Sample records for mutations predict outcome

  1. The evolving field of prognostication and risk stratification in MDS: Recent developments and future directions.

    PubMed

    Lee, Eun-Ju; Podoltsev, Nikolai; Gore, Steven D; Zeidan, Amer M

    2016-01-01

    The clinical course of patients with myelodysplastic syndromes (MDS) is characterized by wide variability reflecting the underlying genetic and biological heterogeneity of the disease. Accurate prediction of outcomes for individual patients is an integral part of the evidence-based risk/benefit calculations that are necessary for tailoring the aggressiveness of therapeutic interventions. While several prognostication tools have been developed and validated for risk stratification, each of these systems has limitations. The recent progress in genomic sequencing techniques has led to discoveries of recurrent molecular mutations in MDS patients with independent impact on relevant clinical outcomes. Reliable assays of these mutations have already entered the clinic and efforts are currently ongoing to formally incorporate mutational analysis into the existing clinicopathologic risk stratification tools. Additionally, mutational analysis holds promise for going beyond prognostication to therapeutic selection and individualized treatment-specific prediction of outcomes; abilities that would revolutionize MDS patient care. Despite these exciting developments, the best way of incorporating molecular testing for use in prognostication and prediction of outcomes in clinical practice remains undefined and further research is warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Driven by Mutations: The Predictive Value of Mutation Subtype in EGFR-Mutated Non-Small Cell Lung Cancer.

    PubMed

    Castellanos, Emily; Feld, Emily; Horn, Leora

    2017-04-01

    EGFR-mutated NSCLC is a genetically heterogeneous disease that includes more than 200 distinct mutations. The implications of mutational subtype for both prognostic and predictive value are being increasingly understood. Although the most common EGFR mutations-exon 19 deletions or L858R mutations-predict sensitivity to EGFR tyrosine kinase inhibitors (TKIs), it is now being recognized that outcomes may be improved in patients with exon 19 deletions. Additionally, 10% of patients will have an uncommon EGFR mutation, and response to EGFR TKI therapy is highly variable depending on the mutation. Given the growing recognition of the genetic and clinical variation seen in this disease, the development of comprehensive bioinformatics-driven tools to both analyze response in uncommon mutation subtypes and inform clinical decision making will be increasingly important. Clinical trials of novel EGFR TKIs should prospectively account for the presence of uncommon mutation subtypes in study design. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  3. Novel algorithmic approach predicts tumor mutation load and correlates with immunotherapy clinical outcomes using a defined gene mutation set.

    PubMed

    Roszik, Jason; Haydu, Lauren E; Hess, Kenneth R; Oba, Junna; Joon, Aron Y; Siroy, Alan E; Karpinets, Tatiana V; Stingo, Francesco C; Baladandayuthapani, Veera; Tetzlaff, Michael T; Wargo, Jennifer A; Chen, Ken; Forget, Marie-Andrée; Haymaker, Cara L; Chen, Jie Qing; Meric-Bernstam, Funda; Eterovic, Agda K; Shaw, Kenna R; Mills, Gordon B; Gershenwald, Jeffrey E; Radvanyi, Laszlo G; Hwu, Patrick; Futreal, P Andrew; Gibbons, Don L; Lazar, Alexander J; Bernatchez, Chantale; Davies, Michael A; Woodman, Scott E

    2016-10-25

    While clinical outcomes following immunotherapy have shown an association with tumor mutation load using whole exome sequencing (WES), its clinical applicability is currently limited by cost and bioinformatics requirements. We developed a method to accurately derive the predicted total mutation load (PTML) within individual tumors from a small set of genes that can be used in clinical next generation sequencing (NGS) panels. PTML was derived from the actual total mutation load (ATML) of 575 distinct melanoma and lung cancer samples and validated using independent melanoma (n = 312) and lung cancer (n = 217) cohorts. The correlation of PTML status with clinical outcome, following distinct immunotherapies, was assessed using the Kaplan-Meier method. PTML (derived from 170 genes) was highly correlated with ATML in cutaneous melanoma and lung adenocarcinoma validation cohorts (R 2  = 0.73 and R 2  = 0.82, respectively). PTML was strongly associated with clinical outcome to ipilimumab (anti-CTLA-4, three cohorts) and adoptive T-cell therapy (1 cohort) clinical outcome in melanoma. Clinical benefit from pembrolizumab (anti-PD-1) in lung cancer was also shown to significantly correlate with PTML status (log rank P value < 0.05 in all cohorts). The approach of using small NGS gene panels, already applied to guide employment of targeted therapies, may have utility in the personalized use of immunotherapy in cancer.

  4. Kinetics, prognostic and predictive values of ESR1 circulating mutations in metastatic breast cancer patients progressing on aromatase inhibitor

    PubMed Central

    Clatot, Florian; Perdrix, Anne; Augusto, Laetitia; Beaussire, Ludivine; Delacour, Julien; Calbrix, Céline; Sefrioui, David; Viailly, Pierre-Julien; Bubenheim, Michael; Moldovan, Cristian; Alexandru, Cristina; Tennevet, Isabelle; Rigal, Olivier; Guillemet, Cécile; Leheurteur, Marianne; Gouérant, Sophie; Petrau, Camille; Théry, Jean-Christophe; Picquenot, Jean-Michel; Veyret, Corinne; Frébourg, Thierry; Jardin, Fabrice

    2016-01-01

    Purpose To assess the prognostic and predictive value of circulating ESR1 mutation and its kinetics before and after progression on aromatase inhibitor (AI) treatment. Patients and methods ESR1 circulating D538G and Y537S/N/C mutations were retrospectively analyzed by digital droplet PCR after first-line AI failure in patients treated consecutively from 2010 to 2012 for hormone receptor-positive metastatic breast cancer. Progression-free survival (PFS) and overall survival (OS) were analyzed according to circulating mutational status and subsequent lines of treatment. The kinetics of ESR1 mutation before (3 and 6 months) and after (3 months) AI progression were determined in the available archive plasmas. Results Circulating ESR1 mutations were found at AI progression in 44/144 patients included (30.6%). Median follow-up from AI initiation was 40 months (range 4-94). The median OS was decreased in patients with circulating ESR1 mutation than in patients without mutation (15.5 versus 23.8 months, P=0.0006). The median PFS was also significantly decreased in patients with ESR1 mutation than in patients without mutation (5.9 vs 7 months, P=0.002). After AI failure, there was no difference in outcome for patients receiving chemotherapy (n = 58) versus non-AI endocrine therapy (n=51) in patients with and without ESR1 mutation. ESR1 circulating mutations were detectable in 75% of all cases before AI progression, whereas the kinetics 3 months after progression did not correlate with outcome. Conclusion ESR1 circulating mutations are independent risk factors for poor outcome after AI failure, and are frequently detectable before clinical progression. Interventional studies based on ESR1 circulating status are warranted. PMID:27801670

  5. Kinetics, prognostic and predictive values of ESR1 circulating mutations in metastatic breast cancer patients progressing on aromatase inhibitor.

    PubMed

    Clatot, Florian; Perdrix, Anne; Augusto, Laetitia; Beaussire, Ludivine; Delacour, Julien; Calbrix, Céline; Sefrioui, David; Viailly, Pierre-Julien; Bubenheim, Michael; Moldovan, Cristian; Alexandru, Cristina; Tennevet, Isabelle; Rigal, Olivier; Guillemet, Cécile; Leheurteur, Marianne; Gouérant, Sophie; Petrau, Camille; Théry, Jean-Christophe; Picquenot, Jean-Michel; Veyret, Corinne; Frébourg, Thierry; Jardin, Fabrice; Sarafan-Vasseur, Nasrin; Di Fiore, Frédéric

    2016-11-15

    To assess the prognostic and predictive value of circulating ESR1 mutation and its kinetics before and after progression on aromatase inhibitor (AI) treatment. ESR1 circulating D538G and Y537S/N/C mutations were retrospectively analyzed by digital droplet PCR after first-line AI failure in patients treated consecutively from 2010 to 2012 for hormone receptor-positive metastatic breast cancer. Progression-free survival (PFS) and overall survival (OS) were analyzed according to circulating mutational status and subsequent lines of treatment. The kinetics of ESR1 mutation before (3 and 6 months) and after (3 months) AI progression were determined in the available archive plasmas. Circulating ESR1 mutations were found at AI progression in 44/144 patients included (30.6%). Median follow-up from AI initiation was 40 months (range 4-94). The median OS was decreased in patients with circulating ESR1 mutation than in patients without mutation (15.5 versus 23.8 months, P=0.0006). The median PFS was also significantly decreased in patients with ESR1 mutation than in patients without mutation (5.9 vs 7 months, P=0.002). After AI failure, there was no difference in outcome for patients receiving chemotherapy (n = 58) versus non-AI endocrine therapy (n=51) in patients with and without ESR1 mutation. ESR1 circulating mutations were detectable in 75% of all cases before AI progression, whereas the kinetics 3 months after progression did not correlate with outcome. ESR1 circulating mutations are independent risk factors for poor outcome after AI failure, and are frequently detectable before clinical progression. Interventional studies based on ESR1 circulating status are warranted.

  6. Multidimensional assessment of patient condition and mutational analysis in peripheral blood, as tools to improve outcome prediction in myelodysplastic syndromes: A prospective study of the Spanish MDS group.

    PubMed

    Ramos, Fernando; Robledo, Cristina; Pereira, Arturo; Pedro, Carmen; Benito, Rocío; de Paz, Raquel; Del Rey, Mónica; Insunza, Andrés; Tormo, Mar; Díez-Campelo, María; Xicoy, Blanca; Salido, Eduardo; Sánchez-Del-Real, Javier; Arenillas, Leonor; Florensa, Lourdes; Luño, Elisa; Del Cañizo, Consuelo; Sanz, Guillermo F; María Hernández-Rivas, Jesús

    2017-09-01

    The International Prognostic Scoring System and its revised form (IPSS-R) are the most widely used indices for prognostic assessment of patients with myelodysplastic syndromes (MDS), but can only partially account for the observed variation in patient outcomes. This study aimed to evaluate the relative contribution of patient condition and mutational status in peripheral blood when added to the IPSS-R, for estimating overall survival and the risk of leukemic transformation in patients with MDS. A prospective cohort (2006-2015) of 200 consecutive patients with MDS were included in the study series and categorized according to the IPSS-R. Patients were further stratified according to patient condition (assessed using the multidimensional Lee index for older adults) and genetic mutations (peripheral blood samples screened using next-generation sequencing). The change in likelihood-ratio was tested in Cox models after adding individual covariates. The addition of the Lee index to the IPSS-R significantly improved prediction of overall survival [hazard ratio (HR) 3.02, 95% confidence interval (CI) 1.96-4.66, P < 0.001), and mutational analysis significantly improved prediction of leukemic evolution (HR 2.64, 1.56-4.46, P < 0.001). Non-leukemic death was strongly linked to patient condition (HR 2.71, 1.72-4.25, P < 0.001), but not to IPSS-R score (P = 0.35) or mutational status (P = 0.75). Adjustment for exposure to disease-modifying therapy, evaluated as a time-dependent covariate, had no effect on the proposed model's predictive ability. In conclusion, patient condition, assessed by the multidimensional Lee index and patient mutational status can improve the prediction of clinical outcomes of patients with MDS already stratified by IPSS-R. © 2017 Wiley Periodicals, Inc.

  7. EGFR and KRAS Mutations Predict the Incidence and Outcome of Brain Metastases in Non-Small Cell Lung Cancer

    PubMed Central

    Tomasini, Pascale; Serdjebi, Cindy; Khobta, Nataliya; Metellus, Philippe; Ouafik, L’Houcine; Nanni, Isabelle; Greillier, Laurent; Loundou, Anderson; Fina, Frederic; Mascaux, Celine; Barlesi, Fabrice

    2016-01-01

    Background: Lung cancer is the leading cause of brain metastases (BM). The identification of driver oncogenes and matched targeted therapies has improved outcome in non-small cell lung cancer (NSCLC) patients; however, a better understanding of BM molecular biology is needed to further drive the process in this field. Methods: In this observational study, stage IV NSCLC patients tested for EGFR and KRAS mutations were selected, and BM incidence, recurrence and patients’ outcome were assessed. Results: A total of 144 patients (142 Caucasian and two Asian) were selected, including 11.27% with EGFR-mutant and 33.10% with KRAS-mutant tumors, and 57.04% patients had developed BM. BM incidence was more frequent in patients with EGFR mutation according to multivariate analyses (MVA) (Odds ratio OR = 8.745 [1.743–43.881], p = 0.008). Among patients with treated BM, recurrence after local treatment was less frequent in patients with KRAS mutation (OR = 0.234 [0.078–0.699], p = 0.009). Among patients with untreated BM, overall survival (OS) was shorter for patients with KRAS mutation according to univariate analysis (OR = 7.130 [1.240–41.012], p = 0.028), but not MVA. Conclusions: EGFR and KRAS mutations have a predictive role on BM incidence, recurrence and outcome in Caucasian NSCLC patients. These results may impact the routine management of disease in these patients. Further studies are required to assess the influence of other biomarkers on NSCLC BM. PMID:27999344

  8. Somatic mutation load of estrogen receptor-positive breast tumors predicts overall survival: an analysis of genome sequence data.

    PubMed

    Haricharan, Svasti; Bainbridge, Matthew N; Scheet, Paul; Brown, Powel H

    2014-07-01

    Breast cancer is one of the most commonly diagnosed cancers in women. While there are several effective therapies for breast cancer and important single gene prognostic/predictive markers, more than 40,000 women die from this disease every year. The increasing availability of large-scale genomic datasets provides opportunities for identifying factors that influence breast cancer survival in smaller, well-defined subsets. The purpose of this study was to investigate the genomic landscape of various breast cancer subtypes and its potential associations with clinical outcomes. We used statistical analysis of sequence data generated by the Cancer Genome Atlas initiative including somatic mutation load (SML) analysis, Kaplan-Meier survival curves, gene mutational frequency, and mutational enrichment evaluation to study the genomic landscape of breast cancer. We show that ER(+), but not ER(-), tumors with high SML associate with poor overall survival (HR = 2.02). Further, these high mutation load tumors are enriched for coincident mutations in both DNA damage repair and ER signature genes. While it is known that somatic mutations in specific genes affect breast cancer survival, this study is the first to identify that SML may constitute an important global signature for a subset of ER(+) tumors prone to high mortality. Moreover, although somatic mutations in individual DNA damage genes affect clinical outcome, our results indicate that coincident mutations in DNA damage response and signature ER genes may prove more informative for ER(+) breast cancer survival. Next generation sequencing may prove an essential tool for identifying pathways underlying poor outcomes and for tailoring therapeutic strategies.

  9. Wilms’ Tumor 1 Gene Mutations Independently Predict Poor Outcome in Adults With Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study

    PubMed Central

    Paschka, Peter; Marcucci, Guido; Ruppert, Amy S.; Whitman, Susan P.; Mrózek, Krzysztof; Maharry, Kati; Langer, Christian; Baldus, Claudia D.; Zhao, Weiqiang; Powell, Bayard L.; Baer, Maria R.; Carroll, Andrew J.; Caligiuri, Michael A.; Kolitz, Jonathan E.; Larson, Richard A.; Bloomfield, Clara D.

    2008-01-01

    Purpose To analyze the prognostic impact of Wilms’ tumor 1 (WT1) gene mutations in cytogenetically normal acute myeloid leukemia (CN-AML). Patients and Methods We studied 196 adults younger than 60 years with newly diagnosed primary CN-AML, who were treated similarly on Cancer and Leukemia Group B (CALGB) protocols 9621 and 19808, for WT1 mutations in exons 7 and 9. The patients also were assessed for the presence of FLT3 internal tandem duplications (FLT3-ITD), FLT3 tyrosine kinase domain mutations (FLT3-TKD), MLL partial tandem duplications (MLL-PTD), NPM1 and CEBPA mutations, and for the expression levels of ERG and BAALC. Results Twenty-one patients (10.7%) harbored WT1 mutations. Complete remission rates were not significantly different between patients with WT1 mutations and those with unmutated WT1 (P = .36; 76% v 84%). Patients with WT1 mutations had worse disease-free survival (DFS; P < .001; 3-year rates, 13% v 50%) and overall survival (OS; P < .001; 3-year rates, 10% v 56%) than patients with unmutated WT1. In multivariable analyses, WT1 mutations independently predicted worse DFS (P = .009; hazard ratio [HR] = 2.7) when controlling for CEBPA mutational status, ERG expression level, and FLT3-ITD/NPM1 molecular-risk group (ie, FLT3-ITDnegative/NPM1mutated as low risk v FLT3-ITDpositive and/or NPM1wild-type as high risk). WT1 mutations also independently predicted worse OS (P < .001; HR = 3.2) when controlling for CEBPA mutational status, FLT3-ITD/NPM1 molecular-risk group, and white blood cell count. Conclusion We report the first evidence that WT1 mutations independently predict extremely poor outcome in intensively treated, younger patients with CN-AML. Future trials should include testing for WT1 mutations as part of molecularly based risk assessment and risk-adapted treatment stratification of patients with CN-AML. PMID:18559874

  10. An extensive molecular cytogenetic characterization in high-risk chronic lymphocytic leukemia identifies karyotype aberrations and TP53 disruption as predictors of outcome and chemorefractoriness

    PubMed Central

    Cavallari, Maurizio; Quaglia, Francesca Maria; Lista, Enrico; Urso, Antonio; Guardalben, Emanuele; Martinelli, Sara; Saccenti, Elena; Bassi, Cristian; Lupini, Laura; Bardi, Maria Antonella; Volta, Eleonora; Tammiso, Elisa; Melandri, Aurora; Negrini, Massimo

    2017-01-01

    We investigated whether karyotype analysis and mutational screening by next generation sequencing could predict outcome in 101 newly diagnosed chronic lymphocytic leukemia patients with high-risk features, as defined by the presence of unmutated IGHV gene and/or 11q22/17p13 deletion by FISH and/or TP53 mutations. Cytogenetic analysis showed favorable findings (normal karyotype and isolated 13q14 deletion) in 30 patients, unfavorable (complex karyotype and/or 17p13/11q22 deletion) in 34 cases and intermediate (all other abnormalities) in 36 cases. A complex karyotype was present in 21 patients. Mutations were detected in 56 cases and were associated with unmutated IGHV status (p = 0.040) and complex karyotype (p = 0.047). TP53 disruption (i.e. TP53 mutations and/or 17p13 deletion by FISH) correlated with the presence of ≥ 2 mutations (p = 0.001) and a complex karyotype (p = 0.012). By multivariate analysis, an advanced Binet stage (p < 0.001) and an unfavorable karyotype (p = 0.001) predicted a shorter time to first treatment. TP53 disruption (p = 0.019) and the unfavorable karyotype (p = 0.028) predicted a worse overall survival. A shorter time to chemorefractoriness was associated with TP53 disruption (p = 0.001) and unfavorable karyotype (p = 0.025). Patients with both unfavorable karyotype and TP53 disruption presented a dismal outcome (median overall survival and time to chemorefractoriness of 28.7 and 15.0 months, respectively). In conclusion, karyotype analysis refines risk stratification in high-risk CLL patients and could identify a subset of patients with highly unfavorable outcome requiring alternative treatments. PMID:28427204

  11. The diversity of mutations and clinical outcomes for ELANE-associated neutropenia

    PubMed Central

    Makaryan, Vahagn; Zeidler, Cornelia; Bolyard, Audrey Anna; Skokowa, Julia; Rodger, Elin; Kelley, Merideth L.; Boxer, Laurence A.; Bonilla, Mary Ann; Newburger, Peter E.; Shimamura, Akiko; Zhu, Bin; Rosenberg, Philip S.; Link, Daniel C.; Welte, Karl; Dale, David C.

    2015-01-01

    Purpose of review Mutations in the gene for neutrophil elastase, ELANE, cause cyclic neutropenia (CyN) and severe congenital neutropenia (SCN). This study summarized data from the Severe Chronic Neutropenia International Registry (SCNIR) on genotype–phenotype relationships of ELANE mutations to important clinical outcomes. We also summarize findings for ELANE mutations not observed in SCNIR patients. Recent findings There were 307 SCNIR patients with 104 distinctive ELANE mutations who were followed longitudinally for up to 27 years. The ELANE mutations were diverse; there were 65 single amino acid substitutions; 61 of these mutations (94%) were ‘probably’ or ‘possibly damaging’ by PolyPhen-2 analysis, and one of the ‘benign’ mutations was associated with two cases of acute myeloid leukemia (AML). All frame-shift mutations (19/19) were associated with the SCN. The pattern of mutations in the SCN versus CyN was significantly different (P <10−4), but some mutations were observed in both groups (overlapping mutations). The cumulative incidence of severe adverse events, that is, myelodysplasia, AML, stem cell transplantation, or deaths was significantly greater for patients with SCN versus those with CyN or overlapping mutations. Specific mutations (i.e. G214R or C151Y) had a high risk for evolution to AML. Summary Sequencing is useful for predicting outcomes of ELANE-associated neutropenia. PMID:25427142

  12. Integrated genomic and immunophenotypic classification of pancreatic cancer reveals three distinct subtypes with prognostic/predictive significance.

    PubMed

    Wartenberg, Martin; Cibin, Silvia; Zlobec, Inti; Vassella, Erik; Eppenberger-Castori, Serenella M M; Terracciano, Luigi; Eichmann, Micha; Worni, Mathias; Gloor, Beat; Perren, Aurel; Karamitopoulou, Eva

    2018-04-16

    Current clinical classification of pancreatic ductal adenocarcinoma (PDAC) is unable to predict prognosis or response to chemo- or immunotherapy and does not take into account the host reaction to PDAC-cells. Our aim is to classify PDAC according to host- and tumor-related factors into clinically/biologically relevant subtypes by integrating molecular and microenvironmental findings. A well-characterized PDAC-cohort (n=110) underwent next-generation sequencing with a hotspot cancer panel, while Next-generation Tissue-Microarrays were immunostained for CD3, CD4, CD8, CD20, PD-L1, p63, hyaluronan-mediated motility receptor (RHAMM) and DNA mismatch-repair proteins. Previous data on FOXP3 were integrated. Immune-cell counts and protein expression were correlated with tumor-derived driver mutations, clinicopathologic features (TNM 8. 2017), survival and epithelial-mesenchymal-transition (EMT)-like tumor budding.  Results: Three PDAC-subtypes were identified: the "immune-escape" (54%), poor in T- and B-cells and enriched in FOXP3+Tregs, with high-grade budding, frequent CDKN2A- , SMAD4- and PIK3CA-mutations and poor outcome; the "immune-rich" (35%), rich in T- and B-cells and poorer in FOXP3+Tregs, with infrequent budding, lower CDKN2A- and PIK3CA-mutation rate and better outcome and a subpopulation with tertiary lymphoid tissue (TLT), mutations in DNA damage response genes (STK11, ATM) and the best outcome; and the "immune-exhausted" (11%) with immunogenic microenvironment and two subpopulations: one with PD-L1-expression and high PIK3CA-mutation rate and a microsatellite-unstable subpopulation with high prevalence of JAK3-mutations. The combination of low budding, low stromal FOXP3-counts, presence of TLTs and absence of CDKN2A-mutations confers significant survival advantage in PDAC-patients. Immune host responses correlate with tumor characteristics leading to morphologically recognizable PDAC-subtypes with prognostic/predictive significance. Copyright ©2018, American Association for Cancer Research.

  13. Clinical characterisation of Becker muscular dystrophy patients predicts favourable outcome in exon-skipping therapy.

    PubMed

    van den Bergen, J C; Schade van Westrum, S M; Dekker, L; van der Kooi, A J; de Visser, M; Wokke, B H A; Straathof, C S; Hulsker, M A; Aartsma-Rus, A; Verschuuren, J J; Ginjaar, H B

    2014-01-01

    Duchenne and Becker muscular dystrophy (DMD/BMD) are both caused by mutations in the DMD gene. Out-of-frame mutations in DMD lead to absence of the dystrophin protein, while in-frame BMD mutations cause production of internally deleted dystrophin. Clinically, patients with DMD loose ambulance around the age of 12, need ventilatory support at their late teens and die in their third or fourth decade due to pulmonary or cardiac failure. BMD has a more variable disease course. The disease course of patients with BMD with specific mutations could be very informative to predict the outcome of the exon-skipping therapy, aiming to restore the reading-frame in patients with DMD. Patients with BMD with a mutation equalling a DMD mutation after successful exon skipping were selected from the Dutch Dystrophinopathy Database. Information about disease course was gathered through a standardised questionnaire. Cardiac data were collected from medical correspondence and a previous study on cardiac function in BMD. Forty-eight patients were included, representing 11 different mutations. Median age of patients was 43 years (range 6-67). Nine patients were wheelchair users (26-56 years). Dilated cardiomyopathy was present in 7/36 patients. Only one patient used ventilatory support. Three patients had died at the age of 45, 50 and 76 years, respectively. This study provides mutation specific data on the course of disease in patients with BMD. It shows that the disease course of patients with BMD, with a mutation equalling a 'skipped' DMD mutation is relatively mild. This finding strongly supports the potential benefit of exon skipping in patients with DMD.

  14. [Genetic Mutation Accumulation and Clinical Outcome of Immune Checkpoint Blockade Therapy].

    PubMed

    Takahashi, Masanobu

    2016-06-01

    Immune checkpoint blockade therapy has recently attracted great attention in the area of oncology. In Japan, since 2014, an anti-PD-1 antibody nivolumab and anti-CTLA-4 antibody ipilimumab have been available for the treatment of patients with malignant melanoma, and nivolumab has been available for patients with non-small cell lung cancer. Clinical trials using these drugs and other immune checkpoint inhibitors are currently in progress worldwide. The immune checkpoint blockade therapy is a promising new cancer therapy; however, not all patients with cancer can benefit from this therapy. Recent evidence shows that markers reflecting the extent of genetic mutation accumulation, including mutation burden, non-synonymous mutation that produces neoantigen, and microsatellite instability, possibly serve as promising marker to predict who can benefit from the immune checkpoint blockade therapy. Here, I introduce the recent evidence and discuss the correlation between genetic mutation accumulation and clinical outcome of immune checkpoint blockade therapy.

  15. Structure-functional prediction and analysis of cancer mutation effects in protein kinases.

    PubMed

    Dixit, Anshuman; Verkhivker, Gennady M

    2014-01-01

    A central goal of cancer research is to discover and characterize the functional effects of mutated genes that contribute to tumorigenesis. In this study, we provide a detailed structural classification and analysis of functional dynamics for members of protein kinase families that are known to harbor cancer mutations. We also present a systematic computational analysis that combines sequence and structure-based prediction models to characterize the effect of cancer mutations in protein kinases. We focus on the differential effects of activating point mutations that increase protein kinase activity and kinase-inactivating mutations that decrease activity. Mapping of cancer mutations onto the conformational mobility profiles of known crystal structures demonstrated that activating mutations could reduce a steric barrier for the movement from the basal "low" activity state to the "active" state. According to our analysis, the mechanism of activating mutations reflects a combined effect of partial destabilization of the kinase in its inactive state and a concomitant stabilization of its active-like form, which is likely to drive tumorigenesis at some level. Ultimately, the analysis of the evolutionary and structural features of the major cancer-causing mutational hotspot in kinases can also aid in the correlation of kinase mutation effects with clinical outcomes.

  16. Mutations in gp41 are correlated with coreceptor tropism but do not improve prediction methods substantially.

    PubMed

    Thielen, Alexander; Lengauer, Thomas; Swenson, Luke C; Dong, Winnie W Y; McGovern, Rachel A; Lewis, Marilyn; James, Ian; Heera, Jayvant; Valdez, Hernan; Harrigan, P Richard

    2011-01-01

    The main determinants of HIV-1 coreceptor usage are located in the V3-loop of gp120, although mutations in V2 and gp41 are also known. Incorporation of V2 is known to improve prediction algorithms; however, this has not been confirmed for gp41 mutations. Samples with V3 and gp41 genotypes and Trofile assay (Monogram Biosciences, South San Francisco, CA, USA) results were taken from the HOMER cohort (n=444) and from patients screened for the MOTIVATE studies (n=1,916; 859 with maraviroc outcome data). Correlations of mutations with tropism were assessed using Fisher's exact test and prediction models trained using support vector machines. Models were validated by cross-validation, by testing models from one dataset on the other, and by analysing virological outcome. Several mutations within gp41 were highly significant for CXCR4 usage; most strikingly an insertion occurring in 7.7% of HOMER-R5 and 46.3% of HOMER-X4 samples (MOTIVATE 5.7% and 25.2%, respectively). Models trained on gp41 sequence alone achieved relatively high areas under the receiver-operating characteristic curve (AUCs; HOMER 0.713 and MOTIVATE 0.736) that were almost as good as V3 models (0.773 and 0.884, respectively). However, combining the two regions improved predictions only marginally (0.813 and 0.902, respectively). Similar results were found when models were trained on HOMER and validated on MOTIVATE or vice versa. The difference in median log viral load decrease at week 24 between patients with R5 and X4 virus was 1.65 (HOMER 2.45 and MOTIVATE 0.79) for V3 models, 1.59 for gp41-models (2.42 and 0.83, respectively) and 1.58 for the combined predictor (2.44 and 0.86, respectively). Several mutations within gp41 showed strong correlation with tropism in two independent datasets. However, incorporating gp41 mutations into prediction models is not mandatory because they do not improve substantially on models trained on V3 sequences alone.

  17. Significance of KRAS, NRAS, BRAF and PIK3CA mutations in metastatic colorectal cancer patients receiving Bevacizumab: a single institution experience

    PubMed Central

    Baltruškevičienė, Edita; Mickys, Ugnius; Žvirblis, Tadas; Stulpinas, Rokas; Pipirienė Želvienė, Teresė; Aleknavičius, Eduardas

    2016-01-01

    Background. KRAS mutation is an important predictive and prognostic factor for patients receiving anti-EGFR therapy. An expanded KRAS, NRAS, BRAF, PIK3CA mutation analysis provides additional prognostic information, but its role in predicting bevacizumab efficacy is unclear. The aim of our study was to evaluate the incidence of KRAS, NRAS, BRAF and PIK3CA mutations in metastatic colorectal cancer patients receiving first line oxaliplatin based chemotherapy with or without bevacizumab and to evaluate their prognostic and predictive significance. Methods. 55 patients with the first-time diagnosed CRC receiving FOLFOX ± bevacizumab were involved in the study. Tumour blocks were tested for KRAS mutations in exons 2, 3 and 4, NRAS mutations in exons 2, 3 and 4, BRAF mutation in exon 15 and PIK3CA mutations in exons 9 and 20. The association between mutations and clinico-pathological factors, treatment outcomes and survival was analyzed. Results. KRAS mutations were detected in 67.3% of the patients, BRAF in 1.8%, PIK3CA in 5.5% and there were no NRAS mutations. A significant association between the high CA 19–9 level and KRAS mutation was detected (mean CA 19–9 levels were 276 and 87 kIU/l, respectively, p = 0.019). There was a significantly higher response rate in the KRAS, NRAS, BRAF and PIK3CA wild type cohort receiving bevacizumab compared to any gene mutant type (100 and 60%, respectively, p = 0.030). The univariate Cox regression analysis did not confirm KRAS and other tested mutations as prognostic factors for PFS or OS. Conclusions. Our study revealed higher KRAS and lower NRAS, BRAF and PIK3CA mutation rates in the Lithuanian population than those reported in the literature. KRAS mutation was associated with the high CA 19–9 level and mucinous histology type, but did not show any predictive or prognostic significance. The expanded KRAS, NRAS, BRAF and PIK3CA mutation analysis provided additional significant predictive information. PMID:28356789

  18. Prognostic and predictive value of TP53 mutations in node-positive breast cancer patients treated with anthracycline- or anthracycline/taxane-based adjuvant therapy: results from the BIG 02-98 phase III trial

    PubMed Central

    2012-01-01

    Abstract Introduction Pre-clinical data suggest p53-dependent anthracycline-induced apoptosis and p53-independent taxane activity. However, dedicated clinical research has not defined a predictive role for TP53 gene mutations. The aim of the current study was to retrospectively explore the prognosis and predictive values of TP53 somatic mutations in the BIG 02-98 randomized phase III trial in which women with node-positive breast cancer were treated with adjuvant doxorubicin-based chemotherapy with or without docetaxel. Methods The prognostic and predictive values of TP53 were analyzed in tumor samples by gene sequencing within exons 5 to 8. Patients were classified according to p53 protein status predicted from TP53 gene sequence, as wild-type (no TP53 variation or TP53 variations which are predicted not to modify p53 protein sequence) or mutant (p53 nonsynonymous mutations). Mutations were subcategorized according to missense or truncating mutations. Survival analyses were performed using the Kaplan-Meier method and log-rank test. Cox-regression analysis was used to identify independent predictors of outcome. Results TP53 gene status was determined for 18% (520 of 2887) of the women enrolled in BIG 02-98. TP53 gene variations were found in 17% (90 of 520). Nonsynonymous p53 mutations, found in 16.3% (85 of 520), were associated with older age, ductal morphology, higher grade and hormone-receptor negativity. Of the nonsynonymous mutations, 12.3% (64 of 520) were missense and 3.6% were truncating (19 of 520). Only truncating mutations showed significant independent prognostic value, with an increased recurrence risk compared to patients with non-modified p53 protein (hazard ratio = 3.21, 95% confidence interval = 1.740 to 5.935, P = 0.0002). p53 status had no significant predictive value for response to docetaxel. Conclusions p53 truncating mutations were uncommon but associated with poor prognosis. No significant predictive role for p53 status was detected. Trial registration ClinicalTrials.gov NCT00174655 PMID:22551440

  19. EGFR mutations predict a favorable outcome for malignant pleural effusion of lung adenocarcinoma with Tarceva therapy.

    PubMed

    Guo, Haisheng; Wan, Yunyan; Tian, Guangyan; Liu, Qinghua; Kang, Yanmeng; Li, Yuye; Yao, Zhouhong; Lin, Dianjie

    2012-03-01

    The aim of the present study was to evaluate the therapeutic effects and adverse reactions of Tarceva treatment for malignant pleural effusion (MPE) caused by metastatic lung adenocarcinomas. One hundred and twenty-eight patients who failed first-line chemotherapy drug treatment were divided into a mutation and a non-mutation group according to the presence or absence of epidermal growth factor receptor (EGFR) mutations. Each patient received closed drainage combined with simple negative pressure suction after thoracoscopic talc poudrage pleurodesis and oral Tarceva treatment. Short-term and long-term clinical therapeutic effects of Tarceva were evaluated. The EGFR mutation rate in pleural metastatic tissues of lung adenocarcinoma acquired through video-assisted thoracoscopic surgery was higher compared to that in surgical resection specimens, plasma specimens and pleural effusion specimens compared to previously reported results. There were significant statistical differences in the average extubation time (p<0.01), drainage volume of pleural effusion (p<0.05), Karnofsky score and formation of encapsulated pleural effusion 4 weeks after surgery (p<0.05) between these two groups. The number of patients with mild pleural hypertrophy in the mutation group was significantly higher compared to the non-mutation group (p<0.01), while the number of patients with severe pleural hypertrophy was significantly reduced (p<0.05). There was significant statistical discrepancy between these two groups in terms of improvement of peripheral blood carcinoembryonic antigen and tissue polypeptide antigen after 4 weeks of therapy. The complete remission rate and the efficacy rate were higher in the mutation group compared to that in the non-mutation group (p<0.05). There was a longer overall survival time after Tarceva treatment in patients with EGFR mutations than those without EGFR mutation. EGFR mutations predict a favorable outcome for malignant pleural effusion of lung adenocarcinoma with Tarceva therapy. Detection of EGFR mutations may determine the responsiveness of malignant pleural effusion to Tarceva treatment.

  20. Prognostic and predictive values of oncogenic BRAF, NRAS, c-KIT and MITF in cutaneous and mucous melanoma.

    PubMed

    Pracht, M; Mogha, A; Lespagnol, A; Fautrel, A; Mouchet, N; Le Gall, F; Paumier, V; Lefeuvre-Plesse, C; Rioux-Leclerc, N; Mosser, J; Oger, E; Adamski, H; Galibert, M-D; Lesimple, T

    2015-08-01

    Mutations of BRAF, NRAS and c-KIT oncogenes are preferentially described in certain histological subtypes of melanoma and linked to specific histopathological features. BRAF-, MEK- and KIT-inhibitors led to improvement in overall survival of patients harbouring mutated metastatic melanoma. To assess the prevalence and types of BRAF, NRAS, c-KIT and MITF mutations in cutaneous and mucous melanoma and to correlate mutation status with clinicopathological features and outcome. Clinicopathological features and mutation status of 108 samples and of 98 consecutive patients were, respectively, assessed in one retrospective and one prospective study. Clinicopathological features were correlated with mutation status and the predictive value of these mutations was studied. This work identified significant correlations between BRAF mutations and melanoma occurring on non-chronic sun-damaged skin and superficial spreading melanoma (P < 0.05) on one hand, and between NRAS mutations and nodular melanoma (P < 0.05) on the other hand. Younger age (P < 0.05), microscopic (P < 0.05) and macroscopic (P < 0.05) lymphatic involvement at diagnosis of primary melanoma were significantly linked to BRAF mutations. A mutated status was a positive predictive factor of a response to BRAF inhibitors (OR = 3.44). Mutated melanoma showed a significantly (P = 0.038) higher objective response rate to cytotoxic chemotherapy (26.3%) than wild-type tumours (6.7%). Clinical and pathological characteristics of the primary melanoma differed between wild-type and BRAF- or NRAS-mutated tumours. Patients with BRAF-mutated tumours were younger at diagnosis of primary melanoma. Patients carrying mutations showed better responses better to specific kinase inhibitors and interestingly also to systemic cytotoxic chemotherapy. © 2015 European Academy of Dermatology and Venereology.

  1. Updates on the genetics and the clinical impacts on phaeochromocytoma and paraganglioma in the new era.

    PubMed

    Pillai, Suja; Gopalan, Vinod; Smith, Robert A; Lam, Alfred K-Y

    2016-04-01

    Genetic mutations of phaeochromocytoma (PCC) and paraganglioma (PGL) are mainly classified into two major clusters. Cluster 1 mutations are involved with the pseudo hypoxic pathway and comprised of PHD2, VHL, SDHx, IDH, HIF2A, MDH2 and FH mutated PCC/PGL. Cluster 2 mutations are associated with abnormal activation of kinase signalling pathways and included mutations of RET, NF1, KIF1Bβ, MAX and TMEM127. In addition, VHL, SDHx (cluster 1 genes) and RET, NF1 (cluster 2 genes) germline mutations are involved in the neuronal precursor cell pathway in the pathogeneses of PCC/PGL. Also, GDNF, H-ras, K-ras, GNAS, CDKN2A (p16), p53, BAP1, BRCA1&2, ATRX and KMT2D mutations have roles in the development of PCC/PGLs. Overall, known genetic mutations account for the pathogenesis of approximately 60% of PCC/PGLs. Genetic mutations, pathological parameters and biochemical markers are used for better prediction of the outcome of patients with this group of tumours. Immunohistochemistry and gene sequencing can ensure a more effective detection, prediction of malignant potential and treatment of PCC/PCLs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Tumor marker analyses from the phase III, placebo-controlled, FASTACT-2 study of intercalated erlotinib with gemcitabine/platinum in the first-line treatment of advanced non-small-cell lung cancer.

    PubMed

    Mok, Tony; Ladrera, Guia; Srimuninnimit, Vichien; Sriuranpong, Virote; Yu, Chong-Jen; Thongprasert, Sumitra; Sandoval-Tan, Jennifer; Lee, Jin Soo; Fuerte, Fatima; Shames, David S; Klughammer, Barbara; Truman, Matt; Perez-Moreno, Pablo; Wu, Yi-Long

    2016-08-01

    The FASTACT-2 study of intercalated erlotinib with chemotherapy in Asian patients found that EGFR mutations were the main driver behind the significant progression-free survival (PFS) benefit noted in the overall population. Further exploratory biomarker analyses were conducted to provide additional insight. This multicenter, randomized, placebo-controlled, double-blind, phase III study investigated intercalated first-line erlotinib or placebo with gemcitabine/platinum, followed by maintenance erlotinib or placebo, for patients with stage IIIB/IV non-small cell lung cancer (NSCLC). Provision of samples for biomarker analysis was encouraged but not mandatory. The following biomarkers were analyzed (in order of priority): EGFR mutation by cobas(®) test, KRAS mutation by cobas(®)KRAS test, HER2 by immunohistochemistry (IHC), HER3 by IHC, ERCC1 by IHC, EGFR gene copy number by fluorescence in-situ hybridization (FISH) and EGFR by IHC. All subgroups were assessed for PFS (primary endpoint), overall survival (OS), non-progression rate and objective response rate. Overall, 256 patients provided samples for analysis. Considerable overlap was noted among biomarkers, except for EGFR and KRAS mutations, which are mutually exclusive. Other than EGFR mutations (p<0.0001), no other biomarkers were significantly predictive of outcomes in a treatment-by-biomarker interaction test, although ERCC1 IHC-positive status was predictive of improved OS for the erlotinib arm versus placebo in EGFR wild-type patients (median 18.4 vs 9.5 months; hazard ratio [HR] HR=0.32, 95% confidence intervals [CI]: 0.14-0.69, p=0.0024). Activating EGFR mutations were predictive for improved treatment outcomes with a first-line intercalated regimen of chemotherapy and erlotinib in NSCLC. ERCC1 status may have some predictive value in EGFR wild-type disease, but requires further investigation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms

    PubMed Central

    Montalban-Bravo, Guillermo; Takahashi, Koichi; Patel, Keyur; Wang, Feng; Xingzhi, Song; Nogueras, Graciela M.; Huang, Xuelin; Pierola, Ana Alfonso; Jabbour, Elias; Colla, Simona; Gañan-Gomez, Irene; Borthakur, Gautham; Daver, Naval; Estrov, Zeev; Kadia, Tapan; Pemmaraju, Naveen; Ravandi, Farhad; Bueso-Ramos, Carlos; Chamseddine, Ali; Konopleva, Marina; Zhang, Jianhua; Kantarjian, Hagop; Futreal, Andrew; Garcia-Manero, Guillermo

    2018-01-01

    The prognostic and predictive value of sequencing analysis in myelodysplastic syndromes (MDS) has not been fully integrated into clinical practice. We performed whole exome sequencing (WES) of bone marrow samples from 83 patients with MDS and 31 with MDS/MPN identifying 218 driver mutations in 31 genes in 98 (86%) patients. A total of 65 (57%) patients received therapy with hypomethylating agents. By univariate analysis, mutations in BCOR, STAG2, TP53 and SF3B1 significantly influenced survival. Increased number of mutations (≥ 3), but not clonal heterogeneity, predicted for shorter survival and LFS. Presence of 3 or more mutations also predicted for lower likelihood of response (26 vs 50%, p = 0.055), and shorter response duration (3.6 vs 26.5 months, p = 0.022). By multivariate analysis, TP53 mutations (HR 3.1, CI 1.3–7.5, p = 0.011) and number of mutations (≥ 3) (HR 2.5, CI 1.3–4.8, p = 0.005) predicted for shorter survival. A novel prognostic model integrating this mutation data with IPSS-R separated patients into three categories with median survival of not reached, 29 months and 12 months respectively (p < 0.001) and increased stratification potential, compared to IPSS-R, in patients with high/very-high IPSS-R. This model was validated in a separate cohort of 413 patients with untreated MDS. Although the use of WES did not provide significant more information than that obtained with targeted sequencing, our findings indicate that increased number of mutations is an independent prognostic factor in MDS and that mutation data can add value to clinical prognostic models. PMID:29515765

  4. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms.

    PubMed

    Montalban-Bravo, Guillermo; Takahashi, Koichi; Patel, Keyur; Wang, Feng; Xingzhi, Song; Nogueras, Graciela M; Huang, Xuelin; Pierola, Ana Alfonso; Jabbour, Elias; Colla, Simona; Gañan-Gomez, Irene; Borthakur, Gautham; Daver, Naval; Estrov, Zeev; Kadia, Tapan; Pemmaraju, Naveen; Ravandi, Farhad; Bueso-Ramos, Carlos; Chamseddine, Ali; Konopleva, Marina; Zhang, Jianhua; Kantarjian, Hagop; Futreal, Andrew; Garcia-Manero, Guillermo

    2018-02-09

    The prognostic and predictive value of sequencing analysis in myelodysplastic syndromes (MDS) has not been fully integrated into clinical practice. We performed whole exome sequencing (WES) of bone marrow samples from 83 patients with MDS and 31 with MDS/MPN identifying 218 driver mutations in 31 genes in 98 (86%) patients. A total of 65 (57%) patients received therapy with hypomethylating agents. By univariate analysis, mutations in BCOR, STAG2, TP53 and SF3B1 significantly influenced survival. Increased number of mutations (≥ 3), but not clonal heterogeneity, predicted for shorter survival and LFS. Presence of 3 or more mutations also predicted for lower likelihood of response (26 vs 50%, p = 0.055), and shorter response duration (3.6 vs 26.5 months, p = 0.022). By multivariate analysis, TP53 mutations (HR 3.1, CI 1.3-7.5, p = 0.011) and number of mutations (≥ 3) (HR 2.5, CI 1.3-4.8, p = 0.005) predicted for shorter survival. A novel prognostic model integrating this mutation data with IPSS-R separated patients into three categories with median survival of not reached, 29 months and 12 months respectively ( p < 0.001) and increased stratification potential, compared to IPSS-R, in patients with high/very-high IPSS-R. This model was validated in a separate cohort of 413 patients with untreated MDS. Although the use of WES did not provide significant more information than that obtained with targeted sequencing, our findings indicate that increased number of mutations is an independent prognostic factor in MDS and that mutation data can add value to clinical prognostic models.

  5. Structure-Functional Prediction and Analysis of Cancer Mutation Effects in Protein Kinases

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2014-01-01

    A central goal of cancer research is to discover and characterize the functional effects of mutated genes that contribute to tumorigenesis. In this study, we provide a detailed structural classification and analysis of functional dynamics for members of protein kinase families that are known to harbor cancer mutations. We also present a systematic computational analysis that combines sequence and structure-based prediction models to characterize the effect of cancer mutations in protein kinases. We focus on the differential effects of activating point mutations that increase protein kinase activity and kinase-inactivating mutations that decrease activity. Mapping of cancer mutations onto the conformational mobility profiles of known crystal structures demonstrated that activating mutations could reduce a steric barrier for the movement from the basal “low” activity state to the “active” state. According to our analysis, the mechanism of activating mutations reflects a combined effect of partial destabilization of the kinase in its inactive state and a concomitant stabilization of its active-like form, which is likely to drive tumorigenesis at some level. Ultimately, the analysis of the evolutionary and structural features of the major cancer-causing mutational hotspot in kinases can also aid in the correlation of kinase mutation effects with clinical outcomes. PMID:24817905

  6. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA.

    PubMed

    Scherer, Florian; Kurtz, David M; Newman, Aaron M; Stehr, Henning; Craig, Alexander F M; Esfahani, Mohammad Shahrokh; Lovejoy, Alexander F; Chabon, Jacob J; Klass, Daniel M; Liu, Chih Long; Zhou, Li; Glover, Cynthia; Visser, Brendan C; Poultsides, George A; Advani, Ranjana H; Maeda, Lauren S; Gupta, Neel K; Levy, Ronald; Ohgami, Robert S; Kunder, Christian A; Diehn, Maximilian; Alizadeh, Ash A

    2016-11-09

    Patients with diffuse large B cell lymphoma (DLBCL) exhibit marked diversity in tumor behavior and outcomes, yet the identification of poor-risk groups remains challenging. In addition, the biology underlying these differences is incompletely understood. We hypothesized that characterization of mutational heterogeneity and genomic evolution using circulating tumor DNA (ctDNA) profiling could reveal molecular determinants of adverse outcomes. To address this hypothesis, we applied cancer personalized profiling by deep sequencing (CAPP-Seq) analysis to tumor biopsies and cell-free DNA samples from 92 lymphoma patients and 24 healthy subjects. At diagnosis, the amount of ctDNA was found to strongly correlate with clinical indices and was independently predictive of patient outcomes. We demonstrate that ctDNA genotyping can classify transcriptionally defined tumor subtypes, including DLBCL cell of origin, directly from plasma. By simultaneously tracking multiple somatic mutations in ctDNA, our approach outperformed immunoglobulin sequencing and radiographic imaging for the detection of minimal residual disease and facilitated noninvasive identification of emergent resistance mutations to targeted therapies. In addition, we identified distinct patterns of clonal evolution distinguishing indolent follicular lymphomas from those that transformed into DLBCL, allowing for potential noninvasive prediction of histological transformation. Collectively, our results demonstrate that ctDNA analysis reveals biological factors that underlie lymphoma clinical outcomes and could facilitate individualized therapy. Copyright © 2016, American Association for the Advancement of Science.

  7. Long-term outcome of Leigh syndrome caused by the NARP-T8993C mtDNA mutation.

    PubMed

    Debray, François-Guillaume; Lambert, Marie; Lortie, Anne; Vanasse, Michel; Mitchell, Grant A

    2007-09-01

    Mutations at mitochondrial DNA (mtDNA) nucleotide 8993 can cause neurogenic weakness, ataxia and retinitis pigmentosa (NARP syndrome), or maternally inherited Leigh syndrome (LS), with a correlation between the amount of mutant mtDNA and the severity of the neurological disease. The T8993C mutation is generally considered to be clinically milder than the T8993G mutation but when the level of heteroplasmy exceeds 90%, progressive neurodegeneration has been found. We report on a long-term follow-up of a patient who presented at 4 years of age with typical LS but showed an unexpected resolution of his symptoms and a favorable outcome. At 18 years of age, his neurological examination was near normal, with neither peripheral neuropathy nor retinopathy. mtDNA analysis identified the presence of T8993C mutation at high level (>95%) in the patient's blood leukocytes. This case report and literature review emphasizes the variability of the phenotypic expression of the T8993C mutation and the need for caution in predictive counseling in such patients. (c) 2007 Wiley-Liss, Inc. Copyright 2007 Wiley-Liss, Inc.

  8. Mutation supply and the repeatability of selection for antibiotic resistance

    NASA Astrophysics Data System (ADS)

    van Dijk, Thomas; Hwang, Sungmin; Krug, Joachim; de Visser, J. Arjan G. M.; Zwart, Mark P.

    2017-10-01

    Whether evolution can be predicted is a key question in evolutionary biology. Here we set out to better understand the repeatability of evolution, which is a necessary condition for predictability. We explored experimentally the effect of mutation supply and the strength of selective pressure on the repeatability of selection from standing genetic variation. Different sizes of mutant libraries of antibiotic resistance gene TEM-1 β-lactamase in Escherichia coli, generated by error-prone PCR, were subjected to different antibiotic concentrations. We determined whether populations went extinct or survived, and sequenced the TEM gene of the surviving populations. The distribution of mutations per allele in our mutant libraries followed a Poisson distribution. Extinction patterns could be explained by a simple stochastic model that assumed the sampling of beneficial mutations was key for survival. In most surviving populations, alleles containing at least one known large-effect beneficial mutation were present. These genotype data also support a model which only invokes sampling effects to describe the occurrence of alleles containing large-effect driver mutations. Hence, evolution is largely predictable given cursory knowledge of mutational fitness effects, the mutation rate and population size. There were no clear trends in the repeatability of selected mutants when we considered all mutations present. However, when only known large-effect mutations were considered, the outcome of selection is less repeatable for large libraries, in contrast to expectations. We show experimentally that alleles carrying multiple mutations selected from large libraries confer higher resistance levels relative to alleles with only a known large-effect mutation, suggesting that the scarcity of high-resistance alleles carrying multiple mutations may contribute to the decrease in repeatability at large library sizes.

  9. Structural modeling of tissue-specific mitochondrial alanyl-tRNA synthetase (AARS2) defects predicts differential effects on aminoacylation

    PubMed Central

    Euro, Liliya; Konovalova, Svetlana; Asin-Cayuela, Jorge; Tulinius, Már; Griffin, Helen; Horvath, Rita; Taylor, Robert W.; Chinnery, Patrick F.; Schara, Ulrike; Thorburn, David R.; Suomalainen, Anu; Chihade, Joseph; Tyynismaa, Henna

    2015-01-01

    The accuracy of mitochondrial protein synthesis is dependent on the coordinated action of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mtARSs) and the mitochondrial DNA-encoded tRNAs. The recent advances in whole-exome sequencing have revealed the importance of the mtARS proteins for mitochondrial pathophysiology since nearly every nuclear gene for mtARS (out of 19) is now recognized as a disease gene for mitochondrial disease. Typically, defects in each mtARS have been identified in one tissue-specific disease, most commonly affecting the brain, or in one syndrome. However, mutations in the AARS2 gene for mitochondrial alanyl-tRNA synthetase (mtAlaRS) have been reported both in patients with infantile-onset cardiomyopathy and in patients with childhood to adulthood-onset leukoencephalopathy. We present here an investigation of the effects of the described mutations on the structure of the synthetase, in an effort to understand the tissue-specific outcomes of the different mutations. The mtAlaRS differs from the other mtARSs because in addition to the aminoacylation domain, it has a conserved editing domain for deacylating tRNAs that have been mischarged with incorrect amino acids. We show that the cardiomyopathy phenotype results from a single allele, causing an amino acid change R592W in the editing domain of AARS2, whereas the leukodystrophy mutations are located in other domains of the synthetase. Nevertheless, our structural analysis predicts that all mutations reduce the aminoacylation activity of the synthetase, because all mtAlaRS domains contribute to tRNA binding for aminoacylation. According to our model, the cardiomyopathy mutations severely compromise aminoacylation whereas partial activity is retained by the mutation combinations found in the leukodystrophy patients. These predictions provide a hypothesis for the molecular basis of the distinct tissue-specific phenotypic outcomes. PMID:25705216

  10. Genetic contribution to neurodevelopmental outcomes in congenital heart disease: are some patients predetermined to have developmental delay?

    PubMed

    Rollins, Caitlin K; Newburger, Jane W; Roberts, Amy E

    2017-10-01

    Neurodevelopmental impairment is common in children with moderate to severe congenital heart disease (CHD). As children live longer and healthier lives, research has focused on identifying causes of neurodevelopmental morbidity that significantly impact long-term quality of life. This review will address the role of genetic factors in predicting neurodevelopmental outcome in CHD. A robust literature suggests that among children with various forms of CHD, those with known genetic/extracardiac anomalies are at highest risk of neurodevelopmental impairment. Advances in genetic technology have identified genetic causes of CHD in an increasing percentage of patients. Further, emerging data suggest substantial overlap between mutations in children with CHD and those that have previously been associated with neurodevelopmental disorders. Innate and patient factors appear to be more important in predicting neurodevelopmental outcome than medical/surgical variables. Future research is needed to establish a broader understanding of the mutations that contribute to neurodevelopmental disorders and the variations in expressivity and penetrance.

  11. A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC

    PubMed Central

    Schell, Michael J.; Yang, Mingli; Teer, Jamie K.; Lo, Fang Yin; Madan, Anup; Coppola, Domenico; Monteiro, Alvaro N. A.; Nebozhyn, Michael V.; Yue, Binglin; Loboda, Andrey; Bien-Willner, Gabriel A.; Greenawalt, Danielle M.; Yeatman, Timothy J.

    2016-01-01

    Colorectal cancer (CRC) is a highly heterogeneous disease, for which prognosis has been relegated to clinicopathologic staging for decades. There is a need to stratify subpopulations of CRC on a molecular basis to better predict outcome and assign therapies. Here we report targeted exome-sequencing of 1,321 cancer-related genes on 468 tumour specimens, which identified a subset of 17 genes that best classify CRC, with APC playing a central role in predicting overall survival. APC may assume 0, 1 or 2 truncating mutations, each with a striking differential impact on survival. Tumours lacking any APC mutation carry a worse prognosis than single APC mutation tumours; however, two APC mutation tumours with mutant KRAS and TP53 confer the poorest survival among all the subgroups examined. Our study demonstrates a prognostic role for APC and suggests that sequencing of APC may have clinical utility in the routine staging and potential therapeutic assignment for CRC. PMID:27302369

  12. Comprehensive cancer-gene panels can be used to estimate mutational load and predict clinical benefit to PD-1 blockade in clinical practice.

    PubMed

    Campesato, Luís Felipe; Barroso-Sousa, Romualdo; Jimenez, Leandro; Correa, Bruna R; Sabbaga, Jorge; Hoff, Paulo M; Reis, Luiz F L; Galante, Pedro Alexandre F; Camargo, Anamaria A

    2015-10-27

    Cancer gene panels (CGPs) are already used in clinical practice to match tumor's genetic profile with available targeted therapies. We aimed to determine if CGPs could also be applied to estimate tumor mutational load and predict clinical benefit to PD-1 and CTLA-4 checkpoint blockade therapy. Whole-exome sequencing (WES) mutation data obtained from melanoma and non-small cell lung cancer (NSCLC) patients published by Snyder et al. 2014 and Rizvi et al. 2015, respectively, were used to select nonsynonymous somatic mutations occurring in genes included in the Foundation Medicine Panel (FM-CGP) and in our own Institutional Panel (HSL-CGP). CGP-mutational load was calculated for each patient using both panels and was associated with clinical outcomes as defined and reported in the original articles. Higher CGP-mutational load was observed in NSCLC patients presenting durable clinical benefit (DCB) to PD-1 blockade (FM-CGP P=0.03, HSL-CGP P=0.01). We also observed that 69% of patients with high CGP-mutational load experienced DCB to PD-1 blockade, as compared to 20% of patients with low CGP-mutational load (FM-CGP and HSL-CGP P=0.01). Noteworthy, predictive accuracy of CGP-mutational load for DCB was not statistically different from that estimated by WES sequencing (P=0.73). Moreover, a high CGP-mutational load was significantly associated with progression-free survival (PFS) in patients treated with PD-1 blockade (FM-CGP P=0.005, HR 0.27, 95% IC 0.105 to 0.669; HSL-CGP P=0.008, HR 0.29, 95% IC 0.116 to 0.719). Similar associations between CGP-mutational load and clinical benefit to CTLA-4 blockade were not observed. In summary, our data reveals that CGPs can be used to estimate mutational load and to predict clinical benefit to PD-1 blockade, with similar accuracy to that reported using WES.

  13. Fisher's geometric model predicts the effects of random mutations when tested in the wild.

    PubMed

    Stearns, Frank W; Fenster, Charles B

    2016-02-01

    Fisher's geometric model of adaptation (FGM) has been the conceptual foundation for studies investigating the genetic basis of adaptation since the onset of the neo Darwinian synthesis. FGM describes adaptation as the movement of a genotype toward a fitness optimum due to beneficial mutations. To date, one prediction of FGM, the probability of improvement is related to the distance from the optimum, has only been tested in microorganisms under laboratory conditions. There is reason to believe that results might differ under natural conditions where more mutations likely affect fitness, and where environmental variance may obscure the expected pattern. We chemically induced mutations into a set of 19 Arabidopsis thaliana accessions from across the native range of A. thaliana and planted them alongside the premutated founder lines in two habitats in the mid-Atlantic region of the United States under field conditions. We show that FGM is able to predict the outcome of a set of random induced mutations on fitness in a set of A. thaliana accessions grown in the wild: mutations are more likely to be beneficial in relatively less fit genotypes. This finding suggests that FGM is an accurate approximation of the process of adaptation under more realistic ecological conditions. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  14. Genetics, Clinical Features, and Long-Term Outcome of Noncompaction Cardiomyopathy.

    PubMed

    van Waning, Jaap I; Caliskan, Kadir; Hoedemaekers, Yvonne M; van Spaendonck-Zwarts, Karin Y; Baas, Annette F; Boekholdt, S Matthijs; van Melle, Joost P; Teske, Arco J; Asselbergs, Folkert W; Backx, Ad P C M; du Marchie Sarvaas, Gideon J; Dalinghaus, Michiel; Breur, Johannes M P J; Linschoten, Marijke P M; Verlooij, Laura A; Kardys, Isabella; Dooijes, Dennis; Lekanne Deprez, Ronald H; IJpma, Arne S; van den Berg, Maarten P; Hofstra, Robert M W; van Slegtenhorst, Marjon A; Jongbloed, Jan D H; Majoor-Krakauer, Danielle

    2018-02-20

    The clinical outcomes of noncompaction cardiomyopathy (NCCM) range from asymptomatic to heart failure, arrhythmias, and sudden cardiac death. Genetics play an important role in NCCM. This study investigated the correlations among genetics, clinical features, and outcomes in adults and children diagnosed with NCCM. A retrospective multicenter study from 4 cardiogenetic centers in the Netherlands classified 327 unrelated NCCM patients into 3 categories: 1) genetic, with a mutation in 32% (81 adults; 23 children) of patients; 2) probably genetic, familial cardiomyopathy without a mutation in 16% (45 adults; 8 children) of patients; or 3) sporadic, no family history, without mutation in 52% (149 adults; 21 children) of patients. Clinical features and major adverse cardiac events (MACE) during follow-up were compared across the children and adults. MYH7, MYBPC3, and TTN mutations were the most common mutations (71%) found in genetic NCCM. The risk of having reduced left ventricular (LV) systolic dysfunction was higher for genetic patients compared with the probably genetic and sporadic cases (p = 0.024), with the highest risk in patients with multiple mutations and TTN mutations. Mutations were more frequent in children (p = 0.04) and were associated with MACE (p = 0.025). Adults were more likely to have sporadic NCCM. High risk for cardiac events in children and adults was related to LV systolic dysfunction in mutation carriers, but not in sporadic cases. Patients with MYH7 mutations had low risk for MACE (p = 0.03). NCCM is a heterogeneous condition, and genetic stratification has a role in clinical care. Distinguishing genetic from nongenetic NCCM complements prediction of outcome and may lead to management and follow-up tailored to genetic status. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. p53 sequence analysis predicts treatment response and outcome of patients with esophageal carcinoma.

    PubMed

    Ribeiro, U; Finkelstein, S D; Safatle-Ribeiro, A V; Landreneau, R J; Clarke, M R; Bakker, A; Swalsky, P A; Gooding, W E; Posner, M C

    1998-07-01

    The ability to predict biologic behavior and treatment responsiveness would be a valuable asset in the multimodality approach to esophageal carcinoma. The authors examined whether alterations of the p53 gene correlate with clinicopathologic parameters, response to preoperative chemotherapy/radiotherapy, and outcome in patients with esophageal carcinoma. METHODS. Histopathologic/genetic analysis of p53 was performed on formalin fixed, paraffin embedded tissues. Tissue sections were stained immunohistochemically for p53 protein followed by topographic genotyping comprised of polymerase chain reaction amplification and direct sequencing of p53 exons 5-8. All patients received induction chemotherapy (5-fluorouracil, cisplatin, and alpha-interferon) and concurrent external beam radiotherapy (4500 centigrays) followed by resection. p53 analysis performed on 42 tumors from patients with potentially resectable esophageal carcinoma revealed 25 of the 42 tumors (59.5%) to be p53 immunopositive; however, only 17 of the 42 tumors (40.5%) were proven to contain p53 point mutational damage in exons 8 (n=5), 5 (n=5), 7 (n=4), and 6 (n=3). Eight cases were weakly immunopositive and had no genotype mutation suggesting hyperexpression of normal wild-type p53. Genotyping also identified two immunonegative cases with deletion-type mutations (exons 5 and 6). Tissue samples collected before and after chemotherapy/radiotherapy exhibited fidelity in p53 mutational genotype in all cases. The presence of a p53 point mutation positively correlated with pTNM stage (P=0.003) and residual disease in the resected specimen (P=0.01). Moreover, survival of patients with p53 mutations was significantly lower than that of patients without mutations (overall survival of 21.6 months vs. 40 months; P=0.0038; and disease free survival of 14.1 months vs. 38 months; P=0.0004). Histopathologic/genetic analysis is a better determinant of p53 mutational damage than immunohistochemistry alone and can be used as a prognostic marker for esophageal carcinoma. p53 genotyping may define a subset of patients who respond to chemotherapy/radiotherapy and may predict who potentially benefits from multimodality therapy.

  16. Next-Generation Sequencing Identifies Gene Mutations That Are Predictive of Malignancy in Residual Needle Rinses Collected From Fine-Needle Aspirations of Thyroid Nodules.

    PubMed

    Fuller, Maren Y; Mody, Dina; Hull, April; Pepper, Kristi; Hendrickson, Heather; Olsen, Randall

    2018-02-01

    - Thyroid nodules have a prevalence of approximately 70% in adults. Fine-needle aspiration (FNA) is a minimally invasive, cost-effective, standard method to collect tissue from thyroid nodules for cytologic examination. However, approximately 15% of thyroid FNA specimens cannot be unambiguously diagnosed as benign or malignant. - To investigate whether clinically actionable data can be obtained using next-generation sequencing of residual needle rinse material. - A total of 24 residual needle rinse specimens with malignant (n = 6), indeterminate (n = 9), or benign (n = 9) thyroid FNA diagnoses were analyzed in our clinical molecular diagnostics laboratory using next-generation sequencing assays designed to detect gene mutations and translocations that commonly occur in thyroid cancer. Results were correlated with surgical diagnoses and clinical outcomes. - Interpretable data were generated from 23 of 24 residual needle rinse specimens. Consistent with its well-known role in thyroid malignancy, BRAF V600E mutations were detected in 4 malignant cases. An NRAS mutation was detected in 1 benign case. No mutations were detected from specimens with indeterminate diagnoses. - Our data demonstrate that residual thyroid FNA needle rinses are an adequate source of material for molecular diagnostic testing. Importantly, detection of a mutation implicated in thyroid malignancy was predictive of the final surgical diagnosis and clinical outcome. Our strategy to triage thyroid nodules with indeterminate cytology with molecular testing eliminates the need to perform additional FNA passes into dedicated media or to schedule additional invasive procedures. Further investigation with a larger sample size to confirm the clinical utility of our proposed strategy is underway.

  17. Molecular diagnostics in the management of rhabdomyosarcoma.

    PubMed

    Arnold, Michael A; Barr, Fredric G

    2017-02-01

    A classification of rhabdomyosarcoma (RMS) with prognostic relevance has primarily relied on clinical features and histologic classification as either embryonal or alveolar RMS. The PAX3-FOXO1 and PAX7-FOXO1 gene fusions occur in 80% of cases with the alveolar subtype and are more predictive of outcome than histologic classification. Identifying additional molecular hallmarks that further subclassify RMS is an active area of research. Areas Covered: The authors review the current state of the PAX3-FOXO1 and PAX7-FOXO1 fusions as prognostic biomarkers. Emerging biomarkers, including mRNA expression profiling, MYOD1 mutations, RAS pathway mutations and gene fusions involving NCOA2 or VGLL2 are also reviewed. Expert commentary: Strategies for modifying RMS risk stratification based on molecular biomarkers are emerging with the potential to transform the clinical management of RMS, ultimately improving patient outcomes by tailoring therapy to predicted patient risk and identifying targets for novel therapies.

  18. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation

    PubMed Central

    Yoshizato, Tetsuichi; Nannya, Yasuhito; Atsuta, Yoshiko; Shiozawa, Yusuke; Iijima-Yamashita, Yuka; Yoshida, Kenichi; Shiraishi, Yuichi; Suzuki, Hiromichi; Nagata, Yasunobu; Sato, Yusuke; Kakiuchi, Nobuyuki; Matsuo, Keitaro; Onizuka, Makoto; Kataoka, Keisuke; Chiba, Kenichi; Tanaka, Hiroko; Ueno, Hiroo; Nakagawa, Masahiro M.; Przychodzen, Bartlomiej; Haferlach, Claudia; Kern, Wolfgang; Aoki, Kosuke; Itonaga, Hidehiro; Kanda, Yoshinobu; Sekeres, Mikkael A.; Maciejewski, Jaroslaw P.; Haferlach, Torsten; Miyazaki, Yasushi; Horibe, Keizo; Sanada, Masashi; Miyano, Satoru; Makishima, Hideki

    2017-01-01

    Genetic alterations, including mutations and copy-number alterations, are central to the pathogenesis of myelodysplastic syndromes and related diseases (myelodysplasia), but their roles in allogeneic stem cell transplantation have not fully been studied in a large cohort of patients. We enrolled 797 patients who had been diagnosed with myelodysplasia at initial presentation and received transplantation via the Japan Marrow Donor Program. Targeted-capture sequencing was performed to identify mutations in 69 genes, together with copy-number alterations, whose effects on transplantation outcomes were investigated. We identified 1776 mutations and 927 abnormal copy segments among 617 patients (77.4%). In multivariate modeling using Cox proportional-hazards regression, genetic factors explained 30% of the total hazards for overall survival; clinical characteristics accounted for 70% of risk. TP53 and RAS-pathway mutations, together with complex karyotype (CK) as detected by conventional cytogenetics and/or sequencing-based analysis, negatively affected posttransplant survival independently of clinical factors. Regardless of disease subtype, TP53-mutated patients with CK were characterized by unique genetic features and associated with an extremely poor survival with frequent early relapse, whereas outcomes were substantially better in TP53-mutated patients without CK. By contrast, the effects of RAS-pathway mutations depended on disease subtype and were confined to myelodysplastic/myeloproliferative neoplasms (MDS/MPNs). Our results suggest that TP53 and RAS-pathway mutations predicted a dismal prognosis, when associated with CK and MDS/MPNs, respectively. However, for patients with mutated TP53 or CK alone, long-term survival could be obtained with transplantation. Clinical sequencing provides vital information for accurate prognostication in transplantation. PMID:28223278

  19. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation.

    PubMed

    Yoshizato, Tetsuichi; Nannya, Yasuhito; Atsuta, Yoshiko; Shiozawa, Yusuke; Iijima-Yamashita, Yuka; Yoshida, Kenichi; Shiraishi, Yuichi; Suzuki, Hiromichi; Nagata, Yasunobu; Sato, Yusuke; Kakiuchi, Nobuyuki; Matsuo, Keitaro; Onizuka, Makoto; Kataoka, Keisuke; Chiba, Kenichi; Tanaka, Hiroko; Ueno, Hiroo; Nakagawa, Masahiro M; Przychodzen, Bartlomiej; Haferlach, Claudia; Kern, Wolfgang; Aoki, Kosuke; Itonaga, Hidehiro; Kanda, Yoshinobu; Sekeres, Mikkael A; Maciejewski, Jaroslaw P; Haferlach, Torsten; Miyazaki, Yasushi; Horibe, Keizo; Sanada, Masashi; Miyano, Satoru; Makishima, Hideki; Ogawa, Seishi

    2017-04-27

    Genetic alterations, including mutations and copy-number alterations, are central to the pathogenesis of myelodysplastic syndromes and related diseases (myelodysplasia), but their roles in allogeneic stem cell transplantation have not fully been studied in a large cohort of patients. We enrolled 797 patients who had been diagnosed with myelodysplasia at initial presentation and received transplantation via the Japan Marrow Donor Program. Targeted-capture sequencing was performed to identify mutations in 69 genes, together with copy-number alterations, whose effects on transplantation outcomes were investigated. We identified 1776 mutations and 927 abnormal copy segments among 617 patients (77.4%). In multivariate modeling using Cox proportional-hazards regression, genetic factors explained 30% of the total hazards for overall survival; clinical characteristics accounted for 70% of risk. TP53 and RAS-pathway mutations, together with complex karyotype (CK) as detected by conventional cytogenetics and/or sequencing-based analysis, negatively affected posttransplant survival independently of clinical factors. Regardless of disease subtype, TP53 -mutated patients with CK were characterized by unique genetic features and associated with an extremely poor survival with frequent early relapse, whereas outcomes were substantially better in TP53 -mutated patients without CK. By contrast, the effects of RAS-pathway mutations depended on disease subtype and were confined to myelodysplastic/myeloproliferative neoplasms (MDS/MPNs). Our results suggest that TP53 and RAS-pathway mutations predicted a dismal prognosis, when associated with CK and MDS/MPNs, respectively. However, for patients with mutated TP53 or CK alone, long-term survival could be obtained with transplantation. Clinical sequencing provides vital information for accurate prognostication in transplantation. © 2017 by The American Society of Hematology.

  20. Serine Protease Inhibitor Kazal Type 1 (SPINK1) c.194+2T > C Mutation May Predict Long-term Outcome of Endoscopic Treatments in Idiopathic Chronic Pancreatitis.

    PubMed

    Sun, Chang; Liu, Mu-Yun; Liu, Xiao-Gang; Hu, Liang-Hao; Xia, Tian; Liao, Zhuan; Li, Zhao-Shen

    2015-11-01

    Endoscopic interventional is a commonly used treatment method for idiopathic chronic pancreatitis. Serine protease inhibitor Kazal type 1 (SPINK1) 194+2T>C mutation is most frequently observed in Chinese pancreatitis patients and influences the clinical course of idiopathic chronic pancreatitis patients. We conducted this study to determine the impacts of this mutation on the outcome of endoscopic treatments.In this study, we enrolled 423 patients. Among them, 101 idiopathic chronic pancreatitis patients without other relevant mutations had a successful endoscopic procedure and completed follow-up. Clinical characteristics including Izbicki pain score, exocrine and endocrine function, were evaluated. Genetic sequencing was conducted to detect SPINK1 194+2T>C mutations.The c.194+2T>C mutation was found in 58 (57.43%) patients. Factors relevant to pain relief are c.194+2T>C mutation (P = 0.011), severe pain before treatment (P = 0.005), and necessary subsequent endoscopic treatments (P < 0.001). More patients with the intronic mutation had deteriorated endocrine function (P = 0.001) relative to those patients without the mutation.Patients carrying the c.194+2T>C mutation were less likely to achieve pain relief through endoscopic treatments. They also have a higher risk of endocrine function deterioration. SPINK1 c.194+2T>C mutation may be applied as a pretreatment predictor in idiopathic chronic pancreatitis patients.

  1. Clonal hematopoiesis in acquired aplastic anemia.

    PubMed

    Ogawa, Seishi

    2016-07-21

    Clonal hematopoiesis (CH) in aplastic anemia (AA) has been closely linked to the evolution of late clonal disorders, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), which are common complications after successful immunosuppressive therapy (IST). With the advent of high-throughput sequencing of recent years, the molecular aspect of CH in AA has been clarified by comprehensive detection of somatic mutations that drive clonal evolution. Genetic abnormalities are found in ∼50% of patients with AA and, except for PIGA mutations and copy-neutral loss-of-heterozygosity, or uniparental disomy (UPD) in 6p (6pUPD), are most frequently represented by mutations involving genes commonly mutated in myeloid malignancies, including DNMT3A, ASXL1, and BCOR/BCORL1 Mutations exhibit distinct chronological profiles and clinical impacts. BCOR/BCORL1 and PIGA mutations tend to disappear or show stable clone size and predict a better response to IST and a significantly better clinical outcome compared with mutations in DNMT3A, ASXL1, and other genes, which are likely to increase their clone size, are associated with a faster progression to MDS/AML, and predict an unfavorable survival. High frequency of 6pUPD and overrepresentation of PIGA and BCOR/BCORL1 mutations are unique to AA, suggesting the role of autoimmunity in clonal selection. By contrast, DNMT3A and ASXL1 mutations, also commonly seen in CH in the general population, indicate a close link to CH in the aged bone marrow, in terms of the mechanism for selection. Detection and close monitoring of somatic mutations/evolution may help with prediction and diagnosis of clonal evolution of MDS/AML and better management of patients with AA. © 2016 by The American Society of Hematology.

  2. Clonal hematopoiesis in acquired aplastic anemia

    PubMed Central

    2016-01-01

    Clonal hematopoiesis (CH) in aplastic anemia (AA) has been closely linked to the evolution of late clonal disorders, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), which are common complications after successful immunosuppressive therapy (IST). With the advent of high-throughput sequencing of recent years, the molecular aspect of CH in AA has been clarified by comprehensive detection of somatic mutations that drive clonal evolution. Genetic abnormalities are found in ∼50% of patients with AA and, except for PIGA mutations and copy-neutral loss-of-heterozygosity, or uniparental disomy (UPD) in 6p (6pUPD), are most frequently represented by mutations involving genes commonly mutated in myeloid malignancies, including DNMT3A, ASXL1, and BCOR/BCORL1. Mutations exhibit distinct chronological profiles and clinical impacts. BCOR/BCORL1 and PIGA mutations tend to disappear or show stable clone size and predict a better response to IST and a significantly better clinical outcome compared with mutations in DNMT3A, ASXL1, and other genes, which are likely to increase their clone size, are associated with a faster progression to MDS/AML, and predict an unfavorable survival. High frequency of 6pUPD and overrepresentation of PIGA and BCOR/BCORL1 mutations are unique to AA, suggesting the role of autoimmunity in clonal selection. By contrast, DNMT3A and ASXL1 mutations, also commonly seen in CH in the general population, indicate a close link to CH in the aged bone marrow, in terms of the mechanism for selection. Detection and close monitoring of somatic mutations/evolution may help with prediction and diagnosis of clonal evolution of MDS/AML and better management of patients with AA. PMID:27121470

  3. RAS mutation status predicts survival and patterns of recurrence in patients undergoing hepatectomy for colorectal liver metastases.

    PubMed

    Vauthey, Jean-Nicolas; Zimmitti, Giuseppe; Kopetz, Scott E; Shindoh, Junichi; Chen, Su S; Andreou, Andreas; Curley, Steven A; Aloia, Thomas A; Maru, Dipen M

    2013-10-01

    To determine the impact of RAS mutation status on survival and patterns of recurrence in patients undergoing curative resection of colorectal liver metastases (CLM) after preoperative modern chemotherapy. RAS mutation has been reported to be associated with aggressive tumor biology. However, the effect of RAS mutation on survival and patterns of recurrence after resection of CLM remains unclear. Somatic mutations were analyzed using mass spectroscopy in 193 patients who underwent single-regimen modern chemotherapy before resection of CLM. The relationship between RAS mutation status and survival outcomes was investigated. Detected somatic mutations included RAS (KRAS/NRAS) in 34 (18%), PIK3CA in 13 (7%), and BRAF in 2 (1%) patients. At a median follow-up of 33 months, 3-year overall survival (OS) rates were 81% in patients with wild-type versus 52.2% in patients with mutant RAS (P = 0.002); 3-year recurrence-free survival (RFS) rates were 33.5% with wild-type versus 13.5% with mutant RAS (P = 0.001). Liver and lung recurrences were observed in 89 and 83 patients, respectively. Patients with RAS mutation had a lower 3-year lung RFS rate (34.6% vs 59.3%, P < 0.001) but not a lower 3-year liver RFS rate (43.8% vs 50.2%, P = 0.181). In multivariate analyses, RAS mutation predicted worse OS [hazard ratio (HR) = 2.3, P = 0.002), overall RFS (HR = 1.9, P = 0.005), and lung RFS (HR = 2.0, P = 0.01), but not liver RFS (P = 0.181). RAS mutation predicts early lung recurrence and worse survival after curative resection of CLM. This information may be used to individualize systemic and local tumor-directed therapies and follow-up strategies.

  4. RAS mutation status predicts survival and patterns of recurrence in patients undergoing hepatectomy for colorectal liver metastases

    PubMed Central

    Vauthey, Jean-Nicolas; Zimmitti, Giuseppe; Kopetz, Scott E.; Shindoh, Junichi; Chen, Su S.; Andreou, Andreas; Curley, Steven A.; Aloia, Thomas A.; Maru, Dipen M.

    2013-01-01

    Objective To determine the impact of RAS mutation status on survival and patterns of recurrence in patients undergoing curative resection of colorectal liver metastases (CLM) after preoperative modern chemotherapy. Summary Background Data RAS mutation has been reported to be associated with aggressive tumor biology. However, the effect of RAS mutation on survival and patterns of recurrence after resection of CLM remains unclear. Methods Somatic mutations were analyzed using mass spectroscopy in 193 patients who underwent single-regimen modern chemotherapy before resection of CLM. The relationship between RAS mutation status and survival outcomes was investigated. Results Detected somatic mutations included RAS (KRAS/NRAS) in 34 patients (18%), PIK3CA in 13 (7%), and BRAF in 2 (1%). At a median follow-up of 33 months, 3-year overall survival (OS) rates were 81% in patients with wild-type vs 52.2% in patients with mutant RAS (P=0.002); 3-year recurrence-free survival (RFS) rates were 33.5% with wild-type vs 13.5% with mutant RAS (P=0.001). Liver and lung recurrences were observed in 89 and 83 patients, respectively. Patients with RAS mutation had a lower 3-year lung RFS rate (34.6% vs 59.3%, P<0.001), but not a lower 3-year liver RFS rate (43.8% vs 50.2%, P=0.181). In multivariate analyses, RAS mutation predicted worse OS (hazard ratio [HR] 2.3, P=0.002), overall RFS (HR 1.9, P=0.005), and lung RFS (HR 2.0, P=0.01), but not liver RFS (P=0.181). Conclusions RAS mutation predicts early lung recurrence and worse survival after curative resection of CLM. This information may be used to individualize systemic and local tumor-directed therapies and follow-up strategies. PMID:24018645

  5. The PROPKD Score: A New Algorithm to Predict Renal Survival in Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Cornec-Le Gall, Emilie; Audrézet, Marie-Pierre; Rousseau, Annick; Hourmant, Maryvonne; Renaudineau, Eric; Charasse, Christophe; Morin, Marie-Pascale; Moal, Marie-Christine; Dantal, Jacques; Wehbe, Bassem; Perrichot, Régine; Frouget, Thierry; Vigneau, Cécile; Potier, Jérôme; Jousset, Philippe; Guillodo, Marie-Paule; Siohan, Pascale; Terki, Nazim; Sawadogo, Théophile; Legrand, Didier; Menoyo-Calonge, Victorio; Benarbia, Seddik; Besnier, Dominique; Longuet, Hélène; Férec, Claude; Le Meur, Yannick

    2016-03-01

    The course of autosomal dominant polycystic kidney disease (ADPKD) varies among individuals, with some reaching ESRD before 40 years of age and others never requiring RRT. In this study, we developed a prognostic model to predict renal outcomes in patients with ADPKD on the basis of genetic and clinical data. We conducted a cross-sectional study of 1341 patients from the Genkyst cohort and evaluated the influence of clinical and genetic factors on renal survival. Multivariate survival analysis identified four variables that were significantly associated with age at ESRD onset, and a scoring system from 0 to 9 was developed as follows: being male: 1 point; hypertension before 35 years of age: 2 points; first urologic event before 35 years of age: 2 points; PKD2 mutation: 0 points; nontruncating PKD1 mutation: 2 points; and truncating PKD1 mutation: 4 points. Three risk categories were subsequently defined as low risk (0-3 points), intermediate risk (4-6 points), and high risk (7-9 points) of progression to ESRD, with corresponding median ages for ESRD onset of 70.6, 56.9, and 49 years, respectively. Whereas a score ≤3 eliminates evolution to ESRD before 60 years of age with a negative predictive value of 81.4%, a score >6 forecasts ESRD onset before 60 years of age with a positive predictive value of 90.9%. This new prognostic score accurately predicts renal outcomes in patients with ADPKD and may enable the personalization of therapeutic management of ADPKD. Copyright © 2016 by the American Society of Nephrology.

  6. MO-DE-207B-01: JACK FOWLER JUNIOR INVESTIGATOR COMPETITION WINNER: Between Somatic Mutations and PET-Based Radiomic Features in Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yip, S; Coroller, T; Rios Velazquez, E

    Purpose: Although PET-based radiomic features have been proposed to quantify tumor heterogeneity and shown promise in outcome prediction, little is known about their relationship with tumor genetics. This study assessed the association of [{sup 18}F]fluorodeoxyglucose (FDG)-PET-based radiomic features with non-small cell lung cancer (NSCLC) mutations. Methods: 348 NSCLC patients underwent FDG-PET/CT scans before treatment and were tested for genetic mutations. 13% (44/348) and 28% (96/348) patients were found to harbor EGFR (EGFR+) and KRAS (KRAS+) mutations, respectively. We evaluated nineteen PET-based radiomic features quantifying phenotypic traits, and compared them with conventional PET features (metabolic tumor volume (MTV) and maximum-SUV). Themore » association between the feature values and mutation status was evaluated using the Wilcoxcon-rank-sum-test. The ability of each measure to predict mutations was assessed by the area under the receiver operating curve (AUC). Noether’s test was used to determine if the AUCs were significantly from random (AUC=0.50). All p-values were corrected for multiple testing by controlling the false discovery rate (FDR{sub Wilcoxon} and FDR{sub Noether}) of 10%. Results: Eight radiomic features, MTV, and maximum-SUV, were significantly associated with the EGFR mutation (FDR{sub Wilcoxon}=0.01–0.10). However, KRAS+ demonstrated no significantly distinctive imaging features compared to KRAS− (FDR{sub Wilcoxon}≥0.92). EGFR+ and EGFR− were significantly discriminated by conventional PET features (AUC=0.61, FDR{sub Noether}=0.04 for MTV and AUC=0.64, FDR{sub Noether}=0.01 for maximum-SUV). Eight radiomic features were significantly predictive for EGFR+ compared to EGFR− (AUC=0.59–0.67, FDR{sub Noether}=0.0032–0.09). Normalized-inverse-difference-moment outperformed all features in predicting EGFR mutation (AUC=0.67, FDR{sub Noether}=0.0032). Moreover, only the radiomic feature normalized-inverse-difference-moment could significantly predict KRAS+ from EGFR+ (AUC=0.65, FDR{sub Noether}=0.05). All measures failed to predict KRAS+ from KRAS− (AUC=0.50–0.54, FDR{sub Noether}≥0.92). Conclusion: PET imaging features were strongly associated with EGFR mutations in NSCLC. Radiomic features have great potential in predicting EGFR mutations. Our study may help develop a non-invasive imaging biomarker for EGFR mutation. R.M. has consulting interests with Amgen.« less

  7. Logic programming to predict cell fate patterns and retrodict genotypes in organogenesis.

    PubMed

    Hall, Benjamin A; Jackson, Ethan; Hajnal, Alex; Fisher, Jasmin

    2014-09-06

    Caenorhabditis elegans vulval development is a paradigm system for understanding cell differentiation in the process of organogenesis. Through temporal and spatial controls, the fate pattern of six cells is determined by the competition of the LET-23 and the Notch signalling pathways. Modelling cell fate determination in vulval development using state-based models, coupled with formal analysis techniques, has been established as a powerful approach in predicting the outcome of combinations of mutations. However, computing the outcomes of complex and highly concurrent models can become prohibitive. Here, we show how logic programs derived from state machines describing the differentiation of C. elegans vulval precursor cells can increase the speed of prediction by four orders of magnitude relative to previous approaches. Moreover, this increase in speed allows us to infer, or 'retrodict', compatible genomes from cell fate patterns. We exploit this technique to predict highly variable cell fate patterns resulting from dig-1 reduced-function mutations and let-23 mosaics. In addition to the new insights offered, we propose our technique as a platform for aiding the design and analysis of experimental data. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Impact of Molecular Genetics on Outcome in Myelofibrosis Patients after Allogeneic Stem Cell Transplantation.

    PubMed

    Kröger, Nicolaus; Panagiota, Victoria; Badbaran, Anita; Zabelina, Tatjana; Triviai, Ioanna; Araujo Cruz, Michelle Maria; Shahswar, Rabia; Ayuk, Francis; Gehlhaar, Marten; Wolschke, Christine; Bollin, Robin; Walter, Carolin; Dugas, Martin; Wiehlmann, Lutz; Lehmann, Ulrich; Koenecke, Christian; Chaturvedi, Anuhar; Alchalby, Haefaa; Stadler, Michael; Eder, Matthias; Christopeit, Max; Göhring, Gudrun; Koenigsmann, Michael; Schlegelberger, Brigitte; Kreipe, Hans-Heinrich; Ganser, Arnold; Stocking, Carol; Fehse, Boris; Thol, Felicitas; Heuser, Michael

    2017-07-01

    Molecular genetics may influence outcome for patients with myelofibrosis. To determine the impact of molecular genetics on outcome after allogeneic stem cell transplantation, we screened 169 patients with primary myelofibrosis (n = 110), post-essential thrombocythemia/polycythemia vera myelofibrosis (n = 46), and myelofibrosis in transformation (n = 13) for mutations in 16 frequently mutated genes. The most frequent mutation was JAK2V617F (n = 101), followed by ASXL1 (n = 49), calreticulin (n = 34), SRSF2 (n = 16), TET2 (n = 10), U2AF1 (n = 11), EZH2 (n = 7), MPL (n = 6), IDH2 (n = 5), IDH1 (n = 4), and CBL (n = 1). The cumulative incidence of nonrelapse mortality (NRM) at 1 year was 21% and of relapse at 5 years 25%. The 5-year rates progression-free (PFS) and overall survival (OS) were and 56%, respectively. In a multivariate analysis CALR mutation was an independent factor for lower NRM (HR, .415; P = .05), improved PFS (HR, .393; P = .01), and OS (HR, .448; P = .03). ASXL1 and IDH2 mutations were independent risk factors for lower PFS (HR, 1.53 [P = .008], and HR, 5.451 [P = .002], respectively), whereas no impact was observed for "triple negative" patients. Molecular genetics, especially CALR, IDH2, and ASXL1 mutations, may thus be useful to predict outcome independently from known clinical risk factors after allogeneic stem cell transplantation for myelofibrosis. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  9. BCR-ABL1 Compound Mutations Combining Key Kinase Domain Positions Confer Clinical Resistance to Ponatinib in Ph Chromosome-Positive Leukemia

    PubMed Central

    Zabriskie, Matthew S.; Eide, Christopher A.; Tantravahi, Srinivas K.; Vellore, Nadeem A.; Estrada, Johanna; Nicolini, Franck E.; Khoury, Hanna J.; Larson, Richard A.; Konopleva, Marina; Cortes, Jorge E.; Kantarjian, Hagop; Jabbour, Elias J.; Kornblau, Steven M.; Lipton, Jeffrey H.; Rea, Delphine; Stenke, Leif; Barbany, Gisela; Lange, Thoralf; Hernández-Boluda, Juan-Carlos; Ossenkoppele, Gert J.; Press, Richard D.; Chuah, Charles; Goldberg, Stuart L.; Wetzler, Meir; Mahon, Francois-Xavier; Etienne, Gabriel; Baccarani, Michele; Soverini, Simona; Rosti, Gianantonio; Rousselot, Philippe; Friedman, Ran; Deininger, Marie; Reynolds, Kimberly R.; Heaton, William L.; Eiring, Anna M.; Pomicter, Anthony D.; Khorashad, Jamshid S.; Kelley, Todd W.; Baron, Riccardo; Druker, Brian J.; Deininger, Michael W.; O'Hare, Thomas

    2014-01-01

    Summary Ponatinib is the only currently approved tyrosine kinase inhibitor (TKI) that suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-positive (Ph+) leukemia, including the recalcitrant BCR-ABL1T315I mutant. However, emergence of compound mutations in a BCR-ABL1 allele may confer ponatinib resistance. We found that clinically reported BCR-ABL1 compound mutants center on 12 key positions and confer varying resistance to imatinib, nilotinib, dasatinib, ponatinib, rebastinib and bosutinib. T315I-inclusive compound mutants confer high-level resistance to TKIs, including ponatinib. In vitro resistance profiling was predictive of treatment outcomes in Ph+ leukemia patients. Structural explanations for compound mutation-based resistance were obtained through molecular dynamics simulations. Our findings demonstrate that BCR-ABL1 compound mutants confer different levels of TKI resistance, necessitating rational treatment selection to optimize clinical outcome. PMID:25132497

  10. TP53 mutations, expression and interaction networks in human cancers

    PubMed Central

    Wang, Xiaosheng; Sun, Qingrong

    2017-01-01

    Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers. PMID:27880943

  11. TP53 mutations, expression and interaction networks in human cancers.

    PubMed

    Wang, Xiaosheng; Sun, Qingrong

    2017-01-03

    Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers.

  12. Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia.

    PubMed

    Yoshizato, Tetsuichi; Dumitriu, Bogdan; Hosokawa, Kohei; Makishima, Hideki; Yoshida, Kenichi; Townsley, Danielle; Sato-Otsubo, Aiko; Sato, Yusuke; Liu, Delong; Suzuki, Hiromichi; Wu, Colin O; Shiraishi, Yuichi; Clemente, Michael J; Kataoka, Keisuke; Shiozawa, Yusuke; Okuno, Yusuke; Chiba, Kenichi; Tanaka, Hiroko; Nagata, Yasunobu; Katagiri, Takamasa; Kon, Ayana; Sanada, Masashi; Scheinberg, Phillip; Miyano, Satoru; Maciejewski, Jaroslaw P; Nakao, Shinji; Young, Neal S; Ogawa, Seishi

    2015-07-02

    In patients with acquired aplastic anemia, destruction of hematopoietic cells by the immune system leads to pancytopenia. Patients have a response to immunosuppressive therapy, but myelodysplastic syndromes and acute myeloid leukemia develop in about 15% of the patients, usually many months to years after the diagnosis of aplastic anemia. We performed next-generation sequencing and array-based karyotyping using 668 blood samples obtained from 439 patients with aplastic anemia. We analyzed serial samples obtained from 82 patients. Somatic mutations in myeloid cancer candidate genes were present in one third of the patients, in a limited number of genes and at low initial variant allele frequency. Clonal hematopoiesis was detected in 47% of the patients, most frequently as acquired mutations. The prevalence of the mutations increased with age, and mutations had an age-related signature. DNMT3A-mutated and ASXL1-mutated clones tended to increase in size over time; the size of BCOR- and BCORL1-mutated and PIGA-mutated clones decreased or remained stable. Mutations in PIGA and BCOR and BCORL1 correlated with a better response to immunosuppressive therapy and longer and a higher rate of overall and progression-free survival; mutations in a subgroup of genes that included DNMT3A and ASXL1 were associated with worse outcomes. However, clonal dynamics were highly variable and might not necessarily have predicted the response to therapy and long-term survival among individual patients. Clonal hematopoiesis was prevalent in aplastic anemia. Some mutations were related to clinical outcomes. A highly biased set of mutations is evidence of Darwinian selection in the failed bone marrow environment. The pattern of somatic clones in individual patients over time was variable and frequently unpredictable. (Funded by Grant-in-Aid for Scientific Research and others.).

  13. Improved darunavir genotypic mutation score predicting treatment response for patients infected with HIV-1 subtype B and non-subtype B receiving a salvage regimen.

    PubMed

    De Luca, Andrea; Flandre, Philippe; Dunn, David; Zazzi, Maurizio; Wensing, Annemarie; Santoro, Maria Mercedes; Günthard, Huldrych F; Wittkop, Linda; Kordossis, Theodoros; Garcia, Federico; Castagna, Antonella; Cozzi-Lepri, Alessandro; Churchill, Duncan; De Wit, Stéphane; Brockmeyer, Norbert H; Imaz, Arkaitz; Mussini, Cristina; Obel, Niels; Perno, Carlo Federico; Roca, Bernardino; Reiss, Peter; Schülter, Eugen; Torti, Carlo; van Sighem, Ard; Zangerle, Robert; Descamps, Diane

    2016-05-01

    The objective of this study was to improve the prediction of the impact of HIV-1 protease mutations in different viral subtypes on virological response to darunavir. Darunavir-containing treatment change episodes (TCEs) in patients previously failing PIs were selected from large European databases. HIV-1 subtype B-infected patients were used as the derivation dataset and HIV-1 non-B-infected patients were used as the validation dataset. The adjusted association of each mutation with week 8 HIV RNA change from baseline was analysed by linear regression. A prediction model was derived based on best subset least squares estimation with mutational weights corresponding to regression coefficients. Virological outcome prediction accuracy was compared with that from existing genotypic resistance interpretation systems (GISs) (ANRS 2013, Rega 9.1.0 and HIVdb 7.0). TCEs were selected from 681 subtype B-infected and 199 non-B-infected adults. Accompanying drugs were NRTIs in 87%, NNRTIs in 27% and raltegravir or maraviroc or enfuvirtide in 53%. The prediction model included weighted protease mutations, HIV RNA, CD4 and activity of accompanying drugs. The model's association with week 8 HIV RNA change in the subtype B (derivation) set was R(2) = 0.47 [average squared error (ASE) = 0.67, P < 10(-6)]; in the non-B (validation) set, ASE was 0.91. Accuracy investigated by means of area under the receiver operating characteristic curves with a binary response (above the threshold value of HIV RNA reduction) showed that our final model outperformed models with existing interpretation systems in both training and validation sets. A model with a new darunavir-weighted mutation score outperformed existing GISs in both B and non-B subtypes in predicting virological response to darunavir. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. The methylation status of RASSF1A promoter predicts responsiveness to chemotherapy and eventual cure in hepatoblastoma patients.

    PubMed

    Honda, Shohei; Haruta, Masayuki; Sugawara, Waka; Sasaki, Fumiaki; Ohira, Miki; Matsunaga, Tadashi; Yamaoka, Hiroaki; Horie, Hiroshi; Ohnuma, Naomi; Nakagawara, Akira; Hiyama, Eiso; Todo, Satoru; Kaneko, Yasuhiko

    2008-09-01

    Despite the progress of therapy, outcomes of advanced hepatoblastoma patients who are refractory to standard preoperative chemotherapy remain unsatisfactory. To improve the mortality rate, novel prognostic markers are needed for better therapy planning. We examined the methylation status of 13 candidate tumor suppressor genes in 20 hepatoblastoma tumors by conventional methylation-specific PCR (MSP) and found hypermethylation in 3 of the 13 genes. We analyzed the methylation status of these 3 genes (RASSF1A, SOCS1 and CASP8) in 97 tumors and found hypermethylation in 30.9, 33.0 and 15.5%, respectively. Univariate analysis showed that only the methylation status of RASSF1A but not the other 2 genes predicted the outcome, and multivariate analysis showed a weak contribution of RASSF1A methylation to overall survival. Using quantitative MSP, we found RASSF1A methylation in 44.3% of the 97 tumors. CTNNB1 mutation was detected in 67.0% of the 97 tumors. While univariate analysis demonstrated RASSF1A methylation, CTNNB1 mutation and other clinicopathological variables as prognostic factors, multivariate analysis identified RASSF1A methylation (p = 0.043; relative risk 9.39) and the disease stage (p = 0.002; relative risk 7.67) but not CTNNB1 mutation as independent prognostic factors. In survival analysis of 33 patients in stage 3B or 4, patients with unmethylated tumor had better overall survival than those with methylated tumor (p = 0.035). RASSF1A methylation may be a promising molecular-genetic marker to predict the treatment outcome and may be used to stratify patients when clinical trials are carried out.

  15. An accurate, simple prognostic model consisting of age, JAK2, CALR, and MPL mutation status for patients with primary myelofibrosis.

    PubMed

    Rozovski, Uri; Verstovsek, Srdan; Manshouri, Taghi; Dembitz, Vilma; Bozinovic, Ksenija; Newberry, Kate; Zhang, Ying; Bove, Joseph E; Pierce, Sherry; Kantarjian, Hagop; Estrov, Zeev

    2017-01-01

    In most patients with primary myelofibrosis, one of three mutually exclusive somatic mutations is detected. In approximately 60% of patients, the Janus kinase 2 gene is mutated, in 20%, the calreticulin gene is mutated, and in 5%, the myeloproliferative leukemia virus gene is mutated. Although patients with mutated calreticulin or myeloproliferative leukemia genes have a favorable outcome, and those with none of these mutations have an unfavorable outcome, prognostication based on mutation status is challenging due to the heterogeneous survival of patients with mutated Janus kinase 2. To develop a prognostic model based on mutation status, we screened primary myelofibrosis patients seen at the MD Anderson Cancer Center, Houston, USA, between 2000 and 2013 for the presence of Janus kinase 2, calreticulin, and myeloproliferative leukemia mutations. Of 344 primary myelofibrosis patients, Janus kinase 2 V617F was detected in 226 (66%), calreticulin mutation in 43 (12%), and myeloproliferative leukemia mutation in 16 (5%); 59 patients (17%) were triple-negatives. A 50% cut-off dichotomized Janus kinase 2-mutated patients into those with high Janus kinase 2 V617F allele burden and favorable survival and those with low Janus kinase 2 V617F allele burden and unfavorable survival. Patients with a favorable mutation status (high Janus kinase 2 V617F allele burden/myeloproliferative leukemia/calreticulin mutation) and aged 65 years or under had a median survival of 126 months. Patients with one risk factor (low Janus kinase 2 V617F allele burden/triple-negative or age >65 years) had an intermediate survival duration, and patients aged over 65 years with an adverse mutation status (low Janus kinase 2 V617F allele burden or triple-negative) had a median survival of only 35 months. Our simple and easily applied age- and mutation status-based scoring system accurately predicted the survival of patients with primary myelofibrosis. Copyright© Ferrata Storti Foundation.

  16. Erlotinib for Patients with EGFR Wild-Type Metastatic NSCLC: a Retrospective Biomarkers Analysis.

    PubMed

    Inno, Alessandro; Di Noia, Vincenzo; Martini, Maurizio; D'Argento, Ettore; Di Salvatore, Mariantonietta; Arena, Vincenzo; Schinzari, Giovanni; Orlandi, Armando; Larocca, Luigi Maria; Cassano, Alessandra; Barone, Carlo

    2018-03-20

    Erlotinib is approved for the treatment of patients with EGFR mutation positive, metastatic NSCLC. It is also approved as second/third line therapy for EGFR mutation negative patients, but in this setting the benefit of erlotinib is modest and there is no validated biomarker for selecting EGFR wild-type patients who may benefit the most from the treatment. We retrospectively assessed EGFR and K-RAS mutational status, and EGFR, c-MET and IGF1-R expression in tumor samples of 72 patients with metastatic NSCLC treated with erlotinib after at least one prior line of chemotherapy, from 2008 to 2012. We analyzed the association between biomarkers and outcome (RR, PFS, and OS). EGFR mutated patients achieved a better RR (56% vs 8%, p = .002), PFS (10 vs 3 months, HR 0.53, p = 0.48) and OS (20 vs 6 months, HR 0.55, p = .07), compared to EGFR wild-type patients. Among 63 EGFR wild-type patients, those with EGFR high-expression had a better outcome in terms of RR (40% vs 2%, p = .002), PFS (7.5 vs 2 months, HR 0.45, p = .007) and OS (30 vs 5 months, HR 0.34, p < .001) compared to patients with EGFR intermediate or low/negative-expression. IGF1-R expression, c-MET expression and K-RAS mutational status did not significantly affect the outcome; however, no patients with K-RAS mutation or c-MET high-expression achieved an objective response. In patients with metastatic, chemo-refractory EGFR wild-type NSCLC, EGFR high-expression may represent a positive predictor of activity for erlotinib, whereas K-RAS mutation and c-MET high-expression may predict lack of activity. These findings deserve further prospective evaluation.

  17. Steroid-resistant nephrotic syndrome: impact of genetic testing.

    PubMed

    Kari, Jameela A; El-Desoky, Sherif M; Gari, Mamdooh; Malik, Khalid; Vega-Warner, Virginia; Lovric, Svjetlana; Bockenhauer, Detlef

    2013-01-01

    Mutations in several genes are known to cause steroid-resistant nephrotic syndome (SRNS), most commonly in NPHS1, NPHS2, and WT1. Our aims were to determine the frequency of mutations in these genes in children with SRNS, the response of patients with SRNS to various immunosuppressants, and the disease outcome, and to review the predictive value of genetic testing and renal biopsy result. A retrospective review was performed of the medical records for all children with SRNS who were treated and followed-up in the Pediatric Nephrology Unit of King Abdulaziz University Hospital (KAUH), Jeddah, Saudi Arabia from 2002-2012. We retrospectively reviewed the medical records of children above 1 year of age, who presented with SRNS to KAUH, Jeddah, Saudi Arabia, in the 10-year interval from 2002-2012 and for whom the results of genetic testing for NPHS1, NPHS2, and WT1 were available. We compared the clinical phenotype, including response to treatment and renal outcome to genotype data. We identified 44 children with a clinical diagnosis of SRNS in whom results of genetic testing were available. Presumably disease-causing mutations were detected in 5 children (11.4%) of which 3 (6.8%) had NPHS2 mutation and 2 (4.5%) had NPHS1 mutation. Renal biopsy revealed minimal change disease (MCD) or variants in 17 children, focal segmental glomerulosclerosis (FSGS) in 23 children, membranoproliferative changes (MPGN) in 2 children, and IgA nephropathy in another 2 children. Children with MCD on biopsy were more likely to respond to treatment than those with FSGS. None of those with an identified genetic cause showed any response to treatment. The frequency of identified disease-causing mutations in children older than 1 year with SRNS presented to KAUH was 11.4%, and these patients showed no response to treatment. Initial testing for gene mutation in children with SRNS may obviate the need for biopsy, and the use of immunosuppressive treatment in children with disease due to NPHS1 or NPHS2 mutations. Renal biopsy was useful in predicting response in those without genetic mutations.

  18. Somatic gene mutations in African Americans may predict worse outcomes in colorectal cancer.

    PubMed

    Kang, Melissa; Shen, Xiang J; Kim, Sangmi; Araujo-Perez, Felix; Galanko, Joseph A; Martin, Chris F; Sandler, Robert S; Keku, Temitope O

    2013-01-01

    African Americans have worse outcomes in colorectal cancer (CRC) than Caucasians. We sought to determine if KRAS, BRAF and PIK3CA mutations might contribute to the racial differences in CRC outcome. DNA was extracted from tissue microarrays made from CRC samples from 67 African Americans and 237 Caucasians. Mutations in KRAS, BRAF, and PIK3CA were evaluated by PCR sequencing. We also examined microsatellite instability (MSI) status. Associations of mutation status with tumor stage and grade were examined using a logistic regression model. Cox proportional hazards models were used to estimate the all-cause mortality associated with mutational status, race and other clinicopathologic features. KRAS mutations were more common in African Americans than among Caucasians (37% vs 21%, p=0.01) and were associated with advanced stage (unadjusted odds ratio (OR)=3.31, 95% confidence interval (CI) 1.03-10.61) and grade (unadjusted OR=5.60, 95% CI 1.01-31.95) among African Americans. Presence of BRAF mutations was also positively associated with advanced tumor stage (adjusted OR=3.99, 95%CI 1.43-11.12) and grade (adjusted OR=3.93, 95%CI 1.05-14.69). PIK3CA mutations showed a trend toward an association with an increased risk of death compared to absence of those mutations (adjusted for age, sex and CRC site HR=1.89, 95% CI 0.98-3.65). Among African Americans, the association was more evident (adjusted for age, sex and CRC site HR=3.92, 95% CI 1.03-14.93) and remained significant after adjustment for MSI-H status and combined education-income level, with HR of 12.22 (95%CI 1.32-121.38). Our results suggest that African Americans may have different frequencies of somatic genetic alterations that may partially explain the worse prognosis among African Americans with CRC compared to whites.

