Tunçbilek, Gökhan; Akin, Burcu; Grötzinger, Joachim; Konas, Ersoy; Mavili, Emin; Müller-Newen, Gerhard; Collmann, Hartmut; Roscioli, Tony; Buckley, Michael F; Yigit, Gökhan; Gilissen, Christian; Kress, Wolfram; Veltman, Joris; Hammerschmidt, Matthias; Akarsu, Nurten A; Wollnik, Bernd

    2013-01-01

    We have characterized a novel autosomal recessive Crouzon-like craniosynostosis syndrome in a 12-affected member family from Antakya, Turkey, the presenting features of which include: multiple suture synostosis, midface hypoplasia, variable degree of exophthalmos, relative prognathism, a beaked nose, and conductive hearing loss. Homozygosity mapping followed by targeted next-generation sequencing identified a c.479+6T>G mutation in the interleukin 11 receptor alpha gene (IL11RA) on chromosome 9p21. This donor splice-site mutation leads to a high percentage of aberrant IL11RA mRNA transcripts in an affected individual and altered mRNA splicing determined by in vitro exon trapping. An extended IL11RA mutation screen was performed in a cohort of 79 patients with an initial clinical diagnosis of Crouzon syndrome, pansynostosis, or unclassified syndromic craniosynostosis. We identified mutations segregating with the disease in five families: a German patient of Turkish origin and a Turkish family with three affected sibs all of whom were homozygous for the previously identified IL11RA c.479+6T>G mutation; a family with pansynostosis with compound heterozygous missense mutations, p.Pro200Thr and p.Arg237Pro; and two further Turkish families with Crouzon-like syndrome carrying the homozygous nonsense mutations p.Tyr232* and p.Arg292*. Using transient coexpression in HEK293T and COS7 cells, we demonstrated dramatically reduced IL11-mediated STAT3 phosphorylation for all mutations. Immunofluorescence analysis of mouse Il11ra demonstrated specific protein expression in cranial mesenchyme which was localized around the coronal suture tips and in the lambdoidal suture. In situ hybridization analysis of adult zebrafish also detected zfil11ra expression in the coronal suture between the overlapping frontal and parietal plates. This study demonstrates that mutations in the IL11RA gene cause an autosomal recessive Crouzon-like craniosynostosis. PMID:24498618

  13. Inactivating Mutations in ESCO2 Cause SC Phocomelia and Roberts Syndrome: No Phenotype-Genotype Correlation

    PubMed Central

    Schüle, Birgitt; Oviedo, Angelica; Johnston, Kathreen; Pai, Shashidhar; Francke, Uta

    2005-01-01

    The rare, autosomal recessive Roberts syndrome (RBS) is characterized by tetraphocomelia, profound growth deficiency of prenatal onset, craniofacial anomalies, microcephaly, and mental deficiency. SC phocomelia (SC) has a milder phenotype, with a lesser degree of limb reduction and with survival to adulthood. Since heterochromatin repulsion (HR) is characteristic for both disorders and is not complemented in somatic-cell hybrids, it has been hypothesized that the disorders are allelic. Recently, mutations in ESCO2 (establishment of cohesion 1 homolog 2) on 8p21.1 have been reported in RBS. To determine whether ESCO2 mutations are also responsible for SC, we studied three families with SC and two families in which variable degrees of limb and craniofacial abnormalities, detected by fetal ultrasound, led to pregnancy terminations. All cases were positive for HR. We identified seven novel mutations in exons 3–8 of ESCO2. In two families, affected individuals were homozygous—for a 5-nucleotide deletion in one family and a splice-site mutation in the other. In three nonconsanguineous families, probands were compound heterozygous for a single-nucleotide insertion or deletion, a nonsense mutation, or a splice-site mutation. Abnormal splice products were characterized at the RNA level. Since only protein-truncating mutations were identified, regardless of clinical severity, we conclude that genotype does not predict phenotype. Having established that RBS and SC are caused by mutations in the same gene, we delineated the clinical phenotype of the tetraphocomelia spectrum that is associated with HR and ESCO2 mutations and differentiated it from other types of phocomelia that are negative for HR. PMID:16380922

  14. MORC2 Mutations Cause Axonal Charcot–Marie–Tooth Disease With Pyramidal Signs

    PubMed Central

    Albulym, Obaid M.; Kennerson, Marina L.; Harms, Matthew B.; Drew, Alexander P.; Siddell, Anna H.; Auer-Grumbach, Michaela; Pestronk, Alan; Connolly, Anne; Baloh, Robert H.; Zuchner, Stephan; Reddel, Stephen W.; Nicholson, Garth A.

    2016-01-01

    Objective To use linkage analysis and whole exome sequencing to identify the genetic mutation in a multigenerational Australian family with Charcot–Marie–Tooth disease type 2 (CMT2) and pyramidal signs. Methods Genome-wide linkage analysis was performed to map the locus. Whole exome sequencing was undertaken on selected individuals (3 affected, 1 normal), and segregation analysis and mutation screening were carried out using high-resolution melt analysis. The GEM.app database was queried to identify additional families with mutations. Results Significant linkage (2-point LOD score ≥ +3) and haplotype analysis mapped a new locus for CMT2 and pyramidal signs to a 6.6Mb interval on chromosome 22q12.1–q12.3. Whole exome sequencing identified a novel mutation (p.R252W) in the microrchidia CW-type zinc finger 2 (MORC2) gene mapping within the linkage region. The mutation fully segregated with the disease phenotype in the family. Screening additional families and querying unsolved CMT2 exomes, we identified the p.R252W mutation in 2 unrelated early onset CMT2 families and a second mutation p.E236G in 2 unrelated CMT2 families. Both the mutations occurred at highly conserved amino acid residues and were absent in the normal population. Interpretation We have identified a new locus in which MORC2 mutations are the likely pathogenic cause of CMT2 and pyramidal signs in these families. MORC2 encodes the human CW-type zinc finger 2 protein, which is a chromatin modifier involved in the regulation of DNA repair as well as gene transcription. PMID:26659848

  15. Congenital heart defect causing mutation in Nkx2.5 displays in vivo functional deficit.

    PubMed

    Zakariyah, Abeer F; Rajgara, Rashida F; Veinot, John P; Skerjanc, Ilona S; Burgon, Patrick G

    2017-04-01

    The Nkx2.5 gene encodes a transcription factor that plays a critical role in heart development. In humans, heterozygous mutations in NKX2.5 result in congenital heart defects (CHDs). However, the molecular mechanisms by which these mutations cause the disease remain unknown. NKX2.5-R142C is a mutation that was reported to be associated with atrial septal defect (ASD) and atrioventricular (AV) block in 13-patients from one family. The R142C mutation is located within both the DNA-binding domain and the nuclear localization sequence of NKX2.5 protein. The pathogenesis of CHDs in humans with R142C point mutation is not well understood. To examine the functional deficit associated with this mutation in vivo, we generated and characterized a knock-in mouse that harbours the human mutation R142C. Systematic structural and functional examination of the embryonic, newborn, and adult mice revealed that the homozygous embryos Nkx2.5(R141C/R141C) are developmentally arrested around E10.5 with delayed heart morphogenesis and downregulation of Nkx2.5 target genes, Anf, Mlc2v, Actc1 and Cx40. Histological examination of Nkx2.5(R141C/+) newborn hearts showed that 36% displayed ASD, with at least 80% 0f adult heterozygotes displaying a septal defect. Moreover, heterozygous Nkx2.5(R141C/+) newborn mice have downregulation of ion channel genes with 11/12 adult mice manifesting a prolonged PR interval that is indicative of 1st degree AV block. Collectively, the present study demonstrates that mice with the R141C point mutation in the Nkx2.5 allele phenocopies humans with the NKX2.5 R142C point mutation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mutations in the interleukin receptor IL11RA cause autosomal recessive Crouzon-like craniosynostosis.

    PubMed

    Keupp, Katharina; Li, Yun; Vargel, Ibrahim; Hoischen, Alexander; Richardson, Rebecca; Neveling, Kornelia; Alanay, Yasemin; Uz, Elif; Elcioğlu, Nursel; Rachwalski, Martin; Kamaci, Soner; Tunçbilek, Gökhan; Akin, Burcu; Grötzinger, Joachim; Konas, Ersoy; Mavili, Emin; Müller-Newen, Gerhard; Collmann, Hartmut; Roscioli, Tony; Buckley, Michael F; Yigit, Gökhan; Gilissen, Christian; Kress, Wolfram; Veltman, Joris; Hammerschmidt, Matthias; Akarsu, Nurten A; Wollnik, Bernd

    2013-11-01

    We have characterized a novel autosomal recessive Crouzon-like craniosynostosis syndrome in a 12-affected member family from Antakya, Turkey, the presenting features of which include: multiple suture synostosis, midface hypoplasia, variable degree of exophthalmos, relative prognathism, a beaked nose, and conductive hearing loss. Homozygosity mapping followed by targeted next-generation sequencing identified a c.479+6T>G mutation in the interleukin 11 receptor alpha gene (IL11RA) on chromosome 9p21. This donor splice-site mutation leads to a high percentage of aberrant IL11RA mRNA transcripts in an affected individual and altered mRNA splicing determined by in vitro exon trapping. An extended IL11RA mutation screen was performed in a cohort of 79 patients with an initial clinical diagnosis of Crouzon syndrome, pansynostosis, or unclassified syndromic craniosynostosis. We identified mutations segregating with the disease in five families: a German patient of Turkish origin and a Turkish family with three affected sibs all of whom were homozygous for the previously identified IL11RA c.479+6T>G mutation; a family with pansynostosis with compound heterozygous missense mutations, p.Pro200Thr and p.Arg237Pro; and two further Turkish families with Crouzon-like syndrome carrying the homozygous nonsense mutations p.Tyr232* and p.Arg292*. Using transient coexpression in HEK293T and COS7 cells, we demonstrated dramatically reduced IL11-mediated STAT3 phosphorylation for all mutations. Immunofluorescence analysis of mouse Il11ra demonstrated specific protein expression in cranial mesenchyme which was localized around the coronal suture tips and in the lambdoidal suture. In situ hybridization analysis of adult zebrafish also detected zfil11ra expression in the coronal suture between the overlapping frontal and parietal plates. This study demonstrates that mutations in the IL11RA gene cause an autosomal recessive Crouzon-like craniosynostosis.

  17. Molecular diagnosis of pituitary adenoma predisposition caused by aryl hydrocarbon receptor-interacting protein gene mutations

    PubMed Central

    Georgitsi, Marianthi; Raitila, Anniina; Karhu, Auli; Tuppurainen, Karoliina; Mäkinen, Markus J.; Vierimaa, Outi; Paschke, Ralf; Saeger, Wolfgang; van der Luijt, Rob B.; Sane, Timo; Robledo, Mercedes; De Menis, Ernesto; Weil, Robert J.; Wasik, Anna; Zielinski, Grzegorz; Lucewicz, Olga; Lubinski, Jan; Launonen, Virpi; Vahteristo, Pia; Aaltonen, Lauri A.

    2007-01-01

    Pituitary adenomas are common neoplasms of the anterior pituitary gland. Germ-line mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene cause pituitary adenoma predisposition (PAP), a recent discovery based on genetic studies in Northern Finland. In this population, a founder mutation explained a significant proportion of all acromegaly cases. Typically, PAP patients were of a young age at diagnosis but did not display a strong family history of pituitary adenomas. To evaluate the role of AIP in pituitary adenoma susceptibility in other populations and to gain insight into patient selection for molecular screening of the condition, we investigated the possible contribution of AIP mutations in pituitary tumorigenesis in patients from Europe and the United States. A total of 460 patients were investigated by AIP sequencing: young acromegaly patients, unselected acromegaly patients, unselected pituitary adenoma patients, and endocrine neoplasia-predisposition patients who were negative for MEN1 mutations. Nine AIP mutations were identified. Because many of the patients displayed no family history of pituitary adenomas, detection of the condition appears challenging. Feasibility of AIP immunohistochemistry (IHC) as a prescreening tool was tested in 50 adenomas: 12 AIP mutation-positive versus 38 mutation-negative pituitary tumors. AIP IHC staining levels proved to be a useful predictor of AIP status, with 75% sensitivity and 95% specificity for germ-line mutations. AIP contributes to PAP in all studied populations. AIP IHC, followed by genetic counseling and possible AIP mutation analysis in IHC-negative cases, a procedure similar to the diagnostics of the Lynch syndrome, appears feasible in identification of PAP. PMID:17360484

  18. SFTPC mutations cause SP-C degradation and aggregate formation without increasing ER stress.

    PubMed

    Thurm, Tobias; Kaltenborn, Eva; Kern, Sunčana; Griese, Matthias; Zarbock, Ralf

    2013-08-01

    Mutations in the gene encoding surfactant protein C (SP-C) cause familial and sporadic interstitial lung disease (ILD), which is associated with considerable morbidity and mortality. Unfortunately, effective therapeutic options are still lacking due to a very limited understanding of pathomechanisms. Knowledge of mutant SP-C proprotein (proSP-C) trafficking, processing, intracellular degradation and aggregation is a crucial prerequisite for the development of specific therapies to correct aberrant trafficking and processing of proSP-C and to hinder accumulation of cytotoxic aggregates. To identify possible starting points for therapeutic intervention, we stably transfected A549 alveolar epithelial cells with several proSP-C mutations previously found in patients suffering from ILD. Effects of mutant proSP-C were assessed by Western blotting, immunofluorescence and Congo red staining. A group of mutations (p.I73T, p.L110R, p.A116D and p.L188Q) resulted in aberrant proSP-C products, which were at least partially trafficked to lamellar bodies. Another group of mutations (p.P30L and p.P115L) was arrested in the endoplasmic reticulum (ER). Except for p.I73T, all mutations led to accumulation of intracellular Congo red-positive aggregates. Enhanced ER stress was detectable in none of these stably transfected cells. Different SP-C mutations have unique consequences for alveolar epithelial cell biology. As these cannot be predicted based upon the localization of the mutation, our data emphasize the importance of studying individual mutations in detail in order to develop mutation-specific therapies. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  19. A systematic screening to identify de novo mutations causing sporadic early-onset Parkinson's disease

    PubMed Central

    Kun-Rodrigues, Celia; Ganos, Christos; Guerreiro, Rita; Schneider, Susanne A.; Schulte, Claudia; Lesage, Suzanne; Darwent, Lee; Holmans, Peter; Singleton, Andrew; Bhatia, Kailash; Bras, Jose

    2015-01-01

    Despite the many advances in our understanding of the genetic basis of Mendelian forms of Parkinson's disease (PD), a large number of early-onset cases still remain to be explained. Many of these cases, present with a form of disease that is identical to that underlined by genetic causes, but do not have mutations in any of the currently known disease-causing genes. Here, we hypothesized that de novo mutations may account for a proportion of these early-onset, sporadic cases. We performed exome sequencing in full parent–child trios where the proband presents with typical PD to unequivocally identify de novo mutations. This approach allows us to test all genes in the genome in an unbiased manner. We have identified and confirmed 20 coding de novo mutations in 21 trios. We have used publicly available population genetic data to compare variant frequencies and our independent in-house dataset of exome sequencing in PD (with over 1200 cases) to identify additional variants in the same genes. Of the genes identified to carry de novo mutations, PTEN, VAPB and ASNA1 are supported by various sources of data to be involved in PD. We show that these genes are reported to be within a protein–protein interaction network with PD genes and that they contain additional rare, case-specific, mutations in our independent cohort of PD cases. Our results support the involvement of these three genes in PD and suggest that testing for de novo mutations in sporadic disease may aid in the identification of novel disease-causing genes. PMID:26362251

  20. An alternative inhibitor overcomes resistance caused by a mutation of the epidermal growth factor receptor.

    PubMed

    Kobayashi, Susumu; Ji, Hongbin; Yuza, Yuki; Meyerson, Matthew; Wong, Kwok-Kin; Tenen, Daniel G; Halmos, Balázs

    2005-08-15

    Mutations of the epidermal growth factor receptor (EGFR) gene have been identified in non-small cell lung cancer specimens from patients responding to anilinoquinazoline EGFR inhibitors. However, clinical resistance to EGFR inhibitor therapy is commonly observed. Previously, we showed that such resistance can be caused by a second mutation of the EGFR gene, leading to a T790M amino acid change in the EGFR tyrosine kinase domain and also found that CL-387,785, a specific and irreversible anilinoquinazoline EGFR inhibitor, was able to overcome this resistance on the biochemical level. Here, we present the successful establishment of a stable Ba/F3 cell line model system for the study of oncogenic EGFR signaling and the functional consequences of the EGFR T790M resistance mutation. We show the ability of gefitinib to induce growth arrest and apoptosis in cells transfected with wild-type or L858R EGFR, whereas the T790M mutation leads to high-level functional resistance against gefitinib and erlotinib. In addition, CL-387,785 is able to overcome resistance caused by the T790M mutation on a functional level, correlating with effective inhibition of downstream signaling pathways. Similar data was also obtained with the use of the gefitinib-resistant H1975 lung cancer cell line. The systems established by us should prove useful for the large-scale screening of alternative EGFR inhibitor compounds against the T790M or other EGFR mutations. These data also support the notion that clinical investigations of compounds similar to CL-387,785 may be useful as a treatment strategy for patients with resistance to EGFR inhibitor therapy caused by the T790M mutation.

  1. Recessive HYDIN Mutations Cause Primary Ciliary Dyskinesia without Randomization of Left-Right Body Asymmetry

    PubMed Central

    Olbrich, Heike; Schmidts, Miriam; Werner, Claudius; Onoufriadis, Alexandros; Loges, Niki T.; Raidt, Johanna; Banki, Nora Fanni; Shoemark, Amelia; Burgoyne, Tom; Al Turki, Saeed; Hurles, Matthew E.; Köhler, Gabriele; Schroeder, Josef; Nürnberg, Gudrun; Nürnberg, Peter; Chung, Eddie M.K.; Reinhardt, Richard; Marthin, June K.; Nielsen, Kim G.; Mitchison, Hannah M.; Omran, Heymut

    2012-01-01

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder characterized by defective cilia and flagella motility. Chronic destructive-airway disease is caused by abnormal respiratory-tract mucociliary clearance. Abnormal propulsion of sperm flagella contributes to male infertility. Genetic defects in most individuals affected by PCD cause randomization of left-right body asymmetry; approximately half show situs inversus or situs ambiguous. Almost 70 years after the hy3 mouse possessing Hydin mutations was described as a recessive hydrocephalus model, we report HYDIN mutations in PCD-affected persons without hydrocephalus. By homozygosity mapping, we identified a PCD-associated locus, chromosomal region 16q21-q23, which contains HYDIN. However, a nearly identical 360 kb paralogous segment (HYDIN2) in chromosomal region 1q21.1 complicated mutational analysis. In three affected German siblings linked to HYDIN, we identified homozygous c.3985G>T mutations that affect an evolutionary conserved splice acceptor site and that subsequently cause aberrantly spliced transcripts predicting premature protein termination in respiratory cells. Parallel whole-exome sequencing identified a homozygous nonsense HYDIN mutation, c.922A>T (p.Lys307∗), in six individuals from three Faroe Island PCD-affected families that all carried an 8.8 Mb shared haplotype across HYDIN, indicating an ancestral founder mutation in this isolated population. We demonstrate by electron microscopy tomography that, consistent with the effects of loss-of-function mutations, HYDIN mutant respiratory cilia lack the C2b projection of the central pair (CP) apparatus; similar findings were reported in Hydin-deficient Chlamydomonas and mice. High-speed videomicroscopy demonstrated markedly reduced beating amplitudes of respiratory cilia and stiff sperm flagella. Like the hy3 mouse model, all nine PCD-affected persons had normal body composition because nodal cilia function is apparently

  2. Disease expression of RP1 mutations causing autosomal dominant retinitis pigmentosa.

    PubMed

    Jacobson, S G; Cideciyan, A V; Iannaccone, A; Weleber, R G; Fishman, G A; Maguire, A M; Affatigato, L M; Bennett, J; Pierce, E A; Danciger, M; Farber, D B; Stone, E M

    2000-06-01

    To determine the disease expression in heterozygotes for mutations in the RP1 gene, a newly identified cause of autosomal dominant retinitis pigmentosa (adRP). Screening strategies were used to detect disease-causing mutations in the RP1 gene, and detailed studies of phenotype were performed in a subset of the detected RP1 heterozygotes using electroretinography (ERG), psychophysics, and optical coherence tomography (OCT). Seventeen adRP families had heterozygous RP1 changes. Thirteen families had the Arg677ter mutation, whereas four others had one of the following: Pro658 (1-bp del), Ser747 (1-bp del), Leu762-763 (5-bp del), and Tyr1053 (1-bp del). In Arg677ter RP1 heterozygotes, there was regional retinal variation in disease, with the far peripheral inferonasal retina being most vulnerable; central and superior temporal retinal regions were better preserved. The earliest manifestation of disease was rod dysfunction, detectable as reduced rod ERG photoresponse maximum amplitude, even in heterozygotes with otherwise normal clinical, functional, and OCT cross-sectional retinal imaging results. At disease stages when cone abnormalities were present, there was greater rod than cone dysfunction. Patients with the RP1 frameshift mutations showed similarities in phenotype to those with the Arg677ter mutation. Earliest disease expression of RP1 gene mutations causing adRP involves primarily rod photoreceptors, and there is a gradient of vulnerability of retinopathy with more pronounced effects in the inferonasal peripheral retina. At other disease stages, cone function is also affected, and severe retina-wide degeneration can occur. The nonpenetrance or minimal disease expression in some Arg677ter mutation-positive heterozygotes suggests important roles for modifier genes or environmental factors in RP1-related disease.

  3. Mutations in SLC45A2 Cause Plumage Color Variation in Chicken and Japanese Quail

    PubMed Central

    Gunnarsson, Ulrika; Hellström, Anders R.; Tixier-Boichard, Michele; Minvielle, Francis; Bed'hom, Bertrand; Ito, Shin'ichi; Jensen, Per; Rattink, Annemieke; Vereijken, Addie; Andersson, Leif

    2007-01-01

    S*S (Silver), S*N (wild type/gold), and S*AL (sex-linked imperfect albinism) form a series of alleles at the S (Silver) locus on chicken (Gallus gallus) chromosome Z. Similarly, sex-linked imperfect albinism (AL*A) is the bottom recessive allele at the orthologous AL locus in Japanese quail (Coturnix japonica). The solute carrier family 45, member 2, protein (SLC45A2), previously denoted membrane-associated transporter protein (MATP), has an important role in vesicle sorting in the melanocytes. Here we report five SLC45A2 mutations. The 106delT mutation in the chicken S*AL allele results in a frameshift and a premature stop codon and the corresponding mRNA appears to be degraded by nonsense-mediated mRNA decay. A splice-site mutation in the Japanese quail AL*A allele causes in-frame skipping of exon 4. Two independent missense mutations (Tyr277Cys and Leu347Met) were associated with the Silver allele in chicken. The functional significance of the former mutation, associated only with Silver in White Leghorn, is unclear. Ala72Asp was associated with the cinnamon allele (AL*C) in the Japanese quail. The most interesting feature concerning the SLC45A2 variants documented in this study is the specific inhibition of expression of red pheomelanin in Silver chickens. This phenotypic effect cannot be explained on the basis of the current, incomplete, understanding of SLC45A2 function. It is an enigma why recessive null mutations at this locus cause an almost complete absence of both eumelanin and pheomelanin whereas some missense mutations are dominant and cause a specific inhibition of pheomelanin production. PMID:17151254

  4. Rufous oculocutaneous albinism in southern African Blacks is caused by mutations in the TYRP1 gene.

    PubMed Central

    Manga, P; Kromberg, J G; Box, N F; Sturm, R A; Jenkins, T; Ramsay, M

    1997-01-01

    Oculocutaneous albinism (OCA) is the most common autosomal recessive disorder among southern African Blacks. There are three forms that account for almost all OCA types in this region. Tyrosinase-positive OCA (OCA2), which is the most common, affects approximately 1/3,900 newborns and has a carrier frequency of approximately 1/33. It is caused by mutations in the P gene on chromosome 15. Brown OCA (BOCA) and rufous OCA (ROCA) account for the majority of the remaining phenotypes. The prevalence of BOCA is unknown, but for ROCA it is approximately 1/8,500. Linkage analysis performed on nine ROCA families showed that ROCA was linked to an intragenic marker at the TYRP1 locus (maximum LOD score = 3.80 at straight theta=.00). Mutation analysis of 19 unrelated ROCA individuals revealed a nonsense mutation at codon 166 (S166X) in 17 (45%) of 38 ROCA chromosomes, and a second mutation (368delA) was found in an additional 19 (50%) of 38 chromosomes; mutations were not identified in the remaining 2 ROCA chromosomes. In one family, two siblings with a phenotypically unclassified form of albinism were found to be compound heterozygotes for mutations (S166X/368delA) at the TYRP1 locus and were heterozygous for a common 2.7-kb deletion in the P gene. These findings have highlighted the influence of genetic background on phenotype, in which the genotype at one locus can be influenced by the genotype at a second locus, leading to a modified phenotype. ROCA, which in southern African Blacks is caused by mutations in the TYRP1 gene, therefore should be referred to as "OCA3," since this is the third locus that has been shown to cause an OCA phenotype in humans. Images Figure 1 PMID:9345097

  5. Myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK) is caused by heterozygous KCNC1 mutations.

    PubMed

    Nascimento, Fábio A; Andrade, Danielle M

    2016-09-01

    Progressive myoclonus epilepsy (PME) is a distinct group of seizure disorders characterized by gradual neurological decline with ataxia, myoclonus and recurring seizures. There are several forms of PME, among which the most recently described is MEAK - myoclonus epilepsy and ataxia due to potassium channel mutation. This particular subtype is caused by a recurrent de novo heterozygous mutation (c.959G>A, p.Arg320His) in the KCNC1 gene, which maps to chromosome 11 and encodes for the Kv3.1 protein (a subunit of the Kv3 subfamily of voltage-gated potassium channels). Loss of Kv3 function disrupts the firing properties of fast-spiking neurons, affects neurotransmitter release and induces cell death. Specifically regarding Kv3.1 malfunctioning, the most affected neurons include inhibitory GABAergic interneurons and cerebellar neurons. Impairment of the former cells is believed to contribute to myoclonus and seizures, whereas dysfunction of the latter to ataxia and tremor. Phenotypically, MEAK patients generally have a normal early development. At the age of 6 to 14 years, they present with myoclonus, which tends to progressively worsen with time. Tonic-clonic seizures may or may not be present, and some patients develop mild cognitive impairment following seizure onset. Typical electroencephalographic features comprise generalized epileptiform discharges and, in some cases, photosensitivity. Brain imaging is either normal or shows cerebellar atrophy. The identification of MEAK has both expanded the phenotypic and genotypic spectra of PME and established an emerging role for de novo mutations in PME.

  6. Identification of a novel CNTNAP1 mutation causing arthrogryposis multiplex congenita with cerebral and cerebellar atrophy.

    PubMed

    Lakhani, Shenela; Doan, Ryan; Almureikhi, Mariam; Partlow, Jennifer N; Al Saffar, Muna; Elsaid, Mahmoud F; Alaaraj, Nada; James Barkovich, A; Walsh, Christopher A; Ben-Omran, Tawfeg

    2017-05-01

    Arthrogryposis multiplex congenital, the occurrence of multiple joint contractures at birth, can in some cases be accompanied by insufficient myelination of peripheral nerves, muscular hypotonia, reduced tendon reflexes, and respiratory insufficiency. Recently mutations in the CASPR/CNTN1 complex have been associated with similar severe phenotypes and CNTNAP1 gene mutations, causing loss of the CASPR protein, were shown to cause severe, prenatal onset arthrogryposis multiplex congenita in four unrelated families. Here we report a consanguineous Arab family from Qatar with three children having an early lethal form of arthrogryposis multiplex congenita and a novel frameshift mutation in CNTNAP1. We further expand the existing CNTNAP1-associated phenotype to include profound cerebral and cerebellar atrophy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Catalytic deficiency of human aldolase B in hereditary fructose intolerance caused by a common missense mutation.