  19. TP53, PIK3CA, FBXW7 and KRAS Mutations in Esophageal Cancer Identified by Targeted Sequencing.

    PubMed

    Zheng, Huili; Wang, Yan; Tang, Chuanning; Jones, Lindsey; Ye, Hua; Zhang, Guangchun; Cao, Weihai; Li, Jingwen; Liu, Lifeng; Liu, Zhencong; Zhang, Chao; Lou, Feng; Liu, Zhiyuan; Li, Yangyang; Shi, Zhenfen; Zhang, Jingbo; Zhang, Dandan; Sun, Hong; Dong, Haichao; Dong, Zhishou; Guo, Baishuai; Yan, H E; Lu, Qingyu; Huang, Xue; Chen, Si-Yi

    2016-01-01

    Esophageal cancer (EC) is a common malignancy with significant morbidity and mortality. As individual cancers exhibit unique mutation patterns, identifying and characterizing gene mutations in EC that may serve as biomarkers might help predict patient outcome and guide treatment. Traditionally, personalized cancer DNA sequencing was impractical and expensive. Recent technological advancements have made targeted DNA sequencing more cost- and time-effective with reliable results. This technology may be useful for clinicians to direct patient treatment. The Ion PGM and AmpliSeq Cancer Panel was used to identify mutations at 737 hotspot loci of 45 cancer-related genes in 64 EC samples from Chinese patients. Frequent mutations were found in TP53 and less frequent mutations in PIK3CA, FBXW7 and KRAS. These results demonstrate that targeted sequencing can reliably identify mutations in individual tumors that make this technology a possibility for clinical use. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  20. Clinical and Mutational Analysis of the GCDH Gene in Malaysian Patients with Glutaric Aciduria Type 1.

    PubMed

    Abdul Wahab, Siti Aishah; Yakob, Yusnita; Abdul Azize, Nor Azimah; Md Yunus, Zabedah; Huey Yin, Leong; Mohd Khalid, Mohd Khairul Nizam; Lock Hock, Ngu

    Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome.

  1. Clinical and Mutational Analysis of the GCDH Gene in Malaysian Patients with Glutaric Aciduria Type 1

    PubMed Central

    Yakob, Yusnita; Abdul Azize, Nor Azimah; Md Yunus, Zabedah; Huey Yin, Leong; Mohd Khalid, Mohd Khairul Nizam; Lock Hock, Ngu

    2016-01-01

    Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome. PMID:27672653

  2. Prognostic Implications of Multiplex Detection of KRAS Mutations in Cell-Free DNA from Patients with Pancreatic Ductal Adenocarcinoma.

    PubMed

    Kim, Min Kyeong; Woo, Sang Myung; Park, Boram; Yoon, Kyong-Ah; Kim, Yun-Hee; Joo, Jungnam; Lee, Woo Jin; Han, Sung-Sik; Park, Sang-Jae; Kong, Sun-Young

    2018-04-01

    Cell-free DNA (cfDNA) is known to provide potential biomarkers for predicting clinical outcome, but its value in pancreatic ductal adenocarcinoma (PDAC) has not been fully evaluated. The aim of this study was to evaluate the clinical applicability of quantitative analysis of multiplex KRAS mutations in cell-free DNA from patients with PDAC. A total of 106 patients with PDAC were enrolled in this prospective study. The concentration and fraction of KRAS mutations were determined through multiplex detection of KRAS mutations in plasma samples by use of a droplet digital PCR kit (Bio-Rad). KRAS mutations were detected in 96.1% of tissue samples. Eighty patients (80.5%) harbored KRAS mutations in cfDNA, with a median KRAS mutation concentration of 0.165 copies/μL and a median fractional abundance of 0.415%. Multivariable analyses demonstrated that the KRAS mutation concentration [hazard ratio (HR), 2.08; 95% CI, 1.20-3.63] and KRAS fraction (HR, 1.73; 95% CI, 1.02-2.95) were significant factors for progression-free survival. KRAS mutation concentration (HR, 1.97; 95% CI, 1.05-3.67) also had prognostic implications for overall survival. Subgroup analyses showed that KRAS mutation concentration and fractional abundance significantly affected progression-free survival in resectable PDAC ( P = 0.016). Moreover, when combined with the cancer biomarker CA19-9, the KRAS mutation concentration in cfDNA showed additive benefits for the prediction of overall survival. This study demonstrates that multiplex detection of KRAS mutations in plasma cfDNA is clinically relevant, providing a potential candidate biomarker for prognosis of PDAC. © 2018 American Association for Clinical Chemistry.

  3. Hepatitis B virus genetic mutations and evolution in liver diseases

    PubMed Central

    Shen, Tao; Yan, Xin-Min

    2014-01-01

    Hepatitis B virus (HBV) belongs to the genus Orthohepadnavirus of the Hepadnaviridae family and is approximately 3.2 kb in length. Owing to a lack of proofreading capacity during reverse transcription and a high replication rate, HBV exhibits as quasispecies. To detect the genetic mutations of HBV, many methods with different sensitivities and throughputs were developed. According to documentary records, HBV mutation and evolution were important vial parameters in predicting disease progression and therapeutic outcome. In this review, we separately discussed the correlation between HBV genomic mutations in four open reading frames and liver disease progression. Since some of the results were controversial from different laboratories, it remains to be seen whether functional analyses will confirm their role in modifying the course of infection. PMID:24833874

  4. Clinical implications of genomic profiles in metastatic breast cancer with a focus on TP53 and PIK3CA, the most frequently mutated genes.

    PubMed

    Kim, Ji-Yeon; Lee, Eunjin; Park, Kyunghee; Park, Woong-Yang; Jung, Hae Hyun; Ahn, Jin Seok; Im, Young-Hyuck; Park, Yeon Hee

    2017-04-25

    Breast cancer (BC) has been genetically profiled through large-scale genome analyses. However, the role and clinical implications of genetic alterations in metastatic BC (MBC) have not been evaluated. Therefore, we conducted whole-exome sequencing (WES) and RNA-Seq of 37 MBC samples and targeted deep sequencing of another 29 MBCs. We evaluated somatic mutations from WES and targeted sequencing and assessed gene expression and performed pathway analysis from RNA-Seq. In this analysis, PIK3CA was the most commonly mutated gene in estrogen receptor (ER)-positive BC, while in ER-negative BC, TP53 was the most commonly mutated gene (p = 0.018 and p < 0.001, respectively). TP53 stopgain/loss and frameshift mutation was related to low expression of TP53 in contrast nonsynonymous mutation was related to high expression. The impact of TP53 mutation on clinical outcome varied with regard to ER status. In ER-positive BCs, wild type TP53 had a better prognosis than mutated TP53 (median overall survival (OS) (wild type vs. mutated): 88.5 ± 54.4 vs. 32.6 ± 10.7 (months), p = 0.002). In contrast, mutated TP53 had a protective effect in ER-negative BCs (median OS: 0.10 vs. 32.6 ± 8.2, p = 0.026). However, PIK3CA mutation did not affect patient survival. In gene expression analysis, CALM1, a potential regulator of AKT, was highly expressed in PIK3CA-mutated BCs. In conclusion, mutation of TP53 was associated with expression status and affect clinical outcome according to ER status in MBC. Although mutation of PIK3CA was not related to survival in this study, mutation of PIK3CA altered the expression of other genes and pathways including CALM1 and may be a potential predictive marker of PI3K inhibitor effectiveness.

  5. Molecular Pathways: Extracting Medical Knowledge from High Throughput Genomic Data

    PubMed Central

    Goldstein, Theodore; Paull, Evan O.; Ellis, Matthew J.; Stuart, Joshua M.

    2013-01-01

    High-throughput genomic data that measures RNA expression, DNA copy number, mutation status and protein levels provide us with insights into the molecular pathway structure of cancer. Genomic lesions (amplifications, deletions, mutations) and epigenetic modifications disrupt biochemical cellular pathways. While the number of possible lesions is vast, different genomic alterations may result in concordant expression and pathway activities, producing common tumor subtypes that share similar phenotypic outcomes. How can these data be translated into medical knowledge that provides prognostic and predictive information? First generation mRNA expression signatures such as Genomic Health's Oncotype DX already provide prognostic information, but do not provide therapeutic guidance beyond the current standard of care – which is often inadequate in high-risk patients. Rather than building molecular signatures based on gene expression levels, evidence is growing that signatures based on higher-level quantities such as from genetic pathways may provide important prognostic and diagnostic cues. We provide examples of how activities for molecular entities can be predicted from pathway analysis and how the composite of all such activities, referred to here as the “activitome,” help connect genomic events to clinical factors in order to predict the drivers of poor outcome. PMID:23430023

  6. Multiple Diseases in Carrier Probability Estimation: Accounting for Surviving All Cancers Other than Breast and Ovary in BRCAPRO

    PubMed Central

    Katki, Hormuzd A.; Blackford, Amanda; Chen, Sining; Parmigiani, Giovanni

    2008-01-01

    SUMMARY Mendelian models can predict who carries an inherited deleterious mutation of known disease genes based on family history. For example, the BRCAPRO model is commonly used to identify families who carry mutations of BRCA1 and BRCA2, based on familial breast and ovarian cancers. These models incorporate the age of diagnosis of diseases in relatives and current age or age of death. We develop a rigorous foundation for handling multiple diseases with censoring. We prove that any disease unrelated to mutations can be excluded from the model, unless it is sufficiently common and dependent on a mutation-related disease time. Furthermore, if a family member has a disease with higher probability density among mutation carriers, but the model does not account for it, then the carrier probability is deflated. However, even if a family only has diseases the model accounts for, if the model excludes a mutation-related disease, then the carrier probability will be inflated. In light of these results, we extend BRCAPRO to account for surviving all non-breast/ovary cancers as a single outcome. The extension also enables BRCAPRO to extract more useful information from male relatives. Using 1500 familes from the Cancer Genetics Network, accounting for surviving other cancers improves BRCAPRO’s concordance index from 0.758 to 0.762 (p = 0.046), improves its positive predictive value from 35% to 39% (p < 10−6) without impacting its negative predictive value, and improves its overall calibration, although calibration slightly worsens for those with carrier probability < 10%. PMID:18407567

  7. Multiple diseases in carrier probability estimation: accounting for surviving all cancers other than breast and ovary in BRCAPRO.

    PubMed

    Katki, Hormuzd A; Blackford, Amanda; Chen, Sining; Parmigiani, Giovanni

    2008-09-30

    Mendelian models can predict who carries an inherited deleterious mutation of known disease genes based on family history. For example, the BRCAPRO model is commonly used to identify families who carry mutations of BRCA1 and BRCA2, based on familial breast and ovarian cancers. These models incorporate the age of diagnosis of diseases in relatives and current age or age of death. We develop a rigorous foundation for handling multiple diseases with censoring. We prove that any disease unrelated to mutations can be excluded from the model, unless it is sufficiently common and dependent on a mutation-related disease time. Furthermore, if a family member has a disease with higher probability density among mutation carriers, but the model does not account for it, then the carrier probability is deflated. However, even if a family only has diseases the model accounts for, if the model excludes a mutation-related disease, then the carrier probability will be inflated. In light of these results, we extend BRCAPRO to account for surviving all non-breast/ovary cancers as a single outcome. The extension also enables BRCAPRO to extract more useful information from male relatives. Using 1500 families from the Cancer Genetics Network, accounting for surviving other cancers improves BRCAPRO's concordance index from 0.758 to 0.762 (p=0.046), improves its positive predictive value from 35 to 39 per cent (p<10(-6)) without impacting its negative predictive value, and improves its overall calibration, although calibration slightly worsens for those with carrier probability<10 per cent. Copyright (c) 2008 John Wiley & Sons, Ltd.

  8. High NPM1-mutant allele burden at diagnosis predicts unfavorable outcomes in de novo AML.

    PubMed

    Patel, Sanjay S; Kuo, Frank C; Gibson, Christopher J; Steensma, David P; Soiffer, Robert J; Alyea, Edwin P; Chen, Yi-Bin A; Fathi, Amir T; Graubert, Timothy A; Brunner, Andrew M; Wadleigh, Martha; Stone, Richard M; DeAngelo, Daniel J; Nardi, Valentina; Hasserjian, Robert P; Weinberg, Olga K

    2018-06-21

    Acute myeloid leukemia (AML) with mutated NPM1 is a newly recognized separate entity in the revised 2016 World Health Organization classification and is associated with a favorable prognosis. Although previous studies have evaluated NPM1 in a binary fashion, little is known about the significance of its mutant allele burden at diagnosis, nor has the effect of comutations (other than FLT3 ) been extensively evaluated. We retrospectively used targeted sequencing data from 109 patients with de novo AML with mutated NPM1 to evaluate the potential significance of NPM1 variant allele frequency (VAF), comutations, and clinical parameters with regard to patient outcomes. We observed that high NPM1 VAF (uppermost quartile) correlated with shortened overall survival (median, 12.1 months vs not reached; P < .0001) as well as event-free survival (median, 7.5 vs 65.44 months; P < .0001) compared with the other NPM1 -mutated cases. In both univariate and multivariable analyses, high NPM1 VAF had a particularly adverse prognostic effect in the subset of patients treated with stem-cell transplantation in first remission ( P = .0004) and in patients with mutated DNMT3A ( P < .0001). Our findings indicate that the prognostic effect of NPM1 mutation in de novo AML may be influenced by the relative abundance of the mutated allele. © 2018 by The American Society of Hematology.

  9. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia.

    PubMed

    Zabriskie, Matthew S; Eide, Christopher A; Tantravahi, Srinivas K; Vellore, Nadeem A; Estrada, Johanna; Nicolini, Franck E; Khoury, Hanna J; Larson, Richard A; Konopleva, Marina; Cortes, Jorge E; Kantarjian, Hagop; Jabbour, Elias J; Kornblau, Steven M; Lipton, Jeffrey H; Rea, Delphine; Stenke, Leif; Barbany, Gisela; Lange, Thoralf; Hernández-Boluda, Juan-Carlos; Ossenkoppele, Gert J; Press, Richard D; Chuah, Charles; Goldberg, Stuart L; Wetzler, Meir; Mahon, Francois-Xavier; Etienne, Gabriel; Baccarani, Michele; Soverini, Simona; Rosti, Gianantonio; Rousselot, Philippe; Friedman, Ran; Deininger, Marie; Reynolds, Kimberly R; Heaton, William L; Eiring, Anna M; Pomicter, Anthony D; Khorashad, Jamshid S; Kelley, Todd W; Baron, Riccardo; Druker, Brian J; Deininger, Michael W; O'Hare, Thomas

    2014-09-08

    Ponatinib is the only currently approved tyrosine kinase inhibitor (TKI) that suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-positive (Ph(+)) leukemia, including the recalcitrant BCR-ABL1(T315I) mutant. However, emergence of compound mutations in a BCR-ABL1 allele may confer ponatinib resistance. We found that clinically reported BCR-ABL1 compound mutants center on 12 key positions and confer varying resistance to imatinib, nilotinib, dasatinib, ponatinib, rebastinib, and bosutinib. T315I-inclusive compound mutants confer high-level resistance to TKIs, including ponatinib. In vitro resistance profiling was predictive of treatment outcomes in Ph(+) leukemia patients. Structural explanations for compound mutation-based resistance were obtained through molecular dynamics simulations. Our findings demonstrate that BCR-ABL1 compound mutants confer different levels of TKI resistance, necessitating rational treatment selection to optimize clinical outcome. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Comparison of the efficacy of icotinib in patients with non-small-cell lung cancer according to the type of epidermal growth factor receptor mutation.

    PubMed

    Xue, Zhang Xiao; Wen, Wang Xiu; Zhuang, Yu; Hua, Zang Jian; Xia, Yang Ni

    2016-09-01

    Icotinib hydrochloride is a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with preclinical and clinical activity in non-small-cell lung cancer (NSCLC). Exon 19 deletion and L858R point mutation are the most commonly encountered EGFR mutations in NSCLC, and they predict improved clinical outcomes following treatment with icotinib. The objective of this study was to evaluate the differential clinical efficacy of icotinib in patients with exon 19 deletion or L858R point mutation of the EGFR gene. A total of 104 patients with advanced NSCLC, who harbored exon 19 deletion or L858R point mutation of EGFR and were treated with icotinib, were enrolled in this study. The tumor response and progression-free survival were evaluated. There were no significant differences between patients with EGFR exon 19 deletion and those with L858R point mutation who received treatment with icotinib.

  11. Longitudinal monitoring of EGFR mutations in plasma predicts outcomes of NSCLC patients treated with EGFR TKIs: Korean Lung Cancer Consortium (KLCC-12-02).

    PubMed

    Lee, Ji Yun; Qing, Xu; Xiumin, Wei; Yali, Bai; Chi, Sangah; Bak, So Hyeon; Lee, Ho Yun; Sun, Jong-Mu; Lee, Se-Hoon; Ahn, Jin Seok; Cho, Eun Kyung; Kim, Dong-Wan; Kim, Hye Ryun; Min, Young Joo; Jung, Sin-Ho; Park, Keunchil; Mao, Mao; Ahn, Myung-Ju

    2016-02-09

    We hypothesized that plasma-based EGFR mutation analysis for NSCLC may be feasible for monitoring treatment response to EGFR TKIs and also predict drug resistance.Clinically relevant mutations including exon 19 deletion (ex19del), L858R and T790M were analyzed using droplet digital PCR (ddPCR) in longitudinally collected plasma samples (n = 367) from 81 NSCLC patients treated with EGFR TKI. Of a total 58 baseline cell-free DNA (cfDNA) samples available for ddPCR analysis, 43 (74.1%) had the same mutation in the matched tumors (clinical sensitivity: 70.8% [17/24] for L858R and 76.5% [26/34] for ex19del). The concordance rates of plasma with tissue-based results of EGFR mutations were 87.9% for L858R and 86.2% for ex19del. All 40 patients who were detected EGFR mutations at baseline showed a dramatic decrease of mutant copies (>50%) in plasma during the first two months after treatment. Median progression-free survival (PFS) was 10.1 months for patients with undetectable EGFR v 6.3 months for detectable EGFR mutations in blood after two-month treatment (HR 3.88, 95% CI 1.48-10.19, P = 0.006). We observed emerging resistance with early detection of T790M as a secondary mutation in 14 (28.6%) of 49 patients. Plasma-based EGFR mutation analysis using ddPCR can monitor treatment response to EGFR TKIs and can lead to early detection of EGFR TKIs resistance. Further studies confirming clinical implications of EGFR mutation in plasma are warranted to guide optimal therapeutic strategies upon knowledge of treatment response and resistance.

  12. Chronic lymphocytic leukemia: A prognostic model comprising only two biomarkers (IGHV mutational status and FISH cytogenetics) separates patients with different outcome and simplifies the CLL-IPI.

    PubMed

    Delgado, Julio; Doubek, Michael; Baumann, Tycho; Kotaskova, Jana; Molica, Stefano; Mozas, Pablo; Rivas-Delgado, Alfredo; Morabito, Fortunato; Pospisilova, Sarka; Montserrat, Emili

    2017-04-01

    Rai and Binet staging systems are important to predict the outcome of patients with chronic lymphocytic leukemia (CLL) but do not reflect the biologic diversity of the disease nor predict response to therapy, which ultimately shape patients' outcome. We devised a biomarkers-only CLL prognostic system based on the two most important prognostic parameters in CLL (i.e., IGHV mutational status and fluorescence in situ hybridization [FISH] cytogenetics), separating three different risk groups: (1) low-risk (mutated IGHV + no adverse FISH cytogenetics [del(17p), del(11q)]); (2) intermediate-risk (either unmutated IGHV or adverse FISH cytogenetics) and (3) high-risk (unmutated IGHV + adverse FISH cytogenetics). In 524 unselected subjects with CLL, the 10-year overall survival was 82% (95% CI 76%-88%), 52% (45%-62%), and 27% (17%-42%) for the low-, intermediate-, and high-risk groups, respectively. Patients with low-risk comprised around 50% of the series and had a life expectancy comparable to the general population. The prognostic model was fully validated in two independent cohorts, including 417 patients representative of general CLL population and 337 patients with Binet stage A CLL. The model had a similar discriminatory value as the CLL-IPI. Moreover, it applied to all patients with CLL independently of age, and separated patients with different risk within Rai or Binet clinical stages. The biomarkers-only CLL prognostic system presented here simplifies the CLL-IPI and could be useful in daily practice and to stratify patients in clinical trials. © 2017 Wiley Periodicals, Inc.

  13. Transmission of HIV Drug Resistance and the Predicted Effect on Current First-line Regimens in Europe.

    PubMed

    Hofstra, L Marije; Sauvageot, Nicolas; Albert, Jan; Alexiev, Ivailo; Garcia, Federico; Struck, Daniel; Van de Vijver, David A M C; Åsjö, Birgitta; Beshkov, Danail; Coughlan, Suzie; Descamps, Diane; Griskevicius, Algirdas; Hamouda, Osamah; Horban, Andrzej; Van Kasteren, Marjo; Kolupajeva, Tatjana; Kostrikis, Leondios G; Liitsola, Kirsi; Linka, Marek; Mor, Orna; Nielsen, Claus; Otelea, Dan; Paraskevis, Dimitrios; Paredes, Roger; Poljak, Mario; Puchhammer-Stöckl, Elisabeth; Sönnerborg, Anders; Staneková, Danica; Stanojevic, Maja; Van Laethem, Kristel; Zazzi, Maurizio; Zidovec Lepej, Snjezana; Boucher, Charles A B; Schmit, Jean-Claude; Wensing, Annemarie M J; Puchhammer-Stockl, E; Sarcletti, M; Schmied, B; Geit, M; Balluch, G; Vandamme, A-M; Vercauteren, J; Derdelinckx, I; Sasse, A; Bogaert, M; Ceunen, H; De Roo, A; De Wit, S; Echahidi, F; Fransen, K; Goffard, J-C; Goubau, P; Goudeseune, E; Yombi, J-C; Lacor, P; Liesnard, C; Moutschen, M; Pierard, D; Rens, R; Schrooten, Y; Vaira, D; Vandekerckhove, L P R; Van den Heuvel, A; Van Der Gucht, B; Van Ranst, M; Van Wijngaerden, E; Vandercam, B; Vekemans, M; Verhofstede, C; Clumeck, N; Van Laethem, K; Beshkov, D; Alexiev, I; Lepej, S Zidovec; Begovac, J; Kostrikis, L; Demetriades, I; Kousiappa, I; Demetriou, V; Hezka, J; Linka, M; Maly, M; Machala, L; Nielsen, C; Jørgensen, L B; Gerstoft, J; Mathiesen, L; Pedersen, C; Nielsen, H; Laursen, A; Kvinesdal, B; Liitsola, K; Ristola, M; Suni, J; Sutinen, J; Descamps, D; Assoumou, L; Castor, G; Grude, M; Flandre, P; Storto, A; Hamouda, O; Kücherer, C; Berg, T; Braun, P; Poggensee, G; Däumer, M; Eberle, J; Heiken, H; Kaiser, R; Knechten, H; Korn, K; Müller, H; Neifer, S; Schmidt, B; Walter, H; Gunsenheimer-Bartmeyer, B; Harrer, T; Paraskevis, D; Hatzakis, A; Zavitsanou, A; Vassilakis, A; Lazanas, M; Chini, M; Lioni, A; Sakka, V; Kourkounti, S; Paparizos, V; Antoniadou, A; Papadopoulos, A; Poulakou, G; Katsarolis, I; Protopapas, K; Chryssos, G; Drimis, S; Gargalianos, P; Xylomenos, G; Lourida, G; Psichogiou, M; Daikos, G L; Sipsas, N V; Kontos, A; Gamaletsou, M N; Koratzanis, G; Sambatakou, H; Mariolis, H; Skoutelis, A; Papastamopoulos, V; Georgiou, O; Panagopoulos, P; Maltezos, E; Coughlan, S; De Gascun, C; Byrne, C; Duffy, M; Bergin, C; Reidy, D; Farrell, G; Lambert, J; O'Connor, E; Rochford, A; Low, J; Coakely, P; O'Dea, S; Hall, W; Mor, O; Levi, I; Chemtob, D; Grossman, Z; Zazzi, M; de Luca, A; Balotta, C; Riva, C; Mussini, C; Caramma, I; Capetti, A; Colombo, M C; Rossi, C; Prati, F; Tramuto, F; Vitale, F; Ciccozzi, M; Angarano, G; Rezza, G; Kolupajeva, T; Vasins, O; Griskevicius, A; Lipnickiene, V; Schmit, J C; Struck, D; Sauvageot, N; Hemmer, R; Arendt, V; Michaux, C; Staub, T; Sequin-Devaux, C; Wensing, A M J; Boucher, C A B; van de Vijver, D A M C; van Kessel, A; van Bentum, P H M; Brinkman, K; Connell, B J; van der Ende, M E; Hoepelman, I M; van Kasteren, M; Kuipers, M; Langebeek, N; Richter, C; Santegoets, R M W J; Schrijnders-Gudde, L; Schuurman, R; van de Ven, B J M; Åsjö, B; Kran, A-M Bakken; Ormaasen, V; Aavitsland, P; Horban, A; Stanczak, J J; Stanczak, G P; Firlag-Burkacka, E; Wiercinska-Drapalo, A; Jablonowska, E; Maolepsza, E; Leszczyszyn-Pynka, M; Szata, W; Camacho, R; Palma, C; Borges, F; Paixão, T; Duque, V; Araújo, F; Otelea, D; Paraschiv, S; Tudor, A M; Cernat, R; Chiriac, C; Dumitrescu, F; Prisecariu, L J; Stanojevic, M; Jevtovic, Dj; Salemovic, D; Stanekova, D; Habekova, M; Chabadová, Z; Drobkova, T; Bukovinova, P; Shunnar, A; Truska, P; Poljak, M; Lunar, M; Babic, D; Tomazic, J; Vidmar, L; Vovko, T; Karner, P; Garcia, F; Paredes, R; Monge, S; Moreno, S; Del Amo, J; Asensi, V; Sirvent, J L; de Mendoza, C; Delgado, R; Gutiérrez, F; Berenguer, J; Garcia-Bujalance, S; Stella, N; de Los Santos, I; Blanco, J R; Dalmau, D; Rivero, M; Segura, F; Elías, M J Pérez; Alvarez, M; Chueca, N; Rodríguez-Martín, C; Vidal, C; Palomares, J C; Viciana, I; Viciana, P; Cordoba, J; Aguilera, A; Domingo, P; Galindo, M J; Miralles, C; Del Pozo, M A; Ribera, E; Iribarren, J A; Ruiz, L; de la Torre, J; Vidal, F; Clotet, B; Albert, J; Heidarian, A; Aperia-Peipke, K; Axelsson, M; Mild, M; Karlsson, A; Sönnerborg, A; Thalme, A; Navér, L; Bratt, G; Karlsson, A; Blaxhult, A; Gisslén, M; Svennerholm, B; Bergbrant, I; Björkman, P; Säll, C; Mellgren, Å; Lindholm, A; Kuylenstierna, N; Montelius, R; Azimi, F; Johansson, B; Carlsson, M; Johansson, E; Ljungberg, B; Ekvall, H; Strand, A; Mäkitalo, S; Öberg, S; Holmblad, P; Höfer, M; Holmberg, H; Josefson, P; Ryding, U

    2016-03-01

    Numerous studies have shown that baseline drug resistance patterns may influence the outcome of antiretroviral therapy. Therefore, guidelines recommend drug resistance testing to guide the choice of initial regimen. In addition to optimizing individual patient management, these baseline resistance data enable transmitted drug resistance (TDR) to be surveyed for public health purposes. The SPREAD program systematically collects data to gain insight into TDR occurring in Europe since 2001. Demographic, clinical, and virological data from 4140 antiretroviral-naive human immunodeficiency virus (HIV)-infected individuals from 26 countries who were newly diagnosed between 2008 and 2010 were analyzed. Evidence of TDR was defined using the WHO list for surveillance of drug resistance mutations. Prevalence of TDR was assessed over time by comparing the results to SPREAD data from 2002 to 2007. Baseline susceptibility to antiretroviral drugs was predicted using the Stanford HIVdb program version 7.0. The overall prevalence of TDR did not change significantly over time and was 8.3% (95% confidence interval, 7.2%-9.5%) in 2008-2010. The most frequent indicators of TDR were nucleoside reverse transcriptase inhibitor (NRTI) mutations (4.5%), followed by nonnucleoside reverse transcriptase inhibitor (NNRTI) mutations (2.9%) and protease inhibitor mutations (2.0%). Baseline mutations were most predictive of reduced susceptibility to initial NNRTI-based regimens: 4.5% and 6.5% of patient isolates were predicted to have resistance to regimens containing efavirenz or rilpivirine, respectively, independent of current NRTI backbones. Although TDR was highest for NRTIs, the impact of baseline drug resistance patterns on susceptibility was largest for NNRTIs. The prevalence of TDR assessed by epidemiological surveys does not clearly indicate to what degree susceptibility to different drug classes is affected. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America.

  14. [Evaluation of performance of five bioinformatics software for the prediction of missense mutations].

    PubMed

    Chen, Qianting; Dai, Congling; Zhang, Qianjun; Du, Juan; Li, Wen

    2016-10-01

    To study the prediction performance evaluation with five kinds of bioinformatics software (SIFT, PolyPhen2, MutationTaster, Provean, MutationAssessor). From own database for genetic mutations collected over the past five years, Chinese literature database, Human Gene Mutation Database, and dbSNP, 121 missense mutations confirmed by functional studies, and 121 missense mutations suspected to be pathogenic by pedigree analysis were used as positive gold standard, while 242 missense mutations with minor allele frequency (MAF)>5% in dominant hereditary diseases were used as negative gold standard. The selected mutations were predicted with the five software. Based on the results, the performance of the five software was evaluated for their sensitivity, specificity, positive predict value, false positive rate, negative predict value, false negative rate, false discovery rate, accuracy, and receiver operating characteristic curve (ROC). In terms of sensitivity, negative predictive value and false negative rate, the rank was MutationTaster, PolyPhen2, Provean, SIFT, and MutationAssessor. For specificity and false positive rate, the rank was MutationTaster, Provean, MutationAssessor, SIFT, and PolyPhen2. For positive predict value and false discovery rate, the rank was MutationTaster, Provean, MutationAssessor, PolyPhen2, and SIFT. For area under the ROC curve (AUC) and accuracy, the rank was MutationTaster, Provean, PolyPhen2, MutationAssessor, and SIFT. The prediction performance of software may be different when using different parameters. Among the five software, MutationTaster has the best prediction performance.

  15. Constraint shapes convergence in tetrodotoxin-resistant sodium channels of snakes.

    PubMed

    Feldman, Chris R; Brodie, Edmund D; Brodie, Edmund D; Pfrender, Michael E

    2012-03-20

    Natural selection often produces convergent changes in unrelated lineages, but the degree to which such adaptations occur via predictable genetic paths is unknown. If only a limited subset of possible mutations is fixed in independent lineages, then it is clear that constraint in the production or function of molecular variants is an important determinant of adaptation. We demonstrate remarkably constrained convergence during the evolution of resistance to the lethal poison, tetrodotoxin, in six snake species representing three distinct lineages from around the globe. Resistance-conferring amino acid substitutions in a voltage-gated sodium channel, Na(v)1.4, are clustered in only two regions of the protein, and a majority of the replacements are confined to the same three positions. The observed changes represent only a small fraction of the experimentally validated mutations known to increase Na(v)1.4 resistance to tetrodotoxin. These results suggest that constraints resulting from functional tradeoffs between ion channel function and toxin resistance led to predictable patterns of evolutionary convergence at the molecular level. Our data are consistent with theoretical predictions and recent microcosm work that suggest a predictable path is followed during an adaptive walk along a mutational landscape, and that natural selection may be frequently constrained to produce similar genetic outcomes even when operating on independent lineages.

  16. Evolutionary game theory using agent-based methods.

    PubMed

    Adami, Christoph; Schossau, Jory; Hintze, Arend

    2016-12-01

    Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Next generation sequencing survey of biliary tract cancer (BTC) reveals the association between tumor somatic variants and chemotherapy resistance

    PubMed Central

    Ahn, Daniel H.; Javle, Milind; Ahn, Chul W.; Jain, Apurva; Mikhail, Sameh; Noonan, Anne M.; Wu, Christina; Shroff, Rachna T.

    2016-01-01

    Background BTC are uncommon and associated with a dismal prognosis. Gemcitabine and platinum-combinations (GP) form the standard approach for treating advanced BTC. To characterize the spectrum of mutations and to identify potential biomarkers for GP response in BTC, we evaluated the genomic landscape and assessed whether mutations affecting DNA repair were associated with GP resistance. Methods Pretreatment FFPE samples from 183 BTC patients treated with GP were analyzed. Cox regression models were used to determine the association between mutations, progression free survival (PFS) and overall survival (OS). Results Considering genes with an incidence >10%, no individual gene was independently predictive of GP response. In patients with unresectable BTC who received GP as first-line therapy, the joint status of CDKN2A, TP53 and ARID1A were associated with PFS (P=0.0004) and OS (P=<0.0001). Patients with mutations in CDKN2A and TP53 were identified as a poor prognostic cohort with a median PFS and OS of 2.63 and 5.22 months. Patients with mutant ARID1A regardless of single mutational status of TP53 or CDKN2A had similar outcomes. A patient who exhibited mutations in all three genes had a median PFS of 20.37 months and OS not reached. Conclusions In the largest exploratory analysis of this nature in BTC, the presence of three prevalent, mutually exclusive mutations represents distinct patient cohorts. These mutations are prognostic and may represent a predictive biomarker to GP response. Prospective studies validate these findings are needed, including the incorporation of therapies that exploit the genomic instability observed with these mutations in BTC. PMID:27495988

  18. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.

    PubMed

    Suo, Chen; Hrydziuszko, Olga; Lee, Donghwan; Pramana, Setia; Saputra, Dhany; Joshi, Himanshu; Calza, Stefano; Pawitan, Yudi

    2015-08-15

    Genome and transcriptome analyses can be used to explore cancers comprehensively, and it is increasingly common to have multiple omics data measured from each individual. Furthermore, there are rich functional data such as predicted impact of mutations on protein coding and gene/protein networks. However, integration of the complex information across the different omics and functional data is still challenging. Clinical validation, particularly based on patient outcomes such as survival, is important for assessing the relevance of the integrated information and for comparing different procedures. An analysis pipeline is built for integrating genomic and transcriptomic alterations from whole-exome and RNA sequence data and functional data from protein function prediction and gene interaction networks. The method accumulates evidence for the functional implications of mutated potential driver genes found within and across patients. A driver-gene score (DGscore) is developed to capture the cumulative effect of such genes. To contribute to the score, a gene has to be frequently mutated, with high or moderate mutational impact at protein level, exhibiting an extreme expression and functionally linked to many differentially expressed neighbors in the functional gene network. The pipeline is applied to 60 matched tumor and normal samples of the same patient from The Cancer Genome Atlas breast-cancer project. In clinical validation, patients with high DGscores have worse survival than those with low scores (P = 0.001). Furthermore, the DGscore outperforms the established expression-based signatures MammaPrint and PAM50 in predicting patient survival. In conclusion, integration of mutation, expression and functional data allows identification of clinically relevant potential driver genes in cancer. The documented pipeline including annotated sample scripts can be found in http://fafner.meb.ki.se/biostatwiki/driver-genes/. yudi.pawitan@ki.se Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Identification of genomic aberrations associated with lymph node metastasis in diffuse-type gastric cancer.

    PubMed

    Choi, Ji-Hye; Kim, Young-Bae; Ahn, Ji Mi; Kim, Min Jae; Bae, Won Jung; Han, Sang-Uk; Woo, Hyun Goo; Lee, Dakeun

    2018-04-06

    Diffuse-type gastric cancer (DGC) is a GC subtype with heterogeneous clinical outcomes. Lymph node metastasis of DGC heralds a dismal progression, which hampers the curative treatment of patients. However, the genomic heterogeneity of DGC remains unknown. To identify genomic variations associated with lymph node metastasis in DGC, we performed whole exome sequencing on 23 cases of DGC and paired non-tumor tissues and compared the mutation profiles according to the presence (N3, n = 13) or absence (N0, n = 10) of regional lymph node metastasis. Overall, we identified 185 recurrently mutated genes in DGC, which included a significant novel mutation at CMTM2, as well as previously known mutations at CDH1, RHOA, and TP53. Noticeably, CMTM2 expression could predict the prognostic outcomes of DGC but not intestinal-type GC (IGC), indicating pivotal roles of CMTM2 in DGC progression. In addition, we identified a recurrent loss of heterozygosity (LOH) of DNA copy numbers at the 3p12-pcen locus in DGC. A comparison of N0 and N3 tumors showed that N3 tumors exhibited more frequent DNA copy number aberrations, including copy-neutral LOH and mutations of CpTpT trinucleotides, than N0 tumors (P = 0.2 × 10 -3 ). In conclusion, DGCs have distinct profiles of somatic mutations and DNA copy numbers according to the status of lymph node metastasis, and this might be helpful in delineating the pathobiology of DGC.

  20. Mutation profiles in early-stage lung squamous cell carcinoma with clinical follow-up and correlation with markers of immune function.

    PubMed

    Choi, M; Kadara, H; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Kim, K; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Herbst, R S; Wistuba, I I

    2017-01-01

    Lung squamous cell carcinoma (LUSC) accounts for 20–30% of non-small cell lung cancers (NSCLCs). There are limited treatment strategies for LUSC in part due to our inadequate understanding of the molecular underpinnings of the disease. We performed whole-exome sequencing (WES) and comprehensive immune profiling of a unique set of clinically annotated early-stage LUSCs to increase our understanding of the pathobiology of this malignancy. Matched pairs of surgically resected stage I-III LUSCs and normal lung tissues (n = 108) were analyzed by WES. Immunohistochemistry and image analysis-based profiling of 10 immune markers were done on a subset of LUSCs (n = 91). Associations among mutations, immune markers and clinicopathological variables were statistically examined using analysis of variance and Fisher’s exact test. Cox proportional hazards regression models were used for statistical analysis of clinical outcome. This early-stage LUSC cohort displayed an average of 209 exonic mutations per tumor. Fourteen genes exhibited significant enrichment for somatic mutation: TP53, MLL2, PIK3CA, NFE2L2, CDH8, KEAP1, PTEN, ADCY8, PTPRT, CALCR, GRM8, FBXW7, RB1 and CDKN2A. Among mutated genes associated with poor recurrence-free survival, MLL2 mutations predicted poor prognosis in both TP53 mutant and wild-type LUSCs. We also found that in treated patients, FBXW7 and KEAP1 mutations were associated with poor response to adjuvant therapy, particularly in TP53-mutant tumors. Analysis of mutations with immune markers revealed that ADCY8 and PIK3CA mutations were associated with markedly decreased tumoral PD-L1 expression, LUSCs with PIK3CA mutations exhibited elevated CD45ro levels and CDKN2A-mutant tumors displayed an up-regulated immune response. Our findings pinpoint mutated genes that may impact clinical outcome as well as personalized strategies for targeted immunotherapies in early-stage LUSC.

  1. Implications of ESR1 Mutations in Hormone Receptor-Positive Breast Cancer.

    PubMed

    Reinert, Tomás; Gonçalves, Rodrigo; Bines, José

    2018-04-17

    Endocrine treatment resistance eventually develops during adjuvant and even more often during hormonal treatment for advanced breast cancer (ABC). An ESR1 gene mutation, which encodes for the estrogen receptor (ER) protein, is one of the potential mechanisms of therapy resistance. The ESR1 mutations result in conformational changes in the ER leading to subsequent estrogen-independent transcriptional activity. These mutations are found at a lower level in early stage when compared to metastatic BC, more often through selective pressure after aromatase inhibitor (AI) treatment. Recent studies have explored the role of ESR1 mutations as potential prognostic and predictive biomarkers and showed that ESR1 mutations are likely associated with a more aggressive disease. However, definitive associations with outcome in order to make a specific treatment recommendation are yet to be found. The development of targeted therapy directed to ESR1-mutated clones is an appealing concept, and preclinical and clinical works are in progress. ESR1 mutations represent an exciting field with a rapidly increasing number of recent publications that will likely advance the knowledge of treatment resistance mechanisms and pave the way into more individualized patient endocrine treatment.

  2. Change in IgHV Mutational Status of CLL Suggests Origin From Multiple Clones.

    PubMed

    Osman, Afaf; Gocke, Christopher D; Gladstone, Douglas E

    2017-02-01

    Fluorescence in situ hybridization and immunoglobulin (Ig) heavy-chain variable-region (IgHV) mutational status are used to predict outcome in chronic lymphocytic leukemia (CLL). Although DNA aberrations change over time, IgHV sequences and mutational status are considered stable. In a retrospective review, 409 CLL patients, between 2008 and 2015, had IgHV analysis: 56 patients had multiple analyses performed. Seven patients' IgHV results changed: 2 from unmutated to mutated and 5 from mutated to unmutated IgHV sequence. Three concurrently changed their variable heavy-chain sequence. Secondary to allelic exclusion, 2 of the new variable heavy chains produced were biologically nonplausible. The existence of these new nonplausible heavy-chain variable regions suggests either the CLL cancer stem-cell maintains the ability to rearrange a previously silenced IgH allele or more likely that the cancer stem-cell produced at least 2 subclones, suggesting that the CLL cancer stem cell exists before the process of allelic exclusion occurs. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Diminishing-returns epistasis decreases adaptability along an evolutionary trajectory.

    PubMed

    Wünsche, Andrea; Dinh, Duy M; Satterwhite, Rebecca S; Arenas, Carolina Diaz; Stoebel, Daniel M; Cooper, Tim F

    2017-03-01

    Populations evolving in constant environments exhibit declining adaptability. Understanding the basis of this pattern could reveal underlying processes determining the repeatability of evolutionary outcomes. In principle, declining adaptability can be due to a decrease in the effect size of beneficial mutations, a decrease in the rate at which they occur, or some combination of both. By evolving Escherichia coli populations started from different steps along a single evolutionary trajectory, we show that declining adaptability is best explained by a decrease in the size of available beneficial mutations. This pattern reflected the dominant influence of negative genetic interactions that caused new beneficial mutations to confer smaller benefits in fitter genotypes. Genome sequencing revealed that starting genotypes that were more similar to one another did not exhibit greater similarity in terms of new beneficial mutations, supporting the view that epistasis acts globally, having a greater influence on the effect than on the identity of available mutations along an adaptive trajectory. Our findings provide support for a general mechanism that leads to predictable phenotypic evolutionary trajectories.

  4. Tumor mutational analysis of GOG248, a phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer (EC): An NRG Oncology/Gynecologic Oncology Group study

    PubMed Central

    Myers, Andrea P.; Filiaci, Virginia L.; Zhang, Yuping; Pearl, Michael; Behbakht, Kian; Makker, Vicky; Hanjani, Parviz; Zweizig, Susan; Burke, James J.; Downey, Gordon; Leslie, Kimberly K.; Van Hummelen, Paul; Birrer, Michael J.; Fleming, Gini F.

    2016-01-01

    Objective Rapamycin analogs have reproducible but modest efficacy in endometrial cancer (EC). Identification of molecular biomarkers that predict benefit could guide clinical development. Methods Fixed primary tissue and whole blood were collected prospectively from patients enrolled on GOG 248. DNA was isolated from macro-dissected tumors and blood; next–generation sequence analysis was performed on a panel of cancer related genes. Associations between clinical outcomes [response rate (RR) 20%; progression-free survival (PFS) median 4.9 months] and mutations (PTEN, PIK3CA, PIK3R1, KRAS, CTNNB1, AKT1, TSC1, TSC2, NF1, FBXW7) were explored. Results Sequencing data was obtained from tumors of 55 of the 73 enrolled pts. Mutation rates were consistent with published reports: mutations in PTEN (45%), PIK3CA (29%), PIK3R1 (24%), K-RAS (16%), CTNNB1 (18%) were common and mutations in AKT1 (4%), TSC1 (2%), TSC2 (2%), NF1 (9%) and FBXW7 (4%) were less common. Increased PFS (HR 0.16; 95% CI 0.01–0.78) and RR (response difference 0.83; 95% CI 0.03–0.99) were noted for AKT1 mutation. An increase in PFS (HR 0.46; 95% CI 0.20–0.97) but not RR (response difference 0.00, 95% CI −0.34–0.34) was identified for CTNNB1 mutation. Both patients with TSC mutations had an objective response. There were no statistically significant associations between mutations in PIK3CA, PTEN, PIK3R1, or KRAS and PFS or RR. Conclusions Mutations in AKT1, TSC1 and TSC2 are rare, but may predict clinical benefit from temsirolimus. CTNNB1 mutations were associated with longer PFS on temsirolimus. PMID:27016228

  5. Comprehensive profiling of DNA repair defects in breast cancer identifies a novel class of endocrine therapy resistance drivers.

    PubMed

    Anurag, Meenakshi; Punturi, Nindo; Hoog, Jeremy; Bainbridge, Matthew N; Ellis, Matthew J; Haricharan, Svasti

    2018-05-23

    This study was undertaken to conduct a comprehensive investigation of the role of DNA damage repair (DDR) defects in poor outcome ER+ disease. Expression and mutational status of DDR genes in ER+ breast tumors were correlated with proliferative response in neoadjuvant aromatase inhibitor therapy trials (discovery data set), with outcomes in METABRIC, TCGA and Loi data sets (validation data sets), and in patient derived xenografts. A causal relationship between candidate DDR genes and endocrine treatment response, and the underlying mechanism, was then tested in ER+ breast cancer cell lines. Correlations between loss of expression of three genes: CETN2 (p<0.001) and ERCC1 (p=0.01) from the nucleotide excision repair (NER) and NEIL2 (p=0.04) from the base excision repair (BER) pathways were associated with endocrine treatment resistance in discovery data sets, and subsequently validated in independent patient cohorts. Complementary mutation analysis supported associations between mutations in NER and BER pathways and reduced endocrine treatment response. A causal role for CETN2, NEIL2 and ERCC1 loss in intrinsic endocrine resistance was experimentally validated in ER+ breast cancer cell lines, and in ER+ patient-derived xenograft models. Loss of CETN2, NEIL2 or ERCC1 induced endocrine treatment response by dysregulating G1/S transition, and therefore, increased sensitivity to CDK4/6 inhibitors. A combined DDR signature score was developed that predicted poor outcome in multiple patient cohorts. This report identifies DDR defects as a new class of endocrine treatment resistance drivers and indicates new avenues for predicting efficacy of CDK4/6 inhibition in the adjuvant treatment setting. Copyright ©2018, American Association for Cancer Research.

  6. Prevalence of c.2268dup and detection of two novel alterations, c.670_672del and c.1186C>T, in the TPO gene in a cohort of Malaysian–Chinese with thyroid dyshormonogenesis

    PubMed Central

    Lee, Ching Chin; Harun, Fatimah; Jalaludin, Muhammad Yazid; Heh, Choon Han; Othman, Rozana; Junit, Sarni Mat

    2015-01-01

    Objectives The c.2268dup mutation in the thyroid peroxidase (TPO) gene is the most common TPO alteration reported in Taiwanese patients with thyroid dyshormonogenesis. The ancestors of these patients are believed to originate from the southern province of China. Our previous study showed that this mutation leads to reduced abundance of the TPO protein and loss of TPO enzyme activity in a Malaysian–Chinese family with goitrous hypothyroidism. The aim of our study was to provide further data on the incidence of the c.2268dup mutation in a cohort of Malaysian–Chinese and its possible phenotypic effects. Setting Cohort study. Participants Twelve biologically unrelated Malaysian–Chinese patients with congenital hypothyroidism were recruited in this study. All patients showed high thyrotropin and low free thyroxine levels at the time of diagnosis with proven presence of a thyroid gland. Primary outcome measure Screening of the c.2268dup mutation in the TPO gene in all patients was carried out using a PCR–direct DNA sequencing method. Secondary outcome measure Further screening for mutations in other exonic regions of the TPO gene was carried out if the patient was a carrier of the c.2268dup mutation. Results The c.2268dup mutation was detected in 4 of the 12 patients. Apart from the c.2268dup and a previously documented mutation (c.2647C>T), two novel TPO alterations, c.670_672del and c.1186C>T, were also detected in our patients. In silico analyses predicted that the novel alterations affect the structure/function of the TPO protein. Conclusions The c.2268dup mutation was detected in approximately one-third of the Malaysian–Chinese patients with thyroid dyshormonogenesis. The detection of the novel c.670_672del and c.1186C>T alterations expand the mutation spectrum of TPO associated with thyroid dyshormonogenesis. PMID:25564141

  7. Histopathologic features of ovarian borderline tumors are not predictive of clinical outcome.

    PubMed

    Avril, Stefanie; Hahn, Ellen; Specht, Katja; Hauptmann, Steffen; Höss, Cornelia; Kiechle, Marion; Höfler, Heinz; Schmalfeldt, Barbara

    2012-12-01

    Ovarian borderline tumors (BOTs) generally have an excellent prognosis, although recurrences and malignant transformation can occur. Our aim was to compare clinicopathologic features of BOT with clinical outcome. In seventy consecutive BOTs clinicopathologic parameters, tumor cell proliferation (Ki67) and in selected cases KRAS, BRAF and p53 mutational status were analyzed with recurrence-free and overall survival as the endpoints. Sixty-one (87%) patients presented with FIGO stage I, 3 stage II, and 6 stage III. Thirty-four patients had serous and 36 mucinous BOT (30 intestinal and 6 endocervical subtypes). Non-invasive peritoneal implants occurred in 9 patients, and no invasive implants were observed. Recurrence-free and overall survival rates were 91% and 99%, respectively, at a mean follow-up of 63 months. Disease recurrence occurred in 6 cases (all FIGO stage I) including 3 serous, 1 mucinous-intestinal, and 2 mucinous-endocervical subtypes. Mean time to recurrence was 27 months (range 8-68). The recurrence rate following fertility-conserving surgery was 31% (5/16) compared to 2% (1/54) after bilateral salpingo-oophorectomy. Neither peritoneal implants (9/70), micropapillary pattern (2/34), microinvasion (4/70), nor increased tumor cell proliferation was associated with a higher recurrence rate. The frequency of KRAS or BRAF mutations was 50% (3/6 recurrences and 3/6 controls; 4 KRAS, 2 BRAF mutations). No p53 mutations (0/12) were detected in primary or recurrent BOTs. Histopathologic parameters were not predictive of BOT recurrence including previously suggested risk factors such as micropapillary pattern and microinvasion. However, fertility-conserving surgery and incomplete surgical staging were associated with a higher risk for recurrence. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Mutation analysis of the EGFR pathway genes, EGFR, RAS, PIK3CA, BRAF, and AKT1, in salivary gland adenoid cystic carcinoma.

    PubMed

    Saida, Kosuke; Murase, Takayuki; Ito, Mayuko; Fujii, Kana; Takino, Hisashi; Masaki, Ayako; Kawakita, Daisuke; Ijichi, Kei; Tada, Yuichiro; Kusafuka, Kimihide; Iida, Yoshiyuki; Onitsuka, Tetsuro; Yatabe, Yasushi; Hanai, Nobuhiro; Hasegawa, Yasuhisa; Shinomiya, Hitomi; Nibu, Ken-Ichi; Shimozato, Kazuo; Inagaki, Hiroshi

    2018-03-30

    Adenoid cystic carcinoma (AdCC), one of the most common salivary gland carcinomas, usually has a fatal outcome. Epidermal growth factor receptor (EGFR) pathway gene mutations are important in predicting a patient's prognosis and estimating the efficacy of molecular therapy targeting the EGFR pathway. In this study of salivary gland AdCC (SAdCC), we looked for gene mutations in EGFR, RAS family ( KRAS, HRAS, and NRAS ), PIK3CA, BRAF, and AKT1 , using a highly sensitive single-base extension multiplex assay, SNaPshot. Out of 70 cases, EGFR pathway missense mutations were found in 13 (18.6%): RAS mutations in 10 (14.3%), EGFR in one (1.4%), and PIK3CA in 5 (7.1%). None of the cases showed an EGFR deletion by direct sequencing. Concurrent gene mutations were found in three cases (4.3%). EGFR pathway mutations were significantly associated with a shorter disease-free ( p = 0.011) and overall survival ( p = 0.049) and RAS mutations were as well; ( p = 0.010) and ( p = 0.024), respectively. The gene fusion status as determined by a FISH assay had no significant association with mutations of the genes involved in the EGFR pathway. In conclusion, EGFR pathway mutations, especially RAS mutations, may be frequent in SAdCC, and associated with a poor prognosis for the patient.

  9. The favorable impact of CEBPA mutations in patients with acute myeloid leukemia is only observed in the absence of associated cytogenetic abnormalities and FLT3 internal duplication.

    PubMed

    Renneville, Aline; Boissel, Nicolas; Gachard, Nathalie; Naguib, Dina; Bastard, Christian; de Botton, Stéphane; Nibourel, Olivier; Pautas, Cécile; Reman, Oumedaly; Thomas, Xavier; Gardin, Claude; Terré, Christine; Castaigne, Sylvie; Preudhomme, Claude; Dombret, Hervé

    2009-05-21

    Mutations of the CCAAT/enhancer binding protein alpha (CEBPA) gene have been associated with a favorable outcome in patients with acute myeloid leukemia (AML), but mainly in those with a normal karyotype. Here, we analyzed the impact of associated cytogenetic abnormalities or bad-prognosis fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) in 53 patients with CEBPA(+) de novo AML treated in the Acute Leukemia French Association trials. We found that only those with a normal karyotype and no FLT3-ITD displayed the expected favorable outcome. In this context, relapse-free, disease-free, and overall survival were significantly longer than in corresponding patients without the CEBPA mutation (P = .035, .016, and .047, respectively). This was not observed in the context of an abnormal karyotype or associated FLT3-ITD. Furthermore, after adjustment on age, trial, and mutation type, these features were independently predictive of shorter overall survival in the subset of patients with CEBPA(+) AML (multivariate hazard ratio = 2.7; 95% confidence interval, 1.08-6.7; and 2.9; 95% confidence interval, 1.01-8.2; with P = .034 and .05, for abnormal karyotype and FLT3-ITD, respectively).

  10. Hotspot Mutations in KIT Receptor Differentially Modulate Its Allosterically Coupled Conformational Dynamics: Impact on Activation and Drug Sensitivity

    PubMed Central

    Chauvot de Beauchêne, Isaure; Allain, Ariane; Panel, Nicolas; Laine, Elodie; Trouvé, Alain; Dubreuil, Patrice; Tchertanov, Luba

    2014-01-01

    Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D) localized in crucial regulatory segments, the juxtamembrane region (JMR) and the activation (A-) loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts. PMID:25079768

  11. Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: An exploratory multi-omic analysis

    PubMed Central

    Ahuja, Arun; Al-Ahmadie, Hikmat; Yusko, Erik; Benzeno, Sharon; Boyd, Mariel; Moran, Meredith; Iyer, Gopa; Mardis, Elaine R.

    2017-01-01

    Background Inhibition of programmed death-ligand 1 (PD-L1) with atezolizumab can induce durable clinical benefit (DCB) in patients with metastatic urothelial cancers, including complete remissions in patients with chemotherapy refractory disease. Although mutation load and PD-L1 immune cell (IC) staining have been associated with response, they lack sufficient sensitivity and specificity for clinical use. Thus, there is a need to evaluate the peripheral blood immune environment and to conduct detailed analyses of mutation load, predicted neoantigens, and immune cellular infiltration in tumors to enhance our understanding of the biologic underpinnings of response and resistance. Methods and findings The goals of this study were to (1) evaluate the association of mutation load and predicted neoantigen load with therapeutic benefit and (2) determine whether intratumoral and peripheral blood T cell receptor (TCR) clonality inform clinical outcomes in urothelial carcinoma treated with atezolizumab. We hypothesized that an elevated mutation load in combination with T cell clonal dominance among intratumoral lymphocytes prior to treatment or among peripheral T cells after treatment would be associated with effective tumor control upon treatment with anti-PD-L1 therapy. We performed whole exome sequencing (WES), RNA sequencing (RNA-seq), and T cell receptor sequencing (TCR-seq) of pretreatment tumor samples as well as TCR-seq of matched, serially collected peripheral blood, collected before and after treatment with atezolizumab. These parameters were assessed for correlation with DCB (defined as progression-free survival [PFS] >6 months), PFS, and overall survival (OS), both alone and in the context of clinical and intratumoral parameters known to be predictive of survival in this disease state. Patients with DCB displayed a higher proportion of tumor-infiltrating T lymphocytes (TIL) (n = 24, Mann-Whitney p = 0.047). Pretreatment peripheral blood TCR clonality below the median was associated with improved PFS (n = 29, log-rank p = 0.048) and OS (n = 29, log-rank p = 0.011). Patients with DCB also demonstrated more substantial expansion of tumor-associated TCR clones in the peripheral blood 3 weeks after starting treatment (n = 22, Mann-Whitney p = 0.022). The combination of high pretreatment peripheral blood TCR clonality with elevated PD-L1 IC staining in tumor tissue was strongly associated with poor clinical outcomes (n = 10, hazard ratio (HR) (mean) = 89.88, HR (median) = 23.41, 95% CI [2.43, 506.94], p(HR > 1) = 0.0014). Marked variations in mutation loads were seen with different somatic variant calling methodologies, which, in turn, impacted associations with clinical outcomes. Missense mutation load, predicted neoantigen load, and expressed neoantigen load did not demonstrate significant association with DCB (n = 25, Mann-Whitney p = 0.22, n = 25, Mann-Whitney p = 0.55, and n = 25, Mann-Whitney p = 0.29, respectively). Instead, we found evidence of time-varying effects of somatic mutation load on PFS in this cohort (n = 25, p = 0.044). A limitation of our study is its small sample size (n = 29), a subset of the patients treated on IMvigor 210 (NCT02108652). Given the number of exploratory analyses performed, we intend for these results to be hypothesis-generating. Conclusions These results demonstrate the complex nature of immune response to checkpoint blockade and the compelling need for greater interrogation and data integration of both host and tumor factors. Incorporating these variables in prospective studies will facilitate identification and treatment of resistant patients. PMID:28552987

  12. Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: An exploratory multi-omic analysis.

    PubMed

    Snyder, Alexandra; Nathanson, Tavi; Funt, Samuel A; Ahuja, Arun; Buros Novik, Jacqueline; Hellmann, Matthew D; Chang, Eliza; Aksoy, Bulent Arman; Al-Ahmadie, Hikmat; Yusko, Erik; Vignali, Marissa; Benzeno, Sharon; Boyd, Mariel; Moran, Meredith; Iyer, Gopa; Robins, Harlan S; Mardis, Elaine R; Merghoub, Taha; Hammerbacher, Jeff; Rosenberg, Jonathan E; Bajorin, Dean F

    2017-05-01

    Inhibition of programmed death-ligand 1 (PD-L1) with atezolizumab can induce durable clinical benefit (DCB) in patients with metastatic urothelial cancers, including complete remissions in patients with chemotherapy refractory disease. Although mutation load and PD-L1 immune cell (IC) staining have been associated with response, they lack sufficient sensitivity and specificity for clinical use. Thus, there is a need to evaluate the peripheral blood immune environment and to conduct detailed analyses of mutation load, predicted neoantigens, and immune cellular infiltration in tumors to enhance our understanding of the biologic underpinnings of response and resistance. The goals of this study were to (1) evaluate the association of mutation load and predicted neoantigen load with therapeutic benefit and (2) determine whether intratumoral and peripheral blood T cell receptor (TCR) clonality inform clinical outcomes in urothelial carcinoma treated with atezolizumab. We hypothesized that an elevated mutation load in combination with T cell clonal dominance among intratumoral lymphocytes prior to treatment or among peripheral T cells after treatment would be associated with effective tumor control upon treatment with anti-PD-L1 therapy. We performed whole exome sequencing (WES), RNA sequencing (RNA-seq), and T cell receptor sequencing (TCR-seq) of pretreatment tumor samples as well as TCR-seq of matched, serially collected peripheral blood, collected before and after treatment with atezolizumab. These parameters were assessed for correlation with DCB (defined as progression-free survival [PFS] >6 months), PFS, and overall survival (OS), both alone and in the context of clinical and intratumoral parameters known to be predictive of survival in this disease state. Patients with DCB displayed a higher proportion of tumor-infiltrating T lymphocytes (TIL) (n = 24, Mann-Whitney p = 0.047). Pretreatment peripheral blood TCR clonality below the median was associated with improved PFS (n = 29, log-rank p = 0.048) and OS (n = 29, log-rank p = 0.011). Patients with DCB also demonstrated more substantial expansion of tumor-associated TCR clones in the peripheral blood 3 weeks after starting treatment (n = 22, Mann-Whitney p = 0.022). The combination of high pretreatment peripheral blood TCR clonality with elevated PD-L1 IC staining in tumor tissue was strongly associated with poor clinical outcomes (n = 10, hazard ratio (HR) (mean) = 89.88, HR (median) = 23.41, 95% CI [2.43, 506.94], p(HR > 1) = 0.0014). Marked variations in mutation loads were seen with different somatic variant calling methodologies, which, in turn, impacted associations with clinical outcomes. Missense mutation load, predicted neoantigen load, and expressed neoantigen load did not demonstrate significant association with DCB (n = 25, Mann-Whitney p = 0.22, n = 25, Mann-Whitney p = 0.55, and n = 25, Mann-Whitney p = 0.29, respectively). Instead, we found evidence of time-varying effects of somatic mutation load on PFS in this cohort (n = 25, p = 0.044). A limitation of our study is its small sample size (n = 29), a subset of the patients treated on IMvigor 210 (NCT02108652). Given the number of exploratory analyses performed, we intend for these results to be hypothesis-generating. These results demonstrate the complex nature of immune response to checkpoint blockade and the compelling need for greater interrogation and data integration of both host and tumor factors. Incorporating these variables in prospective studies will facilitate identification and treatment of resistant patients.

  13. Mutation Detection in Patients With Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing.

    PubMed

    Mandelker, Diana; Zhang, Liying; Kemel, Yelena; Stadler, Zsofia K; Joseph, Vijai; Zehir, Ahmet; Pradhan, Nisha; Arnold, Angela; Walsh, Michael F; Li, Yirong; Balakrishnan, Anoop R; Syed, Aijazuddin; Prasad, Meera; Nafa, Khedoudja; Carlo, Maria I; Cadoo, Karen A; Sheehan, Meg; Fleischut, Megan H; Salo-Mullen, Erin; Trottier, Magan; Lipkin, Steven M; Lincoln, Anne; Mukherjee, Semanti; Ravichandran, Vignesh; Cambria, Roy; Galle, Jesse; Abida, Wassim; Arcila, Marcia E; Benayed, Ryma; Shah, Ronak; Yu, Kenneth; Bajorin, Dean F; Coleman, Jonathan A; Leach, Steven D; Lowery, Maeve A; Garcia-Aguilar, Julio; Kantoff, Philip W; Sawyers, Charles L; Dickler, Maura N; Saltz, Leonard; Motzer, Robert J; O'Reilly, Eileen M; Scher, Howard I; Baselga, Jose; Klimstra, David S; Solit, David B; Hyman, David M; Berger, Michael F; Ladanyi, Marc; Robson, Mark E; Offit, Kenneth

    2017-09-05

    Guidelines for cancer genetic testing based on family history may miss clinically actionable genetic changes with established implications for cancer screening or prevention. To determine the proportion and potential clinical implications of inherited variants detected using simultaneous sequencing of the tumor and normal tissue ("tumor-normal sequencing") compared with genetic test results based on current guidelines. From January 2014 until May 2016 at Memorial Sloan Kettering Cancer Center, 10 336 patients consented to tumor DNA sequencing. Since May 2015, 1040 of these patients with advanced cancer were referred by their oncologists for germline analysis of 76 cancer predisposition genes. Patients with clinically actionable inherited mutations whose genetic test results would not have been predicted by published decision rules were identified. Follow-up for potential clinical implications of mutation detection was through May 2017. Tumor and germline sequencing compared with the predicted yield of targeted germline sequencing based on clinical guidelines. Proportion of clinically actionable germline mutations detected by universal tumor-normal sequencing that would not have been detected by guideline-directed testing. Of 1040 patients, the median age was 58 years (interquartile range, 50.5-66 years), 65.3% were male, and 81.3% had stage IV disease at the time of genomic analysis, with prostate, renal, pancreatic, breast, and colon cancer as the most common diagnoses. Of the 1040 patients, 182 (17.5%; 95% CI, 15.3%-19.9%) had clinically actionable mutations conferring cancer susceptibility, including 149 with moderate- to high-penetrance mutations; 101 patients tested (9.7%; 95% CI, 8.1%-11.7%) would not have had these mutations detected using clinical guidelines, including 65 with moderate- to high-penetrance mutations. Frequency of inherited mutations was related to case mix, stage, and founder mutations. Germline findings led to discussion or initiation of change to targeted therapy in 38 patients tested (3.7%) and predictive testing in the families of 13 individuals (1.3%), including 6 for whom genetic evaluation would not have been initiated by guideline-based testing. In this referral population with selected advanced cancers, universal sequencing of a broad panel of cancer-related genes in paired germline and tumor DNA samples was associated with increased detection of individuals with potentially clinically significant heritable mutations over the predicted yield of targeted germline testing based on current clinical guidelines. Knowledge of these additional mutations can help guide therapeutic and preventive interventions, but whether all of these interventions would improve outcomes for patients with cancer or their family members requires further study. clinicaltrials.gov Identifier: NCT01775072.

  14. LPL is the strongest prognostic factor in a comparative analysis of RNA-based markers in early chronic lymphocytic leukemia.

    PubMed

    Kaderi, Mohd Arifin; Kanduri, Meena; Buhl, Anne Mette; Sevov, Marie; Cahill, Nicola; Gunnarsson, Rebeqa; Jansson, Mattias; Smedby, Karin Ekström; Hjalgrim, Henrik; Jurlander, Jesper; Juliusson, Gunnar; Mansouri, Larry; Rosenquist, Richard

    2011-08-01

    The expression levels of LPL, ZAP70, TCL1A, CLLU1 and MCL1 have recently been proposed as prognostic factors in chronic lymphocytic leukemia. However, few studies have systematically compared these different RNA-based markers. Using real-time quantitative PCR, we measured the mRNA expression levels of these genes in unsorted samples from 252 newly diagnosed chronic lymphocytic leukemia patients and correlated our data with established prognostic markers (for example Binet stage, CD38, IGHV gene mutational status and genomic aberrations) and clinical outcome. High expression levels of all RNA-based markers, except MCL1, predicted shorter overall survival and time to treatment, with LPL being the most significant. In multivariate analysis including the RNA-based markers, LPL expression was the only independent prognostic marker for overall survival and time to treatment. When studying LPL expression and the established markers, LPL expression retained its independent prognostic strength for overall survival. All of the RNA-based markers, albeit with varying ability, added prognostic information to established markers, with LPL expression giving the most significant results. Notably, high LPL expression predicted a worse outcome in good-prognosis subgroups, such as patients with mutated IGHV genes, Binet stage A, CD38 negativity or favorable cytogenetics. In particular, the combination of LPL expression and CD38 could further stratify Binet stage A patients. LPL expression is the strongest RNA-based prognostic marker in chronic lymphocytic leukemia that could potentially be applied to predict outcome in the clinical setting, particularly in the large group of patients with favorable prognosis.

  15. Pre-operative role of BRAF in the guidance of the surgical approach and prognosis of differentiated thyroid carcinoma.

    PubMed

    Danilovic, Debora L S; Lima, Erika U; Domingues, Regina B; Brandão, Lenine G; Hoff, Ana O; Marui, Suemi

    2014-04-01

    The p.V600E BRAF and RAS mutations are found in 30-80% of differentiated thyroid carcinoma (DTC). BRAF mutation has been associated with poor prognosis. This study investigated the role of molecular studies in preoperative diagnosis of DTC and the association of p.V600E mutation with prognostic factors. Prospective study. A total of 202 patients with cytological diagnosis of Bethesda III-VI underwent preoperative molecular studies and subsequent thyroidectomy. p.V600E and RAS mutations were studied in the cytology smears, using real-time PCR genotyping technique. The BRAF mutation (BRAF(+) or BRAF(-)) was correlated with histological and clinical findings. Molecular study of 172 nodules with Bethesda III-V cytology improved negative predictive value and accuracy of Bethesda III and IV diagnosis. BRAF mutation was present in 65% of 94 DTC and p.Q61R NRAS in one. Except for age, BRAF(+) and BRAF(-) did not differ in sex, tumor size, histological subtype, multifocality, vascular invasion, extrathyroidal extension, or prognostic staging. Among papillary carcinomas, lymph node (LN) metastasis was diagnosed in 23% BRAF(+) and 37% BRAF(-). Distant metastasis occurred in four BRAF(-). Recurrent or persistent disease was more frequent in BRAF(-) (26.7 vs 3.3% BRAF(+), P=0.002) along follow-up of 29.8±10 months. BRAF(+) patients without LN metastasis by pre-operative evaluation submitted to thyroidectomy with central neck dissection (CND) had more frequent LN metastasis (45 vs 5% no CND, P=0.002), but no difference in clinical outcome was observed. Pre-operative identification of BRAF mutation improved cytological diagnosis of DTC, but it was not associated with poor prognostic factors. Prophylactic CND did not guarantee better outcome in BRAF(+) patients.

  16. Mutation rate evolution in replicator dynamics.

    PubMed

    Allen, Benjamin; Rosenbloom, Daniel I Scholes

    2012-11-01

    The mutation rate of an organism is itself evolvable. In stable environments, if faithful replication is costless, theory predicts that mutation rates will evolve to zero. However, positive mutation rates can evolve in novel or fluctuating environments, as analytical and empirical studies have shown. Previous work on this question has focused on environments that fluctuate independently of the evolving population. Here we consider fluctuations that arise from frequency-dependent selection in the evolving population itself. We investigate how the dynamics of competing traits can induce selective pressure on the rates of mutation between these traits. To address this question, we introduce a theoretical framework combining replicator dynamics and adaptive dynamics. We suppose that changes in mutation rates are rare, compared to changes in the traits under direct selection, so that the expected evolutionary trajectories of mutation rates can be obtained from analysis of pairwise competition between strains of different rates. Depending on the nature of frequency-dependent trait dynamics, we demonstrate three possible outcomes of this competition. First, if trait frequencies are at a mutation-selection equilibrium, lower mutation rates can displace higher ones. Second, if trait dynamics converge to a heteroclinic cycle-arising, for example, from "rock-paper-scissors" interactions-mutator strains succeed against non-mutators. Third, in cases where selection alone maintains all traits at positive frequencies, zero and nonzero mutation rates can coexist indefinitely. Our second result suggests that relatively high mutation rates may be observed for traits subject to cyclical frequency-dependent dynamics.

  17. KRAS mutation is a weak, but valid predictor for poor prognosis and treatment outcomes in NSCLC: A meta-analysis of 41 studies

    PubMed Central

    Pan, Wei; Yang, Yan; Zhu, Hongcheng; Zhang, Youcheng; Zhou, Rongping; Sun, Xinchen

    2016-01-01

    Mutation of oncogene KRAS is common in non-small cell lung cancer (NSCLC), however, its clinical significance is still controversial. Independent studies evaluating its prognostic and predictive value usually drew inconsistent conclusions. Hence, We performed a meta-analysis with 41 relative publications, retrieved from multi-databases, to reconcile these controversial results and to give an overall impression of KRAS mutation in NSCLC. According to our findings, KRAS mutation was significantly associated with worse overall survival (OS) and disease-free survival (DFS) in early stage resected NSCLC (hazard ratio or HR=1.56 and 1.57, 95% CI 1.39-1.76 and 1.17-2.09 respectively), and with inferior outcomes of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) treatment and chemotherapy (relative risk or RR=0.21 and 0.66 for objective response rate or ORR, 95% CI 0.12-0.39 and 0.54-0.81 respectively; HR=1.46 and 1.30 for progression-free survival or PFS, 95%CI 1.23-1.74 and 1.14-1.50 respectively) in advanced NSCLC. When EGFR mutant patients were excluded, KRAS mutation was still significantly associated with worse OS and PFS of EGFR-TKIs (HR=1.40 and 1.35, 95 % CI 1.21-1.61 and 1.11-1.64). Although KRAS mutant patients presented worse DFS and PFS of chemotherapy (HR=1.33 and 1.11, 95% CI 0.97-1.84 and 0.95-1.30), and lower response rate to EGFR-TKIs or chemotherapy (RR=0.55 and 0.88, 95 % CI 0.27-1.11 and 0.76-1.02), statistical differences were not met. In conclusion, KRAS mutation is a weak, but valid predictor for poor prognosis and treatment outcomes in NSCLC. There's a need for developing target therapies for KRAS mutant lung cancer and other tumors. PMID:26840022

  18. Correlation of somatic mutations and clinical outcome in melanoma patients treated with carboplatin, paclitaxel, and sorafenib

    PubMed Central

    Wilson, Melissa A.; Zhao, Fengmin; Letrero, Richard; D’Andrea, Kurt; Rimm, David L.; Kirkwood, John M.; Kluger, Harriet M.; Lee, Sandra J.; Schuchter, Lynn M.; Flaherty, Keith T.; Nathanson, Katherine L.

    2014-01-01

    Purpose Sorafenib is an inhibitor of VEGFR, PDGFR, and RAF kinases, amongst others. We assessed the association of somatic mutations with clinicopathologic features and clinical outcomes in patients with metastatic melanoma treated on E2603, comparing treatment with carboplatin, paclitaxel +/− sorafenib (CP vs. CPS). Experimental Design Pre-treatment tumor samples from 179 unique individuals enrolled on E2603 were analyzed. Genotyping was performed using a custom iPlex panel interrogating 74 mutations in 13 genes. Statistical analysis was performed using Fisher’s exact test, logistic regression, and Cox’s proportional-hazards models. Progression free survival and overall survival were estimated using Kaplan-Meier methods. Results BRAF and NRAS mutations were found at frequencies consistent with other metastatic melanoma cohorts. BRAF-mutant melanoma was associated with worse performance status, increased number of disease sites, and younger age at diagnosis; NRAS-mutant melanoma was associated with better performance status, fewer sites of disease, and female gender. BRAF and NRAS mutations were not significantly predictive of response or survival when treated with CPS vs. CP. However, patients with NRAS-mutant melanoma trended towards a worse response and PFS on CP than those with BRAF-mutant or WT/WT melanoma, an association that was reversed for this group on the CPS arm. Conclusions This study of somatic mutations in melanoma is the last prospectively collected phase III clinical trial population prior to the era of BRAF targeted therapy. A trend towards improved clinical response in patients with NRAS-mutant melanoma treated with CPS was observed, possibly due to sorafenib’s effect on CRAF. PMID:24714776

  19. Relationships between p53 mutation, HPV status and outcome in oropharyngeal squamous cell carcinoma.

    PubMed

    Hong, Angela; Zhang, Xiaoying; Jones, Deanna; Veillard, Anne-Sophie; Zhang, Mei; Martin, Andrew; Lyons, J Guy; Lee, C Soon; Rose, Barbara

    2016-02-01

    This study aimed to examine the rate and type of p53 mutation in oropharyngeal cancer (OSCC). Relationships were sought between human papillomavirus (HPV) status and p53 mutation. The role of p53 mutation as a prognostic factor independent of HPV status and as a modifier of the effect of HPV on outcomes was also examined. The HPV status of 202 cases was determined by HPV DNA by RT-PCR and p16 immunohistochemistry. P53 mutation in exon 5-8 was determined by pyrosequencing. Findings were correlated with known clinicopathological factors and outcomes. 48% of the cases were HPV positive and they were significantly less likely to have a p53 mutation than HPV-negative OSCCs (25.8% vs 46.7%, p=0.0021). Mutation was most common in exon 5. Among patients with HPV-positive OSCC, there was no significant difference in p53 mutation by smoking status (22.2% for never smokers and 30.8% for current or ex-smokers). Patients with p53 mutant OSCC had significantly worse overall survival (p=0.01). There was no statistical evidence that p53 mutation modified the effect of HPV status on outcomes. In the multivariate analysis, positive HPV status remained the strongest predictor of outcomes. p53 mutation status was not a significant predictor of outcome after adjusting for age, gender, T stage, N stage and HPV status. In summary, HPV-positive OSCC are less likely to have mutant p53 than HPV-negative OSCC. Our study did not show any evidence that p53 mutation could modify the effect of HPV status on outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Forecasting the Long-Term Clinical and Economic Outcomes of Lumacaftor/Ivacaftor in Cystic Fibrosis Patients with Homozygous phe508del Mutation.

    PubMed

    Dilokthornsakul, Piyameth; Patidar, Mausam; Campbell, Jonathan D

    2017-12-01

    To forecast lifetime outcomes and cost of lumacaftor/ivacaftor combination therapy in patients with cystic fibrosis (CF) with homozygous phe508del mutation from the US payer perspective. A lifetime Markov model was developed from a US payer perspective. The model included five health states: 1) mild lung disease (percent predicted forced expiratory volume in 1 second [FEV 1 ] >70%), 2) moderate lung disease (40% ≤ FEV 1 ≤ 70%), 3) severe lung disease (FEV 1 < 40%), 4) lung transplantation, and 5) death. All inputs were derived from published literature. We estimated lumacaftor/ivacaftor's improvement in outcomes compared with a non-CF referent population as well as CF-specific mortality estimates. Lumacaftor/ivacaftor was associated with additional 2.91 life-years (95% credible interval 2.55-3.56) and additional 2.42 quality-adjusted life-years (QALYs) (95% credible interval 2.10-2.98). Lumacaftor/ivacaftor was associated with improvements in survival and QALYs equivalent to 27.6% and 20.7%, respectively, for the survival and QALY gaps between CF usual care and their non-CF peers. The incremental lifetime cost was $2,632,249. Lumacaftor/ivacaftor increased life-years and QALYs in CF patients with the homozygous phe508del mutation and moved morbidity and mortality closer to that of their non-CF peers but it came with higher cost. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  1. Clinical and pathological characterization of HER2 mutations in human breast cancer: a systematic review of the literature.

    PubMed

    Petrelli, Fausto; Tomasello, Gianluca; Barni, Sandro; Lonati, Veronica; Passalacqua, Rodolfo; Ghidini, Michele

    2017-11-01

    HER2 gene is a member of the epidermal growth factor receptor (EGFR) family. Across different malignancies, aberrations of HER2 gene commonly correspond to gain-of-function alterations leading to increased receptor signaling. We have reviewed the literature currently available on HER2 mutations in human breast cancer (BC) evaluating type and frequency of such mutations. The primary objective was to determine the frequency and the number of patients with HER2-mut in the series analyzed. The secondary objectives were to assess characteristics of mutated cases (ER and HER2 status and stage of disease, type of mutations, and finally the clinical outcome if reported). We retrieved 31 published papers, and the pooled rate of HER2 mutations across 12,905 BC patients was calculated. Overall, the frequency of HER2 mutations was 2.7% with most involving the intracellular domain. About 4% of patients were finally mutated. The predictive role was not described. Only 30% of these patients were simultaneously HER2 positive and 63% were ER positive. We have found that the prevalence of HER2 mutations is about 3%. These genic alterations are independently associated with HER2 amplification status, occurring in both ER-positive/HER2-negative diseases or HER2-enriched cancers. Ongoing trials are investigating small molecules tyrosine kinase inhibitors in patients harboring these mutations.

  2. Muscle MRI and functional outcome measures in Becker muscular dystrophy.

    PubMed

    Barp, Andrea; Bello, Luca; Caumo, Luca; Campadello, Paola; Semplicini, Claudio; Lazzarotto, Annalisa; Sorarù, Gianni; Calore, Chiara; Rampado, Alessandro; Motta, Raffaella; Stramare, Roberto; Pegoraro, Elena

    2017-11-22

    Becker muscular dystrophy (BMD) is a neuromuscular disorder allelic to Duchenne muscular dystrophy (DMD), caused by in-frame mutations in the dystrophin gene, and characterized by a clinical progression that is both milder and more heterogeneous than DMD. Muscle magnetic resonance imaging (MRI) has been proposed as biomarker of disease progression in dystrophinopathies. Correlation with clinically meaningful outcome measures such as North Star Ambulatory Assessment (NSAA) and 6 minute walk test (6MWT) is paramount for biomarker qualification. In this study, 51 molecularly confirmed BMD patients (aged 7-69 years) underwent muscle MRI and were evaluated with functional measures (NSAA and 6MWT) at the time of the MRI, and subsequently after one year. We confirmed a pattern of fatty substitution involving mainly the hip extensors and most thigh muscles. Severity of muscle fatty substitution was significantly correlated with specific DMD mutations: in particular, patients with an isolated deletion of exon 48, or deletions bordering exon 51, showed milder involvement. Fat infiltration scores correlated with baseline functional measures, and predicted changes after 1 year. We conclude that in BMD, skeletal muscle MRI not only strongly correlates with motor function, but also helps in predicting functional deterioration within a 12-month time frame.

  3. Ecological transition predictably associated with gene degeneration.

    PubMed

    Wessinger, Carolyn A; Rausher, Mark D

    2015-02-01

    Gene degeneration or loss can significantly contribute to phenotypic diversification, but may generate genetic constraints on future evolutionary trajectories, potentially restricting phenotypic reversal. Such constraints may manifest as directional evolutionary trends when parallel phenotypic shifts consistently involve gene degeneration or loss. Here, we demonstrate that widespread parallel evolution in Penstemon from blue to red flowers predictably involves the functional inactivation and degeneration of the enzyme flavonoid 3',5'-hydroxylase (F3'5'H), an anthocyanin pathway enzyme required for the production of blue floral pigments. Other types of genetic mutations do not consistently accompany this phenotypic shift. This pattern may be driven by the relatively large mutational target size of degenerative mutations to this locus and the apparent lack of associated pleiotropic effects. The consistent degeneration of F3'5'H may provide a mechanistic explanation for the observed asymmetry in the direction of flower color evolution in Penstemon: Blue to red transitions are common, but reverse transitions have not been observed. Although phenotypic shifts in this system are likely driven by natural selection, internal constraints may generate predictable genetic outcomes and may restrict future evolutionary trajectories. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Syndrome complex of bone marrow failure and pulmonary fibrosis predicts germline defects in telomerase

    PubMed Central

    Parry, Erin M.; Alder, Jonathan K.; Qi, Xiaodong; Chen, Julian J.-L.

    2011-01-01

    Mutations in the essential telomerase components hTERT and hTR cause dyskeratosis congenita, a bone marrow failure syndrome characterized by mucocutaneous features. Some (∼ 3%) sporadic aplastic anemia (AA) and idiopathic pulmonary fibrosis cases also carry mutations in hTERT and hTR. Even though it can affect clinical outcome, because the mutation frequency is rare, genetic testing is not standard. We examined whether the cooccurrence of bone marrow failure and pulmonary fibrosis in the same individual or family enriches for the presence of a telomerase mutation. Ten consecutive individuals with a total of 36 family members who fulfilled these criteria carried a germline mutant telomerase gene (100%). The mean age of onset for individuals with AA was significantly younger than that for those with pulmonary fibrosis (14 vs 51; P < .0001). Families displayed autosomal dominant inheritance and there was an evolving pattern of genetic anticipation, with the older generation primarily affected by pulmonary fibrosis and successive generations by bone marrow failure. The cooccurrence of AA and pulmonary fibrosis in a single patient or family is highly predictive for the presence of a germline telomerase defect. This diagnosis affects the choice of bone marrow transplantation preparative regimen and can prevent morbidity. PMID:21436073

  5. Clinical utility of RAS mutations in thyroid cancer: a blurred picture now emerging clearer.

    PubMed

    Xing, Mingzhao

    2016-01-27

    RAS mutations play an important role in thyroid tumorigenesis. Considerable effort has been made in the last decade to apply RAS mutations as molecular markers to the clinical management of thyroid nodules and thyroid cancer. Yet, for the low diagnostic sensitivities and specificities of RAS mutations, when used alone, and for their uncertain role in the clinical outcomes of thyroid cancer, it has been unclear how to appropriately use them to assist the management of thyroid nodules and thyroid cancer. Studies from recent years, now added from the Alexander group, have shed light on this issue, making a blurred clinical picture now emerge clearer-RAS mutations, when combined with other genetic markers, have high diagnostic negative predictive values for thyroid cancer; cytologically benign thyroid nodules, including those positive for RAS mutations, have long-term clinical stability when non-surgically managed; and differentiated thyroid cancers harboring RAS mutations alone have an excellent prognosis. This progress in understanding RAS mutations in thyroid cancer is showing a major impact on molecular-based practice in the management of thyroid cancer.Please see related research articles: http://dx.doi.org/10.1186/s12916-016-0554-1 and http://dx.doi.org/10.1186/s12916-015-0419-z.

  6. Association Between Mutation Clearance After Induction Therapy and Outcomes in Acute Myeloid Leukemia

    PubMed Central

    Klco, Jeffery M.; Miller, Christopher A.; Griffith, Malachi; Petti, Allegra; Spencer, David H.; Ketkar-Kulkarni, Shamika; Wartman, Lukas D; Christopher, Matthew; Lamprecht, Tamara L.; Helton, Nicole M.; Duncavage, Eric J.; Payton, Jacqueline E.; Baty, Jack; Heath, Sharon E.; Griffith, Obi L.; Shen, Dong; Hundal, Jasreet; Chang, Gue Su; Fulton, Robert; O'Laughlin, Michelle; Fronick, Catrina; Magrini, Vincent; Demeter, Ryan T.; Larson, David E.; Kulkarni, Shashikant; Ozenberger, Bradley A.; Welch, John S; Walter, Matthew J; Graubert, Timothy A.; Westervelt, Peter; Radich, Jerald P.; Link, Daniel C.; Mardis, Elaine R.; DiPersio, John F.; Wilson, Richard K.; Ley, Timothy J.

    2015-01-01

    IMPORTANCE Tests that predict outcomes for patients with acute myeloid leukemia (AML) are imprecise, especially for those with intermediate risk AML. OBJECTIVES To determine whether genomic approaches can provide novel prognostic information for adult patients with de novo AML. DESIGN, SETTING, AND PARTICIPANTS Whole-genome or exome sequencing was performed on samples obtained at disease presentation from 71 patients with AML (mean age, 50.8 years) treated with standard induction chemotherapy at a single site starting in March 2002, with follow-up through January 2015. In addition, deep digital sequencing was performed on paired diagnosis and remission samples from 50 patients (including 32 with intermediate-risk AML), approximately 30 days after successful induction therapy. Twenty-five of the 50 were from the cohort of 71 patients, and 25 were new, additional cases. EXPOSURES Whole-genome or exome sequencing and targeted deep sequencing. Risk of identification based on genetic data. MAIN OUTCOMES AND MEASURES Mutation patterns (including clearance of leukemia-associated variants after chemotherapy) and their association with event-free survival and overall survival. RESULTS Analysis of comprehensive genomic data from the 71 patients did not improve outcome assessment over current standard-of-care metrics. In an analysis of 50 patients with both presentation and documented remission samples, 24 (48%) had persistent leukemia-associated mutations in at least 5%of bone marrow cells at remission. The 24 with persistent mutations had significantly reduced event-free and overall survival vs the 26 who cleared all mutations. Patients with intermediate cytogenetic risk profiles had similar findings. Digital Sequencing (n=50)Intermediate CytogeneticRisk Profile (n=32)PersistentMutations(n=24)ClearedMutations(n=26)HR(95% CI)PersistentMutations(n=14)ClearedMutations(n=18)HR(95% CI)Event-free survival,median (95% CI), mo6.0(3.7–9.6)17.9(11.3–40.4)3.67(1.93–7.11)8.8(3.7–14.6)25.6(11.4-notestimable)3.32(1.44–7.67)Overall survival,median (95% CI), mo10.5(7.5–22.2)42.2(20.6-notestimable)2.86(1.39–5.88)19.3(7.5–42.3)46.8(22.6-notestimable)2.88(1.11–7.45) CONCLUSIONS AND RELEVANCE The detection of persistent leukemia-associated mutations in at least 5%of bone marrow cells in day 30 remission samples was associated with a significantly increased risk of relapse, and reduced overall survival. These data suggest that this genomic approach may improve risk stratification for patients with AML. PMID:26305651

  7. Mutation analysis of 28 gaucher disease patients: The Australasian experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, B.D.; Nelson, P.V.; Robertson, E.F.

    1994-01-15

    Gaucher disease is the most common lysomal storage disease. It is an autosomal recessive disorder that results from a deficiency of {beta}-glucocerrebrosidase. Three clinical phenotypes have been described: non-neuronopathic, acute neuronopathic, and subacuteneuronopathic. Genomic DNA from 28 Australasian patients of diverse ethnic origin with Gaucher disease was screened for 3 common mutations (1226G, 1448C and 84GG) using the amplification refractory mutation system (ARMS), and one uncommon mutation (1504T) by restriction enzyme digestion. Thirty-eight of the 56 independent alleles in these patients were characterized, with 1448C present in 42% and 1226G in 28% of the alleles. The 1226G mutation was associatedmore » only with the nonneuronopathic phenotype and 7 of the 15 patients who carried the 1448C mutation developed neuronopathic disease. Three infants who died in the neonatal period following a rapidly progressive neurodegenerative course carried no identifiable mutations. The 84GG mutation was carried by 2 Jewish patients and 1504T was present in one patient. It is now possible to rapidly identify the common Gaucher mutations using ARMS and restriction enzyme digestion, and our findings confirm the heterogeneity of mutations in Gaucher disease. It is also possible to predict in part the phenotypic outcome when screening patients for these mutations. The authors consider mutation analysis to be of most use in prenatal diagnosis and for carrier detection within affected families. 27 refs., 2 figs., 2 tabs.« less

  8. Somatic mutation dynamics in MDS patients treated with azacitidine indicate clonal selection in patients-responders

    PubMed Central

    Polgarova, Kamila; Vargova, Karina; Kulvait, Vojtech; Dusilkova, Nina; Minarik, Lubomir; Zemanova, Zuzana; Pesta, Michal; Jonasova, Anna; Stopka, Tomas

    2017-01-01

    Azacitidine (AZA) for higher risk MDS patients is a standard therapy with limited durability. To monitor mutation dynamics during AZA therapy we utilized massive parallel sequencing of 54 genes previously associated with MDS/AML pathogenesis. Serial sampling before and during AZA therapy of 38 patients (reaching median overall survival 24 months (Mo) with 60% clinical responses) identified 116 somatic pathogenic variants with allele frequency (VAF) exceeding 5%. High accuracy of data was achieved via duplicate libraries from myeloid cells and T-cell controls. We observed that nearly half of the variants were stable while other variants were highly dynamic. Patients with marked decrease of allelic burden upon AZA therapy achieved clinical responses. In contrast, early-progressing patients on AZA displayed minimal changes of the mutation pattern. We modeled the VAF dynamics on AZA and utilized a joint model for the overall survival and response duration. While the presence of certain variants associated with clinical outcomes, such as the mutations of CDKN2A were adverse predictors while KDM6A mutations yield lower risk of dying, the data also indicate that allelic burden volatility represents additional important prognostic variable. In addition, preceding 5q- syndrome represents strong positive predictor of longer overall survival and response duration in high risk MDS patients treated with AZA. In conclusion, variants dynamics detected via serial sampling represents another parameter to consider when evaluating AZA efficacy and predicting outcome. PMID:29340104

  9. Tumor location and IDH1 mutation may predict intraoperative seizures during awake craniotomy.

    PubMed

    Gonen, Tal; Grossman, Rachel; Sitt, Razi; Nossek, Erez; Yanaki, Raneen; Cagnano, Emanuela; Korn, Akiva; Hayat, Daniel; Ram, Zvi

    2014-11-01

    Intraoperative seizures during awake craniotomy may interfere with patients' ability to cooperate throughout the procedure, and it may affect their outcome. The authors have assessed the occurrence of intraoperative seizures during awake craniotomy in regard to tumor location and the isocitrate dehydrogenase 1 (IDH1) status of the tumor. Data were collected in 137 consecutive patients who underwent awake craniotomy for removal of a brain tumor. The authors performed a retrospective analysis of the incidence of seizures based on the tumor location and its IDH1 mutation status, and then compared the groups for clinical variables and surgical outcome parameters. Tumor location was strongly associated with the occurrence of intraoperative seizures. Eleven patients (73%) with tumor located in the supplementary motor area (SMA) experienced intraoperative seizures, compared with 17 (13.9%) with tumors in the other three non-SMA brain regions (p < 0.0001). Interestingly, there was no significant association between history of seizures and tumor location (p = 0.44). Most of the patients (63.6%) with tumor in the SMA region harbored an IDH1 mutation compared with those who had tumors in non-SMA regions. Thirty-one of 52 patients (60%) with a preoperative history of seizures had an IDH1 mutation (p = 0.02), and 15 of 22 patients (68.2%) who experienced intraoperative seizures had an IDH1 mutation (p = 0.03). In a multivariate analysis, tumor location was found as a significant predictor of intraoperative seizures (p = 0.002), and a trend toward IDH1 mutation as such a predictor was found as well (p = 0.06). Intraoperative seizures were not associated with worse outcome. Patients with tumors located in the SMA are more prone to develop intraoperative seizures during awake craniotomy compared with patients who have a tumor in non-SMA frontal areas and other brain regions. The IDH1 mutation was more common in SMA region tumors compared with other brain regions, and may be an additional risk factor for the occurrence of intraoperative seizures.

  10. Vemurafenib plus cobimetinib in unresectable stage IIIc or stage IV melanoma: response monitoring and resistance prediction with positron emission tomography and tumor characteristics (REPOSIT): study protocol of a phase II, open-label, multicenter study.

    PubMed

    van der Hiel, Bernies; Haanen, John B A G; Stokkel, Marcel P M; Peeper, Daniel S; Jimenez, Connie R; Beijnen, Jos H; van de Wiel, Bart A; Boellaard, Ronald; van den Eertwegh, Alfons J M

    2017-09-15

    In patients with BRAFV600 mutated unresectable stage IIIc or metastatic melanoma, molecular targeted therapy with combined BRAF/MEK-inhibitor vemurafenib plus cobimetinib has shown a significantly improved progression-free survival and overall survival compared to treatment with vemurafenib alone. Nevertheless, the majority of BRAFV600 mutation-positive melanoma patients will eventually develop resistance to treatment. Molecular imaging with 18 F-Fluorodeoxyglucose ( 18 F-FDG) PET has been used to monitor response to vemurafenib in some BRAFV600 mutated metastatic melanoma patients, showing a rapid decline of 18 F-FDG uptake within 2 weeks following treatment. Furthermore, preliminary results suggest that metabolic alterations might predict the development of resistance to treatment. 18 F-Fluoro-3'-deoxy-3'L-fluorothymidine ( 18 F-FLT), a PET-tracer visualizing proliferation, might be more suitable to predict response or resistance to therapy than 18 F-FDG. This phase II, open-label, multicenter study evaluates whether metabolic response to treatment with vemurafenib plus cobimetinib in the first 7 weeks as assessed by 18F-FDG/18F-FLT PET can predict progression-free survival and whether early changes in 18F-FDG/18F-FLT can be used for early detection of treatment response compared to standard response assessment with RECISTv1.1 ceCT at 7 weeks. Ninety patients with BRAFV600E/K mutated unresectable stage IIIc/IV melanoma will be included. Prior to and during treatment all patients will undergo 18 F-FDG PET/CT and in 25 patients additional 18 F-FLT PET/CT is performed. Histopathological tumor characterization is assessed in a subset of 40 patients to unravel mechanisms of resistance. Furthermore, in all patients, blood samples are taken for pharmacokinetic analysis of vemurafenib/cobimetinib. Outcomes are correlated with PET/CT-imaging and therapy response. The results of this study will help in linking PET measured metabolic alterations induced by targeted therapy of BRAFV600 mutated melanoma to molecular changes within the tumor. We will be able to correlate both 18 F-FDG and 18 F-FLT PET to outcome and decide on the best modality to predict long-term remissions to combined BRAF/MEK-inhibitors. Results coming from this study may help in identifying responders from non-responders early after the initiation of therapy and reveal early development of resistance to vemurafenib/cobimetinib. Furthermore, we believe that the results can be fundamental for further optimizing individual patient treatment. Clinicaltrials.gov identifier: NCT02414750. Registered 10 April 2015, retrospectively registered.

  11. The identification of HESX1 mutations in Kallmann syndrome

    PubMed Central

    Newbern, Kayce; Natrajan, Nithya; Kim, Hyung-Goo; Chorich, Lynn .P.; Halvorson, Lisa; Cameron, Richard S.; Layman, Lawrence C.

    2013-01-01

    Objective To determine if HESX1 mutations are present in patients with idiopathic hypogonadotropic hypogonadism (IHH)/Kallmann syndrome (KS). HESX1 mutations have previously been characterized in patients with septo-optic dysplasia (SOD), isolated growth hormone deficiency (IGHD), and combined pituitary hormone deficiency (CPHD). We hypothesized that IHH/KS represents a milder phenotypic variant of SOD. Design PCR-based DNA sequencing was performed on 217 well-characterized IHH/KS patients. Putative missense mutations were analyzed by sorting intolerant from tolerant (SIFT) and Clustal Ω. Setting An academic medical center Patients 217 IHH/KS and 192 controls Interventions DNA was extracted from patients and controls; genotype/phenotype comparisons were made Main Outcome Measures DNA sequence of HESX1, SIFT analysis, and ortholog alignment Results Two novel heterozygous missense mutations (p.H42Y and p.V75L) and previously reported heterozygous missense mutation p.Q6H in HESX1 were identified in 3/217 (1.4%) patients. All were males with KS. Both p.Q6H and p.H42Y were predicted to be deleterious by SIFT, while p.V75L was conserved in 8/9 species. No other IHH/KS gene mutations were present. Conclusions HESX1 mutations may cause KS in addition to more severe phenotypes. Our findings expand the phenotypic spectrum of HESX1 mutations in humans, thereby broadening its role in development. PMID:23465708

  12. 3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency: Clinical presentation and outcome in a series of 37 patients.

    PubMed

    Grünert, Sarah Catharina; Schlatter, Sonja Marina; Schmitt, Robert Niklas; Gemperle-Britschgi, Corinne; Mrázová, Lenka; Balcı, Mehmet Cihan; Bischof, Felix; Çoker, Mahmut; Das, Anibh M; Demirkol, Mübeccel; de Vries, Maaike; Gökçay, Gülden; Häberle, Johannes; Uçar, Sema Kalkan; Lotz-Havla, Amelie Sophia; Lücke, Thomas; Roland, Dominique; Rutsch, Frank; Santer, René; Schlune, Andrea; Staufner, Christian; Schwab, Karl Otfried; Mitchell, Grant A; Sass, Jörn Oliver

    2017-07-01

    3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMGCLD) is a rare inborn error of ketone body synthesis and leucine degradation, caused by mutations in the HMGCL gene. In order to obtain a comprehensive view on this disease, we have collected clinical and biochemical data as well as information on HMGCL mutations of 37 patients (35 families) from metabolic centers in Belgium, Germany, The Netherlands, Switzerland, and Turkey. All patients were symptomatic at some stage with 94% presenting with an acute metabolic decompensation. In 50% of the patients, the disorder manifested neonatally, mostly within the first days of life. Only 8% of patients presented after one year of age. Six patients died prior to data collection. Long-term neurological complications were common. Half of the patients had a normal cognitive development while the remainder showed psychomotor deficits. We identified seven novel HMGCL mutations. In agreement with previous reports, no clear genotype-phenotype correlation could be found. This is the largest cohort of HMGCLD patients reported so far, demonstrating that HMGCLD is a potentially life-threatening disease with variable clinical outcome. Our findings suggest that the clinical course of HMGCLD cannot be predicted accurately from HMGCL genotype. The overall outcome in HMGCLD appears limited, thus rendering early diagnosis and strict avoidance of metabolic crises important. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. KRAS-G12C mutation is associated with poor outcome in surgically resected lung adenocarcinoma.

    PubMed

    Nadal, Ernest; Chen, Guoan; Prensner, John R; Shiratsuchi, Hiroe; Sam, Christine; Zhao, Lili; Kalemkerian, Gregory P; Brenner, Dean; Lin, Jules; Reddy, Rishindra M; Chang, Andrew C; Capellà, Gabriel; Cardenal, Felipe; Beer, David G; Ramnath, Nithya

    2014-10-01

    The aim of this study was to examine the effects of KRAS mutant subtypes on the outcome of patients with resected lung adenocarcinoma (AC). Using clinical and sequencing data, we identified 179 patients with resected lung AC for whom KRAS mutational status was determined. A multivariate Cox model was used to identify factors associated with disease-free survival (DFS) and overall survival (OS). Publicly available mutation and gene-expression data from lung cancer cell lines and lung AC were used to assess whether distinct KRAS mutant variants have a different profile. Patients with KRAS mutation had a significantly shorter DFS compared with those with KRAS wild-type (p = 0.009). Patients with KRAS-G12C mutant tumors had significantly shorter DFS compared with other KRAS mutants and KRAS wild-type tumors (p < 0.001). In the multivariate Cox model, KRAS-G12C remained as an independent prognostic marker for DFS (Hazard ratio = 2.46, 95% confidence interval 1.51-4.00, p < 0.001) and for OS (Hazard ratio = 2.35, 95% confidence interval 1.35-4.10, p = 0.003). No genes were statistically significant when comparing the mutational or transcriptional profile of lung cancer cell lines and lung AC harboring KRAS-G12C with other KRAS mutant subtypes. Gene set enrichment analysis revealed that KRAS-G12C mutants overexpressed epithelial to mesenchymal transition genes and expressed lower levels of genes predicting KRAS dependency. KRAS-G12C mutation is associated with worse DFS and OS in resected lung AC. Gene-expression profiles in lung cancer cell lines and surgically resected lung AC revealed that KRAS-G12C mutants had an epithelial to mesenchymal transition and a KRAS-independent phenotype.

  14. Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review

    PubMed Central

    2014-01-01

    Background KRAS mutations in codons 12 and 13 are established predictive biomarkers for anti-EGFR therapy in colorectal cancer. Previous studies suggest that KRAS codon 61 and 146 mutations may also predict resistance to anti-EGFR therapy in colorectal cancer. However, clinicopathological, molecular, and prognostic features of colorectal carcinoma with KRAS codon 61 or 146 mutation remain unclear. Methods We utilized a molecular pathological epidemiology database of 1267 colon and rectal cancers in the Nurse’s Health Study and the Health Professionals Follow-up Study. We examined KRAS mutations in codons 12, 13, 61 and 146 (assessed by pyrosequencing), in relation to clinicopathological features, and tumor molecular markers, including BRAF and PIK3CA mutations, CpG island methylator phenotype (CIMP), LINE-1 methylation, and microsatellite instability (MSI). Survival analyses were performed in 1067 BRAF-wild-type cancers to avoid confounding by BRAF mutation. Cox proportional hazards models were used to compute mortality hazard ratio, adjusting for potential confounders, including disease stage, PIK3CA mutation, CIMP, LINE-1 hypomethylation, and MSI. Results KRAS codon 61 mutations were detected in 19 cases (1.5%), and codon 146 mutations in 40 cases (3.2%). Overall KRAS mutation prevalence in colorectal cancers was 40% (=505/1267). Of interest, compared to KRAS-wild-type, overall, KRAS-mutated cancers more frequently exhibited cecal location (24% vs. 12% in KRAS-wild-type; P < 0.0001), CIMP-low (49% vs. 32% in KRAS-wild-type; P < 0.0001), and PIK3CA mutations (24% vs. 11% in KRAS-wild-type; P < 0.0001). These trends were evident irrespective of mutated codon, though statistical power was limited for codon 61 mutants. Neither KRAS codon 61 nor codon 146 mutation was significantly associated with clinical outcome or prognosis in univariate or multivariate analysis [colorectal cancer-specific mortality hazard ratio (HR) = 0.81, 95% confidence interval (CI) = 0.29-2.26 for codon 61 mutation; colorectal cancer-specific mortality HR = 0.86, 95% CI = 0.42-1.78 for codon 146 mutation]. Conclusions Tumors with KRAS mutations in codons 61 and 146 account for an appreciable proportion (approximately 5%) of colorectal cancers, and their clinicopathological and molecular features appear generally similar to KRAS codon 12 or 13 mutated cancers. To further assess clinical utility of KRAS codon 61 and 146 testing, large-scale trials are warranted. PMID:24885062

  15. EGFR mutation detection in circulating cell-free DNA of lung adenocarcinoma patients: analysis of LUX-Lung 3 and 6

    PubMed Central

    Wu, Yi-Long; Sequist, Lecia V; Hu, Cheng-Ping; Feng, Jifeng; Lu, Shun; Huang, Yunchao; Li, Wei; Hou, Mei; Schuler, Martin; Mok, Tony; Yamamoto, Nobuyuki; O'Byrne, Kenneth; Hirsh, Vera; Gibson, Neil; Massey, Dan; Kim, Miyoung; Yang, James Chih-Hsin

    2017-01-01

    Background: In the Phase III LUX-Lung 3/6 (LL3/LL6) trials in epidermal growth factor receptor (EGFR) mutation-positive lung adenocarcinoma patients, we evaluated feasibility of EGFR mutation detection using circulating cell-free DNA (cfDNA) and prognostic and predictive utility of cfDNA positivity (cfDNA+). Methods: Paired tumour and blood samples were prospectively collected from randomised patients. Mutations were detected using cfDNA from serum (LL3) or plasma (LL6) by a validated allele-specific quantitative real-time PCR kit. Results: EGFR mutation detection rates in cfDNA were 28.6% (serum) and 60.5% (plasma). Mutation detection in blood was associated with advanced disease characteristics, including higher performance score, number of metastatic sites and bone/liver metastases, and poorer prognosis. In patients with common EGFR mutations, afatinib improved progression-free survival vs chemotherapy in cfDNA+ (LL3: HR, 0.35; P=0.0009; LL6: HR, 0.25; P<0.0001) and cfDNA− (LL3: HR, 0.46; P<0.0001; LL6: HR, 0.12; P<0.0001) cohorts. A trend towards overall survival benefit with afatinib was observed in cfDNA+ patients. Conclusions: Plasma cfDNA is a promising alternative to biopsy for EGFR testing. Detectable mutation in blood was associated with more advanced disease and poorer prognosis. Afatinib improved outcomes in EGFR mutation-positive patients regardless of blood mutation status. PMID:28006816

  16. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas.