    PubMed

    Cross, N C; Tolan, D R; Cox, T M

    1988-06-17

    Hereditary fructose intolerance (HFI) is a human autosomal recessive disease caused by a deficiency of aldolase B that results in an inability to metabolize fructose and related sugars. We report here the first identification of a molecular lesion in the aldolase B gene of an affected individual whose defective protein has previously been characterized. The mutation is a G----C transversion in exon 5 that creates a new recognition site for the restriction enzyme Ahall and results in an amino acid substitution (Ala----Pro) at position 149 of the protein within a region critical for substrate binding. Utilizing this novel restriction site and the polymerase chain reaction, the patient was shown to be homozygous for the mutation. Three other HFI patients from pedigrees unrelated to this individual were found to have the same mutation: two were homozygous and one was heterozygous. We suggest that this genetic lesion is a prevailing cause of hereditary fructose intolerance.

  8. CHMP2B mutations are not a common cause of frontotemporal lobar degeneration.

    PubMed

    Cannon, Ashley; Baker, Matthew; Boeve, Brad; Josephs, Keith; Knopman, David; Petersen, Ron; Parisi, Joseph; Dickison, Dennis; Adamson, Jennifer; Snowden, Julie; Neary, David; Mann, David; Hutton, Mike; Pickering-Brown, Stuart M

    2006-05-01

    It was reported in 1995 that a large Danish family with familial frontotemporal dementia (FTD) was linked to the pericentromeric region of chromosome 3. It has since been claimed that a mutation in the splice acceptor site of exon 6 of CHMP2B is the pathogenic variant in this family. In order to determine whether CHMP2B mutations are a common cause of disease in patients with frontotemporal lobar degeneration (FTLD) we sequenced all exons and flanking regions of CHMP2B in 141 familial FTLD probands from the USA and UK. We failed to find a single pathogenic variant in any case. Polymorphisms were detected but were present in control samples. We conclude that mutations in CHMP2B are a rare cause of familial FTLD and may be specific to the Danish pedigree.

  9. Compound heterozygous mutations in UBA5 causing early-onset epileptic encephalopathy in two sisters.

    PubMed

    Arnadottir, Gudny A; Jensson, Brynjar O; Marelsson, Sigurdur E; Sulem, Gerald; Oddsson, Asmundur; Kristjansson, Ragnar P; Benonisdottir, Stefania; Gudjonsson, Sigurjon A; Masson, Gisli; Thorisson, Gudmundur A; Saemundsdottir, Jona; Magnusson, Olafur Th; Jonasdottir, Adalbjorg; Jonasdottir, Aslaug; Sigurdsson, Asgeir; Gudbjartsson, Daniel F; Thorsteinsdottir, Unnur; Arngrimsson, Reynir; Sulem, Patrick; Stefansson, Kari

    2017-10-02

    Epileptic encephalopathies are a group of childhood epilepsies that display high phenotypic and genetic heterogeneity. The recent, extensive use of next-generation sequencing has identified a large number of genes in epileptic encephalopathies, including UBA5 in which biallelic mutations were first described as pathogenic in 2016 (Colin E et al., Am J Hum Genet 99(3):695-703, 2016. Muona M et al., Am J Hum Genet 99(3):683-694, 2016). UBA5 encodes an activating enzyme for a post-translational modification mechanism known as ufmylation, and is the first gene from the ufmylation pathway that is linked to disease. We sequenced the genomes of two sisters with early-onset epileptic encephalopathy along with their unaffected parents in an attempt to find a genetic cause for their condition. The sisters, born in 2004 and 2006, presented with infantile spasms at six months of age, which later progressed to recurrent, treatment-resistant seizures. We detected a compound heterozygous genotype in UBA5 in the sisters, a genotype not seen elsewhere in an Icelandic reference set of 30,067 individuals nor in public databases. One of the mutations, c.684G > A, is a paternally inherited exonic splicing mutation, occuring at the last nucleotide of exon 7 of UBA5. The mutation is predicted to disrupt the splice site, resulting in loss-of-function of one allele of UBA5. The second mutation is a maternally inherited missense mutation, p.Ala371Thr, previously reported as pathogenic when in compound heterozygosity with a loss-of-function mutation in UBA5 and is believed to produce a hypomorphic allele. Supportive of this, we have identified three adult Icelanders homozygous for the p.Ala371Thr mutation who show no signs of neurological disease. We describe compound heterozygous mutations in the UBA5 gene in two sisters with early-onset epileptic encephalopathy. To our knowledge, this is the first description of mutations in UBA5 since the initial discovery that pathogenic biallelic

  10. Mutations in FKBP10 Cause Recessive Osteogenesis Imperfecta and Bruck Syndrome

    PubMed Central

    Kelley, Brian P; Malfait, Fransiska; Bonafe, Luisa; Baldridge, Dustin; Homan, Erica; Symoens, Sofie; Willaert, Andy; Elcioglu, Nursel; Van Maldergem, Lionel; Verellen-Dumoulin, Christine; Gillerot, Yves; Napierala, Dobrawa; Krakow, Deborah; Beighton, Peter; Superti-Furga, Andrea; De Paepe, Anne; Lee, Brendan

    2011-01-01

    Osteogenesis imperfecta (OI) is a genetic disorder of connective tissue characterized by bone fragility and alteration in synthesis and posttranslational modification of type I collagen. Autosomal dominant OI is caused by mutations in the genes (COL1A1 or COL1A2) encoding the chains of type I collagen. Bruck syndrome is a recessive disorder featuring congenital contractures in addition to bone fragility; Bruck syndrome type 2 is caused by mutations in PLOD2 encoding collagen lysyl hydroxylase, whereas Bruck syndrome type 1 has been mapped to chromosome 17, with evidence suggesting region 17p12, but the gene has remained elusive so far. Recently, the molecular spectrum of OI has been expanded with the description of the basis of a unique posttranslational modification of type I procollagen, that is, 3-prolyl-hydroxylation. Three proteins, cartilage-associated protein (CRTAP), prolyl-3-hydroxylase-1 (P3H1, encoded by the LEPRE1 gene), and the prolyl cis-trans isomerase cyclophilin-B (PPIB), form a complex that is required for fibrillar collagen 3-prolyl-hydroxylation, and mutations in each gene have been shown to cause recessive forms of OI. Since then, an additional putative collagen chaperone complex, composed of FKBP10 (also known as FKBP65) and SERPINH1 (also known as HSP47), also has been shown to be mutated in recessive OI. Here we describe five families with OI-like bone fragility in association with congenital contractures who all had FKBP10 mutations. Therefore, we conclude that FKBP10 mutations are a cause of recessive osteogenesis imperfecta and Bruck syndrome, possibly Bruck syndrome Type 1 since the location on chromosome 17 has not been definitely localized. © 2011 American Society for Bone and Mineral Research. PMID:20839288

  11. Regulation of the Function of the Human ABCG2 Multidrug Transporter by Cholesterol and Bile Acids: Effects of Mutations in Potential Substrate and Steroid Binding Sites

    PubMed Central

    Telbisz, Ágnes; Hegedüs, Csilla; Váradi, András; Sarkadi, Balázs

    2014-01-01

    ABCG2 (ATP-binding cassette, subfamily G, member 2) is a plasma membrane glycoprotein that actively extrudes xenobiotics and endobiotics from the cells and causes multidrug resistance in cancer. In the liver, ABCG2 is expressed in the canalicular membrane of hepatocytes and excretes its substrates into the bile. ABCG2 is known to require high membrane cholesterol content for maximal activity, and by examining purified ABCG2 reconstituted in proteoliposomes we have recently shown that cholesterol is an essential activator, while bile acids significantly modify the activity of this protein. In the present work, by using isolated insect cell membrane preparations expressing human ABCG2 and its mutant variants, we have analyzed whether certain regions in this protein are involved in sterol recognition. We found that replacing ABCG2-R482 with large amino acids does not affect cholesterol dependence, but changes to small amino acids cause altered cholesterol sensitivity. When leucines in the potential steroid-binding element (SBE, aa 555–558) of ABCG2 were replaced by alanines, cholesterol dependence of ABCG2 activity was strongly reduced, although the L558A mutant variant when purified and reconstituted still required cholesterol for full activity. Regarding the effect of bile acids in isolated membranes, we found that these compounds decreased ABCG2-ATPase in the absence of drug substrates, which did not significantly affect substrate-stimulated ATPase activity. These ABCG2 mutant variants also altered bile acid sensitivity, although cholic acid and glycocholate were not transported by the protein. We suggest that the aforementioned two regions in ABCG2 are important for sterol sensing and may represent potential targets for pharmacologic modulation of ABCG2 function. PMID:24384916

  12. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    DOE PAGES

    Adebali, Ogun; Reznik, Alexander O.; Ory, Daniel S.; ...

    2016-02-18

    Here, predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. Methods: We identified major events inmore » NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism s fitness. As a result, removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. In conclusion, the results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well.« less

  13. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    SciTech Connect

    Adebali, Ogun; Reznik, Alexander O.; Ory, Daniel S.; Zhulin, Igor B.

    2016-02-18

    Here, predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. Methods: We identified major events in NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism s fitness. As a result, removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. In conclusion, the results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well.

  14. Mutations in PRRT2 responsible for paroxysmal kinesigenic dyskinesias also cause benign familial infantile convulsions.

    PubMed

    Ono, Shinji; Yoshiura, Koh-ichiro; Kinoshita, Akira; Kikuchi, Taeko; Nakane, Yoshibumi; Kato, Nobumasa; Sadamatsu, Miyuki; Konishi, Tohru; Nagamitsu, Shinichiro; Matsuura, Masato; Yasuda, Ayako; Komine, Maki; Kanai, Kazuaki; Inoue, Takeshi; Osamura, Toshio; Saito, Kayoko; Hirose, Shinichi; Koide, Hiroyoshi; Tomita, Hiroaki; Ozawa, Hiroki; Niikawa, Norio; Kurotaki, Naohiro

    2012-05-01

    Paroxysmal kinesigenic dyskinesia (PKD (MIM128000)) is a neurological disorder characterized by recurrent attacks of involuntary movements. Benign familial infantile convulsion (BFIC) is also one of a neurological disorder characterized by clusters of epileptic seizures. The BFIC1 (MIM601764), BFIC2 (MIM605751) and BFIC4 (MIM612627) loci have been mapped to chromosome 19q, 16p and 1p, respectively, while BFIC3 (MIM607745) is caused by mutations in SCN2A on chromosome 2q24. Furthermore, patients with BFIC have been observed in a family concurrently with PKD. Both PKD and BFIC2 are heritable paroxysmal disorders and map to the same region on chromosome 16. Recently, the causative gene of PKD, the protein-rich transmembrane protein 2 (PRRT2), has been detected using whole-exome sequencing. We performed mutation analysis of PRRT2 by direct sequencing in 81 members of 17 families containing 15 PKD families and two BFIC families. Direct sequencing revealed that two mutations, c.649dupC and c.748C>T, were detected in all members of the PKD and BFIC families. Our results suggest that BFIC2 is caused by a truncated mutation that also causes PKD. Thus, PKD and BFIC2 are genetically identical and may cause convulsions and involuntary movements via a similar mechanism.

  15. Missense Mutations in a Retinal Pigment Epithelium Protein, Bestrophin-1, Cause Retinitis Pigmentosa

    PubMed Central

    Davidson, Alice E.; Millar, Ian D.; Urquhart, Jill E.; Burgess-Mullan, Rosemary; Shweikh, Yusrah; Parry, Neil; O'Sullivan, James; Maher, Geoffrey J.; McKibbin, Martin; Downes, Susan M.; Lotery, Andrew J.; Jacobson, Samuel G.; Brown, Peter D.; Black, Graeme C.M.; Manson, Forbes D.C.

    2009-01-01

    Bestrophin-1 is preferentially expressed at the basolateral membrane of the retinal pigmented epithelium (RPE) of the retina. Mutations in the BEST1 gene cause the retinal dystrophies vitelliform macular dystrophy, autosomal-dominant vitreochoroidopathy, and autosomal-recessive bestrophinopathy. Here, we describe four missense mutations in bestrophin-1, three that we believe are previously unreported, in patients diagnosed with autosomal-dominant and -recessive forms of retinitis pigmentosa (RP). The physiological function of bestrophin-1 remains poorly understood although its heterologous expression induces a Cl−-specific current. We tested the effect of RP-causing variants on Cl− channel activity and cellular localization of bestrophin-1. Two (p.L140V and p.I205T) produced significantly decreased chloride-selective whole-cell currents in comparison to those of wild-type protein. In a model system of a polarized epithelium, two of three mutations (p.L140V and p.D228N) caused mislocalization of bestrophin-1 from the basolateral membrane to the cytoplasm. Mutations in bestrophin-1 are increasingly recognized as an important cause of inherited retinal dystrophy. PMID:19853238

  16. Myotonia caused by mutations in the muscle chloride channel gene CLCN1.

    PubMed

    Pusch, Michael

    2002-04-01

    Pure non-syndromic, non-dystrophic myotonia in humans is caused by mutations in the genes coding for the skeletal muscle sodium channel (SCN5A) or the skeletal muscle chloride channel (CLCN1) with similar phenotypes. Chloride-channel myotonia can be dominant (Thomsen-type myotonia) or recessive (Becker-type myotonia). More than 60 myotonia-causing mutations in the CLCN1 gene have been identified, with only a few of them being dominant. A common phenotype of dominant mutations is a dominant negative effect of mutant subunits in mutant-WT heterodimers, causing a large shift of the steady-state open probability voltage-dependence towards more positive, unphysiological voltages. The study of the properties of disease causing mutations has helped in understanding the functional properties of the CLC-1 channel that is part of a nine-member gene family of chloride channels. The large body of knowledge obtained for CLC-1 may also help to better understand the other CLC channels, three of which are also involved in genetic diseases.

  17. Two Unique TUBB3 Mutations Cause Both CFEOM3 and Malformations of Cortical Development

    PubMed Central

    Whitman, Mary C.; Andrews, Caroline; Chan, Wai-Man; Tischfield, Max A.; Stasheff, Steven F.; Brancati, Francesco; Ortiz-Gonzalez, Xilma; Nuovo, Sara; Garaci, Francesco; MacKinnon, Sarah E.; Hunter, David G.; Grant, P. Ellen; Engle, Elizabeth C.

    2016-01-01

    One set of missense mutations in the neuron specific beta tubulin isotype 3 (TUBB3) has been reported to cause malformations of cortical development (MCD), while a second set has been reported to cause isolated or syndromic Congenital Fibrosis of the Extraocular Muscles type 3 (CFEOM3). Because TUBB3 mutations reported to cause CFEOM had not been associated with cortical malformations, while mutations reported to cause MCD had not been associated with CFEOM or other forms of paralytic strabismus, it was hypothesized that each set of mutations might alter microtubule function differently. Here, however, we report two novel de novo heterozygous TUBB3 amino acid substitutions, G71R and G98S, in four patients with both MCD and syndromic CFEOM3. These patients present with moderately severe CFEOM3, nystagmus, torticollis, and developmental delay, and have intellectual and social disabilities. Neuroimaging reveals defective cortical gyration, as well as hypoplasia or agenesis of the corpus callosum and anterior commissure, malformations of hippocampi, thalami, basal ganglia and cerebella, and brainstem and cranial nerve hypoplasia. These new TUBB3 substitutions meld the two previously distinct TUBB3-associated phenotypes, and implicate similar microtubule dysfunction underlying both. PMID:26639658

  18. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations.

    PubMed

    Adebali, Ogun; Reznik, Alexander O; Ory, Daniel S; Zhulin, Igor B

    2016-10-01

    Predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. We identified major events in NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism's fitness. Removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. The results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well.Genet Med 18 10, 1029-1036.

  19. Pain disorders and erythromelalgia caused by voltage-gated sodium channel mutations.

    PubMed

    Dabby, Ron

    2012-02-01

    Voltage-gated sodium channels play a pivotal role in pain transmission. They are widely expressed in nociceptive neurons, and participate in the generation of action potentials. Alteration in ionic conduction of these channels causes abnormal electrical firing, thus renders neurons hyperexcitable. So far, mutations in the Na(v)1.7 sodium channel, which is expressed in the dorsal root ganglia cells and sympathetic neurons, have been described to cause perturbations in pain sensation. Until recently, gain-of-function Na(v)1.7 mutations were known to cause two neuropathic pain syndromes: inherited erythromelalgia and paroxysmal extreme pain syndrome. These syndromes are inherited in a dominant trait; they usually begin in childhood or infancy, and are characterized by attacks of severe neuropathic pain accompanied with autonomic symptoms. Recently, small fiber neuropathy and chronic nonparoxysmal pain have been described in patients harboring gain-of-function mutations in Na(v)1.7 channel. Loss-of-function mutations in Na(v)1.7 are extremely rare, and invariably cause congenital inability to perceive pain.

  20. Dominant mutations in GRHL3 cause Van der Woude Syndrome and disrupt oral periderm development.

    PubMed

    Peyrard-Janvid, Myriam; Leslie, Elizabeth J; Kousa, Youssef A; Smith, Tiffany L; Dunnwald, Martine; Magnusson, Måns; Lentz, Brian A; Unneberg, Per; Fransson, Ingegerd; Koillinen, Hannele K; Rautio, Jorma; Pegelow, Marie; Karsten, Agneta; Basel-Vanagaite, Lina; Gordon, William; Andersen, Bogi; Svensson, Thomas; Murray, Jeffrey C; Cornell, Robert A; Kere, Juha; Schutte, Brian C

    2014-01-02

    Mutations in interferon regulatory factor 6 (IRF6) account for ∼70% of cases of Van der Woude syndrome (VWS), the most common syndromic form of cleft lip and palate. In 8 of 45 VWS-affected families lacking a mutation in IRF6, we found coding mutations in grainyhead-like 3 (GRHL3). According to a zebrafish-based assay, the disease-associated GRHL3 mutations abrogated periderm development and were consistent with a dominant-negative effect, in contrast to haploinsufficiency seen in most VWS cases caused by IRF6 mutations. In mouse, all embryos lacking Grhl3 exhibited abnormal oral periderm and 17% developed a cleft palate. Analysis of the oral phenotype of double heterozygote (Irf6(+/-);Grhl3(+/-)) murine embryos failed to detect epistasis between the two genes, suggesting that they function in separate but convergent pathways during palatogenesis. Taken together, our data demonstrated that mutations in two genes, IRF6 and GRHL3, can lead to nearly identical phenotypes of orofacial cleft. They supported the hypotheses that both genes are essential for the presence of a functional oral periderm and that failure of this process contributes to VWS.

  1. Recessive Mutations in ACPT, Encoding Testicular Acid Phosphatase, Cause Hypoplastic Amelogenesis Imperfecta.

    PubMed

    Seymen, Figen; Kim, Youn Jung; Lee, Ye Ji; Kang, Jenny; Kim, Tak-Heun; Choi, Hwajung; Koruyucu, Mine; Kasimoglu, Yelda; Tuna, Elif Bahar; Gencay, Koray; Shin, Teo Jeon; Hyun, Hong-Keun; Kim, Young-Jae; Lee, Sang-Hoon; Lee, Zang Hee; Zhang, Hong; Hu, Jan C-C; Simmer, James P; Cho, Eui-Sic; Kim, Jung-Wook

    2016-11-03

    Amelogenesis imperfecta (AI) is a heterogeneous group of genetic disorders affecting tooth enamel. The affected enamel can be hypoplastic and/or hypomineralized. In this study, we identified ACPT (testicular acid phosphatase) biallelic mutations causing non-syndromic, generalized hypoplastic autosomal-recessive amelogenesis imperfecta (AI) in individuals from six apparently unrelated Turkish families. Families 1, 4, and 5 were affected by the homozygous ACPT mutation c.713C>T (p.Ser238Leu), family 2 by the homozygous ACPT mutation c.331C>T (p.Arg111Cys), family 3 by the homozygous ACPT mutation c.226C>T (p.Arg76Cys), and family 6 by the compound heterozygous ACPT mutations c.382G>C (p.Ala128Pro) and 397G>A (p.Glu133Lys). Analysis of the ACPT crystal structure suggests that these mutations damaged the activity of ACPT by altering the sizes and charges of key amino acid side chains, limiting accessibility of the catalytic core, and interfering with homodimerization. Immunohistochemical analysis confirmed localization of ACPT in secretory-stage ameloblasts. The study results provide evidence for the crucial function of ACPT during amelogenesis.

  2. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy.

    PubMed

    Winkelmann, Juliane; Lin, Ling; Schormair, Barbara; Kornum, Birgitte R; Faraco, Juliette; Plazzi, Giuseppe; Melberg, Atle; Cornelio, Ferdinando; Urban, Alexander E; Pizza, Fabio; Poli, Francesca; Grubert, Fabian; Wieland, Thomas; Graf, Elisabeth; Hallmayer, Joachim; Strom, Tim M; Mignot, Emmanuel

    2012-05-15

    Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN) is characterized by late onset (30-40 years old) cerebellar ataxia, sensory neuronal deafness, narcolepsy-cataplexy and dementia. We performed exome sequencing in five individuals from three ADCA-DN kindreds and identified DNMT1 as the only gene with mutations found in all five affected individuals. Sanger sequencing confirmed the de novo mutation p.Ala570Val in one family, and showed co-segregation of p.Val606Phe and p.Ala570Val, with the ADCA-DN phenotype, in two other kindreds. An additional ADCA-DN kindred with a p.GLY605Ala mutation was subsequently identified. Narcolepsy and deafness were the first symptoms to appear in all pedigrees, followed by ataxia. DNMT1 is a widely expressed DNA methyltransferase maintaining methylation patterns in development, and mediating transcriptional repression by direct binding to HDAC2. It is also highly expressed in immune cells and required for the differentiation of CD4+ into T regulatory cells. Mutations in exon 20 of this gene were recently reported to cause hereditary sensory neuropathy with dementia and hearing loss (HSAN1). Our mutations are all located in exon 21 and in very close spatial proximity, suggesting distinct phenotypes depending on mutation location within this gene.

  3. Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features

    PubMed Central

    Tucci, Valter; Kleefstra, Tjitske; Hardy, Andrea; Heise, Ines; Maggi, Silvia; Willemsen, Marjolein H.; Hilton, Helen; Esapa, Chris; Simon, Michelle; Buenavista, Maria-Teresa; McGuffin, Liam J.; Vizor, Lucie; Dodero, Luca; Tsaftaris, Sotirios; Romero, Rosario; Nillesen, Willy N.; Vissers, Lisenka E.L.M.; Kempers, Marlies J.; Vulto-van Silfhout, Anneke T.; Iqbal, Zafar; Orlando, Marta; Maccione, Alessandro; Lassi, Glenda; Farisello, Pasqualina; Contestabile, Andrea; Tinarelli, Federico; Nieus, Thierry; Raimondi, Andrea; Greco, Barbara; Cantatore, Daniela; Gasparini, Laura; Berdondini, Luca; Bifone, Angelo; Gozzi, Alessandro; Wells, Sara; Nolan, Patrick M.

    2014-01-01

    The recent identification of multiple dominant mutations in the gene encoding β-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of β-catenin function in cognitive impairment. In humans, β-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo β-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a recognizable intellectual disability syndrome. In parallel, characterization of a chemically mutagenized mouse line that displays features similar to those of human patients with β-catenin mutations enabled us to investigate the consequences of β-catenin dysfunction through development and into adulthood. The mouse mutant, designated batface (Bfc), carries a Thr653Lys substitution in the C-terminal armadillo repeat of β-catenin and displayed a reduced affinity for membrane-associated cadherins. In association with this decreased cadherin interaction, we found that the mutation results in decreased intrahemispheric connections, with deficits in dendritic branching, long-term potentiation, and cognitive function. Our study provides in vivo evidence that dominant mutations in β-catenin underlie losses in its adhesion-related functions, which leads to severe consequences, including intellectual disability, childhood hypotonia, progressive spasticity of lower limbs, and abnormal craniofacial features in adults. PMID:24614104

  4. PRRT2 mutation causes paroxysmal kinesigenic dyskinesia and hemiplegic migraine in monozygotic twins.

    PubMed

    Castiglioni, Claudia; López, Isabel; Riant, Florence; Bertini, Enrico; Terracciano, Alessandra

    2013-05-01

    PRRT2 gene mutations have recently been identified as a causative gene of Paroxysmal kinesigenic dyskinesia (PKD), a rare movement disorder characterised by the occurrence of chorea, dystonia or athetosis triggered by sudden action. Some patients have additional intermittent neurologic disorders like infantile convulsions. The association with migraine has been rarely reported in this condition. Here we report the coexistence of PKD and hemiplegic migraine in twins harbouring a heterozygous mutation in PRRT2. Two monozygotic twins manifesting PKD together with repeated episodes of migraine with some severe attacks of hemiplegic migraine have been followed and treated for more than 10 years. Molecular genetic analysis disclosed the c.649_650insC, p.R217Pfs*8 heterozygous mutation in both twins. This mutation was segregating from the mother who likewise harboured the same mutation c.649dupC although she had never manifested PKD but complained of rare common migraine attacks in her past history. The association of PKD and hemiplegic migraine has been previously reported in one large family, associated to febrile convulsions and afebrile seizures in some individuals, but our report relates this association of symptoms to a mutation in PRRT2. The co-occurrence of both hemiplegic migraine and PKD in monozygotic twins expands the phenotypic spectrum of intermittent manifestations related to PRRT2 and perhaps suggests an additional causing gene for hemiplegic migraine.

  5. Dominant Mutations in GRHL3 Cause Van der Woude Syndrome and Disrupt Oral Periderm Development

    PubMed Central

    Peyrard-Janvid, Myriam; Leslie, Elizabeth J.; Kousa, Youssef A.; Smith, Tiffany L.; Dunnwald, Martine; Magnusson, Måns; Lentz, Brian A.; Unneberg, Per; Fransson, Ingegerd; Koillinen, Hannele K.; Rautio, Jorma; Pegelow, Marie; Karsten, Agneta; Basel-Vanagaite, Lina; Gordon, William; Andersen, Bogi; Svensson, Thomas; Murray, Jeffrey C.; Cornell, Robert A.; Kere, Juha; Schutte, Brian C.