    PubMed

    Brat, Daniel J; Verhaak, Roel G W; Aldape, Kenneth D; Yung, W K Alfred; Salama, Sofie R; Cooper, Lee A D; Rheinbay, Esther; Miller, C Ryan; Vitucci, Mark; Morozova, Olena; Robertson, A Gordon; Noushmehr, Houtan; Laird, Peter W; Cherniack, Andrew D; Akbani, Rehan; Huse, Jason T; Ciriello, Giovanni; Poisson, Laila M; Barnholtz-Sloan, Jill S; Berger, Mitchel S; Brennan, Cameron; Colen, Rivka R; Colman, Howard; Flanders, Adam E; Giannini, Caterina; Grifford, Mia; Iavarone, Antonio; Jain, Rajan; Joseph, Isaac; Kim, Jaegil; Kasaian, Katayoon; Mikkelsen, Tom; Murray, Bradley A; O'Neill, Brian Patrick; Pachter, Lior; Parsons, Donald W; Sougnez, Carrie; Sulman, Erik P; Vandenberg, Scott R; Van Meir, Erwin G; von Deimling, Andreas; Zhang, Hailei; Crain, Daniel; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Troy; Sherman, Mark; Yena, Peggy; Black, Aaron; Bowen, Jay; Dicostanzo, Katie; Gastier-Foster, Julie; Leraas, Kristen M; Lichtenberg, Tara M; Pierson, Christopher R; Ramirez, Nilsa C; Taylor, Cynthia; Weaver, Stephanie; Wise, Lisa; Zmuda, Erik; Davidsen, Tanja; Demchok, John A; Eley, Greg; Ferguson, Martin L; Hutter, Carolyn M; Mills Shaw, Kenna R; Ozenberger, Bradley A; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean Claude; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Jensen, Mark A; Liu, Jia; Pihl, Todd; Raman, Rohini; Wan, Yunhu; Wu, Ye; Ally, Adrian; Auman, J Todd; Balasundaram, Miruna; Balu, Saianand; Baylin, Stephen B; Beroukhim, Rameen; Bootwalla, Moiz S; Bowlby, Reanne; Bristow, Christopher A; Brooks, Denise; Butterfield, Yaron; Carlsen, Rebecca; Carter, Scott; Chin, Lynda; Chu, Andy; Chuah, Eric; Cibulskis, Kristian; Clarke, Amanda; Coetzee, Simon G; Dhalla, Noreen; Fennell, Tim; Fisher, Sheila; Gabriel, Stacey; Getz, Gad; Gibbs, Richard; Guin, Ranabir; Hadjipanayis, Angela; Hayes, D Neil; Hinoue, Toshinori; Hoadley, Katherine; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven; Jones, Corbin D; Kucherlapati, Raju; Lai, Phillip H; Lander, Eric; Lee, Semin; Lichtenstein, Lee; Ma, Yussanne; Maglinte, Dennis T; Mahadeshwar, Harshad S; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew L; Mieczkowski, Piotr A; Moore, Richard A; Mose, Lisle E; Mungall, Andrew J; Pantazi, Angeliki; Parfenov, Michael; Park, Peter J; Parker, Joel S; Perou, Charles M; Protopopov, Alexei; Ren, Xiaojia; Roach, Jeffrey; Sabedot, Thaís S; Schein, Jacqueline; Schumacher, Steven E; Seidman, Jonathan G; Seth, Sahil; Shen, Hui; Simons, Janae V; Sipahimalani, Payal; Soloway, Matthew G; Song, Xingzhi; Sun, Huandong; Tabak, Barbara; Tam, Angela; Tan, Donghui; Tang, Jiabin; Thiessen, Nina; Triche, Timothy; Van Den Berg, David J; Veluvolu, Umadevi; Waring, Scot; Weisenberger, Daniel J; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Xu, Andrew W; Yang, Lixing; Zack, Travis I; Zhang, Jianhua; Aksoy, B Arman; Arachchi, Harindra; Benz, Chris; Bernard, Brady; Carlin, Daniel; Cho, Juok; DiCara, Daniel; Frazer, Scott; Fuller, Gregory N; Gao, JianJiong; Gehlenborg, Nils; Haussler, David; Heiman, David I; Iype, Lisa; Jacobsen, Anders; Ju, Zhenlin; Katzman, Sol; Kim, Hoon; Knijnenburg, Theo; Kreisberg, Richard Bailey; Lawrence, Michael S; Lee, William; Leinonen, Kalle; Lin, Pei; Ling, Shiyun; Liu, Wenbin; Liu, Yingchun; Liu, Yuexin; Lu, Yiling; Mills, Gordon; Ng, Sam; Noble, Michael S; Paull, Evan; Rao, Arvind; Reynolds, Sheila; Saksena, Gordon; Sanborn, Zack; Sander, Chris; Schultz, Nikolaus; Senbabaoglu, Yasin; Shen, Ronglai; Shmulevich, Ilya; Sinha, Rileen; Stuart, Josh; Sumer, S Onur; Sun, Yichao; Tasman, Natalie; Taylor, Barry S; Voet, Doug; Weinhold, Nils; Weinstein, John N; Yang, Da; Yoshihara, Kosuke; Zheng, Siyuan; Zhang, Wei; Zou, Lihua; Abel, Ty; Sadeghi, Sara; Cohen, Mark L; Eschbacher, Jenny; Hattab, Eyas M; Raghunathan, Aditya; Schniederjan, Matthew J; Aziz, Dina; Barnett, Gene; Barrett, Wendi; Bigner, Darell D; Boice, Lori; Brewer, Cathy; Calatozzolo, Chiara; Campos, Benito; Carlotti, Carlos Gilberto; Chan, Timothy A; Cuppini, Lucia; Curley, Erin; Cuzzubbo, Stefania; Devine, Karen; DiMeco, Francesco; Duell, Rebecca; Elder, J Bradley; Fehrenbach, Ashley; Finocchiaro, Gaetano; Friedman, William; Fulop, Jordonna; Gardner, Johanna; Hermes, Beth; Herold-Mende, Christel; Jungk, Christine; Kendler, Ady; Lehman, Norman L; Lipp, Eric; Liu, Ouida; Mandt, Randy; McGraw, Mary; Mclendon, Roger; McPherson, Christopher; Neder, Luciano; Nguyen, Phuong; Noss, Ardene; Nunziata, Raffaele; Ostrom, Quinn T; Palmer, Cheryl; Perin, Alessandro; Pollo, Bianca; Potapov, Alexander; Potapova, Olga; Rathmell, W Kimryn; Rotin, Daniil; Scarpace, Lisa; Schilero, Cathy; Senecal, Kelly; Shimmel, Kristen; Shurkhay, Vsevolod; Sifri, Suzanne; Singh, Rosy; Sloan, Andrew E; Smolenski, Kathy; Staugaitis, Susan M; Steele, Ruth; Thorne, Leigh; Tirapelli, Daniela P C; Unterberg, Andreas; Vallurupalli, Mahitha; Wang, Yun; Warnick, Ronald; Williams, Felicia; Wolinsky, Yingli; Bell, Sue; Rosenberg, Mara; Stewart, Chip; Huang, Franklin; Grimsby, Jonna L; Radenbaugh, Amie J; Zhang, Jianan

    2015-06-25

    Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.).

  17. Age-related clinical and biological features of PTEN abnormalities in T-cell acute lymphoblastic leukaemia.

    PubMed

    Tesio, M; Trinquand, A; Ballerini, P; Hypolite, G; Lhermitte, L; Petit, A; Ifrah, N; Baruchel, A; Dombret, H; Macintyre, E; Asnafi, V

    2017-12-01

    The tumour suppressor gene PTEN is commonly altered in T-cell acute lymphoblastic leukaemia but its prognostic impact is still debated. We screened a cohort of 573 fully characterised adult and paediatric T-cell acute lymphoblastic leukaemia (T-ALL) patients for genomic PTEN abnormalities. PTEN-inactivating mutations and/or deletions were identified in 91 cases (16%), including 18% of paediatric (49/277) and 14% of adult cases (42/296). Thirty-four patients harboured only mutations, 12 cases demonstrated only large deletions and 9 only microdeletions. About 36 patients had combined alterations. Different mechanisms of PTEN inactivation predicted differences in the clinical outcome for both adult and paediatric patients treated according to the GRAALL03/05 and FRALLE2000 protocols. Whereas large deletions predicted lower 5-year overall survival (P=0.0053 in adults, P=0.001 in children) and disease-free survival (P=0.0009 in adults, P=0.0002 in children), mutations were not associated with a worse prognosis. The prognostic impact of PTEN loss is therefore linked to the underlying type of genomic abnormality, both in adult and paediatric T-ALLs, demonstrating that detailed analysis of the type of abnormality type would be useful to refine risk stratification.

  18. Integrated CLL Scoring System, a New and Simple Index to Predict Time to Treatment and Overall Survival in Patients With Chronic Lymphocytic Leukemia.

    PubMed

    Visentin, Andrea; Facco, Monica; Frezzato, Federica; Castelli, Monica; Trimarco, Valentina; Martini, Veronica; Gattazzo, Cristina; Severin, Filippo; Chiodin, Giorgia; Martines, Annalisa; Bonaldi, Laura; Gianesello, Ilaria; Pagnin, Elisa; Boscaro, Elisa; Piazza, Francesco; Zambello, Renato; Semenzato, Gianpietro; Trentin, Livio

    2015-10-01

    Several prognostic factors have been identified to predict the outcome of patients with chronic lymphocytic leukemia (CLL), but only a few studies analyzed more markers together. Taking advantage of a population of 608 patients, we identified the strongest prognostic markers of survival and, subsequently, in a cohort of 212 patients we integrated data of cytogenetic lesions, IGHV mutational status, and CD38 expression in a new and easy scoring system we called the integrated CLL scoring system (ICSS). ICSS defines 3 groups of risk: (1) low risk (patients with 13q(-) or normal fluorescence in-situ hybridization analysis results, mutated IGHV, and CD38) (2) high risk (all 11q(-) or 17p(-) patients and/or all unmutated IGHV and CD38(+) patients); and (3) intermediate risk (all remaining patients). Using only these 3 already available prognostic factors, we were able to properly redefine patients and better predict the clinical course of the disease. ICSS could become a useful tool for CLL patients' management. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome

    PubMed Central

    Alachkar, Houda; Santhanam, Ramasamy; Maharry, Kati; Metzeler, Klaus H.; Huang, Xiaomeng; Kohlschmidt, Jessica; Mendler, Jason H.; Benito, Juliana M.; Hickey, Christopher; Neviani, Paolo; Dorrance, Adrienne M.; Anghelina, Mirela; Khalife, Jihane; Tarighat, Somayeh S.; Volinia, Stefano; Whitman, Susan P.; Paschka, Peter; Hoellerbauer, Pia; Wu, Yue-Zhong; Han, Lina; Bolon, Brad N.; Blum, William; Mrózek, Krzysztof; Carroll, Andrew J.; Perrotti, Danilo; Andreeff, Michael; Caligiuri, Michael A.; Konopleva, Marina; Garzon, Ramiro; Bloomfield, Clara D.; Marcucci, Guido

    2014-01-01

    Aberrant expression of the secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) gene, which encodes a matricellular protein that participates in normal tissue remodeling, is associated with a variety of diseases including cancer, but the contribution of SPARC to malignant growth remains controversial. We previously reported that SPARC was among the most upregulated genes in cytogenetically normal acute myeloid leukemia (CN-AML) patients with gene-expression profiles predictive of unfavorable outcome, such as mutations in isocitrate dehydrogenase 2 (IDH2-R172) and overexpression of the oncogenes brain and acute leukemia, cytoplasmic (BAALC) and v-ets erythroblastosis virus E26 oncogene homolog (ERG). In contrast, SPARC was downregulated in CN-AML patients harboring mutations in nucleophosmin (NPM1) that are associated with favorable prognosis. Based on these observations, we hypothesized that SPARC expression is clinically relevant in AML. Here, we found that SPARC overexpression is associated with adverse outcome in CN-AML patients and promotes aggressive leukemia growth in murine models of AML. In leukemia cells, SPARC expression was mediated by the SP1/NF-κB transactivation complex. Furthermore, secreted SPARC activated the integrin-linked kinase/AKT (ILK/AKT) pathway, likely via integrin interaction, and subsequent β-catenin signaling, which is involved in leukemia cell self-renewal. Pharmacologic inhibition of the SP1/NF-κB complex resulted in SPARC downregulation and leukemia growth inhibition. Together, our data indicate that evaluation of SPARC expression has prognosticative value and SPARC is a potential therapeutic target for AML. PMID:24590286

  20. SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome.

    PubMed

    Alachkar, Houda; Santhanam, Ramasamy; Maharry, Kati; Metzeler, Klaus H; Huang, Xiaomeng; Kohlschmidt, Jessica; Mendler, Jason H; Benito, Juliana M; Hickey, Christopher; Neviani, Paolo; Dorrance, Adrienne M; Anghelina, Mirela; Khalife, Jihane; Tarighat, Somayeh S; Volinia, Stefano; Whitman, Susan P; Paschka, Peter; Hoellerbauer, Pia; Wu, Yue-Zhong; Han, Lina; Bolon, Brad N; Blum, William; Mrózek, Krzysztof; Carroll, Andrew J; Perrotti, Danilo; Andreeff, Michael; Caligiuri, Michael A; Konopleva, Marina; Garzon, Ramiro; Bloomfield, Clara D; Marcucci, Guido

    2014-04-01

    Aberrant expression of the secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) gene, which encodes a matricellular protein that participates in normal tissue remodeling, is associated with a variety of diseases including cancer, but the contribution of SPARC to malignant growth remains controversial. We previously reported that SPARC was among the most upregulated genes in cytogenetically normal acute myeloid leukemia (CN-AML) patients with gene-expression profiles predictive of unfavorable outcome, such as mutations in isocitrate dehydrogenase 2 (IDH2-R172) and overexpression of the oncogenes brain and acute leukemia, cytoplasmic (BAALC) and v-ets erythroblastosis virus E26 oncogene homolog (ERG). In contrast, SPARC was downregulated in CN-AML patients harboring mutations in nucleophosmin (NPM1) that are associated with favorable prognosis. Based on these observations, we hypothesized that SPARC expression is clinically relevant in AML. Here, we found that SPARC overexpression is associated with adverse outcome in CN-AML patients and promotes aggressive leukemia growth in murine models of AML. In leukemia cells, SPARC expression was mediated by the SP1/NF-κB transactivation complex. Furthermore, secreted SPARC activated the integrin-linked kinase/AKT (ILK/AKT) pathway, likely via integrin interaction, and subsequent β-catenin signaling, which is involved in leukemia cell self-renewal. Pharmacologic inhibition of the SP1/NF-κB complex resulted in SPARC downregulation and leukemia growth inhibition. Together, our data indicate that evaluation of SPARC expression has prognosticative value and SPARC is a potential therapeutic target for AML.

  1. Germ-line variants identified by next generation sequencing in a panel of estrogen and cancer associated genes correlate with poor clinical outcome in Lynch syndrome patients.

    PubMed

    Jóri, Balazs; Kamps, Rick; Xanthoulea, Sofia; Delvoux, Bert; Blok, Marinus J; Van de Vijver, Koen K; de Koning, Bart; Oei, Felicia Trups; Tops, Carli M; Speel, Ernst Jm; Kruitwagen, Roy F; Gomez-Garcia, Encarna B; Romano, Andrea

    2015-12-01

    The risk to develop colorectal and endometrial cancers among subjects testing positive for a pathogenic Lynch syndrome mutation varies, making the risk prediction difficult. Genetic risk modifiers alter the risk conferred by inherited Lynch syndrome mutations, and their identification can improve genetic counseling. We aimed at identifying rare genetic modifiers of the risk of Lynch syndrome endometrial cancer. A family based approach was used to assess the presence of genetic risk modifiers among 35 Lynch syndrome mutation carriers having either a poor clinical phenotype (early age of endometrial cancer diagnosis or multiple cancers) or a neutral clinical phenotype. Putative genetic risk modifiers were identified by Next Generation Sequencing among a panel of 154 genes involved in endometrial physiology and carcinogenesis. A simple pipeline, based on an allele frequency lower than 0.001 and on predicted non-conservative amino-acid substitutions returned 54 variants that were considered putative risk modifiers. The presence of two or more risk modifying variants in women carrying a pathogenic Lynch syndrome mutation was associated with a poor clinical phenotype. A gene-panel is proposed that comprehends genes that can carry variants with putative modifying effects on the risk of Lynch syndrome endometrial cancer. Validation in further studies is warranted before considering the possible use of this tool in genetic counseling.

  2. Association of SMAD4 mutation with patient demographics, tumor characteristics, and clinical outcomes in colorectal cancer.

    PubMed

    Mehrvarz Sarshekeh, Amir; Advani, Shailesh; Overman, Michael J; Manyam, Ganiraju; Kee, Bryan K; Fogelman, David R; Dasari, Arvind; Raghav, Kanwal; Vilar, Eduardo; Manuel, Shanequa; Shureiqi, Imad; Wolff, Robert A; Patel, Keyur P; Luthra, Raja; Shaw, Kenna; Eng, Cathy; Maru, Dipen M; Routbort, Mark J; Meric-Bernstam, Funda; Kopetz, Scott

    2017-01-01

    SMAD4 is an essential mediator in the transforming growth factor-β pathway. Sporadic mutations of SMAD4 are present in 2.1-20.0% of colorectal cancers (CRCs) but data are limited. In this study, we aimed to evaluate clinicopathologic characteristics, prognosis, and clinical outcome associated with this mutation in CRC cases. Data for patients with metastatic or unresectable CRC who underwent genotyping for SMAD4 mutation and received treatment at The University of Texas MD Anderson Cancer Center from 2000 to 2014 were reviewed. Their tumors were sequenced using a hotspot panel predicted to cover 80% of the reported SMAD4 mutations, and further targeted resequencing that included full-length SMAD4 was performed on mutated tumors using a HiSeq sequencing system. Using The Cancer Genome Atlas data on CRC, the characteristics of SMAD4 and transforming growth factor-β pathway mutations were evaluated according to different consensus molecular subtypes of CRC. Among 734 patients with CRC, 90 (12%) had SMAD4 mutations according to hotspot testing. SMAD4 mutation was associated with colon cancer more so than with rectal cancer (odds ratio 2.85; p<0.001), female sex (odds ratio 1.71; p = 0.02), and shorter overall survival than in wild-type SMAD4 cases (median, 29 months versus 56 months; hazard ratio 2.08; p<0.001 [log-rank test]). SMAD4 mutation was not associated with age, stage at presentation, colonic location, distant metastasis, or tumor grade. A subset of patients with metastatic CRC (n = 44) wild-type for KRAS, NRAS, and BRAF who received anti-epidermal growth factor receptor therapy with mutated SMAD4 (n = 13) had shorter progression-free survival duration than did patients wild-type for SMAD4 (n = 31) (median, 111 days versus 180 days; p = 0.003 [log-rank test]). Full-length sequencing confirmed that missense mutations at R361 and P356 in the MH2 domain were the most common SMAD4 alterations. In The Cancer Genome Atlas data, SMAD4 mutation frequently occurred with KRAS, NRAS, and BRAF mutations and was more common in patients with the consensus molecular subtype 3 of CRC than in those with the other 3 subtypes. This is one of the largest retrospective studies to date characterizing SMAD4 mutations in CRC patients and demonstrates the prognostic role and lack of response of CRC to anti-epidermal growth factor receptor therapy. Further studies are required to validate these findings and the role of SMAD4 mutation in CRC.

  3. Association of SMAD4 mutation with patient demographics, tumor characteristics, and clinical outcomes in colorectal cancer

    PubMed Central

    Sarshekeh, Amir Mehrvarz; Advani, Shailesh; Overman, Michael J.; Manyam, Ganiraju; Kee, Bryan K.; Fogelman, David R.; Dasari, Arvind; Raghav, Kanwal; Vilar, Eduardo; Manuel, Shanequa; Shureiqi, Imad; Wolff, Robert A.; Patel, Keyur P.; Luthra, Raja; Shaw, Kenna; Eng, Cathy; Maru, Dipen M.; Routbort, Mark J.; Meric-Bernstam, Funda

    2017-01-01

    SMAD4 is an essential mediator in the transforming growth factor-β pathway. Sporadic mutations of SMAD4 are present in 2.1–20.0% of colorectal cancers (CRCs) but data are limited. In this study, we aimed to evaluate clinicopathologic characteristics, prognosis, and clinical outcome associated with this mutation in CRC cases. Data for patients with metastatic or unresectable CRC who underwent genotyping for SMAD4 mutation and received treatment at The University of Texas MD Anderson Cancer Center from 2000 to 2014 were reviewed. Their tumors were sequenced using a hotspot panel predicted to cover 80% of the reported SMAD4 mutations, and further targeted resequencing that included full-length SMAD4 was performed on mutated tumors using a HiSeq sequencing system. Using The Cancer Genome Atlas data on CRC, the characteristics of SMAD4 and transforming growth factor-β pathway mutations were evaluated according to different consensus molecular subtypes of CRC. Among 734 patients with CRC, 90 (12%) had SMAD4 mutations according to hotspot testing. SMAD4 mutation was associated with colon cancer more so than with rectal cancer (odds ratio 2.85; p<0.001), female sex (odds ratio 1.71; p = 0.02), and shorter overall survival than in wild-type SMAD4 cases (median, 29 months versus 56 months; hazard ratio 2.08; p<0.001 [log-rank test]). SMAD4 mutation was not associated with age, stage at presentation, colonic location, distant metastasis, or tumor grade. A subset of patients with metastatic CRC (n = 44) wild-type for KRAS, NRAS, and BRAF who received anti-epidermal growth factor receptor therapy with mutated SMAD4 (n = 13) had shorter progression-free survival duration than did patients wild-type for SMAD4 (n = 31) (median, 111 days versus 180 days; p = 0.003 [log-rank test]). Full-length sequencing confirmed that missense mutations at R361 and P356 in the MH2 domain were the most common SMAD4 alterations. In The Cancer Genome Atlas data, SMAD4 mutation frequently occurred with KRAS, NRAS, and BRAF mutations and was more common in patients with the consensus molecular subtype 3 of CRC than in those with the other 3 subtypes. This is one of the largest retrospective studies to date characterizing SMAD4 mutations in CRC patients and demonstrates the prognostic role and lack of response of CRC to anti-epidermal growth factor receptor therapy. Further studies are required to validate these findings and the role of SMAD4 mutation in CRC. PMID:28267766

  4. Interactome INSIDER: a structural interactome browser for genomic studies.

    PubMed

    Meyer, Michael J; Beltrán, Juan Felipe; Liang, Siqi; Fragoza, Robert; Rumack, Aaron; Liang, Jin; Wei, Xiaomu; Yu, Haiyuan

    2018-01-01

    We present Interactome INSIDER, a tool to link genomic variant information with structural protein-protein interactomes. Underlying this tool is the application of machine learning to predict protein interaction interfaces for 185,957 protein interactions with previously unresolved interfaces in human and seven model organisms, including the entire experimentally determined human binary interactome. Predicted interfaces exhibit functional properties similar to those of known interfaces, including enrichment for disease mutations and recurrent cancer mutations. Through 2,164 de novo mutagenesis experiments, we show that mutations of predicted and known interface residues disrupt interactions at a similar rate and much more frequently than mutations outside of predicted interfaces. To spur functional genomic studies, Interactome INSIDER (http://interactomeinsider.yulab.org) enables users to identify whether variants or disease mutations are enriched in known and predicted interaction interfaces at various resolutions. Users may explore known population variants, disease mutations, and somatic cancer mutations, or they may upload their own set of mutations for this purpose.

  5. Do craniopharyngioma molecular signatures correlate with clinical characteristics?

    PubMed

    Omay, Sacit Bulent; Chen, Yu-Ning; Almeida, Joao Paulo; Ruiz-Treviño, Armando Saul; Boockvar, John A; Stieg, Philip E; Greenfield, Jeffrey P; Souweidane, Mark M; Kacker, Ashutosh; Pisapia, David J; Anand, Vijay K; Schwartz, Theodore H

    2018-05-01

    OBJECTIVE Exome sequencing studies have recently demonstrated that papillary craniopharyngiomas (PCPs) and adamantinomatous craniopharyngiomas (ACPs) have distinct genetic origins, each primarily driven by mutually exclusive alterations: either BRAF ( V600E), observed in 95% of PCPs, or CTNNB1, observed in 75%-96% of ACPs. How the presence of these molecular signatures, or their absence, correlates with clinical, radiographic, and outcome variables is unknown. METHODS The pathology records for patients who underwent surgery for craniopharyngiomas between May 2000 and March 2015 at Weill Cornell Medical College were reviewed. Craniopharyngiomas were identified and classified as PCP or ACP. Patients were placed into 1 of 3 groups based on their genomic mutations: BRAF mutation only, CTNNB1 mutation only, and tumors with neither of these mutations detected (not detected [ND]). Demographic, radiological, and clinical variables were collected, and their correlation with each genomic group was tested. RESULTS Histology correlated strongly with mutation group. All BRAF tumors with mutations were PCPs, and all CTNNB1 with mutations and ND tumors were ACPs. Preoperative and postoperative clinical symptoms and radiographic features did not correlate with any mutation group. There was a statistically significant relationship (p = 0.0323) between the age group (pediatric vs adult) and the mutation groups. The ND group tumors were more likely to involve the sella (p = 0.0065). CONCLUSIONS The mutation signature in craniopharyngioma is highly predictive of histology. The subgroup of tumors in which these 2 mutations are not detected is more likely to occur in children, be located in the sella, and be of ACP histology.

  6. Germline genetic variants in somatically significantly mutated genes in tumors are associated with renal cell carcinoma risk and outcome.

    PubMed

    Shu, Xiang; Gu, Jianchun; Huang, Maosheng; Tannir, Nizar M; Matin, Surena F; Karam, Jose A; Wood, Christopher G; Wu, Xifeng; Ye, Yuanqing

    2018-05-28

    Genome-wide association studies (GWAS) have identified 13 susceptibility loci for renal cell carcinoma (RCC). Additional genetic loci of risk remain to be explored. Moreover, the role of germline genetic variants in predicting RCC recurrence and overall survival (OS) is less understood. In this study, we focused on 127 significantly mutated genes from The Cancer Genome Atlas (TCGA) Pan-Cancer Analysis across 12 major cancer sites to identify potential genetic variants predictive of RCC risk and clinical outcomes. In a three-phase design with a total of 2657 RCC cases and 5315 healthy controls, two single nucleotide polymorphisms (SNPs) that map to PIK3CG (rs6466135:A, ORmeta = 0.85, 95% CI = 0.77-0.94, Pmeta = 1.4 × 10-3) and ATM (rs611646:T, ORmeta = 1.17, 95% CI = 1.05-1.31, Pmeta = 3.5 × 10-3) were significantly associated with RCC risk. With respect to RCC recurrence and OS, two separate datasets with a total of 661 stages I-III RCC patients (discovery: 367; validation: 294) were analyzed. The most significant association was observed for rs10932384:C (ERBB4) with both outcomes (recurrence: HRmeta = 0.52, 95% CI = 0.39-0.68, Pmeta = 3.81 × 10-6; OS: HRmeta = 0.50, 95% CI = 0.37-0.67, Pmeta = 6.00 × 10-6). In addition, six SNPs were significantly associated with either RCC recurrence or OS but not both (Pmeta < 0.01). Rs10932384:C was significantly correlated with mutation frequency of ERBB4 in clear cell RCC (ccRCC) patients (P = 0.003, Fisher's exact test). Cis-eQTL was observed for several SNPs in blood/transformed fibroblasts but not in RCC tumor tissues. In summary, we identified promising genetic predictors of recurrence and OS among RCC patients with localized disease.

  7. Combining Structural Modeling with Ensemble Machine Learning to Accurately Predict Protein Fold Stability and Binding Affinity Effects upon Mutation

    PubMed Central

    Garcia Lopez, Sebastian; Kim, Philip M.

    2014-01-01

    Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT) algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases. PMID:25243403

  8. Novel recurrently mutated genes and a prognostic mutation signature in colorectal cancer.

    PubMed

    Yu, Jun; Wu, William K K; Li, Xiangchun; He, Jun; Li, Xiao-Xing; Ng, Simon S M; Yu, Chang; Gao, Zhibo; Yang, Jie; Li, Miao; Wang, Qiaoxiu; Liang, Qiaoyi; Pan, Yi; Tong, Joanna H; To, Ka F; Wong, Nathalie; Zhang, Ning; Chen, Jie; Lu, Youyong; Lai, Paul B S; Chan, Francis K L; Li, Yingrui; Kung, Hsiang-Fu; Yang, Huanming; Wang, Jun; Sung, Joseph J Y

    2015-04-01

    Characterisation of colorectal cancer (CRC) genomes by next-generation sequencing has led to the discovery of novel recurrently mutated genes. Nevertheless, genomic data has not yet been used for CRC prognostication. To identify recurrent somatic mutations with prognostic significance in patients with CRC. Exome sequencing was performed to identify somatic mutations in tumour tissues of 22 patients with CRC, followed by validation of 187 recurrent and pathway-related genes using targeted capture sequencing in additional 160 cases. Seven significantly mutated genes, including four reported (APC, TP53, KRAS and SMAD4) and three novel recurrently mutated genes (CDH10, FAT4 and DOCK2), exhibited high mutation prevalence (6-14% for novel cancer genes) and higher-than-expected number of non-silent mutations in our CRC cohort. For prognostication, a five-gene-signature (CDH10, COL6A3, SMAD4, TMEM132D, VCAN) was devised, in which mutation(s) in one or more of these genes was significantly associated with better overall survival independent of tumor-node-metastasis (TNM) staging. The median survival time was 80.4 months in the mutant group versus 42.4 months in the wild type group (p=0.0051). The prognostic significance of this signature was successfully verified using the data set from the Cancer Genome Atlas study. The application of next-generation sequencing has led to the identification of three novel significantly mutated genes in CRC and a mutation signature that predicts survival outcomes for stratifying patients with CRC independent of TNM staging. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Molecular Classification of Low-Grade Diffuse Gliomas

    PubMed Central

    Kim, Young-Ho; Nobusawa, Sumihito; Mittelbronn, Michel; Paulus, Werner; Brokinkel, Benjamin; Keyvani, Kathy; Sure, Ulrich; Wrede, Karsten; Nakazato, Yoichi; Tanaka, Yuko; Vital, Anne; Mariani, Luigi; Stawski, Robert; Watanabe, Takuya; De Girolami, Umberto; Kleihues, Paul; Ohgaki, Hiroko

    2010-01-01

    The current World Health Organization classification recognizes three histological types of grade II low-grade diffuse glioma (diffuse astrocytoma, oligoastrocytoma, and oligodendroglioma). However, the diagnostic criteria, in particular for oligoastrocytoma, are highly subjective. The aim of our study was to establish genetic profiles for diffuse gliomas and to estimate their predictive impact. In this study, we screened 360 World Health Organization grade II gliomas for mutations in the IDH1, IDH2, and TP53 genes and for 1p/19q loss and correlated these with clinical outcome. Most tumors (86%) were characterized genetically by TP53 mutation plus IDH1/2 mutation (32%), 1p/19q loss plus IDH1/2 mutation (37%), or IDH1/2 mutation only (17%). TP53 mutations only or 1p/19q loss only was rare (2 and 3%, respectively). The median survival of patients with TP53 mutation ± IDH1/2 mutation was significantly shorter than that of patients with 1p/19q loss ± IDH1/2 mutation (51.8 months vs. 58.7 months, respectively; P = 0.0037). Multivariate analysis with adjustment for age and treatment confirmed these results (P = 0.0087) and also revealed that TP53 mutation is a significant prognostic marker for shorter survival (P = 0.0005) and 1p/19q loss for longer survival (P = 0.0002), while IDH1/2 mutations are not prognostic (P = 0.8737). The molecular classification on the basis of IDH1/2 mutation, TP53 mutation, and 1p/19q loss has power similar to histological classification and avoids the ambiguity inherent to the diagnosis of oligoastrocytoma. PMID:21075857

  10. EGFR molecular profiling in advanced NSCLC: a prospective phase II study in molecularly/clinically selected patients pretreated with chemotherapy.

    PubMed

    Milella, Michele; Nuzzo, Carmen; Bria, Emilio; Sperduti, Isabella; Visca, Paolo; Buttitta, Fiamma; Antoniani, Barbara; Merola, Roberta; Gelibter, Alain; Cuppone, Federica; D'Alicandro, Valerio; Ceribelli, Anna; Rinaldi, Massimo; Cianciulli, Anna; Felicioni, Lara; Malatesta, Sara; Marchetti, Antonio; Mottolese, Marcella; Cognetti, Francesco

    2012-04-01

    The optimal use of epidermal growth factor receptor (EGFR)-related molecular markers to prospectively identify tyrosine kinase inhibitor (TKI)-sensitive patients, particularly after a previous chemotherapy treatment, is currently under debate. We designed a prospective phase II study to evaluate the activity of EGFR-TKI in four different patient groups, according to the combination of molecular (EGFR gene mutations, EGFR gene copy number and protein expression, and phosphorylated AKT expression, pAKT) and clinicopathological (histology and smoking habits) factors. Correlations between molecular alterations and clinical outcome were also explored retrospectively for first-line chemotherapy and EGFR-TKI treatment. Patients who had progressed during or after first-line chemotherapy were prospectively assigned to EGFR-TKI treatment as follows: (G1) EGFR mutation (n = 12); (G2) highly polysomic/amplified EGFR (n = 18); (G3) EGFR and/or pAKT positive (n = 41); (G4) adenocarcinoma/bronchoalveolar carcinoma and no smoking history (n = 15). G1 and G4 had the best and second-best overall response rate (25% and 20%, respectively), whereas the worst outcome was observed in G2 (ORR, 6%; p = 0.05). Disease control was highest in G1 and G4 (>50%) and lowest in G3 (<20%) (p = 0.02). Patients selected by EGFR mutation or clinical parameters (G1 and G4) also had significantly better progression-free survival and overall survival (p = 0.02 and p = 0.01, respectively). Multivariate analysis confirmed the impact of sex, smoking history, EGFR/KRAS mutation, and pAKT on outcomes and allowed us to derive an efficient predictive model. Histology, EGFR mutations, and pAKT were independent predictors of response to first-line chemotherapy at retrospective analysis, whereas pAKT and human epidermal growth factor receptor 2 expression were the only independent predictors of progression-free survival and overall survival. Selection of patients based on either EGFR mutation or clinical characteristics seems an effective approach to optimize EGFR-TKI treatment in chemotherapy-pretreated non-small-cell lung cancer patients.

  11. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up

    PubMed Central

    Kadara, H; Choi, M; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Yoo, Y; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Wistuba, I I; Herbst, R S

    2017-01-01

    Abstract Background Lung adenocarcinomas (LUADs) lead to the majority of deaths attributable to lung cancer. We performed whole-exome sequencing (WES) and immune profiling analyses of a unique set of clinically annotated early-stage LUADs to better understand the pathogenesis of this disease and identify clinically relevant molecular markers. Methods We performed WES of 108 paired stage I-III LUADs and normal lung tissues using the Illumina HiSeq 2000 platform. Ten immune markers (PD-L1, PD-1, CD3, CD4, CD8, CD45ro, CD57, CD68, FOXP3 and Granzyme B) were profiled by imaging-based immunohistochemistry (IHC) in a subset of LUADs (n = 92). Associations among mutations, immune markers and clinicopathological variables were analyzed using ANOVA and Fisher’s exact test. Cox proportional hazards regression models were used for multivariate analysis of clinical outcome. Results LUADs in this cohort exhibited an average of 243 coding mutations. We identified 28 genes with significant enrichment for mutation. SETD2-mutated LUADs exhibited relatively poor recurrence- free survival (RFS) and mutations in STK11 and ATM were associated with poor RFS among KRAS-mutant tumors. EGFR, KEAP1 and PIK3CA mutations were predictive of poor response to adjuvant therapy. Immune marker analysis revealed that LUADs in smokers and with relatively high mutation burdens exhibited increased levels of immune markers. Analysis of immunophenotypes revealed that LUADs with STK11 mutations exhibited relatively low levels of infiltrating CD4+/CD8+ T-cells indicative of a muted immune response. Tumoral PD-L1 was significantly elevated in TP53 mutant LUADs whereas PIK3CA mutant LUADs exhibited markedly down-regulated PD-L1 expression. LUADs with TP53 or KEAP1 mutations displayed relatively increased CD57 and Granzyme B levels indicative of augmented natural killer (NK) cell infiltration. Conclusion(s) Our study highlights molecular and immune phenotypes that warrant further analysis for their roles in clinical outcomes and personalized immune-based therapy of LUAD. PMID:27687306

  12. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up.

    PubMed

    Kadara, H; Choi, M; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Yoo, Y; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Wistuba, I I; Herbst, R S

    2017-01-01

    Lung adenocarcinomas (LUADs) lead to the majority of deaths attributable to lung cancer. We performed whole-exome sequencing (WES) and immune profiling analyses of a unique set of clinically annotated early-stage LUADs to better understand the pathogenesis of this disease and identify clinically relevant molecular markers. We performed WES of 108 paired stage I-III LUADs and normal lung tissues using the Illumina HiSeq 2000 platform. Ten immune markers (PD-L1, PD-1, CD3, CD4, CD8, CD45ro, CD57, CD68, FOXP3 and Granzyme B) were profiled by imaging-based immunohistochemistry (IHC) in a subset of LUADs (n = 92). Associations among mutations, immune markers and clinicopathological variables were analyzed using ANOVA and Fisher's exact test. Cox proportional hazards regression models were used for multivariate analysis of clinical outcome. LUADs in this cohort exhibited an average of 243 coding mutations. We identified 28 genes with significant enrichment for mutation. SETD2-mutated LUADs exhibited relatively poor recurrence- free survival (RFS) and mutations in STK11 and ATM were associated with poor RFS among KRAS-mutant tumors. EGFR, KEAP1 and PIK3CA mutations were predictive of poor response to adjuvant therapy. Immune marker analysis revealed that LUADs in smokers and with relatively high mutation burdens exhibited increased levels of immune markers. Analysis of immunophenotypes revealed that LUADs with STK11 mutations exhibited relatively low levels of infiltrating CD4+/CD8+ T-cells indicative of a muted immune response. Tumoral PD-L1 was significantly elevated in TP53 mutant LUADs whereas PIK3CA mutant LUADs exhibited markedly down-regulated PD-L1 expression. LUADs with TP53 or KEAP1 mutations displayed relatively increased CD57 and Granzyme B levels indicative of augmented natural killer (NK) cell infiltration. Our study highlights molecular and immune phenotypes that warrant further analysis for their roles in clinical outcomes and personalized immune-based therapy of LUAD. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Thyroid Hormone Receptor α Mutation Causes a Severe and Thyroxine-Resistant Skeletal Dysplasia in Female Mice

    PubMed Central

    Bassett, J. H. Duncan; Boyde, Alan; Zikmund, Tomas; Evans, Holly; Croucher, Peter I.; Zhu, Xuguang; Park, Jeong Won

    2014-01-01

    A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1PV/+ mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1PV/+ mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1PV/+ mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation. PMID:24914936

  14. Familial acute necrotizing encephalopathy without RANBP2 mutation: Poor outcome.

    PubMed

    Nishimura, Naoko; Higuchi, Yoshihisa; Kimura, Nobusuke; Nozaki, Fumihito; Kumada, Tomohiro; Hoshino, Ai; Saitoh, Makiko; Mizuguchi, Masashi

    2016-11-01

    Most childhood cases of acute necrotizing encephalopathy (ANE) involve neither family history nor recurrence. ANE occasionally occurs, however, as a familial disorder or recurs in Caucasian patients. A mutation of RAN-binding protein 2 (RANBP2) has been discovered in more than one half of familial or recurrent ANE patients. In contrast, there has been no report of this mutation in East Asia. Here, we report the first sibling cases of typical ANE in Japan, with poor outcome. DNA analysis of genes associated with ANE or other encephalopathies, including RANBP2 and carnitine palmitoyl transferase II (CPT2), indicated neither mutations nor disease-related polymorphisms. On literature review, recurrent or familial ANE without the RANBP2 mutation has a more severe outcome and greater predilection for male sex than that with the RANBP2 mutation. This suggests that there are unknown gene mutations linked to ANE. © 2016 Japan Pediatric Society.

  15. Progranulin as a therapeutic target for dementia.

    PubMed

    Galimberti, Daniela; Fenoglio, Chiara; Scarpini, Elio

    2018-06-22

    Progranulin (PGRN) is an acrosomal glycoprotein that is synthesized during spermatogenesis. It is overexpressed in tumors and has anti-inflammatory properties. The protein may be cleaved into granulins which display pro-inflammatory properties. In 2006, mutations in progranulin gene (GRN) that cause haploinsufficiency were found in familial cases of frontotemporal dementia (FTD). Patients with null mutations in GRN display very low-plasma PGRN levels; this analysis is useful for identifying mutation carriers, independent of the clinical presentation, and in those before the appearance of symptoms. Areas covered: Here, we review the current knowledge of PGRN physiological functions and GRN mutations associated with FTD; we also summarize state of the art clinical trials and those compounds able to replace PGRN loss in preclinical models. Expert opinion: PGRN represents a promising therapeutic target for FTD. Cohorts suitable for treatment, ideally at the preclinical stage, where pathogenic mechanisms ongoing in the brain are targeted, are available. However, PGRN may have side effects, such as the risk of tumorigenesis, and the risk/benefit ratio of any intervention cannot be predicted. Furthermore, at present, the situation is complicated by the absence of adequate outcome measures.

  16. Cancer Evolution: Mathematical Models and Computational Inference

    PubMed Central

    Beerenwinkel, Niko; Schwarz, Roland F.; Gerstung, Moritz; Markowetz, Florian

    2015-01-01

    Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy. PMID:25293804

  17. Predictable Phenotypes of Antibiotic Resistance Mutations.

    PubMed

    Knopp, M; Andersson, D I

    2018-05-15

    Antibiotic-resistant bacteria represent a major threat to our ability to treat bacterial infections. Two factors that determine the evolutionary success of antibiotic resistance mutations are their impact on resistance level and the fitness cost. Recent studies suggest that resistance mutations commonly show epistatic interactions, which would complicate predictions of their stability in bacterial populations. We analyzed 13 different chromosomal resistance mutations and 10 host strains of Salmonella enterica and Escherichia coli to address two main questions. (i) Are there epistatic interactions between different chromosomal resistance mutations? (ii) How does the strain background and genetic distance influence the effect of chromosomal resistance mutations on resistance and fitness? Our results show that the effects of combined resistance mutations on resistance and fitness are largely predictable and that epistasis remains rare even when up to four mutations were combined. Furthermore, a majority of the mutations, especially target alteration mutations, demonstrate strain-independent phenotypes across different species. This study extends our understanding of epistasis among resistance mutations and shows that interactions between different resistance mutations are often predictable from the characteristics of the individual mutations. IMPORTANCE The spread of antibiotic-resistant bacteria imposes an urgent threat to public health. The ability to forecast the evolutionary success of resistant mutants would help to combat dissemination of antibiotic resistance. Previous studies have shown that the phenotypic effects (fitness and resistance level) of resistance mutations can vary substantially depending on the genetic context in which they occur. We conducted a broad screen using many different resistance mutations and host strains to identify potential epistatic interactions between various types of resistance mutations and to determine the effect of strain background on resistance phenotypes. Combinations of several different mutations showed a large amount of phenotypic predictability, and the majority of the mutations displayed strain-independent phenotypes. However, we also identified a few outliers from these patterns, illustrating that the choice of host organism can be critically important when studying antibiotic resistance mutations. Copyright © 2018 Knopp and Andersson.

  18. Clinical implications of mutation analysis in primary hyperoxaluria type 1.

    PubMed

    van Woerden, Christiaan S; Groothoff, Jaap W; Wijburg, Frits A; Annink, Carla; Wanders, Ronald J A; Waterham, Hans R

    2004-08-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of glyoxylate metabolism with an extensive clinical and genetic heterogeneity. Although over 50 disease-causing mutations have been identified, the relationship between genotype and clinical outcome remains unclear. The aim of this study was to determine this association in order to find clues for improvement of patient care. AGXT mutation analysis and assessment of biochemical characteristics and clinical outcome were performed on patients from a Dutch PH1 cohort. Thirty-three of a cohort of 57 PH1 patients, identified in The Netherlands over a period of 30 years, were analyzed. Ten different mutations were found. The most common mutations were the Gly170Arg, Phe152Ile, and the 33insC mutations, with an allele frequency of 43%, 19%, and 15%, respectively. Homozygous Gly170Arg and Phe152Ile mutations were associated with pyridoxine responsiveness and a preserved renal function over time when treatment was timely initiated. All patients homozygous for the 33insC mutation had end-stage renal disease (ESRD) before the first year of age. In two unrelated patients, a new Val336Asp mutation was found coupled with the Gly170Arg mutation on the minor allele. We also found 3 patients homozygous for a novel Gly82Arg mutation with adverse outcome in 2 of them. Early detection of Gly170Arg and Phe152Ile mutations in PH1 has important clinical implications because of their association with pyridoxine responsiveness and clinical outcome. The association of a homozygous 33insC mutation with severe infantile ESRD, resulting in early deaths in 2 out of 3 cases, warrants a choice for prenatal diagnostics in affected families.

  19. Newborn screening for MCAD deficiency: experience of the first three years in British Columbia, Canada.

    PubMed

    Horvath, Gabriella A; Davidson, A G F; Stockler-Ipsiroglu, Sylvia G; Lillquist, Yolanda P; Waters, Paula J; Olpin, S; Andresen, B S; Palaty, Jan; Nelson, Judie; Vallance, Hilary

    2008-01-01

    Medium Chain Acyl-CoA Dehydrogenase (MCAD) Deficiency is an autosomal recessive disorder of fatty acid oxidation, with potential fatal outcome. MCAD deficiency is diagnosed by acylcarnitine analysis on newborn screening blood spot cards by tandem mass spectrometry. Early diagnosis of MCAD and presymptomatic treatment can potentially reduce morbidity and mortality. To evaluate incidence, clinical outcome, biochemical and molecular phenotype of MCAD cases detected in the first three years of newborn screening in British Columbia (BC). Medium chain length acylcarnitines, octanoylcarnitine (C8) and decanoylcarnitine (C10), were measured on newborn screening blood spot cards. Out of 121,000 live births, 17 newborns had C8 values above the screening cut-off of 0.38 umol/L. Ten newborns had elevated C8 on repeat cards and were investigated further. Both C8 and C8/C10 ratios remained abnormal in all confirmed MCAD cases. Positive predictive value of screening was 58% with no false negative results. Seven patients were homozygous for the common c.985A > G MCAD mutation and three others were compound heterozygous for the c.985A > G and a second mutation. Two novel mutations were identified (c.260T > C and c.382T > A). The estimated incidence of MCAD was approximately 1:12,000 live births. Upon frequent feeding and carnitine supplementation, none of the patients had metabolic crises or adverse outcomes. Frequency of MCAD in BC is comparable to reports from other newborn screening programs. Persistence of elevated C8 levels and C8/C10 ratios in confirmed MCAD cases suggest that these are sensitive markers for newborn screening. Early detection and treatment have successfully prevented adverse health outcomes in patients with MCAD.

  20. The CF Canada-Sick Kids Program in individual CF therapy: A resource for the advancement of personalized medicine in CF.

    PubMed

    Eckford, Paul D W; McCormack, Jacqueline; Munsie, Lise; He, Gengming; Stanojevic, Sanja; Pereira, Sergio L; Ho, Karen; Avolio, Julie; Bartlett, Claire; Yang, Jin Ye; Wong, Amy P; Wellhauser, Leigh; Huan, Ling Jun; Jiang, Jia Xin; Ouyang, Hong; Du, Kai; Klingel, Michelle; Kyriakopoulou, Lianna; Gonska, Tanja; Moraes, Theo J; Strug, Lisa J; Rossant, Janet; Ratjen, Felix; Bear, Christine E

    2018-04-20

    Therapies targeting certain CFTR mutants have been approved, yet variations in clinical response highlight the need for in-vitro and genetic tools that predict patient-specific clinical outcomes. Toward this goal, the CF Canada-Sick Kids Program in Individual CF Therapy (CFIT) is generating a "first of its kind", comprehensive resource containing patient-specific cell cultures and data from 100 CF individuals that will enable modeling of therapeutic responses. The CFIT program is generating: 1) nasal cells from drug naïve patients suitable for culture and the study of drug responses in vitro, 2) matched gene expression data obtained by sequencing the RNA from the primary nasal tissue, 3) whole genome sequencing of blood derived DNA from each of the 100 participants, 4) induced pluripotent stem cells (iPSCs) generated from each participant's blood sample, 5) CRISPR-edited isogenic control iPSC lines and 6) prospective clinical data from patients treated with CF modulators. To date, we have recruited 57 of 100 individuals to CFIT, most of whom are homozygous for F508del (to assess in-vitro: in-vivo correlations with respect to ORKAMBI response) or heterozygous for F508del and a minimal function mutation. In addition, several donors are homozygous for rare nonsense and missense mutations. Nasal epithelial cell cultures and matched iPSC lines are available for many of these donors. This accessible resource will enable development of tools that predict individual outcomes to current and emerging modulators targeting F508del-CFTR and facilitate therapy discovery for rare CF causing mutations. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Mutation spectrum of RB1 mutations in retinoblastoma cases from Singapore with implications for genetic management and counselling.

    PubMed

    Tomar, Swati; Sethi, Raman; Sundar, Gangadhara; Quah, Thuan Chong; Quah, Boon Long; Lai, Poh San

    2017-01-01

    Retinoblastoma (RB) is a rare childhood malignant disorder caused by the biallelic inactivation of RB1 gene. Early diagnosis and identification of carriers of heritable RB1 mutations can improve disease outcome and management. In this study, mutational analysis was conducted on fifty-nine matched tumor and peripheral blood samples from 18 bilateral and 41 unilateral unrelated RB cases by a combinatorial approach of Multiplex Ligation-dependent Probe Amplification (MLPA) assay, deletion screening, direct sequencing, copy number gene dosage analysis and methylation assays. Screening of both blood and tumor samples yielded a mutation detection rate of 94.9% (56/59) while only 42.4% (25/59) of mutations were detected if blood samples alone were analyzed. Biallelic mutations were observed in 43/59 (72.9%) of tumors screened. There were 3 cases (5.1%) in which no mutations could be detected and germline mutations were detected in 19.5% (8/41) of unilateral cases. A total of 61 point mutations were identified, of which 10 were novel. There was a high incidence of previously reported recurrent mutations, occurring at 38.98% (23/59) of all cases. Of interest were three cases of mosaic RB1 mutations detected in the blood from patients with unilateral retinoblastoma. Additionally, two germline mutations previously reported to be associated with low-penetrance phenotypes: missense-c.1981C>T and splice variant-c.607+1G>T, were observed in a bilateral and a unilateral proband, respectively. These findings have implications for genetic counselling and risk prediction for the affected families. This is the first published report on the spectrum of mutations in RB patients from Singapore and shows that further improved mutation screening strategies are required in order to provide a definitive molecular diagnosis for every case of RB. Our findings also underscore the importance of genetic testing in supporting individualized disease management plans for patients and asymptomatic family members carrying low-penetrance, germline mosaicism or heritable unilateral mutational phenotypes.

  2. PI3K pathway mutations are associated with longer time to local progression after radioembolization of colorectal liver metastases.

    PubMed

    Ziv, Etay; Bergen, Michael; Yarmohammadi, Hooman; Boas, F Ed; Petre, E Nadia; Sofocleous, Constantinos T; Yaeger, Rona; Solit, David B; Solomon, Stephen B; Erinjeri, Joseph P

    2017-04-04

    To establish the relationship between common mutations in the MAPK and PI3K signaling pathways and local progression after radioembolization. Retrospective review of a HIPAA-compliant institutional review-board approved database identified 40 patients with chemo-refractory colorectal liver metastases treated with radioembolization who underwent tumor genotyping for hotspot mutations in 6 key genes in the MAPK/PI3K pathways (KRAS, NRAS, BRAF, MEK1, PIK3CA, and AKT1). Mutation status as well as clinical, tumor, and treatment variables were recorded. These factors were evaluated in relation to time to local progression (TTLP), which was calculated from time of radioembolization to first radiographic evidence of local progression. Predictors of outcome were identified using a proportional hazards model for both univariate and multivariate analysis with death as a competing risk. Sixteen patients (40%) had no mutations in either pathway, eighteen patients (45%) had mutations in the MAPK pathway, ten patients (25%) had mutations in the PI3K pathway and four patients (10%) had mutations in both pathways. The cumulative incidence of progression at 6 and 12 months was 33% and 55% for the PI3K mutated group compared with 76% and 92% in the PI3K wild type group. Mutation in the PI3K pathway was a significant predictor of longer TTLP in both univariate (p=0.031, sHR 0.31, 95% CI: 0.11-0.90) and multivariate (p=0.015, sHR=0.27, 95% CI: 0.096-0.77) analysis. MAPK pathway alterations were not associated with TTLP. PI3K pathway mutation predicts longer time to local progression after radioembolization of colorectal liver metastases.

  3. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features.

    PubMed

    Gaidzik, V I; Teleanu, V; Papaemmanuil, E; Weber, D; Paschka, P; Hahn, J; Wallrabenstein, T; Kolbinger, B; Köhne, C H; Horst, H A; Brossart, P; Held, G; Kündgen, A; Ringhoffer, M; Götze, K; Rummel, M; Gerstung, M; Campbell, P; Kraus, J M; Kestler, H A; Thol, F; Heuser, M; Schlegelberger, B; Ganser, A; Bullinger, L; Schlenk, R F; Döhner, K; Döhner, H

    2016-11-01

    We evaluated the frequency, genetic architecture, clinico-pathologic features and prognostic impact of RUNX1 mutations in 2439 adult patients with newly-diagnosed acute myeloid leukemia (AML). RUNX1 mutations were found in 245 of 2439 (10%) patients; were almost mutually exclusive of AML with recurrent genetic abnormalities; and they co-occurred with a complex pattern of gene mutations, frequently involving mutations in epigenetic modifiers (ASXL1, IDH2, KMT2A, EZH2), components of the spliceosome complex (SRSF2, SF3B1) and STAG2, PHF6, BCOR. RUNX1 mutations were associated with older age (16-59 years: 8.5%; ⩾60 years: 15.1%), male gender, more immature morphology and secondary AML evolving from myelodysplastic syndrome. In univariable analyses, RUNX1 mutations were associated with inferior event-free (EFS, P<0.0001), relapse-free (RFS, P=0.0007) and overall survival (OS, P<0.0001) in all patients, remaining significant when age was considered. In multivariable analysis, RUNX1 mutations predicted for inferior EFS (P=0.01). The effect of co-mutation varied by partner gene, where patients with the secondary genotypes RUNX1 mut /ASXL1 mut (OS, P=0.004), RUNX1 mut /SRSF2 mut (OS, P=0.007) and RUNX1 mut /PHF6 mut (OS, P=0.03) did significantly worse, whereas patients with the genotype RUNX1 mut /IDH2 mut (OS, P=0.04) had a better outcome. In conclusion, RUNX1-mutated AML is associated with a complex mutation cluster and is correlated with distinct clinico-pathologic features and inferior prognosis.

  4. Comparison of therapeutic effects of EGFR-tyrosine kinase inhibitors on 19Del and L858R mutations in advanced lung adenocarcinoma and effect on cellular immune function.

    PubMed

    Zhou, Juan; Ben, Suqin

    2018-02-01

    We compared the therapeutic effect of EGFR-tyrosine kinase inhibitors (TKIs) on 19Del and L858R mutations in advanced lung adenocarcinoma on cellular immune function and explored the factors influencing the curative effect and prognosis. Clinical efficacy in the selected 71 patients with lung adenocarcinoma, including 52 patients with 19Del and L858R mutations and 19 wild type patients treated with EGFR-TKIs was retrospectively analyzed. The response rate (RR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and cellular immune function were analyzed. The RR, DCR, PFS, and OS of the 19Del group were higher than those of the L858R group; however, there were no statistically significant differences between the groups. χ 2 test results revealed that gender, smoking, and EGFR mutations were associated with DCR. Log-rank analytical results showed that EGFR mutation type was correlated to PFS and OS. Multivariate analysis implied that disease control and mutation type of EGFR were independent prognostic factors of OS. Following TKI treatment, the number of CD3+, CD4+, and NK cells and the CD4+/CD8+ratio increased in both mutation groups; however the results were not statistically significant. There was also no significant difference in the upregulation of immunological function observed, with 46.43% in the 19Del mutation and 45.83% in the L858R mutation group. EGFR 19Del and L858R mutations are good biomarkers for predicting the clinical response of EGFR-TKIs. 19Del mutations may have a better clinical outcome. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  5. The CDC Hemophilia B mutation project mutation list: a new online resource.

    PubMed

    Li, Tengguo; Miller, Connie H; Payne, Amanda B; Craig Hooper, W

    2013-11-01

    Hemophilia B (HB) is caused by mutations in the human gene F9. The mutation type plays a pivotal role in genetic counseling and prediction of inhibitor development. To help the HB community understand the molecular etiology of HB, we have developed a listing of all F9 mutations that are reported to cause HB based on the literature and existing databases. The Centers for Disease Control and Prevention (CDC) Hemophilia B Mutation Project (CHBMP) mutation list is compiled in an easily accessible format of Microsoft Excel and contains 1083 unique mutations that are reported to cause HB. Each mutation is identified using Human Genome Variation Society (HGVS) nomenclature standards. The mutation types and the predicted changes in amino acids, if applicable, are also provided. Related information including the location of mutation, severity of HB, the presence of inhibitor, and original publication reference are listed as well. Therefore, our mutation list provides an easily accessible resource for genetic counselors and HB researchers to predict inhibitors. The CHBMP mutation list is freely accessible at http://www.cdc.gov/hemophiliamutations.

  6. Evolving ecological networks and the emergence of biodiversity patterns across temperature gradients.

    PubMed

    Stegen, James C; Ferriere, Regis; Enquist, Brian J

    2012-03-22

    In ectothermic organisms, it is hypothesized that metabolic rates mediate influences of temperature on the ecological and evolutionary processes governing biodiversity. However, it is unclear how and to what extent the influence of temperature on metabolism scales up to shape large-scale diversity patterns. In order to clarify the roles of temperature and metabolism, new theory is needed. Here, we establish such theory and model eco-evolutionary dynamics of trophic networks along a broad temperature gradient. In the model temperature can influence, via metabolism, resource supply, consumers' vital rates and mutation rate. Mutation causes heritable variation in consumer body size, which diversifies and governs consumer function in the ecological network. The model predicts diversity to increase with temperature if resource supply is temperature-dependent, whereas temperature-dependent consumer vital rates cause diversity to decrease with increasing temperature. When combining both thermal dependencies, a unimodal temperature-diversity pattern evolves, which is reinforced by temperature-dependent mutation rate. Studying coexistence criteria for two consumers showed that these outcomes are owing to temperature effects on mutual invasibility and facilitation. Our theory shows how and why metabolism can influence diversity, generates predictions useful for understanding biodiversity gradients and represents an extendable framework that could include factors such as colonization history and niche conservatism.

  7. Self-consistency test reveals systematic bias in programs for prediction change of stability upon mutation.

    PubMed

    Usmanova, Dinara R; Bogatyreva, Natalya S; Ariño Bernad, Joan; Eremina, Aleksandra A; Gorshkova, Anastasiya A; Kanevskiy, German M; Lonishin, Lyubov R; Meister, Alexander V; Yakupova, Alisa G; Kondrashov, Fyodor A; Ivankov, Dmitry N

    2018-05-02

    Computational prediction of the effect of mutations on protein stability is used by researchers in many fields. The utility of the prediction methods is affected by their accuracy and bias. Bias, a systematic shift of the predicted change of stability, has been noted as an issue for several methods, but has not been investigated systematically. Presence of the bias may lead to misleading results especially when exploring the effects of combination of different mutations. Here we use a protocol to measure the bias as a function of the number of introduced mutations. It is based on a self-consistency test of the reciprocity the effect of a mutation. An advantage of the used approach is that it relies solely on crystal structures without experimentally measured stability values. We applied the protocol to four popular algorithms predicting change of protein stability upon mutation, FoldX, Eris, Rosetta, and I-Mutant, and found an inherent bias. For one program, FoldX, we manage to substantially reduce the bias using additional relaxation by Modeller. Authors using algorithms for predicting effects of mutations should be aware of the bias described here. ivankov13@gmail.com. Supplementary data are available at Bioinformatics online.

  8. Mapping Polymerization and Allostery of Hemoglobin S Using Point Mutations

    PubMed Central

    Weinkam, Patrick; Sali, Andrej

    2014-01-01

    Hemoglobin is a complex system that undergoes conformational changes in response to oxygen, allosteric effectors, mutations, and environmental changes. Here, we study allostery and polymerization of hemoglobin and its variants by application of two previously described methods: (i) AllosMod for simulating allostery dynamics given two allosterically related input structures and (ii) a machine-learning method for dynamics- and structure-based prediction of the mutation impact on allostery (Weinkam et al. J. Mol. Biol. 2013), now applicable to systems with multiple coupled binding sites such as hemoglobin. First, we predict the relative stabilities of substates and microstates of hemoglobin, which are determined primarily by entropy within our model. Next, we predict the impact of 866 annotated mutations on hemoglobin’s oxygen binding equilibrium. We then discuss a subset of 30 mutations that occur in the presence of the sickle cell mutation and whose effects on polymerization have been measured. Seven of these HbS mutations occur in three predicted druggable binding pockets that might be exploited to directly inhibit polymerization; one of these binding pockets is not apparent in the crystal structure but only in structures generated by AllosMod. For the 30 mutations, we predict that mutation-induced conformational changes within a single tetramer tend not to significantly impact polymerization; instead, these mutations more likely impact polymerization by directly perturbing a polymerization interface. Finally, our analysis of allostery allows us to hypothesize why hemoglobin evolved to have multiple subunits and a persistent low frequency sickle cell mutation. PMID:23957820

  9. Distress among women receiving uninformative BRCA1/2 results: 12-month outcomes.

    PubMed

    O'Neill, Suzanne C; Rini, Christine; Goldsmith, Rachel E; Valdimarsdottir, Heiddis; Cohen, Lawrence H; Schwartz, Marc D

    2009-10-01

    Few data are available regarding the long-term psychological impact of uninformative BRCA1/2 test results. This study examines change in distress from pretesting to 12-months post-disclosure, with medical, family history, and psychological variables, such as pretesting perceived risk of carrying a deleterious mutation prior to testing and primary and secondary appraisals, as predictors. Two hundred and nine women with uninformative BRCA1/2 test results completed questionnaires at pretesting and 1-, 6-, and 12-month post-disclosure, including measures of anxiety and depression, cancer-specific and genetic testing distress. We used a mixed models approach to predict change in post-disclosure distress. Distress declined from pretesting to 1-month post-disclosure, but remained stable thereafter. Primary appraisals predicted all types of distress at 1-month post-disclosure. Primary and secondary appraisals predicted genetic testing distress at 1-month as well as change over time. Receiving a variant of uncertain clinical significance and entering testing with a high expectation for carrying a deleterious mutation predicted genetic testing distress that persisted through the year after testing. As a whole, women receiving uninformative BRCA1/2 test results are a resilient group. For some women, distress experienced in the month after testing does not dissipate. Variables, such as heightened pretesting perceived risk and cognitive appraisals, predict greater likelihood for sustained distress in this group and could be amenable to intervention.

  10. Decreased expression of IDH1-R132H correlates with poor survival in gastrointestinal cancer.

    PubMed

    Li, Jieying; Huang, Jianfei; Huang, Fang; Jin, Qing; Zhu, Huijun; Wang, Xudong; Chen, Meng

    2016-11-08

    Isocitrate dehydrogenase (IDH1) is an NADP-dependent enzyme that catalyzes the decarboxylation of isocitrate to alpha-ketoglutarate. The IDH1-R132H mutation predicts a better clinical outcome for glioma patients, and the expression of IDH1-R132H correlates with a favorable outcome in patients with brain tumors. Here, we investigated IDH1-R132H expression in both gastric (n=526) and colorectal (n=399) tissues by performing immunohistochemistry analyses on tissue microarrays. We also tested whether IDH1-R132H expression correlated with various clinical parameters. In both gastric and colorectal cancer, expression of IDH1-R132H was associated with tumor stage. Patients with low IDH1-R132H expression had a poor overall survival. Our data indicate that IDH1-R132H expression could be used as a predictive marker of prognosis for patients with gastrointestinal cancer.

  11. Decreased expression of IDH1-R132H correlates with poor survival in gastrointestinal cancer

    PubMed Central

    Li, Jieying; Huang, Jianfei; Huang, Fang; Jin, Qing; Zhu, Huijun; Wang, Xudong; Chen, Meng

    2016-01-01

    Isocitrate dehydrogenase (IDH1) is an NADP-dependent enzyme that catalyzes the decarboxylation of isocitrate to alpha-ketoglutarate. The IDH1-R132H mutation predicts a better clinical outcome for glioma patients, and the expression of IDH1-R132H correlates with a favorable outcome in patients with brain tumors. Here, we investigated IDH1-R132H expression in both gastric (n=526) and colorectal (n=399) tissues by performing immunohistochemistry analyses on tissue microarrays. We also tested whether IDH1-R132H expression correlated with various clinical parameters. In both gastric and colorectal cancer, expression of IDH1-R132H was associated with tumor stage. Patients with low IDH1-R132H expression had a poor overall survival. Our data indicate that IDH1-R132H expression could be used as a predictive marker of prognosis for patients with gastrointestinal cancer. PMID:27655638

  12. Replaying the tape of life in the twenty-first century.

    PubMed

    Orgogozo, Virginie

    2015-12-06

    Should the tape of life be replayed, would it produce similar living beings? A classical answer has long been 'no', but accumulating data are now challenging this view. Repeatability in experimental evolution, in phenotypic evolution of diverse species and in the genes underlying phenotypic evolution indicates that despite unpredictability at the level of basic evolutionary processes (such as apparition of mutations), a certain kind of predictability can emerge at higher levels over long time periods. For instance, a survey of the alleles described in the literature that cause non-deleterious phenotypic differences among animals, plants and yeasts indicates that similar phenotypes have often evolved in distinct taxa through independent mutations in the same genes. Does this mean that the range of possibilities for evolution is limited? Does this mean that we can predict the outcomes of a replayed tape of life? Imagining other possible paths for evolution runs into four important issues: (i) resolving the influence of contingency, (ii) imagining living organisms that are different from the ones we know, (iii) finding the relevant concepts for predicting evolution, and (iv) estimating the probability of occurrence for complex evolutionary events that occurred only once during the evolution of life on earth.

  13. An integrated computational approach can classify VHL missense mutations according to risk of clear cell renal carcinoma

    PubMed Central

    Gossage, Lucy; Pires, Douglas E. V.; Olivera-Nappa, Álvaro; Asenjo, Juan; Bycroft, Mark; Blundell, Tom L.; Eisen, Tim

    2014-01-01

    Mutations in the von Hippel–Lindau (VHL) gene are pathogenic in VHL disease, congenital polycythaemia and clear cell renal carcinoma (ccRCC). pVHL forms a ternary complex with elongin C and elongin B, critical for pVHL stability and function, which interacts with Cullin-2 and RING-box protein 1 to target hypoxia-inducible factor for polyubiquitination and proteasomal degradation. We describe a comprehensive database of missense VHL mutations linked to experimental and clinical data. We use predictions from in silico tools to link the functional effects of missense VHL mutations to phenotype. The risk of ccRCC in VHL disease is linked to the degree of destabilization resulting from missense mutations. An optimized binary classification system (symphony), which integrates predictions from five in silico methods, can predict the risk of ccRCC associated with VHL missense mutations with high sensitivity and specificity. We use symphony to generate predictions for risk of ccRCC for all possible VHL missense mutations and present these predictions, in association with clinical and experimental data, in a publically available, searchable web server. PMID:24969085

  14. CRISPR-Cas9-mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy.

    PubMed

    Ma, Leyuan; Boucher, Jeffrey I; Paulsen, Janet; Matuszewski, Sebastian; Eide, Christopher A; Ou, Jianhong; Eickelberg, Garrett; Press, Richard D; Zhu, Lihua Julie; Druker, Brian J; Branford, Susan; Wolfe, Scot A; Jensen, Jeffrey D; Schiffer, Celia A; Green, Michael R; Bolon, Daniel N

    2017-10-31

    Developing tools to accurately predict the clinical prevalence of drug-resistant mutations is a key step toward generating more effective therapeutics. Here we describe a high-throughput CRISPR-Cas9-based saturated mutagenesis approach to generate comprehensive libraries of point mutations at a defined genomic location and systematically study their effect on cell growth. As proof of concept, we mutagenized a selected region within the leukemic oncogene BCR-ABL1 Using bulk competitions with a deep-sequencing readout, we analyzed hundreds of mutations under multiple drug conditions and found that the effects of mutations on growth in the presence or absence of drug were critical for predicting clinically relevant resistant mutations, many of which were cancer adaptive in the absence of drug pressure. Using this approach, we identified all clinically isolated BCR-ABL1 mutations and achieved a prediction score that correlated highly with their clinical prevalence. The strategy described here can be broadly applied to a variety of oncogenes to predict patient mutations and evaluate resistance susceptibility in the development of new therapeutics. Published under the PNAS license.

  15. Exploring Early Detection Methods: Using the Intraductal Approach to Predict Breast Cancer

    DTIC Science & Technology

    2005-06-01

    Evidence of intraductal and atypical hyperplasia in from mutations. Prehn (1994) wrote that mutations may have epithelial cells may allow for prediction and...Cler, L., Shivapurkar, N., Milchgrub, S., Peters, G.N., Leitch, Prehn , R.T. (1994). Cancers beget mutations versus mutations beget cancers. A.M., et

  16. Cystic fibrosis gene modifier SLC26A9 modulates airway response to CFTR-directed therapeutics.

    PubMed

    Strug, Lisa J; Gonska, Tanja; He, Gengming; Keenan, Katherine; Ip, Wan; Boëlle, Pierre-Yves; Lin, Fan; Panjwani, Naim; Gong, Jiafen; Li, Weili; Soave, David; Xiao, Bowei; Tullis, Elizabeth; Rabin, Harvey; Parkins, Michael D; Price, April; Zuberbuhler, Peter C; Corvol, Harriet; Ratjen, Felix; Sun, Lei; Bear, Christine E; Rommens, Johanna M

    2016-10-15

    Cystic fibrosis is realizing the promise of personalized medicine. Recent advances in drug development that target the causal CFTR directly result in lung function improvement, but variability in response is demanding better prediction of outcomes to improve management decisions. The genetic modifier SLC26A9 contributes to disease severity in the CF pancreas and intestine at birth and here we assess its relationship with disease severity and therapeutic response in the airways. SLC26A9 association with lung disease was assessed in individuals from the Canadian and French CF Gene Modifier consortia with CFTR-gating mutations and in those homozygous for the common Phe508del mutation. Variability in response to a CFTR-directed therapy attributed to SLC26A9 genotype was assessed in Canadian patients with gating mutations. A primary airway model system determined if SLC26A9 shows modification of Phe508del CFTR function upon treatment with a CFTR corrector. In those with gating mutations that retain cell surface-localized CFTR we show that SLC26A9 modifies lung function while this is not the case in individuals homozygous for Phe508del where cell surface expression is lacking. Treatment response to ivacaftor, which aims to improve CFTR-channel opening probability in patients with gating mutations, shows substantial variability in response, 28% of which can be explained by rs7512462 in SLC26A9 (P = 0.0006). When homozygous Phe508del primary bronchial cells are treated to restore surface CFTR, SLC26A9 likewise modifies treatment response (P = 0.02). Our findings indicate that SLC26A9 airway modification requires CFTR at the cell surface, and that a common variant in SLC26A9 may predict response to CFTR-directed therapeutics.

  17. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma.

    PubMed

    Köbel, Martin; Piskorz, Anna M; Lee, Sandra; Lui, Shuhong; LePage, Cecile; Marass, Francesco; Rosenfeld, Nitzan; Mes Masson, Anne-Marie; Brenton, James D

    2016-10-01

    TP53 mutations are ubiquitous in high-grade serous ovarian carcinomas (HGSOC), and the presence of TP53 mutation discriminates between high and low-grade serous carcinomas and is now an important biomarker for clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53 mutation but its accuracy has not been established. The objective of this study was to test whether improved methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation sequencing (NGS). Four clinical p53 IHC assays and tagged-amplicon NGS for TP53 were performed on 171 HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining predicted gain-of-function (GOF or nonsynonymous), loss-of-function (LOF including stopgain, indel, splicing) or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171 (99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ternary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and 0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at 0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of a low-grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF mutation, which limits sensitivity for binary prediction of mutation to 96%.

  18. Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma

    PubMed Central

    Köbel, Martin; Piskorz, Anna M; Lee, Sandra; Lui, Shuhong; LePage, Cecile; Marass, Francesco; Rosenfeld, Nitzan; Mes Masson, Anne‐Marie

    2016-01-01

    Abstract TP53 mutations are ubiquitous in high‐grade serous ovarian carcinomas (HGSOC), and the presence of TP53 mutation discriminates between high and low‐grade serous carcinomas and is now an important biomarker for clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53 mutation but its accuracy has not been established. The objective of this study was to test whether improved methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation sequencing (NGS). Four clinical p53 IHC assays and tagged‐amplicon NGS for TP53 were performed on 171 HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining predicted gain‐of‐function (GOF or nonsynonymous), loss‐of‐function (LOF including stopgain, indel, splicing) or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171 (99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ternary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and 0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at 0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of a low‐grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF mutation, which limits sensitivity for binary prediction of mutation to 96%. PMID:27840695

  19. Dynamic molecular analysis and clinical correlates of tumor evolution within a phase II trial of panitumumab-based therapy in metastatic colorectal cancer.

    PubMed

    Siena, S; Sartore-Bianchi, A; Garcia-Carbonero, R; Karthaus, M; Smith, D; Tabernero, J; Van Cutsem, E; Guan, X; Boedigheimer, M; Ang, A; Twomey, B; Bach, B A; Jung, A S; Bardelli, A

    2018-01-01

    Mutations in rat sarcoma (RAS) genes may be a mechanism of secondary resistance in epidermal growth factor receptor inhibitor-treated patients. Tumor-tissue biopsy testing has been the standard for evaluating mutational status; however, plasma testing of cell-free DNA has been shown to be a more sensitive method for detecting clonal evolution. Archival pre- and post-treatment tumor biopsy samples from a phase II study of panitumumab in combination with irinotecan in patients with metastatic colorectal cancer (mCRC) that also collected plasma samples before, during, and after treatment were analyzed for emergence of mutations during/post-treatment by next-generation sequencing and BEAMing. The rate of emergence of tumor tissue RAS mutations was 9.5% by next-generation sequencing (n = 21) and 6.3% by BEAMing (n = 16). Plasma testing of cell-free DNA by BEAMing revealed a mutant RAS emergence rate of 36.7% (n = 39). Exploratory outcomes analysis of plasma samples indicated that patients who had emergent RAS mutations at progression had similar median progression-free survival to those patients who remained wild-type at progression. Serial analysis of plasma samples showed that the first detected emergence of RAS mutations preceded progression by a median of 3.6 months (range, -0.3 to 7.5 months) and that there did not appear to be a mutant RAS allele frequency threshold that could predict near-term outcomes. This first prospective analysis in mCRC showed that serial plasma biopsies are more inclusive than tissue biopsies for evaluating global tumor heterogeneity; however, the clinical utility of plasma testing in mCRC remains to be further explored. NCT00891930. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology.

  20. A Multicenter Study of Glucocerebrosidase Mutations in Dementia With Lewy Bodies

    PubMed Central

    Nalls, Michael A.; Duran, Raquel; Lopez, Grisel; Kurzawa-Akanbi, Marzena; McKeith, Ian G.; Chinnery, Patrick F.; Morris, Christopher M.; Theuns, Jessie; Crosiers, David; Cras, Patrick; Engelborghs, Sebastiaan; De Deyn, Peter Paul; Van Broeckhoven, Christine; Mann, David M. A.; Snowden, Julie; Pickering-Brown, Stuart; Halliwell, Nicola; Davidson, Yvonne; Gibbons, Linda; Harris, Jenny; Sheerin, Una-Marie; Bras, Jose; Hardy, John; Clark, Lorraine; Marder, Karen; Honig, Lawrence S.; Berg, Daniela; Maetzler, Walter; Brockmann, Kathrin; Gasser, Thomas; Novellino, Fabiana; Quattrone, Aldo; Annesi, Grazia; De Marco, Elvira Valeria; Rogaeva, Ekaterina; Masellis, Mario; Black, Sandra E.; Bilbao, Juan M.; Foroud, Tatiana; Ghetti, Bernardino; Nichols, William C.; Pankratz, Nathan; Halliday, Glenda; Lesage, Suzanne; Klebe, Stephan; Durr, Alexandra; Duyckaerts, Charles; Brice, Alexis; Giasson, Benoit I.; Trojanowski, John Q.; Hurtig, Howard I.; Tayebi, Nahid; Landazabal, Claudia; Knight, Melanie A.; Keller, Margaux; Singleton, Andrew B.; Wolfsberg, Tyra G.; Sidransky, Ellen

    2013-01-01

    Importance While mutations in glucocerebrosidase (GBA1) are associated with an increased risk for Parkinson disease (PD), it is important to establish whether such mutations are also a common risk factor for other Lewy body disorders. Objective To establish whether GBA1 mutations are a risk factor for dementia with Lewy bodies (DLB). Design We compared genotype data on patients and controls from 11 centers. Data concerning demographics, age at onset, disease duration, and clinical and pathological features were collected when available. We conducted pooled analyses using logistic regression to investigate GBA1 mutation carrier status as predicting DLB or PD with dementia status, using common control subjects as a reference group. Random-effects meta-analyses were conducted to account for additional heterogeneity. Setting Eleven centers from sites around the world performing genotyping. Participants Seven hundred twenty-one cases met diagnostic criteria for DLB and 151 had PD with dementia. We compared these cases with 1962 controls from the same centers matched for age, sex, and ethnicity. Main Outcome Measures Frequency of GBA1 mutations in cases and controls. Results We found a significant association between GBA1 mutation carrier status and DLB, with an odds ratio of 8.28 (95% CI, 4.78–14.88). The odds ratio for PD with dementia was 6.48 (95% CI, 2.53–15.37). The mean age at diagnosis of DLB was earlier in GBA1 mutation carriers than in noncarriers (63.5 vs 68.9 years; P<.001), with higher disease severity scores. Conclusions and Relevance Mutations in GBA1 are a significant risk factor for DLB. GBA1 mutations likely play an even larger role in the genetic etiology of DLB than in PD, providing insight into the role of glucocerebrosidase in Lewy body disease. PMID:23588557

  1. Limited family structure and BRCA gene mutation status in single cases of breast cancer.

    PubMed

    Weitzel, Jeffrey N; Lagos, Veronica I; Cullinane, Carey A; Gambol, Patricia J; Culver, Julie O; Blazer, Kathleen R; Palomares, Melanie R; Lowstuter, Katrina J; MacDonald, Deborah J

    2007-06-20

    An autosomal dominant pattern of hereditary breast cancer may be masked by small family size or transmission through males given sex-limited expression. To determine if BRCA gene mutations are more prevalent among single cases of early onset breast cancer in families with limited vs adequate family structure than would be predicted by currently available probability models. A total of 1543 women seen at US high-risk clinics for genetic cancer risk assessment and BRCA gene testing were enrolled in a prospective registry study between April 1997 and February 2007. Three hundred six of these women had breast cancer before age 50 years and no first- or second-degree relatives with breast or ovarian cancers. The main outcome measure was whether family structure, assessed from multigenerational pedigrees, predicts BRCA gene mutation status. Limited family structure was defined as fewer than 2 first- or second-degree female relatives surviving beyond age 45 years in either lineage. Family structure effect and mutation probability by the Couch, Myriad, and BRCAPRO models were assessed with stepwise multiple logistic regression. Model sensitivity and specificity were determined and receiver operating characteristic curves were generated. Family structure was limited in 153 cases (50%). BRCA gene mutations were detected in 13.7% of participants with limited vs 5.2% with adequate family structure. Family structure was a significant predictor of mutation status (odds ratio, 2.8; 95% confidence interval, 1.19-6.73; P = .02). Although none of the models performed well, receiver operating characteristic analysis indicated that modification of BRCAPRO output by a corrective probability index accounting for family structure was the most accurate BRCA gene mutation status predictor (area under the curve, 0.72; 95% confidence interval, 0.63-0.81; P<.001) for single cases of breast cancer. Family structure can affect the accuracy of mutation probability models. Genetic testing guidelines may need to be more inclusive for single cases of breast cancer when the family structure is limited and probability models need to be recreated using limited family history as an actual variable.

  2. MTO1 mutations are associated with hypertrophic cardiomyopathy and lactic acidosis and cause respiratory chain deficiency in humans and yeast.

    PubMed

    Baruffini, Enrico; Dallabona, Cristina; Invernizzi, Federica; Yarham, John W; Melchionda, Laura; Blakely, Emma L; Lamantea, Eleonora; Donnini, Claudia; Santra, Saikat; Vijayaraghavan, Suresh; Roper, Helen P; Burlina, Alberto; Kopajtich, Robert; Walther, Anett; Strom, Tim M; Haack, Tobias B; Prokisch, Holger; Taylor, Robert W; Ferrero, Ileana; Zeviani, Massimo; Ghezzi, Daniele

    2013-11-01

    We report three families presenting with hypertrophic cardiomyopathy, lactic acidosis, and multiple defects of mitochondrial respiratory chain (MRC) activities. By direct sequencing of the candidate gene MTO1, encoding the mitochondrial-tRNA modifier 1, or whole exome sequencing analysis, we identified novel missense mutations. All MTO1 mutations were predicted to be deleterious on MTO1 function. Their pathogenic role was experimentally validated in a recombinant yeast model, by assessing oxidative growth, respiratory activity, mitochondrial protein synthesis, and complex IV activity. In one case, we also demonstrated that expression of wt MTO1 could rescue the respiratory defect in mutant fibroblasts. The severity of the yeast respiratory phenotypes partly correlated with the different clinical presentations observed in MTO1 mutant patients, although the clinical outcome was highly variable in patients with the same mutation and seemed also to depend on timely start of pharmacological treatment, centered on the control of lactic acidosis by dichloroacetate. Our results indicate that MTO1 mutations are commonly associated with a presentation of hypertrophic cardiomyopathy, lactic acidosis, and MRC deficiency, and that ad hoc recombinant yeast models represent a useful system to test the pathogenic potential of uncommon variants, and provide insight into their effects on the expression of a biochemical phenotype. © 2013 The Authors. *Human Mutation published by Wiley Periodicals, Inc.

  3. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.

    PubMed

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-04-12

    Predicting the effect of amino acid substitutions on protein-protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/.

  4. Factors influencing clinical outcome in patients with primary hyperoxaluria type 1.

    PubMed

    Fargue, Sonia

    2014-12-01

    The renal outcome in patients with primary hyperoxaluria type 1 is partly determined by AGXT mutations, including but not limited to the p.Gly170Arg mutation. The study by Mandrile et al. reports on the largest cohort of patients genotyped yet, with long-term renal survival and medical treatment by pyridoxine. In addition to the common p.Gly170Arg mutation, three other mutations were shown to be potentially associated with slower evolution.

  5. Diverse Developmental Disorders from The One Ring: Distinct Molecular Pathways Underlie the Cohesinopathies

    PubMed Central

    Horsfield, Julia A.; Print, Cristin G.; Mönnich, Maren

    2012-01-01

    The multi-subunit protein complex, cohesin, is responsible for sister chromatid cohesion during cell division. The interaction of cohesin with DNA is controlled by a number of additional regulatory proteins. Mutations in cohesin, or its regulators, cause a spectrum of human developmental syndromes known as the “cohesinopathies.” Cohesinopathy disorders include Cornelia de Lange Syndrome and Roberts Syndrome. The discovery of novel roles for chromatid cohesion proteins in regulating gene expression led to the idea that cohesinopathies are caused by dysregulation of multiple genes downstream of mutations in cohesion proteins. Consistent with this idea, Drosophila, mouse, and zebrafish cohesinopathy models all show altered expression of developmental genes. However, there appears to be incomplete overlap among dysregulated genes downstream of mutations in different components of the cohesion apparatus. This is surprising because mutations in all cohesion proteins would be predicted to affect cohesin’s roles in cell division and gene expression in similar ways. Here we review the differences and similarities between genetic pathways downstream of components of the cohesion apparatus, and discuss how such differences might arise, and contribute to the spectrum of cohesinopathy disorders. We propose that mutations in different elements of the cohesion apparatus have distinct developmental outcomes that can be explained by sometimes subtly different molecular effects. PMID:22988450

  6. [Diagnosis, prognosis, and prediction of non-small cell lung cancer. Importance of morphology, immunohistochemistry and molecular pathology].

    PubMed

    Warth, A

    2015-11-01

    Tumor diagnostics are based on histomorphology, immunohistochemistry and molecular pathological analysis of mutations, translocations and amplifications which are of diagnostic, prognostic and/or predictive value. In recent decades only histomorphology was used to classify lung cancer as either small (SCLC) or non-small cell lung cancer (NSCLC), although NSCLC was further subdivided in different entities; however, as no specific therapy options were available classification of specific subtypes was not clinically meaningful. This fundamentally changed with the discovery of specific molecular alterations in adenocarcinoma (ADC), e.g. mutations in KRAS, EGFR and BRAF or translocations of the ALK and ROS1 gene loci, which now form the basis of targeted therapies and have led to a significantly improved patient outcome. The diagnostic, prognostic and predictive value of imaging, morphological, immunohistochemical and molecular characteristics as well as their interaction were systematically assessed in a large cohort with available clinical data including patient survival. Specific and sensitive diagnostic markers and marker panels were defined and diagnostic test algorithms for predictive biomarker assessment were optimized. It was demonstrated that the semi-quantitative assessment of ADC growth patterns is a stage-independent predictor of survival and is reproducibly applicable in the routine setting. Specific histomorphological characteristics correlated with computed tomography (CT) imaging features and thus allowed an improved interdisciplinary classification, especially in the preoperative or palliative setting. Moreover, specific molecular characteristics, for example BRAF mutations and the proliferation index (Ki-67) were identified as clinically relevant prognosticators. Comprehensive clinical, morphological, immunohistochemical and molecular assessment of NSCLCs allow an optimized patient stratification. Respective algorithms now form the backbone of the 2015 lung cancer World Health Organization (WHO) classification.

  7. STRUM: structure-based prediction of protein stability changes upon single-point mutation.

    PubMed

    Quan, Lijun; Lv, Qiang; Zhang, Yang

    2016-10-01

    Mutations in human genome are mainly through single nucleotide polymorphism, some of which can affect stability and function of proteins, causing human diseases. Several methods have been proposed to predict the effect of mutations on protein stability; but most require features from experimental structure. Given the fast progress in protein structure prediction, this work explores the possibility to improve the mutation-induced stability change prediction using low-resolution structure modeling. We developed a new method (STRUM) for predicting stability change caused by single-point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based energy functions are derived on the I-TASSER models and used to train STRUM models through gradient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between predicted and measured changes of Gibbs free-energy gap, ΔΔG, upon mutation reaches 0.79 with a root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if separating training and test mutations from non-homologous proteins, which reflects inherent correlations in the current mutation sample. Nevertheless, the results significantly outperform other state-of-the-art methods, including those built on experimental protein structures. Detailed analyses show that the most sensitive features in STRUM are the physics-based energy terms on I-TASSER models and the conservation scores from multiple-threading template alignments. However, the ΔΔG prediction accuracy has only a marginal dependence on the accuracy of protein structure models as long as the global fold is correct. These data demonstrate the feasibility to use low-resolution structure modeling for high-accuracy stability change prediction upon point mutations. http://zhanglab.ccmb.med.umich.edu/STRUM/ CONTACT: qiang@suda.edu.cn and zhng@umich.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. STRUM: structure-based prediction of protein stability changes upon single-point mutation

    PubMed Central

    Quan, Lijun; Lv, Qiang; Zhang, Yang

    2016-01-01

    Motivation: Mutations in human genome are mainly through single nucleotide polymorphism, some of which can affect stability and function of proteins, causing human diseases. Several methods have been proposed to predict the effect of mutations on protein stability; but most require features from experimental structure. Given the fast progress in protein structure prediction, this work explores the possibility to improve the mutation-induced stability change prediction using low-resolution structure modeling. Results: We developed a new method (STRUM) for predicting stability change caused by single-point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based energy functions are derived on the I-TASSER models and used to train STRUM models through gradient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between predicted and measured changes of Gibbs free-energy gap, ΔΔG, upon mutation reaches 0.79 with a root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if separating training and test mutations from non-homologous proteins, which reflects inherent correlations in the current mutation sample. Nevertheless, the results significantly outperform other state-of-the-art methods, including those built on experimental protein structures. Detailed analyses show that the most sensitive features in STRUM are the physics-based energy terms on I-TASSER models and the conservation scores from multiple-threading template alignments. However, the ΔΔG prediction accuracy has only a marginal dependence on the accuracy of protein structure models as long as the global fold is correct. These data demonstrate the feasibility to use low-resolution structure modeling for high-accuracy stability change prediction upon point mutations. Availability and Implementation: http://zhanglab.ccmb.med.umich.edu/STRUM/ Contact: qiang@suda.edu.cn and zhng@umich.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27318206

  9. Genetic Epidemiology of Glucose-6-Dehydrogenase Deficiency in the Arab World.

    PubMed

    Doss, C George Priya; Alasmar, Dima R; Bux, Reem I; Sneha, P; Bakhsh, Fadheela Dad; Al-Azwani, Iman; Bekay, Rajaa El; Zayed, Hatem

    2016-11-17

    A systematic search was implemented using four literature databases (PubMed, Embase, Science Direct and Web of Science) to capture all the causative mutations of Glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDD) in the 22 Arab countries. Our search yielded 43 studies that captured 33 mutations (23 missense, one silent, two deletions, and seven intronic mutations), in 3,430 Arab patients with G6PDD. The 23 missense mutations were then subjected to phenotypic classification using in silico prediction tools, which were compared to the WHO pathogenicity scale as a reference. These in silico tools were tested for their predicting efficiency using rigorous statistical analyses. Of the 23 missense mutations, p.S188F, p.I48T, p.N126D, and p.V68M, were identified as the most common mutations among Arab populations, but were not unique to the Arab world, interestingly, our search strategy found four other mutations (p.N135T, p.S179N, p.R246L, and p.Q307P) that are unique to Arabs. These mutations were exposed to structural analysis and molecular dynamics simulation analysis (MDSA), which predicting these mutant forms as potentially affect the enzyme function. The combination of the MDSA, structural analysis, and in silico predictions and statistical tools we used will provide a platform for future prediction accuracy for the pathogenicity of genetic mutations.

  10. Mutation status among patients with sinonasal mucosal melanoma and its impact on survival.

    PubMed

    Amit, Moran; Tam, Samantha; Abdelmeguid, Ahmed S; Roberts, Dianna B; Takahashi, Yoko; Raza, Shaan M; Su, Shirley Y; Kupferman, Michael E; DeMonte, Franco; Hanna, Ehab Y

    2017-06-06

    Sinonasal mucosal melanoma (SNMM) comprises <1% of all melanomas and lacks well-characterised molecular markers. Our aim was to determine the frequencies of common mutations and examine their utility as molecular markers in a large series of primary SNMMs. SNMM patients seen at our institution from August 1991 through July 2016 were identified. Genomic DNA was extracted from 66 formalin-fixed paraffin-embedded tumours and screened for mutations by direct sequencing. We investigated the association of mutations with clinicopathological features and survival outcomes. Overall, 41% (27 out of 66) of the SNMMs harboured mutations. BRAF and KIT mutations were identified in 8% (five patients) and 5% (three patients) of SNMMs, respectively, whereas NRAS mutations were detected in 30% (20 patients) of SNMMs. Mutation rates in these oncogenes were similar between SNMMs located in the paranasal sinuses and those in the nasal cavity (30% and 13%, respectively, P=0.09). In a multivariate analysis, patients with negative margins had significantly better overall survival (hazard ratio 5.43, 95% confidence interval 1.44-21.85, P=0.01) and disease-specific survival (hazard ratio 21.9, 95% confidence interval 3.71-180, P=0.0004). The mutation status of the tumours showed no association with survival outcomes. In SNNM, mutation status does not affect survival outcomes, but NRAS mutations are relatively frequent and could be targeted in this disease by MEK inhibitors.

  11. The size of the primary tumor and age at initial diagnosis are independent predictors of the metastatic behavior and survival of patients with SDHB-related pheochromocytoma and paraganglioma: a retrospective cohort study.

    PubMed

    Schovanek, Jan; Martucci, Victoria; Wesley, Robert; Fojo, Tito; Del Rivero, Jaydira; Huynh, Thanh; Adams, Karen; Kebebew, Electron; Frysak, Zdenek; Stratakis, Constantine A; Pacak, Karel

    2014-07-21

    Succinate dehydrogenase subunit B (SDHB) mutations are associated with aggressive pheochromocytoma (PHEO)/paraganglioma (PGL) behavior, often resulting in metastatic disease and fatal outcomes. These tumors are often larger, extra-adrenal, and contain lower catecholamine concentrations than other hereditary PHEOs/PGLs. This study evaluated the size and age at diagnosis of primary SDHB-related PHEOs/PGLs as independent predictors of their metastatic behavior and outcome (survival). One hundred six patients with SDHB mutation-related PHEO/PGL were included in this retrospective study. The recorded largest diameters, locations, and patient ages at initial diagnosis of SDHB-related primary tumors were analyzed in the context of time to metastasis and patient survival. First, the development of metastatic disease in patients with primary tumors ≥4.5 cm was significantly earlier than in patients with smaller tumors (P = 0.003). Second, patients with primary tumors larger than 5.5 cm also had worse overall survival than patients with smaller tumors (P = 0.008). Third, age at initial diagnosis was found to be an independent predictor of patient survival (PHEOs: P = 0.041; PGLs: P < 0.001). Fourth, we did not observe a significant difference in survival based on the specific SDHB mutations or patient sex. Receiver operating characteristic curves established 4.5 cm as the best value to dichotomize the primary SDHB-related PHEO/PGL in order to evaluate the development of metastatic disease and 5.5 cm as the best value for survival prediction. Subsequently, the size of the primary tumor was found as an age-independent predictor of patient survival and metastases development in PGL. In both PHEO and PGL, age at diagnosis was found to be a size-independent predictor of patient survival. No significant difference was found in metastases development or patient survival between males and females or among specific SDHB mutations. This data further extends and supports previous recommendations that carriers with SDHB mutations must undergo early and regular evaluations to detect PHEO/PGL in order to achieve the best clinical outcome.

  12. Clinical Impact of Additional Cytogenetic Aberrations, cKIT and RAS Mutations, and Treatment Elements in Pediatric t(8;21)-AML: Results From an International Retrospective Study by the International Berlin-Frankfurt-Münster Study Group

    PubMed Central

    Klein, Kim; Kaspers, Gertjan; Harrison, Christine J.; Beverloo, H. Berna; Reedijk, Ardine; Bongers, Mathilda; Cloos, Jacqueline; Pession, Andrea; Reinhardt, Dirk; Zimmerman, Martin; Creutzig, Ursula; Dworzak, Michael; Alonzo, Todd; Johnston, Donna; Hirsch, Betsy; Zapotocky, Michal; De Moerloose, Barbara; Fynn, Alcira; Lee, Vincent; Taga, Takashi; Tawa, Akio; Auvrignon, Anne; Zeller, Bernward; Forestier, Erik; Salgado, Carmen; Balwierz, Walentyna; Popa, Alexander; Rubnitz, Jeffrey; Raimondi, Susana; Gibson, Brenda

    2015-01-01

    Purpose This retrospective cohort study aimed to determine the predictive relevance of clinical characteristics, additional cytogenetic aberrations, and cKIT and RAS mutations, as well as to evaluate whether specific treatment elements were associated with outcomes in pediatric t(8;21)-positive patients with acute myeloid leukemia (AML). Patients and Methods Karyotypes of 916 pediatric patients with t(8;21)-AML were reviewed for the presence of additional cytogenetic aberrations, and 228 samples were screened for presence of cKIT and RAS mutations. Multivariable regression models were used to assess the relevance of anthracyclines, cytarabine, and etoposide during induction and overall treatment. End points were the probability of achieving complete remission, cumulative incidence of relapse (CIR), probability of event-free survival, and probability of overall survival. Results Of 838 patients included in final analyses, 92% achieved complete remission. The 5-year overall survival, event-free survival, and CIR were 74%, 58%, and 26%, respectively. cKIT mutations and RAS mutations were not significantly associated with outcome. Patients with deletions of chromosome arm 9q [del(9q); n = 104] had a lower probability of complete remission (P = .01). Gain of chromosome 4 (+4; n = 21) was associated with inferior CIR and survival (P < .01). Anthracycline doses greater than 150 mg/m2 and etoposide doses greater than 500 mg/m2 in the first induction course and high-dose cytarabine 3 g/m2 during induction were associated with better outcomes on various end points. Cumulative doses of cytarabine greater than 30 g/m2 and etoposide greater than 1,500 mg/m2 were associated with lower CIR rates and better probability of event-free survival. Conclusion Pediatric patients with t(8;21)-AML and additional del(9q) or additional +4 might not be considered at good risk. Patients with t(8;21)-AML likely benefit from protocols that have high doses of anthracyclines, etoposide, and cytarabine during induction, as well as from protocols comprising cumulative high doses of cytarabine and etoposide. PMID:26573082

  13. A Theory of Age-Dependent Mutation and Senescence

    PubMed Central

    Moorad, Jacob A.; Promislow, Daniel E. L.

    2008-01-01

    Laboratory experiments show us that the deleterious character of accumulated novel age-specific mutations is reduced and made less variable with increased age. While theories of aging predict that the frequency of deleterious mutations at mutation–selection equilibrium will increase with the mutation's age of effect, they do not account for these age-related changes in the distribution of de novo mutational effects. Furthermore, no model predicts why this dependence of mutational effects upon age exists. Because the nature of mutational distributions plays a critical role in shaping patterns of senescence, we need to develop aging theory that explains and incorporates these effects. Here we propose a model that explains the age dependency of mutational effects by extending Fisher's geometrical model of adaptation to include a temporal dimension. Using a combination of simple analytical arguments and simulations, we show that our model predicts age-specific mutational distributions that are consistent with observations from mutation-accumulation experiments. Simulations show us that these age-specific mutational effects may generate patterns of senescence at mutation–selection equilibrium that are consistent with observed demographic patterns that are otherwise difficult to explain. PMID:18660535

  14. Primary tumor location predicts poor clinical outcome with cetuximab in RAS wild-type metastatic colorectal cancer.

    PubMed

    Kim, Dalyong; Kim, Sun Young; Lee, Ji Sung; Hong, Yong Sang; Kim, Jeong Eun; Kim, Kyu-Pyo; Kim, Jihun; Jang, Se Jin; Yoon, Young-Kwang; Kim, Tae Won

    2017-11-23

    In metastatic colorectal cancer, the location of the primary tumor has been suggested to have biological significance. In this study, we investigated whether primary tumor location affects cetuximab efficacy in patients with RAS wild-type metastatic colorectal cancer. Genotyping by the SequenomMassARRAY technology platform (OncoMap) targeting KRAS, NRAS, PIK3CA, and BRAF was performed in tumors from 307 patients who had been given cetuximab as salvage treatment. Tumors with mutated RAS (KRAS or NRAS; n = 127) and those with multiple primary location (n = 10) were excluded. Right colon cancer was defined as a tumor located in the proximal part to splenic flexure. A total of 170 patients were included in the study (right versus left, 23 and 147, respectively). Patients with right colon cancer showed more mutated BRAF (39.1% vs. 5.4%), mutated PIK3CA (13% vs. 1.4%), poorly differentiated tumor (17.4% vs. 3.4%), and peritoneal involvement (26.1% vs. 8.8%) than those with left colon and rectal cancer. Right colon cancer showed poorer progression-free survival (2.0 vs.5.0 months, P = 0.002) and overall survival (4.1 months and 13.0 months, P < 0.001) than the left colon and rectal cancer. By multivariable analysis, BRAF mutation, right colon primary, poorly differentiated histology, and peritoneal involvement were associated with risk of death. In RAS wild-type colon cancer treated with cetuximab as salvage treatment, right colon primary was associated with poorer survival outcomes than left colon and rectal cancer.

  15. Data from a large European study indicate that the outcome of primary hyperoxaluria type 1 correlates with the AGXT mutation type.

    PubMed

    Mandrile, Giorgia; van Woerden, Christiaan S; Berchialla, Paola; Beck, Bodo B; Acquaviva Bourdain, Cécile; Hulton, Sally-Anne; Rumsby, Gill

    2014-12-01

    Primary hyperoxaluria type 1 displays a heterogeneous phenotype, likely to be affected by genetic and non-genetic factors, including timeliness of diagnosis and quality of care. As previous genotype-phenotype studies were hampered by limited patient numbers the European OxalEurope Consortium was constituted. This preliminary retrospective report is based on 526 patients of which 410 have the AGXT genotype defined. We grouped mutations by the predicted effect as null, missense leading to mistargeting (G170R), and other missense, and analyzed their phenotypic correlations. Median age of end-stage renal disease increased from 9.9 for 88 homozygous null patients, 11.5 for 42 heterozygous null/missense, 16.9 for 116 homozygous missense patients, 25.1 for 61 G170R/null patients, 31.2 for 32 G170R/missense patients, and 33.9 years for 71 homozygous G170R patients. The outcome of some recurrent missense mutations (p.I244T, p.F152I, p.M195R, p.D201E, p.S81L, p.R36C) and an unprecedented number of G170R homozygotes is described in detail. Diagnosis is still delayed and actions aimed at increasing awareness of primary hyperoxaluria type 1 are recommended. Thus, in addition to G170R, other causative mutations are associated with later onset of end-stage renal disease. The OxalEurope registry will provide necessary tools for characterizing those genetic and non-genetic factors through a combination of genetic, functional, and biostatistical approaches.

  16. Clinical Characteristics and Long-Term Outcome of Primary Aldosteronism in a Norwegian Population.

    PubMed

    Grytaas, Marianne Aardal; Strømsøy, Siri S; Rørvik, Jarle Tor; Arnes, Jarle Birger; Heie, Anette; Arnesen, Thomas; Jørstad, Melissa D; Nedrebø, Bjørn Gunnar; Jøssang, Dag Erik; Jensen, Dag Kjartan; Rørvik, Håvard D; Sagen, Jørn Vegard; Mellgren, Gunnar; Thordarson, Hrafnkell B; Husebye, Eystein Sverre; Løvås, Kristian

    2017-11-01

    Primary aldosteronism (PA) is the most common cause of secondary hypertension (HT). We describe here clinical characteristics, diagnostic procedures, and long-term outcomes in a Norwegian population. All suspected PA patients investigated at a tertiary centre from 1998–2012 were retrospectively evaluated. Inclusion criteria were verified PA after confirmatory testing or otherwise considered highly likely PA. Clinical, biochemical, radiological, and adrenal vein sampling (AVS) findings were analysed. Surgically removed adrenals were re-evaluated histopathologically and tested for somatic mutations. All patients still alive by August 2014 were invited to a follow-up visit. One-hundred and eight patients were included, of whom 85% had a history of hypokalaemia. PA was verified by confirmatory testing in 83 (77%), and AVS performed in 95 (88%) patients. The proportion with AVS-confirmed bilateral PA increased during the study period. Sixty-eight patients (63%) underwent adrenalectomy. KCNJ5 mutations were found in 30% of the surgical specimens and were associated with female sex and a florid PA phenotype. Follow-up visits were undertaken in 73/108 (68%), of whom 52 adrenalectomised. After adrenalectomy, 83% were biochemically cured of PA, but only 21% were cured for HT. Female sex, a verified adenoma, and KCNJ5 mutations were associated with cure of HT. In conclusion, the majority of our patients had unilateral PA and hypokalaemia, indicating that patients with bilateral and milder PA may still be underdiagnosed. Female sex, a histopathological adenoma, and the presence of KCNJ5 mutations predicted cure of HT after adrenalectomy, but the overall cure rate of HT was low.

  17. Splice Site Mutations in the ATP7A Gene

    PubMed Central

    Møller, Lisbeth Birk

    2011-01-01

    Menkes disease (MD) is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28 previously published splice site mutations. We investigate 12 mutations for their effect on the mRNA transcript in vivo. Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation to in vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients investigated in vivo. Sixty-seven percent of the mutations identified in 12 patients with milder phenotypes were predicted to have no significant effect on splicing, which concurs with the presence of wild-type transcript in 7 out of 9 patients investigated in vivo. Both the in silico predictions and the in vivo results support the hypothesis previously suggested by us and others, that the presence of some wild-type transcript is correlated to a milder phenotype. PMID:21494555

  18. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies

    PubMed Central

    Im, AP; Sehgal, AR; Carroll, MP; Smith, BD; Tefferi, A; Johnson, DE; Boyiadzis, M

    2014-01-01

    The development of effective treatment strategies for most forms of acute myeloid leukemia (AML) has languished for the past several decades. There are a number of reasons for this, but key among them is the considerable heterogeneity of this disease and the paucity of molecular markers that can be used to predict clinical outcomes and responsiveness to different therapies. The recent large-scale sequencing of AML genomes is now providing opportunities for patient stratification and personalized approaches to treatment that are based on individual mutational profiles. It is particularly notable that studies by The Cancer Genome Atlas and others have determined that 44% of patients with AML exhibit mutations in genes that regulate methylation of genomic DNA. In particular, frequent mutation has been observed in the genes encoding DNA methyltransferase 3A (DNMT3A), isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2), as well as Tet oncogene family member 2. This review will summarize the incidence of these mutations, their impact on biochemical functions including epigenetic modification of genomic DNA and their potential usefulness as prognostic indicators. Importantly, the presence of DNMT3A, IDH1 or IDH2 mutations may confer sensitivity to novel therapeutic approaches, including the use of demethylating agents. Therefore, the clinical experience with decitabine and azacitidine in the treatment of patients harboring these mutations will be reviewed. Overall, we propose that understanding the role of these mutations in AML biology will lead to more rational therapeutic approaches targeting molecularly defined subtypes of the disease. PMID:24699305

  19. Detection of IDH1 R132H mutation in acute myeloid leukemia by mutation-specific immunohistochemistry.

    PubMed

    Byers, Richard; Hornick, Jason L; Tholouli, Eleni; Kutok, Jeffery; Rodig, Scott J

    2012-01-01

    IDH1 mutations are present but are uncommon in acute myeloid leukemia (AML) and although prognostically favorable in gliomas their clinical significance in AML is unclear. Some have associated IDH1 mutations with inferior outcome, whereas others found no association with prognosis. Complicating these analyses is the need to sequence IDH1 from leukemic blasts, which is technically challenging and not yet routine. Mutation-specific antibodies enable robust, cost-effective detection of mutations in routine biopsy samples. Immunohistochemistry for the R132H mutation-specific antibody was performed in a tissue microarray containing 159 cases of AML, detecting the R132H mutation in 7 cases (4.4%). Positivity was associated with intermediate risk cytogenetics. Our results demonstrate an association between the R132H IDH1 mutation and intermediate risk cytogenetics in AML, suggesting that R132H IDH1 mutation may be associated with improved clinical outcome and demonstrate the feasibility of using mutation-specific antibodies to genotype and subclassify AML.

  20. Functional Pathway Analysis Using SCNP of FLT3 Receptor Pathway Deregulation in AML Provides Prognostic Information Independent from Mutational Status

    PubMed Central

    Cesano, Alessandra; Putta, Santosh; Rosen, David B.; Cohen, Aileen C.; Gayko, Urte; Mathi, Kavita; Woronicz, John; Hawtin, Rachael E.; Cripe, Larry; Sun, Zhuoxin; Tallman, Martin S.; Paietta, Elisabeth

    2013-01-01

    FMS-like tyrosine kinase 3 receptor (FLT3) internal tandem duplication (ITD) mutations result in constitutive activation of this receptor and have been shown to increase the risk of relapse in patients with acute myeloid leukemia (AML); however, substantial heterogeneity in clinical outcomes still exists within both the ITD mutated and unmutated AML subgroups, suggesting alternative mechanisms of disease relapse not accounted by FLT3 mutational status. Single cell network profiling (SCNP) is a multiparametric flow cytometry based assay that simultaneously measures, in a quantitative fashion and at the single cell level, both extracellular surface marker levels and changes in intracellular signaling proteins in response to extracellular modulators. We previously reported an initial characterization of FLT3 ITD-mediated signaling using SCNP. Herein SCNP was applied sequentially to two separate cohorts of samples collected from elderly AML patients at diagnosis. In the first (training) study, AML samples carrying unmutated, wild-type FLT3 (FLT3 WT) displayed a wide range of induced signaling, with a fraction having signaling profiles comparable to FLT3 ITD AML samples. Conversely, the FLT3 ITD AML samples displayed more homogeneous induced signaling, with the exception of patients with low (<40%) mutational load, which had profiles comparable to FLT3 WT AML samples. This observation was then confirmed in an independent (verification) cohort. Data from the second cohort were also used to assess the association between SCNP data and disease-free survival (DFS) in the context of FLT3 and nucleophosmin (NPM1) mutational status among patients who achieved complete remission (CR) to induction chemotherapy. The combination of SCNP read outs together with FLT3 and NPM1 molecular status improved the DFS prediction accuracy of the latter. Taken together, these results emphasize the value of comprehensive functional assessment of biologically relevant signaling pathways in AML as a basis for the development of highly predictive tests for guidance of post-remission therapy. PMID:23431389

  1. Pneumococcal meningitis and endocarditis in an infant: possible improved survival with factor V Leiden mutation.

    PubMed

    Mohapatra, Sitikant; Doulah, Assaf; Brown, Elspeth

    2017-10-01

    Streptococcus pneumoniae infections continue to remain associated with high morbidity and mortality. Although the incidence of invasive meningeal and/or lung disease are not uncommon, Streptococcus pneumoniae endocarditis is rare especially in healthy pediatric population. New studies have suggested a strong association between factor V leiden (FVL) mutation and favorable outcomes in critically ill children. A healthy 10 month old presented with sepsis and meningeal signs, was later confirmed to have Streptococcus pneumoniae meningitis and endocarditis. She was found to have factor V leiden mutation and made a complete recovery despite initial complications. Presence of factor V leiden mutation in critically ill children with severe septicaemia possibly contributes to better outcomes. What is known: • Mortality and morbidity remain high with invasive pneumococcal disease. • Pneumococcal endocarditis is rare in healthy pediatric population and results in significant morbidity and mortality What is new: • New studies have suggested a strong association between factor V leiden (FVL) mutation and favorable outcomes in critically ill children. • The presence of factor V mutation in children with extensive invasive pneumococcal disease possibly contributes to a better outcome.

  2. Description of polymerase chain reaction and sequencing DNA Mycobacterium tuberculosis from specimen sputum of tuberculosis patients in Medan

    NASA Astrophysics Data System (ADS)

    Lily; Siregar, Y.; Ilyas, S.

    2018-03-01

    This study purposed to describe the product Polymerase Chain Reaction (PCR) and sequencing of DNA Mycobacterium (M.) tuberculosis from sputum of tuberculosis (TB) patients in Medan. Sputum was collected from patients that diagnosed with pulmonary TB by a physician. Specimen processed by PCR method of Li et al. and sequencing at Macrogen Laboratory. All of 12 product PCR were showed brightness bands at 126 base pair (bp). These results indicated similarity to the study of Li et al. Sequencing analysis showed the presence of a mutation and non-mutation groups of M. tuberculosis. The reference and outcome berange of the mutation and non-mutation of M. tuberculosis were 56-107, 59-85, 60-120 and 63-94, respectively. The percentage bp difference between the outcome and references for mutation and non-mutation were 3.448-6.569and 3.278-7.428%, respectively. In conclusion, the successful amplification of PCR products in a 1.5% agarose gel electrophoresis where all 12 sputa contained rpoB-positive M. tuberculosis and 0.644% difference was found between the outcome with reference bp of the mutation and non-mutation M. tuberculosis groups.

  3. PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations

    PubMed Central

    Bendl, Jaroslav; Stourac, Jan; Salanda, Ondrej; Pavelka, Antonin; Wieben, Eric D.; Zendulka, Jaroslav; Brezovsky, Jan; Damborsky, Jiri

    2014-01-01

    Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and further improvement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP. The six best performing tools were combined into a consensus classifier PredictSNP, resulting into significantly improved prediction performance, and at the same time returned results for all mutations, confirming that consensus prediction represents an accurate and robust alternative to the predictions delivered by individual tools. A user-friendly web interface enables easy access to all eight prediction tools, the consensus classifier PredictSNP and annotations from the Protein Mutant Database and the UniProt database. The web server and the datasets are freely available to the academic community at http://loschmidt.chemi.muni.cz/predictsnp. PMID:24453961

  4. Effects of Point Mutations in Plasmodium falciparum Dihydrofolate Reductase and Dihydropterate Synthase Genes on Clinical Outcomes and In Vitro Susceptibility to Sulfadoxine and Pyrimethamine

    DTIC Science & Technology

    2009-08-01

    therapeutic efficacy of SP in two locations in the Amazon rainforest region of Peru, and to correlate the presence of molecular markers associated with...pyrimethamine at two locations in the Peruvian Amazon enrolling 99 patients of which, 86 patients completed the protocol specified 28 day follow up. Our...the Amazon basin, it may be possible to predict treatment failure with sulfadoxine- pyrimethamine equally well by determination of either of the

  5. Validation of predictive models for germline mutations in DNA mismatch repair genes in colorectal cancer.

    PubMed

    Monzon, Jose G; Cremin, Carol; Armstrong, Linlea; Nuk, Jennifer; Young, Sean; Horsman, Doug E; Garbutt, Kristy; Bajdik, Chris D; Gill, Sharlene

    2010-02-15

    Lynch syndrome is defined by the presence of germline mutations in mismatch repair (MMR) genes. Several models have been recently devised that predict mutation carrier status (Myriad Genetics, Wijnen, Barnetson, PREMM and MMRpro models). Families at moderate-high risk for harboring a Lynch-associated mutation, referred to the BC Cancer Agency (BCCA) Hereditary Cancer Program (HCP), underwent mutation analysis, immunohistochemistry and/or microsatellite testing. Seventy-two tested cases were included. Twenty-five patients were mutation positive (34.7%) and 47 were mutation negative (65.3%). Nineteen of 43 patients who were both microsatellite stable and normal on immunohistochemistry for MLH1 and MSH2 were also genotyped for mutations in these genes; all 19 were negative for MMR gene mutations. Model-derived probabilities of harboring a MMR gene mutation in the proband were calculated and compared to observed results. The area under the ROC curves were 0.75 (95%CI; 0.63-0.87), 0.86 (0.7-0.96), 0.89 (0.82-0.97), 0.89 (0.81-0.98) and 0.93 (0.86-0.99) for the Myriad, Barnetson, Wijnen, MMRpro and PREMM models, respectively. The Amsterdam II criteria had a sensitivity and specificity of 0.76 and 0.74, respectively, in this cohort. The PREMM model demonstrated the best performance for predicting carrier status based on the positive likelihood ratios at the >10%, >20% and >30% probability thresholds. In this referred cohort, the PREMM model had the most favorable concordance index and predictive performance for carrier status based on the positive LR. These prediction models (PREMM, MMRPro and Wijnen) may soon replace the Amsterdam II and revised Bethesda criteria as a prescreening tool for Lynch mutations.

  6. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study

    PubMed Central

    Stubbs, Andrew P.; Vroegindeweij, Eric M.; Smits, Willem K.; van Marion, Ronald; Dinjens, Winand N. M.; Horstmann, Martin; Kuiper, Roland P.; Zaman, Guido J. R.; van der Spek, Peter J.; Pieters, Rob; Meijerink, Jules P. P.

    2016-01-01

    Background Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL) represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment. Methods and Findings We performed whole genome sequencing on paired pre-treatment (diagnostic) and post-treatment (remission) samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R) signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146) of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX). Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we expressed wild-type and mutant IL7R signaling molecules in two steroid-sensitive T-ALL cell lines (SUPT1 and P12 Ichikawa cells) using inducible lentiviral expression constructs. We found that expressing mutant IL7R, JAK1, or NRAS, or wild-type NRAS or AKT, specifically induced steroid resistance without affecting sensitivity to vincristine or L-asparaginase. In contrast, wild-type IL7R, JAK1, and JAK3, as well as mutant JAK3 and mutant AKT, had no effect. We then performed a functional study to examine the mechanisms underlying steroid resistance and found that, rather than changing the steroid receptor’s ability to activate downstream targets, steroid resistance was associated with strong activation of MEK-ERK and AKT, downstream components of the IL7R signaling pathway, thereby inducing a robust antiapoptotic response by upregulating MCL1 and BCLXL expression. Both the MEK-ERK and AKT pathways also inactivate BIM, an essential molecule for steroid-induced cell death, and inhibit GSK3B, an important regulator of proapoptotic BIM. Importantly, treating our cell lines with IL7R signaling inhibitors restored steroid sensitivity. To address clinical relevance, we treated primary T-ALL cells obtained from 11 patients with steroids either alone or in combination with IL7R signaling inhibitors; we found that including a MEK, AKT, mTOR, or dual PI3K/mTOR inhibitor strongly increased steroid-induced cell death. Therefore, combining these inhibitors with steroid treatment may enhance steroid sensitivity in patients with ALL. The main limitation of our study was the modest cohort size, owing to the very low incidence of T-ALL. Conclusions Using an unbiased sequencing approach, we found that specific mutations in IL7R signaling molecules underlie steroid resistance in T-ALL. Future prospective clinical studies should test the ability of inhibitors of MEK, AKT, mTOR, or PI3K/mTOR to restore or enhance steroid sensitivity and improve clinical outcome. PMID:27997540

  7. Lack of Spartin Protein in Troyer Syndrome

    PubMed Central

    Bakowska, Joanna C.; Wang, Heng; Xin, Baozhong; Sumner, Charlotte J.; Blackstone, Craig

    2017-01-01

    Background Hereditary spastic paraplegias (SPG1-SPG33) are characterized by progressive spastic weakness of the lower limbs. A nucleotide deletion (1110delA) in the (SPG20; OMIM 275900) spartin gene is the origin of autosomal recessive Troyer syndrome. This mutation is predicted to cause premature termination of the spartin protein. However, it remains unknown whether this truncated spartin protein is absent or is present and partially functional in patients. Objective To determine whether the truncated spartin protein is present or absent in cells derived from patients with Troyer syndrome. Design Case report. Setting Academic research. Patients We describe a new family with Troyer syndrome due to the 1110delA mutation. Main Outcome Measures We cultured primary fibroblasts and generated lymphoblasts from affected individuals, carriers, and control subjects and subjected these cells to immunoblot analyses. Results Spartin protein is undetectable in several cell lines derived from patients with Troyer syndrome. Conclusions Our data suggest that Troyer syndrome results from complete loss of spartin protein rather than from the predicted partly functional fragment. This may reflect increased protein degradation or impaired translation. PMID:18413476

  8. Mutation spectrum of RB1 mutations in retinoblastoma cases from Singapore with implications for genetic management and counselling

    PubMed Central

    Tomar, Swati; Sethi, Raman; Sundar, Gangadhara; Quah, Thuan Chong; Quah, Boon Long; Lai, Poh San

    2017-01-01

    Retinoblastoma (RB) is a rare childhood malignant disorder caused by the biallelic inactivation of RB1 gene. Early diagnosis and identification of carriers of heritable RB1 mutations can improve disease outcome and management. In this study, mutational analysis was conducted on fifty-nine matched tumor and peripheral blood samples from 18 bilateral and 41 unilateral unrelated RB cases by a combinatorial approach of Multiplex Ligation-dependent Probe Amplification (MLPA) assay, deletion screening, direct sequencing, copy number gene dosage analysis and methylation assays. Screening of both blood and tumor samples yielded a mutation detection rate of 94.9% (56/59) while only 42.4% (25/59) of mutations were detected if blood samples alone were analyzed. Biallelic mutations were observed in 43/59 (72.9%) of tumors screened. There were 3 cases (5.1%) in which no mutations could be detected and germline mutations were detected in 19.5% (8/41) of unilateral cases. A total of 61 point mutations were identified, of which 10 were novel. There was a high incidence of previously reported recurrent mutations, occurring at 38.98% (23/59) of all cases. Of interest were three cases of mosaic RB1 mutations detected in the blood from patients with unilateral retinoblastoma. Additionally, two germline mutations previously reported to be associated with low-penetrance phenotypes: missense-c.1981C>T and splice variant-c.607+1G>T, were observed in a bilateral and a unilateral proband, respectively. These findings have implications for genetic counselling and risk prediction for the affected families. This is the first published report on the spectrum of mutations in RB patients from Singapore and shows that further improved mutation screening strategies are required in order to provide a definitive molecular diagnosis for every case of RB. Our findings also underscore the importance of genetic testing in supporting individualized disease management plans for patients and asymptomatic family members carrying low-penetrance, germline mosaicism or heritable unilateral mutational phenotypes. PMID:28575107

  9. Predicting response to EGFR inhibitors in metastatic colorectal cancer: current practice and future directions.

    PubMed

    Shankaran, Veena; Obel, Jennifer; Benson, Al B

    2010-01-01

    The identification of KRAS mutational status as a predictive marker of response to antibodies against the epidermal growth factor receptor (EGFR) has been one of the most significant and practice-changing recent advances in colorectal cancer research. Recently, data suggesting a potential role for other markers (including BRAF mutations, loss of phosphatase and tension homologue deleted on chromosome ten expression, and phosphatidylinositol-3-kinase-AKT pathway mutations) in predicting response to anti-EGFR therapy have emerged. Ongoing clinical trials and correlative analyses are essential to definitively identify predictive markers and develop therapeutic strategies for patients who may not derive benefit from anti-EGFR therapy. This article reviews recent clinical trials supporting the predictive role of KRAS, recent changes to clinical guidelines and pharmaceutical labeling, investigational predictive molecular markers, and newer clinical trials targeting patients with mutated KRAS.

  10. Clinical and Biologic Significance of MYC Genetic Mutations in De Novo Diffuse Large B-cell Lymphoma.

    PubMed

    Xu-Monette, Zijun Y; Deng, Qipan; Manyam, Ganiraju C; Tzankov, Alexander; Li, Ling; Xia, Yi; Wang, Xiao-Xiao; Zou, Dehui; Visco, Carlo; Dybkær, Karen; Li, Jun; Zhang, Li; Liang, Han; Montes-Moreno, Santiago; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L; Hsi, Eric D; Choi, William W L; van Krieken, J Han; Huh, Jooryung; Ponzoni, Maurilio; Ferreri, Andrés J M; Parsons, Ben M; Møller, Michael B; Wang, Sa A; Miranda, Roberto N; Piris, Miguel A; Winter, Jane N; Medeiros, L Jeffrey; Li, Yong; Young, Ken H

    2016-07-15

    MYC is a critical driver oncogene in many cancers, and its deregulation in the forms of translocation and overexpression has been implicated in lymphomagenesis and progression of diffuse large B-cell lymphoma (DLBCL). The MYC mutational profile and its roles in DLBCL are unknown. This study aims to determine the spectrum of MYC mutations in a large group of patients with DLBCL, and to evaluate the clinical significance of MYC mutations in patients with DLBCL treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) immunochemotherapy. We identified MYC mutations in 750 patients with DLBCL using Sanger sequencing and evaluated the prognostic significance in 602 R-CHOP-treated patients. The frequency of MYC mutations was 33.3% at the DNA level (mutations in either the coding sequence or the untranslated regions) and 16.1% at the protein level (nonsynonymous mutations). Most of the nonsynonymous mutations correlated with better survival outcomes; in contrast, T58 and F138 mutations (which were associated with MYC rearrangements), as well as several mutations occurred at the 3' untranslated region, correlated with significantly worse survival outcomes. However, these mutations occurred infrequently (only in approximately 2% of DLBCL). A germline SNP encoding the Myc-N11S variant (observed in 6.5% of the study cohort) was associated with significantly better patient survival, and resulted in reduced tumorigenecity in mouse xenografts. Various types of MYC gene mutations are present in DLBCL and show different impact on Myc function and clinical outcomes. Unlike MYC gene translocations and overexpression, most MYC gene mutations may not have a role in driving lymphomagenesis. Clin Cancer Res; 22(14); 3593-605. ©2016 AACR. ©2016 American Association for Cancer Research.

  11. Clinical Relevance of Prognostic and Predictive Molecular Markers in Gliomas.

    PubMed

    Siegal, Tali

    2016-01-01

    Sorting and grading of glial tumors by the WHO classification provide clinicians with guidance as to the predicted course of the disease and choice of treatment. Nonetheless, histologically identical tumors may have very different outcome and response to treatment. Molecular markers that carry both diagnostic and prognostic information add useful tools to traditional classification by redefining tumor subtypes within each WHO category. Therefore, molecular markers have become an integral part of tumor assessment in modern neuro-oncology and biomarker status now guides clinical decisions in some subtypes of gliomas. The routine assessment of IDH status improves histological diagnostic accuracy by differentiating diffuse glioma from reactive gliosis. It carries a favorable prognostic implication for all glial tumors and it is predictive for chemotherapeutic response in anaplastic oligodendrogliomas with codeletion of 1p/19q chromosomes. Glial tumors that contain chromosomal codeletion of 1p/19q are defined as tumors of oligodendroglial lineage and have favorable prognosis. MGMT promoter methylation is a favorable prognostic marker in astrocytic high-grade gliomas and it is predictive for chemotherapeutic response in anaplastic gliomas with wild-type IDH1/2 and in glioblastoma of the elderly. The clinical implication of other molecular markers of gliomas like mutations of EGFR and ATRX genes and BRAF fusion or point mutation is highlighted. The potential of molecular biomarker-based classification to guide future therapeutic approach is discussed and accentuated.

  12. Quantification and Dynamic Monitoring of EGFR T790M in Plasma Cell-Free DNA by Digital PCR for Prognosis of EGFR-TKI Treatment in Advanced NSCLC

    PubMed Central

    Wang, Zhijie; Chen, Rui; Wang, Shuhang; Zhong, Jia; Wu, Meina; Zhao, Jun; Duan, Jianchun; Zhuo, Minglei; An, Tongtong; Wang, Yuyan; Bai, Hua; Wang, Jie

    2014-01-01

    Background Among advanced non-small cell lung cancer (NSCLC) patients with an acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI), about 50% carry the T790M mutation, but this frequency in EGFR-TKI-naïve patients and dynamic change during therapy remains unclear. This study investigated the quantification and dynamic change of T790M mutation in plasma cell-free DNA (cf-DNA) of advanced NSCLC patients to assess the clinical outcomes of EGFR-TKI therapy. Materials and Methods We retrospectively investigated 135 patients with advanced NSCLC who obtained progression-free survival (PFS) after EGFR-TKI for >6 months for their EGFR sensitive mutations and T790M mutation in matched pre- and post-TKI plasma samples, using denaturing high-performance liquid chromatography (DHPLC), amplification refractory mutation system (ARMS), and digital-PCR (D-PCR). Real-time PCR was performed to measure c-MET amplification. Results Detection limit of D-PCR in assessing the T790M mutation was approximately 0.03%. D-PCR identified higher frequency of T790M than ARMS in pre-TKI (31.3% vs. 5.5%) and post-TKI (43.0% vs. 25.2%) plasma samples. Patients with pre-TKI T790M showed inferior PFS (8.9 vs. 12.1 months, p = 0.007) and overall survival (OS, 19.3 vs. 31.9 months, p = 0.001) compared with those without T790M. In patients harboring EGFR sensitive mutation, high quantities of pre-TKI T790M predicted poorer PFS (p = 0.001) on EGFR-TKI than low ones. Moreover, patients who experienced increased quantity of T790M during EGFR-TKI treatment showed superior PFS and OS compared with those with decreased changes (p = 0.044 and p = 0.015, respectively). Conclusion Qualitative and quantitative T790M in plasma cf-DNA by D-PCR provided a non-invasive and sensitive assay to predict EGFR-TKI prognosis. PMID:25405807

  13. Experimental Determination and Prediction of the Fitness Effects of Random Point Mutations in the Biosynthetic Enzyme HisA

    PubMed Central

    Lundin, Erik; Tang, Po-Cheng; Guy, Lionel; Näsvall, Joakim; Andersson, Dan I

    2018-01-01

    Abstract The distribution of fitness effects of mutations is a factor of fundamental importance in evolutionary biology. We determined the distribution of fitness effects of 510 mutants that each carried between 1 and 10 mutations (synonymous and nonsynonymous) in the hisA gene, encoding an essential enzyme in the l-histidine biosynthesis pathway of Salmonella enterica. For the full set of mutants, the distribution was bimodal with many apparently neutral mutations and many lethal mutations. For a subset of 81 single, nonsynonymous mutants most mutations appeared neutral at high expression levels, whereas at low expression levels only a few mutations were neutral. Furthermore, we examined how the magnitude of the observed fitness effects was correlated to several measures of biophysical properties and phylogenetic conservation.We conclude that for HisA: (i) The effect of mutations can be masked by high expression levels, such that mutations that are deleterious to the function of the protein can still be neutral with regard to organism fitness if the protein is expressed at a sufficiently high level; (ii) the shape of the fitness distribution is dependent on the extent to which the protein is rate-limiting for growth; (iii) negative epistatic interactions, on an average, amplified the combined effect of nonsynonymous mutations; and (iv) no single sequence-based predictor could confidently predict the fitness effects of mutations in HisA, but a combination of multiple predictors could predict the effect with a SD of 0.04 resulting in 80% of the mutations predicted within 12% of their observed selection coefficients. PMID:29294020

  14. Impact of experimental design on PET radiomics in predicting somatic mutation status.

    PubMed

    Yip, Stephen S F; Parmar, Chintan; Kim, John; Huynh, Elizabeth; Mak, Raymond H; Aerts, Hugo J W L

    2017-12-01

    PET-based radiomic features have demonstrated great promises in predicting genetic data. However, various experimental parameters can influence the feature extraction pipeline, and hence, Here, we investigated how experimental settings affect the performance of radiomic features in predicting somatic mutation status in non-small cell lung cancer (NSCLC) patients. 348 NSCLC patients with somatic mutation testing and diagnostic PET images were included in our analysis. Radiomic feature extractions were analyzed for varying voxel sizes, filters and bin widths. 66 radiomic features were evaluated. The performance of features in predicting mutations status was assessed using the area under the receiver-operating-characteristic curve (AUC). The influence of experimental parameters on feature predictability was quantified as the relative difference between the minimum and maximum AUC (δ). The large majority of features (n=56, 85%) were significantly predictive for EGFR mutation status (AUC≥0.61). 29 radiomic features significantly predicted EGFR mutations and were robust to experimental settings with δ Overall <5%. The overall influence (δ Overall ) of the voxel size, filter and bin width for all features ranged from 5% to 15%, respectively. For all features, none of the experimental designs was predictive of KRAS+ from KRAS- (AUC≤0.56). The predictability of 29 radiomic features was robust to the choice of experimental settings; however, these settings need to be carefully chosen for all other features. The combined effect of the investigated processing methods could be substantial and must be considered. Optimized settings that will maximize the predictive performance of individual radiomic features should be investigated in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Frequency of Fanconi anemia in Brazil and efficacy of screening for the FANCA 3788-3790del mutation.

    PubMed

    Magdalena, N; Pilonetto, D V; Bitencourt, M A; Pereira, N F; Ribeiro, R C; Jeng, M; Pasquini, R

    2005-05-01

    Fanconi anemia (FA) is an autosomal recessive genetic disease characterized by progressive bone marrow failure, susceptibility to cancer and multiple congenital anomalies. There is important clinical variability among patients and the knowledge of factors which might predict outcome would greatly help the decision making regarding the choices of treatment and the appropriate time to start it. Future studies of the possible correlation between specific mutations with specific clinical presentations will provide the answer to one of these factors. At our Center we standardized a rapid and precise screening test using a mismatch PCR assay for a specific mutation (3788-3790del in exon 38 of gene FANCA) in Brazilian FA patients. We present the results obtained after screening 80 non-consanguineous FA patients referred from all regions of Brazil with a clinical diagnosis of FA supported by cellular hypersensitivity to diepoxybutane. We were able to detect the 3788-3790del allele in 24 of the 80 (30%) FA patients studied. Thirteen of the 80 (16.25%) were homozygotes and 11 of the 80 (13.75%) were compound heterozygotes, thus confirming the high frequency of the FANCA 3788-3790del mutation in Brazilian FA patients. The identification of patients with specific mutations in the FA genes may lead to a better clinical description of this condition, also providing data for genotype-phenotype correlations, to a better understanding of the interaction of this specific mutation with other mutations in compound heterozygote patients, and ultimately to the right choices of treatment for each patient with improvement of the prognosis on future studies.

  16. Diffuse reticuloendothelial system involvement in type IV glycogen storage disease with a novel GBE1 mutation: a case report and review.

    PubMed

    Magoulas, Pilar L; El-Hattab, Ayman W; Roy, Angshumoy; Bali, Deeksha S; Finegold, Milton J; Craigen, William J

    2012-06-01

    Glycogen storage disease type IV is a rare autosomal recessive disorder of glycogen metabolism caused by mutations in the GBE1 gene that encodes the 1,4-alpha-glucan-branching enzyme 1. Its clinical presentation is variable, with the most common form presenting in early childhood with primary hepatic involvement. Histologic manifestations in glycogen storage disease type IV typically consist of intracytoplasmic non-membrane-bound inclusions containing abnormally branched glycogen (polyglucosan bodies) within hepatocytes and myocytes. We report a female infant with classic hepatic form of glycogen storage disease type IV who demonstrated diffuse reticuloendothelial system involvement with the spleen, bone marrow, and lymph nodes infiltrated by foamy histiocytes with intracytoplasmic polyglucosan deposits. Sequence analysis of the GBE1 gene revealed compound heterozygosity for a previously described frameshift mutation (c.1239delT) and a novel missense mutation (c.1279G>A) that is predicted to alter a conserved glycine residue. GBE enzyme analysis revealed no detectable activity. A review of the literature for glycogen storage disease type IV patients with characterized molecular defects and deficient enzyme activity reveals most GBE1 mutations to be missense mutations clustering in the catalytic enzyme domain. Individuals with the classic hepatic form of glycogen storage disease type IV tend to be compound heterozygotes for null and missense mutations. Although the extensive reticuloendothelial system involvement that was observed in our patient is not typical of glycogen storage disease type IV, it may be associated with severe enzymatic deficiency and a poor outcome. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance

    PubMed Central

    Ivey, Adam; Huntly, Brian J. P.

    2016-01-01

    Recent major advances in understanding the molecular basis of acute myeloid leukemia (AML) provide a double-edged sword. Although defining the topology and key features of the molecular landscape are fundamental to development of novel treatment approaches and provide opportunities for greater individualization of therapy, confirmation of the genetic complexity presents a huge challenge to successful translation into routine clinical practice. It is now clear that many genes are recurrently mutated in AML; moreover, individual leukemias harbor multiple mutations and are potentially composed of subclones with differing mutational composition, rendering each patient’s AML genetically unique. In order to make sense of the overwhelming mutational data and capitalize on this clinically, it is important to identify (1) critical AML-defining molecular abnormalities that distinguish biological disease entities; (2) mutations, typically arising in subclones, that may influence prognosis but are unlikely to be ideal therapeutic targets; (3) mutations associated with preleukemic clones; and (4) mutations that have been robustly shown to confer independent prognostic information or are therapeutically relevant. The reward of identifying AML-defining molecular lesions present in all leukemic populations (including subclones) has been exemplified by acute promyelocytic leukemia, where successful targeting of the underlying PML-RARα oncoprotein has eliminated the need for chemotherapy for disease cure. Despite the molecular heterogeneity and recognizing that treatment options for other forms of AML are limited, this review will consider the scope for using novel molecular information to improve diagnosis, identify subsets of patients eligible for targeted therapies, refine outcome prediction, and track treatment response. PMID:26660431

  18. BRAF mutation and anaplasia may be predictive factors of progression-free survival in adult pleomorphic xanthoastrocytoma.

    PubMed

    Tabouret, E; Bequet, C; Denicolaï, E; Barrié, M; Nanni, I; Metellus, P; Dufour, Henri; Chinot, O; Figarella-Branger, D

    2015-12-01

    Pleomorphic xanthoastrocytoma (PXA) is a rare, low-grade glioma that frequently occurs in pediatric patients. To analyze adult patients diagnosed with PXA and to search for pathological and molecular markers of diagnosis and prognosis. We retrospectively included patients older than 16 years with PXA who were referred to our institution between October 2003 and September 2013. All pathological diagnoses were reviewed by a neuropathologist. Histological characteristics and immunostaining of GFAP, OLIG2, neurofilament, CD34, Ki67, p53, p16, and IDH1 R132H were analyzed. The following molecular alterations were analyzed: mutations of IDH1/2, BRAF and the histone H3.3 and the EGFR amplification. Clinical data, treatment modalities, and patient outcome were recorded. We identified 16 adult patients with reviewed PXA diagnosis. No IDH neither histone H3.3 mutations were found; BRAF V600E mutation was recorded in six patients. Ten patients presented with anaplastic features. BRAF mutations were associated with lower Ki67, OLIG2 expression, and lack of p16 expression. Median PFS and OS were 41.5 months (95% CI: 11.4-71.6) and 71.4 months (95% CI: 15.5-127.3), respectively. BRAF mutation tended to be associated with greater PFS (p = 0.051), whereas anaplastic features were associated with minimal PFS (p = 0.042). PXA in adults PXA may present features distinct from pediatric PXA. Anaplastic features and BRAF mutation may potentially identify specific subgroups with distinct prognoses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Germline mutations of BRCA1 gene exon 11 are not associated with platinum response neither with survival advantage in patients with primary ovarian cancer: understanding the clinical importance of one of the biggest human exons. A study of the Tumor Bank Ovarian Cancer (TOC) Consortium.

    PubMed

    Dimitrova, Desislava; Ruscito, Ilary; Olek, Sven; Richter, Rolf; Hellwag, Alexander; Türbachova, Ivana; Woopen, Hannah; Baron, Udo; Braicu, Elena Ioana; Sehouli, Jalid

    2016-09-01

    Germline mutations in BRCA1 gene have been reported in up to 20 % of epithelial ovarian cancer (EOC) patients. Distinct clinical characteristics have been attributed to this special EOC population. We hypothesized that mutations in different BRCA1 gene exons may differently affect the clinical course of the disease. The aim of this study was to analyze, in a large cohort of primary EOCs, the clinical impact of mutations in BRCA1 gene exon 11, the largest exon of the gene sequence encoding the 60 % of BRCA1 protein. Two hundred sixty-three primary EOC patients, treated between 2000 and 2008 at Charité University Hospital of Berlin, were included. Patients' blood samples were obtained from the Tumor Ovarian Cancer (TOC) Network ( www.toc-network.de ). Direct sequencing of BRCA1 gene exon 11 was performed for each patient to detect mutations. Based on their BRCA1 exon 11 mutational status, patients were compared regarding clinico-pathological variables and survival. Mutations in BRCA1 exon 11 were found in 18 out of 263 patients (6.8 %). Further 10/263 (3.8 %) cases showed variants of uncertain significance (VUS). All exon 11 BRCA1-positive tumors (100 %) were Type 2 ovarian carcinomas (p = 0.05). Age at diagnosis was significantly younger in Type 2 exon 11 mutated patients (p = 0.01). On multivariate analysis, BRCA1 exon 11 mutational status was not found to be an independent predictive factor for optimal cytoreduction, platinum response, or survival. Mutations in BRCA1 gene exon 11 seem to predispose women to exclusively develop a Type 2 ovarian cancer at younger age. Exon 11 BRCA1-mutated EOC patients showed distinct clinico-pathological features but similar clinical outcome with respect to sporadic EOC patients.

  20. Relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation in chronic lymphocytic leukemia.

    PubMed

    Lin, Ke; Sherrington, Paul D; Dennis, Michael; Matrai, Zoltan; Cawley, John C; Pettitt, Andrew R

    2002-08-15

    Established adverse prognostic factors in chronic lymphocytic leukemia (CLL) include CD38 expression, relative lack of IgV(H) mutation, and defects of the TP53 gene. However, disruption of the p53 pathway can occur through mechanisms other than TP53 mutation, and we have recently developed a simple screening test that detects p53 dysfunction due to mutation of the genes encoding either p53 or ATM, a kinase that regulates p53. The present study was conducted to examine the predictive value of this test and to establish the relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation. CLL cells from 71 patients were examined for IgV(H) mutation, CD38 expression, and p53 dysfunction (detected as an impaired p53/p21 response to ionizing radiation). Survival data obtained from 69 patients were analyzed according to each of these parameters. Relative lack of IgV(H) mutation (less than 5%; n = 45), CD38 positivity (antigen expressed on more than 20% of malignant cells; n = 19), and p53 dysfunction (n = 19) were independently confirmed as adverse prognostic factors. Intriguingly, all p53-dysfunctional patients and all but one of the CD38(+) patients had less [corrected] than 5% IgV(H) mutation. Moreover, patients with p53 dysfunction and/or CD38 positivity (n = 31) accounted for the short survival of the less mutated group. These findings indicate that the poor outcome associated with having less than 5% IgV(H) mutation may be due to the overrepresentation of high-risk patients with p53 dysfunction and/or CD38 positivity within this group, and that CD38(-) patients with functionally intact p53 may have a prolonged survival regardless of the extent of IgV(H) mutation.

  1. Xeroderma Pigmentosum-Trichothiodystrophy overlap patient with novel XPD/ERCC2 mutation

    PubMed Central

    Kralund, Henrik H.; Ousager, Lilian; Jaspers, Nicolaas G.; Raams, Anja; Pedersen, Erling B.; Gade, Else; Bygum, Anette

    2013-01-01

    Xeroderma Pigmentosum (XP), Trichothiodystrophy (TTD) and Cockayne Syndrome (CS) are rare, recessive disorders caused by mutational defects in the Nucleotide Excision Repair (NER) pathway and/or disruption of basic cellular DNA transcription. To date, a multitude of mutations in the XPD/ERCC2 gene have been described, many of which give rise to NER- and DNA transcription related diseases, which share certain diagnostic features and few overlap patients have been described. Despite increasing understanding of the roles of XPD/ERCC2 in mammalian cells, there is still weak predictability of somatic outcome from many of these mutations. We demonstrate a patient, believed to represent an overlap between XP and TTD/CS. In addition to other organ dysfunctions, the young man presented with Photosensitivity, Ichthyosis, Brittle hair, Impaired physical and mental development, Decreased fertility and Short stature (PIBIDS) suggestive of TTD, but lacking the almost patognomonic “tiger tail” banding of the hair under polarized light. Additionally, he developed basal cell carcinoma aged 28, as well as adult onset kidney failure, features normally not associated with TTD but rather XP/CS. His freckled appearance also suggested XP, but fibroblast cultures only demonstrated x2 UV-sensitivity with expected NER and TFIIH-activity decrease. Genetic sequencing of the XPD/ERCC2 gene established the patient as heterozygote compound with a novel, N-terminal Y18H mutation and a known C-terminal (TTD) mutation, A725P. The possible interplay between gene products and the patient phenotype is discussed. PMID:25002996

  2. Global Comparison of Drug Resistance Mutations After First-Line Antiretroviral Therapy Across Human Immunodeficiency Virus-1 Subtypes

    PubMed Central

    Huang, Austin; Hogan, Joseph W.; Luo, Xi; DeLong, Allison; Saravanan, Shanmugam; Wu, Yasong; Sirivichayakul, Sunee; Kumarasamy, Nagalingeswaran; Zhang, Fujie; Phanuphak, Praphan; Diero, Lameck; Buziba, Nathan; Istrail, Sorin; Katzenstein, David A.; Kantor, Rami

    2016-01-01

    Background. Human immunodeficiency virus (HIV)-1 drug resistance mutations (DRMs) often accompany treatment failure. Although subtype differences are widely studied, DRM comparisons between subtypes either focus on specific geographic regions or include populations with heterogeneous treatments. Methods. We characterized DRM patterns following first-line failure and their impact on future treatment in a global, multi-subtype reverse-transcriptase sequence dataset. We developed a hierarchical modeling approach to address the high-dimensional challenge of modeling and comparing frequencies of multiple DRMs in varying first-line regimens, durations, and subtypes. Drug resistance mutation co-occurrence was characterized using a novel application of a statistical network model. Results. In 1425 sequences, 202 subtype B, 696 C, 44 G, 351 circulating recombinant forms (CRF)01_AE, 58 CRF02_AG, and 74 from other subtypes mutation frequencies were higher in subtypes C and CRF01_AE compared with B overall. Mutation frequency increased by 9%–20% at reverse transcriptase positions 41, 67, 70, 184, 215, and 219 in subtype C and CRF01_AE vs B. Subtype C and CRF01_AE exhibited higher predicted cross-resistance (+12%–18%) to future therapy options compared with subtype B. Topologies of subtype mutation networks were mostly similar. Conclusions. We find clear differences in DRM outcomes following first-line failure, suggesting subtype-specific ecological or biological factors that determine DRM patterns. PMID:27419147

  3. Cancer evolution: mathematical models and computational inference.

    PubMed

    Beerenwinkel, Niko; Schwarz, Roland F; Gerstung, Moritz; Markowetz, Florian

    2015-01-01

    Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society of Systematic Biologists.

  4. A KCNQ2 E515D mutation associated with benign familial neonatal seizures and continuous spike and waves during slow-wave sleep syndrome in Taiwan.

    PubMed

    Lee, Inn-Chi; Yang, Jiann-Jou; Li, Shuan-Yow

    2017-09-01

    Pediatric epilepsy caused by a KCNQ2 gene mutation usually manifests as benign familial neonatal seizures (BFNS) during the 1 st week of life. However, the exact mechanism, phenotype, and genotype of the KCNQ2 mutation are unclear. We studied the KCNQ2 genotype from 75 nonconsanguineous patients with childhood epilepsy without an identified cause (age range: from 2 days to 18 years) and from 55 healthy adult controls without epilepsy. KCNQ2 mutation variants were transfected into HEK293 cells to investigate what functional changes they induced. Four (5%) of the patients had the E515D KCNQ2 mutation, which the computer-based PolyPhen algorithm predicted to be deleterious. Their seizure outcomes were favorable, but three had an intellectual disability. Two patients with E515D presented with continuous spikes and waves during slow-wave sleep (CSWS), and the other two presented with BFNS. We also analyzed 10 affected family members with the same KCNQ2 mutation: all had epilepsy (8 had BFNS and 2 had CSWS). A functional analysis showed that the recordings of the E515D currents were significantly different (p<0.05), which suggested that channels with KCNQ2 E515D variants are less sensitive to voltage and require stronger depolarization to reach opening probabilities than those with the wild type or N780T (a benign polymorphism). KCNQ2 mutations can cause various phenotypes in children: they lead to BFNS and CSWS. We hypothesize that patients with the KCNQ2 E515D mutation are susceptible to seizures. Copyright © 2016. Published by Elsevier B.V.

  5. Deriving a Mutation Index of Carcinogenicity Using Protein Structure and Protein Interfaces

    PubMed Central

    Hakas, Jarle; Pearl, Frances; Zvelebil, Marketa

    2014-01-01

    With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/. PMID:24454733

  6. Molecular predictors of outcome with gefitinib and docetaxel in previously treated non-small-cell lung cancer: data from the randomized phase III INTEREST trial.

    PubMed

    Douillard, Jean-Yves; Shepherd, Frances A; Hirsh, Vera; Mok, Tony; Socinski, Mark A; Gervais, Radj; Liao, Mei-Lin; Bischoff, Helge; Reck, Martin; Sellers, Mark V; Watkins, Claire L; Speake, Georgina; Armour, Alison A; Kim, Edward S

    2010-02-10

    PURPOSE In the phase III INTEREST trial, 1,466 pretreated patients with advanced non-small cell lung cancer (NSCLC) were randomly assigned to receive gefitinib or docetaxel. As a preplanned analysis, we prospectively analyzed available tumor biopsies to investigate the relationship between biomarkers and clinical outcomes. METHODS Biomarkers included epidermal growth factor receptor (EGFR) copy number by fluorescent in situ hybridization (374 assessable samples), EGFR protein expression by immunohistochemistry (n = 380), and EGFR (n = 297) and KRAS (n = 275) mutations. Results For all biomarker subgroups analyzed, survival was similar for gefitinib and docetaxel, with no statistically significant differences between treatments and no significant treatment by biomarker status interaction tests. EGFR mutation-positive patients had longer progression-free survival (PFS; hazard ratio [HR], 0.16; 95% CI, 0.05 to 0.49; P = .001) and higher objective response rate (ORR; 42.1% v 21.1%; P = .04), and patients with high EGFR copy number had higher ORR (13.0% v 7.4%; P = .04) with gefitinib versus docetaxel. CONCLUSION These biomarkers do not appear to be predictive factors for differential survival between gefitinib and docetaxel in this setting of previously treated patients; however, subsequent treatments may have influenced the survival results. For secondary end points of PFS and ORR, some advantages for gefitinib over docetaxel were seen in EGFR mutation-positive and high EGFR copy number patients. There was no statistically significant difference between gefitinib and docetaxel in biomarker-negative patients. This suggests gefitinib can provide similar overall survival to docetaxel in patients across a broad range of clinical subgroups and that EGFR biomarkers such as mutation status may additionally identify which patients are likely to gain greatest PFS and ORR benefit from gefitinib.

  7. Preoperative Chemoradiation With Cetuximab, Irinotecan, and Capecitabine in Patients With Locally Advanced Resectable Rectal Cancer: A Multicenter Phase II Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun Young; Hong, Yong Sang; Kim, Dae Yong

    Purpose: To evaluate the efficacy and safety of preoperative chemoradiation with cetuximab, irinotecan, and capecitabine in patients with rectal cancer. Methods and Materials: Forty patients with locally advanced, nonmetastatic, and mid- to lower rectal cancer were enrolled. Radiotherapy was delivered at a dose of 50.4 Gy/28 fractions. Concurrent chemotherapy consisted of an initial dose of cetuximab of 400 mg/m{sup 2} 1 week before radiotherapy, and then cetuximab 250 mg/m{sup 2}/week, irinotecan 40 mg/m{sup 2}/week for 5 consecutive weeks and capecitabine 1,650 mg/m{sup 2}/day for 5 days a week (weekdays only) from the first day during radiotherapy. Total mesorectal excision wasmore » performed within 6 {+-} 2 weeks. The pathologic responses and survival outcomes were evaluated as study endpoints, and an additional KRAS mutation analysis was performed. Results: In total, 39 patients completed their planned preoperative chemoradiation and underwent R0 resection. The pathologic complete response rate was 23.1% (9/39), and 3 patients (7.7%) showed near total regression of tumor. The 3-year disease-free and overall survival rates were 80.0% and 94.7%, respectively. Grade 3/4 toxicities included leukopenia (4, 10.3%), neutropenia (2, 5.1%), anemia (1, 2.6%), diarrhea (2, 5.1%), fatigue (1, 2.6%), skin rash (1, 2.6%), and ileus (1, 2.6%). KRAS mutations were found in 5 (13.2%) of 38 patients who had available tissue for testing. Clinical outcomes were not significantly correlated with KRAS mutation status. Conclusions: Preoperative chemoradiation with cetuximab, irinotecan, and capecitabine was active and well tolerated. KRAS mutation status was not a predictive factor for pathologic response in this study.« less

  8. Clinical significance of somatic mutation in unexplained blood cytopenia

    PubMed Central

    Gallì, Anna; Travaglino, Erica; Ambaglio, Ilaria; Rizzo, Ettore; Molteni, Elisabetta; Elena, Chiara; Ferretti, Virginia Valeria; Catricalà, Silvia; Bono, Elisa; Todisco, Gabriele; Bianchessi, Antonio; Rumi, Elisa; Zibellini, Silvia; Pietra, Daniela; Boveri, Emanuela; Camaschella, Clara; Toniolo, Daniela; Papaemmanuil, Elli; Ogawa, Seishi; Cazzola, Mario

    2017-01-01

    Unexplained blood cytopenias, in particular anemia, are often found in older persons. The relationship between these cytopenias and myeloid neoplasms like myelodysplastic syndromes is currently poorly defined. We studied a prospective cohort of patients with unexplained cytopenia with the aim to estimate the predictive value of somatic mutations for identifying subjects with, or at risk of, developing a myeloid neoplasm. The study included a learning cohort of 683 consecutive patients investigated for unexplained cytopenia, and a validation cohort of 190 patients referred for suspected myeloid neoplasm. Using granulocyte DNA, we looked for somatic mutations in 40 genes that are recurrently mutated in myeloid malignancies. Overall, 435/683 patients carried a somatic mutation in at least 1 of these genes. Carrying a somatic mutation with a variant allele frequency ≥0.10, or carrying 2 or more mutations, had a positive predictive value for diagnosis of myeloid neoplasm equal to 0.86 and 0.88, respectively. Spliceosome gene mutations and comutation patterns involving TET2, DNMT3A, or ASXL1 had positive predictive values for myeloid neoplasm ranging from 0.86 to 1.0. Within subjects with inconclusive diagnostic findings, carrying 1 or more somatic mutations was associated with a high probability of developing a myeloid neoplasm during follow-up (hazard ratio = 13.9, P < .001). The predictive values of mutation analysis were confirmed in the independent validation cohort. The findings of this study indicate that mutation analysis on peripheral blood granulocytes may significantly improve the current diagnostic approach to unexplained cytopenia and more generally the diagnostic accuracy of myeloid neoplasms. PMID:28424163

  9. Prospective cohort study of clinical characteristics and management patterns for patients with non-small-cell lung cancer in the Russian Federation: EPICLIN-Lung.

    PubMed

    Tjulandin, S; Imyanitov, E; Moiseyenko, V; Ponomarenko, D; Gurina, L; Koroleva, I; Karaseva, V

    2015-06-01

    Lung cancer is a major cause of mortality in Russia. This study aimed to document the characteristics, clinical management, EGFR mutation status and outcomes of patients with non-small-cell lung cancer (NSCLC) throughout the Russian Federation to inform future management decisions. This non-interventional, prospective cohort study (clinicaltrials.gov NCT01069835) was conducted at 33 sites across the Russian Federation. Patients with confirmed NSCLC were enrolled and followed for up to 12 months or until death. Investigators collected information on patient and disease characteristics, diagnosis and treatment patterns, clinical outcomes and adverse events (AEs). A logistic regression model was used to evaluate characteristics affecting tumor EGFR mutation status. Data were analyzed from 838 patients. Most (78.4%) were male and Caucasian (98%), mean age was 58.7 years and 26.5% were never-smokers. Squamous-cell carcinoma (54.3%) was the most prevalent histology, followed by adenocarcinoma (31%). Most patients presented with advanced disease (23.7% with stage IIIA, 14.1% with stage IIIB, 25.4% with stage IV) and 10.1% of patients had EGFR-mutation-positive tumors. EGFR mutation was significantly associated with female gender, never smoking, age and adenocarcinoma histology. First- or second-line chemotherapy had been performed in 370 and 96 patients, respectively, and median progression-free survival was 35 and 19.4 weeks, respectively. For 813 patients, 194 AEs were reported at visit 1. A median of two AEs was reported for patients who had at least one AE. Study limitations include potential site selection bias, short observation period, small sample size and inclusion of fewer than average stage III-IV patients. This study contributes to a better understanding of prognostic and predictive factors of NSCLC in the Russian Federation, which will enable optimal treatment selection in future clinical practice. Epidemiology of EGFR mutations in this NSCLC cohort was similar to other studies of NSCLC in Caucasian populations.

  10. Evaluation of current prediction models for Lynch syndrome: updating the PREMM5 model to identify PMS2 mutation carriers.

    PubMed

    Goverde, A; Spaander, M C W; Nieboer, D; van den Ouweland, A M W; Dinjens, W N M; Dubbink, H J; Tops, C J; Ten Broeke, S W; Bruno, M J; Hofstra, R M W; Steyerberg, E W; Wagner, A

    2018-07-01

    Until recently, no prediction models for Lynch syndrome (LS) had been validated for PMS2 mutation carriers. We aimed to evaluate MMRpredict and PREMM5 in a clinical cohort and for PMS2 mutation carriers specifically. In a retrospective, clinic-based cohort we calculated predictions for LS according to MMRpredict and PREMM5. The area under the operator receiving characteristic curve (AUC) was compared between MMRpredict and PREMM5 for LS patients in general and for different LS genes specifically. Of 734 index patients, 83 (11%) were diagnosed with LS; 23 MLH1, 17 MSH2, 31 MSH6 and 12 PMS2 mutation carriers. Both prediction models performed well for MLH1 and MSH2 (AUC 0.80 and 0.83 for PREMM5 and 0.79 for MMRpredict) and fair for MSH6 mutation carriers (0.69 for PREMM5 and 0.66 for MMRpredict). MMRpredict performed fair for PMS2 mutation carriers (AUC 0.72), while PREMM5 failed to discriminate PMS2 mutation carriers from non-mutation carriers (AUC 0.51). The only statistically significant difference between PMS2 mutation carriers and non-mutation carriers was proximal location of colorectal cancer (77 vs. 28%, p < 0.001). Adding location of colorectal cancer to PREMM5 considerably improved the models performance for PMS2 mutation carriers (AUC 0.77) and overall (AUC 0.81 vs. 0.72). We validated these results in an external cohort of 376 colorectal cancer patients, including 158 LS patients. MMRpredict and PREMM5 cannot adequately identify PMS2 mutation carriers. Adding location of colorectal cancer to PREMM5 may improve the performance of this model, which should be validated in larger cohorts.

  11. Optimizing Medical Kits for Space Flight

    NASA Technical Reports Server (NTRS)

    Minard, Charles G.; FreiredeCarvalho, Mary H.; Iyengar, M. Sriram

    2010-01-01

    The Integrated Medical Model (IMM) uses Monte Carlo methodologies to predict the occurrence of medical events, their mitigation, and the resources required during space flight. The model includes two modules that utilize output from a single model simulation to identify an optimized medical kit for a specified mission scenario. This poster describes two flexible optimization routines built into SAS 9.1. The first routine utilizes a systematic process of elimination to maximize (or minimize) outcomes subject to attribute constraints. The second routine uses a search and mutate approach to minimize medical kit attributes given a set of outcome constraints. There are currently 273 unique resources identified that are used to treat at least one of 83 medical conditions currently in the model.

  12. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas.

    PubMed

    Knijnenburg, Theo A; Wang, Linghua; Zimmermann, Michael T; Chambwe, Nyasha; Gao, Galen F; Cherniack, Andrew D; Fan, Huihui; Shen, Hui; Way, Gregory P; Greene, Casey S; Liu, Yuexin; Akbani, Rehan; Feng, Bin; Donehower, Lawrence A; Miller, Chase; Shen, Yang; Karimi, Mostafa; Chen, Haoran; Kim, Pora; Jia, Peilin; Shinbrot, Eve; Zhang, Shaojun; Liu, Jianfang; Hu, Hai; Bailey, Matthew H; Yau, Christina; Wolf, Denise; Zhao, Zhongming; Weinstein, John N; Li, Lei; Ding, Li; Mills, Gordon B; Laird, Peter W; Wheeler, David A; Shmulevich, Ilya; Monnat, Raymond J; Xiao, Yonghong; Wang, Chen

    2018-04-03

    DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5, MGMT, and ALKBH3 in ∼20% of samples. Homologous recombination deficiency (HRD) was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Association of BRAFV600E Mutation and MicroRNA Expression with Central Lymph Node Metastases in Papillary Thyroid Cancer: A Prospective Study from Four Endocrine Surgery Centers

    PubMed Central

    Aragon Han, Patricia; Kim, Hyun-seok; Cho, Soonweng; Fazeli, Roghayeh; Najafian, Alireza; Khawaja, Hunain; McAlexander, Melissa; Dy, Benzon; Sorensen, Meredith; Aronova, Anna; Sebo, Thomas J.; Giordano, Thomas J.; Fahey, Thomas J.; Thompson, Geoffrey B.; Gauger, Paul G.; Somervell, Helina; Bishop, Justin A.; Eshleman, James R.; Schneider, Eric B.; Witwer, Kenneth W.; Umbricht, Christopher B.

    2016-01-01

    Background: Studies have demonstrated an association of the BRAFV600E mutation and microRNA (miR) expression with aggressive clinicopathologic features in papillary thyroid cancer (PTC). Analysis of BRAFV600E mutations with miR expression data may improve perioperative decision making for patients with PTC, specifically in identifying patients harboring central lymph node metastases (CLNM). Methods: Between January 2012 and June 2013, 237 consecutive patients underwent total thyroidectomy and prophylactic central lymph node dissection (CLND) at four endocrine surgery centers. All tumors were tested for the presence of the BRAFV600E mutation and miR-21, miR-146b-3p, miR-146b-5p, miR-204, miR-221, miR-222, and miR-375 expression. Bivariate and multivariable analyses were performed to examine associations between molecular markers and aggressive clinicopathologic features of PTC. Results: Multivariable logistic regression analysis of all clinicopathologic features found miR-146b-3p and miR-146b-5p to be independent predictors of CLNM, while the presence of BRAFV600E almost reached significance. Multivariable logistic regression analysis limited to only predictors available preoperatively (molecular markers, age, sex, and tumor size) found miR-146b-3p, miR-146b-5p, miR-222, and BRAFV600E mutation to predict CLNM independently. While BRAFV600E was found to be associated with CLNM (48% mutated in node-positive cases vs. 28% mutated in node-negative cases), its positive and negative predictive values (48% and 72%, respectively) limit its clinical utility as a stand-alone marker. In the subgroup analysis focusing on only classical variant of PTC cases (CVPTC), undergoing prophylactic lymph node dissection, multivariable logistic regression analysis found only miR-146b-5p and miR-222 to be independent predictors of CLNM, while BRAFV600E was not significantly associated with CLNM. Conclusion: In the patients undergoing prophylactic CLNDs, miR-146b-3p, miR-146b-5p, and miR-222 were found to be predictive of CLNM preoperatively. However, there was significant overlap in expression of these miRs in the two outcome groups. The BRAFV600E mutation, while being a marker of CLNM when considering only preoperative variables among all histological subtypes, is likely not a useful stand-alone marker clinically because the difference between node-positive and node-negative cases was small. Furthermore, it lost significance when examining only CVPTC. Overall, our results speak to the concept and interpretation of statistical significance versus actual applicability of molecular markers, raising questions about their clinical usefulness as individual prognostic markers. PMID:26950846

  14. Computational analysis of histidine mutations on the structural stability of human tyrosinases leading to albinism insurgence.

    PubMed

    Hassan, Mubashir; Abbas, Qamar; Raza, Hussain; Moustafa, Ahmed A; Seo, Sung-Yum

    2017-07-25

    Misfolding and structural alteration in proteins lead to serious malfunctions and cause various diseases in humans. Mutations at the active binding site in tyrosinase impair structural stability and cause lethal albinism by abolishing copper binding. To evaluate the histidine mutational effect, all mutated structures were built using homology modelling. The protein sequence was retrieved from the UniProt database, and 3D models of original and mutated human tyrosinase sequences were predicted by changing the residual positions within the target sequence separately. Structural and mutational analyses were performed to interpret the significance of mutated residues (N 180 , R 202 , Q 202 , R 211 , Y 363 , R 367 , Y 367 and D 390 ) at the active binding site of tyrosinases. CSpritz analysis depicted that 23.25% residues actively participate in the instability of tyrosinase. The accuracy of predicted models was confirmed through online servers ProSA-web, ERRAT score and VERIFY 3D values. The theoretical pI and GRAVY generated results also showed the accuracy of the predicted models. The CCA negative correlation results depicted that the replacement of mutated residues at His within the active binding site disturbs the structural stability of tyrosinases. The predicted CCA scores of Tyr 367 (-0.079) and Q/R 202 (0.032) revealed that both mutations have more potential to disturb the structural stability. MD simulation analyses of all predicted models justified that Gln 202 , Arg 202 , Tyr 367 and D 390 replacement made the protein structures more susceptible to destabilization. Mutational results showed that the replacement of His with Q/R 202 and Y/R 363 has a lethal effect and may cause melanin associated diseases such as OCA1. Taken together, our computational analysis depicts that the mutated residues such as Q/R 202 and Y/R 363 actively participate in instability and misfolding of tyrosinases, which may govern OCA1 through disturbing the melanin biosynthetic pathway.

  15. Visual Outcomes in Japanese Patients with Retinitis Pigmentosa and Usher Syndrome Caused by USH2A Mutations.

    PubMed

    Nagase, Yasunori; Kurata, Kentaro; Hosono, Katsuhiro; Suto, Kimiko; Hikoya, Akiko; Nakanishi, Hiroshi; Mizuta, Kunihiro; Mineta, Hiroyuki; Minoshima, Shinsei; Hotta, Yoshihiro

    2017-07-05

    EYS and USH2A are the most common causative genes for retinitis pigmentosa (RP) in Japan. We determined the clinical outcomes for USH2A-related non-syndromic RP or Usher syndrome type II (USH2). Two non-syndromic RP and 11 USH2 patients with previously identified USH2A mutations were included. Their complete history and medical records were collected using standard procedures. Visual fields and acuity were compared with those of patients with EYS mutations. Clinical analyses were based on ophthalmic and otolaryngologic examinations. In all patients, the fundus displayed changes typical of RP. Most patients showed relatively well-preserved visual acuity in their thirties or forties, with rapid deterioration in their fifties. Concentric constriction started in the twenties or thirties, and no effective residual visual field was observed after the fifties. The visual outcome for non-syndromic RP or USH2 patients with USH2A mutations is consistent with that for RP patients with EYS mutations.

  16. Testing computational prediction of missense mutation phenotypes: Functional characterization of 204 mutations of human cystathionine beta synthase

    PubMed Central

    Wei, Qiong; Wang, Liqun; Wang, Qiang; Kruger, Warren D.; Dunbrack, Roland L.

    2010-01-01

    Predicting the phenotypes of missense mutations uncovered by large-scale sequencing projects is an important goal in computational biology. High-confidence predictions can be an aid in focusing experimental and association studies on those mutations most likely to be associated with causative relationships between mutation and disease. As an aid in developing these methods further, we have derived a set of random mutations of the enzymatic domains of human cystathionine beta synthase. This enzyme is a dimeric protein that catalyzes the condensation of serine and homocysteine to produce cystathionine. Yeast missing this enzyme cannot grow on medium lacking a source of cysteine, while transfection of functional human CBS into yeast strains missing endogenous enzyme can successfully complement for the missing gene. We used PCR mutagenesis with error-prone Taq polymerase to produce 948 colonies, and compared cell growth in the presence or absence of a cysteine source as a measure of CBS function. We were able to infer the phenotypes of 204 single-site mutants, 79 of them deleterious and 125 neutral. This set was used to test the accuracy of six publicly available prediction methods for phenotype prediction of missense mutations: SIFT, PolyPhen, PMut, SNPs3D, PhD-SNP, and nsSNPAnalyzer. The top methods are PolyPhen, SIFT, and nsSNPAnalyzer, which have similar performance. Using kernel discriminant functions, we found that the difference in position-specific scoring matrix values is more predictive than the wild-type PSSM score alone, and that the relative surface area in the biologically relevant complex is more predictive than that of the monomeric proteins. PMID:20455263

  17. Prediction of BRCA Mutations Using the BRCAPRO Model in Clinic-Based African American, Hispanic, and Other Minority Families in the United States

    PubMed Central

    Huo, Dezheng; Senie, Ruby T.; Daly, Mary; Buys, Saundra S.; Cummings, Shelly; Ogutha, Jacqueline; Hope, Kisha; Olopade, Olufunmilayo I.

    2009-01-01

    Purpose BRCAPRO, a BRCA mutation carrier prediction model, was developed on the basis of studies in individuals of Ashkenazi Jewish and European ancestry. We evaluated the performance of the BRCAPRO model among clinic-based minority families. We also assessed the clinical utility of mutation status of probands (the first individual tested in a family) in the recommendation of BRCA mutation testing for other at-risk family members. Patients and Methods A total of 292 minority families with at least one member who was tested for BRCA mutations were identified through the Breast Cancer Family Registry and the University of Chicago. Using the BRCAPRO model, the predicted likelihood of carrying BRCA mutations was generated. Area under the receiver operating characteristic curves (AUCs) were calculated. Results There were 104 African American, 130 Hispanic, 37 Asian-American, and 21 other minority families. The AUC was 0.748 (95% CI, 0.672 to 0.823) for all minorities combined. There was a statistically nonsignificant trend for BRCAPRO to perform better in Hispanic families than in other minority families. After taking into account the mutation status of probands, BRCAPRO performance in additional tested family members was improved: the AUC increased from 0.760 to 0.902. Conclusion The findings support the use of BRCAPRO in pretest BRCA mutation prediction among minority families in clinical settings, but there is room for improvement in ethnic groups other than Hispanics. Knowledge of the mutation status of the proband provides additional predictive value, which may guide genetic counselors in recommending BRCA testing of additional relatives when a proband has tested negative. PMID:19188678

  18. Predicting BRCA1 and BRCA2 gene mutation carriers: comparison of LAMBDA, BRCAPRO, Myriad II, and modified Couch models.

    PubMed

    Lindor, Noralane M; Lindor, Rachel A; Apicella, Carmel; Dowty, James G; Ashley, Amanda; Hunt, Katherine; Mincey, Betty A; Wilson, Marcia; Smith, M Cathie; Hopper, John L

    2007-01-01

    Models have been developed to predict the probability that a person carries a detectable germline mutation in the BRCA1 or BRCA2 genes. Their relative performance in a clinical setting is unclear. To compare the performance characteristics of four BRCA1/BRCA2 gene mutation prediction models: LAMBDA, based on a checklist and scores developed from data on Ashkenazi Jewish (AJ) women; BRCAPRO, a Bayesian computer program; modified Couch tables based on regression analyses; and Myriad II tables collated by Myriad Genetics Laboratories. Family cancer history data were analyzed from 200 probands from the Mayo Clinic Familial Cancer Program, in a multispecialty tertiary care group practice. All probands had clinical testing for BRCA1 and BRCA2 mutations conducted in a single laboratory. For each model, performance was assessed by the area under the receiver operator characteristic curve (ROC) and by tests of accuracy and dispersion. Cases "missed" by one or more models (model predicted less than 10% probability of mutation when a mutation was actually found) were compared across models. All models gave similar areas under the ROC curve of 0.71 to 0.76. All models except LAMBDA substantially under-predicted the numbers of carriers. All models were too dispersed. In terms of ranking, all prediction models performed reasonably well with similar performance characteristics. Model predictions were widely discrepant for some families. Review of cancer family histories by an experienced clinician continues to be vital to ensure that critical elements are not missed and that the most appropriate risk prediction figures are provided.

  19. Aspergillus sensitization or carriage in cystic fibrosis patients.

    PubMed

    Fillaux, Judith; Brémont, François; Murris, Marlène; Cassaing, Sophie; Tétu, Laurent; Segonds, Christine; Pipy, Bernard; Magnaval, Jean-François

    2014-07-01

    Aspergillus fumigatus (Af) sensitization and persistent carriage are deleterious to lung function, but no consensus has been reached defining these medical entities. This work aimed to identify possible predictive factors for patients who become sensitized to Af, compared with a control group of non-sensitized Af carriers. Between 1995 and 2007, 117 pediatric patients were evaluated. Demographic data, CFTR gene mutations, body mass index and FEV1 were recorded. The presence of Af in sputum, the levels of Af-precipitin, total IgE (t-IgE) and specific IgE to Af (Af-IgE) were determined. Patients were divided into 2 groups: (1) "sensitization": level of Af-IgE > 0.35 IU/mL with t-IgE level < 500 IU/mL and (2) "persistent or transient carriage": Af-IgE level ≤ 0.35 IU/mL with either an Af transient or persistent positive culture. A survival analysis was performed with the appearance of Af-IgE in serum as an outcome variable. Severe mutation (hazard ratio = 3.2), FEV1 baseline over 70% of theoretical value (hazard ratio = 4.9), absence of Pa colonization, catalase activity and previous azithromycin administration (hazard ratio = 9.8, 4.1 and 1.9, respectively) were predictive factors for sensitization. We propose a timeline of the biological events and a tree diagram for risk calculation. Two profiles of cystic fibrosis patients can be envisaged: (1) patients with nonsevere mutation but low FEV1 baselines are becoming colonized with Af or (2) patients with high FEV1 baselines who present with severe mutation are more susceptible to the Af sensitization and then to the presentation of an allergic bronchopulmonary aspergillosis event.

  20. Structure-based methods to predict mutational resistance to diarylpyrimidine non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Azeem, Syeda Maryam; Muwonge, Alecia N; Thakkar, Nehaben; Lam, Kristina W; Frey, Kathleen M

    2018-01-01

    Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) is a leading cause of HIV treatment failure. Often included in antiviral therapy, NNRTIs are chemically diverse compounds that bind an allosteric pocket of enzyme target reverse transcriptase (RT). Several new NNRTIs incorporate flexibility in order to compensate for lost interactions with amino acid conferring mutations in RT. Unfortunately, even successful inhibitors such as diarylpyrimidine (DAPY) inhibitor rilpivirine are affected by mutations in RT that confer resistance. In order to aid drug design efforts, it would be efficient and cost effective to pre-evaluate NNRTI compounds in development using a structure-based computational approach. As proof of concept, we applied a residue scan and molecular dynamics strategy using RT crystal structures to predict mutations that confer resistance to DAPYs rilpivirine, etravirine, and investigational microbicide dapivirine. Our predictive values, changes in affinity and stability, are correlative with fold-resistance data for several RT mutants. Consistent with previous studies, mutation K101P is predicted to confer high-level resistance to DAPYs. These findings were further validated using structural analysis, molecular dynamics, and an enzymatic reverse transcription assay. Our results confirm that changes in affinity and stability for mutant complexes are predictive parameters of resistance as validated by experimental and clinical data. In future work, we believe that this computational approach may be useful to predict resistance mutations for inhibitors in development. Published by Elsevier Inc.

  1. Prediction of Response to Therapy and Clinical Outcome through a Pilot Study of Complete Genetic Assessment of Ovarian Cancer

    DTIC Science & Technology

    2015-12-01

    Oncology program supported by this grant consented patients to 11-104. OncoPanel is a cancer genomic assay that detects somatic mutations, copy number...KMT2D, EP300, FANCD2 Sertoli Leydig cell DICER1 Copy number variants: In addition, 219 patients were analyzed for copy-number variations ( CNV ) in...OncoPanel genes. >12,000 total CNV were reported in the cohort (Figure 2). Single- copy deletions (n=5558) and copy-number gains (low amplification) (n

  2. Are prediction models for Lynch syndrome valid for probands with endometrial cancer?

    PubMed

    Backes, Floor J; Hampel, Heather; Backes, Katherine A; Vaccarello, Luis; Lewandowski, George; Bell, Jeffrey A; Reid, Gary C; Copeland, Larry J; Fowler, Jeffrey M; Cohn, David E

    2009-01-01

    Currently, three prediction models are used to predict a patient's risk of having Lynch syndrome (LS). These models have been validated in probands with colorectal cancer (CRC), but not in probands presenting with endometrial cancer (EMC). Thus, the aim was to determine the performance of these prediction models in women with LS presenting with EMC. Probands with EMC and LS were identified. Personal and family history was entered into three prediction models, PREMM(1,2), MMRpro, and MMRpredict. Probabilities of mutations in the mismatch repair genes were recorded. Accurate prediction was defined as a model predicting at least a 5% chance of a proband carrying a mutation. From 562 patients prospectively enrolled in a clinical trial of patients with EMC, 13 (2.2%) were shown to have LS. Nine patients had a mutation in MSH6, three in MSH2, and one in MLH1. MMRpro predicted that 3 of 9 patients with an MSH6, 3 of 3 with an MSH2, and 1 of 1 patient with an MLH1 mutation could have LS. For MMRpredict, EMC coded as "proximal CRC" predicted 5 of 5, and as "distal CRC" three of five. PREMM(1,2) predicted that 4 of 4 with an MLH1 or MSH2 could have LS. Prediction of LS in probands presenting with EMC using current models for probands with CRC works reasonably well. Further studies are needed to develop models that include questions specific to patients with EMC with a greater age range, as well as placing increased emphasis on prediction of LS in probands with MSH6 mutations.

  3. Precision medicine in colorectal cancer: the molecular profile alters treatment strategies.

    PubMed

    Tran, Nguyen H; Cavalcante, Ludmila L; Lubner, Sam J; Mulkerin, Daniel L; LoConte, Noelle K; Clipson, Linda; Matkowskyj, Kristina A; Deming, Dustin A

    2015-09-01

    When considering treatment options for patients with metastatic colorectal cancer (mCRC), molecular profiling has become a pivotal component in guiding clinical decisions. FOLFOX and FOLFIRI (fluorouracuil, leucovorin plus oxaliplatin or ininotecan, respectively) are the standard base regimens used for the treatment of mCRC. Biologic agents, such as the epidermal growth factor receptor (EGFR) targeted therapies, cetuximab and panitumumab and the vascular endothelial growth factor monoclonal antibody, bevacizumab, are safe and effective in the first-line setting. The most efficacious use of these agents in terms of timing and selection of the right patient population continues to be debated. Here we review multiple investigations into the effectiveness of treatment options as a function of the mutations present in colon cancers. Early studies have reported that KRAS mutations at exon 2 predict resistance to EGFR targeted therapies. More recently the data have expanded to include KRAS mutations at exons 3 and 4 and NRAS mutations at exons 2, 3 and 4 as well as other biomarkers including BRAF and PIK3CA, leading to the evolution of the treatment of mCRC to a more precision-based approach. As our understanding of relevant biomarkers increases, and data from both molecular profiling and treatment response become more readily available, treatment options will become more precise and their outcomes more effective.

  4. Combined effect of Hashimoto's thyroiditis and BRAF(V600E) mutation status on aggressiveness in papillary thyroid cancer.

    PubMed

    Kim, Su-jin; Myong, Jun Pyo; Jee, Hyeon-Gun; Chai, Young Jun; Choi, June Young; Min, Hye Sook; Lee, Kyu Eun; Youn, Yeo-Kyu

    2016-01-01

    The purpose of this study was to evaluate the association between Hashimoto's thyroiditis and BRAF(V600E) mutation status in patients with papillary thyroid cancer (PTC) and to determine their combined association with tumor aggressiveness in PTC. A total of 1780 patients with PTC who underwent surgery were enrolled in this study. Simple and multiple analyses were performed to determine the association between Hashimoto's thyroiditis and the BRAF(V600E) mutation in PTC. Hashimoto's thyroiditis was present in 11.5% of patients (204/1780) with PTC. Multiple logistic regressions showed that BRAF(V600E) (odds ratio [OR] = 0.493; 95% confidence interval [CI] = 0.360-0.678) and the female sex (OR = 7.146; 95% CI = 3.408-18.347) were independent factors associated with Hashimoto's thyroiditis in PTC. BRAF(V600E) mutation and the Hashimoto's thyroiditis-negative PTC group were associated with aggressive disease (OR = 3.069; 95% CI = 1.654-5.916). Hashimoto's thyroiditis was associated less frequently with BRAF(V600E) , and frequently with the female sex in patients with PTC. Hashimoto's thyroiditis and BRAF(V600E) status may help to predict clinical outcome of PTC. © 2015 Wiley Periodicals, Inc.

  5. Epidemiology and clinical relevance of Pneumocystis jirovecii Frenkel, 1976 dihydropteroate synthase gene mutations.

    PubMed

    Matos, O; Esteves, F

    2010-09-01

    A review was conducted to examine the published works that studied the prevalence of Pneumocystis jirovecii dihydropteroate synthase (DHPS) mutations in patients with P. jirovecii pneumonia (PcP), in develop and developing countries, and that focused the problem of the possible association of these mutations with exposure to sulpha or sulphone drugs and their influence in the PcP outcome. Studies conducted in United States of America presented higher P. jirovecii mutations rates, in comparison with European countries, and in developing countries, lower rates of DHPS mutations were reported, due to limited use of sulpha drugs. A significant association was reported between the use of sulpha or sulphone agents for PcP prophylaxis in HIV-infected patients and the presence of DHPS mutations. However these mutations were also detected in PcP patients who were not currently receiving sulpha or sulphone agents. The outcome and mortality of HIV-infected patients with PcP harbouring DHPS gene mutations were related primarily to the underlying severity of illness and the initial severity of PcP, more than to the presence of mutations.

  6. Results after laparoscopic partial splenectomy for children with hereditary spherocytosis: Are outcomes influenced by genetic mutation?

    PubMed

    Pugi, Jakob; Carcao, Manuel; Drury, Luke J; Langer, Jacob C

    2018-05-01

    Laparoscopic partial splenectomy (LPS) theoretically maintains long-term splenic immune function for children with hereditary spherocytosis (HS). Our goal was to review our results after LPS and to determine if specific genetic mutations influence outcome. All children with HS undergoing LPS between 2005 and 2016 were reviewed. Thirty-one children underwent LPS (16 male) at a median age of 9 (range 2-18) years. All experienced an increase in hemoglobin and decrease in reticulocyte count early after LPS and at last follow-up. Twenty-two were sent for genetic analysis. Mutations in α-spectrin, β-spectrin, and Ankyrin were identified in 6, 5, and 11 patients, respectively. Gene mutation was not correlated with complications, perioperative transfusion, length of hospital stay, or median hemoglobin, platelet, or reticulocyte counts. Three children required completion splenectomy at 10.9, 6.9, and 3.2years post-LPS, each with a different gene mutation. LPS is effective in reversing anemia and reducing reticulocytosis. So far less than 10% have required completion splenectomy, and those children did benefit from delaying the risks of asplenia. In this preliminary analysis, genetic mutation did not influence outcome after LPS. A larger multicenter study is necessary to further investigate potential correlations with specific genetic mutations. Prognosis Study. IV. Copyright © 2018. Published by Elsevier Inc.

  7. Effects of Point Mutations in Plasmodium falciparum Dihydrofolate Reductase and Dihydropterate Synthase Genes on Clinical Outcomes and In Vitro Susceptibility to Sulfadoxine and Pyrimethamine

    PubMed Central

    Bacon, David J.; Tang, Doug; Salas, Carola; Roncal, Norma; Lucas, Carmen; Gerena, Lucia; Tapia, Lorena; Llanos-Cuentas, A. Alejandro; Garcia, Coralith; Solari, Lelv; Kyle, Dennis; Magill, Alan J.

    2009-01-01

    Background Sulfadoxine-pyrimethamine was a common first line drug therapy to treat uncomplicated falciparum malaria, but increasing therapeutic failures associated with the development of significant levels of resistance worldwide has prompted change to alternative treatment regimes in many national malaria control programs. Methodology and Finding We conducted an in vivo therapeutic efficacy trial of sulfadoxine-pyrimethamine at two locations in the Peruvian Amazon enrolling 99 patients of which, 86 patients completed the protocol specified 28 day follow up. Our objective was to correlate the presence of polymorphisms in P. falciparum dihydrofolate reductase and dihydropteroate synthase to in vitro parasite susceptibility to sulfadoxine and pyrimethamine and to in vivo treatment outcomes. Inhibitory concentration 50 values of isolates increased with numbers of mutations (single [108N], sextuplet [BR/51I/108N/164L and 437G/581G]) and septuplet (BR/51I/108N/164L and 437G/540E/581G) with geometric means of 76 nM (35–166 nM), 582 nM (49-6890- nM) and 4909 (3575–6741 nM) nM for sulfadoxine and 33 nM (22–51 nM), 81 nM (19–345 nM), and 215 nM (176–262 nM) for pyrimethamine. A single mutation present in the isolate obtained at the time of enrollment from either dihydrofolate reductase (164L) or dihydropteroate synthase (540E) predicted treatment failure as well as any other single gene alone or in combination. Patients with the dihydrofolate reductase 164L mutation were 3.6 times as likely to be treatment failures [failures 85.4% (164L) vs 23.7% (I164); relative risk = 3.61; 95% CI: 2.14 – 6.64] while patients with the dihydropteroate synthase 540E were 2.6 times as likely to fail treatment (96.7% (540E) vs 37.5% (K540); relative risk = 2.58; 95% CI: 1.88 – 3.73). Patients with both dihydrofolate reductase 164L and dihydropteroate synthase 540E mutations were 4.1 times as likely to be treatment failures [96.7% vs 23.7%; RR = 4.08; 95% CI: 2.45 – 7.46] compared to patients having both wild forms (I164 and K540). Conclusions In this part of the Amazon basin, it may be possible to predict treatment failure with sulfadoxine-pyrimethamine equally well by determination of either of the single mutations dihydrofolate reductase 164L or dihydropteroate synthase 540E. Trial Registration ClinicalTrials.gov NCT00951106 NCT00951106 PMID:19707564

  8. Quantitative radiomic profiling of glioblastoma represents transcriptomic expression.

    PubMed

    Kong, Doo-Sik; Kim, Junhyung; Ryu, Gyuha; You, Hye-Jin; Sung, Joon Kyung; Han, Yong Hee; Shin, Hye-Mi; Lee, In-Hee; Kim, Sung-Tae; Park, Chul-Kee; Choi, Seung Hong; Choi, Jeong Won; Seol, Ho Jun; Lee, Jung-Il; Nam, Do-Hyun

    2018-01-19

    Quantitative imaging biomarkers have increasingly emerged in the field of research utilizing available imaging modalities. We aimed to identify good surrogate radiomic features that can represent genetic changes of tumors, thereby establishing noninvasive means for predicting treatment outcome. From May 2012 to June 2014, we retrospectively identified 65 patients with treatment-naïve glioblastoma with available clinical information from the Samsung Medical Center data registry. Preoperative MR imaging data were obtained for all 65 patients with primary glioblastoma. A total of 82 imaging features including first-order statistics, volume, and size features, were semi-automatically extracted from structural and physiologic images such as apparent diffusion coefficient and perfusion images. Using commercially available software, NordicICE, we performed quantitative imaging analysis and collected the dataset composed of radiophenotypic parameters. Unsupervised clustering methods revealed that the radiophenotypic dataset was composed of three clusters. Each cluster represented a distinct molecular classification of glioblastoma; classical type, proneural and neural types, and mesenchymal type. These clusters also reflected differential clinical outcomes. We found that extracted imaging signatures does not represent copy number variation and somatic mutation. Quantitative radiomic features provide a potential evidence to predict molecular phenotype and treatment outcome. Radiomic profiles represents transcriptomic phenotypes more well.

  9. Somatic Mutations and Neoepitope Homology in Melanomas Treated with CTLA-4 Blockade.

    PubMed

    Nathanson, Tavi; Ahuja, Arun; Rubinsteyn, Alexander; Aksoy, Bulent Arman; Hellmann, Matthew D; Miao, Diana; Van Allen, Eliezer; Merghoub, Taha; Wolchok, Jedd D; Snyder, Alexandra; Hammerbacher, Jeff

    2017-01-01

    Immune checkpoint inhibitors are promising treatments for patients with a variety of malignancies. Toward understanding the determinants of response to immune checkpoint inhibitors, it was previously demonstrated that the presence of somatic mutations is associated with benefit from checkpoint inhibition. A hypothesis was posited that neoantigen homology to pathogens may in part explain the link between somatic mutations and response. To further examine this hypothesis, we reanalyzed cancer exome data obtained from our previously published study of 64 melanoma patients treated with CTLA-4 blockade and a new dataset of RNA-Seq data from 24 of these patients. We found that the ability to accurately predict patient benefit did not increase as the analysis narrowed from somatic mutation burden, to inclusion of only those mutations predicted to be MHC class I neoantigens, to only including those neoantigens that were expressed or that had homology to pathogens. The only association between somatic mutation burden and response was found when examining samples obtained prior to treatment. Neoantigen and expressed neoantigen burden were also associated with response, but neither was more predictive than somatic mutation burden. Neither the previously described tetrapeptide signature nor an updated method to evaluate neoepitope homology to pathogens was more predictive than mutation burden. Cancer Immunol Res; 5(1); 84-91. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. An efficient method for the prediction of deleterious multiple-point mutations in the secondary structure of RNAs using suboptimal folding solutions

    PubMed Central

    Churkin, Alexander; Barash, Danny

    2008-01-01

    Background RNAmute is an interactive Java application which, given an RNA sequence, calculates the secondary structure of all single point mutations and organizes them into categories according to their similarity to the predicted structure of the wild type. The secondary structure predictions are performed using the Vienna RNA package. A more efficient implementation of RNAmute is needed, however, to extend from the case of single point mutations to the general case of multiple point mutations, which may often be desired for computational predictions alongside mutagenesis experiments. But analyzing multiple point mutations, a process that requires traversing all possible mutations, becomes highly expensive since the running time is O(nm) for a sequence of length n with m-point mutations. Using Vienna's RNAsubopt, we present a method that selects only those mutations, based on stability considerations, which are likely to be conformational rearranging. The approach is best examined using the dot plot representation for RNA secondary structure. Results Using RNAsubopt, the suboptimal solutions for a given wild-type sequence are calculated once. Then, specific mutations are selected that are most likely to cause a conformational rearrangement. For an RNA sequence of about 100 nts and 3-point mutations (n = 100, m = 3), for example, the proposed method reduces the running time from several hours or even days to several minutes, thus enabling the practical application of RNAmute to the analysis of multiple-point mutations. Conclusion A highly efficient addition to RNAmute that is as user friendly as the original application but that facilitates the practical analysis of multiple-point mutations is presented. Such an extension can now be exploited prior to site-directed mutagenesis experiments by virologists, for example, who investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary structure. A complete explanation of the application, called MultiRNAmute, is available at [1]. PMID:18445289

  11. Serum level of CD26 predicts time to first treatment in early B-chronic lymphocytic leukemia.

    PubMed

    Molica, Stefano; Digiesi, Giovanna; Mirabelli, Rosanna; Cutrona, Giovanna; Antenucci, Anna; Molica, Matteo; Giannarelli, Diana; Sperduti, Isabella; Morabito, Fortunato; Neri, Antonino; Baldini, Luca; Ferrarini, Manlio

    2009-09-01

    We analyzed the correlation between well-established biological parameters of prognostic relevance in B-cell chronic lymphocytic leukemia (CLL) [i.e. mutational status of the immunoglobulin heavy chain variable region (IgV(H)), ZAP-70- and CD38-expression] and serum levels of CD26 (dipeptidyl peptidase IV, DPP IV) by evaluating the impact of these variables on the time to first treatment (TFT) in a series of 69 previously untreated Binet stage A B-cell CLL patients. By using a commercial ELISA we found that with exception of a borderline significance for ZAP-70 (P = 0.07) and CD38 (P = 0.08), circulating levels of CD26 did not correlate with either Rai substages (P = 0.520) or other biomarker [beta2-microglobulin (P = 0.933), LDH (P = 0.101), mutational status of IgV(H) (P = 0.320)]. Maximally selected log-rank statistic plots identified a CD26 serum concentration of 371 ng/mL as the best cut-off. This threshold allowed the identification of two subsets of patients with CD26 serum levels higher and lower that 371 ng/mL respectively, whose clinical outcome was different with respect to TFT (i.e. 46% and 71% at 5 yr respectively; P = 0.005). Along with higher serum levels of CD26, the univariate Cox proportional hazard model identified absence of mutation in IgV(H) (P < 0.0001) as predictor of shorter TFT. As in multivariate analysis all these parameters maintained their discriminating power (mutational status of IgV(H,)P < 0.0001; soluble CD26, P = 0.02) their combined effect on clinical outcome was assessed. When three groups were considered: (1) Low-risk group (n = 31), patients with concordant IgVH(mut) and low level of soluble CD26; (2) intermediate risk group (n = 26), patients with discordant pattern; (3) high-risk group (n = 12), patients with concordant IgVH(unmut) and high level of soluble CD26, differences in the TFT were statistically significant, with a TFT at 5 yr of respectively 88%, 51% and 43% (P < 0.0001). Our results indicate that in early B-cell CLL biological profile including among other parameters soluble CD26 may provide a useful insight into the complex interrelationship of prognostic variables. Furthermore, CD26 along with mutational status of IgV(H) can be adequately used to predict clinical behavior of patients with low risk disease.

  12. Bacterial self-resistance to the natural proteasome inhibitor salinosporamide A

    PubMed Central

    Kale, Andrew J.; McGlinchey, Ryan P.; Lechner, Anna; Moore, Bradley S.

    2011-01-01

    Proteasome inhibitors have recently emerged as a therapeutic strategy in cancer chemotherapy but susceptibility to drug resistance limits their efficacy. The marine actinobacterium Salinispora tropica produces salinosporamide A (NPI-0052, marizomib), a potent proteasome inhibitor and promising clinical agent in the treatment of multiple myeloma. Actinobacteria also possess 20S proteasome machinery, raising the question of self-resistance. We identified a redundant proteasome β-subunit, SalI, encoded within the salinosporamide biosynthetic gene cluster and biochemically characterized the SalI proteasome complex. The SalI β-subunit has an altered substrate specificity profile, 30-fold resistance to salinosporamide A, and cross-resistance to the FDA-approved proteasome inhibitor bortezomib. An A49V mutation in SalI correlates to clinical bortezomib resistance from a human proteasome β 5-subunit A49T mutation, suggesting that intrinsic resistance to natural proteasome inhibitors may predict clinical outcomes. PMID:21882868

  13. Liquid biopsy of PIK3CA mutations in cervical cancer in Hong Kong Chinese women.

    PubMed

    Chung, Tony K H; Cheung, Tak Hong; Yim, So Fan; Yu, Mei Yun; Chiu, Rossa W K; Lo, Keith W K; Lee, Ida P C; Wong, Raymond R Y; Lau, Kitty K M; Wang, Vivian W; Worley, Michael J; Elias, Kevin M; Fiascone, Stephen J; Smith, David I; Berkowitz, Ross S; Wong, Yick Fu

    2017-08-01

    Cervical cancer is the fourth most common female cancer worldwide. The prognosis for women with advanced-stage or recurrent cervical cancer remains poor and response to treatment is variable. Standardized management protocols leave little room for individualization. We report on a novel blood-based liquid biopsy for specific PIK3CA mutations as a clinically useful biomarker in patients with invasive cervical cancer. One hundred seventeen Hong Kong Chinese women with primary invasive cervical cancer and their pre-treatment plasma samples were investigated. Two PIK3CA mutations, p.E542K and p.E545K were measured in cell free DNA (cfDNA) extracted from plasma using droplet digital PCR. This liquid biopsy of PIK3CA in cervical cancer was correlated to clinico-pathological features to verify the potential of PIK3CA as a clinically useful molecular biomarker for predicting disease prognosis and monitoring for progression. PIK3CA mutations, either p.E542K or p.E545K, were detected in plasma cfDNA from 22.2% of the patients. PIK3CA mutation status was significantly correlated to median tumor size (p<0.01). PIK3CA mutations detected in the plasma were significantly associated with decreased disease-free survival and overall survival (p<0.05). As a liquid molecular biopsy, analysis of circulating PIK3CA mutations shows promise as a way to refine risk stratification of individual patients with cervical cancer, and provides a platform for further research to offer individualized therapy with the purpose of improving outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Evaluation of gefitinib efficacy according to body mass index, body surface area, and body weight in patients with EGFR-mutated advanced non-small cell lung cancer.

    PubMed

    Imai, Hisao; Kuwako, Tomohito; Kaira, Kyoichi; Masuda, Tomomi; Miura, Yosuke; Seki, Kaori; Sakurai, Reiko; Utsugi, Mitsuyoshi; Shimizu, Kimihiro; Sunaga, Noriaki; Tomizawa, Yoshio; Ishihara, Shinichi; Ishizuka, Takao; Mogi, Akira; Hisada, Takeshi; Minato, Koichi; Takise, Atsushi; Saito, Ryusei; Yamada, Masanobu

    2017-03-01

    In patients with epidermal growth factor receptor (EGFR)-mutated, advanced, non-small cell lung cancer (NSCLC), common gefitinib-sensitive EGFR mutations that predict a greater response to therapy include the exon 19 deletion and L858R point mutation. The objective of this study was to evaluate whether body surface area (BSA), body weight (BW), and body mass index (BMI) affect gefitinib efficacy in such patients. The medical charts of 138 consecutive patients with advanced NSCLC harboring sensitive EGFR mutations, who underwent gefitinib treatment, were reviewed. The median BSA and BW were used as cutoff values to evaluate their impact on gefitinib efficacy. BMI was categorized as underweight (<18.5 kg/m 2 ), normal (18.5-25 kg/m 2 ), and overweight (≥25 kg/m 2 ). The median BSA and BW were 1.48 m 2 and 53 kg, respectively. The overall response rate, progression-free survival (PFS), and overall survival (OS) were 65.2%, 12.2, and 24.2 months, respectively. There were no significant differences in clinical outcomes according to BSA, BW, or BMI alone. Subgroup analysis based on the mutation type and BSA revealed no significant differences in PFS between the groups; however, the median OS in those with exon 19 deletion combined with low BSA was significantly favorable compared with the other groups. Gefitinib efficacy in patients with NSCLC harboring sensitive EGFR mutations did not differ according to BSA, BW, and BMI. However, OS was superior in patients with both the exon 19 deletion and low BSA.

  15. Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: relevance to post-remission therapy.

    PubMed

    Pratcorona, Marta; Brunet, Salut; Nomdedéu, Josep; Ribera, Josep Maria; Tormo, Mar; Duarte, Rafael; Escoda, Lourdes; Guàrdia, Ramon; Queipo de Llano, M Paz; Salamero, Olga; Bargay, Joan; Pedro, Carmen; Martí, Josep Maria; Torrebadell, Montserrat; Díaz-Beyá, Marina; Camós, Mireia; Colomer, Dolors; Hoyos, Montserrat; Sierra, Jorge; Esteve, Jordi

    2013-04-04

    Risk associated to FLT3 internal tandem duplication (FLT3-ITD) in patients with acute myeloid leukemia (AML) may depend on mutational burden and its interaction with other mutations. We analyzed the effect of FLT3-ITD/FLT3 wild-type (FLT3wt) ratio depending on NPM1 mutation (NPM1mut) in 303 patients with intermediate-risk cytogenetics AML treated with intensive chemotherapy. Among NPM1mut patients, FLT3wt and low ratio (<0.5) subgroups showed similar overall survival, relapse risk, and leukemia-free survival, whereas high ratio (≥0.5) patients had a worse outcome. In NPM1wt AML, FLT3-ITD subgroups showed a comparable outcome, with higher risk of relapse and shortened overall survival than FLT3wt patients. Allogeneic stem cell transplantation in CR1 was associated with a reduced relapse risk in all molecular subgroups with the exception of NPM1mut AML with absent or low ratio FLT3-ITD. In conclusion, effect of FLT3 burden is modulated by NPM1 mutation, especially in patients with a low ratio.

  16. Adverse Clinical Outcome Associated With Mutations That Typify African American Colorectal Cancers.

    PubMed

    Wang, Zhenghe; Li, Li; Guda, Kishore; Chen, Zhengyi; Barnholtz-Sloan, Jill; Park, Young Soo; Markowitz, Sanford D; Willis, Joseph

    2016-12-01

    African Americans have the highest incidence and mortality from colorectal cancer (CRC) of any US racial group. We recently described a panel of 15 genes that are statistically significantly more likely to be mutated in CRCs from African Americans than in Caucasians (AA-CRC genes). The current study investigated the outcomes associated with these mutations in African American CRCs (AA-CRCs). In a cohort of 66 patients with stage I-III CRCs, eight of 27 CRCs with AA-CRC gene mutations (Mut+) developed metastatic disease vs only four of 39 mutation-negative (Mut-) cases (P = .03, Cox regression model with two-sided Wald test). Moreover, among stage III cases (n = 33), Mut+ cancers were nearly three times more likely to relapse as Mut- cases (7 of 15 Mut+ vs 3 of 18 Mut-; P = .03, Cox regression model with two-sided Wald test). AA-CRC mutations may thus define a high-risk subset of CRCs that contributes to the overall disparity in CRC outcomes observed in African Americans. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Human Splicing Finder: an online bioinformatics tool to predict splicing signals.

    PubMed

    Desmet, François-Olivier; Hamroun, Dalil; Lalande, Marine; Collod-Béroud, Gwenaëlle; Claustres, Mireille; Béroud, Christophe

    2009-05-01

    Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence. It contains all available matrices for auxiliary sequence prediction as well as new ones for binding sites of the 9G8 and Tra2-beta Serine-Arginine proteins and the hnRNP A1 ribonucleoprotein. We also developed new Position Weight Matrices to assess the strength of 5' and 3' splice sites and branch points. We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects. We showed that the mutation effect was correctly predicted in almost all cases. HSF could thus represent a valuable resource for research, diagnostic and therapeutic (e.g. therapeutic exon skipping) purposes as well as for global studies, such as the GEN2PHEN European Project or the Human Variome Project.

  18. Human Splicing Finder: an online bioinformatics tool to predict splicing signals

    PubMed Central

    Desmet, François-Olivier; Hamroun, Dalil; Lalande, Marine; Collod-Béroud, Gwenaëlle; Claustres, Mireille; Béroud, Christophe

    2009-01-01

    Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence. It contains all available matrices for auxiliary sequence prediction as well as new ones for binding sites of the 9G8 and Tra2-β Serine-Arginine proteins and the hnRNP A1 ribonucleoprotein. We also developed new Position Weight Matrices to assess the strength of 5′ and 3′ splice sites and branch points. We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects. We showed that the mutation effect was correctly predicted in almost all cases. HSF could thus represent a valuable resource for research, diagnostic and therapeutic (e.g. therapeutic exon skipping) purposes as well as for global studies, such as the GEN2PHEN European Project or the Human Variome Project. PMID:19339519

  19. A Large-scale Cross-sectional Study of ALK Rearrangements and EGFR Mutations in Non-small-cell Lung Cancer in Chinese Han Population

    PubMed Central

    Hong, Shaodong; Fang, Wenfeng; Hu, Zhihuang; Zhou, Ting; Yan, Yue; Qin, Tao; Tang, Yanna; Ma, Yuxiang; Zhao, Yuanyuan; Xue, Cong; Huang, Yan; Zhao, Hongyun; Zhang, Li

    2014-01-01

    The predictive power of age at diagnosis and smoking history for ALK rearrangements and EGFR mutations in non-small-cell lung cancer (NSCLC) remains not fully understood. In this cross-sectional study, 1160 NSCLC patients were prospectively enrolled and genotyped for EML4-ALK rearrangements and EGFR mutations. Multivariate logistic regression analysis was performed to explore the association between clinicopathological features and these two genetic aberrations. Receiver operating characteristic (ROC) curves methodology was applied to evaluate the predictive value. We showed that younger age at diagnosis was the only independent variable associated with EML4-ALK rearrangements (odds ratio (OR) per 5 years' increment, 0.68; p < 0.001), while lower tobacco exposure (OR per 5 pack-years' increment, 0.88; p < 0.001), adenocarcinoma (OR, 6.61; p < 0.001), and moderate to high differentiation (OR, 2.05; p < 0.001) were independently associated with EGFR mutations. Age at diagnosis was a very strong predictor of ALK rearrangements but poorly predicted EGFR mutations, while smoking pack-years may predict the presence of EGFR mutations and ALK rearrangements but with rather limited power. These findings should assist clinicians in assessing the likelihood of EML4-ALK rearrangements and EGFR mutations and understanding their biological implications in NSCLC. PMID:25434695

  20. Biochemical and molecular characteristics of patients with organic acidaemias and urea cycle disorders identified through newborn screening.

    PubMed

    Barends, M; Pitt, J; Morrissy, S; Tzanakos, N; Boneh, A

    2014-01-01

    In recent years it has become clear that newborn screening (NBS) programmes using tandem mass spectrometry identify "patients" with "classical" inborn errors of metabolism who are asymptomatic. This observation raises issues regarding medicalization of "non-diseases," potentially unnecessary treatment and unnecessary anxiety to parents. This study aims to identify possible markers that may assist in predicting the need for treatment of infants with "classical" organic acidaemias (OA) and urea cycle disorders (UCD) diagnosed through NBS. Medical records of all patients with classical OA and UCD detected through the Victorian NBS programme from February 2002 to January 2014, or diagnosed clinically between 1990 and January 2002 were retrospectively reviewed. Neonatal presentation did not always predict the need for on-going strict treatment. Blood concentrations of amino acids and acyl-carnitines and the changes thereof in follow-up samples correlated with severity in citrullinaemia-I, possibly isovaleric acidaemia but not in argininosuccinic aciduria or propionic acidaemia. Some specific mutations correlate with "attenuated" citrullinaemia-I. Gender may affect clinical outcome in propionic acidaemia. Changes in blood concentration of certain metabolites (amino acids, acyl-carnitines) in the first weeks of life may be predictive of the need for treatment in some disorders but not in others. Mutation analysis may be predictive in some disorders but whether or not this should be considered as second-tier testing in NBS should be discussed separately. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Similar predictions of etravirine sensitivity regardless of genotypic testing method used: comparison of available scoring systems.

    PubMed

    Vingerhoets, Johan; Nijs, Steven; Tambuyzer, Lotke; Hoogstoel, Annemie; Anderson, David; Picchio, Gaston

    2012-01-01

    The aims of this study were to compare various genotypic scoring systems commonly used to predict virological outcome to etravirine, and examine their concordance with etravirine phenotypic susceptibility. Six etravirine genotypic scoring systems were assessed: Tibotec 2010 (based on 20 mutations; TBT 20), Monogram, Stanford HIVdb, ANRS, Rega (based on 37, 30, 27 and 49 mutations, respectively) and virco(®)TYPE HIV-1 (predicted fold change based on genotype). Samples from treatment-experienced patients who participated in the DUET trials and with both genotypic and phenotypic data (n=403) were assessed using each scoring system. Results were retrospectively correlated with virological response in DUET. κ coefficients were calculated to estimate the degree of correlation between the different scoring systems. Correlation between the five scoring systems and the TBT 20 system was approximately 90%. Virological response by etravirine susceptibility was comparable regardless of which scoring system was utilized, with 70-74% of DUET patients determined as susceptible to etravirine by the different scoring systems achieving plasma viral load <50 HIV-1 RNA copies/ml. In samples classed as phenotypically susceptible to etravirine (fold change in 50% effective concentration ≤3), correlations with genotypic score were consistently high across scoring systems (≥70%). In general, the etravirine genotypic scoring systems produced similar results, and genotype-phenotype concordance was high. As such, phenotypic interpretations, and in their absence all genotypic scoring systems investigated, may be used to reliably predict the activity of etravirine.

  2. Prognostic and predictive value of VHL gene alteration in renal cell carcinoma: a meta-analysis and review.

    PubMed

    Kim, Bum Jun; Kim, Jung Han; Kim, Hyeong Su; Zang, Dae Young

    2017-02-21

    The von Hippel-Lindau (VHL) gene is often inactivated in sporadic renal cell carcinoma (RCC) by mutation or promoter hypermethylation. The prognostic or predictive value of VHL gene alteration is not well established. We conducted this meta-analysis to evaluate the association between the VHL alteration and clinical outcomes in patients with RCC. We searched PUBMED, MEDLINE and EMBASE for articles including following terms in their titles, abstracts, or keywords: 'kidney or renal', 'carcinoma or cancer or neoplasm or malignancy', 'von Hippel-Lindau or VHL', 'alteration or mutation or methylation', and 'prognostic or predictive'. There were six studies fulfilling inclusion criteria and a total of 633 patients with clear cell RCC were included in the study: 244 patients who received anti-vascular endothelial growth factor (VEGF) therapy in the predictive value analysis and 419 in the prognostic value analysis. Out of 663 patients, 410 (61.8%) had VHL alteration. The meta-analysis showed no association between the VHL gene alteration and overall response rate (relative risk = 1.47 [95% CI, 0.81-2.67], P = 0.20) or progression free survival (hazard ratio = 1.02 [95% CI, 0.72-1.44], P = 0.91) in patients with RCC who received VEGF-targeted therapy. There was also no correlation between the VHL alteration and overall survival (HR = 0.80 [95% CI, 0.56-1.14], P = 0.21). In conclusion, this meta-analysis indicates that VHL gene alteration has no prognostic or predictive value in patients with clear cell RCC.

  3. MET amplification, expression, and exon 14 mutations in colorectal adenocarcinoma.

    PubMed

    Zhang, Meng; Li, Guichao; Sun, Xiangjie; Ni, Shujuan; Tan, Cong; Xu, Midie; Huang, Dan; Ren, Fei; Li, Dawei; Wei, Ping; Du, Xiang

    2018-04-08

    MET amplification, expression, and splice mutations at exon 14 result in dysregulation of the MET signaling pathway. The aim of this study was to identify the relationship between MET amplification, protein or mRNA expression, and mutations in colorectal cancer (CRC). MET immunohistochemistry (IHC) was used for MET protein expression analysis and fluorescence in situ hybridization (FISH) was used for MET amplification detection. Both analyses were performed in tissue microarrays (TMA) containing 294 of colorectal adenocarcinoma tissue samples and 131 samples of adjacent normal epithelial tissue. MET mRNA expression was examined by real-time quantitative polymerase chain reaction (qRT-PCR) in 72 fresh colorectal adenocarcinoma tissue samples and adjacent normal colon tissue. PCR sequencing was performed to screen for MET exon 14 splice mutations in 59 fresh CRC tissue samples. Our results showed that MET protein expression was higher in colorectal tumor tissue than in adjacent normal intestinal epithelium. Positive MET protein expression was associated with significantly poorer overall survival (OS) and disease-free survival (DFS). Multivariate analysis revealed that positive MET protein expression was an independent risk factor for DFS, but not for OS. MET mRNA expression was upregulated in tumor tissues compared with the adjacent normal tissues. The incidence of MET amplification was 4.4%. None of the patients was positive for MET mutation. Collectively, MET was overexpressed in colorectal adenocarcinoma, and its positive protein expression predicted a poorer outcome in CRC patients. Furthermore, according to our results, MET amplification and 14 exon mutation are extremely rare events in colorectal adenocarcinoma. Copyright © 2018. Published by Elsevier Inc.

  4. SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients.

    PubMed

    Mei, Zhu; Shao, Yang W; Lin, Peinan; Cai, Xiaomin; Wang, Biao; Ding, Yan; Ma, Xiangyuan; Wu, Xue; Xia, Yewei; Zhu, Dongqin; Shu, Yongqian; Fu, Zan; Gu, Yanhong

    2018-04-27

    Cetuximab, an anti-EGFR monoclonal antibody, is used in combination with chemotherapy in clinic to enhance the outcome in metastatic colorectal cancer (mCRC) patients with only ~ 20% response rate. To date only activating mutations in KRAS and NRAS have been identified as poor prognosis biomarkers in cetuximab-based treatment, which makes an urgent need for identification of novel prognosis biomarkers to precisely predict patients' response in order to maximize the benefit. In this study, we analysed the mutation profiles of 33 Chinese mCRC patients using comprehensive next-generation sequencing (NGS) targeting 416 cancer-relevant genes before cetuximab treatment. Upon receiving cetuximab-based therapy, patients were evaluated for drug response, and the progression-free survival (PFS) was monitored. The association of specific genetic alterations and cetuximab efficacy was analyzed. Patients carrying SMAD4 mutations (SMAD4 mut , n = 8) or NF1 mutations (NF1 mut , n = 4) had significantly shorter PFS comparing to those carrying wildtype SMAD4 (SMAD4 wt , n = 25) (P = 0.0081) or wildtype NF1 (NF1 wt , n = 29) (P = 0.0028), respectively. None of the SMAD4 mut or NF1 mut patients showed response to cetuximab when assessed at 12-week post-treatment. Interestingly, two patients carrying both SMAD4 mut and NF1 mut showed the shortest PFS among all the patients. Our results demonstrated that SMAD4 and NF1 mutations can serve as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese mCRC patients.