    2014-01-01

    Mutations in interferon regulatory factor 6 (IRF6) account for ∼70% of cases of Van der Woude syndrome (VWS), the most common syndromic form of cleft lip and palate. In 8 of 45 VWS-affected families lacking a mutation in IRF6, we found coding mutations in grainyhead-like 3 (GRHL3). According to a zebrafish-based assay, the disease-associated GRHL3 mutations abrogated periderm development and were consistent with a dominant-negative effect, in contrast to haploinsufficiency seen in most VWS cases caused by IRF6 mutations. In mouse, all embryos lacking Grhl3 exhibited abnormal oral periderm and 17% developed a cleft palate. Analysis of the oral phenotype of double heterozygote (Irf6+/−;Grhl3+/−) murine embryos failed to detect epistasis between the two genes, suggesting that they function in separate but convergent pathways during palatogenesis. Taken together, our data demonstrated that mutations in two genes, IRF6 and GRHL3, can lead to nearly identical phenotypes of orofacial cleft. They supported the hypotheses that both genes are essential for the presence of a functional oral periderm and that failure of this process contributes to VWS. PMID:24360809

  6. Exome Sequencing Identifies INPPL1 Mutations as a Cause of Opsismodysplasia

    PubMed Central

    Huber, Céline; Faqeih, Eissa Ali; Bartholdi, Deborah; Bole-Feysot, Christine; Borochowitz, Zvi; Cavalcanti, Denise P.; Frigo, Amandine; Nitschke, Patrick; Roume, Joelle; Santos, Heloísa G.; Shalev, Stavit A.; Superti-Furga, Andrea; Delezoide, Anne-Lise; Le Merrer, Martine; Munnich, Arnold; Cormier-Daire, Valérie

    2013-01-01

    Opsismodysplasia (OPS) is a severe autosomal-recessive chondrodysplasia characterized by pre- and postnatal micromelia with extremely short hands and feet. The main radiological features are severe platyspondyly, squared metacarpals, delayed skeletal ossification, and metaphyseal cupping. In order to identify mutations causing OPS, a total of 16 cases (7 terminated pregnancies and 9 postnatal cases) from 10 unrelated families were included in this study. We performed exome sequencing in three cases from three unrelated families and only one gene was found to harbor mutations in all three cases: inositol polyphosphate phosphatase-like 1 (INPPL1). Screening INPPL1 in the remaining cases identified a total of 12 distinct INPPL1 mutations in the 10 families, present at the homozygote state in 7 consanguinous families and at the compound heterozygote state in the 3 remaining families. Most mutations (6/12) resulted in premature stop codons, 2/12 were splice site, and 4/12 were missense mutations located in the catalytic domain, 5-phosphatase. INPPL1 belongs to the inositol-1,4,5-trisphosphate 5-phosphatase family, a family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Our finding of INPPL1 mutations in OPS, a severe spondylodysplastic dysplasia with major growth plate disorganization, supports a key and specific role of this enzyme in endochondral ossification. PMID:23273569

  7. Axial Spondylometaphyseal Dysplasia Is Caused by C21orf2 Mutations.

    PubMed

    Wang, Zheng; Iida, Aritoshi; Miyake, Noriko; Nishiguchi, Koji M; Fujita, Kosuke; Nakazawa, Toru; Alswaid, Abdulrahman; Albalwi, Mohammed A; Kim, Ok-Hwa; Cho, Tae-Joon; Lim, Gye-Yeon; Isidor, Bertrand; David, Albert; Rustad, Cecilie F; Merckoll, Else; Westvik, Jostein; Stattin, Eva-Lena; Grigelioniene, Giedre; Kou, Ikuyo; Nakajima, Masahiro; Ohashi, Hirohumi; Smithson, Sarah; Matsumoto, Naomichi; Nishimura, Gen; Ikegawa, Shiro

    2016-01-01

    Axial spondylometaphyseal dysplasia (axial SMD) is an autosomal recessive disease characterized by dysplasia of axial skeleton and retinal dystrophy. We conducted whole exome sequencing and identified C21orf2 (chromosome 21 open reading frame 2) as a disease gene for axial SMD. C21orf2 mutations have been recently found to cause isolated retinal degeneration and Jeune syndrome. We found a total of five biallelic C21orf2 mutations in six families out of nine: three missense and two splicing mutations in patients with various ethnic backgrounds. The pathogenic effects of the splicing (splice-site and branch-point) mutations were confirmed on RNA level, which showed complex patterns of abnormal splicing. C21orf2 mutations presented with a wide range of skeletal phenotypes, including cupped and flared anterior ends of ribs, lacy ilia and metaphyseal dysplasia of proximal femora. Analysis of patients without C21orf2 mutation indicated genetic heterogeneity of axial SMD. Functional data in chondrocyte suggest C21orf2 is implicated in cartilage differentiation. C21orf2 protein was localized to the connecting cilium of the cone and rod photoreceptors, confirming its significance in retinal function. Our study indicates that axial SMD is a member of a unique group of ciliopathy affecting skeleton and retina.

  8. Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features.

    PubMed

    Tucci, Valter; Kleefstra, Tjitske; Hardy, Andrea; Heise, Ines; Maggi, Silvia; Willemsen, Marjolein H; Hilton, Helen; Esapa, Chris; Simon, Michelle; Buenavista, Maria-Teresa; McGuffin, Liam J; Vizor, Lucie; Dodero, Luca; Tsaftaris, Sotirios; Romero, Rosario; Nillesen, Willy N; Vissers, Lisenka E L M; Kempers, Marlies J; Vulto-van Silfhout, Anneke T; Iqbal, Zafar; Orlando, Marta; Maccione, Alessandro; Lassi, Glenda; Farisello, Pasqualina; Contestabile, Andrea; Tinarelli, Federico; Nieus, Thierry; Raimondi, Andrea; Greco, Barbara; Cantatore, Daniela; Gasparini, Laura; Berdondini, Luca; Bifone, Angelo; Gozzi, Alessandro; Wells, Sara; Nolan, Patrick M

    2014-04-01

    The recent identification of multiple dominant mutations in the gene encoding β-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of β-catenin function in cognitive impairment. In humans, β-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo β-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a recognizable intellectual disability syndrome. In parallel, characterization of a chemically mutagenized mouse line that displays features similar to those of human patients with β-catenin mutations enabled us to investigate the consequences of β-catenin dysfunction through development and into adulthood. The mouse mutant, designated batface (Bfc), carries a Thr653Lys substitution in the C-terminal armadillo repeat of β-catenin and displayed a reduced affinity for membrane-associated cadherins. In association with this decreased cadherin interaction, we found that the mutation results in decreased intrahemispheric connections, with deficits in dendritic branching, long-term potentiation, and cognitive function. Our study provides in vivo evidence that dominant mutations in β-catenin underlie losses in its adhesion-related functions, which leads to severe consequences, including intellectual disability, childhood hypotonia, progressive spasticity of lower limbs, and abnormal craniofacial features in adults.

  9. Col4a1 mutations cause progressive retinal neovascular defects and retinopathy

    PubMed Central

    Alavi, Marcel V.; Mao, Mao; Pawlikowski, Bradley T.; Kvezereli, Manana; Duncan, Jacque L.; Libby, Richard T.; John, Simon W. M.; Gould, Douglas B.

    2016-01-01

    Mutations in collagen, type IV, alpha 1 (COL4A1), a major component of basement membranes, cause multisystem disorders in humans and mice. In the eye, these include anterior segment dysgenesis, optic nerve hypoplasia and retinal vascular tortuosity. Here we investigate the retinal pathology in mice carrying dominant-negative Col4a1 mutations. To this end, we examined retinas longitudinally in vivo using fluorescein angiography, funduscopy and optical coherence tomography. We assessed retinal function by electroretinography and studied the retinal ultrastructural pathology. Retinal examinations revealed serous chorioretinopathy, retinal hemorrhages, fibrosis or signs of pathogenic angiogenesis with chorioretinal anastomosis in up to approximately 90% of Col4a1 mutant eyes depending on age and the specific mutation. To identify the cell-type responsible for pathogenesis we generated a conditional Col4a1 mutation and determined that primary vascular defects underlie Col4a1-associated retinopathy. We also found focal activation of Müller cells and increased expression of pro-angiogenic factors in retinas from Col4a1+/Δex41mice. Together, our findings suggest that patients with COL4A1 and COL4A2 mutations may be at elevated risk of retinal hemorrhages and that retinal examinations may be useful for identifying patients with COL4A1 and COL4A2 mutations who are also at elevated risk of hemorrhagic strokes. PMID:26813606

  10. DEPDC5 mutations are not a frequent cause of familial temporal lobe epilepsy.

    PubMed

    Striano, Pasquale; Serioli, Elena; Santulli, Lia; Manna, Ida; Labate, Angelo; Dazzo, Emanuela; Pasini, Elena; Gambardella, Antonio; Michelucci, Roberto; Striano, Salvatore; Nobile, Carlo

    2015-10-01

    Mutations in the DEPDC5 (DEP domain-containing protein 5) gene are a major cause of familial focal epilepsy with variable foci (FFEVF) and are predicted to account for 12-37% of families with inherited focal epilepsies. To assess the clinical impact of DEPDC5 mutations in familial temporal lobe epilepsy, we screened a collection of Italian families with either autosomal dominant lateral temporal epilepsy (ADLTE) or familial mesial temporal lobe epilepsy (FMTLE). The probands of 28 families classified as ADLTE and 17 families as FMTLE were screened for DEPDC5 mutations by whole exome or targeted massive parallel sequencing. Putative mutations were validated by Sanger sequencing. We identified a DEPDC5 nonsense mutation (c.918C>G; p.Tyr306*) in a family with two affected members, clinically classified as FMTLE. The proband had temporal lobe seizures with prominent psychic symptoms (déjà vu, derealization, and forced thoughts); her mother had temporal lobe seizures, mainly featuring visceral epigastric auras and anxiety. In total, we found a single DEPDC5 mutation in one of (2.2%) 45 families with genetic temporal lobe epilepsy, a proportion much lower than that reported in other inherited focal epilepsies. © 2015 The Authors. Epilepsia published by Wiley Periodicals Inc. on behalf of International League Against Epilepsy.

  11. Characterization of a novel founder MSH6 mutation causing Lynch syndrome in the French Canadian population.

    PubMed

    Castellsagué, E; Liu, J; Volenik, A; Giroux, S; Gagné, R; Maranda, B; Roussel-Jobin, A; Latreille, J; Laframboise, R; Palma, L; Kasprzak, L; Marcus, V A; Breguet, M; Nolet, S; El-Haffaf, Z; Australie, K; Gologan, A; Aleynikova, O; Oros-Klein, K; Greenwood, C; Mes-Masson, A M; Provencher, D; Tischkowitz, M; Chong, G; Rousseau, F; Foulkes, W D

    2015-06-01

    We identified an MSH6 mutation (c.10C>T, p.Gln4*) causing Lynch syndrome (LS) in 11 French Canadian (FC) families from the Canadian province of Quebec. We aimed to investigate the molecular and clinical implications of this mutation among FC carriers and to assess its putative founder origin. We studied 11 probands and 27 family members. Additionally 6433 newborns, 187 colorectal cancer (CRC) cases, 381 endometrial cancer (EC) cases and 179 additional controls, all of them from Quebec, were used. Found in approximately 1 of 400 newborns, the mutation is one of the most common LS mutations described. We have found that this mutation confers a greater risk for EC than for CRC, both in the 11 studied families and in the unselected cases: EC [odds ratio (OR) = 7.5, p < 0.0001] and CRC (OR = 2.2, p = 0.46). Haplotype analyses showed that the mutation arose in a common ancestor, probably around 430-656 years ago, coinciding with the arrival of the first French settlers. Application of the results of this study could significantly improve the molecular testing and clinical management of LS families in Quebec. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. RASA1 mutations may cause hereditary capillary malformations without arteriovenous malformations.

    PubMed

    Hershkovitz, D; Bercovich, D; Sprecher, E; Lapidot, M

    2008-05-01

    Capillary malformation (CM), a common vascular abnormality, is often present among family members. Recently a rare form of hereditary vascular malformation termed capillary malformation-arteriovenous malformation (CM-AVM) was shown to be caused by heterozygous mutations in RASA1, encoding RAS p21 protein activator 1. CM-AVM is characterized by multiple, small CMs associated with either AVM or arteriovenous fistula (AVF) in affected individuals or at least one of their family members. The purpose of the study was to find out whether CMs in the absence of AVM/AVF are associated with RASA1 mutations. We assessed three families comprising 14 affected individuals with CMs. Linkage to the RASA1 locus was evaluated using microsatellite markers. The RASA1 gene was scrutinized for pathogenic mutations using denaturing high-performance liquid chromatography screening and direct sequencing. AVM/AVF was identified in one of three affected families. CM without AVM/AVF was found to map in one large kindred to the RASA1 locus. Direct sequencing revealed novel heterozygous mutations segregating with CM in all three families. The mutations are predicted to result in premature termination of translation and RASA1 haplo-insufficiency. We have demonstrated that the spectrum of clinical manifestations due to mutations in RASA1 is wider than previously thought and also includes typical CMs not associated with AVM/AVF.

  13. Uner Tan syndrome caused by a homozygous TUBB2B mutation affecting microtubule stability.

    PubMed

    Breuss, Martin W; Nguyen, Thai; Srivatsan, Anjana; Leca, Ines; Tian, Guoling; Fritz, Tanja; Hansen, Andi H; Musaev, Damir; McEvoy-Venneri, Jennifer; James, Kiely N; Rosti, Rasim O; Scott, Eric; Tan, Uner; Kolodner, Richard D; Cowan, Nicholas J; Keays, David A; Gleeson, Joseph G

    2016-12-23

    The integrity and dynamic properties of the microtubule cytoskeleton are indispensable for the development of the mammalian brain. Consequently, mutations in the genes that encode the structural component (the α/β-tubulin heterodimer) can give rise to severe, sporadic neurodevelopmental disorders. These are commonly referred to as the tubulinopathies. Here we report the addition of recessive quadrupedalism, also known as Uner Tan syndrome (UTS), to the growing list of diseases caused by tubulin variants. Analysis of a consanguineous UTS family identified a biallelic TUBB2B mutation, resulting in a p.R390Q amino acid substitution. In addition to the identifying quadrupedal locomotion, all three patients showed severe cerebellar hypoplasia. None, however, displayed the basal ganglia malformations typically associated with TUBB2B mutations. Functional analysis of the R390Q substitution revealed that it did not affect the ability of β-tubulin to fold or become assembled into the α/β-heterodimer, nor did it influence the incorporation of mutant-containing heterodimers into microtubule polymers. The 390Q mutation in S. cerevisiae TUB2 did not affect growth under basal conditions, but did result in increased sensitivity to microtubule-depolymerizing drugs, indicative of a mild impact of this mutation on microtubule function. The TUBB2B mutation described here represents an unusual recessive mode of inheritance for missense-mediated tubulinopathies and reinforces the sensitivity of the developing cerebellum to microtubule defects.