  5. A comprehensive analysis of clinical outcomes in lung cancer patients harboring a MET exon 14 skipping mutation compared to other driver mutations in an East Asian population.

    PubMed

    Gow, Chien-Hung; Hsieh, Min-Shu; Wu, Shang-Gin; Shih, Jin-Yuan

    2017-01-01

    Recurrent somatic splice-site alterations at MET exon 14 (MET Δ14 ), which result in exon skipping and MET proto-oncogene, receptor tyrosine kinase (MET) activation, have been characterised. However, their demographic features and clinical outcomes in East Asian lung cancer patients have yet to be determined. A one-step reverse transcription-polymerase chain reaction (RT-PCR), using RNA samples from 850 East Asian lung cancer patients, was performed in order to detect MET Δ14 and five other major driver mutations, including those in the EGFR, KRAS, ALK, HER2, and ROS1 genes. Immunohistochemistry (IHC) was used to confirm the overexpression of MET in patients harbouring the MET Δ14 mutation. We analysed the demographic data and clinical outcomes of MET Δ14 mutation positive lung cancer patients and compared them to those of MET Δ14 mutation negative lung cancer patients. In total, 27 lung adenocarcinoma (ADC) patients and 1 squamous cell carcinoma patient with the MET Δ14 mutation were identified. The overall incidence was 3.3% for lung cancer and 4.0% for lung ADC. IHC demonstrated that the majority of lung cancer patients harboring a MET Δ14 mutation exhibited a strong cytoplasmic expression of MET. MET Δ14 mutation positive patients were generally quite elderly individuals. Stage IV MET Δ14 mutation positive lung cancer patients receiving no specific anti-MET therapy were observed to have a similar overall survival (OS) compared to patients in the all negative group (P>0.05). In the multivariate analysis, mutation status was found not to be a major risk factor for OS in lung cancer patients without appropriate tyrosine kinase inhibitors treatment. The OS of MET Δ14 mutation positive lung cancer patients is comparable to that of the major driver gene mutation negative lung cancer patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Using Evolution to Guide Protein Engineering: The Devil IS in the Details.

    PubMed

    Swint-Kruse, Liskin

    2016-07-12

    For decades, protein engineers have endeavored to reengineer existing proteins for novel applications. Overall, protein folds and gross functions can be readily transferred from one protein to another by transplanting large blocks of sequence (i.e., domain recombination). However, predictably fine-tuning function (e.g., by adjusting ligand affinity, specificity, catalysis, and/or allosteric regulation) remains a challenge. One approach has been to use the sequences of protein families to identify amino acid positions that change during the evolution of functional variation. The rationale is that these nonconserved positions could be mutated to predictably fine-tune function. Evolutionary approaches to protein design have had some success, but the engineered proteins seldom replicate the functional performances of natural proteins. This Biophysical Perspective reviews several complexities that have been revealed by evolutionary and experimental studies of protein function. These include 1) challenges in defining computational and biological thresholds that define important amino acids; 2) the co-occurrence of many different patterns of amino acid changes in evolutionary data; 3) difficulties in mapping the patterns of amino acid changes to discrete functional parameters; 4) the nonconventional mutational outcomes that occur for a particular group of functionally important, nonconserved positions; 5) epistasis (nonadditivity) among multiple mutations; and 6) the fact that a large fraction of a protein's amino acids contribute to its overall function. To overcome these challenges, new goals are identified for future studies. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers.

    PubMed

    Chapman, Aaron M; Sun, Kathie Y; Ruestow, Peter; Cowan, Dallas M; Madl, Amy K

    2016-12-01

    Lung cancer is the leading cause of cancer-related mortality. While the majority of lung cancers are associated with tobacco smoke, approximately 10-15% of U.S. lung cancers occur in never smokers. Evidence suggests that lung cancer in never smokers appears to be a distinct disease caused by driver mutations which are different than the genetic pathways observed with lung cancer in smokers. A meta-analysis of human epidemiologic data was conducted to evaluate the profile of common or therapy-targetable mutations in lung cancers of never and ever smokers. Epidemiologic studies (N=167) representing over 63,000 lung cancer cases were identified and used to calculate summary odds ratios for lung cancer in never and ever smokers containing gene mutations: EGFR, chromosomal rearrangements and fusion of EML4 and ALK, and KRAS. This analysis also considered the effect of histopathology, smoking status, sex, and ethnicity. There were significantly increased odds of presenting the EGFR and ALK-EML4 mutations in 1) adenocarcinomas compared to non-small cell lung cancer and 2) never smokers compared to ever smokers. The prevalence of EGFR mutations was higher in Asian women as compared to women of Caucasian/Mixed ethnicity. As the smoking history increased, there was a decreased odds for exhibiting the EGFR mutation, particularly for cases >30 pack-years. Compared to ever smokers, never smokers had a decreased odds of KRAS mutations among those of Caucasian/Mixed ethnicity (OR=0.22, 95% CI: 0.17-0.29) and those of Asian ethnicity (OR=0.39, 95% CI: 0.30-0.50). Our findings show that key driver mutations and several patient features are highly prevalent in lung cancers of never smokers. These associations may be helpful as patient demographic models are developed to predict successful outcomes of targeted therapeutic interventions NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. SMAD4 gene mutation predicts poor prognosis in patients undergoing resection for colorectal liver metastases.

    PubMed

    Mizuno, Takashi; Cloyd, Jordan M; Vicente, Diego; Omichi, Kiyohiko; Chun, Yun Shin; Kopetz, Scott E; Maru, Dipen; Conrad, Claudius; Tzeng, Ching-Wei D; Wei, Steven H; Aloia, Thomas A; Vauthey, Jean-Nicolas

    2018-05-01

    Dorsophilia protein, mothers against decapentaplegic homolog 4 (SMAD4) is a key mediator in the transforming growth factor (TGF)-β signaling pathway and SMAD4 gene mutations are thought to play a critical role in colorectal cancer (CRC) progression. However, little is known about its influence on survival in patients undergoing resection for colorectal liver metastases (CLM). Between 2005 and 2015, all patients with known SMAD4 mutation status who underwent resection of CLM were identified. Patients with SMAD4 mutation were compared to those with SMAD4 wild type. Next, the prognostic value of SMAD4 mutation was validated in a separate cohort of patients with synchronous stage IV CRC who underwent systemic therapy alone. Of 278 patients, 37 (13%) were SMAD4 mutant while 241 (87%) were wild type. Overall survival (OS) after hepatic resection was worse in SMAD4-mutant patients compared to SMAD4 wild type (OS rate at 3 years, 62% vs. 82%; P < 0.0001). Independent predictors for worse OS were poor differentiation (hazard ratio [HR] 2.586; P = 0.007), multiple tumors (HR 1.970; P = 0.01), diameter greater than 3 cm (HR 1.752; P = 0.017), R1 margin status (HR 2.452; P = 0.014), RAS mutation (HR 2.044; P = 0.002), and SMAD4 mutation (HR 2.773; P < 0.0001). Among 237 patients in the validation cohort, SMAD4-mutations were significantly associated with worse 3-year OS rate (22% vs. 38%; P = 0.012) and was an independent predictor for worse OS (HR, 1.647; P = 0.032). SMAD4 mutation is independently associated with worse outcomes among patients undergoing resection of CLM. Copyright © 2018 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  9. Current state of prognostication and risk stratification in myelodysplastic syndromes.

    PubMed

    Zeidan, Amer M; Gore, Steven D; Padron, Eric; Komrokji, Rami S

    2015-03-01

    Myelodysplastic syndromes (MDS) are characterized by significant biologic and clinical heterogeneity. Because of the wide outcome variability, accurate prognostication is vital to high-quality risk-adaptive care of MDS patients. In this review, we discuss the current state of prognostic schemes for MDS and overview efforts aimed at utilizing molecular aberrations for prognostication in clinical practice. Several prognostic instruments have been developed and validated with increasing accuracy and complexity. Oncologists should be aware of the inherent limitations of these prognostic tools as they counsel patients and make clinical decisions. As more therapies are becoming available for MDS, the focus of model development is shifting from prognostic to treatment-specific predictive instruments. In addition to providing additional prognostic data beyond traditional clinical and pathologic parameters, the improved understanding of the genetic landscape and pathophysiologic consequences in MDS may allow the construction of treatment-specific predictive instruments. How to best use the results of molecular mutation testing to inform clinical decision making in MDS is still a work in progress. Important steps in this direction include standardization in performance and interpretation of assays and better understanding of the independent prognostic importance of the recurrent mutations, especially the less frequent ones.

  10. KRAS Mutation Status and Clinical Outcome of Preoperative Chemoradiation With Cetuximab in Locally Advanced Rectal Cancer: A Pooled Analysis of 2 Phase II Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun Young; Shim, Eun Kyung; Yeo, Hyun Yang

    2013-01-01

    Purpose: Cetuximab-containing chemotherapy is known to be effective for KRAS wild-type metastatic colorectal cancer; however, it is not clear whether cetuximab-based preoperative chemoradiation confers an additional benefit compared with chemoradiation without cetuximab in patients with locally advanced rectal cancer. Methods and Materials: We analyzed EGFR, KRAS, BRAF, and PIK3CA mutation status with direct sequencing and epidermal growth factor receptor (EGFR) and Phosphatase and tensin homolog (PTEN) expression status with immunohistochemistry in tumor samples of 82 patients with locally advanced rectal cancer who were enrolled in the IRIX trial (preoperative chemoradiation with irinotecan and capecitabine; n=44) or the ERBIRIX trial (preoperativemore » chemoradiation with irinotecan and capecitabine plus cetuximab; n=38). Both trials were similarly designed except for the administration of cetuximab; radiation therapy was administered at a dose of 50.4 Gy/28 fractions and irinotecan and capecitabine were given at doses of 40 mg/m{sup 2} weekly and 1650 mg/m{sup 2}/day, respectively, for 5 days per week. In the ERBIRIX trial, cetuximab was additionally given with a loading dose of 400 mg/m{sup 2} on 1 week before radiation, and 250 mg/m{sup 2} weekly thereafter. Results: Baseline characteristics before chemoradiation were similar between the 2 trial cohorts. A KRAS mutation in codon 12, 13, and 61 was noted in 15 (34%) patients in the IRIX cohort and 5 (13%) in the ERBIRIX cohort (P=.028). Among 62 KRAS wild-type cancer patients, major pathologic response rate, disease-free survival and pathologic stage did not differ significantly between the 2 cohorts. No mutations were detected in BRAF exon 11 and 15, PIK3CA exon 9 and 20, or EGFR exon 18-24 in any of the 82 patients, and PTEN and EGFR expression were not predictive of clinical outcome. Conclusions: In patients with KRAS wild-type locally advanced rectal cancer, the addition of cetuximab to the chemoradiation with irinotecan plus capecitabine regimen was not associated with improved clinical outcome compared with chemoradiation without cetuximab.« less

  11. Common and Rare EGFR and KRAS Mutations in a Dutch Non-Small-Cell Lung Cancer Population and Their Clinical Outcome

    PubMed Central

    Kerner, Gerald S. M. A.; Schuuring, Ed; Sietsma, Johanna; Hiltermann, Thijo J. N.; Pieterman, Remge M.; de Leede, Gerard P. J.; van Putten, John W. G.; Liesker, Jeroen; Renkema, Tineke E. J.; van Hengel, Peter; Platteel, Inge; Timens, Wim; Groen, Harry J. M.

    2013-01-01

    Introduction In randomly assigned studies with EGFR TKI only a minor proportion of patients with NSCLC have genetically profiled biopsies. Guidelines provide evidence to perform EGFR and KRAS mutation analysis in non-squamous NSCLC. We explored tumor biopsy quality offered for mutation testing, different mutations distribution, and outcome with EGFR TKI. Patient and Methods Clinical data from 8 regional hospitals were studied for patient and tumor characteristics, treatment and overall survival. Biopsies sent to the central laboratory were evaluated for DNA quality and subsequently analyzed for mutations in exons 18–21 of EGFR and exon 2 of KRAS by bidirectional sequence analysis. Results Tumors from 442 subsequent patients were analyzed. For 74 patients (17%) tumors were unsuitable for mutation analysis. Thirty-eight patients (10.9%) had EGFR mutations with 79% known activating mutations. One hundred eight patients (30%) had functional KRAS mutations. The mutation spectrum was comparable to the Cosmic database. Following treatment in the first or second line with EGFR TKI median overall survival for patients with EGFR (n = 14), KRAS (n = 14) mutations and wild type EGFR/KRAS (n = 31) was not reached, 20 and 9 months, respectively. Conclusion One out of every 6 tumor samples was inadequate for mutation analysis. Patients with EGFR activating mutations treated with EGFR-TKI have the longest survival. PMID:23922984

  12. IMHOTEP—a composite score integrating popular tools for predicting the functional consequences of non-synonymous sequence variants

    PubMed Central

    Knecht, Carolin; Mort, Matthew; Junge, Olaf; Cooper, David N.; Krawczak, Michael

    2017-01-01

    Abstract The in silico prediction of the functional consequences of mutations is an important goal of human pathogenetics. However, bioinformatic tools that classify mutations according to their functionality employ different algorithms so that predictions may vary markedly between tools. We therefore integrated nine popular prediction tools (PolyPhen-2, SNPs&GO, MutPred, SIFT, MutationTaster2, Mutation Assessor and FATHMM as well as conservation-based Grantham Score and PhyloP) into a single predictor. The optimal combination of these tools was selected by means of a wide range of statistical modeling techniques, drawing upon 10 029 disease-causing single nucleotide variants (SNVs) from Human Gene Mutation Database and 10 002 putatively ‘benign’ non-synonymous SNVs from UCSC. Predictive performance was found to be markedly improved by model-based integration, whilst maximum predictive capability was obtained with either random forest, decision tree or logistic regression analysis. A combination of PolyPhen-2, SNPs&GO, MutPred, MutationTaster2 and FATHMM was found to perform as well as all tools combined. Comparison of our approach with other integrative approaches such as Condel, CoVEC, CAROL, CADD, MetaSVM and MetaLR using an independent validation dataset, revealed the superiority of our newly proposed integrative approach. An online implementation of this approach, IMHOTEP (‘Integrating Molecular Heuristics and Other Tools for Effect Prediction’), is provided at http://www.uni-kiel.de/medinfo/cgi-bin/predictor/. PMID:28180317

  13. The importance of mRNA structure in determining the pathogenicity of synonymous and non-synonymous mutations in haemophilia

    PubMed Central

    Hamasaki-Katagiri, Nobuko; Lin, Brian C.; Simon, Jonathan; Hunt, Ryan C.; Schiller, Tal; Russek-Cohen, Estelle; Komar, Anton A.; Bar, Haim; Kimchi-Sarfaty, Chava

    2016-01-01

    Introduction Mutational analysis is commonly used to support the diagnosis and management of haemophilia. This has allowed for the generation of large mutation databases which provide unparalleled insight into genotype-phenotype relationships. Haemophilia is associated with inversions, deletions, insertions, nonsense and missense mutations. Both synonymous and non-synonymous mutations influence the base pairing of messenger RNA (mRNA), which can alter mRNA structure, cellular half-life and ribosome processivity/elongation. However, the role of mRNA structure in determining the pathogenicity of point mutations in haemophilia has not been evaluated. Aim To evaluate mRNA thermodynamic stability and associated RNA prediction software as a means to distinguish between neutral and disease-associated mutations in haemophilia. Methods Five mRNA structure prediction software programs were used to assess the thermodynamic stability of mRNA fragments carrying neutral vs. disease-associated and synonymous vs. non-synonymous point mutations in F8, F9 and a third X-linked gene, DMD (dystrophin). Results In F8 and DMD, disease-associated mutations tend to occur in more structurally stable mRNA regions, represented by lower MFE (minimum free energy) levels. In comparing multiple software packages for mRNA structure prediction, a 101–151 nucleotide fragment length appears to be a feasible range for structuring future studies. Conclusion mRNA thermodynamic stability is one predictive characteristic, which when combined with other RNA and protein features, may offer significant insight when screening sequencing data for novel disease-associated mutations. Our results also suggest potential utility in evaluating the mRNA thermodynamic stability profile of a gene when determining the viability of interchanging codons for biological and therapeutic applications. PMID:27933712

  14. Impact of Emergent Circulating Tumor DNA RAS Mutation in Panitumumab-Treated Chemoresistant Metastatic Colorectal Cancer.

    PubMed

    Kim, Tae Won; Peeters, Marc; Thomas, Anne L; Gibbs, Peter; Hool, Kristina; Zhang, Jianqi; Ang, Agnes; Bach, Bruce Allen; Price, Timothy

    2018-06-13

    The accumulation of emergent RAS mutations during anti-epidermal growth factor receptor (EGFR) therapy is of interest as a mechanism for acquired resistance to anti-EGFR treatment. Plasma analysis of circulating tumor (ct) DNA is a minimally invasive and highly sensitive method to determine RAS mutational status. This biomarker analysis of the global phase III ASPECCT study used next-generation sequencing to detect expanded RAS ctDNA mutations in panitumumab-treated patients. Plasma samples collected at baseline and posttreatment were analyzed categorically for the presence of RAS mutations by the Plasma Select -R™ 64-gene panel at 0.1% sensitivity. Among panitumumab-treated patients with evaluable plasma samples at baseline (n = 238), 188 (79%) were wild-type (WT) RAS, and 50 (21%) were mutant RAS Of the 188 patients with baseline ctDNA WT RAS status, 164 had evaluable posttreatment results with a 32% rate of emergent RAS mutations. The median overall survival (OS) for WT and RAS mutant status by ctDNA at baseline was 13.7 (95% confidence interval: 11.5-15.4) and 7.9 months (6.4-9.6), respectively ( P < 0.0001). Clinical outcomes were not significantly different between patients with and without emergent ctDNA RAS mutations. Although patients with baseline ctDNA RAS mutations had worse outcomes than patients who were WT RAS before initiating treatment, emergent ctDNA RAS mutations were not associated with less favorable patient outcomes in panitumumab-treated patients. Further research is needed to determine a clinically relevant threshold for baseline and emergent ctDNA RAS mutations. Copyright ©2018, American Association for Cancer Research.

  15. Upregulation of c-mesenchymal epithelial transition expression and RAS mutations are associated with late lung metastasis and poor prognosis in colorectal carcinoma.

    PubMed

    Liu, Jianhua; Zeng, Weiqiang; Huang, Chengzhi; Wang, Junjiang; Xu, Lishu; Ma, Dong

    2018-05-01

    The present study aimed to investigate whether c-mesenchymal epithelial transition factor (C-MET) overexpression combined with RAS (including KRAS, NRAS and HRAS ) or BRAF mutations were associated with late distant metastases and the prognosis of patients with colorectal cancer (CRC). A total of 374 patients with stage III CRC were classified into 4 groups based on RAS/BRAF and C-MET status for comprehensive analysis. Mutations in RAS / BRAF were determined using Sanger sequencing and C-MET expression was examined using immunohistochemistry. The associations between RAS/BRAF mutations in combination with C-MET overexpression and clinicopathological variables including survival were evaluated. In addition, their predictive value for late distant metastases were statistically analyzed via logistic regression and receiver operating characteristic analysis. Among 374 patients, mutations in KRAS, NRAS, HRAS, BRAF and C-MET overexpression were observed in 43.9, 2.4, 0.3, 5.9 and 71.9% of cases, respectively. Considering RAS/BRAF mutations and C-MET overexpression, vascular invasion (P=0.001), high carcino-embryonic antigen level (P=0.031) and late distant metastases (P<0.001) were more likely to occur in patients of group 4. Furthermore, survival analyses revealed RAS/BRAF mutations may have a more powerful impact on survival than C-MET overexpression, although they were both predictive factors for adverse prognosis. Further logistic regression suggested that RAS/BRAF mutations and C-MET overexpression may predict late distant metastases. In conclusion, RAS/BRAF mutations and C-MET overexpression may serve as predictive indicators for metastatic behavior and poor prognosis of CRC.

  16. Rules of co-occurring mutations characterize the antigenic evolution of human influenza A/H3N2, A/H1N1 and B viruses.

    PubMed

    Chen, Haifen; Zhou, Xinrui; Zheng, Jie; Kwoh, Chee-Keong

    2016-12-05

    The human influenza viruses undergo rapid evolution (especially in hemagglutinin (HA), a glycoprotein on the surface of the virus), which enables the virus population to constantly evade the human immune system. Therefore, the vaccine has to be updated every year to stay effective. There is a need to characterize the evolution of influenza viruses for better selection of vaccine candidates and the prediction of pandemic strains. Studies have shown that the influenza hemagglutinin evolution is driven by the simultaneous mutations at antigenic sites. Here, we analyze simultaneous or co-occurring mutations in the HA protein of human influenza A/H3N2, A/H1N1 and B viruses to predict potential mutations, characterizing the antigenic evolution. We obtain the rules of mutation co-occurrence using association rule mining after extracting HA1 sequences and detect co-mutation sites under strong selective pressure. Then we predict the potential drifts with specific mutations of the viruses based on the rules and compare the results with the "observed" mutations in different years. The sites under frequent mutations are in antigenic regions (epitopes) or receptor binding sites. Our study demonstrates the co-occurring site mutations obtained by rule mining can capture the evolution of influenza viruses, and confirms that cooperative interactions among sites of HA1 protein drive the influenza antigenic evolution.

  17. Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP).

    PubMed

    Rowe, P S; Oudet, C L; Francis, F; Sinding, C; Pannetier, S; Econs, M J; Strom, T M; Meitinger, T; Garabedian, M; David, A; Macher, M A; Questiaux, E; Popowska, E; Pronicka, E; Read, A P; Mokrzycki, A; Glorieux, F H; Drezner, M K; Hanauer, A; Lehrach, H; Goulding, J N; O'Riordan, J L

    1997-04-01

    Mutations in the PEX gene at Xp22.1 (phosphate-regulating gene with homologies to endopeptidases, on the X-chromosome), are responsible for X-linked hypophosphataemic rickets (HYP). Homology of PEX to the M13 family of Zn2+ metallopeptidases which include neprilysin (NEP) as prototype, has raised important questions regarding PEX function at the molecular level. The aim of this study was to analyse 99 HYP families for PEX gene mutations, and to correlate predicted changes in the protein structure with Zn2+ metallopeptidase gene function. Primers flanking 22 characterised exons were used to amplify DNA by PCR, and SSCP was then used to screen for mutations. Deletions, insertions, nonsense mutations, stop codons and splice mutations occurred in 83% of families screened for in all 22 exons, and 51% of a separate set of families screened in 17 PEX gene exons. Missense mutations in four regions of the gene were informative regarding function, with one mutation in the Zn2+-binding site predicted to alter substrate enzyme interaction and catalysis. Computer analysis of the remaining mutations predicted changes in secondary structure, N-glycosylation, protein phosphorylation and catalytic site molecular structure. The wide range of mutations that align with regions required for protease activity in NEP suggests that PEX also functions as a protease, and may act by processing factor(s) involved in bone mineral metabolism.

  18. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer.

    PubMed

    Castro, Elena; Goh, Chee; Olmos, David; Saunders, Ed; Leongamornlert, Daniel; Tymrakiewicz, Malgorzata; Mahmud, Nadiya; Dadaev, Tokhir; Govindasami, Koveela; Guy, Michelle; Sawyer, Emma; Wilkinson, Rosemary; Ardern-Jones, Audrey; Ellis, Steve; Frost, Debra; Peock, Susan; Evans, D Gareth; Tischkowitz, Marc; Cole, Trevor; Davidson, Rosemarie; Eccles, Diana; Brewer, Carole; Douglas, Fiona; Porteous, Mary E; Donaldson, Alan; Dorkins, Huw; Izatt, Louise; Cook, Jackie; Hodgson, Shirley; Kennedy, M John; Side, Lucy E; Eason, Jacqueline; Murray, Alex; Antoniou, Antonis C; Easton, Douglas F; Kote-Jarai, Zsofia; Eeles, Rosalind

    2013-05-10

    To analyze the baseline clinicopathologic characteristics of prostate tumors with germline BRCA1 and BRCA2 (BRCA1/2) mutations and the prognostic value of those mutations on prostate cancer (PCa) outcomes. This study analyzed the tumor features and outcomes of 2,019 patients with PCa (18 BRCA1 carriers, 61 BRCA2 carriers, and 1,940 noncarriers). The Kaplan-Meier method and Cox regression analysis were used to evaluate the associations between BRCA1/2 status and other PCa prognostic factors with overall survival (OS), cause-specific OS (CSS), CSS in localized PCa (CSS_M0), metastasis-free survival (MFS), and CSS from metastasis (CSS_M1). PCa with germline BRCA1/2 mutations were more frequently associated with Gleason ≥ 8 (P = .00003), T3/T4 stage (P = .003), nodal involvement (P = .00005), and metastases at diagnosis (P = .005) than PCa in noncarriers. CSS was significantly longer in noncarriers than in carriers (15.7 v 8.6 years, multivariable analyses [MVA] P = .015; hazard ratio [HR] = 1.8). For localized PCa, 5-year CSS and MFS were significantly higher in noncarriers (96% v 82%; MVA P = .01; HR = 2.6%; and 93% v 77%; MVA P = .009; HR = 2.7, respectively). Subgroup analyses confirmed the poor outcomes in BRCA2 patients, whereas the role of BRCA1 was not well defined due to the limited size and follow-up in this subgroup. Our results confirm that BRCA1/2 mutations confer a more aggressive PCa phenotype with a higher probability of nodal involvement and distant metastasis. BRCA mutations are associated with poor survival outcomes and this should be considered for tailoring clinical management of these patients.

  19. Germline BRCA Mutations Are Associated With Higher Risk of Nodal Involvement, Distant Metastasis, and Poor Survival Outcomes in Prostate Cancer

    PubMed Central

    Castro, Elena; Goh, Chee; Olmos, David; Saunders, Ed; Leongamornlert, Daniel; Tymrakiewicz, Malgorzata; Mahmud, Nadiya; Dadaev, Tokhir; Govindasami, Koveela; Guy, Michelle; Sawyer, Emma; Wilkinson, Rosemary; Ardern-Jones, Audrey; Ellis, Steve; Frost, Debra; Peock, Susan; Evans, D. Gareth; Tischkowitz, Marc; Cole, Trevor; Davidson, Rosemarie; Eccles, Diana; Brewer, Carole; Douglas, Fiona; Porteous, Mary E.; Donaldson, Alan; Dorkins, Huw; Izatt, Louise; Cook, Jackie; Hodgson, Shirley; Kennedy, M. John; Side, Lucy E.; Eason, Jacqueline; Murray, Alex; Antoniou, Antonis C.; Easton, Douglas F.; Kote-Jarai, Zsofia; Eeles, Rosalind

    2013-01-01

    Purpose To analyze the baseline clinicopathologic characteristics of prostate tumors with germline BRCA1 and BRCA2 (BRCA1/2) mutations and the prognostic value of those mutations on prostate cancer (PCa) outcomes. Patients and Methods This study analyzed the tumor features and outcomes of 2,019 patients with PCa (18 BRCA1 carriers, 61 BRCA2 carriers, and 1,940 noncarriers). The Kaplan-Meier method and Cox regression analysis were used to evaluate the associations between BRCA1/2 status and other PCa prognostic factors with overall survival (OS), cause-specific OS (CSS), CSS in localized PCa (CSS_M0), metastasis-free survival (MFS), and CSS from metastasis (CSS_M1). Results PCa with germline BRCA1/2 mutations were more frequently associated with Gleason ≥ 8 (P = .00003), T3/T4 stage (P = .003), nodal involvement (P = .00005), and metastases at diagnosis (P = .005) than PCa in noncarriers. CSS was significantly longer in noncarriers than in carriers (15.7 v 8.6 years, multivariable analyses [MVA] P = .015; hazard ratio [HR] = 1.8). For localized PCa, 5-year CSS and MFS were significantly higher in noncarriers (96% v 82%; MVA P = .01; HR = 2.6%; and 93% v 77%; MVA P = .009; HR = 2.7, respectively). Subgroup analyses confirmed the poor outcomes in BRCA2 patients, whereas the role of BRCA1 was not well defined due to the limited size and follow-up in this subgroup. Conclusion Our results confirm that BRCA1/2 mutations confer a more aggressive PCa phenotype with a higher probability of nodal involvement and distant metastasis. BRCA mutations are associated with poor survival outcomes and this should be considered for tailoring clinical management of these patients. PMID:23569316

  20. Naturally occurring NS3 resistance-associated variants in hepatitis C virus genotype 1: Their relevance for developing countries.

    PubMed

    Echeverría, Natalia; Betancour, Gabriela; Gámbaro, Fabiana; Hernández, Nelia; López, Pablo; Chiodi, Daniela; Sánchez, Adriana; Boschi, Susana; Fajardo, Alvaro; Sóñora, Martín; Moratorio, Gonzalo; Cristina, Juan; Moreno, Pilar

    2016-09-02

    Hepatitis C virus (HCV) is a major cause of global morbidity and mortality, with an estimated 130-150 million infected individuals worldwide. HCV is a leading cause of chronic liver diseases including cirrhosis and hepatocellular carcinoma. Current treatment options in developing countries involve pegylated interferon-α and ribavirin as dual therapy or in combination with one or more direct-acting antiviral agents (DAA). The emergence of resistance-associated variants (RAVs) after treatment reveals the great variability of this virus leading to a great difficulty in developing effective antiviral strategies. Baseline RAVs detected in DAA treatment-naïve HCV-infected patients could be of great importance for clinical management and outcome prediction. Although the frequency of naturally occurring HCV NS3 protease inhibitor mutations has been addressed in many countries, there are only a few reports on their prevalence in South America. In this study, we investigated the presence of RAVs in the HCV NS3 serine protease region by analysing a cohort of Uruguayan patients with chronic hepatitis C who had not been treated with any DAAs and compare them with the results found for other South American countries. The results of these studies revealed that naturally occurring mutations conferring resistance to NS3 inhibitors exist in a substantial proportion of Uruguayan treatment-naïve patients infected with HCV genotype 1 enrolled in these studies. The identification of these baseline RAVs could be of great importance for patients' management and outcome prediction in developing countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Exonic Splicing Mutations Are More Prevalent than Currently Estimated and Can Be Predicted by Using In Silico Tools

    PubMed Central

    Soukarieh, Omar; Gaildrat, Pascaline; Hamieh, Mohamad; Drouet, Aurélie; Baert-Desurmont, Stéphanie; Frébourg, Thierry; Tosi, Mario; Martins, Alexandra

    2016-01-01

    The identification of a causal mutation is essential for molecular diagnosis and clinical management of many genetic disorders. However, even if next-generation exome sequencing has greatly improved the detection of nucleotide changes, the biological interpretation of most exonic variants remains challenging. Moreover, particular attention is typically given to protein-coding changes often neglecting the potential impact of exonic variants on RNA splicing. Here, we used the exon 10 of MLH1, a gene implicated in hereditary cancer, as a model system to assess the prevalence of RNA splicing mutations among all single-nucleotide variants identified in a given exon. We performed comprehensive minigene assays and analyzed patient’s RNA when available. Our study revealed a staggering number of splicing mutations in MLH1 exon 10 (77% of the 22 analyzed variants), including mutations directly affecting splice sites and, particularly, mutations altering potential splicing regulatory elements (ESRs). We then used this thoroughly characterized dataset, together with experimental data derived from previous studies on BRCA1, BRCA2, CFTR and NF1, to evaluate the predictive power of 3 in silico approaches recently described as promising tools for pinpointing ESR-mutations. Our results indicate that ΔtESRseq and ΔHZEI-based approaches not only discriminate which variants affect splicing, but also predict the direction and severity of the induced splicing defects. In contrast, the ΔΨ-based approach did not show a compelling predictive power. Our data indicates that exonic splicing mutations are more prevalent than currently appreciated and that they can now be predicted by using bioinformatics methods. These findings have implications for all genetically-caused diseases. PMID:26761715

  2. Validity of Models for Predicting BRCA1 and BRCA2 Mutations

    PubMed Central

    Parmigiani, Giovanni; Chen, Sining; Iversen, Edwin S.; Friebel, Tara M.; Finkelstein, Dianne M.; Anton-Culver, Hoda; Ziogas, Argyrios; Weber, Barbara L.; Eisen, Andrea; Malone, Kathleen E.; Daling, Janet R.; Hsu, Li; Ostrander, Elaine A.; Peterson, Leif E.; Schildkraut, Joellen M.; Isaacs, Claudine; Corio, Camille; Leondaridis, Leoni; Tomlinson, Gail; Amos, Christopher I.; Strong, Louise C.; Berry, Donald A.; Weitzel, Jeffrey N.; Sand, Sharon; Dutson, Debra; Kerber, Rich; Peshkin, Beth N.; Euhus, David M.

    2008-01-01

    Background Deleterious mutations of the BRCA1 and BRCA2 genes confer susceptibility to breast and ovarian cancer. At least 7 models for estimating the probabilities of having a mutation are used widely in clinical and scientific activities; however, the merits and limitations of these models are not fully understood. Objective To systematically quantify the accuracy of the following publicly available models to predict mutation carrier status: BRCAPRO, family history assessment tool, Finnish, Myriad, National Cancer Institute, University of Pennsylvania, and Yale University. Design Cross-sectional validation study, using model predictions and BRCA1 or BRCA2 mutation status of patients different from those used to develop the models. Setting Multicenter study across Cancer Genetics Network participating centers. Patients 3 population-based samples of participants in research studies and 8 samples from genetic counseling clinics. Measurements Discrimination between individuals testing positive for a mutation in BRCA1 or BRCA2 from those testing negative, as measured by the c-statistic, and sensitivity and specificity of model predictions. Results The 7 models differ in their predictions. The better-performing models have a c-statistic around 80%. BRCAPRO has the largest c-statistic overall and in all but 2 patient subgroups, although the margin over other models is narrow in many strata. Outside of high-risk populations, all models have high false-negative and false-positive rates across a range of probability thresholds used to refer for mutation testing. Limitation Three recently published models were not included. Conclusions All models identify women who probably carry a deleterious mutation of BRCA1 or BRCA2 with adequate discrimination to support individualized genetic counseling, although discrimination varies across models and populations. PMID:17909205

  3. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    PubMed

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder.

  4. X-linked CHARGE-like Abruzzo-Erickson syndrome and classic cleft palate with ankyloglossia result from TBX22 splicing mutations.

    PubMed

    Pauws, E; Peskett, E; Boissin, C; Hoshino, A; Mengrelis, K; Carta, E; Abruzzo, M A; Lees, M; Moore, G E; Erickson, R P; Stanier, P

    2013-04-01

    X-linked cleft palate (CPX) is caused by mutations in the gene encoding the TBX22 transcription factor and is known to exhibit phenotypic variability, usually involving either a complete, partial or submucous cleft palate, with or without ankyloglossia. This study hypothesized a possible involvement of TBX22 in a family with X-linked, CHARGE-like Abruzzo-Erickson syndrome, of unknown etiology. The phenotype extends to additional features including sensorineural deafness and coloboma, which are suggested by the Tbx22 developmental expression pattern but not previously associated in CPX patients. A novel TBX22 splice acceptor mutation (c.593-5T>A) was identified that tracked with the phenotype in this family. A novel splice donor variant (c.767+5G>A) and a known canonical splice donor mutation (c.767+1G>A) affecting the same exon were identified in patients with classic CPX phenotypes and were comparatively analyzed using both in silico and in vitro splicing studies. All three variants were predicted to abolish normal mRNA splicing and an in vitro assay indicated that use of alternative splice sites was a likely outcome. Collectively, the data showed the functional effect of several novel intronic splice site variants but most importantly confirms that TBX22 is the gene underlying Abruzzo-Erickson syndrome, expanding the phenotypic spectrum of TBX22 mutations. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  5. Early evolution of HLA-associated escape mutations in variable Gag proteins predicts CD4+ decline in HIV-1 subtype C infected women

    PubMed Central

    Chopera, Denis R.; Ntale, Roman; Ndabambi, Nonkululeko; Garrett, Nigel; Gray, Clive M.; Matten, David; Karim, Quarraisha Abdool; Karim, Salim Abdool; Williamson, Carolyn

    2016-01-01

    Objective HIV-1 escape from cytotoxic T-lymphocytes (CTL) results in the accumulation of HLA-associated mutations in the viral genome. To understand the contribution of early escape to disease progression, this study investigated the evolution and pathogenic implications of CTL escape in a cohort followed from infection for five years. Methods Viral loads and CD4+ counts were monitored in 78 subtype C infected individuals from onset of infection until CD4+ decline to <350 cells/μl or five years post-infection. The gag gene was sequenced and HLA-associated changes between enrolment and 12 months post-infection were mapped. Results HLA-associated escape mutations were identified in 48 (62%) of the participants and were associated with CD4+ decline to <350 copies/ml (p=0.05). Escape mutations in variable Gag proteins (p17 and p7p6) had a greater impact on disease progression than escape in more conserved regions (p24) (p=0.03). The association between HLA-associated escape mutations and CD4+ decline was independent of protective HLA allele (B*57, B*58:01, B*81) expression. Conclusion The high frequency of escape contributed to rapid disease progression in this cohort. While HLA-adaption in both conserved and variable Gag domains in the first year of infection was detrimental to long term clinical outcome, escape in variable domains had greater impact. PMID:27755110

  6. Evaluation of BRCA1 and BRCA2 mutation prevalence, risk prediction models and a multistep testing approach in French‐Canadian families with high risk of breast and ovarian cancer

    PubMed Central

    Simard, Jacques; Dumont, Martine; Moisan, Anne‐Marie; Gaborieau, Valérie; Vézina, Hélène; Durocher, Francine; Chiquette, Jocelyne; Plante, Marie; Avard, Denise; Bessette, Paul; Brousseau, Claire; Dorval, Michel; Godard, Béatrice; Houde, Louis; Joly, Yann; Lajoie, Marie‐Andrée; Leblanc, Gilles; Lépine, Jean; Lespérance, Bernard; Malouin, Hélène; Parboosingh, Jillian; Pichette, Roxane; Provencher, Louise; Rhéaume, Josée; Sinnett, Daniel; Samson, Carolle; Simard, Jean‐Claude; Tranchant, Martine; Voyer, Patricia; BRCAs, INHERIT; Easton, Douglas; Tavtigian, Sean V; Knoppers, Bartha‐Maria; Laframboise, Rachel; Bridge, Peter; Goldgar, David

    2007-01-01

    Background and objective In clinical settings with fixed resources allocated to predictive genetic testing for high‐risk cancer predisposition genes, optimal strategies for mutation screening programmes are critically important. These depend on the mutation spectrum found in the population under consideration and the frequency of mutations detected as a function of the personal and family history of cancer, which are both affected by the presence of founder mutations and demographic characteristics of the underlying population. The results of multistep genetic testing for mutations in BRCA1 or BRCA2 in a large series of families with breast cancer in the French‐Canadian population of Quebec, Canada are reported. Methods A total of 256 high‐risk families were ascertained from regional familial cancer clinics throughout the province of Quebec. Initially, families were tested for a panel of specific mutations known to occur in this population. Families in which no mutation was identified were then comprehensively tested. Three algorithms to predict the presence of mutations were evaluated, including the prevalence tables provided by Myriad Genetics Laboratories, the Manchester Scoring System and a logistic regression approach based on the data from this study. Results 8 of the 15 distinct mutations found in 62 BRCA1/BRCA2‐positive families had never been previously reported in this population, whereas 82% carried 1 of the 4 mutations currently observed in ⩾2 families. In the subset of 191 families in which at least 1 affected individual was tested, 29% carried a mutation. Of these 27 BRCA1‐positive and 29 BRCA2‐positive families, 48 (86%) were found to harbour a mutation detected by the initial test. Among the remaining 143 inconclusive families, all 8 families found to have a mutation after complete sequencing had Manchester Scores ⩾18. The logistic regression and Manchester Scores provided equal predictive power, and both were significantly better than the Myriad Genetics Laboratories prevalence tables (p<0.001). A threshold of Manchester Score ⩾18 provided an overall sensitivity of 86% and a specificity of 82%, with a positive predictive value of 66% in this population. Conclusion In this population, a testing strategy with an initial test using a panel of reported recurrent mutations, followed by full sequencing in families with Manchester Scores ⩾18, represents an efficient test in terms of overall cost and sensitivity. PMID:16905680

  7. Machine Learning to Improve the Effectiveness of ANRS in Predicting HIV Drug Resistance.

    PubMed

    Singh, Yashik

    2017-10-01

    Human immunodeficiency virus infection and acquired immune deficiency syndrome (HIV/AIDS) is one of the major burdens of disease in developing countries, and the standard-of-care treatment includes prescribing antiretroviral drugs. However, antiretroviral drug resistance is inevitable due to selective pressure associated with the high mutation rate of HIV. Determining antiretroviral resistance can be done by phenotypic laboratory tests or by computer-based interpretation algorithms. Computer-based algorithms have been shown to have many advantages over laboratory tests. The ANRS (Agence Nationale de Recherches sur le SIDA) is regarded as a gold standard in interpreting HIV drug resistance using mutations in genomes. The aim of this study was to improve the prediction of the ANRS gold standard in predicting HIV drug resistance. A genome sequence and HIV drug resistance measures were obtained from the Stanford HIV database (http://hivdb.stanford.edu/). Feature selection was used to determine the most important mutations associated with resistance prediction. These mutations were added to the ANRS rules, and the difference in the prediction ability was measured. This study uncovered important mutations that were not associated with the original ANRS rules. On average, the ANRS algorithm was improved by 79% ± 6.6%. The positive predictive value improved by 28%, and the negative predicative value improved by 10%. The study shows that there is a significant improvement in the prediction ability of ANRS gold standard.

  8. Risk factors and outcomes for the Q151M and T69 insertion HIV-1 resistance mutations in historic UK data.

    PubMed

    Stirrup, Oliver T; Dunn, David T; Tostevin, Anna; Sabin, Caroline A; Pozniak, Anton; Asboe, David; Cox, Alison; Orkin, Chloe; Martin, Fabiola; Cane, Patricia

    2018-04-16

    The prevalence of HIV-1 resistance to antiretroviral therapies (ART) has declined in high-income countries over recent years, but drug resistance remains a substantial concern in many low and middle-income countries. The Q151M and T69 insertion (T69i) resistance mutations in the viral reverse transcriptase gene can reduce susceptibility to all nucleoside/tide analogue reverse transcriptase inhibitors, motivating the present study to investigate the risk factors and outcomes associated with these mutations. We considered all data in the UK HIV Drug Resistance Database for blood samples obtained in the period 1997-2014. Where available, treatment history and patient outcomes were obtained through linkage to the UK Collaborative HIV Cohort study. A matched case-control approach was used to assess risk factors associated with the appearance of each of the mutations in ART-experienced patients, and survival analysis was used to investigate factors associated with viral suppression. A further analysis using matched controls was performed to investigate the impact of each mutation on survival. A total of 180 patients with Q151M mutation and 85 with T69i mutation were identified, almost entirely from before 2006. Occurrence of both the Q151M and T69i mutations was strongly associated with cumulative period of virological failure while on ART, and for Q151M there was a particular positive association with use of stavudine and negative association with use of boosted-protease inhibitors. Subsequent viral suppression was negatively associated with viral load at sequencing for both mutations, and for Q151M we found a negative association with didanosine use but a positive association with boosted-protease inhibitor use. The results obtained in these analyses were also consistent with potentially large associations with other drugs. Analyses were inconclusive regarding associations between the mutations and mortality, but mortality was high for patients with low CD4 at detection. The Q151M and T69i resistance mutations are now very rare in the UK. Our results suggest that good outcomes are possible for people with these mutations. However, in this historic sample, viral load and CD4 at detection were important factors in determining prognosis.

  9. Predictive genetic testing for neurodegenerative conditions: how should conflicting interests within families be managed?

    PubMed

    Stark, Zornitza; Wallace, Jane; Gillam, Lynn; Burgess, Matthew; Delatycki, Martin B

    2016-10-01

    Predictive genetic testing for a neurodegenerative condition in one individual in a family may have implications for other family members, in that it can reveal their genetic status. Herein a complex clinical case is explored where the testing wish of one family member was in direct conflict to that of another. The son of a person at 50% risk of an autosomal dominant neurodegenerative condition requested testing to reveal his genetic status. The main reason for the request was if he had the familial mutation, he and his partner planned to utilise preimplantation genetic diagnosis to prevent his offspring having the condition. His at-risk parent was clear that if they found out they had the mutation, they would commit suicide. We assess the potential benefits and harms from acceding to or denying such a request and present an approach to balancing competing rights of individuals within families at risk of late-onset genetic conditions, where family members have irreconcilable differences with respect to predictive testing. We argue that while it may not be possible to completely avoid harm in these situations, it is important to consider the magnitude of risks, and make every effort to limit the potential for adverse outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Boomerang: A method for recursive reclassification.

    PubMed

    Devlin, Sean M; Ostrovnaya, Irina; Gönen, Mithat

    2016-09-01

    While there are many validated prognostic classifiers used in practice, often their accuracy is modest and heterogeneity in clinical outcomes exists in one or more risk subgroups. Newly available markers, such as genomic mutations, may be used to improve the accuracy of an existing classifier by reclassifying patients from a heterogenous group into a higher or lower risk category. The statistical tools typically applied to develop the initial classifiers are not easily adapted toward this reclassification goal. In this article, we develop a new method designed to refine an existing prognostic classifier by incorporating new markers. The two-stage algorithm called Boomerang first searches for modifications of the existing classifier that increase the overall predictive accuracy and then merges to a prespecified number of risk groups. Resampling techniques are proposed to assess the improvement in predictive accuracy when an independent validation data set is not available. The performance of the algorithm is assessed under various simulation scenarios where the marker frequency, degree of censoring, and total sample size are varied. The results suggest that the method selects few false positive markers and is able to improve the predictive accuracy of the classifier in many settings. Lastly, the method is illustrated on an acute myeloid leukemia data set where a new refined classifier incorporates four new mutations into the existing three category classifier and is validated on an independent data set. © 2016, The International Biometric Society.

  11. Boomerang: A Method for Recursive Reclassification

    PubMed Central

    Devlin, Sean M.; Ostrovnaya, Irina; Gönen, Mithat

    2016-01-01

    Summary While there are many validated prognostic classifiers used in practice, often their accuracy is modest and heterogeneity in clinical outcomes exists in one or more risk subgroups. Newly available markers, such as genomic mutations, may be used to improve the accuracy of an existing classifier by reclassifying patients from a heterogenous group into a higher or lower risk category. The statistical tools typically applied to develop the initial classifiers are not easily adapted towards this reclassification goal. In this paper, we develop a new method designed to refine an existing prognostic classifier by incorporating new markers. The two-stage algorithm called Boomerang first searches for modifications of the existing classifier that increase the overall predictive accuracy and then merges to a pre-specified number of risk groups. Resampling techniques are proposed to assess the improvement in predictive accuracy when an independent validation data set is not available. The performance of the algorithm is assessed under various simulation scenarios where the marker frequency, degree of censoring, and total sample size are varied. The results suggest that the method selects few false positive markers and is able to improve the predictive accuracy of the classifier in many settings. Lastly, the method is illustrated on an acute myeloid leukemia dataset where a new refined classifier incorporates four new mutations into the existing three category classifier and is validated on an independent dataset. PMID:26754051

  12. The Significance of the PD-L1 Expression in Non-Small-Cell Lung Cancer: Trenchant Double Swords as Predictive and Prognostic Markers.

    PubMed

    Takada, Kazuki; Toyokawa, Gouji; Shoji, Fumihiro; Okamoto, Tatsuro; Maehara, Yoshihiko

    2018-03-01

    Lung cancer is the leading cause of death due to cancer worldwide. Surgery, chemotherapy, and radiotherapy have been the standard treatment for lung cancer, and targeted molecular therapy has greatly improved the clinical course of patients with non-small-cell lung cancer (NSCLC) harboring driver mutations, such as in epidermal growth factor receptor and anaplastic lymphoma kinase genes. Despite advances in such therapies, the prognosis of patients with NSCLC without driver oncogene mutations remains poor. Immunotherapy targeting programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) has recently been shown to improve the survival in advanced NSCLC. The PD-L1 expression on the surface of tumor cells has emerged as a potential biomarker for predicting responses to immunotherapy and prognosis after surgery in NSCLC. However, the utility of PD-L1 expression as a predictive and prognostic biomarker remains controversial because of the existence of various PD-L1 antibodies, scoring systems, and positivity cutoffs. In this review, we summarize the data from representative clinical trials of PD-1/PD-L1 immune checkpoint inhibitors in NSCLC and previous reports on the association between PD-L1 expression and clinical outcomes in patients with NSCLC. Furthermore, we discuss the future perspectives of immunotherapy and immune checkpoint factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Genomic Biomarkers for the Prediction of Stage and Prognosis of Upper Tract Urothelial Carcinoma.

    PubMed

    Bagrodia, Aditya; Cha, Eugene K; Sfakianos, John P; Zabor, Emily C; Bochner, Bernard H; Al-Ahmadie, Hikmat A; Solit, David B; Coleman, Jonathan A; Iyer, Gopa; Scott, Sasinya N; Shah, Ronak; Ostrovnaya, Irina; Lee, Byron; Desai, Neil B; Ren, Qinghu; Rosenberg, Jonathan E; Dalbagni, Guido; Bajorin, Dean F; Reuter, Victor E; Berger, Michael F

    2016-06-01

    Genomic characterization of radical nephroureterectomy specimens in patients with upper tract urothelial carcinoma may allow for thoughtful integration of systemic and targeted therapies. We sought to determine whether genomic alterations in upper tract urothelial carcinoma are associated with adverse pathological and clinical outcomes. Next generation exon capture sequencing of 300 cancer associated genes was performed in 83 patients with upper tract urothelial carcinoma. Genomic alterations were assessed individually and also grouped into core signal transduction pathways or canonical cell functions for association with clinicopathological outcomes. Binary outcomes, including grade (high vs low), T stage (pTa/T1/T2 vs pT3/T4) and organ confined status (pT2 or less and N0/Nx vs greater than pT2 or N+) were assessed with the Kruskal-Wallis and Fisher exact tests as appropriate. Associations between alterations and survival were estimated using the Kaplan-Meier method and Cox regression. Of the 24 most commonly altered genes in 9 pathways TP53/MDM2 alterations and FGFR3 mutations were the only 2 alterations uniformly associated with high grade, advanced stage, nonorgan confined disease, and recurrence-free and cancer specific survival. TP53/MDM2 alterations were associated with adverse clinicopathological outcomes whereas FGFR3 mutations were associated with favorable outcomes. We created a risk score using TP53/MDM2 and FGFR3 status that was able to discriminate between adverse pathological and clinical outcomes, including in the subset of patients with high grade disease. The study is limited by small numbers and lack of validation. Our data indicate that specific genomic alterations in radical nephroureterectomy specimens correlate with tumor grade, stage and cancer specific survival outcomes. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Introduction: Cancer Gene Networks.

    PubMed

    Clarke, Robert

    2017-01-01

    Constructing, evaluating, and interpreting gene networks generally sits within the broader field of systems biology, which continues to emerge rapidly, particular with respect to its application to understanding the complexity of signaling in the context of cancer biology. For the purposes of this volume, we take a broad definition of systems biology. Considering an organism or disease within an organism as a system, systems biology is the study of the integrated and coordinated interactions of the network(s) of genes, their variants both natural and mutated (e.g., polymorphisms, rearrangements, alternate splicing, mutations), their proteins and isoforms, and the organic and inorganic molecules with which they interact, to execute the biochemical reactions (e.g., as enzymes, substrates, products) that reflect the function of that system. Central to systems biology, and perhaps the only approach that can effectively manage the complexity of such systems, is the building of quantitative multiscale predictive models. The predictions of the models can vary substantially depending on the nature of the model and its inputoutput relationships. For example, a model may predict the outcome of a specific molecular reaction(s), a cellular phenotype (e.g., alive, dead, growth arrest, proliferation, and motility), a change in the respective prevalence of cell or subpopulations, a patient or patient subgroup outcome(s). Such models necessarily require computers. Computational modeling can be thought of as using machine learning and related tools to integrate the very high dimensional data generated from modern, high throughput omics technologies including genomics (next generation sequencing), transcriptomics (gene expression microarrays; RNAseq), metabolomics and proteomics (ultra high performance liquid chromatography, mass spectrometry), and "subomic" technologies to study the kinome, methylome, and others. Mathematical modeling can be thought of as the use of ordinary differential equations and related tools to create dynamic, semi-mechanistic models of low dimensional data including gene/protein signaling as a function of time/dose. More recently, the integration of imaging technologies into predictive multiscale modeling has begun to extend further the scales across which data can be obtained and used to gain insight into system function.There are several goals for predictive multiscale modeling including the more academic pursuit of understanding how the system or local feature thereof is regulated or functions, to the more practical or translational goals of identifying predictive (selecting which patient should receive which drug/therapy) or prognostic (disease progress and outcome in an individual patient) biomarkers and/or identifying network vulnerabilities that represent potential targets for therapeutic benefit with existing drugs (including drug repurposing) or for the development of new drugs. These various goals are not necessarily mutually exclusive or inclusive. Within this volume, readers will find examples of many of the activities noted above. Each chapter contains practical and/or methodological insights to guide readers in the design and interpretation of their own and published work.

  15. Spectrum of rhodopsin mutations in Korean patients with retinitis pigmentosa

    PubMed Central

    Kim, Kwang Joong; Kim, Cinoo; Bok, Jeong; Kim, Kyung-Seon; Lee, Eun-Ju; Park, Sung Pyo; Chung, Hum; Han, Bok-Ghee; Kim, Hyung-Lae; Kimm, Kuchan; Yu, Hyeong Gon

    2011-01-01

    Purpose To determine the spectrum and frequency of rhodopsin gene (RHO) mutations in Korean patients with retinitis pigmentosa (RP) and to characterize genotype–phenotype correlations in patients with mutations. Methods The RHO mutations were screened by direct sequencing, and mutation prevalence was measured in patients and controls. The impact of missense mutations to RP was predicted by segregation analysis, peptide sequence alignment, and in silico analysis. The severity of disease in patients with the missense mutations was compared by visual acuity, electroretinography, optical coherence tomography, and kinetic visual field testing. Results Five heterozygous mutations were identified in six of 302 probands with RP, including a novel mutation (c.893C>A, p.A298D) and four known mutations (c.50C>T, p.T17M; c.533A>G, p.Y178C; c.888G>T, p.K296N; and c.1040C>T, p.P347L). The allele frequency of missense mutations was measured in 114 ethnically matched controls. p.A298D, newly identified in a sporadic patient, had never been found in controls and was predicted to be pathogenic. Among the patients with the missense mutations, we observed the most severe phenotype in patients with p.P347L, less severe phenotypes in patients with p.Y178C or p.A298D, and a relatively moderate phenotype in a patient with p.T17M. Conclusions The results reveal the spectrum of RHO mutations in Korean RP patients and clinical features that vary according to mutations. Our findings will be useful for understanding these genetic spectra and the genotype–phenotype correlations and will therefore help with predicting disease prognosis and facilitating the development of gene therapy. PMID:21677794

  16. A BAP1 Mutation-specific MicroRNA Signature Predicts Clinical Outcomes in Clear Cell Renal Cell Carcinoma Patients with Wild-type BAP1

    PubMed Central

    Ge, Yu-Zheng; Xu, Lu-Wei; Zhou, Chang-Cheng; Lu, Tian-Ze; Yao, Wen-Tao; Wu, Ran; Zhao, You-Cai; Xu, Xiao; Hu, Zhi-Kai; Wang, Min; Yang, Xiao-Bing; Zhou, Liu-Hua; Zhong, Bing; Xu, Zheng; Li, Wen-Cheng; Zhu, Jia-Geng; Jia, Rui-Peng

    2017-01-01

    Background: Clear cell renal cell carcinoma (ccRCC) is the most prevalent histologic subtype of kidney cancers in adults, which could be divided into two distinct subgroups according to the BRCA1 associated protein-1 (BAP1) mutation status. In the current study, we comprehensively analyzed the genome-wide microRNA (miRNA) expression profiles in ccRCC, with the aim to identify the differentially expressed miRNAs between BAP1 mutant and wild-type tumors, and generate a BAP1 mutation-specific miRNA signature for ccRCC patients with wild-type BAP1. Methods: The BAP1 mutation status and miRNA profiles in BAP1 mutant and wild-type tumors were analyzed. Subsequently, the association of the differentially expressed miRNAs with patient survival was examined, and a BAP1 mutation-specific miRNA signature was generated and examined with Kaplan-Meier survival, univariate and multivariate Cox regression analyses. Finally, the bioinformatics methods were adopted for the target prediction of selected miRNAs and functional annotation analyses. Results: A total of 350 treatment-naïve primary ccRCC patients were selected from The Cancer Genome Atlas project, among which 35 (10.0%) subjects carried mutant BAP1 and had a shorter overall survival (OS) time. Furthermore, 33 miRNAs were found to be differentially expressed between BAP1 mutant and wild-type tumors, among which 11 (miR-149, miR-29b-2, miR-182, miR-183, miR-21, miR-365-2, miR-671, miR-365-1, miR-10b, miR-139, and miR-181a-2) were significantly associated with OS in ccRCC patients with wild-type BAP1. Finally, a BAP1 mutation-specific miRNA signature consisting of 11 miRNAs was generated and validated as an independent prognostic parameter. Conclusions: In summary, our study identified a total of 33 miRNAs differentially expressed between BAP1 mutant and wild-type tumors, and generated a BAP1 mutation-specific miRNA signature including eleven miRNAs, which could serve as a novel prognostic biomarker for ccRCC patients with wild-type BAP1. PMID:28900502

  17. A resolution of the mutation load paradox in humans.

    PubMed

    Lesecque, Yann; Keightley, Peter D; Eyre-Walker, Adam

    2012-08-01

    Current information on the rate of mutation and the fraction of sites in the genome that are subject to selection suggests that each human has received, on average, at least two new harmful mutations from its parents. These mutations were subsequently removed by natural selection through reduced survival or fertility. It has been argued that the mutation load, the proportional reduction in population mean fitness relative to the fitness of an idealized mutation-free individual, allows a theoretical prediction of the proportion of individuals in the population that fail to reproduce as a consequence of these harmful mutations. Application of this theory to humans implies that at least 88% of individuals should fail to reproduce and that each female would need to have more than 16 offspring to maintain population size. This prediction is clearly at odds with the low reproductive excess of human populations. Here, we derive expressions for the fraction of individuals that fail to reproduce as a consequence of recurrent deleterious mutation () for a model in which selection occurs via differences in relative fitness, such as would occur through competition between individuals. We show that is much smaller than the value predicted by comparing fitness to that of a mutation-free genotype. Under the relative fitness model, we show that depends jointly on U and the selective effects of new deleterious mutations and that a species could tolerate 10's or even 100's of new deleterious mutations per genome each generation.

  18. Cetuximab treatment for metastatic colorectal cancer with KRAS p.G13D mutations improves progression-free survival

    PubMed Central

    OSUMI, HIROKI; SHINOZAKI, EIJI; OSAKO, MASAHIKO; KAWAZOE, YOSHIMASA; OBA, MASARU; MISAKA, TAKAHARU; GOTO, TAKASHI; KAMO, HITOMI; SUENAGA, MITSUKUNI; KUMEKAWA, YOSUKE; OGURA, MARIKO; OZAKA, MASATO; MATSUSAKA, SATOSHI; CHIN, KEISHO; HATAKE, KIYOHIKO; MIZUNUMA, NOBUYUKI

    2015-01-01

    A number of previous studies have reported that 30–50% of patients with colorectal cancer (CRC) harbor Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations, which is a major predictive biomarker of resistance to epidermal growth factor (EGFR)-targeted therapy. Treatment with an anti-EGFR inhibitor is recommended for patients with KRAS wild-type metastatic colorectal cancer (mCRC). A recent retrospective study of cetuximab reported that patients with KRAS p.G13D mutations had better outcomes compared with those with other mutations. The aim of this retrospective study was to assess the prevalence of KRAS p.G13D mutations and evaluate the effectiveness of cetuximab in mCRC patients with KRAS p.G13D or other KRAS mutations. We reviewed the clinical records of 98 mCRC patients with KRAS mutations who were treated between August, 2004 and January, 2011 in four hospitals located in Tokyo and Kyushu Island. We also investigated KRAS mutation subtypes and patient characteristics. In the patients who received cetuximab, univariate and multivariate analyses were performed to assess the effect of KRAS p.G13D mutations on progression-free survival (PFS) and overall survival (OS). Of the 98 patients, 23 (23.5%) had KRAS p.G13D-mutated tumors, whereas 75 (76.5%) had tumors harboring other mutations. Of the 31 patients who received cetuximab, 9 (29.0%) had KRAS p.G13D mutations and 22 (71.0%) had other mutations. There were no significant differences in age, gender, primary site, pathological type, history of chemotherapy, or the combined use of irinotecan between either of the patient subgroups. The univariate analysis revealed no significant difference in PFS or OS between the patients with KRAS p.G13D mutations and those with other mutations (median PFS, 4.5 vs. 2.8 months, respectively; P=0.65; and median OS, 15.3 vs. 8.9 months, respectively; P=0.51). However, the multivariate analysis revealed a trend toward better PFS among patients harboring p.G13D mutations (PFS: HR=0.29; 95% CI: 0.08–1.10; P=0.07; OS: HR=0.23; 95% CI: 0.04–1.54; P=0.13). In conclusion, treatment with cetuximab may be more clinically beneficial in mCRC patients with a KRAS p.G13D mutation, compared with those harboring other mutations. However, further investigation is required to clearly determine the benefits of cetuximab treatment in patients with KRAS p.G13D mutation-positive mCRC. PMID:26623049

  19. PIK3CA gene mutations in Northwest Chinese esophageal squamous cell carcinoma

    PubMed Central

    Liu, Shi-Yuan; Chen, Wei; Chughtai, Ehtesham Annait; Qiao, Zhe; Jiang, Jian-Tao; Li, Shao-Min; Zhang, Wei; Zhang, Jin

    2017-01-01

    AIM To evaluate PIK3CA gene mutational status in Northwest Chinese esophageal squamous cell carcinoma (ESCC) patients, and examine the associations of PIK3CA gene mutations with clinicopathological characteristics and clinical outcome. METHODS A total of 210 patients with ESCC who underwent curative resection were enrolled in this study. Pyrosequencing was applied to investigate mutations in exons 9 and 20 of PIK3CA gene in 210 Northwest Chinese ESCCs. The associations of PIK3CA gene mutations with clinicopathological characteristics and clinical outcome were examined. RESULTS PIK3CA gene mutations in exon 9 were detected in 48 cases (22.9%) of a non-biased database of 210 curatively resected Northwest Chinese ESCCs. PIK3CA gene mutations were not associated with sex, tobacco use, alcohol use, tumor location, stage, or local recurrence. When compared with wild-type PIK3CA gene cases, patients with PIK3CA gene mutations in exons 9 experienced significantly better disease-free survival and overall survival rates. CONCLUSION The results of this study suggest that PIK3CA gene mutations could act as a prognostic biomarker in Northwest Chinese ESCC patients. PMID:28465643

  20. The prevalence of CTNNB1 mutations in primary aldosteronism and consequences for clinical outcomes.

    PubMed

    Wu, Vin-Cent; Wang, Shuo-Meng; Chueh, Shih-Chieh Jeff; Yang, Shao-Yu; Huang, Kuo-How; Lin, Yen-Hung; Wang, Jian-Jhong; Connolly, Rory; Hu, Ya-Hui; Gomez-Sanchez, Celso E; Peng, Kang-Yung; Wu, Kwan-Dun

    2017-01-19

    Constitutive activation of the Wnt pathway/β-catenin signaling may be important in aldosterone-producing adenoma (APA). However, significant gaps remain in our understanding of the prevalence and clinical outcomes after adrenalectomy in APA patients harboring CTNNB1 mutations. The molecular expression of CYP11B2 and gonadal receptors in adenomas were also explored. Adenomas from 219 APA patients (95 men; 44.2%; aged 50.5 ± 11.9 years) showed a high rate of somatic mutations (n = 128, 58.4%). The majority of them harbored KCNJ5 mutations (n = 116, 52.9%); 8 patients (3.7%, 6 women) had CTNNB1 mutations. Patients with APAs harboring CTNNB1 mutations were older and had shorter duration of hypertension. After adrenalectomy, CTNNB1 mutation carriers had a higher possibility (87.5%) of residual hypertension than other APA patients. APAs harboring CTNNB1 mutations have heterogeneous staining of β-catenin and variable expression of gonadal receptors and both CYP11B1 and CYP11B2. This suggests that CTNNB1 mutations may be more related to tumorigenesis rather than excessive aldosterone production.

  1. Novel KRAS Gene Mutations in Sporadic Colorectal Cancer

    PubMed Central

    Naser, Walid M.; Shawarby, Mohamed A.; Al-Tamimi, Dalal M.; Seth, Arun; Al-Quorain, Abdulaziz; Nemer, Areej M. Al; Albagha, Omar M. E.

    2014-01-01

    Introduction In this article, we report 7 novel KRAS gene mutations discovered while retrospectively studying the prevalence and pattern of KRAS mutations in cancerous tissue obtained from 56 Saudi sporadic colorectal cancer patients from the Eastern Province. Methods Genomic DNA was extracted from formalin-fixed, paraffin-embedded cancerous and noncancerous colorectal tissues. Successful and specific PCR products were then bi-directionally sequenced to detect exon 4 mutations while Mutector II Detection Kits were used for identifying mutations in codons 12, 13 and 61. The functional impact of the novel mutations was assessed using bioinformatics tools and molecular modeling. Results KRAS gene mutations were detected in the cancer tissue of 24 cases (42.85%). Of these, 11 had exon 4 mutations (19.64%). They harbored 8 different mutations all of which except two altered the KRAS protein amino acid sequence and all except one were novel as revealed by COSMIC database. The detected novel mutations were found to be somatic. One mutation is predicted to be benign. The remaining mutations are predicted to cause substantial changes in the protein structure. Of these, the Q150X nonsense mutation is the second truncating mutation to be reported in colorectal cancer in the literature. Conclusions Our discovery of novel exon 4 KRAS mutations that are, so far, unique to Saudi colorectal cancer patients may be attributed to environmental factors and/or racial/ethnic variations due to genetic differences. Alternatively, it may be related to paucity of clinical studies on mutations other than those in codons 12, 13, 61 and 146. Further KRAS testing on a large number of patients of various ethnicities, particularly beyond the most common hotspot alleles in exons 2 and 3 is needed to assess the prevalence and explore the exact prognostic and predictive significance of the discovered novel mutations as well as their possible role in colorectal carcinogenesis. PMID:25412182

  2. Disease-Associated Mutations Disrupt Functionally Important Regions of Intrinsic Protein Disorder

    PubMed Central

    Vacic, Vladimir; Markwick, Phineus R. L.; Oldfield, Christopher J.; Zhao, Xiaoyue; Haynes, Chad; Uversky, Vladimir N.; Iakoucheva, Lilia M.

    2012-01-01

    The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs) and regions (IDRs) in the human proteome together with their lack of fixed structure and low sequence conservation raise a question about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that 21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7–2.7 fold increase compared to annotated polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order mutations also influence predicted molecular recognition features (MoRFs) more often than the control mutations. The repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (R→W, R→C, E→K, R→H, R→Q) collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63 and, in agreement with our predictions, observed an increased α-helical propensity of the region harboring the mutation. Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease mutations. The results of this study offer a new perspective on the role of mutations in disease, with implications for improving predictors of the functional impact of missense mutations. PMID:23055912

  3. Novel PSEN1 G209A mutation in early-onset Alzheimer dementia supported by structural prediction.

    PubMed

    An, Seong Soo A; Bagyinszky, Eva; Kim, Hye Ryoun; Seok, Ju-Won; Shin, Hae-Won; Bae, SeunOh; Kim, SangYun; Youn, Young Chul

    2016-05-20

    Three main genes are described as causative genes for early-onset Alzheimer dementia (EOAD): APP, PSEN1 and PSEN2. We describe a woman with EOAD had a novel PSEN1 mutation. A 54-year-old right-handed woman presented 12-year history of progressive memory decline. She was clinically diagnosed as familial Alzheimer's disease due to a PSEN1 mutation. One of two daughters also has the same mutation, G209A in the TM-IV of PS1 protein. Her mother had unspecified dementia that began at the age of 40s. PolyPhen2 and SIFT prediction suggested that G209A might be a damaging variant with high scores. 3D modeling revealed that G209A exchange could result significant changes in the PS1 protein. We report a case of EOAD having probable novel PSEN1 (G209A) mutation verified with structural prediction.

  4. Incorporating Truncating Variants in PALB2, CHEK2 and ATM into the BOADICEA Breast Cancer Risk Model

    PubMed Central

    Lee, Andrew J.; Cunningham, Alex P.; Tischkowitz, Marc; Simard, Jacques; Pharoah, Paul D.; Easton, Douglas F.; Antoniou, Antonis C.

    2016-01-01

    Purpose The proliferation of gene-panel testing precipitates the need for a breast cancer (BC) risk model that incorporates the effects of mutations in several genes and family history (FH). We extended the BOADICEA model to incorporate the effects of truncating variants in PALB2, CHEK2 and ATM. Methods The BC incidence was modelled via the explicit effects of truncating variants in BRCA1/2, PALB2, CHEK2 and ATM and other unobserved genetic effects using segregation analysis methods. Results The predicted average BC risk by age 80 for an ATM mutation carrier is 28%, 30% for CHEK2, 50% for PALB2, 74% for BRCA1 and BRCA2. However, the BC risks are predicted to increase with FH-burden. In families with mutations, predicted risks for mutation-negative members depend on both FH and the specific mutation. The reduction in BC risk after negative predictive-testing is greatest when a BRCA1 mutation is identified in the family, but for women whose relatives carry a CHEK2 or ATM mutation, the risks decrease slightly. Conclusions The model may be a valuable tool for counselling women who have undergone gene-panel testing for providing consistent risks and harmonizing their clinical management. A web-application can be used to obtain BC- risks in clinical practice (http://ccge.medschl.cam.ac.uk/boadicea/). PMID:27464310

  5. Incorporating truncating variants in PALB2, CHEK2, and ATM into the BOADICEA breast cancer risk model.

    PubMed

    Lee, Andrew J; Cunningham, Alex P; Tischkowitz, Marc; Simard, Jacques; Pharoah, Paul D; Easton, Douglas F; Antoniou, Antonis C

    2016-12-01

    The proliferation of gene panel testing precipitates the need for a breast cancer (BC) risk model that incorporates the effects of mutations in several genes and family history (FH). We extended the BOADICEA model to incorporate the effects of truncating variants in PALB2, CHEK2, and ATM. The BC incidence was modeled via the explicit effects of truncating variants in BRCA1/2, PALB2, CHEK2, and ATM and other unobserved genetic effects using segregation analysis methods. The predicted average BC risk by age 80 for an ATM mutation carrier is 28%, 30% for CHEK2, 50% for PALB2, and 74% for BRCA1 and BRCA2. However, the BC risks are predicted to increase with FH burden. In families with mutations, predicted risks for mutation-negative members depend on both FH and the specific mutation. The reduction in BC risk after negative predictive testing is greatest when a BRCA1 mutation is identified in the family, but for women whose relatives carry a CHEK2 or ATM mutation, the risks decrease slightly. The model may be a valuable tool for counseling women who have undergone gene panel testing for providing consistent risks and harmonizing their clinical management. A Web application can be used to obtain BC risks in clinical practice (http://ccge.medschl.cam.ac.uk/boadicea/).Genet Med 18 12, 1190-1198.

  6. Novel Biomarker Signature That May Predict Aggressive Disease in African American Men With Prostate Cancer

    PubMed Central

    Yamoah, Kosj; Johnson, Michael H.; Choeurng, Voleak; Faisal, Farzana A.; Yousefi, Kasra; Haddad, Zaid; Ross, Ashley E.; Alshalafa, Mohammed; Den, Robert; Lal, Priti; Feldman, Michael; Dicker, Adam P.; Klein, Eric A.; Davicioni, Elai; Rebbeck, Timothy R.; Schaeffer, Edward M.

    2015-01-01

    Purpose We studied the ethnicity-specific expression of prostate cancer (PC) –associated biomarkers to evaluate whether genetic/biologic factors affect ethnic disparities in PC pathogenesis and disease progression. Patients and Methods A total of 154 African American (AA) and 243 European American (EA) patients from four medical centers were matched according to the Cancer of the Prostate Risk Assessment postsurgical score within each institution. The distribution of mRNA expression levels of 20 validated biomarkers reported to be associated with PC initiation and progression was compared with ethnicity using false discovery rate, adjusted Wilcoxon-Mann-Whitney, and logistic regression models. A conditional logistic regression model was used to evaluate the interaction between ethnicity and biomarkers for predicting clinicopathologic outcomes. Results Of the 20 biomarkers examined, six showed statistically significant differential expression in AA compared with EA men in one or more statistical models. These include ERG (P < .001), AMACR (P < .001), SPINK1 (P = .001), NKX3-1 (P = .03), GOLM1 (P = .03), and androgen receptor (P = .04). Dysregulation of AMACR (P = .036), ERG (P = .036), FOXP1 (P = .041), and GSTP1 (P = .049) as well as loss-of-function mutations for tumor suppressors NKX3-1 (P = .025) and RB1 (P = .037) predicted risk of pathologic T3 disease in an ethnicity-dependent manner. Dysregulation of GOLM1 (P = .037), SRD5A2 (P = .023), and MKi67 (P = .023) predicted clinical outcomes, including 3-year biochemical recurrence and metastasis at 5 years. A greater proportion of AA men than EA men had triple-negative (ERG-negative/ETS-negative/SPINK1-negative) disease (51% v 35%; P = .002). Conclusion We have identified a subset of PC biomarkers that predict the risk of clinicopathologic outcomes in an ethnicity-dependent manner. These biomarkers may explain in part the biologic contribution to ethnic disparity in PC outcomes between EA and AA men. PMID:26195723

  7. Novel Biomarker Signature That May Predict Aggressive Disease in African American Men With Prostate Cancer.

    PubMed

    Yamoah, Kosj; Johnson, Michael H; Choeurng, Voleak; Faisal, Farzana A; Yousefi, Kasra; Haddad, Zaid; Ross, Ashley E; Alshalafa, Mohammed; Den, Robert; Lal, Priti; Feldman, Michael; Dicker, Adam P; Klein, Eric A; Davicioni, Elai; Rebbeck, Timothy R; Schaeffer, Edward M

    2015-09-01

    We studied the ethnicity-specific expression of prostate cancer (PC) -associated biomarkers to evaluate whether genetic/biologic factors affect ethnic disparities in PC pathogenesis and disease progression. A total of 154 African American (AA) and 243 European American (EA) patients from four medical centers were matched according to the Cancer of the Prostate Risk Assessment postsurgical score within each institution. The distribution of mRNA expression levels of 20 validated biomarkers reported to be associated with PC initiation and progression was compared with ethnicity using false discovery rate, adjusted Wilcoxon-Mann-Whitney, and logistic regression models. A conditional logistic regression model was used to evaluate the interaction between ethnicity and biomarkers for predicting clinicopathologic outcomes. Of the 20 biomarkers examined, six showed statistically significant differential expression in AA compared with EA men in one or more statistical models. These include ERG (P < .001), AMACR (P < .001), SPINK1 (P = .001), NKX3-1 (P = .03), GOLM1 (P = .03), and androgen receptor (P = .04). Dysregulation of AMACR (P = .036), ERG (P = .036), FOXP1 (P = .041), and GSTP1 (P = .049) as well as loss-of-function mutations for tumor suppressors NKX3-1 (P = .025) and RB1 (P = .037) predicted risk of pathologic T3 disease in an ethnicity-dependent manner. Dysregulation of GOLM1 (P = .037), SRD5A2 (P = .023), and MKi67 (P = .023) predicted clinical outcomes, including 3-year biochemical recurrence and metastasis at 5 years. A greater proportion of AA men than EA men had triple-negative (ERG-negative/ETS-negative/SPINK1-negative) disease (51% v 35%; P = .002). We have identified a subset of PC biomarkers that predict the risk of clinicopathologic outcomes in an ethnicity-dependent manner. These biomarkers may explain in part the biologic contribution to ethnic disparity in PC outcomes between EA and AA men. © 2015 by American Society of Clinical Oncology.

  8. A novel computer algorithm improves antibody epitope prediction using affinity-selected mimotopes: a case study using monoclonal antibodies against the West Nile virus E protein.

    PubMed

    Denisova, Galina F; Denisov, Dimitri A; Yeung, Jeffrey; Loeb, Mark B; Diamond, Michael S; Bramson, Jonathan L

    2008-11-01

    Understanding antibody function is often enhanced by knowledge of the specific binding epitope. Here, we describe a computer algorithm that permits epitope prediction based on a collection of random peptide epitopes (mimotopes) isolated by antibody affinity purification. We applied this methodology to the prediction of epitopes for five monoclonal antibodies against the West Nile virus (WNV) E protein, two of which exhibit therapeutic activity in vivo. This strategy was validated by comparison of our results with existing F(ab)-E protein crystal structures and mutational analysis by yeast surface display. We demonstrate that by combining the results of the mimotope method with our data from mutational analysis, epitopes could be predicted with greater certainty. The two methods displayed great complementarity as the mutational analysis facilitated epitope prediction when the results with the mimotope method were equivocal and the mimotope method revealed a broader number of residues within the epitope than the mutational analysis. Our results demonstrate that the combination of these two prediction strategies provides a robust platform for epitope characterization.

  9. Genotype-phenotype associations in French patients with phenylketonuria and importance of genotype for full assessment of tetrahydrobiopterin responsiveness.

    PubMed

    Jeannesson-Thivisol, Elise; Feillet, François; Chéry, Céline; Perrin, Pascal; Battaglia-Hsu, Shyue-Fang; Herbeth, Bernard; Cano, Aline; Barth, Magalie; Fouilhoux, Alain; Mention, Karine; Labarthe, François; Arnoux, Jean-Baptiste; Maillot, François; Lenaerts, Catherine; Dumesnil, Cécile; Wagner, Kathy; Terral, Daniel; Broué, Pierre; de Parscau, Loïc; Gay, Claire; Kuster, Alice; Bédu, Antoine; Besson, Gérard; Lamireau, Delphine; Odent, Sylvie; Masurel, Alice; Guéant, Jean-Louis; Namour, Fares

    2015-12-15

    Mutations in Phenylalanine Hydroxylase (PAH) gene cause phenylketonuria. Sapropterin (BH4), the enzyme cofactor, is an important therapeutical strategy in phenylketonuria. However, PAH is a highly polymorphic gene and it is difficult to identify BH4-responsive genotypes. We seek here to improve prediction of BH4-responsiveness through comparison of genotypes, BH4-loading test, predictions of responsiveness according to the literature and types and locations of mutations. A total of 364 French patients among which, 9 % had mild hyperphenylalaninemia, 17.7 % mild phenylketonuria and 73.1 % classical phenylketonuria, benefited from a 24-hour BH4-loading test and had the PAH gene sequenced and analyzed by Multiplex Ligation Probe Amplification. Overall, 31.6 % of patients were BH4-responsive. The number of different mutations found was 127, including 26 new mutations. The mutations c.434A > T, c.500A > T, c.529G > C, c.1045 T > G and c.1196 T > C were newly classified as being BH4-responsive. We identified 261 genotypes, among which 46 were newly recognized as being BH4-responsive. Even though patients carry 2 responsive alleles, BH4-responsiveness cannot be predicted with certainty unless they present mild hyperphenylalaninemia. BH4-responsiveness cannot be predicted in patients carrying one responsive mutation only. In general, the milder the phenotype is, the stronger the BH4-response is. Almost exclusively missense mutations, particularly in exons 12, 11 and 8, are associated with BH4-responsiveness and any other type of mutation predicts a negative response. This study is the first of its kind, in a French population, to identify the phenotype associated with several combinations of PAH mutations. As others, it highlights the necessity of performing simultaneously BH4 loading test and molecular analysis in monitoring phenylketonuria patients.

  10. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer.

    PubMed

    O'Leary, Ben; Hrebien, Sarah; Morden, James P; Beaney, Matthew; Fribbens, Charlotte; Huang, Xin; Liu, Yuan; Bartlett, Cynthia Huang; Koehler, Maria; Cristofanilli, Massimo; Garcia-Murillas, Isaac; Bliss, Judith M; Turner, Nicholas C

    2018-03-01

    CDK4/6 inhibition substantially improves progression-free survival (PFS) for women with advanced estrogen receptor-positive breast cancer, although there are no predictive biomarkers. Early changes in circulating tumor DNA (ctDNA) level may provide early response prediction, but the impact of tumor heterogeneity is unknown. Here we use plasma samples from patients in the randomized phase III PALOMA-3 study of CDK4/6 inhibitor palbociclib and fulvestrant for women with advanced breast cancer and show that relative change in PIK3CA ctDNA level after 15 days treatment strongly predicts PFS on palbociclib and fulvestrant (hazard ratio 3.94, log-rank p = 0.0013). ESR1 mutations selected by prior hormone therapy are shown to be frequently sub clonal, with ESR1 ctDNA dynamics offering limited prediction of clinical outcome. These results suggest that early ctDNA dynamics may provide a robust biomarker for CDK4/6 inhibitors, with early ctDNA dynamics demonstrating divergent response of tumor sub clones to treatment.

  11. Mapping disease-related missense mutations in the immunoglobulin-like fold domain of lamin A/C reveals novel genotype-phenotype associations for laminopathies.

    PubMed

    Scharner, Juergen; Lu, Hui-Chun; Fraternali, Franca; Ellis, Juliet A; Zammit, Peter S

    2014-06-01

    Mutations in A-type nuclear lamins cause laminopathies. However, genotype-phenotype correlations using the 340 missense mutations within the LMNA gene are unclear: partially due to the limited availability of three-dimensional structure. The immunoglobulin (Ig)-like fold domain has been solved, and using bioinformatics tools (including Polyphen-2, Fold X, Parameter OPtimized Surfaces, and PocketPicker) we characterized 56 missense mutations for position, surface exposure, change in charge and effect on Ig-like fold stability. We find that 21 of the 27 mutations associated with a skeletal muscle phenotype are distributed throughout the Ig-like fold, are nonsurface exposed and predicted to disrupt overall stability of the Ig-like fold domain. Intriguingly, the remaining 6 mutations clustered, had higher surface exposure, and did not affect stability. The majority of 9 lipodystrophy or 10 premature aging syndrome mutations also did not disrupt Ig-like fold domain stability and were surface exposed and clustered in distinct regions that overlap predicted binding pockets. Although buried, the 10 cardiac mutations had no other consistent properties. Finally, most lipodystrophy and premature aging mutations resulted in a -1 net charge change, whereas skeletal muscle mutations caused no consistent net charge changes. Since premature aging, lipodystrophy and the subset of 6 skeletal muscle mutations cluster tightly in distinct, charged regions, they likely affect lamin A/C -protein/DNA/RNA interactions: providing a consistent genotype-phenotype relationship for mutations in this domain. Thus, this subgroup of skeletal muscle laminopathies that we term the 'Skeletal muscle cluster', may have a distinct pathological mechanism. These novel associations refine the ability to predict clinical features caused by certain LMNA missense mutations. © 2013 Wiley Periodicals, Inc.

  12. Role of KEAP1/NRF2 and TP53 mutations in lung squamous cell carcinoma development and radiotherapy response prediction

    PubMed Central

    Jeong, Youngtae; Hoang, Ngoc T.; Lovejoy, Alexander; Stehr, Henning; Newman, Aaron M.; Gentles, Andrew J.; Kong, William; Truong, Diana; Martin, Shanique; Chaudhuri, Aadel; Heiser, Diane; Zhou, Li; Say, Carmen; Carter, Justin N.; Hiniker, Susan M.; Loo, Billy W.; West, Robert B.; Beachy, Philip; Alizadeh, Ash A.; Diehn, Maximilian

    2016-01-01

    Lung squamous cell carcinomas (LSCC) pathogenesis remains incompletely understood and biomarkers predicting treatment response remain lacking. Here we describe novel murine LSCC models driven by loss of Trp53 and Keap1, both of which are frequently mutated in human LSCCs. Homozygous inactivation of Keap1 or Trp53 promoted airway basal stem cell (ABSC) self-renewal, suggesting that mutations in these genes lead to expansion of mutant stem cell clones. Deletion of Trp53 and Keap1 in ABSCs, but not more differentiated tracheal cells, produced tumors recapitulating histological and molecular features of human LSCCs, indicating that they represent the likely cell of origin in this model. Deletion of Keap1 promoted tumor aggressiveness, metastasis, and resistance to oxidative stress and radiotherapy (RT). KEAP1/NRF2 mutation status predicted risk of local recurrence after RT in non-small lung cancer (NSCLC) patients and could be non-invasively identified in circulating tumor DNA. Thus, KEAP1/NRF2 mutations could serve as predictive biomarkers for personalization of therapeutic strategies for NSCLCs. PMID:27663899

  13. Frequency of Germline Mutations in 25 Cancer Susceptibility Genes in a Sequential Series of Patients With Breast Cancer

    PubMed Central

    Lin, Nancy U.; Kidd, John; Allen, Brian A.; Singh, Nanda; Wenstrup, Richard J.; Hartman, Anne-Renee; Winer, Eric P.; Garber, Judy E.

    2016-01-01

    Purpose Testing for germline mutations in BRCA1/2 is standard for select patients with breast cancer to guide clinical management. Next-generation sequencing (NGS) allows testing for mutations in additional breast cancer predisposition genes. The frequency of germline mutations detected by using NGS has been reported in patients with breast cancer who were referred for BRCA1/2 testing or with triple-negative breast cancer. We assessed the frequency and predictors of mutations in 25 cancer predisposition genes, including BRCA1/2, in a sequential series of patients with breast cancer at an academic institution to examine the utility of genetic testing in this population. Methods Patients with stages I to III breast cancer who were seen at a single cancer center between 2010 and 2012, and who agreed to participate in research DNA banking, were included (N = 488). Personal and family cancer histories were collected and germline DNA was sequenced with NGS to identify mutations. Results Deleterious mutations were identified in 10.7% of women, including 6.1% in BRCA1/2 (5.1% in non-Ashkenazi Jewish patients) and 4.6% in other breast/ovarian cancer predisposition genes including CHEK2 (n = 10), ATM (n = 4), BRIP1 (n = 4), and one each in PALB2, PTEN, NBN, RAD51C, RAD51D, MSH6, and PMS2. Whereas young age (P < .01), Ashkenazi Jewish ancestry (P < .01), triple-negative breast cancer (P = .01), and family history of breast/ovarian cancer (P = .01) predicted for BRCA1/2 mutations, no factors predicted for mutations in other breast cancer predisposition genes. Conclusion Among sequential patients with breast cancer, 10.7% were found to have a germline mutation in a gene that predisposes women to breast or ovarian cancer, using a panel of 25 predisposition genes. Factors that predict for BRCA1/2 mutations do not predict for mutations in other breast/ovarian cancer susceptibility genes when these genes are analyzed as a single group. Additional cohorts will be helpful to define individuals at higher risk of carrying mutations in genes other than BRCA1/2. PMID:26976419

  14. Classification of TP53 Mutations and HPV Predict Survival in Advanced Larynx Cancer

    PubMed Central

    Scheel, Adam; Bellile, Emily; McHugh, Jonathan B.; Walline, Heather M.; Prince, Mark E.; Urba, Susan; Wolf, Gregory T.; Eisbruch, Avraham; Worden, Francis; Carey, Thomas E.; Bradford, Carol

    2016-01-01

    OBJECTIVE Assess TP53 functional mutations in the context of other biomarkers in advanced larynx cancer. STUDY DESIGN Prospective analysis of pretreatment tumor TP53, HPV, Bcl-xL and cyclin D1 status in stage III and IV larynx cancer patients in a clinical trial. METHODS TP53 exons 4-9 from 58 tumors were sequenced. Mutations were grouped using three classifications based on their expected function. Each functional group was analyzed for response to induction chemotherapy, time to surgery, survival, HPV status, p16INK4a, Bcl-xl and cyclin D1 expression. RESULTS TP53 Mutations were found in 22/58 (37.9%) patients with advanced larynx cancer, including missense mutations in 13/58 (22.4%) patients, nonsense mutations in 4/58 (6.9%), and deletions in 5/58 (8.6%). High risk HPV was found in 20/52 (38.5%) tumors. A classification based on crystal Evolutionary Action score of p53 (EAp53) distinguished missense mutations with high risk for decreased survival from low risk mutations (p=0.0315). A model including this TP53 classification, HPV status, cyclin D1 and Bcl-xL staining significantly predicts survival (p=0.0017). CONCLUSION EAp53 functional classification of TP53 mutants and biomarkers predict survival in advanced larynx cancer. PMID:27345657

  15. Proteome-wide search for functional motifs altered in tumors: Prediction of nuclear export signals inactivated by cancer-related mutations

    PubMed Central

    Prieto, Gorka; Fullaondo, Asier; Rodríguez, Jose A.

    2016-01-01

    Large-scale sequencing projects are uncovering a growing number of missense mutations in human tumors. Understanding the phenotypic consequences of these alterations represents a formidable challenge. In silico prediction of functionally relevant amino acid motifs disrupted by cancer mutations could provide insight into the potential impact of a mutation, and guide functional tests. We have previously described Wregex, a tool for the identification of potential functional motifs, such as nuclear export signals (NESs), in proteins. Here, we present an improved version that allows motif prediction to be combined with data from large repositories, such as the Catalogue of Somatic Mutations in Cancer (COSMIC), and to be applied to a whole proteome scale. As an example, we have searched the human proteome for candidate NES motifs that could be altered by cancer-related mutations included in the COSMIC database. A subset of the candidate NESs identified was experimentally tested using an in vivo nuclear export assay. A significant proportion of the selected motifs exhibited nuclear export activity, which was abrogated by the COSMIC mutations. In addition, our search identified a cancer mutation that inactivates the NES of the human deubiquitinase USP21, and leads to the aberrant accumulation of this protein in the nucleus. PMID:27174732

  16. A Comprehensive Study on the Etiology of Patients Receiving Cochlear Implantation With Special Emphasis on Genetic Epidemiology

    PubMed Central

    Miyagawa, Maiko; Nishio, Shin-Ya; Usami, Shin-Ichi

    2016-01-01

    Objective: Cochlear implantation is the most important treatment currently available for profound sensorineural hearing loss. The aim of this study was to investigate the etiology of hearing loss in patients with cochlear implantation, and to compare outcomes. Methods: Japanese hearing loss patients who received cochlear implants (CIs) or electric acoustic stimulation (EAS) in Shinshu University hospital (n = 173, prelingual onset: 92, postlingual onset: 81) participated in this study. Invader assay followed by the targeted exon-sequencing of 63 deafness genes using Massively parallel DNA sequencing (MPS) was applied. For prelingual patients, additional imaging examination, cCMV screening, and pediatric examination were performed for precise diagnosis. Results: Genetic screening successfully identified the causative mutation in 60% of patients with prelingual onset hearing loss and in 36% of those with postlingual hearing loss. Differences in the kinds of genes identified were observed between the two groups. Although there were marked variations in the outcome of cochlear implantation, patients with specific deafness gene mutations showed relatively good results. Conclusion: The present study showed genetic etiology is a major cause of hearing loss in CI/EAS patients. Patients possessing mutations in a number of deafness genes known to be expressed within inner ear have achieved satisfactory auditory performance, suggesting that the identification of the genetic background facilitates the prediction of post-CI performance. MPS is a powerful tool for the identification of causative deafness genes in patients receiving cochlear implantation. Therefore, determination of the involved region inside/outside of the cochlea by identification of the responsible gene is essential. PMID:26756145

  17. Molecular Evolution of the Tissue-nonspecific Alkaline Phosphatase Allows Prediction and Validation of Missense Mutations Responsible for Hypophosphatasia*

    PubMed Central

    Silvent, Jérémie; Gasse, Barbara; Mornet, Etienne; Sire, Jean-Yves

    2014-01-01

    ALPL encodes the tissue nonspecific alkaline phosphatase (TNSALP), which removes phosphate groups from various substrates. Its function is essential for bone and tooth mineralization. In humans, ALPL mutations lead to hypophosphatasia, a genetic disorder characterized by defective bone and/or tooth mineralization. To date, 275 ALPL mutations have been reported to cause hypophosphatasia, of which 204 were simple missense mutations. Molecular evolutionary analysis has proved to be an efficient method to highlight residues important for the protein function and to predict or validate sensitive positions for genetic disease. Here we analyzed 58 mammalian TNSALP to identify amino acids unchanged, or only substituted by residues sharing similar properties, through 220 millions years of mammalian evolution. We found 469 sensitive positions of the 524 residues of human TNSALP, which indicates a highly constrained protein. Any substitution occurring at one of these positions is predicted to lead to hypophosphatasia. We tested the 204 missense mutations resulting in hypophosphatasia against our predictive chart, and validated 99% of them. Most sensitive positions were located in functionally important regions of TNSALP (active site, homodimeric interface, crown domain, calcium site, …). However, some important positions are located in regions, the structure and/or biological function of which are still unknown. Our chart of sensitive positions in human TNSALP (i) enables to validate or invalidate at low cost any ALPL mutation, which would be suspected to be responsible for hypophosphatasia, by contrast with time consuming and expensive functional tests, and (ii) displays higher predictive power than in silico models of prediction. PMID:25023282

  18. Nanofluidic Digital PCR and Extended Genotyping of RAS and BRAF for Improved Selection of Metastatic Colorectal Cancer Patients for Anti-EGFR Therapies.

    PubMed

    Azuara, Daniel; Santos, Cristina; Lopez-Doriga, Adriana; Grasselli, Julieta; Nadal, Marga; Sanjuan, Xavier; Marin, Fátima; Vidal, Joana; Montal, Robert; Moreno, Victor; Bellosillo, Beatriz; Argiles, Guillem; Elez, Elena; Dienstmann, Rodrigo; Montagut, Clara; Tabernero, Josep; Capellá, Gabriel; Salazar, Ramon

    2016-05-01

    The clinical significance of low-frequent RAS pathway-mutated alleles and the optimal sensitivity cutoff value in the prediction of response to anti-EGFR therapy in metastatic colorectal cancer (mCRC) patients remains controversial. We aimed to evaluate the added value of genotyping an extended RAS panel using a robust nanofluidic digital PCR (dPCR) approach. A panel of 34 hotspots, including RAS (KRAS and NRAS exons 2/3/4) and BRAF (V600E), was analyzed in tumor FFPE samples from 102 mCRC patients treated with anti-EGFR therapy. dPCR was compared with conventional quantitative PCR (qPCR). Response rates, progression-free survival (PFS), and overall survival (OS) were correlated to the mutational status and the mutated allele fraction. Tumor response evaluations were not available in 9 patients and were excluded for response rate analysis. Twenty-two percent of patients were positive for one mutation with qPCR (mutated alleles ranged from 2.1% to 66.6%). Analysis by dPCR increased the number of positive patients to 47%. Mutated alleles for patients only detected by dPCR ranged from 0.04% to 10.8%. An inverse correlation between the fraction of mutated alleles and radiologic response was observed. ROC analysis showed that a fraction of 1% or higher of any mutated alleles offered the best predictive value for all combinations of RAS and BRAF analysis. In addition, this threshold also optimized prediction both PFS and OS. We conclude that mutation testing using an extended gene panel, including RAS and BRAF with a threshold of 1% improved prediction of response to anti-EGFR therapy. Mol Cancer Ther; 15(5); 1106-12. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Leigh Syndrome in Childhood: Neurologic Progression and Functional Outcome.

    PubMed

    Lee, Jin Sook; Kim, Hunmin; Lim, Byung Chan; Hwang, Hee; Choi, Jieun; Kim, Ki Joong; Hwang, Yong Seung; Chae, Jong Hee

    2016-04-01

    Few studies have analyzed the clinical course and functional outcome in Leigh syndrome (LS). The aim of this study was to determine the clinical, radiological, biochemical, and genetic features of patients with LS, and identify prognostic indicators of the disease progression and neurological outcome. Thirty-nine patients who had been diagnosed with LS at the Seoul National University Children's Hospital were included. Their medical records, neuroimaging findings, and histological/biochemical findings of skeletal muscle specimens were reviewed. Targeted sequencing of mitochondrial DNA was performed based on mitochondrial respiratory chain (MRC) enzyme defects. Isolated complex I deficiency was the most frequently observed MRC defect (in 42% of 38 investigated patients). Mitochondrial DNA mutations were identified in 11 patients, of which 81.8% were MT-ND genes. The clinical outcome varied widely, from independent daily activity to severe disability. Poor functional outcomes and neurological deterioration were significantly associated with early onset (before an age of 1 year) and the presence of other lesions additional to basal ganglia involvement in the initial neuroimaging. The neurological severity and outcome of LS may vary widely and be better than those predicted based on previous studies. We suggest that age at onset and initial neuroimaging findings are prognostic indicators in LS.

  20. Rare Autosomal Recessive Cardiac Valvular Form of Ehlers-Danlos Syndrome Results from Mutations in the COL1A2 Gene That Activate the Nonsense-Mediated RNA Decay Pathway

    PubMed Central

    Schwarze, Ulrike; Hata, Ryu-Ichiro; McKusick, Victor A.; Shinkai, Hiroshi; Hoyme, H. Eugene; Pyeritz, Reed E.; Byers, Peter H.

    2004-01-01

    Splice site mutations in the COL1A2 gene of type I collagen can give rise to forms of Ehlers-Danlos syndrome (EDS) because of partial or complete skipping of exon 6, as well as to mild, moderate, or lethal forms of osteogenesis imperfecta as a consequence of skipping of other exons. We identified three unrelated individuals with a rare recessively inherited form of EDS (characterized by joint hypermobility, skin hyperextensibility, and cardiac valvular defects); in two of them, COL1A2 messenger RNA (mRNA) instability results from compound heterozygosity for splice site mutations in the COL1A2 gene, and, in the third, it results from homozygosity for a nonsense codon. The splice site mutations led to use of cryptic splice donor sites, creation of a downstream premature termination codon, and extremely unstable mRNA. In the wild-type allele, the two introns (IVS11 and IVS24) in which these mutations occurred were usually spliced slowly in relation to their respective immediate upstream introns. In the mutant alleles, the upstream intron was removed, so that exon skipping could not occur. In the context of the mutation in IVS24, computer-generated folding of a short stretch of mRNA surrounding the mutation site demonstrated realignment of the relationships between the donor and acceptor sites that could facilitate use of a cryptic donor site. These findings suggest that the order of intron removal is an important variable in prediction of mutation outcome at splice sites and that folding of the nascent mRNA could be one element that contributes to determination of order of splicing. The complete absence of proα2(I) chains has the surprising effect of producing cardiac valvular disease without bone involvement. PMID:15077201

  1. Rare autosomal recessive cardiac valvular form of Ehlers-Danlos syndrome results from mutations in the COL1A2 gene that activate the nonsense-mediated RNA decay pathway.

    PubMed

    Schwarze, Ulrike; Hata, Ryu-Ichiro; McKusick, Victor A; Shinkai, Hiroshi; Hoyme, H Eugene; Pyeritz, Reed E; Byers, Peter H

    2004-05-01

    Splice site mutations in the COL1A2 gene of type I collagen can give rise to forms of Ehlers-Danlos syndrome (EDS) because of partial or complete skipping of exon 6, as well as to mild, moderate, or lethal forms of osteogenesis imperfecta as a consequence of skipping of other exons. We identified three unrelated individuals with a rare recessively inherited form of EDS (characterized by joint hypermobility, skin hyperextensibility, and cardiac valvular defects); in two of them, COL1A2 messenger RNA (mRNA) instability results from compound heterozygosity for splice site mutations in the COL1A2 gene, and, in the third, it results from homozygosity for a nonsense codon. The splice site mutations led to use of cryptic splice donor sites, creation of a downstream premature termination codon, and extremely unstable mRNA. In the wild-type allele, the two introns (IVS11 and IVS24) in which these mutations occurred were usually spliced slowly in relation to their respective immediate upstream introns. In the mutant alleles, the upstream intron was removed, so that exon skipping could not occur. In the context of the mutation in IVS24, computer-generated folding of a short stretch of mRNA surrounding the mutation site demonstrated realignment of the relationships between the donor and acceptor sites that could facilitate use of a cryptic donor site. These findings suggest that the order of intron removal is an important variable in prediction of mutation outcome at splice sites and that folding of the nascent mRNA could be one element that contributes to determination of order of splicing. The complete absence of pro alpha 2(I) chains has the surprising effect of producing cardiac valvular disease without bone involvement.

  2. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.

    PubMed

    Mazhab-Jafari, Mohammad T; Marshall, Christopher B; Smith, Matthew J; Gasmi-Seabrook, Geneviève M C; Stathopulos, Peter B; Inagaki, Fuyuhiko; Kay, Lewis E; Neel, Benjamin G; Ikura, Mitsuhiko

    2015-05-26

    K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction. Here, we used solution NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid bilayer-anchored K-RAS4B and its interactions with effector protein RAS-binding domains (RBDs). Unexpectedly, we found that the effector-binding region of activated K-RAS4B is occluded by interaction with the membrane in one of the NMR-observable, and thus highly populated, conformational states. Binding of the RAF isoform ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B from the occluded state to RBD-specific effector-bound states. Importantly, we found that two Noonan syndrome-associated mutations, K5N and D153V, which do not affect the GTPase cycle, relieve the occluded orientation by directly altering the electrostatics of two membrane interaction surfaces. Similarly, the most frequent KRAS oncogenic mutation G12D also drives K-RAS4B toward an exposed configuration. Further, the D153V and G12D mutations increase the rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B. We revealed a mechanism of K-RAS4B autoinhibition by membrane sequestration of its effector-binding site, which can be disrupted by disease-associated mutations. Stabilizing the autoinhibitory interactions between K-RAS4B and the membrane could be an attractive target for anticancer drug discovery.

  3. [Two novel pathogenic mutations of GAN gene identified in a patient with giant axonal neuropathy].

    PubMed

    Wang, Juan; Ma, Qingwen; Cai, Qin; Liu, Yanna; Wang, Wei; Ren, Zhaorui

    2016-06-01

    To explore the disease-causing mutations in a patient suspected for giant axonal neuropathy(GAN). Target sequence capture sequencing was used to screen potential mutations in genomic DNA extracted from peripheral blood sample of the patient. Sanger sequencing was applied to confirm the detected mutation. The mutation was verified among 400 GAN alleles from 200 healthy individuals by Sanger sequencing. The function of the mutations was predicted by bioinformatics analysis. The patient was identified as a compound heterozygote carrying two novel pathogenic GAN mutations, i.e., c.778G>T (p.Glu260Ter) and c.277G>A (p.Gly93Arg). Sanger sequencing confirmed that the c.778G>T (p.Glu260Ter) mutation was inherited from his father, while c.277G>A (p.Gly93Arg) was inherited from his mother. The same mutations was not found in the 200 healthy individuals. Bioinformatics analysis predicted that the two mutations probably caused functional abnormality of gigaxonin. Two novel GAN mutations were detected in a patient with GAN. Both mutations are pathogenic and can cause abnormalities of gigaxonin structure and function, leading to pathogenesis of GAN. The results may also offer valuable information for similar diseases.

  4. Aggregation Pathways of Native-Like Ubiquitin Promoted by Single-Point Mutation, Metal Ion Concentration, and Dielectric Constant of the Medium.

    PubMed

    Fermani, Simona; Calvaresi, Matteo; Mangini, Vincenzo; Falini, Giuseppe; Bottoni, Andrea; Natile, Giovanni; Arnesano, Fabio

    2018-03-15

    Ubiquitin-positive protein aggregates are biomarkers of neurodegeneration, but the molecular mechanism responsible for their formation and accumulation is still unclear. Possible aggregation pathways of human ubiquitin (hUb) promoted by both intrinsic and extrinsic factors, are here investigated. By a computational analysis, two different hUb dimers are indicated as possible precursors of amyloid-like structures, but their formation is disfavored by an electrostatic repulsion involving Glu16 and other carboxylate residues present at the dimer interface. Experimental data on the E16V mutant of hUb shows that this single-point mutation, although not affecting the overall protein conformation, promotes protein aggregation. It is sufficient to shift the same mutation by only two residues (E18V) to regain the behavior of wild-type hUb. The neutralization of Glu16 negative charge by a metal ion and a decrease of the dielectric constant of the medium by addition of trifluoroethanol (TFE), also promote hUb aggregation. The outcomes of this research have important implications for the prediction of physiological parameters that favor aggregate formation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Clinical outcomes of lung transplant recipients with telomerase mutations.

    PubMed

    Tokman, Sofya; Singer, Jonathan P; Devine, Megan S; Westall, Glen P; Aubert, John-David; Tamm, Michael; Snell, Gregory I; Lee, Joyce S; Goldberg, Hilary J; Kukreja, Jasleen; Golden, Jeffrey A; Leard, Lorriana E; Garcia, Christine K; Hays, Steven R

    2015-10-01

    Successful lung transplantation for patients with pulmonary fibrosis from telomerase mutations may be limited by systemic complications of telomerase dysfunction, including myelosuppression, cirrhosis, and malignancy. We describe clinical outcomes in 14 lung transplant recipients with telomerase mutations. Subjects underwent lung transplantation between February 2005 and April 2014 at 5 transplant centers. Data were abstracted from medical records, focusing on outcomes reflecting post-transplant treatment effects likely to be complicated by telomerase mutations. The median age of subjects was 60.5 years (interquartile range = 52.0-62.0), 64.3% were male, and the mean post-transplant observation time was 3.2 years (SD ± 2.9). A mutation in telomerase reverse transcriptase was present in 11 subjects, a telomerase RNA component mutation was present in 2 subjects, and an uncharacterized mutation was present in 1 subject. After lung transplantation, 10 subjects were leukopenic and 5 did not tolerate lymphocyte anti-proliferative agents. Six subjects developed recurrent lower respiratory tract infections, 7 developed acute cellular rejection (A1), and 4 developed chronic lung allograft dysfunction. Eight subjects developed at least 1 episode of acute renal failure and 10 developed chronic renal insufficiency. In addition, 3 subjects developed cancer. No subjects had cirrhosis. At data censorship, 13 subjects were alive. The clinical course for lung transplant recipients with telomerase mutations is complicated by renal disease, leukopenia with intolerance of lymphocyte anti-proliferative agents, and recurrent lower respiratory tract infections. In contrast, cirrhosis was absent, acute cellular rejection was mild, and development of chronic lung allograft dysfunction was comparable to other lung transplant recipients. Although it poses challenges, lung transplantation may be feasible for patients with pulmonary fibrosis from telomerase mutations. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  6. In situ mutation detection and visualization of intratumor heterogeneity for cancer research and diagnostics

    PubMed Central

    Grundberg, Ida; Kiflemariam, Sara; Mignardi, Marco; Imgenberg-Kreuz, Juliana; Edlund, Karolina; Micke, Patrick; Sundström, Magnus; Sjöblom, Tobias

    2013-01-01

    Current assays for somatic mutation analysis are based on extracts from tissue sections that often contain morphologically heterogeneous neoplastic regions with variable contents of genetically normal stromal and inflammatory cells, obscuring the results of the assays. We have developed an RNA-based in situ mutation assay that targets oncogenic mutations in a multiplex fashion that resolves the heterogeneity of the tissue sample. Activating oncogenic mutations are targets for a new generation of cancer drugs. For anti-EGFR therapy prediction, we demonstrate reliable in situ detection of KRAS mutations in codon 12 and 13 in colon and lung cancers in three different types of routinely processed tissue materials. High-throughput screening of KRAS mutation status was successfully performed on a tissue microarray. Moreover, we show how the patterns of expressed mutated and wild-type alleles can be studied in situ in tumors with complex combinations of mutated EGFR, KRAS and TP53. This in situ method holds great promise as a tool to investigate the role of somatic mutations during tumor progression and for prediction of response to targeted therapy. PMID:24280411

  7. Correlation of MFOLD-predicted DNA secondary structures with separation patterns obtained by capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis.

    PubMed

    Glavac, Damjan; Potocnik, Uros; Podpecnik, Darja; Zizek, Teofil; Smerkolj, Sava; Ravnik-Glavac, Metka

    2002-04-01

    We have studied 57 different mutations within three beta-globin gene promoter fragments with sizes 52 bp, 77 bp, and 193 bp by fluorescent capillary electrophoresis CE-SSCP analysis. For each mutation and wild type, energetically most-favorable predicted secondary structures were calculated for sense and antisense strands using the MFOLD DNA-folding algorithm in order to investigate if any correlation exists between predicted DNA structures and actual CE migration time shifts. The overall CE-SSCP detection rate was 100% for all mutations in three studied DNA fragments. For shorter 52 bp and 77 bp DNA fragments we obtained a positive correlation between the migration time shifts and difference in free energy values of predicted secondary structures at all temperatures. For longer 193 bp beta-globin gene fragments with 46 mutations MFOLD predicted different secondary structures for 89% of mutated strands at 25 degrees C and 40 degrees C. However, the magnitude of the mobility shifts did not necessarily correlate with their secondary structures and free energy values except for the sense strand at 40 degrees C where this correlation was statistically significant (r = 0.312, p = 0.033). Results of this study provided more direct insight into the mechanism of CE-SSCP and showed that MFOLD prediction could be helpful in making decisions about the running temperatures and in prediction of CE-SSCP data patterns, especially for shorter (50-100 bp) DNA fragments. Copyright 2002 Wiley-Liss, Inc.

  8. Increased phosphorylation of ERK1/2 is associated with worse chemotherapeutic outcome and a poor prognosis in advanced lung adenocarcinoma.

    PubMed

    Tsujino, Ichiro; Nakanishi, Yoko; Hiranuma, Hisato; Shimizu, Tetsuo; Hirotani, Yukari; Ohni, Sumie; Ouchi, Yasushi; Takahashi, Noriaki; Nemoto, Norimichi; Hashimoto, Shu

    2016-06-01

    Constitutive activation of extracellular signal-regulated kinase (ERK)1/2 pathway, that is activated by various stimuli including growth factors and oncogenic driver mutations, is observed in various cancers. However, the difference of the activated levels of the pathway is still unclear in clinical significances. The aim of this study was to investigate the effect of different ERK1/2 pathway activation, assessed by the expression levels of phosphorylated (p) ERK1/2, on the prognosis of advanced lung adenocarcinoma patients. Paraffin-embedded lung biopsy samples were obtained from 85 lung adenocarcinoma patients. Correlation between pERK1/2 expression levels that were assessed by immunohistochemistry (IHC) analysis and oncogenic driver mutation status, clinicopathological factors, outcome from standard anticancer therapies, and prognosis was investigated. Varying levels of pERK1/2 expression were observed in 68 (80.0 %) patients. The overall survival was significantly reduced in patients with higher pERK1/2 expression in comparison to those with lower expression levels (P = 0.03). In particular, higher pERK1/2 expression levels correlated with worse performance status and worse clinical outcome. Thus, the IHC analysis of pERK1/2 expression levels may predict patient prognosis in advanced lung adenocarcinoma. Inhibition of ERK1/2 pathway activated by various signals may improve the effects of standard chemotherapies and the clinical condition of patients with advanced cancer.

  9. Clinical Outcomes of Lung Transplantation in Patients with Telomerase Mutations

    PubMed Central

    Tokman, Sofya; Singer, Jonathan P.; Devine, Megan S.; Westall, Glen P.; Aubert, John-David; Tamm, Michael; Snell, Gregory I.; Lee, Joyce S.; Goldberg, Hilary J.; Kukreja, Jasleen; Golden, Jeffrey A.; Leard, Lorriana E.; Garcia, Christine K.; Hays, Steven R.

    2017-01-01

    Background Successful lung transplantation (LT) for patients with pulmonary fibrosis from telomerase mutations is limited by systemic complications of telomerase dysfunction including myelosuppression, cirrhosis, and malignancy. We describe clinical outcomes among 14 LT recipients with telomerase mutations. Methods Subjects underwent LT between February 2005 and April 2014 at 5 LT centers. We abstracted data from medical records, focusing on outcomes reflecting post-LT treatment effects likely to be complicated by telomerase mutations. Results The median age of subjects was 60.5 years (IQR 52.0–62.0), 64.3% were male, and the mean post-LT observation time was 3.2 years (SD ±2.9). Eleven subjects had a mutation in telomerase reverse transcriptase, 2 in telomerase RNA component, and 1 had an uncharacterized mutation. Ten subjects were leukopenic post-LT; leukopenia prompted cessation of mycophenolate mofetil in 5 and treatment with filgrastim in 4. Six subjects had recurrent lower respiratory tract infections (LRTI), 7 had acute cellular rejection (ACR) (A1), and 4 developed chronic lung allograft dysfunction (CLAD). Ten LT recipients developed chronic renal insufficiency and 8 experienced acute, reversible renal failure. Three developed cancer, none had cirrhosis. Thirteen subjects were alive at data censorship. Conclusions The clinical course for LT recipients with telomerase mutations is complicated by renal disease, leukopenia prompting a change in the immunosuppressive regimen, and recurrent LTRI. In contrast, cirrhosis was absent, ACR was mild, and development of CLAD was comparable to other LT populations. While posing challenges, lung transplantation may be feasible for patients with pulmonary fibrosis due to telomerase mutations. PMID:26169663

  10. Prevalence and Prognostic Impact of Wilms' Tumor 1 (WT1) Gene, Including SNP rs16754 in Cytogenetically Normal Acute Myeloblastic Leukemia (CN-AML): An Iranian Experience.

    PubMed

    Toogeh, Gholamreza; Ramzi, Mani; Faranoush, Mohammad; Amirizadeh, Naser; Haghpanah, Sezaneh; Moghadam, Mohammad; Cohan, Nader

    2016-03-01

    The aim of this study was to evaluate the effect of Wilms' tumor 1 (WT1) gene mutations in adult cytogenetically normal acute myeloblastic leukemia (CN-AML) patients on survival and clinical outcome. A total of 88 untreated Iranian adult patients with CN-AML were selected as a study group. Exons 7 (including the SNP rs16754), 8, and 9 as a WT1 gene hotspot region were evaluated by polymerase chain reaction and direct sequencing for detection of mutations. Response to treatment and clinical outcome including overall survival (OS) and disease-free survival (DFS) were evaluated according to WT1 gene mutational status. WT1 gene mutations were found in 12.5% of patients, most of which were found in exon 7. Complete remission was lower and relapse was higher in patients with WT1 gene mutation compared with WT1 gene wild type patients. OS and DFS was significantly lower in patients with WT1 gene mutation compared with patients with WT1 gene wild type (P < .001). Also, we did not find any significant effects of SNP rs16754 in exon 7 on clinical outcome and survival in patients with CN-AML. WT1 gene mutations are a predictor indicator of a poor prognosis factor in CN-AML patients. It is recommended that WT1 gene mutations be included in the molecular testing panel in order to better diagnose and confirm their prognostic significance for better management and treatment strategy. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. PIK3CA missense mutation is associated with unfavorable outcome in grade 3 endometrioid carcinoma but not in serous endometrial carcinoma.

    PubMed

    McIntyre, John B; Nelson, Gregg S; Ghatage, Prafull; Morris, Don; Duggan, Máire A; Lee, Cheng-Han; Doll, Corinne M; Köbel, Martin

    2014-01-01

    To evaluate the outcome association of PIK3CA mutational status within histological types of rigorously classified high-grade endometrial carcinomas. We assessed PIK3CA mutational status in exon 9 and exon 20 hot spots by Sanger sequencing of DNA derived from formalin fixed paraffin embedded tissue of 57 grade 3 endometrioid, 26 serous, 11 clear cell and 5 dedifferentiated carcinomas. We correlated PIK3CA mutation status with clinicopathological and other molecular parameters. Univariate and multivariate disease specific survival analysis was performed using Kaplan-Meier and Cox regression analyses. PIK3CA exon 9 or exon 20 missense mutations were identified in 20 of 99 (20%) high-grade endometrial carcinomas without significant difference across histological types (p=0.22). Presence of PIK3CA exon 9 or exon 20 missense mutations was associated with shorter disease specific survival within grade 3 endometrioid (p=0.0029) but not endometrial serous (p=0.57) carcinoma based on univariate analysis. Within grade 3 endometrioid carcinoma, PIK3CA exon 9 or exon 20 missense mutations were more commonly observed in cases that were deficient for mismatch repair protein expression (p=0.0058) and showed loss of ARID1A expression (p=0.037). PIK3CA exon 9 or exon 20 missense mutations are present across all histological types of high-grade endometrial carcinomas but a significant outcome association is only seen in grade 3 endometrioid carcinoma, suggesting a greater biological importance in this tumor type. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Preventing the transmission of pathogenic mitochondrial DNA mutations: Can we achieve long-term benefits from germ-line gene transfer?

    PubMed

    Samuels, David C; Wonnapinij, Passorn; Chinnery, Patrick F

    2013-03-01

    Mitochondrial medicine is one of the few areas of genetic disease where germ-line transfer is being actively pursued as a treatment option. All of the germ-line transfer methods currently under development involve some carry-over of the maternal mitochondrial DNA (mtDNA) heteroplasmy, potentially delivering the pathogenic mutation to the offspring. Rapid changes in mtDNA heteroplasmy have been observed within a single generation, and so any 'leakage' of mutant mtDNA could lead to mtDNA disease in future generations, compromising the reproductive health of the first generation, and leading to repeated interventions in subsequent generations. To determine whether this is a real concern, we developed a model of mtDNA heteroplasmy inheritance by studying 87 mother-child pairs, and predicted the likely outcome of different levels of 'mutant mtDNA leakage' on subsequent maternal generations. This showed that, for a clinical threshold of 60%, reducing the proportion of mutant mtDNA to <5% dramatically reduces the chance of disease recurrence in subsequent generations, but transmitting >5% mutant mtDNA was associated with a significant chance of disease recurrence. Mutations with a lower clinical threshold were associated with a higher risk of recurrence. Our findings provide reassurance that, at least from an mtDNA perspective, methods currently under development have the potential to effectively eradicate pathogenic mtDNA mutations from subsequent generations.

  13. The role of molecular testing and enzyme analysis in the management of hypomorphic citrullinemia.

    PubMed

    Dimmock, David P; Trapane, Pamela; Feigenbaum, Annette; Keegan, Catherine E; Cederbaum, Stephen; Gibson, James; Gambello, Michael J; Vaux, Keith; Ward, Patricia; Rice, Gregory M; Wolff, Jon A; O'Brien, William E; Fang, Ping

    2008-11-15

    Expanded newborn screening detects patients with modest elevations in citrulline; however it is currently unclear how to treat these patients and how to counsel their parents. In order to begin to address these issues, we compared the clinical, biochemical, and molecular features of 10 patients with mildly elevated citrulline levels. Three patients presented with clinical illness whereas seven came to attention as a result of expanded newborn screening. One patient presented during pregnancy and responded promptly to IV sodium phenylacetate/sodium benzoate and arginine therapy with no long-term adverse effects on mother or fetus. Two children presented with neurocognitive dysfunction, one of these responded dramatically to dietary protein reduction. ASS enzyme activity was not deficient in all patients with biallelic mutations suggesting this test cannot exclude the ASS1 locus in patients with mildly elevated plasma citrulline. Conversely, all symptomatic patients who were tested had deficient activity. We describe four unreported mutations (p.Y291S, p.R272H, p.F72L, and p.L88I), as well as the common p.W179R mutation. In silico algorithms were inconsistent in predicting the pathogenicity of mutations. The cognitive benefit in one patient of protein restriction and the lack of adverse outcome in seven others restricted from birth, suggest a role for protein restriction and continued monitoring to prevent neurocognitive dysfunction. (c) 2008 Wiley-Liss, Inc.

  14. Pathway level alterations rather than mutations in single genes predict response to HER2-targeted therapies in the neo-ALTTO trial.

    PubMed

    Shi, W; Jiang, T; Nuciforo, P; Hatzis, C; Holmes, E; Harbeck, N; Sotiriou, C; Peña, L; Loi, S; Rosa, D D; Chia, S; Wardley, A; Ueno, T; Rossari, J; Eidtmann, H; Armour, A; Piccart-Gebhart, M; Rimm, D L; Baselga, J; Pusztai, L

    2017-01-01

    We performed whole-exome sequencing of pretreatment biopsies and examined whether genome-wide metrics of overall mutational load, clonal heterogeneity or alterations at variant, gene, and pathway levels are associated with treatment response and survival. Two hundred and three biopsies from the NeoALTTO trial were analyzed. Mutations were called with MuTect, and Strelka, using pooled normal DNA. Associations between DNA alterations and outcome were evaluated by logistic and Cox-proportional hazards regression. There were no recurrent single gene mutations significantly associated with pathologic complete response (pCR), except PIK3CA [odds ratio (OR) = 0.42, P = 0.0185]. Mutations in 33 of 714 pathways were significantly associated with response, but different genes were affected in different individuals. PIK3CA was present in 23 of these pathways defining a ‘trastuzumab resistance-network’ of 459 genes. Cases with mutations in this network had low pCR rates to trastuzumab (2/50, 4%) compared with cases with no mutations (9/16, 56%), OR = 0.035; P < 0.001. Mutations in the ‘Regulation of RhoA activity’ pathway were associated with higher pCR rate to lapatinib (OR = 14.8, adjusted P = 0.001), lapatinib + trastuzumab (OR = 3.0, adjusted P = 0.09), and all arms combined (OR = 3.77, adjusted P = 0.02). Patients (n = 124) with mutations in the trastuzumab resistance network but intact RhoA pathway had 2% (1/41) pCR rate with trastuzumab alone (OR = 0.026, P = 0.001) but adding lapatinib increased pCR rate to 45% (17/38, OR = 1.68, P = 0.3). Patients (n = 46) who had no mutations in either gene set had 6% pCR rate (1/15) with lapatinib, but had the highest pCR rate, 52% (8/15) with trastuzumab alone. Mutations in the RhoA pathway are associated with pCR to lapatinib and mutations in a PIK3CA-related network are associated with resistance to trastuzumab. The combined mutation status of these two pathways could define patients with very low response rate to trastuzumab alone that can be augmented by adding lapatinib or substituting trastuzumab with lapatinib.

  15. Computational crystallization

    PubMed Central

    Altan, Irem; Charbonneau, Patrick; Snell, Edward H.

    2016-01-01

    Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed. PMID:26792536

  16. Social Learning in the Ultimatum Game

    PubMed Central

    Zhang, Boyu

    2013-01-01

    In the ultimatum game, two players divide a sum of money. The proposer suggests how to split and the responder can accept or reject. If the suggestion is rejected, both players get nothing. The rational solution is that the responder accepts even the smallest offer but humans prefer fair share. In this paper, we study the ultimatum game by a learning-mutation process based on quantal response equilibrium, where players are assumed boundedly rational and make mistakes when estimating the payoffs of strategies. Social learning is never stabilized at the fair outcome or the rational outcome, but leads to oscillations from offering 40 percent to 50 percent. To be precise, there is a clear tendency to increase the mean offer if it is lower than 40 percent, but will decrease when it reaches the fair offer. If mutations occur rarely, fair behavior is favored in the limit of local mutation. If mutation rate is sufficiently high, fairness can evolve for both local mutation and global mutation. PMID:24023950

  17. Chromatin remodelling and DNA repair genes are frequently mutated in endometrioid endometrial carcinoma.

    PubMed

    García-Sanz, Pablo; Triviño, Juan Carlos; Mota, Alba; Pérez López, María; Colás, Eva; Rojo-Sebastián, Alejandro; García, Ángel; Gatius, Sonia; Ruiz, María; Prat, Jaime; López-López, Rafael; Abal, Miguel; Gil-Moreno, Antonio; Reventós, Jaume; Matias-Guiu, Xavier; Moreno-Bueno, Gema

    2017-04-01

    In developed countries, endometrial carcinoma is the most common cancer that affects the female genital tract. Endometrial carcinoma is divided into two main histological types, type I or endometrioid and type II or non-endometrioid, each of which have characteristic, although not exclusive, molecular alterations and mutational profiles. Nevertheless, information about the implication and relevance of some of these genes in this disease is lacking. We sought here to identify new recurrently mutated genes in endometrioid cancers that play a role in tumourigenesis and that influence the clinical outcome. We focused on low-grade, non-ultramutated tumours as these tumours have a worse prognosis than the ultramutated POLE-positive endometrioid endometrial carcinomas (EECs). We performed exome-sequencing of 11 EECs with matched normal tissue and subsequently validated 15 candidate genes in 76 samples. For the first time, we show that mutations in chromatin remodelling-related genes (KMT2D, KMT2C, SETD1B and BCOR) and in DNA-repair-related genes (BRCA1, BRCA2, RAD50 and CHD4) are frequent in this subtype of endometrial cancer. The alterations to these genes occurred with frequencies ranging from 35.5% for KMT2D to 10.5% for BRCA1 and BCOR, with some showing a tendency toward co-occurrence (RAD50-KMT2D and RAD50-SETD1B). All these genes harboured specific mutational hotspots. In addition, the mutational status of KMT2C, KMT2D and SETD1B helps to predict the degree of myometrial invasion, a critical prognostic feature. These results highlight the possible implication of these genes in this disease, creating opportunities for new therapeutic approaches. © 2016 UICC.

  18. Computational design of thermostabilizing point mutations for G protein-coupled receptors

    PubMed Central

    Popov, Petr; Peng, Yao; Shen, Ling; Stevens, Raymond C; Cherezov, Vadim; Liu, Zhi-Jie

    2018-01-01

    Engineering of GPCR constructs with improved thermostability is a key for successful structural and biochemical studies of this transmembrane protein family, targeted by 40% of all therapeutic drugs. Here we introduce a comprehensive computational approach to effective prediction of stabilizing mutations in GPCRs, named CompoMug, which employs sequence-based analysis, structural information, and a derived machine learning predictor. Tested experimentally on the serotonin 5-HT2C receptor target, CompoMug predictions resulted in 10 new stabilizing mutations, with an apparent thermostability gain ~8.8°C for the best single mutation and ~13°C for a triple mutant. Binding of antagonists confers further stabilization for the triple mutant receptor, with total gains of ~21°C as compared to wild type apo 5-HT2C. The predicted mutations enabled crystallization and structure determination for the 5-HT2C receptor complexes in inactive and active-like states. While CompoMug already shows high 25% hit rate and utility in GPCR structural studies, further improvements are expected with accumulation of structural and mutation data. PMID:29927385

  19. Impact of epidermal growth factor receptor gene expression level on clinical outcomes in epidermal growth factor receptor mutant lung adenocarcinoma patients taking first-line epidermal growth factor receptor-tyrosine kinase inhibitors.

    PubMed

    Chang, Huang-Chih; Chen, Yu-Mu; Tseng, Chia-Cheng; Huang, Kuo-Tung; Wang, Chin-Chou; Chen, Yung-Che; Lai, Chien-Hao; Fang, Wen-Feng; Kao, Hsu-Ching; Lin, Meng-Chih

    2017-03-01

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are first-choice treatments for advanced non-small-cell lung cancer patients harboring EGFR mutations. Although EGFR mutations are strongly predictive of patients' outcomes and their response to treatment with EGFR-TKIs, early failure of first-line therapy with EGFR-TKIs in patients with EGFR mutations is not rare. Besides several clinical factors influencing EGFR-TKI efficacies studied earlier such as the Eastern Cooperative Oncology Group performance status or uncommon mutation, we would like to see whether semi-quantify EGFR mutation gene expression calculated by 2 -ΔΔct was a prognostic factor in EGFR-mutant non-small cell lung cancer patients receiving first-line EGFR-TKIs. This retrospective study reviews 926 lung cancer patients diagnosed from January 2011 to October 2013 at the Kaohsiung Chang Gung Memorial Hospital in Taiwan. Of 224 EGFR-mutant adenocarcinoma patients, 148 patients who had 2 -ΔΔct data were included. The best cutoff values of 2 -ΔΔct for in-frame deletions in exon 19 (19 deletion) and a position 858 substituted from leucine (L) to an arginine (R) in exon 21 (L858R) were determined using receiver operating characteristic curves. Patients were divided into high and low 2 -ΔΔct expression based on the above cutoff level. The best cutoff point of 2 -ΔΔct value of 19 deletion and L858R was 31.1 and 104.7, respectively. In all, 92 (62.1%) patients showed high 2 -ΔΔct expression and 56 patients (37.9%) low 2 -ΔΔct expression. The mean age was 65.6 years. Progression-free survival of 19 deletion mutant patients with low versus high expression level was 17.07 versus 12.04 months (P = 0.004), respectively. Progression-free survival of L858 mutant patients was 13.75 and 7.96 months (P = 0.008), respectively. EGFR-mutant lung adenocarcinoma patients with lower EGFR gene expression had longer progression-free survival duration without interfering overall survival.

  20. Clinicopathologic Significance of Mismatch Repair Defects in Endometrial Cancer: An NRG Oncology/Gynecologic Oncology Group Study

    PubMed Central

    McMeekin, D. Scott; Tritchler, David L.; Cohn, David E.; Mutch, David G.; Lankes, Heather A.; Geller, Melissa A.; Powell, Matthew A.; Backes, Floor J.; Landrum, Lisa M.; Zaino, Richard; Broaddus, Russell D.; Ramirez, Nilsa; Gao, Feng; Ali, Shamshad; Darcy, Kathleen M.; Pearl, Michael L.; DiSilvestro, Paul A.; Lele, Shashikant B.

    2016-01-01

    Purpose The clinicopathologic significance of mismatch repair (MMR) defects in endometrioid endometrial cancer (EEC) has not been definitively established. We undertook tumor typing to classify MMR defects to determine if MMR status is prognostic or predictive. Methods Primary EECs from NRG/GOG0210 patients were assessed for microsatellite instability (MSI), MLH1 methylation, and MMR protein expression. Each tumor was assigned to one of four MMR classes: normal, epigenetic defect, probable mutation (MMR defect not attributable to MLH1 methylation), or MSI-low. The relationships between MMR classes and clinicopathologic variables were assessed using contingency table tests and Cox proportional hazard models. Results A total of 1,024 tumors were assigned to MMR classes. Epigenetic and probable mutations in MMR were significantly associated with higher grade and more frequent lymphovascular space invasion. Epigenetic defects were more common in patients with higher International Federation of Gynecology and Obstetrics stage. Overall, there were no differences in outcomes. Progression-free survival was, however, worse for women whose tumors had epigenetic MMR defects compared with the MMR normal group (hazard ratio, 1.37; P < .05; 95% CI, 1.00 to 1.86). An exploratory analysis of interaction between MMR status and adjuvant therapy showed a trend toward improved progression-free survival for probable MMR mutation cases. Conclusion MMR defects in EECs are associated with a number of well-established poor prognostic indicators. Women with tumors that had MMR defects were likely to have higher-grade cancers and more frequent lymphovascular space invasion. Surprisingly, outcomes in these patients were similar to patients with MMR normal tumors, suggesting that MMR defects may counteract the effects of negative prognostic factors. Altered immune surveillance of MMR-deficient tumors, and other host/tumor interactions, is likely to determine outcomes for patients with MMR-deficient tumors. PMID:27325856

  1. Clinicopathologic Significance of Mismatch Repair Defects in Endometrial Cancer: An NRG Oncology/Gynecologic Oncology Group Study.

    PubMed

    McMeekin, D Scott; Tritchler, David L; Cohn, David E; Mutch, David G; Lankes, Heather A; Geller, Melissa A; Powell, Matthew A; Backes, Floor J; Landrum, Lisa M; Zaino, Richard; Broaddus, Russell D; Ramirez, Nilsa; Gao, Feng; Ali, Shamshad; Darcy, Kathleen M; Pearl, Michael L; DiSilvestro, Paul A; Lele, Shashikant B; Goodfellow, Paul J

    2016-09-01

    The clinicopathologic significance of mismatch repair (MMR) defects in endometrioid endometrial cancer (EEC) has not been definitively established. We undertook tumor typing to classify MMR defects to determine if MMR status is prognostic or predictive. Primary EECs from NRG/GOG0210 patients were assessed for microsatellite instability (MSI), MLH1 methylation, and MMR protein expression. Each tumor was assigned to one of four MMR classes: normal, epigenetic defect, probable mutation (MMR defect not attributable to MLH1 methylation), or MSI-low. The relationships between MMR classes and clinicopathologic variables were assessed using contingency table tests and Cox proportional hazard models. A total of 1,024 tumors were assigned to MMR classes. Epigenetic and probable mutations in MMR were significantly associated with higher grade and more frequent lymphovascular space invasion. Epigenetic defects were more common in patients with higher International Federation of Gynecology and Obstetrics stage. Overall, there were no differences in outcomes. Progression-free survival was, however, worse for women whose tumors had epigenetic MMR defects compared with the MMR normal group (hazard ratio, 1.37; P < .05; 95% CI, 1.00 to 1.86). An exploratory analysis of interaction between MMR status and adjuvant therapy showed a trend toward improved progression-free survival for probable MMR mutation cases. MMR defects in EECs are associated with a number of well-established poor prognostic indicators. Women with tumors that had MMR defects were likely to have higher-grade cancers and more frequent lymphovascular space invasion. Surprisingly, outcomes in these patients were similar to patients with MMR normal tumors, suggesting that MMR defects may counteract the effects of negative prognostic factors. Altered immune surveillance of MMR-deficient tumors, and other host/tumor interactions, is likely to determine outcomes for patients with MMR-deficient tumors. © 2016 by American Society of Clinical Oncology.

  2. Cerebral amyloidosis associated with cognitive decline in autosomal dominant Alzheimer disease

    PubMed Central

    Wang, Fen; Gordon, Brian A.; Ryman, Davis C.; Ma, Shengmei; Xiong, Chengjie; Hassenstab, Jason; Goate, Alison; Fagan, Anne M.; Cairns, Nigel J.; Marcus, Daniel S.; McDade, Eric; Ringman, John M.; Graff-Radford, Neill R.; Ghetti, Bernardino; Farlow, Martin R.; Sperling, Reisa; Salloway, Steve; Schofield, Peter R.; Masters, Colin L.; Martins, Ralph N.; Rossor, Martin N.; Jucker, Mathias; Danek, Adrian; Förster, Stefan; Lane, Christopher A.S.; Morris, John C.; Bateman, Randall J.

    2015-01-01

    Objective: To investigate the associations of cerebral amyloidosis with concurrent cognitive performance and with longitudinal cognitive decline in asymptomatic and symptomatic stages of autosomal dominant Alzheimer disease (ADAD). Methods: Two hundred sixty-three participants enrolled in the Dominantly Inherited Alzheimer Network observational study underwent neuropsychological evaluation as well as PET scans with Pittsburgh compound B. One hundred twenty-one participants completed at least 1 follow-up neuropsychological evaluation. Four composite cognitive measures representing global cognition, episodic memory, language, and working memory were generated using z scores from a battery of 13 standard neuropsychological tests. General linear mixed-effects models were used to investigate the relationship between baseline cerebral amyloidosis and baseline cognitive performance and whether baseline cerebral amyloidosis predicts cognitive change over time (mean follow-up 2.32 years ± 0.92, range 0.89–4.19) after controlling for estimated years from expected symptom onset, APOE ε4 allelic status, and education. Results: In asymptomatic mutation carriers, amyloid burden was not associated with baseline cognitive functioning but was significantly predictive of longitudinal decline in episodic memory. In symptomatic mutation carriers, cerebral amyloidosis was correlated with worse baseline performance in multiple cognitive composites and predicted greater decline over time in global cognition, working memory, and Mini-Mental State Examination. Conclusions: Cerebral amyloidosis predicts longitudinal episodic memory decline in presymptomatic ADAD and multidomain cognitive decline in symptomatic ADAD. These findings imply that amyloidosis in the brain is an indicator of early cognitive decline and provides a useful outcome measure for early assessment and prevention treatment trials. PMID:26245925

  3. Cerebral amyloidosis associated with cognitive decline in autosomal dominant Alzheimer disease.

    PubMed

    Wang, Fen; Gordon, Brian A; Ryman, Davis C; Ma, Shengmei; Xiong, Chengjie; Hassenstab, Jason; Goate, Alison; Fagan, Anne M; Cairns, Nigel J; Marcus, Daniel S; McDade, Eric; Ringman, John M; Graff-Radford, Neill R; Ghetti, Bernardino; Farlow, Martin R; Sperling, Reisa; Salloway, Steve; Schofield, Peter R; Masters, Colin L; Martins, Ralph N; Rossor, Martin N; Jucker, Mathias; Danek, Adrian; Förster, Stefan; Lane, Christopher A S; Morris, John C; Benzinger, Tammie L S; Bateman, Randall J

    2015-09-01

    To investigate the associations of cerebral amyloidosis with concurrent cognitive performance and with longitudinal cognitive decline in asymptomatic and symptomatic stages of autosomal dominant Alzheimer disease (ADAD). Two hundred sixty-three participants enrolled in the Dominantly Inherited Alzheimer Network observational study underwent neuropsychological evaluation as well as PET scans with Pittsburgh compound B. One hundred twenty-one participants completed at least 1 follow-up neuropsychological evaluation. Four composite cognitive measures representing global cognition, episodic memory, language, and working memory were generated using z scores from a battery of 13 standard neuropsychological tests. General linear mixed-effects models were used to investigate the relationship between baseline cerebral amyloidosis and baseline cognitive performance and whether baseline cerebral amyloidosis predicts cognitive change over time (mean follow-up 2.32 years ± 0.92, range 0.89-4.19) after controlling for estimated years from expected symptom onset, APOE ε4 allelic status, and education. In asymptomatic mutation carriers, amyloid burden was not associated with baseline cognitive functioning but was significantly predictive of longitudinal decline in episodic memory. In symptomatic mutation carriers, cerebral amyloidosis was correlated with worse baseline performance in multiple cognitive composites and predicted greater decline over time in global cognition, working memory, and Mini-Mental State Examination. Cerebral amyloidosis predicts longitudinal episodic memory decline in presymptomatic ADAD and multidomain cognitive decline in symptomatic ADAD. These findings imply that amyloidosis in the brain is an indicator of early cognitive decline and provides a useful outcome measure for early assessment and prevention treatment trials. © 2015 American Academy of Neurology.

  4. Prognostic and predictive value of VHL gene alteration in renal cell carcinoma: a meta-analysis and review

    PubMed Central

    Kim, Bum Jun; Kim, Jung Han; Kim, Hyeong Su; Zang, Dae Young

    2017-01-01

    The von Hippel-Lindau (VHL) gene is often inactivated in sporadic renal cell carcinoma (RCC) by mutation or promoter hypermethylation. The prognostic or predictive value of VHL gene alteration is not well established. We conducted this meta-analysis to evaluate the association between the VHL alteration and clinical outcomes in patients with RCC. We searched PUBMED, MEDLINE and EMBASE for articles including following terms in their titles, abstracts, or keywords: ‘kidney or renal’, ‘carcinoma or cancer or neoplasm or malignancy’, ‘von Hippel-Lindau or VHL’, ‘alteration or mutation or methylation’, and ‘prognostic or predictive’. There were six studies fulfilling inclusion criteria and a total of 633 patients with clear cell RCC were included in the study: 244 patients who received anti-vascular endothelial growth factor (VEGF) therapy in the predictive value analysis and 419 in the prognostic value analysis. Out of 663 patients, 410 (61.8%) had VHL alteration. The meta-analysis showed no association between the VHL gene alteration and overall response rate (relative risk = 1.47 [95% CI, 0.81-2.67], P = 0.20) or progression free survival (hazard ratio = 1.02 [95% CI, 0.72-1.44], P = 0.91) in patients with RCC who received VEGF-targeted therapy. There was also no correlation between the VHL alteration and overall survival (HR = 0.80 [95% CI, 0.56-1.14], P = 0.21). In conclusion, this meta-analysis indicates that VHL gene alteration has no prognostic or predictive value in patients with clear cell RCC. PMID:28103578

  5. The Role of Balanced Training and Testing Data Sets for Binary Classifiers in Bioinformatics

    PubMed Central

    Wei, Qiong; Dunbrack, Roland L.

    2013-01-01

    Training and testing of conventional machine learning models on binary classification problems depend on the proportions of the two outcomes in the relevant data sets. This may be especially important in practical terms when real-world applications of the classifier are either highly imbalanced or occur in unknown proportions. Intuitively, it may seem sensible to train machine learning models on data similar to the target data in terms of proportions of the two binary outcomes. However, we show that this is not the case using the example of prediction of deleterious and neutral phenotypes of human missense mutations in human genome data, for which the proportion of the binary outcome is unknown. Our results indicate that using balanced training data (50% neutral and 50% deleterious) results in the highest balanced accuracy (the average of True Positive Rate and True Negative Rate), Matthews correlation coefficient, and area under ROC curves, no matter what the proportions of the two phenotypes are in the testing data. Besides balancing the data by undersampling the majority class, other techniques in machine learning include oversampling the minority class, interpolating minority-class data points and various penalties for misclassifying the minority class. However, these techniques are not commonly used in either the missense phenotype prediction problem or in the prediction of disordered residues in proteins, where the imbalance problem is substantial. The appropriate approach depends on the amount of available data and the specific problem at hand. PMID:23874456

  6. Mutation predicts 40 million years of fly wing evolution.

    PubMed

    Houle, David; Bolstad, Geir H; van der Linde, Kim; Hansen, Thomas F

    2017-08-24

    Mutation enables evolution, but the idea that adaptation is also shaped by mutational variation is controversial. Simple evolutionary hypotheses predict such a relationship if the supply of mutations constrains evolution, but it is not clear that constraints exist, and, even if they do, they may be overcome by long-term natural selection. Quantification of the relationship between mutation and phenotypic divergence among species will help to resolve these issues. Here we use precise data on over 50,000 Drosophilid fly wings to demonstrate unexpectedly strong positive relationships between variation produced by mutation, standing genetic variation, and the rate of evolution over the last 40 million years. Our results are inconsistent with simple constraint hypotheses because the rate of evolution is very low relative to what both mutational and standing variation could allow. In principle, the constraint hypothesis could be rescued if the vast majority of mutations are so deleterious that they cannot contribute to evolution, but this also requires the implausible assumption that deleterious mutations have the same pattern of effects as potentially advantageous ones. Our evidence for a strong relationship between mutation and divergence in a slowly evolving structure challenges the existing models of mutation in evolution.

  7. Neonatal screening of cystic fibrosis: diagnostic problems with CFTR mild mutations.

    PubMed

    Roussey, M; Le Bihannic, A; Scotet, V; Audrezet, M P; Blayau, M; Dagorne, M; David, V; Deneuville, E; Giniès, J L; Laurans, M; Moisan-Petit, V; Rault, G; Vigneron, P; Férec, C

    2007-08-01

    Newborn screening (NBS) of cystic fibrosis (CF) was implemented throughout the whole of France in 2002, but it had been established earlier in three western French regions. It can reveal atypical CF with one or two known CFTR mild mutations, with an uncertain evolution. The sweat test can be normal or borderline. In Brittany, from 1989 to 2004, 196 CF cases were diagnosed (1/2885 births). The incidence of atypical CF diagnosed by NBS is 9.7% (19 from 196). The outcome of 17 (2 lost of view) has been studied, with 9 other atypical CF cases diagnosed by NBS in two other regions. The follow-up period extends from 0.25 to 19.8 years (NBS implemented in Normandy in 1980) with mean age 4.6 years. The most frequent mild mutation is R117H ISV8-7T (50%). At the time of the last visit, nutritional status is normal. All these CF patients are pancreatic sufficient. Only one patient exhibits respiratory infections, whereas 7 others have them intermittently. Two of them had intermittent Pseudomonas aeruginosa colonization at 2.8 and 6.5 years. Mean Shwachman score is 96.7, mean Brasfield score is 22.8. Eight children have had lung function tests (mean follow-up of 10 years): mean FVC was 99% of predicted, mean FEV1 101%, but one of them has FEV1 of 48%. Predicting the phenotype of these atypical CF patients remains difficult, thus complicating any genetic counselling. A regular clinical evaluation is necessary, if possible by a CF unit, because CF symptoms may appear later.

  8. Presence of pleural effusion is associated with a poor prognosis in patients with epidermal growth factor receptor-mutated lung cancer receiving tyrosine kinase inhibitors as first-line treatment.

    PubMed

    Wang, Tso-Fu; Chu, Sung-Chao; Lee, Jen-Jyh; Yang, Gee-Gwo; Huang, Wei-Han; Chang, En-Ting; Low, Tissot; Wu, Yi-Feng; Kao, Ruey-Ho; Lin, Chih-Bin

    2017-08-01

    This study was conducted to evaluate the effect of clinical factors on the treatment outcomes of lung cancer patients with active epidermal growth factor receptor (EGFR) mutations treated by first-line tyrosine kinase inhibitors (TKIs). Patients of stage IIIb or IV lung adenocarcinoma harboring mutated EGFR were enrolled between March 2010 and June 2014 and followed up until December 2015. The effects of various clinical features, such as age, sex, smoking history, EGFR mutation types, TKIs used, presence of pleural effusion, metastatic sites on progression-free survival (PFS) and overall survival (OS), were analyzed retrospectively. A total of 104 patients were included in this study. Patients with pleural effusion at initial diagnosis had significantly shorter PFS and OS than those without pleural effusion (median PFS: 8.2 months vs 15.3 months, P = 0.0004; median OS: 16.3 months vs 28.2 months, P = 0.0003). Univariate analysis revealed that being male or a smoker was associated with short PFS, whereas smoking history, bony metastasis and malignant pleural effusion were associated with poor OS. Stepwise multivariate Cox regression analysis showed that the presence of pleural effusion and different TKI use were independent prognostic factors for PFS [hazard ratio [HR] = 2.50 (95% confidence interval [CI], 1.53-4.10), P = 0.0003 and HR = 0.55 (95% CI, 0.31-0.97), P = 0.0396, respectively], whereas the presence of pleural effusion and liver metastasis were associated with poor OS [HR = 2.79 (95% CI: 1.46-5.30), P = 0.0018 and HR = 2.12 (95% CI, 1.02-4.40), P = 0.0440, respectively]. The presence of pleural effusion predicts poor PFS and OS in lung adenocarcinoma patients receiving TKIs as the first-line treatment. Additional studies are warranted to elucidate the underlying mechanisms and determine novel strategies for improving the outcome of these patients. © 2017 John Wiley & Sons Australia, Ltd.

  9. Cost-effectiveness analysis of EGFR mutation testing and gefitinib as first-line therapy for non-small cell lung cancer.

    PubMed

    Narita, Yusuke; Matsushima, Yukiko; Shiroiwa, Takeru; Chiba, Koji; Nakanishi, Yoichi; Kurokawa, Tatsuo; Urushihara, Hisashi

    2015-10-01

    The combination use of gefitinib and epidermal growth factor receptor (EGFR) testing is a standard first-line therapy for patients with non-small cell lung cancer (NSCLC). Here, we examined the cost-effectiveness of this approach in Japan. Our analysis compared the 'EGFR testing strategy', in which EGFR mutation testing was performed before treatment and patients with EGFR mutations received gefitinib while those without mutations received standard chemotherapy, to the 'no-testing strategy,' in which genetic testing was not conducted and all patients were treated with standard chemotherapy. A three-state Markov model was constructed to predict expected costs and outcomes for each strategy. We included only direct medical costs from the healthcare payer's perspective. Outcomes in the model were based on those reported in the Iressa Pan-Asia Study (IPASS). The incremental cost-effectiveness ratio (ICER) was calculated using quality-adjusted life-years (QALYs) gained. Sensitivity and scenario analyses were conducted. The incremental cost and effectiveness per patient of the 'EGFR testing strategy' compared to the 'no-testing strategy' was estimated to be approximately JP¥122,000 (US$1180; US$1=JP¥104 as of February 2014) and 0.036 QALYs. The ICER was then calculated to be around JP¥3.38 million (US$32,500) per QALY gained. These results suggest that the 'EGFR testing strategy' is cost-effective compared with the 'no-testing strategy' when JP¥5.0 million to 6.0 million per QALY gained is considered an acceptable threshold. These results were supported by the sensitivity and scenario analyses. The combination use of gefitinib and EGFR testing can be considered a cost-effective first-line therapy compared to chemotherapy such as carboplatin-paclitaxel for the treatment for NSCLC in Japan. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Impact of Weight Loss at Presentation on Survival in Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR-TKI) Sensitive Mutant Advanced Non-small Cell Lung Cancer (NSCLC) Treated with First-line EGFR-TKI.

    PubMed

    Lin, Liping; Zhao, Juanjuan; Hu, Jiazhu; Huang, Fuxi; Han, Jianjun; He, Yan; Cao, Xiaolong

    2018-01-01

    Purpose The aim of this study is to evaluate the impact of weight loss at presentation on treatment outcomes of first-line EGFR-tyrosine kinase inhibitors (EGFR-TKI) in EGFR-TKI sensitive mutant NSCLC patients. Methods We retrospectively analyzed the clinical outcomes of 75 consecutive advanced NSCLC patients with EGFR-TKI sensitive mutations (exon 19 deletion or exon 21 L858R) received first-line gefitinib or erlotinib therapy according to weight loss status at presentation in our single center. Results Of 75 EGFR-TKI sensitive mutant NSCLC patients, 49 (65.3%) patients had no weight loss and 26 (34.7%) had weight loss at presentation, the objective response rate (ORR) to EGFR-TKI treatment were similar between the two groups (79.6% vs. 76.9%, p = 0.533). Patients without weight loss at presentation had significantly longer median progression free survival (PFS) (12.4 months vs. 7.6 months; hazard ratio [HR] 0.356, 95% confidence interval [CI] 0.212-0.596, p < 0.001) and overall survival (OS) (28.5 months vs. 20.7 months; HR 0.408, 95% CI 0.215-0.776, p = 0.006) than those with weight loss at presentation; moreover, the stratified analysis by EGFR-TKI sensitive mutation types also found similar trend between these two groups except for OS in EGFR exon 21 L858R mutation patients. Multivariate analysis identified weight loss at presentation and EGFR-TKI sensitive mutation types were independent predictive factors for PFS and OS. Conclusions Weight loss at presentation had a detrimental impact on PFS and OS in EGFR-TKI sensitive mutant advanced NSCLC patients treated with first-line EGFR-TKI. It should be considered as an important factor in the treatment decision or designing of EGFR-TKI clinical trials.

  11. Prediction of change in protein unfolding rates upon point mutations in two state proteins.

    PubMed

    Chaudhary, Priyashree; Naganathan, Athi N; Gromiha, M Michael

    2016-09-01

    Studies on protein unfolding rates are limited and challenging due to the complexity of unfolding mechanism and the larger dynamic range of the experimental data. Though attempts have been made to predict unfolding rates using protein sequence-structure information there is no available method for predicting the unfolding rates of proteins upon specific point mutations. In this work, we have systematically analyzed a set of 790 single mutants and developed a robust method for predicting protein unfolding rates upon mutations (Δlnku) in two-state proteins by combining amino acid properties and knowledge-based classification of mutants with multiple linear regression technique. We obtain a mean absolute error (MAE) of 0.79/s and a Pearson correlation coefficient (PCC) of 0.71 between predicted unfolding rates and experimental observations using jack-knife test. We have developed a web server for predicting protein unfolding rates upon mutation and it is freely available at https://www.iitm.ac.in/bioinfo/proteinunfolding/unfoldingrace.html. Prominent features that determine unfolding kinetics as well as plausible reasons for the observed outliers are also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data.

    PubMed

    Bertl, Johanna; Guo, Qianyun; Juul, Malene; Besenbacher, Søren; Nielsen, Morten Muhlig; Hornshøj, Henrik; Pedersen, Jakob Skou; Hobolth, Asger

    2018-04-19

    Detailed modelling of the neutral mutational process in cancer cells is crucial for identifying driver mutations and understanding the mutational mechanisms that act during cancer development. The neutral mutational process is very complex: whole-genome analyses have revealed that the mutation rate differs between cancer types, between patients and along the genome depending on the genetic and epigenetic context. Therefore, methods that predict the number of different types of mutations in regions or specific genomic elements must consider local genomic explanatory variables. A major drawback of most methods is the need to average the explanatory variables across the entire region or genomic element. This procedure is particularly problematic if the explanatory variable varies dramatically in the element under consideration. To take into account the fine scale of the explanatory variables, we model the probabilities of different types of mutations for each position in the genome by multinomial logistic regression. We analyse 505 cancer genomes from 14 different cancer types and compare the performance in predicting mutation rate for both regional based models and site-specific models. We show that for 1000 randomly selected genomic positions, the site-specific model predicts the mutation rate much better than regional based models. We use a forward selection procedure to identify the most important explanatory variables. The procedure identifies site-specific conservation (phyloP), replication timing, and expression level as the best predictors for the mutation rate. Finally, our model confirms and quantifies certain well-known mutational signatures. We find that our site-specific multinomial regression model outperforms the regional based models. The possibility of including genomic variables on different scales and patient specific variables makes it a versatile framework for studying different mutational mechanisms. Our model can serve as the neutral null model for the mutational process; regions that deviate from the null model are candidates for elements that drive cancer development.

  13. Clinicopathological features and clinical outcomes associated with TP53 and BRAFNon-V600 mutations in cutaneous melanoma patients.

    PubMed

    Kim, Dae Won; Haydu, Lauren E; Joon, Aron Y; Bassett, Roland L; Siroy, Alan E; Tetzlaff, Michael T; Routbort, Mark J; Amaria, Rodabe N; Wargo, Jennifer A; McQuade, Jennifer L; Kemnade, Jan; Hwu, Patrick; Woodman, Scott E; Roszik, Jason; Kim, Kevin B; Gershenwald, Jeffrey E; Lazar, Alexander J; Davies, Michael A

    2017-04-15

    BRAF V600 , NRAS, TP53, and BRAF Non-V600 are among the most common mutations detected in non-acral cutaneous melanoma patients. Although several studies have identified clinical and pathological features associated with BRAF V600 and NRAS mutations, limited data are available regarding the correlates and significance of TP53 and BRAF Non-V600 mutations. This study analyzed the patient demographics, primary tumor features, and clinical outcomes of a large cohort of non-acral cutaneous melanoma patients who had undergone clinically indicated molecular testing (n = 926). The prevalence of BRAF V600 , NRAS, TP53, and BRAF Non-V600 mutations was 43%, 21%, 19%, and 7%, respectively. The presence of a TP53 mutation was associated with older age (P = .019), a head and neck primary tumor site (P = .0001), and longer overall survival (OS) from the diagnosis of stage IV disease in univariate (P = .039) and multivariate analyses (P = .015). BRAF Non-V600 mutations were associated with older age (P = .005) but not with primary tumor features or OS from stage IV. Neither TP53 nor BRAF Non-V600 mutations correlated significantly with OS with frontline ipilimumab treatment, and the TP53 status was not significantly associated with outcomes with frontline BRAF inhibitor therapy. Eleven patients with BRAF Non-V600 mutations were treated with a BRAF inhibitor. Three patients were not evaluable for a response because of treatment cessation for toxicities; the remaining patients had disease progression as the best response to therapy. These results add to the understanding of the clinical features associated with TP53 and BRAF Non-V600 mutations in advanced cutaneous melanoma patients, and they support the rationale for evaluating the prognostic significance of TP53 in other cohorts of melanoma patients. Cancer 2017;123:1372-1381. © 2016 American Cancer Society. © 2016 American Cancer Society.

  14. Filaggrin mutations increase allergic airway disease in childhood and adolescence through interactions with eczema and aeroallergen sensitization.

    PubMed

    Chan, Adrian; Terry, William; Zhang, Hongmei; Karmaus, Wilfried; Ewart, Susan; Holloway, John W; Roberts, Graham; Kurukulaaratchy, Ramesh; Arshad, Syed Hasan

    2018-02-01

    Filaggrin loss-of-function (FLG-LOF) mutations are an established genetic cause of eczema. These mutations have subsequently been reported to increase the risk of aeroallergen sensitization and allergic airway disease. However, it is unclear whether FLG variants require both eczema and aeroallergen sensitization to influence airway disease development long-term outcomes. To examine the effects of FLG-LOF mutations on allergic airway disease outcomes, with eczema and aeroallergen sensitization as intermediate variables, using the Isle of Wight birth cohort. Study participants were evaluated at ages 1, 2, 4, 10 and 18 years to ascertain the development of allergic diseases (eczema, asthma and allergic rhinitis) and aeroallergen sensitization (determined by skin prick tests). FLG-LOF mutations were genotyped in 1150 subjects. To understand the complex associations between FLG mutations, intermediate variables (eczema and aeroallergen sensitization) and airway disease, path analysis was performed. There were significant total effects of FLG-LOF mutations on both asthma and allergic rhinitis at all ages as well as on aeroallergen sensitization up till 10 years old. In the filaggrin-asthma analysis, a direct effect of FLG-LOF mutations was observed on early childhood eczema (age 1 and 2 years) (relative risk (RR) 2.01, 95% CI: 1.74-2.31, P < .001), and all significant indirect pathways on asthma outcomes passed through eczema at these ages. In contrast, for the filaggrin-rhinitis model, FLG-LOF mutations exerted significant direct effects on early eczema as well as rhinitis at 10 years (RR 1.99; 95% CI: 1.72-2.29, P = .002). FLG-LOF mutations are a significant risk factor for later childhood asthma and rhinitis. However, the pathway to asthma is only through early childhood eczema while a direct effect was observed for childhood rhinitis. © 2017 John Wiley & Sons Ltd.

  15. Prevalence of thyrotropin receptor germline mutations and clinical courses in 89 hyperthyroid patients with diffuse goiter and negative anti-thyrotropin receptor antibodies.

    PubMed

    Nishihara, Eijun; Fukata, Shuji; Hishinuma, Akira; Amino, Nobuyuki; Miyauchi, Akira

    2014-05-01

    We studied the frequency of thyrotropin (TSH) receptor mutations in hyperthyroid patients with diffuse goiter and negative TSH receptor antibodies (TRAb), and the clinical pictures of the hyperthyroid patients in the presence and absence of mutations. From 2003 through 2012, 89 hyperthyroid patients with diffuse goiter and negative TRAb based on a second- or third-generation assay underwent sequence analysis of the TSH receptor gene from peripheral leukocytes. The outcome of hyperthyroidism in patients with a TSH receptor mutation and their affected family members was compared with that in patients without any mutation after a 1-10-year follow-up. Germline mutations of the TSH receptor occurred in 4 of the 89 patients (4.5%), including 3 definitive constitutively activating mutations (L512Q, E575K, and D617Y). The main difference in the clinical outcome of hyperthyroidism was that no patients with a TSH receptor mutation achieved euthyroidism throughout the follow-up, while 23.5% of patients without any mutation entered remission. The progression from subclinical to overt hyperthyroidism was not significantly different between patients with or without a mutation. Meanwhile, 10.3% of TRAb-negative patients without any TSH receptor mutation developed TRAb-positive Graves' hyperthyroidism during the follow-up. The prevalence of nonautoimmune hyperthyroidism with TSH receptor mutations is lower than that of latent Graves' disease in TRAb-negative patients with hyperthyroidism. However, all affected patients with a TSH receptor mutation showed persistent hyperthyroidism regardless of subclinical or overt hyperthyroidism throughout the follow-up.

  16. Analysis of gene mutations in Chinese patients with maple syrup urine disease.

    PubMed

    Yang, Nan; Han, Lianshu; Gu, Xuefan; Ye, Jun; Qiu, Wenjuan; Zhang, Huiwen; Gong, Zhuwen; Zhang, Yafen

    2012-08-01

    Maple syrup urine disease (MSUD) is predominantly caused by mutations in the BCKDHA, BCKDHB and DBT genes, which encode for the E1α, E1β and E2 subunits of the branched-chain α-keto acid dehydrogenase complex, respectively. The aim of this study was to screen DNA samples from 16 Chinese MSUD patients and assess a potential correlation between genotype and phenotype. BCKDHA, BCKDHB and DBT genes were analyzed by polymerase chain reaction (PCR) and direct sequencing. Segments bearing novel mutations were identified by PCR-restriction fragment length polymorphism (PCR-RFLP) analysis. Within the variant alleles, 28 mutations (28/32, 87.5%), were detected in 15 patients, while one patient displayed no mutations. Mutations were comprised of 20 different: 6 BCKDHA gene mutations in 4 cases, 10 BCKDHB gene mutations in 8 cases and 4 DBT gene mutations in 3 cases. From these, 14 were novel, which included 3 mutations in the BCKDHA gene, 7 in the BCKDHB gene and 4 in the DBT gene. Only two patients with mutations in the BCKDHB and DBT genes were thiamine-responsive and presented a better clinical outcome. We identified 20 different mutations within the BCKDHA, BCKDHB and DBT genes among 16 Chinese MSUD patients, including 14 novel mutations. The majority were non-responsive to thiamine, associating with a worse clinical outcome. Our data provide the basis for further genotype-phenotype correlation studies in these patients, which will be beneficial for early diagnosis and in directing the approach to clinical intervention. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Computational Analysis of Epidermal Growth Factor Receptor Mutations Predicts Differential Drug Sensitivity Profiles toward Kinase Inhibitors.

    PubMed

    Akula, Sravani; Kamasani, Swapna; Sivan, Sree Kanth; Manga, Vijjulatha; Vudem, Dashavantha Reddy; Kancha, Rama Krishna

    2018-05-01

    A significant proportion of patients with lung cancer carry mutations in the EGFR kinase domain. The presence of a deletion mutation in exon 19 or L858R point mutation in the EGFR kinase domain has been shown to cause enhanced efficacy of inhibitor treatment in patients with NSCLC. Several less frequent (uncommon) mutations in the EGFR kinase domain with potential implications in treatment response have also been reported. The role of a limited number of uncommon mutations in drug sensitivity was experimentally verified. However, a huge number of these mutations remain uncharacterized for inhibitor sensitivity or resistance. A large-scale computational analysis of clinically reported 298 point mutants of EGFR kinase domain has been performed, and drug sensitivity profiles for each mutant toward seven kinase inhibitors has been determined by molecular docking. In addition, the relative inhibitor binding affinity toward each drug as compared with that of adenosine triphosphate was calculated for each mutant. The inhibitor sensitivity profiles predicted in this study for a set of previously characterized mutants correlated well with the published clinical, experimental, and computational data. Both the single and compound mutations displayed differential inhibitor sensitivity toward first- and next-generation kinase inhibitors. The present study provides predicted drug sensitivity profiles for a large panel of uncommon EGFR mutations toward multiple inhibitors, which may help clinicians in deciding mutant-specific treatment strategies. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  18. Parent-child genetic testing for familial hypercholesterolaemia in an Australian context.

    PubMed

    Pang, Jing; Martin, Andrew C; Bates, Timothy R; Hooper, Amanda J; Bell, Damon A; Burnett, John R; Norman, Richard; Watts, Gerald F

    2018-04-06

    The aim of this study was to evaluate the clinical outcome of parent-child testing for familial hypercholesterolaemia (FH) employing genetic testing and the likely additional cost of treating each child. Parent-child testing for gene variants causative of FH was carried out according to Australian guidelines. The number of new cases detected, the low-density lipoprotein (LDL)-cholesterol that best predicted a mutation and the proportional reduction in LDL-cholesterol following statin treatment was evaluated. Treatment costs were calculated as the cost per mmol/L reduction in LDL-cholesterol. A total of 126 adult patients, known to have a pathogenic mutation causative of FH, and their children were studied. From 244 children identified, 148 (60.7%) were genetically screened; 84 children were identified as mutative positive (M+) and 64 as mutative negative. Six of the M+ children were already on statin treatment; 40 were subsequently treated with low-dose statins, with LDL-cholesterol falling significantly by 38% (P < 0.001). The estimated cost per mmol/L reduction of LDL-cholesterol of a child receiving statins from ages 10 to 18 years is AU$1361, which can potentially be cost-effective. An LDL-cholesterol threshold of 3.5 mmol/L had a sensitivity of 92.8% and specificity of 96.6% for the detection of a mutation. Genetic testing of children of affected parents with FH is an effective means of detecting new cases of FH. Cascade testing can enable early statin therapy with significant reductions in LDL-cholesterol concentration. © 2018 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  19. Absence of IDH1-R132H mutation predicts rapid progression of nonenhancing diffuse glioma in older adults.

    PubMed

    Olar, Adriana; Raghunathan, Aditya; Albarracin, Constance T; Aldape, Kenneth D; Cahill, Daniel P; Powell, Suzanne Z; Goodman, J Clay; Fuller, Gregory N

    2012-06-01

    Advanced age and contrast enhancement portend a poor prognosis in diffuse glioma (DG). Diffuse glioma may present as nonenhancing tumors that rapidly progress in weeks to months to a pattern of ring enhancement, characteristic of glioblastoma (GBM). Mutations involving isocitrate dehydrogenase 1 (IDH1) have recently emerged as important diagnostic and prognostic markers in DG. R132H is the most common mutation, expressed in more than 80% of DG and secondary GBM but in less than 10% of primary GBM. Adults older than 50 years with nonenhancing, rapidly progressing DG were identified. A comparison group comprised randomly selected, age-matched patients with nonenhancing, nonprogressing DG. Isocitrate dehydrogenase 1 status was evaluated using anti-IDH1-R132H antibodies (Dianova, Hamburg, Germany). The results were correlated with the clinical outcomes. We identified 4 patients who presented with nonenhancing DG that rapidly progressed to ring-enhancing lesions that were subsequently diagnosed on surgical resection as GBM. This group showed absent IDH1-R132H expression, which is characteristic of primary GBM. The comparison group of 5 patients presented with nonenhancing, nonprogressing DG, and all 5 tumors showed IDH1-R132H expression. In conclusion, negative IDH1-R132H mutation status in nonenhancing DG of older adults is a poor prognostic factor associated with rapid progression to ring-enhancing GBM. The shorter interval of progression and negative IDH1-R132H mutation status suggest a similar molecular pathway as seen in primary GBM. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Personalized medicine in non-small-cell lung cancer: is KRAS a useful marker in selecting patients for epidermal growth factor receptor-targeted therapy?

    PubMed

    Roberts, Patrick J; Stinchcombe, Thomas E; Der, Channing J; Socinski, Mark A

    2010-11-01

    In patients with metastatic colorectal cancer, the predictive value of KRAS mutational status in the selection of patients for treatment with anti-epidermal growth factor (EGFR) monoclonal antibodies is established. In patients with non-small-cell lung cancer (NSCLC), the utility of determining KRAS mutational status to predict clinical benefit to anti-EGFR therapies remains unclear. This review will provide a brief description of Ras biology, provide an overview of aberrant Ras signaling in NSCLC, and summarize the clinical data for using KRAS mutational status as a negative predictive biomarker to anti-EGFR therapies. Retrospective investigations of KRAS mutational status as a negative predictor of clinical benefit from anti-EGFR therapies in NSCLC have been performed; however, small samples sizes as a result of low prevalence of KRAS mutations and the low rate of tumor sample collection have limited the strength of these analyses. Although an association between the presence of KRAS mutation and lack of response to EGFR tyrosine kinase inhibitors (TKIs) has been observed, it remains unclear whether there is an association between KRAS mutation and EGFR TKI progression-free and overall survival. Unlike colorectal cancer, KRAS mutations do not seem to identify patients who do not benefit from anti-EGFR monoclonal antibodies in NSCLC. The future value of testing for KRAS mutational status may be to exclude the possibility of an EGFR mutation or anaplastic lymphoma kinase translocation or to identify a molecular subset of patients with NSCLC in whom to pursue a drug development strategy that targets the KRAS pathway.

  1. Value of combining serum carcinoembryonic antigen and PET/CT in predicting EGFR mutation in non-small cell lung cancer.

    PubMed

    Gu, Jincui; Xu, Siqi; Huang, Lixia; Li, Shaoli; Wu, Jian; Xu, Junwen; Feng, Jinlun; Liu, Baomo; Zhou, Yanbin

    2018-02-01

    We sought to investigate the associations between pretreatment serum Carcinoembryonic antigen (CEA) level, 18 F-Fluoro-2-deoxyglucose ( 18 F-FDG) uptake value of primary tumor and epidermal growth factor receptor ( EGFR ) mutation status in non-small cell lung cancer (NSCLC). We retrospectively reviewed medical records of 210 NSCLC patients who underwent EGFR mutation test and 18 F-FDG positron emission tomography/computed tomography (PET/CT) scan before anti-tumor therapy. The associations between EGFR mutations and patients' characteristics, serum CEA, PET/CT imaging characteristics maximal standard uptake value (SUVmax) of the primary tumor were analyzed. Receiver-operating characteristic (ROC) curve was used to assess the predictive value of these factors. EGFR mutations were found in 70 patients (33.3%). EGFR mutations were more common in high CEA group (CEA ≥7.0 ng/mL) than in low CEA group (CEA <7.0 ng/mL) (40.4% vs . 27.6%; P=0.05). Females (P<0.001), non-smokers (P<0.001), patients with adenocarcinoma (P<0.001) and SUVmax <9.0 (P=0.001) were more likely to be EGFR mutation-positive. Multivariate analysis revealed that gender, tumor histology, pretreatment serum CEA level, and SUVmax were the most significant predictors for EGFR mutations. The ROC curve revealed that combining these four factors yielded a higher calculated AUC (0.80). Gender, histology, pretreatment serum CEA level and SUVmax are significant predictors for EGFR mutations in NSCLC. Combining these factors in predicting EGFR mutations has a moderate diagnostic accuracy, and is helpful in guiding anti-tumor treatment.

  2. Plasma genetic and genomic abnormalities predict treatment response and clinical outcome in advanced prostate cancer.

    PubMed

    Xia, Shu; Kohli, Manish; Du, Meijun; Dittmar, Rachel L; Lee, Adam; Nandy, Debashis; Yuan, Tiezheng; Guo, Yongchen; Wang, Yuan; Tschannen, Michael R; Worthey, Elizabeth; Jacob, Howard; See, William; Kilari, Deepak; Wang, Xuexia; Hovey, Raymond L; Huang, Chiang-Ching; Wang, Liang

    2015-06-30

    Liquid biopsies, examinations of tumor components in body fluids, have shown promise for predicting clinical outcomes. To evaluate tumor-associated genomic and genetic variations in plasma cell-free DNA (cfDNA) and their associations with treatment response and overall survival, we applied whole genome and targeted sequencing to examine the plasma cfDNAs derived from 20 patients with advanced prostate cancer. Sequencing-based genomic abnormality analysis revealed locus-specific gains or losses that were common in prostate cancer, such as 8q gains, AR amplifications, PTEN losses and TMPRSS2-ERG fusions. To estimate tumor burden in cfDNA, we developed a Plasma Genomic Abnormality (PGA) score by summing the most significant copy number variations. Cox regression analysis showed that PGA scores were significantly associated with overall survival (p < 0.04). After androgen deprivation therapy or chemotherapy, targeted sequencing showed significant mutational profile changes in genes involved in androgen biosynthesis, AR activation, DNA repair, and chemotherapy resistance. These changes may reflect the dynamic evolution of heterozygous tumor populations in response to these treatments. These results strongly support the feasibility of using non-invasive liquid biopsies as potential tools to study biological mechanisms underlying therapy-specific resistance and to predict disease progression in advanced prostate cancer.

  3. Frequencies and prognostic impact of RAS mutations in MLL-rearranged acute lymphoblastic leukemia in infants

    PubMed Central

    Driessen, Emma M.C.; van Roon, Eddy H.J.; Spijkers-Hagelstein, Jill A.P.; Schneider, Pauline; de Lorenzo, Paola; Valsecchi, Maria Grazia; Pieters, Rob; Stam, Ronald W.

    2013-01-01

    Acute lymphoblastic leukemia in infants represents an aggressive malignancy associated with a high incidence (approx. 80%) of translocations involving the Mixed Lineage Leukemia (MLL) gene. Attempts to mimic Mixed Lineage Leukemia fusion driven leukemogenesis in mice raised the question whether these fusion proteins require secondary hits. RAS mutations are suggested as candidates. Earlier results on the incidence of RAS mutations in Mixed Lineage Leukemia-rearranged acute lymphoblastic leukemia are inconclusive. Therefore, we studied frequencies and relation with clinical parameters of RAS mutations in a large cohort of infant acute lymphoblastic leukemia patients. Using conventional sequencing analysis, we screened neuroblastoma RAS viral (v-ras) oncogene homolog gene (NRAS), v-Ki-ras Kirsten rat sarcoma viral oncogene homolog gene (KRAS), and v-raf murine sarcoma viral oncogene homolog B1 gene (BRAF) for mutations in a large cohort (n=109) of infant acute lymphoblastic leukemia patients and studied the mutations in relation to several clinical parameters, and in relation to Homeobox gene A9 expression and the presence of ALL1 fused gene 4-Mixed Lineage Leukemia (AF4-MLL). Mutations were detected in approximately 14% of all cases, with a higher frequency of approximately 24% in t(4;11)-positive patients (P=0.04). Furthermore, we identified RAS mutations as an independent predictor (P=0.019) for poor outcome in Mixed Lineage Leukemia-rearranged infant acute lymphoblastic leukemia, with a hazard ratio of 3.194 (95% confidence interval (CI):1.211–8.429). Also, RAS-mutated infants have higher white blood cell counts at diagnosis (P=0.013), and are more resistant to glucocorticoids in vitro (P<0.05). Finally, we demonstrate that RAS mutations, and not the lack of Homeobox gene A9 expression nor the expression of AF4-MLL are associated with poor outcome in t(4;11)-rearranged infants. We conclude that the presence of RAS mutations in Mixed Lineage Leukemia-rearranged infant acute lymphoblastic leukemia is an independent predictor for a poor outcome. Therefore, future risk-stratification based on abnormal RAS-pathway activation and RAS-pathway inhibition could be beneficial in RAS-mutated infant acute lymphoblastic leukemia patients. PMID:23403319

  4. Surgical perspective of T1799A BRAF mutation diagnostic value in papillary thyroid carcinoma.

    PubMed

    Brahma, Bayu; Yulian, Erwin Danil; Ramli, Muchlis; Setianingsih, Iswari; Gautama, Walta; Brahma, Putri; Sastroasmoro, Sudigdo; Harimurti, Kuntjoro

    2013-01-01

    Throughout Indonesia, thyroid cancer is one of the ten commonest malignancies, with papillary thyroid carcinoma (PTC) in our hospital accounting for about 60% of all thyroid nodules. Although fine needle aspiration biopsy (FNAB) is the most reliable diagnostic tool, some nodules are diagnosed as indeterminate and second surgery is common for PTC. The aim of this study was to establish the diagnostic value and feasibility of testing the BRAF T1799A mutation on FNA specimens for improving PTC diagnosis. This prospective study enrolled 95 patients with thyroid nodules and future surgery planned. Results of mutational status were compared with surgical pathology diagnosis. Of the 70 cases included in the final analysis, 62.8% were PTC and the prevalence of BRAF mutation was 38.6%. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for BRAF mutation analysis were 36%, 100%, 100% and 48%, respectively. With other data findings, nodules with "onset less than 5 year" and "hard consistency" were proven as diagnostic determinants for BRAF mutation with a probability of 62.5%. This mutation was also a significant risk factor for extra-capsular extension. Molecular analysis of the BRAF T1799A mutation in FNAB specimens has high specificity and positive predictive value for PTC. It could be used in the selective patients with clinical characteristics to facilitate PTC diagnosis and for guidance regarding extent of thyroidectomy.

  5. Evaluation of a deep learning architecture for MR imaging prediction of ATRX in glioma patients

    NASA Astrophysics Data System (ADS)

    Korfiatis, Panagiotis; Kline, Timothy L.; Erickson, Bradley J.

    2018-02-01

    Predicting mutation/loss of alpha-thalassemia/mental retardation syndrome X-linked (ATRX) gene utilizing MR imaging is of high importance since it is a predictor of response and prognosis in brain tumors. In this study, we compare a deep neural network approach based on a residual deep neural network (ResNet) architecture and one based on a classical machine learning approach and evaluate their ability in predicting ATRX mutation status without the need for a distinct tumor segmentation step. We found that the ResNet50 (50 layers) architecture, pre trained on ImageNet data was the best performing model, achieving an accuracy of 0.91 for the test set (classification of a slice as no tumor, ATRX mutated, or mutated) in terms of f1 score in a test set of 35 cases. The SVM classifier achieved 0.63 for differentiating the Flair signal abnormality regions from the test patients based on their mutation status. We report a method that alleviates the need for extensive preprocessing and acts as a proof of concept that deep neural network architectures can be used to predict molecular biomarkers from routine medical images.

  6. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes.

    PubMed

    Henn, Brenna M; Botigué, Laura R; Peischl, Stephan; Dupanloup, Isabelle; Lipatov, Mikhail; Maples, Brian K; Martin, Alicia R; Musharoff, Shaila; Cann, Howard; Snyder, Michael P; Excoffier, Laurent; Kidd, Jeffrey M; Bustamante, Carlos D

    2016-01-26

    The Out-of-Africa (OOA) dispersal ∼ 50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive.

  7. Missense mutations of MLH1 and MSH2 genes detected in patients with gastrointestinal cancer are associated with exonic splicing enhancers and silencers

    PubMed Central

    ZHU, MING; CHEN, HUI-MEI; WANG, YA-PING

    2013-01-01

    The MLH1 and MSH2 genes in DNA mismatch repair are important in the pathogenesis of gastrointestinal cancer. Recent studies of normal and alternative splicing suggest that the deleterious effects of missense mutations may in fact be splicing-related when they are located in exonic splicing enhancers (ESEs) or exonic splicing silencers (ESSs). In this study, we used ESE-finder and FAS-ESS software to analyze the potential ESE/ESS motifs of the 114 missense mutations detected in the two genes in East Asian gastrointestinal cancer patients. In addition, we used the SIFT tool to functionally analyze these mutations. The amount of the ESE losses (68) was 51.1% higher than the ESE gains (45) of all the mutations. However, the amount of the ESS gains (27) was 107.7% higher than the ESS losses (13). In total, 56 (49.1%) mutations possessed a potential exonic splicing regulator (ESR) error. Eighty-one mutations (71.1%) were predicted to be deleterious with a lower tolerance index as detected by the Sorting Intolerant from Tolerant (SIFT) tool. Among these, 38 (33.3%) mutations were predicted to be functionally deleterious and possess one potential ESR error, while 18 (15.8%) mutations were predicted to be functionally deleterious and exhibit two potential ESR errors. These may be more likely to affect exon splicing. Our results indicated that there is a strong correlation between missense mutations in MLH1 and MSH2 genes detected in East Asian gastrointestinal cancer patients and ESR motifs. In order to correctly understand the molecular nature of mutations, splicing patterns should be compared between wild-type and mutant samples. PMID:23760103

  8. Bioinformatic Analysis of Pathogenic Missense Mutations of Activin Receptor Like Kinase 1 Ectodomain

    PubMed Central

    Scotti, Claudia; Olivieri, Carla; Boeri, Laura; Canzonieri, Cecilia; Ornati, Federica; Buscarini, Elisabetta; Pagella, Fabio; Danesino, Cesare

    2011-01-01

    Activin A receptor, type II-like kinase 1 (also called ALK1), is a serine-threonine kinase predominantly expressed on endothelial cells surface. Mutations in its ACVRL1 encoding gene (12q11-14) cause type 2 Hereditary Haemorrhagic Telangiectasia (HHT2), an autosomal dominant multisystem vascular dysplasia. The study of the structural effects of mutations is crucial to understand their pathogenic mechanism. However, while an X-ray structure of ALK1 intracellular domain has recently become available (PDB ID: 3MY0), structure determination of ALK1 ectodomain (ALK1EC) has been elusive so far. We here describe the building of a homology model for ALK1EC, followed by an extensive bioinformatic analysis, based on a set of 38 methods, of the effect of missense mutations at the sequence and structural level. ALK1EC potential interaction mode with its ligand BMP9 was then predicted combining modelling and docking data. The calculated model of the ALK1EC allowed mapping and a preliminary characterization of HHT2 associated mutations. Major structural changes and loss of stability of the protein were predicted for several mutations, while others were found to interfere mainly with binding to BMP9 or other interactors, like Endoglin (CD105), whose encoding ENG gene (9q34) mutations are known to cause type 1 HHT. This study gives a preliminary insight into the potential structure of ALK1EC and into the structural effects of HHT2 associated mutations, which can be useful to predict the potential effect of each single mutation, to devise new biological experiments and to interpret the biological significance of new mutations, private mutations, or non-synonymous polymorphisms. PMID:22028876

  9. ctDNA Determination of EGFR Mutation Status in European and Japanese Patients with Advanced NSCLC: The ASSESS Study.

    PubMed

    Reck, Martin; Hagiwara, Koichi; Han, Baohui; Tjulandin, Sergei; Grohé, Christian; Yokoi, Takashi; Morabito, Alessandro; Novello, Silvia; Arriola, Edurne; Molinier, Olivier; McCormack, Rose; Ratcliffe, Marianne; Normanno, Nicola

    2016-10-01

    To offer patients with EGFR mutation-positive advanced NSCLC appropriate EGFR tyrosine kinase inhibitor treatment, mutation testing of tumor samples is required. However, tissue/cytologic samples are not always available or evaluable. The large, noninterventional diagnostic ASSESS study (NCT01785888) evaluated the utility of circulating free tumor-derived DNA (ctDNA) from plasma for EGFR mutation testing. ASSESS was conducted in 56 centers (in Europe and Japan). Eligible patients (with newly diagnosed locally advanced/metastatic treatment-naive advanced NSCLC) provided diagnostic tissue/cytologic and plasma samples. DNA extracted from tissue/cytologic samples was subjected to EGFR mutation testing using local practices; designated laboratories performed DNA extraction/mutation testing of blood samples. The primary end point was level of concordance of EGFR mutation status between matched tissue/cytologic and plasma samples. Of 1311 patients enrolled, 1288 were eligible. Concordance of mutation status in 1162 matched samples was 89% (sensitivity 46%, specificity 97%, positive predictive value 78%, and negative predictive value 90%). A group of 25 patients with apparent false-positive plasma results was overrepresented for cytologic samples, use of less sensitive tissue testing methodologies, and smoking habits associated with high EGFR mutation frequency, indicative of false-negative tumor results. In cases in which plasma and tumor samples were tested with identical highly sensitive methods, positive predictive value/sensitivity were generally improved. These real-world data suggest that ctDNA is a feasible sample for EGFR mutation analysis. It is important to conduct mutation testing of both tumor and plasma samples in specialized laboratories, using robust/sensitive methods to ensure that patients receive appropriate treatments that target the molecular features of their disease. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  10. A multicenter DeCOG study on predictors of vemurafenib therapy outcome in melanoma: pretreatment impacts survival.

    PubMed

    Ugurel, S; Loquai, C; Kähler, K; Hassel, J; Berking, C; Zimmer, L; Haubitz, I; Satzger, I; Müller-Brenne, T; Mikhaimer, N C; Becker, J C; Kilian, K J; Schadendorf, D; Heinzerling, L; Kaatz, M; Utikal, J; Göppner, D; Pföhler, C; Pflugfelder, A; Mössner, R; Gutzmer, R

    2015-03-01

    Kinase inhibitors targeting the BRAF V600 mutation have become standard in the treatment of metastatic melanoma. Albeit in wide clinical use, the patterns associated with therapy outcome are not fully elucidated. The present study was aimed to identify predictive factors of therapy response and survival under the BRAF inhibitor vemurafenib. This multicenter retrospective study analyzed patient, tumor, and pretreatment characteristics collected in BRAF V600-mutated stage IV melanoma patients before single-agent therapy with the BRAF inhibitor vemurafenib. A total of 300 patients from 14 centers were included into this study with a median follow-up time of 13.0 months. Median progression-free survival (PFS) was 5.1 months; median overall survival (OS) was 7.6 months. Best response under vemurafenib was associated with serum lactate dehydrogenase (LDH; ≤ versus >upper normal limit; P = 0.0000001), Eastern Cooperative Oncology Group (ECOG) overall performance status (OPS) (0 versus ≥ 1; P = 0.00089), and BRAF mutation subtype (V600E versus V600K; P = 0.016). Multivariate analysis identified ECOG OPS ≥ 1 [hazard ratio (HR) = 1.88; P = 0.00005], immunotherapy pretreatment (HR = 0.53; P = 0.0067), elevated serum LDH (HR = 1.45; P = 0.012), age >55 years (HR = 0.72; P = 0.019), and chemotherapy pretreatment (HR = 1.39; P = 0.036) as independent predictors of PFS. For OS, elevated serum LDH (HR = 1.99; P = 0.00012), ECOG OPS ≥ 1 (HR = 1.90; P = 0.00063), age >55 years (HR = 0.65; P = 0.011), kinase inhibitor pretreatment (HR = 1.86; P = 0.014), immunotherapy pretreatment (HR = 0.57; P = 0.025), chemotherapy pretreatment (HR = 2.17; P = 0.039), and male gender (HR = 0.70; 95% confidence interval 0.50-0.98; P = 0.039) were found as predictors. Our data demonstrate that the type of pretreatment strongly influences the outcome of vemurafenib therapy, with a precedent immunotherapy showing a positive, and a prior chemotherapy and kinase inhibitors showing a negative impact on survival, respectively. Moreover, we show that the patient's OPS, serum LDH, age, and gender independently impact vemurafenib therapy outcome. These findings should be taken into account for the future design of therapy sequencing in BRAF V600 mutation-positive melanoma patients. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Targeting epidermal growth factor receptor in the treatment of non-small-cell lung cancer.

    PubMed

    Kotsakis, Athanasios; Georgoulias, Vassilis

    2010-10-01

    The management of non-small-cell lung cancer (NSCLC) has undergone a paradigm shift in the last decade, with the survival advantage demonstrated by the incorporation of anti-epidermal growth factor receptor (EGFR) agents to the standard treatment of advanced/metastatic NSCLC. We review the existing data regarding the distinct anti-EGFR agents in the NSCLC treatment and the potential role of the investigated biomarkers in the clinical outcome. Tyrosine kinase inhibitors have been used in first-line, second-line and more settings with extremely good results in a subgroup of patients. Cetuximab remains the only anti-EGFR monoclonal antibody to show survival benefit when combined with a cytotoxic agent in the front-line setting. Anti-EGFR treatment is associated with a dramatic clinical benefit in a subgroup of patients, emphasizing the importance of customizing treatment. Several biomarkers have been investigated for their predictive or prognostic value. Validation of identification of biomarkers remains a focus of intense research that may ultimately guide therapeutic decision making, as none of these is considered ideal to discriminate responding from non-responding patients. However, the current evidence of the EGFR mutation analysis from a recent randomised trial suggests that EGFR mutation analysis is quite a good predictive marker for responsiveness to anti-EGFR TKIs. Moreover, the identification of surrogate markers to indicate optimal activity of the anti-EGFR agent is also needed. This review article provides data from large clinical trials using anti-EGFR agents and correlates these results with the tested biomarkers. EGFR inhibition has shown very encouraging results and has improved the outcome of the NSCLC treatment. However, a plateau of significant clinical benefit seems to have been reached and we believe that the time to move away from the traditional treatment approach to more individualizing therapies has come.

  12. Both germ line and somatic genetics of the p53 pathway affect ovarian cancer incidence and survival.

    PubMed

    Bartel, Frank; Jung, Juliane; Böhnke, Anja; Gradhand, Elise; Zeng, Katharina; Thomssen, Christoph; Hauptmann, Steffen

    2008-01-01

    Although p53 is one of the most studied genes/proteins in ovarian carcinomas, the predictive value of p53 alterations is still ambiguous. We performed analyses of the TP53 mutational status and its protein expression using immunohistochemistry. Moreover, the single nucleotide polymorphism SNP309 in the P2 promoter of the MDM2 gene was investigated. We correlated the results with age of onset and outcome from 107 patients with ovarian carcinoma. In our study, we identified a large group of patients with p53 overexpression despite having a wild-type gene (49% of all patients with wild-type TP53). This was associated with a significantly shortened overall survival time (P = 0.019). Patients with p53 alterations (especially those with overexpression of wild-type TP53) were also more refractory to chemotherapy compared with patients with normal p53 (P = 0.027). The G-allele of SNP309 is associated with an earlier age of onset in patients with estrogen receptor-overexpressing FIGO stage III disease (P = 0.048). In contrast, in patients with FIGO stage III disease, a weakened p53 pathway (either the G-allele of SNP309 or a TP53 mutation) was correlated with increased overall survival compared with patients whose tumors were wild-type for both TP53 and SNP309 (P = 0.0035). Our study provides evidence that both germ line and somatic alterations of the p53 pathway influence the incidence and survival of ovarian carcinoma, and it underscores the importance of assessing the functionality of p53 in order to predict the sensitivity of platinum-based chemotherapies and patient outcome.

  13. Pairwise contact energy statistical potentials can help to find probability of point mutations.

    PubMed

    Saravanan, K M; Suvaithenamudhan, S; Parthasarathy, S; Selvaraj, S

    2017-01-01

    To adopt a particular fold, a protein requires several interactions between its amino acid residues. The energetic contribution of these residue-residue interactions can be approximated by extracting statistical potentials from known high resolution structures. Several methods based on statistical potentials extracted from unrelated proteins are found to make a better prediction of probability of point mutations. We postulate that the statistical potentials extracted from known structures of similar folds with varying sequence identity can be a powerful tool to examine probability of point mutation. By keeping this in mind, we have derived pairwise residue and atomic contact energy potentials for the different functional families that adopt the (α/β) 8 TIM-Barrel fold. We carried out computational point mutations at various conserved residue positions in yeast Triose phosphate isomerase enzyme for which experimental results are already reported. We have also performed molecular dynamics simulations on a subset of point mutants to make a comparative study. The difference in pairwise residue and atomic contact energy of wildtype and various point mutations reveals probability of mutations at a particular position. Interestingly, we found that our computational prediction agrees with the experimental studies of Silverman et al. (Proc Natl Acad Sci 2001;98:3092-3097) and perform better prediction than i Mutant and Cologne University Protein Stability Analysis Tool. The present work thus suggests deriving pairwise contact energy potentials and molecular dynamics simulations of functionally important folds could help us to predict probability of point mutations which may ultimately reduce the time and cost of mutation experiments. Proteins 2016; 85:54-64. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Crizotinib-Resistant ROS1 Mutations Reveal a Predictive Kinase Inhibitor Sensitivity Model for ROS1- and ALK-Rearranged Lung Cancers.

    PubMed

    Facchinetti, Francesco; Loriot, Yohann; Kuo, Mei-Shiue; Mahjoubi, Linda; Lacroix, Ludovic; Planchard, David; Besse, Benjamin; Farace, Françoise; Auger, Nathalie; Remon, Jordi; Scoazec, Jean-Yves; André, Fabrice; Soria, Jean-Charles; Friboulet, Luc

    2016-12-15

    The identification of molecular mechanisms conferring resistance to tyrosine kinase inhibitor (TKI) is a key step to improve therapeutic results for patients with oncogene addiction. Several alterations leading to EGFR and anaplastic lymphoma kinase (ALK) resistance to TKI therapy have been described in non-small cell lung cancer (NSCLC). Only two mutations in the ROS1 kinase domain responsible for crizotinib resistance have been described in patients thus far. A patient suffering from a metastatic NSCLC harboring an ezrin (EZR)-ROS1 fusion gene developed acquired resistance to the ALK/ROS1 inhibitor crizotinib. Molecular analysis (whole-exome sequencing, CGH) and functional studies were undertaken to elucidate the mechanism of resistance. Based on this case, we took advantage of the structural homology of ROS1 and ALK to build a predictive model for drug sensitivity regarding future ROS1 mutations. Sequencing revealed a dual mutation, S1986Y and S1986F, in the ROS1 kinase domain. Functional in vitro studies demonstrated that ROS1 harboring either the S1986Y or the S1986F mutation, while conferring resistance to crizotinib and ceritinib, was inhibited by lorlatinib (PF-06463922). The patient's clinical response confirmed the potency of lorlatinib against S1986Y/F mutations. The ROS1 S1986Y/F and ALK C1156Y mutations are homologous and displayed similar sensitivity patterns to ALK/ROS1 TKIs. We extended this analogy to build a model predicting TKI efficacy against potential ROS1 mutations. Clinical evidence, in vitro validation, and homology-based prediction provide guidance for treatment decision making for patients with ROS1-rearranged NSCLC who progressed on crizotinib. Clin Cancer Res; 22(24); 5983-91. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. Altered Trafficking and Processing of GALC Mutants Correlates with Globoid Cell Leukodystrophy Severity

    PubMed Central

    Feltri, M. Laura; Wrabetz, Lawrence

    2016-01-01

    Globoid cell leukodystrophy (GLD, Krabbe disease) is due to autosomal recessive mutations in the lysosomal enzyme galactosylceramidase (GALC). Many GLD patients develop infantile-onset of progressive neurologic deterioration and death by 2 years of age, whereas others have a later-onset, milder disease. Cord blood transplant slows disease progression much more effectively when performed presymptomatically, highlighting the importance of early diagnosis. Current diagnosis is based on reduced GALC activity, DNA sequence, and clinical examination. However, presymptomatic diagnosis is hampered by imperfect genotype-GALC activity-phenotype correlations. In addition, three polymorphisms in the GALC gene are variably associated with disease mutations and have unknown effects on GALC activity and disease outcome. Here, we study mutations that cause infantile or later-onset GLD, and show that GALC activity is significantly lower in infantile versus later-onset mutants when measured in the lysosomal fraction, but not in whole-cell lysates. In parallel, infantile-onset mutant GALCs showed reduced trafficking to lysosomes and processing than later-onset mutant GALCs. Finally, the cis-polymorphisms also affected trafficking to the lysosome and processing of GALC. These differences potentially explain why the activity of different mutations appears similar in whole-cell extracts from lymphocytes, and suggest that measure of GALC activity in lysosomes may better predict the onset and severity of disease for a given GLD genotype. SIGNIFICANCE STATEMENT Globoid cell leukodystrophy (GLD, Krabbe disease) is diagnosed by measuring galactosylceramidase (GALC) activity and DNA analysis. However, genotype and phenotype often do not correlate due to considerable clinical variability, even for the same mutation, for unknown reasons. We find that altered trafficking to the lysosome and processing of GALC correlates with GLD severity and is modulated by cis-polymorphisms. Current diagnosis of GLD is based on GALC activity of total cell lysates from blood, which does not discriminate whether the activity comes from the lysosome or other subcellular organelles. Measurement of GALC activity in lysosomes may predict which infants are at high risk for the infantile phenotype while distinguishing other children who will develop later-onset phenotypes without onset of symptoms for years. PMID:26865610

  16. Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer

    PubMed Central

    Mármol, Inés; Sánchez-de-Diego, Cristina; Pradilla Dieste, Alberto; Cerrada, Elena; Rodriguez Yoldi, María Jesús

    2017-01-01

    Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related death. Most cases of CRC are detected in Western countries, with its incidence increasing year by year. The probability of suffering from colorectal cancer is about 4%–5% and the risk for developing CRC is associated with personal features or habits such as age, chronic disease history and lifestyle. In this context, the gut microbiota has a relevant role, and dysbiosis situations can induce colonic carcinogenesis through a chronic inflammation mechanism. Some of the bacteria responsible for this multiphase process include Fusobacterium spp, Bacteroides fragilis and enteropathogenic Escherichia coli. CRC is caused by mutations that target oncogenes, tumour suppressor genes and genes related to DNA repair mechanisms. Depending on the origin of the mutation, colorectal carcinomas can be classified as sporadic (70%); inherited (5%) and familial (25%). The pathogenic mechanisms leading to this situation can be included in three types, namely chromosomal instability (CIN), microsatellite instability (MSI) and CpG island methylator phenotype (CIMP). Within these types of CRC, common mutations, chromosomal changes and translocations have been reported to affect important pathways (WNT, MAPK/PI3K, TGF-β, TP53), and mutations; in particular, genes such as c-MYC, KRAS, BRAF, PIK3CA, PTEN, SMAD2 and SMAD4 can be used as predictive markers for patient outcome. In addition to gene mutations, alterations in ncRNAs, such as lncRNA or miRNA, can also contribute to different steps of the carcinogenesis process and have a predictive value when used as biomarkers. In consequence, different panels of genes and mRNA are being developed to improve prognosis and treatment selection. The choice of first-line treatment in CRC follows a multimodal approach based on tumour-related characteristics and usually comprises surgical resection followed by chemotherapy combined with monoclonal antibodies or proteins against vascular endothelial growth factor (VEGF) and epidermal growth receptor (EGFR). Besides traditional chemotherapy, alternative therapies (such as agarose tumour macrobeads, anti-inflammatory drugs, probiotics, and gold-based drugs) are currently being studied to increase treatment effectiveness and reduce side effects. PMID:28106826

  17. Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer.

    PubMed

    Mármol, Inés; Sánchez-de-Diego, Cristina; Pradilla Dieste, Alberto; Cerrada, Elena; Rodriguez Yoldi, María Jesús

    2017-01-19

    Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related death. Most cases of CRC are detected in Western countries, with its incidence increasing year by year. The probability of suffering from colorectal cancer is about 4%-5% and the risk for developing CRC is associated with personal features or habits such as age, chronic disease history and lifestyle. In this context, the gut microbiota has a relevant role, and dysbiosis situations can induce colonic carcinogenesis through a chronic inflammation mechanism. Some of the bacteria responsible for this multiphase process include Fusobacterium spp, Bacteroides fragilis and enteropathogenic Escherichia coli . CRC is caused by mutations that target oncogenes, tumour suppressor genes and genes related to DNA repair mechanisms. Depending on the origin of the mutation, colorectal carcinomas can be classified as sporadic (70%); inherited (5%) and familial (25%). The pathogenic mechanisms leading to this situation can be included in three types, namely chromosomal instability (CIN), microsatellite instability (MSI) and CpG island methylator phenotype (CIMP). Within these types of CRC, common mutations, chromosomal changes and translocations have been reported to affect important pathways (WNT, MAPK/PI3K, TGF-β, TP53), and mutations; in particular, genes such as c-MYC, KRAS , BRAF , PIK3CA , PTEN , SMAD2 and SMAD4 can be used as predictive markers for patient outcome. In addition to gene mutations, alterations in ncRNAs, such as lncRNA or miRNA, can also contribute to different steps of the carcinogenesis process and have a predictive value when used as biomarkers. In consequence, different panels of genes and mRNA are being developed to improve prognosis and treatment selection. The choice of first-line treatment in CRC follows a multimodal approach based on tumour-related characteristics and usually comprises surgical resection followed by chemotherapy combined with monoclonal antibodies or proteins against vascular endothelial growth factor (VEGF) and epidermal growth receptor (EGFR). Besides traditional chemotherapy, alternative therapies (such as agarose tumour macrobeads, anti-inflammatory drugs, probiotics, and gold-based drugs) are currently being studied to increase treatment effectiveness and reduce side effects.

  18. EGFR gene copy number alterations are not a useful screening tool for predicting EGFR mutation status in lung adenocarcinoma.

    PubMed

    Russell, Prudence A; Yu, Yong; Do, Hongdo; Clay, Timothy D; Moore, Melissa M; Wright, Gavin M; Conron, Matthew; Wainer, Zoe; Dobrovic, Alexander; McLachlan, Sue-Anne

    2014-01-01

    We investigated if gene copy number (GCN) alterations of the epidermal growth factor receptor (EGFR), as detected by silver enhanced in situ hybridisation (SISH), could be used to select patients for EGFR mutation testing. Resected lung adenocarcinoma specimens with adequate tumour were identified. EGFR SISH was performed using the Ventana Benchmark Ultra platform. EGFR GCN was classified according to the Colorado Classification System. EGFR mutations were scanned by high resolution melting and confirmed by Sanger sequencing. Thirty-four of 96 tumours were EGFR SISH positive (35%), and 31 of 96 tumours harboured one or more EGFR mutations (32%). Of 31 EGFR-mutant tumours, 18 were EGFR SISH positive (58%). There was a statistically significant relationship between the presence of an EGFR mutation and EGFR GCN (p = 0.003). Thirteen of 31 EGFR-mutant tumours were EGFR SISH negative (42%), and 16 of 65 EGFR-wild type tumours were EGFR SISH positive (24%). The sensitivity, specificity, positive predictive value and negative predictive value were 58%, 75%, 52.9% and 79%, respectively. Despite a significant relationship between EGFR GCN alterations and EGFR mutations, our results indicate that EGFR GCN as detected by SISH is not a suitable way to select patients for EGFR mutation testing.

  19. Identifying structural variation in haploid microbial genomes from short-read resequencing data using breseq.

    PubMed

    Barrick, Jeffrey E; Colburn, Geoffrey; Deatherage, Daniel E; Traverse, Charles C; Strand, Matthew D; Borges, Jordan J; Knoester, David B; Reba, Aaron; Meyer, Austin G

    2014-11-29

    Mutations that alter chromosomal structure play critical roles in evolution and disease, including in the origin of new lifestyles and pathogenic traits in microbes. Large-scale rearrangements in genomes are often mediated by recombination events involving new or existing copies of mobile genetic elements, recently duplicated genes, or other repetitive sequences. Most current software programs for predicting structural variation from short-read DNA resequencing data are intended primarily for use on human genomes. They typically disregard information in reads mapping to repeat sequences, and significant post-processing and manual examination of their output is often required to rule out false-positive predictions and precisely describe mutational events. We have implemented an algorithm for identifying structural variation from DNA resequencing data as part of the breseq computational pipeline for predicting mutations in haploid microbial genomes. Our method evaluates the support for new sequence junctions present in a clonal sample from split-read alignments to a reference genome, including matches to repeat sequences. Then, it uses a statistical model of read coverage evenness to accept or reject these predictions. Finally, breseq combines predictions of new junctions and deleted chromosomal regions to output biologically relevant descriptions of mutations and their effects on genes. We demonstrate the performance of breseq on simulated Escherichia coli genomes with deletions generating unique breakpoint sequences, new insertions of mobile genetic elements, and deletions mediated by mobile elements. Then, we reanalyze data from an E. coli K-12 mutation accumulation evolution experiment in which structural variation was not previously identified. Transposon insertions and large-scale chromosomal changes detected by breseq account for ~25% of spontaneous mutations in this strain. In all cases, we find that breseq is able to reliably predict structural variation with modest read-depth coverage of the reference genome (>40-fold). Using breseq to predict structural variation should be useful for studies of microbial epidemiology, experimental evolution, synthetic biology, and genetics when a reference genome for a closely related strain is available. In these cases, breseq can discover mutations that may be responsible for important or unintended changes in genomes that might otherwise go undetected.

  20. Cancer risks and survival in patients with multiple primary melanomas: Association with family history of melanoma and germline CDKN2A mutation status.

    PubMed

    Helgadottir, Hildur; Tuominen, Rainer; Olsson, Håkan; Hansson, Johan; Höiom, Veronica

    2017-11-01

    Worse outcomes have been noted in patients with multiple primary melanomas (MPMs) than in patients with single primary melanomas. We investigated how family history of melanoma and germline CDKN2A mutation status of MPM patients affects risks of developing subsequent melanomas and other cancers and survival outcomes. Comprehensive data on cancer diagnoses and deaths of MPM patients, their first-degree relatives, and matched controls were obtained through Swedish national health care and population registries. Familial MPM cases with germline CDKN2A mutations were youngest at the diagnosis of their second melanoma (median age 42 years) and had among the MPM cohorts the highest relative risks (RR) compared to controls of developing >2 melanomas (RR 238.4, 95% CI 74.8-759.9). CDKN2A mutated MPM cases and their first-degree relatives were the only cohorts with increased risks of nonskin cancers compared to controls (RR 3.6, 95% CI 1.9-147.1 and RR 3.2, 95% CI 1.9-5.6, respectively). In addition, CDKN2A mutated MPM cases had worse survival compared with both cases with familial (HR 3.0, 95% CI 1.3-8.1) and sporadic wild-type MPM (HR 2.63, 95% CI 1.3-5.4). Our study examined outcomes in subgroups of MPM patients, which affected the sample size of the study groups. This study demonstrates that CDKN2A mutation status and family history of melanoma significantly affects outcomes of MPM patients. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  1. How Complex, Probable, and Predictable is Genetically Driven Red Queen Chaos?

    PubMed

    Duarte, Jorge; Rodrigues, Carla; Januário, Cristina; Martins, Nuno; Sardanyés, Josep

    2015-12-01

    Coevolution between two antagonistic species has been widely studied theoretically for both ecologically- and genetically-driven Red Queen dynamics. A typical outcome of these systems is an oscillatory behavior causing an endless series of one species adaptation and others counter-adaptation. More recently, a mathematical model combining a three-species food chain system with an adaptive dynamics approach revealed genetically driven chaotic Red Queen coevolution. In the present article, we analyze this mathematical model mainly focusing on the impact of species rates of evolution (mutation rates) in the dynamics. Firstly, we analytically proof the boundedness of the trajectories of the chaotic attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. By using symbolic dynamics theory, we quantify the complexity of genetically driven Red Queen chaos computing the topological entropy of existing one-dimensional iterated maps using Markov partitions. Co-dimensional two bifurcation diagrams are also built from the period ordering of the orbits of the maps. Then, we study the predictability of the Red Queen chaos, found in narrow regions of mutation rates. To extend the previous analyses, we also computed the likeliness of finding chaos in a given region of the parameter space varying other model parameters simultaneously. Such analyses allowed us to compute a mean predictability measure for the system in the explored region of the parameter space. We found that genetically driven Red Queen chaos, although being restricted to small regions of the analyzed parameter space, might be highly unpredictable.

  2. Beyond Breast and Ovarian Cancers: PARP Inhibitors for BRCA Mutation-Associated and BRCA-Like Solid Tumors

    PubMed Central

    O’Sullivan, Ciara C.; Moon, Dominic H.; Kohn, Elise C.; Lee, Jung-Min

    2014-01-01

    Poly(ADP-ribose) polymerase inhibitors (PARPi) have shown clinical activity in patients with germline BRCA1/2 mutation (gBRCAm)-associated breast and ovarian cancers. Accumulating evidence suggests that PARPi may have a wider application in the treatment of cancers defective in DNA damage repair pathways, such as prostate, lung, endometrial, and pancreatic cancers. Several PARPi are currently in phase I/II clinical investigation, as single-agents and/or combination therapy in these solid tumors. Understanding more about the molecular abnormalities involved in BRCA-like phenotype in solid tumors beyond breast and ovarian cancers, exploring novel therapeutic trial strategies and drug combinations, and defining potential predictive biomarkers are critical to expanding the scope of PARPi therapy. This will improve clinical outcome in advanced solid tumors. Here, we briefly review the preclinical data and clinical development of PARPi, and discuss its future development in solid tumors beyond gBRCAm-associated breast and ovarian cancers. PMID:24616882

  3. Economic evaluation of targeted cancer interventions: critical review and recommendations.

    PubMed

    Elkin, Elena B; Marshall, Deborah A; Kulin, Nathalie A; Ferrusi, Ilia L; Hassett, Michael J; Ladabaum, Uri; Phillips, Kathryn A

    2011-10-01

    Scientific advances have improved our ability to target cancer interventions to individuals who will benefit most and spare the risks and costs to those who will derive little benefit or even be harmed. Several approaches are currently used for targeting interventions for cancer risk reduction, screening, and treatment, including risk prediction algorithms for identifying high-risk subgroups and diagnostic tests for tumor markers and germline genetic mutations. Economic evaluation can inform decisions about the use of targeted interventions, which may be more costly than traditional strategies. However, assessing the impact of a targeted intervention on costs and health outcomes requires explicit consideration of the method of targeting. In this study, we describe the importance of this principle by reviewing published cost-effectiveness analyses of targeted interventions in breast cancer. Few studies we identified explicitly evaluated the relationships among the method of targeting, the accuracy of the targeting test, and outcomes of the targeted intervention. Those that did found that characteristics of targeting tests had a substantial impact on outcomes. We posit that the method of targeting and the outcomes of a targeted intervention are inextricably linked and recommend that cost-effectiveness analyses of targeted interventions explicitly consider costs and outcomes of the method of targeting.

  4. Association of EGFR mutation or ALK rearrangement with expression of DNA repair and synthesis genes in never-smoker women with pulmonary adenocarcinoma.

    PubMed

    Ren, Shengxiang; Chen, Xiaoxia; Kuang, Peng; Zheng, Limou; Su, Chunxia; Li, Jiayu; Li, Bing; Wang, Yongshen; Liu, Lu; Hu, Qiong; Zhang, Jie; Tang, Liang; Li, Xuefei; Zhou, Caicun; Schmid-Bindert, Gerald

    2012-11-15

    Epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement may predict the outcome of targeted drug therapy and also are associated with the efficacy of chemotherapy in patients with nonsmall cell lung cancer (NSCLC). The authors of this report investigated the relation of EGFR mutation or ALK rearrangement status and the expression of DNA repair or synthesis genes, including excision repair cross-complementing 1 (ERCC1), ribonucleotide reductase subunit M1 (RRM1), thymidylate synthetase (TS), and breast cancer-early onset (BRCA1), as a potential explanation for these observations. In total, 104 resected lung adenocarcinomas from women who were nonsmokers were analyzed concurrently for EGFR mutations, ALK rearrangements, and mRNA expression of the ERCC1, RRM1, TS, and BRCA1 genes. EGFR mutations were detected with a proprietary detection kit, ALK rearrangements were detected by polymerase chain reaction analysis, and genetic mRNA expression was detected by real-time polymerase chain reaction analysis. Of 104 patients, 73 (70.2%) had EGFR mutations, and 10 (9.6%) had ALK rearrangements. ERCC1 mRNA levels in patients who had EGFR mutations were 3.44 ± 1.94 × 10(-3) , which were significantly lower than the levels in patients who were positive for ALK rearrangements and in patients who were negative for both biomarkers (4.60 ± 1.95 × 10(-3) and 4.95 ± 2.33 × 10(-3) , respectively; P = .010). However, TS mRNA levels were significantly lower in patients who had EGFR mutations (1.15 ± 1.38 × 10(-3) vs 2.69 ± 3.97 × 10(-3) ; P = .006) or ALK rearrangements (1.21 ± 0.78 × 10(-3) vs 2.69 ± 3.97 × 10(-3) ; P = .020) than in patients who were negative for both biomarkers. NSCLC specimens that harbored activating EGFR mutations were more likely to express low ERCC1 and TS mRNA levels, whereas patients with NSCLC who had ALK rearrangement were more likely to express low TS mRNA levels. Copyright © 2012 American Cancer Society.

  5. Prognostic Significance of POLE Proofreading Mutations in Endometrial Cancer

    PubMed Central

    Church, David N.; Stelloo, Ellen; Nout, Remi A.; Valtcheva, Nadejda; Depreeuw, Jeroen; ter Haar, Natalja; Noske, Aurelia; Amant, Frederic; Wild, Peter J.; Lambrechts, Diether; Jürgenliemk-Schulz, Ina M.; Jobsen, Jan J.; Smit, Vincent T. H. B. M.; Creutzberg, Carien L.; Bosse, Tjalling

    2015-01-01

    Background: Current risk stratification in endometrial cancer (EC) results in frequent over- and underuse of adjuvant therapy, and may be improved by novel biomarkers. We examined whether POLE proofreading mutations, recently reported in about 7% of ECs, predict prognosis. Methods: We performed targeted POLE sequencing in ECs from the PORTEC-1 and -2 trials (n = 788), and analyzed clinical outcome according to POLE status. We combined these results with those from three additional series (n = 628) by meta-analysis to generate multivariable-adjusted, pooled hazard ratios (HRs) for recurrence-free survival (RFS) and cancer-specific survival (CSS) of POLE-mutant ECs. All statistical tests were two-sided. Results: POLE mutations were detected in 48 of 788 (6.1%) ECs from PORTEC-1 and-2 and were associated with high tumor grade (P < .001). Women with POLE-mutant ECs had fewer recurrences (6.2% vs 14.1%) and EC deaths (2.3% vs 9.7%), though, in the total PORTEC cohort, differences in RFS and CSS were not statistically significant (multivariable-adjusted HR = 0.43, 95% CI = 0.13 to 1.37, P = .15; HR = 0.19, 95% CI = 0.03 to 1.44, P = .11 respectively). However, of 109 grade 3 tumors, 0 of 15 POLE-mutant ECs recurred, compared with 29 of 94 (30.9%) POLE wild-type cancers; reflected in statistically significantly greater RFS (multivariable-adjusted HR = 0.11, 95% CI = 0.001 to 0.84, P = .03). In the additional series, there were no EC-related events in any of 33 POLE-mutant ECs, resulting in a multivariable-adjusted, pooled HR of 0.33 for RFS (95% CI = 0.12 to 0.91, P = .03) and 0.26 for CSS (95% CI = 0.06 to 1.08, P = .06). Conclusion: POLE proofreading mutations predict favorable EC prognosis, independently of other clinicopathological variables, with the greatest effect seen in high-grade tumors. This novel biomarker may help to reduce overtreatment in EC. PMID:25505230

  6. Molecular Testing for miRNA, mRNA, and DNA on Fine-Needle Aspiration Improves the Preoperative Diagnosis of Thyroid Nodules With Indeterminate Cytology.