  14. Two novel mutations in the PPIB gene cause a rare pedigree of osteogenesis imperfecta type IX.

    PubMed

    Jiang, Yu; Pan, Jingxin; Guo, Dongwei; Zhang, Wei; Xie, Jie; Fang, Zishui; Guo, Chunmiao; Fang, Qun; Jiang, Weiying; Guo, Yibin

    2017-06-01

    Osteogenesis imperfecta (OI) is a rare genetic skeletal disorder characterized by increased bone fragility and vulnerability to fractures. PPIB is identified as a candidate gene for OI-IX, here we detect two pathogenic mutations in PPIB and analyze the genotype-phenotype correlation in a Chinese family with OI. Next-generation sequencing (NGS) was used to screen the whole exome of the parents of proband. Screening of variation frequency, evolutionary conservation comparisons, pathogenicity evaluation, and protein structure prediction were conducted to assess the pathogenicity of the novel mutations. Sanger sequencing was used to confirm the candidate variants. RTQ-PCR was used to analyze the PPIB gene expression. All mutant genes screened out by NGS were excluded except PPIB. Two novel heterozygous PPIB mutations (father, c.25A>G; mother, c.509G>A) were identified in relation to osteogenesis imperfecta type IX. Both mutations were predicted to be pathogenic by bioinformatics analysis and RTQ-PCR analysis revealed downregulated PPIB expression in the two carriers. We report a rare pedigree with an autosomal recessive osteogenesis imperfecta type IX (OI-IX) caused by two novel PPIB mutations identified for the first time in China. The current study expands our knowledge of PPIB mutations and their associated phenotypes, and provides new information on the genetic defects associated with this disease for clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer

    DTIC Science & Technology

    2015-09-01

    Award Number: W81XWH-12-1-0333 TITLE: Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer PRINCIPAL...Caused by UVB Light in Skin Cancer 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Monica Ransom, PhD Betty Diamond 5d. PROJECT NUMBER...cells, Skin Cancer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a

  16. Hepatoerythropoietic Porphyria Caused by a Novel Homoallelic Mutation in Uroporphyrinogen Decarboxylase Gene in Egyptian Patients.

    PubMed

    Farrag, M S; Mikula, I; Richard, E; Saudek, V; De Verneuil, H; Martásek, P

    2015-01-01

    Porphyrias are metabolic disorders resulting from mutations in haem biosynthetic pathway genes. Hepatoerythropoietic porphyria (HEP) is a rare type of porphyria caused by the deficiency of the fifth enzyme (uroporphyrinogen decarboxylase, UROD) in this pathway. The defect in the enzymatic activity is due to biallelic mutations in the UROD gene. Currently, 109 UROD mutations are known. The human disease has an early onset, manifesting in infancy or early childhood with red urine, skin photosensitivity in sun-exposed areas, and hypertrichosis. Similar defects and links to photosensitivity and hepatopathy exist in several animal models, including zebrafish and mice. In the present study, we report a new mutation in the UROD gene in Egyptian patients with HEP. We show that the homozygous c.T163A missense mutation leads to a substitution of a conserved phenylalanine (amino acid 55) for isoleucine in the enzyme active site, causing a dramatic decrease in the enzyme activity (19 % of activity of wild-type enzyme). Inspection of the UROD crystal structure shows that Phe-55 contacts the substrate and is located in the loop that connects helices 2 and 3. Phe-55 is strictly conserved in both prokaryotic and eukaryotic UROD. The F55I substitution likely interferes with the enzyme-substrate interaction.

  17. Mutations in ROGDI Cause Kohlschütter-Tönz Syndrome.

    PubMed

    Schossig, Anna; Wolf, Nicole I; Fischer, Christine; Fischer, Maria; Stocker, Gernot; Pabinger, Stephan; Dander, Andreas; Steiner, Bernhard; Tönz, Otmar; Kotzot, Dieter; Haberlandt, Edda; Amberger, Albert; Burwinkel, Barbara; Wimmer, Katharina; Fauth, Christine; Grond-Ginsbach, Caspar; Koch, Martin J; Deichmann, Annette; von Kalle, Christof; Bartram, Claus R; Kohlschütter, Alfried; Trajanoski, Zlatko; Zschocke, Johannes

    2012-04-06

    Kohlschütter-Tönz syndrome (KTS) is an autosomal-recessive disease characterized by the combination of epilepsy, psychomotor regression, and amelogenesis imperfecta. The molecular basis has not yet been elucidated. Here, we report that KTS is caused by mutations in ROGDI. Using a combination of autozygosity mapping and exome sequencing, we identified a homozygous frameshift deletion, c.229_230del (p.Leu77Alafs(∗)64), in ROGDI in two affected individuals from a consanguineous family. Molecular studies in two additional KTS-affected individuals from two unrelated Austrian and Swiss families revealed homozygosity for nonsense mutation c.286C>T (p.Gln96(∗)) and compound heterozygosity for the splice-site mutations c.531+5G>C and c.532-2A>T in ROGDI, respectively. The latter mutation was also found to be heterozygous in the mother of the Swiss affected individual in whom KTS was reported for the first time in 1974. ROGDI is highly expressed throughout the brain and other organs, but its function is largely unknown. Possible interactions with DISC1, a protein involved in diverse cytoskeletal functions, have been suggested. Our finding that ROGDI mutations cause KTS indicates that the protein product of this gene plays an important role in neuronal development as well as amelogenesis. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Hereditary juvenile cobalamin deficiency caused by mutations in the intrinsic factor gene.

    PubMed

    Tanner, Stephan M; Li, Zhongyuan; Perko, James D; Oner, Cihan; Cetin, Mualla; Altay, Cigdem; Yurtsever, Zekiye; David, Karen L; Faivre, Laurence; Ismail, Essam A; Gräsbeck, Ralph; de la Chapelle, Albert

    2005-03-15

    Hereditary juvenile megaloblastic anemia due to vitamin B12 (cobalamin) deficiency is caused by intestinal malabsorption of cobalamin. In Imerslund-Grasbeck syndrome (IGS), cobalamin absorption is completely abolished and not corrected by the administration of intrinsic factor (IF); if untreated, the disease is fatal. Biallelic mutations either in the cubilin (CUBN) or amnionless (AMN) gene cause IGS. In a series of families clinically diagnosed with likely IGS, at least six displayed no evidence of mutations in CUBN or AMN. A genome-wide search for linkage followed by mutational analysis of candidate genes was performed in five of these families. A region in chromosome 11 showed evidence of linkage in four families. The gastric IF (GIF) gene located in this region harbored homozygous nonsense and missense mutations in these four families and in three additional families. The disease in these cases therefore should be classified as hereditary IF deficiency. Clinically, these patients resembled those with typical IGS; radiocobalamin absorption tests had been inconclusive regarding the nature of the defect. In the diagnosis of juvenile cobalamin deficiency, mutational analysis of the CUBN, AMN, and GIF genes provides a molecular characterization of the underlying defect and may be the diagnostic method of choice.

  19. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy

    PubMed Central

    Muona, Mikko; Berkovic, Samuel F; Dibbens, Leanne M; Oliver, Karen L; Maljevic, Snezana; Bayly, Marta A; Joensuu, Tarja; Canafoglia, Laura; Franceschetti, Silvana; Michelucci, Roberto; Markkinen, Salla; Heron, Sarah E; Hildebrand, Michael S; Andermann, Eva; Andermann, Frederick; Gambardella, Antonio; Tinuper, Paolo; Licchetta, Laura; Scheffer, Ingrid E; Criscuolo, Chiara; Filla, Alessandro; Ferlazzo, Edoardo; Ahmad, Jamil; Ahmad, Adeel; Baykan, Betul; Said, Edith; Topcu, Meral; Riguzzi, Patrizia; King, Mary D; Ozkara, Cigdem; Andrade, Danielle M; Engelsen, Bernt A; Crespel, Arielle; Lindenau, Matthias; Lohmann, Ebba; Saletti, Veronica; Massano, João; Privitera, Michael; Espay, Alberto J; Kauffmann, Birgit; Duchowny, Michael; Møller, Rikke S; Straussberg, Rachel; Afawi, Zaid; Ben-Zeev, Bruria; Samocha, Kaitlin E; Daly, Mark J; Petrou, Steven; Lerche, Holger; Palotie, Aarno; Lehesjoki, Anna-Elina

    2014-01-01

    Progressive myoclonus epilepsies (PMEs) are a group of rare, inherited disorders manifesting with action myoclonus, tonic-clonic seizures, and ataxia. We exome-sequenced 84 unrelated PME patients of unknown cause and molecularly solved 26 cases (31%). Remarkably, a recurrent de novo mutation c.959G>A (p.Arg320His) in KCNC1 was identified as a novel major cause for PME. Eleven unrelated exome-sequenced (13%) and two patients in a secondary cohort (7%) had this mutation. KCNC1 encodes KV3.1, a subunit of the KV3 voltage-gated K+ channels, major determinants of high-frequency neuronal firing. Functional analysis of the p.Arg320His mutant channel revealed a dominant-negative loss-of-function effect. Ten patients had pathogenic mutations in known PME-associated genes (NEU1, NHLRC1, AFG3L2, EPM2A, CLN6, SERPINI1). Identification of mutations in PRNP, SACS, and TBC1D24 expand their phenotypic spectrum to PME. These findings provide important insights into the molecular genetic basis of PME and reveal the role of de novo mutations in this disease entity. PMID:25401298

  20. Mutations in ROGDI Cause Kohlschütter-Tönz Syndrome

    PubMed Central

    Schossig, Anna; Wolf, Nicole I.; Fischer, Christine; Fischer, Maria; Stocker, Gernot; Pabinger, Stephan; Dander, Andreas; Steiner, Bernhard; Tönz, Otmar; Kotzot, Dieter; Haberlandt, Edda; Amberger, Albert; Burwinkel, Barbara; Wimmer, Katharina; Fauth, Christine; Grond-Ginsbach, Caspar; Koch, Martin J.; Deichmann, Annette; von Kalle, Christof; Bartram, Claus R.; Kohlschütter, Alfried; Trajanoski, Zlatko; Zschocke, Johannes

    2012-01-01

    Kohlschütter-Tönz syndrome (KTS) is an autosomal-recessive disease characterized by the combination of epilepsy, psychomotor regression, and amelogenesis imperfecta. The molecular basis has not yet been elucidated. Here, we report that KTS is caused by mutations in ROGDI. Using a combination of autozygosity mapping and exome sequencing, we identified a homozygous frameshift deletion, c.229_230del (p.Leu77Alafs∗64), in ROGDI in two affected individuals from a consanguineous family. Molecular studies in two additional KTS-affected individuals from two unrelated Austrian and Swiss families revealed homozygosity for nonsense mutation c.286C>T (p.Gln96∗) and compound heterozygosity for the splice-site mutations c.531+5G>C and c.532-2A>T in ROGDI, respectively. The latter mutation was also found to be heterozygous in the mother of the Swiss affected individual in whom KTS was reported for the first time in 1974. ROGDI is highly expressed throughout the brain and other organs, but its function is largely unknown. Possible interactions with DISC1, a protein involved in diverse cytoskeletal functions, have been suggested. Our finding that ROGDI mutations cause KTS indicates that the protein product of this gene plays an important role in neuronal development as well as amelogenesis. PMID:22424600

  1. A new mutation site in the AIRE gene causes autoimmune polyendocrine syndrome type 1.

    PubMed

    Zhu, Wufei; Hu, Zhen; Liao, Xiangyu; Chen, Xing; Huang, Wenrong; Zhong, Yu; Zeng, Zhaoyang

    2017-05-24

    Autoimmune polyendocrine syndrome type 1 (APS-1, OMIM 2403000) is a rare autosomal recessive disease that is caused by autoimmune regulator (AIRE). The main symptoms of APS-1 are chronic mucocutaneous candidiasis, autoimmune adrenocortical insufficiency (Addison's disease) and hypoparathyroidism. We collected APS-1 cases and analysed them. The AIRE genes of the patient and his family members were sequenced to identify whether the APS-1 patient had an AIRE mutation. We discovered a mutation site (c.206A>C) that had never before been reported in the AIRE gene located in exon 2 of the AIRE gene. This homogyzous mutation caused a substitution of the 69th amino acid of the AIRE protein from glutamine to proline (p.Q69P). A yeast two-hybrid assay, which was used to analyse the homodimerization properties of the mutant AIRE protein, showed that the mutant AIRE protein could not interact with the normal AIRE protein. Flow cytometry and RT-qPCR analyses indicated that the new mutation site could decrease the expression levels of the AIRE, glutamic acid decarboxylase 65 (GAD65) and tryptophan hydroxylase-1 (TPH1) proteins to affect central immune tolerance. In conclusion, our research has shown that the new mutation site (c.206A>C) may influence the homodimerization and expression levels and other aspects of the AIRE protein. It may also impact the expression levels of tissue-restricted antigens (TRAs), leading to a series of autoimmune diseases.