    PubMed

    Labourier, Emmanuel; Shifrin, Alexander; Busseniers, Anne E; Lupo, Mark A; Manganelli, Monique L; Andruss, Bernard; Wylie, Dennis; Beaudenon-Huibregtse, Sylvie

    2015-07-01

    Molecular testing for oncogenic mutations or gene expression in fine-needle aspirations (FNAs) from thyroid nodules with indeterminate cytology identifies a subset of benign or malignant lesions with high predictive value. This study aimed to evaluate a novel diagnostic algorithm combining mutation detection and miRNA expression to improve the diagnostic yield of molecular cytology. Surgical specimens and preoperative FNAs (n = 638) were tested for 17 validated gene alterations using the miRInform Thyroid test and with a 10-miRNA gene expression classifier generating positive (malignant) or negative (benign) results. Cross-sectional sampling of thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance (AUS/FLUS) or follicular neoplasm/suspicious for a follicular neoplasm (FN/SFN) cytology (n = 109) was conducted at 12 endocrinology centers across the United States. Qualitative molecular results were compared with surgical histopathology to determine diagnostic performance and model clinical effect. Mutations were detected in 69% of nodules with malignant outcome. Among mutation-negative specimens, miRNA testing correctly identified 64% of malignant cases and 98% of benign cases. The diagnostic sensitivity and specificity of the combined algorithm was 89% (95% confidence interval [CI], 73-97%) and 85% (95% CI, 75-92%), respectively. At 32% cancer prevalence, 61% of the molecular results were benign with a negative predictive value of 94% (95% CI, 85-98%). Independently of variations in cancer prevalence, the test increased the yield of true benign results by 65% relative to mRNA-based gene expression classification and decreased the rate of avoidable diagnostic surgeries by 69%. Multiplatform testing for DNA, mRNA, and miRNA can accurately classify benign and malignant thyroid nodules, increase the diagnostic yield of molecular cytology, and further improve the preoperative risk-based management of benign nodules with AUS/FLUS or FN/SFN cytology.

  7. Identification and targeting of a TACE-dependent autocrine loopwhich predicts poor prognosis in breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenny, Paraic A.; Bissell, Mina J.

    2005-06-15

    The ability to proliferate independently of signals from other cell types is a fundamental characteristic of tumor cells. Using a 3D culture model of human breast cancer progression, we have delineated a protease-dependent autocrine loop which provides an oncogenic stimulus in the absence of proto-oncogene mutation. Inhibition of this protease, TACE/ADAM17, reverts the malignant phenotype by preventing mobilization of two crucial growth factors, Amphiregulin and TGF{alpha}. We show further that the efficacy of EGFR inhibitors is overcome by physiological levels of growth factors and that successful EGFR inhibition is dependent on reducing ligand bioavailability. Using existing patient outcome data, wemore » demonstrate a strong correlation between TACE and TGF{alpha} expression in human breast cancers that is predictive of poor prognosis.« less

  8. A novel germline mutation (c.A527G) in STK11 gene causes Peutz–Jeghers syndrome in a Chinese girl

    PubMed Central

    Zhao, Zi-Ye; Jiang, Yu-Liang; Li, Bai-Rong; Yang, Fu; Li, Jing; Jin, Xiao-Wei; Sun, Shu-Han; Ning, Shou-Bin

    2017-01-01

    Abstract Rationale: Peutz–Jeghers syndrome (PJS) is a Mendelian autosomal dominant disease caused by mutations in the tumor suppressor gene, serine/threonine kinase 11 (STK11). The features of this syndrome include gastrointestinal (GI) hamartomas, melanin spots on the lips and the extremities, and an increased risk of developing cancer. Early onset of disease is often characterized by mucocutaneous pigmentation and intussusception due to GI polyps in childhood. Patient concerns: A girl with a positive family history grew oral pigmentation at 1 and got intussusception by small bowel hamartomas at 5. Diagnoses: She was diagnosed with PJS based on oral pigmentation and a positive family history of PJS. Interventions: Enteroscopy was employed to treat the GI polyps. Sanger sequencing was used to investigate STK11 mutation in this family. Outcomes: A large jejunal polyp together with other smaller ones was resected, and the girl recovered uneventfully. We discovered a heterozygous substitution in STK11, c.A527G in exon 4, in the girl and her father who was also a PJS patient, and the amine acid change was an aspartic acid-glycine substitution in codon 176. This mutation was not found in other healthy family members and 50 unrelated non-PJS controls, and it is not recorded in databases, which prove it a novel mutation. Evolutionary conservation analysis of amino acid residues showed this aspartic acid is a conserved one between species, and protein structure prediction by SWISS-MODEL indicated an obvious change in local structure. In addition, PolyPhen-2 score for this mutation is 1, which indicates it probably damaging. Lessons: PJS can cause severe complication like intussusception in young children, and early screening for small bowel may be beneficial for these patients. The mutation of STK11 found in this girl is a novel one, which enlarges the spectrum of STK11. Our analysis supported it a causative one in PJS. PMID:29245219

  9. Resistance profile of darunavir: combined 24-week results from the POWER trials.

    PubMed

    de Meyer, Sandra; Vangeneugden, Tony; van Baelen, Ben; de Paepe, Els; van Marck, Herwig; Picchio, Gaston; Lefebvre, Eric; de Béthune, Marie-Pierre

    2008-03-01

    The resistance profile of darunavir (TMC114) in treatment-experienced patients was explored using pooled week 24 data from POWER 1, 2, and 3 at the recommended dose of darunavir with low-dose ritonavir (darunavir/r, 600/100 mg bid, N = 458). Baseline darunavir fold change in EC(50) was a strong predictor of virological response at week 24. Preliminary phenotypic clinical cut-offs of 10 and 40 were established. Virological response to darunavir/r was maintained in the presence at baseline of a high number of IAS-USA PI resistance-associated mutations (IAS-USA PI RAMS); a diminished response occurred with >or=14. Eleven protease mutations associated with diminished darunavir/r virological response were identified (V11I, V32I, L33F, I47V, I50V, I54L/M, G73S, L76V, I84V, and L89V). These darunavir resistance-associated mutations (DRV RAMS) occurred in the presence of a high number of IAS-USA PI RAMS. Virological response was diminished with three or more DRV RAMS in the background of a high number of IAS-USA PI RAMS. Incremental numbers of DRV RAMS were more predictive of outcome than were IAS-USA PI RAMS. Mutations developing during darunavir/r virological failure (V32I, L33F, I47V, I54L, and L89V) were also featured in the DRV RAMS list. Site-directed mutants carrying these five mutations, or any one of these mutations either alone or together with one or two IAS-USA PI RAMS, showed no reduced darunavir susceptibility, suggesting that a high number of additional background mutations is required for darunavir resistance. In this population of treatment-experienced patients, darunavir/r demonstrated significantly greater efficacy than investigator-selected control PIs of trials POWER 1 and 2, regardless of baseline viral genotype or phenotype, while exhibiting a high genetic barrier to the development of resistance.

  10. Determination of binding affinity upon mutation for type I dockerin-cohesin complexes from Clostridium thermocellum and Clostridium cellulolyticum using deep sequencing.

    PubMed

    Kowalsky, Caitlin A; Whitehead, Timothy A

    2016-12-01

    The comprehensive sequence determinants of binding affinity for type I cohesin toward dockerin from Clostridium thermocellum and Clostridium cellulolyticum was evaluated using deep mutational scanning coupled to yeast surface display. We measured the relative binding affinity to dockerin for 2970 and 2778 single point mutants of C. thermocellum and C. cellulolyticum, respectively, representing over 96% of all possible single point mutants. The interface ΔΔG for each variant was reconstructed from sequencing counts and compared with the three independent experimental methods. This reconstruction results in a narrow dynamic range of -0.8-0.5 kcal/mol. The computational software packages FoldX and Rosetta were used to predict mutations that disrupt binding by more than 0.4 kcal/mol. The area under the curve of receiver operator curves was 0.82 for FoldX and 0.77 for Rosetta, showing reasonable agreements between predictions and experimental results. Destabilizing mutations to core and rim positions were predicted with higher accuracy than support positions. This benchmark dataset may be useful for developing new computational prediction tools for the prediction of the mutational effect on binding affinities for protein-protein interactions. Experimental considerations to improve precision and range of the reconstruction method are discussed. Proteins 2016; 84:1914-1928. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. IgV H mutations in blastoid mantle cell lymphoma characterize a subgroup with a tendency to more favourable clinical outcome.

    PubMed

    Cogliatti, Sergio B; Bertoni, Francesco; Zimmermann, Dieter R; Henz, Samuel; Diss, Tim C; Ghielmini, Michele; Schmid, Ulrico

    2005-07-01

    Mantle cell lymphoma (MCL) is associated with a very unfavourable clinical course. This is particularly true for mantle cell lymphoma of the blastoid subtype (MCL-b). In order to define prognostic factors, we analysed the impact of immunoglobulin heavy chain variable (IgV H) gene somatic hypermutations on clinical outcome in a series of 21 cases of morphologically, phenotypically, and genotypically well-characterized MCL-b. Testing and estimation were performed using log-rank statistics and displayed on Kaplan-Meier graphs. Thirteen of 21 cases of MCL-b revealed a homology rate of > or = 99% compared to IgV H germ-line sequences in the databases and were scored as non-mutated. Eight of 21 cases (38%) of MCL-b were mutated. In MCL-b the mutation frequency was usually low and the mutation pattern was only rarely antigen-selected, in contrast to a control group of 11 cases with morphologically almost identical, but phenotypically and genotypically clearly distinguishable, diffuse large B cell lymphoma, derived, most likely, from germinal centre B cells. In our series of 21 MCL-b, positive IgV H mutational status, irrespective of varying homology thresholds, had no statistically significant prognostic impact on event-free or overall survival. However, mutated MCL-b tended to present more frequently at an earlier stage and without bone marrow involvement and to show lower rates of relapse and death, resulting in a more favourable clinical outcome. Copyright 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  12. Associating mutations causing cystinuria with disease severity with the aim of providing precision medicine.

    PubMed

    Martell, Henry J; Wong, Kathie A; Martin, Juan F; Kassam, Ziyan; Thomas, Kay; Wass, Mark N

    2017-08-11

    Cystinuria is an inherited disease that results in the formation of cystine stones in the kidney, which can have serious health complications. Two genes (SLC7A9 and SLC3A1) that form an amino acid transporter are known to be responsible for the disease. Variants that cause the disease disrupt amino acid transport across the cell membrane, leading to the build-up of relatively insoluble cystine, resulting in formation of stones. Assessing the effects of each mutation is critical in order to provide tailored treatment options for patients. We used various computational methods to assess the effects of cystinuria associated mutations, utilising information on protein function, evolutionary conservation and natural population variation of the two genes. We also analysed the ability of some methods to predict the phenotypes of individuals with cystinuria, based on their genotypes, and compared this to clinical data. Using a literature search, we collated a set of 94 SLC3A1 and 58 SLC7A9 point mutations known to be associated with cystinuria. There are differences in sequence location, evolutionary conservation, allele frequency, and predicted effect on protein function between these mutations and other genetic variants of the same genes that occur in a large population. Structural analysis considered how these mutations might lead to cystinuria. For SLC7A9, many mutations swap hydrophobic amino acids for charged amino acids or vice versa, while others affect known functional sites. For SLC3A1, functional information is currently insufficient to make confident predictions but mutations often result in the loss of hydrogen bonds and largely appear to affect protein stability. Finally, we showed that computational predictions of mutation severity were significantly correlated with the disease phenotypes of patients from a clinical study, despite different methods disagreeing for some of their predictions. The results of this study are promising and highlight the areas of research which must now be pursued to better understand how mutations in SLC3A1 and SLC7A9 cause cystinuria. The application of our approach to a larger data set is essential, but we have shown that computational methods could play an important role in designing more effective personalised treatment options for patients with cystinuria.

  13. Clinico-pathological nomogram for predicting BRAF mutational status of metastatic colorectal cancer.

    PubMed

    Loupakis, Fotios; Moretto, Roberto; Aprile, Giuseppe; Muntoni, Marta; Cremolini, Chiara; Iacono, Donatella; Casagrande, Mariaelena; Ferrari, Laura; Salvatore, Lisa; Schirripa, Marta; Rossini, Daniele; De Maglio, Giovanna; Fasola, Gianpiero; Calvetti, Lorenzo; Pilotto, Sara; Carbognin, Luisa; Fontanini, Gabriella; Tortora, Giampaolo; Falcone, Alfredo; Sperduti, Isabella; Bria, Emilio

    2016-01-12

    In metastatic colorectal cancer (mCRC), BRAFV600E mutation has been variously associated to specific clinico-pathological features. Two large retrospective series of mCRC patients from two Italian Institutions were used as training-set (TS) and validation-set (VS) for developing a nomogram predictive of BRAFV600E status. The model was internally and externally validated. In the TS, data from 596 mCRC patients were gathered (RAS wild-type (wt) 281 (47.1%); BRAFV600E mutated 54 (9.1%)); RAS and BRAFV600E mutations were mutually exclusive. In the RAS-wt population, right-sided primary (odds ratio (OR): 7.80, 95% confidence interval (CI) 3.05-19.92), female gender (OR: 2.90, 95% CI 1.14-7.37) and mucinous histology (OR: 4.95, 95% CI 1.90-12.90) were independent predictors of BRAFV600E mutation, with high replication at internal validation (100%, 93% and 98%, respectively). A predictive nomogram was calculated: patients with the highest score (right-sided primary, female and mucinous) had a 81% chance to bear a BRAFV600E-mutant tumour; accuracy measures: AUC=0.812, SE:0.034, sensitivity:81.2%; specificity:72.1%. In the VS (508 pts, RAS wt: 262 (51.6%), BRAFV600E mutated: 49 (9.6%)), right-sided primary, female gender and mucinous histology were confirmed as independent predictors of BRAFV600E mutation with high accuracy. Three simple and easy-to-collect characteristics define a useful nomogram for predicting BRAF status in mCRC with high specificity and sensitivity.

  14. Prognostic value of plasma EGFR ctDNA in NSCLC patients treated with EGFR-TKIs.

    PubMed

    Zhang, Chengjuan; Wei, Bing; Li, Peng; Yang, Ke; Wang, Zhizhong; Ma, Jie; Guo, Yongjun

    2017-01-01

    Epidermal growth factor receptor (EGFR) specific mutations have been known to improve survival of patients with non-small-cell lung carcinoma (NSCLC). However, whether there are any changes of EGFR mutations after targeted therapy and its clinical significance is unclear. This study was to identify the status of EGFR mutations after targeted therapy and predict the prognostic significance for NSCLC patients. A total of forty-five (45) NSCLC patients who received EGFR-TKI therapy were enrolled. We identified the changes of EGFR mutations in plasma ctDNA by Amplification Refractory Mutation System (ARMS) PCR technology. In the 45 cases of NSCLC with EGFR mutations, the EGFR mutation status changed in 26 cases, in which, 12 cases (26.7%) from positive to negative, and 14 cases (31.1%) from T790M mutation negative to positive after TKI targeted therapy. The T790M occurance group had a shorter Progression -Free-Survival (PFS) than the groups of EGFR mutation undetected and EGFR mutation turned out to have no change after EGFR-TKI therapy (p < 0.05). According to this study, it's necessary to closely monitor EGFR mutations during follow-up to predict the prognosis of NSCLC patients who are to receive the TKI targeted therapy.

  15. Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data

    NASA Astrophysics Data System (ADS)

    Sinha, Subarna; Thomas, Daniel; Chan, Steven; Gao, Yang; Brunen, Diede; Torabi, Damoun; Reinisch, Andreas; Hernandez, David; Chan, Andy; Rankin, Erinn B.; Bernards, Rene; Majeti, Ravindra; Dill, David L.

    2017-05-01

    Two genes are synthetically lethal (SL) when defects in both are lethal to a cell but a single defect is non-lethal. SL partners of cancer mutations are of great interest as pharmacological targets; however, identifying them by cell line-based methods is challenging. Here we develop MiSL (Mining Synthetic Lethals), an algorithm that mines pan-cancer human primary tumour data to identify mutation-specific SL partners for specific cancers. We apply MiSL to 12 different cancers and predict 145,891 SL partners for 3,120 mutations, including known mutation-specific SL partners. Comparisons with functional screens show that MiSL predictions are enriched for SLs in multiple cancers. We extensively validate a SL interaction identified by MiSL between the IDH1 mutation and ACACA in leukaemia using gene targeting and patient-derived xenografts. Furthermore, we apply MiSL to pinpoint genetic biomarkers for drug sensitivity. These results demonstrate that MiSL can accelerate precision oncology by identifying mutation-specific targets and biomarkers.

  16. Extensive de novo mutation rate variation between individuals and across the genome of Chlamydomonas reinhardtii

    PubMed Central

    Ness, Rob W.; Morgan, Andrew D.; Vasanthakrishnan, Radhakrishnan B.; Colegrave, Nick; Keightley, Peter D.

    2015-01-01

    Describing the process of spontaneous mutation is fundamental for understanding the genetic basis of disease, the threat posed by declining population size in conservation biology, and much of evolutionary biology. Directly studying spontaneous mutation has been difficult, however, because new mutations are rare. Mutation accumulation (MA) experiments overcome this by allowing mutations to build up over many generations in the near absence of natural selection. Here, we sequenced the genomes of 85 MA lines derived from six genetically diverse strains of the green alga Chlamydomonas reinhardtii. We identified 6843 new mutations, more than any other study of spontaneous mutation. We observed sevenfold variation in the mutation rate among strains and that mutator genotypes arose, increasing the mutation rate approximately eightfold in some replicates. We also found evidence for fine-scale heterogeneity in the mutation rate, with certain sequence motifs mutating at much higher rates, and clusters of multiple mutations occurring at closely linked sites. There was little evidence, however, for mutation rate heterogeneity between chromosomes or over large genomic regions of 200 kbp. We generated a predictive model of the mutability of sites based on their genomic properties, including local GC content, gene expression level, and local sequence context. Our model accurately predicted the average mutation rate and natural levels of genetic diversity of sites across the genome. Notably, trinucleotides vary 17-fold in rate between the most and least mutable sites. Our results uncover a rich heterogeneity in the process of spontaneous mutation both among individuals and across the genome. PMID:26260971

  17. Novel mutations in the connexin 32 gene associated with X-linked Charcot-Marie-Tooth disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, C.; Ainsworth, P.

    1994-09-01

    Charcot-Marie-Tooth disease is a pathologically and genetically hetergenous group of disorders that cause a progressive neuropathy, defined pathologically by degeneration of the myelin (CMT 1) of the axon (CMT 2) of the peripheral nerves. An X-linked type of the demyelinating form of this disorder (CMT X) has recently been linked to mutations in the connexin 32 (Cx32) gene, which codes for a 284 amino acid gap junction protein found in myelinated peripheral nerve. To date some 7 different mutations in this gene have been identified as being responsible for CMT X. The majority of these predict nonconservative amino acid substitutions,more » while one is a frameshift mutation which predicts a premature stop at codon 21. We report the results of molecular studies on three further local CMT X kindreds. The Cx32 gene was amplified by PCR in three overlapping fragments 300-450 bp in length using leukocyte-derived DNA as template. These were either sequenced directly using a deaza dGTP sequencing protocol, or were cloned and sequenced using a TA vector. In two of the kindreds the affected members carried a point mutation which was predicted to effect a non-conservative amino acid change within the first transmembrane domain. Both of these mutations caused a restriction site alteration (the loss of an Nla III and the creation of a Pvu II, respectively), and the former mutation was observed to segregate with the clinicial phenotype in affected family members. Affected members of the third kindred, which was a very large multigenerational family that had been extensively studied previously, were shown to carry a point mutation predicted to cause a premature truncation of the Cx32 gene product in the intracellular carboxy terminus. This mutation obliterated an Rsa I site which allowed a rapid screen of several other family members.« less

  18. Genotype and Outcome After Kidney Transplantation in Alport Syndrome.

    PubMed

    Gillion, Valentine; Dahan, Karin; Cosyns, Jean-Pierre; Hilbert, Pascale; Jadoul, Michel; Goffin, Eric; Godefroid, Nathalie; De Meyer, Martine; Mourad, Michel; Pirson, Yves; Kanaan, Nada

    2018-05-01

    Alport syndrome (AS) is caused by mutations in α3/α4/α5 (IV) collagen genes, the severity of which determine the progression of AS. Posttransplantation outcome is good, although anti-glomerular basement membrane (anti-GBM) glomerulonephritis occurs in 3% to 5% of recipients, clustering in patients with a severe mutation. We assessed whether the severity of the underlying AS mutation affects graft and patients outcome after transplantation, including the occurrence of anti-GBM nephritis. We included 73 AS patients with an identified mutation (COL4A5, 57 patients; COL4A3, 9 patients; COL4A4, 6 patients; heterozygous composite COL4A3 and A4, 1 patient) who underwent transplantation between 1971 and 2014 and who had received a total of 93 kidney grafts. In all, 41 patients had a severe mutation (COL4A5, 30 patients; COL4A3, 6 patients; COL4A4, 5 patients), and 32 had a nonsevere mutation (COL4A5, 27 patients; COL4A3, 4 patients; COL4A4, 1 patient). Patient survival was similar in patients with severe and nonsevere mutations (89% vs. 84% at 5 years, 83% vs. 75% at 10, 15, and 20 years; P  = 0.46). Graft survival was not affected by the severity of mutation (77% vs. 63% at 5 years, 60% vs. 55% at 10 years, 55% vs. 55% at 15 years, and 55% vs. 50% at 20 years; P  = 0.65). Clinically significant anti-GBM glomerulonephritis occurred in 1 male patient with severe COL4A5 mutation 6 years after transplantation recurred in a subsequent graft, leading twice to graft loss. Although severe mutations affect the severity of AS, they do not have an impact on patient and graft survival after transplantation. De novo anti-GBM nephritis after transplantation was less frequent than previously reported, occurring in only 1.4% of AS patients, and in 2% of males with COL4A5 mutation.

  19. Non-dystrophic myotonia: prospective study of objective and patient reported outcomes.

    PubMed

    Trivedi, Jaya R; Bundy, Brian; Statland, Jeffrey; Salajegheh, Mohammad; Rayan, Dipa Raja; Venance, Shannon L; Wang, Yunxia; Fialho, Doreen; Matthews, Emma; Cleland, James; Gorham, Nina; Herbelin, Laura; Cannon, Stephen; Amato, Anthony; Griggs, Robert C; Hanna, Michael G; Barohn, Richard J

    2013-07-01

    Non-dystrophic myotonias are rare diseases caused by mutations in skeletal muscle chloride and sodium ion channels with considerable phenotypic overlap between diseases. Few prospective studies have evaluated the sensitivity of symptoms and signs of myotonia in a large cohort of patients. We performed a prospective observational study of 95 participants with definite or clinically suspected non-dystrophic myotonia recruited from six sites in the USA, UK and Canada between March 2006 and March 2009. We used the common infrastructure and data elements provided by the NIH-funded Rare Disease Clinical Research Network. Outcomes included a standardized symptom interview and physical exam; the Short Form-36 and the Individualized Neuromuscular Quality of Life instruments; electrophysiological short and prolonged exercise tests; manual muscle testing; and a modified get-up-and-go test. Thirty-two participants had chloride channel mutations, 34 had sodium channel mutations, nine had myotonic dystrophy type 2, one had myotonic dystrophy type 1, and 17 had no identified mutation. Phenotype comparisons were restricted to those with sodium channel mutations, chloride channel mutations, and myotonic dystrophy type 2. Muscle stiffness was the most prominent symptom overall, seen in 66.7% to 100% of participants. In comparison with chloride channel mutations, participants with sodium mutations had an earlier age of onset of stiffness (5 years versus 10 years), frequent eye closure myotonia (73.5% versus 25%), more impairment on the Individualized Neuromuscular Quality of Life summary score (20.0 versus 9.44), and paradoxical eye closure myotonia (50% versus 0%). Handgrip myotonia was seen in three-quarters of participants, with warm up of myotonia in 75% chloride channel mutations, but also 35.3% of sodium channel mutations. The short exercise test showed ≥10% decrement in the compound muscle action potential amplitude in 59.3% of chloride channel participants compared with 27.6% of sodium channel participants, which increased post-cooling to 57.6% in sodium channel mutations. In evaluation of patients with clinical and electrical myotonia, despite considerable phenotypic overlap, the presence of eye closure myotonia, paradoxical myotonia, and an increase in short exercise test sensitivity post-cooling suggest sodium channel mutations. Outcomes designed to measure stiffness or the electrophysiological correlates of stiffness may prove useful for future clinical trials, regardless of underlying mutation, and include patient-reported stiffness, bedside manoeuvres to evaluate myotonia, muscle specific quality of life instruments and short exercise testing.

  20. Persistence of DNMT3A R882 mutations during remission does not adversely affect outcomes of patients with acute myeloid leukaemia.

    PubMed

    Bhatnagar, Bhavana; Eisfeld, Ann-Kathrin; Nicolet, Deedra; Mrózek, Krzysztof; Blachly, James S; Orwick, Shelley; Lucas, David M; Kohlschmidt, Jessica; Blum, William; Kolitz, Jonathan E; Stone, Richard M; Bloomfield, Clara D; Byrd, John C

    2016-10-01

    Somatic mutation of the DNMT3A gene at the arginine R882 site is common in acute myeloid leukaemia (AML). The prognostic significance of DNMT3A R882 mutation clearance, using traditional diagnostic next generation sequencing (NGS) methods, during complete remission (CR) in AML patients is controversial. We examined the impact of clearing DNMT3A R882 mutations at diagnosis to the detectable threshold of ˂3% during CR on outcome in 56 adult AML patients. Mutational remission, defined as clearance of pre-treatment DNMT3A R882 and all other AML-associated mutations to a variant allele frequency ˂3%, occurred in 14 patients whereas persistent DNMT3A R882 mutations were observed in 42 patients. There were no significant differences in disease-free or overall survival between patients with and without DNMT3A R882 mutation clearance. Patients with persistent DNMT3A R882 who cleared all other AML mutations and did not acquire new mutations (n = 30), trended towards longer disease-free survival (1·6 vs. 0·6 years, P = 0·06) than patients with persistence of DNMT3A R882, in addition to other mutations or acquisition of new AML-associated mutations, such as those in TET2, JAK2, ASXL1 and TP53 (n = 12). These data demonstrate that DNMT3A R882 mutations, as assessed by traditional NGS methods, persist in the majority of AML patients in CR. © 2016 John Wiley & Sons Ltd.

  1. In vivo and in vitro ivacaftor response in cystic fibrosis patients with residual CFTR function: N-of-1 studies.

    PubMed

    McGarry, Meghan E; Illek, Beate; Ly, Ngoc P; Zlock, Lorna; Olshansky, Sabrina; Moreno, Courtney; Finkbeiner, Walter E; Nielson, Dennis W

    2017-04-01

    Ivacaftor, a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator, decreases sweat chloride concentration, and improves pulmonary function in 6% of cystic fibrosis (CF) patients with specific CFTR mutations. Ivacaftor increases chloride transport in many other CFTR mutations in non-human cells, if CFTR is in the epithelium. Some CF patients have CFTR in the epithelium with residual CFTR function. The effect of ivacaftor in these patients is unknown. This was a series of randomized, crossover N-of-1 trials of ivacaftor and placebo in CF patients ≥8 years old with potential residual CFTR function (intermediate sweat chloride concentration, pancreatic sufficient, or mild bronchiectasis on chest CT). Human nasal epithelium (HNE) was obtained via nasal brushing and cultured. Sweat chloride concentration change was the in vivo outcome. Chloride current change in HNE cultures with ivacaftor was the in vitro outcome. Three subjects had decreased sweat chloride concentration (-14.8 to -40.8 mmol/L, P < 0.01). Two subjects had unchanged sweat chloride concentration. Two subjects had increased sweat chloride concentration (+23.8 and +27.3 mmol/L, P < 0.001); both were heterozygous for A455E and pancreatic sufficient. Only subjects with decreased sweat chloride concentration had increased chloride current in HNE cultures. Some CF patients with residual CFTR function have decreased sweat chloride concentration with ivacaftor. Increased chloride current in HNE cultures among subjects with decreased sweat chloride concentrations may predict clinical response to ivacaftor. Ivacaftor can increase sweat chloride concentration in certain mutations with unclear clinical effect. Pediatr Pulmonol. 2017;52:472-479. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. PROGNOSTIC SIGNIFICANCE OF CLINICAL, HISTOPATHOLOGICAL, AND MOLECULAR CHARACTERISTICS OF MEDULLOBLASTOMAS IN THE PROSPECTIVE HIT2000 MULTICENTER CLINICAL TRIAL COHORT

    PubMed Central

    Pietsch, Torsten; Schmidt, Rene; Remke, Marc; Korshunov, Andrey; Hovestadt, Volker; Jones, David TW; Felsberg, Jörg; Kaulich, Kerstin; Goschzik, Tobias; Kool, Marcel; Northcott, Paul A.; von Hoff, Katja; von Bueren, André O.; Friedrich, Carsten; Skladny, Heyko; Fleischhack, Gudrun; Taylor, Michael D.; Cremer, Friedrich; Lichter, Peter; Faldum, Andreas; Reifenberger, Guido; Rutkowski, Stefan; Pfister, Stefan M.

    2014-01-01

    BACKGROUND: This study aimed to prospectively evaluate clinical, histopathological and molecular variables for outcome prediction in medulloblastoma patients. METHODS: Patients from the HIT2000 cooperative clinical trial were prospectively enrolled based on the availability of sufficient tumor material and complete clinical information. This revealed a cohort of 184 patients (median age 7.6 years), which was randomly split at a 2:1 ratio into a training (n = 127), and a validation (n = 57) dataset. All samples were subjected to thorough histopathological investigation, CTNNB1 mutation analysis, quantitative PCR, MLPA and FISH analyses for cytogenetic variables, and methylome analysis. RESULTS: By univariable analysis, clinical factors (M-stage), histopathological variables (large cell component, endothelial proliferation, synaptophysin pattern), and molecular features (chromosome 6q status, MYC amplification, TOP2A copy-number, subgrouping) were found to be prognostic. Molecular consensus subgrouping (WNT, SHH, Group 3, Group 4) was validated as an independent feature to stratify patients into different risk groups. When comparing methods for the identification of WNT-driven medulloblastoma, this study identified CTNNB1 sequencing and methylation profiling to most reliably identify these patients. After removing patients with particularly favorable (CTNNB1 mutation, extensive nodularity) or unfavorable (MYC amplification) markers, a risk score for the remaining “intermediate molecular risk” population dependent on age, M-stage, pattern of synaptophysin expression, and MYCN copy-number status was identified and validated, with speckled synaptophysin expression indicating worse outcome. CONCLUSIONS: Methylation subgrouping and CTNNB1 mutation status represent robust tools for the risk-stratification of medulloblastoma. A simple clinico-pathological risk score for “intermediate molecular risk” patients was identified, which deserves further validation. SECONDARY CATEGORY: Pediatrics.

  3. Predicting mutational change in the speaking voice of boys.

    PubMed

    Fuchs, Michael; Fröehlich, Matthias; Hentschel, Bettina; Stuermer, Ingo W; Kruse, Eberhard; Knauft, Daniel

    2007-03-01

    The authors investigated whether acoustic speaking voice analyses can be used to predict the beginning of mutation in 21 male members of a professional boys' choir. Over a period of 3 years before mutation, children were examined every 3 months by ear, nose, and throat (ENT) and phoniatric specialists. At the same time, the voice was evaluated acoustically using analysis features of the Goettingen Hoarseness Diagram (GHD). Irregularity component and noise component, jitter, shimmer, mean waveform correlation coefficient, and fundamental frequency were determined from recordings of the speaking voice. Significant changes of acoustic features appeared 7 and 5 months before mutation onset, which indicates that vocal function is already restricted 6 months before mutation onset. This acoustic voice analysis is therefore suitable to support the care of the professional singing voice.

  4. Association between SCO2 mutation and extreme myopia in Japanese patients.

    PubMed

    Wakazono, Tomotaka; Miyake, Masahiro; Yamashiro, Kenji; Yoshikawa, Munemitsu; Yoshimura, Nagahisa

    2016-07-01

    To investigate the role of SCO2 in extreme myopia of Japanese patients. In total, 101 Japanese patients with extreme myopia (axial length of ≥30 mm) OU at the Kyoto University Hospital were included in this study. Exon 2 of SCO2 was sequenced by conventional Sanger sequencing. The detected variants were assessed using in silico prediction programs: SIFT, PolyPhen-2 and MutationTaster. To determine the frequency of the mutations in normal subjects, we referred to the 1000 Genomes Project data and the Human Genetic Variation Database (HGVD) in the Human Genetic Variation Browser. The average age of the participants was 62.9 ± 12.7 years. There were 31 males (30.7 %) and 70 females. Axial lengths were 31.76 ± 1.17 mm OD and 31.40 ± 1.07 mm OS, and 176 eyes (87.6 %) out of 201 eyes had myopic maculopathy of grade 2 or more. Among the 101 extremely myopic patients, one mutation (c.290 C > T;p.Ala97Val) in SCO2 was detected. This mutation was not found in the 1000 Genomes Project data or HGVD data. Variant type of the mutation was nonsynonymous. Although the SIFT prediction score was 0.350, the PolyPhen-2 probability was 0.846, thus predicting its pathogenicity to be possibly damaging. MutationTaster PhyloP was 1.268, suggesting that the mutation is conserved. We identified one novel possibility of an extreme myopia-causing mutation in SCO2. No other disease-causing mutation was found in 101 extremely myopic Japanese patients, suggesting that SCO2 plays a limited role in Japanese extreme myopia. Further investigation is required for better understanding of extreme myopia.

  5. Novel FGFR1 mutations in Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism: evidence for the involvement of an alternatively spliced isoform.

    PubMed

    Gonçalves, Catarina; Bastos, Margarida; Pignatelli, Duarte; Borges, Teresa; Aragüés, José M; Fonseca, Fernando; Pereira, Bernardo D; Socorro, Sílvia; Lemos, Manuel C

    2015-11-01

    To determine the prevalence of fibroblast growth factor receptor 1 (FGFR1) mutations and their predicted functional consequences in patients with idiopathic hypogonadotropic hypogonadism (IHH). Cross-sectional study. Multicentric. Fifty unrelated patients with IHH (21 with Kallmann syndrome and 29 with normosmic IHH). None. Patients were screened for mutations in FGFR1. The functional consequences of mutations were predicted by in silico structural and conservation analysis. Heterozygous FGFR1 mutations were identified in six (12%) kindreds. These consisted of frameshift mutations (p.Pro33-Alafs*17 and p.Tyr654*) and missense mutations in the signal peptide (p.Trp4Cys), in the D1 extracellular domain (p.Ser96Cys) and in the cytoplasmic tyrosine kinase domain (p.Met719Val). A missense mutation was identified in the alternatively spliced exon 8A (p.Ala353Thr) that exclusively affects the D3 extracellular domain of FGFR1 isoform IIIb. Structure-based and sequence-based prediction methods and the absence of these variants in 200 normal controls were all consistent with a critical role for the mutations in the activity of the receptor. Oligogenic inheritance (FGFR1/CHD7/PROKR2) was found in one patient. Two FGFR1 isoforms, IIIb and IIIc, result from alternative splicing of exons 8A and 8B, respectively. Loss-of-function of isoform IIIc is a cause of IHH, whereas isoform IIIb is thought to be redundant. Ours is the first report of normosmic IHH associated with a mutation in the alternatively spliced exon 8A and suggests that this disorder can be caused by defects in either of the two alternatively spliced FGFR1 isoforms. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. TERT promoter mutations contribute to IDH mutations in predicting differential responses to adjuvant therapies in WHO grade II and III diffuse gliomas

    PubMed Central

    Ding, Xiao-Jie; Qin, Zhi-Yong; Hong, Christopher S.; Chen, Ling-Chao; Zhang, Xin; Zhao, Fang-Ping; Wang, Yin; Wang, Yang; Zhou, Liang-Fu; Zhuang, Zhengping; Ng, Ho-Keung; Yan, Hai; Yao, Yu; Mao, Ying

    2015-01-01

    IDH mutations frequently occur in WHO grade II and III diffuse gliomas and have favorable prognosis compared to wild-type tumors. However, whether IDH mutations in WHO grade II and II diffuse gliomas predict enhanced sensitivity to adjuvant radiation (RT) or chemotherapy (CHT) is still being debated. Recent studies have identified recurrent mutations in the promoter region of telomerase reverse transcriptase (TERT) in gliomas. We previously demonstrated that TERT promoter mutations may be promising biomarkers in glioma survival prognostication when combined with IDH mutations. This study analyzed IDH and TERT promoter mutations in 295 WHO grade II and III diffuse gliomas treated with or without adjuvant therapies to explore their impact on the sensitivity of tumors to genotoxic therapies. IDH mutations were found in 216 (73.2%) patients and TERT promoter mutations were found in 112 (38%) patients. In multivariate analysis, IDH mutations (p < 0.001) were independent prognostic factors for PFS and OS in patients receiving genotoxic therapies while TERT promoter mutations were not. In univariate analysis, IDH and TERT promoter mutations were not significant prognostic factors in patients who did not receive genotoxic therapies. Adjuvant RT and CHT were factors independently impacting PFS (RT p = 0.001, CHT p = 0.026) in IDH mutated WHO grade II and III diffuse gliomas but not in IDH wild-type group. Univariate and multivariate analyses demonstrated TERT promoter mutations further stratified IDH wild-type WHO grade II and III diffuse gliomas into two subgroups with different responses to genotoxic therapies. Adjuvant RT and CHT were significant parameters influencing PFS in the IDH wt/TERT mut subgroup (RT p = 0.015, CHT p = 0.015) but not in the IDH wt/TERT wt subgroup. Our data demonstrated that IDH mutated WHO grade II and III diffuse gliomas had better PFS and OS than their IDH wild-type counterparts when genotoxic therapies were administered after surgery. Importantly, we also found that TERT promoter mutations further stratify IDH wild-type WHO grade II and III diffuse gliomas into two subgroups with different responses to adjuvant therapies. Taken together, TERT promoter mutations may predict enhanced sensitivity to genotoxic therapies in IDH wild-type WHO grade II and III diffuse gliomas and may justify intensified treatment in this subgroup. PMID:26314843

  7. Prediction of BRCA1 and BRCA2 mutation status using post-irradiation assays of lymphoblastoid cell lines is compromised by inter-cell-line phenotypic variability.

    PubMed

    Lovelock, Paul K; Wong, Ee Ming; Sprung, Carl N; Marsh, Anna; Hobson, Karen; French, Juliet D; Southey, Melissa; Sculley, Tom; Pandeya, Nirmala; Brown, Melissa A; Chenevix-Trench, Georgia; Spurdle, Amanda B; McKay, Michael J

    2007-09-01

    Assays to determine the pathogenicity of unclassified sequence variants in disease-associated genes include the analysis of lymphoblastoid cell lines (LCLs). We assessed the ability of several assays of LCLs to distinguish carriers of germline BRCA1 and BRCA2 gene mutations from mutation-negative controls to determine their utility for use in a diagnostic setting. Post-ionising radiation cell viability and micronucleus formation, and telomere length were assayed in LCLs carrying BRCA1 or BRCA2 mutations, and in unaffected mutation-negative controls. Post-irradiation cell viability and micronucleus induction assays of LCLs from individuals carrying pathogenic BRCA1 mutations, unclassified BRCA1 sequence variants or wildtype BRCA1 sequence showed significant phenotypic heterogeneity within each group. Responses were not consistent with predicted functional consequences of known pathogenic or normal sequences. Telomere length was also highly heterogeneous within groups of LCLs carrying pathogenic BRCA1 or BRCA2 mutations, and normal BRCA1 sequences, and was not predictive of mutation status. Given the significant degree of phenotypic heterogeneity of LCLs after gamma-irradiation, and the lack of association with BRCA1 or BRCA2 mutation status, we conclude that the assays evaluated in this study should not be used as a means of differentiating pathogenic and non-pathogenic sequence variants for clinical application. We suggest that a range of normal controls must be included in any functional assays of LCLs to ensure that any observed differences between samples reflect the genotype under investigation rather than generic inter-individual variation.

  8. Establishing an EGFR mutation screening service for non-small cell lung cancer - sample quality criteria and candidate histological predictors.

    PubMed

    Leary, Alexandra F; Castro, David Gonzalez de; Nicholson, Andrew G; Ashley, Sue; Wotherspoon, Andrew; O'Brien, Mary E R; Popat, Sanjay

    2012-01-01

    EGFR screening requires good quality tissue, sensitivity and turn-around time (TAT). We report our experience of routine screening, describing sample type, TAT, specimen quality (cellularity and DNA yield), histopathological description, mutation result and clinical outcome. Non-small cell lung cancer (NSCLC) sections were screened for EGFR mutations (M+) in exons 18-21. Clinical, pathological and screening outcome data were collected for year 1 of testing. Screening outcome alone was collected for year 2. In year 1, 152 samples were tested, most (72%) were diagnostic. TAT was 4.9 days (95%confidence interval (CI)=4.5-5.5). EGFR-M+ prevalence was 11% and higher (20%) among never-smoking women with adenocarcinomas (ADCs), but 30% of mutations occurred in current/ex-smoking men. EGFR-M+ tumours were non-mucinous ADCs and 100% thyroid transcription factor (TTF1+). No mutations were detected in poorly differentiated NSCLC-not otherwise specified (NOS). There was a trend for improved overall survival (OS) among EGFR-M+ versus EGFR-M- patients (median OS=78 versus 17 months). In year 1, test failure rate was 19%, and associated with scant cellularity and low DNA concentrations. However 75% of samples with poor cellularity but representative of tumour were informative and mutation prevalence was 9%. In year 2, 755 samples were tested; mutation prevalence was 13% and test failure only 5.4%. Although samples with low DNA concentration (<2 ng/μL) had more test failures (30% versus 3.9% for [DNA]>2.2 ng/μL), the mutation rate was 9.2%. Routine epidermal growth factor receptor (EGFR) screening using diagnostic samples is fast and feasible even on samples with poor cellularity and DNA content. Mutations tend to occur in better-differentiated non-mucinous TTF1+ ADCs. Whether these histological criteria may be useful to select patients for EGFR testing merits further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Classification of TP53 mutations and HPV predict survival in advanced larynx cancer.

    PubMed

    Scheel, Adam; Bellile, Emily; McHugh, Jonathan B; Walline, Heather M; Prince, Mark E; Urba, Susan; Wolf, Gregory T; Eisbruch, Avraham; Worden, Francis; Carey, Thomas E; Bradford, Carol

    2016-09-01

    Assess tumor suppressor p53 (TP53) functional mutations in the context of other biomarkers in advanced larynx cancer. Prospective analysis of pretreatment tumor TP53, human papillomavirus (HPV), Bcl-xL, and cyclin D1 status in stage III and IV larynx cancer patients in a clinical trial. TP53 exons 4 through 9 from 58 tumors were sequenced. Mutations were grouped using three classifications based on their expected function. Each functional group was analyzed for response to induction chemotherapy, time to surgery, survival, HPV status, p16INK4a, Bcl-xl, and cyclin D1 expression. TP53 mutations were found in 22 of 58 (37.9%) patients with advanced larynx cancer, including missense mutations in 13 of 58 (22.4%) patients, nonsense mutations in four of 58 (6.9%), and deletions in five of 58 (8.6%). High-risk HPV was found in 20 of 52 (38.5%) tumors. A classification based on Evolutionary Action score of p53 (EAp53) distinguished missense mutations with high risk for decreased survival from low-risk mutations (P = 0.0315). A model including this TP53 classification, HPV status, cyclin D1, and Bcl-xL staining significantly predicts survival (P = 0.0017). EAp53 functional classification of TP53 mutants and biomarkers predict survival in advanced larynx cancer. NA. Laryngoscope, 126:E292-E299, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  10. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene.

    PubMed

    Horvath, Rita; Hudson, Gavin; Ferrari, Gianfrancesco; Fütterer, Nancy; Ahola, Sofia; Lamantea, Eleonora; Prokisch, Holger; Lochmüller, Hanns; McFarland, Robert; Ramesh, V; Klopstock, Thomas; Freisinger, Peter; Salvi, Fabrizio; Mayr, Johannes A; Santer, Rene; Tesarova, Marketa; Zeman, Jiri; Udd, Bjarne; Taylor, Robert W; Turnbull, Douglass; Hanna, Michael; Fialho, Doreen; Suomalainen, Anu; Zeviani, Massimo; Chinnery, Patrick F

    2006-07-01

    Mutations in the gene coding for the catalytic subunit of the mitochondrial DNA (mtDNA) polymerase gamma (POLG1) have recently been described in patients with diverse clinical presentations, revealing a complex relationship between genotype and phenotype in patients and their families. POLG1 was sequenced in patients from different European diagnostic and research centres to define the phenotypic spectrum and advance understanding of the recurrence risks. Mutations were identified in 38 cases, with the majority being sporadic compound heterozygotes. Eighty-nine DNA sequence changes were identified, including 2 predicted to alter a splice site, 1 predicted to cause a premature stop codon and 13 predicted to cause novel amino acid substitutions. The majority of children had a mutation in the linker region, often 1399G-->A (A467T), and a mutation affecting the polymerase domain. Others had mutations throughout the gene, and 11 had 3 or more substitutions. The clinical presentation ranged from the neonatal period to late adult life, with an overlapping phenotypic spectrum from severe encephalopathy and liver failure to late-onset external ophthalmoplegia, ataxia, myopathy and isolated muscle pain or epilepsy. There was a strong gender bias in children, with evidence of an environmental interaction with sodium valproate. POLG1 mutations cause an overlapping clinical spectrum of disease with both dominant and recessive modes of inheritance. 1399G-->A (A467T) is common in children, but complete POLG1 sequencing is required to identify multiple mutations that can have complex implications for genetic counselling.

  11. The HIV-1 protease resistance mutation I50L is associated with resistance to atazanavir and susceptibility to other protease inhibitors in multiple mutational contexts.

    PubMed

    Sista, P; Wasikowski, B; Lecocq, P; Pattery, T; Bacheler, L

    2008-08-01

    The HIV-1 protease mutation I50 L causes atazanavir resistance but increases susceptibility to other PIs. Predicted phenotypic FC values were obtained from viral genotypes, using the virtual Phenotype-LM bioinformatics tool (powering vircoTYPE). To evaluate I50 L's effect on susceptibility to 8 PIs, in a large genotype database. I50 L containing routine clinical isolate samples in Virco's genotype database were paired with samples having like patterns (or profiles) of IAS-USA-defined primary PI mutations, but lacking I50 L. Using vircoTYPE (version 4.1), the median predicted FC for each mutational profile was determined. I50 L-associated shifts in FC were evaluated using drug-specific CCOs. We selected 307 and 37098 samples with and without I50 L. These corresponded to 31 mutation patterns of > or =3 samples each. I50 L caused resistance to atazanavir in all 31 mutation contexts, but was associated with higher susceptibility for other PIs. The largest I50 L-associated shifts in median predicted FC were: 1.2 to 42.4 (atazanavir), 10.2 to 3.2 (amprenavir), 3.3 to 0.5 (darunavir), 13 to 0.5 (indinavir), 34.9 to 1.3 (lopinavir), 22.3 to 1.3 (nelfinavir), 5.2 to 0.3 (saquinavir) and 29.9 to 5.2 (tipranavir). The PI mutation I50 L causes clinically relevant resistance and increased susceptibility to atazanavir and other PIs respectively.

  12. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy

    PubMed Central

    Gascard, Philippe; Tlsty, Thea D.

    2016-01-01

    The tumor stroma is no longer seen solely as physical support for mutated epithelial cells but as an important modulator and even a driver of tumorigenicity. Within the tumor stromal milieu, heterogeneous populations of fibroblast-like cells, collectively termed carcinoma-associated fibroblasts (CAFs), are key players in the multicellular, stromal-dependent alterations that contribute to malignant initiation and progression. This review focuses on novel insights into the contributions of CAFs to disease progression, emergent events leading to the generation of CAFs, identification of CAF-specific biomarkers predictive of disease outcome, and recent therapeutic approaches aimed at blunting or reverting detrimental protumorigenic phenotypes associated with CAFs. PMID:27151975

  13. Prevalence of ESR1 Mutations in Cell-Free DNA and Outcomes in Metastatic Breast Cancer: A Secondary Analysis of the BOLERO-2 Clinical Trial.

    PubMed

    Chandarlapaty, Sarat; Chen, David; He, Wei; Sung, Patricia; Samoila, Aliaksandra; You, Daoqi; Bhatt, Trusha; Patel, Parul; Voi, Maurizio; Gnant, Michael; Hortobagyi, Gabriel; Baselga, José; Moynahan, Mary Ellen

    2016-10-01

    Estrogen receptor α (ESR1) mutations found in metastatic breast cancer (MBC) promote ligand-independent receptor activation and resistance to estrogen-deprivation therapy in laboratory models. The prevalence of these mutations and their potential impact on clinical outcomes has not been established. To determine the prevalence of ESR1 mutations (Y537S and D538G) in estrogen receptor (ER)-positive MBC and determine whether mutation is associated with inferior outcomes. From December 16, 2014, to August 26, 2015, we analyzed cell-free DNA (cfDNA) from baseline plasma samples from participants in the BOLERO-2 double-blind phase 3 study that randomized patients from 189 centers in 24 countries with MBC to exemestane plus placebo or exemestane plus everolimus. The study enrolled postmenopausal women with a diagnosis of MBC and prior exposure to an aromatase inhibitor. Baseline plasma samples were available from 541 of 724 patients (74.7%). We assessed the effect of mutation on overall survival of the population and the effect of mutation on progression-free survival (PFS) by treatment arm. Patients were randomized to treatment with exemestane (25 mg oral daily) together with everolimus (10 mg oral daily) or with placebo. The 2 most frequent mutations in ESR1 (Y537S and D538G) were analyzed from cfDNA using droplet digital polymerase chain reaction and samples scored as wild-type, D538G, Y537S, or double mutant. Cox-proportional hazards model was used to assess PFS in patient subgroups defined by mutations, and the effect of each mutation on overall survival. Of 541 evaluable patients, 156 (28.8%) had ESR1 mutation D538G (21.1%) and/or Y537S (13.3%), and 30 had both. These mutations were associated with shorter overall survival (wild-type, 32.1 months [95% CI, 28.09-36.40 months]; D538G, 25.99 months [95% CI, 19.19-32.36 months]; Y537S, 19.98 months [13.01-29.31 months]; both mutations, 15.15 months [95% CI, 10.87-27.43 months]). The D538G group (hazard ratio, 0.34 [95% CI, 0.02-0.57]) derived a similar PFS benefit as wild type from addition of everolimus to exemestane. ESR1 mutations are prevalent in ER-positive aromatase inhibitor-treated MBC. Both Y537S and D538G mutations are associated with more aggressive disease biology. clinicaltrials.gov Identifier: NCT00863655.

  14. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.

    PubMed

    Ojewole, Adegoke; Lowegard, Anna; Gainza, Pablo; Reeve, Stephanie M; Georgiev, Ivelin; Anderson, Amy C; Donald, Bruce R

    2017-01-01

    Drug resistance in protein targets is an increasingly common phenomenon that reduces the efficacy of both existing and new antibiotics. However, knowledge of future resistance mutations during pre-clinical phases of drug development would enable the design of novel antibiotics that are robust against not only known resistant mutants, but also against those that have not yet been clinically observed. Computational structure-based protein design (CSPD) is a transformative field that enables the prediction of protein sequences with desired biochemical properties such as binding affinity and specificity to a target. The use of CSPD to predict previously unseen resistance mutations represents one of the frontiers of computational protein design. In a recent study (Reeve et al. Proc Natl Acad Sci U S A 112(3):749-754, 2015), we used our OSPREY (Open Source Protein REdesign for You) suite of CSPD algorithms to prospectively predict resistance mutations that arise in the active site of the dihydrofolate reductase enzyme from methicillin-resistant Staphylococcus aureus (SaDHFR) in response to selective pressure from an experimental competitive inhibitor. We demonstrated that our top predicted candidates are indeed viable resistant mutants. Since that study, we have significantly enhanced the capabilities of OSPREY with not only improved modeling of backbone flexibility, but also efficient multi-state design, fast sparse approximations, partitioned continuous rotamers for more accurate energy bounds, and a computationally efficient representation of molecular-mechanics and quantum-mechanical energy functions. Here, using SaDHFR as an example, we present a protocol for resistance prediction using the latest version of OSPREY. Specifically, we show how to use a combination of positive and negative design to predict active site escape mutations that maintain the enzyme's catalytic function but selectively ablate binding of an inhibitor.

  15. The co-occurrence of driver mutations in chronic myeloproliferative neoplasms.

    PubMed

    Boddu, Prajwal; Chihara, Dai; Masarova, Lucia; Pemmaraju, Naveen; Patel, Keyur P; Verstovsek, Srdan

    2018-06-27

    Myeloproliferative neoplasms (MPNs) are clonal disorders characterized by proliferation of one or more elements of the myeloid lineage. Key genetic aberrations include the BCR-ABL1 gene rearrangement in Philadelphia chromosome-positive chronic myelogenous leukemia (CML) and JAK2/MPL/CALR aberrations in Philadelphia chromosome-negative MPNs. While thought to be mutually exclusive, occasional isolated reports of coexistence of BCR-ABL1 and JAK2, and JAK2 with MPL or CALR aberrations have been described. Given the paucity of data, clinical characteristics and outcome of patients harboring concurrent Philadelphia-positive and Philadelphia-negative mutations or dual Philadelphia-negative driver mutations have not been systematically evaluated, and their clinical relevance is largely unknown. It is difficult to determine the true relevance of co-existing driver mutations on outcomes given the rarity of its occurrence. In this case series, we describe those patients who had dual driver mutations detected at any point during the course of their disease and characterized their clinical and laboratory features, bone marrow pathology, and overall disease course.

  16. Murine models of osteosarcoma: A piece of the translational puzzle.

    PubMed

    Walia, Mannu K; Castillo-Tandazo, Wilson; Mutsaers, Anthony J; Martin, Thomas John; Walkley, Carl R

    2018-06-01

    Osteosarcoma (OS) is the most common cancer of bone in children and young adults. Despite extensive research efforts, there has been no significant improvement in patient outcome for many years. An improved understanding of the biology of this cancer and how genes frequently mutated contribute to OS may help improve outcomes for patients. While our knowledge of the mutational burden of OS is approaching saturation, our understanding of how these mutations contribute to OS initiation and maintenance is less clear. Murine models of OS have now been demonstrated to be highly valid recapitulations of human OS. These models were originally based on the frequent disruption of p53 and Rb in familial OS syndromes, which are also common mutations in sporadic OS. They have been applied to significantly improve our understanding about the functions of recurrently mutated genes in disease. The murine models can be used as a platform for preclinical testing and identifying new therapeutic targets, in addition to testing the role of additional mutations in vivo. Most recently these models have begun to be used for discovery based approaches and screens, which hold significant promise in furthering our understanding of the genetic and therapeutic sensitivities of OS. In this review, we discuss the mouse models of OS that have been reported in the last 3-5 years and newly identified pathways from these studies. Finally, we discuss the preclinical utilization of the mouse models of OS for identifying and validating actionable targets to improve patient outcome. © 2017 Wiley Periodicals, Inc.

  17. Clinical features and treatment outcome of non-small cell lung cancer (NSCLC) patients with uncommon or complex epidermal growth factor receptor (EGFR) mutations

    PubMed Central

    Fassan, Matteo; Indraccolo, Stefano; Calabrese, Fiorella; Favaretto, Adolfo; Bonanno, Laura; Polo, Valentina; Zago, Giulia; Lunardi, Francesca; Attili, Ilaria; Pavan, Alberto; Rugge, Massimo; Guarneri, Valentina; Conte, PierFranco; Pasello, Giulia

    2017-01-01

    Introduction Tyrosine-kinase inhibitors (TKIs) represent the best treatment for advanced non-small cell lung cancer (NSCLC) with common exon 19 deletion or exon 21 epidermal growth factor receptor mutation (EGFRm). This is an observational study investigating epidemiology, clinical features and treatment outcome of NSCLC cases harbouring rare/complex EGFRm. Results Among 764 non-squamous NSCLC cases with known EGFRm status, 26(3.4%) harboured rare/complex EGFRm. Patients receiving first-line TKIs (N = 17) achieved median Progression Free Survival (PFS) and Overall Survival (OS) of 53 (IC 95%, 2–105) and 84 (CI 95%, 27–141) weeks respectively, without significant covariate impact. Response Rate and Disease Control Rate (DCR) were 47% and 65%, respectively. Uncommon exon 19 mutations achieved longer OS and PFS and higher DCR compared with exon 18 and 20 mutations. No additional gene mutation was discovered by MassARRAY analysis. TKIs were globally well tolerated. Materials and methods A retrospective review of advanced non-squamous NSCLC harbouring rare/complex EGFRm referred to our Center between 2010 and 2015 was performed. Additional molecular pathways disregulation was explored in selected cases, through MassARRAY analysis. Conclusions Peculiar clinical features and lower TKIs sensitivity of uncommon/complex compared with common EGFRm were shown. Exon 19 EGFRm achieved the best TKIs treatment outcome, while the optimal treatment of exon 18 and 20 mutations should be further clarified. PMID:28427238

  18. Preventing the transmission of pathogenic mitochondrial DNA mutations: can we achieve long-term benefits from germ-line gene transfer?

    PubMed Central

    Samuels, David C.; Wonnapinij, Passorn; Chinnery, Patrick F.

    2013-01-01

    Mitochondrial medicine is one of the few areas of genetic disease where germ-line transfer is being actively pursued as a treatment option. All of the germ-line transfer methods currently under development involve some carry-over of the maternal mitochondrial DNA (mtDNA) heteroplasmy, potentially delivering the pathogenic mutation to the offspring. Rapid changes in mtDNA heteroplasmy have been observed within a single generation, and so any ‘leakage’ of mutant mtDNA could lead to mtDNA disease in future generations, compromising the reproductive health of the first generation, and leading to repeated interventions in subsequent generations. To determine whether this is a real concern, we developed a model of mtDNA heteroplasmy inheritance by studying 87 mother–child pairs, and predicted the likely outcome of different levels of ‘mutant mtDNA leakage’ on subsequent maternal generations. This showed that, for a clinical threshold of 60%, reducing the proportion of mutant mtDNA to <5% dramatically reduces the chance of disease recurrence in subsequent generations, but transmitting >5% mutant mtDNA was associated with a significant chance of disease recurrence. Mutations with a lower clinical threshold were associated with a higher risk of recurrence. Our findings provide reassurance that, at least from an mtDNA perspective, methods currently under development have the potential to effectively eradicate pathogenic mtDNA mutations from subsequent generations. PMID:23297368

  19. Phenotype–genotype correlation in Hirschsprung disease is illuminated by comparative analysis of the RET protein sequence

    PubMed Central

    Kashuk, Carl S.; Stone, Eric A.; Grice, Elizabeth A.; Portnoy, Matthew E.; Green, Eric D.; Sidow, Arend; Chakravarti, Aravinda; McCallion, Andrew S.

    2005-01-01

    The ability to discriminate between deleterious and neutral amino acid substitutions in the genes of patients remains a significant challenge in human genetics. The increasing availability of genomic sequence data from multiple vertebrate species allows inclusion of sequence conservation and physicochemical properties of residues to be used for functional prediction. In this study, the RET receptor tyrosine kinase serves as a model disease gene in which a broad spectrum (≥116) of disease-associated mutations has been identified among patients with Hirschsprung disease and multiple endocrine neoplasia type 2. We report the alignment of the human RET protein sequence with the orthologous sequences of 12 non-human vertebrates (eight mammalian, one avian, and three teleost species), their comparative analysis, the evolutionary topology of the RET protein, and predicted tolerance for all published missense mutations. We show that, although evolutionary conservation alone provides significant information to predict the effect of a RET mutation, a model that combines comparative sequence data with analysis of physiochemical properties in a quantitative framework provides far greater accuracy. Although the ability to discern the impact of a mutation is imperfect, our analyses permit substantial discrimination between predicted functional classes of RET mutations and disease severity even for a multigenic disease such as Hirschsprung disease. PMID:15956201

  20. EGFR Gene Amplification and KRAS Mutation Predict Response to Combination Targeted Therapy in Metastatic Colorectal Cancer.

    PubMed

    Khan, Sajid A; Zeng, Zhaoshi; Shia, Jinru; Paty, Philip B

    2017-07-01

    Genetic variability in KRAS and EGFR predicts response to cetuximab in irinotecan refractory colorectal cancer. Whether these markers or others remain predictive in combination biologic therapies including bevacizumab is unknown. We identified predictive biomarkers from patients with irinotecan refractory metastatic colorectal cancer treated with cetuximab plus bevacizumab. Patients who received cetuximab plus bevacizumab for irinotecan refractory colorectal cancer in either of two Phase II trials conducted were identified. Tumor tissue was available for 33 patients. Genomic DNA was extracted and used for mutational analysis of KRAS, BRAF, and p53 genes. Fluorescence in situ hybridization was performed to assess EGFR copy number. The status of single genes and various combinations were tested for association with response. Seven of 33 patients responded to treatment. KRAS mutations were found in 14/33 cases, and 0 responded to treatment (p = 0.01). EGFR gene amplification was seen in 3/33 of tumors and in every case was associated with response to treatment (p < 0.001). TP53 and BRAF mutations were found in 18/33 and 0/33 tumors, respectively, and there were no associations with response to either gene. EGFR gene amplification and KRAS mutations are predictive markers for patients receiving combination biologic therapy of cetuximab plus bevacizumab for metastatic colorectal cancer. One marker or the other is present in the tumor of half of all patients allowing treatment response to be predicted with a high degree of certainty. The role for molecular markers in combination biologic therapy seems promising.

  1. The structural effects of mutations can aid in differential phenotype prediction of beta-myosin heavy chain (Myosin-7) missense variants.

    PubMed

    Al-Numair, Nouf S; Lopes, Luis; Syrris, Petros; Monserrat, Lorenzo; Elliott, Perry; Martin, Andrew C R

    2016-10-01

    High-throughput sequencing platforms are increasingly used to screen patients with genetic disease for pathogenic mutations, but prediction of the effects of mutations remains challenging. Previously we developed SAAPdap (Single Amino Acid Polymorphism Data Analysis Pipeline) and SAAPpred (Single Amino Acid Polymorphism Predictor) that use a combination of rule-based structural measures to predict whether a missense genetic variant is pathogenic. Here we investigate whether the same methodology can be used to develop a differential phenotype predictor, which, once a mutation has been predicted as pathogenic, is able to distinguish between phenotypes-in this case the two major clinical phenotypes (hypertrophic cardiomyopathy, HCM and dilated cardiomyopathy, DCM) associated with mutations in the beta-myosin heavy chain (MYH7) gene product (Myosin-7). A random forest predictor trained on rule-based structural analyses together with structural clustering data gave a Matthews' correlation coefficient (MCC) of 0.53 (accuracy, 75%). A post hoc removal of machine learning models that performed particularly badly, increased the performance (MCC = 0.61, Acc = 79%). This proof of concept suggests that methods used for pathogenicity prediction can be extended for use in differential phenotype prediction. Analyses were implemented in Perl and C and used the Java-based Weka machine learning environment. Please contact the authors for availability. andrew@bioinf.org.uk or andrew.martin@ucl.ac.uk Supplementary data are available at Bioinformatics online. © The Authors 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method.

    PubMed

    Petukh, Marharyta; Li, Minghui; Alexov, Emil

    2015-07-01

    A new methodology termed Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) was developed to predict the changes of the binding free energy caused by mutations. The method utilizes 3D structures of the corresponding protein-protein complexes and takes advantage of both approaches: sequence- and structure-based methods. The method has two components: a MM/PBSA-based component, and an additional set of statistical terms delivered from statistical investigation of physico-chemical properties of protein complexes. While the approach is rigid body approach and does not explicitly consider plausible conformational changes caused by the binding, the effect of conformational changes, including changes away from binding interface, on electrostatics are mimicked with amino acid specific dielectric constants. This provides significant improvement of SAAMBE predictions as indicated by better match against experimentally determined binding free energy changes over 1300 mutations in 43 proteins. The final benchmarking resulted in a very good agreement with experimental data (correlation coefficient 0.624) while the algorithm being fast enough to allow for large-scale calculations (the average time is less than a minute per mutation).

  3. A meta-analysis of prognostic value of KIT mutation status in gastrointestinal stromal tumors

    PubMed Central

    Jiang, Zhiqiang; Zhang, Jian; Li, Zhi; Liu, Yingjun; Wang, Daohai; Han, Guangsen

    2016-01-01

    Numerous types of KIT mutations have been reported in gastrointestinal stromal tumors (GISTs); however, controversy still exists regarding their clinicopathological significance. In this study, we reviewed the publicly available literature to assess the data by a meta-analysis to characterize KIT mutations and different types of KIT mutations in prognostic prediction in patients with GISTs. Twenty-eight studies that included 4,449 patients were identified and analyzed. We found that KIT mutation status was closely correlated with size of tumors and different mitosis indexes, but not with tumor location. KIT mutation was also observed to be significantly correlated with tumor recurrence, metastasis, as well as the overall survival of patients. Interestingly, there was higher risk of progression in KIT exon 9-mutated patients than in exon 11-mutated patients. Five-year relapse-free survival (RFS) rate was significantly higher in KIT exon 11-deleted patients than in those with other types of KIT exon 11 mutations. In addition, RFS for 5 years was significantly worse in patients bearing KIT codon 557–558 deletions than in those bearing other KIT exon 11 deletions. Our results strongly support the hypothesis that KIT mutation status is another evaluable factor for prognosis prediction in GISTs. PMID:27350754

  4. Distribution of BRCA1 and BRCA2 Mutations in Asian Patients with Breast Cancer

    PubMed Central

    Kim, Haeyoung

    2013-01-01

    Breast cancer is the most prevalent cancer in Asian females, and the incidence of breast cancer has been increasing in Asia. Because Asian patients develop breast cancer at a younger age than their Caucasian counterparts, the contributions of BRCA1 and BRCA2 (BRCA1/2) mutations in Asians are expected to be different than in Caucasians. The prevalence of BRCA1/2 mutations in the Asian population varies among countries and studies. Most Asian studies have reported more frequent mutations in BRCA2 than in BRCA1, with the exception of studies from India and Pakistan. In addition, the contribution of large genomic rearrangements of BRCA1/2 genes is relatively small in Asian populations in comparison to other ethnic populations. Various statistical models for the prediction of BRCA1/2 mutations have underestimated the risk of having these genetic mutations in Asians, especially in predicting BRCA2 gene mutation. Until recently, BRCA1/2 mutation analyses in Asia were mostly conducted by independent single institutions with different patient selection criteria and using various genotyping methods. However, a couple of Asian groups have initiated nationwide studies collecting BRCA1/2 mutational data. These national collaborative studies will help a comprehensive understanding of the prevalence of BRCA1/2 mutations in the Asian population. PMID:24454456

  5. PLEKHG5 deficiency leads to an intermediate form of autosomal-recessive Charcot–Marie–Tooth disease

    PubMed Central

    Azzedine, Hamid; Zavadakova, Petra; Planté-Bordeneuve, Violaine; Vaz Pato, Maria; Pinto, Nuno; Bartesaghi, Luca; Zenker, Jennifer; Poirot, Olivier; Bernard-Marissal, Nathalie; Arnaud Gouttenoire, Estelle; Cartoni, Romain; Title, Alexandra; Venturini, Giulia; Médard, Jean-Jacques; Makowski, Edward; Schöls, Ludger; Claeys, Kristl G.; Stendel, Claudia; Roos, Andreas; Weis, Joachim; Dubourg, Odile; Leal Loureiro, José; Stevanin, Giovanni; Said, Gérard; Amato, Anthony; Baraban, Jay; LeGuern, Eric; Senderek, Jan; Rivolta, Carlo; Chrast, Roman

    2013-01-01

    Charcot–Marie–Tooth disease (CMT) comprises a clinically and genetically heterogeneous group of peripheral neuropathies characterized by progressive distal muscle weakness and atrophy, foot deformities and distal sensory loss. Following the analysis of two consanguineous families affected by a medium to late-onset recessive form of intermediate CMT, we identified overlapping regions of homozygosity on chromosome 1p36 with a combined maximum LOD score of 5.4. Molecular investigation of the genes from this region allowed identification of two homozygous mutations in PLEKHG5 that produce premature stop codons and are predicted to result in functional null alleles. Analysis of Plekhg5 in the mouse revealed that this gene is expressed in neurons and glial cells of the peripheral nervous system, and that knockout mice display reduced nerve conduction velocities that are comparable with those of affected individuals from both families. Interestingly, a homozygous PLEKHG5 missense mutation was previously reported in a recessive form of severe childhood onset lower motor neuron disease (LMND) leading to loss of the ability to walk and need for respiratory assistance. Together, these observations indicate that different mutations in PLEKHG5 lead to clinically diverse outcomes (intermediate CMT or LMND) affecting the function of neurons and glial cells. PMID:23777631

  6. High throughput estimation of functional cell activities reveals disease mechanisms and predicts relevant clinical outcomes

    PubMed Central

    Hidalgo, Marta R.; Cubuk, Cankut; Amadoz, Alicia; Salavert, Francisco; Carbonell-Caballero, José; Dopazo, Joaquin

    2017-01-01

    Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is a main challenge for precision medicine. Here we propose a new method that models cell signaling using biological knowledge on signal transduction. The method recodes individual gene expression values (and/or gene mutations) into accurate measurements of changes in the activity of signaling circuits, which ultimately constitute high-throughput estimations of cell functionalities caused by gene activity within the pathway. Moreover, such estimations can be obtained either at cohort-level, in case/control comparisons, or personalized for individual patients. The accuracy of the method is demonstrated in an extensive analysis involving 5640 patients from 12 different cancer types. Circuit activity measurements not only have a high diagnostic value but also can be related to relevant disease outcomes such as survival, and can be used to assess therapeutic interventions. PMID:28042959

  7. Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia

    PubMed Central

    LI, CHENGLONG; ZHU, BIAO; CHEN, JIAO; HUANG, XIAOBING

    2016-01-01

    In the present study, gene expression profiles of acute myeloid leukemia (AML) samples were analyzed to identify feature genes with the capacity to predict the mutation status of FLT3/ITD. Two machine learning models, namely the support vector machine (SVM) and random forest (RF) methods, were used for classification. Four datasets were downloaded from the European Bioinformatics Institute, two of which (containing 371 samples, including 281 FLT3/ITD mutation-negative and 90 mutation-positive samples) were randomly defined as the training group, while the other two datasets (containing 488 samples, including 350 FLT3/ITD mutation-negative and 138 mutation-positive samples) were defined as the test group. Differentially expressed genes (DEGs) were identified by significance analysis of the micro-array data by using the training samples. The classification efficiency of the SCM and RF methods was evaluated using the following parameters: Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and the area under the receiver operating characteristic curve. Functional enrichment analysis was performed for the feature genes with DAVID. A total of 585 DEGs were identified in the training group, of which 580 were upregulated and five were downregulated. The classification accuracy rates of the two methods for the training group, the test group and the combined group using the 585 feature genes were >90%. For the SVM and RF methods, the rates of correct determination, specificity and PPV were >90%, while the sensitivity and NPV were >80%. The SVM method produced a slightly better classification effect than the RF method. A total of 13 biological pathways were overrepresented by the feature genes, mainly involving energy metabolism, chromatin organization and translation. The feature genes identified in the present study may be used to predict the mutation status of FLT3/ITD in patients with AML. PMID:27177049

  8. Performance of Lynch syndrome predictive models in quantifying the likelihood of germline mutations in patients with abnormal MLH1 immunoexpression.

    PubMed

    Cabreira, Verónica; Pinto, Carla; Pinheiro, Manuela; Lopes, Paula; Peixoto, Ana; Santos, Catarina; Veiga, Isabel; Rocha, Patrícia; Pinto, Pedro; Henrique, Rui; Teixeira, Manuel R

    2017-01-01

    Lynch syndrome (LS) accounts for up to 4 % of all colorectal cancers (CRC). Detection of a pathogenic germline mutation in one of the mismatch repair genes is the definitive criterion for LS diagnosis, but it is time-consuming and expensive. Immunohistochemistry is the most sensitive prescreening test and its predictive value is very high for loss of expression of MSH2, MSH6, and (isolated) PMS2, but not for MLH1. We evaluated if LS predictive models have a role to improve the molecular testing algorithm in this specific setting by studying 38 individuals referred for molecular testing and who were subsequently shown to have loss of MLH1 immunoexpression in their tumors. For each proband we calculated a risk score, which represents the probability that the patient with CRC carries a pathogenic MLH1 germline mutation, using the PREMM 1,2,6 and MMRpro predictive models. Of the 38 individuals, 18.4 % had a pathogenic MLH1 germline mutation. MMRpro performed better for the purpose of this study, presenting a AUC of 0.83 (95 % CI 0.67-0.9; P < 0.001) compared with a AUC of 0.68 (95 % CI 0.51-0.82, P = 0.09) for PREMM 1,2,6 . Considering a threshold of 5 %, MMRpro would eliminate unnecessary germline mutation analysis in a significant proportion of cases while keeping very high sensitivity. We conclude that MMRpro is useful to correctly predict who should be screened for a germline MLH1 gene mutation and propose an algorithm to improve the cost-effectiveness of LS diagnosis.

  9. Thermal Stabilization of Dihydrofolate Reductase Using Monte Carlo Unfolding Simulations and Its Functional Consequences

    PubMed Central

    Whitney, Anna; Shakhnovich, Eugene I.

    2015-01-01

    Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR), a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r = 0.65–0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover stabilizing mutations. PMID:25905910

  10. BRCA Mutation Frequency and Patterns of Treatment Response in BRCA Mutation–Positive Women With Ovarian Cancer: A Report From the Australian Ovarian Cancer Study Group

    PubMed Central

    Alsop, Kathryn; Fereday, Sian; Meldrum, Cliff; deFazio, Anna; Emmanuel, Catherine; George, Joshy; Dobrovic, Alexander; Birrer, Michael J.; Webb, Penelope M.; Stewart, Colin; Friedlander, Michael; Fox, Stephen; Bowtell, David; Mitchell, Gillian

    2012-01-01

    Purpose The frequency of BRCA1 and BRCA2 germ-line mutations in women with ovarian cancer is unclear; reports vary from 3% to 27%. The impact of germ-line mutation on response requires further investigation to understand its impact on treatment planning and clinical trial design. Patients and Methods Women with nonmucinous ovarian carcinoma (n = 1,001) enrolled onto a population-based, case-control study were screened for point mutations and large deletions in both genes. Survival outcomes and responses to multiple lines of chemotherapy were assessed. Results Germ-line mutations were found in 14.1% of patients overall, including 16.6% of serous cancer patients (high-grade serous, 22.6%); 44% had no reported family history of breast or ovarian cancer. Patients carrying germ-line mutations had improved rates of progression-free and overall survival. In the relapse setting, patients carrying mutations more frequently responded to both platin- and nonplatin-based regimens than mutation-negative patients, even in patients with early relapse after primary treatment. Mutation-negative patients who responded to multiple cycles of platin-based treatment were more likely to carry somatic BRCA1/2 mutations. Conclusion BRCA mutation status has a major influence on survival in ovarian cancer patients and should be an additional stratification factor in clinical trials. Treatment outcomes in BRCA1/2 carriers challenge conventional definitions of platin resistance, and mutation status may be able to contribute to decision making and systemic therapy selection in the relapse setting. Our data, together with the advent of poly(ADP-ribose) polymerase inhibitor trials, supports the recommendation that germ-line BRCA1/2 testing should be offered to all women diagnosed with nonmucinous, ovarian carcinoma, regardless of family history. PMID:22711857

  11. KIT D816V-mutated bone marrow mesenchymal stem cells in indolent systemic mastocytosis are associated with disease progression.

    PubMed

    Garcia-Montero, Andres C; Jara-Acevedo, Maria; Alvarez-Twose, Ivan; Teodosio, Cristina; Sanchez-Muñoz, Laura; Muñiz, Carmen; Muñoz-Gonzalez, Javier I; Mayado, Andrea; Matito, Almudena; Caldas, Carolina; Morgado, Jose M; Escribano, Luis; Orfao, Alberto

    2016-02-11

    Multilineage involvement of bone marrow (BM) hematopoiesis by the somatic KIT D816V mutation is present in a subset of adult indolent systemic mastocytosis (ISM) patients in association with a poorer prognosis. Here, we investigated the potential involvement of BM mesenchymal stem cells (MSCs) from ISM patients by the KIT D816V mutation and its potential impact on disease progression and outcome. This mutation was investigated in highly purified BM MSCs and other BM cell populations from 83 ISM patients followed for a median of 116 months. KIT D816V-mutated MSCs were detected in 22 of 83 cases. All MSC-mutated patients had multilineage KIT mutation (100% vs 30%, P = .0001) and they more frequently showed involvement of lymphoid plus myeloid BM cells (59% vs 22%; P = .03) and a polyclonal pattern of inactivation of the X-chromosome of KIT-mutated BM mast cells (64% vs 0%; P = .01) vs other multilineage ISM cases. Moreover, presence of KIT-mutated MSCs was associated with more advanced disease features, a greater rate of disease progression (50% vs 17%; P = .04), and a shorter progression-free survival (P ≤ .003). Overall, these results support the notion that ISM patients with mutated MSCs may have acquired the KIT mutation in a common pluripotent progenitor cell, prior to differentiation into MSCs and hematopoietic precursor cells, before the X-chromosome inactivation process occurs. From a clinical point of view, acquisition of the KIT mutation in an earlier BM precursor cell confers a significantly greater risk for disease progression and a poorer outcome. © 2016 by The American Society of Hematology.

  12. Katz model prediction of Caenorhabditis elegans mutagenesis on STS-42

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Katz, Robert; Badhwar, Gautam D.

    1992-01-01

    Response parameters that describe the production of recessive lethal mutations in C. elegans from ionizing radiation are obtained with the Katz track structure model. The authors used models of the space radiation environment and radiation transport to predict and discuss mutation rates for C. elegans on the IML-1 experiment aboard STS-42.

  13. Evaluation of BRCA1 and BRCA2 mutations and risk-prediction models in a typical Asian country (Malaysia) with a relatively low incidence of breast cancer.

    PubMed

    Thirthagiri, E; Lee, S Y; Kang, P; Lee, D S; Toh, G T; Selamat, S; Yoon, S-Y; Taib, N A Mohd; Thong, M K; Yip, C H; Teo, S H

    2008-01-01

    The cost of genetic testing and the limited knowledge about the BRCA1 and BRCA2 genes in different ethnic groups has limited its availability in medium- and low-resource countries, including Malaysia. In addition, the applicability of many risk-assessment tools, such as the Manchester Scoring System and BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) which were developed based on mutation rates observed primarily in Caucasian populations using data from multiplex families, and in populations where the rate of breast cancer is higher, has not been widely tested in Asia or in Asians living elsewhere. Here, we report the results of genetic testing for mutations in the BRCA1 or BRCA2 genes in a series of families with breast cancer in the multi-ethnic population (Malay, Chinese and Indian) of Malaysia. A total of 187 breast cancer patients with either early-onset breast cancer (at age

  14. Large deletion at the CDC73 gene locus and search for predictive markers of the presence of a CDC73 genetic lesion.

    PubMed

    Muscarella, Lucia Anna; Turchetti, Daniela; Fontana, Andrea; Baorda, Filomena; Palumbo, Orazio; la Torre, Annamaria; de Martino, Danilo; Franco, Renato; Losito, Nunzia Simona; Repaci, Andrea; Pagotto, Uberto; Cinque, Luigia; Copetti, Massimiliano; Chiofalo, Maria Grazia; Pezzullo, Luciano; Graziano, Paolo; Scillitani, Alfredo; Guarnieri, Vito

    2018-04-17

    The Hyperparathyroidism with Jaw-Tumours syndrome is caused by mutations of the CDC73 gene: it has been suggested that early onset of the disease and high Ca 2+ levels may predict the presence of a CDC73 mutation. We searched for large deletions at the CDC73 locus in patients with: HPT-JT (nr 2), atypical adenoma (nr 7) or sporadic parathyroid carcinoma (nr 11) with a specific MLPA and qRT-PCR assays applied on DNA extracted from whole blood. A Medline search in database for all the papers reporting a CDC73 gene mutation, clinical/histological diagnosis, age at onset, Ca 2+ , PTH levels for familial/sporadic cases was conducted with the aim to possibly identify biochemical/clinical markers predictive, in first diagnosis, of the presence of a CDC73 gene mutation. A novel genomic deletion of the first 10 exons of the CDC73 gene was found in a 3-generation HPT-JT family, confirmed by SNP array analysis. A classification tree built on the published data, showed the highest probability of having a CDC73 mutation in subjects with age at the onset < 41.5 years (44/47 subjects, 93.6%, had the mutation). Whereas the lowest probability was found in subjects with age at the onset ≥ 41.5 years and Ca 2+ levels <13.96 mg/dL (7/20 subjects, 35.0%, had the mutation, odds ratio = 27.1, p < 0.001). We report a novel large genomic CDC73 gene deletion identified in an Italian HPT-JT family. Age at onset < 41.5 ys and Ca 2+ > 13.96 mg/dL are predictive for the presence of a CDC73 genetic lesion.

  15. Age at cancer onset in germline TP53 mutation carriers: association with polymorphisms in predicted G-quadruplex structures

    PubMed Central

    Hainaut, Pierre

    2014-01-01

    Germline TP53 mutations predispose to multiple cancers defining Li-Fraumeni/Li-Fraumeni-like syndrome (LFS/LFL), a disease with large individual disparities in cancer profiles and age of onset. G-quadruplexes (G4s) are secondary structural motifs occurring in guanine tracks, with regulatory effects on DNA and RNA. We analyzed 85 polymorphisms within or near five predicted G4s in TP53 in search of modifiers of penetrance of LFS/LFL in Brazilian cancer families with (n = 35) or without (n = 110) TP53 mutations. Statistical analyses stratified on family structure showed that cancer tended to occur ~15 years later in mutation carriers who also carried the variant alleles of two polymorphisms within predicted G4-forming regions, rs17878362 (TP53 PIN3, 16 bp duplication in intron 3; P = 0.082) and rs17880560 (6 bp duplication in 3′ flanking region; P = 0.067). Haplotype analysis showed that this inverse association was driven by the polymorphic status of the remaining wild-type (WT) haplotype in mutation carriers: in carriers with a WT haplotype containing at least one variant allele of rs17878362 or rs17880560, cancer occurred ~15 years later than in carriers with other WT haplotypes (P = 0.019). No effect on age of cancer onset was observed in subjects without a TP53 mutation. The G4 in intron 3 has been shown to regulate alternative p53 messenger RNA splicing, whereas the biological roles of predicted G4s in the 3′ flanking region remain to be elucidated. In conclusion, this study demonstrates that G4 polymorphisms in haplotypes of the WT TP53 allele have an impact on LFS/LFL penetrance in germline TP53 mutation carriers. PMID:24336192

  16. Compared effects of missense mutations in Very-Long-Chain Acyl-CoA Dehydrogenase deficiency: Combined analysis by structural, functional and pharmacological approaches.

    PubMed

    Gobin-Limballe, Stéphanie; McAndrew, Ryan P; Djouadi, Fatima; Kim, Jung-Ja; Bastin, Jean

    2010-05-01

    Very-Long-Chain Acyl-CoA Dehydrogenase deficiency (VLCADD) is an autosomal recessive disorder considered as one of the more common ss-oxidation defects, possibly associated with neonatal cardiomyopathy, infantile hepatic coma, or adult-onset myopathy. Numerous gene missense mutations have been described in these VLCADD phenotypes, but only few of them have been structurally and functionally analyzed, and the molecular basis of disease variability is still poorly understood. To address this question, we first analyzed fourteen disease-causing amino acid changes using the recently described crystal structure of VLCAD. The predicted effects varied from the replacement of amino acid residues lining the substrate binding cavity, involved in holoenzyme-FAD interactions or in enzyme dimerisation, predicted to have severe functional consequences, up to amino acid substitutions outside key enzyme domains or lying on near enzyme surface, with predicted milder consequences. These data were combined with functional analysis of residual fatty acid oxidation (FAO) and VLCAD protein levels in patient cells harboring these mutations, before and after pharmacological stimulation by bezafibrate. Mutations identified as detrimental to the protein structure in the 3-D model were generally associated to profound FAO and VLCAD protein deficiencies in the patient cells, however, some mutations affecting FAD binding or monomer-monomer interactions allowed a partial response to bezafibrate. On the other hand, bezafibrate restored near-normal FAO rates in some mutations predicted to have milder consequences on enzyme structure. Overall, combination of structural, biochemical, and pharmacological analysis allowed assessment of the relative severity of individual mutations, with possible applications for disease management and therapeutic approach. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Evolutionary perspectives on the links between mitochondrial genotype and disease phenotype.

    PubMed

    Dowling, Damian K

    2014-04-01

    Disorders of the mitochondrial respiratory chain are heterogeneous in their symptoms and underlying genetics. Simple links between candidate mutations and expression of disease phenotype typically do not exist. It thus remains unclear how the genetic variation in the mitochondrial genome contributes to the phenotypic expression of complex traits and disease phenotypes. I summarize the basic genetic processes known to underpin mitochondrial disease. I highlight other plausible processes, drawn from the evolutionary biological literature, whose contribution to mitochondrial disease expression remains largely empirically unexplored. I highlight recent advances to the field, and discuss common-ground and -goals shared by researchers across medical and evolutionary domains. Mitochondrial genetic variance is linked to phenotypic variance across a variety of traits (e.g. reproductive function, life expectancy) fundamental to the upkeep of good health. Evolutionary theory predicts that mitochondrial genomes are destined to accumulate male-harming (but female-friendly) mutations, and this prediction has received proof-of-principle support. Furthermore, mitochondrial effects on the phenotype are typically manifested via interactions between mitochondrial and nuclear genes. Thus, whether a mitochondrial mutation is pathogenic in effect can depend on the nuclear genotype in which is it expressed. Many disease phenotypes associated with OXPHOS malfunction might be determined by the outcomes of mitochondrial-nuclear interactions, and by the evolutionary forces that historically shaped mitochondrial DNA (mtDNA) sequences. Concepts and results drawn from the evolutionary sciences can have broad, but currently under-utilized, applicability to the medical sciences and provide new insights into understanding the complex genetics of mitochondrial disease. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. Copyright © 2013. Published by Elsevier B.V.

  18. Clinical Features and Long-Term Outcome of Nephrotic Syndrome Associated with Heterozygous NPHS1 and NPHS2 Mutations

    PubMed Central

    Caridi, Gianluca; Gigante, Maddalena; Ravani, Pietro; Trivelli, Antonella; Barbano, Giancarlo; Scolari, Francesco; Dagnino, Monica; Murer, Luisa; Murtas, Corrado; Edefonti, Alberto; Allegri, Landino; Amore, Alessandro; Coppo, Rosanna; Emma, Francesco; De Palo, Tommaso; Penza, Rosa; Gesualdo, Loreto; Ghiggeri, Gian Marco

    2009-01-01

    Background and objectives: Mutations in nephrin (NPHS1) and podocin (NPHS2) genes represent a major cause of idiopathic nephrotic syndrome (NS) in children. It is not yet clear whether the presence of a single mutation acts as a modifier of the clinical course of NS. Design, setting, participants, & measurements: We reviewed the clinical features of 40 patients with NS associated with heterozygous mutations or variants in NPHS1 (n = 7) or NPHS2 (n = 33). Long-term renal survival probabilities were compared with those of a concurrent cohort with idiopathic NS. Results: Patients with a single mutation in NPHS1 received a diagnosis before those with potentially nongenetic NS and had a good response to therapies. Renal function was normal in all cases. For NPHS2, six patients had single heterozygous mutations, six had a p.P20L variant, and 21 had a p.R229Q variant. Age at diagnosis and the response to drugs were comparable in all NS subgroups. Overall, they had similar renal survival probabilities as non-NPHS1/NPHS2 cases (log-rank χ2 0.84, P = 0.656) that decreased in presence of resistance to therapy (P < 0.001) and in cases with renal lesions of glomerulosclerosis and IgM deposition (P < 0.001). Cox regression confirmed that the only significant predictor of dialysis was resistance to therapy. Conclusions: Our data indicate that single mutation or variant in NPHS1 and NPHS2 does not modify the outcome of primary NS. These patients should be treated following consolidated schemes and have good chances for a good long-term outcome. PMID:19406966

  19. Diffuse Staining for Activated NOTCH1 Correlates With NOTCH1 Mutation Status and Is Associated With Worse Outcome in Adenoid Cystic Carcinoma.

    PubMed

    Sajed, Dipti P; Faquin, William C; Carey, Chris; Severson, Eric A; H Afrogheh, Amir; A Johnson, Carl; Blacklow, Stephen C; Chau, Nicole G; Lin, Derrick T; Krane, Jeffrey F; Jo, Vickie Y; Garcia, Joaquín J; Sholl, Lynette M; Aster, Jon C

    2017-11-01

    NOTCH1 is frequently mutated in adenoid cystic carcinoma (ACC). To test the idea that immunohistochemical (IHC) staining can identify ACCs with NOTCH1 mutations, we performed IHC for activated NOTCH1 (NICD1) in 197 cases diagnosed as ACC from 173 patients. NICD1 staining was positive in 194 cases (98%) in 2 major patterns: subset positivity, which correlated with tubular/cribriform histology; and diffuse positivity, which correlated with a solid histology. To determine the relationship between NICD1 staining and NOTCH1 mutational status, targeted exome sequencing data were obtained on 14 diffusely NICD1-positive ACC specimens from 11 patients and 15 subset NICD1-positive ACC specimens from 15 patients. This revealed NOTCH1 gain-of-function mutations in 11 of 14 diffusely NICD1-positive ACC specimens, whereas all subset-positive tumors had wild-type NOTCH1 alleles. Notably, tumors with diffuse NICD1 positivity were associated with significantly worse outcomes (P=0.003). To determine whether NOTCH1 activation is unique among tumors included in the differential diagnosis with ACC, we performed NICD1 IHC on a cohort of diverse salivary gland and head and neck tumors. High fractions of each of these tumor types were positive for NICD1 in a subset of cells, particularly in basaloid squamous cell carcinomas; however, sequencing of basaloid squamous cell carcinomas failed to identify NOTCH1 mutations. These findings indicate that diffuse NICD1 positivity in ACC correlates with solid growth pattern, the presence of NOTCH1 gain-of-function mutations, and unfavorable outcome, and suggest that staining for NICD1 can be helpful in distinguishing ACC with solid growth patterns from other salivary gland and head and neck tumors.

  20. Endometrial Carcinomas with POLE Exonuclease Domain Mutations Have a Favorable Prognosis.

    PubMed

    McConechy, Melissa K; Talhouk, Aline; Leung, Samuel; Chiu, Derek; Yang, Winnie; Senz, Janine; Reha-Krantz, Linda J; Lee, Cheng-Han; Huntsman, David G; Gilks, C Blake; McAlpine, Jessica N

    2016-06-15

    The aim of this study was to confirm the prognostic significance of POLE exonuclease domain mutations (EDM) in endometrial carcinoma patients. In addition, the effect of treatment on POLE-mutated tumors was assessed. A retrospective patient cohort of 496 endometrial carcinoma patients was identified for targeted sequencing of the POLE exonuclease domain, yielding 406 evaluable tumors. Univariable and multivariable analyses were performed to determine the effect of POLE mutation status on progression-free survival (PFS), disease-specific survival (DSS), and overall survival (OS). Combining results from eight studies in a meta-analysis, we computed pooled HR for PFS, DSS, and OS. POLE EDMs were identified in 39 of 406 (9.6%) endometrial carcinomas. Women with POLE-mutated endometrial carcinomas were younger, with stage I (92%) tumors, grade 3 (62%), endometrioid histology (82%), and frequent (49%) lymphovascular invasion. In univariable analysis, POLE-mutated endometrial carcinomas had significantly improved outcomes compared with patients with no EDMs for PFS, DSS, and OS. In multivariable analysis, POLE EDMs were only significantly associated with improved PFS. The effect of adjuvant treatment on POLE-mutated cases could not be determined conclusively; however, both treated and untreated patients with POLE EDMs had good outcomes. Meta-analysis revealed an association between POLE EDMs and improved PFS and DSS with pooled HRs 0.34 [95% confidence interval (CI), 0.15-0.73] and 0.35 (95% CI, 0.13-0.92), respectively. POLE EDMs are prognostic markers associated with excellent outcomes for endometrial carcinoma patients. Further investigation is needed to conclusively determine if treatment is necessary for this group of women. Clin Cancer Res; 22(12); 2865-73. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Predicting the Pathogenicity of Aminoacyl-tRNA Synthetase Mutations

    PubMed Central

    Oprescu, Stephanie N.; Griffin, Laurie B.; Beg, Asim A.; Antonellis, Anthony

    2016-01-01

    Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes responsible for charging tRNA with cognate amino acids—the first step in protein synthesis. ARSs are required for protein translation in the cytoplasm and mitochondria of all cells. Surprisingly, mutations in 28 of the 37 nuclear-encoded human ARS genes have been linked to a variety of recessive and dominant tissue-specific disorders. Current data sustains that impaired enzyme function is a robust predictor of the pathogenicity of ARS mutations. However, experimental model systems that distinguish between pathogenic and non-pathogenic ARS variants are required for implicating newly identified ARS mutations in disease. Here, we outline strategies to assist in predicting the pathogenicity of ARS variants and urge cautious evaluation of genetic and functional data prior to linking an ARS mutation to a human disease phenotype. PMID:27876679

  2. The future: genetics advances in MEN1 therapeutic approaches and management strategies.

    PubMed

    Agarwal, Sunita K

    2017-10-01

    The identification of the multiple endocrine neoplasia type 1 ( MEN1 ) gene in 1997 has shown that germline heterozygous mutations in the MEN1 gene located on chromosome 11q13 predisposes to the development of tumors in the MEN1 syndrome. Tumor development occurs upon loss of the remaining normal copy of the MEN1 gene in MEN1-target tissues. Therefore, MEN1 is a classic tumor suppressor gene in the context of MEN1. This tumor suppressor role of the protein encoded by the MEN1 gene, menin, holds true in mouse models with germline heterozygous Men1 loss, wherein MEN1-associated tumors develop in adult mice after spontaneous loss of the remaining non-targeted copy of the Men1 gene. The availability of genetic testing for mutations in the MEN1 gene has become an essential part of the diagnosis and management of MEN1. Genetic testing is also helping to exclude mutation-negative cases in MEN1 families from the burden of lifelong clinical screening. In the past 20 years, efforts of various groups world-wide have been directed at mutation analysis, molecular genetic studies, mouse models, gene expression studies, epigenetic regulation analysis, biochemical studies and anti-tumor effects of candidate therapies in mouse models. This review will focus on the findings and advances from these studies to identify MEN1 germline and somatic mutations, the genetics of MEN1-related states, several protein partners of menin, the three-dimensional structure of menin and menin-dependent target genes. The ongoing impact of all these studies on disease prediction, management and outcomes will continue in the years to come. © 2017 Society for Endocrinology.

  3. New multiplex real-time PCR approach to detect gene mutations for spinal muscular atrophy.

    PubMed

    Liu, Zhidai; Zhang, Penghui; He, Xiaoyan; Liu, Shan; Tang, Shi; Zhang, Rong; Wang, Xinbin; Tan, Junjie; Peng, Bin; Jiang, Li; Hong, Siqi; Zou, Lin

    2016-08-17

    Spinal muscular atrophy (SMA) is the most common autosomal recessive disease in children, and the diagnosis is complicated and difficult, especially at early stage. Early diagnosis of SMA is able to improve the outcome of SMA patients. In our study, Real-time PCR was developed to measure the gene mutation or deletion of key genes for SMA and to further analyse genotype-phenotype correlation. The multiple real-time PCR for detecting the mutations of survival of motor neuron (SMN), apoptosis inhibitory protein (NAIP) and general transcription factor IIH, polypeptide 2 gene (GTF2H2) was established and confirmed by DNA sequencing and multiplex ligation-dependent probe amplification (MLPA). The diagnosis and prognosis of 141 hospitalized children, 100 normal children and further 2000 cases of dry blood spot (DBS) samples were analysed by this multiple real-time PCR. The multiple real-time PCR was established and the accuracy of it to detect the mutations of SMN, NAIP and GTF2H2 was at least 98.8 % comparing with DNA sequencing and MLPA. Among 141 limb movement disorders children, 75 cases were SMA. 71 cases of SMA (94.67 %) were with SMN c.840 mutation, 9 cases (12 %) with NAIP deletion and 3 cases (4 %) with GTF2H2 deletion. The multiple real-time PCR was able to diagnose and predict the prognosis of SMA patients. Simultaneously, the real-time PCR was applied to detect trace DNA from DBS and able to make an early diagnosis of SMA. The clinical and molecular characteristics of SMA in Southwest of China were presented. Our work provides a novel way for detecting SMA in children by using real-time PCR and the potential usage in newborn screening for early diagnosis of SMA.

  4. Phase IB Study of Vemurafenib in Combination with Irinotecan and Cetuximab in Patients with Metastatic Colorectal Cancer with BRAFV600E Mutation.

    PubMed

    Hong, David S; Morris, Van K; El Osta, Badi; Sorokin, Alexey V; Janku, Filip; Fu, Siqing; Overman, Michael J; Piha-Paul, Sarina; Subbiah, Vivek; Kee, Bryan; Tsimberidou, Apostolia M; Fogelman, David; Bellido, Jorge; Shureiqi, Imad; Huang, Helen; Atkins, Johnique; Tarcic, Gabi; Sommer, Nicolas; Lanman, Richard; Meric-Bernstam, Funda; Kopetz, Scott

    2016-12-01

    In vitro, EGFR inhibition, combined with the BRAF inhibitor vemurafenib, causes synergistic cytotoxicity for BRAF V600E metastatic colorectal cancer, further augmented by irinotecan. The safety and efficacy of vemurafenib, irinotecan, and cetuximab in BRAF-mutated malignancies are not defined. In this 3+3 phase I study, patients with BRAF V600E -advanced solid cancers received cetuximab and irinotecan with escalating doses of vemurafenib. Nineteen patients (18 with metastatic colorectal cancer and 1 with appendiceal cancer) were enrolled. Three patients experienced dose-limiting toxicities. The MTD of vemurafenib was 960 mg twice daily. Six of 17 evaluable patients (35%) achieved a radiographic response by Response Evaluation Criteria in Solid Tumors 1.1 criteria, consistent with in vivo models demonstrating tumor regressions with the triplet regimen. Median progression-free survival was 7.7 months. BRAF V600E circulating cell-free DNA (cfDNA) trends correlated with radiographic changes, and acquired mutations from cfDNA in genes reactivating MAPK signaling were observed at progression. Vemurafenib, in combination with irinotecan and cetuximab, was well tolerated in patients with refractory, BRAF-mutated metastatic colorectal cancer, and both survival outcomes and response rates exceeded prior reports for vemurafenib and for irinotecan plus cetuximab in BRAF V600E metastatic colorectal cancer. In vivo models demonstrated regressions with the triplet, in contrast with vemurafenib and cetuximab alone. cfDNA predicted radiographic response and identified mutations reactivating the MAPK pathway upon progression. Cancer Discov; 6(12); 1352-65. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 1293. ©2016 American Association for Cancer Research.

  5. HSAN1 mutations in serine palmitoyltransferase reveal a close structure-function-phenotype relationship.

    PubMed

    Bode, Heiko; Bourquin, Florence; Suriyanarayanan, Saranya; Wei, Yu; Alecu, Irina; Othman, Alaa; Von Eckardstein, Arnold; Hornemann, Thorsten

    2016-03-01

    Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is a rare autosomal dominant inherited peripheral neuropathy caused by mutations in the SPTLC1 and SPTLC2 subunits of serine palmitoyltransferase (SPT). The mutations induce a permanent shift in the substrate preference from L-serine to L-alanine, which results in the pathological formation of atypical and neurotoxic 1-deoxy-sphingolipids (1-deoxySL). Here we compared the enzymatic properties of 11 SPTLC1 and six SPTLC2 mutants using a uniform isotope labelling approach. In total, eight SPT mutants (STPLC1p.C133W, p.C133Y, p.S331F, p.S331Y and SPTLC2p.A182P, p.G382V, p.S384F, p.I504F) were associated with increased 1-deoxySL synthesis. Despite earlier reports, canonical activity with l-serine was not reduced in any of the investigated SPT mutants. Three variants (SPTLC1p.S331F/Y and SPTLC2p.I505Y) showed an increased canonical activity and increased formation of C20 sphingoid bases. These three mutations are associated with an exceptionally severe HSAN1 phenotype, and increased C20 sphingosine levels were also confirmed in plasma of patients. A principal component analysis of the analysed sphingoid bases clustered the mutations into three separate entities. Each cluster was related to a distinct clinical outcome (no, mild and severe HSAN1 phenotype). A homology model based on the protein structure of the prokaryotic SPT recapitulated the same grouping on a structural level. Mutations associated with the mild form clustered around the active site, whereas mutations associated with the severe form were located on the surface of the protein. In conclusion, we showed that HSAN1 mutations in SPT have distinct biochemical properties, which allowed for the prediction of the clinical symptoms on the basis of the plasma sphingoid base profile. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Computational crystallization.

    PubMed

    Altan, Irem; Charbonneau, Patrick; Snell, Edward H

    2016-07-15

    Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Mutator dynamics in sexual and asexual experimental populations of yeast.

    PubMed

    Raynes, Yevgeniy; Gazzara, Matthew R; Sniegowski, Paul D

    2011-06-07

    In asexual populations, mutators may be expected to hitchhike with associated beneficial mutations. In sexual populations, recombination is predicted to erode such associations, inhibiting mutator hitchhiking. To investigate the effect of recombination on mutators experimentally, we compared the frequency dynamics of a mutator allele (msh2Δ) in sexual and asexual populations of Saccharomyces cerevisiae. Mutator strains increased in frequency at the expense of wild-type strains in all asexual diploid populations, with some approaching fixation in 150 generations of propagation. Over the same period of time, mutators declined toward loss in all corresponding sexual diploid populations as well as in haploid populations propagated asexually. We report the first experimental investigation of mutator dynamics in sexual populations. We show that a strong mutator quickly declines in sexual populations while hitchhiking to high frequency in asexual diploid populations, as predicted by theory. We also show that the msh2Δ mutator has a high and immediate realized cost that is alone sufficient to explain its decline in sexual populations. We postulate that this cost is indirect; namely, that it is due to a very high rate of recessive lethal or strongly deleterious mutation. However, we cannot rule out the possibility that msh2Δ also has unknown directly deleterious effects on fitness, and that these effects may differ between haploid asexual and sexual populations. Despite these reservations, our results prompt us to speculate that the short-term cost of highly deleterious recessive mutations can be as important as recombination in preventing mutator hitchhiking in sexual populations.

  8. 22 Years of predictive testing for Huntington's disease: the experience of the UK Huntington's Prediction Consortium.

    PubMed

    Baig, Sheharyar S; Strong, Mark; Rosser, Elisabeth; Taverner, Nicola V; Glew, Ruth; Miedzybrodzka, Zosia; Clarke, Angus; Craufurd, David; Quarrell, Oliver W

    2016-10-01

    Huntington's disease (HD) is a progressive neurodegenerative condition. At-risk individuals have accessed predictive testing via direct mutation testing since 1993. The UK Huntington's Prediction Consortium has collected anonymised data on UK predictive tests, annually, from 1993 to 2014: 9407 predictive tests were performed across 23 UK centres. Where gender was recorded, 4077 participants were male (44.3%) and 5122 were female (55.7%). The median age of participants was 37 years. The most common reason for predictive testing was to reduce uncertainty (70.5%). Of the 8441 predictive tests on individuals at 50% prior risk, 4629 (54.8%) were reported as mutation negative and 3790 (44.9%) were mutation positive, with 22 (0.3%) in the database being uninterpretable. Using a prevalence figure of 12.3 × 10(-5), the cumulative uptake of predictive testing in the 50% at-risk UK population from 1994 to 2014 was estimated at 17.4% (95% CI: 16.9-18.0%). We present the largest study conducted on predictive testing in HD. Our findings indicate that the vast majority of individuals at risk of HD (>80%) have not undergone predictive testing. Future therapies in HD will likely target presymptomatic individuals; therefore, identifying the at-risk population whose gene status is unknown is of significant public health value.

  9. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas.

    PubMed

    Palles, Claire; Cazier, Jean-Baptiste; Howarth, Kimberley M; Domingo, Enric; Jones, Angela M; Broderick, Peter; Kemp, Zoe; Spain, Sarah L; Guarino, Estrella; Guarino Almeida, Estrella; Salguero, Israel; Sherborne, Amy; Chubb, Daniel; Carvajal-Carmona, Luis G; Ma, Yusanne; Kaur, Kulvinder; Dobbins, Sara; Barclay, Ella; Gorman, Maggie; Martin, Lynn; Kovac, Michal B; Humphray, Sean; Lucassen, Anneke; Holmes, Christopher C; Bentley, David; Donnelly, Peter; Taylor, Jenny; Petridis, Christos; Roylance, Rebecca; Sawyer, Elinor J; Kerr, David J; Clark, Susan; Grimes, Jonathan; Kearsey, Stephen E; Thomas, Huw J W; McVean, Gilean; Houlston, Richard S; Tomlinson, Ian

    2013-02-01

    Many individuals with multiple or large colorectal adenomas or early-onset colorectal cancer (CRC) have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple-adenoma and/or CRC cases but in no controls. The variants associated with susceptibility, POLE p.Leu424Val and POLD1 p.Ser478Asn, have high penetrance, and POLD1 mutation was also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proofreading (exonuclease) domain of DNA polymerases ɛ and δ and are predicted to cause a defect in the correction of mispaired bases inserted during DNA replication. In agreement with this prediction, the tumors from mutation carriers were microsatellite stable but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE mutations affecting the exonuclease domain.