  2. Paroxysmal nocturnal haemoglobinuria (PNH) is caused by somatic mutations in the PIG-A gene.

    PubMed Central

    Bessler, M; Mason, P J; Hillmen, P; Miyata, T; Yamada, N; Takeda, J; Luzzatto, L; Kinoshita, T

    1994-01-01

    Paroxysmal nocturnal haemoglobinuria (PNH), an acquired clonal blood disorder, is caused by the absence of glycosyl phosphatidylinositol (GPI)-anchored surface proteins due to a defect in a specific step of GPI-anchor synthesis. The cDNA of the X-linked gene, PIG-A, which encodes a protein required for this step has recently been isolated. We have carried out a molecular and functional analysis of the PIG-A gene in four cell lines deficient in GPI-linked proteins, obtained by Epstein-Barr virus (EBV) transformation of affected B-lymphocytes from PNH patients. In all four cell lines transfection with PIG-A cDNA restored normal expression of GPI-linked proteins. In three of the four cell lines the primary lesion is a frameshift mutation. In two of these there is a reduction in the amount of full-length mRNA. The fourth cell line contains a missense mutation in PIG-A. In each case the mutation was present in the affected granulocytes from peripheral blood of the patients, but not in normal sister cell lines from the same patient. These data prove that PNH is caused in most patients by a single mutation in the PIG-A gene. The nature of the mutation can vary and most likely occurs on the active X-chromosome in an early haematopoietic stem cell. Images PMID:8306954

  3. Novel C8orf37 mutations cause retinitis pigmentosa in consanguineous families of Pakistani origin

    PubMed Central

    Ravesh, Zeinab; El Asrag, Mohammed E.; Weisschuh, Nicole; McKibbin, Martin; Reuter, Peggy; Watson, Christopher M.; Baumann, Britta; Poulter, James A.; Sajid, Sundus; Panagiotou, Evangelia S.; O’Sullivan, James; Abdelhamed, Zakia; Bonin, Michael; Soltanifar, Mehdi; Black, Graeme C.M.; Din, Muhammad Amin-ud; Toomes, Carmel; Ansar, Muhammad; Inglehearn, Chris F.; Wissinger, Bernd

    2015-01-01

    Purpose To investigate the molecular basis of retinitis pigmentosa in two consanguineous families of Pakistani origin with multiple affected members. Methods Homozygosity mapping and Sanger sequencing of candidate genes were performed in one family while the other was analyzed with whole exome next-generation sequencing. A minigene splicing assay was used to confirm the splicing defects. Results In family MA48, a novel homozygous nucleotide substitution in C8orf37, c.244–2A>C, that disrupted the consensus splice acceptor site of exon 3 was found. The minigene splicing assay revealed that this mutation activated a cryptic splice site within exon 3, causing a 22 bp deletion in the transcript that is predicted to lead to a frameshift followed by premature protein truncation. In family MA13, a novel homozygous null mutation in C8orf37, c.555G>A, p.W185*, was identified. Both mutations segregated with the disease phenotype as expected in a recessive manner and were absent in 8,244 unrelated individuals of South Asian origin. Conclusions In this report, we describe C8orf37 mutations that cause retinal dystrophy in two families of Pakistani origin, contributing further data on the phenotype and the spectrum of mutations in this form of retinitis pigmentosa. PMID:25802487

  4. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma.

    PubMed

    Comino-Méndez, Iñaki; Gracia-Aznárez, Francisco J; Schiavi, Francesca; Landa, Iñigo; Leandro-García, Luis J; Letón, Rocío; Honrado, Emiliano; Ramos-Medina, Rocío; Caronia, Daniela; Pita, Guillermo; Gómez-Graña, Alvaro; de Cubas, Aguirre A; Inglada-Pérez, Lucía; Maliszewska, Agnieszka; Taschin, Elisa; Bobisse, Sara; Pica, Giuseppe; Loli, Paola; Hernández-Lavado, Rafael; Díaz, José A; Gómez-Morales, Mercedes; González-Neira, Anna; Roncador, Giovanna; Rodríguez-Antona, Cristina; Benítez, Javier; Mannelli, Massimo; Opocher, Giuseppe; Robledo, Mercedes; Cascón, Alberto

    2011-06-19

    Hereditary pheochromocytoma (PCC) is often caused by germline mutations in one of nine susceptibility genes described to date, but there are familial cases without mutations in these known genes. We sequenced the exomes of three unrelated individuals with hereditary PCC (cases) and identified mutations in MAX, the MYC associated factor X gene. Absence of MAX protein in the tumors and loss of heterozygosity caused by uniparental disomy supported the involvement of MAX alterations in the disease. A follow-up study of a selected series of 59 cases with PCC identified five additional MAX mutations and suggested an association with malignant outcome and preferential paternal transmission of MAX mutations. The involvement of the MYC-MAX-MXD1 network in the development and progression of neural crest cell tumors is further supported by the lack of functional MAX in rat PCC (PC12) cells and by the amplification of MYCN in neuroblastoma and suggests that loss of MAX function is correlated with metastatic potential.

  5. Mutations in a BTB-Kelch Protein, KLHL7, Cause Autosomal-Dominant Retinitis Pigmentosa

    PubMed Central

    Friedman, James S.; Ray, Joseph W.; Waseem, Naushin; Johnson, Kory; Brooks, Matthew J.; Hugosson, Therése; Breuer, Debra; Branham, Kari E.; Krauth, Daniel S.; Bowne, Sara J.; Sullivan, Lori S.; Ponjavic, Vesna; Gränse, Lotta; Khanna, Ritu; Trager, Edward H.; Gieser, Linn M.; Hughbanks-Wheaton, Dianna; Cojocaru, Radu I.; Ghiasvand, Noor M.; Chakarova, Christina F.; Abrahamson, Magnus; Göring, Harald H.H.; Webster, Andrew R.; Birch, David G.; Abecasis, Goncalo R.; Fann, Yang; Bhattacharya, Shomi S.; Daiger, Stephen P.; Heckenlively, John R.; Andréasson, Sten; Swaroop, Anand

    2009-01-01

    Retinitis pigmentosa (RP) refers to a genetically heterogeneous group of progressive neurodegenerative diseases that result in dysfunction and/or death of rod and cone photoreceptors in the retina. So far, 18 genes have been identified for autosomal-dominant (ad) RP. Here, we describe an adRP locus (RP42) at chromosome 7p15 through linkage analysis in a six-generation Scandinavian family and identify a disease-causing mutation, c.449G→A (p.S150N), in exon 6 of the KLHL7 gene. Mutation screening of KLHL7 in 502 retinopathy probands has revealed three different missense mutations in six independent families. KLHL7 is widely expressed, including expression in rod photoreceptors, and encodes a 75 kDa protein of the BTB-Kelch subfamily within the BTB superfamily. BTB-Kelch proteins have been implicated in ubiquitination through Cullin E3 ligases. Notably, all three putative disease-causing KLHL7 mutations are within a conserved BACK domain; homology modeling suggests that mutant amino acid side chains can potentially fill the cleft between two helices, thereby affecting the ubiquitination complexes. Mutations in an identical region of another BTB-Kelch protein, gigaxonin, have previously been associated with giant axonal neuropathy. Our studies suggest an additional role of the ubiquitin-proteasome protein-degradation pathway in maintaining neuronal health and in disease. PMID:19520207

  6. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes.

    PubMed

    Schubert, Julian; Siekierska, Aleksandra; Langlois, Mélanie; May, Patrick; Huneau, Clément; Becker, Felicitas; Muhle, Hiltrud; Suls, Arvid; Lemke, Johannes R; de Kovel, Carolien G F; Thiele, Holger; Konrad, Kathryn; Kawalia, Amit; Toliat, Mohammad R; Sander, Thomas; Rüschendorf, Franz; Caliebe, Almuth; Nagel, Inga; Kohl, Bernard; Kecskés, Angela; Jacmin, Maxime; Hardies, Katia; Weckhuysen, Sarah; Riesch, Erik; Dorn, Thomas; Brilstra, Eva H; Baulac, Stephanie; Møller, Rikke S; Hjalgrim, Helle; Koeleman, Bobby P C; Jurkat-Rott, Karin; Lehman-Horn, Frank; Roach, Jared C; Glusman, Gustavo; Hood, Leroy; Galas, David J; Martin, Benoit; de Witte, Peter A M; Biskup, Saskia; De Jonghe, Peter; Helbig, Ingo; Balling, Rudi; Nürnberg, Peter; Crawford, Alexander D; Esguerra, Camila V; Weber, Yvonne G; Lerche, Holger

    2014-12-01

    Febrile seizures affect 2-4% of all children and have a strong genetic component. Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding syntaxin-1B, that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations and a de novo microdeletion encompassing STX1B were then identified in 449 familial or sporadic cases. Video and local field potential analyses of zebrafish larvae with antisense knockdown of stx1b showed seizure-like behavior and epileptiform discharges that were highly sensitive to increased temperature. Wild-type human syntaxin-1B but not a mutated protein rescued the effects of stx1b knockdown in zebrafish. Our results thus implicate STX1B and the presynaptic release machinery in fever-associated epilepsy syndromes.

  7. Mutations in LOXHD1 gene cause various types and severities of hearing loss

    PubMed Central

    Mori, Kentaro; Moteki, Hideaki; Kobayashi, Yumiko; Azaiez, Hela; Booth, Kevin T; Nishio, Shin-ya; Sato, Hiroaki; Smith, Richard J H; Usami, Shin-ichi

    2015-01-01

    Objective We present two families that were identified with novel mutations in LOXHD1, as a cause of non-progressive hearing loss. Methods One thousand three hundred fourteen (1,314) Japanese subjects with sensorineural hearing loss from unrelated families were enrolled in the study. Targeted genomic enrichment and massively parallel sequencing of all known non-syndromic hearing loss genes were performed to identify the genetic cause of hearing loss. Results Two patients in one family affected with homozygous mutation; c.879+1G>A in LOXHD1, showed profound congenital hearing loss, whereas two patients in the other family with compound heterozygous mutations; c.5869G>T (p.E1957X) and c.4480C>T (p.R1494X) showed moderate to severe hearing loss. Conclusion Mutations in LOXHD1 are extremely rare, and these cases are the first identified in a Japanese population. The genotype-phenotype correlation in LOXHD1 is still unclear. The differences of phenotypes in each patient might be the result of the nature of the mutations, or the location at the gene, or be influenced by genetic modifier. PMID:25792669

  8. Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI.

    PubMed

    Camacho Vanegas, O; Bertini, E; Zhang, R Z; Petrini, S; Minosse, C; Sabatelli, P; Giusti, B; Chu, M L; Pepe, G

    2001-06-19

    Ullrich syndrome is a recessive congenital muscular dystrophy affecting connective tissue and muscle. The molecular basis is unknown. Reverse transcription-PCR amplification performed on RNA extracted from fibroblasts or muscle of three Ullrich patients followed by heteroduplex analysis displayed heteroduplexes in one of the three genes coding for collagen type VI (COL6). In patient A, we detected a homozygous insertion of a C leading to a premature termination codon in the triple-helical domain of COL6A2 mRNA. Both healthy consanguineous parents were carriers. In patient B, we found a deletion of 28 nucleotides because of an A --> G substitution at nucleotide -2 of intron 17 causing the activation of a cryptic acceptor site inside exon 18. The second mutation was an exon skipping because of a G --> A substitution at nucleotide -1 of intron 23. Both mutations are present in an affected brother. The first mutation is also present in the healthy mother, whereas the second mutation is carried by their healthy father. In patient C, we found only one mutation so far-the same deletion of 28 nucleotides found in patient B. In this case, it was a de novo mutation, as it is absent in her parents. mRNA and protein analysis of patient B showed very low amounts of COL6A2 mRNA and of COL6. A near total absence of COL6 was demonstrated by immunofluorescence in fibroblasts and muscle. Our results demonstrate that Ullrich syndrome is caused by recessive mutations leading to a severe reduction of COL6.

  9. De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome.

    PubMed

    Burrage, Lindsay C; Charng, Wu-Lin; Eldomery, Mohammad K; Willer, Jason R; Davis, Erica E; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S; Akdemir, Zeynep C; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P; Schoots, Jeroen; de Munnik, Sonja A; Roepman, Ronald; Pearring, Jillian N; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E L M; Brunner, Han G; Beaudet, Arthur L; Rosenfeld, Jill A; Muzny, Donna M; Gibbs, Richard A; Eng, Christine M; Xia, Fan; Lalani, Seema R; Lupski, James R; Bongers, Ernie M H F; Yang, Yaping

    2015-12-03

    Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5' end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1(st) coding exon), c.16A>T (p.Lys6(∗)) and c.35_38delTCAA (p.Ile12Lysfs(∗)4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5' end of the geminin protein. All three GMNN mutations identified alter sites 5' to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome

    PubMed Central

    Burrage, Lindsay C.; Charng, Wu-Lin; Eldomery, Mohammad K.; Willer, Jason R.; Davis, Erica E.; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S.; Akdemir, Zeynep C.; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P.; Schoots, Jeroen; de Munnik, Sonja A.; Roepman, Ronald; Pearring, Jillian N.; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E.L.M.; Brunner, Han G.; Beaudet, Arthur L.; Rosenfeld, Jill A.; Muzny, Donna M.; Gibbs, Richard A.; Eng, Christine M.; Xia, Fan; Lalani, Seema R.; Lupski, James R.; Bongers, Ernie M.H.F.; Yang, Yaping

    2015-01-01

    Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5′ end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1st coding exon), c.16A>T (p.Lys6∗) and c.35_38delTCAA (p.Ile12Lysfs∗4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5′ end of the geminin protein. All three GMNN mutations identified alter sites 5′ to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. PMID:26637980

  11. A missense mutation in KCTD17 causes autosomal dominant myoclonus-dystonia.

    PubMed

    Mencacci, Niccolo E; Rubio-Agusti, Ignacio; Zdebik, Anselm; Asmus, Friedrich; Ludtmann, Marthe H R; Ryten, Mina; Plagnol, Vincent; Hauser, Ann-Kathrin; Bandres-Ciga, Sara; Bettencourt, Conceição; Forabosco, Paola; Hughes, Deborah; Soutar, Marc M P; Peall, Kathryn; Morris, Huw R; Trabzuni, Daniah; Tekman, Mehmet; Stanescu, Horia C; Kleta, Robert; Carecchio, Miryam; Zorzi, Giovanna; Nardocci, Nardo; Garavaglia, Barbara; Lohmann, Ebba; Weissbach, Anne; Klein, Christine; Hardy, John; Pittman, Alan M; Foltynie, Thomas; Abramov, Andrey Y; Gasser, Thomas; Bhatia, Kailash P; Wood, Nicholas W

    2015-06-04

    Myoclonus-dystonia (M-D) is a rare movement disorder characterized by a combination of non-epileptic myoclonic jerks and dystonia. SGCE mutations represent a major cause for familial M-D being responsible for 30%-50% of cases. After excluding SGCE mutations, we identified through a combination of linkage analysis and whole-exome sequencing KCTD17 c.434 G>A p.(Arg145His) as the only segregating variant in a dominant British pedigree with seven subjects affected by M-D. A subsequent screening in a cohort of M-D cases without mutations in SGCE revealed the same KCTD17 variant in a German family. The clinical presentation of the KCTD17-mutated cases was distinct from the phenotype usually observed in M-D due to SGCE mutations. All cases initially presented with mild myoclonus affecting the upper limbs. Dystonia showed a progressive course, with increasing severity of symptoms and spreading from the cranio-cervical region to other sites. KCTD17 is abundantly expressed in all brain regions with the highest expression in the putamen. Weighted gene co-expression network analysis, based on mRNA expression profile of brain samples from neuropathologically healthy individuals, showed that KCTD17 is part of a putamen gene network, which is significantly enriched for dystonia genes. Functional annotation of the network showed an over-representation of genes involved in post-synaptic dopaminergic transmission. Functional studies in mutation bearing fibroblasts demonstrated abnormalities in endoplasmic reticulum-dependent calcium signaling. In conclusion, we demonstrate that the KCTD17 c.434 G>A p.(Arg145His) mutation causes autosomal dominant M-D. Further functional studies are warranted to further characterize the nature of KCTD17 contribution to the molecular pathogenesis of M-D. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. Characterization of two Ashkenazi Jewish founder mutations in MSH6 gene causing Lynch syndrome

    PubMed Central

    Raskin, Leon; Schwenter, Frank; Freytsis, Marina; Tischkowitz, Marc; Wong, Nora; Chong, George; Narod, Steven A.; Levine, Douglas A.; Bogomolniy, Faina; Aronson, Melyssa; Thibodeau, Stephen N.; Hunt, Katherine S.; Rennert, Gad; Gallinger, Steven; Gruber, Stephen B.; Foulkes, William D.