  10. Twenty novel mutations in BCKDHA, BCKDHB and DBT genes in a cohort of 52 Saudi Arabian patients with maple syrup urine disease.

    PubMed

    Imtiaz, Faiqa; Al-Mostafa, Abeer; Allam, Rabab; Ramzan, Khushnooda; Al-Tassan, Nada; Tahir, Asma I; Al-Numair, Nouf S; Al-Hamed, Mohamed H; Al-Hassnan, Zuhair; Al-Owain, Mohammad; Al-Zaidan, Hamad; Al-Amoudi, Mohammad; Qari, Alya; Balobaid, Ameera; Al-Sayed, Moeenaldeen

    2017-06-01

    Maple syrup urine disease (MSUD), an autosomal recessive inborn error of metabolism due to defects in the branched-chain α-ketoacid dehydrogenase (BCKD) complex, is commonly observed among other inherited metabolic disorders in the kingdom of Saudi Arabia. This report presents the results of mutation analysis of three of the four genes encoding the BCKD complex in 52 biochemically diagnosed MSUD patients originating from Saudi Arabia. The 25 mutations (20 novel) detected spanned across the entire coding regions of the BCKHDA , BCKDHB and DBT genes. There were no mutations found in the DLD gene in this cohort of patients. Prediction effects, conservation and modelling of novel mutations demonstrated that all were predicted to be disease-causing. All mutations presented in a homozygous form and we did not detect the presence of a "founder" mutation in any of three genes. In addition, prenatal molecular genetic testing was successfully carried out on chorionic villus samples or amniocenteses in 10 expectant mothers with affected children with MSUD, molecularly characterized by this study.

  11. Diversity of the Genes Implicated in Algerian Patients Affected by Usher Syndrome

    PubMed Central

    Abdi, Samia; Bahloul, Amel; Behlouli, Asma; Hardelin, Jean-Pierre; Makrelouf, Mohamed; Boudjelida, Kamel; Louha, Malek; Cheknene, Ahmed; Belouni, Rachid; Rous, Yahia; Merad, Zahida; Selmane, Djamel; Hasbelaoui, Mokhtar; Bonnet, Crystel; Zenati, Akila; Petit, Christine

    2016-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by a dual sensory impairment affecting hearing and vision. USH is clinically and genetically heterogeneous. Ten different causal genes have been reported. We studied the molecular bases of the disease in 18 unrelated Algerian patients by targeted-exome sequencing, and identified the causal biallelic mutations in all of them: 16 patients carried the mutations at the homozygous state and 2 at the compound heterozygous state. Nine of the 17 different mutations detected in MYO7A (1 of 5 mutations), CDH23 (4 of 7 mutations), PCDH15 (1 mutation), USH1C (1 mutation), USH1G (1 mutation), and USH2A (1 of 2 mutations), had not been previously reported. The deleterious consequences of a missense mutation of CDH23 (p.Asp1501Asn) and the in-frame single codon deletion in USH1G (p.Ala397del) on the corresponding proteins were predicted from the solved 3D-structures of extracellular cadherin (EC) domains of cadherin-23 and the sterile alpha motif (SAM) domain of USH1G/sans, respectively. In addition, we were able to show that the USH1G mutation is likely to affect the binding interface between the SAM domain and USH1C/harmonin. This should spur the use of 3D-structures, not only of isolated protein domains, but also of protein-protein interaction interfaces, to predict the functional impact of mutations detected in the USH genes. PMID:27583663

  12. Diversity of the Genes Implicated in Algerian Patients Affected by Usher Syndrome.

    PubMed

    Abdi, Samia; Bahloul, Amel; Behlouli, Asma; Hardelin, Jean-Pierre; Makrelouf, Mohamed; Boudjelida, Kamel; Louha, Malek; Cheknene, Ahmed; Belouni, Rachid; Rous, Yahia; Merad, Zahida; Selmane, Djamel; Hasbelaoui, Mokhtar; Bonnet, Crystel; Zenati, Akila; Petit, Christine

    2016-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by a dual sensory impairment affecting hearing and vision. USH is clinically and genetically heterogeneous. Ten different causal genes have been reported. We studied the molecular bases of the disease in 18 unrelated Algerian patients by targeted-exome sequencing, and identified the causal biallelic mutations in all of them: 16 patients carried the mutations at the homozygous state and 2 at the compound heterozygous state. Nine of the 17 different mutations detected in MYO7A (1 of 5 mutations), CDH23 (4 of 7 mutations), PCDH15 (1 mutation), USH1C (1 mutation), USH1G (1 mutation), and USH2A (1 of 2 mutations), had not been previously reported. The deleterious consequences of a missense mutation of CDH23 (p.Asp1501Asn) and the in-frame single codon deletion in USH1G (p.Ala397del) on the corresponding proteins were predicted from the solved 3D-structures of extracellular cadherin (EC) domains of cadherin-23 and the sterile alpha motif (SAM) domain of USH1G/sans, respectively. In addition, we were able to show that the USH1G mutation is likely to affect the binding interface between the SAM domain and USH1C/harmonin. This should spur the use of 3D-structures, not only of isolated protein domains, but also of protein-protein interaction interfaces, to predict the functional impact of mutations detected in the USH genes.

  13. Ovarian Tumors related to Intronic Mutations in DICER1: A Report from the International Ovarian and Testicular Stromal Tumor Registry

    PubMed Central

    Schultz, Kris Ann; Harris, Anne; Messinger, Yoav; Sencer, Susan; Baldinger, Shari; Dehner, Louis P.; Hill, D. Ashley

    2015-01-01

    Germline DICER1 mutations have been described in individuals with pleuropulmonary blastoma (PPB), ovarian Sertoli-Leydig cell tumor (SLCT), sarcomas, multinodular goiter, thyroid carcinoma, cystic nephroma and other neoplastic conditions. Early results from the International Ovarian and Testicular Stromal Tumor Registry show germline DICER1 mutations in 48% of girls and women with SLCT. In this report, a young woman presented with ovarian undifferentiated sarcoma. Four years later, she presented with SLCT. She was successfully treated for both malignancies. Sequence results showed a germline intronic mutation in DICER1. This mutation results in an exact duplication of the six bases at the splice site at the intron 23 and exon 24 junction. Predicted improper splicing leads to inclusion of 10 bases of intronic sequence, frameshift and premature truncation of the protein disrupting the RNase IIIb domain. A second individual with SLCT was found to have an identical germline mutation. In each of the ovarian tumors, an additional somatic mutation in the RNase IIIb domain of DICER1 was found. In rare patients, germline intronic mutations in DICER1 that are predicted to cause incorrect splicing can also contribute to the pathogenesis of SLCT. PMID:26289771

  14. The population genetics of mutations: good, bad and indifferent

    PubMed Central

    Loewe, Laurence; Hill, William G.

    2010-01-01

    Population genetics is fundamental to our understanding of evolution, and mutations are essential raw materials for evolution. In this introduction to more detailed papers that follow, we aim to provide an oversight of the field. We review current knowledge on mutation rates and their harmful and beneficial effects on fitness and then consider theories that predict the fate of individual mutations or the consequences of mutation accumulation for quantitative traits. Many advances in the past built on models that treat the evolution of mutations at each DNA site independently, neglecting linkage of sites on chromosomes and interactions of effects between sites (epistasis). We review work that addresses these limitations, to predict how mutations interfere with each other. An understanding of the population genetics of mutations of individual loci and of traits affected by many loci helps in addressing many fundamental and applied questions: for example, how do organisms adapt to changing environments, how did sex evolve, which DNA sequences are medically important, why do we age, which genetic processes can generate new species or drive endangered species to extinction, and how should policy on levels of potentially harmful mutagens introduced into the environment by humans be determined? PMID:20308090

  15. Mutations in the Gardos channel (KCNN4) are associated with hereditary xerocytosis.

    PubMed

    Glogowska, Edyta; Lezon-Geyda, Kimberly; Maksimova, Yelena; Schulz, Vincent P; Gallagher, Patrick G

    2015-09-10

    Hereditary xerocytosis (HX; MIM 194380) is an autosomal-dominant hemolytic anemia characterized by primary erythrocyte dehydration. In many patients, heterozygous mutations associated with delayed channel inactivation have been identified in PIEZO1. This report describes patients from 2 well-phenotyped HX kindreds, including from one of the first HX kindreds described, who lack predicted heterozygous PIEZO1-linked variants. Whole-exome sequencing identified novel, heterozygous mutations affecting the Gardos channel, encoded by the KCNN4 gene, in both kindreds. Segregation analyses confirmed transmission of the Gardos channel mutations with disease phenotype in affected individuals. The KCNN4 variants were different mutations in the same residue, which is highly conserved across species and within members of the small-intermediate family of calcium-activated potassium channel proteins. Both mutations were predicted to be deleterious by mutation effect algorithms. In sickle erythrocytes, the Gardos channel is activated under deoxy conditions, leading to cellular dehydration due to salt and water loss. The identification of KCNN4 mutations in HX patients supports recent studies that indicate it plays a critical role in normal erythrocyte deformation in the microcirculation and participates in maintenance of erythrocyte volume homeostasis. © 2015 by The American Society of Hematology.

  16. Mutations in the Gardos channel (KCNN4) are associated with hereditary xerocytosis

    PubMed Central

    Glogowska, Edyta; Lezon-Geyda, Kimberly; Maksimova, Yelena; Schulz, Vincent P.

    2015-01-01

    Hereditary xerocytosis (HX; MIM 194380) is an autosomal-dominant hemolytic anemia characterized by primary erythrocyte dehydration. In many patients, heterozygous mutations associated with delayed channel inactivation have been identified in PIEZO1. This report describes patients from 2 well-phenotyped HX kindreds, including from one of the first HX kindreds described, who lack predicted heterozygous PIEZO1-linked variants. Whole-exome sequencing identified novel, heterozygous mutations affecting the Gardos channel, encoded by the KCNN4 gene, in both kindreds. Segregation analyses confirmed transmission of the Gardos channel mutations with disease phenotype in affected individuals. The KCNN4 variants were different mutations in the same residue, which is highly conserved across species and within members of the small-intermediate family of calcium-activated potassium channel proteins. Both mutations were predicted to be deleterious by mutation effect algorithms. In sickle erythrocytes, the Gardos channel is activated under deoxy conditions, leading to cellular dehydration due to salt and water loss. The identification of KCNN4 mutations in HX patients supports recent studies that indicate it plays a critical role in normal erythrocyte deformation in the microcirculation and participates in maintenance of erythrocyte volume homeostasis. PMID:26198474

  17. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition

    DOE PAGES

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian; ...

    2014-10-13

    Re-engineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test thismore » strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. The context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.« less

  18. Dynamics of EGFR Mutation Load in Plasma for Prediction of Treatment Response and Disease Progression in Patients With EGFR-Mutant Lung Adenocarcinoma.

    PubMed

    Taus, Álvaro; Camacho, Laura; Rocha, Pedro; Hardy-Werbin, Max; Pijuan, Lara; Piquer, Gabriel; López, Eva; Dalmases, Alba; Longarón, Raquel; Clavé, Sergi; Salido, Marta; Albanell, Joan; Bellosillo, Beatriz; Arriola, Edurne

    2018-03-23

    The assessment of epidermal growth factor receptor (EGFR) mutations is crucial for the management of patients with lung adenocarcinoma. Circulating tumor DNA (ctDNA)-based assessment offers advantages over tumor as a minimally invasive method able to capture tumor heterogeneity. Consecutive patients diagnosed with EGFR-mutant lung adenocarcinoma in tumor biopsy were included in this study. Plasma samples were obtained at different time points during the course of the disease. EGFR mutations in plasma were quantified using BEAMing (beads, emulsions, amplification, and magnetics) or digital PCR and were correlated with mutations in tumor and with radiologic response and progression. Two hundred twenty-one plasma samples from 33 patients were analyzed. EGFR mutations in plasma were detected in 83% of all patients and 100% of those with extrathoracic metastases. The dynamics of the EGFR mutation load predicted response in 93% and progression in 89% of cases well in advance of radiologic evaluation. Progression-free survival for patients in whom ctDNA was not detected in plasma during treatment was significantly longer than for those in whom ctDNA remained detectable (295 vs. 55 days; hazard ratio, 17.1; P < .001). The detection of EGFR mutations in ctDNA showed good correlation with that in tumor biopsy and predicted tumor response and progression in most patients. The liquid biopsy for ctDNA-based assessment of EGFR mutations is a reliable technique for diagnosis and follow-up in patients with EGFR-mutant lung adenocarcinoma in routine clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian

    Re-engineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test thismore » strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. The context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.« less

  20. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors.

    PubMed

    Loboda, Andrey; Nebozhyn, Michael; Klinghoffer, Rich; Frazier, Jason; Chastain, Michael; Arthur, William; Roberts, Brian; Zhang, Theresa; Chenard, Melissa; Haines, Brian; Andersen, Jannik; Nagashima, Kumiko; Paweletz, Cloud; Lynch, Bethany; Feldman, Igor; Dai, Hongyue; Huang, Pearl; Watters, James

    2010-06-30

    Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors.

  1. NDST1 missense mutations in autosomal recessive intellectual disability.

    PubMed

    Reuter, Miriam S; Musante, Luciana; Hu, Hao; Diederich, Stefan; Sticht, Heinrich; Ekici, Arif B; Uebe, Steffen; Wienker, Thomas F; Bartsch, Oliver; Zechner, Ulrich; Oppitz, Cornelia; Keleman, Krystyna; Jamra, Rami Abou; Najmabadi, Hossein; Schweiger, Susann; Reis, André; Kahrizi, Kimia

    2014-11-01

    NDST1 was recently proposed as a candidate gene for autosomal recessive intellectual disability in two families. It encodes a bifunctional GlcNAc N-deacetylase/N-sulfotransferase with important functions in heparan sulfate biosynthesis. In mice, Ndst1 is crucial for embryonic development and homozygous null mutations are perinatally lethal. We now report on two additional unrelated families with homozygous missense NDST1 mutations. All mutations described to date predict the substitution of conserved amino acids in the sulfotransferase domain, and mutation modeling predicts drastic alterations in the local protein conformation. Comparing the four families, we noticed significant overlap in the clinical features, including both demonstrated and apparent intellectual disability, muscular hypotonia, epilepsy, and postnatal growth deficiency. Furthermore, in Drosophila, knockdown of sulfateless, the NDST ortholog, impairs long-term memory, highlighting its function in cognition. Our data confirm NDST1 mutations as a cause of autosomal recessive intellectual disability with a distinctive phenotype, and support an important function of NDST1 in human development. © 2014 Wiley Periodicals, Inc.

  2. Germline mutations in the proof-reading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas

    PubMed Central

    Palles, Claire; Cazier, Jean-Baptiste; Howarth, Kimberley M; Domingo, Enric; Jones, Angela M.; Broderick, Peter; Kemp, Zoe; Spain, Sarah L; Almeida, Estrella Guarino; Salguero, Israel; Sherborne, Amy; Chubb, Daniel; Carvajal-Carmona, Luis G; Ma, Yusanne; Kaur, Kulvinder; Dobbins, Sara; Barclay, Ella; Gorman, Maggie; Martin, Lynn; Kovac, Michal B; Humphray, Sean; Lucassen, Anneke; Holmes, Christopher; Bentley, David; Donnelly, Peter; Taylor, Jenny; Petridis, Christos; Roylance, Rebecca; Sawyer, Elinor J; Kerr, David J.; Clark, Susan; Grimes, Jonathan; Kearsey, Stephen E; Thomas, Huw JW; McVean, Gilean; Houlston, Richard S; Tomlinson, Ian

    2013-01-01

    Many individuals with multiple or large colorectal adenomas, or early-onset colorectal cancer (CRC), have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple adenoma and/or CRC cases, but in no controls. The susceptibility variants appear to have high penetrance. POLD1 is also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proof-reading (exonuclease) domain of DNA polymerases ε and δ, and are predicted to impair correction of mispaired bases inserted during DNA replication. In agreement with this prediction, mutation carriers’ tumours were microsatellite-stable, but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently-described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE exonuclease domain mutations. PMID:23263490

  3. Finding Relational Associations in HIV Resistance Mutation Data

    NASA Astrophysics Data System (ADS)

    Richter, Lothar; Augustin, Regina; Kramer, Stefan

    HIV therapy optimization is a hard task due to rapidly evolving mutations leading to drug resistance. Over the past five years, several machine learning approaches have been developed for decision support, mostly to predict therapy failure from the genotypic sequence of viral proteins and additional factors. In this paper, we define a relational representation for an important part of the data, namely the sequences of a viral protein (reverse transcriptase), their mutations, and the drug resistance(s) associated with those mutations. The data were retrieved from the Los Alamos National Laboratories' (LANL) HIV databases. In contrast to existing work in this area, we do not aim directly for predictive modeling, but take one step back and apply descriptive mining methods to develop a better understanding of the correlations and associations between mutations and resistances. In our particular application, we use the Warmr algorithm to detect non-trivial patterns connecting mutations and resistances. Our findings suggest that well-known facts can be rediscovered, but also hint at the potential of discovering yet unknown associations.

  4. The Face of Noonan Syndrome: Does Phenotype Predict Genotype

    PubMed Central

    Allanson, Judith E.; Bohring, Axel; Dorr, Helmuth-Guenther; Dufke, Andreas; Gillessen-Kaesbach, Gabrielle; Horn, Denise; König, Rainer; Kratz, Christian P.; Kutsche, Kerstin; Pauli, Silke; Raskin, Salmo; Rauch, Anita; Turner, Anne; Wieczorek, Dagmar; Zenker, Martin

    2011-01-01

    The facial photographs of 81 individuals with Noonan syndrome, from infancy to adulthood, have been evaluated by two dysmorphologists (JA and MZ), each of whom has considerable experience with disorders of the Ras/MAPK pathway. Thirty-two of this cohort have PTPN11 mutations, 21 SOS1 mutations, 11 RAF1 mutations, and 17 KRAS mutations. The facial appearance of each person was judged to be typical of Noonan syndrome or atypical. In each gene category both typical and unusual faces were found. We determined that some individuals with mutations in the most commonly affected gene, PTPN11, which is correlated with the cardinal physical features, may have a quite atypical face. Conversely, some individuals with KRAS mutations, which may be associated with a less characteristic intellectual phenotype and a resemblance to Costello and cardio-facio-cutaneous syndromes, can have a very typical face. Thus, the facial phenotype, alone, is insufficient to predict the genotype, but certain facial features may facilitate an educated guess in some cases. PMID:20602484

  5. Implications of genome-wide association studies in cancer therapeutics.

    PubMed

    Patel, Jai N; McLeod, Howard L; Innocenti, Federico

    2013-09-01

    Genome wide association studies (GWAS) provide an agnostic approach to identifying potential genetic variants associated with disease susceptibility, prognosis of survival and/or predictive of drug response. Although these techniques are costly and interpretation of study results is challenging, they do allow for a more unbiased interrogation of the entire genome, resulting in the discovery of novel genes and understanding of novel biological associations. This review will focus on the implications of GWAS in cancer therapy, in particular germ-line mutations, including findings from major GWAS which have identified predictive genetic loci for clinical outcome and/or toxicity. Lessons and challenges in cancer GWAS are also discussed, including the need for functional analysis and replication, as well as future perspectives for biological and clinical utility. Given the large heterogeneity in response to cancer therapeutics, novel methods of identifying mechanisms and biology of variable drug response and ultimately treatment individualization will be indispensable. © 2013 The British Pharmacological Society.

  6. Clinical Characterization of the Pheochromocytoma and Paraganglioma Susceptibility Genes SDHA, TMEM127, MAX, and SDHAF2 for Gene-Informed Prevention

    PubMed Central

    Schiavi, Francesca; Ni, Ying; Welander, Jenny; Patocs, Attila; Ngeow, Joanne; Wellner, Ulrich; Malinoc, Angelica; Taschin, Elisa; Barbon, Giovanni; Lanza, Virginia; Söderkvist, Peter; Stenman, Adam; Larsson, Catharina; Svahn, Fredrika; Chen, Jin-Lian; Marquard, Jessica; Fraenkel, Merav; Walter, Martin A.; Peczkowska, Mariola; Prejbisz, Aleksander; Jarzab, Barbara; Hasse-Lazar, Kornelia; Petersenn, Stephan; Moeller, Lars C.; Meyer, Almuth; Reisch, Nicole; Trupka, Arnold; Brase, Christoph; Galiano, Matthias; Preuss, Simon F.; Kwok, Pingling; Lendvai, Nikoletta; Berisha, Gani; Makay, Özer; Boedeker, Carsten C.; Weryha, Georges; Racz, Karoly; Januszewicz, Andrzej; Walz, Martin K.; Gimm, Oliver; Opocher, Giuseppe; Eng, Charis; Neumann, Hartmut P. H.

    2017-01-01

    Importance Effective cancer prevention is based on accurate molecular diagnosis and results of genetic family screening, genotype-informed risk assessment, and tailored strategies for early diagnosis. The expanding etiology for hereditary pheochromocytomas and paragangliomas has recently included SDHA, TMEM127, MAX, and SDHAF2 as susceptibility genes. Clinical management guidelines for patients with germline mutations in these 4 newly included genes are lacking. Objective To study the clinical spectra and age-related penetrance of individuals with mutations in the SDHA, TMEM127, MAX, and SDHAF2 genes. Design, Setting, and Patients This study analyzed the prospective, longitudinally followed up European-American-Asian Pheochromocytoma-Paraganglioma Registry for prevalence of SDHA, TMEM127, MAX, and SDHAF2 germline mutation carriers from 1993 to 2016. Genetic predictive testing and clinical investigation by imaging from neck to pelvis was offered to mutation-positive registrants and their relatives to clinically characterize the pheochromocytoma/paraganglioma diseases associated with mutations of the 4 new genes. Main Outcomes and Measures Prevalence and spectra of germline mutations in the SDHA, TMEM127, MAX, and SDHAF2 genes were assessed. The clinical features of SDHA, TMEM127, MAX, and SDHAF2 disease were characterized. Results Of 972 unrelated registrants without mutations in the classic pheochromocytoma- and paraganglioma-associated genes (632 female [65.0%] and 340 male [35.0%]; age range, 8-80; mean [SD] age, 41.0 [13.3] years), 58 (6.0%) carried germline mutations of interest, including 29 SDHA, 20 TMEM127, 8 MAX, and 1 SDHAF2. Fifty-three of 58 patients (91%) had familial, multiple, extra-adrenal, and/or malignant tumors and/or were younger than 40 years. Newly uncovered are 7 of 63 (11%) malignant pheochromocytomas and paragangliomas in SDHA and TMEM127 disease. SDHA disease occurred as early as 8 years of age. Extra-adrenal tumors occurred in 28 mutation carriers (48%) and in 23 of 29 SDHA mutation carriers (79%), particularly with head and neck paraganglioma. MAX disease occurred almost exclusively in the adrenal glands with frequently bilateral tumors. Penetrance in the largest subset, SDHA carriers, was 39% at 40 years of age and is statistically different in index patients (45%) vs mutation-carrying relatives (13%; P < .001). Conclusions and Relevance The SDHA, TMEM127, MAX, and SDHAF2 genes may contribute to hereditary pheochromocytoma and paraganglioma. Genetic testing is recommended in patients at clinically high risk if the classic genes are mutation negative. Gene-specific prevention and/or early detection requires regular, systematic whole-body investigation. PMID:28384794

  7. KRAS exon 2 codon 13 mutation is associated with a better prognosis than codon 12 mutation following lung metastasectomy in colorectal cancer

    PubMed Central

    Renaud, Stéphane; Guerrera, Francesco; Seitlinger, Joseph; Costardi, Lorena; Schaeffer, Mickaël; Romain, Benoit; Mossetti, Claudio; Claire-Voegeli, Anne; Filosso, Pier Luigi; Legrain, Michèle; Ruffini, Enrico; Falcoz, Pierre-Emmanuel; Oliaro, Alberto; Massard, Gilbert

    2017-01-01

    Introduction The utilization of molecular markers as routinely used biomarkers is steadily increasing. We aimed to evaluate the potential different prognostic values of KRAS exon 2 codons 12 and 13 after lung metastasectomy in colorectal cancer (CRC). Results KRAS codon 12 mutations were observed in 116 patients (77%), whereas codon 13 mutations were observed in 34 patients (23%). KRAS codon 13 mutations were associated with both longer time to pulmonary recurrence (TTPR) (median TTPR: 78 months (95% CI: 50.61–82.56) vs 56 months (95% CI: 68.71–127.51), P = 0.008) and improved overall survival (OS) (median OS: 82 months vs 54 months (95% CI: 48.93–59.07), P = 0.009). Multivariate analysis confirmed that codon 13 mutations were associated with better outcomes (TTPR: HR: 0.40 (95% CI: 0.17–0.93), P = 0.033); OS: HR: 0.39 (95% CI: 0.14–1.07), P = 0.07). Otherwise, no significant difference in OS (P = 0.78) or TTPR (P = 0.72) based on the type of amino-acid substitutions was observed among KRAS codon 12 mutations. Materials and Methods We retrospectively reviewed data from 525 patients who underwent a lung metastasectomy for CRC in two departments of thoracic surgery from 1998 to 2015 and focused on 150 patients that had KRAS exon 2 codon 12/13 mutations. Conclusions KRAS exon 2 codon 13 mutations, compared to codon 12 mutations, seem to be associated with better outcomes following lung metastasectomy in CRC. Prospective multicenter studies are necessary to fully understand the prognostic value of KRAS mutations in the lung metastases of CRC. PMID:27911859

  8. TIAM1 variants improve clinical outcome in neuroblastoma.

    PubMed

    Sanmartín, Elena; Yáñez, Yania; Fornés-Ferrer, Victoria; Zugaza, José L; Cañete, Adela; Castel, Victoria; Font de Mora, Jaime

    2017-07-11

    Identification of tumor driver mutations is crucial for improving clinical outcome using a personalized approach to the treatment of cancer. Neuroblastoma is a tumor of the peripheral sympathetic nervous system for which only a few driver alterations have been described including MYCN amplification and ALK mutations. We assessed 106 primary neuroblastoma tumors by next generation sequencing using a customized amplicon-based gene panel. Our results reveal that genetic variants in TIAM1 gene associate with better clinical outcome, suggesting a role for these TIAM1 variants in preventing progression of this disease. The detected variants are located within the different domains of TIAM1 that signal to the upstream regulator RAS and downstream effector molecules MYC and RAC, which are all implicated in neuroblastoma etiology and progression. Clinical outcome was improved in tumors where a TIAM1 variant was present concomitantly with either ALK mutation or MYCN amplification. Given the function of these signaling molecules in cell survival, proliferation, differentiation and neurite outgrowth, our data suggest that the TIAM1-mediated network is essential to neuroblastoma and thus, inhibiting TIAM1 reflects a rational strategy for improving therapy efficacy in neuroblastoma.

  9. RHO Mutations (p.W126L and p.A346P) in Two Japanese Families with Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Akahori, Masakazu; Itabashi, Takeshi; Nishino, Jo; Yoshitake, Kazutoshi; Ikeo, Kazuho; Tsuneoka, Hiroshi

    2014-01-01

    Purpose. To investigate genetic and clinical features of patients with rhodopsin (RHO) mutations in two Japanese families with autosomal dominant retinitis pigmentosa (adRP). Methods. Whole-exome sequence analysis was performed in ten adRP families. Identified RHO mutations for the cosegregation analysis were confirmed by Sanger sequencing. Ophthalmic examinations were performed to evaluate the RP phenotypes. The impact of the RHO mutation on the rhodopsin conformation was examined by molecular modeling analysis. Results. In two adRP families, we identified two RHO mutations (c.377G>T (p.W126L) and c.1036G>C (p.A346P)), one of which was novel. Complete cosegregation was confirmed for each mutation exhibiting the RP phenotype in both families. Molecular modeling predicted that the novel mutation (p.W126L) might impair rhodopsin function by affecting its conformational transition in the light-adapted form. Clinical phenotypes showed that patients with p.W126L exhibited sector RP, whereas patients with p.A346P exhibited classic RP. Conclusions. Our findings demonstrated that the novel mutation (p.W126L) may be associated with the phenotype of sector RP. Identification of RHO mutations is a very useful tool for predicting disease severity and providing precise genetic counseling. PMID:25485142

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    St-Louis, M.; Poudrier, J.; Phaneuf, D.

    The deficiency of fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolic pathway is the cause of hereditary tyrosinemia type I (HT1), an autosomal recessive disease. The disease has been reported worldwide. The incidence is much higher in two clusters: the Saguenay- Lac St-Jean region (Quebec, Canada) and in Scandinavia. Seven mutations have been reported in the last two years. Here we describe two new missense mutations identified by direct sequencing of PCR products in two HT1 patients, a Norwegian (patient No. 1) and a French-Canadian (patient No. 2). The first mutation consists of a G to A transition atmore » position 337 of the FAH gene which predicts a change from glycine to serine (G337S). The second mutation is an A to G transition at position 381 which predicts a change from arginine to glycine (R381G). Patient No. 1 seems heterozygous for the G337S mutation and for a splice mutation (IVS12+5G{r_arrow}A) which was previously described. Patient No. 2 was also found heterozygous for the R381G mutation and for a rare nonsense mutation (E357X) already reported. In vitro transcription and translation were performed on mutant cDNA to demonstrate the responsibility of these two mutations in causing the decreased amount of FAH detected by Western blot analysis.« less

  11. DNMT3A mutations in Chinese childhood acute myeloid leukemia.

    PubMed

    Li, Weijing; Cui, Lei; Gao, Chao; Liu, Shuguang; Zhao, Xiaoxi; Zhang, Ruidong; Zheng, Huyong; Wu, Minyuan; Li, Zhigang

    2017-08-01

    DNA methyltransferase 3A (DNMT3A) mutations have been found in approximately 20% of adult acute myeloid leukemia (AML) patients and in 0% to 1.4% of children with AML, and the hotspots of mutations are mainly located in the catalytic methyltransferase domain, hereinto, mutation R882 accounts for 60%. Although the negative effect of DNMT3A on treatment outcome is well known, the prognostic significance of other DNMT3A mutations in AML is still unclear. Here, we tried to determine the incidence and prognostic significance of DNMT3A mutations in a large cohort in Chinese childhood AML. We detected the mutations in DNMT3A exon 23 by polymerase chain reaction and direct sequencing in 342 children with AML (0-16 years old) from January 2005 to June 2013, treated on BCH-2003 AML protocol. The correlation of DNMT3A mutations with clinical characteristics, fusion genes, other molecular anomalies (FLT3 internal tandem duplication [FLT3-ITD], Nucleophosmin 1, C-KIT (KIT proto-oncogene receptor tyrosine kinase), and Wilms tumor 1 mutations), and treatment outcome were analyzed. DNMT3A mutations were detected in 4 out of 342 (1.2%) patients. Two patients were PML-RARA positive and 1 patient was FLT3-ITD positive. The mutations in coding sequences included S892S, V912A, R885G, and Q886R. Furthermore, there was 1 intronic mutation (c.2739+55A>C) found in 1 patient. No association of DNMT3A mutations with common clinical features was found. Two patients with DNMT3A mutations died of relapse or complications during treatment. One patient gave up treatment due to remission induction failure in day 33. Only 1 patient achieved continuous complete remission. DNMT3A mutations were rare in Chinese children with AML including PML-RARA positive APL. The mutation positions were different from the hotspots reported in adult AML. DNMT3A mutations may have adverse impact on prognosis of children with AML.

  12. Application of molecular biology of differentiated thyroid cancer for clinical prognostication.

    PubMed

    Marotta, Vincenzo; Sciammarella, Concetta; Colao, Annamaria; Faggiano, Antongiulio

    2016-11-01

    Although cancer outcome results from the interplay between genetics and environment, researchers are making a great effort for applying molecular biology in the prognostication of differentiated thyroid cancer (DTC). Nevertheless, role of molecular characterisation in the prognostic setting of DTC is still nebulous. Among the most common and well-characterised genetic alterations related to DTC, including mutations of BRAF and RAS and RET rearrangements, BRAF V600E is the only mutation showing unequivocal association with clinical outcome. Unfortunately, its accuracy is strongly limited by low specificity. Recently, the introduction of next-generation sequencing techniques led to the identification of TERT promoter and TP53 mutations in DTC. These genetic abnormalities may identify a small subgroup of tumours with highly aggressive behaviour, thus improving specificity of molecular prognostication. Although knowledge of prognostic significance of TP53 mutations is still anecdotal, mutations of the TERT promoter have showed clear association with clinical outcome. Nevertheless, this genetic marker needs to be analysed according to a multigenetic model, as its prognostic effect becomes negligible when present in isolation. Given that any genetic alteration has demonstrated, taken alone, enough specificity, the co-occurrence of driving mutations is emerging as an independent genetic signature of aggressiveness, with possible future application in clinical practice. DTC prognostication may be empowered in the near future by non-tissue molecular prognosticators, including circulating BRAF V600E and miRNAs. Although promising, use of these markers needs to be refined by the technical sight, and the actual prognostic value is still yet to be validated. © 2016 Society for Endocrinology.

  13. Prognosis in adult indolent systemic mastocytosis: a long-term study of the Spanish Network on Mastocytosis in a series of 145 patients.

    PubMed

    Escribano, Luis; Alvarez-Twose, Iván; Sánchez-Muñoz, Laura; Garcia-Montero, Andres; Núñez, Rosa; Almeida, Julia; Jara-Acevedo, Maria; Teodósio, Cristina; García-Cosío, Mónica; Bellas, Carmen; Orfao, Alberto

    2009-09-01

    Indolent systemic mastocytosis is a group of rare diseases for which reliable predictors of progression and outcome are still lacking. Here we investigate the prognostic impact of the clinical, biological, phenotypic, histopathological, and molecular disease characteristics in adults with indolent systemic mastocytosis, who were followed using conservative therapy. A total of 145 consecutive patients were prospectively followed between January 1983 and July 2008; in addition, from 1967 to 1983, 20 patients were retrospectively studied. Multivariate analysis showed that serum beta2-microglobulin (P = .003) together with the presence of mast/stem cell growth factor receptor gene (KIT) mutation in mast cells plus myeloid and lymphoid hematopoietic lineages (P = .02) was the best combination of independent parameters for predicting disease progression (cumulative probability of disease progression of 1.7% +/- 1.2% at 5-10 years and of 8.4% +/- 5.0% at 20-25 years). Regarding overall survival, the best predictive model included age >60 years (P = .005) and development of an associated clonal hematological non-mast cell disorder (P = .03) with a cumulative probability of death of 2.2% +/- 1.3% at 5 years and of 11% +/- 5.9% at 25 years. Indolent systemic mastocytosis in adults has a low disease progression rate, and the great majority of patients have a normal life expectancy, with the presence of KIT mutation in all hematopoietic lineages and increased serum beta2-microglobulin the most powerful independent parameters for predicting transformation into a more aggressive form of the disease.

  14. The USP8 mutational status may predict drug susceptibility in corticotroph adenomas of Cushing's disease.

    PubMed

    Hayashi, Kyohei; Inoshita, Naoko; Kawaguchi, Kohei; Ibrahim Ardisasmita, Arif; Suzuki, Hisanori; Fukuhara, Noriaki; Okada, Mitsuo; Nishioka, Hiroshi; Takeuchi, Yasuhiro; Komada, Masayuki; Takeshita, Akira; Yamada, Shozo

    2016-02-01

    Somatic mutations in the ubiquitin-specific peptidase USP8 gene were recently detected in one- to two-third(s) of corticotroph adenomas of Cushing's disease (CD). These mutations may lead to the deubiquitination of EGFR, thereby increasing EGFR signaling, which has been implicated in ACTH hypersecretion. Our objective was to determine the impact of USP8 mutations on the clinicopathological features of CD. USP8 mutations as well as clinicopathological characteristics were examined in 60 corticotroph adenomas including 15 Crooke's cell adenomas (CCAs), a rare histological variant presenting with generally aggressive behavior, using qRT-PCR and/or immunohistochemistry. USP8 mutations were exclusively detected in women, except for one case, with a prevalence of 42.2% in non-CCA and 13.3% in CCA (overall 35%). Clinically well-behaved presentations including microadenoma and curative resection were more common in mutated cases. The expression of EGFR was not associated with the mutation status. In contrast, mutated tumors expressed significantly higher levels of POMC, SSTR5, and MGMT. Microadenomas that strongly express POMC were common among mutated tumors, which may lead to the mechanisms by which very small adenomas secrete excess ACTH to present overt CD. While USP8 mutations were less likely to enhance tumorous ACTH hypersecretion via EGFR-mediated activation, the presence of USP8 mutations may predict favorable responses to the somatostatin analog pasireotide, which exhibits high affinity for SSTR5. In contrast, non-mutated aggressive tumors such as CCA may respond better to the alkylating agent temozolomide because of their significantly weak expression of MGMT. © 2016 European Society of Endocrinology.

  15. Evolution, mutations, and human longevity: European royal and noble families.

    PubMed

    Gavrilova, N S; Gavrilov, L A; Evdokushkina, G N; Semyonova, V G; Gavrilova, A L; Evdokushkina, N N; Kushnareva, Y E; Kroutko, V N; Andreyev AYu

    1998-08-01

    The evolutionary theory of aging predicts that the equilibrium gene frequency for deleterious mutations should increase with age at onset of mutation action because of weaker (postponed) selection against later-acting mutations. According to this mutation accumulation hypothesis, one would expect the genetic variability for survival (additive genetic variance) to increase with age. The ratio of additive genetic variance to the observed phenotypic variance (the heritability of longevity) can be estimated most reliably as the doubled slope of the regression line for offspring life span on paternal age at death. Thus, if longevity is indeed determined by late-acting deleterious mutations, one would expect this slope to become steeper at higher paternal ages. To test this prediction of evolutionary theory of aging, we computerized and analyzed the most reliable and accurate genealogical data on longevity in European royal and noble families. Offspring longevity for each sex (8409 records for males and 3741 records for females) was considered as a dependent variable in the multiple regression model and as a function of three independent predictors: paternal age at death (for estimation of heritability of life span), paternal age at reproduction (control for parental age effects), and cohort life expectancy (control for cohort and secular trends and fluctuations). We found that the regression slope for offspring longevity as a function of paternal longevity increases with paternal longevity, as predicted by the evolutionary theory of aging and by the mutation accumulation hypothesis in particular.

  16. MTHFR (C677T) polymorphism and PR (PROGINS) mutation as genetic factors for preterm delivery, fetal death and low birth weight: A Northeast Indian population based study.

    PubMed

    Tiwari, Diptika; Bose, Purabi Deka; Das, Somdatta; Das, Chandana Ray; Datta, Ratul; Bose, Sujoy

    2015-02-01

    Preterm delivery (PTD) is one of the most significant contributors to neonatal mortality, morbidity, and long-term adverse consequences for health; with highest prevalence reported from India. The incidence of PTD is alarmingly very high in Northeast India. The objective of the present study is to evaluate the associative role of MTHFR gene polymorphism and progesterone receptor (PR) gene mutation (PROGINS) in susceptibility to PTD, negative pregnancy outcome and low birth weights (LBW) in Northeast Indian population. A total of 209 PTD cases {extreme preterm (< 28 weeks of gestation, n = 22), very preterm (28-32 weeks of gestation, n = 43) and moderate preterm (32-37 weeks of gestation, n = 144) and 194 term delivery cases were studied for MTHFR C677T polymorphism and PR (PROGINS) gene mutation. Statistical analysis was performed using SPSS software. Distribution of MTHFR and PR mutation was higher in PTD cases. Presence of MTHFR C677T polymorphism was significantly associated and resulted in the increased risk of PTD (p < 0.001), negative pregnancy outcome (p < 0.001) and LBW (p = 0.001); more significantly in extreme and very preterm cases. Presence of PR mutation (PROGINS) also resulted in increased risk of PTD and negative pregnancy outcome; but importantly was found to increase the risk of LBW significantly in case of very preterm (p < 0.001) and moderately preterm (p < 0.001) delivery cases. Both MTHFR C677T polymorphism and PR (PROGINS) mutation are evident genetic risk factors associated with the susceptibility of PTD, negative pregnancy outcome and LBW. MTHFR C677T may be used as a prognostic marker to stratify subpopulation of pregnancy cases predisposed to PTD; thereby controlling the risks associated with PTD.

  17. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy

    PubMed Central

    Di Fiore, F; Blanchard, F; Charbonnier, F; Le Pessot, F; Lamy, A; Galais, M P; Bastit, L; Killian, A; Sesboüé, R; Tuech, J J; Queuniet, A M; Paillot, B; Sabourin, J C; Michot, F; Michel, P; Frebourg, T

    2007-01-01

    The predictive value of KRAS mutation in metastatic colorectal cancer (MCRC) patients treated with cetuximab plus chemotherapy has recently been suggested. In our study, 59 patients with a chemotherapy-refractory MCRC treated with cetuximab plus chemotherapy were included and clinical response was evaluated according to response evaluation criteria in solid tumours (RECIST). Tumours were screened for KRAS mutations using first direct sequencing, then two sensitive methods based on SNaPshot and PCR-ligase chain reaction (LCR) assays. Clinical response was evaluated according to gene mutations using the Fisher exact test. Times to progression (TTP) were calculated using the Kaplan–Meier method and compared with log-rank test. A KRAS mutation was detected in 22 out of 59 tumours and, in six cases, was missed by sequencing analysis but detected using the SNaPshot and PCR-LCR assays. Remarkably, no KRAS mutation was found in the 12 patients with clinical response. KRAS mutation was associated with disease progression (P=0.0005) and TTP was significantly decreased in mutated KRAS patients (3 vs 5.5 months, P=0.015). Our study confirms that KRAS mutation is highly predictive of a non-response to cetuximab plus chemotherapy in MCRC and highlights the need to use sensitive molecular methods, such as SNaPshot or PCR-LCR assays, to ensure an efficient mutation detection. PMID:17375050

  18. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    DOE PAGES

    Adebali, Ogun; Reznik, Alexander O.; Ory, Daniel S.; ...

    2016-02-18

    Here, predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. Methods: We identified major events inmore » NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism s fitness. As a result, removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. In conclusion, the results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well.« less

  19. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance

    PubMed Central

    Andersson, Dan I

    2017-01-01

    Abstract Antibiotic resistance can be acquired by mutation or horizontal transfer of a resistance gene, and generally an acquired mechanism results in a predictable increase in phenotypic resistance. However, recent findings suggest that the environment and/or the genetic context can modify the phenotypic expression of specific resistance genes/mutations. An important implication from these findings is that a given genotype does not always result in the expected phenotype. This dissociation of genotype and phenotype has important consequences for clinical bacteriology and for our ability to predict resistance phenotypes from genetics and DNA sequences. A related problem concerns the degree to which the genes/mutations currently identified in vitro can fully explain the in vivo resistance phenotype, or whether there is a significant additional amount of presently unknown mutations/genes (genetic ‘dark matter’) that could contribute to resistance in clinical isolates. Finally, a very important question is whether/how we can identify the genetic features that contribute to making a successful pathogen, and predict why some resistant clones are very successful and spread globally? In this review, we describe different environmental and genetic factors that influence phenotypic expression of antibiotic resistance genes/mutations and how this information is needed to understand why particular resistant clones spread worldwide and to what extent we can use DNA sequences to predict evolutionary success. PMID:28333270

  20. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adebali, Ogun; Reznik, Alexander O.; Ory, Daniel S.

    Here, predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. Methods: We identified major events inmore » NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism s fitness. As a result, removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. In conclusion, the results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well.« less

  1. Impact of mutations on the allosteric conformational equilibrium

    PubMed Central

    Weinkam, Patrick; Chen, Yao Chi; Pons, Jaume; Sali, Andrej

    2012-01-01

    Allostery in a protein involves effector binding at an allosteric site that changes the structure and/or dynamics at a distant, functional site. In addition to the chemical equilibrium of ligand binding, allostery involves a conformational equilibrium between one protein substate that binds the effector and a second substate that less strongly binds the effector. We run molecular dynamics simulations using simple, smooth energy landscapes to sample specific ligand-induced conformational transitions, as defined by the effector-bound and unbound protein structures. These simulations can be performed using our web server: http://salilab.org/allosmod/. We then develop a set of features to analyze the simulations and capture the relevant thermodynamic properties of the allosteric conformational equilibrium. These features are based on molecular mechanics energy functions, stereochemical effects, and structural/dynamic coupling between sites. Using a machine-learning algorithm on a dataset of 10 proteins and 179 mutations, we predict both the magnitude and sign of the allosteric conformational equilibrium shift by the mutation; the impact of a large identifiable fraction of the mutations can be predicted with an average unsigned error of 1 kBT. With similar accuracy, we predict the mutation effects for an 11th protein that was omitted from the initial training and testing of the machine-learning algorithm. We also assess which calculated thermodynamic properties contribute most to the accuracy of the prediction. PMID:23228330

  2. Structure-based activity prediction of CYP21A2 stability variants: A survey of available gene variations.

    PubMed

    Bruque, Carlos D; Delea, Marisol; Fernández, Cecilia S; Orza, Juan V; Taboas, Melisa; Buzzalino, Noemí; Espeche, Lucía D; Solari, Andrea; Luccerini, Verónica; Alba, Liliana; Nadra, Alejandro D; Dain, Liliana

    2016-12-14

    Congenital adrenal hyperplasia due to 21-hydroxylase deficiency accounts for 90-95% of CAH cases. In this work we performed an extensive survey of mutations and SNPs modifying the coding sequence of the CYP21A2 gene. Using bioinformatic tools and two plausible CYP21A2 structures as templates, we initially classified all known mutants (n = 343) according to their putative functional impacts, which were either reported in the literature or inferred from structural models. We then performed a detailed analysis on the subset of mutations believed to exclusively impact protein stability. For those mutants, the predicted stability was calculated and correlated with the variant's expected activity. A high concordance was obtained when comparing our predictions with available in vitro residual activities and/or the patient's phenotype. The predicted stability and derived activity of all reported mutations and SNPs lacking functional assays (n = 108) were assessed. As expected, most of the SNPs (52/76) showed no biological implications. Moreover, this approach was applied to evaluate the putative synergy that could emerge when two mutations occurred in cis. In addition, we propose a putative pathogenic effect of five novel mutations, p.L107Q, p.L122R, p.R132H, p.P335L and p.H466fs, found in 21-hydroxylase deficient patients of our cohort.

  3. Structure-based activity prediction of CYP21A2 stability variants: A survey of available gene variations

    PubMed Central

    Bruque, Carlos D.; Delea, Marisol; Fernández, Cecilia S.; Orza, Juan V.; Taboas, Melisa; Buzzalino, Noemí; Espeche, Lucía D.; Solari, Andrea; Luccerini, Verónica; Alba, Liliana; Nadra, Alejandro D.; Dain, Liliana

    2016-01-01

    Congenital adrenal hyperplasia due to 21-hydroxylase deficiency accounts for 90–95% of CAH cases. In this work we performed an extensive survey of mutations and SNPs modifying the coding sequence of the CYP21A2 gene. Using bioinformatic tools and two plausible CYP21A2 structures as templates, we initially classified all known mutants (n = 343) according to their putative functional impacts, which were either reported in the literature or inferred from structural models. We then performed a detailed analysis on the subset of mutations believed to exclusively impact protein stability. For those mutants, the predicted stability was calculated and correlated with the variant’s expected activity. A high concordance was obtained when comparing our predictions with available in vitro residual activities and/or the patient’s phenotype. The predicted stability and derived activity of all reported mutations and SNPs lacking functional assays (n = 108) were assessed. As expected, most of the SNPs (52/76) showed no biological implications. Moreover, this approach was applied to evaluate the putative synergy that could emerge when two mutations occurred in cis. In addition, we propose a putative pathogenic effect of five novel mutations, p.L107Q, p.L122R, p.R132H, p.P335L and p.H466fs, found in 21-hydroxylase deficient patients of our cohort. PMID:27966633

  4. Predicting protein folding rate change upon point mutation using residue-level coevolutionary information.

    PubMed

    Mallik, Saurav; Das, Smita; Kundu, Sudip

    2016-01-01

    Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity, and aggregations. Here we seek to address whether residue-level coevolutionary information of globular proteins can be informative to folding rate changes upon point mutations. Generating residue-level coevolutionary networks of globular proteins, we analyze three parameters: relative coevolution order (rCEO), network density (ND), and characteristic path length (CPL). A point mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73, and -0.61, respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point mutation with 0.031, 0.045, and 0.059 standard errors, respectively. © 2015 Wiley Periodicals, Inc.

  5. Oncogenetic mutations combined with MRD improve outcome prediction in pediatric T-cell acute lymphoblastic leukemia.

    PubMed

    Petit, Arnaud; Trinquand, Amélie; Chevret, Sylvie; Ballerini, Paola; Cayuela, Jean-Michel; Grardel, Nathalie; Touzart, Aurore; Brethon, Benoit; Lapillonne, Hélène; Schmitt, Claudine; Thouvenin, Sandrine; Michel, Gerard; Preudhomme, Claude; Soulier, Jean; Landman-Parker, Judith; Leverger, Guy; Macintyre, Elizabeth; Baruchel, André; Asnafi, Vahid

    2018-01-18

    Risk stratification in childhood T-cell acute lymphoblastic leukemia (T-ALL) is mainly based on minimal residual disease (MRD) quantification. Whether oncogenetic mutation profiles can improve the discrimination of MRD-defined risk categories was unknown. Two hundred and twenty FRALLE2000T-treated patients were tested retrospectively for NOTCH1/FBXW7/RAS and PTEN alterations. Patients with NOTCH1/FBXW7 ( N/F ) mutations and RAS/PTEN ( R/P ) germ line (GL) were classified as oncogenetic low risk (gLoR; n = 111), whereas those with N/F GL and R/P GL mutations or N/F and R/P mutations were classified as high risk (gHiR; n = 109). Day 35 MRD status was available for 191 patients. Five-year cumulative incidence of relapse (CIR) and disease-free survival were 36% and 60% for gHiR patients and 11% and 89% for gLoR patients, respectively. Importantly, among the 60% of patients with MRD <10 -4 , 5-year CIR was 29% for gHiR patients and 4% for gLoR patients. Based on multivariable Cox models and stepwise selection, the 3 most discriminating variables were the oncogenetic classifier, MRD, and white blood cell (WBC) count. Patients harboring a WBC count ≥200 × 10 9 /L, gHiR classifier, and MRD ≥10 -4 demonstrated a 5-year CIR of 46%, whereas the 58 patients (30%) with a WBC count <200 × 10 9 /L, gLoR classifier, and MRD <10 -4 had a very low risk of relapse, with a 5-year CIR of only 2%. In childhood T-ALL, the N/F/R/P mutation profile is an independent predictor of relapse. When combined with MRD and a WBC count ≥200 × 10 9 /L, it identifies a significant subgroup of patients with a low risk of relapse. © 2018 by The American Society of Hematology.

  6. SIMPLE estimate of the free energy change due to aliphatic mutations: superior predictions based on first principles.

    PubMed

    Bueno, Marta; Camacho, Carlos J; Sancho, Javier

    2007-09-01

    The bioinformatics revolution of the last decade has been instrumental in the development of empirical potentials to quantitatively estimate protein interactions for modeling and design. Although computationally efficient, these potentials hide most of the relevant thermodynamics in 5-to-40 parameters that are fitted against a large experimental database. Here, we revisit this longstanding problem and show that a careful consideration of the change in hydrophobicity, electrostatics, and configurational entropy between the folded and unfolded state of aliphatic point mutations predicts 20-30% less false positives and yields more accurate predictions than any published empirical energy function. This significant improvement is achieved with essentially no free parameters, validating past theoretical and experimental efforts to understand the thermodynamics of protein folding. Our first principle analysis strongly suggests that both the solute-solute van der Waals interactions in the folded state and the electrostatics free energy change of exposed aliphatic mutations are almost completely compensated by similar interactions operating in the unfolded ensemble. Not surprisingly, the problem of properly accounting for the solvent contribution to the free energy of polar and charged group mutations, as well as of mutations that disrupt the protein backbone remains open. 2007 Wiley-Liss, Inc.

  7. Modeling the effect of 3 missense AGXT mutations on dimerization of the AGT enzyme in primary hyperoxaluria type 1.

    PubMed

    Robbiano, Angela; Frecer, Vladimir; Miertus, Jan; Zadro, Cristina; Ulivi, Sheila; Bevilacqua, Elena; Mandrile, Giorgia; De Marchi, Mario; Miertus, Stanislav; Amoroso, Antonio

    2010-01-01

    Mutations of the AGXT gene encoding the alanine:glyoxylate aminotransferase liver enzyme (AGT) cause primary hyperoxaluria type 1 (PH1). Here we report a molecular modeling study of selected missense AGXT mutations: the common Gly170Arg and the recently described Gly47Arg and Ser81Leu variants, predicted to be pathogenic using standard criteria. Taking advantage of the refined 3D structure of AGT, we computed the dimerization energy of the wild-type and mutated proteins. Molecular modeling predicted that Gly47Arg affects dimerization with a similar effect to that shown previously for Gly170Arg through classical biochemical approaches. In contrast, no effect on dimerization was predicted for Ser81Leu. Therefore, this probably demonstrates pathogenic properties via a different mechanism, similar to that described for the adjacent Gly82Glu mutation that affects pyridoxine binding. This study shows that the molecular modeling approach can contribute to evaluating the pathogenicity of some missense variants that affect dimerization. However, in silico studies--aimed to assess the relationship between structural change and biological effects--require the integrated use of more than 1 tool.

  8. Population-based differences in treatment outcome following anticancer drug therapies.

    PubMed

    Ma, Brigette By; Hui, Edwin P; Mok, Tony Sk

    2010-01-01

    Population-based differences in toxicity and clinical outcome following treatment with anticancer drugs have an important effect on oncology practice and drug development. These differences arise from complex interactions between biological and environmental factors, which include genetic diversity affecting drug metabolism and the expression of drug targets, variations in tumour biology and host physiology, socioeconomic disparities, and regional preferences in treatment standards. Some well-known examples include the high prevalence of activating epidermal growth factor receptor (EGFR) mutations in pulmonary adenocarcinoma among northeast (China, Japan, Korea) and parts of southeast Asia (excluding India) non-smokers, which predict sensitivity to EGFR kinase inhibitors, and the sharp contrast between Japan and the west in the management and survival outcome of gastric cancer. This review is a critical overview of population-based differences in the four most prevalent cancers in the world: lung, breast, colorectal, and stomach cancer. Particular attention is given to the clinical relevance of such knowledge in terms of the individualisation of drug therapy and in the design of clinical trials. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. MyD88 Mutation in Elderly Predicts Poor Prognosis in Primary Central Nervous System Lymphoma: Multi-Institutional Analysis.

    PubMed

    Takano, Shingo; Hattori, Keiichiro; Ishikawa, Eiichi; Narita, Yoshitaka; Iwadate, Yasuo; Yamaguchi, Fumio; Nagane, Motoo; Akimoto, Jiro; Oka, Hidehiro; Tanaka, Satoshi; Sakata, Mamiko; Matsuda, Masahide; Yamamoto, Tetsuya; Chiba, Shigeru; Matsumura, Akira

    2018-04-01

    Recent genetic analysis of primary central nervous system lymphoma (PCNSL) showed that the MyD88 L265P mutation, which is related to NF-κB signaling, was a genetic hallmark for PCNSL; thus it could serve as a genetic marker for diagnosis and a potential target for molecular therapy. However, the role of the MyD88 mutation in PCNSL has not been defined. In this study, we investigated the role of the MyD88 mutation and clinical features of PCNSL-treated patients at several institutions to determine its significance as a prognostic factor. Forty-one PCNSL (diffuse large B-cell type) patients from 8 institutions were included in this study. Their median age was 68 years; median follow-up was 26.7 months; median overall survival was 26.7 months; and their 1-year, 3-year, and 5-year survival rates were 75.6%, 58.5%, and 43.9%, respectively. Deoxyribonucleic acid was extracted from frozen tissue, and the MyD88 L265P mutation was evaluated by polymerase chain reaction and direct sequencing. The MyD88 L265P mutation was found in 61.0% (25/41) of cases. Kaplan-Meier analysis revealed that neither MyD88 L265P mutation nor age >65 years alone significantly predicted overall survival relative to MyD88 wild type and age <65. The MyD88 L265P mutation was predominantly present in patients aged >65 years. Among age >65 patients, the MyD88 L265P mutation portended a worse overall survival compared with the MyD88 wild type (11.5 vs. 56.2 months P < 0.04). The MyD88 L265P mutation predicted a poor prognosis in elderly PCNSL patients. A new tailor-made treatment strategy might be needed for these patients. Copyright © 2017. Published by Elsevier Inc.

  10. Investigation of 7-dehydrocholesterol reductase pathway to elucidate off-target prenatal effects of pharmaceuticals: a systematic review

    PubMed Central

    Boland, M R; Tatonetti, N P

    2016-01-01

    Mendelian diseases contain important biological information regarding developmental effects of gene mutations that can guide drug discovery and toxicity efforts. In this review, we focus on Smith–Lemli–Opitz syndrome (SLOS), a rare Mendelian disease characterized by compound heterozygous mutations in 7-dehydrocholesterol reductase (DHCR7) resulting in severe fetal deformities. We present a compilation of SLOS-inducing DHCR7 mutations and the geographic distribution of those mutations in healthy and diseased populations. We observed that several mutations thought to be disease causing occur in healthy populations, indicating an incomplete understanding of the condition and highlighting new research opportunities. We describe the functional environment around DHCR7, including pharmacological DHCR7 inhibitors and cholesterol and vitamin D synthesis. Using PubMed, we investigated the fetal outcomes following prenatal exposure to DHCR7 modulators. First-trimester exposure to DHCR7 inhibitors resulted in outcomes similar to those of known teratogens (50 vs 48% born-healthy). DHCR7 activity should be considered during drug development and prenatal toxicity assessment. PMID:27401223

  11. Accumulation of Pol Mutations Selected by HLA-B*52:01-C*12:02 Protective Haplotype-Restricted Cytotoxic T Lymphocytes Causes Low Plasma Viral Load Due to Low Viral Fitness of Mutant Viruses

    PubMed Central

    Murakoshi, Hayato; Koyanagi, Madoka; Chikata, Takayuki; Rahman, Mohammad Arif; Kuse, Nozomi; Sakai, Keiko; Gatanaga, Hiroyuki; Oka, Shinichi

    2016-01-01

    ABSTRACT HLA-B*52:01-C*12:02, which is the most abundant haplotype in Japan, has a protective effect on disease progression in HIV-1-infected Japanese individuals, whereas HLA-B*57 and -B*27 protective alleles are very rare in Japan. A previous study on HLA-associated polymorphisms demonstrated that the number of HLA-B*52:01-associated mutations at four Pol positions was inversely correlated with plasma viral load (pVL) in HLA-B*52:01-negative individuals, suggesting that the transmission of HIV-1 with these mutations could modulate the pVL in the population. However, it remains unknown whether these mutations were selected by HLA-B*52:01-restricted CTLs and also reduced viral fitness. In this study, we identified two HLA-B*52:01-restricted and one HLA-C*12:02-restricted novel cytotoxic T-lymphocyte (CTL) epitopes in Pol. Analysis using CTLs specific for these three epitopes demonstrated that these CTLs failed to recognize mutant epitopes or more weakly recognized cells infected with mutant viruses than wild-type virus, supporting the idea that these mutations were selected by the HLA-B*52:01- or HLA-C*12:02-restricted T cells. We further showed that these mutations reduced viral fitness, although the effect of each mutation was weak. The present study demonstrated that the accumulation of these Pol mutations selected by HLA-B*52:01- or HLA-C*12:02-restricted CTLs impaired viral replication capacity and thus reduced the pVL. The fitness cost imposed by the mutations partially accounted for the effect of the HLA-B*52:01-C*12:02 haplotype on clinical outcome, together with the effect of HLA-B*52:01-restricted CTLs on viral replication, which had been previously demonstrated. IMPORTANCE Numerous population-based studies identified HLA-associated HIV-1 mutations to predict HIV-1 escape mutations from cytotoxic T lymphocytes (CTLs). However, the majority of these HLA-associated mutations have not been identified as CTL escape mutations. Our previous population-based study showed that five HLA-B*52:01-associated mutations at four Pol positions were inversely correlated with the plasma viral load in HLA-B*52:01-negative Japanese individuals. In the present study, we demonstrated that these mutations were indeed selected by CTLs specific for novel B*52:01- and C*12:02-restricted epitopes and that the accumulation of these mutations reduced the viral fitness in vitro. This study elucidated the mechanism by which the accumulation of these CTL escape mutations contributed to the protective effect of the HLA-B*52:01-HLA-C*12:02 haplotype on disease progression in HIV-1-infected Japanese individuals. PMID:27903797

  12. Accumulation of Pol Mutations Selected by HLA-B*52:01-C*12:02 Protective Haplotype-Restricted Cytotoxic T Lymphocytes Causes Low Plasma Viral Load Due to Low Viral Fitness of Mutant Viruses.

    PubMed

    Murakoshi, Hayato; Koyanagi, Madoka; Chikata, Takayuki; Rahman, Mohammad Arif; Kuse, Nozomi; Sakai, Keiko; Gatanaga, Hiroyuki; Oka, Shinichi; Takiguchi, Masafumi

    2017-02-15

    HLA-B*52:01-C*12:02, which is the most abundant haplotype in Japan, has a protective effect on disease progression in HIV-1-infected Japanese individuals, whereas HLA-B*57 and -B*27 protective alleles are very rare in Japan. A previous study on HLA-associated polymorphisms demonstrated that the number of HLA-B*52:01-associated mutations at four Pol positions was inversely correlated with plasma viral load (pVL) in HLA-B*52:01-negative individuals, suggesting that the transmission of HIV-1 with these mutations could modulate the pVL in the population. However, it remains unknown whether these mutations were selected by HLA-B*52:01-restricted CTLs and also reduced viral fitness. In this study, we identified two HLA-B*52:01-restricted and one HLA-C*12:02-restricted novel cytotoxic T-lymphocyte (CTL) epitopes in Pol. Analysis using CTLs specific for these three epitopes demonstrated that these CTLs failed to recognize mutant epitopes or more weakly recognized cells infected with mutant viruses than wild-type virus, supporting the idea that these mutations were selected by the HLA-B*52:01- or HLA-C*12:02-restricted T cells. We further showed that these mutations reduced viral fitness, although the effect of each mutation was weak. The present study demonstrated that the accumulation of these Pol mutations selected by HLA-B*52:01- or HLA-C*12:02-restricted CTLs impaired viral replication capacity and thus reduced the pVL. The fitness cost imposed by the mutations partially accounted for the effect of the HLA-B*52:01-C*12:02 haplotype on clinical outcome, together with the effect of HLA-B*52:01-restricted CTLs on viral replication, which had been previously demonstrated. Numerous population-based studies identified HLA-associated HIV-1 mutations to predict HIV-1 escape mutations from cytotoxic T lymphocytes (CTLs). However, the majority of these HLA-associated mutations have not been identified as CTL escape mutations. Our previous population-based study showed that five HLA-B*52:01-associated mutations at four Pol positions were inversely correlated with the plasma viral load in HLA-B*52:01-negative Japanese individuals. In the present study, we demonstrated that these mutations were indeed selected by CTLs specific for novel B*52:01- and C*12:02-restricted epitopes and that the accumulation of these mutations reduced the viral fitness in vitro This study elucidated the mechanism by which the accumulation of these CTL escape mutations contributed to the protective effect of the HLA-B*52:01-HLA-C*12:02 haplotype on disease progression in HIV-1-infected Japanese individuals. Copyright © 2017 American Society for Microbiology.

  13. AB014. Beta-ketothiolase deficiency: phenotype, genotype and outcome of 48 Vietnamese patients

    PubMed Central

    Nguyen, Khanh Ngoc; Nguyen, Hoan Thi; Can, Ngoc Thi Bich; Do, Mai Thi Thanh; Bui, Thao Phuong; Fukao, Toshiyuki; Vu, Dung Chi

    2017-01-01

    Background Beta-ketothiolase deficiency (BKT) is an inherited metabolic disease of isoleucine and ketone body caused by mutations in the T2 gene. It is a rare disease with over 100 patients reported worldwide. We aimed to describe phenotypes and genotypes and to evaluate outcomes of Vietnamese patients with BKT. Methods Patients who were diagnosed with BKT, and followed up at National Children Hospital from January 2015 to June 2017 were enrolled. Results Forty-eight patients from 40 different and unrelated families were diagnosed through high risk screening in Vietnam. Forty-six patients (96%) presented with acute episodes of intermittent ketotic acidosis (pH <7.1, increased anion gap), and were asymptomatic between episodes. Ages of onset were between 6 and 18 months. Characteristics of metabolic chemistry revealed elevated urinary 2-methylacetoacetate, 2-methyl-3-hydroxybutyrate, tiglylglycine, and plasma C5:1 and C5:OH carnitines. We identified 8 different mutations with 9 kinds of genotypes. The common mutations of T2 gene were p.R208X and IVS10-1g>c (85%). Five novel mutations were identified (IVS10-1g>c, c.1032_1033insA, p.S284N, exon 6 -11del, and c.163_167delinsAA). Eight out of nine genotypes were null mutations. There was no correlation between genotypes and phenotypes. The outcome was good in most patients with 83% had complete recovery, 7% mental consequences, and 12% death. All patients had normal growth rate according to growth chart by World Health Organization (WHO) 2007. Conclusions BKT is a common inborn error of metabolism in Vietnam with good outcome in most patients. A newborn screening program for BKT may have a high detection rate in Vietnam.

  14. ATM/RB1 mutations predict shorter overall survival in urothelial cancer.

    PubMed

    Yin, Ming; Grivas, Petros; Emamekhoo, Hamid; Mendiratta, Prateek; Ali, Siraj; Hsu, JoAnn; Vasekar, Monali; Drabick, Joseph J; Pal, Sumanta; Joshi, Monika

    2018-03-30

    Mutations of DNA repair genes, e.g. ATM/RB1 , are frequently found in urothelial cancer (UC) and have been associated with better response to cisplatin-based chemotherapy. Further external validation of the prognostic value of ATM/RB1 mutations in UC can inform clinical decision making and trial designs. In the discovery dataset, ATM/RB1 mutations were present in 24% of patients and were associated with shorter OS (adjusted HR 2.67, 95% CI, 1.45-4.92, p = 0.002). There was a higher mutation load in patients carrying ATM/RB1 mutations (median mutation load: 6.7 versus 5.5 per Mb, p = 0.072). In the validation dataset, ATM/RB1 mutations were present in 22.2% of patients and were non-significantly associated with shorter OS (adjusted HR 1.87, 95% CI, 0.97-3.59, p = 0.06) and higher mutation load (median mutation load: 8.1 versus 7.2 per Mb, p = 0.126). Exome sequencing data of 130 bladder UC patients from The Cancer Genome Atlas (TCGA) dataset were analyzed as a discovery cohort to determine the prognostic value of ATM/RB1 mutations. Results were validated in an independent cohort of 81 advanced UC patients. Cox proportional hazard regression analysis was performed to calculate the hazard ratio (HR) and 95% confidence interval (CI) to compare overall survival (OS). ATM/RB1 mutations may be a biomarker of poor prognosis in unselected UC patients and may correlate with higher mutational load. Further studies are required to determine factors that can further stratify prognosis and evaluate predictive role of ATM/RB1 mutation status to immunotherapy and platinum-based chemotherapy.

  15. Intrinsic Molecular Subtypes of Glioma Are Prognostic and Predict Benefit From Adjuvant Procarbazine, Lomustine, and Vincristine Chemotherapy in Combination With Other Prognostic Factors in Anaplastic Oligodendroglial Brain Tumors: A Report From EORTC Study 26951

    PubMed Central

    Erdem-Eraslan, Lale; Gravendeel, Lonneke A.; de Rooi, Johan; Eilers, Paul H.C.; Idbaih, Ahmed; Spliet, Wim G.M.; den Dunnen, Wilfred F.A.; Teepen, Johannes L.; Wesseling, Pieter; Sillevis Smitt, Peter A.E.; Kros, Johan M.; Gorlia, Thierry; van den Bent, Martin J.; French, Pim J.

    2013-01-01

    Purpose Intrinsic glioma subtypes (IGSs) are molecularly similar tumors that can be identified based on unsupervised gene expression analysis. Here, we have evaluated the clinical relevance of these subtypes within European Organisation for Research and Treatment of Cancer (EORTC) 26951, a randomized phase III clinical trial investigating adjuvant procarbazine, lomustine, and vincristine (PCV) chemotherapy in anaplastic oligodendroglial tumors. Our study includes gene expression profiles of formalin-fixed, paraffin-embedded (FFPE) clinical trial samples. Patients and Methods Gene expression profiling was performed in 140 samples, 47 fresh frozen samples and 93 FFPE samples, on HU133_Plus_2.0 and HuEx_1.0_st arrays, respectively. Results All previously identified six IGSs are present in EORTC 26951. This confirms that different molecular subtypes are present within a well-defined histologic subtype. Intrinsic subtypes are highly prognostic for overall survival (OS) and progression-free survival (PFS). They are prognostic for PFS independent of clinical (age, performance status, and tumor location), molecular (1p/19q loss of heterozygosity [LOH], IDH1 mutation, and MGMT methylation), and histologic parameters. Combining known molecular (1p/19q LOH, IDH1) prognostic parameters with intrinsic subtypes improves outcome prediction (proportion of explained variation, 30% v 23% for each individual group of factors). Specific genetic changes (IDH1, 1p/19q LOH, and EGFR amplification) segregate into different subtypes. We identified one subtype, IGS-9 (characterized by a high percentage of 1p/19q LOH and IDH1 mutations), that especially benefits from PCV chemotherapy. Median OS in this subtype was 5.5 years after radiotherapy (RT) alone versus 12.8 years after RT/PCV (P = .0349; hazard ratio, 2.18; 95% CI, 1.06 to 4.50). Conclusion Intrinsic subtypes are highly prognostic in EORTC 26951 and improve outcome prediction when combined with other prognostic factors. Tumors assigned to IGS-9 benefit from adjuvant PCV. PMID:23269986

  16. Spectrum of BRCA1/2 variants in 940 patients from Argentina including novel, deleterious and recurrent germline mutations: impact on healthcare and clinical practice.

    PubMed

    Solano, Angela Rosaria; Cardoso, Florencia Cecilia; Romano, Vanesa; Perazzo, Florencia; Bas, Carlos; Recondo, Gonzalo; Santillan, Francisco Bernardo; Gonzalez, Eduardo; Abalo, Eduardo; Viniegra, María; Michel, José Davalos; Nuñez, Lina María; Noblia, Cristina Maria; Mc Lean, Ignacio; Canton, Enrique Diaz; Chacon, Reinaldo Daniel; Cortese, Gustavo; Varela, Eduardo Beccar; Greco, Martín; Barrientos, María Laura; Avila, Silvia Adela; Vuotto, Hector Daniel; Lorusso, Antonio; Podesta, Ernesto Jorge; Mando, Oscar Gaspar

    2017-09-01

    BRCA1/2 mutations in Latin America are scarcely documented and in serious need of knowledge about the spectrum of BRCA pathogenic variants, information which may alter clinical practice and subsequently improve patient outcome. In addition, the search for data on testing policies in different regions constitutes a fundamental strength for the present study, which analyzes BRCA1/2 gene sequences and large rearrangements in 940 probands with familial and/or personal history of breast/ovary cancer (BOC). In non-mutated DNA samples, Multiplex Ligation-dependent Probe Amplification assays (MLPA) were used for the analysis of large rearrangements. Our studies detected 179 deleterious mutations out of 940 (19.04%) probands, including 5 large rearrangements and 22 novel mutations. The recurrent mutations accounted for 15.08% of the total and only 2.87% of the probands analyzed, very different from a Hispanic panel previously described. a) this first comprehensive description of the spectrum in BRCA1/2 sheds light on the low frequency of recurrent mutations; b) this information is key in clinical practice to select adequate sequencing studies in our population, subsequently improve patient outcome and prevent damage associated to false normal reports resulting from the use of invalid population panels; c) panels of mutations from other populations should be cautiously validated before imported, even those of apparently similar origin, a concept to be considered beyond significance in Argentina.

  17. Spectrum of BRCA1/2 variants in 940 patients from Argentina including novel, deleterious and recurrent germline mutations: impact on healthcare and clinical practice

    PubMed Central

    Solano, Angela Rosaria; Cardoso, Florencia Cecilia; Romano, Vanesa; Perazzo, Florencia; Bas, Carlos; Recondo, Gonzalo; Santillan, Francisco Bernardo; Gonzalez, Eduardo; Abalo, Eduardo; Viniegra, María; Michel, José Davalos; Nuñez, Lina María; Noblia, Cristina Maria; Mc Lean, Ignacio; Canton, Enrique Diaz; Chacon, Reinaldo Daniel; Cortese, Gustavo; Varela, Eduardo Beccar; Greco, Martín; Barrientos, María Laura; Avila, Silvia Adela; Vuotto, Hector Daniel; Lorusso, Antonio; Podesta, Ernesto Jorge; Mando, Oscar Gaspar

    2017-01-01

    BRCA1/2 mutations in Latin America are scarcely documented and in serious need of knowledge about the spectrum of BRCA pathogenic variants, information which may alter clinical practice and subsequently improve patient outcome. In addition, the search for data on testing policies in different regions constitutes a fundamental strength for the present study, which analyzes BRCA1/2 gene sequences and large rearrangements in 940 probands with familial and/or personal history of breast/ovary cancer (BOC). In non-mutated DNA samples, Multiplex Ligation-dependent Probe Amplification assays (MLPA) were used for the analysis of large rearrangements. Our studies detected 179 deleterious mutations out of 940 (19.04%) probands, including 5 large rearrangements and 22 novel mutations. The recurrent mutations accounted for 15.08% of the total and only 2.87% of the probands analyzed, very different from a Hispanic panel previously described. In conclusion: a) this first comprehensive description of the spectrum in BRCA1/2 sheds light on the low frequency of recurrent mutations; b) this information is key in clinical practice to select adequate sequencing studies in our population, subsequently improve patient outcome and prevent damage associated to false normal reports resulting from the use of invalid population panels; c) panels of mutations from other populations should be cautiously validated before imported, even those of apparently similar origin, a concept to be considered beyond significance in Argentina. PMID:28947987

  18. Association of Rare and Common Variation in the Lipoprotein Lipase Gene with Coronary Artery Disease

    PubMed Central

    Khera, Amit V.; Won, Hong-Hee; Peloso, Gina M.; O’Dushlaine, Colm; Liu, Dajiang; Stitziel, Nathan O.; Natarajan, Pradeep; Nomura, Akihiro; Emdin, Connor A.; Gupta, Namrata; Borecki, Ingrid B.; Asselta, Rosanna; Duga, Stefano; Merlini, Piera Angelica; Correa, Adolfo; Kessler, Thorsten; Wilson, James G.; Bown, Matthew J.; Hall, Alistair S.; Braund, Peter S.; Carey, David J.; Murray, Michael F.; Kirchner, H. Lester; Leader, Joseph B.; Lavage, Daniel R.; Manus, J. Neil; Hartzel, Dustin N.; Samani, Nilesh J.; Schunkert, Heribert; Marrugat, Jaume; Elosua, Roberto; McPherson, Ruth; Farrall, Martin; Watkins, Hugh; Lander, Eric S.; Rader, Daniel J.; Danesh, John; Ardissino, Diego; Gabriel, Stacey; Willer, Cristen; Abecasis, Gonçalo R.; Saleheen, Danish; Dewey, Frederick E.; Kathiresan, Sekar

    2017-01-01

    Importance The activity of lipoprotein lipase (LPL) is the rate-determining step in clearing triglyceride-rich lipoproteins from the circulation. Mutations that damage the LPL gene lead to lifelong deficiency in enzymatic activity and can provide insight into the relationship of LPL to human disease. Objective Determine if rare and/or common variants in the LPL gene are associated with early-onset coronary artery disease (CAD). Design, Setting, and Participants Cross-sectional study. The LPL gene was sequenced in 10 CAD case-control cohorts of the multinational Myocardial Infarction Genetics Consortium and a nested CAD case-control cohort of the Geisinger Health System DiscovEHR cohort between 2010 and 2015. Common variants were genotyped in up to 305,699 individuals of the Global Lipids Genetics Consortium and up to 120,600 individuals of the CARDIoGRAM Exome Consortium between 2012 and 2014. Study-specific estimates were pooled via meta-analysis. Exposure Rare damaging mutations in LPL included loss-of-function variants and missense variants annotated as pathogenic in a human genetics database or predicted to be damaging by computer prediction algorithms trained to identify mutations that impair protein function. Common variants in the LPL gene region included those independently associated with circulating triglyceride levels. Main Outcomes and Measures Circulating lipid levels and CAD. Results Among 46,891 individuals with LPL gene sequencing data available, mean age was 50 years (SD 12.6) and 51% were female. 188 participants (0.40%; 95%CI 0.35–0.46) carried a damaging mutation in the LPL gene – 105 of 32,646 control participants (0.32%) and 83 of 14,245 (0.58%) early-onset CAD cases. Compared to 46,703 non-carriers, the 188 heterozygous carriers of a LPL damaging mutation displayed higher plasma triglycerides (Beta coefficient= +19.6 mg/dL; 95%CI 4.6–34.6) and higher odds of CAD (odds ratio 1.84; 95%CI 1.35–2.51; P<0.001). An analysis of 6 common LPL variants noted an odds ratio for CAD of 1.51 (95%CI 1.39–1.64; P=1.1×10−22) per standard deviation increase in triglycerides. Conclusions and Relevance The presence of rare damaging mutations in the LPL gene was significantly associated with higher triglyceride levels and presence of CAD. However, further research is needed to assess causal mechanisms by which heterozygous LPL deficiency could lead to CAD. PMID:28267856

  19. Population-Scale Sequencing Data Enable Precise Estimates of Y-STR Mutation Rates

    PubMed Central

    Willems, Thomas; Gymrek, Melissa; Poznik, G. David; Tyler-Smith, Chris; Erlich, Yaniv

    2016-01-01

    Short tandem repeats (STRs) are mutation-prone loci that span nearly 1% of the human genome. Previous studies have estimated the mutation rates of highly polymorphic STRs by using capillary electrophoresis and pedigree-based designs. Although this work has provided insights into the mutational dynamics of highly mutable STRs, the mutation rates of most others remain unknown. Here, we harnessed whole-genome sequencing data to estimate the mutation rates of Y chromosome STRs (Y-STRs) with 2–6 bp repeat units that are accessible to Illumina sequencing. We genotyped 4,500 Y-STRs by using data from the 1000 Genomes Project and the Simons Genome Diversity Project. Next, we developed MUTEA, an algorithm that infers STR mutation rates from population-scale data by using a high-resolution SNP-based phylogeny. After extensive intrinsic and extrinsic validations, we harnessed MUTEA to derive mutation-rate estimates for 702 polymorphic STRs by tracing each locus over 222,000 meioses, resulting in the largest collection of Y-STR mutation rates to date. Using our estimates, we identified determinants of STR mutation rates and built a model to predict rates for STRs across the genome. These predictions indicate that the load of de novo STR mutations is at least 75 mutations per generation, rivaling the load of all other known variant types. Finally, we identified Y-STRs with potential applications in forensics and genetic genealogy, assessed the ability to differentiate between the Y chromosomes of father-son pairs, and imputed Y-STR genotypes. PMID:27126583

  20. Real-world clinical applicability of pathogenicity predictors assessed on SERPINA1 mutations in alpha-1-antitrypsin deficiency.

    PubMed

    Giacopuzzi, Edoardo; Laffranchi, Mattia; Berardelli, Romina; Ravasio, Viola; Ferrarotti, Ilaria; Gooptu, Bibek; Borsani, Giuseppe; Fra, Annamaria

    2018-06-07

    The growth of publicly available data informing upon genetic variations, mechanisms of disease and disease sub-phenotypes offers great potential for personalised medicine. Computational approaches are likely required to assess large numbers of novel genetic variants. However, the integration of genetic, structural and pathophysiological data still represents a challenge for computational predictions and their clinical use. We addressed these issues for alpha-1-antitrypsin deficiency, a disease mediated by mutations in the SERPINA1 gene encoding alpha-1-antitrypsin. We compiled a comprehensive database of SERPINA1 coding mutations and assigned them apparent pathological relevance based upon available data. 'Benign' and 'Pathogenic' mutations were used to assess performance of 31 pathogenicity predictors. Well-performing algorithms clustered the subset of variants known to be severely pathogenic with high scores. Eight new mutations identified in the ExAC database and achieving high scores were selected for characterisation in cell models and showed secretory deficiency and polymer formation, supporting the predictive power of our computational approach. The behaviour of the pathogenic new variants and consistent outliers were rationalised by considering the protein structural context and residue conservation. These findings highlight the potential of computational methods to provide meaningful predictions of the pathogenic significance of novel mutations and identify areas for further investigation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. A Recessive Mutation Resulting in a Disabling Amino Acid Substitution (T194R) in the LHX3 Homeodomain Causes Combined Pituitary Hormone Deficiency

    PubMed Central

    Bechtold-Dalla Pozza, Susanne; Hiedl, Stefan; Roeb, Julia; Lohse, Peter; Malik, Raleigh E.; Park, Soyoung; Durán-Prado, Mario; Rhodes, Simon J.

    2012-01-01

    Background/Aims Recessive mutations in the LHX3 ho-meodomain transcription factor gene are associated with developmental disorders affecting the pituitary and nervous system. We describe pediatric patients with combined pituitary hormone deficiency (CPHD) who harbor a novel mutation in LHX3. Methods Two female siblings from related parents were examined. Both patients had neonatal complications. The index patient had CPHD featuring deficiencies of GH, LH, FSH, PRL, and TSH, with later onset of ACTH deficiency. She also had a hypoplastic anterior pituitary, respiratory distress, hearing impairment, and limited neck rotation. The LHX3 gene was sequenced and the biochemical properties of the predicted altered proteins were characterized. Results A novel homozygous mutation predicted to change amino acid 194 from threonine to arginine (T194R) was detected in both patients. This amino acid is conserved in the DNA-binding homeodomain. Computer modeling predicted that the T194R change would alter the homeodomain structure. The T194R protein did not bind tested LHX3 DNA recognition sites and did not activate the α-glycoprotein and PRL target genes. Conclusion The T194R mutation affects a critical residue in the LHX3 protein. This study extends our understanding of the phenotypic features, molecular mechanism, and developmental course associated with mutations in the LHX3 gene. PMID:22286346

  2. Frequency of ABL gene mutations in chronic myeloid leukemia patients resistant to imatinib and results of treatment switch to second-generation tyrosine kinase inhibitors.

    PubMed

    Marcé, Silvia; Zamora, Lurdes; Cabezón, Marta; Xicoy, Blanca; Boqué, Concha; Fernández, Cristalina; Grau, Javier; Navarro, José-Tomás; Fernández de Sevilla, Alberto; Ribera, Josep-Maria; Feliu, Evarist; Millá, Fuensanta

    2013-08-04

    Tyrosine kinase inhibitors (TKI) have improved the management of patients with chronic myeloid leukemia (CML). However, a significant proportion of patients do not achieve the optimal response or are resistant to TKI. ABL kinase domain mutations have been extensively implicated in the pathogenesis of TKI resistance. Treatment with second-generation TKI has produced high rates of hematologic and cytogenetic responses in mutated ABL patients. The aim of this study was to determine the type and frequency of ABL mutations in patients who were resistant to imatinib or had lost the response, and to analyze the effect of second-generation TKI on their outcome. The presence of ABL mutations in 45 CML patients resistant to imatinib was evaluated by direct sequencing and was correlated with the results of the cytogenetic study (performed in 39 cases). The outcome of these patients after therapy with nilotinib or dasatinib was analyzed. ABL mutations were detected in 14 out of 45 resistant patients. Patients with clonal cytogenetic evolution tended to develop mutations more frequently than those without clonal evolution. Nine out of the 15 patients with ABL mutation responded to a treatment switch to nilotinib (n=4), dasatinib (n=2), interferon (n=1) or hematopoietic stem cell transplantation (n=2). The frequency of ABL mutations in CML patients resistant to imatinib is high and is more frequent among those with clonal cytogenetic evolution. The change to second-generation TKI can overcome imatinib resistance in most of the mutated patients. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  3. Probing Mechanism of Evolution of Simple Genomes

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Ditzler, Mark; Popovic, Milena; Wei, Chenyu

    2016-01-01

    Our overarching goal is to discover how the structure of the genotypic space of RNA polymers affects their ability to evolve. Specifically, we will address several fundamental questions that, so far, have remained largely unanswered. Was the genotypic space explored globally or only locally? Was the outcome of early evolution predictable or was it, instead, govern by chance? What was the role of neutral mutations in the evolution of increasing complex systems? As the first step, we study the problem in the example of RNA ligases. We obtain the complete, empirical fitness landscapes for short ligases and examine possible evolutionary paths for RNA molecules that are sufficiently long to preclude exhaustive search of the genotypic space.

  4. Endogenous Molecular-Cellular Network Cancer Theory: A Systems Biology Approach.

    PubMed

    Wang, Gaowei; Yuan, Ruoshi; Zhu, Xiaomei; Ao, Ping

    2018-01-01

    In light of ever apparent limitation of the current dominant cancer mutation theory, a quantitative hypothesis for cancer genesis and progression, endogenous molecular-cellular network hypothesis has been proposed from the systems biology perspective, now for more than 10 years. It was intended to include both the genetic and epigenetic causes to understand cancer. Its development enters the stage of meaningful interaction with experimental and clinical data and the limitation of the traditional cancer mutation theory becomes more evident. Under this endogenous network hypothesis, we established a core working network of hepatocellular carcinoma (HCC) according to the hypothesis and quantified the working network by a nonlinear dynamical system. We showed that the two stable states of the working network reproduce the main known features of normal liver and HCC at both the modular and molecular levels. Using endogenous network hypothesis and validated working network, we explored genetic mutation pattern in cancer and potential strategies to cure or relieve HCC from a totally new perspective. Patterns of genetic mutations have been traditionally analyzed by posteriori statistical association approaches in light of traditional cancer mutation theory. One may wonder the possibility of a priori determination of any mutation regularity. Here, we found that based on the endogenous network theory the features of genetic mutations in cancers may be predicted without any prior knowledge of mutation propensities. Normal hepatocyte and cancerous hepatocyte stable states, specified by distinct patterns of expressions or activities of proteins in the network, provide means to directly identify a set of most probable genetic mutations and their effects in HCC. As the key proteins and main interactions in the network are conserved through cell types in an organism, similar mutational features may also be found in other cancers. This analysis yielded straightforward and testable predictions on an accumulated and preferred mutation spectrum in normal tissue. The validation of predicted cancer state mutation patterns demonstrates the usefulness and potential of a causal dynamical framework to understand and predict genetic mutations in cancer. We also obtained the following implication related to HCC therapy, (1) specific positive feedback loops are responsible for the maintenance of normal liver and HCC; (2) inhibiting proliferation and inflammation-related positive feedback loops, and simultaneously inducing liver-specific positive feedback loop is predicated as the potential strategy to cure or relieve HCC; (3) the genesis and regression of HCC is asymmetric. In light of the characteristic property of the nonlinear dynamical system, we demonstrate that positive feedback loops must be existed as a simple and general molecular basis for the maintenance of phenotypes such as normal liver and HCC, and regulating the positive feedback loops directly or indirectly provides potential strategies to cure or relieve HCC.

  5. 22 Years of predictive testing for Huntington's disease: the experience of the UK Huntington's Prediction Consortium

    PubMed Central

    Baig, Sheharyar S; Strong, Mark; Rosser, Elisabeth; Taverner, Nicola V; Glew, Ruth; Miedzybrodzka, Zosia; Clarke, Angus; Craufurd, David; Quarrell, Oliver W

    2016-01-01

    Huntington's disease (HD) is a progressive neurodegenerative condition. At-risk individuals have accessed predictive testing via direct mutation testing since 1993. The UK Huntington's Prediction Consortium has collected anonymised data on UK predictive tests, annually, from 1993 to 2014: 9407 predictive tests were performed across 23 UK centres. Where gender was recorded, 4077 participants were male (44.3%) and 5122 were female (55.7%). The median age of participants was 37 years. The most common reason for predictive testing was to reduce uncertainty (70.5%). Of the 8441 predictive tests on individuals at 50% prior risk, 4629 (54.8%) were reported as mutation negative and 3790 (44.9%) were mutation positive, with 22 (0.3%) in the database being uninterpretable. Using a prevalence figure of 12.3 × 10−5, the cumulative uptake of predictive testing in the 50% at-risk UK population from 1994 to 2014 was estimated at 17.4% (95% CI: 16.9–18.0%). We present the largest study conducted on predictive testing in HD. Our findings indicate that the vast majority of individuals at risk of HD (>80%) have not undergone predictive testing. Future therapies in HD will likely target presymptomatic individuals; therefore, identifying the at-risk population whose gene status is unknown is of significant public health value. PMID:27165004

  6. Prediction of long-term prognosis by heteroplasmy levels of the m.3243A>G mutation in patients with the mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome.

    PubMed

    Fayssoil, A; Laforêt, P; Bougouin, W; Jardel, C; Lombès, A; Bécane, H M; Berber, N; Stojkovic, T; Béhin, A; Eymard, B; Duboc, D; Wahbi, K

    2017-02-01

    Our aim was to determine the prognostic value of urine and blood heteroplasmy in patients with the m.3243A>G mutation. Adults with the m.3243A>G mutation referred to our institution between January 2000 and May 2014 were retrospectively included. The relationship between their baseline clinical characteristics, their mutation load in urine and blood, and major adverse events (MAEs) during follow-up, defined as medical complications requiring a hospitalization or complicated by death, was studied. Of the 43 patients (age 45.6 ± 13.3 years) included in the study, 36 patients were symptomatic, including nine with evidence of focal brain involvement, and seven were asymptomatic. Over a 5.5 ± 4.0 year mean follow-up duration, 14 patients (33%) developed MAEs. Patients with MAEs had a higher mutation load than others in urine (60.1% ± 13.8% vs. 40.6% ± 26.2%, P = 0.01) and in blood (26.9% ± 18.4% vs. 16.0% ± 12.1%, P = 0.03). Optimal cutoff values for the prediction of MAEs were 45% for urine and 35% for blood. In multivariate analysis, mutation load in urine ≥45% [odds ratio 25.3; 95% confidence interval (CI) 1.1-567.8; P = 0.04], left ventricular hypertrophy (odds ratio 16.7; 95% CI 1.3- 222.5; P = 0.03) and seizures (odds ratio 48.3; 95% CI 2.5-933; P = 0.01) were associated with MAEs. Patients with the m.3243A>G mutation are at high risk of MAEs, which can be independently predicted by mutation load in urine ≥45%, a personal history of seizures, and left ventricular hypertrophy. © 2016 EAN.

  7. Computational protein design and protein-ligand interaction studies for the improvement of organophosphorus degrading potential of Deinococcus radiodurans.

    PubMed

    Manoharan, Prabu; Sridhar, J

    2018-05-01

    The organophosphorus hydrolase enzyme is involved in the catalyzing reaction that involve hydrolysis of organophosphate toxic compounds. An enzyme from Deinococcus radiodurans reported as homologous to phosphotriesterase and show activity against organophosphate. In the past activity of this enzyme is low and efforts made to improve the activity by experimental mutation study. However only very few organophosphates tested against very few catalytic site mutations. In order to improve the catalytic power of the organophosphorus hydrolase enzyme, we carried out systematic functional hotspot based protein engineering strategy. The mutants tested against 46 know organophosphate compounds using molecular docking study. Finally, we carried out an extensive molecular docking study to predict the binding of 46 organophosphate compounds to wild-type protein and mutant organophosphorus hydrolase enzyme. At the end we are able to improve the degrading potential of organophosphorus hydrolase enzyme against organophosphate toxic compounds. This preliminary study and the outcome would be useful guide for the experimental scientist involved in the bioremediation of toxic organophosphate compounds. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Self-digitization chip for single-cell genotyping of cancer-related mutations

    PubMed Central

    Monroe, Luke D.; Kreutz, Jason E.; Schneider, Thomas; Fujimoto, Bryant S.; Chiu, Daniel T.; Radich, Jerald P.; Paguirigan, Amy L.

    2018-01-01

    Cancer is a heterogeneous disease, and patient-level genetic assessments can guide therapy choice and impact prognosis. However, little is known about the impact of genetic variability within a tumor, intratumoral heterogeneity (ITH), on disease progression or outcome. Current approaches using bulk tumor specimens can suggest the presence of ITH, but only single-cell genetic methods have the resolution to describe the underlying clonal structures themselves. Current techniques tend to be labor and resource intensive and challenging to characterize with respect to sources of biological and technical variability. We have developed a platform using a microfluidic self-digitization chip to partition cells in stationary volumes for cell imaging and allele-specific PCR. Genotyping data from only confirmed single-cell volumes is obtained and subject to a variety of relevant quality control assessments such as allele dropout, false positive, and false negative rates. We demonstrate single-cell genotyping of the NPM1 type A mutation, an important prognostic indicator in acute myeloid leukemia, on single cells of the cell line OCI-AML3, describing a more complex zygosity distribution than would be predicted via bulk analysis. PMID:29718986

  9. LRP5 regulates human body fat distribution by modulating adipose progenitor biology in a dose- and depot-specific fashion.

    PubMed

    Loh, Nellie Y; Neville, Matt J; Marinou, Kyriakoula; Hardcastle, Sarah A; Fielding, Barbara A; Duncan, Emma L; McCarthy, Mark I; Tobias, Jonathan H; Gregson, Celia L; Karpe, Fredrik; Christodoulides, Constantinos

    2015-02-03

    Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. LRP5 Regulates Human Body Fat Distribution by Modulating Adipose Progenitor Biology in a Dose- and Depot-Specific Fashion

    PubMed Central

    Loh, Nellie Y.; Neville, Matt J.; Marinou, Kyriakoula; Hardcastle, Sarah A.; Fielding, Barbara A.; Duncan, Emma L.; McCarthy, Mark I.; Tobias, Jonathan H.; Gregson, Celia L.; Karpe, Fredrik; Christodoulides, Constantinos

    2015-01-01

    Summary Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. PMID:25651180

  11. Developmental mechanisms underlying variation in craniofacial disease and evolution.

    PubMed

    Fish, Jennifer L

    2016-07-15

    Craniofacial disease phenotypes exhibit significant variation in penetrance and severity. Although many genetic contributions to phenotypic variation have been identified, genotype-phenotype correlations remain imprecise. Recent work in evolutionary developmental biology has exposed intriguing developmental mechanisms that potentially explain incongruities in genotype-phenotype relationships. This review focuses on two observations from work in comparative and experimental animal model systems that highlight how development structures variation. First, multiple genetic inputs converge on relatively few developmental processes. Investigation of when and how variation in developmental processes occurs may therefore help predict potential genetic interactions and phenotypic outcomes. Second, genetic mutation is typically associated with an increase in phenotypic variance. Several models outlining developmental mechanisms underlying mutational increases in phenotypic variance are discussed using Satb2-mediated variation in jaw size as an example. These data highlight development as a critical mediator of genotype-phenotype correlations. Future research in evolutionary developmental biology focusing on tissue-level processes may help elucidate the "black box" between genotype and phenotype, potentially leading to novel treatment, earlier diagnoses, and better clinical consultations for individuals affected by craniofacial anomalies. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Congenital diaphragmatic hernias: from genes to mechanisms to therapies

    PubMed Central

    McCulley, David J.; Shen, Yufeng; Wynn, Julia; Shang, Linshan; Bogenschutz, Eric; Sun, Xin

    2017-01-01

    ABSTRACT Congenital diaphragmatic hernias (CDHs) and structural anomalies of the diaphragm are a common class of congenital birth defects that are associated with significant morbidity and mortality due to associated pulmonary hypoplasia, pulmonary hypertension and heart failure. In ∼30% of CDH patients, genomic analyses have identified a range of genetic defects, including chromosomal anomalies, copy number variants and sequence variants. The affected genes identified in CDH patients include transcription factors, such as GATA4, ZFPM2, NR2F2 and WT1, and signaling pathway components, including members of the retinoic acid pathway. Mutations in these genes affect diaphragm development and can have pleiotropic effects on pulmonary and cardiac development. New therapies, including fetal endoscopic tracheal occlusion and prenatal transplacental fetal treatments, aim to normalize lung development and pulmonary vascular tone to prevent and treat lung hypoplasia and pulmonary hypertension, respectively. Studies of the association between particular genetic mutations and clinical outcomes should allow us to better understand the origin of this birth defect and to improve our ability to predict and identify patients most likely to benefit from specialized treatment strategies. PMID:28768736

  13. Recent Advances in Chemotherapy and Surgery for Colorectal Liver Metastases

    PubMed Central

    Passot, Guillaume; Soubrane, Olivier; Giuliante, Felice; Zimmitti, Giuseppe; Goéré, Diane; Yamashita, Suguru; Vauthey, Jean-Nicolas

    2016-01-01

    Background The liver is the most common site of metastases for colorectal cancer, and combined resection with systemic chemotherapy is the most effective strategy for survival. The aim of this article is to provide a comprehensive summary on four hot topics related to chemotherapy and surgery for colorectal liver metastases (CLM), namely: (1) chemotherapy-related liver injuries: prediction and impact, (2) surgery for initially unresectable CLM, (3) the emerging role of RAS mutations, and (4) the role of hepatic arterial infusion of chemotherapy (HAIC). Summary and Key Messages (1) The use of chemotherapy before liver resection for CLM leads to drug-specific hepatic toxicity, which negatively impacts posthepatectomy outcomes. (2) Curative liver resection of initially unresectable CLM following conversion chemotherapy should be attempted whenever possible, provided that a safe future liver remnant volume is achieved. (3) For CLM, RAS mutation status is needed to guide the use of targeted chemotherapy with anti-epithelial growth factor receptor (EGFR) agents, and is a major prognostic factor that may contribute to optimize surgical strategy. (4) HAIC agents increase the rate of objective response and the rate of complete pathological response. PMID:27995091

  14. Recent Advances in Chemotherapy and Surgery for Colorectal Liver Metastases.

    PubMed

    Passot, Guillaume; Soubrane, Olivier; Giuliante, Felice; Zimmitti, Giuseppe; Goéré, Diane; Yamashita, Suguru; Vauthey, Jean-Nicolas

    2016-11-01

    The liver is the most common site of metastases for colorectal cancer, and combined resection with systemic chemotherapy is the most effective strategy for survival. The aim of this article is to provide a comprehensive summary on four hot topics related to chemotherapy and surgery for colorectal liver metastases (CLM), namely: (1) chemotherapy-related liver injuries: prediction and impact, (2) surgery for initially unresectable CLM, (3) the emerging role of RAS mutations, and (4) the role of hepatic arterial infusion of chemotherapy (HAIC). (1) The use of chemotherapy before liver resection for CLM leads to drug-specific hepatic toxicity, which negatively impacts posthepatectomy outcomes. (2) Curative liver resection of initially unresectable CLM following conversion chemotherapy should be attempted whenever possible, provided that a safe future liver remnant volume is achieved. (3) For CLM, RAS mutation status is needed to guide the use of targeted chemotherapy with anti-epithelial growth factor receptor (EGFR) agents, and is a major prognostic factor that may contribute to optimize surgical strategy. (4) HAIC agents increase the rate of objective response and the rate of complete pathological response.

  15. Self-digitization chip for single-cell genotyping of cancer-related mutations.

    PubMed

    Thompson, Alison M; Smith, Jordan L; Monroe, Luke D; Kreutz, Jason E; Schneider, Thomas; Fujimoto, Bryant S; Chiu, Daniel T; Radich, Jerald P; Paguirigan, Amy L

    2018-01-01

    Cancer is a heterogeneous disease, and patient-level genetic assessments can guide therapy choice and impact prognosis. However, little is known about the impact of genetic variability within a tumor, intratumoral heterogeneity (ITH), on disease progression or outcome. Current approaches using bulk tumor specimens can suggest the presence of ITH, but only single-cell genetic methods have the resolution to describe the underlying clonal structures themselves. Current techniques tend to be labor and resource intensive and challenging to characterize with respect to sources of biological and technical variability. We have developed a platform using a microfluidic self-digitization chip to partition cells in stationary volumes for cell imaging and allele-specific PCR. Genotyping data from only confirmed single-cell volumes is obtained and subject to a variety of relevant quality control assessments such as allele dropout, false positive, and false negative rates. We demonstrate single-cell genotyping of the NPM1 type A mutation, an important prognostic indicator in acute myeloid leukemia, on single cells of the cell line OCI-AML3, describing a more complex zygosity distribution than would be predicted via bulk analysis.

  16. Intronic splicing mutations in PTCH1 cause Gorlin syndrome.

    PubMed

    Bholah, Zaynab; Smith, Miriam J; Byers, Helen J; Miles, Emma K; Evans, D Gareth; Newman, William G

    2014-09-01

    Gorlin syndrome is an autosomal dominant disorder characterized by multiple early-onset basal cell carcinoma, odontogenic keratocysts and skeletal abnormalities. It is caused by heterozygous mutations in the tumour suppressor PTCH1. Routine clinical genetic testing, by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to confirm a clinical diagnosis of Gorlin syndrome, identifies a mutation in 60-90 % of cases. We undertook RNA analysis on lymphocytes from ten individuals diagnosed with Gorlin syndrome, but without known PTCH1 mutations by exonic sequencing or MLPA. Two altered PTCH1 transcripts were identified. Genomic DNA sequence analysis identified an intron 7 mutation c.1068-10T>A, which created a strong cryptic splice acceptor site, leading to an intronic insertion of eight bases; this is predicted to create a frameshift p.(His358Alafs*12). Secondly, a deep intronic mutation c.2561-2057A>G caused an inframe insertion of 78 intronic bases in the cDNA transcript, leading to a premature stop codon p.(Gly854fs*3). The mutations are predicted to cause loss of function of PTCH1, consistent with its tumour suppressor function. The findings indicate the importance of RNA analysis to detect intronic mutations in PTCH1 not identified by routine screening techniques.

  17. Identification of a novel homozygous mutation (S144I) in a Malay patient with maple syrup urine disease.

    PubMed

    Ali, Ernie Zuraida; Yunus, Zabedah Md; Desa, Norsiah Md; Hock, Ngu Lock

    2013-01-01

    Maple syrup urine disease (MSUD) is a rare autosomal recessive metabolic disorder of branched-chain amino acid metabolism caused by the defective function of branched-chain α-ketoacid dehydrogenase complex (BCKDH). It is characterised by increased plasma leucine, isoleucine, and valine levels, and mutations can be detected in any one of the BCKDHA, BCKDHB, and DBT genes. In this study, we describe the molecular basis of a novel mutation found in one MSUD Malay patient from consanguineous parents. A homozygous mutation has been detected in this patient whose both parents carried a heterozygous mutation at DNA coding region c.431G>T in exon 4, which resulted in a substitution of serine to isoleucine at codon 144 (p.S144I). In silico analysis predicted S144I to be potentially damaging. The mutation was located on the alpha helical region of the BCKDHA protein, and it is predicted to affect the stability of protein due to the loss of various polar interactions between local secondary structures. Homology analysis revealed that this mutation occurred in a highly conserved region (100%). This result indicates that S144I mutation is likely pathogenic and may contribute to the classic form of MSUD in this patient.

  18. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations

    PubMed Central

    2011-01-01

    Background Usher Syndrome type II (USH2) is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP). Among the three genes implicated, mutations in the USH2A gene account for 74-90% of the USH2 cases. Methods To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing. Results As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and in vitro experiments, 37 variants (23 of them novel) were classified as pathogenic mutations. Conclusions This report provide a wide spectrum of USH2A mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin. PMID:22004887

  19. The Linear Interaction Energy Method for the Prediction of Protein Stability Changes Upon Mutation

    PubMed Central

    Wickstrom, Lauren; Gallicchio, Emilio; Levy, Ronald M.

    2011-01-01

    The coupling of protein energetics and sequence changes is a critical aspect of computational protein design, as well as for the understanding of protein evolution, human disease, and drug resistance. In order to study the molecular basis for this coupling, computational tools must be sufficiently accurate and computationally inexpensive enough to handle large amounts of sequence data. We have developed a computational approach based on the linear interaction energy (LIE) approximation to predict the changes in the free energy of the native state induced by a single mutation. This approach was applied to a set of 822 mutations in 10 proteins which resulted in an average unsigned error of 0.82 kcal/mol and a correlation coefficient of 0.72 between the calculated and experimental ΔΔG values. The method is able to accurately identify destabilizing hot spot mutations however it has difficulty in distinguishing between stabilizing and destabilizing mutations due to the distribution of stability changes for the set of mutations used to parameterize the model. In addition, the model also performs quite well in initial tests on a small set of double mutations. Based on these promising results, we can begin to examine the relationship between protein stability and fitness, correlated mutations, and drug resistance. PMID:22038697

  20. p.Arg82Leu von Hippel-Lindau (VHL) Gene Mutation among Three Members of a Family with Familial Bilateral Pheochromocytoma in India: Molecular Analysis and In Silico Characterization

    PubMed Central

    John, Anulekha Mary; C, George Priya Doss; Ebenazer, Andrew; Seshadri, Mandalam Subramaniam; Nair, Aravindan; Rajaratnam, Simon; Pai, Rekha

    2013-01-01

    Various missense mutations in the VHL gene have been reported among patients with familial bilateral pheochromocytoma. However, the p.Arg82Leu mutation in the VHL gene described here among patients with familial bilateral pheochromocytoma, has never been reported previously in a germline configuration. Interestingly, long-term follow-up of these patients indicated that the mutation might have had little impact on the normal function of the VHL gene, since all of them have remained asymptomatic. We further attempted to correlate this information with the results obtained by in silico analysis of this mutation using SIFT, PhD-SNP SVM profile, MutPred, PolyPhen2, and SNPs&GO prediction tools. To gain, new mechanistic insight into the structural effect, we mapped the mutation on to 3D structure (PDB ID 1LM8). Further, we analyzed the structural level changes in time scale level with respect to native and mutant protein complexes by using 12 ns molecular dynamics simulation method. Though these methods predict the mutation to have a pathogenic potential, it remains to be seen if these patients will eventually develop symptomatic disease. PMID:23626751

Top