    2015-01-01

    Founder mutations are an important cause of Lynch syndrome and facilitate genetic testing in specific ethnic populations. Two putative founder mutations in MSH6 were analyzed in 2685 colorectal cancer (CRC) cases, 337 endometrial cancer (EnCa) cases and 3310 healthy controls of Ashkenazi Jewish (AJ) descent from population-based and hospital-based case-control studies in Israel, Canada and the USA. The carriers were haplotyped and the age of the mutations was estimated. MSH6*c.3984_3987dupGTCA was found in 8/2685 CRC cases, 2/337 EnCa cases, and 1/3310 controls, consistent with a high risk of CRC (odds ratio (OR) = 9.9, 95% confidence interval (CI) = 1.2–78.9, p=0.0079) and a very high risk of EnCa (OR = 19.6, 95%CI = 1.8–217.2, p = 0.0006). MSH6*c.3959_3962delCAAG was identified in 3/2685 CRC cases, 2/337 EnCa cases and no controls. Each mutation was associated with separate conserved haplotypes. MSH6*c.3984_3987dupGTCA and MSH6*c.3959_3962delCAAG likely arose around 585 CE and 685 CE respectively. No carriers were identified in Sephardi Jews (450 cases and 490 controls). Truncating mutations MSH6*c.3984_3987dupGTCA and MSH6*c.3959_3962delCAAG cause Lynch syndrome and are founder mutations in Ashkenazi Jews. Together with other AJ founder mutations, they contribute substantially to the incidence of CRC and EnCa and are important tools for the early diagnosis and appropriate management of AJ Lynch syndrome patients. PMID:21155762

  13. A Missense Mutation in KCTD17 Causes Autosomal Dominant Myoclonus-Dystonia

    PubMed Central

    Mencacci, Niccolo E.; Rubio-Agusti, Ignacio; Zdebik, Anselm; Asmus, Friedrich; Ludtmann, Marthe H.R.; Ryten, Mina; Plagnol, Vincent; Hauser, Ann-Kathrin; Bandres-Ciga, Sara; Bettencourt, Conceição; Forabosco, Paola; Hughes, Deborah; Soutar, Marc M.P.; Peall, Kathryn; Morris, Huw R.; Trabzuni, Daniah; Tekman, Mehmet; Stanescu, Horia C.; Kleta, Robert; Carecchio, Miryam; Zorzi, Giovanna; Nardocci, Nardo; Garavaglia, Barbara; Lohmann, Ebba; Weissbach, Anne; Klein, Christine; Hardy, John; Pittman, Alan M.; Foltynie, Thomas; Abramov, Andrey Y.; Gasser, Thomas; Bhatia, Kailash P.; Wood, Nicholas W.

    2015-01-01

    Myoclonus-dystonia (M-D) is a rare movement disorder characterized by a combination of non-epileptic myoclonic jerks and dystonia. SGCE mutations represent a major cause for familial M-D being responsible for 30%–50% of cases. After excluding SGCE mutations, we identified through a combination of linkage analysis and whole-exome sequencing KCTD17 c.434 G>A p.(Arg145His) as the only segregating variant in a dominant British pedigree with seven subjects affected by M-D. A subsequent screening in a cohort of M-D cases without mutations in SGCE revealed the same KCTD17 variant in a German family. The clinical presentation of the KCTD17-mutated cases was distinct from the phenotype usually observed in M-D due to SGCE mutations. All cases initially presented with mild myoclonus affecting the upper limbs. Dystonia showed a progressive course, with increasing severity of symptoms and spreading from the cranio-cervical region to other sites. KCTD17 is abundantly expressed in all brain regions with the highest expression in the putamen. Weighted gene co-expression network analysis, based on mRNA expression profile of brain samples from neuropathologically healthy individuals, showed that KCTD17 is part of a putamen gene network, which is significantly enriched for dystonia genes. Functional annotation of the network showed an over-representation of genes involved in post-synaptic dopaminergic transmission. Functional studies in mutation bearing fibroblasts demonstrated abnormalities in endoplasmic reticulum-dependent calcium signaling. In conclusion, we demonstrate that the KCTD17 c.434 G>A p.(Arg145His) mutation causes autosomal dominant M-D. Further functional studies are warranted to further characterize the nature of KCTD17 contribution to the molecular pathogenesis of M-D. PMID:25983243

  14. Mutations in C5ORF42 cause Joubert syndrome in the French Canadian population.

    PubMed

    Srour, Myriam; Schwartzentruber, Jeremy; Hamdan, Fadi F; Ospina, Luis H; Patry, Lysanne; Labuda, Damian; Massicotte, Christine; Dobrzeniecka, Sylvia; Capo-Chichi, José-Mario; Papillon-Cavanagh, Simon; Samuels, Mark E; Boycott, Kym M; Shevell, Michael I; Laframboise, Rachel; Désilets, Valérie; Maranda, Bruno; Rouleau, Guy A; Majewski, Jacek; Michaud, Jacques L

    2012-04-06

    Joubert syndrome (JBTS) is an autosomal-recessive disorder characterized by a distinctive mid-hindbrain malformation, developmental delay with hypotonia, ocular-motor apraxia, and breathing abnormalities. Although JBTS was first described more than 40 years ago in French Canadian siblings, the causal mutations have not yet been identified in this family nor in most French Canadian individuals subsequently described. We ascertained a cluster of 16 JBTS-affected individuals from 11 families living in the Lower St. Lawrence region. SNP genotyping excluded the presence of a common homozygous mutation that would explain the clustering of these individuals. Exome sequencing performed on 15 subjects showed that nine affected individuals from seven families (including the original JBTS family) carried rare compound-heterozygous mutations in C5ORF42. Two missense variants (c.4006C>T [p.Arg1336Trp] and c.4690G>A [p.Ala1564Thr]) and a splicing mutation (c.7400+1G>A), which causes exon skipping, were found in multiple subjects that were not known to be related, whereas three other truncating mutations (c.6407del [p.Pro2136Hisfs*31], c.4804C>T [p.Arg1602*], and c.7477C>T [p.Arg2493*]) were identified in single individuals. None of the unaffected first-degree relatives were compound heterozygous for these mutations. Moreover, none of the six putative mutations were detected among 477 French Canadian controls. Our data suggest that mutations in C5ORF42 explain a large portion of French Canadian individuals with JBTS.

  15. Novel mutations in the CLN6 gene causing a variant late infantile neuronal ceroid lipofuscinosis.

    PubMed

    Teixeira, Carla A; Espinola, Janice; Huo, Liang; Kohlschütter, Johannes; Persaud Sawin, Dixie-Ann; Minassian, Berge; Bessa, Carlos J P; Guimarães, A; Stephan, Dietrich A; Sá Miranda, Maria Clara; MacDonald, Marcy E; Ribeiro, Maria Gil; Boustany, Rose-Mary N

    2003-05-01

    The neuronal ceroid lipofuscinoses (NCLs) are a heterogeneous group of autosomal recessive neurodegenerative diseases comprising Batten and other related diseases plus numerous variants. They are characterized by progressive neuronal cell death. The CLN6 gene was recently identified, mutations in which cause one of the variant late infantile forms of NCL (vLINCL). We describe four novel mutations in the CLN6 gene. This brings the total number of CLN6 mutations known to 11 in 38 families. This suggests that the CLN6 gene may be highly mutable. An American patient of Irish/French/Native American origin was heterozygous for a 4-bp insertion (c.267_268insAACG) in exon 3. The other allele had a point mutation (c.898T>C) in exon 7 resulting in a W300R amino acid change. Two Trinidadian siblings of Indian origin were homozygous for a mutation at the 5' donor splice site of exon 4 (IVS4+1G>T), affecting the first base of the invariant GT at the beginning of intron 4. The fourth novel mutation, a double deletion of 4 bp and 1 bp in exon 7 (c.829_832delGTCG;c.837delG), was identified in a Portuguese patient heterozygous for the I154del Portuguese CLN6 mutation. Four of the 11 mutations identified are in exon 4. Three Portuguese patients with clinical profiles similar to CLN6 patients without defects in CLN6 or other known NCL genes are described. We conclude the following: 1) the CLN6 gene may be a highly mutable gene; 2) exon 4 must code for a segment of the protein crucial for function; 3) vLINCL disease in Portugal is genetically heterogeneous; 4) the I154del accounts for 81.25% of affected CLN6 Portuguese alleles; and 5) three vLINCL Portuguese patients may have defects in a new NCL gene.

  16. A founder TMIE mutation is a frequent cause of hearing loss in southeastern Anatolia.

    PubMed

    Sirmaci, A; Oztürkmen-Akay, H; Erbek, S; Incesulu, A; Duman, D; Taşir-Yilmaz, S; Ozdağ, H; Tekin, M

    2009-06-01

    Using Affymetrix 10K arrays, we searched for regions of homozygosity in 51 Turkish families including at least three members with either congenital or prelingual autosomal recessive non-syndromic sensorineural hearing loss (ARNSSNHL), and identified four families whose deafness mapped to the DFNB6 locus on 3p21 containing the TMIE gene. Mutation analysis revealed the p.R84W mutation in all four families. Screening of this mutation in 254 families with ARNSSNHL, without GJB2 mutations, revealed four additional affected families. A novel mutation was found in a non-complementary marriage between a deaf couple who were homozygous for p.R84W and p.W57X, respectively with two affected children who were compound heterozygotes. Six of the TMIE families originated from southeastern Anatolia, making p.R84W a common cause of hearing loss in that region with a relative frequency of 10.3% (95% CI is 2.5-18.1%). The overall prevalence of the p.R84W mutation in ARNSSNHL in Turkey is 2.4% (95% CI is 0.7-4.0%). Genotyping of single-nucleotide polymorphisms flanking the TMIE gene revealed a conserved haplotype, suggesting a single origin for p.R84W from a common ancestor 1250 years ago (95% CI is 650-2500 years). We conclude that p.R84W could be a common mutation in other Middle Eastern populations and should be included in mutation screening offered to individuals with ARNSSNHL.

  17. A compound heterozygous mutation in the FMO3 gene: the first pediatric case causes fish odor syndrome in Korea

    PubMed Central

    Cho, Sung Min; Chae, Jong-Hee

    2017-01-01

    Trimethylaminuria (TMAuria), known as “fish odor syndrome,” is a congenital metabolic disorder characterized by an odor resembling that of rotting fish. This odor is caused by the secretion of trimethylamine (TMA) in the breath, sweat, and body secretions and the excretion of TMA along with urine. TMAuria is an autosomal recessive disorder caused by mutations in flavin-containing monooxygenase 3 (FMO3). Most TMAuria cases are caused by missense mutations, but nonsense mutations have also been reported in these cases. Here, we describe the identification of a novel FMO3 gene mutation in a patient with TMAuria and her family. A 3-year-old girl presented with a strong corporal odor after ingesting fish. Genomic DNA sequence analysis revealed that she had compound heterozygous FMO3 mutations; One mutation was the missense mutation p.Val158Ile in exon 3, and the other was a novel nonsense mutation, p.Ser364X, in exon 7 of the FMO3 gene. Familial genetic analyses showed that the p.Val158Ile mutation was derived from the same allele in the father, and the p.Ser364X mutation was derived from the mother. This is the first description of the p.Ser364X mutation, and the first report of a Korean patient with TMAuria caused by novel compound heterozygous mutations. PMID:28392825

  18. Exome Sequencing Reveals Mutations in AIRE as a Cause of Isolated Hypoparathyroidism.

    PubMed

    Li, Dong; Streeten, Elizabeth A; Chan, Alice; Lwin, Wint; Tian, Lifeng; Pellegrino da Silva, Renata; Kim, Cecilia E; Anderson, Mark S; Hakonarson, Hakon; Levine, Michael A

    2017-05-01

    Most cases of autosomal recessive hypoparathyroidism (HYPO) are caused by loss-of-function mutations in GCM2 or PTH. The objective of this study was to identify the underlying genetic basis for isolated HYPO in a kindred in which 3 of 10 siblings were affected. We studied the parents and the three adult affected subjects, each of whom was diagnosed with HYPO in the first decade of life. We collected clinical and biochemical data and performed whole exome sequencing analysis on DNA from the three affected subjects after negative genetic testing for known causes of HYPO. Whole exome sequencing followed by Sanger sequencing revealed that all three affected subjects were compound heterozygous for two previously reported mutations, c.967_979delCTGTCCCCTCCGC:p.(L323SfsX51) and c.995+(3_5)delGAGinsTAT, in AIRE, which encodes the autoimmune regulator protein that is defective in autoimmune polyglandular syndrome type 1 (APS-1). Each parent carries one mutation, and all of the children of the patients are either heterozygous for one mutation or wild type. The affected sister developed premature ovarian failure, but the two affected brothers have no other features of APS-1 despite elevated serum levels of anti-interferon-α antibodies. Our findings indicate that biallelic mutations in AIRE can cause isolated H